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List of Symbols

R is the set of real numbers.

DOF is an acronym for Degrees Of Freedom of a robot.

CoM is an acronym for Center of Mass.

MPC is an acronym for Model Predictive Control.

ZMP is an acronym for Zero Moment Point.

q ∈ R
n is a vector of joint positions for an n-DOF robot.

τ ∈ R
n is a vector of joint torques for an n-DOF robot.

J ∈ R
m×n is a Jacobian matrix for an n-DOF robot where m is the number of task
variables, the classical robot Jacobian has m = 6 with the task defined in 3D
Cartesian space.

C ∈ R
n×n is a matrix that relates joint velocities to the vector of Coriolis and

centrifugal terms for an n-DOF robot.

H ∈ R
n×n is a symmetric, positive-definite joint-space inertia matrix for an n-DOF

robot.

τ g ∈ R
n is a vector of torques due to gravity for an n-DOF robot.

e ∈ R
m is a vector of m task variables.

x, y, z as superscripts are used to denote the 3 dimensions in Euclidean space.

t ∈ R
3 is a translation/position vector of an object in a reference frame, for example
atb = [tx ty tz]⊤ denotes the translation of b in the a reference frame.

θ ∈ R
n is an orientation vector of an object in a reference frame where n denotes
the number variables to express an orientation. Examples include Euler angles
and quaternions.

R is a rotation matrix of an object in a reference frame, for example aRb denotes
the rotation of b in the a reference frame.
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p ∈ R
(3+n) is a generalized pose vector containing both translation and rotation

information where n denotes the number variables to express an orientation.

T is a generalized transformation matrix which can be used to transform a pose,
motion or wrench to another reference frame, for example aTb denotes the
transformation of b to the a reference frame. It contains both the rotation
and translation (pose) information structured according to the variable being
transformed.

f ∈ R
3 is a force vector such that f = [fx fy f z]⊤.

n ∈ R
3 is a torque vector such that n = [nx ny nz]⊤.

h ∈ R
6 is a wrench vector such that h = [f⊤ n⊤]⊤.

L ∈ R
3 is a vector of the angular momentum such that L = [Lx Ly Lz]⊤.

G is a gain matrix of appropriate dimensions.

m is the mass of an object or virtual model.

b is the damping of an object or virtual model.

k is the stiffness of an object or virtual model.

x ∈ R
n is a vector of the independent variables to optimize in a mathematical

optimization problem where n is the number of variables.

f(x) : Rn → R is an objective function to minimize or maximize in an optimization
problem.

Qqp ∈ R
n×n is a matrix used to define a standard quadratic program’s objective

function where n is the number of variables.

cqp ∈ R
n is a vector used to define a standard quadratic program’s objective function

where n is the number of variables.

w is a weighting parameter to control the relative importance between several ob-
jective functions in a mathematical optimization problem.

λ ∈ R
nm is a vector representing the linearized friction cone base weights where n
is the number of contact forces and m is the number of generators chosen to
represent the linearization.

Kfc ∈ R
3n×nm is a matrix of generators for linearizing the friction cone where n is

the number of contact points and m is the number of generators chosen to
represent the linearization such that a concatenated vector of contact forces
f = Kfcλ.
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n signifies the lower limit of a constraint on variable n in an optimization problem.

n signifies the upper limit of a constraint on variable n in an optimization problem.

c ∈ R
3 is the position of the Center of Mass (CoM), it is shorthand for tCoM.

z ∈ R
3 is the position of the Zero Moment Point (ZMP), it is shorthand for tZMP.

r ∈ R
3 is the position of a foot, it is shorthand for tfoot.

ĉ ∈ R
6 is the state vector of the linear model in the chapter on walking such that
ĉ = [cx ċx c̈x cy ċy c̈y]⊤.

f̂ ∈ R
4 is a particular vector of external forces and torques used for the linear model
in the chapter on walking such that f̂ = [ny

ext f
x
ext n

x
ext f

y
ext]

⊤.

A,B,D,E are matrices used for defining the linear model in the chapter on walking.

k as a subscript of the matrices and vectors in the linear model in the chapter on
walking denotes a discrete time interval.

N as a subscript denotes the maximum length of the preview horizon of the MPC.

c̃ ∈ R
6N is the state vector of the MPC model in the chapter on walking such that
c̃ = [ĉ⊤1 . . . ĉ⊤N]

⊤ over an N -step preview horizon.

ũ ∈ R
2N is the control vector of the MPC model in the chapter on walking such
that ũ = [

...
c x,y⊤
0 . . .

...
c x,y⊤
N-1 ]⊤ over an N -step preview horizon.

f̃ ∈ R
4N is the vector of external wrenches of the MPC model in the chapter on
walking such that f̃ = [̂f⊤1 . . . f̂⊤N ]

⊤ over an N -step preview horizon.

z̃ ∈ R
2N is the vector of ZMPs of the MPC model in the chapter on walking such
that z̃ = [zx,y⊤1 . . . zx,y⊤N ]⊤ over an N -step preview horizon.

Uc,Uu,Oc,Ou,Of are matrices resulting from condensing the Model Predictive
Control Problem in the chapter on walking.

M as a subscript denotes the maximum number of variable footsteps in the preview
horizon of the MPC.

r̆ ∈ R
2M is the vector of foot landing positions relative to the preceding foot position
such that r̆ = [r0rx,y⊤1 . . . rM-1r

x,y⊤
M ]⊤.

z̆ ∈ R
2N is the vector of ZMPs relative to the supporting foot/feet such that z̆ =
[r1zx,y⊤1 . . . rNzx,y⊤N ]⊤.

S are matrices used to concisely describe the MPC states and outputs.
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s are vectors used to concisely describe the MPC states and outputs.

vr0 ∈ R
2N is a vector of fixed foot positions used to express the ZMP and variable

foot positions in convenient local frames.

Vr,Vz are matrices containing a certain structure of the foot rotations such that
the ZMP and foot positions can be expressed in convenient local frames.

g ∈ R
3 is the acceleration vector due to gravity.

∆t denotes a discrete time step.



Introduction

We live in an amazing time for robotics, with continuous developments coming
from various areas. Examples include: self-driving cars being continuously tested
and legalized; small unmanned-aerial vehicles (UAVs) operating in several applica-
tion areas, including the delivery of goods; collaborative industrial robots, working
safely beside humans in manufacturing factories; and the recently concluded DARPA
Robotics Challenge (DRC), showcasing several humanoid robots competing in a real-
world scenario. This thesis is a contribution towards the convergence of the last two
areas: humanoid robots with the ability of working together with humans.

Humanoid robots are robots with an anthropomorphic form. However, this term
is often used loosely, since the robot can have varying degrees of similarity with a
human. For this thesis, a humanoid is defined as a robot having two legs and two
arms, that are attached to a torso with a head, all of which are functional. The
functionality of the whole body is the key, since we will be utilizing it throughout
this thesis. This definition also implies that humanoids are at the convergence of
several robotics research areas: legged locomotion, manipulation control for the
arms and hands, sensor processing, just to name a few. Although humanoids have
long been conceptualized (especially in science fiction), it was only in recent decades
that fully functional humanoids have started to become widespread, with a lot of
variation between different classes. Some examples are shown in Fig. 1. The diversity
is evident but the similarity in form allows us to be generic in our approach to
programming humanoids such as these, which is one of the main goals of this thesis.
Although these prototypes are certainly impressive, current day humanoids are still
a long way from achieving the functionalities that we desire or envision. Since the
form is human-like, the performance of tasks is similarly expected to be human-
like. Unfortunately, this is not generally the case in the current state of the art.
Typically, most of the robots in Figure 1 are only used within research laboratories,
and therefore operate in structured and controlled conditions. A more realistic
scenario is that of the DRC, where the winning team required less than 45 minutes
for completing a required course, with many teams failing to even complete the
first few tasks. Although the performance of the top teams was very impressive by
current standards, a human can likely realize the same tasks in under 10 minutes.
Clearly, much work is to be done before the general adoption of humanoids will take
place.

While the technology for humanoids slowly matured and developed within re-
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2 Introduction

Figure 1: Some humanoid robots from recent years, from left to right: Boston Dy-
namics’ Atlas, Kawada’s HRP4, Honda’s ASIMO, KAIST’s HUBO, PAL Robotics’
REEM-C, DLR’s TORO, Aldebaran’s Romeo.

search labs, industry has long adapted robots for manufacturing. Many of these
specialized, fixed-base robots are big, powerful machines which are designed to be
efficient and fast. However, as a consequence, they need to be isolated because
of the inherent danger they represent. Oftentimes, these robots require their own
workspace or even safety cages. This impedes them from collaborating alongside
humans. However, in recent years, there has been a significant emerging branch
of industrial robots that brought along a paradigm shift: collaborative robots that
are designed to safely work side-by-side with humans. Although these are slow, in
comparison to classic industrial robots, they are still efficient and reliable for cer-
tain tasks. Furthermore, they are designed to be easily reconfigurable (as opposed
to being specialized) for a variety of tasks. Currently, the technology for this has
become mature enough, and is starting to be commercialized by several companies,
with Fig. 2 showing some examples. Although some companies adopt the single-arm
design of classical industrial robots, others have chosen a dual-arm design, in some
cases even including a functional head. The design choice of having two arms and
a head seems to have stemmed from copying the upper-body humanoid design, or
perhaps to help their applicability for working together with humans. Whatever
the case may be for the design choice, these robots only need functional legs to be
formally called humanoids. However, adding these legs has a lot of implications on
how the robot must be controlled and programmed, returning us to the main topic
of this thesis: how do we reconnect collaborative and humanoid robotics?

As mentioned, this thesis focuses on collaborative humanoid robots. Although
simply described with two words, it is both deep and broad, with the potential to
be much more than an industrial tool: it is potentially a general purpose tool in
various settings. As it is a broad topic, we begin by giving some background on all
the aspects related to collaborative humanoids in Chapter 1. From this, we slowly
focus on the main points to be discussed further in the next chapters. Chapter 2
starts with detailing collaboration as it relates to robot control. This eventually
leads to utilizing vision and haptics, to enable better collaboration. Chapter 3 then
goes into the details on the implications for adding legs to collaborative robots. More
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Figure 2: Some of the industry-focused, “collaborative” robots, from left to right:
KUKA’s LBR-iiwa, Universal Robots’ UR3, ABB’s YuMi, Kawada’s NEXTAGE,
Rethink Robotics’ Baxter.

precisely, it details a walking pattern generator designed for physical collaboration.
Lastly, Chapter 4 deals with the whole-body control problem. Specifically, the task
of collaboratively carrying an object together with a human is broken down and
implemented within an optimization framework.
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Chapter 1

Background and state-of-the-art

This thesis contributes towards humanoids that can collaborate with humans, ideally
with a performance similar to that of another human. This involves several different
areas of research. To give some background, Sect. 1.1 starts from physical interaction
in general, before going specifically into collaboration. This section also reviews the
application of these ideas in robot control, which is our end goal. Next, section 1.2
focuses on the state-of-the-art in humanoid control with a particular view on enabling
physical interaction. Finally, section 1.3 reviews the most relevant works on human-
humanoid collaboration.

1.1 Physical human-robot interaction and collab-

oration

Physical human-robot interaction (pHRI) is one of the fastest growing research areas
in robotics. It is a very broad field, dealing with vastly different aspects, ranging
from the human psychology and behavioral science to robot control. This thesis
is skewed towards robot control, although the human aspect always needs to be
accounted for. Thus, we start with a quick review of some aspects from cognitive
and behavioral science in subsection 1.1.1. With this, some important terminology
is defined. Afterwards, subsection 1.1.2 gives a more detailed review of robot control
for pHRI.

1.1.1 Terminology with a cognitive and behavioral science

perspective

Starting with a cognitive and behavioral science perspective is important to gain
some grounding. Since our ideal is to make a robot as effective as a human, a good
initial perspective can be obtained by looking at how humans act. The aim is to
gain insight into the underlying principles needed to program a robot to successfully
collaborate with humans. However, to be clear, the interest is not to do things

5



6 Chapter 1: Background and state-of-the-art

exactly as a human would, but rather to take inspiration and try to apply the core
concepts into a humanoid robot.

Before going into collaboration in particular, it is useful to start from the more
general: interaction. More precisely, we are concerned with physical interaction,
since the goal is defined as requiring physical labour. In this thesis, we define physical
interaction as the participation of multiple agents (humans and/or robots), jointly,
in a given task. Note that simply participating does not imply working together.
To clarify this, we adapt the taxonomy of such behaviors from [1]. Although the
meanings are kept, we will slightly adapt different terms to better clarify the work
targeted in this thesis. The taxonomy of [1] starts by classifying the task. This can
be done in two different ways:

1. divisible vs. interactive task,

2. competitive vs. cooperative task.

For the first task taxonomy: a divisible task is such that agents are able to divide
the work without fear of conflicts, whereas an interactive task must be done together
and at the same time. For example, cleaning a room is divisible but moving heavy
furniture (requiring two or more agents) is interactive. Note that divisible tasks can
be effectively treated as a collection of independent subtasks. This can be taken ad-
vantage of in the context of robot programming, where the subtasks require minimal
interaction with the human. In fact, collaborative industrial robots generally target
such kind of tasks. On the contrary, this thesis is focused on interactive tasks, that
must be done together by humans and robots.

For the second task taxonomy: a competitive task is such that agents work against
each other, whereas cooperative tasks require them to work with each other. For
example, a tug-of-war game is competitive while pushing a heavy object together is
cooperative. This thesis is clearly concerned with cooperative tasks.

Another taxonomy from [1] concerns the behavior of the agents independently
from the task. Although the paper defined three general classes with some sub-
classes, we firstly simplify this to be:

• competition vs. collaboration.

Note that it is similar to the second task taxonomy. But rather than the nature of
the task itself, the agents’ behaviors are highlighted. As for the task taxonomy, we
are concerned with making the robot behave in a collaborative manner. Apart from
this, the agents may also be classified according to their roles. Studies have shown
the importance of specialization of roles in collaborative tasks [2]. Perhaps, the most
common role distribution is leader-follower. A leader is defined as the agent having
a clear and independent intention for doing the task. Additionally, the leader seeks
to guide the follower in doing the task. A follower is the agent, whose intention
is dependent on the leader. A follower cannot act on his own to do the task and
must be guided by the leader’s intention. However, a follower can be pro-active if
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s/he acts based on a prediction of the leader’s future intention. Contrary to the
leader-follower role distribution, an equal-collaboration approach is also possible [3].

Apart from terminology on interaction and collaboration, we can also take in-
spiration from how humans function. For example, we can take inspiration from
studies regarding how humans move, such as [4], or regarding how they use their
senses for collaborating. Humans usually use three distinct percepts for communi-
cation: sight, touch, and hearing. These factors all play a role in communication
during the collaborative task [2]. Additionally, there has been evidence that humans
tend to merge these percepts [5, 6] rather than to use them individually.

1.1.2 Robot control for interaction and collaboration

Robot control is a mature field, already being commercialized heavily in industry.
However, the principles needed for interacting and collaborating with a human are
not yet established and are the subject of a lot of the research in pHRI. One of the
main issues is safety. Although there has been a lot of recent push towards this, with
a view towards standardization (under the ISO/TC 184/SC 2 for robots and robotic
devices [7] for example), we are still in the starting stage before general adaptation.
Another of the main issues is the efficiency of the robot, for example its proactivity
in following behaviors [8–10]. This issue in particular has tried to draw inspiration
from behavioral and cognitive science.

Due to its nature, physical human-robot interaction has largely relied on the
use of haptic data (force/torque) for control. By extension, it is grounded in a
lot of the core concepts of force control in robotics [11]. In particular, impedance
control [12] has been largely adapted with various enhancements. For instance,
variable impedance control is used for human-robot collaboration in [13, 14], with
parameters obtained from human-human experiments. Similarly, a variable damping
controller is defined in [15], using the derivative of the interaction force. A method
for improving impedance control, consists in utilizing an estimate of the human’s
intended motion [16]. Another possibility is to have a model. For instance, in [8],
a minimum jerk model of human motion, inspired from [4], is used to have a good
guess of the human intention. This is then used as a desired trajectory within
an impedance control framework. Another example is given in [9], where machine
learning methods are used to obtain a model of the task, which is then utilized within
an adaptive impedance control framework. Conversely, mechanical impedance was
shown to be a good model of a human, stabilizing an unstable system [17].

In spite of this important research in haptics, it is clear that vision can provide a
lot of complementary information, that cannot be obtained from force/torque sensors
alone. For example, information about object motion and human gestures/pose may
be acquired. However, the integration of such information into human-robot haptic
joint actions is not straightforward. The main issues are: what information would
be helpful? how can this information be reliably obtained in the context of the task
and platform? and how/where should this information be used? Since the priority
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should still be interaction force regulation, the last issue is particularly important
and implies the need for combining vision with force data. However, there have
not been many applications of this in pHRI. To our knowledge, there has been no
previous work on combining vision and force in the context of human-robot haptic
joint actions. However, previous works on combining vision and force for object
manipulation tasks can be found in the literature. A brief review of these methods
follows.

The different approaches to combining vision and force information for manipu-
lation tasks can be classified into three general categories [18]. These are: traded,
hybrid and shared. The simplest strategy is termed as traded since the final control
output is traded between a purely force-based controller and a purely vision-based
controller. The switching between controllers depends on the task execution. A
common example of this strategy starts by doing a guarded move visual servoing
phase. A contact event causes the guarded move phase to stop. After this, the task
is completed by force control.

The second category is that of hybrid methods. These are hybrid in the sense
that the vision-based controller and force-based controller act at the same time, but
in different spaces. This requires prior specification of a task-frame [19–21]. The task
frame is a Cartesian reference frame that can be divided into vision-controlled and
force-controlled directions. Doing this decouples vision and force into orthogonal
spaces. Afterwards, the controllers can be designed separately and work indepen-
dently in their own predefined space. The third and final category is termed as
shared methods. These are so-called since there is no separation in time (the case of
traded control) or in space (the case of hybrid control). The control responsibility
is shared by both vision and force throughout the operation. By doing this, all
available information can be used [18]. An example of a shared method is described
in [22], where force feedback is used to correct the visual servo control trajectory.

In the context of human-robot haptic joint actions, a shared method is needed.
With the human in the loop, safety is always a top priority. Therefore, the control
must always be compliant in all degrees of freedom (DOFs). This can be achieved
by always making use of the force information in all DOFs. Therefore, in order
to make use of visual data, a shared control strategy must be devised. A good
candidate for this is the impedance control framework [12]. Impedance control allows
a manipulator to be compliant by defining a virtual mechanical impedance. Vision
can be used in this framework to provide a reference trajectory that is tracked
in the absence of external forces [23, 24]. When contact does occur, it has the
properties of shared control methods, where vision and force determine the control
of the same degree of freedom (DOF) simultaneously. This approach is preferred
over the others since it can allow for compliance in all DOF. Previous works using
this methodology [23–25] presented experiments of a robot interacting with objects.
Here, we use this approach for physical human-humanoid collaboration. Having a
human as a physical collaborator implies that some issues of this framework are to
be revisited, typically the implication of impedance parameters, and the way vision
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and haptics are combined in the context of physical collaboration.

Contrary to combining vision and force in control, another possibility is to fuse
the different information sources. This can be done with sensor fusion techniques,
for example cartesian frames are fused in [26], and fusion of proprioception and
vision is done with an extended Kalman filter (EKF) in [27] or with task frame
estimation in [28]. These approaches relate back to the merging of percepts by
humans in [5, 6]. Although there is some merit to this, inherently there is a re-
solvability issue [29]. Force/torque and position/orientation(vision) are inherently
different quantities. More formally, motion and force can be represented as dual
vector spaces [30]. Another possible usage of vision is in trying to infer/guess the
underlying intention behind motion. This concept was explored in [31] for a table-
tennis playing robot (also an example of a competitive task). Another example is
provided in [32], where the human hand is tracked, with vision, during a hand-over
task.

1.2 Humanoid robot control

Humanoid robotics focuses on the design of robots directly inspired by human ca-
pabilities. This design gives many advantages when working together with humans
in performing tasks. Because of this, humanoids are ideal research platforms for
physical Human-Robot Interaction (pHRI). Typically, humans have extensive expe-
rience in physically collaborating with each other. Humanoid robots simplify such
interactions, since they possess a human-like range of motion and sensing capabili-
ties. These can be used to create suitable behaviors, by reducing the need for the
human cooperator to learn how to interact with the robot. Although this goal is
clear, many challenges are still present in the various research areas.

Among several issues that must be handled for humanoid robots, there are two
that make them significantly different from those more commonly found in industry.
The first concerns whole-body control. Often, a humanoid robot will have more DOF
than an industrial manipulator. This allows several objectives to be realized at the
same time. Furthermore, these objectives may have different priorities associated
to them. To do this, optimization frameworks have shown to be effective [33–36].
We take this approach and adapt it here to our problem. This is detailed more in
chapter 4.

The second differentiator is mobility in the environment. In contrast with fixed-
base manipulators, humanoids have the capacity to freely move around. However,
this advantage comes at a price since the control must now handle the balance of the
robot. This is discussed in detail in the next two subsections, with subsection 1.2.1
giving a short review on the basic principles and terminology of humanoid walking.
The main review is given in subsection 1.2.2, which focuses specifically on walking
with physical interaction.
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1.2.1 Locomotion and walking principles

Locomotion is the process of moving from one place to another. A robot that can
‘locomote’ becomes fundamentally different from the fixed-base robots commonly
found in industry. The most obvious difference is the ability to move to different
locations by itself. Formally, this ability is described with a floating base [30] that
defines the pose of the robot base in a global reference frame. Effectively, it increases
the configuration space of the robot. This gives it a significant advantage over fixed
base robots. However, this advantage often comes with a drawback. Oftentimes, the
floating base is not directly actuated. Therefore, to effectively control the floating
base, we must use the contact forces with the environment. This is explained more
formally at the beginning of chapter 3. However, if the floating base is not controlled
properly, the robot will fall. This is what we want to avoid when locomoting in the
environment.

Locomotion is too broad a term, it includes: walking, running, jumping, hopping,
crawling, swimming, etc. Among these, walking is the most common and most useful
for doing physical collaboration. It has been one of the main subjects of research
for humanoid robotics and legged robots in general. A lot of research has been
placed into it and there are good reference texts that describe the core principles of
robot walking [37, 38]. Before moving into a detailed review on walking related to
physical interaction, we shall review some commonly used concepts and terms from
the literature.

One of the common methodologies in making robots walk is to start from a
reduced model, instead of directly handling the complexity of the whole-body dy-
namics. A detailed explanation and analysis of the dynamics of the reduced model
can be found in [39]. The reduced model is often based on the Center of Mass (CoM).
Since contacts are essential in locomotion, the Center of Pressure (CoP) is another
important point. However, in the robotics literature, the term Zero-Moment Point
(ZMP) is more prevalent. In the normal case, the CoP and ZMP are equivalent [40].
These two points encapsulate the essential dynamics of the system, so that the re-
duced model is represented by an equation relating these two. Another important
concept related to the ZMP is the support polygon. This is defined as the convex
hull of the contact points of the feet on the ground. It defines the area where the
ZMP should stay in order for the robot to remain balanced. One of the common
benchmark reduced models is the linearized inverted pendulum (LIP) model [41],
where the relation is given a physical meaning. A lot of variants to this are the
subject of other research. This includes adding a spring to the model to account
for energy storage, adding a flywheel to account for angular momentum effects [42],
or attempting to generalize the ZMP to non-coplanar contacts [43, 44]. Part of
our work is concerned with a reduced model that accounts for physical interaction.
Works related to this are mentioned later on.

Apart form the CoM and ZMP, another more recent concept is the capture
point [45, 46], which stemmed from capturability analysis. Since having a general
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definition of a fall is difficult, capturability seeks to reduce it to being able to come
to a stop in a certain number of steps. The capture point can also be shown to be
related to the ZMP [38].

With the reduced model, we need to control the robot. This area is also well
researched and a widely-recognized benchmark is preview control of the ZMP, with
pre-defined future footstep locations [41]. One of the latest improvements on this
method is a model predictive control (MPC) approach, with constraints on the ZMP,
and variable footsteps that are part of the optimization result [47]. Our current
work is based on [47], with the foremost contribution that it accounts for, and uses,
physical interaction (i.e. external sustained forces).

1.2.2 Walking with physical interaction

Because of the availability of numerous walking algorithms, some works have tried
to take these algorithms as they are and adapt them to more complex scenarios.
These works are reviewed here.

In physical collaboration, we can take the example of transporting large or heavy
objects together with a human [10, 48–50]. These were done using the methods
described in [41, 47]. In these works, the walking pattern generator (WPG) does
not take into account physical interaction, which is treated as a disturbance. Since
success relies on the robustness of the WPG to this disturbance, an impedance
controller is added in the arms, to regulate the interaction forces.

To our knowledge, there have been no works where walking is specifically designed
for use in human-humanoid collaboration. The closest to this in the literature takes
into account external forces in the WPG model but stops there, effectively treating it
as a modeled disturbance instead of a useful signal. Several works do this in demon-
strations, where a humanoid robot pushes/pulls objects while walking [43,44,51–57].
All these works present different variations to improve [41], by considering the phys-
ical interaction with the object. The work in [52] has an interesting simplification:
here, the robot pushes only during the double support phase (when both feet are
in contact with the ground), to allow a larger support polygon (and equivalently
stability margin) during pushing. To compensate the pushing forces on the hands,
the desired ZMP is changed iteratively. However, this causes a discontinuity in the
CoM trajectory, so the new CoM trajectory needs to be smoothly connected to the
existing one [52]. This also led to research on a generalized ZMP [43,44]. The work
in [51] presents a preview controller of the ZMP, emphasizing short cycle pattern gen-
eration. One of the experiments shows a humanoid pushing a table. This was done
by modifying the desired ZMP to take into account external forces in the ZMP com-
putation (compensate a measured disturbance), and moving the torso by the ZMP
error (compensating unknown/unmeasurable disturbances). The work in [53,54] fo-
cuses on interacting with known objects, while compensating for unknown effects
such as friction. This was demonstrated by pushing a wheelchair and opening cab-
inets, doors, etc. Similar to other works, the ZMP computation takes into account
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the reaction forces in the hands. Additionally, a footstep modifier was introduced
using heuristics from the difference between hand and feet operational points and
a ZMP error. Meanwhile, in [55, 56], the main goal is to consider a manipulability
criteria for the hands and a balance criteria for the legs. Experiments show the robot
pushing a table while walking with varying “resistance” (making it heavier, adding
brakes, or with a human at the other end). Again, the ZMP is modified, but this
time it also takes into consideration the CoM projection in the support polygon.
Furthermore, a theoretical limit on the maximum hand forces is obtained by consid-
ering the constraint of ZMP in the support polygon (to retain dynamic balance). Yet
another application is in the teleoperation of a humanoid robot [57]. The interface
abstracts the WPG, and again the ZMP takes into account the reaction forces in the
hands, with the addition of a smoothness term. Furthermore, the unknown force is
modeled by a linear damping effect. All these works rely on simplifying assumptions
on the interaction wrench applied on the robot, whereas the full wrench is presented
and utilized in chapter 3. Additionally, all of these works, except for [51], men-
tion the use of impedance/force control on the arms to increase robustness. In [58],
the effect of this added impedance control is directly taken into account in model
predictive control (MPC), although it is used for postural stability rather than for
walking. Another closely related work is [59], which builds on [53, 54] in pushing
heavy objects. In particular, the range of allowable external forces is obtained from
the model, considering a pre-defined ZMP, as in [41]. Differently from this, the MPC
framework presented in this thesis allows to vary both the external forces and ZMP
(depending on the objective function weights). Another set of closely related works
proposes ‘stepping to maintain balance’ [60–63]. However, these works consider the
external wrench as transient, rather than sustained throughout the task.

To summarize, there is not much existing literature on the topic of walking
under sustained external forces. A lot of research in walking is validated for abrupt
external disturbances, but not for sustained ones. However, in the existing works
listed above, these are the common points:

• Although some are presented as whole-body frameworks, the walking task is
always abstracted from the hand control tasks, and some type of compensation
is done to maintain dynamic balance. That is, the force on the hands is treated
as a disturbance to be rejected.

• Most works used a form of compliant control in the contact point (usually the
hands) to make sure the net forces are low.

1.3 Human-humanoid collaboration

Probably the best example for interactive, cooperative tasks is the transportation
of large and/or heavy objects together. Early work on this topic was done in the
Humanoid Robotics Project (HRP), where the HRP-2P humanoid cooperates with
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a human for a panel transportation task [48]. This was envisioned to have possible
future applications in construction sites. The same scenario can also be applied to
the household, such as moving furniture (e.g. table).

Earlier work in this topic involved mobile manipulators [64]. Mobile manipu-
lators use wheels instead of legs for locomotion. The trade-off is having an easier
control (from wheeled robotics technology) over more limited mobility (i.e. requiring
drivable terrain). Although the locomotion mode is different, this revealed one of
the main issues early on: how to coordinate the motion of the mobile/floating base
with the manipulator motion of the upper body. A more recent example of a mobile
manipulator doing collaborative carrying is presented in [65].

A similar task has also been tested on smaller scale humanoid robots. For exam-
ple in [66], the NAO humanoid was used in collaborative tasks. The main interest is
in using other internal sensors in place of force/torque sensors in the hands, which
are generally used in the works with full-scale humanoids. NAO is also used in [67],
where the capture point is used to guide walking. Another example is Darwin
robots collaboratively carrying a stretcher [68]. However here, the human element is
removed. And with only robots, the interest is turned to synchronizing the robotic
agents.

Within our research group, human-humanoid collaboration has been one of the
main topics starting with [69]. One of the foremost contribution of this work is
homotopy switching between leader and follower controllers [70]. After this, [71]
explored the idea of studying human-human dyads to try and understand how they
cooperate for such a task [10]. The main interest was to enhance impedance control
with some proactivity. Eventually, some preliminary user studies were also done [71].
This was interesting to see reactions from the common user (i.e. someone not
involved with robotics research) and just how applicable such a technology would
be in the future. In [49], the idea of role switching and proactivity while turning, is
also explored.

From this review on the state-of-the-art in human-humanoid collaboration, we
can see that there is a lot of work needed to be done in several different aspects.
In particular, this thesis concentrates on 3 main aspects which follow in the cor-
responding chapters. Chapter 2 explores the integration of vision with haptics in
a collaboration task. Chapter 3 goes into how walking pattern generators can be
designed specifically for the expected physical interaction. And finally Chapter 4
shows how we break down the collaborative carrying task starting from a taxonomy
of human dyads towards whole-body control with a humanoid robot.
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Chapter 2

Using vision and haptic sensing in

physical collaboration

Haptic joint actions are interactive, cooperative tasks, requiring a haptic interaction
throughout the task. This applies to several collaborative tasks that humans do
together. For example: helping someone to their feet, handing over objects, sup-
porting someone while walking, etc. Another common example is carrying a large
object together. As haptics is a requirement for all these tasks, most works rely on
it to be able to control the robot.

Perhaps the most common example of haptic joint actions is carrying an object
together with a robot, such that it has become a benchmark for studying the under-
lying principles of physical human-robot collaboration. One of the main principles
targeted by research is the allocation of roles between the agents, and specifically
how a leader-follower behavior is achieved. This has often been studied with haptics,
because of the nature of the task. In this chapter, we reconsider the collaborative
carrying task when vision can be used to improve it. Section 2.1 details the frame-
work we designed, to add vision to haptics in collaborative tasks. This framework
is applied in the case studies of section 2.2. Section 2.3 concludes the chapter with
some results and discussion.

2.1 Framework for incorporating vision into hap-

tic joint actions

Within our research group, there has been a previous focus on physical collaboration
using only force/torque sensors [69,71]. These works have led to a good understand-
ing of the state-of-the art on programming humanoid robots to physically collaborate
with humans. The focus is a particular example: collaboratively carrying large ob-
jects, which has been explored for its practicability and potential applications (e.g.
in construction [48]). To improve on these, we first tried to enhance the previous
results by adding vision data. Fig. 2.1 illustrates the three important information
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(a) robot as pure follower (b) robot as pure leader (c) equal collaboration

Figure 2.1: Cases of human-robot haptic joint actions

sources to be used: haptic information, visual information and prior task knowl-
edge. In this example, the haptic interaction exists through the object - the haptic
channel. This means that a force/torque applied on one end of the object is felt
by the partner on the other end. Because of this, previous research has focused
primarily on regulating interaction forces for safety. The use of vision for the robot
has not been investigated before in this context, and is the main focus here. Finally,
the prior task knowledge can be used as a guideline on how vision and/or haptic
information should be used for the task.

Although what can be achieved using force data alone (i.e., by a blind robot) is
impressive, vision is clearly required for some tasks, and could possibly help make
the robot proactive. For example, in collaboratively carrying a table, force data
alone cannot be used to see if an object on top of the table is about to fall down.
It is clear that visual information is largely complementary to force information
(analogous to the human senses of sight and touch). Combining these might enable
a humanoid to perform more complicated tasks, similar to a human combining these
percepts [5].

In the context of role allocation, the most commonly studied scenario of human-
robot collaboration consists in making the robot a pure follower as in Fig. 2.1(a).
This figure illustrates that the task is only known to the human leader a priori.
Through the haptic channel, the human communicates his intentions to the robot.
With a properly designed controller that takes into account interaction forces, the
robot can follow the human’s lead [10]. This is represented by the bigger arrow in
the haptic channel from human→robot. Furthermore, the human is able to obtain
visual and haptic data as to how good/bad the robot follows the task.

Another situation is the exact opposite of the robot being a pure follower, i.e.,
it can be the leader of the task. This is illustrated in Fig. 2.1(b). An example of
such a scenario is presented in [49], where a joystick is used to give the robot direct
information on the task. Although a second human provides this task information
via the joystick, in the context of collaborative carrying, the robot is the leader.
Without knowing the task of the robot, the human partner then tries to help the
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robot carry the object to a desired location. It is fair to assume that the human uses
both the sense of sight and touch to achieve this task. Apart from the two illustrated
examples, other possibilities exist. For example, a combined leader-follower strategy
has also been developed [3, 70]. The concept for this strategy is that a sharing of
roles can be possible where one is both leader and follower (with varying degrees).

Finally, it can be noticed that, in these previous works, the robot is solely re-
liant on haptic information. No visual data is used in the task, as illustrated in
Fig. 2.1(a,b) by the limitations of the robot field-of-view. The aim of the work here
is to move towards the general case of Fig. 2.1(c), particularly adding vision as an-
other information channel. In order to do this, the main question is how does one
combine vision and force information in the context of haptic joint actions. The
context presents significant challenges, specifically by having a human in the loop.

Our general approach to combining vision and haptic cues consists in coupling
a visual servoing controller to an impedance controller. This simplifies the design,
by decoupling the vision and force controllers in a systematic way. An overview of
the complete control framework is shown in Fig. 2.2. Furthermore, it also shows the
task example used here - balancing an object on the table. The following subsections
explain this general framework in a bottom-up approach starting from the lower
level controllers and abstracting it higher to the cognitive level. The lowest level
of control is the inner joint-level control. This is represented by q in Fig. 2.2.
To abstract from the joint level to the task level, the Stack-of-Tasks framework is
used [33]. It is a generalized inverse kinematics abstraction layer that creates a
hierarchical organization of different tasks to be executed giving higher priority to
critical tasks [33]. It allows for easier integration with sub-tasks. For example, our
experiments make use of the walking algorithm in [47] as a sub-task. Later on in
this thesis, we go deeper into these two points: namely walking in chapter 3, and
whole body control in chapter 4. For now, the subtasks relevant to this chapter are
explained in the corresponding subsections.

2.1.1 Impedance control

The first sub-task concerns the hands/grippers. In Fig. 2.2 the humanoid uses its
grippers to co-manipulate an object with a human. To do this, it needs to be safe
and intuitive to use. Here, impedance control [12] is used to regulate the contact
interaction (for safety) between the robot and its environment. Impedance control
is based on a simple physical analogy to a virtual mass-spring-damper system [12].
This system is governed by the general equation:

h = Gm(p̈des − p̈) +Gb(ṗdes − ṗ) +Gk(pdes − p). (2.1)

The contact interaction is measured by the force-torque sensors in the robot grippers
and is represented as h. The vectors pdes, ṗdes and p̈des indicate a desired pose and
its first and second derivatives. Correspondingly, vectors p, ṗ and p̈ represent the
corresponding actual pose, and its first and second derivatives. Finally, matrices
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Figure 2.2: An illustration of the overall workflow of the algorithms running on the
robot to enable collaboration with the human, using both vision and force data.

Gm,Gb and Gk are the inertia, damping and stiffness parameters that define the
desired virtual mass-spring-damper system [12]. Strictly following the terminology
and causality from [11, 12], our implementation is an admittance controller, since
the robot is position-controlled by the Stack-of-Tasks, which uses the output of p, ṗ
and p̈ from the impedance controller. These are obtained by solving the differential
equation of Eq. (2.1), given the other variables. The parameters Gm,Gb and Gk are
determined empirically to provide comfort for the human collaborator. The desired
pose and trajectory of the mass-spring-damper’s reference position, pdes,pdes, and
p̈des, are detailed in the next subsection.

2.1.2 Proactive behavior and visual servoing

For the general impedance controller of Eq. (2.1), a passive behavior is defined by
setting the desired pose pdes as constant. This case is illustrated in Fig. 2.1(a) where
only the human knows about the task to be done. This is the classic case in human-
robot collaboration. In such a case (and considering constant impedance parameters
Gm,Gb,Gk), the robot motion (p, ṗ, p̈) can only be initiated by an external wrench
h due to Eq. (2.1) . Recent research aims at making the robot a proactive follower,
to make the system more comfortable for the human. A way to achieve this is by
creating a suitable desired pose and trajectory (pdes, ṗdes, p̈des), such that the human
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effort is minimized [8, 10]. These works differ in the approach taken to produce the
desired pose and trajectory. In [8], human motion is predicted by a minimum jerk
model to give the desired pose. In [10], a human pair doing a joint transportation
task was studied, and it was observed from the data that the pair moves in constant
velocity phases during this task. A finite state machine (FSM) is then designed
by using the constant velocity assumption, giving the desired pose and trajectory.
Haptic cues are used to determine the switching of states in the FSM [10].

We take a different approach here, as illustrated by Fig. 2.1(c). Here, the hu-
manoid is given knowledge of the task. This is done by designing a visual servo-
ing controller specific to the task and using the output as the desired trajectory
(pdes, ṗdes, p̈des) of the impedance controller. This also means that the robot has
some autonomy in doing the task, driven by its own knowledge of the state of the
task. With the reasonable assumption that, during the collaborative task, human
motion is task-driven, the source (human intention to do the task) is taken into
account rather than the result (human motion). This differentiates our approach
from those that aim to model/predict human motion such as in [8, 10].

Visual servoing consists in controlling robots using visual information [72,73]. To
create the visual servoing portion of the framework, two important components are
needed: visual feature tracking and a controller based on this feature [72]. However,
in the current state-of-the-art, for both modules there is no best approach that fits
all tasks and problems. Existing methods have important trade-offs to consider for
the whole system [72]. In our works, we take an analytic approach to building the
visual servoing portion. These will be detailed for each of the problems in the case
studies of section 2.2.

2.1.3 Visual tracking

To start the whole control framework, visual information needs to be processed.
In the example depicted in Fig. 2.2, this algorithm gives data about the ball on
top of the table. For our case studies, the raw data is a combination of an RGB
image and of a depth map, obtained from an RGB-D sensor mounted as the eyes
of the humanoid. This raw data needs to be processed into an estimate of the
pose or position to be controlled by the vision-based controller. This is done by
tracking a salient visual feature throughout the image sequence, and extracting the
needed pose or position information from this. Although there is not yet any generic
visual tracking algorithm that can work for any and all cases, well-known computer
vision methods from reference texts, such as [74–76], may be used to obtain this
information, given some simplifications. Furthermore, some knowledge of the task is
needed to know what is the important visual information that is needed. This is the
reason why the case studies presented here use trivial objects - a cube of known size
and color, and a ball of known color. Although far from generic, visual tracking is a
fairly well-developed field in computer vision, and a wide range of algorithms have
been developed, as reported in this extensive survey [77]. Similar to visual servoing,
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the vision algorithm, applied in each of our case studies, is detailed in section 2.2.

2.2 Case studies

To test the framework described, we tackle two case studies of human-robot haptic
joint actions, that clearly benefit from visual information. Because the task of
collaborative table-carrying has been well-studied within our research group, this
is used as the base task. An object is then placed on top of the table and the
additional task is concerned with this object, and with the table tilt angles (φx, φy).
A simplified side-view of the task in Fig. 2.3 shows φy and its relation to the height
difference zr, and to the table length lt. Furthermore, three important reference
frames are drawn in this image, to facilitate the explanations that follow. These are:
the control frame {cf}, a local reference frame on the robot {l} and the table frame
{t}. The control for the robot can be done just by defining the pose lTcf . This is
justified by assuming a rigid grasp during the whole task. This means that the pose
of the right and left hands: cfTrh and cfTlh are constant throughout the task, and
generating the 2-handed control merely consists in a change of frame. To achieve
this, the hand poses {rh} and {lh} are controlled in the local frame according to:

lThand =
lTcf

cfThand hand = {rh, lh}.
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cf{ }
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Figure 2.3: A simplified “thin beam” model, used to control the table tilt, through
the height offset between robot and human grasps.

2.2.1 Stationary Object - keeping the plane level

In this scenario, a green cube is placed on top of the table as a representative
stationary object. This scenario, along with the important reference frames, is shown
in Fig. 2.4.
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Figure 2.4: Case 1: table carrying scenario with stationary object.

With the simplified model of Fig. 2.3, vision is used to estimate φy – the inclina-
tion of the table. This is used as an error signal for a table height controller, to be
detailed later. For this particular case, we only use the RGB data (not the depth)
from the camera mounted on the humanoid robot head. Because of the viewpoint,
φy cannot be directly observed on images taken from the robot, and must be ex-
tracted from 3D data. Although a variety of ways to extract this 3D data exist, a
fast visual tracker is preferred here.

Visual tracking is used to obtain the pose of an object, of a priori known model,
resting on the table (e.g., the cube of Fig. 2.4, with frame {o} linked to it). The pose
is represented by the homogeneous transformation matrix cTo, where the camera
frame {c} is the reference. Frame {o} is defined, so that its z-axis corresponds to
the vector normal to the table/beam (see Fig. 2.4 and 2.3). This vector forms angle
φy with the z-axis of frame {l}. To obtain the transform, a virtual visual servoing
approach is used here for tracking and pose estimation [78]. This method relies on
a model-based edge tracker, and is available as part of the visual servoing software
library – ViSP [79]. It works by first initializing the projection of the object model
onto the image. The edges are then tracked throughout the image, and a robust
optimization process is used to obtain cTo from fitting the tracked edges onto the
model [78]. A visualization of a typical result (cTo) is shown in Fig. 2.5 (left and
middle images). Figure 2.5 also shows, in the rightmost image, how edges are tracked
in the normal direction [78].

Reliability can be an issue for visual tracking and even state-of-the-art algorithms
can fail [77]. This uncertainty is a problem, especially if the visual tracker output



22 Chapter 2: Using vision and haptic sensing in physical collaboration

Figure 2.5: Typical result of the visual tracker. The full image is at the left. The
middle image is a zoomed-in portion bordered by blue, with the projection of the
cube’s model in red, and the object frame in green. The right image shows how
edges are tracked.

is to be used for control. Therefore, precautions are taken here to prevent this.
A known platform-specific problem in humanoid robots is the motion induced by
walking. The effect on the image is a characteristic oscillatory motion [80, 81].
Furthermore, impact forces resulting from the walk can cause significant blur on
some images. These problems make it necessary to add robustness to the tracker.

Although it is possible to model the cause of these problems (walking) and com-
pensate for it directly [80,81], a more general approach is taken here to handle other
unforeseen disturbances. More specifically, a fault detection and tracker reinitial-
ization process is implemented. This method is also advocated in [77] as a possible
future trend, since all trackers can fail given a difficult enough condition.

The first requirement is the ability to detect a fault. The covariance matrix of
the tracker optimization process is used as a measure of goodness. A fault condition
arises if var > thr where var is the variance vector (diagonal elements of the
covariance matrix) and thr is a threshold vector that is manually tuned off-line by
observing the tracker results from a typical image dataset. When one or more of the
vector values is at fault, the tracker is reinitialized.

The next requirement is a reinitialization procedure using a good guess of cTo.
The reinitialization itself is trivial, and a method is already provided in ViSP. The
main problem is estimating cTo. A tracker failure often indicates that the assump-
tion of continuity between images is invalid. Therefore, the data for reinitialization
must come mainly from the current image. Another important consideration is the
runtime. Obtaining a guess for cTo should be fast enough, so that continuity towards
the next images can be safely assumed. Therefore, speed is chosen over generality.

To start, the object needs to be detected in the current image. This is done
quickly, by thresholding and applying a sliding window for optimal detection. For
thresholding, the hue space is used because the object used in this work has a distinct
color. To speed up sliding window detection, the concept of image-pyramids is used,
with coarse detection in a smaller scale version of the image. The result is used for
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successively finer detections up to the original image size. This results in a good
localization in image space I(x, y) where x and y are normalized image locations
such that:

x =
cXo

cZo

y =
cYo

cZo

,

with c(X, Y, Z)o the Cartesian coordinates of the object {o} in the camera frame {c}
(see Fig. 2.4). A correct pose at the previous iteration t−∆t (∆t is the control time
step) can be used as a guess for the object orientation cRt−∆t

o and depth cZt−∆t
o , so

that the new pose, at the current iteration t, is defined as:

ctto =





xt · cZt−∆t
o

yt · cZt−∆t
o

cZt−∆t
o





cRt
o =

cRt−∆t
o .

Although this new pose is imperfect, it is a good guess for reinitializing the tracker.
Furthermore, the assumptions used here fit with the table carrying task done by a
humanoid robot, namely: the depth to the object cZo is fairly constant, the rotation
of the object is minimal, and most of the perturbation from walking results in a
perturbation in image space I(x, y).

Lastly, another covariance check is done after the tracker is reinitialized. In the
event that even the reinitialization fails, a failure signal is produced such that the
visual servo controller also stops, thus preventing erroneous motions. This is more
of a safety measure, since the tracker reinitialization worked well throughout the
experiments.

Referring back to Fig. 2.3, φy is defined using {l} as the reference. However,
visual data gives cTo, and as such a change of frame is needed:

lTo =
lTh

hTc
cTo. (2.2)

hTc is the pose of the camera in the robot’s head frame. It is a constant matrix
obtained from an off-line camera-robot calibration procedure. The pose of {h} in
the local frame (lTh) is available from proprioception. The angle φy can then be
extracted from the rotation matrix of lTo, i.e.,

lRo, by

φy = arctan(−R13, R33), (2.3)

where Rab is the element at row a column b of lRo. Eq.(2.3) is obtained from the
relationship between axes that a rotation matrix represents. The z-axis of {o} is the
column vector where b = 3, since {l} is the reference, the important components
are in the x-axis (a = 1) and z-axis (a = 3). The final result φy, is only dependent
on the rotations of Eq. (2.2) and the program implementation can be optimized as
such. Furthermore, only results where −π

2
< φy <

π
2
are considered valid. The limits

correspond to the table being fully vertical and provide a safety measure.
Visual servoing enables the direct use of visual information in the controllers. To

start the design, the error e needs to be defined. Fig. 2.3 shows that φy, the angle
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between the table normal and the vertical is suitable such that: e = φy − φ∗

y, where
φ∗

y denotes the desired value of φy. Defining a task that keeps the table horizontal
implies that the desired value φ∗

y = 0 making e = φy. The model of the task can be
defined as:

lt sinφy = Zr (2.4)

Eq. (2.4) relates the observed angle φy to the height difference (Zr) and the table
length (lt). Differentiating with respect to time and rearranging the terms results
in:

φ̇y =
Żr

lt cosφy

(2.5)

Eq. (2.5) is the model of the system and the controller can be derived from
this. If, for example, an exponential decrease of the error is desired, it must be
ė = φ̇y = −λφy. Since the table length lt is constant, it can be considered as part of
the gain parameter λ. The control law then becomes:

Żr = −λφ̂y cos φ̂y, (2.6)

where φ̂y represents the estimate of φy. If the estimation is perfect (φ̂y = φy),
plugging (2.6) into (2.5) yields: φ̇y = − λ

lt
φy. This shows that lt contributes only to

the convergence speed, and as mentioned it is not necessary to know its value. It
only affects the tuning of the gain λ.

To use this result in the impedance control framework, Żr is numerically inte-
grated such that Zr at the current digital time step is obtained as: Zt

r = Zt−∆t
r +

Żt
r∆t. Lastly, a constant velocity is assumed throughout the time step such that

Z̈r = 0. The results here (Zr, Żr, Z̈r) are then used as the Z part of pdes, ṗdes, p̈des in
the impedance controller, taking into account the difference in reference frame (i.e.
{l} and {cf}). The results of this are shown in section 2.3.

2.2.2 Moving Object - keeping a ball from falling off

In this scenario, a ball is placed on top of the table as seen in Fig. 2.6. Any distur-
bance will tend to make the ball fall off the table. As in the previous case, two main
components are needed: visual tracking and the control design which are detailed
as follows.

This time, both RGB and depth data from the camera are used. The aim of
the vision algorithm is to process this raw data into visual features that can be
used for control. An error signal can be defined by txo − txd and tyo − tyd. For the
example task here, z is irrelevant, since tzd ≡ tzo. Since the desired location t(x, y)d
is arbitrarily defined, the vision algorithm only needs to obtain t(x, y)o. A variety of
vision algorithms that can do this may be used, with speed as another consideration.
For example, given the object model and the table model, it is possible to use a model
based tracker, similar to the other case study. Designing a novel vision algorithm is
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Figure 2.6: Case 2: table carrying with moving object

not the focus of this work, so we use well-known methods [74–76]. Nevertheless, the
methods used here are briefly described for completeness.

The features used here are the centroids of the object and that of the table.
The first step is to segment these from the image. Color segmentation is used in
our system. The ball has a known color, and it can be easily characterized and
thresholded by a specific hue range and a high saturation (from the HSV color
space). To add robustness, morphological operations (opening and closing) are used
to remove outliers. After this, sliding window detection (sped up using the image
pyramids concept) finds the most probable location of the ball. The centroid of the
detected blob (corresponding to the ball) is denoted with (u, v) in pixel coordinates.
This is then converted into cxo and cyo by using the intrinsic camera calibration
parameters (fx, fy, cx, cy) and the depth czo as follows:

cxo =
czo(u−cx)

fx
, cyo =

czo(v−cy)

fy
. (2.7)

The next step is to segment the table in the image. A flood fill algorithm [76] is run in
saturation-value-depth space. This algorithm starts with a seed point and grows the
region based on a connectivity criterion between neighboring pixels. Here, the seed
point is the bottom pixel of the ball. A low saturation and high value characterize
well the white color of the table. The addition of depth ensures connectivity in
Cartesian space, simplifying for example the segmentation between table and floor
pixels. Finally, some morphological operations (opening and closing) are done to
remove outliers. From these segmented points, the Cartesian centroid is used as ctt
(a translation vector). The Cartesian coordinates of the object in the table frame
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are then obtained by applying:

tto =
cT−1

t
cto. (2.8)

The homogeneous transformation matrix cTt is composed of the table centroid po-
sition ctt and the rotation matrix cRt. A simple approximation consists in setting
cRt equal to

cRcf , which is obtained from proprioception.
The control design needs to drive tto to ttd. Several existing methods can be

used. Here, a simple PD controller is used such that:

Ci(s) = Kp,i +Kd,is i = {x, y} . (2.9)

This choice is justified by analyzing the task using a simple sliding model (i.e.,
neglecting friction and angular momentum). Figure 2.3 illustrates the necessary
variables for this analysis. Since a control with z rather than φy is desired, the
trigonometric identity zr = lt sinφy is used, where lt is the length of the table and
zr is the differential height. zr can be converted to z by a trivial change of frame.

The Lagrangian equation of motion along t~x is:

mẍ = mg sinφy = mgzr/lt. (2.10)

Along y, linearization of the Lagrangian equation about φx = 0 leads to:

mÿ = −mgφx. (2.11)

Taking the Laplace transforms of these two equations yields:

{

s2X(s) = gZr (s) /lt
s2Y (s) = −gΦ (s) .

(2.12)

Rearranging, the transfer functions describing the dynamics of the 2 DOF can be
derived:

{

Px(s) =
X(s)
Zr(s)

= g

lts2

Py(s) =
Y(s)
Φ(s)

= − g

s2
.

(2.13)

It should be noted that both are double integrators. As such, they are only marginally
stable when feedback controlled with a Proportional gain. But a Proportional
Derivative controller (PD) can be used. The denominator of the closed loop system
transfer function in the two cases is:

{

Dx(s) = lts
2 + gKd,xs+ gKp,x

Dy(s) = s2 − gKd,ys− gKp,y.
(2.14)

The two systems are asymptotically stable if all the roots of these two polynomials
have non-multiple negative real parts. This condition is verified, for a second order
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polynomial, if all the coefficients are strictly positive. In the case of the characteristic
polynomials in (2.14), this is equivalent to:

Kp,x > 0 Kd,x > 0 Kp,y < 0 Kd,y < 0. (2.15)

Finally, the applied controllers are:

{

z = Kp,x (xd − x)−Kd,xẋ
φx = Kp,y (yd − y)−Kd,yẏ.

(2.16)

By numerical differentiation ẋ (and ẏ) is obtained as:

ẋ (t) =
x (t)− x (t−∆t)

∆t
,

with ∆t the sampling step. Tuning the gains in (2.16) according to (2.15) guarantees
stability of the closed loop system, as long as the linear approximation is valid. This
implies that tto will converge to

ttd, as desired. The outputs of (2.16) are fed to the
admittance controller (2.1) as desired values zd and φx,d. Numerical differentiation is
used to obtain ż, φ̇x in ṗd. However, for p̈d a piece-wise constant velocity is assumed,
such that z̈ = φ̈x = 0. This also prevents too much noise to be introduced by a
second numerical differentiation. The results of this are presented in section 2.3.

2.3 Results and discussion

The case studies of section 2.2 were tested experimentally on the HRP-2 humanoid
robot from Kawada Industries. These were also integrated with previous works
in our research group [10, 49], that realize the collaborative transportation task by
acting on the x, y, φz DOF. Each of the cases is presented in the corresponding
subsections that follow. A discussion about these cases in the context of human-
humanoid collaboration follows in subsection 2.3.3.

2.3.1 Stationary Object - keeping the plane level

Several experiments were performed. The first is the simplest, involving just the
arms of the robot standing in place. Next, the HRP-2 is made to walk in place,
introducing the perturbations from walking. Finally, a full experiment is done, to
show that the work here integrates well to the previous works [10, 49]. Figure 2.7
shows some qualitative results taken during the task. The top pictures show the first
test (standing in place). The bottom pictures show the third test, with the robot
walking together with the human.

Some early experiments show that holding the table too high while walking can
cause the robot to fall down because of the human’s pulling force. This can be
explained by the fact that more torque is applied on the humanoid, since the lever
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Figure 2.7: Snapshots of an experiment for the stationary object (green cube): top
left - before vision control is activated, top right - result after the vision controller is
activated, bottom left and right - results while walking with the robot and changing
table height.

arm is increased when the table is held high. So the experiments shown here have
been realized with a saturation limit on the Z motion to prevent this. This is
however only a temporary fix, as the main issue is handled directly in chapter 3.

To verify the controller design, a step response of the error (φy) is obtained
from an experiment where the human holds his/her end steady with Zr 6= 0 at the
beginning (Fig. 2.7, top left). The controller is then activated and the robot corrects
the height difference, ending at Fig. 2.7, top right. Angle φy for this sequence is
plotted in Fig. 2.8, (left). This result shows an exponential decrease (although
with some noise, and notable latency of the vision algorithm), implying that the
implementation follows the design.
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Figure 2.8: Step response of the vision controller. Top: Plot of the error (φy).
Bottom: Plot of lzcf

2.3.2 Moving Object - keeping a ball from falling off

For the experiments of the second case study, we chose a ball to be the moving object.
This makes it similar to a well-studied problem/example in control theory: the ball-
and-plate system, which is a 2-DOF generalization of the textbook example ball-
on-beam system (used to study advanced control methods [82]). Although similar,
our context for using it is different: notably we are focused on the human-robot
collaboration aspect, together with the combination of vision and haptics.

Several experiments were performed and with 2 different balls - a yellow tennis
ball, which tends to move slower, and a pink ball, which moves quite fast. A few
different users also tested this early system, but as the described experience was
similar this is not discussed here. Some snapshots of the experiments are shown in
Fig. 2.9. In the initial experiments, both human and humanoid stand stationary
and balance the ball on the table. Some disturbance is then introduced (e.g. the
ball is pushed by another person) and the gains of the PD controller are tuned,
according to (2.15), in order to be able to handle such a disturbance. After some gain
tuning of the vision-based controller with such experiments, we test the complete
system where the human-humanoid dyad transport the table with the ball on top.
Here, walking introduces a significant disturbance, that can move the ball. The
experiments show that, although the ball moves a lot, it doesn’t fall off the table
during this transportation task.

From the recorded data of the force/torque sensors in the robot wrists, we found
that during this task τx (the total torque about the x-axis of {cf}) averages to about
0 Nm, which means that this interaction torque with the human is regulated well.
Furthermore, fz (again with {cf} as the reference) averages to about 12 N . This
means that the robot carries part of the weight of the table and thus lightens the
burden on the human. Finally, we notice that in both signals a noticeable oscillation
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Figure 2.9: Snapshots of two experiments, where the human-humanoid dyad trans-
ports a table with a freely-moving ball on top (a fast moving ball in the top sequence,
and a slow moving ball in the bottom one).

occurs. This correlates to the frequency of the walking gait, hence to the disturbance
that it causes.
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2.3.3 Discussion

The results show that the framework presented can do the job well: the vision-
based controller tries to do its task (keep the table level in the case with the cube,
or keep the ball on the table in the second case) while the impedance controller
regulates interaction forces. Relating it back to our previous works, we can see
now that, for the pure follower (depicted in Fig. 2.1 a), the success/failure of the
vision task depends solely on the human partner. Specifically, the human needs
to use his/her vision to observe the state of the task and then apply a sufficient
force to haptically communicate to the robot what s/he wants to do. Instead, in
both of our case studies (depicted by Fig. 2.1 c), the cognitive load of the task is
shared in some capacity - both human and robot are able to observe the state of
the task and to act accordingly. However, this sharing can become a disadvantage
when the human and robot disagree on the state of the task and on the action to
take [3]. Experimentally, this is handled in our system, by making the robot more
compliant and less stiff (impedance parameter tuning). This ensures that the human
can always safely impose his/her intention through the haptic channel. This also
shows a possible extension of the system which consists in dynamically changing
the impedance parameters, to make it more stiff when the robot is more certain of
its observations and more compliant when there is more uncertainty. In effect, this
makes the impedance parameters a tool to weigh the importance between visual
(task knowledge) and haptic (human intention) information channels. However,
it is important to note that this disadvantage of equal collaboration also applies to
human-human pairs and more generally to teams - teamwork (or the lack of it). Our
experiments have been made with both the passive follower, and with the approach of
equal collaboration, and the advantages/disadvantages briefly described here can be
observed by the human collaborator. One difficulty in presenting these results is in
the use of proper evaluation methods, since the most important aspect - the comfort
of the human collaborator - is very subjective. Another difficulty is to separate the
contribution of the human and robot. Although in the results presented here the
human is told to be more passive (for example: does not try too much to keep the
ball on the table) he also does not try to make the ball fall off, since teamwork is a
factor in the overall result.

The tests in this chapter allowed us to gain insight into some of the possibilities
for adding vision into haptic joint actions. However, it also exposed some flaws in
other areas that needed work. First, we briefly mentioned that we had to limit the
z movements and interaction. The reason is that in this work, we directly used
the walking pattern generator of [47], which is not specifically designed for walking
while physically interacting. Chapter 3 will show why this walking pattern generator
leads to the failures we have seen here, and how to improve on it. Moreover, in this
chapter, the hand tasks are realized by relying on the stack-of-tasks [33] inverse
kinematics solver. In chapter 4, we go deeper into the details of whole-body control,
to better integrate all the tasks required for physical human-robot interaction.
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Chapter 3

Walking designed for physical

collaboration

To be effective in physical collaboration, a humanoid robot must locomote in the
environment, in addition to having manipulation capabilities. This chapter focuses
on locomotion, specifically on walking in physical collaboration scenarios.

In the robotics literature, walking has historically been treated separately from
manipulation. This has resulted in a good understanding of the underlying prin-
ciples behind walking and locomotion in general. Although this is a good starting
point, both manipulation and locomotion need to be consistent with each other,
particularly when physical collaboration is necessary. Eventually, both need to be
thought of as parts of the whole-body control problem (to be discussed in the next
chapter). In this chapter, we start by revisiting the modeling of walking pattern
generators, and eventually redesign these, with physical collaboration in mind.

A robot that locomotes in its environment can be described as having a floating-
base [30], that defines the pose of the robot base in a global reference frame. This
floating-base extends the configuration space of the robot and makes it different from
fixed-base robots (e.g., industrial manipulators, that have their own workspace). The
configuration space can then be written as:

q =

[

q′

pfl

]

, (3.1)

where q′ describes the robot joint positions, and pfl the pose of the floating base.
The simple goal of locomotion is to be able to control pfl to some extent. This is
not straightforward, as can be seen by inspecting the dynamic equations:

Hflq̈+Cfl =

[

τ

0

]

+
∑

i

J⊤

i fi, (3.2)

where Hfl and Cfl are respectively the inertia and Coriolis/centrifugal terms, ex-
tended to the floating base [30], Ji is the Jacobian matrix at the i-th contact point,

33
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fi are the contact forces, and τ the joint torques. The locomotion problem can
be seen in the right hand side of Eq.(3.2): the floating-base does not have direct
torque actuation, as indicated by the zero vector. If it did, locomotion would be-
come simpler. Instead, in order to effectively control the floating base, we need to
use the contact forces with the environment. Another consequence of model (3.2),
is that the part of the dynamics that is not directly actuated still depends on the
Newton-Euler equations of the floating base (see [38], with more details in [39]).
This means that the essence of locomotion and balance will consist in generating
Center of Mass (CoM) motions that are consistent with the dynamics and contact
states (i.e., footsteps). We will take advantage of these considerations, instead of
tackling Eq.(3.2) directly.

This chapter starts by revisiting the robot dynamic model, to account for the
physical interaction between robot and human. This new model is then used to
generate the walk, by expressing it as an optimization problem, in the framework of
model predictive control. Finally, the optimization problem is reformulated specif-
ically for physical collaboration, and validated through simulations and real robot
experiments.

3.1 Dynamic walk model

Before anything else, a choice must be made on how to formulate the reduced dy-
namic model of the robot, in order to consider physical interaction. Three possibil-
ities for this are proposed in [83]. The differences can be thought of as moving the
abstraction layer of the physical interaction. The reduced models proposed in [83]
are:

1. a model with full knowledge of the object (and/or human),

2. a model that considers the effects of the object (and/or human) on the robot’s
contact locations and linear forces, requiring additional grasp stability con-
straints,

3. a model that considers the effects of the object (and/or human) as external
wrenches applied on the robot.

In [83], the first option was chosen and demonstrated in a simulation of HRP-2 car-
rying a box. The model showed good results in simulation, and can be implemented
on a real robot, by using the hand force sensors to estimate the object’s dynamics
beforehand. If this model is to be used in the context of collaborative carrying, it
must consider the robot, human and object as a single system. The CoM of this
system has contributions from the three subsystems. Also, there can be four (2 for
the robot, 2 for the human) possible foot contacts - as for a quadruped. This model
can be used in simulation to control only the robot, while having perfect knowledge
of each subsystem (human, robot, object). However, it clearly requires important
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resources in terms of sensing, making it hardly usable in practice. The second option
corresponds to a non-linear model [83]. We have chosen to avoid this complexity.
This leaves us with the third option, which is chosen because of its simplicity in
terms of implementation on a real robot, considering its application to human-robot
interaction, in general, and to collaborative carrying, in particular.

The development of this reduced model is inspired by [38]. However, the par-
ticularity of our model, relative to [38], is to explicitly separate the foot contact
forces with the plane fi, from all other contact forces with the environment, which
are represented as an external wrench in the CoM frame: hext = [f⊤ext n

⊤

ext]
⊤. The

external wrench is separated because it will go on to represent physical interaction
(e.g., with a human or in pushing or carrying objects). The resulting Newton and
Euler equations of motion are now:

m(c̈+ g) = fext +
∑

i

fi (3.3)

L̇ = next +
∑

i

(ri − c)× fi, (3.4)

where m is the mass of the robot, c symbolizes the CoM position in a fixed inertial
reference frame, g the acceleration due to gravity, L the angular momentum and ri
the position of the foot contact points (also in the inertial frame). Pre-multiplying
the first equation by c, and adding to the second, we obtain:

∑

i

ri × fi = mc× (c̈+ g) + L̇− next − (c× fext). (3.5)

Dividing Eq.(3.5) by the z component of the feet contact forces while using Eq.(3.3),
yields:

∑

i ri × fi
∑

i f
z
i

=
mc× (c̈+ g) + L̇− next − (c× fext)

m(c̈z + gz)− f z
ext

. (3.6)

We assume that the robot is walking on a flat ground, with all contact points between
the feet and the ground having the same z coordinate, rzi = 0, and with a constant
height above the ground, so c̈z = 0. This leads to a linear relationship between
the position of the CoM and the position of the Center of Pressure. For the sake
of simplicity, we also assume here that variations of the angular momentum are
negligible, so L̇ = 0, and that gravity is orthogonal to the ground, thus the constant
gx,y = 0. With these assumptions, we can then simplify the x and y components of
(3.6) to get:

∑

i f
z
i r

x,y
i

∑

i f
z
i

=

(

mgz

mgz − f z
ext

)(

cx,y − cz

gz
c̈x,y
)

−Rmod

(

n
x,y
ext + (c× fext)

x,y

mgz − f z
ext

)

, (3.7)

where Rmod =

[

0 −1
1 0

]

.
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Before moving on with the modeling, it is important to explain the meaning of
Eq.(3.7). Firstly, note that the left hand side of the equation is the definition of
the Center of Pressure (CoP). Obtaining this was the purpose of all the algebraic
manipulations so far. Because the ground reaction forces are unilateral (strictly
positive), the CoP must belong to the convex hull of the contact points, ri. Note
that the CoP is also known as the Zero Moment Point (ZMP) in the literature, and
that this term will be used from here on. Furthermore, the convex hull of the feet
contact points is often referred to as the support polygon. The goal of most walking
algorithms is in fact to keep the ZMP within the support polygon [37], which enforces
consistency with the contact dynamics.

Further simplifying and grouping terms, we end up with the following expression
of the ZMP denoted by zx,y:

zx,y = cx,y −
(

cz

gz − fz
ext

m

)

c̈x,y −Rmod

(

n
x,y
ext

mgz − f z
ext

)

+

(

czfx,yext

mgz − f z
ext

)

. (3.8)

When there is no external wrench, this expression simplifies to

zx,y = cx,y −
(

cz

gz

)

c̈x,y, (3.9)

which is the standard expression found in the literature for the ZMP. Guidelines on
how to reduce the effects of an external wrench can be inferred from the structure of
equation (3.8). Typically: higher robot mass, lower CoM height, and weak external
force components along x and y, would reduce the external wrench effects on the
ZMP position.

To generate smooth motions of the CoM, we assume that its trajectory is dif-
ferentiable three times. This allows us to choose the CoM jerk as control input.
Concatenating the x and y DOF, we can define:

ĉ =

















cx

ċx

c̈x

cy

ċy

c̈y

















,
...
c x,y =

[...
c x

...
c y

]

, zx,y =

[

zx

zy

]

, f̂ =









ny
ext

fx
ext

nx
ext

fy
ext









, (3.10)

such that the continuous time linear model is:

˙̂c = Aĉ+B
...
c x,y,

zx,y = Dĉ+ Ef̂ .
(3.11)
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where:

A =

















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

















, B =

















0 0
0 0
1 0
0 0
0 0
0 1

















,

D =

[

1 0 − mcz

(mgz−fz
ext)

0 0 0

0 0 0 1 0 − mcz

(mgz−fz
ext)

]

,

E =

[

1
mgz−fz

ext

cz

mgz−fz
ext

0 0

0 0 − 1
mgz−fz

ext

cz

mgz−fz
ext

]

.

Discretization leads to:

ĉk+1 =Akĉk +Bk
...
c x,y
k ,

z
x,y
k+1 =Dk+1ĉk+1 + Ek+1f̂k+1

=Dk+1Akĉk +Dk+1Bk
...
c x,y
k + Ek+1f̂k+1,

(3.12)

where:

Ak =

















1 ∆t ∆t2

2
0 0 0

0 1 ∆t 0 0 0
0 0 1 0 0 0

0 0 0 1 ∆t ∆t2

2

0 0 0 0 1 ∆t
0 0 0 0 0 1

















, Bk =



















∆t3

6
0

∆t2

2
0

∆t 0

0 ∆t3

6

0 ∆t2

2

0 ∆t



















,

Dk =

[

1 0 − mcz

(mgz−fz
ext)

0 0 0

0 0 0 1 0 − mcz

(mgz−fz
ext)

]

,

Ek =

[

1
mgz−fz

ext

cz

mgz−fz
ext

0 0

0 0 − 1
mgz−fz

ext

cz

mgz−fz
ext

]

,

with ∆t the sampling period, and the subscript k or k+1 denoting the discrete time
interval.

In the following Section, we will explain how Model Predictive Control will be
used to regulate the dynamics of the CoM expressed by Eq.(3.12). Before formu-
lating this controller, there are some things to note on the matrices Ak,Bk,Dk,Ek.
First, it is possible to vary the individual variables from one time interval to the
next. By keeping all the variables constant, the model becomes a Linear Time-
Invariant (LTI) system. Allowing some or all variables to vary results in a Linear
Time-Variant (LTV) system. In particular, varying cz and f z

ext may be interesting.
In this work, we assume for simplicity that cz and f z

ext are constant, leading to an
LTI system. These are reasonable assumptions: the first is common in the walking
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literature, and the second is true if the mass of the transported object does not vary
over time. The LTI formulation has the advantage of leading to some simplifica-
tions which eventually reduce computation time. However, it is possible to extend
to the LTV formulation for Model Predictive Control: the main issue will be in
knowing/predicting the variation in advance. The second thing to note is that the
effect of nz

ext has been neglected implicitly. This was a result of the assumptions in
the ZMP derivation to keep the formulation linear. Similarly, [83] notes that the
contribution of Lz should be ignored to keep the formulation linear. Keeping these
aspects in mind, the model representation of Eq.(3.12) can now be used to formulate
the walking pattern generator.

3.2 Walking pattern generator

To generate a walking pattern that accounts for external forces, we first express
the dynamic walk model in the framework of model predictive control (Sect. 3.2.1).
Then, within this framework, we express it as an optimization problem (Sect. 3.2.2).
Finally, we explain how the swing foot trajectories are designed, in order to imple-
ment the walk (Sect. 3.2.3).

3.2.1 Model Predictive Control

Model Predictive Control (MPC) is a method for controlling a system, so that future
states are also taken into account. This makes it effective in walking motions, as
demonstrated in [41, 47], since the generation of a smooth CoM motion, requires
the anticipation of the foot contact changes (future footsteps). Otherwise, motion
is only generated just after the current footstep, to recover from the instantaneous
contact transition.

A common MPC methodology consists in eliminating future states by iteratively
applying the model over N discrete steps (termed the preview or prediction horizon).
This results in a new problem formulation where the previewed future states are a
function of only the current state and of the current and future control inputs. Doing
so for (3.12) results in:

c̃ =Ucĉ0 +Uuũ,

z̃ =Ocĉ0 +Ouũ+Off̃ ,
(3.13)

where:

c̃ =







ĉ1
...
ĉN






, ũ =







...
c x,y
0
...

...
c x,y
N-1






, z̃ =







z
x,y
1
...

z
x,y
N






, f̃ =







f̂1
...

f̂N






,

are the concatenation of states, controls, outputs and external forces respectively, in



3.2 Walking pattern generator 39

the preview horizon of length N . The matrices:

Uc =











A0

A1A0
...

AN-1 . . .A0











,Uu =











B0 0 . . . 0

A1B0 B1 . . . 0
...

...
. . .

...
AN-1 . . .A1B0 AN-1 . . .A2B1 . . . BN-1











,

Oc =











D1A0

D2A1A0
...

DNAN-1 . . .A0











,Of =











E1 0 . . . 0

0 E2 . . . 0
...

...
. . .

...
0 0 . . . EN











,

Ou =











D1B0 0 . . . 0

D2A1B0 D2B1 . . . 0
...

...
. . .

...
DNAN-1 . . .A1B0 DNAN-1 . . .A2B1 . . . DNBN-1











,

complete the description and are obtained by the state elimination/condensing pro-
cess which is detailed in Appendix A. From the second equation of (3.13), it will
be useful to decompose the global ZMP positions z̃. For a single instance wz, this
results in:

wz =wTr0
r0Trj

rjz

=wr0 +
wRr0

r0rj +
wRrj

rjz

=wr0 +
M
∑

i=1

wRri-1
ri-1rj +

wRrj
rjz.

(3.14)

This decomposition has two purposes. Firstly, it expresses the ZMP in a frame rel-
ative to its corresponding footstep rjz. This allows us to give it simple bounds, later
in the constraint formulation. Secondly, it provides an expression of the footsteps
relative to the previous ones ri-1rj, i = 1, . . . ,M . This representation further allows
the controller to modify the footsteps online, as in [47]. Extending over the N steps
of the preview horizon, we can write:

z̃ = vr0 +Vrr̆+Vzz̆, (3.15)

where:

z̆ =







r1z
x,y
1
...

rNz
x,y
N






, r̆ =







r0r
x,y
1
...

rM-1r
x,y
M






, vr0 =







r0
x,y

...
r0

x,y






, (3.16)

are respectively the local ZMP position, local variable footstep positions and the
last known global frame footstep positions. Note that r̆ ∈ R

2M, while z̆ ∈ R
2N, with

M the number of variable footstep positions within the preview horizon length N ,
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such that N ≥ M . Hence, Vr and Vz must be structured to take into account that
N ≥ M . To do this, the footstep timings are predefined. Knowing this, the rows
can be duplicated for the duration of the j − th variable footstep so that:

Vr =

































0 . . . . . . 0
... . . . . . .

...
0 . . . . . . 0

Rr0 0 . . . 0
...

... . . .
...

Rr0 0 . . . 0

Rr0 Rr1 . . . 0
...

...
. . .

...
Rr0 Rr1 . . . RrM-1

































, Vz =





















Rr0 . . . 0 . . . . . . 0
...

. . .
... . . . . . .

...
0 . . . Rr0 0 . . . 0
...

... 0 Rr1 . . . 0
...

...
...

...
. . .

...
0 0 . . . . . . . . . RrM





















.

(3.17)
Note that the foot rotation matrices are separately predetermined/precomputed to
preserve linearity [47].

For a walking pattern generator with automatic footstep placement, we can de-
fine:

x = [ũ⊤r̆⊤]⊤. (3.18)

This vector, which contains the CoM jerk and footstep positions, will be the argu-
ment of the optimization problem, formulated below. With x, (3.13) and (3.15) can
be rewritten as:















c̃ =
[

Uu 0
]

[

ũ

r̆

]

+Ucĉ0,

z̆ =Vz
⊤
[

Ou −Vr

]

[

ũ

r̆

]

+Vz
⊤

(

Ocĉ0 +Off̃ − vr0

)

.

(3.19)

More concisely, (3.19) can be written as:

c̃ =Sx+ s,

z̆ =Szx+ sz.
(3.20)

In the following, we use this system to formulate walking as an optimization problem.

3.2.2 Walking as an optimization problem

For now, we reconstruct a WPG similar to the one in [47], which we will refer to as
the standard walking pattern generator. It can be described as:

argmin
x

w1 ‖c̃v − c̃vref‖2 + w2 ‖ũ‖2 + w3 ‖z̆‖2

subject to z̆ ≤ z̆ ≤ z̆

r̆ ≤ r̆ ≤ r̆,

(3.21)
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with the dynamics of c̃ and z̆ evolving according to (3.20). This WPG has three
objectives: tracking a reference CoM velocity, minimizing CoM jerk and minimizing
the local ZMP position. There are two constraints: upper and lower bounds for
the local ZMP and footstep positions. We can use standard quadratic programming
(QP) solvers to obtain the optimal value of x for this problem. For clarity and
brevity, the original variables are shown, but their explicit formulation as functions
of x are given below, along with the details of each objective and constraint of the
optimization problem.

The first control objective allows the robot to track a given reference velocity.
This provides a simple interface for controlling the walking behavior. To do this,
the CoM velocity components need to be extracted from the full CoM state. This
can be done using a selection matrix:

c̃v =











0 1 0 0 0 0 . . . 0 0 0
0 0 0 0 1 0 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 . . . 0 1 0











c̃ = Svx+ sv. (3.22)

The control objective can then be written as:

‖c̃v − c̃vref‖2 = ‖Svx+ sv − c̃vref‖2 , (3.23)

and c̃vref is designed by the user or provided by some higher-level algorithm (e.g., a
path planner).

The second control objective is to minimize the CoM jerk. Although this is
not strictly necessary, it was shown to improve performance in [47]. The aim is to
smoothen the control input. Since it is part of the argument, all that is needed is to
use a selection matrix such that:

‖ũ‖2 =
∥

∥

[

I 0
]

x
∥

∥

2
. (3.24)

The third and last objective consists in minimizing the local ZMP position. It
can be interpreted as minimization of the distance between the ZMP positions and
the feet centers. Since the ZMP from Eq.(3.20) is defined with respect to the feet
centers, this amounts to giving a vector of zeros as a reference, so that the objective
function is:

‖z̆− 0‖2 = ‖z̆‖2 = ‖Szx+ sz‖2 . (3.25)

The idea behind this objective is that we prefer a change in the foot landing position
over a change in the ZMP. This gives a better stability margin, since unknown
disturbances could push the ZMP away from the target. Since one of the control
constraints is to keep the ZMP within the support polygon, the most robust ZMP
target location under unknown disturbances is in the middle of these bounds.

The first constraint ensures that the ZMP remains within the support polygon
(with some security margins), i.e., within some lower and upper bounds (denoted
by the lower and upper bar):

z̆ ≤ z̆ ≤ z̆. (3.26)
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Using the second equation in (3.20) to expose the argument we have:

z̆− sz ≤ Szx ≤ z̆− sz. (3.27)

Finally, the second constraint introduces simple bounds for the feet positions:

r̆ ≤ r̆ ≤ r̆. (3.28)

As it is part of the argument, we only need to select it as:

r̆ ≤
[

0 I
]

x ≤ r̆. (3.29)

This constraint is optional when considering the walking pattern generator by it-
self. However, it plays an important role when considering the whole body control
problem. It is a simple way to represent whole body constraints in the WPG.

Another relevant aspect in Eq.(3.21) concerns the weights, that are used to com-
bine the objective functions. In cases where the objectives compete with each other,
these weights slightly alter the expected performance. That is: a higher w1 allows
better reference velocity tracking, a higher w2 reduces motion of the CoM and a
higher w3 allows less ZMP movement. The default weights used in this work are:
w1 = 0.5, w2 = 0.05, w3 = 25.

Looking at the WPG formulation of Eq.(3.21), it is not immediately apparent
how the external wrench affects the final performance of the walking pattern gen-
erator. Returning to Eq.(3.13), note that the external wrench only appears in the
ZMP formulation. It then affects the WPG in two areas: the ZMP centering objec-
tive, and the ZMP constraint. The first interpretation is that the external wrench
changes the ZMP value, as explained in [51]. However, we can also say that the
external wrench reshapes the ZMP bounds as :

z̆ ≤ z̆′ + z̆f ≤ z̆

z̆− z̆f ≤ z̆′ ≤ z̆− z̆f
(3.30)

where z̆f represents the ZMP offset resulting from the external wrench and z̆′ the
classic ZMP (in the absence of external wrench). This is inline with the aforemen-
tioned quadruped model representing a humanoid and human carrying an object
together. The effect of the external wrench on the ZMP centering objective, is to
further change the foot landing position based on this ZMP change.

The final missing piece to complete the WPG is the generation of swing foot
trajectories. This will be the subject of the next subsection.

3.2.3 Swing foot trajectories

Note that the value of r̆ resulting from (3.21) gives us the future foot landing position
only. Therefore, we need to generate a trajectory from the last foot position to
this new position. In walking, since there is no flight phase (both feet never leave
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the ground together), we can define the foot that is off the ground as the swing
foot without ambiguity. We choose to construct its trajectory based on a cubic
polynomial. The 3DOF (x, y, z) are decoupled and defined independently, but follow
a similar form:

rsw = a3t
3 + a2t

2 + a1t+ a0, (3.31)

where t is the time, rsw is the component of the swing foot position (x, y, or z) and
a are the coefficients to find. The first derivative of this polynomial is:

ṙsw = 3a3t
2 + 2a2t+ a1. (3.32)

We can use the initial conditions at t0 = 0 to obtain:

a0 =rsw0,

a1 =ṙsw0.
(3.33)

We can also use the final conditions at t = tswf to obtain:

rswf =a3t
3
swf + a2t

2
swf + a1tswf + a0,

ṙswf =3a3t
2
swf + 2a2tswf + a1.

(3.34)

Then, combining Eq.(3.34, 3.33) we can find the remaining coefficients:

a2 =− 2ṙsw0tswf + 3rsw0 + ṙswftswf − 3rswf

t2swf

,

a3 =
ṙsw0tswf + 2rsw0 + ṙswftswf − 2rswf

t3swf

.

(3.35)

Therefore, to describe this trajectory, we need to define: rsw0, ṙsw0, rswf, ṙswf, tswf. The
total time for the swing foot trajectory tswf can be predefined and is by definition
equal to the time for a single support stance (only one foot in contact with the
ground). Typically, we set tswf = 0.7sec. We also define the trajectory to start
and end in a resting state: ṙsw0 = 0, ṙswf = 0. Furthermore, rsw0, rswf are known
and generated from the WPG, within r̆. Lastly, we need to generate a trajectory
for the z DOF. To this end, we divide the z DOF into two trajectories: one going
up, the other going down. This can be parametrized simply by a stepping height
rsth. For the first half of the total time: rzsw0 = 0, rzswf = rsth. For the second half:
rzsw0 = rsth, r

z
swf = 0. In the default case, we use stepping height rsth = 0.07 meters.

In summary, the r̆ resulting from (3.21) is fed to (3.35) and (3.33), to define the
swing foot trajectory, according to (3.31), and complete walking pattern generation.
Fig. 3.1 shows an example of the swing foot moving along the generated trajectory.
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Figure 3.1: A visualization of the parameterized swing foot trajectory

3.3 Specific use cases in physical collaboration

Chapter 2 focused on physical collaboration in the context of manipulation. In this
section, the same principles are used directly in walking pattern generation. The
formulation of (3.21) serves as the base, from which we can create variations that
are better suited to the different types of physical interaction. In particular, we
hereby revisit the leader and follower modalities, and show how each one drastically
changes the way the external wrench term influences the walking pattern generator.

3.3.1 Walking pattern generator for a follower robot

A follower robot acts based on the leader’s intention. This intention can be repre-
sented by the external wrench that the leader applies to the robot. Hence, a follower
WPG must generate motions that are function of the external wrench applied by
the leader (generally, human). Previous works [49, 50] have used a simple damping
control, providing the reference velocity as:

ċvref =
f

b
, (3.36)

within control objective (3.23). We can extend this to perform slightly more complex
following behaviors by using a full mass-spring-damper model:

f = mc̈+ bċ+ kc. (3.37)

Based on (3.37), an admittance control task in the x, y plane can be mapped to the
WPG. Since the WPG aims at driving the CoM position, we will not consider the
torque of f̃ , but only fx and fy, in the admittance task. Recalling that the state
c̃ contains accelerations, velocities and positions of the CoM, one simply needs to
define an appropriate impedance parameter matrix Gmbk. An appropriate selection
matrix Sf is also needed to select only the fx, fy components, so that the controller
will aim at minimizing:

∥

∥

∥
Gmbkc̃− Sff̃

∥

∥

∥

2

, (3.38)
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with:

Gmbk =











kx0 bx0 mx0 0 0 0 . . . 0 0 0
0 0 0 ky0 by0 my0 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 . . . kyN byN myN











,

Sf =











0 1 0 0 0 0 0 0 . . . 0 0 0 0
0 0 0 0 0 0 0 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 . . . 0 0 0 1











.

(3.39)

This term will replace the velocity objective used in prior works [49, 50], so the
optimization problem can be written as:

argmin
x

w1

∥

∥

∥
Gmbkc̃− Sff̃

∥

∥

∥

2

+ w2 ‖ũ‖2 + w3 ‖z̆‖2

subject to z̆ ≤ z̆ ≤ z̆

r̆ ≤ r̆ ≤ r̆

(3.40)

There are two important points about the external wrench term in the MPC. Firstly,
recall from (3.13) that the external wrench terms appearing in the MPC are the
future ones f̂1 . . . f̂N. If we use feedback from a force/torque sensor, what is obtained
is the current external wrench f̂0. Therefore, we somehow need to predict its future
values. A well-designed prediction model will enable proactive behaviors in physical
collaboration. The second important aspect is that, since the wrench is expressed
in the CoM frame, whereas a sensor produces values in its own frame, a frame
transformation is necessary. Here, for the sake of simplicity, we neglect relative
motion between sensor and CoM frames, and consider quasi-static motion, when
doing such frame transformation.

3.3.2 Walking pattern generator for a leader robot

For leading, a clear and independent intention is necessary. This intention can be
represented by a reference behavior that is independent from the follower’s actions.
We propose two ways for formulating the leader intention in the WPG.

A first idea is to have the leader robot follow a desired trajectory. For instance,
in [49], the leader behavior was generated by another human operator, that provided
the reference velocity commands ċvref needed in (3.23). If the full trajectory is known
beforehand, a better objective for the leader may be to track this trajectory directly,
rather than to merely track the reference velocity. Such objective can be formulated
in the operational space [84]. For the CoM this can be written as:

c̈ = c̈ref + b(ċref − ċ) + k(cref − c), (3.41)
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with b, k two positive scalar gains. This can be reformulated as an objective function:

‖(c̃aref − c̃a) + b(c̃vref − c̃v) + k(c̃pref − c̃p)‖2 . (3.42)

To be concise, an appropriate gain matrix can be used, similar in structure to Gmbk

of the follower WPG, so that the objective function can be written as:

‖Gmbk(c̃ref − c̃)‖2 . (3.43)

Another idea for designing the leader robot WPG, is to include the external
wrench in the optimization argument, to expand it as: x = [ũ⊤ r̆⊤ f̃⊤]⊤. This
changes (3.19) into:



































c̃ =
[

Uu 0 0
]





ũ

r̆

f̃



+Ucĉ0,

z̆ =Vz
⊤
[

Ou −Vr Of

]





ũ

r̆

f̃



+ Vz
⊤ (Ocĉ0 − vr0) .

(3.44)

Note that only the x and y components of the wrench are in f̃ , whereas Of also
contains f z

ext, which will therefore have to be predefined over the preview horizon.
Expression (3.44) can be concisely written as Eq.(3.20), so that the derivation of
objectives and constraints is analogue to that case. Since here, the force is part
of the ZMP expression, this may allow the robot to balance itself by applying the
appropriate forces. For safety, the applied wrench may need to be constrained:

f̃ ≤ f̃ ≤ f̃ , (3.45)

and/or minimized as:
∥

∥

∥
f̃

∥

∥

∥

2

. (3.46)

If both options (CoM trajectory tracking, and minimal external wrench) are
chosen, the optimization problem can be written as:

argmin
x

w1 ‖Gmbk(c̃ref − c̃)‖2 + w2 ‖ũ‖2 + w3 ‖z̆‖2 + w4

∥

∥

∥
f̃

∥

∥

∥

2

subject to z̆ ≤ z̆ ≤ z̆

r̆ ≤ r̆ ≤ r̆

f̃ ≤ f̃ ≤ f̃

(3.47)

Having the external wrench in the argument implies that this result needs to be
tracked by the whole-body controller. To do this, we can use an admittance con-
troller on the hands with force sensors. The same quasi-static assumption for the
frame transformation is used here.
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3.4 Simulation tests

We tested the three WPG formulations (standard (3.21), follower (3.40), and
leader (3.47)) in several simulations, prior to the real robot experiments.

We begin with the standard WPG, without any external wrench. This serves as
our benchmark, and is illustrated by the image sequence of Fig. 3.2. The behavior
is essentially equivalent to that of the WPG in [47].

Figure 3.2: Simulations of a standard walk with no external wrench, and with desired
CoM velocity of 0.1 m/s. Figures run left to right starting from the top, then the
bottom.

To highlight the difference when taking into account the external wrench, we add
an external constant force of 30 N (towards the left of the figure, i.e., pushing the
robot forward) in the simulation. Plots of the generated CoM, ZMP, and footsteps
are shown in Fig. 3.3. Along with it, we show the end posture, which is a result of
tracking the WPG reference with whole body control that will be detailed later, in
chapter 4. Note that the plots labeled 0 N (Fig. 3.3 top) correspond to the image
sequence of Fig. 3.2. These show that the base implementation follows well the state
of the art implementation of [47]. The simulations with external force are shown in
the results labeled with 30N (Fig. 3.3 bottom). Firstly, note that there is a different
posture highlighted by the vertical red bar from the middle of the feet (added as a
visual aid). We can similarly see this offset in the plots of the CoM and ZMP. Note
that the ZMP still follows the footsteps generated, and is close to the middle of the
support polygon, following one of the objectives in our optimization problem. As
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such, it is also well within the defined limits. Finally, notice that a longer footstep
was generated at the start, to compensate the initial disturbance. This step reaches
the predefined footstep length limit of 0.2 meters. But this is the only time the
constraint is active (at the limit): all other cases are well within the predefined
limits.

(a) posture, 0N
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(b) plot of CoM and ZMP, 0N
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(c) plot of footsteps, 0N

(d) posture, 30N
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(e) plot of CoM and ZMP, 30N
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(f) plot of footsteps, 30N

Figure 3.3: Simulations to highlight the reaction to the external wrench of the
“standard”WPG. Figures on top (a),(b),(c) show a benchmark without any external
wrench (0N), while figures on the bottom (d),(e),(f) show how the WPG reacts to
30 N of external force (going to the left).

Next, we show some more extreme cases, still with the standard WPG. Fig. 3.4
highlights the importance of considering the external wrench. The leaning postures
in the figure are not preprogrammed, but are the result of tracking the CoM motion
and footsteps generated by the WPG, as it compensates the external wrench in the
two cases. Note that for all these simulations, the external wrench is also added to
the multi-body dynamics to enable the robot to walk in the dynamic simulator.

The next simulation is that of the follower WPG of Eq.(3.40). Fig. 3.5 shows
the plots of a critically damped follower with a unit mass and a stiffness defined as
50 N/m. This WPG is designed such that the robot does not have its own intention
(no desired reference values), but follows the external wrench similarly to the virtual
model of a critically damped mass-spring-damper system. That is: it follows the
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(a) 150N of forward force, applied on
the robot CoM while walking with -
0.1m/s reference velocity (backwards)

(b) -90Nm clockwise torque, applied
on the robot CoM while walking with
0.1m/s reference velocity (forward)

Figure 3.4: More extreme simulations using the standard WPG showing the postural
change as a result of taking the external wrench into account

external force when it is applied, but returns to a resting position, defined at the
origin of (0, 0), when the external force is released. Several variations of this virtual
model can be implemented. For example, a pure damping model (with null mass
and stiffness) was used in [10, 50, 85, 86]. Another example is an oscillating system
with only mass and stiffness, and null damping. Furthermore, more complex virtual
models can be defined in a similar manner.

The last simulations are for the leader WPG of Eq.(3.47). For the first test,
we show that we are able to track a given reference trajectory. This is shown in
Fig. 3.6, where the trajectory is drawn in blue. It was defined using a B-spline with
points: (0,0), (2,0.5), (1,1) and a duration of 60 seconds. The B-spline is chosen
here for simplicity, although our formulation allows tracking of any reference, as
long as the position, velocity and acceleration are available. The trajectory is given
in 2D (the heading is constant here) and may allow us to leverage some trajectory
generation literature from the mobile robotics field. Notice that it allows us to
abstract issues such as the swaying of the CoM, and explicit footstep planning.
However, care must be taken in designing the trajectory since the WPG constraints
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Figure 3.5: Simulation data for a critically damped follower with stiffness = 50 N/m
and mass = 1 kg.

are just approximations of the whole-body constraints. We may be able to benefit
from better integration of these, as proposed in [87].

Figure 3.6: Simulations of a leader walking sequence following a B-spline trajectory
shown by the blue curve.

For the next test of the leader formulation, we want to emphasize the usage of
the external wrench, for the humanoid balance. In this test, we increase, in the
optimization problem, the weight that penalizes the CoM motion. This implies that
the robot will use the external wrench, instead of ‘swaying’ its CoM, to maintain
its balance. Furthermore, forces and torques are constrained to be ±20 N and Nm,
respectively. Lastly, the leader trajectory is a B-spline driving the robot 1m forward,
in 10 seconds. Figure 3.7 shows the results. Firstly, the plot in x shows that the
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trajectory was respected by arriving at 1 meter in 10 seconds. Next, the plot in
y shows that the CoM oscillation in the y axis is minimized greatly. Disregarding
the start and end phase, the peaks are around 0.01 meters whereas the benchmark
of Fig. 3.3 has peaks around 0.05 meters. In place of this, the generated reference
external wrench, shown in the last plot, needs to be applied. We anticipate that in
future works this property will be very useful in the case of collaborative carrying,
as the CoM sway of the robot can disturb the human partner.
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Figure 3.7: Simulation data for a leader with a trajectory of 1m forward in 10
seconds.

3.5 Real-robot experiment and results

After verification on simulations, we also test the three WPGs on the real-robot. We
propose a switching scenario similar to the one in [49], to show the two follower and
leader WPG formulations, respectively (3.40) and (3.47), on the real robot. The
robot starts out as a follower, and due to some condition, it switches to being a
leader. Some plausible switching conditions are:
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• interaction force limits are exceeded,

• workspace limits are exceeded,

• balance is lost (this can be determined, for instance, through capturability
limits [45])

In [49], the switch was made at a predetermined time. Here, a maximum interaction
force (25 N) is the switching condition, although several conditions (as the ones
outlined above) can be used together. The interaction force is applied by a human
operator pulling/pushing the robot right hand. For simplicity, the follower was
implemented with damping only. The leader trajectory consists in going back 0.2 m
in 10 s; although this trajectory is short, it is sufficient to validate the WPG. The
torques are constrained to be 0 Nm, whereas forces are allowed to be in the range
±20N , to simplify the force control problem for one hand.

Figure 3.8 shows a photo during this test, while Fig. 3.9 shows the references,
generated by the WPG, for the CoM, ZMP and foot positions, along with the in-
teraction forces. The switching condition occurs around the 50 second mark. After
this, the leader trajectory of going back 0.2 m in 10 s is executed. The results show
that, even in the presence of real sensor noise, the robot can follow the intent of the
human leader. During the leader phase, note that the generated reference force is
quite low (gain tuning here was more coarse than in the simulations). This allows
the robot to balance itself, without relying on force control. This choice arose from
the difficulty in implementing a high-fidelity force control on a position controlled
robot.

Figure 3.8: Screenshot from the video of the real-robot experiment
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Figure 3.9: Data from the leader-follower switching experiment on the real robot.
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Chapter 4

Whole-body control for

collaborative carrying

In the previous sections, the focus was on very specific parts of the collaborative
carrying task: arm motions utilizing vision and haptic data in chapter 2, Center of
Mass and foot motions for walking in chapter 3. These need to be executed in a
coordinated manner on a humanoid robot. Therefore, a whole-body controller which
can gather all the active tasks and produce corresponding feasible joint motions is
needed.

This chapter describes how we worked towards whole-body control in general,
with a particular focus on the collaborative carrying task. The chapter starts by
observing how human teams collaboratively carry objects, eventually building a
taxonomy (Sect. 4.1). The aim is to take inferences and inspiration, that will be
used for building the whole-body controller of a humanoid robot. Furthermore,
the taxonomy of collaborative carrying can define several cases with only a few
descriptors. This allows us to focus on a few cases, knowing that methods can
be generalized to all of the other cases under the taxonomy. However, even these
few cases are still complex. These need to be broken down into simpler parts for
ease of formulating the whole-body control problem. A state machine (described in
Sect. 4.2) is used to do this, so that each state can be formulated as an optimization
problem. Finally, in Section 4.3, we describe the optimization framework in detail.

4.1 A taxonomy of collaborative carrying

Carrying objects in collaboration with a human partner in various postures and
situations is a problem that is rich, unexplored and has a high potential for practical
application. Several situations can be envisioned in building sites, rescue sites,
disaster sites, etc. We will first focus on various carrying schemes and taxonomies
between pairs of humans. From this, we want to gain insights for programming a
humanoid. The end goal is to program a humanoid to effectively take the role of
one of the human partners in such tasks. Figure 4.1 shows several real examples

55
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of human collaborative carrying, with the corresponding simulations using human
avatars.

Figure 4.1: Collaborative carrying examples with human avatars mimicking the
corresponding postures

The figure shows the broadness and applicability of this skill. Furthermore, it
serves as a useful visualization for breaking down the task. Although the examples
may seem very diverse, any collaborative carrying scenario simply boils down to two
important components:

1. object being carried,

2. agents (humans and/or humanoid robots) carrying the object.

From these descriptors, we can already form a taxonomy. However, it would not
be useful because the object and agents are generally determined a priori. That is,
we consider the problem of having already a team of agents, whose goal is

to move a specified object to another location. We assume that neither the
object nor the agent composition can be changed afterwards. For this problem, a
components-based taxonomy is useless. However, we can consider the relationship
between the components:

1. object-agent relation,
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2. agent-agent relation.

The object-agent relation is simply defined by how the agents grasp the object.
The grasp type used by each agent is a useful taxonomy. We can observe that the
same object can be grasped in different ways, for example the cylinder in Figure 4.1.
There will also be cases where the same grasp type is used for different objects. The
object-agent relation is elaborated later, in subsection 4.1.2.

The agent-agent relation is not as straightforward as the object-agent relation.
Several possible relationships fit this category, and can be useful to define a taxon-
omy:

• team composition (all humans, all robots, ratio in mixed groups, etc.),

• team/agent skill in task execution,

• team coordination (leader, follower, equal collaborators),

• communication modalities used (gesture/vision, speech/audition, haptics),

• agents’ relative pose.

Firstly, team composition is not relevant in our problem statement (as explained
above). The remaining four relationships are all viable descriptors for creating a
taxonomy. In this work, we prefer a descriptor that allows a quick and easy classifi-
cation of unknown cases. For this, agents’ relative pose has been chosen among the
four, and will be explained in the subsection that follows.

4.1.1 Agents’ relative pose

The agents’ relative pose can be used to classify any given collaborative carrying sce-
nario. The relative pose itself, has two components, that can be used independently:
translation and rotation. These are quantitative descriptors, that can precisely de-
scribe each collaborative carrying case. However, using these quantities directly is
too specific, thus inappropriate for classifying the various scenarios. Instead, we can
use a range of values for classification. The main issue is in finding meaningful range
boundaries. For this, we can consider another descriptor of the agent-agent relation,
i.e., the communication modalities. In particular, we relate haptic communication
to relative translation, and vision to relative rotation, as will be explained hereby.

The translation/distance between the agents can simply be classified as near or
far. A meaningful range boundary can be defined by considering if direct haptic
communication (touch) is possible or not, so that:

• near: other agent is physically reachable,

• far: other agent is out of reach.
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For the rotation, we can define meaningful boundaries by considering vision,
more precisely the Field Of View (FOV). To describe the rotational range, let us
first define the nominal FOV as the FOV when the agent is in a neutral resting
position. The extended FOV is defined as the FOV of the agent as it looks around,
by moving its body to some extent (i.e., without changing stance). With this, we
can classify agents as facing:

• front: other agent is in the nominal FOV,

• side: other agent is not in the nominal FOV, but within the extended FOV,

• back: other agent is not in the extended FOV.

These rotation descriptors should be applied to each agent relative to the other.
Considering a team with only two agents, the permutations can be tabulated as
shown in Table 4.1. This table shows the possible relative rotations of two agents

Agent rotation Front Side Back
Front Common Rare Common
Side Rare Common Rare
Back Common Rare Extremely Rare

Table 4.1: Table of agents’ relative rotation for 2 agents in a carrying task

along with their frequency in real-world cases. Note that the table is symmetric with
respect to the diagonal (e.g., front-side is equivalent to side-front). Thus, there are
six classes in the taxonomy that considers only the agents’ relative rotations. These
classes are illustrated in Fig. 4.2 with human avatars.

4.1.2 Grasp types

Independently from the agent-agent relation, a taxonomy of grasp types is considered
which characterizes the object-agent relation. For this classification, we define two
broad grasp types: hand grasps and body grasps.

Hand grasps are those with contact points located uniquely on the hand/gripper.
These are the ones used to carry the table, stretcher and bucket in Fig. 4.1. These
grasps are the subject of most of the existing robotics literature on grasping. A
detailed taxonomy of hand grasps and its analysis are presented in [88]. In particular,
[88] notes that there are three main aspects to be considered when choosing a grasp:

1. task to do with the object after grasping,

2. object to be grasped,

3. gripper to be used.
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(a) front-front (b) front-back/back-front (c) side-side

(d) front-side/side-front (e) side-back/back-side (f) back-back

Figure 4.2: Simulation of a human dyad in the taxonomy of agents’ relative rotations

The first two points are well-defined in our problem statement. The third is
particularly interesting. In fact, we can consider another class of grippers which
characterizes the second classification: body grasps. Indeed, we define body grasps
as those that utilize contact points on body parts not limited to the hand. For
example, the arms, shoulder and torso can be considered. In Fig. 4.1, this is the
case when carrying the steel pipe or wooden logs. We observe that the object to
be grasped requires the use of this kind of grasp. Generally, to grasp large objects,
or objects without natural handles, the whole body can be used to form a larger
gripper. The weight and shape of these object can determine the design of the body
grasp postures.

Finally, there are two important observations for this taxonomy. Firstly, even
though body grasps are more general, hand grasps are preferred if possible. Similarly
in robotics, grasping is closely related to hand design [88]. We can infer that for
humans, the hand is our preferred tool for grasping and we have learned to use it
with a lot of skill. This observation is useful for programming a humanoid robot
to emulate humans. Secondly, it is common for both agents to use the same grasp
type, as shown in Fig. 4.1. Although there is no restriction for such, we can infer
that if both agents have the same capabilities, and if the object is symmetric, then
using the same grasp type is the logical conclusion for both agents.
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4.1.3 Applying the taxonomy to human-humanoid teams

To recapitulate on this section, we first show how to apply the taxonomy to some
simulations of human-humanoid teams, seeking to emulate Fig. 4.1. After this, we
briefly discuss the usage of this taxonomy in the next sections. The simulations are
shown in Fig. 4.3.

(a) table (b) pipe-shoulder (c) stretcher

(d) bucket (e) pipe-side (f) pipe-front

Figure 4.3: Different carrying scenarios with the HRP4 and a human avatar

All the scenarios of Fig. 4.3 can be classified according to the proposed taxon-
omy. Each case can be specified by classifying it according to the three criteria,
i.e.: relative translation, relative rotation and grasp type. Specifically, for the six
scenarios of Fig. 4.3:

(a) table: far, front-front, hand grasp

(b) pipe-shoulder: far, front-back, body grasp

(c) stretcher: far, front-back, hand grasp

(d) bucket: near, side-side, hand grasp

(e) pipe-side: far, front-back, body grasp

(f) pipe-front: far, side-side, body grasp
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This shows the ease of classifying given cases. But more importantly, we are
concerned with the practical implications of the taxonomy towards programming a
humanoid robot. The direct relation is that the relative pose and grasp type de-
scribe the goal of the humanoid when going towards the object and when grasping
it. However, the relative pose has a deeper meaning. As already mentioned in
subsection 4.1.1, its classes are related to sensing, and to the availability of commu-
nication modalities (vision and haptic). Therefore, the required pose of the robot
with respect to the human will largely affect what type of sensors are needed, and
the best way to use them. For instance, consider a humanoid robot equipped with
tactile sensing on the arms and/or shoulders. In a near relative translation scenario,
these can be used for communication (e.g., tapping the arm as a signal to start/stop
walking). On the contrary, far relative translation scenarios immediately disallow
this possibility. For vision, a front-facing robot has the possibility to read gestures
or even body language of the human, yielding better following behaviors. Instead,
a back-facing robot has the possibility to be more aware of the surroundings and
of the environment (e.g., it can use visual navigation algorithms), yielding better
leading behaviors. Although this may imply that each class in the taxonomy must
be programmed differently, the base actions of all classes remain the same. The
cited examples for communication modalities present possible enhancements rather
than the defining characteristics of collaborative carrying. The next section aims
at formulating the generic collaborative carrying algorithm. Along the way, we also
show the role of the taxonomy in making claims of generalization.

4.2 Decomposing a task into a Finite State Ma-

chine

A task is an abstraction without any upper bounds on its complexity. This makes it
difficult to program a robot for any general task. To handle this, we must decompose
complex tasks into subtasks that will be easier to program. Throughout this thesis,
we tackle the task of collaborative carrying, and this section aims at decomposing
it into proper subtasks.

Outside the context of programming robots, we humans often describe compli-
cated tasks by using simpler subtasks. Take, for example, user manuals, step-by-step
instruction guides, or even cooking recipes. A similar decomposition process must
be done, until each step is simple enough, to be used for programming a robot.
Formally, we can use a Finite State Machine (FSM) to describe the whole task, with
the subtasks as states. A useful decomposition is one where the states can be easily
written as optimization problems, which we use to control the robot body (whole
body control). A guideline for doing this is to first consider the state transitions.
These must allow a smooth change from one optimization problem to the next. An
easy way to do this, is to identify brief periods where the motion is minimal. During
these periods, the robot is said to be in a quasi-static state. More formally, the
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dynamic effects are small enough such that disregarding it has no bad consequence.
Another important signifier of state transitions are discrete changes in the contact
state of the robot. Considering these, a first decomposition of the collaborative
carrying task into an FSM is shown by Fig. 4.4.

Figure 4.4: FSM for collaborative carrying

Notice that there is a natural progression between states, with transitions where
the robot is quasi-static. Furthermore, the conditions for transitioning between
states can be automated by checking simple thresholds, for example the distance
between the robot and object, or the forces applied to the object when grasping. The
transition conditions can be obtained from sensor information, while the thresholds
are dependent on several factors (the robot workspace in a given stance, for example).

This decomposition is useful for pointing out how the taxonomy is used. The
taxonomy on the agents’ relative pose allows us to set a target stance, for the robot
to reach, when walking towards the object. It also dictates how to carry the object
together. Furthermore, it can serve as a guideline on how to best use the sensors for
the duration of the task. The taxonomy on grasp types defines how the object will be
grasped, and also how it is held while carrying it together. Although this FSM now
has simpler subtasks, it is still not easy to translate some subtasks into optimization
problems, for whole body control. We can further develop and decompose two of
these, in particular walking and grasping. Doing this will also indirectly decompose
carrying the object together. Let us start with walking.

A dynamic walking motion does not have any quasi-static phase to be taken
advantage of. However, the contact transitions of the feet occur in a predictable
pattern. This pattern can be used to define three distinct walking states:

1. left single support,

2. right single support,

3. double support.

Left single support (LSS) corresponds to the state where the left foot is used to
support the robot weight (in contact with the ground), while the right foot is in the
air. Right single support (RSS) is the inverse state, with the right foot in contact
with the ground. Double support (DS) is the state with both feet in contact with the
ground. By definition, walking does not have a flight phase where both feet leave the
ground simultaneously. This is found in other forms of locomotion, such as running
or hopping, which we do not consider here. Lastly, we can also use strict timing to
define the state transitions (except for the walk start and end). This can simplify
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the synchronization between the whole-body control and the WPG from chapter 3.
Following these considerations, the FSM for walking is illustrated in Fig. 4.5.

Figure 4.5: FSM for walking

To simplify the decomposition of grasping, we can define a pregrasp posture.
This describes a state that will serve as a waypoint between grasping the object and
the other states of the FSM (see Fig. 4.6).

Figure 4.6: FSM for grasping

The definition of the pregrasp posture is tightly linked with grasp synthesis,
and can be formalized as a posture generation problem, considering the object and
robot properties. It can also be generated by considering caging [89] as a waypoint to
grasping the object. Due to added complexity, we do not include this in the scope of
this work. Instead of trying to synthesize a pregrasp posture automatically, we can
rely on the taxonomy classes, and on observations from humans, to choose particular
grasp types and postures for specific objects. This choice can be made beforehand.
For example, we chose to design the body grasps shown in Fig. 4.7 to emulate
the pipe-shoulder and pipe-front examples of Fig. 4.3. In these 2 examples, we
parameterized the grasp by defining three contact points on the robot and servoing
these accordingly. The details of which are explained later on in Section 4.3.

The next state, squeeze, simply moves the robot so that the predefined contacts
between the robot and object are made. Force or tactile sensors, when available, can



64 Chapter 4: Whole-body control for collaborative carrying

Figure 4.7: Examples of pregrasp postures using “body grasps” (left) and the result-
ing posture after squeezing (right).

help improve the execution of this state, and better signal the transition to the next
state. The hold state simply consists in maintaining the contacts between the robot
and the object. Finally, the release state, is simply the inverse motion of squeeze.

By using both the grasping and walking FSMs, we can then create a more de-
tailed version of Fig. 4.4. Each state of this new FSM will be formalized as an
individual optimization problem, later in section 4.3.3. This detailed FSM is shown
in Fig. 4.8, with the numbers indicating the transition order of a normal execution
of the collaborative carrying task. The numbers on the walking transitions were
omitted for brevity.

4.3 Whole-body control as an optimization prob-

lem

Whole-body control consists in the synthesis of a robot’s low-level motor commands
(usually in joint-space) from the high-level task goals. These high-level goals are
defined in the corresponding operational spaces. The most common of these is the
3D Cartesian space, another example is the image space. The second problem to
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Figure 4.8: Detailed FSM for collaborative carrying

be addressed in whole-body control is handling multiple constraints with varying
levels of importance. In this thesis, the whole-body control problem is cast into
an optimization problem with these two issues in mind. The optimization-based
approach has shown to be effective for whole-body control [33–36]. In contrast with
these works, this thesis concentrates on collaborative carrying, and on how each
state of the previously designed FSM can be written as an optimization problem.
In general, all the cited works seek to find the robot control input, represented by
the optimization argument x, such that:

argmin
x

collection of task functions,

subject to robot constraints

environment constraints

task constraints.

(4.1)
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The different instances of Eq.(4.1) arise from the choices in the implementation
of the various components. We hereby discuss such choices.

Firstly, the choice of x represents how the low level motor commands will be ob-
tained. It also implies what task functions will be viable, since all functions will need
to be a function of such argument: f(x). A formulation considering only kinematic
tasks and constraints can conveniently choose x = q̇, while a representation that
needs to take into account the dynamics, is better represented by x = q̈. Meanwhile,
a torque controlled robot may benefit from the choice of x = τ . Furthermore, it is
possible to concatenate these with other variables such as the contact forces (a form
which we will use later on).

Second, the choice on how to represent the collection of task functions will de-
termine how the problem of task prioritization will be handled. A simple way to
combine tasks is by adding weights such that the total objective function is simply
a weighted sum of the different objectives:

ftotal(x) =
n
∑

i=0

wifi(x). (4.2)

This is used in [34, 35]. Another method, is to represent the collection by a strict
hierarchy, as in [33, 36]. This can be done with several different methods (reviewed
in [36]), some of which require to restructure the problem into several optimization
problems, to be solved in sequence or by some type of null-space projection operator.
In this thesis, both formulations were utilized at different points: the hierarchical
formulation of the Stack of Tasks [33] for earlier work, and a weighted QP similar to
the one used in [35], for later work. This section focuses on the later works, although
there is little to no change, if the collaborative carrying tasks are to be used in a
hierarchical framework. In fact, although most works distinguish between the two
methods, both approaches are not mutually exclusive, and weighted formulations
can exist within the hierarchy levels. Furthermore, up to a certain degree, it is
possible to emulate strict hierarchies in a weighted optimization. One way to do
this is by choosing the weights so that:

wi min(fi(x)) > wi-1 max(fi-1(x)),

where task i has a higher priority than task i − 1, and min() and max() represent
the expected/acceptable minimal and maximal error values, respectively. For exam-
ple, min(f(x)) can represent the minimum tolerance or convergence threshold while
max(f(x)) can be a bound on the maximum possible task error.

Lastly, the numeric optimization algorithm to solve the problem must be properly
chosen. A good overview of standard methods is presented in [90]. This choice
strongly affects what task functions are viable, and how they should be designed.
However, we need to consider the trade-offs. For example, non-linear solvers are more
general but tend to be much slower. A popular choice is quadratic programming
(QP) [34–36], which allows to use the Euclidean or L2 norm for defining the task
functions.
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4.3.1 The base Quadratic Programming formulation

The base formulation of the optimization problem used here, is largely based on [35]
and by extension on [34]. We make the same design choices, by considering a
weighted quadratic programming problem. The argument is chosen to be:

x =

[

q̈

λ

]

. (4.3)

In this section, q includes the definition of the free-flyer as in Eq.(3.1),(3.2). The
other part of the argument, λ, is the vector of linearized friction cone base weights
such that the contact forces can be described as:

fcontact = Kfcλ, (4.4)

with Kfc ∈ R
3n×nm a matrix of generators for linearizing the friction cone (n is the

number of contact points, and m the number of generators chosen for the lineariza-
tion).

Then, we can rewrite Eq.(4.1) more specifically as:

argmin
x

n
∑

i=1

wifi(x) + wλ ‖λ‖2

subject to λ ≥ 0

τ ≤ τ ≤ τ

q ≤ q ≤ q

q̇ ≤ q̇ ≤ q̇

other constraints

(4.5)

We will refer to this as the base formulation since it only specifies the most essential
and generic parts of the optimization problem which are always used. Notice that
most of the constraints in the base formulation are robot limitations, which are
assumed known. The details of Eq.(4.5), starting from the objective functions, will
be hereby discussed.

For a QP, all the fi(x) must follow the form:

fi(x) =
1

2
x⊤Qqpx+ c⊤qpx. (4.6)

However, it is well-known that objectives expressed in linear form:

Alsx = bls (4.7)

can be incorporated in a QP, by using the objective function:

fi(x) =
1

2
‖Alsx− bls‖2 =

1

2
(Alsx− bls)

⊤(Alsx− bls), (4.8)
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such that:

Qqp = A⊤

lsAls, cqp = −A⊤

lsbls. (4.9)

This implies that, writing the linear form of an objective, will ensure its feasibility
in QP form, while the constant 1

2
can be ignored or considered among the weights.

Going back to the base form, the objective functions fi(x) correspond to the collab-
orative carrying subtasks, that will be detailed later.

The objective of minimizing ‖λ‖2 ensures that matrix Qqp is positive definite.
More precisely, it works together with the posture task described later on to ensure
this. This property is useful for solving the QP [90]. This objective function can
then be written as:

∥

∥

[

0 I
]

x
∥

∥

2
. (4.10)

Let us now focus on the optimization problem constraints.
The first constraint ensures that the contact forces will be inside the friction cone

(no slipping) and can be formulated by:

[

0 I
]

x ≥ 0. (4.11)

The second constraint places bounds on the actuator torques. The torques can
be obtained from the canonical equation of a robot mechanism:

τ = Hq̈+Cq̇+ τ g − J⊤fcontact, (4.12)

with all variables defined in the List of symbols. A standard constraint form can
then be obtained as:

τ −Cq̇− τ g ≤
[

H −J⊤Kfc

]

x ≤ τ −Cq̇− τ g. (4.13)

The third and fourth constraints respectively bound the joint positions and ve-
locities. A simple implementation consists in numerical integration (other methods
are possible), so that, for a discrete time interval k:

q̇k+1 =q̇k + q̈k∆t,

qk+1 =qk + q̇k∆t+
1

2
q̈k∆t2.

(4.14)

Using these, we can rewrite the constraints as:

q̇− q̇ ≤
[

I 0
]

x∆t ≤ q̇− q̇,

q− q− q̇∆t ≤ 1

2

[

I 0
]

x∆t2 ≤ q− q− q̇∆t.
(4.15)

A significant improvement can be made if these constraints are formulated as limit
avoidances instead of simple bounds. This can be achieved by adding avoidance



4.3 Whole-body control as an optimization problem 69

functions, that change the constraints when they are close to being reached. Then,
the third and fourth constraints in the base formulation become:

q+ f(q,q) ≤ q ≤ q+ f(q,q),

q̇+ f(q̇, q̇) ≤ q̇ ≤ q̇+ f(q̇, q̇),
(4.16)

where f(q,q), f(q,q), f(q̇, q̇), f(q̇, q̇) are the mentioned avoidance functions. It
is also possible to combine joint position and velocity constraints, with avoidance
functions, as in [35]. This completes the description of the base formulation.

4.3.2 Reusable objectives and constraints

Aside from the base formulation, there are several tasks and constraints that are
recurrent and can be written in re-usable form. First, let us define a task vector in
some operational space, e. To use it, we need a function mapping the task vector
into joint space such that:

e = fe(q). (4.17)

Let us assume that this function is twice differentiable such that we can write:

ė =Jeq̇, (4.18)

ë =Jeq̈+ J̇eq̇, (4.19)

where Je is the task Jacobian. For a task vector defined in Cartesian space, Je is
the classic robot Jacobian.

From Eq.(4.19), we can define a constraint to suppress motion for a part of the
robot in contact. For example, we can simply define the task as the contact point
on the robot in Cartesian space and constrain the acceleration to be null ë = 0 such
that:

Jeq̈+ J̇eq̇ = 0, (4.20)

and the constraint can be written as:

[

Je 0
]

x = −J̇eq̇. (4.21)

From this formulation, a selection matrix can also be added to release some DOF [35].
This constraint was used in [34]. However, there are some numerical stability issues
with using Eq.(4.20) as it is [91]. This can be compensated for by defining:

Jeq̈+ J̇eq̇ = fcmp(∆t), (4.22)

where fcmp(∆t) is a function aiming to compensate for the numerical integration
errors. As this is not the main issue here, we will disregard it for simplicity, although
practical implementation requires the use of fcmp(∆t). The interested reader is
referred to [91] for further details. From here on, we refer to Eq.(4.21) as the contact
constraint.
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Contrary to the contact constraint which prevents motion, we often want to servo
a certain part of the robot body. Several design choices, with their corresponding
implementations allow doing this. In this thesis, we adapt the tracking task in
operational space [84]. This is defined as:

ë = ëdes + b(ėdes − ė) + k(edes − e). (4.23)

where the subscript des denotes a desired reference and b, k define the gains. The
tracking task can be expressed as a cost function:

ftr(x) =
1

2
‖k(edes − e) + b(ėdes − ė) + (ëdes − ë)‖2 , (4.24)

where e denotes a vector of task variables to be tracked. This formulation is so
generic that several tasks can use it, e.g.: any physical point on the robot, the
Center of Mass, the robot posture, image pixel coordinates, etc. Furthermore, in
the absence of suitable reference velocities and accelerations, one can set these to
zero. The result is the set-point objective from [34]:

fsp(x) =
1

2
‖k(edes − e)− bė− ë‖2 . (4.25)

Gains k and b can be tuned by considering the task dynamics equivalent to those of
a mass-spring-damper system with unit mass. For a critically damped system, only
k needs to be tuned, with b = 2

√
k. To transform Eq.(4.24) into a QP of the form

in Eq.(4.6), we can use Eq.(4.17)(4.18),(4.19), to obtain:

Qqp =

[

J⊤

e Je 0

0 0

]

,

cqp =

[

−J⊤

e

(

k(edes − fe(q)) + b(ėdes − Jeq̇) + ëdes − J̇eq̇
)

0

]

.

(4.26)

From here on, we refer to this formulation as the tracking task. A particular formu-
lation of this task is obtained when it consists in joint positioning. In that case, we
define it as:

e = q, Je = I, (4.27)

and normally we use the set-point form of Eq.(4.25) to get:

fpos(x) =
1

2
‖k(qdes − q)− bq̇− q̈‖2 . (4.28)

We refer to this as a posture task. Along with the objective of minimizing ‖λ‖2,
this task ensures that Qqp is positive definite. Furthermore, the physical meaning
of the posture task is to have a default configuration of each joint. This implies
that its corresponding weight wq normally has a relatively low value. This is useful
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when there are few other active tasks. The desired posture qdes is usually given
by a resting state of the robot (i.e. standing). In particular, for the HRP robots,
this corresponds to the half-sitting posture. It is also possible to define the desired
postures depending on the task to be realized.

Lastly, it is also possible to add collision avoidance [35]. This is generally used
to avoid self collisions between robot body parts, and is not essential to the overall
task. Hence, we decided not to detail it here.

4.3.3 Formalizing the FSM states as optimization problems

Now that we have all the ingredients for the QP, we will go through the collabo-
rative carrying FSM states in order. In this section, we only detail objectives and
constraints that are specific to the task. Keep in mind that tasks and constraints
from the basic form of Eq.(4.5) are always active. We will begin with the states
related to walking.

For a Double Support (DS) state, both feet: rleft, rright, must keep the contact
with the ground. The CoM is servoed with a trajectory: cdes, ċdes, c̈des, which is
obtained from the WPG of chapter 3. Optionally, we can also add a set-point
orientation for the torso θtsdes to have an upright posture while walking. With this,
the whole-body optimization problem is then:

argmin
x

wcftr(x, cdes, ċdes, c̈des) + wtsfsp(x,θtsdes) + wqfpos(x,qdes)

subject to r̈left = 0

r̈right = 0.

(4.29)

Similarly, we can formalize the single support states, by defining a support foot
rsup, and a swing foot rsw, and labeling the state as LSS (respectively, RSS) when the
the left (right) foot is in support, and the right (left) is swinging. The formulation
is similar to (4.29), except that the swing foot tracking task replaces the second
contact constraint. The generation of the swing foot trajectory: pswdes, ṗswdes, p̈swdes

was described in Chapter 3. The optimization problem is:

argmin
x

wcftr(x, cdes, ċdes, c̈des) + wswftr(x,pswdes, ṗswdes, p̈swdes)+

wtsfsp(x,θtsdes) + wqfpos(x,qdes)

subject to r̈sup = 0.

(4.30)

For grasping, it is important to start from the pregrasp posture. For this, let us
define n operational points on the robot body with i = 1 . . . n. The pose of each
is then denoted by: pgr, i. Each of these will have a corresponding pre-grasp pose:
pgrdes, i, such that we can formulate n set-point tasks. It is also possible to generate
trajectories for these, as with the swing foot, and then use a tracking task. The set-
point formulation is used here for simplicity. It is also possible to include collision
avoidance with the object [35], or to generate a collision-free trajectory, but these
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are omitted, again for simplicity. Going to a pre-grasp posture can then be written
as the optimization problem:

argmin
x

n
∑

i=1

wgr,ifsp,i(x,pgrdes, i) + wcfsp(x, cdes) + wqfpos(x,qdes)

subject to r̈left = 0

r̈right = 0.

(4.31)

The same formulation applies to the release state. The squeeze state is very similar
in formulation, but this time pgrdes, i is defined by the expected contact points on
the object. It is possible to use set-point tasks in this state, as well. However, a
better task way is to use the available wrench information, hgr, to do the grasp. For
example, a simple guarded-move to signal stopping or some type of force control can
be used. In summary, the grasp optimization problem is:

argmin
x

n
∑

i=1

wgr,ifgr,i(x,pgrdes, i,hgr) + wcfsp(x, cdes) + wqfpos(x,qdes)

subject to r̈left = 0

r̈right = 0.

(4.32)

After successfully squeezing the object, a grasp is maintained by the hold state.
Here, we choose to formalize this via relative contact constraints between the grasp
points. These constraints replace the set-point tasks, so that the optimization prob-
lem can be written:

argmin
x

wcfsp(x, cdes) + wqfpos(x,qdes)

subject to p̈gr,1 − p̈gr,2 = 0

...

p̈gr,n-1 − p̈gr,n = 0

r̈left = 0

r̈right = 0

(4.33)

In principle, it is possible to define all the permutations between the grasp points
as constraints. However, because of numerical considerations, this becomes a very
complex problem for the solver. Instead, we only define n − 1 contact constraints.
These are chosen so that each one is considered without creating a kinematic loop
between them. A simple way to do this is to define all the constraints between i and
i + 1 with i = 1, . . . , n − 1. This is represented by Eq.(4.33). Moreover, it can be
advantageous here to change the target of the posture task to maintain the form of
the grasp, while executing other motions.

Furthermore, the hold state is to be realized simultaneously with other states.
For the walking states (DS, LSS, RSS), while holding, there are only few changes.
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Firstly, the CoM uses a tracking task as in walking states. Secondly, the foot contact
constraints are dictated by the walking states, while the grasp contact constraints are
always maintained. Thirdly, a swing foot tracking task is added when appropriate.
Lastly, the torso orientation task is optionally added.

The last states that need to be described are lift and place. Once the object is
held, it can be considered as part of the robot. We can then define an operational
point related to the object, obj and servo its pose. Here, we choose to servo it
with a set-point task but as before, the motion can be improved with a trajectory
generator, possibly including collision avoidance. The optimization formulation is
then:

argmin
x

wobjfsp(x,pobjdes) + wcfsp(x, cdes) + wqfpos(x,qdes)

subject to p̈gr,1 − p̈gr,2 = 0

...

p̈gr,n-1 − p̈gr,n = 0

r̈left = 0

r̈right = 0.

(4.34)

4.4 Simulations

The objectives and constraints described in various cases were tested in a series of
simulations. Furthermore, these are also heavily used in [91] and in other works of
our research group. Thus, in this section, we concentrate on the tasks specific to
collaborative carrying.

To begin with, we start with walking. For this, the WPG of chapter 3 is inte-
grated into our whole-body controller. This was partially shown in the results of that
chapter. To better illustrate this, the results of the tracking task for the CoM are
shown in Fig. 4.9. Recall that the WPG generates a reference CoM position, velocity
and acceleration at each instant. Furthermore, since we are running the WPG and
whole-body controller at different loop rates (100ms and 5ms respectively), we use a
simple Euler integration to interpolate the reference. The plots show that the CoM
is tracked well enough. Along with the CoM, the ZMP of the whole-body, and that
of the WPG, can be compared. Note that there is currently no explicit task, within
the whole-body controller, to track the reference ZMP. However, on the real HRP-4
platform, this is used within a low-level stabilizer, which acts as a final closed-loop
controller, to ensure balance. This is a common practice in walking robots [37].
Therefore, for the ZMP, we see much more difference between the curves, although
our tests (both dynamic simulation, and real tests) show that this does not affect
the balance of the robot. Also note that in terms of integration within the whole-
body controller, the various WPGs presented in chapter 3 function similarly. The
only difference is in needing force control in the leader case, and force sensing in the
follower case.
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Figure 4.9: Tracking task of the CoM using the WPG-generated reference CoM
along with a comparison of the resulting ZMP.

Secondly, we show the performance of the swing foot tracking task while walking.
This is depicted in Fig. 4.10, where the trail of the feet (green curve) is shown to
follow the generated reference (blue dots). Along with this, the reference frames of
the left and right feet are shown. Furthermore, the same trail showing the results of
the tracking task also shows the contact constraint on the support foot, since there
is no movement of the frame for the foot defined as being in support (the green
curve only shows movement of the swing foot).

Next, for the grasping postures, some simulations have been shown in Fig. 4.7.
However, because of some unavoidable hardware issues (broken wrist joint) we also
had to create one-handed versions of these. These are shown in Fig. 4.11, along
with a grasping motion of the hand. Note that for the hand of the HRP-4 robot, the
thumb has 1 DOF with 1 Motor, and the four other fingers are actuated all together
by another motor. Hence, the 4 fingers open and close together during squeezing
and this motion is controlled by a single joint position. Another point of interest
might be the left arm in the front-wrap closing (shown in the middle right figure).
This motion is caused by the task on the CoM (to keep the projection on the ground
near the center of the feet in this case). Since the squeeze motion moves the chest
frame forward, the optimization tries to use the left arm to compensate the CoM
task.
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Figure 4.10: Results of the tracking task on the swing foot: left and right foot
reference frames, currently generated swing foot reference trajectory (blue dots),
past trail of the feet axes (green curve).

Lastly, we show some simulations of walking while holding the body grasps.
Figure 4.12 shows an image sequence of walking while holding the front-wrap body
grasp while Fig. 4.13 shows an image sequence of walking while holding the shoulder-
mount body grasp. These simulations show the full two-hand versions of the grasp.
Clearly, any of the WPG may be used together with any of the grasps. The figure
only illustrates some chosen examples.

4.5 Real robot experiments and results

After these simulations, we validated some situations on the HRP-4 robot. Due
to time constraints, we were not able to do many of the envisioned scenarios from
Fig. 4.3. Some preliminary tests were done, as shown in Fig. 4.14. As mentioned
before, these use the one-hand versions of the body grasps, because of a broken wrist
joint. Although we were able to do some preliminary tests, the real experiments
introduce some issues which were not present in simulation. Firstly, we only have
local force sensing in the wrists of the robot. The other contact points, i.e., the
shoulder and chest, had no force sensors. Thus, we had to take this into account when
using the sensed data (for example, in the follower WPG). Furthermore, there were
some minor issues with the grasp stability. However, the force sensing is a deeper
issue, and there are several ways to improve the current situation. For instance,
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Figure 4.11: Grasping postures (left) along with the posture after squeezing (right).
From top to bottom: Shoulder-mounted body grasp (one-handed version), front-
wrap body grasp (one-handed version), and right hand grasp.

adding a skin over the envisioned contact points, to have some force data, or taking
into account other sensed data, e.g., from the IMU, or even from vision, in some
specific cases. The other issues are minor, and can be handled given more time.



4.5 Real robot experiments and results 77

Figure 4.12: Image sequence of walking while holding a front-wrap body grasp.

Figure 4.13: Image sequence of walking while holding a shoulder-mount body grasp.

Figure 4.14: Screenshots of experiments with the HRP-4 robot. Left: shoulder-
mount body grasp while walking, Right: front-wrap body grasp while walking
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Conclusion

This thesis explores several key aspects of a simple yet substantial idea: humanoid
robots that have the ability to collaborate with humans. We start by exploring how
visual information can be used in the context of haptic joint actions. For this, we
implemented a framework using visual servoing and impedance control for doing
the joint actions. Proactivity was achieved thanks to visual servoing, which allows
the robot to have its own perception of the state of the task, thus to act on its
own, even without sensing the human intention. Nevertheless, the human intention
still needed to be accounted for. This was done with impedance control. This visio-
haptic framework was implemented and tested on the HRP-2 humanoid robot in two
example scenarios. Next, we revisited locomotion and balance in relation to physical
interaction. For this, we designed walking pattern generators that not only take into
account the physical interaction, but also use it accordingly, to operate as a follower
or leader. Finally, we looked at the task of collaborative carrying as a whole. To do
this, we started by creating a taxonomy based on the observation of several cases
of human teams. We then try to infer from this the core principles of collaborative
carrying, in order to program it on a humanoid robot. This is done by first creating
a generic Finite State Machine, that encompasses all collaborative carrying tasks.
This is then used to design objectives and constraints of an optimization problem
that allows us to control the whole body of the humanoid robot.

Although the work here already presents a holistic approach to collaborating
humanoids, there is much to be done as a whole and even in each specific area. We
envision humanoid hardware, along with sensing, to continue improving. In partic-
ular, our work can greatly benefit from improvements on vision and haptic sensing
and processing. In particular, to better leverage the continuous advancements in
algorithms for computer vision and haptics, we would greatly benefit from having
a robotic skin instead of localized force/torque sensing. Advances in computing
might also enable the use of algorithms that right now are considered too slow to be
useful. On the other hand, better actuation would allow to try for more ambitious
experiments and test cases.

Although we can rely on other areas to progress, we must also strive to progress
in parallel. As for the continuation of this work here specifically, we can envision
various short, medium and long term improvements for each of the aspects we worked
on. In general, for the short term, there are a lot of ideas left to be tested and
demonstrations that can be done. Some demonstrations were left undone due to
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lack of time. However, the algorithms presented are generic enough to be tested
on other collaborative carrying cases. What follows are the ideas for improvements,
specific to each of the areas of our work here.

For the work done in chapter 2 concerning vision and haptic sensing in collabo-
ration, there are a lot of paths to be taken. In the short term, an important idea can
be tested in the framework described. It was briefly mentioned that the impedance
gains may serve to weigh between robot intention and complying to human inten-
tion. This can be better represented by adapting the gains, according to certainty
of the sensing. For example, in the ball on table case study, if the visual tracking
is lost, then the robot must rely completely on human intention through haptics.
On the contrary, if the human intention is wavering and unsure, and if the visual
tracking has a confident estimate, then the robot must try to do the task accord-
ing to its own intention. This also leads to more studies that will need to be done
on role switching and on other aspects of cognitive and behavioral science, related
to human-robot collaboration. In the mid term, we need to explore various other
possibilities of utilizing both vision and haptics information together. Our work has
focused on how the information can be used in a control framework. We envision
that some level of information fusion in sensor data processing will be necessary. On
the contrary, using the information sources differently, in high-level decision making
and planning aspects, is also possible. In fact, all of these methods can co-exist with
each together. However, this path for continuation will need to heavily leverage new
sensors and sensor processing methods, which would extend it to a long-term plan.

Chapter 3 concentrated on the locomotion and balance aspects of humanoid
robots. In particular, we presented specific WPGs for the leader and follower cases.
For the short term, one key issue we saw from real experiments, is the need for
a high-fidelity force control in the leader WPG, since the interaction is used to
balance the robot. As for the follower WPG, we only briefly mentioned the wrench
prediction model for better proactive behaviors. In this work, the wrench is simply
predicted to be constant throughout the preview horizon. Better prediction models
may result in better proactive behaviors. Apart from improving the WPG itself,
one envisioned mid term goal is a better integration into whole-body control, with
work such as [87]. Another mid term goal is to try this framework in other physical
interaction cases. Since the abstraction was made generic enough, the core idea is
not specific to collaboration. Some other WPG objectives may be designed for push
recovery, or simply in interacting with the environment in multi-contact situations.
For the long term, we envision that the WPG will be well integrated into whole-
body control and both of these aspects will be treated together. However to do this,
we would need to handle several issues and explore several methods. For example,
the use of more general but slower non-linear optimization frameworks may lead to
better results.

Lastly, chapter 4 focused on the collaborative carrying task and its implementa-
tion within a whole-body control framework. In the short term, more demonstrations
can be done along with a possible extension of the framework to other haptic joint
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actions. In the mid term, there is a lot to be done for whole-body control. Firstly,
we have briefly covered the different design choices and trade-offs for optimization.
These might need to be considered more carefully, taking into account a broader ap-
plication. Furthermore, various improvements can be made in the objective function
and constraints design. Similarly to what we presented, other established approaches
from control theory might benefit from a direct translation into optimization. For
example, visual servoing and impedance control may be better integrated directly as
tasks of the optimization. For the long term, we need to continuously move towards
more general approaches, and remove the simplifications that are done to enable
today’s demonstrations. These include, for example, the no-slipping contact, and
rigid-body, assumptions. Indeed, the use of vision, haptics, other sensor informa-
tion, locomotion and balance must all be better integrated for a true whole-body
approach.

Finally, for a broader perspective, we have to rethink humanoids and what they
represent. Certainly, usability and practical future applications are one aspect. How-
ever, humanoids can also be a tool to learn about ourself, similar to our studies on
collaboration. Better technology can open much broader topics and studies for the
far future.
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Appendix A

Condensing a model predictive

control problem

Condensing is the elimination of future states and is commonly used in a Model
Predictive Control (MPC) Problem. Consider a linear model of the following form:

xk+1 =Akxk +Bkuk,

yk+1 =Dkxk + Ekuk + Fk+1fk+1,
(A.1)

where the discrete time interval k spans from k = 0 to k = N , with N being the
length of the preview (prediction) horizon. Vectors xk, yk, and uk are the k-th
state, output and control input respectively. Note that the output may have a
different form for other problems, but this form has been chosen here, because of its
similarity to Eq.(3.12). Naively expanding the state equation of (A.1) to express all
the previewed states results in:
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Instead of this, the future states can be eliminated or condensed. This amounts to
finding the matrices Ux and Uu such that:
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Each row of these matrices can be found by recursively applying Eq.(A.1), until the
result is only a function of the current state x0. The resulting matrices are:
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The same can be done for the output, so that:
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with:
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Notice also that, by first constructing Ux and Uu, part of their structure can be
reused to construct Ox and Ou, respectively.
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Multi-Contacts pour Robots Humanöıdes et Expérimentations. PhD thesis, Uni-
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Abstract

Humanoid robots provide many advantages when working together with humans to
perform various tasks. Since humans in general have a lot of experience in phys-
ically collaborating with each other, a humanoid with a similar range of motion
and sensing has the potential to do the same. This thesis is focused on enabling
humanoids that can do such tasks together with humans: collaborative humanoids.
In particular, we use the example where a humanoid and a human collaboratively
carry and transport objects together. However, there is much to be done in order to
achieve this. Here, we first focus on utilizing vision and haptic information together
for enabling better collaboration. More specifically the use of vision-based control
together with admittance control is tested as a framework for enabling the humanoid
to better collaborate by having its own notion of the task. Next, we detail how walk-
ing pattern generators can be designed taking into account physical collaboration.
For this, we create leader and follower type walking pattern generators. Finally, the
task of collaboratively carrying an object together with a human is broken down
and implemented within an optimization-based whole-body control framework.

Résumé

Les robots humanöıdes sont les plus appropriés pour travailler en coopération avec
l’homme. En effet, puisque les humains sont naturellement habitués à collaborer
entre eux, un robot avec des capacités sensorielles et de locomotion semblables aux
leurs, sera le plus adapté. Cette thèse vise à rendre les robot humanöıdes capables
d’aider l’homme, afin de concevoir des ’humanöıdes collaboratifs’. On considère ici la
tâche de transport collaboratif d’objets. D’abord, on montre comment l’utilisation
simultanée de vision et de données haptiques peut améliorer la collaboration. Une
stratégie combinant asservissement visuel et commande en admittance est proposée,
puis validée dans un scénario de transport collaboratif homme/humanöıde. Ensuite,
on présente un algorithme de génération de marche, prenant intrinsèquement en
compte la collaboration physique. Cet algorithme peut être spécifié suivant que le
robot guide (leader) ou soit guidé (follower) lors de la tâche. Enfin, on montre com-
ment le transport collaboratif d’objets peut être réalisé dans le cadre d’un schéma
de commande optimale pour le corps complet.


