Claude Universite

Bernard -Lyon

M Le Professeur

Frédéric Fleury

Hamda Ben

Hadid M Le Professeur Didier

Revel M Le Professeur

Philippe Chevalier

M Fabrice

Vallée M Alain Helleu

Composantes Sante

J Etienne

La Mme

C Professeure

Burillon

D Bourgeois

Vinciguerra

Y Matillon

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE

The emergence of new platforms for decentralized data creation, such as sensor and mobile platforms and the increasing availability of open data on the Web, is adding to the increase in the number of data sources inside organizations and brings an unprecedented Big Data to be explored. The notion of data curation has emerged to refer to the maintenance of data collections and the preparation and integration of datasets, combining them to perform analytics. Curation tasks include extracting explicit and implicit meta-data; semantic metadata matching and enrichment to add quality to the data. Next generation data management engines should promote techniques with a new philosophy to cope with the deluge of data.

They should aid the user in understanding the data collections' content and provide guidance to explore data. A scientist can stepwise explore into data collections and stop when the content and quality reach a satisfaction point. Our work adopts this philosophy and the main contribution is a data collections' curation approach and exploration environment named CURARE.

CURARE is a service-based system for curating and exploring Big Data. CURARE implements a data collection model that we propose, used for representing their content in terms of structural and statistical meta-data organised under the concept of view. A view is a data structure that provides an aggregated perspective of the content of a data collection and its 1-6 several associated releases. CURARE provides tools focused on computing and extracting views using data analytics methods and also functions for exploring (querying) meta-data.

Exploiting Big Data requires a substantial number of decisions to be performed by data analysts to determine which is the best way to store, share and process data collections to get the maximum benefit and knowledge from them. Instead of manually exploring data collections, CURARE provides tools integrated in an environment for assisting data analysts determining which are the best collections that can be used for achieving an analytics objective. We implemented CURARE and explained how to deploy it on the cloud using data science services on top of which CURARE services are plugged. We have conducted experiments to measure the cost of computing views based on datasets of Grand Lyon and Twitter to provide insight about the interest of our data curation approach and environment. 1-7

MOTS CLEF :

données volumineuses, services cloud, curation de collections de données et architectures orientées services cloud.

RESUME :

L'émergence de nouvelles plateformes décentralisées pour la création de données, tel que les plateformes mobiles, les capteurs et l'augmentation de la disponibilité d'open data sur le Web, s'ajoute à l'augmentation du nombre de sources de données disponibles et apporte des données massives sans précédent à être explorées. La notion de curation de données qui a émergé se réfère à la maintenance des collections de données, à la préparation et à l'intégration d'ensembles de données (data set), les combinant avec une plateforme analytique. La tâche de curation inclut l'extraction de métadonnées implicites et explicites ; faire la correspondance et l'enrichissement des métadonnées sémantiques afin d'améliorer la qualité des données. La prochaine génération de moteurs de gestion de données devrait promouvoir des techniques avec une nouvelle philosophie pour faire face au déluge des données. Ils devraient aider les utilisateurs à comprendre le contenue des collections de données et à apporter une direction pour explorer les données. Un scientifique peut explorer les collections de données pas à pas, puis s'arrêter quand le contenu et la qualité atteignent des niveaux satisfaisants. Notre travail adopte cette philosophie et la principale contribution est une approche de curation des données et un environnement d'exploration que nous avons appelé CURARE.

1-8 CURARE est un système à base de services pour curer et explorer des données volumineuses sur les aspects variété et variabilité. CURARE implémente un modèle de collection de données, que nous proposons, visant représenter le contenu structurel des collections des données et les métadonnées statistiques. Le modèle de collection de données est organisé sous le concept de vue et celle-ci est une structure de données qui pourvoit une perspective agrégée du contenu des collections des données et de ses parutions (releases) associées. CURARE pourvoit des outils pour explorer (interroger) des métadonnées et pour extraire des vues en utilisant des méthodes analytiques. Exploiter les données massives requière un nombre considérable de décisions de la part de l'analyste des données pour trouver quelle est la meilleure façon pour stocker, partager et traiter les collections de données afin d'en obtenir le maximum de bénéfice et de connaissances à partir de ces données. Au lieu d'explorer manuellement les collections des données, CURARE fournit de outils intégrés à un environnement pour assister les analystes des données à trouver quelle est la meilleure collection qui peut être utilisée pour accomplir un objectif analytique donné. Nous avons implémenté CURARE et expliqué comment le déployer selon un modèle d'informatique dans les nuages (cloud computing) utilisant des services de science des donnés sur lesquels les services CURARE sont branchés. Nous avons conçu des expériences pour mesurer les coûts de la construction des vues à partir des ensembles des données du Grand Lyon et de Twitter, afin de pourvoir un aperçu de l'intérêt de notre approche et notre environnement de curation de données.

INTRODUCTION

CONTEXT AND MOTIVATION

The appearance of deluge of data from new platforms for decentralized data creation such as social networks, sensor networks, Web open data [START_REF] Howe | Big data: The future of biocuration[END_REF], mobile applications, Internet of Things (IoT) environments brings about digital collections, known as Big Data, that can be used for new modes to reuse and to extract value from data for supporting analysis, decision making, modelling and prediction tasks. The substantial amount of variety of data collections increases the difficulty to maintain and exploit them. Forbes [START_REF] Cave | What Will We Do When The World's Data Hits 163 Zettabytes In 2025?[END_REF] estimates in 2025 the world will have 168 zettabytes of data, i.e. 10 21 bytes. Gartner estimates that more than 25% of critical data in the world's top companies is flawed [START_REF] Gartner | Dirty Data' is a Business Problem, Not an IT Problem, Says Gartner[END_REF].

The introduction of the concept of data lake, a centralized repository containing virtually inexhaustible amounts of raw (or minimally curated) data that is readily made available anytime to anyone authorized to perform analytical activities, has added extra challenge. Data lakes tend to grow ever bigger and more complex to the point that some have coined the term data swamp [START_REF] Terrizzano | Data Wrangling: The Challenging Journey from the Wild to the Lake[END_REF]. Data collections in data lakes have somehow similar properties as the ones proposed for Big Data by authors like Edward Curry [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF] and the NIST [START_REF]NIST Special Publication 1500-1 -NIST Big Data Interoperability Framework: Volume 1, Definitions[END_REF]. Indeed, these are "data collections with volume, velocity, variety and/or variability that is difficult to run on single machines or traditional off-the-shelf database systems". Therefore, according to these authors [START_REF] Terrizzano | Data Wrangling: The Challenging Journey from the Wild to the Lake[END_REF][START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF], the Big Data movement has led to "a new generation of tools, methods and technologies used to collect, process and analyze massive amounts of data". Both authors 1-13 refer to the inability of traditional data architectures to efficiently handle the new datasets and have thus brought a shift in data-intensive application to parallel architectures.

Next generation of data management engines should promote techniques with a new philosophy (architecture, data processing and sharing patterns) to cope with the deluge of observational data. These should aid the user in understanding the database's content and provide guidance to explore data. A scientist can stepwise explore into data collections and stop when the content and quality reach her satisfaction point. Our work adopts this philosophy and addresses data collections curation and exploration for supporting data science tasks.

CURATING AND EXPLORING DATA COLLECTIONS

Big Data allows user to make surprising insights and prediction [START_REF]Facing the threat: Big Data and crime prevention -Internet of Things blog[END_REF]. One of the key principles of data analytics is that the quality of the analysis is dependent on the quality of the information analyzed. The notion of data curation has emerged to refer to the maintenance of data collections and the preparation and integration of datasets, combining them to perform analytics. Data curation is the art of processing data to maintain it and improve its interest, value and usefulness through its lifecycle i.e. improves the quality of the data. Therefore, it implies discovering a data collection(s) of interest, cleaning and transforming new data, semantically integrating it with other local data collections and deduplicating the resulting composites if required. Data curation provides the methodological and technological data management support to address data quality issues maximizing the usability of the data for analytics and knowledge discovery purposes. Thus, data curation tasks include extracting explicit and implicit meta-data; semantic metadata matching and enrichment to add quality to the data. R. Y. Wang and D. M. Strong [START_REF] Wang | Beyond Accuracy: What Data Quality Means to Data Consumers[END_REF] 1-14 describe data quality in a number of dimensions grouped into four major dimensions: intrinsic, which includes accuracy and objectivity; relevancy, which evaluates if the data is relevant to a particular project; representation, "is the data explainable" and accessibility, which corresponds to who and how can the data be used.

There are multiple reasons why one cannot easily exploit curated data collections, the type of data, the values used, the absence of some values, the criteria used for representing such absence and the meaning of the absence (i.e., the value is unknown, the observation could not be collected, the collection is erroneous). This is hard to know without further exploration of the data collections, but more importantly the events one is trying to detect probably will not stand out but be the consequence of complex set value scattered within the data. Data exploration [START_REF] Idreos | Overview of Data Exploration Techniques[END_REF] is about efficiently extracting knowledge from data even if we do not know exactly what we are looking for. Data exploration uses algorithms and queries to discover patterns in the data.

Exploring and understanding data collections can be long and resource intensive. A quantitative view of the content of data collections is necessary to provide data analysts with aggregated views of their content. Together with meta-data, exploration techniques are required to go through the data collection without analyzing item per item.

The objective of data querying is to obtain all the data tuples respecting a defined often in the objective of answering a related question with correct and complete results. This means knowing the content of the database and its structure. In digital data collections this cannot be guaranteed. Often users are not sure which patterns they want to find and can be exploitable to answer their questions. Data exploration approaches are emerging for helping data scientists express queries that can help them understand the data collections content.

Data curation and exploration require the use of analytics and statistical algorithms that can process data collections. Such algorithms must be applied considering the characteristics of data collections, that is their volume, velocity, variety and veracity. They can require important computing resources to be executed for curating the data collections and providing tools for exploring them. They can rely in current results regarding Big Data and Data Science platforms and also on enabling architectures like the cloud that can support the execution of costly processes providing the necessary computing and storage resources.

SERVICE ORIENTED DATA ANALYTICS

Cloud architectures provide unlimited resources that can support data collections management and exploitation. The essential characteristics of cloud computing lie in ondemand self-service, broad network access, resource pooling, rapid elasticity and measured services [START_REF] Grance | The NIST Definition of Cloud Computing Recommendations of the National Institute of Standards and Technology[END_REF]. These characteristics make it possible to design and implement services to deal with data collections processing and exploration using cloud resources. During the last ten years, the problem of providing intelligent data collections management using cloud computing technologies has attracted more and more attention from both academic researchers, e.g. P. Valduriez team in France [START_REF] Gulisano | StreamCloud: An elastic and scalable data streaming system[END_REF], H. V. Jagadish team in the United States [START_REF] Jagadish | Big Data and Its Technical Challenges[END_REF] or Z. Zheng from China [START_REF] Zheng | Service-generated big data and big data-as-a-service: An overview[END_REF] and industrial practitioners like Google Big Query, IBM and Thales.

Given data collections different attributes and given the greedy algorithms that are sometimes applied to it for giving value and making it useful for applications, requires enabling infrastructures. Thus, running data processing and analytics tasks calls for new data management strategies able to cope with the different characteristics of data collections, namely volume, variety and velocity; and also, with the quality of the data regarding its veracity, freshness, cleanness. Moving data curation and exploration to the cloud can be 1-16 interesting because it allows process of huge amounts of data in an efficient way with the existence of unlimited and adaptable computation and storage resources.

PROBLEM STATEMENT AND OBJETIVE

Big Data analytics introduces challenges when data collections must be integrated, stored, and processed. The diversity of data collections makes it difficult to determine whether it is possible to integrate, correlate, and fusion data collections collected under different conditions and with different underlying purposes. Besides, a data collection is not a static entity, providers periodically open and share releases with different characteristics (i.e., size, scope, structure, precision, freshness). For example, the Sloan Sky Server Survey1 releases every year the astronomical observations done in the previous year, so that people not having access to the observatory can still experiment on top of these observations. Stack Overflow 2and Wikipedia3 release datasets of different sizes so that people can perform analysis on top of machines with specific computing and storage capacities. Important computing, storage and memory resources must be efficiently managed and provided to exploit and analyze data collections and thereby support target applications like Smart Cities managers to benefit from bulky mobility and transportation data analysis, decision making for piloting smart cities, financial markets, adapting transport infrastructure according to traffic and environmental constraints, providing alternative strategies for transporting people in the presence of disasters or exceptional situations.

1-17

The problem addressed in this work is can be stated in the following statements. Given a set of releases containing datasets with variable structures and content:

(1) Compute, discover and deduce meta-data that can provide an aggregated view summarizing: structural knowledge of the dataset (e.g., number of attributes in tabular structures, item schemata in JSON like documents); conditions in which data are produced (e.g., type of sensor, reading frequency, location of the producer, provenance), quantitative knowledge (e.g., attribute values distribution); semantic knowledge (e.g. functional, temporal and causal dependencies among attributes in a tabular entity).

(2) Groupe computed, deduced and discovered meta-data into data model entities that can organize these them and ease the exploration of data collections for making decisions about the resources required to best maintain data collections and their associated metadata, and about the way they can be used and combined for supporting analytics implementing modelling and prediction tasks. AMBED was labelled by the "pole de competitivité" Lyon Urban Truck and Bus (LUTB) now Cluster of the French region Auvergne-Rhône-Alpes and the Pôle de Compétitivité CARA. The aim to: master the concepts, methods, tools and technologies, such as anything-as-a-service and business Big Data analytics; adopt a multi cloud-based service-oriented approach for collecting, integrating, storing, and intelligently analysing digital data collections. Given that raw data collections with V's properties were at the core of these objectives, our work addressed the problem of curating data collections using data analytics techniques to enable their exploration and exploitation in target applications in the context of Transport and Smart Cities.

First, we looked into the service-oriented architectures and tried to identify what tasks could be distributed into individual cloud services for processing data collections. For this, we were inspired by the work of H.V. Jagadish [START_REF] Jagadish | Big Data and Its Technical Challenges[END_REF] and his Big Data life cycle. We defined services based on harvesting, pre-processing, storage, processing, data analytics and decision support.

Harvest focuses on collecting data from outside. Pre-processing runs cleaning, initial information extraction in an isolated way. Storage is responsible for storing and manipulating data in a distributed parallelized way required for Big Data. Processing runs extra phases of 1-19 cleaning and data curation using all the data at once. Data analysis runs special algorithms designed to identify patterns in the data that could be useful for end user. Finally, decision support provides the interface for end user to visualize the data to support their decisions.

According to our study on these academic and industrial results addressing data collections processing particularly data curation and exploration we designed a data curation approach based on a View model and a service-based data curation environment deployed on the cloud.

DATA CURATION APPROACH

We propose a data curation approach designed to support the decision making of the data analysts from service selection to storage management. This approach is based on a view model designed to provide quantitative information on the data sets used and available to the data analyst. Our model provides two families of concepts:

The data collection family is designed to reorganize data set into what we call releases.

These releases correspond to data produced by a source periodically. The idea is to maintain a structure that helps track how a data collection evolves over time.

The data view family is designed to provide the data analyst with important statistical information on the content of the data set provided by a release. The idea is to help the data analyst explore the content of a data set and have an overview of the type of data within data set (integer or float values, strings, Boolean) its completeness (number of null and missing values per attribute), possible dependencies among values, for instance whether the value of an attribute is computed using the values of other attributes. The latitude and longitude values of two attributes can be used to determine the name of the location declared in a third attribute of the same record.

The data collection view model provides concepts for representing quantitative and analytic aspects of the releases of a data collection, such as statistics of the content including the distribution of the values of each attribute across the items of a release, missing values, null values. Depending on the attribute type (only atomic types are considered for statistics) the strategies for computing measures can change.

DATA CURATION ENVIRONMENT

We proposed data curation model and tools implemented by CURARE addressing the difficulty of semi-manual data analysts' tasks by providing quantitative information on the data they are curating. The aim of CURARE is to help data analysts' decision making that consists in organizing and maintaining data according to available computing and storage resources for supporting integration and analytics processes. The data processing and exploration services layer of CURARE provides tools for computing the analytic view of every release and provides operators (compare, correlate, fusion) for exploring releases' quantitative views. The CURARE environment goes beyond the traditional approaches of maintaining and exploring data collections and enables its application to data based-sciences.

We developed a prototype running the services from harvesting to data processing used to test our data curation model and we showed how to deploy it on a cloud using a Data Science Virtual Machine giving access to cloud tools and services. As an application field, we have chosen Intelligent Transport Systems (ITS) and our test experiments have been conducted using urban transport data from the Grand Lyon portal (http://data.grandlyon.com/).

ORGANISATION

The remainder of the document is organized as follows.

Chapter 2 introduces the fundamental concepts related to Big Data which serve as background domain of our research. It then investigates concepts and proposals of data curation and exploration including its associated life cycle and existing systems.

Since data curation and exploration approaches combine processing and analytics algorithms and methods with the objective of extracting as much knowledge as possible, the chapter summarizes the main families of these algorithms and methods. Such processes are in general computationally costly, so the chapter studies enabling architectures and environments based on parallel programming and stacks of services for analysing and storing Big Data. Finally, the chapter exhibits the main characteristics of data curation and exploration environments together with data analytics stack that are at the origin of our data curation approach and system. Chapter 3 introduces our data curation approach and describes the general serviceoriented architecture of the CURARE data curation environment proposed in this work.

The approach identifies meta-data that can be associated to data collections and that can give a structural and statistical view of their content. These meta-data are organised into a set of entities that provide an aggregated view of the content of a dataset. Regarding the data curation environment, it organises the data curation services into three layers that define its general architecture. The chapter describes the role of the layers of services within the data curation life cycle adopted by the data curation approach.

FUNDAMENTAL CONCEPTS

According to Stiftelsen for Industriell of Teknisk Forskning (SINTEF) in 2013 [START_REF] Brandtzaeg | Big Data, for Better or Worse: 90% of World's Data Generated Over Last Two Years -SINTEF[END_REF], 90% of the world's data had been produced in the 2 previous years. IBM have reiterated that trend in 2016 [START_REF] Winans | 10 Key Marketing Trends for 2017 Customer Expectations and Ideas for Exceeding Customer Expectations[END_REF]. In fact, IBM says we are producing 2.5 quintillion bytes of data a day. That is 2.5 exabytes. People and machines are producing data at an exponential rate. This chapter investigates the state of the art on the topics of Big Data, Big Data as a service in relation to cloud computing and data curation. In section 2.1, we define what is Big Data and its properties. In section 2.2 describes the steps of the Big Data life cycle. In section 2.3 we look into data curation, the popular techniques to process Big Data and existing data curation systems. In section 2.4 we present Big Data systems and stacks intended to provide data management and analytics functions adapted to the scalability requirements of Big Data. Section 2.5 concludes the chapter and discusses about the aspects that we develop and enhance for proposing a data curation approach.

BIG DATA DEFINITIONS

The term Big Data started to be used by different major players to designate data with various characteristics and that pushed to the limits the existing data management and processing solutions. Several definitions of Big Data are available in the literature. According to D. Laney [START_REF] Laney | 3D data management: Controlling data volume, velocity, and variety[END_REF], "Big Data is high volume, high velocity, and/or high variety information assets that 2-24 require new forms of processing to enable enhanced decision making, insight discovery and process optimization."

The National Institute of Standards and Technologies (NIST) has begun publishing their work on standardizing Big Data. They resume their definition of Big Data as [START_REF]NIST Special Publication 1500-1 -NIST Big Data Interoperability Framework: Volume 1, Definitions[END_REF] :

"Essentially, Big Data refers to the extensibility of data repositories and data processing across resources working in parallel, in the same way that the computeintensive simulation community embraced massively parallel processing two decades ago. By working out methods for communication among resources, the same scaling is now available to data-intensive applications."

In other words, Big Data refers to the inability of traditional data architectures to efficiently handle the new datasets and has thus bought a shift in data-intensive application to parallel architectures. R. Hillard [START_REF] Hillard | Information Development » Blog Archive » It's time for a new definition of big data[END_REF] from MIKE 2.0 provides an interesting insight in his explanation of Big Data "Big Data can really be very small and not all large datasets are big! It is time to find a new definition for Big Data." E. Curry [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF] compiled a list of Big Data definitions (A new generation of tools, methods and technologies used to collect, process and analyse massive amount of data.

Table 1) that we resumed into the two following categories: Data collection with volume, velocity, variety and/or variability that is difficult to run on single machines or traditional databases.

2-25

A new generation of tools, methods and technologies used to collect, process and analyse massive amount of data. [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF].

Big Data definitions Sources

"Big Data is high volume, high velocity, and/or high variety information assets that require new forms of processing to enable enhanced decision making, insight discovery and process optimization." [START_REF] Laney | 3D data management: Controlling data volume, velocity, and variety[END_REF] "Essentially, Big Data refers to the extensibility of data repositories and data processing across resources working in parallel, in the same way that the compute-intensive simulation community embraced massively parallel processing two decades ago. By working out methods for communication among resources, the same scaling is now available to data-intensive applications." [START_REF]NIST Special Publication 1500-1 -NIST Big Data Interoperability Framework: Volume 1, Definitions[END_REF] "Big Data can really be very small and not all large datasets are big! It's time to find a new definition for Big Data." [START_REF] Hillard | Information Development » Blog Archive » It's time for a new definition of big data[END_REF] "When the size of the data itself becomes part of the problem and traditional techniques for working with data run out of steam" [START_REF] Loukides | What is data science?[END_REF] Big Data is "data whose size forces us to look beyond the tried and true methods that are prevalent at that time" [START_REF] Jacobs | The Pathologies of Big Data[END_REF] "Big Data is a term encompassing the use of techniques to capture, process, analyse and visualize potentially large datasets in a reasonable timeframe not accessible to standard IT technologies." By extension, the platform, tools and software used for this purpose are collectively called "Big Data technologies" [START_REF] Nessi | Big Data: A New World of Opportunities[END_REF] "Big Data can mean big volume, big velocity, or big variety" [START_REF] Stonebraker | What Does 'big Data' Mean?[END_REF] According to the NIST [START_REF]NIST Special Publication 1500-1 -NIST Big Data Interoperability Framework: Volume 1, Definitions[END_REF], Big Data has the 4 following characteristics colloquially called the 4

V's: Volume (data collections size), Velocity (data continuous production rate), Variety (different data types and format) and Variability (constant changes of data meaning and data inconsistencies).

Volume and Velocity (i.e., continuous production of new data) have an important impact in the way data is collected, archived and continuously processed. These days, data is generated at high speed and continuously by arrays of sensors or multiple events produced by devices and social media. For example, transport data can be collected from buses GPS, cars GPS, bikes station counts, trains ticket counters. This data needs to be processed in real-time, near realtime or in batch, or as streams.

Variety refers to the fact that data can be very heterogeneous in terms of formats and models (unstructured, semi-structured and structured) and content imposes new requirements to data storage and to read and write operations that must be efficient. For instance, some data sources can be a conveniently structured Java Script Object Notation (JSON) report or relational databases, other sources can be essentially graphs of measurement or images requiring processing before being useful. This imposes to have multiple technologies storing accessing and processing the data.

Variability represents the continuous change in data meaning and data structure within a data set, for example addition of attributes; and the number of inconsistencies in the data. These need to be found by anomaly and outlier detection methods in order for any meaningful analytics to occur. For example, as people update their services they will often modify the data structure with different organisation of attributes. This imposes user to use or design data 2-27 systems capable of dynamically scaling to the needs of the data flow and capable of dealing with a change in the way attributes are organised. Database design and data applications should dynamically adapt to the data format and scale to deal with the Volume and Velocity as these change over time. Other V's and non V's have been proposed like Value, which is a measure of how much usable information is in the data and that there is an economic value behind that needs to be measured. Veracity, which is a measure of how much truth and consistency is in the data, which is the case of IBM [START_REF] Winans | 10 Key Marketing Trends for 2017 Customer Expectations and Ideas for Exceeding Customer Expectations[END_REF], but, according to NIST [START_REF]NIST Special Publication 1500-1 -NIST Big Data Interoperability Framework: Volume 1, Definitions[END_REF], these are not characteristics that pushed toward parallelization present in Big Data processes.

Other propose 3V's [START_REF] Jagadish | Big Data and Its Technical Challenges[END_REF] focussing on the Volume, Velocity and Variety. As well as 10 Vs models [START_REF]The 10 Vs of Big Data | Transforming Data with Intelligence[END_REF] and 4V's model [START_REF]The 42 V's of Big Data and Data Science[END_REF]. Overall, we agree with the opinion of NIST as Volume, Velocity, The constant production of data with 4 V's characteristics has introduced the concept of data lake [START_REF] Stein | The enterprise data lake: Better integration and deeper analytics[END_REF]. A Data Lake stores no treated or lightly treated data having multiple underlying data Organizations are exploring data lakes as consolidated repositories of massive volumes of raw, detailed data of various types and formats. Data lakes stem from industrial initiatives and they are addressed according to different perspectives. Such perspectives are addressed in [START_REF] Terrizzano | Data Wrangling: The Challenging Journey from the Wild to the Lake[END_REF].

Indeed, creating a physical data lake presents its own hurdles, one of which is the need to store the data. This can lead to governance challenges regarding data access and quality. Data

Wrangling [START_REF] Terrizzano | Data Wrangling: The Challenging Journey from the Wild to the Lake[END_REF] presents and describes some of the challenges inherent in creating, filing, maintaining, and governing a data lake, and propose the concept of curated data lake. This work addresses the challenges of managing data from legal and security level. Provided that a domain data analyst might not be familiar to managing legal, practical and defensive aspect of using and exposing data, this approach provides tools for dealing with this issue.

BIG DATA LIFE CYCLE MANAGEMENT

Several Big Data life cycle management strategies are proposed in literature [START_REF] Jagadish | Big Data and Its Technical Challenges[END_REF], [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF], [START_REF] Abuosba | Formalizing big data processing lifecycles: Acquisition, serialization, aggregation, analysis, mining, knowledge representation, and information dissemination[END_REF]. In this section, we present two of these strategies, which are more focused on the steps preprocessing and preparation of data rather than on the data analysis and data visualization. We analyse the life cycle of Big Data in the eyes of Edward Curry and H.V. Jagadish.

BIG DATA LIFE CYCLE MANAGEMENT ACCORDING TO E. CURRY ET AL.

E. Curry et. al [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF] propose a Big Data life cycle (seen in Figure 1), which they call value chain.

Value chains have been used as a decision support tool to model the chain of activities that 2-29 an organization performs in order to deliver a valuable product or service to the market. The authors separate the process into 5 distinct blocks, which are: data acquisition, data analysis, data curation, data storage and data usage. We present each of these blocks hereafter.

Data acquisition: is the process of gathering, filtering, and cleaning data before it is put in a data warehouse or any other storage solution on which data analysis can be carried out.

Data acquisition is one of the major Big Data challenges in terms of infrastructure requirements. The infrastructure required to support the acquisition of Big Data must deliver low, predictable latency in both capturing data and in executing queries; be able to handle very high transaction volumes, often in a distributed environment; and support flexible and dynamic data structures.

Data analysis: is concerned with making the raw data acquired amenable to use in decision-making as well as domain-specific usage. Data analysis involves exploring, transforming, and modelling data with the goal of highlighting relevant data, synthesizing and extracting useful hidden information with high potential from a business point of view.

Related areas include data mining, business intelligence, and machine learning.

2-30

Data curation: is the active management of data over its life cycle to ensure it meets the necessary data quality requirements for its effective usage. Data curation processes can be categorised into different activities such as content creation, selection, classification, transformation, validation, and preservation. Data curation is responsible for ensuring that data is trustworthy, discoverable, accessible, reusable, and fit their purpose.

Data storage: is the persistence and management of data in a scalable way that satisfies the needs of applications that require fast access to the data. Relational Database Management Systems (RDBMS) have been the main, and almost unique, solution to the storage paradigm for nearly 40 years. However, the ACID (Atomicity, Consistency, Isolation, and Durability) properties that guarantee database transactions lack flexibility with regard to schema changes and the performance and fault tolerance when data volumes and complexity grow, making them unsuitable for Big Data scenarios. NoSQL technologies have been designed with the scalability goal in mind and present a wide range of solutions based on alternative data models, such as MapReduce programming model [START_REF] Kousiouris | A front-end, Hadoop-based data management service for efficient federated clouds[END_REF], a technology using mapper to collect information from multiple machines then a reducer aggregating the information from those mappers, and MongoDB sharding [START_REF] Inc | Sharding and MongoDB[END_REF],

a data distribution model allowing the user to define the localization of pieces of data based on the need of user.

Data usage: covers the data-driven business activities that need access to data, its analysis, and the tools needed to integrate the data analysis within the business activity. The phases of the Big Data life cycle management according to H.V. Jagadish and colleagues are described as follows.

Data collection: according to [START_REF] Jagadish | Big Data and Its Technical Challenges[END_REF], data collection is the first step in Big Data life cycle. This involves basically the hardware layer and services that produce data and the service collecting and archiving the data into appropriate NoSQL data stores according to their characteristics.

Data cleaning and extraction: raw data from sensors can rarely be used directly to perform analytics processes. The data is often incomplete, can contain noise or simply be wrong.

On top of that, the data structure can be impractical to use. What is more, many data analytics algorithms use statistical models to find useful information. These models are highly sensitive to extreme value and thus the data has to be sometimes trimmed for said algorithm.

Data Integration and aggregation: effective large-scale analysis often requires the collection of heterogeneous data from multiple sources. For maximum value, these data sources have to combined effectively to extract the information in spite of differences in structure and production rates. A set of data transformation and integration tools helps the data analyst to resolve heterogeneities in data structure and semantics. This heterogeneity resolution leads to integrated data that is uniformly interpretable within a community, as they fit its standardization schemes and analysis needs.

Data analysis and interpretation: the whole point of Big Data is to identify and extract meaningful information. Predictive tools can be developed to anticipate the future or exploratory tools used to identify useful patterns that give interesting insights on the data.

Of course, the analysis is only half the work. There must then be a step where the data analyst evaluates the resulting model to identify aberrations, if present, and, in the case of exploratory analysis, interpret the new data model for useful insight. In the latter context, exploratory data analysis can only be as good as the visualization they can be used with.

When comparing the model proposed by H. V. Jagadish with the one of E. Curry and colleagues, we observe slightly different definitions for specific tasks (Table 2). With E. Curry grouping the "data analysis" and "data visualization" phases of H. V. Jagadish under "data usage"; H. V. Jagadish "data extraction" phase is included in "data analysis" in the E. Curry cycle, and H. V. Jagadish "data aggregation and integration" under Curry's "data curation" 4 is the active and on-going management of data through its lifecycle of interest and usefulness to scholarly and educational activities across the sciences, social sciences, and the humanities [START_REF] Cragin | An Educational Program on Data Curation[END_REF]. Data curation activities enable data discovery and retrieval, maintain data quality, add value, and provide for re-use over time. This new field includes representation, archiving, authentication, management, preservation, retrieval, and use of the data.

Data curation practices may apply very broadly, for instance, the creation and enhancement of meta-data. Subject-specific practices might include migrating data from its raw state to a usable state for a given purpose; then migrating data from one standard to another or the creation of subject-specific meta-data, such as topical keywords or identification of named entities. This might require detailed knowledge of subject-specific methods of data representation or familiarity with a subject-specific schema.

Proprietary data and file formats pose significant challenges for data curation simply because they may not remain current, and the tools and software necessary to use these formats may become inaccessible (for reasons of cost or obsolescence). Any data or file format that undergoes repeated, substantive changes is also challenging because data submitted over time is likely to vary and will probably require frequent updating to maintain concurrency and consistency.

According to some authors [START_REF] Curry | The Role of Community-Driven Data Curation for Enterprises[END_REF] the process starts in the data acquisition phase which is the process of gathering, filtering, and cleaning data before it is put in a data warehouse or any 2-35 other storage solution on which data analysis can be carried out. Other authors start data curation once data have been stored and concern the active management of data over its life cycle to ensure it meets the necessary data quality requirements for its effective usage [START_REF] Pennock | Digital Curation: A Life-Cycle Approach to Managing and Preserving Usable Digital Information[END_REF].

Data curation processes include different activities such as content creation, selection, classification, transformation, validation, and preservation.

REQUIREMENTS OF DATA CURATION

Data curation is performed by expert curators that are responsible for improving the accessibility and quality of data. Data curators (also known as scientific curators or data annotators) hold the responsibility of ensuring that data are trustworthy, discoverable, accessible, reusable, and fit their purpose. A key trend for the curation of Big Data utilises community and crowd sourcing approaches [START_REF] Curry | The Role of Community-Driven Data Curation for Enterprises[END_REF], relying on the wisdom of the crowd and community platforms to process and curate data.

THE LONG TAIL OF DATA VARIETY

Long tail refers to the part of a graph of a power distribution (see Figure 3) which approaches the limit but never reaches it. In this case, the long tail corresponds to datasets that are rarely used in the right of the graph shown in Figure 3. One of the major changes that essentially brought Big Data to the front page is what type of data we use [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF]. Traditional relational data management environments were focused on data that mapped to frequent business processes and were regular enough to fit into a relational model. This data is usually characterized as structured, consistent, centralized, relatively small and highly used. Big Data on the other hand, as seen in section 2.1, is defined by the NIST as having 4 V's [START_REF]NIST Special Publication 1500-1 -NIST Big Data Interoperability Framework: Volume 1, Definitions[END_REF]: volume, velocity, variety and variability. This implies data that is at best semi structured, generally coming from multiple source at very high speeds. The high variability and velocity of Big Data 2-36 poses a challenge to data usage. E. Curry [START_REF] Curry | Coping with the Long Tail of Data Variety[END_REF] defines this type of data a long tail data variety.

Long tail data is opposed to data coming from highly structured and used source such as relational database. The long tail allows data consumers to have a more comprehensive model of their domain since it makes use of much larger set of data. The value of data curation on this type of data is substantial as shown in Figure 3. But this comes at an increased cost, since the cost of processing data increases with higher volume, more variable and less structure.

2-37

The intrinsic dimension corresponds to the quality of the data independently from the context of the data use. This dimension includes accuracy and objectivity but also believability, i.e. the reputation of the data and reputation of the source; since in making decision is easier when the data is given expected values and comes from reliable source.

The contextual dimension corresponds to the quality of the data when used in a specific context, i.e. does this data answer a specific question. The criteria in this dimension are value-added, i.e. I have this data, so I have a competitive advantage; relevancy, i.e. this data has the information needed; timeliness; completeness and appropriate volume.

The representation dimension corresponds to the quality of the data to provide understanding. This includes interpretability, i.e. the answer is easy to identify, understandability, i.e. easy to explain, concise representation and consistent representation.

The accessibility dimension represents the cost, risks and easiness of access. Essentially do I have to pay for it, when is it accessible and is it safe. These are summarised as accessibility and access security. This dimension is different from the previous ones as there is essentially nothing we can do to improve this dimension since it in the hands of the data holders. But it is still a dimension to take into account when choosing data.

This means data quality is only limited to the source of the data on some dimensions, namely in intrinsic and accessibility but can be improved in particular in representation. This is where data curation comes in, as it can ameliorate the data representation.

When it comes to data quality, trust in the user and source is paramount [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF]. As a consequence, tools helping identify the provenance and tools managing data access are important. Provenance consists in identifying who, how, where and when at each step of the data processing. Provenance can be used to explicitly capture and represent the curation decisions that are made. However, identifying data provenance at each step can be a timeconsuming process if not well documented. On the other side of the spectrum, a fine control on who uses and modifies which data is important for collaborations. Most systems manage permission at the data set level and over sees general contributors. This can be enough for general purposes, but finer grained distributed system down the data item level is needed for some projects.

Standardization is also important since it removes the need for translation, vocabulary learning and enables easier data interoperability. A large part of the data curation effort consists of integrating and repurposing data created under different contexts and in many cases involves hundreds of sources. Data model standards such as the Resource Description

Framework (RDF) facilitate data integration at the data model level. Defining a vocabulary in a project is an important step as this decision can carry out over the whole life time of the project. Projects can grow to becomes whole domain standard like in the case of the Protein Data Bank (PDB) [START_REF] Bernstein | The protein data bank: A computer-based archival file for macromolecular structures[END_REF].

DATA CURATION SCENARIOS

The growing availability of data brings the opportunity for people to use them to inform their decision-making process, allowing data consumers to have a more complete data-supported picture of reality. While some Big Data use cases are based on large-scale datasets but with small and regular schema, other decision-making scenarios depend on the integration of complex, multi-domain, and distributed data. The extraction of value from information coming from different data sources is dependent on the feasibility of integrating and analysing these data sources. Whilst unstructured data (such as text resources) can support the 2-39 decision-making process, the lack of structure inhibits the capacity to aggregate, compare and transform consistently the data.

Pharmaceutical companies, the media industry and government agencies where early adopters of data curation. The first because of the huge variety of compounds and proteins involved in the human body, the second to ease the consumption and reuse of media and the later to allow for more transparency through open data projects.

Tools born from data curation include ChemSpider [START_REF] Pence | ChemSpider: An Online Chemical Information Resource[END_REF], a chemical compound search engine which can take molecular structures as input. It is used by chemists to identify provider and chemical reactions to produce such compounds. Data curation in ChemSpider consists of the manual annotation and correction of data. Master curators validate the information whilst normal curators can participate by posting comments and new compounds. Computer algorithms check if the data submitted validates chemical structure rules. The protein data bank contains 3D structures of biological macro molecules. A significant amount of the curation process at PDB consists of providing standardized vocabulary for describing the relationships between biological entities, varying from organ tissue to the description of the molecular structure. In order to implement a global hierarchical governance approach to the data curation workflow, PDB uses review and annotation of each submitted entry before robotic curation checks for plausibility as part of the data deposition, processing, and distribution. FoldIT [START_REF] Khatib | Crystal structure of a monomeric retroviral protease solved by protein folding game players[END_REF] employs human computation to resolve complex problems like protein folding. The developers of FoldIT have used gamification to enable human computation. Through these games people can predict protein structure that might help in targeting drugs at particular disease.

2-40

These projects are particularly effective forms of crowd sourcing projects due to the massive community supporting then and the strong incentive for the community to support these projects.

DATA ACQUISITION AND CLEANSING

Two major phases in Big Data life cycle comprise the process involved in collecting and preparing data before storage and the process involved in processing and analysing the data as a whole after storage. In the first case, data is viewed as a stream of individual item, in the latter case data it is viewed as a whole collection. We are first going to look into the processes from collection to storage. -Ubiquity is about making the protocol easy to extend to new industries and needs.

2-41

-Safety is about both providing integration of encryption solutions and maintaining data transfer even when the sender and receiver aren't both online.

-Fidelity is the means to ensure that the sender can express the semantics of the message and thus allow the receiver to understand what it is receiving.

-Applicability is about allowing users to use several different transmission protocols.

-Interoperability in the context of the AMQP [START_REF]AQMP Specification[END_REF] is about making the protocol independent from the implementation.

-Manageability proposes to insure the wire protocol is fault-tolerant and lossless.

Apache Kafka [START_REF]Apache Kafka[END_REF] (Figure 4) is a messaging system which aims to unify offline and online processing by providing tools to load data into Hadoop or over a cluster of machines. Kafka allows the user to read online data responding to a specific key. Essentially writing a simple query to filter of unwanted data from a data stream. Apache Flume [START_REF]Welcome to Apache Flume -Apache Flume[END_REF] is not a pure data acquisition system but acts as a stream and event manager. It is used both for collecting data streams and storing it in a Hadoop Distributed File System (HDFS) but also to allow request in the stream, the result being redirected to the node managing that data. Beyond protocols and tools scientists have implemented several solutions to collect effectively data.

Human crowd sensing is a method of data collection using human as a sensor through the use in particular of smart phones sensors and GPS. R. Rana et al. [START_REF] Rana | Ear-Phone: A context-aware noise mapping using smart phones[END_REF] collected data to create a noise mapping using smart phones and an application called MobSLM. This application measures noise level from the environment through the smartphone microphone when the latter is not used.

Human crowd sourcing is the act of collecting data from the population through the use of pools and applications encouraging users to give information. OpenStreetMap [START_REF] Haklay | OpenStreetMap: User-Generated Street Maps[END_REF] is a map generated by users through an application. It works very much in the same way than Wikipedia, where a community of ordinary users collaboratively produce maps and geographic information. Urban insight [START_REF] Artikis | Self-Adaptive Event Recognition for Intelligent Transport Management[END_REF] uses crowd sourcing to confirm accidents using a mobile application that pools the population in the vicinity of a supposed accident.

Passive crowd sourcing uses tools interacting with humans to passively collect data. Ticketing

Public systems [START_REF] Lathia | Mining mobility data to minimise travellers' spending on public transport[END_REF] uses the ticket validating booths to collect data on origin destination of the population automated fare. N. Lathia and L. Capra [START_REF] Lathia | Mining mobility data to minimise travellers' spending on public transport[END_REF] collected data using London Oystercard to minimise travellers spending when going through London. This is done by analysing the user average travel from zone to zone and predicting the amount of travels based on this analysis. P. Borgnat and colleagues [START_REF] Borgnat | Spatial analysis of dynamic movements of V{é}lo'v, Lyon's shared bicycle program[END_REF] analysed data from Lyonnaise bike renting programme called Velo'v to understand the dynamic movement of population in Lyon.

J. Candia and colleagues [START_REF] Candia | Uncovering individual and collective human dynamics from mobile phone records[END_REF] collected phone logs for mobiles phone operators to analyses human behaviour. J. Bao and colleagues [START_REF] Bao | Location-based and preference-aware recommendation using sparse geo-social networking data[END_REF] use the data from location based social networks like Foursquare, Loopt, and GeoLife to produce a recommendation tool that compares the user history with the history of location experts to provide location the user would be interested in visiting.

Vehicle as a sensor uses vehicles to collect data on the state of transportation by analysing their movement. J. Yuan et al. [START_REF] Yuan | Driving with knowledge from the physical world[END_REF] used what is known as floating vehicles. These vehicles, taxi cabs this case, act as mobile GPS sensors mirroring the fluidity of the roads.

CLEANSING AND PRE-PROCESSING DATA

Exploiting data requires reasoning [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF] on the data. Reasoning requires certain premises with the data such as soundness and completeness. But the reality is that data from the web, where most Big Data come from, is contradictory, incomplete, and is often very large in size. In other words, this data can be considered dirty and may require cleaning. Moreover, there is a difference between reasoning at web scale and the more tailored first-order logic, which assumes many aspects which may differ from reality. What is more, certain analytical model, statistical one in particular, are very sensitive to extreme data, data that stand out considerably from the norm. Filtering techniques are often needed to not so much remove and resolve missing data, outlier and extreme values but at least mute them in the models using it. Noise can sometimes become an issue making the data difficult to interpret and sometimes becoming over dominant component during analysis. Techniques using smoothing or attribute reduction can be required.

Filtering techniques are mostly used in recommendation systems. It consists of identifying similarities between the data accepted and the incoming data to predict if the user wants that data [START_REF] Zhang | Sensing the pulse of urban refueling behavior[END_REF]. Another use of filtering is to remove none pertinent data points to reduce the required processing and the readability of the data. As such Douglas-Peucker algorithm [START_REF] Chen | Trajectory Simplification Method for Location-Based Social Networking Services[END_REF] is an algorithm designed to reduce the number of points on a curve. The precision of the final curve is defined by epsilon. It starts of by drawing a segment in between the first and the last point and then seeks for the point furthest from this segment, if this point is less than epsilon away from the segment it is removed, else it draws a new segment between itself and the first point and starts again then proceeds to do the same thing with the last point.

As part of data collection and data cleansing, several tools (Figure 4) implementing the MapReduce framework have been developed to easy the parallelisation processes of collection and cleaning data. Storm [START_REF] Grant | PyVideo.org • Storm: the Hadoop of Realtime Stream Processing[END_REF] and S4 [START_REF] Neumeyer | S4: Distributed stream computing platform[END_REF] are tools that process and distribute data stream across multiple nodes. Storm identifies 3 types of nodes, Numbus which uploads the logic and distributes the code across the cluster, Zookeeper coordinates the cluster and the supervisor daemon spawn the cluster of workers. In contrast Hadoop [START_REF]Welcome to Apache TM Hadoop®![END_REF] is a highly popular MapReduce framework developed in Java used for processing batches of data. These tools are 2-45 designed to process data streams of data across multiple machines and scale as the stream increase or decrease in size.

STORAGE OF DATA

As data collections get bigger, the harder they are to store. This is also for data. Whilst producing machines with large disks to store data is fairly easy these days; the cost of data storage is comparatively low. This is just one aspect of data storage; another role of data storage is manipulating processing data and with the volumes involved, this requires multiple machines to process the data. The issue is data transfer over a network is still the slowest process in information technology. This makes it challenging databases relying on references, like relational databases, since the databases will have to exchange a lot of data between machines to complete a query. A new set of database model is need and they are usually known as NoSQL databases.

V. Abramova and J. Bernardino [START_REF] Abramova | NoSQL databases: a step to database scalability in web environment[END_REF] present the use of NoSQL databases and modern web technologies in particular cloud computing. In one hand, we have NoSQL database models, in particular document-oriented, key-value and wide columns stores, are famous for their great horizontal scaling mainly because their avoidance of reference system in exchange of more complex data structures and sometimes less efficient storage. Indeed, cross machine graph databases [START_REF] Moniruzzaman | Nosql database: New era of databases for big data analytics-classification, characteristics and comparison[END_REF]: replace the relational tables of relational databases with a set of items connected together with a group of relationships. This type of database is useful when the relationships between the data is more important than the data itself. These are optimised for relationship traversing rather than querying and these can be very efficient especially when the data can fit in one machine. It does have issue though with horizontal scaling for the same reason than the relational databases but can find it uses when relationships between items is important like in semantic models.

Overall each datastore brings it lot of advantages (Figure 5), key-value for their speed and simplicity, document stores for it robustness independently of the data structure allowing to organise data by topic rather than structure. Extensible records for vertical and horizontal 2-49 partitioning allowing the design of more complex data stores, relational databases for using the world standard SQL language. Graph databases for its power to explore relationships between items, the last also having the more consistent ACID model, but the main challenge being can it really scale like other NoSQL systems. Another form of data curation involves using and extracting meta-data. As its name implies, meta-data is data about data. Meta-data is important because it provides the primary description of an attribute. For example, suppose we perform a principal component analysis on a data set and we observe that a particular attribute is heavily involved in the first component. If we have no meta-data, we cannot find out why this is the case or what are the effects that caused this. The model is still usable predictively but provides little option for understanding the data. Maintaining meta-data is a lot harder than it seems. Different data source will have different ways of describing their data and sometimes this can change within a data set as an update reclassifies or add data.

Havely et al. [START_REF] Halevy | Goods: Organizing Google's Datasets[END_REF] worked on a project to rethink how to organize structured datasets at scale, in a setting where teams use diverse and often idiosyncratic ways to produce the datasets and where there is no centralized system for storing and querying the data. They classify metadata as:

2-50

Basic meta-data: information on files access rights, time stamp, owner, file format Provenance: process, tools, logs used to produce and modify the data Part of the strategy is to cluster datasets, i.e. produce a graph representing the similarity between data set. This means once cluster have been identified, analysing small number of data sets will give more of information on the other data sets. This make for a highly scalable system with large numbers of small data sets since one only has to investigate a small portion of the data. On the other hand, this will be less effective in small numbers of large data sets since getting a similarity value will have less relative value resulting in more data being analysed.

M. Stonebraker [START_REF] Stonebraker | Data Curation at Scale: The Data Tamer System[END_REF] proposes an environment with 3 development levels based on the amount of knowledge available about data. This approach tackles the issue of data clarity and gives a strategy to manage it. It also proposes aggregation methods. In level 3, the data source gives the information for the classification with complete knowledge in a top down strategy, where the end product can easily be imagined. In level 2, the data source gives clues and using this partial knowledge, a decision is made based on whether the knowledge available is usable by the end product or if further analysis must be done to determine uses for this data. Level 1, there is little information on the data and the end product is hard to see. In this case, a bottom up approach is favoured since the data is explored to allow climbing through levels of an end product insight.

2-51

Data Wrangling [START_REF] Terrizzano | Data Wrangling: The Challenging Journey from the Wild to the Lake[END_REF] present and describes some of the challenges inherent in creating, filling, maintaining, and governing a data lake, and proposes the concept of curated data lake. The authors of this work say that 70% of data analytics is identifying, cleansing, and integrating data. They present the challenges of managing data from legal and security perspective, a domain data analyst might not be familiar with, to managing data conservation. On the question of meta-data, it must be used to answer several questions: How is the data represented? Where did the data come from? (Can I trust it?) How old is the data? Can one connect this data to data she already has? This process is important because what is human readable might not be machine readable. Some data can be inconsistent or illogical. Metadata comes under several forms: schematic meta-data extracted from the file structure, semantic meta-data extracted through the use of keywords and context awareness, idiosyncratic meta-data, confusing meta-data.

R. Hai and colleagues present Constance [START_REF] Hai | Constance[END_REF], a data lake system with sophisticated meta-data management over raw data extracted from heterogeneous data sources. Data lakes (DLs) have been conceptualized as Big Data repositories which store raw data and provide functionality for on-demand integration with the help of meta-data descriptions. Constance proposes management systems to extract explicit and implicit meta-data, as well as semantic meta-data matching and enriching to add quality to the data stored in data lakes by creating ontology model for the meta-data representing the relation between them. These forms of meta-data and the mapping involved allow the user of the data lake to query the data and get a complete answer, by using the ontology model to find related attributes to the ones in the query, as well track the usefulness of the data over time.

2-52 2.3.3.1 EXPLORING, CLUSTERING AND QUERYING DATA Most of the Big Data information on the web and in organizations [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF] is available as, at best, semi structured, but more commonly unstructured data like plain text or video. As opposed to structured data, unstructured data cannot be directly compared, aggregated and operated.

One of the main novel approaches to this challenge is to perform a relationship mapping by mainly focusing on the semantics used in the data [START_REF] Keim | Visual exploration of large data sets[END_REF][START_REF] Cragin | An Educational Program on Data Curation[END_REF][START_REF] Pennock | Digital Curation: A Life-Cycle Approach to Managing and Preserving Usable Digital Information[END_REF][START_REF] Curry | Coping with the Long Tail of Data Variety[END_REF]. This produces automatically a semi structured text document containing information of the data. On top of that humans are rather poor at interactions with massive data, especially if the data is unstructured.

According to E. Curry [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF], Carole Goble in a Data Curation Interview in 2014 said: "from a Big Data perspective, the challenges are around finding the slices, views or ways into the dataset that enables to find the bits that need to be edited, changed" [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF].

Visualization and summarization [START_REF] Idreos | Overview of Data Exploration Techniques[END_REF] is key for not only to understand the data but maintain it as well. Structured query languages and the graphical interfaces developed over the top are the standard procedure for accessing data in a database. This requires knowledge of the SQL syntax for example and databases schema which is not expected knowledge from a domain expert. A solution revolves around querying a semantic model using a much more natural language using key word searches for example. Many tools exist to perform data visualization from web visualization tools such as D3.js 12 or other tools such as Matlab 13 or R 14 programming language.

12 https://d3js.org/ 13 https://www.mathworks.com/products/matlab.html 14 https://www.r-project.org/

2-53

Good visualization requires good algorithms to assist the user in finding the useful points of view in the data. Two major types of algorithms exist, those changing the perspective of the data and those helping identify groups of data. These algorithms rely on modelling data as data points in N dimensional space. Let us start with the perspective changing algorithms.

Principal Component Analysis/ Singular Value Decomposition (PCA/SVD) [START_REF] Feldman | Turning Big data into tiny data : Constant-size coresets for k -means , PCA and projective clustering[END_REF] is probably the most known algorithm for exploring data sets. It is used for dimensional reduction of high dimensional data represented as a matrix. From a practical perspective, it searches for the combination of weighted attributes that express the most information. This allows data analysts to work with the more practical 2 or 3 dimensional graphs. From a geometric perspective, these techniques search for the vectors with the highest variance and then express the original matrix according to this new system of dimensions. Using the Eigen values, we can estimate the amount of information in each dimension. For instance, this can be used to identify traffic anomalies [START_REF] Chawla | Inferring the Root Cause in Road Traffic Anomalies[END_REF].

Partial Least Square Regression (PLSR) [START_REF] Tsuda | Advanced Semiconductor Manufacturing Using Big Data[END_REF] is a regression algorithm working on similar principles to PCA in that it uses dimensional reduction to condense information. The difference lies in rather than looking of the axis of maximum variance, it searches for the axis that expresses a maximum on the regression values.

Other variances of the perspective changing algorithms exist usually by changing the objective of the algorithm or the type of data. PARAFAC, for example, is regarded as the generalisation of SVD to tensors. The weighted attributes used by these algorithms have the added benefit Partitioning Around Medoids (PAM) K-mediod works on a similar way to k-mean but uses medians instead. Medians are more robust to extreme values.

CLARA is a K-mediod algorithm with a sampling. It selects a small portion of the data and is then checked to be the selected in a fairly random manner and be representative of the whole data.

Another process that is used to explore data is query exploration. This provides a less quantitative approach and a more qualitative view on what the data is about.

Traditional query systems are expected to provide an exact and complete set of tuples answering the query from the user. The issue is these query systems can be slow whilst providing data or information not all that useful to the data analyst. Whilst most databases propose an indexing system to accelerate requests choosing those indexes based on the data and the use of the data, two things we do not have an answer to at the exploration phase. In

2-55

Big Data patterns are often more interesting than exact and complete answer. The reason is, as stated before, human have a poor interaction with massive data set. Patterns are more human sized and help identify relations. M. L. Kersten et al. [START_REF] Kersten | The Researcher's Guide to the Data Deluge: Querying a Scientific Database in Just a Few Seconds[END_REF] have compiled 4 methods to explore data set querying. These 4 query systems provide a broader (i.e. less precise but with a wider scope) approach, discarding exactness and completeness for speed and a more global vision of the data. The 4 query systems are presented hereafter.

One minute DB kernels: as opposed to traditional databases, which focus on correctness and completeness, one-minute database kernels focus on executing a query within a strict time limit. Such a kernel differs from conventional kernels by trying to identify and avoid performance degradation points on the-fly and to answer part of the query but also without changing the query focus. One minute DB kernels sacrifice correctness and completeness for performance. This help data exploration by allowing users to perform more less accurate queries till he or she identifies the best query to answer a specific question.

Multi-scale queries: as the user becomes more knowledgeable and confident in the data she is using and the direction of her queries, she will be willing to commit more resources and data to his search. This means start small and go big. Databases are a priori partitioned according to collection and databases into a large number of files, for instance 10 8 files on the case of CERN Large Hydro Collider. This means that queries can be performed on subsets of the files. The multi-scale queries method proposes, rather than one performing a query on the whole databases, to split it into multiple queries executed on different fragments of the database and then performing a union of those queries. This allow for a natural scaling of the size of the query as the user gets more confident in his query.

2-56

Result set post-processing and query morphing: goes on the premise that the user probably doesn't need the exact answer to her query. Result set post-processing assumes an array of simple statistical information such as min, max, and mean to be more useful especially on massive data sets. Query morphing on the other hand assumes queries can be miss formulated. Query morphing still focuses on answering the query given by the user but will also use a small portion of its resources in searching data around the original query.

Queries as answers: whilst the previous assisted user in their data exploration by either giving a broader response than the query demanded or by allowing the user to commit less resources thus allowing them to perform more queries, they don't tackle the lack of knowledge a user may have on the dataset. Queries as an answer proposes, rather than responding to a priori bad queries (too long to run, too many tuples), a new list queries based on the information within the database optimised in various directions. The key challenge of this solution is identifying bad queries, which can be done using the optimizer statistical information or massive scientific databases and identifying interesting queries to return. This could be done using a list of frequently used queries and returning them based on user feedback. Unfortunately, this can still be challenging in cases of new databases.

Exploring data is a major step in Big Data analytics for several reasons. The heterogeneous nature of Big Data and the unstructured nature of web data makes understanding the data a challenge. What is more the volumes involved interact poorly with the humans involved in using it. This is because patterns can involve hundreds of attributes amongst thousands of other attributes. Even proposing query to explore the data can be overwhelming as well as slow. This is a major issue since the information needed for the data analyst to build her application is in the data but in an inaccessible way. Data exploration transforms the large 2-57 volume of attributes into smaller chunks in the form of components, in the case of dimensional reduction and classes in the case of clustering. Query exploration technics allows to make more queries or broader queries to help the user find patterns and information in the data.

DATA MAINTENANCE

Data maintenance focuses on main challenges [START_REF] Weatherspoon | Long-Term Data Maintenance in Wide-Area Storage Systems: A Quantitative Approach[END_REF] of data recovery, data placement and data redundancy. Data recovery and data redundancy are the conflicting idea of making data recoverable. On one side data recovery looks at the process used to recover lost data usually by recovering the data from duplicate nodes. In the case of MongoDB, a replica set nodes elect a primary node which is the recognized as the holder of the truth and all queries and data manipulation is done on that node, and then replicated to other replica sets. On the other hand, replicating data has a cost which should be minimized as much as possible. As an example, MongoDB replica sets provide no added value to a database beyond its backup functionalities, but still requires a fully-fledged server to run the software in the case the primary fails. Some solutions like in couchDB 15 use replica sets to improve performance by performing what is known as a dirty query upon the servers, but this presents a challenge in data consistency and resolving conflicts between nodes receiving conflicting orders.

Maintaining data collections focus on the sets of tools created to manage the version of each element. With the growth of parallel databases, the risk of getting duplicate data items or conflicting changes increases especially with the growth of the BASE databases since data can be modified multiple times before the data has been synchronized over the whole database.

This requires precise tracking of the use of data. Goods [START_REF] Halevy | Goods: Organizing Google's Datasets[END_REF] for example uses a complex 2-58 version tracking index using a tree model to track the index of the version and the dates at which it has been made or manipulated. Many databases use a Multi Version Concurrency Control (MVCC). MVCC [START_REF] Bhardwaj | DataHub: Collaborative Data Science & Dataset Version Management at Scale[END_REF] uses a graph model that links the various version of the data to a common key identifying the data set.

DATA CURATION MODELS AND PLATFORMS

As said before data curation is about making data more accessible by exposing it value more efficiently. The challenging part is working out how to do to get that value. There are currently 3 main approaches for Big Data curation models in literature [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF], which are Master Data Management [START_REF] Morris | Managing Master Data for Business Performance Management: The Issues and Hyperion's Solution[END_REF], Curation at Source [START_REF] Curry | The Role of Community-Driven Data Curation for Enterprises[END_REF], Crowdsourcing and Collaboration spaces [START_REF] Doan | Crowdsourcing systems on the World-Wide Web[END_REF] . A brief presentation of these 3 approaches follows.

According to H.D. Morris and D. Vesset [START_REF] Morris | Managing Master Data for Business Performance Management: The Issues and Hyperion's Solution[END_REF], who propose Master Data Management (MDM) [START_REF] Morris | Managing Master Data for Business Performance Management: The Issues and Hyperion's Solution[END_REF], master data is information that represents different views of the business, Crowdsourcing and Collaboration spaces [START_REF] Doan | Crowdsourcing systems on the World-Wide Web[END_REF] is a solution to distribute data curation across multiple individuals for complex and resource intensive data curation. It relies on a collective of users to classify and structure the data such as Wikipedia. These solutions rely on the notion of "wisdom of the crowd" in which potentially large groups of non-experts can solve complex problems usually considered to be solvable only by experts.

Crowdsourcing has been fuelled by the rapid development in web technologies that facilitate contributions from millions of online users. The underlying assumption is that large-scale and cheap labour can be acquired on the web.

A. Freitas and E. Curry [START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF] list the following key data curation platforms.

Data Tamer 16 : is a prototype aiming to replace the current developer-centric extracttransform-load (ETL) process with automated data integration. The system uses a suit of algorithms to automatically map schemas and de-duplicate entities. However, human experts and crowds are leveraged to verify integration updates that are particularly difficult for algorithms.

ZenCrowd 17 : this system tries to address the problem of linking named entities in text with a knowledge base. ZenCrowd bridges the gap between automated and manual linking by improving the results of automated linking with humans. The prototype was CrowdDB18 : this database system answers SQL queries that cannot be answered by a database management system or a search engine. As opposed to the exact operation in databases, CrowdDB allows fuzzy operations with the help of humans, for example, ranking items by relevance or comparing equivalence of images.

Qurk 19 : although similar to CrowdDB, this system tries to improve costs and latency of human-powered sorts and joins. In this regard, Qurk applies techniques such as batching, filtering, and output agreement.

Wikipedia Bots20 : Wikipedia runs scheduled algorithms to access quality of text articles, known as bots. These bots also flag articles that require further review by experts.

SuggestBot recommends flagged articles to a Wikipedia editor based on their profile.

DATA CURATION AT ITS CORE

Data curation is the active and on-going management of data through its lifecycle with the objective of maintaining quality in the information it provides. It is believed that there is no size fits all solution to data curation as the quality of the data is dependent on the topic since each topic has different points of interest and therefore there are issues with the data curation models (Table 3).

MDM [START_REF] Morris | Managing Master Data for Business Performance Management: The Issues and Hyperion's Solution[END_REF] main objective is to maintain standard data forms across a whole business, but does not offer any improvement on the existing data. Curation at Source [START_REF] Curry | The Role of Community-Driven Data Curation for Enterprises[END_REF] is a great solution to reduce and pre-process the data before storage but lacks the whole context that curating a whole data store would provide. Crowdsourcing and Collaboration spaces [START_REF] Doan | Crowdsourcing systems on the World-Wide Web[END_REF] are an effective technique but require a large amount man power and a community interested and invested to contribute and maintain the tool provided.

The meta-data models provide an interesting tool to produce semantic models of the data.

This can be very useful for users when trying to identify related attributes during exploration of the data set, which is an interesting tool for data analyst. On the other hand, such tool provides data analyst limited possibilities to answering certain questions linked to data management, in particular quantitative information.

Data curation method Pros

Cons MDM [START_REF] Morris | Managing Master Data for Business Performance Management: The Issues and Hyperion's Solution[END_REF] Standardizes the language Doesn't improve existing data structures Curation at Source [START_REF] Curry | The Role of Community-Driven Data Curation for Enterprises[END_REF] Reduces and preprocesses data Does it without awareness of the rest of the data Crowdsourcing and Collaboration spaces [START_REF] Doan | Crowdsourcing systems on the World-Wide Web[END_REF] Improves the existing data Requires a lot of human resources

BIG DATA AS A SERVICE

Big Data as a Service (BDaaS) market is expected to grow to about USA$2.55 billion by 2021, which is 15 percent of the Big Data market, according to Dataversity [START_REF] Ghosh | Big Data as a Service: What Can it Do for Your Enterprise? -DATAVERSITY[END_REF]. The Big Data piece of "Big Data as a Service", as described in section 2.1, has 2 major definitions: big, fast and complex data sets or set of tools and techniques used to process huge volume of data. The NIST gives 4 defining V characteristics (4 V's) [START_REF]NIST Special Publication 1500-1 -NIST Big Data Interoperability Framework: Volume 1, Definitions[END_REF] as seen in section 2.1; volume, velocity, variability and variety; chosen as being the main contributors to having to parallelise the data processing.

2-62

The "as a Service" part is linked the service model used in information technology more specifically cloud computing in this case. The INSEE [START_REF]Définition -Services | Insee[END_REF] defines a service as follows. "A service activity is essentially characterised by the act of making a technical or intellectual capacity/delivery available".

Cloud computing defined by the NIST [START_REF] Grance | The NIST Definition of Cloud Computing Recommendations of the National Institute of Standards and Technology[END_REF] as: "Cloud computing is a model for enabling convenient, on demand network access to a shared pool of configurable computing resources (e.g. network, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction" over Internet network. Cloud computing promotes the use of Service Oriented Computing and considers

Everything as a Service (XaaS).

Whilst Web services provide automated IT services and are of lesser granularity than cloud services, the latter are services provided and bound to cloud providers and instantiated at the user's demand. Cloud computing observe 3 major service types (Figure 6) representing different level of abstraction for the user: IaaS (Infrastructure as a service) are services used to deploy and manage resources from disk space to computing cluster. Deploying services over an IaaS requires managing everything which is not machine related from databases to the application itself.

PaaS (Platform as a Service) provide tools as a service specifically designed to manage the resources made available by the IaaS such as databases, frameworks or MapReduce managers. Thus, they are tools used by developers to implement and deploy their applications. This requires writing the logic and configuration to use these tools.

SaaS (Software as a Service) are services used to make available to final users fully fledged applications. These can range from blog motor to specific professional tools. This requires from the user little management or configuration efforts.

2-64

Many other more specific models have been proposed but generally fit into one of the previous categories, such as Network as a Service (NaaS) which is a specific type of IaaS. Big Data is also guilty of defining these "aaS" acronyms. These are BDIaaS, BDPaaS, BDSaaS, which provide specialised definitions useful within it field of work and which imply their own constraints in design. We present these services hereafter.

Big Data Infrastructure as a Service (BDIaaS): represents a family of services used to deploy the resources used by Big Data. This is different from traditional IaaS, the technologies for processing Big Data have to combine with storage designs, due to the massive amount of data being processed and exchanged. Both data and data analytics approaches need to be closely located to reduce the unnecessary network traffic [START_REF]Big Data-as-a-Service. A market and technology perspective[END_REF].

There are two major services which would qualify as IaaS: Storage as a service, this includes cloud storage and database as a service which should not be confused with databases management system. A DBMS is software used to manage resource and thus qualifies as a PaaS but corresponds to services used to deploy databases and their required resources. Both deploy storage resources and compute as a service focusses on cluster deployment used for parallel processing.

Big Data Platform as a Service (BDPaaS): corresponds to the tools supported by the cloud provider and used by data analysts to manipulate data [START_REF] Horey | Big data platforms as a service: challenges and approach[END_REF], the main ones being distributed Data Base Management Systems (DBMS) like MongoDB and cluster computing tools like Hadoop.

Big Data Software as a Service (BDSaaS) [START_REF] Zheng | Service-generated big data and big data-as-a-service: An overview[END_REF]: corresponds to final users' applications, with more or less user-friendly graphical interfaces, specialised in one or more of the steps of

2-65

Big Data life cycle, often using BDPaaS like DBMS and cluster computing tools. This also Includes tools providing Data as a Service.

Big Data as a Service (BDaaS) is a hot topic at the moment because combining a set of tools that need heavy horizontal scaling with tools enabling elastic, on demand horizontal scaling must be a recipe for success. Eric E. Schadt et al. [START_REF] Schadt | Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology[END_REF] demonstrate the efficiency that cloud computing could have for Big Data analytics, demonstrating the analysis of 1 Petabytes of biological data in 350 minutes over 1000 nodes for the price of 2040 dollars.

BDAAS REFERENCE ARCHITECTURES

Architectures for managing Big Data require many tools to process the data. Here we will look into how to combine those tools and how those tools a designed.

BIG DATABASE LAYER MODEL

Different people like and need to access data at different levels. For example, a programmer would want to track words would prefer accessing the data via a Hadoop 21 accessing HDFS files, a manager looking for a specific set of information will prefer simply performing a querying on the data. Big Data databases are generally built using a layer-based approach.

Each layer is used to perform a specific group of tasks to manage data (Erreur ! Source du renvoi introuvable.) [START_REF] Feldman | Turning Big data into tiny data : Constant-size coresets for k -means , PCA and projective clustering[END_REF][START_REF] Chawla | Inferring the Root Cause in Road Traffic Anomalies[END_REF]. Whilst each layer is used primarily by the DBMS, most layers should also be accessible to the user as each layer allow for different type of operations. We present each layer as follows.

21 http://hadoop.apache.org/ 2-66 Distributed storage system: Big Data relies on distributed computing and storage. This layer is responsible in abstracting the distribution and access of data across multiple machines. This is built as a combination of node manager such as Hadoop Yarn 22 , Apache Mesos 23 and Hyrack 24 and a distributed file system of which the most know is probably Hadoop Distributed Files System (HDFS).

Structured data system: is the data model by which one's data will be represented to the user and probably in the file system. In traditional databases, we use tables and the relational model, graph or object-oriented databases. When using distributed databases, we usually opt in for a database that does not rely on links between data which can be quite heavy from a networking perspective. These are the extensible record databases, document databases and key value databases.

2-68

Hive29 , Flume30 , ..) and supports existing execution models (e.g., Hive, GraphLab). BDAS provides tools popular for data analyst like SparkR31 that allows the user to perform MapReduce function on a Spark platform, but the user can still use a straight MapReduce using Java or directly manipulate the HDFS files if needed. Unlike analytics engines like Apache Hive or Apache Spark, it stores and manages data, so AsterixDB can exploit its knowledge of data partitioning and the availability of indexes to avoid always scanning data set(s) to process queries. "Somewhat surprisingly, there is no open source parallel database system (relational or otherwise) available to developers today -AsterixDB aims to fill this need" [START_REF] Borkar | Big data platforms[END_REF]. The data is then processed using Master Data Management (MDM) to improve its quality and ensuring the data is accessible. The data can be redistributed into data marts, subsets of data that support specific decision making or analytics. The Information as a Service allows them to uniform and set a standard truth for all user of the data base. Finally, Analytics as a Service represents a platform with which to do Big Data analytics available for the company. provides the tools to easily instantiate new virtual machines used for the data processing. Data analytics tools to existing SOA [START_REF] Zimmermann | Towards service-oriented enterprise architectures for big data applications in the cloud[END_REF], but few frameworks have worked on separating individual processes into individual services. This means that rather than building an application as an assembling of services. with the exception for K. Abuosba [START_REF] Abuosba | Formalizing big data processing lifecycles: Acquisition, serialization, aggregation, analysis, mining, knowledge representation, and information dissemination[END_REF], the majority of the proposed works produce the services and integrate them into their existing framework.

2-72

BDAAS TOOLS

Big Data relies on 2 major families of tools: distributed storage and distributed processing.

Distributed storage is mostly managed by the growing trend of NoSQL data bases in particular 2-74 document store, key-value stores and extensible record store. Distributed process is mainly managed by MapReduce programming model with managers such as Spark or Hadoop. In the two following subsections, we present Hadoop as a Service and NoSQL as a Service tools.

HADOOP AS A SERVICE

Hadoop is a popular MapReduce framework for Java. MapReduce is a programming model used to perform distributed parallel processing. MapReduce is composed of 2 basic components: the Mapper, which is run on every item of the wanted data collection and is used to pre-process and emit the data to the Reducer. The latter aggregates and processes the data collected from multiple Mappers into a new data collection for the user to interpret.

MapReduce programs are used at the data cleaning, data aggregation and data analysis levels.

According to R. Stata [START_REF]Understanding Hadoop-as-a-Service Offerings | Data Center Knowledge[END_REF], MapReduce frameworks require substantial knowledge to use and operate. This has spawned the development of multiple HaaS (Hadoop as a Service) ranging from basic Hadoop frameworks and virtual machines to full service support options that include monitoring and tuning, passing by the ones providing "run it yourself" preconfigured MapReduce programs and environments. R. Stata [START_REF]Understanding Hadoop-as-a-Service Offerings | Data Center Knowledge[END_REF] offers 5 criteria for to identify the right HaaS:

HaaS should work for both data scientist and Administrators: data scientists require rich functionalities to process and analyse their data. Ideally, one wants the HaaS to provide the common tools used by data scientists such as Hive, Pig, R or Mahout and run them on Hadoop. Hive [START_REF] Prakashbhai | Inference patterns from Big Data using aggregation, filtering and tagging-A survey[END_REF] is a data warehouse software running on Hadoop, it is particularly well known for its SQL like HiveQL query language easing the transition from the common relational database queries to the newer distributed model. Pig is a high-level platform providing as simple procedural language programming to run MapReduce programs. R is 2-75 a popular programming language for data analyst, its main standout is it native support of matrix arithmetic's, very useful for many data analytics algorithms. Mahout [START_REF] Prakashbhai | Inference patterns from Big Data using aggregation, filtering and tagging-A survey[END_REF] is an library of Hadoop software designed for machine learning used to perform collaborative filtering, clustering, categorization/classification.

The administrators, on the other hand, requires an easy and straight forward to use interface to manage the platform with low level monitoring detail managed by the provider.

HaaS Should Store "Data at Rest" in HDFS: HaaS should prevent delays and time load and transferring data around. On this front, cloud IaaS will often have edges as their object storage is often compatible with Hadoop as is the case with Amazons S3 35 or Openstack Swift 36 .

HaaS Should Provide Elasticity: different jobs require different workloads. The HaaS should adapt the resources, else one needs an admin on call or delay the jobs.

HaaS Should Support Non-stop Operations: Hadoop can be a complex environment that brings its own list of challenges. They have to restart subprocess to prevent rebooting a hole job, jobs starved of resources when resources are available and deadlock. Nonstop operation should address these issues.

HaaS Should Be Self-Configuring: the point of cloud services is to limit the amount of set up and configuration required by the user. Thus, HaaS should self-configure to the right number and types of nodes for a particular job.

2-76

Many HaaS exist today [START_REF]Top 16 Companies in the Hadoop-as-a-Service (HDaaS) Market -Technavio[END_REF], such as amazons web service Amazon Elastic MapReduce [START_REF] Amazon | elastic map reduce[END_REF], a

MapReduce framework which can be run on Hadoop, Spark or Presto; EMC² [START_REF]Artemis EMC 2 -Artemis EMC 2[END_REF] which drives Dell's data warehousing and analytics; IBM®'s InfoSphere® BigInsights™ [START_REF]Understanding InfoSphere BigInsights[END_REF] which proposes wide range of tools to explore the data such as JaQL query language; BigSheets [START_REF]IBM Knowledge Center -Overview of BigSheets[END_REF], an excel like data exploration tool and an SQL engine; Microsoft HDInsight designed to run Hadoop, Spark, and R on Windows Azure; Altiscale [START_REF]Altiscale | Crunchbase[END_REF], Cask [START_REF]Cask -Big Data Applications on Hadoop[END_REF], Cloudera CDH [START_REF]CDH | Open Source | Hadoop Stack | Cloudera[END_REF] which provide a SQL engine and administrator tools like roles-based access control and security integration; FICO® [START_REF][END_REF] Big Data Analyzer which provides tools for business intelligent and analytical tools for business users; Google's BigQuery [START_REF]BigQuery -Analytics Data Warehouse | Google Cloud[END_REF], a self-managing Hadoop tool which takes advantage of the very efficient google platform; Hortonworks Data Platform [START_REF]Manage Data-at-Rest and Deliver Big Data Analytics with Hortonworks Data Platform 6-180 (HDP) | Hortonworks[END_REF] which provides a wide range of data management tool; Infochimps™ [START_REF]Infochimps Big Data Platform as-a-Service Technical Overview | Infochimps[END_REF] cloud which provides capabilities to scale elastically and tools like Hive, Pig 37 and Wukong 38 for data exploration;

MapR [START_REF]The Only Converged Data Platform | MapR[END_REF] provides the complete set of tools proposed by Apache for Hadoop; Datadog [START_REF]Modern monitoring & analytics[END_REF] which provides a unified view of the data from servers, databases, applications, tools and services; Pentaho [START_REF]Pentaho Marketplace[END_REF] provides a set of tools to run the data life cycle from end to end and a visual development tool to assist; Terradata [START_REF]Business Analytics, Hybrid Cloud & Consulting | Teradata[END_REF] claims to provide tools for all scales and user level of skills.

NOSQL AS A SERVICE

On the storage end many new NoSQL databases implementing one of the models seen in section 2. 2-77 yet we do not consider that one or another strategy is advantageous and disadvantageous but that it can respond to specific objectives and requirements. The important is to be aware as programmers of the properties provided by different stores so that she can make decisions about the store to use and the implications in terms of the properties and functions it provides. In Table 4 the comparison is done with respect to storage strategies and properties. Regarding performance it is always all about tuning the systems and programming burden.

ACID oriented systems tend to demand less programming burden to ensure these properties, as almost everything is externalised and delegated to the system. BASE oriented systems call for expert programming skills where decision making is necessary to tune solutions that can respond to performance expectations of data consumers. This implies less possibility for delegating data management completely to the system.

SYNTHESIS OF THE STATE OF THE ART REGARDING BDAAS

Big Data as a Service includes a wide range of topics from service model specialized for Big Data to specific tools specialized in extracting value from the data, passing by complex architectures designed to take advantage of the scalability and elasticity of the service model.

2-80

On one hand, we can see that there are dozens of specialized tools for Big Data analysis each with their strength and weakness. On the other, most service oriented Big Data architectures are attempts to integrate Big Data to an existing platform or are solely focused on the specific task at hand. There is little work done in the providing services focused on proposing a generic architecture to produce a full Big Data analytics workflow.

CONCLUSION

In this chapter we investigated most of the aspects of Big Data in the cloud. In section 2.1, we defined what Big Data is and its characteristics. In section 2.2, we presented two Big Data life cycle models. In section 2.3, we investigated data curation and data exploration. For data curation we saw why it's important to improve data quality and saw how it can be improved.

We concluded that there is a lack of data curation model for data analysts to use when investigating their data. For data exploration, we noted that when working with Big Data completeness and exactitude are not as useful characteristic as the capacity to perform many queries and the capacity to find patterns requiring a broader exploration method. In 2.4, we explored Big Data on the cloud, which as some say is a match up made in heaven combining Big Data tools in an environment enabling scalability. It also introduced the aspects of servicesoriented architecture to provide Big Data curation services.

Exploiting Big Data on the cloud for the decision making requires, ironically, a lot of decision making. In both the life cycles seen in section 2.3, there are decisions to be made, decision relying on information from the data and how the data is going to be used. Answers for these questions are often found using data curation and data exploration technics, and these have been focused on the important task of extracting value from the data. Whilst these are key task, many other decisions have to be made which are not focused on extracting value but are 2-81 instead focused on making sure the data is easily accessible and optimized for the tools produced as a consequence of the data exploration. Tools are needed for the data manager to explore the data to make sure the databases set up are the best possible. What is more, as opposed to traditional database applications which rely on the end goal to answer questions, Big Data applications rely on information from both the end goal, if there is one, it is possible the data analyst is looking for one, and information about the data. This means one also needs information from the data to choose such application.

The objective of this PhD is 2-fold; first we are going to define service used in Big Data and how to compose these for a Big Data application. Second, we are going to define a data curation model designed for data analysts and data managers to investigate the data and help them make quick meaningful decision on their data and the type of services would be most effective to use.

CURARE: SERVICE ORIENTED ARCHITECTURE FOR CURATING DATA COLLECTIONS

As discussed in the state of the art, Big Data processing combined with cloud computing can be an appropriate approach for dealing with the execution of operations that can require important computing and storage resources because of their complexity and the volume or velocity characterising the data collections. The cloud elasticity and scalability can provide an interesting solution for running experiments with different requirements where the underlying infrastructure does not need to be tuned manually since cloud providers can deliver a well-suited solution easy to evolve. In this spirit, we propose CURARE a serviceoriented architecture for exploring and curating Big Data.

Accordingly, this chapter is organised as follows. First, in section 3.2 we give a preliminary view on our data curation approach and how it guides the design of CURARE. Then we look into the service-oriented architecture we propose in section 3.1. We look at how to deploy CURARE on top of a cloud in section 3.3. Finally, we finish by concluding in section 3.4.

DATA CURATION PROCESS

To explain our vision of data curation, let us consider the following scenario. A data analyst is given access to a collection containing data from the towns road infrastructure ranging from car counter and taxi GPS tracking to police traffic reports. The objective is to investigate how 3-83 to use this data and later releases produced in real time to make a useful application for the city. Immediately, she realises the challenge ahead before being even able to investigate the content because as stated by IBM [START_REF] Terrizzano | Data Wrangling: The Challenging Journey from the Wild to the Lake[END_REF] "70% of the time spent on analytic projects is concerned with identifying, cleansing, and integrating data due to the difficulties of locating data that is scattered among many business applications". To make her life easier, she has to reorganise the data to be able to more easily compare collections and latter choose data and methods for her application. She decides to focus on how to organise and store the data.

This process is data curation that involves obtaining information from the data collection, looking at the available meta-data, exploring the data collections and maintaining information as the collections evolves. This process is highly dependent on managing meta-data.

In our approach we view data collections as data sets composed of releases (data produced at one time) and releases composed of items (individual documents). So, let us first look at what type of meta-data is available and how it can be used. can be processed to extract explicit and implicit meta-data that can describe its content. Such meta-data can be grouped as releaseView (Figure 13).

So, following the previous example, this allows our data analyst to classify each data collection according to the moment in which data sets are shared (i.e., released). The police reports in our example, are put online every day at 8 pm.

EXPLORING DATA COLLECTIONS META-DATA

Data collections can contain key insight to the functioning of some systems. But getting that information can be challenging to extract. The large variability and variety of Big Data can make it challenging to extract the structure of the items (extract and understand the role of every attribute in a record) and even more identifying useful patterns in the data for determining whether a data collection can be used for performing a specific type of analysis and thereby obtain an understanding some phenomenon. The job of data exploration is intended to go through the content of data collections to determine whether they are useful to perform some study. In our approach, the notion of views will help in this process by providing a standard for in which to identify all the attributes as well as their values variability.

The items within a release are described, in our approach by attributeDescriptor's (Figure 13) which group the meta-data of an attribute particularly distribution and statistical information about the values of a given attribute across the whole release (set of items).

After reorganizing the data, a data analyst is given a far better insight to how the data is usable.

She can now see how many times each ring counter has been triggered. By varying the size of the releaseViews, she is able to plot the use of each ring counter overtime, this allows her to identify the most used counter and distribute them evenly across the node of her database to ensure optimal load balancing. For example, the police report data collection reveals to have an attribute allowing it to be linked to another report. She chooses to keep related reports in the same physical machine to reduce overhead when queries must be evaluated.

Now that she has reorganized the data into a readable format she will have to choose how to manage the data and use the information. Cloud service models [START_REF] Benfenatki | MADONA: a method for automated provisioning of cloud-based componentoriented business applications[END_REF] allow for a quick and easy development of software infrastructure and fairly simple solutions to swap out elements, e.g. services, for other more appropriate ones. What is more the scalability and elasticity of cloud computing [START_REF] Zhang | Moving Big Data to The Cloud: An Online Cost-Minimizing Approach[END_REF] can make a great combination. This requires dividing tasks into individual services. How we divide the task of each service and type of service will be addressed in the next section. Web services collecting crowd sourced data, databases, data stream. These sources use different technologies and access logic. Thus, CURARE uses underlying infrastructure services for interacting with these different types of sources for harvesting data.

DATA CURATION ENVIRONMENT: GENERAL ARCHITECTURE

3-88

In our example, the police logs would be collected using an http request eventually through a REST architecture. Instead, using Twitter39 more advanced tools like Flume40 may be required for implementing streams consumption and authentication protocols for interacting with this service.

Extracting and discovering meta-data and grouping them in attributdescriptors, releases and views, help the data analyst choose her preprocessing and cleaning services provided in the second layer of CURARE. Depending on the degree of rawness of harvested data, different pre-processing and cleaning tools may be required. For example, well documented police reports would require little to no clean up before being stored but data from a near Infrared sensors may require more work removing baselines, noise and extracting the actual information in the spectrums, this would require a short chain of service to process the data before being stored.

DISTRIBUTED DATA STORAGE AND ACCESS SERVICES

For most of the history of computer science, Moore's law [START_REF] Schaller | Moore's law: past, present and future[END_REF] has been observed to double the processing power every 2 years. Now, it seems we are reaching the limits of silicon processing power. What is more with the development of the internet and in particular internet of thing, the amount of data collected is growing at an exponential rate. The growth in the volume out passes the growth in processing speed computers. Added on top of that, the processing complexity required in dealing with the velocity, variability and variety of data available in Big Data makes the storage and processing of the data in a reasonable time simply impossible on a single machine. The solution is to use more than one computer. Multiple data stores have been designed for distributed processing and storage over a network. But these 3-89 bring extra design challenges to optimise the usage of the data as networking is still one of the slowest processes in IT thus traditional processing method like relational systems or some statistical methods relying on analysing the data as a whole become particularly inefficient.

Another challenge with Big Data is more data often means more confusion. Meta-data, is vital in understanding any piece of data but even with good meta-data a large matrix of numbers remains challenging to understand. Unfortunately, this matrix of data often contains key information to vital in some of the strategies involved in Big Data. In fact, even the objective can be unclear without exploring the data. Thus, an abstract representation of the data is needed to help make decision on services and strategies to use for storing and exploiting them.

As said before, to provide an abstract representation of a data collection, we model it as consisting of a set of releases, and releases consisting of a set of items. A release would be for example a set of CSV files containing the number of cars populating specific zones of a city at specific hours of the day. CURARE provides tools to export raw data (CSV, JSON, text, records) packaged into several releases. Every release is in general a zip file containing a dataset with an explicit or implicit structure. The meta-data associated to data collections and their releases is collected from the provider that normally tags them with some information (release date, size, producer). Meta-data can be given manually by a data scientist curating the collection (e.g., provenance) and it can be extracted by analysing the collection (e.g., the structure of the records composing the releases, their type or format).

Data collections pre-processing can help a data scientist decide how to archive and organize them in a storage support. Given the data collection releases volume, storage and processing cannot be done on a single machine. Multiple data stores have been designed for distributed processing and storage. Therefore, CURARE provides services to process data releases to provide quantitative and analytical description to decide whether to partition and duplicate them completely or partially according to consumption patterns and storage space availability. For example, if a document shows strong usable relationships, it would be smart to adapt your data distribution strategies to keep those pieces of data together. CURARE services help by showing the data analyst where to partition the data in such a way it answers effectively the data analyst queries and maintains a balanced set of data nodes by insuring they all have the same amount of data.

As an example, the reports provided by the police department are linked to other reports when a causal link can be established. The existence of the relationship makes storing these documents on the same machine/shard judicious to maintain efficiency when making queries.

Similarly, if it is established that queries made on the ring counter have tendency to focus an area of the town, it would once again be judicious to make sure every document from the ring counter of a predefined area be stored in the same machine/shard. Defining the objective of storage is one thing but ensuring an efficient and balanced database while respecting these constraints is another. The attributDescriptor's of the items of a release in a data collection provide a great deal of help by providing a visual aide on how the data is distributed allowing the data analyst to make an efficient model fairly quickly to distribute the data efficiently whilst following the previous constraints.

DATA PROCESSING AND EXPLORATION SERVICES

There are multiple reasons why one cannot easily exploit raw data collections. The data may be incomplete, uncertain or unclean. This is hard to know without further exploration of the data, but more importantly the events one is trying to detect probably will not stand out but 3-91 be the consequence of complex set value scattered within the data. Solutions for these issues [START_REF] Freitas | Big Data Curation 6.2 Key Insights for Big Data Curation[END_REF] include: data analysis techniques [START_REF] Feldman | Turning Big data into tiny data : Constant-size coresets for k -means , PCA and projective clustering[END_REF] and data curation techniques [START_REF] Terrizzano | Data Wrangling: The Challenging Journey from the Wild to the Lake[END_REF] what is that attribute talking about and that before we even investigate usable relationships between attributes. By investigating a view of the collection (i.e., quantitative and semantic meta-data of the collection), as proposed in our approach, we can quickly identify all the existing attributes in the data collection, perform queries to help identify useful ones and the statistical information provides information on what type of algorithms will have to be run to first pre-process then analyse the data.

BIG DATA ANALYTICS AND DECISION SUPPORT SERVICES

The whole point of Big Data is to identify and extract meaningful information. Predictive tools can be developed to anticipate the future or model and understand phenomena. The role of the Big Data analytics and decision support services in our infrastructure is to provide data analytics solutions for predicting events, trends or for decision making tasks. For example, regularly observing an increase in the population in one place and traffic jams 30 minutes later we can deduce cause and effect situations and intervene in future events, so the taxis avoid and evacuate that area.

3-92

This service-oriented model allows for quick deployment of services and quick replacement since it takes advantage of the elasticity and agility of cloud computing. Each service could be described by one of the many service description model, MADONA for example [START_REF] Benfenatki | MADONA: a method for automated provisioning of cloud-based componentoriented business applications[END_REF]. This is appropriate for companies since simply the capacity of elastically testing architecture is on its own a big lure for companies towards cloud computing, as stated by Amazon Web Service at Lyon the 31 of May 2016. On the other hand, as opposed to production service for which the criteria and objective are clearly defined, Big Data applications are dependent on obscured information in the data to the point that even the use of the data may not be clear. The data curation model we propose enable the description of data set to help identify the service required to run the application. We are now going to look into deploying a service-oriented architecture with the objective of running Big Data applications.

DEPLOYING CURARE ON A TARGET ARCHITECTURE

Given that the architecture of CURARE consists of services of different types organized into layers, we chose an adapted architecture for deploying the system: the cloud. The following sections explain how to deploy CURARE services on top of cloud services that serve as underlying infrastructure for the data curation process implemented by CURARE.

CURARE SERVICES AND UNDERLYING DATA SCIENCE VIRTUAL MACHINE

As shown in Figure 15

Infrastructure as a Service (IaaS) cloud layer

The IaaS consists of services designed to deploy computing, storage and memory resources on the cloud. These services are run by the cloud provider and have for sole role to provide and manage resources for the user. CURARE's layers are deployed on top of IaaS services that provide storage, memory and computing resources necessary for its services to process data for extracting the meta-data according to our approach. Depending on the type of methods and algorithms used for extracting structural and statistical meta-data, and on the characteristics of the data collections, CURARE services might need more or less resources.

The elasticity of the cloud adding more resources whenever required is an important feature exploited by CURARE. For example, let us say streams production by a source suddenly increases its rate CURARE would immediately instantiate a new on sight data curation and split the load between the 2 services. The IaaS follows its requirement making decisions on whether to add more resources that can let these instances perform well.

Platform as a Service (Paas) cloud layer

The PaaS consists of tools designed to take full advantage of the cloud environment scaling but require a substantial amount of development to use. Database and framework qualify as PaaS. Distributed data storage and access services are weaved with PaaS. They assist data architects to make decisions on the resources to allocate disk for managing data and metadata persistence and for allocating CPU cycles for processing data collections and extracting meta-data using greedy analysis and processing tasks. Since the DSVM provides different tools for performing similar jobs the CURARE service provides an integration layer that enables 3-95 choosing specific tools according to the characteristics of the data collections to store and process and of the analysis programs complexity. Data analysis and processing services are PaaS services giving access to data analytics platforms like Spark and Hadoop.

On the PaaS level, the most predominant CURARE service is the distributed data storage and access service providing the storage and processing power to manipulate the data for other service to use. It is the service providing the bulk of the resources used to process data for extracting meta-data and performing data curation tasks. This layer runs tools that allow other service to query, manipulate, store data across multiple machines. For example, distributed

NoSQL databases like MongoDB that we chose, exploiting its MapReduce functionalities and built-in query language; and like HDFS for distributing archived data harvested by services in the first layer of CURARE, on multiple machines both for robustness and for horizontal scaling of resources. Whether distributed across many machine or only a few, CURARE services deployed in the PaaS layer are the most resource intensive as it needs large amount disk space to store the large amounts of data as well as both RAM and CPU since this service will be running all the queries and data manipulation.

Following the previous example, the choice of distributed data storage and access services is dependent on the type of data. For example, the variability in structure of police reports makes a document store like MongoDB a prime candidate in which by applying smart sharding techniques, she can ensure related document remain in the same shard. On the other hand, the loop counters provide a fairly simple and standard data structure making an extended record database interesting.

3-96

Software as a Service (SaaS) cloud layer SaaS in the cloud perform specific tasks and are expected to propose fairly simple configuration to run. The most known service services would be tools like Wordpress 41 or Mediawiki 42 . In CURARE data harvesting, data processing and exploration, data analytics and decision-making services are SaaS.

Data Harvesting Service uses tools like flume to continuously collect streams, and then send them on to the storage service. Other data harvesting services adapted to interact with on demand data providers on the Web are used. The data harvesting service provides an integrated interface that can be adapted according to the data sources used for harvesting data collections. For enabling stream harvesting, this service is instantiated with cache memory that acts as buffer in the case data arrive to quickly for later services to process.

Data Cleaning Service is responsible for pre-processing data before it is stored. This includes information extraction, data cleaning and on sight curating services. The machines running these services require added processing power in the form of computer processing units to run computationally costly processes for cleaning data. For example, near infrared gas analyser used by environmental control has very awkward spectrums to interpret, often requiring a specialist to interpret but can determined using specialized chemiometry techniques. As a consequence, after collecting that data, it would be forwarded to a service capable of identifying all of the compounds measured by the machines. 41 http://wordpress.com 42 https://www.mediawiki.org/

3-97

Data processing and exploration services interface with the data storage and access service to provide more advanced data processing taking whole collection into account. These services communicate with de data storage service via specialised database protocols, and they use PaaS services like Hadoop for executing processes.

Data analytics services run PaaS services perform analysis in parallel settings. The analysis tasks can use high level languages like HiveQL or Pig Latin designed to interface with the data storage service that puts data into HDFS for performing data analytics processes. The analytics services can also use low level languages for implementing programs and using data mining and Artiificial Intelligence libraries that can run under the MapReduce programming model and then executing them on the suited execution environments (e.g. Hadoop, Spark).

CURARE DATA CURATION LIFE CYCLE

There is two major parts of the life cycle of the data curation, before data collections being stored and after being stored. Before being stored, the data collection goes throw the process of being collected, cleaned and stored (see Figure 16).

The first step is the data harvesting. Here, there are two types of data collections to be harvested:

Stream data are continuously harvested using a protocol subscribe(); receive(); stop() as shown in the upper part of Figure 16. When the service is instantiated it subscribes to the data stream, it then gets regularly data from a channel until the client stops the connection.

3-98

On demand data are obtained establishing a classic protocol connect(); get() and closeConnexion() as shown in the lower part of Figure 16. The protocol is performed periodically to request new data collection releases from the data source.

In both cases, the collection service sends the batch of items to the CURARE cleaning service using the corresponding method post(). As shown in Figure 17 the core of CURARE are services devoted for maintaining persistent data collections (raw data) and associated structural meta-data describing the collection, its releases and items and statistical meta-data grouped as views. Data collections are processed by CURARE analytics services for generating all these meta-data therefore they have to be distributed across local stores and memory using a distributed file system, in the case of CURARE, HDFS. The curation process supported by CURARE storage and analytics services is recurrent and it is mainly centred in a data exploration workflow with three main activities:

harvesting and cleaning data ensured by CURARE services weaved with underlying analytics and storage cloud services deployed on top of customized IaaS as shown in Cloud computing and large scale Big Data processing and management make an interesting duo as the elasticity in resource of cloud combines well with the need of scalability in Big Data.

The chapter has introduced the service-oriented architecture of CURARE and how it can be deployed on the cloud. The service-oriented architecture of CURARE provides a very agile ecosystem of services allowing some services to be replaced with only minor changes to other services.

In conclusion, CURARE provides tools for supporting data scientists to explore the content of raw data collections and make technical decisions or integrate datasets by combining these collections to be used for data centric sciences experiments.

A collection would be for example a folder of CSV files storing data on the number of cars populating specific zones of the city. The collection maintains information on the context of data production and storage and a list of releases. A release would be for example a CSV file from the previous folder containing the number of cars populating specific zones of the city at specific hours of the day. The release being uploaded in the Grand Lyon portal at some date and time. The data collection abstract representation provides meta-data regarding the frequency in which releases are updated, whereas a release concept would represent the conditions in which data in a release were produced, like data production rates and the size of the release. An item represents the structure of every element of the release, for example a line of a CSV file.

We consider that the meta-data representing a data collection, a release and its elements can be retrieved from the meta-data contained in the files, from the provider, manually or automatically extracted by processing the data. From this we produce an analogue structure providing a quantitative and analytical description of the data collection. A View provides information on how the view is produced, a releaseView essentially stores the description of the data in releases, and finally attributeDescriptors provide statistical a contextual information extracted from the attribute in the items of the data collections. Thus, attributeDescriptors provide statistical and quantitative data, which is important to technical questions; releaseViews allow to track this information over time.

These concepts complete the representation of the data collection and maintain information and knowledge of its content without having to scan it and explore it item per item, which can be costly in terms of time, and of computing resources. the metal it is represented as a series of 1 and 0, most programming languages provide higher abstraction to manage data and, in particular, data types which can be used to model pieces of data.

We use atomic and complex data types to define the concepts of our model and we represent them as classes.

4-106 To further develop this model, we need to look at what produces and manipulate the data namely functions and relations. The following section defines function types that can be used for defining functions adapted to manipulate data collections according to their characteristics.

ATOMIC AND COMPLEX DATA TYPES

FUNCTION TYPES

Functions are modelled using an N-tuple to represent the input and output data, the logic that implements it (Listing 1).

Function: < name: string, input: Set[Attribute], output: Tuple, code: Binary>

Listing 1: function type

A function is modelled as a tuple with four attributes:

name represents the name of the function.

input represents the set of variables that a function receives.

output represents the type of the value produced by the execution of the function. We have identified two families of relation types (Figure 22):

Dependency relations modelling functional, temporal and casual dependencies between two attributes.

Semantic relations defining similarity, equivalence relations between two attributes.

VIEW MODEL

Figure 23 shows the UML diagram of our view model that defines eight classes based on the data types defined in the previous section. The model defines two key types represented respectively by the class dataCollection that models a data collection consisting in releases produced at a given time.

View models statistical and relational meta-data of the releases of a data collection.

In this section, we are first going to look at the classes involved in defining a dataCollection, then we will look at the classes involved in the definition of a view. The class dataCollection models a data collection organized into releases together with the context in which it is produced (Figure 24). The class Release models the content of a data collection consisting in data items produced at a production time and having a given size.

4-110

A data item is represented by the class DataItem. "id" which uses the url to represent a unique value identifying the dataCollection;

"name" represents the logic name used to identify a dataCollection;

"owner" represents the name of the entity which collects and stores the dataCollection and thus defines the rules of term of use;

"author" represents the name of the person who setup the collection and that has some expertise on producing the data;

"description" represents a text giving the context to how, why and what data is contained in the collection;

"licence" represents the licencing information associated to the dataCollection, for example, whether it contains open data or not;

"size" represents the size of the collection in terms of number of items and bytes.

The class Release models a set of data belonging to a data collection produced at a specific time and sharing some characteristics. A release is described by: "id" represents a unique identifier corresponding to the access address described by the URL given by the dataCollection and the release number;

"releaseNum" represents a unique number to the dataCollection corresponding the number of the release given by the service at the time of the creation of this release;

"publicationDate" represents the date and time at which this data is put online;

"size" represents the number of items in a release, note the size of the collection corresponds to the sum of the sizes of its release.

A release consists of items. An item is a unit of data comparable to tuple in relational databases, or document in a document-oriented database. The class dataItem defines an item with the following attributes: 4-112 "id" represents a unique identifier specified by an URL combined with the release ID to which it belongs and the item name;

"name" represents a logic name identifying a set of values (sensor group, event, person);

"attributes" represents the set of attributes that describe the structure of an item.

The class AttributeDescriptor models an attribute that defines (with other attributes) the structure of an item as:

"name" chosen by the owner often corresponding to the name of the sensor or the type of data being collected;

"type" deduced from the value of the attribute, it can be an atomic or complex data type;

"value" is the value of the attribute of type Type;

"state" is the way the data was produced, i.e. inserted by a sensor or computed.

Producing these views requires the use of functions to generate and manage a dataCollection. We define such functions in the following sections.

CREATION OF A DATACOLLECTION

The function creation() of the class dataCollection Erreur ! Source du renvoi introuvable.is specified in Listing 3. The objective is to collect all the elements of a raw data set released at a given date/time and update the items describing the content of the data set. This is done in 4 steps:

(1) Collect meta-data from the data collection specified by the provider and assign them to an instance of the class dataCollection. "id" presented as its access URL given by the service;

"name" chosen by the owner should include the source and the method;

"owner" the entity who collects and stores the data and defines the term of use policy;

"author" person to contact on the view if the description is not sufficient, is generally a data analyst who setup the view;

"description" generally written by the author, gives context to how, why and what data is produced;

"source" corresponds to the dataCollection analysed by this view;

"code" is the code given by the data analysts to analyses the data. This is important to track how the data has been modified and to both reuse the view but also to allow other analysts to understand the details of how the view was produced;

"releaseSelectionRule" is a function that defines the release selected;

"default" this attribute shows the "live" version of the view i.e. the version considered the most representative of the present day. It is the version which will be returned by default if no further information is provided. This is done to maintain and update the services using these views in their action. The data stored in data release correspond to a group of releases from a collection. A releaseView is described by: "id" which corresponds to its access URL given by the service as a combination of the parent view URL and the version number;

"VersionNum" the number of the release given by the service correspond to the number of release that existed at the time of creation; "publicationDate" date and time at which this data is put online extracted from the item time stamps;

"size" number of items in a release, note the size of the collection correspond to the sum of the sizes of its release;

"releaseIds" the list of releases analysed in the by this version of the view.

"count" calculated from the histogram, is the number of non null and absent values;

"minValue" calculated from the histogram, is the smallest value for this attribute;

"maxValue" calculated from the histogram, is the largest value for this attribute;

"mean" calculated from the histogram, is the average value for this attribute;

"medain" calculated from the histogram, is the middle value of the attribute (count/2);

"mode" calculated from the histogram, is the attribute with the largest number of time with the same value;

Having all three mode, median and mean is useful to identify if an attribute respects a normal distribution;

"std" calculated from histogram, is the average deviation from the average. This is the document which gives the most information. The information provides condensed information on many of an attribute's characteristics. Namely its distribution and reliability.

Finally, an important aspect of data in Big Data is in the relation there is between the data pieces, specifically attributes. Relations can be represented in two families, functional relations in which you can essentially from on attribute predict the value of another attribute, and semantic relations where despite of having different names the attribute talks about same topic. Thus, relations represent relations between attribute. It is described by: "Input": corresponding to the input attribute;

"output": corresponding to the output attribute;

"relationType" classifies the relation as either a semantic type, e.g. attribute has the same values, or functional dependency, e.g. correlation;

"direction" classifies the relation as either unidirectional (no twin relation) or by directional (twin relation); Based on the attributeDescriptors, the data analyst can understand how the data is distributed across values the attributes of the collection.

MANIPULATING VIEWS

Exploiting view turns around comparing a combining element of same type. Operations applied between releaseViews produce new releaseView as shown in Table 5.

a1 U a2 = a3

With a3<id31, type32, mean33, median34, mode35, max36, min37, count38, absentvalues39, nullValues310, valueDistribution311 > an attributeDescriptors of the union of the of a1 and a2 generated as if the attributeDescriptor was generated from a release r3 built from the union of two release r1 and r2, i.e. grouping all the item of two releases into one.

4-125

First, we combine the valuesDistributions of a1 and a2 by adding the counts for every values in both attributeDescriptor then recalculating the statistical values. With a3<id31, type32, mean33, median34, mode35, max36, min37, count38, absentvalues39, nullValues310, valueDistribution311 > an attributeDescriptors of the diffrence of a1 and a2 generated as if a3 was generated from a release r3 built from the diffrence of two release r1 and r2 along a specific attribute, i.e. by creating a release with the noncommon elements of two other releases. This is done by computing a valueDistribution for a3 such as it take the absolute value of the count of a1 minus a2, for every value their valueDistribution then recalculating the statistical values from this new valueDistribution. With r3 <id, releaseNum, publicationDate, dataitems> being of type Release where r3.dataitems is a set corresponding to the fusion of two r1.dataitems and r2.dataitems such that each element of the set r1.dataitems is combined with all the elements of the set r2.dataitems into a single item:

5-134

From technical perspective, MongoDB manipulates data in structures known as collection and document. A collection is a named entity which is a list of documents that serves a persistence root. Document's are stored as binary versions of a JSON 46 data format (JavaScript Object Notation) thus uses a JavaScript based query language known as BSON 47 , it uses the attribute "_id" to identify the document. Thus, the logic for manipulating data in MongoDB was written using JavaScript.

As specified in the previous chapter, dataCollections in our model are data structures supporting 3 tiers of document (dataCollection, releases and items) contained in each other. The first step in development was adapting a 3-tier data (Figure 27) structure to a document database. en we create a Mongodb collection containing the parent and children documents. Thus, for the implementation, we have collections (Figure 28): a unique collection dataCollection, which contain the dataCollection document and all the ents; and a number of release collections. These release collections are named after the _id of the release. Each re on stores the release document and the associated item documents. To associate the release to the dataCollectio lection will have an attribute storing the list of _id's of all it releases, rather than the actual documents. Similarly, a d

5-136

Release has an attribute storing list _id's of Item documents. Similarly, views are implemented by 3 tiers (Figure 29) of document collections (views, releaseViews and attributeDescriptors).

The model is implemented in the MongoDB data model as follows (Figure 30):

-a unique collection view, which contain the view document and all the releaseView documents; and a number of releaseView collections. These releaseView collections are named after the _id of the releaseView. Each releaseView collection store the releaseView document and the associated attributDescriptor documents. To associate the releaseView to the view, the view will have an attribute storing the list of _id's of all it releaseViews, rather than the actual documents. Similarly, a document releaseView has an attribute storing list _id's of attributDescriptor documents. Otherwise the function createRelease(collection, id, date) creates a new release and inserts its id to the corresponding collection.

5-137

CREATING A VIEW

Figure 32 shows the workflow implemented for creating a view. Given a dataCollection this operation will create the view and all the associated releaseViews and attributDescriptors using the following functions:

(1) createView(url, name, provider, licence, author, description, code, source),builds a MongoDB collection for the view and a view document with the meta-data describing the view.

(2) createReleaseView(collection, number, date), builds a mongo collection for a releaseView, creates a releaseViewdocument. process can be more or less complex. Processing the input item is done using the function emitKeyValue(document, route). Given an object as input, the item and the name of the releaseView, scan through each attribute, if this attribute is an object then it executes "emitkeyvalue". If it is not an object then we identify the type of the data and add the type it to the end of the name, if the attributDescriptor does not exist we 5-141 create the attribute descriptor, update the array of attributDescriptor and size in the releaseView document in both the view data collection and the releaseVeiw data collection. Then finally we add the value to a list of values. emitKeyValue(document, route) this function is designed to identify all the attributes of a document, even the embed attributes. To do this, we get all the attributes of a document and identify the type of each attribute. The attributes of document type are run through emitKeyValue and so one till there is no document attribute left. The other attributes are inserted into an attributDescriptor document with the same name and type of this attribute. To track the full name of embedded attributes emitKeyValue has a route variable which will take the name of the parent attribute and the name of the daughter attribute separated by a dot. The coordinator function that implements the workflow illustrated in The mapper is by far the slowest process in the view creation. This can be accelerated implementing the creation of views under a MapReduce programming model to parallelise the process. In this case, the map function implements uses the same logic as the previous the mapper but send the key/value to the reducer rather than to a releaseView collection. The key is the name of the attribute and the value is the value of the associated attribute. The reducer function concatenates all the values from an attribute into a list of List. The finalizer will then calculate all the statistics in the same way the previous finalizer did.

5-140

5-142

MANIPULATING VIEWS

Data can be modified, added or removed from the releases of data collections. Views must be updated to reflect the changes in the data collection. We have defined the functions insert, remove, replace for manipulating the items of the views. The following sections define such functions.

INSERTING, REMOVING AND REPLACING AN ITEM

Given an Item and a collection the operation insertItem(collection, Item) inserts a new item to a collection then updates corresponding views using the following functions:

(1) insertItem(collection, Item) inserts the item to the corresponding release and update the information in the release document in both the release collection and the dataCollection collection. This function then triggers the function insertAttribute(attribute)

(2) insertAttribute(attribute) given an item as input parameter it searches all the attributes item and adds them and updates the corresponding attributDescriptor.

Once done this, we trigger the function finalizer to recalculate all the statistical values.

(3) finalizer(attributDescriptor) updates all the calculated values in the attribute descriptor.

The operation removeItem(itemID, Release) deletes an item using 3 functions:

(1) removeItem(itemID, Release) removes the item from a release and updates the information in both the corresponding release collection and dataCollection.

This function then triggers in cascade the function removeAttribute.

5-143

(2) removeAttribute(item) take the item and recursively searches all the attributes of that item and removes and removes ounce the value from the attributDescriptor them and updates the corresponding releaseviews. Ounce done this triggers the finalizer function (3) finalizer(attributeDescriptor) updates all the calculated values in an attributeDescriptor.

An Item is replaced from its collection in the following steps:

(1) itemReplace(Release, Item, ItemID) removes and replaces the item in the input Release r; then executes the functions removeAttribute(id: itemID, r: Release) and insertAttribut(c: collection, i: Item) to replace the item.

COMPARING AND COMBINING VIEWS

Part of the objective of the view is to be able to compare attributes between each other of the same or different Views. The intuition is to determine how similar or different are the releases of a dataCollection and how different are two collections. For this, we defined operations:

to compute the union of two attributDescriptor, to determine in which degree the attributDescriptor of a view are similar among each other, to compute the degree in which two attributeDescriptors are similar builds a set of attributeDescriptors that appear in two releases of the same or different views (common) or that are unique within each set (uncommon).

We define these functions in the next lines. The similarity operation determines how similar the attributeDescriptor of two releases are. As stated previously, the similarity operation produces an attributeDescriptor like object. What we mean is for each calculated value in an atttributeDescriptor is not calculated from the valueDistribution but is computed based on the similarity of the values. We defined similarity as:

Sim(vi,v2)=(v1-v2)/(v1+v2)
The operation functions simply by running this equation on every numbered value in the attributeDescriptor.

EXPERIMENTS AND USE CASE

We implemented the lowest layer of our service-oriented architecture devoted to data collection harvesting and storage, which is the basis for providing data curation services. Then, we conducted experiments to estimate the cost of generating views and we developed a use case showing how views can be used for making decisions about the best way of sharding and storing data collections.

Figure 33 shows the setting of our experiment consisting of three layers. The experiment workflow starts with data harvesting tasks from providers of post mortem data collections and streams. Our data providers are accessible on the Web either as services like social network ones dealing with urban computing issues like traffic status and static data collections available in portals such as the Grand Lyon. Data harvesting tasks are integrated behind a data harvesting service that interacts with storage services installed in a cluster on the cloud that gives access to a distributed persistence layer. This layer is used by applying sharding strategies chosen under a decision-making process based on the structural characteristics of the data and their content shown be views.

5-146

In the following section we describe our strategy for estimating the cost of generating views from data collections. We also describe the use of views for making decisions on how to best shard a data collection across cluster elements.

ESTIMATING THE COST OF CREATING DATA COLLECTIONS & VIEWS

As part of our experiments, we performed a cost analysis on the production of our model using two datasets grandLyonEvent and Twitter (Table 7). As shown in Table 7 we varied the number of releases and therefore the total number of documents. Note that the documents from each collection vary greatly, in the number of attributes: grandLyonEvent having on average 36 attributes and Tweets 98 attributes. We therefore prepared the following logic architecture to test the cost of distributing the data into a distributed master slave architecture. The architecture copes with the MongoDB sharding solution, the NoSQL system that we used as storage support. The logic architecture used by MongoDB consists of a Mongo server (config server) that serves as master and access point to a set of shards stored in other Mongo servers. A router server serves as registry to host an index that will maintain information about the distribution of data across shards.

This logic architecture was deployed on one virtual machine ready to run experiments: creation of dataCollections and views from the initial datasets described in Table 7.

The 16 machines of the cluster-based setting "extend" the initial logic architecture of used by MongoDB as follows: 3 "config" servers, 4 routers and 9 data shard servers that replicate datasets distributed into 3 shards.

5-148

measures to compute quantitative meta-data. Time obtained for the creation of dataCollection and views is shown in Figure 34. We observe that the production time varies greatly with the size of the collection, ranging from about 2 min for a small collection of 2000 documents to 36 hours for the 700000 documents collection. grandLyonEvent store and the Tweets store with the following conditions (Table 9). Note the smaller the division of time of more release are produced since there are more time windows to use. First, as shown in Figure 35, what we observe is that the production time varies linearly with the size of the data store both with the number of documents and the number attributes within these documents. There is small effect on the time from the number of releases which we will see later is due to the computation time. The computation stage, shown in Figure 37, is affected by the number of attributes and the number of releases as these affect the overall number of documents that have to computed and stored. The contribution of the number of document is fairly minor as the computation time only doubles when the number of document increases 5 times. This makes the time spent in this step far more significant for small collections with a small number of attributes than a large number of releases. This step contributes for 0.5-10% of the production time. The sequential execution could in theory be further improved by the use threading at last in the collection creation phase and the computation phase but that was unfortunately not available for JavaScript scripts.

MAKING DECISIONS FOR STORING DATA COLLECTIONS

Services of the layer harvesting and storage data collections are implemented in the cluster architecture that we have previously described. The cluster architecture is also exploited so that we cope with a logical architecture of stores that are prepared to host shards of fragmented data collections. The architecture is a master slave cluster consisting of a storage application server that interacts with the data providers to store data or with other services 5-153 for retrieving data. The slaves are running in an Openstack m1.xlarge. cloud virtual machines consisting of 4 VCPU of 2.5 Ghz, 8192 Mo RAM and 80 Go of disk memory that provide storage support for shards. The slaves are indexed by a registry that maintains information about the location of every fragment and item of the data collection within the cluster. For experimenting this configuration, we used MongoDB as reference and performed a decision-making scenario according to the three sharding strategies it proposes: hashed, interval and semantic based.

We did 3 experiments to analyse how the selection of a shard key and corresponding strategy affect the performance and distribution of the database (see Figure 40). So, from a collection of urban data tweets (10 Go), we did two experiments on the user.location attribute, one ranged with imposed rules to how the data must be distributed. We choose the ranges:

[MinKey "Lyon, FRANCE"], ["Lyon, FRANCE" "Lyon, Rhône-Alpes"],

["Lyon, Rhône-Alpes" MaxKey]. Then, we did another experiment with the hashed strategy on the same attribute. In this last case, the data store (MongoDB) tries to balance shards. We used both experiments to observe the behaviour of the store in the presence of queries (reads). We also did another experiment using "_id" attribute to observe the effect of sharding on a randomly generated unique value. These strategies are chosen under a decision-making process done by a data analyst according to the data to be sharded. We ran experiments to determine what were the technical, quantitative and structural criteria that were key for deciding whether to use one of these sharding strategies. We observed as expected that the most balanced was ranged "_id" then ranged "user.location" since the database attempts to optimize the distribution and optimizing the distribution of set of random unique value is easier than sets with multiple times the same value. The ranged strategy was less effective with 4 times more data in one shards than the others in spite having chosen ranges dividing the collection into 3 equal sizes (Figure 40). We then did 6 queries to observe the effect of different types of queries:

Two simple filter queries we used: We observed that the ranged sharding provides the best query time, very slightly better than the hashed location, on the index equal queries (see Figure 41). On the other hand, ranged hashed _id provided the most consistent times. In our case the hashed location is probably the better choice since it provides both quick simple queries, but the other are still efficient. This use case shows decisions making is done for Big Data (see Figure 42). For example, in the case of choosing the attribute that will provide the best sharding key across a cluster according to different strategies. It is important to note that finding the ranges to use is not a simple and straightforward process. It implies identifying the attributes which could be used as key for sharding the collection, an awkward process, when the attributes change in presence and number. For example, tweets have on average 74 attributes but in reality we have found up to 800 different attributes for tweets.

Once an attribute has been chosen as sharding key, for an interval-oriented sharing strategy it is necessary to identify the ranges of values which would cleanly divide the data collection 5-157 into thirds. This mean looking through thousands of documents and trying to identify values which will a value which will divide the collection into thirds. Looking through the values allow for at best an educated guess. In fact, I ended writing a script returning me the value of the 2 documents on the boundaries on if each thirds. This took several days of investigation. Surely there must be a more efficient way.

MAKING DECISIONS USING VIEWS

In this section, we look at how to shard a database using views. In this scenario we are seeking to shard effectively a tweets database of 3190382 documents, containing 10 GB of tweets having on average 74 attributes, optimized to answer geographical queries. After producing the views, sub divided with respect to the posting date, we had 125 ReleaseViews containing between 620 and 887 documents representing attribute descriptors (Figure 43).

This reveals that a large number of attributes is not present in most documents, and second this is beyond what is practical to investigate every attribute individually, in fact identifying all existing attributes would be a time-consuming challenge. On the other hand, since view transfer the attributes of each document to a value in an attributeDescriptor under the "_id" attribute, a query using a regular expression can be used to identify useful attributDescriptors. Having chosen to look into geography optimisation for this experiment, we looked for attributDescriptors containing "loca", "zone", "area", "geo" and "coor" in their "_id" since these seemed the best terms used the reveal location. This means we can immediately reduce the number of 5-159 candidates for 887 attributes to a total of 13 attributes usable for identifying the location of the user producing the tweet. With a quick bit of arithmetic reveals this distribution: Shard 1 will have values "Paris", "Greenland" and "Ljubljana" for a total of 1030429 documents or 32.3% of the documents Shard 2 will have values "Amsterdam", "Athens" and "Pacific Time (US & Canada)" for a total of 1046285 or 32.8% of the documents Shard 3 will have the rest for a total of 1113668 document or 34.9% of the documents Now let's look at the more complex attributes like "tweets.user.location.string".

Using the valueDistribution, we can quickly generate a histogram of the data as shown in Figure 45. Immediately, we see a few values that are sticking out namely:

"France","Lyon", "Lyon, France" and "missing". But after further investigation we notice a large number of similar values following themselves as revealed by this cumulative distribution (Figure 46).

5-162

CONCLUSIONS AND PERSPECTIVES

The initial objective of this thesis was to propose a data curation model that can model metadata describing the structure, content and conditions in which data collections are produced; and a service-oriented data curation environment for harvesting, cleaning, processing data collections for computing discovering and deducing meta-data and storing data for supporting the design of data centric experiments though exploration operations.

Accordingly, we proposed a meta-data model, the view model, and operations to explore this information and enable data curation processes within an integrated environment named CURARE.

SUMMARY OF THE WORK AND CONTRIBUTION

This thesis has explored of service-oriented architecture on the cloud and data curation and exploration in the context of Big Data. From the state of the art we determined that using Big Data relies on making many decisions related to the data. Most data curation models are designed for a specific field. Techniques used to perform the data curation are either limited in scope context or rely on a substantial amount of person power. Other methods have taken the angle of providing information to data analysts through the extraction of meta-data. These methods lack quantitative meta-data (distribution of the values for a given attribute) necessary to evaluate the state and quality of data collections. Data analysts have a lot of decisions to make in the hope to produce effective and potentially efficient tools and services to choose which data collections are best for performing specific analysis, and also to choose the best strategies to maintain and share them.

6-167

Our work focused on the extraction, computation and deduction of quantitative and qualitative meta-data that ease the data curation process. Thus, we proposed data curation model and tools implemented by CURARE addressing the difficulty of semi-manual data analysts' tasks by providing quantitative information on the data they are curating.

The CURARE service-oriented architecture defines types of services based on their tasks:

harvesting, pre-processing, storage, processing, analysis and decision support. We described the type of resources these service use and the general interfaces they use to communicate and the Data Science Virtual Machine (DSVM) services they use to implement their functions.

For our data curation model, we focused on providing visual and quantitative meta-data so the data analyst can investigate more rapidly their data and make strategic decision. We implemented the data collection model which is designed to track the sources and maintain track of how the collections evolves over time through the use of release, set of data produced from a source at a particular time. We also implemented the data view model which is designed to explore each attribute of a data set through the use of attribute descriptor. We also implemented a full suite of operators to update and combine data views and data collections.

We finally experimented with Big Data decision making and demonstrated the usefulness of data views. In the experiment, we ran two sharding experiments. The first to evaluate the importance of sharding, we also observed the time it took to perform the decision. And the second we attempted to shard a data set using view. We observed from these 2 experiments that sharding can have a lot of effect on the efficiency of the database. We also observed that making decisions without tools to assist is difficult, inaccurate and long whereas when using views, we were able to make sharding decisions much more accurately and quickly. We also 6-168 ran an experiment to evaluate the cost of creating this model. We observed whilst this model is heavy for linear processing, using parallel processing makes it well manageable.

FUTURE WORK AND PERSPECTIVES

Future work will tackle operators' experiments for easing the construction and preparation of data collections and adding visualisation tools that can help to compare different releases of the same data collections or different data collections. We are currently using CURARE to explore newspapers collections and political campaigns data collections in the context of esocial sciences projects [START_REF] Vargas-Solar | Computing query sets for better exploring raw data collections[END_REF]. CURARE is also being experimented for exploring heterogeneous datasets that compare neurosciences experiments [START_REF] Arriaga-Varela | Supporting Real-Time Visual Analytics in Neuroscience[END_REF].

This work and of course the state of the art have shown that the expectations of a tremendous productions of data announced in the last years due to the evolution of technology and the progressive consolidation of the Internet of Things is not science fiction. Yet, from our perspective, the real challenge is not introduced by the volume and the velocity of data collections, nor by its variety but about the conditions in which such data collections will be processed for creating novel applications.

Which are the kinds of applications that will be ready to efficiently consume data while ensuring a smart vision and exploitation of data collections? Do we need well adapted machines for addressing this problem? Who is going to get value out of data collections on consumers' experiences and opinions about their quality and usefulness, are exported as a data market with an associated cost model.

Our vision is that it is necessary to see data collections curation that goes beyond accessing timely and costly ready to use data sources. It should be seen as an effort that implies economically capitalizing the effort of going out for hunting data sources and services of different qualities and stemming from different processing processes, curating and delivering them. We shall call this environment a data market because we will assume that data brokers have an associated cost model. These brokers can be then contacted for accessing to data collections that can be processed for building new data collections that can be then made available in the data market.

The key issues here are: (i) associate a cost model for the data market, i.e., associate a cost to raw data and to processed data according on the amount of data and processing resources used for treating it, for instance; (ii) combine these cost model and the consumer expectations (service level agreement) with processing resources cost required by data processing; (iii) extend CURARE like data management and brokering processing mechanisms under ad hoc business models.

The objective will be to propose solutions for curating and exploring data collections according to a cost model and a business model that can provide a strategy guaranteeing given quality of service criteria ranging from privacy, economic cost, provenance, reputation, trust.

Faculté

 Techniques des Activités Physiques et Sportives Observatoire des Sciences de l'Univers de Lyon Polytech Lyon Ecole Supérieure de Chimie Physique Electronique Institut Universitaire de Technologie de Lyon 1 Ecole Supérieure du Professorat et de l'Education Institut de Science Financière et d'Assurances Directeur : M. F. DE MARCHI Directeur : M. le Professeur F. THEVENARD Directeur : Mme C. FELIX Directeur : M. Hassan HAMMOURI Directeur : M. le Professeur S. AKKOUCHE Directeur : M. le Professeur G. TOMANOV Directeur : M. le Professeur H. BEN HADID Directeur : M. le Professeur J-C PLENET Directeur : M. Y.VANPOULLE Directeur : M. B. GUIDERDONI Directeur : M. le Professeur E.PERRIN Directeur : M. G. PIGNAULT Directeur : M. le Professeur C. VITON Directeur : M. le Professeur A. MOUGNIOTTE Directeur : M. N. LEBOISNE 1-5 KEY WORDS: big data, cloud services, data curation, data exploration and cloud services oriented architecture SUMMARY:

 The objective of this thesis is twofold: First, propose a data curation model that can model meta-data describing the structure, content and conditions in which data collections are produced. Second, propose a service-oriented data curation environment for harvesting, cleaning, processing data collections for computing discovering and deducing meta-data, and storing data for supporting the design of data centric experiments though exploration operations. AND CONTRIBUTIONS This thesis was done in the Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS) under the supervision of Parisa Ghodous and Catarina Ferreira da Silva and with the substantial collaboration and contribution of Genoveva Vargas-Solar from the Laboratoire d'Informatique de Grenoble (LIG) and the French-Mexican Laboratory of Informatics and Automatic Control (LAFMIA). The PhD was financed by the region Rhône-Alpes via the ARC 7 program. The PhD was carried on in the context of the project Aggregating and Managing Big rEaltime Data (AMBED) in the Cloud: application to intelligent transport for Smart Cities.

Chapter 4 22 Chapter 5

 4225 defines the data curation model proposed in this thesis. The data collection model provides concepts for representing data collections as sets of releases of raw data, where each release consists of a set of items (e.g. records). The data collections model is used by the data harvesting and cleansing services for representing structural and context meta-data related to collections (provider, objective, URL, item structure). 1-describes the implementation of the data curation model within CURARE the data curation environment proposed in this thesis. Thereby, CURARE provides abstract view of the releases related to a data collection and gives the possibility of exploring the releases without having to zoom in item per item. The chapter describes the experimental setting and the experiments performed using the data curation model, to compute the cost of creating data collections and data view as well as the power it has to support decision making. Chapter 6 concludes the document by summarizing the work done and its contributions. It then discusses future work and research perspectives. 2-23 2 BIG DATA CURATION AS A SERVICE -A STATE OF THE ART AND

 Variety, and Variability impose a change in technology to process and explore the data, with Veracity and Value being very important characteristics for Big Data but not defining characteristics of Big Data but to its market and dissemination. Adding value to data, given the degree of volume and variety, can require important computing, storage and memory resources. Value can be related to Big Data quality (veracity) concerning (1) data consistency related to its associated statistical reliability; (2) data provenance and trust defined by data origin, collection and processing methods, including trusted infrastructure and facility.

Figure 1 :

 1 Figure 1: Big Data life cycle according to Edward Curry and colleagues[START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF]

Figure 2 :

 2 Figure 2: Big Data life cycle adapted from[START_REF] Jagadish | Big Data and Its Technical Challenges[END_REF]

Figure 3 :

 3 Figure3: The long tail of data curation and the impact of data curation activities[START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF]

2. 3 . 2 . 1

 321 HARVESTING DATA Data harvesting relies on robust protocol to queue up transfer data from source to destination. Several organizations relying internally on Big Data processing have devised confidential enterprise-specific protocols but there are a few public ones, which we present hereafter. AMQP (Advanced Message Queuing Protocol) [38] is a protocol produced from the collaboration of 23 companies. It uses 4 layers: (1) the message layer, which describes the structure of a valid message; (2) transport layer, defines how AMQP messages are to be processed; (3) the transaction layer allows for the "coordinated outcome of otherwise independent transfers security layer, which enables the definition of means to encrypt the content of AMQP messages. The characteristics of AMQP are ubiquity, safety, fidelity, applicability, interoperability and manageability.

Figure 4 :

 4 Figure 4: Tools of Big Data[START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF]

Figure 5 :

 5 Figure 5: Comparing NoSQL databases

 Schema: seems organized by the attributes of the data Content summary: makes a summary of the data set search for potential keys for data cardinality User provided annotation: description from the author Semantic linking: connects terms of similar meaning together

 of identifying the major contributor to changes in data. Clustering techniques can be performed on top of the perspective changing algorithms to improve these clustering techniques by removing part of the noise. Noise should neither be the major component of the data or be a major contributor to what one is trying to measure and thus would get lost in the lower components of dimensional reducing technics.Speaking of clustering, this is the second group of algorithms used to explore data, those helping identify groups of data, which we present hereafter. K-mean[START_REF] Borgnat | Spatial analysis of dynamic movements of V{é}lo'v, Lyon's shared bicycle program[END_REF] is a classification method in which given data and the number of cluster will group the points into number of clusters. It is done by randomly selecting data elements as starting points then each other point is classified with one of the starting points. It then calculates the mean point of each cluster and uses those points as starting points for the next step. It continues for a defined number of turns.Hierarchical / dendrogram clustering uses classification algorithms which create a tree linking element based on their Pythagorean distance in the data space.

 i.e. the different tools and business entities. MDM focuses on ensuring that an organization does not use multiple and inconsistent versions of the same master data in different parts of its systems. The three main objectives of MDM are: o Synchronizing master data across multiple instances of an enterprise application o Coordinating master data management during an application migration o Compliance and performance management reporting across multiple analytic systems Curation at Source [32] consists of performing light weight data curation as part of the normal workflow. It is used to avoid data deposit by integrating with normal workflow 2-59 tools, capture provenance information of the workflow, seamlessly interfacing with data curation infrastructure.

Figure 6 :

 6 Figure 6: service models[71]

Figure 7 :

 7 Figure7: Big Data bases layer model[START_REF] Becker | New horizons for a data-driven economy: Roadmaps and action plans for technology[END_REF]

Figure 8 :

 8 Figure 8: BDAS architecture taken from[START_REF]BDAS, the Berkeley Data Analytics Stack[END_REF]

Figure 9 :

 9 Figure 9: AsterixDB architecture[START_REF] Borkar | Big data platforms[END_REF]

 34 https://cwiki.apache.org/confluence/display/Hive/LanguageManual 2-70 2.4.1.3 BIG DATA ANALYTICS SERVICE ORIENTED ARCHITECTURES Beyond the existing storage stacks, Big Data as a Service has developed a small number Service Oriented Architectures (SOA) designed to run from data collection to decision making phases.We present some representative examples hereafter.H. Demirkan and D. Delen[START_REF] Demirkan | Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud[END_REF] propose a service oriented decision support system using Big Data and the cloud based on a layered architecture separated into 3 types of services (Figure10): the first Data as a Service (DaaS) correspond to the whole storage level of this architecture. Information coming from source like Enterprise Resource Planning (ERP) software or external data sources is transferred and stored in the enterprise data warehouse.

Figure 10 :

 10 Figure 10: Decision support SOA taken from[START_REF] Demirkan | Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud[END_REF]

Figure 11 :

 11 Figure11: GeoScience SOA taken from[START_REF] Li | Enabling big geoscience data analytics with a cloud-based, MapReduceenabled and service-oriented workflow framework[END_REF]

Figure 12 :

 12 Figure12: SOA mapping of Big Data[START_REF] Abuosba | Formalizing big data processing lifecycles: Acquisition, serialization, aggregation, analysis, mining, knowledge representation, and information dissemination[END_REF]

Figure 13 :

 13 Figure 13: Collection view model

Figure 14 shows

 14 Figure 14 shows the service-oriented architecture of CURARE the Big Data curation environment that we propose. The services of CURARE are organised into four layers that represent the order in which the major types of operations used in the Big Data: harvesting and cleansing, storage and access, processing and exploration.

Figure 14 :

 14 Figure 14: Curare service's layered architecture

 CURARE services are deployed on top of a Data Science Virtual Machine which is a cloud image, pre-installed, configured and tested with several popular tools that are commonly used for data analytics, machine learning and AI training. The goal of the DSVM is to provide data professionals at all skill levels and in all roles with a friction-free, preconfigured, and fully-integrated data science environment. CURARE services run on top of the services provided by the DSVM to perform the data curation tasks. Depending on the 3-93 characteristics of the data collections and the exploration and decision-making requirements some services are used rather than others. As said before, cloud services[START_REF] Benfenatki | MADONA: a method for automated provisioning of cloud-based componentoriented business applications[END_REF] ease the development of software infrastructure and fairly simple solutions to swap out elements, e.g. services, for other more appropriate ones. The CURARE services can be configured for adapting the use the underlying data science tools.

Figure 15 :

 15 Figure 15: Curare service cloud architecture

Figure 16 :

 16 Figure 16: Data harvesting and Pre-storage life cycle using CURARE services

Figure 15 .

 15 Figure 15.curation and storing data collections ensured by analytics and storage CURARE services weaved with underlying data processing services able to exploit the computation power provided by the cloud shown in Figure15. To perform this, the processing service interacts with the data storage service to process the data into a form that bring up information of the meta-data in the data collection. This process creates and

Figure 17 :

 17 Figure 17: Post processed data cycle

Figure 19 :

 19 Figure 19: View collection

Figure 20 :

 20 Figure 20: Basic Data Types

 Figure 22: Relation Type

Figure 23 :

 23 Figure 23: Our curation model

Figure 24 :

 24 Figure 24: DataCollection Model

createDataCollection

 (url: URL, name: String, provider: String, licence: {public, restricted}, size: Float, author: String, description: String) d1:DataColection where The class View models a statistical description of a data collection its releases and their data items. As shown in Figure 25 the class View represents a data collection with:

Figure 25 :

 25 Figure 25: View Model

Figure 26 :

 26 Figure 26 : Sharding example

Listing 16 :Listing 17 :

 1617 Compute the Union 4.4.3 INTERSECTION Intersection function (Listing 17Erreur ! Source du renvoi introuvable.) generates an attributeDescriptor corresponding to the Intersection of the values between two attributeDescriptor. Given a1 and a2 two attributes of type attributeDescriptors and two releases r1 and r2 of type Release where:a1<id11, type12, mean13, median14, mode15, max16, min17, count18, absentvalues19, nullValues110, valueDistribution111>, a2<id21, type22, mean23, median24, mode25, max26, min27, count28, absentvalues29, type32, mean33, median34, mode35, max36, min37, count38, absentvalues39, nullValues310, valueDistribution311 > an attributeDescriptors of the intersection of a1 and a2 generated as if a3 was generated from a release r3 built from the intersection of two release r1 and r2 along a specific attribute, i.e. by creating a release with the common elements of two other releases. This is done by computing a valueDistribution for a3 such as it takes the values of a1 and a2 with the lowest count then recalculating the statistical values from this new valueDistribution. computeIntersection(attrdesc1:attributeDescriptors , attrdesc2:attributeDescriptors) attrIntersection : attributeDescriptors for elem in attrdesc1.valueDistribution: attrIntersection[elem]= min(attrdesc1.valueDistribution[elem], attrdesc2.valueDistribution[elem]) attrDifference = computeStats(attrIntersection) Compute the Intersection 4.4.4 DIFFERENCE Difference function (Listing 18Erreur ! Source du renvoi introuvable.) generates an attributeDescriptor corresponding to the set theory definition of difference of the values between two attributeDescriptor. Given a1 and a2 two attributes of type attributeDescriptors and two releases r1 and r2 of type Release where: a1<id11, type12, mean13, median14, mode15, max16, min17, count18, absentvalues19, nullValues110, valueDistribution111>, a2<id21, type22, mean23, median24, mode25, max26, min27, count28, absentvalues29, nullValues210, valueDistribution211>. a1 ∆ a2 = a3 4-127

Listing 18 :

 18 computeDifference(attrdesc1:attributeDescriptors , attrdesc2:attributeDescriptors) attrDifference : attributeDescriptors for elem in attrdesc1.valueDistribution: attrDifference[elem]=abs(attrdesc1.valueDistribution[elem] -attrdesc2.valueDistribution[elem]) attrDifference = computeStats(attrDifference) Compute the Difference 4.4.5 PRODUCT The production function (Listing 19) produces a new release by combining items with related attribute together and storing it into a new release. Given two releases r1 and r2: r1<id, releaseNum, publicationDate, dataitems> r2 <id, releaseNum, publicationDate, dataitems> r1 * r2 = r3

Figure 27 :

 27 Figure 27: DataCollection Model

Figure 28 :

 28 Figure 28: dataCollection to MongoDB

Figure 29 Figure 30 :

 2930 Figure 29: View Model

(1)

 1 createCollection(url, name, provider, licence, author: string, description) creates a dataCollection and a document dataCollection and inserts it to the collection.

Figure 31 :

 31 Figure 31: Creating a dataCollection

(3)

 3 insertRelease(release, collection) inserts a document of type release into the corresponding dataCollection mongo collection and the corresponding release 5-139 mongo collection. It then adds the release _id to the dataCollection release attribute.

(4)

 4 insertData(item,release, collection, name) inserts each data items into its corresponding release mongo collection, update the release document item list and size in both the collection dataCollection and the release data collection, and update the size of the collection document. The coordinator function collects (fetches) and analyses each document from the initial data set and extracts the attributes date and time and converts them in epoch time. The release number is computing by dividing the date by 86400000, a.k.a 24*60*60*1000 on the number of milliseconds in a day to produce an integer used as the release number. If the release already exists it uses the function insertData(item, release, collection, n:name)

(3)

 3 insertReleaseView(Release, View), inserts the releaseView into the view MongoDB collection and the release MongoDB collection, then adds the releaseView _id to the view releaseViews attribute.

Figure 32 :

 32 Figure 32: view creation

Figure 31 ,

 31 Figure 31, First it executes the function createView() then it fetches the collection document to get the names of the releases. Then one by one, it collects the items from each release and runs them through the mapper. Once this task has been accomplished, it get the names of the releaseView collections and runs each attributeDescriptor through the finalizer(ad:attributdescriptor).

 ad:<attributDescriptor> 1 and R2<releases:{attributeDescriptors}> Given two attributDescriptor ad1:<attributDescriptor> and ad2:<attributDescriptor> (2) The operation Union(ad1, ad2) combines the data of 2 attributeDescriptors ad1 and ad2 into one adu. For this, each value of the valueDistirbutions, the absent values, null values and the size of the attributeDescriptor are added together. For the values distribution, this is done in two steps: first we create an object and insert all the values of the first attributeDescriptor, then for each value in common we add their count, for those who don't exist we insert the vales from the second attribute descriptor. The calculated values are then recalculated with the function finalizer().

(3)(4)

 34 The operation common(ad1, ad2) computes a set of releases adC:{ attributeDescriptors } where every element adC appears both in ad1.valueDistirbutions and ad2.valueDistirbutions with elements with the same values. For this, for each value in the valueDistribution, absentValue and nullValue we take the smallest of the 2 attributes descriptor. The size is recounted before execution the function finalizer(). The operation noncommon(ad1, ad2) does the opposite of the common operation. For this, for each value in the valueDistribution, absentValue and nullValue we substract their values of the 2 attributes descriptor. For the values distribution, this is done in two steps: a. Create an object and insert all the values of the first attributeDescriptor, b. For each value in common we subtract their count, if the count is negative we simply multiply by -1, for those who do not exist we insert the values from the 5-145 second attribute descriptor. The calculated values are then recalculated with the function finaliser().

Figure 33

 33 Figure 33 Experiment setting for data sharding

Figure 34 :

 34 Figure 34: Relative time cost of producing views

Figure 36 :

 36 Figure 36: Collection creation time

Figure 37

 37 Figure 37: computation time

Figure 38 :

 38 Figure 38: Attribute collection

Figure 39 :

 39 Figure 39: view creation Time total

Figure 40

 40 Figure 40 Experimenting data sharding strategies

 {user.location: «Lyon»} user.location = Lyon {user.location:null} user.location = null Two of the queries using regular expressions: 5-155 {user.location:/^lyon$/i} user.location = Lyon ignoring case {user.location:/lyon/i} user.location containing Lyon ignoring case

Figure 41 :

 41 Figure 41: Data distribution according to different sharding strategies

Figure 42 :

 42 Figure 42: Query evaluation performance on a sharded database

Figure 43 :

 43 Figure 43: attributDescriptor example

Figure 44 .

 44 Figure 44. From this we can identify a number of key values:

Figure 44 :Figure 45 :

 4445 Figure 44: Value distribution of the attribute tweets.user.time_zone.string

Table 1 : Big Data definitions, adapted from

 1

Table 2 : Phase correspondences between Big Data life cycles H. V. Jagadish and colleagues [12] E. Curry and colleagues [9] data

 2

	analysis + data visualization	data usage
	data extraction	data analysis
	data aggregation and integration	data curation
	Of course, these life cycles are designed with live Big Data applications. Developing Big Data
	applications requires a lot more inside knowledge of data collections than for traditional
	applications. This calls for a phase of data exploration [9], [29], [30] devoted to promoting the
	understanding of data collections content to determine what kind of analysis can be run on
	top of them. Data exploration uses algorithms and queries to discover patterns in the data.
	Each step requires knowledge of the data to run efficiently. Exploration algorithms provide
	the data analyst with point of view maximizing variance or correlation. If data exploration
	provides knowledge of the data to the user, data curation is that knowledge put into data
	collections. In other words, data curation can use data exploration to organise its documents.
	Data curation can help future users in both finding the algorithms, methods and technologies
	and communicate between machines and between humans and machines.

 Memcached used to manage data in the RAM but other systems exist for more persistent data, like the project Voldemort 5 , which supports a complex MVCC6 (Multi Version Concurrency Control) allowing to update data within a specific version and automatic data sharding. Key-value stores should be used mainly when the application needs to use one type of object.

communication remains a relatively slow process making databases relying on references, namely in SQL, graph or object databases, slower if those references cross multiple nodes, work is being done to maintain queries within a node. Dynamic scalability has proven to be a particularly essential problem for databases. Top level web sites are distinguished by massive scalability, low latency, the ability to grow the capacity of the database on demand and an easy programming model. These and other features, current RDBMS just do not provide in a 2-46 cost-effective way. Relational databases (traditionally) reside on one server, which can be scaled by adding more processors, more memory and external storage. Relational database residing on multiple servers usually uses replications to keep database synchronization. One of fundamental requirements for processing applications with massive data processing is a platform for supporting of database scalability. Popular relational database like Oracle have a great expressivity, but it is difficult to scale them up by increasing the number of computers instead of a single database server. The avoidance of references used in NoSQL databases means queries are less likely to rely on data travelling between nodes to perform queries. This means when running queries, all machines involved can run at maximum speed without having to wait for data from another node travelling slowly over the network. Horizontal data distribution enables us to divide computation into concurrently processed tasks. It is obviously not easily realizable for arbitrary algorithm and arbitrary programming language. Complexity of tasks for data processing is minimized using specialized programming languages, e.g. MapReduce developed by Google, and occurring especially in context of NoSQL databases. It is worth to mention that computing in such languages does not enable effective implementation of the relational operation join. R. Cattell

[START_REF] Cattell | Scalable SQL and NoSQL data stores[END_REF]

presents a group of horizontally scalable NoSQL databases using the BASE (Basically Available, Soft state, Eventually consistent) model thus excluding graph databases systems, object-oriented databases systems and distributed object-oriented stores that, whilst providing tools to distribute data across multiple machines, cannot scale to the same extent as key-value or document databases for example. They are though extremely effective at reference following especially if the data fit in memory.

We present 5 types of databases hereafter: key-value stores: associate a piece of data to a specific index. The most known is probably document stores storing: is very similar to key values store in that they use a key value model. Document stores allow for more complex queries upon the attribute within the document. The most known document-oriented database is probably MongoDB 7 which on top of an effective auto-sharding system provides a very deep query and updating system, including atomic operations to attributes.

scalable relational databases: store data using the relational model. MySQL cluster 8 uses a "shared nothing" architecture for scalability, as with most of the other solutions in this section, it is the most mature solution here. VoltDB 9 promotes horizontal scaling as well as a bottom-up redesign to provide very high per-node performance. Relational database Clustrix 10 supports solid state disks, but it is based on proprietary software and hardware.

In theory, RDBMSs should be able to deliver scalability as long as applications avoid cross-2-48 node operations. If this proves true in practice, the built-in query language SQL with optimisation strategies and ACID transactions as execution model would give them an advantage over NoSQL for most applications.

extensible record stores: sometimes called wide column stores storing extensible records; a hybrid between tuple and documents. The extensible record stores seem to have been motivated by Google's success with BigTable

11

. Their basic data model is rows and columns, and their basic scalability model is splitting both rows and columns over multiple nodes. Rows are split across nodes through sharding on the primary key. They typically split by range rather than a hash function. This means that queries on ranges of values do not have to go to every node. Columns of a table are distributed over multiple nodes by using "column groups". These may seem like a new complexity, but column groups are a simple way for the customer to indicate which columns are best stored together.

Table 3 : Data curation methods

 3

Table 4 : Comparison of NoSQL as a Service tools

 4

	Database	Description	Storage strategies	Properties
	Voldemort	Advanced key-value store supported	+ Support storage	+ BASE
	[101]	by LinkedIn. Supports a Multi-Version	engines	
		Concurrency Control (MVCC) for its	+ MVCC	
		data, provides hashed sharding.		
	Riak [102]	Described as an advanced key-value	+ MVCC	+ BASE
		store with limited functionalities of a	+ RAM stored, but	
		document stores like storing multiple	disk backup	
		field with JSON but lacks querying and	+ Updates	
		indexing mechanism on anything		
		other than the key.		
	Redis [103]	Key-value store written in C. It	+ Fast	N/A
		requires client library update when		
		protocol updated.		
	Scalaris [104] Written in Erlang.	+ Ranged sharding	+ ACID
			+ RAM stored	
	Tokyo	Key-value store which supports 6	+ No auto sharding	+ ACID
	cabinet [105]	models: hash indexes in memory or on		
		disk, B-trees in memory or on disk,		
		fixed-size record tables, and variable-		
		length record tables.		
	memBase	Based and upgradable from on	+ Disk storage	N/A
		MemCached an in-memory indexing	+ Remarkable flash	
		system.	performances	
	SimpleDB	Document store produced and used	+ Amazon support	+ BASE
	[106]	by cloud in the Simple Storage Service	+ SQL based query	
		(S3) and Elastic Compute Cloud (EC2)	language	
		services.		

Whereas in general ACID properties are normally built-in within systems, that eventually export interfaces to tune them (for example, the level of consistency or isolation), BASE properties provide eventual consistency as model with availability and durability ensured through replication. Adopting one solution or the other relies on the complexity of data management required: performant reads/writes of huge data collections are ensured through BASE whereas dependable, strict consistent states of the database are ensured by ACID.

 . However, these techniques (as discussed in Chapter Erreur ! Source du renvoi introuvable.) rely on having an environment like CURARE to explore and understand the data. Exploring and understanding data can be long and resource intensive. A quantitative view of the content of releases is necessary to provide data analysts with aggregated views of the content of a dataset. For example, if we were to investigate document describing road event in the city. Let us consider a collection with 200'000 documents and between 50 and 200 different attributes. Simply trying to understand each attribute requires hours going over each document to understand

Table 5 : view manipulation operator

 5

	Operation	Input/Output	Description	Symbol
	similarity	a1 ~ a2 = a3	Computes the similarity between two	~
			attributeDescriptors	
			Creates an	
	union	a1 U a2 = a3	attributeDescriptor corresponding to the union	U
			of the values of two other	
			releases.	
			Creates an	
	intersection	a1 ∩ a2 = a3	attributeDescriptor corresponding to the	∩
			intersection of the values of	
			two other releases.	
	difference	a1 ∆ a2 = a3	Creates an attributeDescriptor	∆
			corresponding to the	

Table 7 : Data collections description

 7 We performed our experiments first in one machine, assuming that data scientists at the beginning of their experiments do not necessarily use complex computing systems to perform them. Then we migrated our experiments into a cluster setting. The cluster-based setting runs on a total 16 machines. Each machine runs on an Openstack cloud IaaS as an Openstack m1.xlarge. consisting of 4 VCPU of 2.5 Ghz, 8192 Mo RAM and 80 Go of disk memory.

Table 9 : experiments Figure 35: View + Collection creation time

 9

 These attributes are: "tweets.quoted_status.user.location.string" "tweets.user.location.string" "tweets.user.time_zone.string" "tweets.place.bounding_box.coordinates.0.0.0.number" "tweets.place.bounding_box.coordinates.0.0.1.number" "tweets.place.bounding_box.coordinates.0.1.0.number" "tweets.place.bounding_box.coordinates.0.1.1.number" "tweets.place.bounding_box.coordinates.0.2.0.number" "tweets.place.bounding_box.coordinates.0.2.1.number" "tweets.place.bounding_box.coordinates.0.3.0.number" "tweets.place.bounding_box.coordinates.0.3.1.number" "tweets. quoted_status.user.geo_enabled.string" "tweets.user.geo_enabled.string" A quick investigation of each of these attributeDescriptors (Table 10) will immediately eliminate most of these options. The objective is to find an attribute which allows to share the collection into 3 separate and balanced shards: "tweets.place.bounding_box.coordinates" contains only a small number values with one value appearing in almost 60% of the documents making it a poor candidate for a shared key; "tweets.quoted_status.user.location.string" has on average more than 95% of it values missing; "tweets.user.geo_enabled.string" only contains Boolean values; valueDistribution of the view, we can generate a histogram of the data as shown in

http://skyserver.sdss.org/dr14/en/home.aspx

https://www.kaggle.com/stackoverflow/datasets

https://meta.wikimedia.org/wiki/Research:Detox/Data_Release

http://guide.dhcuration.org/faq/

https://www.project-voldemort.com/voldemort/

Multiversion concurrency control (MCC or MVCC), is a concurrency control method commonly used by database management systems to provide concurrent access to the database and in programming languages to implement transactional memory, https://en.wikipedia.org/wiki/Multiversion_concurrency_control

https://www.mongodb.com/

https://www.mysql.com/

https://www.voltdb.com

https://www.clustrix.com/

https://cloud.google.com/bigtable/

http://couchdb.apache.org/

http://amberonrails.com/crowddb/

http://db.csail.mit.edu/qurk/

https://en.wikipedia.org/wiki/Wikipedia:Bots

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html http://mesos.apache.org/ http://hyracks.org/

https://spark.apache.org/

https://www.javascript.com/

https://deanwampler.github.io/polyglotprogramming/

https://amplab.cs.berkeley.edu/software/

https://hive.apache.org/

https://flume.apache.org/

https://spark.apache.org/docs/latest/sparkr.html

https://asterixdb.apache.org/

https://asterixdb.apache.org/docs/0.9.3/aql/manual.html

https://aws.amazon.com/s3/

https://docs.openstack.org/swift/latest/

https://twitter.com

https://flume.apache.org

https://www.MongoDB .com

https://www.json.org

http://bsonspec.org

Distributed processing system: this layer provides the tools to process data, as required by the user, in a distributed pattern. The most well-known distributed pattern is MapReduce implemented by tools like Hadoop and Spark 25 . This should be accessible to the user as it allows for more versatile data processing than queries.

Query language: is the language used to operate the database function. The most popular is SQL but that is limited to relational data bases. Many databases propose their own query language, such as MongoDB which uses Javascript 26 functions to access and process the data. Others have proposed to combine multiple query languages into one, often inspired from SQL, using polyglot programming 27 to achieve translation between the multiple query languages like HiveQL [START_REF]Apache Hive TM[END_REF] or by directly communicating with the distributed processing system such as Pig Latin [START_REF]Welcome to Apache Pig![END_REF].

BIG DATA MANAGEMENT SYSTEMS

BDAS, the Berkeley Data Analytics Stack, is an open source software stack that integrates software components being built by the AMPLab 28 to make sense of Big Data (see Erreur ! Source du renvoi introuvable.). The objectives were to provide a solution where it was easy to combine batch, streaming, and interactive computations and easy to develop sophisticated algorithms in the same environment compatible with existing open source ecosystem (Hadoop/HDFS). BDAS can interoperate with existing storage and input formats (e.g., HDFS, 3.1.1 DATA COLLECTIONS STRUCTURAL META-DATA Data collections can be described using 2 major types of meta-data:

Explicit: this meta-data is self-contained associated to the data collection and its provider. This can be something as simple as the name of the file "police traffic reports" or the description of the collection. In the case of the police report of our example, it would say something: "this collection contains documents describing traffic event reported by police officers, we insure that the report a linked to other report when a link of causality can be established".

Implicit: requires an analysis process to be extracted. This ranges from statistical information on the values of individual attributes to semantic relations between attributes. For example, in the case of police report, count the number of times a particular attribute is not used within these reports.

In our vision, we propose the concept called data collection (Figure 13), to model an entity that contains information how the data is produced and by whom; and the concept view exposing with statistical and implicit information on in the individual attributes of the items of the data collection.

In our example, the entities producing the data would provide various information of their data collection. The company may describe how the data is collected, with which frequency the data is modified, who to contact for questions. For example, in the case of the police logs the person to contact will probably be the officer logging in and linking all the police reports.

The view level may be produced by some independent entity and as such will provide information on the data collection items. For instance, how the view was produced, e.g. the

DATA CURATION AS A SERVICE FOR

DATA COLLECTIONS

This chapter introduces one of the contributions of our work, a View Data Model that provides concepts defined as data types for supporting a data curation. Accordingly, the chapter is organized as follows. Section 4.1 introduces the general principle adopted for modelling data collections. Section 4.2 provides general definitions, particularly a types system, required for defining our view model. Sections 4.3 introduces the view model consisting of data types for modelling (1) data collections consisting of releases and items and (2) meta-data defining views, releaseViews and attributedescriptors. Section Erreur ! Source du renvoi introuvable. defines data collections and views definition functions. Section 4.5 defines functions for manipulating views. Finally, Section 4.6 concludes the chapter discussing final remarks.

MODELLING DATA COLLECTIONS: GENERAL PRINCIPLE

In order to illustrate the role of data curation we use the following example. Let us consider that we want to organize a data collection in the Grand Lyon portal 43 related to the traffic status in the city boulevards. The data collection can grow bigger as new releases are produced, and this means that it is not possible to store it in one local disk but across farms of storage (see Figure 18). A balanced and smooth fragmentation, meaning that fragments should be balanced, related fragments must be collocated, and fragmentation should not 43 https://www.grandlyon.com/ 4-103 damage availability. In order to achieve these requirements here are some of the question to be answered: Which attribute can be used to shard the collection? Is there critical data with particular availability requirements? Should some fragments be collocated? The decision made for these questions depends on the structure of the data collection items, on the distribution of values and on the relations between attributes. This information is not readily available and has to be discovered in the data collection to create data that describe the data, i.e., meta-data. Since meta-data is the back bone of the curation process, we proposed a view model giving information that can be used to curate them and support data analyst decision making. For this purpose, our approach is to propose concepts which describe the content characteristics of a data collection release:

Collection is a data structure that divides data collections into releases. This means we can track the evolution of the data collection overtime.

View is a data structure that provides an abstract description of the content of data collections (including their different releases) by grouping meta-data of different types (Figure 19). code represents the binary code that implements the function. Aggregation: this type represents functions used to aggregate information for a set of attributes, i.e. get information linked to the data aggregate.

Visualisation: represents functions used to visualize data according to given graphic metaphors (e.g., histograms, bubble charts, etc).

RELATION TYPES

The type relation represents a functional or semantic dependency between two attributes.

The type Relation is modelled as a N-tuple (Listing 2) with "id", has a set of "input" attribute which can be put into the "code" to associate each value of the attribute to the value of the "output" attribute. This allows the automated production of dataCollections providing all the data over time information. Now we are going to look at the other type of parent object views.

VIEW

This has a more limited use than it counterpart as it is essentially a repository for attributDescriptor. I can, however, give interesting insights if the size attribute varies substantially between releaseViews.

ReleaseViews are composed of attributDescriptor. An attributDescriptor provides a statistical representation of an attribute produced by the code applied to the collection. The simplest form would be to do a statistical analysis of each attribute of a release. In this an attributeDescriptor corresponds will correspond to a statistical analysis an attribute of the items in the release. This makes a basic statistical presentation of the predicate with min, max, mean, median, mode, standard deviations, value distribution and consistency information with the number of null values and absent values. It is described by: "id" which corresponds to its access URL given by the service as a combination of the parent version URL and the AttributeDescriptor name and type; "name" given by the code processor used to analyse the data; "type" given by the code used to analyse the data; "valueDestibution": value distribution represents the number of time a value has been produced in the creation of the attributedescriptor; "nullValue" extracted from the data, it represents the number items for which the value of an attribute is known to not exist; "absentValue" extracted from the data, it represents the number items for which the attribute does not appear. An example of deference between absent and null is, in the case of null, attribute will still appear in the item with a value of "null" or "", absent correspond to the attribute not appearing in the item.

"relationship" if possible gives the function that transforms one attribute into the other. This maintains a structure by which data analysts are informed of existing usable relations for their application. The creation of these objects is an important aspect we will now investigate.

CREATING A VIEW

As seen in Section 4.2.2 there are many types of collections. The following lines describe the ones we considered in our work.

Computed by statistic functions performed on the content of a given release

Statistical data represents an aggregation of the data in a view into a smaller more informative piece of data. The creation of the view is very similar to the creation of a dataCollection but is done in 3 steps:

(1) We start of by assigning data collected from the data analyst and data collection analysed (Listing 7). The following shows the implementation of the Cartesian product between to data items sets.

MAINTAINING VIEWS

The structure of collection and the associated view is fairly complexes but crucial in providing information on the data. Whilst on large attributeDescriptors the addition or subtraction of an item would produce only minor changes to the information, this cannot be said for smaller attributeDescriptor and the cumuli of minor changes, if not accounted for, risks producing disinformation. Thus, we need operations (Table 6) designed to manipulating items in release and updating the corresponding view.

DISCUSSION AND FINAL REMARKS

Since meta-data is the backbone of the curation process, we propose a model to assist data analysts and managers in their decision making. Fundamentally data curation intervenes after the data analysis step, as a form of data visualisation for IT professional to explore in their decision support tools. Whilst this is technically true for CURARE as well, our model intervenes at every step of Big Data analytics as a tool assisting data analysts in the decision involved at each step.

In the data collection and cleaning phase, data analysts have to answer questions related to storage strategies and data pre-processing. CURARE assists by providing the range, distribution and variability of the data. This would be used to get clues on the characteristics of the data continuity useful for data pre-processing for example. The data distribution would assist the data analysts in finding optimal data storing strategies.

CURARE is a data curation model designed for data analyst with inbuilt operations comparable to those in database management systems allow to manipulate update and aggregate data from multiple collections.

5-133

IMPLEMENTING THE VIEWS MODEL AND EXPERIMENTING CURARE

In this chapter we look at the implementation of the data curation, the experiments conducted to evaluate the cost of generating views and a decision-making use case for validating the use of views. Accordingly, the chapter is organized as follows. First, section 5.1 introduces the implementation of the collection view model on top of a document-oriented data model. Then Section 5.2 looks into the manipulation of views. It describes how to update and manipulate them. Section 5.2.2 introduces the experiments we conducted for estimating the cost of generating views from raw data collections with different characteristics. It describes how views can be used for making decisions on how to shard data collections across different stores. Finally, Section 5.4 concludes the chapter and discusses lessons learned.

IMPLEMENTATION OF THE VIEW MODEL

We choose to build CURARE around the MongoDB 44 database, a document-oriented database. We use its service manager and the Webpy 45 framework that provides a user interface. We focused our implementation on the lower levels of the architecture in particular the information extraction and aggregation and integration layers of CURARE.

"tweets.quoted_status.user.geo_enabled.string" only contains Boolean values and has more than 95% missing values "tweets.user.location.string" and "tweets.user.time_zone.string" has a more homogeneous distribution of the number of different values and most documents contain them. Let us start with "tweets.user.time_zone.string" since it is a simpler attribute to investigate. The objective of sharding is to achieve better response times for certain types of queries whilst maintaining a balanced amount of data between the shards. Using the attribute Using this graph allows us to find a range of values to use for sharding. We choose to find ranges which would distribute the data most evenly, but which also allowed to maintain shard with focused on certain regions. This lead us to estimate the sharding ranges as follows by first exploring the major leaps in value around "Lyon", then "France", then "missing": and data preparation required to apply specific data analytics algorithms.

We observed from our experiments that the creation of this curation model is quite costly for mid to large collections with complex data structures (many attributes) when using sequential computing. The CURARE services implementing our data collections view model can use different algorithms and strategies to implement creation operations. This is necessary depending on the content of the data collections. For example, computing the distribution of the values of attributes when they correspond to multimedia data, or to data types that need to be pre-processed to compute values statistics.

We also observed that making decisions on Big Data sets is challenging. But that these decisions have a massive impact on the efficiency of the database. As we can see it took me several days to identify shard key ranges and resulted in providing an answer which is passable at best. On the other hand, when using views, it allowed me (1) identify much more candidate attribute by querying the views, (2) to investigate much faster the potential of the candidate processing? Are current data harvesting and storage techniques adapted for brontobytes 48 and Geopbytes 49 of data? The objective will be to design and develop novel ways of curating, exploring and exploiting data collections and propose alternative ways of dealing with the "Big Data reloaded".

COMPOSING AD-HOC DATA CURATION AND EXPLORATION ENVIRONMENTS

The first perspective of our work concerns the way data curation services can be delivered and personalized in CURARE according to data collections characteristics. The current CURARE architecture does not provide the possibility of defining explicit curation workflows that can compose one or several services for providing a solution. This would allow data analysts to choose services according to both their data requirements their objectives and other functional and non-functional qualities criteria. For example, choosing reliant services, choosing the metrics and dependencies of these services according to data collections. The objective would be to provide data curation and exploration workflows for data collections composing services according to QoS criteria. Workflows could be shared with other data analysts as cases to be applied and reused for other tasks.

HUMAN IN THE LOOP BASED DATA EXPLORATION

Data curation and exploration is an important step to integrate data collections and provide users with a unified view. However, data collections integration cannot be completely addressed by purely automated methods [START_REF] Li | Crowdsourced Data Management : A Survey[END_REF]. Therefore, it is demanding to develop 48 A Brontobyte is a unit of data that represent a very large number of bytes. It is often compared to approximately 1000 Yottabytes; the specific number being 10 27 bytes. 49 After the brontobyte comes "geopbyte" (a thousand brontobytes)10 30 bytes.

6-170

effective techniques and systems that integrate the intervention of humans to serve the data integration problem.

Recent technology trends (such as touch screens, motion detection, and voice recognition) are widening the possibilities for users to interact with systems, and many informationprovision industries are shifting to personalized processing to better target their services to the users' wishes. The issue with data collections curation is that it is important for some applications in electronic social sciences, in digital humanities, in neurosciences to track the operations applied to curate and explore them. Since data collections are potentially used by potentially millions of users and processed by millions of processes, it is important to have automatic and fine control on the operations applied on them. The emergence of blockchain approaches [START_REF] De La Rosa | A survey of Blockchain Technologies for Open Innovation[END_REF], [START_REF] Lin | A Survey of Blockchain Security Issues and Challenges[END_REF], [START_REF] Zheng | Blockchain Challenges and Opportunities : A Survey Shaoan Xie Hong-Ning Dai Huaimin Wang[END_REF] that keep track of operations in an anonymous way can be a novel approach for having a decentralized highly distributed and collaborative data curation model and thereby provide new alternatives to store, disseminate and exploit data collections.