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1 | The physics of quantum mate-
rials

1.1 Introduction

Quantum materials [83] is a new term that was introduced in condensed matter physics to unify
all materials in which strong electronic correlation governs physical properties of the system (e.g.
Mott insulators and superconductors) and materials whose electronic properties are determined
by the geometry of the electronic wave function (e.g. topological insulators). The union of
these two groups is that any conventional explanation based on non-interacting constituents
or Fermi liquid theory fails to describe their emergent properties– that is, properties that only
appear by intricate interactions among many degrees of freedom, such as charge, spin, orbital,
and topological nature of electrons [175] (figure 1.1). These emergent phenomena often give
rise to phase diagrams accompanied by phase transitions typically with no well-defined order
parameter or, if any, with an unusual complex one [38], for instance topological order.

Before getting into the two important subgroups of quantum materials, I briefly recall some
fundamentals of the Fermi liquid theory.

Figure 1.1: The pentagon shows various degrees of freedom of quantum materials. These entangled
constituents determine the collective behavior of the system, such as magnetic and electric properties.
Adopted from [175].

.

1.2 Fermi liquid theory

The simplest way towards understanding the electronic properties of a quantum material is to
describe its ground state as well as the lifetime of possible excitations. We can begin by an

19
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example: the propagation of a single electron in a many-body system can be explained by the
probability amplitude that an electron added to a Bloch state with momentum k at a time t will
still be in the same state after a time |t−t′|. This can be mathematically described by one-particle
spectral function A(k,ω) for an N-particle system:

A±(k, ω) =
∑
m

|〈ψN±1
m |c±k |ψNi 〉|2δ(ω − EN±1

m + ENi ) (1.1)

Here, A±(k, ω) is the partial spectral function for addition (+) or subtraction (-) of one particle
to or from a given state. The |ψNi 〉 is the wave function of the initial state with energy ENi
and the |ψN±1

m 〉 is the wave function of the final state with energy EN±1
m . The c±k is the cre-

ation/annihilation operator of an electron with wavevector k. Various interactions in the system
for instance, electron-electron and electron-phonon correlations or impurity-scattering, lead to
a correction in the single-particle spectral function that can be expressed in terms of the electron
proper self-energy: Σ(k, ω) = Σ

′
(k, ω)+ iΣ′′(k, ω). The self-energy is actually written as the sum

of individual contributions from the mentioned interactions. Its real and imaginary parts contain
all the information on the energy renormalization and lifetime of a free electron with the bare
band energy εk and momentum k that propagates in a many-body system. The spectral function
of an interacting system can be written in terms of the self-energy as follows:

A(k, ω) =
−1

π

Σ′′(k, ω)

[ω − εk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
(1.2)

In section 3.2.3, I show how ARPES extracts A(k,ω), however the exact calculation of Σ
′
(k, ω)

and Σ′′(k, ω) that bring much information on the many-body system is an extremely difficult task.
In the presence of electronic correlation, the problem can be treated by considering an interacting
Fermi-liquid system as suggested by Landau in 1959 [95]. The basic idea behind the Fermi-
liquid theory is to gradually introduce interactions to a non-interacting fermion system so that it
remains at equilibrium and its ground state adiabatically transforms into the ground state of the
interacting system. Within this viewpoint, the lowest-lying excitations above a metallic ground
state, created by addition or removal of an electron in an interacting system, can be described
by a free particle with a finite lifetime since it can be scattered out of a Bloch state by collisions
with other electrons. This quasiparticle has the same charge and spin as electrons but has an
enhanced effective mass. Therefore, the sharp Fermi sea is now replaced by a discontinuity at
the Fermi momentum (k = kF ) with a finite probability of finding electrons above the Fermi
level even at T=0. According to this theory, the ground state of strongly interacting fermions
can either be a sea of noninteracting electrons or a state with spontaneously broken symmetry,
such as superconductivity, that is induced by strong interactions [134]. The spectral function for
correlated systems, equation 1.2, can be divided in two parts, a coherent part with poles and an
incoherent smooth part without poles:

A(k, ω) = Zk
Γk/π

(ω − εk)2 + Γ2
k

+Ainch (1.3)

where Zk = (1−∂Σ′/∂ω)−1, εk = Zk(εk+Σ′), and Γk = Zk|Σ′′|. The Zk accounts for the discon-
tinuity in the Fermi-Dirac distribution mentioned earlier. The Ainch accounts for the incoherent
part. The picture that these complex equations illustrate is simple— the collective behavior of an
interacting system can be explained by a quasiparticle with a renormalized energy εk and mass
m∗=Zk

m that propagates through an incoherent surrounding that reflects the "dressing" of that
quasiparticle. Different decay processes such as electron-hole, electron-plasmon and electron-
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phonon interactions contribute differently to the lifetime of the quasiparticle that is inversely
proportional to the width of its peak, i.e. τ ∝ Γ−1

k . At a given temperature, the width of the
peak at each wavevector is proportional to (k−kF )2. By increasing the temperature, the lifetime
of the excitations decreases and results in a broadening of the quasiparticle peak that is propor-
tional to T2 [146]. The Fermi liquid model of correlated electrons in metals is able to explain
the T2 temperature dependence of resistivity by electron-electron interactions. It also explains
the linear dependence of the electronic heat capacity to temperature [102].

The Fermi liquid theory does not posit entanglement or topology of the electronic wave
function in its perturbative approach. It only states that the ground state of all arbitrarily strong
interactions is in one-to-one correspondence with a non-interacting system. On the one hand,
this implies that the mass of the quasiparticle should be renormalized to illogic values (∼ 104)
in some cases. On the other hand, the nature of the ground state of a Fermi liquid achieved
by adiabatically renormalizing strong interactions might be far different from the reality. Here
comes the examples from two principal subsets of quantum materials: Mott metal-to-insulator
transition and topological materials which explicitly manifest the hallmarks of the Fermi liquid
breakdown.

1.3 Strongly correlated materials: Metal to insulator transi-
tion

The electronic correlation is a measure of how much the movement of one electron is influenced
by the presence of all other electrons. Concisely, it refers to all factors that influence the prop-
agation of an electron among the sea of other electrons. Most importantly, we are interested in
the case where the Coulomb repulsion between electrons leads to their spatial arrangement in
such a way that the position of one electron is coupled to the position of others. The correlation
also comprises the exchange interaction that arranges the spin configuration of a system.

These systems escape the Fermi liquid description and are called strongly correlated systems.
They show a variety of emergent phenomena such as metal-insulator transitions, half-metallicity,
charge-density waves, and so on. I focus on the first group.

Some materials show metal to insulator transition (MIT) [121]. In particular, systems like
correlated transition metal oxides with partially filled d-orbitals. They have a low electronic
conductivity, which varies with temperature or chemical substitution to the point that it can
undergo a first order metal to insulator transition. The lack of conductivity in such compounds
was first explained by De Boer and Verwey [35] in case of nickel oxide, which according to
the band theory is expected to be a metal. They explained that a moving electron is attracted
to the hole on the initial atom if it cannot overcome the potential barrier on another atomic
site. This reduces the frequency of the electron transition from one site to another. However, a
small deviation from stoichiometric composition, such as electron or hole doping, can alter the
conductivity.

Mott [124] described this scenario in terms of electron-hole pair formation. In order for the
material to conduct, either the activation energy in the insulating state should be greater than
the pair binding energy or the density of electrons should be high enough to screen the Coulomb
attraction effects. He also predicted that a cubic crystal of one electron per atom [125] with
lattice parameter d is insulator if d is large (but not so large to prevent the tunneling). In this
view, he explained that by applying high pressure to the system a metallic conductivity should
be observed because this prevents pair formation and increases the number of free electron per
site to one. A metal to insulator transition that is purely driven by electronic correlation while
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maintaining the crystal symmetry is also called a Mott transition and the insulating phase is a
Mott insulator. Here, the "electronic correlation" refers to the correlation between the spatial
positions of electrons due to Coulomb interaction. Few years later Hubbard [71] tried to theo-
retically present a model that captures the essence of the Coulomb interaction in narrow energy
bands. His simple and approximative theory supposes that the model system can be treated in
the atomic limit— that is, an electron is "on" a specific atom. This is particularly true for the
3d-orbitals as their small radius confines electrons around the nuclei of the solid and therefore
the Coulomb repulsion becomes important. The Hubbard model takes into account a single-
band however, a consistent description of the electronic systems requires more realistic models
including orbital degrees of freedom and a generic multiband Hubbard model.

The single band Hubbard Hamiltonian can be written as:

H = −
∑
ii′,σ

c†iσtii′ci′σ +
∑

ii′,jj′,σσ′

Uii′,jj′c
†
iσc
†
i′σ′cjσcj′σ′ (1.4)

The first term is the kinetic term in which tii′ describes electron hopping from one lattice
site i to another i′. The strength of the hopping is controlled by the effective wave function
overlap of neighboring atoms (bandwidth). In the second term describing the electron-electron
interaction, Uii′,jj′ is related to the integral of the Coulomb interaction between two adjacent
sites. The creation and annihilation operators for an electron on site i with spin σ are c†i,σ and
ci,σ, respectively.

The solution of the above Hamiltonian is a hard task; however, some simplifications already
give insight to the underlying physical phenomena to be understood. Assuming that the atoms
are well separated and the overlap between neighboring orbitals is very weak, tii′ can be replaced
by a constant, t, for nearest neighbors and zero otherwise. t is about 1 eV for transition metal
oxides. On the other hand, the screening of core electrons and d-electrons makes the Coulomb
interaction between one site and its neighbors negligible. The on-site Coulomb interaction for
3d-electrons is about 20 eV while for the nearest neighbor it is of order of 5 eV. Thus, it is
legitimate to drop off all electron-electron interactions except the on-site one described by U.
The Hubbard model is then reduced to:

H = −t
∑
〈ij〉

a†iσajσ + U
∑
i

ni↑ni↓ (1.5)

Here, 〈i, j〉 is the nearest neighbor interaction and niσ = a†iσaiσ is the occupation number of
the site i with spin σ.

Intuitively, the Hubbard model is based on purely phenomenological grounds: the bandwidth
t measures the electrons tendency to minimize their kinetic energy by delocalizing. On the other
hand, double occupancy of a lattice site causes an energetic penalty associated with the mutual
Coulomb interaction.

In the simple case of half-filled systems (n=1 for each site) with very small bandwidth,
Hubbard finds the Mott insulating phase with two energy bands separated by U. The general
concept of these bands for strongly correlated systems can be understood as follows: in these
systems, adding or removing electrons from a given atom leaves it in an excited configuration.
This excited state is scattered by not only the Coulomb repulsion of other electrons but also
by different degrees of freedom inside the system such as spin or orbital momentum. This
incoherent propagation of the excited states forms broad bands separated by some amount that
basically describes the energy necessary to take an electron and put it on a distant atom where
another electron already exists. The first band below the Fermi level containing all localized
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Figure 1.2: (a) Density of states of a Mott insulator. (b) Phase diagram of a generic stoichiometric
high-Tc cuprate superconductor.

electrons is called the lower Hubbard band (LHB) and the unoccupied band above the Fermi
level corresponds to the upper Hubbard band (UHB), figure 1.2 (a).

Mott insulators are the parent compounds of stoichiometric high-Tc superconducting cuprates.
By adding or removing electrons to such ground state, the half-filled system experiences a com-
petition between the hopping or Coulomb repulsion between electrons. This competition leads
to a multiplicity of emergent phases as show in figure 1.2 (b).

It should be highlighted that not all MIT’s are due to electron-electron interaction. A change
in the crystal structure, such as Peierl’s distortion, or a change in the magnetic structure at
Néel temperature also leads to the gap opening [167]. The latter insulating phase is caused
by long-range antiferromagnetic ordering and is called a Slater insulator. Another example is
the Anderson localization of electrons due to some impurities in the system that results in a
non-conductive behavior [3]. In my PhD, I only worked with materials whose phase diagram is
explained by electronic correlation and they are called Mott-Hubbard materials.

The role of the magnetic ordering was not a priori discussed in the Hubbard model however,
later Mott could derive the Néel temperature for transition metal compounds from the interplay
of Coulomb interaction and bandwidth [126]. He concluded that TN should be around 100 K.
In this point, the distinction between a Slater and Mott insulator in the antiferromagnetic phase
is delicate. In a Mott insulator (with U/t >> 1) the magnitude of the gap resulting from U does
not really change across the Néel temperature. On the contrary, in a Slater insulator the system
gets metallic above the TN and the key role is played by the exchange interaction.

Despite the simplicity of the Hubbard model picture, the solutions of strongly correlated
electron systems near the Mott transition has remained an endless challenge over decades. The
transition involves entangled wave functions for many-body systems with different parameters
such as spin and spatial degrees of freedom [83]. Various analytical or numerical methods have
been proposed so far to elucidate the phase diagrams of correlated materials [7, 43, 75, 98]. In
the following subsections, I briefly present different theoretical approaches that are commonly
used to derive the density of states of moderately and strongly correlated materials.

1.3.1 Theoretical models

We have seen that the Fermi-liquid theorem is able to explain the temperature dependence of
macroscopic properties, such as conductivity or magnetic susceptibility, of a weakly correlated
system based on the excitation spectrum of the electrons. The density functional theory (DFT),
on the other hand, is able to predict the band structure of these materials with a good approx-
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imation. However, in the presence of strong electron correlation the great difficulty originates
from the nonperturbative nature of the problem as well as several competing physical mecha-
nisms. The Hubbard model then demands a dynamical approach, which is best captured by the
dynamical mean-field theory (DMFT).

1.3.1.1 Density functional theory

In DFT [69, 89] the total energy of the interacting many-body system is written as a functional
of the electron density ρ(r):

Γ[ρ(r)] = T [ρ(r)]︸ ︷︷ ︸
kinetic term

+

∫
Vcr(r)ρ(r)d3r︸ ︷︷ ︸

potential energy of the crystal

+
1

2

∫
ρ(r)ρ(r′)
| r− r′ | d

3rd3r′︸ ︷︷ ︸
Hartree-Fock term

+Exc[ρ(r)] (1.6)

In the last term, Exc contains all information about the exchange and correlation. It has gra-
dient expansions of electron density and needs further simplifications in order to render the
DFT Hamiltonian solvable. Then, minimizing the energy of the system together with the self-
consistency condition leads to a correct ground state density. Various kinds of approximations
have been used to consider exchange-correlation interactions. For instance, in BaNiS2, which
is a moderately correlated metal, generalized gradient approximations (GGA) [143] or hybrid
functionals such as HSE (Heyd-Scuseria-Ernzerhof) [68] can be applied for the band structure
calculations. I will show the results in chapter 5.

In GGA, the Exc term is expressed in terms of the electron density and its first gradient. In this
way, the electron-electron interaction and the total energy of the system gets more realistic with
respect to the local density approximation (LDA) in which one assumes a homogeneous electron
density. In GGA, the on-site Coulomb interaction of localized electrons is not correctly described.
To circumvent this problem, on can treat the Coulomb interaction as a statistical mean-field of
the localized electrons. This method is called GGA+U and can be used for weakly correlated d-
or f -orbitals.

The HSE is a particular hybrid functional that is used as another class of approximations
to the exchange-correlation energy functional in DFT and is mostly used for metallic systems
[6]. It was first introduced for molecular systems but is getting more and more popular in solid
state physics as well. It uses an error function screened Coulomb potential and a parameter that
describes the range of interactions (whether they are short-range or long-range). The hybrid
functionals are nonlocal and orbital dependent.

During my PhD, I had the opportunity of interacting with M. Casula from Paris 6 University
who performed the theoretical calculations on the systems I studied. The experimental and
theoretical band structure of BaNiS2 and BaCoS2 are presented in section 4.2 and 4.5.

1.3.1.2 Dynamical mean-field theory

The DMFT is based on mapping the Hubbard model onto a single-site Anderson impurity model
(AIM) embedded in an effective field that is determined by self-consistency condition [50]. This
mapping is exact in the limit of large lattice coordination [48, 49]. In DMFT, spatial fluctuations
are supposed to be frozen and we only deal with quantum fluctuations at a given site that occur
due to the interaction of the degrees of freedom at this site, e.g. spin, with an external bath.
This greatly simplifies the spatial dependence of correlations. The bath is the mean-field of all
degrees of freedom on other sites of the lattice and can be thought of as a reservoir of non-
interacting electrons. The quantum state of one site constantly evolves in time as it absorbs or
emits electrons from the reservoir with the probability amplitude of Vν (figure 1.3).
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Figure 1.3: DMFT describes the interaction between one site and a bath. The quantum state of the
site varies in time as electrons are emitted or absorbed by that site with the amplitude of Vν . From
[91].

The analogy to the Anderson impurity model is now clear; one can treat the lattice site as an
impurity to the conduction band that is described by the bath:

HAIM = −µ
∑
σ

c†0,σc0,σ + Un0↑n0↓ +
∑
ν,σ

εbathν nbathν,σ +
∑
ν,σ

(Vνc
†
0,σa

bath
ν,σ + h.c) (1.7)

The first two terms are the lattice site’s Hamiltonian. The bath has energy levels of εν with
occupation number nν,σ for each spin. The hopping of electrons between one site and the bath
is explained by the annihilation and creation operators that for the lattice site and the bath are
(cν,σ,c†ν,σ) and (aν,σ,a†ν,σ), respectively.

Just as DFT gives the exact density of the ground state, the impurity model gives the correct
local Green function in DMFT:

G[∆(ω)] =
∑
k

(ω − Σ[∆(ω)]− tk)−1 (1.8)

The frequency dependence of the Green function represents the dynamical aspect of the
DMFT, i.e. the quantum state of the site evolves in time. The self-energy term is Σ[∆(ω)] and the
hybridization function ∆(ω) is the ability of an electron to jump in or out of an atom at a time
scale of 1/ω. The Fourier transform of the Hubbard hopping amplitude appears in the Green
function as tk.

In the end the DMFT energy functional, Γ[ρ(r), G], is written as an exact functional of the
electron density and the local Green function and has a form similar to the equation 1.6. By
minimizing the energy and applying the self-consistency condition, DMFT gives an explicit ap-
proximation of Exc[ρ(r), G] and hence, of the spectrum of strongly correlated systems. More
specifically, one can study the evolution of the density of states as correlations are increased.
The limits of the Hubbard model U → 0 and U → ∞ gives a metallic and insulating phase as it
has been discussed before, figure 1.4. For intermediate values of U, the spectrum presents com-
mon features of both metallic and insulating phase; a quasiparticle (QP) peak at the Fermi level
accompanied Hubbard bands. The width of the quasiparticle reflects the hopping amplitude of
electrons. As U is enhanced, the electrons tend to get more localized. The QP peak weakens and
shrinks while the spectral weight is transferred towards the lower and upper Hubbard bands.
These three bands are analogous to the spectrum of the Andreson impurity model. A metal to
insulator transition occurs for very large U that is able to suppress the density of states at the
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Figure 1.4: (a-d) Density of states from DMFT in strongly correlated materials with respect to the
ratio of U (Coulomb repulsion) and W (bandwidth), from [91]. (e) Approximate phase diagram
for the Hubbard model with nearest-neighbor and next-to-nearest-neighbor hopping t2/t1 = 1/

√
3.

The first-order paramagnetic metal to insulator transition ends at the critical point (square). The
system then goes to the crossover region. The phase diagram is calculated for a single-band model
and is adopted from [50].
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Fermi level and opens a gap of order U between the LHB and UHB.
DMFT also succeeded in constructing an approximate phase diagram of strongly correlated

materials with respect to the ratios of T/W and U/W [50], where W is the bandwidth, figure 1.4
(e). At low temperature the systems orders antiferromagnetically (AF) for both the metallic and
insulating phases. As the temperature increases the magnetic order vanishes and paramagnetic
phases appear. At high temperature, the limit of metallic and insulating behavior merges to a
crossover region. In this region, the QP peak of the metallic precursor dramatically smears out
and in the insulating phase the spectral weight of the LHB gradually fills the gap [119]. The
crossover regime can be viewed as a bad quasi-insulating behavior.

1.3.2 V2O3, a prototype Mott-Hubbard material

Vanadium sesquioxide, (V1−xMx)2O3 is a textbook example of a Mott-Hubbard system [115,
117] and a benchmark to compare different theoretical models for strongly correlated systems
[120, 138]. Its phase diagram spanned in the temperature-doping space displays three phases: a
paramagnetic metallic (PM), a paramagnetic insulating (PI), and an antiferromagnetic insulating
(AFI) phase, figure 1.5 (a). As seen in the resistivity curve figure 1.5 (b), a first order transition
from the PM to AFI phase is observed at lower temperature, TN , accompanied a structural and
magnetic order phase change. This transition corresponds to a sharp jump of about 6 orders of
magnitude in the resistivity. A second first order transition is also seen at higher temperatures
with no crystal symmetry breaking and is assigned to the Mott transition from the PM phase to
the PI phase. Here, the resistivity change is less abrupt and is about one order of magnitude.
The transition into the insulating state can be triggered by increasing temperature, increasing
chemical substitution in Cr or by decreasing pressure P. For instance, for Cr-doping more than
17%, the metallic state is completely suppressed. An increase of Cr doping decreases the AFI
gap and increases the PI one. In fact, the most widely studied group of vanadium sesquioxide
family is the chromium-doped group [45, 60, 119]. Early studies [77, 115, 116] have shown
that decreasing concentration of vanadium by ∆x ∼ -0.01 is equivalent to an applied pressure of
∆P ∼ 4 kbar. Alternatively, the chemical substitution with titanium corresponds to an increase
of pressure.

In vanadium sesquioxide even the PM phase is characterized by strong Coulomb-correlation
effects: bad metallic behavior with the resistivity of ρ = 2×104 Ωcm at ambient temperature
[94]. A phase mixture between PI and PM phases, called the crossover regime, happens above
the critical point at around 400 K [119].

1.3.2.1 Crystal structure and electronic configuration

In the PI and PM phase the compound has a corundum structure and the symmetry space group
is R3c [116], figure 1.6. The unit cell structure can be viewed as the stacking of octahedra
with 6 oxygens and a vanadium in the middle coordinated by oxygen ligands in a trigonally
distorted octahedral fashion, figure 1.6 (a). This distortion is increased by a tilt of the c axis
when crossing from the PM phase to the AFI phase. The AFI phase crystal structure is monoclinic
and its symmetry group is I2/a.

In V2O3, the most crucial distance in order to understand the Mott transition is the vertical
V1-V4 distance, which is smaller than the basal V1-V2 distance [155]. In the Mott insulating
phase, the c-axis length decreases. Therefore, two consecutive octahedral groups get closer along
the c-axis while the V1-V4 distance increases. The reverse occurs in the metallic phase [116],
figure 1.6 (b). The sizeable change in the lattice parameter indicates an important coupling
between electronic and lattice degrees of freedom. The order parameter of the Mott transition
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Figure 1.5: (a) Phase diagram of V2O3 as a function of chemical substitution and temperature. (b)
Resistivity perpendicular to the c axis of he crystal vs. temperature for several doped samples. From
[115].

Figure 1.6: (a) Crystal structure of V2O3 from [155] in the high-temperature paramagnetic phase.
The green circles indicate the V atoms. The violet circles are oxygens. (b) Arrangement of atoms
in the PI and PM phase. a and c are the units cell parameters and d is the distance between the
neighboring vanadium atoms.
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Figure 1.7: Variation of c/a during the Mott transition.

in V2O3 compound can be defined as the c/a ratio, figure 1.7. Since the transition is a first
order one, the variation of c/a has a large hysteresis with respect to the temperature and the
sample shows a phase coexistence even above the critical point. The phase coexistence has been
observed and confirmed by scanning photoemission microscope [104].

There have been many attempts to explain the Mott transition in V2O3 and the spin structure
of the antiferromagnetic insulating phase [23, 64, 155]. The octahedral crystal field splits the
d-orbitals of vanadium atoms into the lower lying t2g and the higher lying eσg states located at 3
eV above the Fermi level [57]. Furthermore, the trigonal distortion lifts the degeneracy of the
lower lying t2g states and splits into a single a1g and the twofold degenerate eπg states. The hy-
bridization between the two nearest vanadium atoms, V1 and V4, along the c-axis causes a large
splitting between bonding a1g and antibonding a∗1g states. In spite of that, the DMFT+LDA calcu-
lations have shown the a1g orbitals remains mostly unoccupied in the PI phase [64], figure 1.8,
whereas the eπg orbitals are occupied by almost one electron each. In V2O3, the PI phase can thus
be viewed as a half-filled two-band Mott insulator stabilized by the correlation-enhanced trigo-
nal field that pushes above the Fermi energy the a1g orbitals. The occupancy of the a1g orbitals
indeed jumps across the doping- or temperature driven Mott transition causing the opening or
closure of a gap. This highlights the crucial role of the electron correlations in the MIT in V2O3,
which is stabilized by the trigonal distortion [149], [148]. Moreover, it has been demonstrated
that the on-site Coulomb energy U does not change through the MIT [45]. Therefore, the physics
of the system is best described by the filling-controlled MIT. Some bulk-sensitive photoemission
experiments [45, 120] have revealed the evolution of the density of states across the MIT as well
different regions of the phase diagram, figure 1.9.

1.4 Dirac semimetals

Dirac settled a reconciliation between special relativity and quantum mechanics [36]. In con-
densed matter physics, the energy scales that determine the electronic properties of a system is
in order of few electronvolts that is insignificant compared to the rest mass of an electron (0.511
MeV). Therefore, the relativistic quantum mechanics seems to be redundant at first glance. How-
ever, the discovery of graphene proved that even slow electrons propagating through a peri-
odic crystal potential can give rise to relativistic fermions, with linear band dispersion, that are
uniquely described by the Dirac equation. Shortly after, the revolutionary topological insulators
were discovered. These materials are insulators in bulk, however their surface states display
massless Dirac fermions with metallic behavior that are protected by the topology of the bulk
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Figure 1.8: (a) Energy level splitting in V2O3. (b) Orbital geometry. The bonding a1g orbital is along
the c-axis and while the eπg orbital is in the a-b plane. (c) LDA+DMFT spectra for paramagnetic
(V0.962Cr0.038)2O3 (iso.) and V2O3 (met.) at U = 4.5, 5, and 5.5 eV, and T = 1000 K [64].
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Figure 1.9: (a - c) High-resolution hard X-ray photoemission spectra of (V1−xCrx)2O3 (x=0 and
0.015) near the Fermi level in all phases. (d) Difference between the AFI and PI spectra. The lower
Hubbard band is located at the same energy for all of the studied point within the phase diagram
suggesting that the parameter U remains constant. From [45].
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electronic wave function. The ensuing years of intense research were accompanied by realizing
topological states also in metals or semimetals, and not only in insulators. Weyl, line-node, and
Dirac semimetals are examples of these novel states that have protected and robust Weyl/Dirac
nodes in momentum space thanks to the interplay of the topology of wave functions and crystal
space group symmetries. These novel quantum materials can be viewed as the 3D analogue of
graphene but with some rich and important differences.

I start the discussion on Dirac semimetals (DSM’s) by a brief reminder on topological insula-
tors and graphene.

1.4.1 Topological insulators

The notion of the topology of wave functions was first introduced in condensed matter physics
by the discovery of the quantum hall effect (QHE) in two-dimensional materials that in the
presence of magnetic field reveal robust edge conductance. The existence of such edge states is
rooted in the topology of the bulk. The following years of research widened the horizon by the
emergence of topological insulators (TI) [62, 81, 82, 150]; materials with a gapped bulk state
while their edge or surface has protected conducting states. The novelty of these materials is
that in contrast to the QHE, the conductance occurs without an external magnetic field—that
is, the time-reversal symmetry (TRS) is respected, and combined with the spin-orbit coupling
(SOC), results in robust states at the boundaries of the material. A two-dimensional TI (2D TI)
can be viewed as two copies of quantum hall states each for one spin direction (up or down)
that leads to a one-dimensional spin-polarized current along the edges [128]. It is also called a
quantum spin hall insulator. This well-defined spin-dependent direction of propagation in real
space is translated into momentum-spin locking in momentum space. In the same way, a three-
dimensional TI (3D TI) manifests 2D spin polarized current on its surface. The edge/surface
states behave like a massless relativistic particle and are described by Dirac equations:

H = }v~σ.~q (1.9)

where v is the velocity, and σ and q present spin and momentum (relative to the Dirac point),
respectively. Figure 1.10 describes the principles of a 2D and 3D TI.

The momentum-spin locking for a relativistic particle is defined as chirality. The chirality of a
relativistic particle is right handed if its spin points in the same direction as its momentum, while
its chirality is left handed if its spin points in the opposite direction. The difference between
the number of right-movers and left movers defines a topological invariant. Gapless edge or
surface states occur whenever the topological invariant changes across a boundary. In contrast to
electronic bands in a normal metal, these states are not spin degenerate except in their crossing
points. The time-reversal symmetry implies that states at momenta k and -k have opposite spin
and thus the spin must rotate with k around the Fermi surface— the electron acquires a non-
trivial Berry phase while circling the Fermi level. But what is a Berry phase mathematically?
How is it related to the topology of the bulk states? According to the Bloch’s band theory, the
electronic states within a unit cell are described by un(k), where n is the band index and k is the
crystal momentum. In quantum mechanics, the Berry phase arises in a cyclic adiabatic evolution.
In our case, this means when the wave function walks on a closed path around a given point in
the momentum space. This particular point is the intersection of the edge/surface state and the
Fermi level. The contribution of the band n to the total Berry phase is:

Nn =

∫
(~5× ~A) · d

~k

2π
(1.10)
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Figure 1.10: (a) Schematic figure of a 2D TI. (b) The electronic band structure presents gapless chiral
edge states. (c) Current distribution on the surface of a 3D TI. (d) The electronic band structure of
Bi2Se3. (c) Schematic of the spin-polarized Dirac-like surface-state dispersion, from [150].

Here, ~A = −i〈un(~k)| 5k |un(~k)〉. From the above equation one can see that the Berry flux
Ω(~k) = ~5× ~A behaves like a magnetic field in momentum space. However, unlike the physical
magnetic field, this Berry field is allowed to have magnetic monopoles that, as we will see farther,
are called Weyl points. I will come back to this point later.

The sum of Nn for all occupied states below the Fermi level is called the Chern number
(introduced by Thouless et al.) and defines the topological invariant of a bulk insulator. If
in addition to having TRS the lattice is also inversion symmetric then the calculation of the
Chern number greatly simplifies [44]. One only needs to know the parity eigenvalue of the
2mth occupied energy band ξ2m, at each time-reversal invariant momentum Γi. At these special
points k ≡ -k (mod G) where G is a reciprocal lattice vector. We start by calculating the following
quantity:

δi =
∏N

m=1
ξ2m(Γi) (1.11)

The topological invariant ν is then determined by:

(−1)ν =
∏

i
δi (1.12)

The parity eigenvalues ξ2m(Γi) = ±1 and are tabulated in the literature. The number of
time-reversal invariant momenta in 2D and 3D is four and eight, respectively.

The surface states of a 3D TI has important similarities with the Dirac cone in graphene
although the origin of each one is different. In a topological insulator, the bulk is insulating
while the non-trivial surface states are metallic. The absence or presence of these states depends
on the topology of the full states wave function. On the contrary, the Dirac cone in graphene is
a direct consequence of the electronic band structure while no non-trivial topology is involved.
I dedicate few paragraphs to recall fundamentals of graphene.
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Figure 1.11: (a) Graphene lattice with sublattices A and B. (b) Hexagonal Brillouin zone. The
inequivalent valleys are K± and the wavevector of q is measured from the center of the valley. (c)
ARPES spectra of monolayer graphene, showing several slices through the Dirac cone, from [165].

1.4.2 Graphene, a prototype of Dirac materials

Since the discovery of graphene in 2004 followed by observations of the classical and quantum
Hall effects [132], it has been subject of an extensive experimental and theoretical investigation
that has never ceased to come up with surprising phenomena. The two-dimensional layer of car-
bon atoms are arranged on a honeycomb lattice that can be viewed as two interpenetrating trian-
gular lattice A and B, figure 1.11 (a). The two sublattices are like two degrees of freedom and the
electron has a probability amplitude to be on each sublattice. This resembles the case with spin
one-half particle, where an electron can be in spin-up state |↑〉, spin-down state |↓〉, or any su-
perposition of them. By analogy, the sublattice basis is therefore called a pseudospin. The hexag-
onal Brillouin zone (BZ) is shown in figure 1.11 (b). The unique electronic band structure of
graphene presents conical valence and conduction bands that meet each other on the edge of the
Brillouin zone at the so-called degenerate Dirac points. These six points are divided into two non-
equivalent sets in the momentum space called K+ and K− or valleys [47]. These points differ by
their chirality which will be explained later. In a nominally undoped sample, the Dirac points oc-
cur exactly at the Fermi level however, by applying magnetic field or back voltage, as in the case
of figure 1.12, one can tune the Dirac point position in energy [13, 131] and turn the semimetal-
lic state to a metallic one. The existence of Dirac points near the Fermi level is responsible
for many of important properties of graphene such as high electron mobility and conductivity.

Figure 1.12: An applied voltage
shifts the position of the Fermi
level with respect to the Dirac
point and changes the conductiv-
ity.

The valley degree of freedom is sometimes referred to as val-
ley isospin and should not be confused with sublattice pseu-
dospin. The eigenstates within a single valley (isospin), have
different amplitudes on A or B sites that can be interpreted as
pseudospins. I emphasize that the inequivalence of the two
Brillouin zone corners, K+ and K−, has nothing to do with
the presence of two sublattices, A and B, in the honeycomb
lattice.

The underlying interest for graphene can be concisely de-
scribed as follows: First, graphene offers ballistic transport
and its conductivity never drops below a minimum value
[131] that corresponds to the quantum unit of conductance
σ ∼ e2/h, figure 1.12. This minimum of conductivity is a
unique and intrinsic property of electronic systems described
by the Dirac equation leading to unusual spectroscopic and
transport properties [24]. This implies that in 2D Dirac
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fermions, no localization is expected [1].

Second, the charge carriers in graphene travel as effectively massless and relativistic particles
with a fixed speed of c∗ ∼ c/300, as it follows from the nearly linear dispersion of the bands
close to the Dirac K-points [131], c.f. equation 1.9. Figure 1.11 (c) shows the electronic band
structure of graphene obtained by ARPES. Graphene has four Dirac points: 2 valleys and 2
spins. The Dirac points in graphene are protected by time-reversal and inversion symmetry in
a honeycomb lattice unless there is a perturbation perpendicular to the a-b plane. For example,
the SOC makes the Dirac fermions massive and gaps the Dirac point.

Third, graphene has many-body interactions including electron-electron and electron-phonon
interactions [165]. A comprehensive knowledge of graphene is essential to understand super-
conductivity in carbon nanotubes [87] or graphite intercalation compound [59]. Only very
recently, during the course of my thesis, superconductivity has also been surprisingly discovered
in bilayer graphene under certain conditions. I will return to this later.

1.4.2.1 Electronic chirality

The conical band dispersion close to the K-points as well as the pseudospin described before
make it possible to extend the notion of chirality to the electronic states of graphene. Here,
the projection of the pseudospin onto the direction of the wavevector q defines the chirality of
pseudospin. For the given K+ valley, the momentum vector reads q=(q cosϕ, q sin ϕ) as seen in
figure 1.11 (b). The angle ϕ specifies the direction of the electronic wavevector measured from
the center of the valley. On the other hand the relative phase between the wave functions on
each sublattice A or B gives the pseudospin wavevector σ = (cos φ, sin φ, 0). For the conduction
band ϕ = φ and for the valence band ϕ = φ + π. The chiral operator σ.q

q then defines the
chirality for each K-point. For the K+ point, the chirality is -1 (+1) for the valence (conduction)
band. On the contrary, the K− valley has the opposite sign chirality for the corresponding bands.
Interaction energies are lowered when most electrons have the same chirality, just as interaction
energies in ferromagnets are lowered when most particles have the same spin [47]. Therefore,
this difference in chirality between positive and negative energy bands tends to protect the
system from magnetic impurities and other instabilities.

1.4.2.2 Superconductivity in graphene

As previously mentioned, bilayer graphene reveals zero resistance under the condition that each
sheet is offset by an angle of∼1.1◦ with respect to the other one [22]. In this way, the band struc-
ture shows a flat band region at the Fermi level and it implies that the electrons are completely
localized the real-space. The superconductivity has been shown to occur at 1.7 K. However,
what makes it peculiar is that graphene attend the superconducting state without the need of
chemical doping and only by applying small gate voltage, i.e. with one-ten-thousandth of the
electron density of conventional superconductors described by production of Cooper pairs. The
key is that the number of charge carriers in graphene is electrically tunable.

More generally, twisted bilayer graphene shows a phase diagram that resembles that of high-
temperature cuprate superconductors [21]. Figure 1.13 (a) shows the calculated band structure
for the bilayer graphene at θ= 1.05◦. By applying gate voltage the position of the Fermi level
changes and if it lies at the half-filling (n ∼ -1.4× 1012 cm−2) of the lower-energy band, an
insulating state appears that bears similarities to a Mott insulator. Superconductivity is achieved
as one dopes slightly away from the Mott-insulating state, figure 1.13 (d).
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Figure 1.13: (a) The calculated band structure of twisted bilayer graphene at θ= 1.05◦ in the new
Brillouin zone. (b) The density of states zoomed in to -10 to 10 meV. The purple lines show the DOS
of two sheets of graphene without neither layer interaction nor twist angle. The red dashed line
shows the Fermi energy at half-filling of the lower branch. The superconductivity is observed near
this half-filled state. (c) Measured resistivity for two twisted angles. (d) The phase diagram of the
bilayer graphene with angle 1.05◦. The color scale represents the resistivity for various temperature
and carrier number. From [22].

Figure 1.14: Schematics of a Dirac/Weyl semimetal phase in β-cristobalite BiO2. (a) The symmetry
protected Dirac point occurs at three symmetry related X-points. (b) Four Weyl points migrate to the
boundaries of the Brillouin zone due to the broken inversion symmetry. (c) A magnetic field breaks
the TRS and results in two Weyl point. (d) Gapped phase is obtained by breaking the fourfold
rotation symmetry. From [198].
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1.4.3 Dirac and Weyl semimetals

Dirac (Weyl) semimetals [4, 180, 191] are novel states of 3D quantum materials in which valence
and conduction band touch each other at discrete points of the Brillouin zone and disperse
linearly in all direction around these Dirac (Weyl) points. Their low-energy physics is described
by the Weyl Hamiltonian HWeyl(k) = vijkiσj that can be viewed as a generalized version of
the Dirac Hamiltonian. For the moment, I call the band crossing point a Weyl point and the
reason will be clarified farther. With the same analogy as in topological insulators, we can
define the robustness of a Weyl point at k by calculating the Berry flux on a surface surrounding
that point, c.f. equation 1.10. The time-reversal symmetry maps k to -k, and therefore reverses
the momentum space magnetic field; Ω(~k) = −Ω(~k). In this case, a Weyl point is mapped into
another Weyl point in the momentum space with the same chirality. If the inversion symmetry
is additionally respected, it results in Ω( ~−k) = Ω(~k) and under this symmetry a Weyl point is
mapped into another Weyl point at -k with opposite chirality. The combined operation of both
symmetries requires that each band is doubly degenerate for each k, i.e. En,↑(~k) = En,↓(~k).
Naturally, at the crossing point of these bands we have four-fold degenerate linearly dispersing
bands. This point is now called a Dirac point that can be viewed as two copies of a Weyl node
with opposite chirality and is explained by a 4× 4 Dirac Hamiltonian:(

ĤWeyl(~k) 0

0 ĤWeyl(~k)∗

)
(1.13)

Here, k measures momentum relative to the Dirac point and ĤWeyl(~k) is a right-handed Weyl
Hamiltonian, while ĤWeyl(~k)∗ is its left-handed (time-reversed) counterpart.

The degeneracy at the Dirac point is not topologically protected since its net Chern number
is zero and residual perturbative terms in the Hamiltonian can hybridize the constituent states
with different Chern number and gap the electronic bands. However, in particular situations this
mixing can be forbidden by space group symmetries. Two ways have been suggested so far:

i) The Dirac point results from an unavoidable band crossing that occurs in pair along a
symmetry axis. The bands should belong to different representations. In this "band-inversion"
mechanism, the Dirac semimetal is not truly symmetry-protected; it is possible to uninvert the
bands and annihilate the Dirac points pairwise by gradually tuning the Hamiltonian without
changing the space group. The Na3Bi is an example of such band-inversion mechanism that
supports Dirac points on its six-fold symmetry axis [101, 182]. Another well-known example
is Cd3As2 [129, 183], figure 1.16 (a). In both families of compounds, the low-energy physics
is controlled by a single band inversion occurring near the Γ point of the Brillouin zone. If the
symmetries of the system is lowered, the resulting gapped phase will be a topological insulator.

ii) For system with SOC, the protection of the Dirac point is assured by nonsymmorphic
symmetries1 of the crystal space group, such as glide planes and screw axes, on the special k-
points of the Brillouin zone boundaries with four dimensional irreducible representation. This is
called a "symmetry-enforced" mechanism [198, 199] and makes a single Dirac point to appear
at a time-reversal invariant momentum when the conduction and valence bands touch. In this
way, removing the Dirac point is not possible without an explicit breaking of the symmetry.

1.4.3.1 Weyl semimetals

If either time-reversal or inversion symmetry is broken, a parent Dirac point separates into Weyl
points with different chiralities and one obtains a Weyl semimetal. In a magnetic crystal, the

1Nonsymmorphic space groups are distinguished by the existence of symmetry operations that combine point group
operations with translations that are a fraction of a Bravais lattice vector.
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Figure 1.15: (a) Fermi arc in a 3D Weyl semimetal. (b) Pair of surface state (SS) Fermi arcs in a
3D DSM. (c) Surface states in a 3D TI.

Figure 1.16: (a) ARPES spectrum of Cd3As2. The compound shows a very high mobility of ∼ 106

m/s. The Dirac points are located at 250 meV below the Fermi level and their corresponding position
in the Brillouin zone is show in the right side. (b) Band dispersion of the topological insulator Bi2Se3.
The surface states connect two gapped states. (c) The critical composition to achieve a DSM starting
from the topological insulating phase is δ = 0.5. Adopted from [129].

broken TRS results in two Weyl nodes with opposite Chern number [20]. On the other hand, in
a non-centrosymmetric crystal the total number of Weyl points occurs as a multiple of four since
the total Chern number must vanished on the Brillouin zone [192]. Figure 1.14 schematically
presents a Dirac semimetal and possible ways of having a Weyl semimetal.

Weyl points are monopoles of Berry flux and are Chiral due to a nontrivial topology. One
strong manifestation of such topology is the emergence of spin-polarized surface states that
connect two different Weyl points together. These so-called Fermi arcs are a direct consequence
of the fact that Weyl nodes are sources and sinks of Berry flux [4]. The Fermi arcs can also occur
in a DSM where a pair of protected surface modes connect the Weyl points embedded in the
partner Dirac nodes, figure 1.15. Some ARPES measurements have revealed double Fermi arcs
on Na3Bi [189] and Cd3As2 [197]. In contrast to 3D TI’s, in 2D or 3D DSM linearly dispersing
valence and conduction bands do not have spin polarization as these cases arise from the bulk
itself not from the surface states. However, the spin polarization lurks in Fermi arc surface states.
Before giving some detailed examples of DSM’s, it is worth recalling that while surface states of
a topological insulator do not have kz dispersion due to their intrinsic 2D nature, the Dirac point
of DSM disperses along the z-axis of the Brillouin zone.

1.4.3.2 Material consideration

The electronic systems with exotic Dirac fermions in 2D or 3D have been an active field of
research in recent years. Besides their fundamental interest from theoretical and experimental
point of view, their unique properties make them possible candidates for future applications
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Figure 1.17: (a) Crystal structure of ZrSiS together with the Brilluoin zone. The orange contour on
the Brillouin zone shows the Dirac line nodes. (b) The band structure along the ΓX shows two Dirac
cones. The one at X is protected by the crystal symmetry. (c) The iso-energy surface spectrum at
the Fermi level reveals the Dirac line nodes. The Dirac node is slightly above the Fermi level. From
reference [162].

in optoelectronic and fast photodiodes. Therefore, an ongoing effort in this field is to search
for new materials that manifest Dirac/Weyl fermions. In addition to the crystal structure that
should allow particular symmetries, two crucial ingredients are large enough band gap and
band inversion at or close to the Fermi level. These criteria imply that Dirac/Weyl fermions
should be the principal constituents to determine physical properties of the systems without
intervention of other bands at the chemical potential. The band gap magnitude is determined
by the electronegativity difference of components, ∆χ. A big electronegativity difference tends
to localize electrons on one site and therefore the band gap increases. On the other hand, the
ordering of bands is related to the strength of spin-orbit coupling. Therefore, it seems that one
can lean on the ratio between Z and ∆χ and look for a compromise between a moderate band
gap and the possibility to have band inversion.

Moreover, it has been shown that DSM appears at a phase transition between a topolog-
ical insulator and a trivial one when both TRS and inversion symmetry are preserved [191].
Therefore, a straightforward way to realize a DSM is to appropriately dope the parent topolog-
ical insulator with an element that respects the above-mentioned criterion (Z/∆χ) and allows
a symmetry protected band inversion. Neupane et al. [129] showed that by the alloying of
well-known topological insulator Bi2Se3 with the critical composition (like 5% of sulfur) a DSM
emerges at the phase transition, figure 1.16 (c).

1.4.3.3 Dirac semimetals in 2D: ZrSiS

So far, we have seen 3D topological semimetals and different mechanisms to realize them. Al-
though the examples of these materials are growing, it seems that the realization of DSM in 2D
beyond graphene is not straightforward. Young et al. [198] proved that in fact a nonsymmor-
phic symmetry of a 2D time-reversal symmetric crystal can cause the conduction and valence
bands to touch and persist even in the presence of strong spin-orbit coupling. Such a symmetry
protected Dirac point was also a plausible scenario in 3D. In 2D, the nonsymmorphic symme-
tries are screw axis, glide mirror lines and glide mirror planes (noted by g) combined with a
half-translation t by a lattice vector. By lowering the symmetry, the nonsymmorphic symmetry
{g|t} still protects degeneracies along the line or in the plane of the Brillouin zone where gk = k.
In contrast to graphene, these Dirac points cannot be gapped by SOC. If in addition the crystal
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has inversion symmetry, the bands are Kramers degenerate for all k. This leads to a fourfold
degenerate crossing at the high symmetry points of the Brouillin zone. The authors also showed
a simple model based on s-orbitals in a 2D square lattice and demonstrated the emergence of
several Dirac nodes due to the combined effect of time-reversal, inversion, and nonsymmorphic
symmetries of the crystal space group. The first experimental realization of 2D Dirac cones was
accomplished in ZrSiS [162]. This system hosts a line of Dirac nodes at the chemical potential
as shown in figure 1.17 that is slightly gapped with SOC. The line connects the midpoint of ΓM
and ΓX directions. These bands show linear dispersion for an unprecedented range in binding
energy ( > 1 eV) with a Fermi velocity of 4.3 Å. eV that is slightly smaller than that of graphene
(6.7 Å. eV). In addition, it also reveals a 2D Dirac point below the Fermi level at the X point
that is protected by the nonsymmorphic symmetry through a glide plane. This Dirac cone is
generated by p-orbitals in the square sub lattice of Si and does not have any kz dispersion as
observed by photon energy dependent ARPES measurements.

1.4.3.4 Massive Dirac fermions in 2D: Fe3Sn2

Figure 1.18: Massive Dirac fermions in
Fe3Sn2. (a) The hexagonal BZ. (b) Dou-
bled Dirac cone along the dashed green
line in the BZ.

I now present an example of 2D Dirac fermions in
a correlated semimetal that originates from the d-
orbitals. The electronic band structure of the d-
electron bilayer kagome metal Fe3Sn2 shows rich spec-
trum of electronic excitations at/close to the Fermi
level with hexagonal symmetry [196] as seen in fig-
ure 1.18 (a). This is consistent with the metallicity of
the compound. Specifically, linearly dispersing bands
are observed below the Fermi level at the corners of
the Brillouin zone, namely K and K’ points, similar
to graphene. Figure 1.18 (b) shows Dirac cones at K
point for the bilayer kagome structure. We observe two
interpenetrating cones that are in fact caused by the bi-
layer structure. The cones have a mass gap of 30 meV,
which correspond to massive Dirac fermions. The elec-
tronic wave functions acquire a non-trivial Berry phase
around these points and result in a Berry curvature-
induced Hall conductivity. This behavior is a conse-
quence of the underlying symmetry properties of the
bilayer kagome lattice in the ferromagnetic state and
the atomic spin-orbit coupling. The Dirac nodes show
a kz dispersionless feature that confirm their 2D nature
confined in the Fe layers.

1.5 BaCo1−xNixS2, a moderately correlated system

BaNiS2 was first grown and studied by Grey [56] and soon after the ensuing compound BaCo1−xNixS2

[112, 113, 172] attracted much interest due to some similarities with its contemporary coun-
terparts high-Tc cuprate superconductors [99]. The quasi two-dimensional tetragonal crystal
structure of BaCo1−xNixS2 belongs to p4/nmm (D7

4h) space group. It consists of nonsymmor-
phic square-pyramidal structure with a gliding plane symmetry that relates two edge-sharing
upward- and downward-pointing pyramids of Co1−xNixS5 together, figure 1.19 (a). The barium
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Figure 1.19: (a) Tetragonal P4/nmm structure of BaNiS2 and its corresponding Brillouin zone. (b)
Interatomic distances inside the unit cell. (c) Evolution of the lattice vector sizes as a function of
chemical substitution in Ni.

atoms are packed in between these pyramids. The planar Ni-S distance is 2.35 Å, and the apical
distance is 2.32 Å leading to a total vertical displacement of 0.77 Å for Ni atom towards the api-
cal sulfur [114], figure 1.19 (b). The lattice constants for BaNiS2 are a= 4.430 Å and c= 8.893
Å. The Co-rich compound appears to be a Mott insulator and its structure is a slight monoclinic
distortion of BaNiS2 with a small change in the angle from 90◦ to 90.45◦ this is also accom-
panied by slight variation in the interatomic distances. Figure 1.19 (c) shows the evolution of
lattice vector sizes as a function of chemical substitution [113].

The importance of BaCo1−xNixS2 is that it shows a metal to insulator transition from an
anomalous metallic state to an antiferromagnetic insulating phase upon doping in Co (xcr ∼
0.22). The electronic and magnetic properties of the system in both phases bear similarities with
their counterparts in the normal state of high-Tc superconductors however, no superconductivity
is observed in BaCo1−xNixS2 neither by temperature nor by pressure [159, 193]. To study
which properties of the anomalous states are critical for realizing a high-Tc superconductivity,
one should naturally compare their fundamental electronic and magnetic properties to those
of quasi 2D electrons in a non-Cu based compound that does not reveal superconductivity but
harbors a Mott-insulating phase.

This compound also reveal another MIT at higher temperature from the paramagnetic metal-
lic to a paramagnetic insulating phase (xcr ∼ 0.17) without any structural symmetry breaking.
This MIT is believed to be a Mott transition since it is merely driven by electron correlations.
Yasui et al. [195] showed that a pressure-induced insulator to metal transition is possible start-
ing from the antiferromagnetic insulating phase. For instance, in the case of BaCoS2 this critical
pressure is ∼ 13 kbar. They also depicted the phase diagram as a function of x, T, and p as
shown in figure 1.20. The phase diagram is very similar to the phase diagram of (V1−xMx)2O3.
However, in BaCo1−xNixS2 the MIT to the AFI phase upon doping is continuous in contrast
to (V1−xMx)2O3. One possible explanation for this second order phase transition can be the
disorder effect.

Several band structure calculations in 90’s [63, 88, 114] suggested that the DOS involves
several d-orbital band at or close to the Fermi level and as the binding energy increases the
dominant contribution of sulfur 3p-orbitals appears. Additionally, the theoretical Fermi surface
predicted a more 3D nature of the band structure for BaCo1−xNixS2 while cuprates have rather
a 2D electronic band structure. The photoemission spectroscopy of the electronic band structure
for various chemical substitution [92] suggested that the MIT in BaCo1−xNixS2 is of bandwidth
control nature, c.f. section 1.3. The relevant parameters for a model describing this compound
are tpd (hopping of electrons between d and p orbitals), Udd (electron correlation on d-orbitals)
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Figure 1.20: (a) Phase diagram of BaCo1−xNixS2 in the T-p-x space from [195]. (b) Phase diagram
in the T-x plane.

and ∆ (charge transfer energy). It was shown that the tpd decreases with a decrease in Ni
content while Udd (3 eV) and charge transfer energy ∆ (1 eV) do not change appreciably across
the phase diagram. In this way, the appropriate parameter to describe the MIT is U/W, where W
is the bandwidth and is proportional to tpd. A more detailed ARPES study on the metallic and
insulating precursors of the MIT shed more light on the discrepancies with respect to high-Tc
superconductors in terms of electronic band structure [159]. For instance, the shape of the Fermi
surface would exclude the possibility of nesting condition that is almost satisfied in cuprates.

BaCo1−xNixS2 remained silent for over a decade however, some recent theoretical and exper-
imental works put some overseen or neglected aspects of its electronic band structure in a new
perspective and revived the interest for this compound. The main research has been dedicated
to the insulating and metallic end members, BaCoS2 and BaNiS2, respectively.

BaCoS2 is a strongly correlated insulator that shows a magnetic transition at the Néel temper-
ature of ∼ 300 K. Reproducing the experimentally observed band gap of BaCoS2 (∼ 500 meV)
has for long time remained a challenge for theorists due to its strong electron correlation effects.
It has been proved that LDA+U calculations are only capable of reproducing the semiconduct-
ing nature of the electronic spectrum by taking into account the antiferromagnetic ordering as
well as the orthorhombic distortion of the tetragonal structure [200], figure 1.21. Theoretical
band structure calculation for BaCoS2 in the PI phase is pending and no experimental evidence
of the band structure is available to date. In my PhD, I studied the electronic band dispersion
of BaCoS2 in both AFI and PI phase and the result is presented in section 4.5. On the other
hand, although many theoretical calculations existed for BaNiS2 since many years, its k-resolved
band structure was only studied recently [156]. Some parallel band structure calculations by
DFT method within the GGA+U framework gives a good agreement with the ARPES spectrum
figure 1.22. The on-site Coulomb repulsion is indispensable due to the transition metal Ni and
its intermediate filling. These calculations also confirm that the dominant contribution to the
DOS close to the Fermi level comes from the Ni d-orbital. While previous works also gave the
evidence for the presence of linearly dispersing bands along ΓM direction, Dirac fermion and
topological interpretations of such features in the electronic band structure of BaNiS2 was not
yet provoked at the time. Santos-Cottin et al. referred to the linearly dispersion bands as Dirac-
like bands for the first time. They also showed that each branch is orbital polarized; one is with
the out-of-plane dz2 character and the other one has the in-plane dx2−y2 character with respect
to the Cartesian coordinate defined along the diagonal of the S4 pyramids. The main part of
my thesis was devoted to the study of these two particular bands. More specifically, we tried to
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Figure 1.21: Results of the antiferromagnetic LDA + U calculation of the total and partial densities
of states for BaCoS2: (a) total density of states; (b) partial density of Co d-states; and (c, d) partial
density of p states of apical and in-plane sulfur atoms, respectively. From [200].

elucidate whether the band crossing is accidental and if not, how the Dirac point is protected.
In addition, all theoretical calculation so far have predicted a three-dimensional electronic na-
ture of BaNiS2 [63, 156] in contrast to the transport measurements that suggests rather a quasi
2D electronic system. No photon-energy dependent ARPES data elucidating the kz dispersion
is available so far in the literature. However, some indirect way of Fermi surface mapping by
quantum oscillations have been recently performed and will be presented in subsection 1.5.2.

I now review in the following some of interesting features of the electronic band structure
properties of BaNiS2.

1.5.1 Very large Rashba band splitting in BaNiS2

The advent of topological insulators and topological semimetals and their potential application
in spintronics was followed by an unceasing effort to search for novel materials allowing the
realization of topologically non-trivial phases on their surface or bulk. As mentioned before,
the SOC is the crucial parameter in these materials that adjusts the band gap as well as band
ordering. An alternative way of splitting electronic bands into spin-polarized states can be the
Rashba effect— if an electric field is applied perpendicular to the plane containing spin, the band
splitting occurs. The Rashba effect also occurs naturally in some crystals without an external filed
that might result in (hidden) spin-polarized bands.

It is well known that in crystals with sufficiently low crystalline symmetry, more specifically
the inversion asymmetric structures, the SOC acts as an effective magnetic field that is propor-
tional to the crystal potential and momentum. This effective magnetic field then splits the oth-
erwise spin-degenerate bands and results in spin-polarized bands. This is known as Rashba (or
Dresselhaus) effect. However, upon the discovery of spin-polarization even in centrosymmetric
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Figure 1.22: (a) 26 eV ARPES bands compared with the GGA+U bands with (light blue line) and
without (yellow line) spin-orbit coupling. (b) Calculated electronic band structure of BaNiS2 by
GGA+U method. Left panels are total (red line) and projected (black area) density of states for each
3d orbital component. False colors indicate the d-orbital component for each band. The symmetry
character of the relevant bands near the Fermi level are labeled. From reference [156].
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Figure 1.23: (a) Crystal structure of NaCaBi. The two separate sectors (CaBi layers) forming
the inversion partners used for spin-polarization analysis are labeled by α and β. (b) Local spin
polarization is represented by green (on the α-sector) and orange (on the β-sector) arrows for the
split valence bands. From [205]. (c) Two inversion partner inside the unit cell of BaNiS2 are called
sector 1 and sector 2. (d) The band dispersion along RA shows a band split of 150 meV. The left
panel shows the second derivative of the ARPES spectrum [156]. (e) Schematics of the conduction
band splitting at R point. The contribution of the electronic wave function from each sector is shown
for each sub-band. kR shows the k-shift due to the band splitting.

nonmagnetic crystals [76, 152], the initial description of band splitting underwent a fundamen-
tal correction. Zhang et al. [205] demonstrated that if the site point group of an atom within
a 3D crystal lacks inversion symmetry, that atom might feel a site dipole field and therefore the
SOC at that site, plus the asymmetric potential surrounding it, result in a local Rashba effect.
However, even in the absence of a polar field, the inversion asymmetry of that site is sufficient
to cause degeneracy lifting. The net spin polarization of the crystal is the linear superposition of
all these atomic spin-polarized state that would vanish in total if the crystal is centrosymmetric.
In fact, in this case the spin polarization of each atomic site is compensated by its inversion
related partner. Therefore, rather than being intrinsically zero, the spin-polarization is hidden
by compensation. In figure 1.23 I show the example of centrosymmetric NaCaBi. The unit cell
can be divided in two sectors giving asymmetric environment for each Ca atom within the CaBi
planes. The valence band splitting is shows in figure 1.23 (b). We see that the two components
of the band have opposite spin polarization, each spatially localized on one of the two separate
sectors (α or β) forming the inversion partners. However, the net spin polarization is zero due
to the crystal inversion symmetry.

Recently, a similar hidden spin-polarization was also demonstrated in BaNiS2 both experi-
mentally and theoretically. In fact, the gliding plane symmetry breaks the local inversion sym-
metry for each Ni site inside the pyramids, figure 1.23 (c). This creates a crystal field from Ni
to apical sulfur as large as 1.4 V Å−1 pointing in different directions for each pyramids that are
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related by the inversion symmetry and are called sector 1 and sector 2. As a result, the valence
band shows a band split of 150 meV at the border of the Brillouin zone at the R point as shown
in figure 1.23 (d) and (e). The conduction band that only slightly crosses the Fermi level at R
point shows similar splitting. However, due to its very small electron pocket at the Fermi level,
it is not possible to resolve the two branches experimentally. By some chemical substitution,
one can slightly fill this band and change the chemical position so that Rashba splitting becomes
detectable by ARPES. Another possible way is to apply time-resolved ARPES technique and tran-
siently populates this electron pocket and study its dispersion. In fact, pump-probe technique
allows detecting the band dispersion of unoccupied states as we will see in subsection 3.4.1.

These results demonstrate that although Ni is not a heavy element, the spin-orbit coupling
effect is amplified by local Rashba mechanism and leads to the hidden spin-polarized band
splitting in the centrosymmetric BaNiS2.

1.5.2 Quantum oscillations studies

In order to study a precise Fermi surface structure of BaNiS2, some quantum oscillations mea-
surements were performed [86]. In this technique, by controlling the strength and angle of the
magnetic field, the topology of the Fermi sheets in the three-dimensional space is mapped how-
ever, the position of the electron or hole pockets cannot a priori be recognized in the Brillouin
zone. Complementary ab-initio calculations are necessary to reconstruct a detailed map of the
Fermi surface (FS). During my PhD, I had collaborations with the group of A. Gauzzi in Paris
6 University. The theoretical GGA+ U calculations by M. Casula were not matching my photon
energy dependent ARPES measurements and the main discrepancy was due to the kz dispersion
of the electronic structure (I will show the detailed result farther in subsection 4.3). Therefore,
some modifications were brought to the theoretical model notably by adding a fraction of the
exact nonlocal exchange to the functional. By appropriately tuning the HSE hybrid functional,
c.f. paragraph 1.3.1.1, a qualitative agreement with the quantum oscillation measurements and
ARPES data was achieved. This corresponds to a 7% of the exact exchange, while the screening
length is kept equal to the original 0.200 Å−1. In fact, the semimetallic character of BaNiS2 is
responsible for an enhanced screening of the exchange operator. The importance of nonlocal
effects was also investigated in iron pnictides [17, 173, 176] that are sometimes compared with
BaNiS2 for their intermediately filled d-orbitals at the Fermi level, the P4/nmm space group and
the compensated semimetallic nature.

Figure 1.24 (a) shows the oscillations in the magnetoresistance as a function of magnetic
field. Its Fourier transform shows few peaks and only three peaks (α, β, and γ) are attributed
to the Fermi surface. The parameters extracted for these orbits are shown in the table 1.24
(b). The experiments have suggested that the projection of the pockets that give rise to the
frequency of β and γ on the kx − ky plane is elliptical. Further analyses have shown that in
fact the β and γ orbit should belong to two different pockets while α and γ belong to the same
pocket located along the c-axis of the Brillouin zone. The β pocket should also occurs four time
on the Fermi surface to maintain compensation. The total number of electrons and holes is
∼ 5 × 1019 cm−3. On the other hand, the pocket at the center of the Brillouin zone is rather
quasi 2D while the β pocket has a conical dispersion along the kz. Theoretically, these features
are best reproduced by applying the HSE functional. Figure 1.24 (c) shows the calculated Fermi
surface for GGA+U (U= 3 eV) and HSE 7% exchange interaction. The position of each orbit
observed in the quantum oscillation measurements are recognized and shown by arrows. The
γ orbit in the quantum oscillations is an electron pocket while the β orbit is a hole-like pocket
located at the midpoint of the ΓM direction.
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Figure 1.24: (a) Left panel: oscillating part of the longitudinal magnetoresistance ∆R. Right panel:
Fourier transform of the oscillations. (b) Parameters relevant to the three detected orbits projected
in the kx − ky plane. The cross section areas are given in percentage of the first Brillouin zone area.
The ratio between the big and small axis of the elliptical pocket is labeled by ξ and m∗ shows the
effective mass. (c) Calculated Fermi surface. The high symmetry direction are shown in the right
panel. The γ and β pockets are of electron and hole nature, respectively. From [86].
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1.5.3 Similarities of BaCo1−xNixS2 with iron pnictides

As mentioned above, BaCo1−xNixS2 bears resemblances with a new family of high-Tc supercon-
ductors, the iron pnictides. The discovery of iron-based superconductors [80] has sparked off a
growing interest in studying interacting multiband systems. Before finishing this chapter, a brief
reminder on salient features of iron pnictides will be pedagogical.

In contrast to the high-Tc superconducting cuprates, whose parent compounds are Mott in-
sulators, in pnictides the superconducting state originate from a spin density wave state (SDW).
Moreover, the strength of correlations in pnictides remains moderate in their entire phase di-
agram. The quasi 2D crystal structure of pnictides consists of iron-pnictogen planes (Fe - As,
P) with a charge reservoir layer in between. The normal and superconducting states have a
tetragonal structure while doping can induce an orthorhombic crystal structure accompanied by
magnetic ordering. All the families of pnictides are semimetals, with several small hole and elec-
tron pockets at the Fermi level with d-orbital character. Explaining physical properties of these
compounds as well as the origin of the superconductivity demands an inclusive theory taking
into account spin density wave fluctuations, moderate correlations, and multi-orbital situation.

BaAs2Fe2 is a widely studied example of pnictides. It becomes superconductor either by hole
doping (replacing barium atoms with potassium), or electron doping (for instance replacing iron
with cobalt). The crystal structure and the phase diagram of the electron-doped compound is
shown in figure 1.25 (a) and (b). The optimum superconducting transition temperatures are not
reached until the long-range structural and magnetic transitions are both completely suppressed.
Figure 1.25 (c-e) shows the band structure and Fermi surface of BaFe1.85Co0.15As2. The hole and
electron pockets with d-orbital nature are observed at Γ and M points, respectively [16, 108]. On
the other hand, thanks to the well-defined orbital character of the bands close to the Fermi level,
by appropriately selecting the polarization of the incident light, one is able to discern bands with
different d-orbital components [16, 108]. I describe how it is possible in subsection 3.2.4.

In iron-based superconductors, common upward and downward shifts of the electron and
hole bands, respectively, relative to band structure calculations are often found. Therefore, a
shrinking of the FS with respect to the theoretical predictions is frequently observed in ARPES
or quantum oscillation measurements [106, 135, 174]. This FS shrinking was first attributed
to electronic correlation effects and especially inter-band scattering that results in the nesting
of the wavevector observed on the FS of the iron-based compounds [17, 173]. However, it has
been shown after that non-local self-energy modifications could greatly enhance the agreement
between the theory and experiments.

It is thus logical to compare BaCo1−xNixS2 with iron pnictides as both compounds offer
moderately correlated multi d-orbital systems that is best explained theoretically by non-local
k-dependent self-energy.
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Figure 1.25: (a) Crystallographic structure and (b) phase diagram of BaFe2As2. (c,d) ARPES in-
tensity plots of BaFe1.85Co0.15As2 (Tc = 25.5 K) as a function of wavevector and binding energy
measured at 8 K along the ΓX and the ΓM together with the band dispersion from the first-principle
calculations for kz=0 and kz=π

c . (e) The Fermi surface shows a small electron and hole pocket.
From reference [173].
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2 | Time-resolved studies of quan-
tum materials

2.1 Introduction

The notion of time-resolved experiments in an ultrafast fashion was first introduced in chemistry;
the act of initiating (pumping) and recording snapshots (probing) of chemical reactions with a
femtosecond time resolution [203]. On this time scale, the vibration of atoms or molecules is
"frozen out" and one is able to observe the complete evolution of an event stimulated by an
ultrashort pulse. The same idea soon pervaded to physics but with another perspective.

In fact, the discovery of strong correlation in transition metal oxides evoked much intellectual
and technological interest. However, the subtle interplay among their atomic structure, charge,
spin, and orbital dynamics, c.f. section 1.1, was far complex to yield any fundamental under-
standing both from theoretical and experimental point of view. Among fundamental issues is,
for instance, to determine the coupling strength among different degrees of freedom as well as
the hierarchy of important couplings. In any experiment performed at equilibrium, all of these
degrees change equally and simultaneously and one can only gain a time-integrated insight of
the entire process. The key to tackle this problem is the application of ultrafast pump-probe
techniques that transiently decouples different degrees of freedom by an ultrafast pulsed stim-
ulus, and lets us observe the reaction that appears in others within an ultrashort time interval.
The study of these interactions and competitions between the relevant degrees of freedom gives
insight into the macroscopic functionality of correlated materials. Particularly, femtosecond laser
pulses act only on the electrons and set them to an out-of-equilibrium distribution inexplicable
by the Fermi-Dirac distribution. The ensuing dynamics is followed by evacuating the excess of
energy to the lattice via various processes and the rate at which this relaxation occurs is related
to the coupling constants.

Figure 2.1: Pathway for photoinduced
phase transition along the dynamical
free-energy landscape from [204].

On the other hand, on the importance of quan-
tum materials Orenstien says "it is precisely in such
system–where complexity rules– that the most interesting
and technologically important properties might emerge",
[134]. In fact, the phase diagram of strongly corre-
lated systems shows multiplicity of nearly degenerate
ground states that some often lurk in slightly higher
free energy inaccessible via adiabatic thermal path-
ways. Femtosecond laser pulses might act as an ad-
ditional parameter to the control of the phase diagram
different from thermodynamic parameters like tem-
perature and pressure. They derive the material out of
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equilibrium in an ultrafast fashion and competing interactions might unveil and stabilize hidden
metastable phases, figure 2.1. This idea gives the opportunity of ultrafast control and manip-
ulation of materials. However, one needs to learn about the optimal excitation pathways that
can be, for instance, interband transitions or IR active phonons, to dynamically drive a phase
transition in an efficient way. The role of the time-resolved spectroscopy is to precisely quantify
the amount and the duration of the photoinduced modifications achieved by different pathways.

The importance of time-resolved experiments on quantum materials is not only limited to
strongly correlated materials. Topological materials reveal many interesting phenomena upon
photoexcitation. For instance, their bulk and robust surface states can generate different ultra-
fast response [58, 168]. More interestingly, it has been demonstrated that it is also possible to
manipulate their topological order and Berry phases only by applying appropriate light pulses.
Recently, the discovery of Dirac/Weyl semimetals have also shown their potential for optoelec-
tronic applications or fast photodetectors thanks to their very high mobility [103, 184]. Any-
how, before exploring the applications, a complete knowledge of a material’s (sub-) picosecond
response to an optical excitation such as relaxation dynamics of photoexcited carriers and their
coupling with lattice should be acquired.

In this chapter, I first describe some general aspects of out-of-equilibrium dynamics by in-
troducing relaxation processes as well as simple models to simulate the dynamics and extract
some important parameters from that. Then I give some examples of the time-resolved studies
on strongly correlated materials such as oxides of vanadium, showing the formation of pho-
toinduced phases and their similar dynamics. Then I present some time-resolved reflectivity
measurements on iron pnictide BaFe2As2. I also present few works on Dirac materials starting
from graphene and extending to Dirac semimetals. While extensive studies have been carried out
on numerous correlated materials, the time-resolved domain is relatively young for Dirac/Weyl
semimetals and is yet to be explored experimentally as well as theoretically. Specifically, the
study of photoinduced topological phase transitions offers one of the most exciting challenges
for the field.

2.2 Time-resolved studies: general considerations

2.2.1 Electron excitation and relaxation processes

A photon can be absorbed by electrons via two processes: interband and intraband transitions.
The first one describes the transition of the electron from one band to another. This transition
is possible in metals as well as in semiconductors or Mott insulators (since the photon energy
used for a pump-probe experiment is usually of the order of 1.5 eV). On the other hand, the
interaband transition defines an optical transition inside the same band and mostly occurs in
metals. The excitation of electrons occurs on a sub femtosecond timescale, and therefore can
be viewed as instantaneous compared to the pump pulse temporal length ( 50 - 100 fs). The
out-of-equilibrium excited electrons quickly thermalize by scattering and Auger-like processes
and this creates a density of hot electrons above the Fermi level. The thermalization implies
that the temperature of the electrons becomes well-defined by a Fermi-Dirac distribution. In a
non-correlated system, the electron-electron thermalization occurs in few tenth of femtosecond.
On this timescale, the electrons are practically disentangled from the lattice up to the time they
reach the maximum temperature determined by their specific heat and the pump power. The
electrons then quickly cascade down to the regions close to the Fermi level by evacuating their
excess of energy through different processes, for instance by emission of optical phonons. The
rate at which this relaxation occurs depends on the density of states of phonons accessible by
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Figure 2.2: Timeline of electron dynamics on the Dirac cone in graphene: (a) At time zero electrons
(black spheres) and holes (yellow spheres) are generated by 1.5 eV pump pulses (straight arrows).
(b)-(c) Within 30 fs the excited electrons and holes undergo scattering processes (b) within and (c)
between the bands by Auger recombination (black curled arrows) and electron-electron scattering
(magenta arrows). This leads to a thermalized hot electron distribution. (d)-(f) The decay dynamics
occurs within 200 fs by (d) emission of optical phonons (blue wiggled arrows), which is followed by
(e) slower supercollisions involving acoustic phonons (green wiggled arrows) and impurities. The
image is taken from [178].

excited electrons as well as the coupling strength between the electrons and phonons. The latter
is called the electron-phonon coupling constant and is of paramount importance in the study of
strongly correlated materials. It is well known that the fundamental principle for the conven-
tional superconductivity is the strong electron-phonon interaction that results in the formation
of Cooper pairs [30]. Once the electrons and phonons have reached the same temperature, the
relaxation is accompanied by the emission of acoustic phonons that evacuate the energy from
the photoexcited region through the entire sample and slightly heat it up. Note that during the
entire process of the relaxation, the scattering with impurities can also aid the relaxation, which
is often referred to as supercollision. The thermalization of the sample with the external envi-
ronment occurs at a very long timescale, for instance hundreds of nanoseconds or microseconds.
In the end, the final recombination of the electrons to their initial state is achieved. Figure 2.2
illustrates the above-mentioned picture of the electron dynamics in a pedagogical way for the
case of graphene. I explain the ultrafast dynamics of graphene in subsection 2.4.1.

Mathematically, the dynamics of the excited electron is captured by two simple models: two-
temperature and three-temperature model that I explain in the following.

2.2.2 Two-temperature model

The phenomenological two-temperature model (2TM) was first introduced by Allen [2]. This
model describes the electronic dynamics after excitation with femtosecond laser pulses and ap-
plies to metals and conventional metallic superconductors. He suggested that λ in the Eliashberg
generalization of BCS theory can be measured using by time-resolved techniques that at the time
was mostly limited to the time-resolved optical reflectivity experiments. The first systematic ap-
plication of this model to metallic superconductors was done in 1990 [15] who reported the
electron-phonon coupling constant of 0.08 for Cu and a very big value of 1.45 for Pb.

The idea behind the 2TM is simple. At first approximation, it considers that the temperature
is well defined for the electrons at each instant, i.e. they always follow a Fermi-Dirac distribution.
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In addition, the electrons and the lattice are two thermalized interacting bath with a coupling
constant between them that describes the energy transfer rate between the two and determines
the rapidity of the relaxation. The lattice, on the other hand, is described by the Bose-Einstein
distribution. The model neglects any diffusion driven by spatial inhomogeneities as well as
any acceleration due to internal electric field, and assumes that no other collision processes,
except electron-phonon scattering, is possible. Within this framework, the rate equations for the
temperature of electrons Te and that of the lattice Tl will be simplified as follows:

∂Te
∂t

= γT (Tl − Te) +
P (t)

Ce
(2.1a)

∂Tl
∂t

=
γTCe
Cl

(Te − Tl) (2.1b)

where Ce = γTe and Cl are the electronic and lattice heat capacities, respectively and P(t) is
the laser pulse temporal profile. The mean energy of phonon is given by 〈}ω〉. These equations
imply that the electronic temperature evolution follows an exponential decay with time-constant
equal to γ−1

T that is given by:

γT = (
3}λ〈ω2〉
πkBTe

)(1− }2〈ω4〉
12〈ω2〉k2

BTeTl
+ ...) (2.2)

This equation is obtained by a Taylor expansion in the high temperature limit— that is, when
both Te and Tl are much higher than the phonon energy. The second term in the parenthesis is
a first thermal correction factor that, along with higher order terms, is negligible in most of the
experiments.

I now add a little paragraph to describe how the absorbed laser power P (t) [J/cm3s] is
calculated. We have:

P (t) =
E

V.τ

2
√
ln(2)√
π

e−4ln2 t
2

τ2 (2.3)

where E is the mean pump energy and is obtained from the pump power, repetition rate, and
the reflectivity of the sample at the pump wavelength. τ is the pulse temporal FWHM and V is
the volume in which the energy is deposited. This volume can be assumed to be a cylinder with
area equal to the pump pulse size (FHWMd) and height equal to the penetration depth of the
pulse. Therefore it is written as V = π(FHWMd/2)2α−1 where α is the absorption coefficient.

By solving the rate equations, one can eventually estimate the electron-phonon coupling
strength λ. In paragraph 3.4.3.3, I will show how this is possible by aid of time-resolved re-
flectivity measurements. The pump fluence typically applied in pump-probe experiments is ∼1
mJ/cm2. The electronic maximum temperature is about thousands of kelvin and the relaxation
occurs from hundreds of femtoseconds to few picoseconds. The bigger the electron-phonon cou-
pling constant, the faster the decay dynamics takes place. The lattice heats up to about 20 K
once the electrons have completely relaxed their energy to the lattice.

In the end, it is worth mentioning that in the 2TM the Te and Tl are always higher than the
initial equilibrium temperature T0 because the heat diffusion effect is not taken into account.

2.2.3 Three-temperature model

The 2TM implies that the relaxation occurs with only one timescale that is related to the mean
energy of all phonons to which electrons are coupled. However, some time-resolved experiments
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on high-temperature superconductors such as Bi2Sr2CaCu2O8+δ suggest a decay dynamic with
two time constants [145]. The dynamics consists of a fast decay (∼ 110 fs) with a subsequent
energy bottleneck (∼ 2 ps) suggesting a strong anisotropy of the electron-phonon interaction.
This phenomenon can be interpreted as follows: the hot electrons start to relax by first getting
coupled to a subset of strongly coupled phonons whose temperature is indicated by Tp. These
phonons are also called hot phonons and constitute the fraction f of the total phonon density.
After some time, the electrons and hot phonons are thermalized and the phonon-phonon anhar-
monic scattering takes over the dynamics. This scattering occurs between the strongly coupled
phonons and the nearly non-interacting subset of phonons. To keep a similar terminology, we
can call the latter subset cold phonons that can be viewed as the lattice at temperature Tl and
comprises 1-f modes. With this approach, the rate equations involve three components: Te, Tp,
and Tl. The corresponding equations for Tp and Tl describe how these subsystems are heated up
by the energy that is lost in the electronic system. We have:

∂Te
∂t

=
P (t)

Ce
− 3λ1Ω3

0

~πk2
B

ne − np
Te

− 3λ2Ω3
0

~πk2
B

ne − nl
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∂Tp
∂t

=
Ce
Cp

3λ1Ω3
0

~πk2
B

ne − np
Te

− Tp − Tl
τB

(2.4b)
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Figure 2.3: Sketch of the 3TM.
Electron are coupled to hot and
cold phonons with λ1 and λ2, re-
spectively. Dashed black arrows
show the decay time constants.

where Cp and Cl are the heat capacity of the hot and cold
phonons, respectively. The distribution of electrons and hot
phonons is given by nj = (eΩ0/kBTj − 1) with j = e, p. The
electrons and hot phonons are coupled to each other by λ1

and the electron-phonon scattering with the 1-f lattice modes
that are more weakly coupled contributes to the temporal
evolution of Te with the coupling λ2. It should be mentioned
that in the original model introduced in [145] the coupling
between the electrons and cold phonons was supposed to be
negligible, and therefore was not taken into account. The
reason I add this term to the 3TM is that I will need it to better
describe my data in subsection 5.3.2. The decay time τβ de-
scribes the anharmonic decay of hot phonons and the relax-
ation of lattice due to diffusion takes place with a very long
time constant τc. Note that on the contrary to the 2TM, in the
derivation of the 3TM it is supposed that all phonons have the
same energy Ω0 which correspond to a delta function in the
phonon spectrum. The specific heat of hot phonons and cold phonons are Cp = 3fΩ0

∂np
∂Tp

and

Cl = 3(1− f)Ω0
∂np
∂Tp

, respectively. The total specific heat is given by Ctot = Cl +Cp and is found
in the literature. On the other hand, Cp is easily calculated as mentioned above but must be
multiplied by a factor of proportionality so that when f → 1, Cp satisfies Cp → Ctot. In the end,
the cold phonon specific heat Cl is deduced.
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2.2.4 Choice of the pump pulse wavelength

So far, some general aspects of the ultrafast electron dynamics has been highlighted. Another
important (and crucial) factor determining the fate of the electrons undergoing photoecxcitation,
is the pump wavelength. If the energy of the pump is higher than the band gap of the solid:
it excites all bands and no particular optical transition is triggered. During this process, the
electron-hole will scatter and all coherence of the light is lost. Therefore, it is called incoherent
pumping and has been vastly studied in many materials over decades. Among main motivations
for this type of experiments is, for instance, to study the electronic band structure of unoccupied
states and to find the coupling constants. In this way, it is also possible to transiently stabilize
new states of strongly correlated systems as Mott insulators with small Mott gap. In subsection
2.3.1, I give some examples.

Recently, the study of coherent pumping has attracted much more interest. The idea is to
perturb the material without losing the coherence of light and this is possible in two ways:
either by stimulating a resonant optical transition between two electronic bands, or pumping
with wavelengths below the band gap with mid-infrared (MIR) or terahertz (THz) pulses. In
the latter case, the pump can be resonant with a phonon mode [54, 204] and therefore, one
induces collective oscillations of the lattice corresponding to a given mode and observes the
effects of the electronic properties of the systems. It is also possible that the pump pulse is
not resonant with any electronic transitions or collective mode. Even though light is not doing
intraband transition, the electron in the solid will still feel the periodic perturbation due to the
light. Coherent pumping has opened a whole new domain in ultrafast physics to be explored
further over the next years. The novelty of this technique lies on the unique possibility that it
offers to manipulate the topology of the electronic wave function by light. I very briefly give an
example of such effort in subsection 2.4.3.

2.3 Out-of-equilibrium studies of (strongly) correlated mate-
rials

2.3.1 Instantaneous gap collapse in vanadium oxides

Some oxides of vanadium, for instance VO2 and V2O3, present MIT driven by enhanced electron-
electron repulsion that its origin is often unclear: it can be either the lattice distortion or the
electron localization on the atomic sites. This chicken and egg dilemma has been answered by a
combination of time-resolved techniques.

VO2 has a monoclinic insulating phase at low temperature (T < 340 K) while at higher
temperature it is a rutile metal. Cavalleri et al. were the first ones to show a photoinduced phase
transition of the insulating phase towards a transient metallic phase [26]. They later suggested
that this transition could not be explained by a mere electronic effect. Actually it appears due
to the coherent structural motion as observed in the time-resolved reflectivity measurements,
highlighting the dominance of the lattice over the electrons during the phase transition [25].
Few years later, the application of the time-resolved photoemission spectroscopy (tr-PES) shed
new light on the dynamics of the electrons [185]. Wegkamp et al. observed that the gap of
the insulating phase collapses immediately with the arrival of the femtosecond pulses, figure 2.4
(a), and there is no bottleneck due to the lattice [185]. They showed that the transient phase
reached by photoexcitation is different from the equilibrium metallic phase and it corresponds
to a monoclinic metal. The hot carriers relaxation in this novel phase takes 200 fs and then
the system evolves to the rutile metallic phase due to the heat delivered to the systems by
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Figure 2.4: Ultrafast transient phase in VO2 (from [185]). (a) Time-resolved density of states. The
dynamics of the excited electrons and holes are shown below the spectrum. (b) By photoexcitation
the monoclinic insulator phase passes through a non-thermal monoclinic metallic phase and then
eventually evolves to the rutile phase. The evolution of the DOS as a function of temperature are
shown. (c) Comparison between the photoinduced and thermally induced phases. (d) Theoretical
DOS for the equilibrium phase (blue curve) and the non-equilibrium phase (red curve). The latter
is obtained by introducing a dynamical screened Coulomb interaction to the self-energy. The shaded
curve corresponds to the DOS of the rutile phase.
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Figure 2.5: Ultrafast transient phase in V2O3 (from [96]). (a) Dynamics of the in-gap states. (b)
The transient metallic state is non-thermal with a lifetime of 1.7 ps. (c) Comparison of the A1g

frequency at equilibrium and out-of-equilibrium. (d) Schematics of the photoinduced gap filling
process.

laser pulses. The latter is a pure thermal effect. Once the heat is evacuated from the lattice,
the systems retrieves it insulating phase (hundreds of nanoseconds). Figure 2.4 (c) shows the
density of states for different time delays proving the non-thermal nature of the transient phase
for less than 1 ps.

The interpretation of this phenomenon was supported by theoretical calculations explaining
the extremely important role of the occupancy number of the localized d-orbitals that affects the
screened Coulomb interaction. The photoexcitation is accompanied by a depletion of the V 3d
valence band that increases the screening, modifies the electronic correlations, and results in an
instantaneous metallization of the system, figure 2.4 (d).

Vanadium sesquioxide, V2O3, is different from VO2 in that its high temperature phase is in-
sulating for the Cr-doped compound. Inspired by the above-mentioned studies on VO2 as well
as by the particular electronic configuration of V2O3, c.f. paragraph 1.3.2.1, one would naturally
ask what happens to the Mott insulating phase of V2O3 after photoexcitation. By combining
different pump-probe techniques, Lantz et al. [96] presented a comprehensive study on 2.8%
Cr-doped sample and pure V2O3 that belong to the paramagnetic insulating (PI) and paramag-
netic metallic (PM) phases, respectively. In the tr-PES experiments, they observed an ultrafast
formation of a transient metallic phase in the PI phase and an ultrafast loss of coherence in the
PM phase. The dynamics of the in-gap states of the PI phase suggests two time scales, figure 2.5
(a), 76 fs and 1.7 ps. By comparing the evolution of the DOS after photoexcitation and upon
heating, figure 2.5 (b), the fast component of the dynamics can be assigned to the hot electron
relaxation after photoexcitation and clearly indicates a strong electron-phonon coupling. The
second slower time constant can be viewed as the lifetime of the transient metallic state. Only
after 2 ps, the system has retrieved its thermal equilibrium that corresponds to a rise in the
temperature to 20 K further caused by the laser pulses. On the other hand, some parallel mea-
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Figure 2.6: Time-resolved reflectivity studies on Ba(Fe1−xCox)2As2. (a) Spectrum at 10 K showing
A1g mode. (b) Coherent optical lattice oscillation of the superconducting and metallic phases at 10
and 25 K. Damping time (c) and amplitude (d) as a function of the pump fluence. From [107].

surements with time-resolved optical reflectivity revealed the fully symmetric A1g mode after
pumping with 800 nm. Surprisingly, the mode displayed a significant blue-shift with respect to
the equilibrium frequency for both PI and PM phases, figure 2.5 (c). This photoinduced blue
shift is very rare, as one would naturally expect a red shift due to the heating effect of the ul-
trashort laser pulses. Such a blue-shift–a phonon hardening, is certainly non-thermal in nature.
In fact, the ultrafast metallization observed in the tr-PES and the hardening of phonon are very
close to what is expected from reducing the shortest distance between the vanadium atoms. On
the other hand, as the electronic structure is actually very sensitive to the trigonal distortion, a
relaxation of the in-gap states should also be accompanied by a relaxation of the lattice. These
results can be explained within a theoretical framework; indeed, in V2O3 the crucial role is
played by the fact that the unoccupied a1g electronic state is a bonding orbital which lies along
the c-axis. By pumping the system, we photoexcite the electrons to this bonding orbital which
transiently changes the specific filling of the orbitals close to the Fermi level. Hatree-Fock model
is sufficient to describe this gap collapse and the loss of coherence in the PM phase by the num-
ber of a1g orbital filling. The strong electron-phonon interaction should lead to a subsequent
non-thermal lattice modification mainly by the reduction of the vanadium distance along the
c-axis that stabilizes the non-thermal state for about 2 ps.

The common features between both oxides of vanadium are now clear. The (Mott) gap
filling is triggered merely by electronic excitation and is accompanied by the formation of a
non-thermal metallic phase that is stabilized by a lattice distortion.

For the case of V2O3, neither tr-PES nor tr-reflectivity is sensitive to the dynamics of the
lattice directly. However, some time-resolved X-ray diffraction measurements can disclose the
answer. I leave the discussion here and I will come back to it in section 6.1.
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2.3.2 Coherent optical phonons in iron pnictide superconductors

The mechanism behind the high-Tc superconductivity has remained a subject of debate over
years and the complexity arise from multiplicity of competing phases in the proximity of the su-
perconducting phase. The role of different degrees of freedom, for instance coherent phonons, in
mediating the phase transitions is the underlying question towards better understanding. Time-
resolved studies provides a direct way for observing lattice vibrations as a response to an ultrafast
stimulus. In this view, Mansart et al. [107] studied the time-resolved reflectivity changes of the
iron pnictide Ba(Fe1−xCox)2As2 with x=0.08 both below and above the Tc (24 K). Figure 2.6 (a)
presents the spectrum at 10 K. The decaying behavior is accompanied by coherent oscillations.
The oscillation frequency is 5.56 THz that corresponds to the fully symmetric A1g optical mode.
The amplitude and decay time of these phonons as a function of fluence is presented in figure
2.6 (c) and (d) for both high temperature and low temperature phases. The damping time of
the oscillations remains the same for all fluences and both phases. As expected, the phonon am-
plitude varies linearly with the excitation fluence, but with a slightly smaller slope with respect
to the metallic phase. The smaller slope below Tc can possibly be related to the breaking of
superconducting pairs induced by the pump pulse.

In the end the authors concluded that the fact that neither the damping time nor the phonon
frequency change between the two phases indicates that the fully symmetric mode is not in-
volved in the superconducting phase transition. However, as the wavevector of the A1g is close
to the center of the Brillouin zone, the role of other phonons remains unclear and deserves
further studies.

2.4 Out-of equilibrium studies of Dirac fermions

2.4.1 Dirac carrier relaxation in graphene

Any application of the ultra-high-mobility materials with Dirac-like dispersion in future devices,
demands investigating the relaxation dynamics of photoexcited carriers. An interesting question
that can be addressed is whether it is possible to have carrier multiplication—that is, the gener-
ation of more than one electron-hole pair per absorbed photon and this is only possible if these
pairs can be efficiently separated before they lose energy and merge to the same distribution
[78, 186]. In fact, carrier multiplication (CM) after photo-excitation can occur only if impact
ionization dominates over other competing relaxation channels such as Auger heating or emis-
sion of phonons. The ultrafast dynamics of excited carriers in graphene was studied by means of
time-resolved ARPES [78] by pumping with infrared 1.5 eV pulses and probing the system with
33.2 eV pulses. Figure 2.7 (a) shows the ARPES difference spectra for several positive delays
minus the negative delay1 signal. The asymmetry in the intensity of the bands below the Fermi
level is due to the interference effects studies in [127]. The excited electrons above the Fermi
level are shown in red and the holes in blue. The excited states follow a double exponential
decay involving two time constants 150 fs and 3 ps that can be assigned to relaxation via optical
phonons and acoustic phonons (or supercollisions), respectively. The excited electrons retrieve
their Fermi-Dirac distribution at a time scale less that the pump duration via strong Coulomb
scattered processes, meaning that the electronic temperature is well-defined at any time. The
authors applied the 3TM, Figure 2.7 (b), and extracted the coupling with hot phonons and lat-
tice equal 0.033 and 0.010, respectively. They also showed that the CM > 1 could only occur

1Roughly speaking, the negative delay means that the probe pulse is not yet seeing the effect of the pump pulse. It
arrives before any photoinduced has occured.
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by a high pump photon energy or a very low fluence that is beyond the favorable experimen-
tal condition for a pump-probe experiment. Figure 2.2 shows different channel of relaxation
of excited electrons. The CM is defined as the ratio between the time-dependent photoinduced
carrier density (nl) above the Fermi level, and the number of electron-hole generated by the
pump pulse (n′) right after complete absorption of the pump power. Figure 2.7 (c) shows that
the CM is always below 1. Another work by Gierz et al. [55] on hole-doped graphene using
MIR pulses has also proved the absence of efficient carrier multiplication. They show that THz
lasing is only possible within very short interval of time after MIR excitation (∼100 fs) where the
density of states can be explained by a Fermi-Dirac plus a Bose-Einstein distribution. However,
the short lifetime of electron-hole pairs demonstrates that graphene is not suitable for efficient
light harvesting, at least in the present excitation regime.

Figure 2.7: (a) ARPES difference spectra. The red signal shows the excited electrons above the Fermi
level. (b) The evolution of the temperatures obtained by the 3TM. (c) The carrier multiplication and
number of photoinduced Dirac carriers are shown as a function of time. From [78].

2.4.2 Dynamics of the Weyl semimetal MoTe2

MoTe2 has been proposed as a type II Weyl semimetal hosting tilted Dirac cones at its low
temperature noncentrosymmetric phase while at high temperatures (T > 257.5 K) the gap opens
and results in a trivial phase. However, this prediction had no experimental support due to the
fact that the Weyl point lies above the Fermi level, inaccessible via equilibrium-state experiments.
By means of time-resolved ARPES Crepaldi et al. [31] probed the unoccupied states and unveiled
the Weyl semimetal nature of the low temperature phase, figure 2.8 (a). They also showed that
the dynamics of the gapped state is slowed down with respect to the gapless phase, figure 2.8
(d) and (e). This slower dynamics cannot be purely explained by the electron-phonon coupling
since both phases have the same phonon dispersion. In fact, in the trivial phase the local gap
between the valence band and the conduction band is a bottleneck for the relaxation of electrons
optically excited in the conduction band. On the contrary, the relaxation time in the gapless type-
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Figure 2.8: (a) The theoretical band dispersion of MoTe2. The Weyl node is shown in green. (b) Ex-
perimental band dispersion.(c) Left panel: Band dispersion along ΓX for low (brown) and high
(grey) temperatures before optical excitation. Right panel: Effect of optical excitation at Weyl
semimetal phase at 50 K. The dynamics of the excited states corresponding to boxes 1 and 4 are
shown in (d) and (e) respectively. The fit to the data shows a slower dynamics for the gapped phase
at 300 K. From [31].

II Weyl phase of MoTe2, reflects the enhanced interband scattering from the conduction band
to the valence band mediated by electron-electron scattering along the Weyl cone. The same
effect of the small band gap has also been studied on the Dirac fermions of the bilayer graphene
[177], suggesting a slower dynamics with respect to the monolayer graphene due to less efficient
electron-phonon scattering in the presence of a gap close to the Fermi level.

2.4.3 Broken time-reversal symmetry and Floquet states

A straightforward paradigm that comes to mind for manipulating topological properties of Dirac
semimetals, is to add magnetic impurities to the system or to slightly dope it with another ele-
ment to make it a trivial or non-trivial insulator, c.f. paragraph 1.4.3.2. However, these methods
demand chemically manipulating the system that can be time-consuming and less precise. It has
been demonstrated both experimentally and theoretically that ultrafast pulses can be a smart
alternative choice towards this goal. As an example, by coherent pumping with linear polariza-
tion below the band gap of the topological insulator Bi2Se3, the photon-dressed surface electrons
produce Floquet-Bloch2 states that exhibit momentum-dependent band gaps within the Brillouin
zone at avoided crossings [105, 181]. These Floquet-Bloch states can be viewed as replicates of
interpenetrated Dirac cones with anisotropic band gaps. For instance, band crossings along the
ky are gapped while there is no gap along the kx, figure 2.9 top panel. The linearly polarized
light does not break the time-reversal symmetry; it only perturbs electrons periodically. There-
fore, the Dirac point remains protected and gapless. However, the circularly polarized MIR light

2Electrons in a periodic potential in solids gives Bloch bands. In the same way, if they feel a periodic potential in time,
i.e. an AC electric field, the periodicity in momentum turns into a periodicity in energy, i.e. ε turns into ε + n}ω and
these are called Floquet states. In a solid the combination of spatial and temporal periodicity results in Floquet-Bloch
states. Note that the photon energy should be below the absorption treshold of the material.
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Figure 2.9: Schematics of the bands subjecting to the AC electric field of the MIR pulses at 10 µm
(from [181]). (a) With linear polarization of light the surface states at a negative delay are shown
in (b). (c) The spectrum at the negative delay is subtracted from the spectra at time zero for two
different directions in order to highlight the photoinduced effects. Dashed orange lines are guides
to the eye. (d) Sketch of the Floquet states of different order as induced by the MIR excitation.
The numbers show the band index of the states. Band gaps occur at several momenta due to the
hybridization between the states. (e) The projection of the CPL electric field on the surface plane
(light blue) is elliptical. (f) ARPES spectrum at time zero. (g) Photoinduced effects at the arrival of
the pump pulse. (h) Band gaps occur at several momenta however, the band gap that is induced by
the TRS breaking is at the Dirac point, 2κ ∼50 meV.

can be used as an ultrafast tool to break the time-reversal symmetry and therefore, to open the
band gap at the otherwise protected Dirac point. This gap along with other avoided gaps at the
band crossing remain isotropic within the Brillouin zone (figure 2.9 bottom panel).

In the same spirit, one might expect to generate a 3D Weyl semimetal from a Dirac semimetal
by subjecting it to a periodic TRS breaking field, i.e. circularly polarized light (CPL). The fre-
quency of the CPL should be much less than or comparable to the bandwidth of the parent DSM.
It has been theoretically proved [19, 72] that in this way, the Dirac fermions in a DSM can indeed
split into Weyl fermions. The work was done for the case of Na3Bi but the same approach can
be generalized to any DSM. The starting point is to introduce the coupling to a time-dependent
external gauge field by Peierls substitution in equation 1.13, so that k→k-A(t), where A(t) is the
time-dependent vector potential of the applied CPL. For instance, A(t)=A0(0,cos(ωt),sin(ωt))
for polarization in the y-z plane. ω is the frequency of the light. This approach only takes into
account the electric field of the laser pulse and neglects its magnetic component. The result-
ing time-dependent Hamiltonian H(t)=H(k-A(t)) describing the dynamics of the driven model
system reduces to: (

ĤWeyl(~k) + (VFA0)2

ω σx 0

0 ĤWeyl(~k)∗ − (VFA0)2

ω σx

)
(2.5)



64 CHAPTER 2. TIME-RESOLVED STUDIES OF QUANTUM MATERIALS

where VF is the Fermi velocity. The effective gauge field acts only on the x-component of
the wavevector and results in the splitting of the 4-fold degenerate Dirac points to two non-
equilibrium transient states, called Weyl-Floquet states. These states are located at ±(VFA0)2/ω

along the kx direction with respect to the original Dirac point, figure 2.9. It has been also shown
that the number, location, and nature of the Weyl nodes are tunable within the Brillouin zone by
amplitude and frequency of the CPL [19].

We have already seen that any explicit symmetry breaking of the DSM opens the gap and
results in a topologically non-trivial state. One way is, for instance, to break the inversion
symmetry by applying strain on the sample. Hübener showed that by shining this state with
femtosecond CPL with enough intensity, the Floquet-Weyl semimetal phase is restored. To con-
clude, circularly polarized light may be used to alternatively switch between Weyl semimetal,
Dirac semimetal and topological insulator states.
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Figure 2.10: Engineering the non-trivial states in Na3Bi. (a) CPL in the y-z plane. (b) The Dirac
cone splits along the kx direction at the Fermi level, resulting in a Floquet-Weyl semimetal. (c) The
separation of the transient states can be tuned by the amplitude of the incident light. (d) The lattice
distortion along the a-axis of the unit cell induced by strain makes the Dirac fermions massive and
opens the gap. By applying femtosecond CPL, one is able to close the band gap. (e) If intensity of
light is above the threshold, Floquet-Weyl states with different chirality appear. From [72].
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3 | Experimental methods

3.1 Introduction

The observation, classification and description of materials on a quantum mechanical basis in-
dispensably demands understanding their electronic properties as well as the relevant and dom-
inant couplings among their different degrees of freedom. The previous chapter was thoroughly
devoted to highlight how to reveal and possibly to manipulate these intricate couplings. In this
chapter, I describe how this effort is technically possible.

Photons or accelerated particles such as neutrons or electrons are widely used to perform
experiments on quantum materials. I focus on the photon-based techniques. Setups that apply a
monochromatic or continuous photon beam reveal structure and electronic properties of materi-
als at equilibrium. If the beam is replaced by ultrashort pulses and another pulse is also added to
the experiment, it will be possible to study the dynamics of the system in a pump-probe fashion.
Here, the pulse duration and the energy of the second pulse enables one to selectively follow
the dynamics of a specific component, study how fast it relaxes, and which dominant process
causes the relaxation to occur. In a generic experiment, the choice of photon energy determines
first, what part of the sample is studied (the surface or the bulk) and second, which component
is observed, e.g. electrons and/or lattice. For instance, UV pulses are mostly sensitive to the
surface and they probe the electrons while X-rays provide information on the bulk structure of
the material and they probe the atomic positions into the elementary cell.

In this chapter, I present the experimental techniques that I used during my PhD project to
study the equilibrium and out-of-equilibrium properties of the correlated materials BaCo1−xNixS2

and (V1−xCrx)2O3. Several techniques measuring the equilibrium state of solids are presented.
In parallel, I explain the pump-probe configuration of these techniques as well as the information
they provide to us.

3.2 Angle-resolved photoelectron spectroscopy

The electrons band structure and dynamics determines most of the physical properties of a
system. Therefore, the indispensable building block towards understanding condensed matter
physics is to observe electrons in their quantum states and more specifically, how they interact
among themselves. A straightforward way is to detect electrons via photoelectric effect.

The photoelectric effect was first discovered by Hertz [67] when he observed that ultraviolet
light caused the ejection of electrons from the surface of a metal. This was later explained by the
quantum mechanical nature of light by Einstein in 1905 [39]. He explained that an electron can
absorb a photon incident to the sample and escape from the material with a maximum kinetic
energy Ekin = hν − φ. Here ν is the photon frequency and φ is the material work function that
measures the potential barrier at the surface preventing the valence electrons from escaping.

67
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The photoelectric work function is typically around 4 - 5 eV for most of materials.

Photoemission spectroscopy, also known as photoelectron spectroscopy, is a general term
that refers to all techniques based on the application of the photoelectric effect. It was first
employed by a Swedish scientist Kai Siegbahn in 1957 who performed the X-ray photoemission
spectroscopy to study the electron binding energies of a copper sample [130].

Angle-resolved photoelectron spectroscopy (ARPES) is a unique experimental technique
that offers the possibility to simultaneously detect the kinetic energy and angular distribution of
the photoemitted electrons from a sample illuminated with a beam of monochromatized radia-
tion supplied by a gas-discharge lamp, laser pulses, or synchrotron radiation. An electron inside
the solid absorbs energy and (negligible) momentum from the incoming photon and is ejected
in vacuum. In recent decades, the advent of state-of-the-art electron energy and momentum
analyzers as well as high energy resolution and polarization control of the exciting light lead to
the precise two-dimensional energy-momentum mapping of the photoelectrons in the reciprocal
space (k-space). Therefore, accurate information about the quantum states of electrons inside a
solid and the dispersion of filled electronic bands is acquired.

The following sections are devoted entirely to a detailed explanation of ARPES that, as we
have seen, starts from the simple idea of the photoelectric effect and extends to much rich and
fundamental knowledge of quantum materials. The discussions are mostly inspired by Hüfner’s
photoelectric spectroscopy [73], and Damascelli’s review article [34].

3.2.1 General description

The energetics of the photoemission process and the geometry of an ARPES experiment are
shown in figures 3.1. The kinetic energy of the electron is Ekin and its emission angle is read
from the polar angle θ and azimuthal angle ϕ.

An ARPES electron energy analyzer, figure 3.1 (b), collects outgoing photoelectrons at a
given emission angle within a finite acceptance angle and energy resolution and then bins them
according to their momentum and kinetic energy. The analyzer generally consists of three parts:
i) an electrostatic lens that sorts the electrons according to their ejection angle; ii) a hemispher-
ical energy analyzer [111] that sorts the electrons by their kinetic energy; and iii) a 2D detector,
which reads the emission angle and kinetic energy for each photoelectron. Since the ARPES
technique measures only at one angle, the full band structure is obtained either by rotating the
sample around its surface normal or by changing the analyzer’s angle. This depends on the setup
configuration.

By using conservation laws, one can extract information about the electrons prior to the
photoemission process. Conservation of energy and momentum are:

Ekin = hν − EB − φ (3.1a)

kf − ki = khv (3.1b)

where EB is the bending energy, khv is the photon wevavector, and kf and ki are the electron
final and initial wavevector, respectively. The modulus of the photoelectron momentum in vac-
uum K, is related to Ekin by K =

√
2mEkin/~. The components of K parallel and perpendicular
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to the sample surface are obtained from the polar and azimuthal emission angles θ and ϕ by:

Kx =
1

~
√

2mEkin sin θ cosϕ, (3.2a)

Ky =
1

~
√

2mEkin sin θ sinϕ, (3.2b)

Kz =
1

~
√

2mEkin cos θ, (3.2c)

Now, we can determine the energy-momentum relation E(k) inside the sample. As the photon
energy used in ARPES experiments is typically low (hν < 100 eV), the photon momentum is
perfectly negligible in comparison with the Brillouin zone size which is of order of ∼1 Å−1.
Therefore, we can consider the excitation of a bulk electron as being vertical in k-space, i.e. ki =

kf . When this electron reaches the surface, the translational symmetry in x−y plane is preserved
thus, k‖ = K‖. However, due to a sudden potential change along the z axis, the symmetry in this
direction is broken and k⊥ is no longer conserved. The parallel and perpendicular components
of the momentum with respect to the sample surface are given by:

k‖ = K‖, (3.3a)

k⊥ =
1

~
√

2m(Ekin cos2 θ + V0) (3.3b)

The parameter V0 is the inner potential that corresponds to the energy of the bottom of
the valence band referenced to the vacuum level and is normally unknown for most materials.
This means that even if one has the possibility to measure all parallel components of the pho-
toelectrons momentum, a complete knowledge on the crystal wavevector remains challenging.
Nonetheless, for (quasi) two-dimensional systems the dispersion along the z-axis is negligible
and the uncertainty in k due to the perpendicular component is less relevant. In these sys-
tems, the electronic dispersion is almost determined by k‖ as in the case of 2D copper oxide
superconductors or BaNiS2 (that is studied in details in chapter 4). By measuring the width
of the photoelectron peaks in such systems, one can determine the lifetime of the photoexcited
electrons that contains rich information on the nature as well as on the strength of many-body
correlations. For three-dimensional systems, on the other hand, absolute band mapping requires
a series of band dispersion measurements with different incident photon energies. In this way,
one is able to deduce the V0 from the periodicity of the Fermi surface and eventually to determine
k⊥.

3.2.2 Photoemission intensity

The quantitative analysis of the photoemission spectroscopy data is often performed under the
assumption of the independent-particle picture and the sudden approximation. The sudden ap-
proximation is widely used in many-body calculations of photoemission spectra for interacting
electron systems and is more conveniently applicable to electrons with high kinetic energy1. This
approximation implies that there is no post-collisional interaction between a photoelectron and
the remaining system. In this regard, the photoemission process can be the described by three
sequential and independent steps:

1. Optical excitation of the electron to a bulk final state

2. Travel of the excited electron toward the surface

1Less energetic electrons undergo more collisions before being ejected from the surface.
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Figure 3.1: (a) The electron energy distribution (from [33]) produced by the incoming photons, and
measured as a function of the kinetic energy Ekin of the photoelectrons. The left diagram shows the
density of states of the solid in terms of the binding energy. The Fermi level corresponds to the zero
binding energy. (b) Representation of the hemispherical photoelectron analyzer and the geometry of
the experiment.

3. Transfer of the photoelectron into the vacuum through the surface potential barrier

Step 1 describes the intrinsic electronic structure of the material. Step 2 is explained by the
effective mean free path of electrons inside a sample and will be described in subsection 3.2.5. It
is proportional to the probability that the excited electron reaches the surface without scattering.
The inelastic-scattering processes give rise to a continuous background in the spectra and is
usually ignored or subtracted. Step 3, which describes the escape of the electron to the vacuum,
depends on the energy of the excited electron and the material work function φ. Specifically, the
perpendicular component of its momentum needs to be larger than the work function and the
binding energy:

~2k2
⊥

2m
≥ EB + φ (3.4)

The total photoemission intensity is proportional to the product of the probability of the
above-mentioned steps. The probability of the first step, namely the optical transition probability
Wf,i between an initial N-electron ground state ψi, and a final state ψf is given by Fermi’s golden
rule:

Wf,i =
2π

~
|〈ψNf |Hint|ψNi 〉|2δ(ENf − ENi − hν), (3.5a)

Hint =
e

mc
(A.p) (3.5b)

where e, m and c are the elementary charge, the electron mass and the speed of light in vacuum,
respectively, and ENf = EN−1

f + Ekin and ENi = EN−1
i − Ekbin are the final and initial state

energies of the N-particle system. The interaction of light and electron is written within the
dipole approximation—that is, there is no spatial dependence when considering its effect on
the classical motion of an electron bound to an atom. Here, p is the momentum operator and
A, is the electromagnetic vector potential. The interacting Hamiltonian Hint is treated as a
perturbation to the system. Equation 3.5a implies that for an electron to be photoemitted into
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Figure 3.2: Spectral function and Fermi distribution of an electronic system with (a), and without
interaction (b). The figure is inspired from [34].

vacuum, not only there must be a non-vanishing overlap between the amplitude of initial and
final states, but also the energy and momentum conservation laws should be respected.

The sudden approximation allows us to factorize the wave functions into a traveling photo-
electron φk, and (N-1)-electrons left-behind ψN−1:

ψNi/f = Aφki/fψ
N−1
i/f (3.6)

where A is a factor that antisymmetries the electronic wave function. Although this factorization
greatly simplifies the equations, it is not trivial because during the photoemission process the
system will relax. We can now write down the total intensity I of a photoemission peak as a sum
over all possible initial and final states:

I =
∑
f,i

Wf,i ∝
∑
f,i

|Mk
f,i|2

∑
m,i

|Cm,i|2δ(Ekin + EN−1
m − ENi − hν) (3.7)

In the above equation, the experimental resolution and the continuous background due to
the inelastically scattered electrons are not taken into account. These effects can be treated
later while analyzing the experimental data. Here, Mk

f,i ≡ 〈φkf |Hint|φki 〉 is called the matrix
element and describes the interaction of a traveling photoelectron and light. The term Cm,i
equals 〈ψN−1

m,f |ψN−1
i 〉 and its amplitude | Cm,i |2 describes the probability that after removing

one electron, the (N-1)-particle system goes into an excited state m.

For a free-electron system for only one particular m, the Cm,i is not zero. Because in this
case, ψN−1 remains an eigenfunction of the system and is orthogonal to all other states. As a
result, the ARPES data is accompanied by a set of delta function peaks whose position in the
E-k plane constructs the band dispersion of the studied sample. In a correlated system, however,
the removal of an electron changes the interaction potential and the remaining N-1 electrons
are no longer an eigenfunction of the system but rather a superposition of all eigenfunctions
of the system. This means that ψi has a finite overlap with some of ψm,f wave functions and
|Cm,i|2 will be non-zero for many of the excited quantum states. Consequently, one principal
quasi-particle peak is observed accompanied by several satellite peaks. Figure 3.2 schematically
explains the mentioned ARPES spectra features. Next section is dedicated to a mathematical
description of these features.
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3.2.3 One-particle spectral function

The spectral function A±(k, ω) describes the evolution of an N-particle system after adding (+)
or removing (-) one particle and was thoroughly discussed in section 1.2. Experimentally, the
spectral function can be measured by inverse photoemission or by ARPES, respectively and is
related to the sum of |Cm,i|2 for all possible final states in equation 3.7. Therefore, we can
re-write the photoemission intensity as:

I(k, ω) = I0(k, ν,A)f(ω)A(k, ω) (3.8)

where f(ω) is the Fermi-Dirac function and I0(k,ν,A) is proportional to the square of the one
electron matrix element and will be discussed in subsection 3.2.4. I should emphasize that the
proportionality of the photoelectron intensity to the spectral function is a direct consequence
of the sudden approximation. However, it is no longer valid for very low photoelectron kinetic
energy. For the sake of simplicity, the A−(k, ω) is replaced by A(k, ω). Equation 3.7 implies that
for a non-interacting system, where A(k, ω) = δ(k, ω), the ARPES spectrum will have a single
peak at each binding energy at each binding energy εk and therefore, there is a sharp Fermi
surface. However, for an interacting system treated by the Fermi-liquid formalism, the ARPES
spectrum consists of a quasiparticle peak and an incoherent part. The physical description of
each part was given in section 1.2.

3.2.4 Matrix elements and light polarization

The last point to discuss about the photoemission intensity is the matrix element (Mk
f,i in equa-

tion 3.7). While the spectral function defines general features of an ARPES spectrum arising
from intrinsic interactions inside a system, the matrix elements determine the intensity of the
peaks according to some external parameters such as photon energy and experimental geometry.
The photon energy dependence results from the atomic photoionization cross section for pho-
toemission experiments that decreases while photon energy increases although not necessarily
in a monotonic fashion.

Figure 3.3: Symmetry of orbitals
in the photoemission process [33].

In order to clarify the effect of the experimental geometry,
we can rewrite the matrix elements as 〈φkf |ε.x|φki 〉, where ε is
a unit vector along the polarization direction of light, and x
is the electron position operator. The integration of the func-
tion over all possible states is done perpendicular to the mir-
ror plane, where the detector is located to collect electrons
in their final states. In order to have a non-vanishing photoe-
mission intensity due to the integral, the integrand must not
be odd under the reflection with respect to the mirror plane.

The ejected electron in vacuum is a free electron with the
wave function eik.r, which is an even parity function2. There-
fore, ε.x|φki 〉 should not be odd. The odd polarization is when
the electric field, Ep, is perpendicular to the mirror plane and
lies on the surface of the sample while the even polarization lies on the mirror plane, Es. Fig-
ure 3.3 illustrates the geometry of the experiment. In the figure, the positive (negative) sign is
an even (odd) orbital symmetry. For a generic initial state of a given symmetry, the light polar-
ization resulting in an even matrix element should have an equal symmetry with respect to the
mirror plane, otherwise the photoemission intensity will be suppressed.

2Its momentum and wavefronts are in the mirror plane and orthogonal to it, respectively.
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Figure 3.4: Mean free path of electrons from [164].

To conclude, the ARPES spectrum reflects the symmetry of the electronic bands and a detailed
electronic band structure of a specimen is acquired by varying the polarization of the incident
beam.

3.2.5 Surface sensitivity and angular resolution

During the photoelectron process, only the photelectrons who propagate elastically toward the
surface of the solid will conserve the memory of their initial states in the crystal. In fact, consec-
utive collisions of the photoelectrons among themselves, with phonons or the crystal impurities
decrease their kinetic energy. These inelastically scattered electrons are called secondary photo-
electrons and contribute to the exponential loss of intensity with the depth beneath the surface:

I(z) ∝ I0e−z/(λ cos θ) (3.9)

where I0, z, λ and θ are the initial beam intensity, the direction of propagation of the beam, the
wavelength of the beam and the angle at which the beam heats the sample surface, respectively.

The inelastic collision probability depends on the distance that the electrons travel towards
the surface as well as their kinetic energy. Figure 3.4 illustrates the elastic mean free path of
electrons as a function of their kinetic energy. It has a minimum of about 5 Å, i.e. several atomic
layers, for 20-100 eV that is the interval of energy typically used in ARPES measurements. This
implies that ARPES signal comes mostly from the surface. In general, ARPES experiments are
highly sensitive to the surface of materials. Therefore, surfaces have to be carefully prepared, i.e.
without defect at the atomic scales and cleaved in situ in an ultra-high vacuum (UHV) chamber
in order for the electron to propagate in vacuum without any energy loss and also to keep the
surface clean during the experiment.

The momentum resolution, on the other hand, depends on the incident photon energy as can
be derived from equation 3.2:

∆k‖ ∝
√
Ekin cos θ∆θ (3.10)

with ∆θ being the finite acceptance angle of the electron analyzer. Momentum resolution will
be better at lower photon energy, and for large polar angles θ. The latter implies that one
can eventually improve the momentum resolution by extending the measurements to momenta
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farther from the first Brillouin zone.
In general, before performing a photoemission experiment, one should carefully choose the

appropriate photon energy according to the experimental needs. For low energies (E <10 eV),
the probed depth is larger and the momentum resolution is better while only a small part of the
Brilluoin zone can be detected. For energies higher than 200 eV the probing depth increases and
the core levels might be accessible. However, the momentum resolution gets poorer.

In the following section, I described the light sources where I performed the ARPES experi-
ments.

3.3 Synchrotron light sources

Recent decades have witnessed the emergence of third generation synchrotron light sources
providing light from infrared to hard X-rays with extremely high brightness of about ∼ 1020

photons/s/mm2/mrad2/0.1% bandwidth. Tunability in wide range of energy, variable polar-
ization of light and very high brightness, have opened a wide range of new characterization
methods for various research purposes, from infrared spectroscopy to protein crystallography.

Figure 3.5: Synchrotron facility.

Figure 3.5 shows the scheme of a synchrotron.
The electrons are produced, grouped in some elec-
tron bunches and are gradually accelerated in a lin-
ear accelerator. Then they enter in the booster where
they acquire almost 99% of speed of light. The ma-
jority of 3rd generation sources operate with the elec-
tron beam energy in the range of 2 to 4 GeV. Once
the high-energy electron beam has been generated, it
is directed into auxiliary components such as bending
magnets and insertion devices (undulators or wigglers
[18]) in storage rings in which they circulate and pro-
duce synchrotron radiation without gaining further en-
ergy. Beamlines are built tangentially to the electron
beam orbit of the storage ring and capture the radi-
ation emitted from bending magnets, wigglers or un-
dulators. Each beamline has specific optical elements
that depend on the experimental methods they use. The optical devices include crystal mirrors
to guide light through the end station, monochromators to select the desired wavelength, and
slits and attenuators to cut the unwanted wavelengths and decrease the beam intensity.

During my PhD, I had the opportunity to work with synchrotron facilities to perform ARPES
in the ultra-violet (UV) range as well as some time-resolved X-ray diffraction experiments by soft
X-rays which will be explained in paragraph 3.4.2.5.

The combination of increasing number of third generation synchrotron beamlines operating
in the UV range and great technical progress of hemispherical photoelectron analyzers to at-
tain meV energy resolution makes synchrotrons the unrivaled facilities for performing ARPES
experiments. The possibility of focusing the beam to a sub-micron scale by either Schwarzschild
objectives or zone plates adds the spatial resolution to the privileges of synchrotron sources in
the field of photoemission spectroscopy. In particular, this makes it possible to obtain much
information on the electronic structure of nano-sized structure.

The Spectromicroscopy beamline and Advanced Photoelectric Effect beamline at synchrotron
Elettra in Italy are discussed below for their unique properties for photoemission spectroscopy.
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Figure 3.6: Instruments at the Spectromicroscopy beamline. (a) Shwarzschild objective. (b) The
geometry of the experiment from [37]. For the ARPES mode the analyzer angles change while for
the surface cartography the position of the sample is scanned. (c) The beamline has two SO’s. One
for the 27 eV and the other for the 74 eV beam.

3.3.1 Spectromicroscopy beamline

The Spectromicroscopy beamline [5, 37] is one of the unique beamlines to run a scanning pho-
toemission microscope. The source of light is a classic undulator and consists of 36 periods of
12.5 cm, for a total length of 4.5 m. The end station hosts two exchangeable multilayer-coated
Schwarzschild objectives (SO) designed to focus the radiation at 27 eV and 74 eV to a small spot.
It also has an internal movable hemispherical electron energy analyzer that can perform polar
and azimuthal angular scans in ultrahigh vacuum (UHV). The beamline is designed to perform
photoemission experiments with high spatial resolution with spot size of ∼600 nm. The energy
and momentum resolutions are ∼33 meV and ±0.03 Å−1, respectively.

The beamline is based on three spherical grating monochromators that can rotate one with
respect to each other to produce different photon energies. The largest energy range covered
by one of the gratings is 20 - 310 eV. The microscope is based on a Schwarzschild objective,
figure 3.6 (a). Such a device consists of two spherical mirrors: one is the convex primary and
the other is the concave secondary mirror. High reflectivity of the Schwarzschild objective at
fixed photon energy is obtained by using periodic multilayer coatings that for 27 and 74 eV are
Sc/Si and Mo/Si, respectively. The sample is placed at the focus of the Schwarzschild objective.

We have the possibility to perform two different types of measurement on the Spectromi-
croscopy beamline. First, it is possible to acquire a detailed ARPES map from a small illumi-
nated area of the sample by gradually moving the analyzer so that the entire Brillouin zone is
covered. The acceptance angle of the analyzer in this case is 1.4◦ and the momentum resolution
at the Fermi level for 27 eV photons is ±0.03 Å−1. Second, we can also acquire images by fixing
the analyzer and scanning the sample position perpendicular to the direction of the incoming
radiation. This gives a map of the sample surface with the contrast arising from the photoemis-
sion spectrum features of each probed region. In this configuration the analyzer operates in the
wide-angle mode with 8◦ acceptance angle since the k-resolution matters less. Figure 3.6 (b)
illustrates the setup for spectroscopy and microscopy experiments.

One of the big advantages of the SO is that it can be operated in the visible as well as in the
X-ray region. In the optical microscope configuration it can be used to observe the sample with
a field of view of the order of 300 - 400 µm by the synchrotron white light beam. This gives an
overview of the sample features in order to look for the best position to be probed by the beam.
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Figure 3.7: (a) Instruments at APE beamline. (b) Undulators for the HE and LE beamlines. (c)
Monochromator section. It is based on twin plane grating-spherical mirror assemblies.

3.3.2 Advanced Photoelectric Effect experiment beamline

I this section, I briefly describe the principles of the Advanced Photoelectric Effect (APE) beam-
line at synchrotron Elettra [9, 136], devoted to spectroscopy and magnetometry of materials
whose fundamental properties are determined by strong electron and spin correlations. The
beamline hosts two independent branches: 1) The low-energy (LE) branch performing high res-
olution ARPES and Fermi surface mapping with near- and far-UV photon energies between 10
and 100 eV. 2) The high-energy (HE) end station mainly dedicated to the study of low dimen-
sional magnetic systems using photon energies from 140 to 1500 eV. The HE branch is employed
for soft X-rays spectroscopy techniques such as X-ray absorption (XAS), X-ray magnetic dichro-
ism (XMCD, XMLD) and X-ray photoelectron spectroscopy (XPS). Figure 3.7 (a) represents the
APE beamline scheme.

Two variable-polarization undulators in zig-zag configuration generate two independent pho-
ton beams at 2 mrad angle in the horizontal plane, figure 3.7 (b). One insertion device emits
in the UV energy range; the second one emits in the soft X-ray range. The HE and LE beams
travel in a single UHV tube until reaching the spherical mirror that deviates the beams to their
corresponding branch. In each line, the desired photon energy and polarization is obtained by
appropriately adjusting the vertical gap and longitudinal phase between the top and bottom
magnetic arrays of the monochromators.

All experiments presented in this manuscript were performed on the APE-LE beamline. In
this beamline three plane gratings 700, 1200, and 1600 l/mm cover the energy ranges of 9 - 25,
25 - 40, and 40 - 100 eV, respectively. The beam is focused to∼ 50×100 µm2 by a spherical and a
toroidal mirror. All the optic elements of the LE branch are made of pure silicon with no coating.
Therefore, the intensity of the beam has a sharp decrease at Si 2p edge around 90 eV photon en-
ergy. The overall energy resolution is around 10 meV, while the angular resolution is < 0.2◦. The
VG-Scienta DA30 electron energy analyzer situated at the beamline end station operates in de-
flection mode in the direction perpendicular to the analyzer slit and photoelectrons are collected
over 30◦ angular range for a given sample alignment. This development allows detailed k-space
mapping of the full Brillouin zone at fixed sample/beam geometry while providing higher time
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efficiency in data acquisition. The fix geometry of the experiment is specifically beneficial for
studying small samples and surface domains with almost constant matrix elements.

3.4 Pump-probe techniques

When femtosecond pump pulses deliver energy to a system, the excited electrons will recover
their equilibrium quantum state by dissipating their excess of energy via interaction with other
electrons at a femtosecond timescale, followed by subsequent collisions with the incoherent
and coherent lattice vibrations, which can last for few hundreds of femtoseconds up to several
picoseconds, c.f. section 2.2.1.

Experimentally, an out-of-equilibrium population of electrons is created by femtosecond op-
tical pulses that transiently decouple the electrons from the lattice. By appropriately selecting
the timescale at which one probes the photoexcited system, one can follow the time-resolved
dynamics of separate degrees of freedom ensued from the electronic excitation. The probe pulse
comes at a controllable delay after the pump and builds up a chronological series of images
describing the photoinduced events, figure 3.8. The temporal resolution is defined by the pump
and probe pulse width, as well as by the sampling accuracy determined by the precision of the
delay line step.

Figure 3.8: Schematic of a time-resolved experiment. The pump pulse arrives at time zero and
initiates a dynamics in the system. The probe pulse comes after a controllable delay and maps out
the photoinduced changes of the signal, ∆S(t).

In addition to the time scale, the wavelength of the probe should be correctly chosen accord-
ing to the degree of freedom one wish to study. An UV pulse, for instance, monitors the temporal
evolution of the electrons, while X-rays mainly reveal the lattice dynamics. In the course of my
PhD, I worked with different pump-probe techniques. The techniques that I applied comprise
time-resolved ARPES, time-resolved X-ray diffraction, and time-resolved optical spectroscopy.

It should be mentioned that an important parameter in pump-probe experiments is the rep-
etition rate of the laser pulses, which should be balanced between the data acquisition time and
the unfavorable residual heat delivered to the system.
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3.4.1 Time-resolved ARPES

3.4.1.1 Laser-based photoemission spectroscopy

While synchrotron light sources are typically employed for ARPES with tunable photon energy
ranging from near-UV to soft X-rays, the very narrow bandwidths (often less than 1 meV [85])
of laser pulses make them suitable for photoemission spectroscopy with very high energy resolu-
tion. This provides some complementary and more detailed information on the electronic band
structure.

On the other hand, ultrashort pulses constitute the crucial part of pump-probe techniques as
will be described in the next subsection. The short wavelength of probe pulse required for the
photoemission process can be obtained by different frequency up-conversion techniques. The
most common one is the frequency doubling or frequency mixing method by expanding the
frequency of the pump laser to some higher orders. The maximum photon energy obtained by
non-linear optics is 6.994 eV [133] and as follows, only 0.5 Å−1 of the reciprocal space can be
probed in the normal photoemission angle. The advantages of working at low photon energies
are essentially a higher sensitivity to bulk states [90, 153] and a higher resolution in k‖, as it
has been mentioned in subsection 3.2.5. In spite of that, probing the entire Brillouin zone with
laser-based setups, demands complex sample/beam geometry which is often unreachable for
most manipulators.

In is worth mentioning that in recent years, a growing number of groups have been inves-
tigating on how to perform photoemission spectroscopy with femtosecond or sub-femtosecond
pulses using high harmonic generation (HHG) from irradiated noble gases [32, 166]. This tech-
nique requires kHz infrared (IR) pulsed lasers with mJ energies in order to reach intensity of
about 1014 W/cm2 necessary for high-energy emission. Under this condition, the non-linear in-
teraction between the IR laser and the gas ionizes atoms, with their Coulomb barrier suppressed
below the ground state energy level during the interaction [161] and converts IR radiation into
higher order radiation (above fifth harmonic), ranging from extreme UV to soft X-rays. It has
been recently demonstrated that the HHG can also be derived from a UV laser [147]. In this
way, the generated femtosecond pulse is in the range of 10 - 60 eV and gives access to the entire
Brillouin zone. In spite of that, the relatively low photon flux (typically < 1010 photons/s) in-
creases the time required for data acquisition and makes an ARPES experiment based on HHG a
lengthy or often impractical task. Research on photoemission with HHG has been very active in
the past few years.

3.4.1.2 Time-resolved ARPES

In laser-based photoemission spectroscopy, the femtosecond duration of laser pulses makes them
a unique and unparalleled tool that can be used as an ultrafast energy pump source to create
excited electrons as well as a probe source to study the photoinduced changes in the electronic
structure in time domain. This property greatly overtakes the use of conventional synchrotrons
or radiation sources such as gas-discharge lamps for pump-probe techniques as they only offer
pulsed beams with duration of about 100 ps or a continuous radiation, respectively.

Time-resolved ARPES (tr-ARPES), as the names indicates, is the study of the electronic struc-
ture in a time- and k-resolved fashion. A femtosecond pulse, mainly an IR pulse of wavelength
800 nm (photon energy 1.55 eV), prompts electrons close to the Fermi level to some unoccupied
states. In the meantime, a UV pulse maps and follows the band structure after the arrival of
the pump pulse. A tr-ARPES experiment demands several requirements: the probe pulse energy
should be larger than the material work function and its photon flux should be high enough
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Figure 3.9: The fourth harmonic generation by frequency mixing. L: lens with f= 20cm, DM:
dichroic mirror, DL: delay line. The off axis parabolas have f = 5-10 cm focal length depending on
their location. The frequency mixing setup uses 50% of the laser energy that is 3 µJ.

(∼ 1012 photon/s) for significant statistics in an appropriate time interval. However, the con-
siderable high density of photoelectrons at the surface of the sample produced by femtosecond
pulses can result in a large space charge field [65, 139], which broadens and distorts the elec-
tronic bands.

The combination of photon flux and repetition rate of pulses should be carefully selected in
order to avoid the space charge effect while maintaining satisfactory statistics.

During my PhD, I performed a series of laser-based ARPES and tr-ARPES experiments on
BaNiS2 with the femtoARPES setup which is explained in the following.

3.4.1.3 FemtoARPES setup

The FemtoARPES is a tr-ARPES setup situated in synchrotron SOLEIL. It is a collaboration among
the LSI (École Polytechnique), the LPS, (Université Paris-sud), and Synchrotron SOLEIL. Detailed
information on the setup can be found in [42].

A commercial Ti:Sapphire laser system (RegA Coherent) delivers 6 µJ per pulse with 35 fs
duration at full width half maximum (FWHM) at 250 kHz repetition rate. The laser wavelength
can be tuned between 780 nm and 820 nm. A beam splitter selects 50% of the energy which is
used for the fourth harmonic generation while the rest remains intact in energy and is sent to a
separate optical path to be farther used as the IR pump pulse. The wavelength of 800 nm (1.55
eV) is chosen as the fundamental beam for fourth harmonic generation, leading to wavelengths
as short as 197 nm (6.28 eV). The schematics of our fourth harmonic generation setups is shown
in figure 3.9.

Femtosecond 6.28 eV laser probe pulses are obtained by cascade frequency mixing in non-
linear β-BaB2O4 (BBO) crystals. First the fundamental pulse is doubled by second harmonic
generation on 1-mm thick BBO crystal, then the third harmonic is created by mixing the second
harmonic plus the fundamental through a 50 µm crystal. Finally, the fourth harmonic at 6.28
eV with bandwidth of 1.34 nm FWHM (corresponding to a 55 fs time resolution) is produced
by the third harmonic and the fundamental at a 20 µm BBO crystal. The overall temporal and
energy resolution of the experiment considering the pump and the probe pulse is 70 fs and 60
meV, respectively. The spot size of the 1.55 eV pump pulse is about 200×200 µm2 and the 6.28
eV pulse is about 60×60 µm2. The larger spot size of the pump pulse ensures that the probed
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Figure 3.10: Experimental chamber of the FemtoARPES setup.

area of the sample is homogeneously excited. The probe and pump beams propagate in a nearly
collinear geometry with only 1◦ between them, which is low enough for maintaining a high
temporal resolution.

A high UV photon flux as much as 1014 photon/s can be attained that is comparable to
synchrotron light flux. The polarization of the light pulses can also be tuned horizontally or
vertically. The experimental chamber of the setup is represented in figure 3.10. The beam enters
the UHV chamber through a MgF2 window. A cryostat is connected to the manipulator so that
the sample can be cooled down to 35 K using liquid helium and 130 K using liquid nitrogen. The
sample can also be heated to 1100 K. Therefore, this setup allows us to perform experiments at
any sample temperature ranging from 35 to 1100 K.

Although the portion of the Brillouin zone accessible with 6.28 eV photon energy is lim-
ited (about 10%), it is still sufficient to study the low-energy band structure close to the Fermi
level for selective areas of the momentum space. The photoemitted electrons are analyzed by a
commercial hemispherical electron analyzer (Phoibos 150, Specs) providing angular resolution
down to 0.05◦.

I performed a series of standard laser-based-ARPES and tr-ARPES experiments on the fem-
toARPES setup. As long as one performs ARPES experiments without concern about the time
resolution, the pulse duration of the UV pulses and consequently the energy resolution can be
tuned according to the user’s expectations. To do so, the BBO crystal generating the fourth har-
monic can be replaced by a thicker 1 mm one, reducing the energy resolution down to about 20
meV.

3.4.2 Time-resolved X-ray diffraction

3.4.2.1 X-ray diffraction

X-ray diffraction (XRD) is based on studying the scattered intensity of an X-ray beam hitting a
sample as a function of the incident and scattered angles and photon energy. The diffracted beam
reveals information about the crystal structure, chemical composition, and physical properties
of bulk crystals or thin films. The Bragg’s law describes the condition that the angle between
the incident and scattered beam should satisfy so that a constructive interference from a given
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family of crystallographic planes occurs:

2dh,k,l sin θ = nλ (3.11)

where θ is the angle between the X-rays and the crystallographic planes, λ is the wavelength of
the X-rays, and dh,k,l is the interplanar distance between the crystallographic planes described
by Miller indices [h,k,l] and is determined by reciprocal space vector a∗, b∗, and c∗:

dh,k,l =
2π

| ha∗ + kb∗ + lc∗ | (3.12)

Figure 3.11: Ewald’s sphere. The center
of the reciprocal space is shown with O.

The Laue equation reformulates the Bragg’s law in
terms of the momentum transfer. It states that the mo-
mentum transfer from a crystal to X-rays (scattering
vector) should belong to the reciprocal space and rep-
resents the normal to the (h,k,l) plane, i.e. kf − ki =

Qh,k,l. For an elastic scattering | ki |=| kf |. There-
fore, the requirement for constructive interference in
a diffraction experiment means that in the reciprocal
space (or equivalently in the momentum space), the
vectorial difference between the final and initial X-ray
wavevector must be equal to a vector of the reciprocal
space of the crystal.

A geometric interpretation of the diffraction conditions was proposed by P. Ewald: Let us
consider a given incident wavevector ki. For simplicity, we consider that the wavevectors space
has the same orientation as the reciprocal lattice of the sample. The condition | ki |=| kf |
implies that, if we take the same origin for the incident and outgoing X-ray wavevectors, the en-
semble of all possible outgoing wavevectors form a sphere, obtained just by rotation of kf in the
whole solid angle. This sphere is called Ewald’s sphere. Now, we notice that the Laue condition
corresponds simply to the points of the reciprocal lattice (h, k, l) that fall on the surface of the
sphere, as it can be seen in figure 3.11. Therefore, only these points can generate a construc-
tive interference and give rise to a diffracted beam. Each one of these points correspond to a
diffraction peak from a family of crystallographic planes (h, k, l). The strength of this approach
is that we convert the problem of knowing which diffraction peaks are accessible, into a simple
geometrical problem.

Typically, X-ray crystallography consists in determining the average atomic positions by mea-
suring the position and the intensity of all Bragg peaks at different scattering vectors. The
intensity of an X-ray diffraction (XRD) peak with the scattering vector Qh,k,l is related to the
atomic structure of the unit cell via the structure factor:

F (Q) =
∑

fje
−iQh,k,l.rje−Wj (3.13)

The index j runs over all basis atoms, fj is the atom scattering form factor which is related
to the local density of electrons, rj is the average position of a basis atom j inside the unit cell,
and the Debye-Waller factor e−Wj represents the attenuation of the peak due to deviation of an
atom j in the crystal lattice from its average position. Crystallography tables, for instance Bilbao
crystallographic server, give the atomic position (Wyckoff positions) for different space groups.

Quantitative analysis of the intensity can be done by considering the kinematic theory of
diffraction, which basically assumes that the X-ray beam undergoes a single scattering and in this
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way the scattering potential of the crystal lattice can be treated as a perturbation and eventually
the scattered X-ray intensity can be written as: I ∝| F (Q)2 |. By considering an isotropic atomic
position variance 〈u2〉, the Debye-Waller factor can be simplified to Wj = q2〈u2〉

6 [79], where q=
|Qh,k,l|. In the thermal equilibrium,

√
〈u2〉 is related to the temperature of the system by the

equipartition theorem and is usually about 0.05 to 0.1 Å.
By applying the above-mentioned formulas to the intensity of the Bragg peaks, the full recon-

struction of a crystal unit cell in finally achieved. In the following, I explain the ultrafast XRD in
a pump-probe configuration

3.4.2.2 Time-resolved X-ray diffraction

After photoexcitation by the pump pulse, the out-of-equilibrium energetic electron population
retrieves its equilibrium quantum state by evacuating the excessive energy by coupling first to
the electrons and then with the lattice vibrations. However, in the meantime the interatomic
forces are modified due to the excitation of a large fraction (10% or more) of the valence elec-
trons to the conduction band [170]. This can induce changes in the lattice that in turn might
collaborate or compete with other degrees of freedom in the dynamics of the system [137, 144].
A comprehensive study of the lattice dynamics demands diffraction-based techniques as well as a
femtosecond time resolution so that any photoinduced changes provoked by the ultrafast excita-
tion of electrons can be precisely captured [122, 163]. Time-resolved X-ray diffraction (tr-XRD)
is the most direct technique to study lattice dynamics by measuring the relative changes that
occur in the Bragg peaks upon photoexcitation [26, 74, 79, 96, 97]. In a tr-XRD experiment, any
change of the lattice parameters results in a shift in the Bragg peaks angles. In addition, a change
of the intensity is either due to the Debye-Waller factor or due to a change of the structure fac-
tor while the symmetry of the crystal is maintained. Another particular example is a structural
phase transition changing the crystal symmetry that results in the appearance/disappearance of
some Bragg peaks [29].

In tr-XRD experiments, the pump pulse is usually a femtosecond laser pulses centered at
1.55 eV. One should carefully match the penetration lengths of the IR laser and X-rays since
X-rays can probe the bulk while IR pulses create excitations close to the surface of the sample.
By shining the sample with nearly grazing angle X-rays and normal incidence laser pulses, and
adjusting the corresponding beam spot sizes, one can make sure that the signal comes from a
homogeneously excited region. As easy as this solution might seem to be, it is hard to be applied
experimentally. First, in order to detect a Bragg peak in grazing incidence, the angle between
the surface direction and the observed peak has to be larger than the angle θ from the Bragg’s
law. Second, the X-ray spot size should be sufficiently small so that even in the grazing incidence
it still remains smaller than the pump pulse. Because of the geometrical projection, the size of
the X-ray spot also influences the temporal resolution, which deteriorates as spot size increases.

X-ray probe pulses can either be the synchrotron pulsed beam or X-ray free electron laser
beam providing a picosecond and femtosecond time resolution, respectively. The advantages
and beam properties of each facility are described in the following paragraphs.

Our team performed a series of tr-XRD on pure and Cr-doped V2O3 samples at the Linac
Coherent Light Source at Stanford linear accelerator. In parallel, I could perform some comple-
mentary time-resolved measurements at Synchrotron SOLEIL.

3.4.2.3 X-ray free electron laser

Despite all advantages of 3rd generation synchrotron facilities, as it has been mentioned in
section 3.3, they encounter limitations as long as very intense sub-picosecond pulses are desired
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Figure 3.12: (a) Low-gain FEL. (b) SASE FEL. The interaction of light and electrons orders the
electrons with a periodicity equal to the X-ray radiation wavelength.

for specific time-resolved experiments to study the dynamics at atomic and molecular scale [46].
The picoseconds-long X-ray pulses produce blurred images of atoms and molecules in motion.
X-ray free electron lasers (XFEL) that are referred to as 4th generation light sources, open the
horizon to this ultra-small and ultrafast world. A detailed description of the free electron lasers
can be found in [41, 70, 110, 141, 142] as well as in many other publications and a growing
number of the relevant research.

The main components of a free electron laser (FEL) are an accelerator providing a bunched
relativistic electron beam and an undulator magnet. The physics of FEL is based on the interest-
ing phenomenon of self-organization of an electron bunch in a relativistic beam, known as the
free-electron laser collective instability [140].

The FEL ultrashort and extremely coherent radiation is produced in the same manner as a
laser however, the active laser medium and the energy pump are replaced by relativistic free
electron beam in the vacuum itself. Therefore, in contrast to lasers, no atomic or molecular
state is involved. The pump source is the large kinetic energy of the electrons and stimulated
emission occurs by the energy transfer from higher to lower kinetic energies under the action of
an already existing nearly monochromatic radiation field produced by the electrons themselves
in the undulator. The energy exchange depends on the undulator properties as well as the
density and the distance between the electrons inside the bunch. The interaction of light and
electrons eventually orders an electron beam with a random electron position distribution to a
cluster with regular periodicity equal to the radiation wavelength, i.e. ∼1 Å. The electrons are
therefore closer to each other within a wavelength, their electromagnetic fields superimpose in
phase, and the total radiation field has a large amplitude. Just like an optical laser, a cavity then
lets the electron do many trajectory inside the cavity and this continuous process reinforces the
electron to bunch even in a more effective way and results in the intensity to scale quadratically
with the number of electrons. This is called a low-gained FEL, figure 3.12 (a).

A free electron laser producing the extreme-UV and X-ray regime is called an XFEL. As most
optics are highly transparent to X-rays, the cavity should be replaced by a more efficient so-
lution; a high laser gain has to be achieved in a single passage. Therefore, the electron path
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length should be extended by a multitude of undulators on the way. The principle of Self-
Amplified Spontaneous Emission (SASE) allows the production of intense and coherent light at
sub-nanometer wavelengths, figure 3.12 (b). The key is that the collective instability is now trig-
gered by an external electromagnetic field. For instance, one can use the spontaneous undulator
radiation in the first section of a long undulator magnet as seed radiation in the main part of the
undulator. This self-amplification of spontaneous emission process results in exponential growth
of the intensity along the undulator. The exponential growth saturates when all the electrons
are well ordered inside a bunch.

As the emission of spontaneous undulator radiation is a stochastic process, the SASE radia-
tion has the properties of chaotic light [11]. It suffers from shot-to-shot fluctuations in energy,
duration, spatial profile, temporal profile and intensity. The origin of these fluctuations is that
the section in which the spontaneous radiation is produced may comprise typically hundreds of
undulator periods corresponding to a bandwidth of ∼1%. Moreover, the longitudinal position
at which an electron emits its radiation will vary from particle to particle. The radiation that is
emitted first undergo a high exponential amplification, while radiation starting at a later position
will be lower on the gain curve.

The XFEL beam fluctuations can significantly complicate the pump-probe experiments. They
give rise to a time jitter between the arrival time of X-rays and pump laser pulses as well as in-
stabilities in the beam position. These effects should be carefully corrected in post-data analysis
in order to have physically meaningful results.

3.4.2.4 XPP beamline at Linac Coherent Light Source

I now explain the X-ray pump-probe (XPP) beamline at the Linac Coherent Light Source (LCLS)
in Stanford, figure 3.13. A detailed description of the LCLS and the beamline can be found
in [40] and [28], respectively. The X-ray pump-probe instrument has achieved femtosecond
time-resolution by the X-ray free-electron laser source. To maximize the range of phenomena
that can be studied, the pump and probe energy and temporal resolution are tuned according
to the experimental case. Optical fs laser pulses at 800 nm, 400 nm, or 266 nm create a non-
equilibrium state of matter and fs X-ray pulses study atomic-scale structural dynamics generated
by ultrafast excitations. X-ray pulses covers a photon energy range of 4 to 24 keV.

The repetition rate of pump-probe experiments at the XPP beamline can be tuned from 120
Hz to 1 Hz. The minimum X-ray spot size is about 2 µm (as a result of the finite SASE bandwidth
and optics imperfections). A custom-built diffractometer provides various degrees of freedom
together and the detector positioning is provided by a robotic arm that can be located up to
about 1.5 m from the sample.

As mentioned previously, the SASE beam has some intrinsic fluctuations. The XPP beamline
is equipped with various diagnostic tools in order to correctly record all beam parameters of
the X-ray and optical laser pulses for post data analysis. The readout electronics require a large
single shot dynamic range because of the pulsed nature of the FEL. Several intensity position
monitors (IPM) are installed at various locations along the instrument for pulse-to-pulse intensity
normalization [66]. The IPM has four photodiodes, arranged in quadrants. It measures the x and
y coordinates of the beam from the relative intensity of the four diodes while the sum measures
the intensity of each single shot.

A very important parameter while doing time-resolved experiments with FEL’s, is the time
jitter that comes from shot-to-shot variations in the electron bunch arrival time. The time jitter is
a result of fluctuations in the electron bunch energy and consequently their flight time through
the undulators [160]. This challenges an accurate synchronization between X-rays and optical
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Figure 3.13: LCLS XFEL and XPP beamline.



86 CHAPTER 3. EXPERIMENTAL METHODS

laser pulses and in turn restricts the time resolution. At the LCLS, the maximum arrival time
jitter is ±100 fs. At the XPP beamline the timing tool monitors measure the relative arrival time
between the pump and probe pulses and their corrections lead to a sub-10 fs r.m.s. resolution in
the hard X-ray regime [61].

The images are acquired by the 140 kpixel CSPAD-140k detector [10] with a readout speed
matched to the LCLS repetition rate (120 Hz). The temperature of the sample can be controlled
by a nitrogen cryoblower.

3.4.2.5 Cristal beamline at synchrotron SOLEIL

I also performed some complementary tr-XRD experiments on the Cristal beamline at synch-
toron SOLEIL. This beamline allows to perform tr-XRD with picosecond time resolution, which
is enough for many types of investigations and more generally to gain a general insight on the
dynamics of the system at ps time-resolution.

Depending on the synchrotron function mode, different time resolution and photon flux are
obtained. For instance in the single bunch filling mode, one pure electron pocket circles around
the storage ring at a bunch current of 20 mA and the time resolution is about 70 ps. On the other
hand, the hybrid multibunch mode has 301 bunches of electrons circulating in the storage ring,
300 fill 3/4 of the ring and 1 is isolated in the middle of the remaining 1/4. The time resolution
of this mode is 4.7 ps that can be reduced to 1 ps by the low-alpha hybrid mode. In this mode,
the momentum compaction factor is modified to smaller values and the spatial lengths of the
electron bunches are decreased. This gives rise to shorter emission pulses in time and therefore
a higher time resolution.

In the Cristal beamline, the pump source is an optical 1.55 eV laser operating at 1 kHz. In the
low-alpha hybrid mode, we block the multibunch X-rays and take advantage of the X-rays from
the single electron bunch. We also tune the frequency of the data acquisition to 2 kHz. Therefore,
one X-ray pulse is used for the reference image while the other studies the structural dynamics
after a given delay from the laser pump pulse. Figure 3.14 presents different synchrotron filling
modes together with the time structure of each, and the cristal beamline.

The zero delay is done roughly with a fast photodiode, and the spatial overlap is done using
a fluorescent paper. A 6-circle diffractometer and an XPAD detector with two degrees of freedom
in angle, allow precisely identifying the θ of a Bragg peak. The XPAD detector can be gated
with the frequency of the single bunch pulse so that the irrelevant signal from the multibunch
be blocked.

The sample temperature is controlled using a nitrogen cryoblower.

3.4.3 Time-resolved optical spectroscopy

3.4.3.1 Motivation

Before explaining the interest of pump-probe optical reflectivity measurements, it is important to
recall few aspects of optical properties in the equilibrium state [187] and how they are eventually
related to the electronic band structure of a material. I devote few lines to remind some useful
relations between the optical reflectivity and other relevant parameters.

The optical conductivity is a complex value, i.e. σ(ω) = σ1(ω) + iσ2(ω), and is not a
straightforward experimental observable. It is principally deduced from the dielectric func-
tion σ(ω) = i ω4π (ε(ω) − 1). Experimentally, the dielectric function is in turn derived from the
reflectivity, as at normal incidence the following equations hold:



3.4. PUMP-PROBE TECHNIQUES 87

Figure 3.14: Diagram of the synchrotron. (a) Storage ring and the Cristal beamline. The X-rays
arrive at 2 kHz (in the low-alpha mode) and the system is pumped at 1 kHz. (b) Time structure of
different synchrotron filling modes. The low-alpha mode has the minimum time resolution.

R(ω) = |1−
√
ε(ω)

1 +
√
ε(ω)
|2 (3.14)

However, what is measured experimentally and we call it reflectivity is the amplitude of the
reflectivity coefficient r(ω)exp[iθ(ω)]—that is, R(ω) = r2(ω), while no information on the phase
θ(ω) is obtained directly. All the parameters defined so far are complex values and causality
implies that the imaginary and real parts are related to each other by the Kramers-Kroning inte-
grals. Once the reflectivity R(ω) is correctly found, other parameters are extracted subsequently.
The key point is to measure R(ω) over a wide range of frequency in order to accurately solve the
Kramers-Kroning integrals:

θ(ω) =
−2

π

∫ ∞
0

ln r(ω′)− ln r(ω)

ω′2 − ω2
dω′ (3.15a)

ln r(ω) =
2

π

∫ ∞
0

ω′θ(ω′)− ωθ(ω)

ω′2 − ω2
dω′ (3.15b)

Starting merely from measuring the amplitude of reflectivity coefficient, one is eventually
able to deduce the real and imaginary part of the dielectric function:

ε1(ω) =
(1− r2(ω))2 − 4r2(ω) sin2 θ(ω)

1 + r2(ω)− 2
√
r2(ω) cos2 θ(ω)

(3.16a)

ε2(ω) =
4(1− r2(ω))

√
r2(ω) sin θ(ω)

1 + r2(ω)− 2
√
r2(ω) cos2 θ(ω)

(3.16b)

Mathematical approach to derive the above-mentioned equations are found in [187].

These explanations clarify that corresponding to the structure in the reflectivity, there will be
structure observed in the real and imaginary parts of the dielectric function. On the other hand,
the equilibrium electronic band structure are identified by detailed features in the reflectivity
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Figure 3.15: Top panel: schematic DOS for the half-filled Hubbard model for a metallic and an
insulating state. Bottom panel: The optical conductivity spectra for the corresponding states.

data that result from interband and intraband transitions or near edge absorption. Therefore,
the optical response of a material is intrinsically coupled to its density of states [154, 171] as
schematically explained in figure 3.15. For instance, the optical conductivity of a Mott insulator
presents a broad peak with the width of U − 2D centered at the frequency of U, where U is the
on-site Coulomb repulsion and D is the half-filled width of the Hubbard bands. The single peak
of the optical conductivity corresponds to the optical transitions from the lower to the upper
Hubbard band. For the case of a correlated metal, the low-temperature optical conductivity is
composed of three main parts: i) A narrow low-frequency peak that is due to transitions within
the quasiparticle resonance and its width is proportional to the temperature. It is important
to note that as the coherence of the quasiparticle is related to the temperature, this narrow
peak is always present as long as the temperature is below a critical temperature at which the
coherence is lost. ii) An incoherent feature of width 2D at frequencies of order U/2 due to
transitions between the Hubbard bands and the coherent quasiparticle peak. iii) A broad feature
around the frequency of U that emerges by transitions between the two Hubbard bands.

The interest of studying the optical response of a material can now be extended to the out-
of-equilibrium domain. In fact, the photoexcitation induces an ultrafast redistribution of the
electrons and therefore yields in a transient change in the optical properties of the systems such
as reflectivity. The starting point for reconstructing the out-of-equilibrium band structure is to
probe the system with a femtosecond pulse that contains a wide range of frequencies, such as
white light. Alternatively, this can be achieved by manually changing the wavelength of the
probe however, this is can be time-consuming and inaccurate due to some alignment issues.

The ultrafast dynamics of the optical response also unveils some aspects of paramount impor-
tance that are inaccessible via equilibrium techniques. For instance the coherent oscillations of
phonons and electron-phonon coupling strength which is explained in the following paragraphs.

3.4.3.2 Coherent oscillations of optical phonons

After photoexcitation the energy distributions of the carriers evolve dynamically and this will
modify the reflectivity of the sample. Generally, the photoinduced change of reflectivity is small
and is the order of 10−3 to 10−6. Moreover, photoexcitation stimulates in-phase oscillation of
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phonons around their metastable position in the photoexcited region of the sample. The in-
phase periodic motion of atoms, which can be due to acoustic or optical phonons, modifies the
optical medium of a propagating electromagnetic wave in turn. In general, the optical response
to an ultrafast light stimulus comprises an oscillatory decaying response. The oscillations are the
real time manifestation of the atomic motion and the decay corresponds to the electron-phonon
coupling strength. The optical phonon excitation by an ultrashort pulse on can be explained
within two theoretical frameworks: Impulsive Stimulated Raman Scattering (ISRS) [190] and
Displacive Excitation of Coherent Phonon (DECP) [202]. In both theories, the problem is simpli-
fied by an analogy to a simple harmonic oscillator that is excited by an impulsive driving force,
F(t):

Q̈+ 2γQ̇+ ω2
0Q =

F (t)

m
(3.17)

where Q is the phonon normal coordinate, m is the reduced mass of the oscillator, γ and ω0 are
the vibrational damping constant and frequency of the excited phonon, respectively. In the ISRS,
the underlying assumption is that the large bandwidth of a femtosecond laser pulse contains
many frequencies so that the difference between some frequencies is resonant with a Raman
active phonon mode of the medium. Such phonon mode can therefore be excited coherently if
the pump pulse duration is shorter than the vibration period. This clarifies the terminology of the
stimulated Raman scattering. On the other hand, this model also assumes that the polarizability
of materials depends on the interatomic distance through the normal coordinates Q.

The driving force within this context is written as:

F (t) =
1

2
N(

δα

δQ
)0EE (3.18)

with N being the density of oscillators, α the differential polarizability tensor, and E the electric
field. In this way, the solution of the equation of motion has a sinusoidal form, i.e. it presents
a vibrational wave whose wavevector is in the direction of light propagation with an amplitude
proportional to the laser intensity:

Q(z > 0, t > 0) = Q0e
−γ(t−nzc ) sin (ω0(t− nz

c
)) (3.19)

where the phonon amplitude Q0 is proportional to the force F , n is the real part of the refractive
index, z is the direction of propagation of the beam and c is the speed of light in vacuum. This
model implies that all phonon modes can be observed regardless of the laser power as long as
the pulse is short enough to contain proper frequency differences. However, one can selectively
observe a single mode by choosing appropriately the probe light polarization. Nonetheless,
most of metals and semimetals only reveal Raman-active modes of A1 symmetry in pump-probe
experiments, although they show modes of different symmetries in spontaneous and resonant
Raman scattering. The ISRS theory cannot explain this phenomenon.

The DECP theory describes the detection of only modes of A1 symmetry. The theory is based
on the fact that A1 displacement modes do not lower the symmetry of the crystal and thus, it is
improbable to stimulate displacements of any symmetry other than A1 in an optical pump-probe
experiment. One may rather expect to observe other modes upon electronic photoexcitation if
the material is close to a structural phase transition with that specific symmetry in the ground
state. In this model, the oscillations in the transient reflectivity result purely from a change in
the A1 coordinate, Q(t). The pump pulse instantaneously increases the electronic temperature
by some ∆Te and populates the conduction band with a density of hot electrons, n(t). The
electron-phonon interaction will then also generate an increase of the lattice temperature by
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some ∆Tl. All these quantities will modify the reflectivity of the sample. We start by writing the
changes in the reflectivity by its partial derivatives:

∆R(t)

R
=

1

R
[(
∂R

∂n
)n(t) + (

∂R

∂Te
)∆Te + (

∂R

∂Tl
)∆Tl + (

∂R

∂Q
)Q(t)] (3.20)

The model postulates that Q0(t), the equilibrium coordinate of A1, is linearly dependent on
n(t) and a rate equation describes the dynamics of n(t) as:

ṅ(t) = ρP (t)− βn(t) (3.21)

P (t) is the energy in the exciting pulse per unit area per unit time and β is the decay time
constant because of electron-hole recombination. The constant ρ is given by:

ρ = f
2nIm
~c

(1−R)

where f is the fraction of photoexcited electrons, nIm is the imaginary part of the refractive
index and R is the unperturbed reflectivity of the sample. The excited electrons incite a sudden
change of the equilibrium nuclear coordinates that is accompanied by an oscillatory movement.
The equation of motion is therefore re-written:

Q̈(t) = −ω2
0(Q(t)−Q0(t))− 2γQ̇(t) (3.22)

with the driving force being replaced by ω2
0Q(t). The frequency of the A1 mode is supposed to

be constant and not affected by electronic excitation. In the end, the quasi-equilibrium position
of atoms is proved to be a decaying oscillating exponential:

Q(t) ∝
∫ inf

0

g(t− τ)[e−βτ − e−γτ (cos(Ωτ)− β − γ
Ω

sin(Ωτ))]dτ (3.23)

where g(t) is a normalized pulse shape function and Ω =
√
ω2

0 − γ2.
While in the ISRS theory the coherent oscillations were a consequence of the hypothesis of

the model, the DECP theory already includes them in the initial supposition and reproduces the
ultrafast optical response upon photoexcitation, c.f. equation 3.20. The ISRS theory has been
successfully applied to describe the excitation of coherent phonon modes in transparent materi-
als, whereas the DECP theory can better describe the coherent phonon excitation in absorbing
materials.

3.4.3.3 Extracting the electron-phonon coupling constant

By the above-mentioned semi-phenomenological models, the fundamental aspects of transient
changes in reflectivity are described in terms of coherent oscillation of phonons and their decay
in time. I now explain how it is possible to deduce electron-phonon coupling constant and other
relevant parameters to the electronic dynamics by means of time-resolved optical spectroscopy.

In pump-probe techniques, the pump-induced changes in the electronic and lattice temper-
atures affect the optical response of the material in time and this in turn depends on the elec-
tronic band structure of the material. In subsections 2.2.2 and 2.2.3, I described the two and
three-temperature models that simulate the electrons and lattice temperatures after applying an
ultrashort pump pulse.

In the context of the two-temperatures model, the induced change in the reflectivity depends
linearly on ∆Te and ∆Tl so that ∆R(t)

R = c1.∆Te+ c2.∆Tl where Te and Tl are given by equation
2.1.
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By the three-temperature model the lattice was described more accurately in terms of hot
phonons and cold phonons to which electrons are coupled by λ1 and λ2 constants, respectively.
On the other hand, the hot phonons and cold phonons consist of a fraction f and 1-f of the total
phonons. In this way, the transient reflectivity is written as:

∆R

R
= c1.∆Te + c2(f∆Tp + (1− f)∆Tl) (3.24)

The fitting procedure using this equation coupled to the three-temperatures model, allows
one to find the experimental phonon frequency as well as the electron-phonon coupling con-
stant(s).

In the following paragraphs, I explain two different techniques of pump-probe optical spec-
troscopy: single color reflectivity and supercontinuum reflectivity measurements. These two
techniques are complementary and each provides advantages unique to its own.

3.4.3.4 Pump and probe experiments with tunable wavelength

The main motivation for doing single color time-resolved optical spectroscopy is to extract mean
energy of the optical phonons and the coupling constants. On the other hand, the tunability of
the wavelength allows us to pump electrons to the region of interest in the band structure, for
instance very close to the band gap of a Mott insulating or a superconducting state. The possi-
bility of independently tuning the pump wavelength significantly extends the range of accessible
excitations in matter. Similarly, an appropriate choice of the probe pulse makes it possible to
only focus on the dynamics of a given part of the band structure.

The setup located in salle Argent at the Laboratoire d’Optique Appliquée (LOA) provides the
possibility to continuously tune the wavelength of light by Optical Parametric Amplifier (OPA).
The OPA is pumped by the fundamental harmonic of Ti:Sapphire laser at 800 nm and 0.5 mJ per
pulse at the repetition rate of 1 kHz. The optical parametric amplification involves a non-linear
process and principally produces two pulses called signal and idler whose energy can be tuned
continuously and interchangeably. A detailed explanation of the OPA is given in section 6.3.The
wavelength range obtained is 1.2 - 2.6 µm. However, an extra difference frequency generation
(DFG) modulator inside the cavity provides photons with energy equal to the difference energy
between the signal and idler and makes it possible to obtain photon energies in the range of 2.6
- 20 µm.

This setup gives us two possibilities for the pump-probe experiment according to the experi-
mental needs. i) Before the entrance of the OPA we can divide the optical path of the 800 nm in
two parts, so that we use one part as pump (probe) while the output of the OPA (either signal or
DFG mid-infrared pulse) is used as probe (pump). ii) Another way is to use the signal and the
DFG for the pump and probe interchangeably. During my PhD I worked principally on the V2O3

samples with the first configuration which is schematically described in figure 3.16. The probe
pulse is 800 nm and the pump pulse is the DFG mid-infrared (MIR) light. The MIR pulse allows
us to pump very close to the Fermi level and to study the photoinduced effects.

The detection of the time-resolved ∆R
R signal is based on a photodiode connected to a lock-in

amplifier. This procedure requires the use of an optical chopper, in order to modify the repetition
rate at which the sample is pumped with respect to the repetition rate at which it is probed. The
most straightforward modulation for the pump is to set it to 50% of the laser repetition rate.
The modulation of the pump is thus 500 Hz, while the probe pulse has a repetition rate of 1
kHz. The lock-In amplifier extracts only the signal that has a frequency equal to the one set by
an external reference, which in our case is the repetition rate of the pump. In this fashion, we
directly measure the changes in the reflectivity ∆R due to the pump pulse. In order to calculate
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Figure 3.16: The time-resolved reflectivity setup at LOA with 800 nm as probe and MIR as pump.

Figure 3.17: (a) Dispersion of the reflected white-light pulse through the prism onto the linear array
sensor. The calibration procedure for the system consists in the assignment of a wavelength to every
pixel of the array. (b) Time- and spectrum- resolved reflectivity.

the relative change with respect to the equilibrium reflectivity R, the reference value is measured
at 1 kHz, which is typically of the order of few tens of mV . The experiment can be run with the
pump-probe delay steps of 6 fs or longer. The acquisition time depends on the integration time
set on the lock-in amplifier. Typically, a time-resolved spectrum for a range of 2 ps takes about
5 minutes. This acquisition system has a sensitivity of around 10−4, which is the state-of-the-art
at 1 kHz repetition rate.

3.4.3.5 Time-resolved optical spectroscopy with broadband probe

As explained in paragraph 3.4.3.1, to get a comprehensive view on the photoinduced changes
of the band structures, the optical response in a large enough frequency spectrum should be
studied. For this purpose, the new generation of optical parametric amplifiers makes available
the femtosecond pulses from far-UV to far-infrared regions.

The pump-probe reflectivity setup in the T-Rex beamline at the Fermi accelerator provides
a broadband pulse (supercontinuum) to be served as probe and the conventional 800 nm as
pump pulse. The laser is a Ti:Sapphire that delivers 800 nm pulses with 5 µJ per pulse and 80
fs bandwidth at a repetition rate of 250 kHz. The supercontinuum in the range of 460 nm to
1.57 µm is acquired by pumping a sapphire plate. This wide energy spectrum is focalized on the
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sample and the reflected white light beam is then dispersed by a prism towards a linear array
of photodiode sensor, figure 3.17 (a). The wide energy spectrum of the probe makes it possible
to simultaneously study the photoinduced changes of reflectivity for different wavelengths at a
fixed delay. Therefore, by spanning the appropriate time delay range, a two-dimensional map
is acquired. One axis contains 256 points that resolves the spectrum in energy and the other
axis is the time delay. The intensity of each point then corresponds to the ∆R(λ,t)

R . Figure 3.17
(b) shows an example of a 2D time- and spectral- resolved intensity map. The observed linear
temporal structure as a function of wavelength is related to the linear and positive chirp that
depends on the material through which the supercontinuum is generated, e.g. the sapphire
crystal. In order to have a correct interpretation of data, one has to rectify these irrelevant
features due to the probe pulse temporal profile.

The setup in T-Rex also has an open-cycle liquid Nitrogen/ liquid Helium cryostat and allows
studying solids in a temperature range of 4 to 325 K.
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4 | Electronic band structure of BaNiS2
and BaCoS2

4.1 Introduction

In this chapter, I present the full electronic band structure of BaNiS2 acquired by photon energy-
, polarization-, and temperature- dependent ARPES measurements. My experimental results
give evidence that BaNiS2 is a correlated semimetal that has two-dimensional linearly dispers-
ing bands. It is also demonstrated theoretically by our collaborators that these bands can be
described with a Dirac Hamiltonian.

Next, I present the hitherto missing electronic band structure of the Mott-insulator BaCoS2

in both its magnetic and non-magnetic phases. The band dispersion shows similarities and
discrepancies with BaNiS2. Some DMFT calculations, performed for the first time by M. Casula,
show good agreement with the ARPES data.

4.2 Correlated Dirac fermions in BaNiS2

4.2.1 Introduction

The topological classification of materials has been one of the major breakthroughs in condensed
matter theory [4, 14, 62, 150]. It provides a robust framework to explain and predict remarkable
material properties, such as the quantum spin Hall effect and low-energy relativistic behavior,
by means of band structure analysis. A key ingredient of this framework is the band inversion,
which can be associated with a parity twist of the Bloch states along a path through the inversion
point in the reciprocal (k-) space. Under crystal symmetries protection, the band inversion leads
to an allowed crossing point. Whenever inversion and time reversal symmetries are also fulfilled,
the allowed band crossing generates a Dirac cone [101, 182, 198, 199], c.f. subsection 1.4.3.
Thus, Dirac states can emerge at the boundary between trivial (i.e. non-inverted) and topological
insulators with inverted bandgaps [191].

However, in Dirac semimetals the cones with opposite chirality can annihilate each other
unless additional crystal symmetries are provided as we have seen in paragraph 1.4.3.1. For in-
stance, one possible way is when the robustness is assured by crystal symmetry when two bands
with distinct 2D representations are inverted and cross each other [129, 182, 183]. In this case,
the gapless nodes appear along the high-symmetry lines [27, 101]. In these systems, the SOC
renders the Dirac fermions massive and opens the gap. However, in a 2D crystal the nonsymmor-
phic symmetry can stabilize a Dirac node that cannot be gapped by SOC. In paragraph 1.4.3.3 I
showed the experimental evidence of two-dimensional Dirac cones in the square lattice of ZrSiS
[162] that are located at the high symmetry X and R points and are protected by glide plane

95
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symmetry regardless of the SOC strength. On the other hand, the discovery of the massive Dirac
fermions on the 2D kagome lattice of ferromagnetic Fe3Sn2 [196] widened the horizon of topo-
logical materials. The novelty of this material is that it presents Dirac cones that are subject to
electronic correlation as well as exchange interaction, and are mainly composed of d-orbitals
while the Dirac cone in most of the materials studied so far typically results from p-orbitals or
hybridization of s- and p-orbitals. The search for novel materials that present interaction-induced
Dirac fermions has attracted growing interest and has been very active recently.

Here, I present a systematic study of the electronic band structure of BaNiS2 by means of
ARPES and first-principles calculations. I performed the ARPES experiments and the theory part
is done by our collaborators from the University of Paris 6 and SISSA in Trieste, notably M.
Casula, A. Amaricci, and M. Fabrizio.

Our results give evidence of the presence of Dirac cones made of nickel d-orbitals, where the
band inversion mechanism is provided by a strong hybridization of the d-orbitals with the ligand
p-orbitals of sulfur atoms, favored by the nonsymmorphic symmetry of the lattice. By using a
minimal tight-binding model derived from first principles calculations, it is proved that this band
inversion mechanism is very general. In the case of BaNiS2, it gives rise to Dirac cones located
at the Fermi level and widely extended in energy.

Owing to the quasi-bidimensional nature of BaNiS2, the accidental band crossings assisted
by the p− d hybridization generate Dirac line nodes that lie on the σd reflection planes and fully
stretch along the kz direction, therefore piercing the whole Brillouin zone. By symmetry, there
are 4 replica of line nodes, one for each quadrant. This is quite different from other topological
node-line semimetals known to date, i.e. Cu3NPd [84], Ca3P2 [188], and ZrSiS [162], where
the nodal lines are circles developing around high-symmetry points, and not straight lines like
in the present case.

A relevent feature of the Dirac fermions found in BaNiS2 is their strong d-orbital charac-
ter. This can host strong correlation effects, a rare situation among the Dirac semimetals that
have been experimentally established. As explained in section 1.5, BaNiS2 attracted interest
in the different context of a Mott metal-to-insulator transition (MIT) observed in the substi-
tuted BaCo1−xNixS2 compound at a critical doping level of xcr ∼ 0.22 [92, 112]. This MIT is of
particular interest because it is exclusively driven by electron-electron correlation and the uncon-
ventional precursor phases make it similar to the case of High-Tc superconductors like cuprates.
We have also seen in subsection 1.5.3 that this system is also very similar to high-Tc iron pnictide
for multiple reasons except that BaCo1−xNixS2 does not show any superconductivity.

Therefore, the present finding of Dirac cones puts BaNiS2 in a novel perspective, for BaNiS2

appears to be a unique system which combines Dirac and Mott physics. For instance, one can
envisage that the strength of the electron-electron correlations controlled by the Co/Ni substi-
tution may be used to effectively tune the Dirac bands. This may give rise to novel electronic
states not studied before. This opportunity is not possible in weakly correlated Dirac materials,
where novel electronic phases such as superconductivity are achieved only by radically altering
the crystal structure, e.g. by twisting bilayers of graphene [21, 22].

In order to investigate the electronic properties of BaNiS2 that arise from such peculiar gapless
nodes, I first present in subsection 4.2.2 the results of a systematic ARPES study complemented
by an ab initio electronic structure investigation, both giving evidence of the Dirac cones. Then,
I show the role of the crystal space group, crystal field and orbital symmetries in the creation
of the band inversion near the Fermi level in subsection 4.2.3. Third, I present the theoretical
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Figure 4.1: (a) Crystal structure of BaNiS2. Blue, yellow and green spheres represent the Ni, S
and Ba atoms, respectively. The tetragonal unit cell is indicated by black solid lines. The lattice
parameters are a = 4.44 Å and c = 8.93 Å[56]. On the top the projection of the unit cell in the xy
plane, containing two Ni atoms is shown. (b) Gliding plane symmetry relating the Ni atoms inside
the unit cell. (c) First Brillouin zone, and high-symmetry directions.

description of the experimental results in subsection 4.2.4. Specifically, starting from the ab
initio description of the band structure, successive simplified tight-binding Hamiltonians are in-
troduced which capture the essential properties of the system. This simplified treatment shows
that the band structure near the gapless nodes is accurately described by an effective Dirac-like
Hamiltonian similar to that of graphene. Our findings reveals novel possibilities for the concep-
tion new Dirac materials with correlated d orbitals.

4.2.2 Results

4.2.2.1 ARPES measurements

In order to shed light on the detailed electronic band structure of BaNiS2, I performed synchrotron-
ARPES on high-purity single crystals synthesized by a self-flux method and characterized by X-
ray diffraction. The measurements were performed at the Advanced Photoelectric Effect (APE)
beamline at synchrotron Elettra, c.f. subsection 3.3.2, at 70 K with linearly p-polarized beam
of 70 eV. Single crystals of BaNiS2 were cleaved in-situ within the ab plane with a top-post un-
der UHV conditions (base pressure better than 10−11 mbar). The data were collected at the
end station with a VG-DA30 Scienta hemispherical analyzer that provides high-resolution two-
dimensional k-space mapping while the sample geometry is fixed. The total measured energy
resolution (analyzer, temperature, photon energy) is ∼ 15 meV and the angular resolution is
better than 0.2◦.

In figure 4.2 (a) I represent a three dimensional ARPES map of the Brillouin zone whose
shape and high-symmetry k-points are shown in figure 4.1 (c). The top surface shows the con-
stant energy contour at the Fermi level accompanied by the band dispersion spectra along the
high symmetry directions ΓM, ΓX, and XM on the sides of the cube. We clearly observe the
linearly dispersing bands along the ΓM that create a gapless node at the Fermi level. The Fermi
surface reveals two pairs of such Dirac-like crossings related to each other by the time-reversal
symmetry and by the C2 operation symmetry of the C2v little group of the k-vectors belonging
to the ΓM direction. We also observe a small electron pocket centered at Γ. The small Fermi
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Figure 4.2: Experimental electronic band structure of BaNiS2. (a) A three-dimensional ARPES map
acquired with 70 eV photon energy. The top surface shows the Fermi surface and the sides of the
cube present the band dispersion along the high symmetry directions depicted with the white arrows.
The linearly dispersing bands along the ΓM cross each other at the Fermi level, creating four Dirac
nodes on the Fermi surface. (b) Stacking plots of constant-energy contours show the band structure
evolution with respect to the binding energy. Particularly, we observe the ellipse-shaped section of the
linearly dispersing bands on the kx − ky plane that loses symmetry as the binding energy increases.
(c) Elliptical section of the Dirac cone for the binding energy of 100 meV. The band dispersion along
the small and big axis of the ellipse are also shown. (d) The ARPES yield along the ΓM direction
with different photon energies for the region where bands are linearly dispersed. The dashed blue
lines are the guide to the eyes along the linearly dispersing bands.
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Figure 4.3: (a) The Dirac cone as obtained by 60 eV of photon energy. (b) MDC at the binding energy
of 0.29 eV. The photoemission peaks of the dz2 and dx2−y2 bands are fitted by a Gaussian function
and a linear background and are shown in blue and orange curves, respectively. (c) The continuity
of the bands above the Fermi level are obtained by fitting The reconstructed band dispersion for each
band with a polynomial function. The crossing point of the fits gives the position of the Dirac point.
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surface emanates from the rich electron correlations leading to the semi-metallic properties of
BaNiS2 [86, 156]. I present in figure 4.2 (b), the evolution of the bands with respect to the
binding energy in the constant energy contours in the kx − ky planes. We observe that the
electron pocket at Γ disappears at binding energy ∼ -0.14 eV and then evolves into a growing
star-shaped dispersion as the binding energy increases. On the other hand, the linearly dispers-
ing bands along ΓM remain isolated up to about -0.5 eV. In contrast to graphene, these bands
create an elliptical section on the constant energy maps close to the Fermi level. In figure 4.2
(c), I show the elliptical shape of the Dirac cone for the binding energy of 0.1 eV. The big and
small axis of the ellipse lie along the ΓM and XX′ directions and their sizes are 0.14 and 0.3 Å−1,
respectively. The band dispersion along the axis of the ellipse are also shown. However, as the
binding energy increases the sections of the Dirac cone with respect to binding energy gradually
lose their symmetry until they reach the border of the Brillouin zone and interfere with other
bands. This asymmetric aspect also comes from the originally tilted nature of the Dirac cone
which will be discussed after. Henceforth, I mainly focus on the linearly dispersing bands. In
order to elucidate the kz dispersion character of their electronic band structure, I performed
a series of photon energy dependent measurements from 25 eV to 80 eV ensuring a complete
span of the Brillouin zone. The full electronic band dispersion with respect to photon energy is
discussed in section 4.3.

Figure 4.2 (d) shows the ARPES yield acquired with different photon energies. We notice
slight variations in the intensity of the bands that can be explained by matrix element effects.
In order to obtain the position of the Dirac point in the binding energy and momentum, I used
the following method: I have sliced the ARPES yield for each binding energy into momentum
distribution curves (MDC’s). Figure 4.3 (a) and (b) show the Dirac cone at 60 eV and the MDC at
-0.29 eV below the Fermi level, respectively. The photoemission intensity peak for each branch
of the Dirac cone— that is, the dz2 and dx2−y2 band, was fitted by a Gaussian with a linear
background as show in the figure. The centers of the fit for all binding energies then give the
reconstructed band dispersion, E(k), for each band. In order to obtain the continuity of the
bands above the Fermi level, I fitted each reconstructed band by a polynomial fit as shown in
figure 4.3 (c). The crossing of these fits for the dz2 and dx2−y2 bands gives the position of the
Dirac point. For instance, in this case Dirac point is located at 20 meV above the Fermi level and
at wavevector -0.52 Å−1. Table 4.1 shows the Dirac point position for different photon energies:

hν (eV) E (meV) k//(Å
−1

)
25 20 -0.52
35 19 -0.51
45 17 -0.50
50 21 -0.49
60 20 -0.52
70 20 -0.52
80 17 -0.52

Table 4.1: The position of the Dirac cone in energy and momentum with respect to the photon
energy. The Dirac point always occurs around 20 meV above the Fermi level and does not disperse
in the momentum space within the experimental resolution.

The ARPES data reveals no dispersion of linear bands within the experimental resolution.
The Dirac point always occurs at about 20 meV above the Fermi level and its position in the
kx − ky plane is almost constant. Furthermore, the velocity of the bands does not change for
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different kz. These dispersionless features strongly indicate a 2D nature for the Dirac cone in
the square lattice of BaNiS2. I found that the Fermi velocity for two branches of the linearly
dispersing bands along the ΓM direction is about 2 eV.Å.

4.2.2.2 ab initio electronic band structure calculations and polarization-resolved band
structure

The band structure calculations were performed in the density functional theory (DFT) frame-
work by a modified hybrid Heyd-Scuseria-Ernzerhof (HSE) functional with an optimized 7% of
exact exchange, while keeping the regular screening length λ ≈ 4.8 Å in the exchange potential
[68, 93].

I briefly describe the DFT ab-initio calculations that our theorist collaborators carried out:
they used the QUANTUM ESPRESSO package [51, 53] for the calculations. The geometry of the
cell and the internal coordinates are taken from experiment [56]. The core electrons of the Ni,
Ba, and S atoms are replaced by norm-conserving pseudopotentials. The Ni pseudopotential
is fully relativistic, with 10 valence electrons (4s23d8) and nonlinear core corrections. The Ba
pseudopotential includes the semicore states, while the S pseudopotential has 3s23p4 in-valence
electrons. They employed a 8×8×8 electron-momentum grid and a Methfessel- Paxton smearing
of 0.01 Ry for the k-point integration. The plane-waves cutoff is 60 Ry for the wave function. The
non-local exchange terms of the HSE functional are computed through the fast implementation
of the exact Fock energy [51], based on the adaptively compressed exchange scheme [100]. In
the non-local Fock operator evaluation, the integration over the q-points is downsampled on a
8 × 8 × 2 grid. A half-a-grid shift in the z direction was applied to minimize the number of
nonequivalent momenta in the k + q grid. They performed a Wannier interpolation of the ab
initio bands, by means of the WANNIER90 code [123], to accurately resolve the band structure,
chemical potential, and Fermi surface.

The advantage of introducing the hybrid functionals is that they are nonlocal and orbital
dependent. They effectively take into account static non-local correlations of screened-exchange
type, proven to be relevant to correctly reproduce quantum oscillations data [86]. Nickel spin-
orbit (SO) interactions were included, whose importance has been demonstrated in BaNiS2

[156]. Figure 4.4 (a) shows the comparison between calculations and the ARPES data acquired
at 70 eV of photon energy. It shows a quite good agreement, particularly at kz = 0. The location
and the shape of the Dirac cones are well reproduced along the ΓM and ZA directions. The
asymmetric (tilted) nature of the cones, already mentioned in the ARPES Section, is highlighted
by the ab initio band structure.

The HSE results allow one to analyze the nature of the Dirac cones, in particular their orbital
character, and to extract the tight-binding parameters for a model low-energy Hamiltonian. In
accordance with recent calculations done in the so-called DFT+U framework [156], we can
ascribe the electronic states close to the Fermi level mainly to Ni 3d-orbital hybridized with 3p

orbitals of sulfur atoms.
With the aim of clarifying the multi-orbital nature of the bands experimentally, I performed

a series of polarization dependent laser-based ARPES experiments. The measurements were
performed at the FemtoARPES setup, c.f. paragraph 3.4.1.3. By using a thick β-BaB2O4 (BBO)
crystal (1 mm) the total effective energy resolution was ultimately reduced to 20 meV. The
intensity of the UV pulses was decreased to approximately 1000 photons/pulse in order to avoid
space charge effects from femtosecond laser pulses during our measurement [65]. The base
temperature of the experiments was 130 K.

As explained in subsection 3.2.4, thanks to different parities of the d-orbitals with respect to
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Figure 4.4: Band structure calculations and d-orbital character of the Dirac bands revealed by
laser-based ARPES. (a) Comparison between the electronic band structure calculations with the HSE
method and the experimental data acquired with 70 eV of photon energy. (b) Mirror plane emission
of the dz2 band. (c) P-polarized photon with the electric field indicated as Ap allows the detection of
the out-of-plane dz2 band. The right hand side figure shows the orbital-resolved band structure. (d)
Mirror plane emission of the dx2−y2 band. (e) s-polarized photon with the electric field indicated as
As reveals only the band dispersion of the in-plane dx2−y2 band. The color scale of the calculations
indicates the relative weight of the given d-orbital component for the studied bands.
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the scattering plane of the experiment, see figure 4.4 (b) and (d), the out-of-plane dz2 and the
in-plane dx2−y2 states are observable with p and s polarization of the incident light, respectively.
The results in figure 4.4 (c) and (e) confirm the well-defined character of the Dirac bands close
to the Fermi level, also by direct comparison with the orbital resolved band structure. These
results show that it is logical to try to derive the Hamiltonian that is based on the contribution
of two d-orbital components as explained in the following subsection.

4.2.3 Symmetry analysis of the Dirac bands

As reported in figure 4.1, the crystal structure of BaNiS2 is made of square-lattice layers of
staggered edge-sharing NiS5 pyramids pointing along the out-of-plane [001] c-axis direction
[113]. The Ni atoms are located inside the S pyramids along their axis. They feel a square-
pyramidal crystal field which splits the atomic d-shell into levels that are, in descending energy
order: dx2−y2 , dz2 , dxy, and (dxz, dyz), the latter two being degenerate. Since the Ni is in a 3d84s0

electronic configuration, we expect that all d orbitals are filled except for the two topmost energy
levels dx2−y2 and dz2 , each one nearly half filled, if the Hund’s exchange overwhelms the crystal
field splitting between them.

The puckering of the BaNiS2 layers gives rise to a tetragonal non-symmorphic P4/nmm
symmetry characterized by a horizontal gliding plane which generates two Ni (and apical S)
positions at (1/4,1/4,z) and (3/4,3/4,−z), separated by a fractional f=(1/2,1/2,0) translation
in the plane, figure 4.1 (b). The two Ni are at the Wyckoff position 2c, also position of the M
point, while the two planar S are at the position 2a, which is also the Wyckoff position of the Γ

point.
As one can see from figure 4.5 (a), at the M point the energy hierarchy of the atomic orbitals

follows closely the crystal field splitting. Moreover, as the little group has four 2D irreducible
representations, the states originating from the same orbitals of the two inequivalent Ni must be
degenerate. The topmost level of the p − d manifold is of EM1 symmetry, and is made by the
two dx2−y2 orbitals, while the doublet generated by the dz2 orbitals transforms as the irreducible
representation (irrep) EM2. The latter lies below EM1 and is in between EM3 and EM4 irreps,
made of linear combinations of the (dxz, dyz) orbitals, one set for each inequivalent Ni.

On the contrary, the levels stacking at the Γ point, whose little point group is isomorphic to
D4h, is quite different from that predicted by the crystal field. This uncommon behaviour stems
from the sizeable hybridization of Ni-d orbitals with the S-p ligands. Because of the nonsymmor-
phic symmetry, each Bloch eigenfunction at Γ can be either even or odd upon exchanging the
inequivalent Ni and S within each unit cell. Even and odd combinations of the same d-orbitals
belonging to inequivalent Ni atoms split in energy since they hybridize differently with the the
ligands. For instance, the even combination of the dx2−y2 Ni-orbitals is weakly hybridized with
the lower energy pz-orbitals of the planar S, since the two Ni are one above and the other below
the basal plane, whereas the odd combination is non-bonding. As a result, the even combination,
of symmetry B1g, shifts up in energy with respect to the odd one, of symmetry B2u. Seemingly,
the A2u odd combination of dz2 hybridizes substantially with the pz orbitals of both planar and
apical S, and thus is pushed up in energy well above not only the even combination, of symmetry
A1g, but also above the dx2−y2 even and odd combinations, thus reversing the crystal field order
(figure 4.5 (b)).

Because the irreps at the A and Z k-points are equivalent to those at the M and Γ ones [179],
respectively, the orbital hierarchy found at M must be preserved along the MA direction, and
that at Γ along the ΓZ direction. This implies that along the path (0, 0, v)→ (1/2, 1/2, v) for any
v, there must be a band inversion between bands with predominant dz2 and those with dx2−y2
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Figure 4.5: Band structure calculations and band symmetries along the MΓ direction. (a) Band
symmetries along the MΓ direction. At the right (left) -hand side of the panel, the symmetries at Γ
(M) is shown, while the symmetries in between follow the irreps of the C2v point group, represented
by the color code in the key. The outer +/− signs indicate the parity of the respective Bloch wave
functions at the beginning and at the end of the k-path. (b) Evolution of the energy splitting between
even and odd combinations of d orbitals along MΓ. The red (dark-green) vertical arrows indicate the
splitting between the dx2−y2 (dz2) bands at Γ due to the hybridization with the ligand pz orbitals.
The blue arrow is the splitting of dxz/dyz bands at Γ due to their hybridization with the px/py
orbitals.

characters. Remarkably, the band crossing is allowed in this case without SOC, and leads to two
Dirac points, one right at the Fermi energy for kz = 0. Indeed, the crossing bands transform
like different irreps of the little group, which is isomorphic to C2v for a k-point (u, u, v) with
v = 0, 1/2, and to Cs with v ∈ ]0, 1/2[. Figure 4.5 (a) shows the bands around the Fermi energy
and along ΓM, each labeled according to the irreps of the corresponding little groups. In the
next subsection, I show the orbital character of those bands, which highlights the major role
played by the ligands.

From a parity analysis of the band structure (the parity sign for each band at the two time-
reversal inversion momenta points M and Γ is reported in figure. 4.5 (b)), it turns out that
BaNiS2 is close to being a weak Z2 topological insulator, thanks to the inverted bandgap occur-
ring at Γ between the Eu and the B1g states, carring opposite parities. Both bands are however
slightly below the Fermi level, and the system is thus metallic with a small Fermi pocket cen-
tered at Γ, as found also in ARPES. It is interesting to note that the inverted bandgap at Γ is very
sensitive to the electronic correlations. The HSE functional pushes up the B1g state with respect
to the GGA results, by reducing the inverted band gap, which then closes along the ΓZ.

Previous theoretical calculations [63, 92, 113, 156] already suggested that all the Ni (3d)-
orbital components contribute to the density of states near/at the Fermi level and that they are
strongly hybridized with the S(3p) orbitals. However, to the best of our knowledge, the presence
of linearly dispersing bands with unavoided crossing at the Fermi level was not noted before.
Remarkably, the unavoided crossing occurs along a symmetry line and not at high-symmetry
points as, for instance, in the case of the prototype system graphene.

4.2.4 Effective Dirac Hamiltonian

In order to derive a minimal 2D model for the Dirac cones, Wannier orbitals from the HSE band
structure for the full p-d manifold were generated. The resulting tight-binding Hamiltonian
features 22 atomic orbitals. The p orbitals belonging to the apical sulfurs and the d-orbitals not
contributing to the Dirac bands are easily removed from this Hamiltonian, and all out-of-plane
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hoppings are set to zero. However, care must be taken for the remaining in-plane sulfur atoms
which are nearest neighbors of the Ni sites. As such, these S atoms favor the electron hopping
between Ni atoms aligned in the Ni-S-Ni direction. We shall see that the strong Ni-S hybridization
is key to shape the linear dispersion of the Dirac bands, while the gapless nodes are protected by
the different dz2 and dx2−y2 symmetries, as discussed above. A further simplification of the tight-
binding model is achieved by reducing the unit cell from a 2-Ni sites to a single Ni. Note that
among the remaining orbitals, only the pz ones are odd with respect to the reflection through
the x-y plane. By exploiting the nonsymmorphic symmetry of the crystal space group, we can
introduce a gauged set of atomic orbitals ({p̃i}i=x,y,z and {d̃j}j=z2,x2−y2), which differs from the
physical set only for the p̃z orbital, defined such that p̃z(ix, iy) = (−1)ix+iypz(ix, iy), where ix, iy
are indices of the underlying Bravais square lattice. Once the Hamiltonian in the 1-Ni unit cell
with gauged orbitals is derived, one easily finds that upfolding its band structure yields the one
of the full 2-Ni nonsymmorphic unit cell. Thus, we end up with an equivalent 5× 5 Hamiltonian,
in a bipartite square lattice containing 1-Ni and 1-S sites and nearest neighbor hoppings, much
simpler to handle. For convenience, we will henceforth work in a reference frame obtained upon
rotating the x-y plane by 45◦ around the z-axis, so that dx2−y2 → dxy, and Ni-Ni directions are
along either the x or y of new axis. This Hamiltonian reads:

H(k) =
∑

i=x,y,z

Ei nik +
∑

a=z2,xy

Ea nak

+
∑

σ, a=z2,xy
i=x,y,z

vi,a(k)
(
d†akσ pikσ +H.c.

)
,

(4.1)

where k = (kx, ky), nak and nik the occupation numbers in moment space. The non-zero
hybridization amplitudes are:
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2
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2
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(4.2)

The model parameters are compatible with the spatial symmetries and implicitly depend on
kz. Their values are reported in table 4.2.

Denoting with Ed, Ep the on-site energies of the d- and the p-orbitals, we find that the charge
transfer energy is positive Ed − Ep > 0. Thus, assuming that the p-orbitals lie well below the
Fermi level, we can integrate them out to obtain a Hamiltonian which effectively describe the
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Hopping element eV
Ex/Ey 6.33
Ez 6.85
Ez2 7.48
Ex2−y2 7.54
tz,xy -1.48
tz,z2 -2.32
tx,xy 1.76
tx,z2 0.22

Table 4.2: Tight-binding coefficients used in the low-energy 5 × 5 Hamiltonian, as derived from a
Wannier fitting of the ab initio HSE band structure.

physics of d-orbitals near the Fermi level:

Hd(k) =
∑

a=z2,xy

[
Ẽa − ta(cos kx + cos ky)

− t′a cos kx cos ky
]
nak

+
∑

a,b=z2,xy
a6=b, σ

tab

(
d†akσ dbkσ +H.c.

)
,

(4.3)

where the hopping amplitudes are defined according to the following chain of relations: t1 =

tz2 = 4t2z2,z/Ez, t2 = −txy = 4t2xy,z/Ez, t3 = 4t2z2,x/Ex = 4t2z2,y/Ey, t4 = 4t2xy,x/Ex = 4t2xy,y/Ey,
t′z2 = t1−t3, t′xy= t2−t4, tz2,xy= txy,z2 =

√
t1t3−

√
t2t4 and Ẽz2 = Ez2−t1−t3, Ẽxy = Exy−t2−t4.

We note that the hybridization among the two d-orbitals vanishes along ΓX and along ΓY,
as dictated by symmetry. Moreover, along, e.g., ΓX, the dz2 -dispersion decreases monotonically
(tz2 > 0), contrary to that of the dxy component (txy < 0). Along the two lines, the system then
admits band crossing points at k∗ = (±k∗, 0), (0,±k∗). The position k∗ > 0 of such points is

defined by the solution of the equation: cos k∗ =
(Ẽz2−Ẽxy)−(t1+t2)

2t1−t3+t4
.

Finally, a Dirac Hamiltonian is obtained by expanding around such gapless points k∗, i.e.
k = k∗ + q to the linear order in q and making use of SU(2) invariance:

HDirac(q) ' ĥ0qxI + ĥxqxσx + ĥyqyσy (4.4)

in which the Hamiltonian coefficients are defined as ĥ0 = − 1
2 (2t1 + 2t2 − t3 − t4) sin k∗, ĥx =-

(
√
t1t2 −

√
t3t4) sin k∗, ĥy =− 1

2 (2t1 − 2t2 − t3 + t4) sin k∗, where I is the identity, and σi=x,y,z
are the Pauli matrices. The opposite node at k = (−k∗, 0) has opposite chirality. The two other
nodes at k = (0,±k∗) are obtained by mirror symmetry. Note that Eq. 4.4 shows a nontrivial
k-dependence in the I component, which implies an elliptical shape of the Dirac cone (see figure
4.6 (d)). This result matches the experimental observation discussed in the previous subsection.
To highlight this feature, we compared in figure 4.6 (a)-(b) the experimental and theoretical
constant energy contour near the Fermi level. The theoretical result obtained with the effective
Dirac model perfectly agrees with the ARPES data (see also figure 4.2 (b) and (c)).

Finally, in figure 4.6 (c) we compare the linear Dirac dispersion with the one obtained within
the 5 × 5 model introduced in Eq. 4.1. This calculation highlights the elliptical shape loss of
the Dirac cone at energies of 0.5 eV away from the Fermi level. The bending of the electronic
dispersion qualitatively matches the widening of the pockets experimentally observed in figure
4.2 (b).
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Figure 4.6: (a)-(b) Constant energy contour near the Fermi level as obtained experimentally (left)
and from the effective Dirac model (Eq. 4.4). The comparison highlights the agreement between
theory and experiment. The effective model explains the presence of elliptically shaped Dirac cones,
as observed in ARPES measurements, along ΓM direction. (c) Electronic dispersion near the Fermi
level from the 5× 5 Hamiltonian (Eq. 4.1) and the linearized effective Dirac model in Eq. 4.4. This
is in qualitative agreement with the widening of the energy pockets observed in ARPES data (see
figure 4.2 (b)). (d) Elliptical shape of the Dirac cones.
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4.2.5 Discussion

In this work, by means of band structure theory and ARPES experiments, we have studied the
electronic Dirac states hosted in the bulk BaNiS2 semimetal. These states have several remark-
able features. First, they are made of correlated d orbitals, strongly hybridized with the ligand p
states. Secondly, they are lying at, or very close to, the Fermi level, therefore participating in the
low-energy electronic properties of the material. Finally, they are not pinned at high-symmetry
points of the BZ, but at the mid point along the ΓM direction.

We demonstrated that the Dirac points existence, as well as their location, crucially depend
on the hybridization strength between the d and p states. The hybridization with the ligands
yields band inversions, the necessary condition for the Dirac points occurrence. These symmetry
protected topological contacts are set by the time-reversal, inversion, and C2v symmetries of the
tetragonal P4/nmm space group. This implies a fourfold degeneracy of the states, which yields
two pairs of cones. Their alignment with the Fermi level is a consequence of two additional
conditions which are met in BaNiS2, namely the energy d-levels hierarchy, and the atomic d-
orbitals filling. The former is provided by the square-pyramidal crystal field splitting, implying
that the two topmost energy levels in the d manifold are of z2 and x2 − y2 symmetries. The
latter condition is given by the Ni electronic configuration, which leaves the dz2 and dx2−y2

states with integer partial occupation: 2n(dz2) + 2n(dx2−y2) = 4, by counting both Ni in the
unit cell, while the other d states are completely filled. Therefore, the C2v-allowed crossing
between the corresponding dz2 and dx2−y2 bands must happen at the Fermi level, if there are no
other Fermi pockets around. This condition is nearly satisfied in the BaNiS2 semimetal, which
shows only a very small cylindrical electron pocket centered along the ΓM direction, populated
by electrons much less mobile than the Dirac ones[157]. It turns out that the Dirac points are
weakly dispersive along the kz direction, with the Fermi level in the [0− 25] meV ([0− 75] meV)
range from the crossing point energy, according to ARPES (HSE), as reported in figure 4.2 (d).
This leads to the formation of Dirac nodal lines.

Thanks to the nonsymmorphic symmetry, the the symmetry protected topological contacts are
robust against the non-negligible on-site Coulomb interaction present in the system. In principle,
were the Hubbard repulsion strong enough, it could prevent the Dirac cones formation by the
opening of a Mott gap, in the 2dz2 = 2, 2dx2−y2 = 2 half-filled situation. However, the non-
symmorphic operations imply a double degeneracy of the bands at M. This gives 2dz2(k = M) =

4, and breaks the filling condition for a Mott insulator.

Our findings point to BaNiS2 as a unique experimental and theoretical playground where to
study Dirac fermions, and exploit their properties. The tunability of the Dirac points, due to the
subtle interplay with the orbital p− d hybridization, is just one of the possibilities. For instance,
the Dirac cones wandering [52] could be realized by chemical substitution in the BaNi1−xCoxS2

system, where the cobalt doping makes the compound more correlated, by changing the chemi-
cal potential level and reshuffling the atomic orbitals [158]. This could pave the way to exploring
the physics of strongly correlated Dirac fermions in a controlled environment. Controlling the
shape and position of the Dirac cones should also be viable under pressure. A non hydrostatic
pressure distorts the underlying square lattice, thus breaking one of the symmetries that protect
the fourfold occurance of the Dirac nodal lines. Opening a gap by an external electromagnetic
field is another possibility. Non-trivial phases could then be triggered by external conditions,
thanks to the proximity of the material to a topological insulator.

In the realm of topological materials, BaNiS2 sheds light on the ingredients one needs to put
together to synthesize new compounds. We suggest that the following three conditions must
be met in order to have d-electron Dirac states near the Fermi level: i) a dz2 − dx2−y2 manifold
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isolated from the other d states, with band inversion through hybridization with the ligands;
ii) the C2v symmetry along some k-points line to protect the crossing point; iii) the n(d) = 8

filling to pin the symmetry protected topological contacts around the Fermi level. This situation
can be realized for instance in octahedral or square pyramidal arrangements of ligands around
the transition metal center, crystallizing in a tetragonal or orhorhombic space group. These are
fundamental hints to explore the existence of new Dirac compounds, and they could open future
opportunities to deepen our knowledge of tunable topological phases.

4.3 kz dispersion

In subsection 1.5.2, I presented the Fermi surface of BaNiS2 acquired by means quantum os-
cillations. This technique only indirectly gives the topology of the Fermi surface and the exact
reconstruction of the shape demands parallel theoretical work. Therefore, a precise kz dispersion
is a hard task particularly in the case of complex materials of which BaNiS2 is an example.

In order to elucidate the hitherto missing kz dispersion character of the electronic band struc-
ture, I performed a series of photon energy dependent measurements as I partially presented the
results in subsection 4.2.2. Figure 4.7 (a) shows ARPES spectra along the ΓM direction for differ-
ent photon energies. We discern an overall variation of the intensity due to the matrix elements
effect. However, a close look to the data shows that while the linearly dispersing bands are not
dispersing (this was thoroughly discussed in subsection 4.2.2), the rest of the bands below the
Fermi level show non-negligible kz dispersion. For instance, the spectrum at 70 eV shows differ-
ent features under the Dirac cone in the energy range of -0.5 to -1 eV while the lower photon
energy counterpart shows only one band in the same region. On the other hand, these bands
show periodic behavior with respect to the photon energy. The DFT calculations with the HSE
nonlocal exchange interaction for both kz = 0 and kz = π

c are compared to the experiment in
figure 4.7 (b). The overall agreement is good however, one can easily distinguish some differ-
ences. It seems that the spectrum at 25 eV is close to kz= 0 while the spectrum at 70 eV shares
more similar features with the calculated bands for kz = π

c .
I also show the ARPES intensity map for the iso-energy contours corresponding to the Fermi

level for different photon energies, figure 4.7 (c). We observe that while the relative intensity
of the pockets crossing the Fermi level changes, no sizable difference in the form is present.
We observe the α (γ) electron pocket in the center of the Brillouin zone and the β hole pocket
along the ΓM direction. These results show that the quantum oscillations experiments showed
a good agreement to the real Fermi surface. However, in contrast to the quantum oscillations
measurements, our data unveil the electron pocket at the X (R) point that is shown by an oval
contour on the figure. This pocket barely crosses the Fermi level and is split in two due to Rashba
effect, c.f. subsection 1.5.2; however, it is not possible to detect the split experimentally.

To conclude, the bands at the Fermi level show a 2D kz dispersion while at slightly higher
binding energies the kz dispersion is more important. These findings are in good agreement
with the layered quasi two-dimensional crystal of BaNiS2.

4.4 Temperature dependence of the density of states

The electronic properties of a correlated material change as function of thermodynamics param-
eters as explained in section 1.3. BaNiS2 is a moderately correlated metal so it is important to
understand how the electronic band structure responds to temperature variations. This evolu-
tion would also help to theoretically adjust relevant parameters such as Coulomb interaction and
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Figure 4.7: kz dispersion of the electronic band dispersion. (a) ARPES yield along the ΓM high
symmetry direction for different photon energy. Dirac bands do not show a significant kz dispersion
while other bands below the Fermi level have rather a 3D character. (b) Comparison with HSE
(7%) method. The blue spectra shows the band dispersion for kz= 0 and the orange shows the
bands for kz= π/c. The left and right panels are acquired with 25 eV and 70 eV of photon energy,
respectively. (c) Iso-energy contours at the Fermi level for different photon energies. The α and β
pockets are shown. In addition, the Rashba split pocket at X point is also observed and is shown by
an oval contour. The data suggest that the electronic band structure at the Fermi level have a quasi
2D nature.
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hopping terms.
Some preliminary temperature dependent ARPES measurements were performed at the Spec-

tromicroscopy beamline, c.f. subsection 3.3.1, by 74 eV of photon energy. The use of high photon
energy allows studying the bands in a relatively large interval of binding energy. Figure 4.8 (a)
shows the dx2−y2 band along the ΓM direction as well the integration window to study the
spectral weight evolution as a function of temperature. At low temperature (147 K), a sharp
quasiparticle peak crosses the Fermi level. However, by increasing the temperature its intensity
drops while it gradually broadens and transfers the spectral weight towards the band at -0.5 eV,
figure 4.8 (b). This behavior can be explained as follows:

In contrary to a normal metal (with no interaction) where heating only smears out the Fermi-
Dirac distribution, in a solid with strong interactions heating results in a non-trivial change in
the density of states. First of all as I described in section 1.2, increasing the temperature of a
Fermi liquid results in a broadening of the quasiparticle peak that scales with T 2. This is due to
a general loss of the coherence of electrons due to scattering with, for instance, phonons. On the
other hand, in a correlated material in which the orbital occupancy, Coulomb interaction, and
itinerant nature of electrons are competing in parallel, a change in the temperature is definitely
accompanied by a change in the density of states of electrons. The main reason is that heating
affects the orbital overlap and tendency of electrons to get more delocalized (or localized).
As a consequence the ratio U/t changes, c.f. paragraph 1.3.1.2. This phenomenon is shown
both theoretically and experimentally for the case of V2O3 in references [118] and [120] where
heating lowers the QP peak and pushes the spectral weight towards the higher binding energies.
Figure 4.8 (c) schematically describes the spectral weight transfer from the quasiparticle peak
towards the incoherent part (lower Hubbard band) of the spectrum for a simple case of single
band Hubbard model upon heating

The density of states of BaNiS2 nicely shows a similar behavior with respect to temperature.
The fact that the width of the peak increases with temperature implies the Fermi liquid behavior.
In addition, the spectral weight transfer between the bands indicates that electronic correlation
is important. However, it should be emphasized that BaNiS2 is a multiband system and the
definition of the QP and LHB is not straightforward for it. Without the loss of generality I
address the sharp peak close to the Fermi level as the QP peak while the band at -0.5 eV should
not be confused with a LHB.

These results show that the DOS of BaNiS2 evolves as a function of temperature. The inter-
esting question is whether the electronic band dispersion changes as well. In section 5.4, I show
that changing the temperature has interesting and non-trivial consequences on the Dirac cone
of BaNiS2.

4.5 Electronic band structure of BaCoS2

As mentioned in subsection 1.4.3, if both time-reversal and inversion symmetries are simultane-
ously respected, a Dirac semimetal occurs straightforwardly at the phase transition between a
topological insulator and a trivial one. We proved that BaNiS2 is a two-dimensional DSM with
two pairs of d-orbital Dirac nodes protected by gliding plane symmetry. The question naturally
arises as to whether other neighbors of BaNiS2 in the phase diagram of BaCo1−xNixS2 can pos-
sibly comprise topological states, and if any, how these states evolve across the phase diagram
and what the role of d-orbitals is. Hitherto, the electronic band structure of BaCo1−xNixS2 has
never been addressed for its potential topological properties; it has been rather considered as
a correlated system with some similarities to the high temperature superconductors. On other
hand, the ARPES data is missing for different parts of the phase diagram especially for BaCoS2
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Figure 4.8: Temperature dependent density of states. (a) The blue contour shows the integration
window of the spectral function. (b) The density of states for different temperatures. (c) Comparison
between the spectral weight transfer upon heating for a normal metal and a correlated metal. The
density of states at high and low temperatures are shown in red and blue, respectively.

that is the Mott insulating extreme of the phase diagram and its electronic properties cannot be
captured by the Fermi liquid description [86]. The band structure of this compound has also re-
mained challenging for ab− initio calculations due to its strong electron correlations. Therefore,
I studied the band structure of BaCoS2 in both its antiferromagnetic and paramagnetic insulating
phases (AFI and PI phases). I present the results in the following subsection.

4.5.1 ARPES measurements

I performed a series of ARPES experiments on BaCoS2 at the Spectromicroscopy beamline. This
compound is more three-dimensional with respect to BaNiS2, and therefore harder to cleave and
obtain a flat surface. The sub-micron beam of the beamline is particularly convenient to find best
flat region on the surface of the sample after cleaving. The experiments were performed with 74
eV photon energy at 110 K (AFI phase) and 300 K (PI phase, very close to the Néel temperature).
No significant difference between the spectra at low and high temperature was observed except
that at the PI phase the overall quality and intensity of the bands were poorer. Therefore, I
present here the data on the AFI phase.

Figure 4.9 (a) shows the iso-energy surface at -1.23 eV below the Fermi level at 110 K. The
borders of the Brillouin zone as well as the high symmetry directions are drawn on the figure.
The electronic band dispersion along these direction are shown in the top panel in figure 4.9
(b). In contrast to BaNiS2, bands are broad and rather of poor quality. This can be related to the
significant electronic correlation in BaCoS2. On the other hand, the atomic cross-section of Co
3d orbital is less than Ni 3d state [92] leading to an overall lower intensity of BaCoS2 spectrum.
The band gap at the AFI phase is about 500 meV.
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The theoretical DMFT calculations for the PI phase and at kz = 0 done by M. Casula are
also shown for comparison below the ARPES data. Before, the DMFT calculations were only
performed on BaCoS2 to study the pressure-induced insulator-to-metal transition [201] starting
from the AFI phase, and all other theoretical methods failed to reproduce the insulating nature
of BaCoS2 in its normal AFI state. We observe an overall agreement between the real band
structure and calculations however, some discrepancies are also noticeable. For instance, at the
M point the theory predicts that there is a dispersing band at E - Ef = 0.5 eV while it is absent in
the ARPES data. In addition, in is not possible to identify different bands in the ARPES spectra.

The density of states of BaCoS2 for both temperatures are shown in figure 4.9 (c) and are
compared with the DMFT calculation performed on the PI phase. There are two bands located in
0 < E−Ef < 2 eV that are well reproduced by the theory. However, for higher binding energies
we observe that the theoretical bands are slightly shifted with respect to the real band structure.
On the other hand, as we see from the figures, the theory predicts the in-gap states at the Fermi
level for the PI phase that is possibly responsible for the large (but not diverging) resistivity of
BaCoS2. These states disappear below the Néel temperature and a gap opens due to a long-
range spin order. However, the experimental data does not show any evidence of these states.
I consistently observe a band gap of 500 meV for both phases. By comparing the experimental
density of states of the AFI and PI phases, we observe a spectral weight transfer between the
bands and a slight gap filling while heating and approaching the magnetic transition as shown
in the inset.

In the end, I give a detailed comparison between the spectra of BaCoS2 and BaNiS2 in figure
4.10. This allows us to distinguish similar salient features in the electronic band structure of
both phases. The guide to the eyes are depicted by dashed lines and are numbered for each high
symmetry direction in order to make the comparison of the corresponding bands in BaCoS2 and
BaNiS2 easier. We observe a general shift of the bands to higher binding energies in BaCoS2.
Moreover, the bands are more separated in binding energy with respect to BaNiS2. We see
that the electron pocket at the Γ point has disappeared since Co has one electron less that Ni.
Notably, we distinguish the remnants of the Dirac cone of BaNiS2 along the ΓM direction on
the insulating phase; the gap of order of 1 eV has opened and the linearly dispersing bands are
deformed. It is obvious that BaCoS2 does not show any topological aspect. However, the fact that
it becomes metallic under pressure [194, 195] and that in the normal state it presents a gaped
Dirac cone rise the question as to whether the pressure-induced metallic phase can possibly be
a Dirac semimetal. Answering this question demands some precise optical measurements under
pressure.

I would like to mention that we also tried to measure the band structure of BaCoS2 with
27 eV in order to study the kz dispersion of the band structure however, the poor signal at this
photon energy made the comparison impossible.
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Figure 4.9: (a) Iso-energy surface of BaCoS2 at E-Ef= -1.23 eV. The border of the Brillouin zone is
shown with a yellow contour and the high symmetry directions are shown with white arrows. (b)
Top panel: A series of ARPES spectra along the high symmetry directions for the PI phase. Bottom
panel: The DMFT calculations of the band structure. (c) The density of states of BaCoS2 in the AFI
phase (T=110 K) and PI phase (T=300 K) compared with the DMFT calculation. The inset is a
zoom to the DOS for the AFI and PI phases.
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Figure 4.10: Comparison between BaCoS2 (top panel) and BaNiS2 (bottom panel). The dashed
lines are guide to the eyes. (a) and (b) Along the ΓX direction the band number 2 and 3 get closer
to each other at ∼0.8 Å−1. (c) and (d) A remnant of the Dirac cone in BaNiS2 (band number 2)
can be detected on the band dispersion of BaCoS2.
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5 | Out-of-equilibrium electron dy-
namics of Dirac carriers

5.1 Introduction

In this chapter, I present the out-of-equilibrium electron dynamics of BaNiS2 studied by means of
time resolved-ARPES and time-resolved optical reflectivity techniques. In the previous chapter I
showed that the rich equilibrium state of BaNiS2 has a twofold importance; first, it presents en-
hanced electron-electron correlation and second, it hosts massless Dirac fermions as a result of
entangled interplay of the crystal symmetry and topology of the electron wave function. There-
fore, it is very intriguing to decouple the electrons from other degrees of freedom by driving the
system out-of-equilibrium and to study the consequence on the Dirac cone or electronic corre-
lations. Importantly, we are inspired by the idea of manipulating the Dirac cone in BaNiS2 by
transiently depopulating the orbitals that are responsible for the formation of the Dirac fermions
close to the Fermi level and photoexciting them to other orbitals. It is also interesting to observe
the possible effect of the electric field, c.f. subsection 2.4.3, on the Dirac cone.

5.2 Time-resolved ARPES

With the aim of following the hot Dirac carrier dynamics in BaNiS2, I performed some time-
resolved ARPES experiments. A clean surface of BaNiS2 normally lasts less than 12 hours after
cleavage. On the other hand, in order to avoid multi-photon process I had to work with relatively
low pump fluences.

The well defined orbital character of the linearly dispersing bands along the ΓM direction (see
paragraph 4.2.2.2), allowed me to selectively follow the dynamics of each branch by suitable
polarization of the probe light. Figure 5.1 (a) and (c) show the reference images of the dz2

and dx2−y2 bands without pump. For these experiments I used a thin BBO crystal (20 µm)
for the fourth harmonic generation to maintain a good time resolution, however the energy
resolution is less than the orbital-resolved bands that I introduced previously. The experiments
were performed at 130 K with the pump fluence of 0.2 mJ/cm2. The polarization of the pump
pulse is always set at s because it penetrates farther in the bulk of the sample. This assures that
the probe pulse sees a homogeneously pumped area. Figure 5.1 (b) and (d) show a series of
difference tr-ARPES spectra. In each spectrum, the ARPES yield at a negative delay is subtracted
from the one at a given positive delay. The negative delay corresponds to when the probe
pulse arrives before the pump pulse— that is, when no photoexcitation has taken place yet.
In our case, the negative delay is -1 ps. The red and blue signals in the tr-ARPES difference
images correspond to the gain and loss of signal, respectively. The chemical potential does not
shift when photoexciting the system, so the gain of the signal above the Fermi level is uniquely
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Figure 5.1: (a) ARPES reference image for the out-of-plane dz2 band. (b) Difference tr-ARPES images
before and after photoexcitation. The red and blue signal show gain and loss of signal, respectively.
A non-rigid shift of the band below the Fermi level is observed upon photoexcitation. (c, d) Evolution
of the in-plane dx2−y2 band for different time delays.

Figure 5.2: Time-resolved dynamics of the shape of the bands. (a) dz2 band. (b) The MDC at
E-Ef= -0.14 eV that is shown by a blue line in the ARPES image. The red curve shows the fit with
a Gaussian function and a linear base line. The center of the Gaussian shows the wavevector for
each binding energy. In this way, the band dispersion can be reconstructed for each time delay. (c)
Stacking of the reconstructed band dispersion for all delays. The intensity at each point shows the
position of the wavevector for that point in the E − t plane. The bottom panel shows the same
procedure for the dx2−y2 band.
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Figure 5.3: Dynamics of the Dirac cone. (a1) dz2 band: the reconstructed band dispersion, E(k),
before and after arrival of the pump pulse. This is obtained by a vertical line profile from figure
5.2 (c). The band crossings at the Fermi level does not show any shift and remains still for all time
delays. (b1) The photoinduced renormalization of the band for different time delays. (c1) dE/dk
curves. Figures a2 - c2 show the same study on the dx2−y2 band. (d) Evolution of the Fermi velocity
for both bands. The Fermi velocity decreases up to 250 fs.
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attributed to the presence of excited hot electrons in the previously unoccupied states.

Now, if for instance we focus on figure 5.1 (b), we observe that at 50 fs after the arrival
of the pump pulse some electrons from higher binding energies are excited to the states in the
continuity of the dz2 band above the Fermi level while the electrons of this band are excited to ∼
1.5 eV above the Fermi level that is inaccessible in the energy window of our experiment. These
electrons scatter with each other, lose their energy, and cascade down to lower energy states in
the conduction band. At around 250 fs, the number of the excited electrons close to the Fermi
level reaches its maximum. These excited electrons then gradually lose their energy and relax
back to their initial equilibrium states by different relaxation channels such as emitting optical
and acoustic phonons, c.f. paragraph 2.2.1. If we integrate all states above the Fermi level, the
decaying dynamics suggests two time scales, 0.4 ps and 1 ps, as shown in figure 5.4 (b). The
physical interpretation of these time scales will be discussed later.

Coming back to figure 5.1 (b) and (d), we also interestingly observe some red signal below
the Fermi level along with the blue signal. This red signal unveils a photo-induced renormal-
ization of the band while the blue signal shows not only the left behind holes from the excited
electrons but also the position of the band before photoexcitation. These images give the impres-
sion of a non-rigid (k-dependent) and time-dependent shift of the bands. In order to study the
chronological evolution of the band dispersion E(k,t), I have sliced the ARPES yield for each time
delay into momentum distribution curves (MDC’s). The procedure is the same as introduced in
paragraph 4.2.2.1, i.e. the photoemission intensity peak was fitted by a Gaussian with a linear
background, figure 5.2 (b). This gives the E(k) for one time delay. By stacking all of the E(k)
curves a 2D map is acquired in the energy and time-delay plane and the intensity of each point
shows the wavevector position, figure 5.2 (c) and (g).

Figure 5.3 (a1) shows the example of the reconstructed shape of the dz2 band before (-100
fs) and after (250 fs) the arrival of the pump pulse. Figure 5.3 (a2) shows the same for the
dx2−y2 band. We obviously observe a k-dependent shift of the bands, more interestingly the
farther from the Fermi momentum kF , the more important is the change in the wavevector. We
significantly observe that the position of the kF at the Fermi level does not show any shift and
remains still for all time delays. This can be further clarified by studying the renormalization
of the bands for different time delays as shown in figure 5.3 (b1) and (b2). These curves are
obtained by subtracting the E(k) curves at the negative delay from the E(k) curves at positive
delays. Therefore, each curve corresponds to a given time delay and shows the shift in the
wavevector for each binding energy. We observe that the slope of each band decreases upon
photoexcitaion, reaches its maximum around 250 fs (red curevs) and then gradually recovers to
the equilibrium normalization. Please note that the continuity of the linearly dispersing bands
was maximally populated at 250 fs that seems to correlated with largest renormalization of the
band. At this point, it is important to show how the velocity of the band changes with respect
to the time delay. For this purpose, I first fitted the E(k) curves by a polynomial function, c.f.
paragraph 4.2.2.1. Hence, I studied the temporal evolution of the band velocity via dE(k)/dk
curves as shown in Figure 5.3 (c1) and (c2). In the end, I also show the evolution of the Fermi
velocity for both bands in figure 5.3 (d). The Fermi velocity reaches a minimum value at 250 fs.
The dynamics of the Fermi velocity is almost the same for both in-plane and out-of-plane bands.

In order to better visualize the Dirac cone deformation upon photoexcitation with pump pulses,
I combined separate studies on the dz2 and dx2−y2 , figure 5.4 (a). In the equilibrium, the Dirac
node is located at 20 meV above the Fermi level and at k// = 0.52 Å−1. The Dirac cone reacts to
the pump by getting wider however, the band crossing points at the Fermi level remains intact.
This implies that the Dirac node slightly shifts closer to the Fermi level. I show in figure 5.4 (c)
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Figure 5.4: (a) By combining previous studies, I show how the Dirac cone evolves upon photoexcita-
tion. (b) The dynamics of the excited states above the Fermi level. (c) The averaged shift of the band
shows a dynamics of 1 ps starting from 250 fs.

the average shift of the wavevector 〈∆k〉, for the states below the Fermi level within 100 meV.
The decay toward the equilibrium occurs with a single time constant of 1 ps.

I would like to add some words on the dynamics of the Dirac point. In view of precisely
revealing the dynamics of the location of the Dirac point in the energy-momentum space, I
also performed experiments with a mixed polarization of the probe pulse, i.e. an intermediate
polarization between s and p. The experimental conditions are the same as before. Figure 5.5
(a) shows the ARPES image for a negative delay and figure 5.5 (b) shows the image at 250
fs when the states above the Fermi level are maximally populated. Please note that even a
saturated logarithmic color scale does not allow a clear visualization of the continuity of the
linearly dispersing bands. In fact, it is not possible to draw a clear conclusion on the position of
the Dirac cone with respect to time delay. Moreover, it is also not possible to increase the pump
fluence to excite more electrons because of multi-photon emission.

In this section, we observed that deformation of the Dirac cone is triggered shortly after the
impulsive injection of energy merely into the electrons. One important issue that is frequently
addressed in ultrafast dynamics studies, is to which extend a photoinduced effect is different
from a purely thermal effect. Moreover, the importance of this difference is directly related to
the strength of electron-phonon coupling. In view of decoupling the thermal and photoinduced
effects on the ultrafast renormalization of the Dirac cone, I performed some time-resolved optical
reflectivity experiments on BaNiS2 as it is the most direct technique that allows us to estimate
the electron-phonon coupling constant. In parallel, I also studied the evolution of the linearly
dispersing bands upon heating by means of high-resolution laser-based ARPES.
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Figure 5.5: Dirac cone of BaNiS2 studied by 6.28 eV as the probe pulse. The polarization of the
light is not well defined so that both branches are observed. (a) Negative delay image. (b) 250 fs
after the arrival of the pump pulse. The color scale is maximally saturated in the logarithmic scale
in order to better visualize the excited states above the Fermi level.

5.3 Time-resolved optical spectroscopy

5.3.1 Observation of coherent optical phonons in BaNiS2

The time-resolved optical spectroscopy measurements were done at the T-Rex beamline (see
paragraph 3.4.3.5) at the base temperature of 80 K and with different fluences of the pump
pulse. Figure 5.6 (a) shows the time- and spectrum- resolved optical response of BaNiS2 upon
photoexciting with 4 mJ/cm2. The 2D spectrum acquired in the experiments covers wavelengths
from 400 nm up to 1.5 µm. The spectrum reveals a decay dynamics accompanied by oscillations
of coherent optical phonons. Figure 5.6 (b) shows the photoinduced changes in the reflectivity
for several wavelengths. Each curve corresponds to a horizontal line profile in the continuum
spectrum. The curves are normalized with respect to their maximum in order to better visu-
alize the relaxation dynamics differences. We observe that the decay time is different for each
wavelength since they probe different part of the joint density of states1 by different optical
transitions. On the other hand, the maximum of the reflectivity changes occurs at around 250 fs
consistently with the tr-ARPES data.

In order to study the frequency of phonons, I chose the reflectivity at 996 nm, figure 5.7
(a). The frequency of optical and acoustic phonons does not depend on the wavelength of the
probe. However, some wavelngths can have better optical efficiency allowing for better detection
of phonons. The subtraction of an exponential fit from the raw data allows to decouple the
oscillations from the decaying part of the spectrum as shown in figure 5.7 (b). In this curve,
we can observe a combined effect of optical phonons accompanied by an acoustic wave that
propagates in the material with a longer period. The period of the acoustic wave is found to be 9
ps. By subtracting its contribution, we can now focus only on the optical phonon modes as shown
in figure 5.7 (c). At first glance, the spectrum reveals two phonon modes. The Fourier transform
of these optical oscillations, figure 5.7 (d), presents two optical modes with frequencies of 3.07
and 5.14 THz. The latter is assigned to the fully symmetric A1g mode as compared to reported
value found in the literature for doped samples [169].

The lifetime of each mode can be obtained by fitting the oscillations with two damped har-
monic oscillators with the amplitude and phase of Aj and ϕj , respectively:

1The joint density of states in optical calculations refers to the density of states of interband transitions in optical
absorption phenomenon.
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Figure 5.6: (a) Spectrum- and time-resolved reflectivity of BaNiS2 with the fluence of 4 mJ/cm2.
(b) Photoinduced reflectivity changes for several wavelengths obtained by horizontal line profiles in
the continuum spectrum.

I(t) = A1 ∗ sin(2πf1x+ ϕ1) ∗ exp(−x/τ1) +A2 ∗ sin(2πf2x+ ϕ2) ∗ exp(−x/τ2) (5.1)

In this equation, fj is the frequency and τj is the time decay constant for each mode, respec-
tively. Figure 5.7 (e) shows the fit. We obtain a fast decay time of 1 ps for 5.14 THz A1g mode
and a slower constant of 7.3 ps for the mode at 3.07 THz. I also performed the experiment for
different fluences: 0.2, 0.8, 2, and 4 mJ/cm2 (figure 5.8). The frequencies do not show a clear
dependence on the fluence. However, at the high fluence of 4 mJ/cm2 there is a drop of the
frequency that is probably due to accumulated heat effect of the pump pulses.

5.3.2 Electron-phonon coupling constant

In order to get a wider insight on the dynamics of the Dirac cone, I also performed some time-
resolved optical reflectivity experiments with the same fluence as we applied for the tr-ARPES
measurements, i.e. 0.2 mJ/cm2. Figure 5.9 (a) shows the ∆R(t)/R for 1.06 µm after pump
excitation. The optical phonons are not very clear due to low pump energy excitation. This
signal is fitted by the 3-temperature model (3TM), c.f. subsection 2.2.3, as explained below.

In the previous subsection, I showed the frequency of the optical phonon modes for differ-
ent fluences. This gives us a good estimate of the mean frequency of the phonons to which
excited electrons get coupled after photoexcitaion. By solving the 3TM, I can derive the values
of the coupling constant between the electrons and hot phonons (that is traditionally called the
electron-phonon coupling constant) as well as between the electrons and cold phonons. These
parameters are shown by λ1 and λ2, respectively. Here, I should mention that the basic as-
sumption behind the 3TM was that there is only one phonon mode at frequency Ω0, while here
BaNiS2 obviously presents two modes. To be accurate mathematically, it means that one has to
add another rate equation to the 3TM that accounts for the second optical mode. Nonetheless,
this might result in overfitting and not necessarily correct set of parameters. To avoid this prob-
lem, it seems logical to take the average of the phonons energy. The heat capacity of the lattice
and electrons are found in [157] and the thermal diffusion along the z-axis is not relevant in
our case due to the quasi 2D nature of BaNiS2. I present in the following table the experimental
parameters to be introduced in the 3TM model:
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Figure 5.7: (a) Time-resolved changes in the reflectivity of 996 nm. The raw data was fitted by an
exponential curve. (b) Subtraction of the exponential fit from the data decouples the dynamics from
the optical and acoustic phonon modes. The acoustic phonon presents a period of ∼ 9 ps. (c) After
subtracting the contribution of the acoustic phonon, we can merely study the coherent oscillation of
the optical phonons. The frequency of each mode can be found by the Fourier transform as shown
in (d). A simple model, as explained in the text, allows us to follow to decay time scale for each
observed mode (e). The 5.14 THz decays at a time scale of 1 ps and the 3.07 THz mode, decays
slower after 7.3 ps.
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Figure 5.8: The evolution of the optical phonon modes with respect to the pump fluence.

Figure 5.9: (a) ∆R(t)/R at 1.06 µm for the pump fluence of 0.2 mJ/cm2. The dashed red curve
is the numerical simulation based on the 3-temperature model. (b) Temporal temperature evolu-
tion of the electrons (red curve), hot phonons (orange curve), and cold phonons (blue curve) after
photoexcitation. The electron-phonon coupling is found to be 0.13.
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pump fluence(mJ/cm2) FWHMt (fs) FWHMd (µm) γe (J/mol.K2) α (cm−1) T (K)
0.2 80 170 0.00215 1.87×105 80

Table 5.1: The experimental parameters in the time-resolved reflectivity measurements.

where FWHMt and FWHMd are the laser temporal and spatial width, respectively. γe is the
linear heat capacity coefficient of the electrons and α is the absorption coefficient of BaNiS2 at
800 nm.

We can now study the temperature evolution of different degrees of freedom as shown in
figure 5.9 (b) based on the 3TM. The change of the reflectivity is then calculated according to
equation 3.24. We notice a good agreement between the experiment and theory. The relevant
parameters used to simulate the transient reflectivity changes are given below:

Ω0 (eV) λ1 f τβ (ps) τc (ps) λ2

0.017 0.13 0.05 1 100 0.09

Table 5.2: Averaged phonon energy, electron-phonon coupling constant, fraction of strongly coupled
phonons, anharmonic decay of hot phonons, heat diffusion time constant from the surface to the
bulk, and coupling strength of the electrons to cold phonons as obtained by three temperature model
simulations.

I find the average phonon energy of 0.017 eV (4.11 THz) that is very close to the average
frequency of the observed optical modes for 0.2 mJ/cm2. The electron-phonon coupling constant
λ1 is equal to 0.13 that is a moderate coupling constant. We also observe that the anharmonic
decay of hot phonon occurs at a time scale of 1 ps and eventually the dissipation of heat from
the surface towards the bulk takes about 100 ps. The anharmonic decay time constant recalls
the time constant that we have encountered in the time-resolved ARPES studies in the previous
section: the hot carriers relax with a time constant of 400 fs and 1 ps.

We can now give an interpretation for each of these timescales. The first constant can be
viewed as the time that takes for the out-of-equilibrium electrons to get coupled to the hot
phonons and to evacuate part of their energy through them. After that, the hot phonons dissipate
their energy by scattering with other lattice modes (cold phonons) with the anharmonic decay
timescale of 1 ps. Moreover, the Dirac cone renormalization also takes place within 1 ps, c.f.
figure 5.4 (c). These results imply that the relaxation of the Dirac cone and the anharmonic
decay of phonons are related to each other.

In order to complete our understanding of the dynamics of the Dirac cone upon photoexci-
taion, it is now important to study the temperature dependent behavior of the equilibrium band
structure.

5.4 Photoinduced vs. thermal effects

The 3TM applied to our data also suggests that the electronic and lattice temperatures converge
for time delays longer than 3 ps after photoexcitation with 0.2 mJ/cm2, figure 5.9 (b). This a
priori rules out the doubt that the Dirac cone renormalization at a sub-picosecond time scale
could be explained as a thermal effect. To further clarify this point and to disentangle the
photoexcitation effects from the thermal ones, I did a series of temperature-dependent ARPES
experiments for each branch of the Dirac cone in the temperature range of 40 K to 260 K. The
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Figure 5.10: Temperature dependent ARPES spectra for (a) dz2 and (c) dx2−y2 band. (b) and (d)
show the spectral weight evolution with respect to 130 K. These curves are obtained by subtracting
the DOS at 130 K from the DOS at higher and lower temperatures.

experiments were performed with the high-resolution laser based-ARPES setup as explained
before.

In figure 5.10 (a) and (c), we see that by increasing the temperature, the intensity of the
spectra increases due to the overall increase of the quasiparticle weight. Although with the
photon energy of 6.28 eV we have a limited window in the binding energy, we remember from
section 4.4 that the spectral weight transfer with respect to temperature actually comes from the
higher binding energies. Since the time-resolved ARPES measurements were all performed at
the base temperature of 130 K, I study the evolution of the density of states (DOS) with respect
to this temperature. In order to do that, I take the DOS of each band for all temperatures and
then I subtract the DOS at 130 K from them. The results are shown in figure 5.10 (b) and (d).
∆T shows the temperature difference with respect to 130 K. We clearly observe the quasi particle
weight gain (loss) while decreasing (increasing) the temperature. These temperature difference
spectra are farther compared with the photoinduced changes in the DOS.

Now, I show the evolution of the band structure with respect to temperature. By the same
routine as introduced before, I reconstruct the band dispersion of the dz2 and dx2−y2 bands for
different temperatures and the results are shown in figure 5.11 (a) and (c), respectively. I chose
the polynomial fit of the E(k) curve at 130 K, and I subtracted it from other curves at higher
temperatures. This gives the temperature-induced renormalization of the bands— that is, the
change in the wavevector position for each binding energy while varying the temperature. Fig-
ure 5.11 (b) and (d) correspond to this effect for a ∆T=120 K (Tf=250 K). A non-rigid shift
in wavevector is observed similar to the time-resolved experiments. Moreover, the bands do not
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Figure 5.11: Band dispersion for different temperatures. (a) dz2 band. The solid lines show the
E(k) for 130 K and 250 K, and the dashed lines are the polynomial fits. (b) Temperature-induced
changes in the band. (c, d) The effect of the temperature on the dx2−y2 band.

show a clear shift at the kF . The non-rigid shift of the bands with respect to temperature has
already been observed in other systems, in particular in iron-pnictides [17, 109]. However, those
compounds reveal some changes in the position of the kF due to the interband interactions that
makes thermal excitations among the narrow bands possible.

At this point, we have enough ingredients from both time-resolved ARPES and temperature
dependent ARPES studies. In figure 5.12, I present a comprehensive comparison between the
thermal and photo-induced effects that are shown by solid lines and dashed lines, respectively.
The ∆T shows the increase of the temperature starting from 130 K and the ∆t shows the time
delay after the arrival of the pump pulse. In figure 5.12 (a) and (b), we notice that photoexci-
tation and heating induce qualitatively similar behavior of the Dirac cone however, only at time
delays longer that 4 ps (for fluence of 0.2 mJ/cm2) do they produce quantitatively the same
effect. However, the roots that end up in the same effect are different. The evolution of the den-
sity of states shows that upon photoexcitation, the electrons are excited to the unoccupied states
above the Fermi level while with heating, the electrons close to the Fermi level are transferred to
the incoherent part of the spectrum (higher binding energies). The temperature effects due to
photoexcitation can be explained with the support of the 3TM, figure 5.9 (b). For instance, this
model showed that at about 800 fs, we should have ∆Te ∼ 300 K and ∆Tl ∼ 100 K. We clearly
see that none of the thermally induced band shifts creates the same effect as photoexcitation for
this time delay. However, at 4 ps the electronic and lattice temperatures have converged and the
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renormalization of the band is equal to a temperature raise of ∼ 25 K which corresponds to the
heat deposited by laser pulses at 0.2 mJ/cm2.

I also compare the photoinduced changes in the density of states (solid lines) with the ther-
mal effects, figure 5.12 (c) and (d). The density of states at 130 K has been subtracted from its
counterpart at different temperatures and the result is shown in the set of solid-line curves. We
consistently observe that at about 4 ps the excited states have relaxed and the systems heats up
to ∼ 25 K further while before this time scale, it is not straightforward to define an electronic
temperature.

Here, it is worth mentioning that the traditional way of determining the temperature of
excited electrons during the relaxation process, is to adjust a Fermi-Dirac distribution to the
spectral function and to deduce the temperature. This procedure remains correct as long as the
density of states does not change with temperature. For instance, for linearly dispersing bands in
non-correlated materials, this method has been widely used [58, 78, 177]. On the contrary, this
routine cannot be applied to correlated materials since the density of states itself changes with
respect to temperature [17, 96, 109, 144]. BaNiS2 falls in this category and its temperature-
dependent density of states was presented in section 4.4. By heating, the spectral weight close
to the Fermi level is transferred to higher binding energies while with photoexcitation the elec-
trons are excited into the states above the Fermi level making it a priori difficult to assign a
temperature to the electrons. However, by leaning on some simple phenomenological models,
as in our case the 3TM, on can gain some insight about the ultrafast temperature evolution of
the system.

5.5 Discussion

With the above-mentioned coherent results, it is thus logical to think that the non-thermal dy-
namics of the Dirac cone renormalization upon photoexcitation is initiated purely by an elec-
tronic effect that is then stabilized by the coherent optical phonons thanks to the moderate
electron-phonon coupling constant (λ = 0.13). The decay of these excited phonons is accom-
panied by the relaxation of the Dirac cone towards a thermal state that depends on the applied
pump fluence.

The non-rigid time-dependent shift of the bands was also observed in others systems. For
instance, the photoexcited Bi2Sr2CaCu2O2+δ above the Tc, shows ultrafast changes in the occu-
pied electronic band structure notably at the Fermi momentum [151]. The authors attributed
the general photoinduced modification of the band structure to a light-induced change in the
electronic interaction underlying the dressing of the quasiparticles. The fact that the velocity of
the band increases (the effective mass decreases) in this cuprate superconductor for a few tens
of femtoseconds is suggestive of a reduction of the electronic correlation that is purely driven
by electron excitation and does not involve any optical phonon. The change in the kF was also
explained by an effective photodoping due to particle-hole asymmetry. Another example is the
photoinduced changes of the electronic band structure in bismuth [137]. The bands show a
k-dependent shift towards higher binding energies because of the reduced ion core screening
induced by a sudden injection of high energy into electrons. In this case, the non-rigid shift is a
result of strong electron-phonon interplay.

The physical interpretation of the band renormalization in BaNiS2 demands taking into ac-
count two important aspects: electronic correlation and Dirac semimetallic state of BaNiS2. First,
I take into account the electronic correlation in a very simple way and argue that as simple as
the explanation of the photoinduced effects might seem to be, it is indeed contradictory. In
fact, by photoexciting the Dirac carriers we transiently depopulate the d-orbitals at/close to the
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Figure 5.12: Comparison between photo-induced and thermally induced renormalization of the
linearly dispersing bands for (a) dz2 and (b) dx2−y2 band. The solid lines show how the slope
of the band changes while heating the sample starting from 130 K. The dashed lines shows the
photoexcitation impact on the band. Around 4 ps, the electronic and lattice temperatures have
converged and the renormalization of the band is equal to a temperature difference of ∼25 K which
is the heat deposited by laser pulses at 0.2 mJ/cm2. (c,d) The photoinduced changes in the density
of states (dashed lines) are compared with the thermal effects (solid lines).



5.5. DISCUSSION 131

Fermi level and the electrons get more delocalized due to the ultrafast injection of energy to
them. Therefore, the Coulomb screening increases and the electronic correlation should reduce
and one expects that the velocity of the band increases. However, we exactly observe the re-
verse effect, suggesting that photoexcitaion should increase the localization of the electrons by
putting them to a particular orbital with enhanced correlation effects. This hypothesis seems
to be impossible as BaNiS2 is a multiband semimetal with non-localized states below or above
the Fermi level. At this point, the protection of the Dirac cone can be one underlying reason
to the change of the band dispersion. Another possible scenario can be that by photoexciting
the electrons close to the Fermi level, the hybridization of the d and p orbitals is modified in
an ultrafast way that consequently affects the renormalization of the bands. We have seen in
section 4.2 that the strength of this hybridization controls the location of the band crossing as
well as the shape of the band. On the other hand, the effect of the electric field on topological
insulators has been shown both experimentally and theoretically however, it has remained only
theoretically predicted on DSM’s with no experimental witness presented so far. I also speculate
that the observed ultrafast dynamics of the Dirac cone is related to the electric field of the pump
pulse. In particular, we have observed that the kF acts as a fixed point around which the slope
of the band changes. Therefore, when the slope of the band decreases, the Dirac node is slightly
pushed towards the Fermi level. Would it be possible to open the gap by applying stronger pump
pulses? In order to describe this effect within a theoretical framework, I have the support of the
theorists in SISSA and Paris 6 University and it is part of our ongoing collaborative project.
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6 | Ultrafast electron and lattice dy-
namics of (V1−xCrx)2O3

6.1 Time-resolved X-ray diffraction

In this section, I complete discussion outlined in subsection 2.3.1 on the time-resolved diffraction
part of the article in ref [96].

In order to verify our interpretation on the nature of the transient phonon blue-shift in the
photoexcited V2O3, I participated in a series of time-resolved X-ray diffraction (tr-XRD) exper-
iments with sub-ps time resolution at the X-ray pump probe (XPP) end-station of the Linac
Coherent Light Source (c.f. paragraph 3.4.2.4). The incidence angle for the 8 keV X-ray beam
was 0.6 degrees, while for the optical laser beam it was 12 degrees: this geometry is illustrated
in figure 6.1 (a) and allows matching the penetration depths and retaining a temporal resolution
of the order of 200 fs. The fluence of the pump pulse is 8 mJ/cm2 that is higher than the one
applied for the time-resolved photoelectron spectroscopy (tr-PES) at 1.8 mJ/cm2. The reason
is that the probing depth of X-rays is much higher than PES so one needs to create higher den-
sity of photoexcited electrons uniformly inside the sample. This can be safely done since the
photoexcited signal varies linearly with respect to the fluence as it was verified for the tr-PES
experiments. I was principally involved in the data analysis of the tr-XRD experiments. The data
analysis demanded much care as different issues coming from the SASE instability should have
been correctly removed from the signal. The main issues were related to instabilities in the X-ray
pulse pointing and intensity as well as the time jitter, c.f. paragraph 3.4.2.3.

Figure 6.1 (b) shows the Bragg reflection peak of the 2.8% Cr-doped V2O3 for the (116)
direction without pump. The position of the peak does not change up to 4 ps (when the lattice
parameters start being modified by the onset of the acoustic wave, c.f. figure 6.2) however, it
shows a time-dependent variation of intensity as shown in figure 6.1 (c) for both (116) and
(024) direction. If we assume that the symmetry of the crystal stays the same, as confirmed by
the fact that only A1g mode was observed in the time-resolved reflectivity measurements, the
diffracted intensity can be simulated by a change of the vanadium Wyckoff position Zv and a
Debye-Waller factor (c.f. paragraph 3.4.2.3).

The change of the oxygen Wyckoff position affects the peak intensity less than 0.02% for
the (116) and about 1% for the (024) peak. On the other hand, the Debye-Waller factor is
also only responsible for 0.1% of the intensity change before 4 ps. The distance of the nearest
vanadium atoms is given by the relation d(V1- V4)=(2ZV -0.5)c, where c is the lattice constant.
The (116) and (024) structure factors vary in opposite directions with ZV as shown in figure 6.1
(d). We find that for the insulating phase, d(V1- V4) goes from 2.744 Å to a minimum value
of 2.71 Å well before 1 ps. This minimum value is actually very close to the vanadium atoms
distance in the paramagnetic metallic phase, i.e. 2.69 Å. This result elucidates the photoinduced

133
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Figure 6.1: (a) The geometry of the tr-XRD at SLAC. (b) The Bragg reflection peak of the (116)
direction for the PI phase. (c) tr-XRD measurements for a fluence of 8 mJ/cm2, showing the pump-
probe diffraction peak intensities for the (116) and (024) Bragg reflections. The solid lines are the
simulations as explained in the text. (d) The calculated structure factor versus the shortest vanadium
distance V1- V4. The structure factor is normalized to one for the equilibrium position of 2.744 Å.
The black dots represent the minimum distance observed extracted from panel c. From reference
[96].

Figure 6.2: Time-resolved X-ray diffraction on the (116) Bragg reflection. The center of mass of the
peak signal on the detector shows a shift after 4 ps, corresponding to the onset of the acoustic wave
propagation.
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Figure 6.3: (a) X-ray diffraction signal on the 2D detector of the XPP beamline, showing the (113)
Bragg reflections from (V1−xCrx)2O3 (x= 0.011) in its ground state, representative of the PI and
PM phases, with the corresponding regions of interest (ROI’s). No signal is present within the
third ROI, in the center of the detector. (b) Diffraction signal 500 ps after photoexcitation, clearly
showing a strong Bragg reflection from the third ROI which should be assigned to a novel state, not
corresponding to any of the phases in the equilibrium phase diagram of (V1−xCrx)2O3.

hardening of the lattice.
The above-mentioned simulation does not account for the dynamics after 4 ps. Due to the

onset of the acoustic phonons, the changes in structure factor are no longer sufficient to explain
the experimental curves as the Bragg peak position also starts changing and going out of the
Ewald’s sphere.

To conclude, we clearly observe that the onset of the structure distortion occurs after few
hundreds of fs but before 1 ps. Then it takes about 2 ps in order for the lattice hardening
to retrieve its equilibrium state. On the other hand, by means of tr-PES it was observed that
the dynamics of the electrons unveils an abrupt onset of the in-gap states for the PI phase and
the ultrafast quasiparticle quenching for the PM phase. These states are instantaneously ob-
served upon photoexcitation and live for about 2 ps. A comparison between the dynamics of
the electrons and the lattice implies that, once the electronic band structure is modified, the
lattice follows the dynamics of the electrons thanks to the important electron-phonon coupling
strength. The relaxation of the excited electrons is accompanied by the relaxation of the lattice
hardening.

6.2 Ultrafast photoinduced phase transition

A unique feature of vanadium sesquioxide compared to other materials is that for Cr concentra-
tions around x=0.011, (V1−xCrx)2O3 goes through a metal-to-insulator transition by increasing
the temperature from 200 K to 300 K. This is counter intuitive since it means that the higher
energy electrons rather get more localized. This sparks off the idea that by an impulsive ejection
of energy to the electrons, it might be possible to induce and stabilize an unprecedented metal-
to-insulator transition (PM→ PI).1 During the same run at LCLS, as previously mentioned, some
preliminary experiments were performed towards realizing this goal.

First, the Bragg peak was studied as a function of temperature. By cooling the sample, the PM
phase Bragg peak is observed while at high temperature only the PI phase appears. A promising

1Here, I might recall the photoinduced insulator-to-metal phase transition of VO2. After the relaxation of the tran-
sient metallic state, the system relaxes to a thermal phase with higher temperature. The final thermal state for VO2

corresponds to the rutile metallic phase.
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Figure 6.4: X-ray diffraction signal on the 2D detector of the SOLEIL beamline, showing the (113)
Bragg reflections corresponding to the PI and PM phases for the 1.1% doped V2O3.

regime, is the coexistence regime close to the phase transition at T ∼ 200 K as it allows us to
simultaneously observe the interplay between the dynamics of the PM and PI phase, figure 6.3
(a). The pump fluence was set at 10 mJ/cm2. We notice an extremely fast appearance of a
novel, non-thermal phase in between the two peaks after photoexcitation, figure 6.3 (b). By
integrating the intensity of this new peak, we can track its dynamics. Its onset takes place well
before 1 ps; already after only 300 fs there is a visible signal coming from it that lasts for longer
time delays, figure 6.5 (a).

In order to get a clear insight on the dynamics of this transient phase, I performed some
complementary pump-probe experiments on longer time scales at the Cristal beamline in syn-
chrotron SOLEIL. The experimental condition was the same as in the LCLS. However due to the
larger beam spot of X-rays, the Bragg peaks were not small and well defined, figure 6.4. I was
able to consistently observe again the transient phase forming between the PM and PI phase
for the specific x=0.011 doping level, and to study its dynamics on longer time scales, as re-
sumed in figure 6.5 (b): the transient phase grows up to around 1 ns, then decreases until it
vanishes at around 10 µs. The available data unambiguously demonstrate the very fast onset of
this novel phase, already at sub-ps time scales, and its transient nature (the system comes back
to equilibrium before the following pump pulse). In order to get a clear understanding of the
physical nature of this transient phase, it is essential to collect more information on its behav-
ior, by changing the relevant thermodynamic and optical parameters affecting its formation and
evolution and it is part of the ongoing project of our group.

6.3 Time-resolved mid-infrared optical spectroscopy

In V2O3, the pump pulse of 1.5 eV stimulates electronic excitation to the bonding a1g orbital that
induces a lattice hardening marked by an increase in the A1g phonon mode frequency. It is also
interesting to study the optical response of the system while pumping (probing) with different
low energy pulses. As explained in paragraph 3.4.3.4, a tunable source allows us to selectively
act on different electronic transitions and to study the photoinduced impress on their dynamics.
In this section, I first give some explanation on the OPA. Then, I present part of some preliminary
experiments I did at the LOA in the end of my PhD studies.

In order to realize the experiments with pump photon energies in the mid infrared, I used
an optical parametric amplifier (OPA). I describe the general mechanisms for the OPA and I give
some specific numerical parameters corresponding to the commercial OPA I used at LOA, namely
the TOPAS C from the company Light Conversion.
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Figure 6.5: LCLS-XPP data giving the time evolution of the (113) Bragg reflection signal from the
central ROI of figure 6.3 (b), corresponding to the novel transient phase. The time evolution clearly
shows a marked presence of the novel phase already 300 fs after photoexcitation. (b) Intensity of the
transient phase for longer time delays from pump-probe XRD experiments performed at synchrotron
SOLEIL.

Figure 6.6: The energy downconversion process.

An OPA is based on the energy conversion from a photon, with a given photon energy εp,
into two photons with lower energies εs and εi, respectively, so that the energy conservation is
satisfied:

εp = εs + εi

In this section, I refer to the photon with energy εp as pump photon, to the photon with energy
εs as signal photon, and to the photon with energy εi as idler photon. Of course, this downcon-
version energy process can occurs only if the momentum conservation is also satisfied:

~pp = ~ps + ~pi

where ~p indicate the momentum. In virtue of the wave-particle duality, ε = ~ω and ~p = ~~k,
where ω and ~k are the angular frequency and the wavevector, respectively, associated to the
wave description. Therefore, we can rewrite the last two equations as follow

ωp = ωs + ωi

~kp = ~ks + ~ki

These equations connect the wavelength and wavevector of the three beams, and therefore can
be used to determine the outcoming wavelengths from the amplification process. Figure 6.6
shows the energy downconversion process.
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Figure 6.7: The optical path inside the TOPAS C. There are two stages of the amplification with the
BBO crystals.

The downconversion energy process is based on non-linear optical properties of crystals.
Actually, as to have strong non-linear effects we need very high intensity, ultrashort laser pulses
are well adapted to this purpose. The most used crystal for OPA purpose is the β − BaB2O4

(BBO) crystal.
The aforementioned energy conversion can be used to amplify the laser pulses in a wave-

length range different from the wavelength of the fundamental harmonic of the laser. An OPA is
usually based on two amplification stages based on the downconversion energy process, where
the amplified signal comes from a white light generated thorough the interaction of the funda-
mental harmonic of the laser with a sapphire crystal plate.

Although different configurations exist, in most of the case an OPA is base on the following
scheme, summarized in figure 6.7:

• The laser beam is split into three different beams: one beam will be used as signal (s), and
two other beam will be used as pump for two different amplification stages.

• The signal beam is focused into a sapphire plate, in order to produce white light, whose
spectrum covers a wide range from visible to infrared.

• The white light beam s goes into a stretcher, which elongates the pulse duration by dis-
persing the wavelengths composing the white light. The strecher usually consists of two
prisms or diffracting gratings. In the case of the OPA used for our experiment, the TOPAS
C, we only select the infrared part of the spectrum, for wavelengths larger than 800 nm.
Hereafter we will refer to this beam as signal pulse s.

• The signal pulse s goes through a delay line, in order to control the time delay between
the pump pulse of the first amplification stage and the signal pulse to be amplified. As the
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signal pulse is stretched, the relative pump-signal delay will select the wavelength to be
amplified. By changing this delay, we can synchronize the pump pulse with a small portion
of the spectrum of the signal pulse that will be amplified.

• The signal pulse s and the pump pulse p are focused into a BBO crystal. As mentioned in
the previous step, the choice of the wavelength that will be amplified is determined by the
pump-signal time delay. However, in order to ensure momentum conservation, the BBO
crystal must be tilted to the angle that ensures the momentum conservation for the selected
wavelength to be amplified. Therefore, at each wavelength to be amplified it corresponds
a time delay as well as a crystal angle. After the interaction, three beams will appear: a
depleted pump pulse, an amplified signal pulse at the selected wavelength, and an idler
signal pulse. The energy and momentum of these three pulses must satisfy the energy and
momentum conservation law mentioned at the beginning of this section. The pump pulse
can be spatially removed after the interaction with the BBO crystal, as it arrives with a
small angle on the BBO crystal with respect to the signal pulse. In this fashion, we get only
the signal and idler pulses propagating in the same direction.

• The signal and idler go into a second amplification stage, that works in the same way as the
first amplification stage. However, here the pump-signal time delay is fixed, as they must
be synchronized when interacting into the second BBO crystal. The second amplification
stage further amplifies the energy of the pulses.

• The signal and idler pulses pass through a compression stage, which usually consists of
wedged crystal plates, like quartz. This will reduce the temporal duration of the pulses.
The best compression configuration will depend on the wavelength, because of the disper-
sion of the refractive index. Therefore, the compression configuration must also be one of
the adjustable parameters of the OPA.

• At the exit of the OPA we have two pulses, namely the signal and idler pulses, that can be
used for the experiment. In the case of the TOPAS C, the signal ranges from 1150 nm up
to 1600 nm, whereas the idler pulse ranges from 1600 nm up to 2600 nm.

• In the case of our experimental setup, the exit of the TOPAS C is connected to a difference
frequency generation (DFG) module that allows us to cover a further wavelength range
from 2.6 microns up to 20 microns. This is possible thanks to the spectral width of the
pulses. Actually, there are enough spectral components whose energy difference might
produce, through difference frequency generation, pulses with very low photon energy.

In the setup at LOA, the TOPAS C + DFG module described briefly above gives the follow-
ing energies: around 100 µJ per pulse in the wavelength range from 1150 nm up to 2600 nm,
around few µJ per pulse from in the wavelength range from 2600 nm up to 12000 nm, and
below 1 µJ per pulse for wavelengths up to 20 µm. As for the pulse duration, the outcoming
pulses have similar duration as the fundamental harmonic of the laser in the range from 1150
nm up to 2600 nm, i.e. around 35 fs. Instead, the pulse duration is 1.5 up to 2 time longer in
the range from 2600 nm up to 20 µm.

I studied the time-resolved optical response of the V2O3 sample by using the mid-infrared 3.6
µm pulses of the DFG as the pump pulse while probing the system with 800 nm. I should recall
that 3.6 µm corresponds to 340 meV that is very close to Mott gap in the PI phase of 2.8% Cr-
doped sample. Therefore, in order to have a comparative view on the dynamics of both metallic
and insulating phase, I first chose the V2O3 sample that is in the PM phase at room temperature.
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Figure 6.8: Time-resolved optical reflectivity measurements by pumping with 3.6 µm. (a) dashed
lines are the experimental data and the solid lines are fits to the decaying oscillations. (b) The
frequency of the coherent oscillations as a function of fluence. We observe a mean frequency of 7.2
THz that is very close to the Raman frequency of 7.15 THz. (c) Time-resolved optical reflectivity
measurements by pumping with 800 nm. The frequency of phonons is 7.6 THz.

The experiment was performed with different fluences of the pump pulse. In the experiments,
the intensity of the probe pulse was always set to nearly 10 times less than the pump. Figure 6.8
(a) shows the optical response for difference pump fluences. We clearly observe the oscillations
of the fully symmetric A1g optical phonon. By modeling the oscillations as a damping harmonic
oscillator, I found the frequency of the phonons for each fluence and the result is shown in figure
6.8 (b). The average frequency is 7.2 THz that is almost the same as the Raman frequency of
this sample, i.e. 7.15 THz.

I also switched the pump to 800 nm by using the pump pulse at the entrance of the OPA
and studied the optical response of the same sample by 800 nm as the pump and pulse. The
fluence is 8 mJ/cm2. The spectrum in figure 6.8 (c) reveals a frequency of 7.6 THz that is
well above the Raman frequency as expected from populating the a1g orbitals above the Fermi
level. These results show that due to the strong electron-phonon coupling in V2O3, the selective
electronic excitation results in a change in the phonon frequency according to the orbitals that
are transiently populated.
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In this thesis, I performed different experiments in order to study the equilibrium and out-of-
equilibrium properties of two complex compounds: BaCo1−xNixS2 and (V1−xMx)2O3.

The first part of my project was mainly devoted to the study of the electronic band structure of
BaNiS2 and BaCoS2. By applying ARPES, I studied the full electronic band structure of BaNiS2 in
its entire Brillouin zone. The data suggested following important aspects: first, there are linearly
dispersing bands at the Fermi level that have well defined orbital character. Second, the crossing
of these bands always happens at the same point in the energy-momentum space, regardless
of the kz. Third, while the Fermi surface and the linearly dispersing bands have a (quasi) 2D
character, the general electronic band structure presents rather a 3D character. Fourth, the non-
trivial changes of the density of states induced by varying the temperature suggested that BaNiS2

is a correlated metal that can be described as a Fermi liquid.
Parallel theoretical calculations performed by our colleagues showed that the low-energy

physics of the linearly dispersing bands is indeed described by a Dirac-like Hamiltonian that
is principally composed of the d-orbitals. This 2D Dirac cone presents an elliptical shape for
binding energies close to the Fermi level and it is also slightly tilted. This tilt is similar to the
Dirac cone in type-II Weyl semimetals. The Dirac points existence, as well as their location in the
time-reversal and inversion symmetric BaNiS2, crucially depend on the hybridization strength
between the d and p states. The hybridization with the ligands yields band inversions, the
necessary condition for the Dirac points occurrence. The band crossing occurs between bands
with two different irreducible representations that result from the nonsymmorphic symmetry of
the crystal space group and is therefore robust.

The novelty of our results is that we present, experimentally and theoretically, a correlation-
induced Dirac cone composed of d-orbitals.

I also presented the band structure of the Mott insulator BaCoS2 in its magnetic and non-
magnetic phases. This compound is strongly correlated and is not described within the Fermi
liquid theory.

The second part of the my studies was focused on the out-of-equilibrium electron dynamics
of BaNiS2 and (V1−xMx)2O3. In BaNiS2, I observed that upon photoexcitation with a pump
pulse, the band dispersion of the Dirac cone is modified very fast and reaches it maximum at
only 250 fs after the injection of energy to the electrons. This deformation is not simply a rigid
shift; it depends on the wavevector and as far as I the data suggest does not affect the crossing of
the bands with the Fermi level, i.e. the kF . However, I could not clearly conclude what happens
to the Dirac point during the electronic dynamics. The very low signal coming from the excited
states makes it difficult to precisely follow the dynamics of the Dirac point. On the other hand, it
was not possible for me to increase the fluence of the pump pulse to have better statistics for the
excited states due to the rise of multi-photonic process. Some parallel time-resolved reflectivity
measurements with the same experimental condition as the time-resolved ARPES, showed the
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excitation of two coherent optical modes after photoexcitation. The photoinduced signal relaxes
due to the electron-phonon coupling as well as the anharmonic decay of phonons. The latter
takes place with a timescale of 1 ps that is also the timescale in which the deformation of the
Dirac cone relaxes. These consistent results coupled with some temperature-dependent ARPES
measurements propose that the ultrafast renormalization of the bands is purely provoked by
the electronic excitation and is stabilized by the interplay between the electrons and phonons.
At long time delays (t > 3 ps) the dynamics of the electronic states converges to a thermally-
induced one that is equivalent to the accumulated heat brought about by laser pulses. Since the
density of states of BaNiS2 changes as a function of temperature, it was not evident to deduce
the electronic temperature experimentally. I performed some numerical analysis by the three-
temperature model in order to study the dynamics of the temperatures of the electrons, strongly
and weakly coupled phonons.

I also performed some time-resolved X-ray diffraction as well as time-resolved reflectivity mea-
surements on (V1−xMx)2O3 at x = 0 (PM), x = 2.8% (PI), and x = 1.1% (Mott transition near
200 K). In fact, V2O3 offers a rich phase diagram in equilibrium that can be translated into an
equally rich out-of-equilibrium phase diagram by stabilizing novel photoinduced phases. One
important aspect of this compound is that the bonding a1g orbital is empty and is at ∼ 1.5 eV
above the Fermi level. Therefore, if one transiently populates this orbital it can have some unex-
pected consequences on the band structure as well as the lattice. The tr-XRD experiments with
sub-ps time resolution revealed that in the PM and PI phases the electronic excitation is indeed
followed by a structural distortion that corresponds to a decrease of the distance between the
neighboring vanadium atoms along the c-axis. This lattice hardening is definitely a non-thermal
phase and is marked by a hardening of the A1g phonon mode. It occurs before 1 ps and takes
about 2 ps to retrieve the equilibrium state. These results underline the importance of the or-
bital filling as well as the strong interplay between the electrons and phonons in the strongly
correlated materials.

The 1.1% Cr-doped sample presents additional interest since its higher temperature phase
corresponds to an insulator. One might ask whether it is possible to initiate an unparalleled
metal to insulator transition only by applying femtosecond laser pulses. To answer this question,
I performed a series of tr-XRD experiments and the result showed the formation of a novel state
different from the PM or PI phases upon photoexcitation. This state appears around 300 fs and
vanishes at 10 µs. However, the nature of this phase is yet to be clarified.

During my PhD, I tried to study and answer some questions by taking advantage of the time-,
momentum-, and spectral-resolved techniques. My work has also opened new questions in turn,
and this slow but continuous sequence of small questions takes us a step forward towards bet-
ter understanding complex materials, e.g. strongly correlated materials, Dirac semimetals, and
many other examples.

BaNiS2 is an interesting system since it presents electronic correlation, hidden spin polar-
ization, and Dirac fermions. Some more time-resolved ARPES experiments with higher probe
photon energy should be performed on this compound in order to study how the entire electronic
band structure reacts after being perturbed by femtosecond laser pulses. Moreover, in order to
analyze the possible role of the d- and p- orbital hybridization in the band renormalization, one
can perform some time-resolved ARPES experiments with different pump energies. This helps to
study the role of a selective orbitals excitation in the photoinduced response. It is also very inter-
esting to apply circularly polarized pump pulse to the systems since it breaks the time-reversal
symmetry and can possibly lift the degeneracy of the Dirac cone, either by resulting in a Weyl
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semimetal or by opening the gap. It might also possibly act on the Rashba split bands with
hidden spin polarization by selectively pumping one spin component. With the same purpose,
some precise spin-resolved experiments in the equilibrium condition can also unveils the spin
component of the bands. The Mott insulator BaCoS2 undergoes an insulator to metal transition
under pressure. Does this metallic phase correspond to a Dirac semimetal? This answer should
lurk in the optical spectroscopy experiments under pressure. In order to obtain a general view
on the correlation-induced Dirac fermions, one should study the electronic band structure of the
neighbors of BaNiS2 in the phase diagram of BaCo1−xNixS2.

V2O3 has been a benchmark for different experimental and theoretical work over decades
and it still has much to be explored, especially in the time-resolved domain. The idea of induc-
ing an ultrafast metal to insulator transition should be tested by performing precise tr-XRD or
tr-reflectivity measurements in different experimental conditions. We saw the important role of
the selective pumping to the dynamics of the electrons and lattice. It is intriguing to pump the
Mott insulating phase of V2O3 by different wavelengths, for instance resonant with the band gap
and to observe the consequences on the electron dynamics. In line with the idea of pumping
with different photon energies, pumping BaNiS2 with terahertz pulses that create optical transi-
tions very close to the Dirac node might result in some non-trivial photoinduced changes of the
electronic properties of the system.
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Résumé en français

Introduction: Ce travail de thèse a été dédié à l’étude de matériaux quantiques, plus partic-
ulièrement les matériaux de Mott tel que sesquioxyde de vanadium dopé en chrome (V1−xCrx)2O3

et les matériaux de Dirac tel que BaNiS2. En utilisant plusieurs techniques de spectroscopies ré-
solues en temps, nous avons étudié les transitions électroniques à basse énergie et les transitions
de phase photoinduites dans ces matériaux.

Le terme matériaux quantiques a été introduit récemment pour unifier deux groupes im-
portants de la physique de la matière condensée. Premièrement, le groupe de matériaux dans
lesquels les fortes corrélations électroniques gouvernent les propriétés physiques du système (par
exemple, les isolants de Mott). Deuxièmement, les matériaux dont les propriétés électroniques
sont déterminées par la géométrie de la fonction d’onde électronique (par exemple, les isolants
topologiques). Ces matériaux présentent des propriétés émergentes, c’est-à-dire des propriétés
qui n’apparaissent que par des interactions complexes entre de nombreux degrés de liberté, tels
que la charge, le spin, l’orbitale et la topologie de la fonction d’onde. Ces interactions peuvent
donner lieu à des diagrammes de phases dont les transitions de phase n’ont pas généralement
de paramètre d’ordre bien défini. L’intérêt des matériaux quantiques se relève lorsque ces deux
groupes se rencontrent dans un même système et créent des matériaux topologiques corrélés,
ce qui donne lieu à des phases non conventionnelles pouvant être contrôlées par le couplage
spin-orbite et les corrélations électroniques.

Avant de présenter mon travail, je donne une brève description des matériaux fortement
corrélés et les matériaux de Dirac. Les matériaux fortement corrélés avec des orbitales d par-
tiellement remplies peuvent subir une transition métal-isolant du premier ordre en raison de la
forte répulsion Coulombienne et de la localisation des électrons dans le réseau cristallin. Cette
transition, qui résulte directement de la corrélation entre les électrons, sans changements struc-
turaux et magnétiques, est appelée une transition de Mott. Expérimentalement, la compétition
entre les différentes échelles d’énergie d’un système corrélé à l’équilibre est contrôlée par la
température, la pression ou la substitution chimique.

Les matériaux Dirac et les matériaux topologiques constituent un autre sous-ensemble impor-
tant de matériaux quantiques. La propagation des électrons dans ces matériaux donne lieu à des
fermions relativistes de masse nulle, avec une dispersion de bande linéaire, décrits par l’équation
de Dirac. Les fermions de Dirac ont été découverts dans le graphène et dans les états de surface
des isolants topologiques. Ces fermions sont chiraux et sont responsables de la robustesse des
états électroniques en raison de la topologie non triviale des états électroniques dans le volume
du matériau. Ce domaine de recherche a été étendu par la découverte des sémimétaux de Dirac
et de Weyl. Dans ces matériaux, les bandes de conduction et de valence se touchent en un point,
donnant naissance à des bandes qui dispersent linéairement dans toutes les directions de l’espace
des vecteurs d’onde. Dans les sémimétaux de Dirac, la présence de la symétrie de renversement
du temps et celle d’inversion donne lieu à des bandes doublement dégénérées qui peuvent être
considérées comme deux cônes de chiralité opposée. Le croisement de ces bandes (point de
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Dirac) a une dégénérescence quadruple ce qui n’est pas topologiquement protégée; certaines
perturbations peuvent ouvrir un gap sauf si des symétries supplémentaires sont présentes. Dans
tous les matériaux étudiés dans la littérature, les fermions de Dirac sont dérivés des orbitales p
ou s-p, dans lesquelles la définition de système fortement corrélé n’est pas pertinent. Il est très
intéressant de comprendre s’il est possible d’avoir des fermions de Dirac induits par corrélation,
de sorte que la topologie du matériau soit contrôlée par les orbitales d. Dans cette thèse, nous
présentons BaNiS2, un exemple d’un matériau de Dirac aux orbitales d.
Les expériences résolues en temps: La spectroscopie par photoémission résolue en angle
(ARPES) est un outil expérimental puissant et direct pour extraire la structure électronique des
matériaux. La conservation de l’énergie et de l’impulsion permet de récupérer l’énergie cinétique
ainsi que le vecteur d’onde de l’électron à l’intérieur du solide. En ajustant l’énergie et la polar-
isation du photon incident, la mesure ARPES peut dévoiler la structure de bande électronique
complète des solides. Cette technique est un outil idéal pour étudier les semimétaux de Dirac.

L’ARPES est un exemple des techniques basées sur l’utilisation de photons qui déterminent
les propriétés physiques du système à l’équilibre. Si l’on remplace ces photons par des impulsions
laser ultra-courtes et qu’on ajoute également un autre photon, qui sera utilisé pour exciter les
états électroniques, on peut réaliser une expérience résolue en temps. Ce schéma expérimental
est plus généralement connu sous le nom d’expérience pompe-sonde, et il peut atteindre des ré-
solutions temporelles pouvant aller jusqu’à quelques dizaines de femtosecondes. Normalement,
dans les expériences résolues en temps, des impulsions femtosecondes infrarouges de 1,5 eV
(800 nm) sont utilisées en tant que pompes qui excitent les électrons hors équilibre et les décou-
plent de manière transitoire du réseau. La dynamique de relaxation des électrons est suivie par
différents processus, par exemple par l’émission de phonons optiques. La vitesse à laquelle cette
relaxation se produit dépend de la densité d’états de phonons accessibles aux électrons excités
ainsi que du couplage électron-phonon. Les expériences résolues en temps sont particulièrement
importantes dans l’étude des matériaux quantiques. Le diagramme de phase complexe de ces
matériaux présente une multitude d’états fondamentaux dégénérés. Bien qu’à chaque phase,
un seul paramètre d’ordre domine, il est possible qu’un ordre concurrent se cache légèrement
dans des niveaux d’énergie électronique plus élevés. Une impulsion laser femtoseconde peut
être utilisée pour détecter cet ordre concurrent. La pompe découple les électrons du réseau et
entretemps, des interactions concurrentes pourraient révéler et stabiliser des phases métastables
cachées, c’est-à-dire des phases non présentes dans le diagramme de phase à l’équilibre. Cette
idée donne la possibilité de contrôler et de manipuler les matériaux d’une façon ultra-rapide. La
lumière peut également agir sur l’ordre topologique du système. Cela peut être fait par exemple
si l’impulsion femtoseconde brise une symétrie pertinente du système.

Afin de pouvoir étudier les transitions de phase photoinduites des systèmes complexes, j’ai
appliqué différentes techniques de pompe-sonde telles que la réflectivité résolue en temps (TR-
Ref), TR-ARPES et la diffraction des rayons X résolue en temps (TR-XRD) au cours de ma thèse.
La TR-Ref est basé sur la détection des modifications photoinduites de la réflectivité pour dif-
férentes longueurs d’onde. Le signal contient des informations sur l’évolution de la densité
d’états et nous donne des oscillations en temps réel du réseau. Dans TR-ARPES, nous pou-
vons observer directement les électrons excités dans les états inoccupés, ainsi que les éventuels
changements photoinduits de la structure de bande électronique. Alors que TR-Ref et TR-ARPES
fournissent des informations sur les électrons, la technique TR-XRD peut sonder directement la
dynamique du réseau en suivant l’intensité et la position d’un pic de Bragg lors d’une photoexci-
tation.
Résultats: Dans la première partie de ce manuscrit, je donne les résultats expérimentaux sur
BaNiS2 et BaCoS2 qui sont respectivement les précurseurs métalliques et isolants de la transition
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de Mott dans le diagramme de phase de BaCo1−xNixS2. La structure tétragonale de ce composé
est caractérisée par une symétrie non-symmorphique de miroir de glissement avec les atomes
de S dans le plan et les atomes de nickel le long de l’axe c. Ce composé a plusieurs orbitales d
situées au/ proches du niveau de Fermi qui sont formées par les atomes de Ni. La majeure par-
tie de mes études a été consacrée au BaNiS2, un métal modérément corrélé ayant d’importants
effets de couplage spin-orbite sur la structure de bande électronique. La caractéristique la plus
importante de BaNiS2, qui a demeuré méconnue pour des décennies, est la dispersion linéaire
des bandes d’énergie avec le point de croisement au niveau de Fermi. Ces caractéristiques ont été
prédites bien avant le graphène et la notion de l’équation de Dirac en physique de la matière con-
densée, mais leur intérêt n’a cependant pas été mis en évidence par la communauté scientifique.
La question est de savoir si ces bandes à dispersion linéaire forment vraiment un semimétal de
Dirac dans BaNiS2. Si oui, quelle est le rôle de la symétrie cristalline et des orbitales d corrélées?
Nous avons essayé de rassembler les éléments constitutifs de la réponse en effectuant différentes
expériences. À l’aide d’une série d’expériences ARPES effectuées au synchrotron Elettra, nous
avons étudié la dispersion complète des bandes électroniques de BaNi2 dans l’ensemble de la
zone de Brillouin. Nous avons vu que le cône créé par les bandes à dispersion linéaire est plutôt
ovale dans les surfaces isoénergétiques. De plus, la dispersion kz de la structure électronique
a montré que la surface de Fermi et les bandes à dispersion linéaire sont d’une nature quasi
bidimensionnelles, alors que les autres bandes sont plutôt tridimensionnelles. Les bandes à dis-
persion linéaire se croisent toujours autour de 20 meV au-dessus du niveau de Fermi et au milieu
de la direction ΓM. Nous avons également observé que la dispersion de bande électronique en
fonction de la température montre un transfert de poids spectral du pic de quasi-particule à
la partie incohérente du spectre située à une énergie de liaison plus élevée. Ce comportement
démontre que BaNiS2 est un métal corrélé.

A l’aide des expériences résolues en polarisation, nous avons montré que les bandes à disper-
sion linéaire au niveau de Fermi sont de caractère dx2−y2 et de caractère orbital hors plan de dz2
en accord avec les calculs théoriques. Ces résultats montrent le caractère d’orbitale d bien défini
des bandes à dispersion linéaire proches du niveau de Fermi et prouvent qu’il est légitime de
réduire l’Hamiltonien décrivant le système à une matrice 2×2 basée uniquement sur la contri-
bution des orbitales d. Le calcul théorique et la dérivation de l’Hamiltonien ont été effectués par
nos collaborateurs théoriciens à l’université de la Sorbonne et de SISSA en Italie. Ils ont démon-
tré que l’Hamiltonien effectif décrivant la physique à basse énergie du système avec les orbitales
d est décrit précisément par l’équation de Dirac. Nous avons 4 nœuds de croisement de bandes
en raison de la symétrie carrée du réseau. Les nœuds sont légèrement au-dessus du niveau de
Fermi et sont liés les uns aux autres par la symétrie de renversement du temps. Le point de Dirac
est créé par le croisement des bandes avec différentes représentations sous la symétrie C2v du
petit groupe le long du ΓM. Cela implique que le croisement des bandes est inévitable et reste
stable sur une plage de perturbations tant que les symétries du système sont préservées. Selon
le modèle théorique, l’inversion de bande a deux raisons sous-jacentes. Premièrement, le champ
cristallin qui détermine la hiérarchie des orbitales d aux points de haute symétrie de la zone de
Brillouin tel que M. Deuxièmement, l’hybridation des orbitales d et p qui renverse l’ordre des
bandes au point Γ. En fait, la force de l’hybridation orbitale d et p détermine si le système peut
être un sémimétal de Dirac ou un semimétal trivial.

Nous avons également effectué des expériences ARPES sur BaCoS2 dans ses phases isolantes
antiferromagnétiques et isolant de Mott. Nous n’avons pas observé de changement significatif
dans la dispersion des bandes électronique à la température de Néel. La structure de bande
présente des similitudes avec celle de BaNiS2. Cela ouvre la question de savoir s’il est possible
de réaliser une transition de phase de la phase isolante triviale à une phase semimétallique de
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Dirac, par exemple sous pression en BaCoS2. Après avoir prouvé l’importance de la corrélation
électronique ainsi que de la présence des fermions de Dirac bidimensionnels à masse nulle dans
BaNiS2, il est intéressant de comprendre comment les impulsions femtosecondes agissent sur
la structure de bande. Est-il possible que le découplage de ces fermions de Dirac corrélés du
réseau provoque de nouveaux phénomènes? Nous avons effectué des mesures TR-ARPES sur
les bandes dx2−y2 et dz2 formant le cône de Dirac le long de la direction ΓM. Nous avons ob-
servé une renormalisation photoinduite des bandes, c’est-à-dire un shift en énergie dépendant
du vecteur d’onde et dépendant du temps. La renormalisation de la bande est plus importante
pour les énergies de liaison plus élevées alors qu’au niveau de Fermi elle devient négligeable.
La dynamique de relaxation de cette déformation de bandes suit la même constante temporelle
que la relaxation des électrons excités. Nous avons également effectué des expériences TR-Ref
et ARPES dépendant de la température afin de vérifier si la renormalisation de la bande est
entraînée par une excitation électronique ultra-rapide ou s’il s’agit d’un simple effet thermique.
Le signal TR-Ref nous a permis de déterminer l’évolution de la température des électrons et du
réseau séparément et d’en déduire leur constante de couplage. Nous avons également mesuré la
fréquence moyenne des phonons optiques auxquels les électrons sont couplés et évacuent leur
énergie. La constante de couplage électron-phonon est d’environ 0,13 et nous en déduisons
qu’avec la fluence appliquée dans l’expérience (0,2 mJ/cm2), la température des électrons et
celle du réseau convergent pour des délais supérieurs à 3 ps après la photoexcitation. Cela im-
plique que la renormalisation du cône de Dirac est provoquée par l’excitation ultra-rapide des
électrons et que sa dynamique à une échelle de temps inférieure à la picoseconde ne peut être
expliquée a priori sous forme d’effet thermique. Avec des mesures ARPES à haute résolution en
fonction de la température, nous avons observé une renormalisation similaire du cône de Dirac
lors du chauffage. En comparant tous les résultats expérimentaux de l’état d’équilibre et de la dy-
namique hors équilibre du système, nous pouvons discuter les effets thermiques par rapport aux
effets photoinduits. Nous remarquons que la photoexcitation et le chauffage induisent un com-
portement qualitativement similaire du cône de Dirac. Cependant, ce n’est que dans les délais
supérieurs à 3 ps qu’ils produisent quantitativement le même effet. D’autre part, le chemin qui
aboutit à ces mêmes effets est différent. L’évolution de la densité d’états montre que lors de
la photoexcitation, nous excitons les électrons aux états inoccupés situés au-dessus du niveau
de Fermi tandis qu’en chauffant le système il y a un transfert du poids spectral du niveau de
Fermi vers la partie incohérente du spectre. Avec ces résultats cohérents, il est donc logique de
penser que la dynamique non thermique de la renormalisation du cône de Dirac lors de la pho-
toexcitation est engendrée uniquement par un effet électronique qui est ensuite stabilisé par les
phonons optiques cohérents grâce au couplage électron-phonon. L’amortissement des phonons
excités s’accompagne de la relaxation du cône de Dirac vers un état thermique dépendant de la
fluence de pompe appliquée.

Dans la deuxième partie de ce manuscrit, je présente la dynamique hors équilibre de V2O3.
Ce composé est un prototype et un exemple bien connu d’un système de Mott-Hubbard fortement
corrélé et révèle une transition de phase transitoire non thermique lors de la photoexcitation.
Son diagramme de phases présente une transition de Mott d’une phase métallique paramagné-
tique (PM) vers une phase isolante paramagnétique (PI) en fonction de la température ou de
la substitution chimique en Cr. Les phases PI et PM ont une structure en corindon, tandis que
lorsqu’on passe à la phase d’isolant de Mott, la distance verticale entre les atomes de vanadium
voisins à l’intérieur de la cellule élémentaire augmente. En termes de la structure électronique,
la phase PI de V2O3 peut être considérée comme un isolant de Mott à deux bandes à demi rem-
plissage; l’orbitale a1g le long de l’axe c est inoccupée, tandis que les orbitales eπg dans le plan sont
occupées par presque un électron chacune. L’occupation des orbitales a1

g change drastiquement
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lors de la transition de Mott, ce qui provoque l’ouverture ou la fermeture du gap. Dans le but
de manipuler éventuellement les propriétés électroniques de V2O3 en modifiant de façon tran-
sitoire l’occupation des orbitale a1

g, nous avons effectué une série de techniques pompe-sonde
avec impulsion de pompe toujours à 800 nm (1,5 eV). Certaines expériences TR-PES avaient
précédemment montré la création d’états dans le gap qui duraient quelques picosecondes lors
de la photoexcitation de l’échantillon à 2,8% dopé au Cr dans la phase PI. Par des expériences
TR-Ref utilisant 800 nm comme impulsions de pompe et de sonde, nous observons avec surprise
que la dynamique des oscillations de phonons cohérents A1g présente un décalage vers le bleu
(blue shift) par rapport à la fréquence Raman. Ce durcissement du mode phononique et les mod-
ifications expérimentales observées dans les spectres de photoémission sont très proches de ce
que l’on attend dans le cas d’une réduction de la distance entre les atomes de vanadium voisins.
Par conséquent, la relaxation des états dans le gap devrait également être accompagnée d’une
relaxation du réseau. Afin de compléter notre vision de ce phénomène, nous avons effectué des
mesures TR-XRD à Linac Coherenet Light Source (LCLS) afin de mesurer la dynamique directe
du réseau avec une résolution temporelle inférieure à la picoseconde. L’évolution de l’intensité
du pic de Bragg montre que l’apparition de la distorsion de la structure se produit après quelques
centaines de femtosecondes et bien avant 1 ps. Ensuite, il faut environ 2 ps pour que le réseau
récupère son état d’équilibre. Les données suggèrent que la symétrie cristalline reste inchangée
avant 4 ps alors que la distance entre les vanadiums est réduite avant 1 ps. Ce résultat élucide
le rôle pur des atomes de vanadium dans le durcissement. En comparant les données avec le
TR-PES, nous concluons que la structure du réseau suit la dynamique des électrons.

Afin d’interpréter nos résultats expérimentaux cohérents dans un cadre théorique, nous avons
eu le soutien de nos collaborateurs théoriciens de SISSA. En effet, dans V2O3, le rôle crucial est
joué par le fait que l’état inoccupé est une orbitale liante située le long de l’axe c. En pom-
pant le système, nous photoexcitons les électrons dans cette orbitale liante, ce qui modifie de
manière transitoire le remplissage spécifique des orbitales proches du niveau de Fermi. Le mod-
èle Hatree-Fock est suffisant pour décrire cette fermeture du gap dans la phase PI et la perte
de cohérence dans la phase PM par le nombre de remplissage d’orbital a1

g. La forte interaction
électron-phonon entraîne une modification non-thermique du réseau. La distorsion structurelle,
qui provient principalement de la réduction de la distance des atomes de vanadium le long de
l’axe c, suggérée par un durcissement des modes de phonon A1g, stabilise ensuite cet état non
thermique qui met ensuite quelques picosecondes pour se relaxer. Nos résultats montrent donc
qu’un couplage électron-phonon sélectif par impulsions ultra-rapides peut jouer un rôle impor-
tant dans un système de Mott hors équilibre, ce qui peut conduire à un contrôle ultra-rapide de
la conductivité du matériau.

Dans la dernière partie de ma thèse, nous avons effectué des expériences préliminaires TR-
XRD sur le V2O33 de 1,1% dopé au chrome. Cet échantillon montre une transition métal-isolant
lors de l’augmentation de la température. Cela offre l’occasion d’induire éventuellement cette
transition de phase métal-isolant par excitation électronique ultra-rapide. Nous avons observé la
formation d’une phase non thermique d’une durée de quelques centaines de nanosecondes dans
le régime de coexistence des phases PI et PM. La formation de cette phase est accompagnée
d’une réduction de l’intensité du pic de Bragg de la phase PM. Nous avons également effectué
des mesures TR-Ref en faisant varier l’énergie de la pompe afin d’étudier le rôle de l’excitation
orbitale sur les propriétés électroniques de V2O33 dans sa phase métallique et isolant.

Pour conclure, nous avons montré la formation ultra-rapide d’une phase non-thermique dans
BaNi2 et V2O3 lors de la photoexcitation des électrons. Dans BaNiS2, un sémimetal de Dirac
corrélé, cette phase non thermique est provoquée par une excitation orbitale sélective et dans
V2O3 ce rôle est joué par un couplage électron-phonon sélectif.
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Résumé: Les matériaux quantiques ont été
récemment introduits en physique de la matière
condensée pour unifier tous les matériaux dans les-
quels les fortes corrélations électroniques gouvernent
les propriétés physiques du système (e.g. les iso-
lants de Mott) et les matériaux dont les propriétés
électroniques sont déterminées par la géométrie
de la fonction d’onde (e.g. matériaux de Dirac).
Ces matériaux montrent des propriétés émergentes
résultantes de l’intrication de différents degrés de
libertés : la charge, le spin et le moment orbital, don-
nant lieu aux propriétés topologiques des électrons.
L’étude de ces interactions et des compétitions entre
les degrés de liberté pertinents nécessite l’utilisa-
tion de techniques pompe-sonde ultra-rapides. Par-
ticulièrement, les pulses laser femtosecondes inter-
agissent uniquement avec les électrons pour les pla-
cer dans un état hors-équilibre décrit par des dis-
tributions de type non Fermi-Dirac. La dynamique
subséquente implique de nombreux processus, avec
un temps de relaxation relié aux constantes de cou-
plage. De plus, dans les techniques résolues en
temps, la lumière peut agir comme un paramètre ex-
terne, différent des paramètres thermodynamiques,
pour explorer le diagramme de phase. Cela nous
donne l’opportunité de stabiliser de nouveaux états
inaccessibles par des chemins thermiques quasi-
adiabatiques ou de manipuler les propriétés phy-
siques des systèmes.
Dans cette thèse, nous avons réalisé différentes
expériences dans le but d’étudier les propriétés
à l’équilibre et hors équilibre de deux matériaux
corrélés: BaCo1−xNixS2 et (V1−xMx)2O3.
La première partie de ce projet a été dédiée principa-
lement à l’étude de BaNiS2, le précurseur métallique
de la transition de Mott dans BaCo1−xNixS2. En uti-
lisant l’ARPES, nous avons étudié la structure de

bandes électroniques de BaNiS2 dans toute la zone
de Brillouin. L’expérience, combinée avec des calculs
théoriques, révèle un nouveau type de cône de Di-
rac bidimensionel à caractère orbitalaire d et induit
par les corrélations. Le croisement des bandes est
induit par l’hybridation des orbitale d et p et reste
protégé par les symétries particulières de la structure
cristalline. Nous avons aussi mesuré la structure de
bandes de l’isolant de Mott BaCoS2 dans ses phases
magnétiques et non magnétiques.
Dans la seconde partie, nous avons étudié la dy-
namique électronique hors équilibre de BaNiS2 et
(V1−xMx)2O3. Grâce à des mesures tr-ARPES et
tr-réfléctivité, nous avons observé une renormalisa-
tion non thermique et ultra-rapide du cône de Dirac
dans BaNiS2. Ce phénomène est purement provoqué
par les excitations électroniques et est stabilisé par
l’intéraction entre les électrons et les phonons. De
plus, en utilisant différentes techniques pompe-sonde
(tr-XRD basé sur XFEL et tr-réfléctivité) nous avons
aussi exploré des phases hors-équilibres du matériau
prototype de Mott-Hubbard (V1−xMx)2O3 appartenant
à différentes parties de son diagramme de phase.
Nos résultats montrent une phase transitoire non ther-
mique se développant immédiatement après la pho-
toexcitation ultra-rapide et durant quelques picose-
condes dans les phases métalliques et isolantes.
Cette phase transitoire est accompagnée par une dis-
torsion structurale qui correspond à un durcissement
du réseau et est marquée par un ”blue shift” du mode
phononique A1g.
Nos résultats soulignent l’importance du remplissage
des orbitales aussi bien que des effets importants
de l’excitation des orbitales sélectives ou des cou-
plages électron-phonon sélectifs dans la dynamique
ultra-rapide des sémimétaux de Dirac et les matériaux
corrélés.
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Abstract: Quantum materials is a new term in
condensed matter physics that unifies all materials
in which strong electronic correlation governs phy-
sical properties of the system (e.g. Mott insulators)
and materials whose electronic properties are de-
termined by the geometry of the electronic wave
function (e.g. Dirac materials). These materials show
emergent properties– that is, properties that only ap-
pear by intricate interactions among many degrees of
freedom, such as charge, spin and orbital, giving rise
to topological properties of electrons. The study of
these interactions and competitions between the re-
levant degrees of freedom demands applying ultrafast
pump-probe techniques. Particularly, femtosecond la-
ser pulses act only on the electrons and set them to
an out-of-equilibrium state inexplicable by the Fermi-
Dirac distribution. The ensuing dynamics involves va-
rious processes and the rate at which the relaxation
occurs is related to the coupling constants. Moreover,
in time-resolved pump-probe techniques light can act
as an additional external parameter to change of the
phase diagram – different from thermodynamic para-
meters. It gives us the opportunity of stabilizing new
states inaccessible by quasi-adiabatic thermal path-
ways or eventually manipulating the physical proper-
ties of the systems.
In this thesis, we performed different experiments
in order to study the equilibrium and out-of-
equilibrium properties of two correlated compounds:
BaCo1−xNixS2 and (V1−xMx)2O3.
The first part of the project was mainly devoted to the
study of BaNiS2 that is the metallic precursor of the
Mott transition in BaCo1−xNixS2. By applying ARPES,

we studied the electronic band structure of BaNiS2 in
its entire Brillouin zone. These results combined with
some theoretical calculations give evidence of a novel
correlation-induced and two-dimensional Dirac cone
with d-orbital character. The band crossing occurs due
to the d- and p- orbital hybridization and is protected
by the specific symmetries of the crystal structure. We
also investigated the electronic band structure of the
Mott insulator BaCoS2 in its magnetic and nonmagne-
tic phases.
In the second part, we studied the out-of-equilibrium
electron dynamics of BaNiS2 and (V1−xMx)2O3. By
means of tr-ARPES and tr-reflectivity measurements,
we observed an ultrafast and non-thermal renormali-
zation of the Dirac cone in BaNiS2. This phenomenon
is purely provoked by the electronic excitation and is
stabilized by the interplay between the electrons and
phonons. Moreover, by applying various pump-probe
techniques (XFEL-based tr-XRD and tr-reflectivity) we
also explored the out-of-equilibrium phases of the
prototype Mott-Hubbard material (V1−xMx)2O3 in dif-
ferent parts of its phase diagram. Our results show
a transient non-thermal phase developing immedia-
tely after ultrafast photoexcitation and lasting few pico-
seconds in both metallic and insulating phases. This
transient phase is followed by a structural distortion
that corresponds to a lattice hardening and is marked
by a ”blue shift” of the A1g phonon mode.
Our results underline the importance of the orbital
filling as well as the strong effect of the selective or-
bital excitation or electron-phonon coupling in the ul-
trafast dynamics of Dirac semimetals and correlated
materials.
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