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Résumé en français

Introduction

De nombreux systèmes critiques doivent satisfaire une spécification donnée. Cette spéci-
fication peut comprendre des critères de sécurité, des mesures de rendement ou d’autres
conditions. Le processus de vérification, dont le but est de vérifier que le système sat-
isfait une spécification, peut être réalisé de différentes manières. Chacune ayant ses
avantages et inconvénients, le choix de la méthode à utiliser dépend à la fois du sys-
tème qui est étudié et de la spécification. Une des méthodes de vérification possibles
est de réaliser des batteries de tests sur le système. Cette méthode est notamment
utile lorsqu’on ne connait pas le fonctionnement interne d’un système (le code d’un pro-
gramme par exemple). Le choix des tests est alors basé sur la spécification [GTWJ03].
Au contraire, si l’on a accès au système complet, un modèle formel et opérationnel du
système peut être construit. Ce modèle peut ensuite être étudié avec des méthodes
dédiées.

La complexité de certains systèmes peut rendre la construction du modèle difficile.
Celle-ci peut être accompli grâce à une analyse du code du système, en réalisant des
tests spécifiques dans certaines configurations du système permettant de déterminer
comment il évolue (par exemple en surchargeant le processeur d’un ordinateur afin
d’observer comment le programme réagit face à ce type de pression), etc. Quand elle
est possible, cette approche a de nombreux avantages :

• Lors de la conception d’un système, si le prototype actuel n’accompli pas les
objectifs voulus, il doit être modifié. Construire de nouveaux prototypes jusqu’à
en obtenir un qui soit satisfaisant est coûteux. Il est plus économique et simple, de
modifier un modèle jusqu’à ce que celui-ci satisfasse la spécification, et seulement
alors de construire le système associé.

• Un modèle est souvent conçu afin de vérifier plusieurs propriétés. Si l’on désire
vérifier de nouvelles propriétés à une date ultérieure, utiliser le modèle existant
peut suffire. Dans le cas contraire, il n’est pas forcément nécessaire de construire
entièrement un nouveau modèle. Il peut être suffisant de raffiner le modèle actuel,
en y incorporant les informations appropriées. Utiliser un tel raffinement réduit
fortement la complexité de la nouvelle étude.

• Enfin, si le modèle est suffisamment proche de la réalité, il permet une analyse
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précise du système. Ce n’est pas le cas lors d’utilisation de batteries de tests, qui
ne couvrent qu’une partie des situations possibles. Le même souci existe pour
d’autres méthodes telles que la vérification statistique de modèle [Bar14].

Il existe de nombreux formalismes permettant de représenter un système. Plus celui-
ci est complexe (représentation du temps, de l’aléatoire. . . ), plus on peut modéliser de
systèmes et de spécifications et plus l’étude de ce formalisme est difficile. Notam-
ment, les formalismes possédant une composante probabiliste tels que les chaînes de
Markov [KS60] ont de nombreuses applications. En effet, certains systèmes nécessitent
des probabilités pour être représentés de façon précise. C’est le cas des systèmes con-
tenant des comportements intrinsèquement probabilistes, par exemple un programme
utilisant l’aléatoire afin de briser les symétries. Le hasard peut aussi être une con-
séquence de l’interaction du système avec l’environnement dont le comportement n’est
pas entièrement prévisible. De plus, les probabilités permettent de représenter les incer-
titudes d’un modèle construit de façon approchée, par analyse statistique par exemple.
Enfin, l’utilisation de probabilités élargit l’ensemble des propriétés qui peuvent être
spécifiées en permettant de les quantifier. Par exemple, si un système (qui n’est pas
un système critique) peut commettre des erreurs, mais que celles-ci ont peu de chances
d’avoir lieu, ceci peut suffire pour satisfaire la spécification.

Le choix du formalisme utilisé détermine également quelles sont les informations
accessibles aux utilisateurs : lorsque l’on construit un modèle, les différents évènements
qui peuvent avoir lieu dans le système et leurs effets sont décrits ; certains de ces
évènements ont lieu de façon interne et ne sont donc pas observables par un utilisateur
extérieur. Le contrôle de l’information transmise par un système a vu son importance
augmenter ces dernières années à cause de l’omniprésence des instruments électroniques
communicants. Certaines informations du système doivent être maintenues secrètes
(les mots de passe par exemple) alors que d’autres doivent être rendues publiques (les
erreurs du système par exemple). Les problèmes liés à l’observation partielle peuvent
être groupés en trois familles selon le type d’objectif à accomplir : (1) la planification
sous observation partielle, (2) la dissimulation d’information à l’observateur et (3) la
récupération d’information.

Le diagnostic est l’un des problèmes principaux de cette troisième catégorie. Le
terme diagnostic vient du domaine médical dans lequel il désigne l’identification d’une
maladie à partir de symptômes. Dans la communauté des systèmes à évènements dis-
crets, cette identification est appliquée à des systèmes dynamiques (les centrales élec-
triques, les chaînes de production. . . ). Dans cette approche, une exécution du système
est observée et on essaie de détecter si un évènement particulier, appelé la faute, a eu
lieu. La faute ne représente pas forcément une défaillance du système, cependant cette
terminologie est utilisée principalement car une irrégularité est l’un des évènements les
plus importants à détecter durant une exécution. En effet, celles-ci menacent la sureté
et la disponibilité du système. Ceci peut provoquer des dégâts catastrophiques à la
fois en termes économiques et humains. L’étude des fautes est également justifiée du
fait que tout système peut, et en fait va, faire une erreur. En effet, les systèmes que
l’on construit sont de plus en plus complexes et ont des interactions de plus en plus
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importantes avec l’environnement. Il est donc extrêmement difficile de ne pas intro-
duire d’erreurs lors de la conception d’un système et il est presque impossible de prédire
toutes les actions que l’environnement aura sur le système. Enfin, des fautes auront lieu
à cause du vieillissement des composants du système.

Comme les fautes sont dangereuses, inévitables et potentiellement difficiles à identi-
fier, une méthode automatique de détection est nécessaire. Par ailleurs, cette méthode
doit être précise car stopper un système à cause d’un faux positif est coûteux et elle doit
être réactive de façon à ce que les fautes soient repérées avant tout dommage sérieux.
En réaction à une faute, on peut soit (1) essayer d’optimiser le comportement du sys-
tème durant la période préalable à la faute [EMT16], ce qui est particulièrement utile
pour des systèmes dont les composants sont régulièrement remplacés, ou (2) essayer de
détecter la faute de façon à réagir à son occurrence. Comme l’on désire réagir aussi
vite que possible, prédire l’occurrence de la faute permettrait de réagir avant même
que le système ne commette l’erreur. Cette question est étudiée dans le contexte des
problèmes de prédiction [GL09]. Cependant, il est rare qu’un système permette une pré-
diction efficace des fautes. Détecter les fautes a posteriori est plus plausible. L’étude
du diagnostic soulève deux problèmes importants : comment décider si un système est
diagnostiquable, ce qui est appelé diagnostiquabilité, et, dans le cas positif, comment
construire un diagnostiqueur la fonction réalisant le diagnostic et qui satisferait poten-
tiellement des conditions supplémentaires sur la taille de la mémoire utilisée, le délai de
détection, etc. Dans le domaine des systèmes à évènements discrets, le diagnostic a été
défini initialement pour des systèmes finis tels que les systèmes à transitions étiquetées
partiellement observables [SSL+95] puis a été étendu à de nombreux modèles complexes
(e.g. les réseaux de Petri [CGLS12, BHSS18], les systèmes à pile [MP09], etc.) et cadres
(e.g. décentralisés [DLT00], distribués [HC94]). De plus, plusieurs travaux rassemblés
sous le nom diagnostic actif étudient comment contrôler le système pour en assurer la
diagnostiquabilité [SLT98, TT07, CT08, CP09].

Notre but dans ce document est d’étudier le diagnostic de systèmes probabilistes.
Par conséquent, la première question qui se doit d’être abordée est le choix du formalisme
(probabiliste) à utiliser. On doit notamment déterminer si, en plus des probabilités, le
modèle est partiellement contrôlable, s’il peut représenter une infinité d’états différents
ou s’il doit décrire efficacement des comportements concurrents. Par ailleurs, comme
le diagnostic est un problème d’observation partielle, le modèle doit indiquer quelle
observation est associée à une exécution.

Dans un deuxième temps, il va nous falloir établir les différents problèmes que nous
allons étudier. De nombreuses notions de diagnostic ont déjà été définies, chacune ac-
complissant un objectif différent. Nous devons donc présenter un ensemble cohérent
de notions qualitatives et quantitatives appropriées englobant les définitions impor-
tantes déjà établies. De plus, les définitions formelles des problèmes que nous étudions
doivent être choisies prudemment. En effet, comme ces problèmes mélangent observa-
tion partielle, probabilités et, dans certains cas, contrôle, ils ont de fortes chances d’être
indécidables. Une petite modification dans la définition peut faire la différence entre un
problème pouvant se résoudre efficacement et un problème indécidable.

Une fois les notions de diagnostic définies, notre but sera d’établir les complexités
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précises de la diagnostiquabilité et de la synthèse des diagnostiqueurs pour chaque no-
tion, ceci, dans les différents formalismes que nous aurons choisis. Nous chercherons
également à déterminer comment modifier un système afin qu’il devienne diagnosti-
quable. Ceci donne deux approches: une approche passive, de vérification, et une
active, de contrôle.

Définitions du modèle et du diagnostic

Le modèle le plus utilisé dans ce document est celui des systèmes probabilistes à tran-
sitions étiquetées partiellement observables (dont le nom anglais est abrégé en pLTS).
Un pLTS est formellement défini par un tuple 〈Q, q0,Σ, T,P〉 où Q est un ensemble
dénombrable d’états, q0 est l’état initial, Σ est un ensemble d’évènements pouvant avoir
lieu dans le système, T est un ensemble de transitions indiquant comment un évènement
de Σ affecte l’état courant du système et P donne la probabilité de chaque transition.
Afin de représenter l’observation partielle du système, l’ensemble d’évènements Σ est
partitionné entre évènements observables Σo et évènements inobservables Σu.

Une exécution ρ du système est une suite d’états et de transitions liant deux états
consécutifs. Grâce à P, on peut attribuer une probabilité à toute exécution finie. En-
suite, et en utilisant des résultats de théorie de la mesure, on peut définir une mesure
de probabilité sur l’ensemble des exécutions infinies. Par ailleurs, à toute exécution on
peut associer une observation qui est la projection sur Σo de la séquence d’évènements
étiquetant ses transitions. On suppose que le pLTS est convergent ce qui signifie que
toute exécution infinie possède une observation infinie.

Example 0.1. Considérons le pLTS représenté dans la figure 0.1. Une utilisation
normale de la machine à café est donnée par exemple par l’exécution ρ = q0 pièce
q1 sucre q1 café q0. Cependant dans l’état q1 une erreur représentée par l’évènement
‘f ’ peut avoir lieu, menant à l’état f1 à partir duquel on ne peut plus obtenir de café.
Cet évènement a cependant une faible probabilité d’avoir lieu. L’exécution normale
ρ a pour probabilité le produit des probabilités des transitions empruntées, c’est-à-dire
1× 0.29× 0.7 = 0.203. Un comportement fautif de la forme ρ′ = q0 pièce q1 sucre q1

f f1 a probabilité 0.0029 d’avoir lieu.

Comme dans l’exemple précédent, les exécutions du modèle peuvent être fautives
ou correctes. Ceci est indiqué par la présence (ou absence) de la faute (l’évènement
f) à l’intérieur de celle-ci. Le but du diagnostic est d’utiliser l’observation d’une exé-
cution pour déterminer si celle-ci est correcte ou fautive. Comme plusieurs exécutions
différentes peuvent posséder la même observation, une exécution est surement fautive
(resp. surement correcte) si toute les exécutions partageant la même observation sont
fautives (resp. correctes). Sinon, l’exécution est ambiguë. Si une exécution est surement
correcte ou surement fautive, un verdict peut être rendu. Le souci vient des exécutions
ambiguës.
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q0 q1 f1

f , 0.01

pièce, 1

café, 0.7

sucre, 0.29 hors service, 1

Figure 0.1: Un pLTS représentant une machine à café. q0 est l’état initial, ce qui est
représenté par la flèche entrante. Les transitions entre les états sont étiquetées par
l’évènement provoquant cette transition ainsi que par la probabilité que cette transition
soit prise.

IF-diagnostic IA-diagnostic

FA-diagnosticFF-diagnostic

Exécutions infinies

Exécutions finies

Toutes les exécutionsExécutions fautives
Verdict

Réactivité

Figure 0.2: Résumé des variantes du diagnostic exact.

Plusieurs définitions de diagnostiquabilité peuvent être proposées. Pour des sys-
tèmes non probabilistes, la définition originelle de diagnostiquabilité requiert que toute
séquence fautive devienne finalement surement fautive [SSL+95]. Ainsi, toute faute
est finalement détectée. Cette condition est trop forte pour des systèmes probabilistes
car un système pourrait être déclaré non diagnostiquable à cause d’une exécution de
probabilité nulle. Une adaptation possible est de demander qu’avec probabilité 1 une
exécution fautive devienne surement fautive [TT05]. Nous appelons cette notion FF-
diagnotiquabilité. Cette notion ignore l’ambiguïté des exécutions correctes. Le système
peut donc rester ambigü infiniment, ce que l’on peut vouloir éviter. La diagnostiqua-
bilité peut être étendue aux exécutions correctes en requérant que la probabilité des
séquences ambigües (fautives et correctes) converge vers 0. Cette notion se nomme FA-
diagnostiquabilité (le A signifie "all" alors que F signifie fautif). Pour ces deux notions de
diagnostiquabilité, l’ambiguïté est résolue sur des exécutions finies (le premier F signifi-
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ant justement fini). Si l’on autorise l’ambiguïté à être résolue lorsque la séquence devient
infinie, la FF- et la FA-diagnotiquabilité deviennent la IF- et la IA-diagnotiquabilité. Les
quatre notions sont résumées dans la figure 0.2.

Ces notions de diagnostiquabilité ne permettent aucune erreur de verdict. Ce sont
des notions dites exactes. Il peut cependant être intéressant d’affaiblir cette condition.
Considérons le pLTS de la figure 0.3. Toute exécution fautive est ambiguë. Cependant,
de par le choix des probabilités, une exécution fautive a plus de chances de produire un
‘b’ qu’un ‘a’ et inversement pour les exécutions correctes. Par conséquent, en comparant
le nombre de ‘b’ et de ‘a’ dans l’observation, on peut déduire avec forte probabilité si
l’exécution est correcte ou fautive. Nous considérons donc plusieurs notions de diagnos-
tiquabilité dites approchées dans ce document (l’une d’entre elle ayant été introduite
dans [TT05] et pour laquelle seule une condition suffisante avait été donnée).

q0 qfqc
f , 1

2u, 1
2

a, 1
4

b, 3
4

a, 3
4

b, 1
4

Figure 0.3: Quand un diagnostic approché est nécessaire.

La formalisation du modèle et des notions de diagnostiquabilité est réalisée dans
le chapitre 2. Nous expliquons maintenant comment ces notions de diagnostiquabilité
peuvent être étudiées.

Vérification de la diagnostiquabilité

L’étude d’un problème commence par une analyse sémantique (développées dans le
chapitre 3) de façon à bien le comprendre. Dans le cas de la diagnostiquabilité, cette
analyse sémantique prend tout d’abord la forme d’une étude des liens entre les différentes
notions de diagnostiquabilité. Certains sont assez clairs. Par exemple, les notions de
FA- et IA-diagnostiquabilité considèrent les exécutions fautives ainsi que les exécutions
correctes alors que FF- et IF-diagnostiquabilité ne considèrent que les notions fautives.
Donc un système FA-diagnostiquable (resp. IA-) est FF-diagnostiquable (resp. IF). Sim-
ilairement, observer des exécutions infinies donne plus d’informations que leurs préfixes
finis, donc les notions de diagnostiquabilité finies impliquent leur équivalent infini. De
façon intéressante, si on ne s’intéresse qu’aux exécutions fautives, on a une réciproque
partielle : si le système est à branchement fini, la FF-diagnostiquabilité est équivalente
à la IF-diagnostiquabilité.

La deuxième étape d’une analyse sémantique est de déterminer des caractérisations
efficaces des notions étudiées. Avoir des contraintes sur le système étudié permet d’avoir
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des caractérisations plus simple. Nous étudions donc d’abord le cas des systèmes ayant
un nombre d’états fini.

Étude des systèmes finis

Les systèmes représenté par un modèle ayant un nombre d’états fini possèdent des pro-
priétés extrêmement utiles pour le diagnostic. Notamment, on sait qu’avec probabilité 1,
une exécution atteint une composante strictement connexe terminale (CSCT) du graphe
induit par le pLTS. Comme la diagnostiquabilité s’intéresse à des comportements "avec
probabilité 1", l’étude peut se concentrer sur les CSCT du système. Par ailleurs, il
existe une méthode simple de déterminisation de l’automate induit par le pLTS. Cette
déterminisation est très utile pour caractériser l’ambiguïté d’une exécution. En effet,
l’automate déterminisé associe à chaque séquence d’observations l’ensemble d’états du
pLTS pouvant être atteint par des exécutions associées à cette séquence. Par conséquent,
en supposant sans perte de généralité que les états du pLTS sont partitionnés entre états
fautifs (atteint par une exécution fautive) et états corrects, une exécution surement fau-
tive est une exécution dont la séquence d’observation mène à un état de l’automate
déterminisé ne possédant que des états fautifs. Observons ceci sur un exemple. La
figure 0.4 représente un pLTS qui est FF-diagnostiquable ainsi que IA-diagnostiquable
mais qui n’est pas FA-diagnostiquable. En effet, toute faute est suivie finalement par
un ‘b’ révélant la faute. L’observation aω est donc au contraire associée à une exécution
surement correcte, mais tout préfixe fini de cette exécution est ambigu. Donc toute
exécution correcte finie est ambiguë.

q0 q2 f1 f2q1

u, 1
2 f , 1

2 a, 1
2u, 1

2

a, 1 b, 1b, 1
2

a, 1
2

Figure 0.4: Un pLTS qui est IA et FF-diagnostiquable mais n’est pas FA-diagnostiquable.

Le pLTS de la figure 0.4 respecte la partition entre états fautifs (les fi) et états
corrects (les qi) mentionnée plus tôt. Nous représentons l’automate déterminisé induit
en figure 0.5. Un état de cet automate atteint par l’observation w contient deux ensem-
bles : nous séparons les états du pLTS pouvant être atteint par une exécution correcte
de ceux atteints par une exécution fautive, de plus on ne considère que les exécutions
terminant par un évènement observable. Les états doublement entourés ne contiennent
soit aucun état correct, soit aucun état fautif. Les observations menant à ces états
correspondent donc à des exécutions non ambiguës.

En observant cet automate et au vu de notre remarque antérieure sur les CFCT, on
pourrait penser que le diagnostic de ce système est simple étant donné que le seul état
pour lequel le verdict ne peut être rendu ne fait pas parti d’une CFCT de l’automate
déterminisé. Cependant, si les CFCT sont atteintes avec probabilité 1 dans le pLTS, ce
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{q0}, ∅
s0

{q1, q2}, {f2}
s1

∅, {f1, f2}
s2

∅, {f1} s3

∅, {f2}s4

a b

a

b

a
b

b

b

a

Figure 0.5: L’automate déterminisé associé au pLTS de la figure 0.4.

n’est pas forcément le cas dans l’automate déterminisé. Afin de regagner cette propriété
tout en conservant les informations données par l’automate déterminisé, on réalise le
produit synchronisé sur les évènements observables du pLTS et de l’automate. Celui-ci
est représenté dans la figure 0.6.

q0, s0 q2, s0

q2, s1

f1, s0

f1, s1 f1, s2

f1, s3

f2, s1 f2, s2 f2, s4

q1, s0

q1, s1

u f

f

a

a

b

u b

b

a

a

a b b

b

b

a

a a

Figure 0.6: Produit synchronisé du pLTS de la figure 0.4 et de son automate déterminisé.
Les probabilités sont omises pour faciliter la lisibilité.

Le produit synchronisé conserve le comportement probabiliste du système. C’est-à-
dire, qu’il y a une bijection entre les exécutions du pLTS et celles du produit, les deux
exécutions ayant la même observation, correction et probabilité. Par conséquent, la
diagnostiquabilité du pLTS est équivalente à celle de son produit synchronisé. Par con-
tre, ce dernier possède plus d’informations car la composante des états correspondants
à l’automate déterminisé indique si une exécution finissant dans cet état est surement
fautive, surement correcte ou ambigüe. Observons les CFCT de ce système. Il y en a 3,
toutes réduites à un état: (q1, s1), (f2, s2) et (f2, s4). Les ensembles s2 et s4 impliquent
que les exécutions atteignant la deuxième et troisième CFCT sont surement fautives.
s1 en revanche, montre une ambiguïté dans la première CFCT. Comme s1 est associé
à un état correct q1, cette ambiguïté n’existe que pour des exécutions correctes. Ce
produit synchronisé montre donc que le pLTS est bien FF-diagnostiquable, mais pas
FA-diagnostiquable.
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En utilisant le produit synchronisé, une caractérisation peut être établie pour toutes
les notions de diagnostiquabilité exacte1. Cette caractérisation peut ensuite être véri-
fiée en espace polynomial. La principale source de complexité de l’algorithme est la
déterminisation qui produit un automate de taille au plus exponentielle en la taille du
pLTS. Utilisant une réduction du problème de l’universalité du langage généré par un
automate non déterministe, on montre que les notions de diagnostiquabilité exacte sont
PSPACE- difficiles. Elles sont donc PSPACE-complètes pour les pLTS finis.

En ce qui concerne le diagnostic approché, seule une notion, construite en modifiant
subtilement celle introduite dans [TT05], est décidable. La décidabilité est montrée en
réduisant le problème à un nombre au plus quadratique d’instances du problème de
la distance 1 de deux chaînes de Markov étiquetées, problème qui a été montré décid-
able en PTIME dans [CK14]. Ceci donne in fine un algorithme PTIME. Les résultats
d’indécidabilité quant à eux sont montrés grâce à des réductions du problème du vide
des automates probabilistes [Paz71].

Construction des diagnostiqueurs

Le but de l’étude du diagnostic est la détection automatique de la faute. Cette détection
est réalisée par un diagnostiqueur qui observe le système et donne son verdict. Formelle-
ment, un diagnostiqueur est une fonction D : Σ∗o → {?,>,⊥}. Un verdict ? ne fournit
aucune information, un verdict > déclare l’exécution actuelle fautive et un verdict ⊥
fournit une information relative à la correction de l’exécution. Un diagnostiqueur a trois
caractéristiques principales: verdict, sureté et réactivité. Le verdict formule la nature
de l’information que le diagnostiqueur doit fournir au cours d’une exécution (détection
de fautes uniquement, ou aussi de la correction de l’exécution par exemple). La sureté
formule quand le diagnostiqueur peut émettre son verdict. Dans le cas du diagnostic
exact, la sureté requiert que si le diagnostiqueur produit un verdict, celui-ci est correct.
Ce n’est pas forcément le cas dans le cadre du diagnostic approché. La réactivité ex-
prime à quelle régularité le diagnostiqueur doit fournir des informations sur le statut de
l’exécution courante.

Les notions de diagnostiquabilité ayant été présentées sous la forme d’un problème de
décision, la troisième étape de l’étude sémantique consiste à établir le lien entre chaque
notion de diagnostiquabilité et l’existence d’un diagnostiqueur avec un verdict, une
sureté et une réactivé donnés. La preuve permettant d’établir le lien entre diagnostiqua-
bilité et existence d’un diagnostiqueur est constructive. Par conséquent, nous disposons
d’un algorithme permettant de construire automatiquement un diagnostiqueur pour
chaque système diagnostiquable. Cependant, le diagnostiqueur en question utilise une
mémoire non bornée. En vue d’une possible implémentation, il est préférable de pouvoir
se limiter à des diagnostiqueurs à mémoire finie. Un tel diagnostiqueur est représenté
par un automate déterministe sur Σo enrichi d’un verdict (M,Σo,m0, up, Dfm) où M
est un ensemble d’états de la mémoire avec m0 l’état initial, up est la fonction de tran-

1Pour la IA-diagnostiquabilité, une information supplémentaire est nécessaire. L’automate déter-
minisé que l’on construit possède un troisième ensemble permettant de partitionner les états fautifs en
deux groupes, selon le moment où la faute a été commise.
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sition, mettant à jour la mémoire du diagnostiqueur et Dfm : M → {?,>,⊥} associe
un verdict à chaque état de la mémoire. La taille d’un tel diagnostiqueur à mémoire
finie est le nombre d’états de la mémoire qu’il possède. La fonction de mise à jour peut
être étendue à des séquences d’observations de façon inductive : pour ε le mot vide
w ∈ Σ∗o et a ∈ Σo, up(m, ε) = m et up(m,wa) = up(up(m,w), a). Si un diagnostiqueur
à mémoire finie n’est pas un diagnostiqueur selon la définition établie plus haut, il en
induit un qui est définit par D(w) = Dfm(up(m0, w)) pour tout w ∈ Σ∗o.

Example 0.2. La figure 0.7 représente un diagnostiqueur à mémoire finie qui ne fournit
aucune information (verdict ?) initialement puis déclare une faute (verdict >) dès qu’un
‘b’ est observé.

Considérons le pLTS de la figure 0.4. La faute est identifiée dès qu’un ‘b’ est observé.
Par conséquent, le diagnostiqueur induit par le diagnostiqueur à mémoire finie de la
figure 0.7 peut être utilisé pour détecter les fautes de ce pLTS. Ce diagnostiqueur ne
détecte pas les exécutions correctes, il correspond à la notion de FF-diagnostiquabilité.
On l’appelle donc un FF-diagnostiqueur.

m0

?

mb

>

b

a, ba

Figure 0.7: Exemple de diagnostiqueur à mémoire finie. Le verdict donné par Dfm dans
un état de la mémoire est indiqué sous l’état.

Pour toute notion de diagnostic exact, un diagnostiqueur peut être construit à partir
de l’automate déterminisé qui a été utilisé pour vérifier la diagnostiquabilité. Le diag-
nostiqueur peut donc avoir une taille exponentielle. C’est malheureusement inévitable :
certains pLTS n’admettent pas de diagnostiqueurs de taille sous-exponentielle. Pour
le diagnostic approché, aucune borne sur la taille de la mémoire n’existe dans le cas
général. En d’autres mots, on ne peut pas toujours construire de diagnostiqueur à mé-
moire finie. Pire encore, déterminer s’il existe un diagnostiqueur à mémoire finie est un
problème indécidable.

Ces résultats, reposant fortement sur la limitation à un nombre d’états finis pour le
modèle, sont rassemblés dans le chapitre 4. Nous allons maintenant discuter de ce qui
peut être fait pour lever cette restriction.

Étude des systèmes infinis

De nombreux systèmes réels nécessitent un nombre infini d’états pour être décrit de
façon précise. Afin de rendre une analyse possible, on ne peut pas utiliser directement
un pLTS infini. On a besoin d’un modèle de plus haut niveau, capable de représenter de
façon finie un pLTS infini. De nombreux formalismes permettent ceci. Les automates à
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pile et les réseaux de Petri notamment représentent deux classes orthogonales de LTS
infinis. Le choix du formalisme est très important car plus un formalisme est expressif,
plus les problèmes seront compliqués à résoudre. Les automates à pile et les réseaux de
Petri sont trop puissants par exemple, toutes les notions de diagnostiquabilité exacte
étant indécidables dans ces deux formalismes.

Nous nous sommes donc intéressés à un formalisme légèrement plus faible, plus
précisément une sous-classe des automates à pile : les automates à pile visibles. Les
automates à pile sont des automates enrichis d’une pile qui leur permet de conserver
de l’information au cours d’une exécution. Les transitions de l’automate disponibles
dépendent de l’état courant ainsi que de la tête de la pile. Une fois sélectionnée, une
transition peut soit (1) modifier la tête de la pile (transition locale), (2) ajouter un
nouveau symbole en tête de pile (transition d’empilement) ou (3) retirer la tête de pile
actuelle, s’il y en a une (transition de dépilage). La sémantique d’un automate à pile
probabiliste est un pLTS infini dont les états représentent l’état actuel de l’automate
à pile ainsi que le contenu de la pile. Ce pLTS peut être infini car la taille de la pile
n’est pas bornée. La restriction aux automates à pile visible requiert que l’ensemble
des évènements est partitionné selon le type de transitions auquel ils correspondent,
Σ = Σ] ∪ Σ[ ∪ Σ\. Les évènements de Σ],Σ[ et Σ\ sont respectivement associés à des
transitions d’empilement, de dépilage et des transitions locales. De plus, Σ] ∪Σ[ ⊆ Σo.
Un observateur voit donc quand un élément est ajouté ou retiré de la pile. La taille de
la pile est donc connue à tout moment, son contenu par contre peut être inconnu.

Example 0.3. La figure 0.8 donne un exemple d’automate à pile probabiliste. Une
exécution démarre dans l’état q0 avec pour contenu de pile le symbole ⊥0. Celui-ci est
appelé élément de fond de pile et ne peut pas être retiré ou modifié. Le reste de la pile
n’est composé que d’un certain nombre de γ. La seule transition d’empilement est in et
les transitions de dépilage sont out et abort.

Ce système reçoit un certain nombre d’ordres qu’il note dans la pile. Puis il com-
mence à servir ses clients, chaque ordre reçu reçoit donc une réponse soit sous la forme
d’un out, soit de façon fautive sous la forme d’un abort. Enfin, il retourne à son point
initial. Les deux exécutions données en exemple présentent un comportement correct et
fautif pour deux ordres reçus.

Il y a une claire partition entre transitions d’empilement, de dépilage et locales. Par
conséquent si in, out et abort sont observables, cet automate à pile probabiliste est visible.

La restriction aux automates à pile probabilistes visibles limite peu l’expressivité du
formalisme, mais donne des propriétés supplémentaires utiles au modèle, notamment
elle permet de réaliser une déterminisation de l’automate à pile. On ne peut cependant
pas faire comme dans les systèmes finis et étudier les CFCT du produit du modèle et
de son automate déterminisé. Notamment car ces CFCT peuvent ne pas exister (cas où
aucune borne sur la taille de la pile n’existe). Une autre forme de caractérisation de la
diagnostiquabilité est donc nécessaire. Pour ce faire, une logique nommée pathL a été in-
troduite et des formules caractérisant plusieurs notions de diagnostiquabilité exacte ont
été établi. Ensuite, en utilisant notamment l’automate à pile déterminisé, ces formules
ont pu être traduites en des formules de pLTL, une logique connue et pour laquelle des



16

q0 q1 f1

1
2 · γ, serve, γ

1 · ⊥0, empty,⊥0

1
2 · γ, f , γ

1 · ⊥0, reset,⊥0

1
2 · γ, in, γγ

1 · ⊥0, in,⊥0γ

1
2 · γ, out, ε 1 · γ, abort, ε

(q0,
∣∣⊥0

∣∣) (q0,

∣∣∣∣ γ⊥0

∣∣∣∣) (q0,

∣∣∣∣∣∣
γ
γ
⊥0

∣∣∣∣∣∣) (q1,

∣∣∣∣∣∣
γ
γ
⊥0

∣∣∣∣∣∣) (q1,

∣∣∣∣ γ⊥0

∣∣∣∣) (q1,
∣∣⊥0

∣∣) (q0,
∣∣⊥0

∣∣)

(f1,

∣∣∣∣∣∣
γ
γ
⊥0

∣∣∣∣∣∣) (f1,

∣∣∣∣ γ⊥0

∣∣∣∣) (f1,
∣∣⊥0

∣∣) (q0,
∣∣⊥0

∣∣)

in in serve out out empty

f

abort abort reset

Figure 0.8: Un automate à pile probabiliste et deux de ses exécutions finies.

algorithmes de vérification existe pour les automates à pile. En utilisant ces résultats
nous avons obtenu des algorithmes EXPSPACE pour les notions de diagnostiquabilité
caractérisées (la borne inférieure prouvée étant EXPTIME). La FA-diagnostiquabilité,
qui requiert la détection des séquences fautives et correctes en temps fini n’a cependant
pas pu être caractérisée. En fait, des résultats de non-expressivité ont été établi pour
montrer que cette notion ne pouvait pas être exprimée en pathL.

Ces résultats sont développés dans le chapitre 5.

Contrôle d’un système

Les pLTS donnent une représentation passive d’un système. Ainsi, étudier le diagnostic
sur des pLTS est purement un travail de vérification. Il ne permet donc pas de ques-
tionner efficacement comment modifier le système afin de le rendre diagnostiquable.
Afin d’étudier ce genre de problème, on ajoute une forme de contrôle dans le pLTS. Le
formalisme obtenu, appelé CLTS partitionne l’ensemble des évènements observables en
évènements contrôlables Σc et évènements incontrôlables Σe. Après chaque observation,
un contrôleur choisit un ensemble d’évènements autorisés excluant potentiellement cer-
tains évènements contrôlables. Ceci limite donc les transitions pouvant être prise par le
système.

Example 0.4. Un exemple de CLTS est représenté dans la figure 0.9. Initialement,
deux évènements de poids 1 sont possibles et forcément autorisés par le contrôle. Par
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q0

q1 q2 q3

f1

u, 1

b, 1 f , 1

f , 1

a, 1 b, 1

a, 1 a, 1

Figure 0.9: Un exemple de CLTS. Les probabilités sont remplacées par des poids. Le
seul évènement contrôlable est ‘b’.

conséquent chacune a une probabilité 1
2 d’être prise. En q1, ‘b’ peut être interdit par le

contrôleur. Si c’est le cas, la transition étiquetée par ‘a’ est choisie avec probabilité 1.
Ainsi, si le contrôleur autorise tous les évènements en permanence, l’exécution

q0uq1aq1bq2 a probabilité 1/8. S’il interdit ‘b’ en permanence, cette exécution a proba-
bilité 0. Finalement, s’il n’autorise un ‘b’ qu’après l’observation d’un ‘a’, l’exécution a
probabilité 1/4.

Le contrôle est formellement défini par l’utilisation de stratégies. Une stratégie π :
Σ∗o 7→ Dist(2Σ) est une fonction associant à une séquence d’observations une distribution
probabiliste sur les ensembles d’évènements autorisés. Par ailleurs, si l’ensemble Σ• est
sélectionné par la stratégie, on a Σu ∪ Σe ⊆ Σ•. En d’autres mots, la stratégie ne peut
exclure que des évènements contrôlables. Un CLTS C équipé d’une stratégie π génère
un pLTS infini dénoté Cπ.

Example 0.5. Considérons le CLTS C représenté dans la figure 0.9. Il y a deux en-
sembles d’évènements possibles à autoriser: Σ et Σ \ {b} que nous abrégeons en Σ−.
Définissons la stratégie π par π(an) = pn ·Σ−+ rn ·Σ avec pn + rn = 1 pour tout n ∈ N
et π(w) = 1·Σ sinon. C’est-à-dire, après avoir observé an, avec probabilité pn l’ensemble
Σ− est autorisé par la stratégie et avec la probabilité complémentaire Σ est autorisé. Le
pLTS généré Cπ est infini. Une partie de celui-ci est représenté en figure 0.10.

Expliquons la distribution de probabilité à la sortie de la configuration (ε, q1,Σ).
Les deux transitions sortant de q1 ont le même poids, comme elles sont toutes deux
autorisées par la stratégie, la probabilité de chaque transition est 1

2 . Comme ‘a’ et
‘b’ sont observables, un nouveau contrôle est choisi. Si un ‘b’ est observé, de par la
définition de π, le nouveau contrôle est Σ. Par contre, si un ‘a’ est observé, le nouveau
contrôle est Σ− avec probabilité p1 et Σ sinon. Il y a donc trois transitions sortantes de
(ε, q1,Σ) ayant pour probabilité respectivement 0.5, 0.5p1 et 0.5r1.

Nous discutons maintenant des questions abordées pour les CLTS.
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Figure 0.10: Un pLTS obtenu en contrôlant le CLTS de la figure 0.9.

Diagnostic actif et dégradation

Lorsque l’on étudie le diagnostic d’un CLTS, la question n’est plus si le CLTS est diag-
nostiquable (ce qui n’a techniquement pas de sens en soi) mais s’il existe une stratégie
telle que le pLTS induit est diagnostiquable. Cette problématique a été étudiée pour
des systèmes probabilistes dans [BFH+14]. Afin de déterminer s’il existe une stratégie
satisfaisant la notion de diagnostiquabilité qu’ils étudient, ils traduisent le problème du
diagnostic en une condition de Büchi pour un processus de décision Markovien partielle-
ment observable. Le problème peut ensuite être résolu avec des techniques connues. La
stratégie obtenue a de bonnes propriétés : elle est notamment ce qu’on appelle "basée
sur la croyance", ce qui implique entre autres que le pLTS généré est fini.

Leur travail soulève un souci important : afin de rendre le système diagnostiquable,
la stratégie peut faire des choix problématiques comme forcer l’occurrence d’une faute.
Bien que ceci permette de détecter le mauvais comportements du système, cela va à
l’encontre du but initial du diagnostic qui est de pouvoir utiliser un système fonctionnel.
Ils introduisent donc le problème du diagnostic sûr. Celui-ci demande s’il existe une
stratégie satisfaisant à la fois le diagnostic et assurant une probabilité positive aux
exécutions correctes. Cette notion est malheureusement indécidable dans le cas général
et un algorithme NEXPTIME est donné dans le cadre limité des stratégies à mémoire
finie (i.e. pour lesquelles le pLTS engendré est fini).

Continuant sur cette idée, nous avons introduit de nouvelles notions permettant
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de mesurer la dégradation du système. Ces notions ne s’assurent pas que le système
reste correct infiniment avec une probabilité positive comme le diagnostic sûr, mais
demandent que, si faute il y a, celle-ci puisse être retardée fortement. Le diagnostic
longtemps correct et le diagnostic fortement résistant sont deux telles notions, mesurant
différemment le délai à imposer à l’occurrence de la faute. Ces deux notions sont
impliquées par le diagnostic sûr et sont différentes quand appliquées à des pLTS infinies
(i.e. il existe des pLTS infinis satisfaisant chacune des notions sans satisfaire l’autre).

Parmi les notions de dégradation que nous avons introduites, certaines sont quan-
titatives, d’autres, comme le diagnostic longtemps correct et le diagnostic fortement
résistant, sont qualitatives. Les notions quantitatives sont toutes indécidables, même
limitées à des stratégies à mémoire finie. Au contraire, des algorithmes ont pu être
établis pour les notions qualitatives. Ceux-ci procèdent en deux étapes. Tout d’abord
et en enrichissant les états du CLTS comme fait dans le cas passif grâce à une déter-
minisation du CLTS, on identifie l’ensemble des états du CLTS enrichi que l’on peut
visiter tout en respectant la diagnostiquabilité. Cette méthode permet en fait de con-
struire la stratégie la plus permissive assurant la diagnostiquabilité du système. Dans
un second temps, on étudie le CLTS réduit aux états accessibles sous cette stratégie
et on identifie comment restreindre la stratégie afin de rester suffisamment longtemps
dans une exécution correcte. Cette étude peut se réaliser en EXPTIME. Le diagnostic
actif étant EXPTIME-difficile, les notions qualitative de dégradation introduites sont
donc EXPTIME-complètes dans le cas général. Nous avons également montré comment
réduire à EXPTIME la complexité du diagnostic sûr limité aux stratégies à mémoire
finie. Sous cette restriction, le diagnostic sûr est donc EXPTIME-complet également.

Ces travaux sont présentés dans le chapitre 6.

Assurer l’opacité d’un système

Dans cette thèse, le diagnostic est le problème d’observation partielle auquel nous avons
prêté le plus d’attention. D’autres problèmes d’observation partielle sont également
intéressants à étudier, notamment l’opacité que nous étudions formellement dans le
chapitre 7. Le but de l’opacité est de cacher une information à l’observateur. En
conséquent, sur bien des aspects cette notion apparait comme un dual du diagnostic.

Formellement, un système possède deux types d’exécutions : publiques ou secrètes.
Pour déterminer, si une exécution est secrète, on pourrait faire comme pour le diagnostic
et utiliser un évènement particulier qui, s’il est présent dans une exécution, la rend
secrète. De façon équivalente, ceci peut être représenté en partitionnant l’ensemble
des états du système en états publics et états secrets et en considérant ces derniers
absorbants. Une exécution est secrète ici si elle visite un état secret. C’est cette seconde
option que nous utilisons pour l’opacité. Parmi les exécutions secrètes, certaines révèlent
le secret. Ce sont celles pour lesquelles toute exécution ayant la même observation est
secrète. Notons le parallèle avec le diagnostic : en considérant les exécutions secrètes
comme fautives, une telle exécution serait appelée surement fautive. Lorsqu’on étudie
l’opacité d’un système, nous désirons mesurer à quel point le secret est révélé, c’est-à-
dire quelle est la mesure de probabilité des exécutions révélant le secret. Cette mesure
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est appelée la révélation.
L’opacité a été étudiée dans un contexte passif, ainsi que dans un contexte actif.

Le contrôle utilisé dans l’étude de l’opacité est fortement différent de celui utilisé pour
le diagnostic. En effet, le contrôleur est une fonction associant à une exécution (et
non à une séquence d’observations) une distribution sur un ensemble d’action. Chaque
action correspond à une distribution de probabilité sur un ensemble de transitions.
Ce formalisme donne beaucoup plus de puissance au contrôleur. Il connait précisément
quelle est l’exécution actuelle, et son choix n’est pas forcément limité à quels évènements
contrôlables il autorise, mais à un ensemble d’actions décrivant potentiellement des choix
plus complexes.

Autre différence avec les CLTS, dans le cadre de l’opacité, les observations ne sont
plus mises sur les transitions, mais sur les états. Pour noter ces différences, on parlera
d’OMC pour les systèmes passifs et d’OMDP pour les systèmes contrôlables.

Example 0.6. Considérons l’OMC représenté en figure 0.11. L’observation associée
avec chaque état est indiquée à côté de celui-ci. Les états secrets sont indiqués en grisé.
En supposant que o1 et o2 sont deux observations autre que ε, toute exécution contenant
au moins 3 observations révèle le secret. La révélation est donc de 1.
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q0bq0aq1
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2

1
2

1

1

1
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Figure 0.11: Un exemple d’OMC.

Considérons maintenant l’OMDP de la figure 0.12. Dans l’état initial q0, deux
actions sont possibles. Si l’action ‘a’ est choisie, l’exécution entre en q1 avec probabilité
1
2 et en q2 avec la même probabilité. Si ‘b’ est choisie, tous les états ont une probabilité
1
3 d’être atteint.

Définissons la stratégie π choisissant initialement l’action ‘b’, puis toujours l’action
‘a’. L’OMC induit par ce OMDP contrôlé par la stratégie π est celui représenté dans la
figure 0.11. Ainsi, en utilisant la stratégie π, on assure une révélation de 1. En utilisant
une stratégie π′ qui sélectionne ‘b’ à tout les coups, la révélation n’aurait été que de 1

2 .
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Figure 0.12: Un example d’OMDP. Les transitions sont étiquetées par des paires d’action
et de la probabilité de prendre cette transition si cette action est choisie.

Intuitivement, lorsqu’on contrôle un système pour augmenter la révélation, on réalise
une analyse du pire cas pour le système. Dans la réalité, ce pire cas est atteint si, par
exemple, le contrôle est effectué par un virus ayant accaparé certaines fonctionnalités
du système. L’inverse, quand le contrôle cherche à minimiser la révélation, est aussi
intéressant à étudier. Cela représente, par exemple, le cas où un concepteur possède
quelques degrés de liberté dans son système et désire choisir l’option qui maximisera
l’opacité du système. Ces deux problèmes semblent symétriques au premier abord, mais
leur analyse est en fait extrêmement différente.

Pour la maximisation de la révélation, une simplification est possible au niveau des
stratégies : les stratégies déterministes sont suffisantes. C’est-à-dire, afin de maximiser
la révélation, on peut se contenter de considérer des stratégies qui associent à chaque
exécution finie non pas une distribution sur les actions, mais directement une action.
Malgré cette simplification cependant, presque tous les problèmes sont indécidables. La
seule question importante que l’on peut résoudre est : étant donné une OMDP M, ex-
iste t-il une stratégie π telle que l’OMC induite Mπ a une révélation de 1. Ce problème
peut se traduire en un problème d’accessibilité avec probabilité 1 dans un processus
de décision Markovien partiellement observable, problème pour lequel des algorithmes
efficaces existent. Le processus construit est de taille exponentielle et l’algorithme ré-
solvant le problème d’accessibilité est en EXPTIME. Par conséquent une application di-
recte donne un algorithme 2EXPTIME. Cependant, une analyse précise montre qu’une
seule exponentielle est nécessaire. En effet, la complexité de l’algorithme vient prin-
cipalement de l’utilisation d’une forme de déterminisation du processus de décision
Markovien partiellement observable. Hors, celle-ci est déjà nécessaire à la transforma-
tion de l’OMDP vers le processus et n’a donc pas à être répétée. Le problème est
également EXPTIME-difficile (réduction depuis les jeux de sécurité à information par-
tielle), il est donc EXPTIME-complet.

Pour la minimisation, la situation est différente, d’une façon surprenante. Tout
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d’abord, on ne peut pas se limiter à des stratégies déterministes. La capacité du con-
trôleur à agir de façon randomisée est importante pour rendre le système opaque. Pour
autant, les problèmes sont beaucoup plus facile à résoudre : la révélation exacte de
l’OMDP peut être calculée. En effet, bien que l’on ne puisse pas utiliser de stratégies
déterministes, on peut se limiter à un type de stratégies particulier, que nous avons
nommé quasi-déterministe. Ces stratégies choisissent une action et lui associent une
probabilité proche de 1, puis partagent le reste de la probabilité sur toutes les autres
actions. N’utiliser que des stratégies de cette forme permet de réduire le problème de
la minimisation de la révélation à un problème d’accessibilité dans les processus de dé-
cision Markovien. Contrairement au cas de la maximisation, ceux-ci sont totalement
observables et plus de problèmes sont décidables dans ce cas. Notamment, minimiser la
probabilité d’accessibilité lorsque l’observation est complète peut être réalisé en temps
polynomial. Donc comme le processus que l’on construit est de taille exponentielle, on
obtient un algorithme EXPTIME. Le problème n’est cependant pas prouvé EXPTIME-
difficile. La meilleure borne inférieure dont l’on dispose est PSPACE et est obtenue par
réduction de la validité d’une formule booléenne quantifiée (QBF).

Conclusion

Cette thèse présente principalement une analyse des problèmes liés au diagnostic de
systèmes probabilistes. Sa première contribution est de rassembler en un tout cohérent
les différentes définitions existantes sur ce problème. Ceci permet à la fois de donner
une base solide à la recherche présentée ici, et de servir de fondations à toute recherche
future sur ce sujet.

En deuxième point, cette thèse explique comment vérifier les notions de diagnosti-
quabilité définies pour différents systèmes, que ceux-ci soient constitués d’un nombre
d’états fini ou infini. Pour les systèmes infinis, la décidabilité de certaines notions reste
ouverte et certains algorithmes ne sont pas prouvés optimaux. Il reste donc du travail
à réaliser dans cette direction.

Le cas des systèmes contrôlables a enfin été étudié. Pour ceux-ci, un autre angle
de questionnement a été utilisé : il ne s’agit plus seulement de déterminer la diagnos-
tiquabilité du système. En premier lieu, il s’est agi de combiner le diagnostic avec une
limitation de la dégradation du système. Combiner ces deux problèmes ne fait sens
que pour des systèmes actifs : pour un système passif, les deux problèmes peuvent être
vérifiés séparément, au contraire, dans des systèmes actifs, il peut exister pour chaque
propriété une stratégie la vérifiant, mais aucune stratégie ne satisfait les deux simul-
tanément. Dans un second temps, il a été question de l’analyse de l’opacité, une autre
notion de contrôle de l’information produite par un système.
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Chapter 1

General Introduction

Model-based verification. Many critical systems must fulfil a given specification.
This specification may include security criteria, efficiency measures or other kinds of
requirements. The verification process, which checks if the system respects the specifi-
cations, can be performed in several manners. Each one having its pros and cons, the
choice of the best method to use strongly depends on the kind of systems to be verified
and on the specification. One of the possible method of verification is to perform tests
on the system. If one wants to test a program for example, yet does not have access to
the internal structures or working of it, the tests can be realised through specification-
based testing [GTWJ03]. In this method, one considers the program as a black-box and
focuses on the specification in order to determine which inputs are the most likely to
show a failure of the system. If one has access to the content of the program, one can
build a formal and operational model of the system. Then this model can be analysed
via dedicated methods.

Building the model may be difficult for some complex systems. It can be done
by analysing the code of the system, by making specific tests in its different states to
understand its evolution (for example by overloading the CPU to see how a program
reacts faced to this kind of stress), etc. When possible, this approach has many benefits:

• When designing a system, if the current prototype does not satisfy our goals, it
must be modified. Building iteratively a new prototype until one gets a good
result is expensive. It is easier and cheaper to modify a model of the system until
it satisfies the requirements and only then implement the system.

• A model is often built for checking several properties. If one wishes to check for
additional properties at a later date, verifying the existing model may be sufficient.
If not, one does not necessarily have to build a fully new model. One only needs to
refine the existing one with the appropriate, missing information, which strongly
reduces the complexity.

• Finally, if the model is close enough to reality, then it allows for an accurate
analysis of the system. This is not the case when using arrays of tests which only
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partially cover the range of possibilities. The same issue exists for other methods
such as statistical model checking [Bar14].

Probabilistic models. There exist several different formalisms for representing a
system. The more complete the formalism is (by adding time, multiple players. . . ), the
more systems and specifications can be described in it, but also the more complex it is
to study.

In particular, stochastic models such as Markov chains [KS60] or Markov decision
processes [Put94] have many applications. There are some systems that require proba-
bilities in order to be accurately represented. For example, they can be used to represent
systems that contains inherent random behaviours. This occurs in any program using
randomisation in order to break symmetries for instance, such as the algorithms dealing
with the consensus problem [Agu10]. The randomisation also appears in the processes
used in the consensus problem as one might represent the possibility that these processes
fail with some probability. Another example of application of stochastic models is the
case of systems that face unpredictable behaviours from the environment. This can be
the case for a server that receives requests. These requests have randomised content and
their timing of arrivals can also be random. The latter requires to mix probabilities and
time in the model, as in stochastic timed automaton [BBB+14]. Moreover, probabilities
can also be used in the model to represent the uncertainty created when the modelling
is done through a statistical analysis.

Using probabilities also enlarges the set of properties that can be specified by giving
a measure on the runs of the system. For example, if a non-critical system possesses
failures, yet one can determine that they are not likely to occur, this may be enough.
Let us also consider a security example: if an attacker tries a password and discovers
that it is wrong, he technically gets an information, however this information is not
important enough to be worrisome. With probabilities, the specification can quantify
the properties of the system the designer wants to verify. Moreover, even a qualitative
quantification is useful as it allows to neglect behaviours that are present in the model,
yet have a zero probability of occurring.

Paradigms of partial observation. Another important component of a system that
can be modelled is related to the observation available to the users: when one builds
a model, one describes the different actions that can be taken by the system, however,
these actions may be internal and are not necessarily visible by an external observer.
Managing the information exchanged with a system has shown increasing importance
in recent years due to the omnipresence of communicating electronic devices. Some of
the actions of the system may need to be kept private (passwords) while others must
be made public (failures). The problems raised by partial observation can be grouped
in three families thanks to the different types of goals the system has: (1) planning
under partial observation, (2) hiding information from the observer and (3) getting
information from the system.

This first category appears for example when studying games. In a game of poker,
a player has to select a decision based on some observations (his cards) and on some
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partial information (his opponents choices), moreover probabilities are involved in order
to determine the likelihood to draw a specific card. Such a case falls under the study of
works such as [BGG09] where the authors look for almost-surely winning or positively
winning strategies in stochastic games. Partially observable Markov decision process
(POMDP) is the stochastic one-player (also called one and a half player) special case of
the above (See [CDH10] for algorithms to achieve qualitative objectives in POMDP).
POMDP have been extensively used in the IA community, for example in order to plan
the actions of a moving robot [KLC98].

Many works focus on hiding information from an attacker. For instance code ob-
fuscation [BGI+01], albeit in a complete observation setting. In a partial observation
setting, many theoretical hiding problems are gathered under the general name “opac-
ity”. An opaque system hides an information by ensuring the observation given by
a secret behaviour of the system will be identical to the observation triggered by a
non-secret behaviour. A practical example is given in [ABCP13] where the authors
investigate how to hide the position of a cellphone user (by randomising the position
declared by the phone) while getting relevant answers to location-based requests. In
a theoretical and stochastic setting, [BKM12, BMS15] defined probabilistic measures
of the opacity of a model. The studied model is passive: once defined, one cannot
modify its behaviour in order to ensure better properties. A form of control is quickly
introduced in [BMS15] and expanded in [BCS15, BKMS16, BKMS18]. More precisely,
the authors of [BCS15] investigate Markov decision processes (MDP) with or without
partial observation and secrets given by the infinite language of an automaton (using
various accepting conditions). In [BKMS16, BKMS18], a model in between MDP and
POMDP is used: the control is realised as in an MDP (thus the controller uses complete
information) but the winning condition (opacity) uses partial observation and is thus
more related to POMDP problems. One issue with these approaches is that they all
rely on the black-box hypothesis: it is assumed that the opponent does not know how
the non-determinism of the system is resolved. This hypothesis simplifies the problem,
but is unrealistic in many cases. For example, the control within the system could be
the result of a virus implanted by the attacker. In this case, it is natural for the attacker
to know how the virus is implemented.

On the opposite, if the goal is to get information from the system, the first question
to answer is to determine the kind of information that must be detected. One possibility
is to determine, given a set of partially observable systems, which system is producing
the current observation. In [CK14], the authors investigate how far two labelled Markov
chains are one to the other in terms of the probabilities of the observed behaviours. They
use a distance to measure the importance of the difference between the two models and
approximate (or in some cases compute) this distance. The identification of a system
can be applied to other questions such as the identification of its initial state, the
equivalence of Markov chains (when the distance is equal to 0, see [DHR08]) or the
monitoring of hidden Markov chains (HMC). In this last example, one monitor observes
a random run of one of two given HMC and must determine which HMC is the origin
with appropriately high probability. The case of the monitor required to be correct
with probability 1 on infinite sequences was introduced in [SZF11] and solved using the
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distance of [CK14] in [KS16]. Instead of identifying the current system, one can wish to
obtain a specific information from the observations of the current system. We develop
this kind of problems in the next part due to their importance within this thesis.

Diagnosis. Diagnosis, from the greek “δῐάγνωσῐς” which means “to distinguish” or
“to discern”, is by the definition of the wiktionary the “identification of the nature and
cause of something (of any nature)”. This describes many different problems in various
domains. In medicine, a doctor analyses the symptoms to deduce the illness causing
them. There has been multiple works in order to automatise this kind of diagnosis
such as the rule-based expert system MYCIN [BS84]. Another approach in the medi-
cal domain can be found in computer-aided diagnosis [DMK+99] where the computer
analyses medical image such as radios of a patient and points towards the abnormali-
ties it detects. Due to the non-negligible number of false positives and negatives, these
works are far from replacing the experts opinion. Forms of diagnosis can also be found
in network management for example, where it is more often called fault management.
More precisely, fault management has two aspects. The first one, passive, consists in
receiving messages from the devices on the network and if an alarm was sent, to un-
derstand the cause and react to it. The second one takes an active step by considering
that a failing device may not be able to detect its own fault and warn the system.
Thus, the fault manager will interact regularly to check the behaviour of the devices.
Fault managing therefore requires to do tests, diagnosis and possibly reparation. These
diagnosis notions deal with systems that can be extremely complex but that are most
often static. One wants to identify the current status of the system from what it is
emitting currently, the evolution of the system is not monitored. Diagnosis, as seen in
the discrete event systems community, focus in contrast on dynamic systems.

Diagnosis of discrete event systems. For many systems (power systems, manu-
facturing systems. . . ) one needs to take into account the evolution of the system when
analysing it. Such systems can be analysed with the approach from the discrete event
systems community. In this approach, while the system is running, one follows a run
of the system and tries to deduce the occurrence (or absence of) of a specific event
called the fault. While one may want to detect any kind of important action of the
system, the term “fault” is chosen both to correspond to the name “diagnosis” which,
as shown in the previous examples, is mostly used to detect failures, and because faults
are often one of the most important elements to detect within a run. They threaten
the safety and availability of the system. In many of the systems listed above, a safety
issue may lead to catastrophic damages both in terms of economic and human loses.
The study of faults in particular is also justified by the fact that every system may, and
will, fail. Indeed, the systems we build are increasingly complex and have increasingly
intricate interactions with the environment. It is thus extremely difficult when designing
a system not to introduce errors and it is almost impossible to predict every reaction
the environment will have to the system. Finally, at the very least, failures will occur
because of components ageing.
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As faults are dangerous, unavoidable and potentially hard to detect (especially in
large-scale complex systems), one needs an automated way to detect them. Moreover
this method has to be accurate as stopping a system due to a false positive is costly
and it must be reactive so that the failure is detected before too many damages were
done. In order to react to the fault, one may either (1) wish to optimise the behaviour
of a system in the delay before the occurrence of a fault [EMT16], which is particularly
useful for systems which components are automatically replaced on a regular basis,
thus hopefully before the occurrence of any fault, or (2) try to detect the fault. As
one wants to react quickly to the fault, predicting its occurrence before the system
even enters a faulty behaviour would be very efficient. This view is the one studied in
prediction problems [GL09]. However, enabling prediction is a very strong requirement
for a system. Detecting the fault a posteriori is more likely. The study of diagnosis
raises two important issues: deciding whether the system is diagnosable which is called
diagnosability and, in the positive case, synthesising a diagnoser possibly satisfying
additional requirements about memory size, detection delays, etc. In the discrete event
system context, diagnosis was first defined for finite systems such as partially observable
Labelled Transition Systems [SSL+95] then was extended to numerous more complex
models (e.g. Petri nets [CGLS12, BHSS18], pushdown systems [MP09], etc.) and
settings (e.g. decentralised [DLT00], distributed [HC94]). Also, several contributions,
gathered under the generic term of active diagnosis, focus on enforcing the diagnosability
of a system [SLT98, TT07, CT08, CP09].

Useful techniques. By observing the previously mentioned works on diagnosis, it
appears that some methods and results are recurrent. Let us mention and explain some
of them here.

Diagnosability is an hyper property, it cannot be checked by analysing every run of
the system separately. On the contrary, some runs are faulty (contain the fault) while
the others are correct and we want to compare the observations triggered by faulty
runs to the ones produced by correct runs. A key object (e.g. see [JHCK01, YL02])
used to decide diagnosability is the twin-plant : a new model is built by making the
product of the initial model with itself. A run of the twin-plant consists of a pair
of runs of the model. As one wants to compare the observations of the runs, the
product is made so that the two runs that are followed simultaneously have the same
sequence of observations. This way, one can determine if there exist two runs with
the same sequence of observations and some appropriate properties only by checking
a single run of the twin-plant. Another often used construction (see [SSL+95]) is the
belief construction. This construction can be seen as an expanded twin-plant or as a
form of determinisation of the model: instead of following a pair of runs, the belief
automaton instead follows every possible run. More precisely, we keep every state that
could be reached with the current sequence of observations, sometimes enhanced with
some additional information. This construction is more useful than the twin-plant as
it keeps much more information, however it is of exponential size w.r.t. the size of the
original model while the twin-plant is only quadratic. The belief automaton by itself
gives some information, but can also be used to enrich the initial model. For example,
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assume the belief automaton of a stochastic model was built, one can now build the
product of this model with its belief automaton [Var99, BK08]. The result, thanks
to the determinism of the belief automaton, has the same stochastic behaviour as the
original model, however configurations now contain two information: (1) the current
state of the associated run in the initial model and (2) the current belief, i.e. the set of
states that could be reached with the current sequence of observations.

Enriching a model this way is very useful to apply model-checking results. Model
checking consists in, given a model of a system, verifying if it satisfies a property,
often given by a logical formula. The two most famous logics used are LTL (linear
temporal logic) [Pnu77] and CTL (computational tree logic) [Eme90]. The first one
focuses on properties of individual run while the second is mostly interested in branching
properties. As diagnosis is not a branching property we only discuss LTL here. In LTL,
one can encode formulae about the future of a run, e.g., a condition will eventually
be true, a condition will remain true until another one becomes true, etc. The basic
components of a formula are propositional variables whose truth value depends, in
our framework, on the current state of the model. The more information is contained
within a state, the more precise the use of propositional variables can be. How to
verify that a “simple” model satisfies an LTL formula is known for a long time [Var96]1.
Complications occur however when the model is more complex or when the property one
wants to check requires more expressive power than what LTL can offer. For stochastic
specifications, LTL was extended to pLTL. The extension allows to quantify the measure
of the paths satisfying a given LTL formula (the probabilistic operator cannot be nested
in the formula). Verifying these formulae is more difficult in terms of complexities. It
has been studied both for finite systems [CY95] or infinite ones [EY12]. One can refer
to [BK08, Chapter 10] for details about the model checking of probabilistic systems.
One important point is that the main source of the complexity of the algorithms is
the size of the formula. For example, in [EY12], the qualitative model checking of a
recursive Markov chain (a model of infinite-state stochastic system) is PSPACE in the
size of the model (and can drop to PTIME under some restrictions) but is EXPTIME in
the formula. When studying diagnosis, most problems can be expressed with a simple
and fixed formula, which means that the part of the complexity depending on then size
of the formula is not our concern.

Another set of techniques that can be used are the results known for POMDP.
They have two main interests. First, when studying diagnosis on active systems, some
problems can be translated into POMDP problems for which there exist efficient algo-
rithms (as done in [BFH+14]). The second interest of POMDP comes in fact mostly
from probabilistic automata (PA), which are a subclass of POMDP. Many problems are
known to be undecidable for PA [Paz71, GO10] and due to the simplicity of the PA
model, these problems are often easier to use to prove undecidability than problems
for POMDP (such as the policy-existence problem under the infinite-horizon average
reward criterion [MHC03]).

1One technique is to obtain a Büchi automaton that is equivalent to the model and another one
that is equivalent to the negation of the property. The intersection of the two non-deterministic Büchi
automata is empty if the model satisfies the property.
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Finally, as there exist many problems using partial observation, the first thing to do
when studying a new notion is to check if there already exists a similar problem for which
an analysis was realised. In the positive case, one only has to establish a translation. A
relevant example of this was mentioned earlier when we stated that [CK14] was used to
solve a monitoring problem. The authors of [CK14] established a polynomial algorithm
in order to determine if the distance of the language of two labelled Markov chains
is equal to 1. In other words, to decide if, almost surely, given an infinite observed
sequence, one can determine which labelled Markov chain emitted it. The algorithm
relies on the existence of algorithms to detect when two systems have exactly the same
language (distance 0) and that if the models are not at distance 1, then a “part” of
them is at distance 0. While diagnosis focuses mostly on finite runs and this problem
considers infinite runs, strong links can be identified.

Challenges and objectives. As our global goal is to perform model-based verifi-
cation, the first question that needs to be tackled in this thesis is the choice of the
formalism. This formalism has to include probabilities as we want to be able to quan-
tify the specification. But some points are still open: we must determine whether the
model incorporates non-determinism, represents infinitely many states or expresses ef-
ficiently concurrent behaviours for example. Moreover, we intend to work on partial
observation problems. This requires the model to select what observation is associated
with a run.

Our second issue lies in the choice of the problems to focus on. Many notions of
diagnosis have been defined over the years with different goals in mind. We have to
find a set of appropriate qualitative/quantitative diagnosis notions that encompasses
the important, already known, notions that focus on realistic relevant issues, and that
is coherent as a whole. Moreover, the formal definitions of the problems we work on
must be carefully chosen. Indeed, mixing partial observation, probabilities and control
quickly leads to undecidability results (as is the case for PA, mentioned earlier). A
slight modification of the definitions may strongly modify the complexity. For example
we will see a case, where inverting two quantifiers turn a problem of complexity PTIME
to an undecidable one.

Once the properties are defined, our goal is to establish precisely the complexities
of verifying if the model satisfies the chosen specification. We are also interested in
determining how to modify the system so that it satisfies the properties. This gives two
main approaches, a passive one associated with observation and an active one associated
with observation and control.

Outline. This thesis is organised as follows.

• In Chapter 2, we introduce notations useful all along the document. While it
does not contain any result per se, it includes the definitions of the notions of
diagnosis that we introduced. The choice of appropriate definitions is already a
contribution. In the second part of this chapter, we present a state of the art on
the diagnosis problem.



32 General Introduction

• In Chapter 3, we realise a semantical analysis of the problems of diagnosability
we defined in Chapter 2. More precisely, we first present the notion of diagnoser,
i.e. the function realising the diagnosis, and prove the equivalence between the
existence of a diagnoser and the diagnosability of a system. We also establish
the relations between the various notions of diagnosability and, when possible,
characterise these notions. The semantical analysis of a problem as done here is
very important as understanding the problems is the first step to solving them.
This chapter is based on [BHL14, BHL16a, BHL16b].

• In Chapter 4, we focus on our simplest model, representing finite stochastic sys-
tems. Using the finiteness, we strengthen our characterisations of the diagnosabil-
ity notions and use them in order to establish algorithms to decide the problems
when possible or to prove undecidability in the opposite case. We also show
how to build diagnosers using finite memory. This chapter develops contributions
from [BHL14, BHL16a].

• In Chapter 5, we turn to systems with infinitely many states. We cannot use the
characterisations obtained in Chapter 4, but the results of Chapter 3 still hold. We
study different models and clearly observe the increase in difficulty compared to
finite-state models. We still manage to obtain decidability results for one model.
This chapter extends [BHL16b].

• In Chapter 6, we consider controllable systems. Using the control, one can ensure
properties for the system. However, controlling the system with one objective
in mind can have negative side-effects. For example, ensuring diagnosability can
increase the likelihood of faults within the system. We are therefore interested in
combining multiple objectives, one of them being diagnosability. This chapter is
based on [BHL17b].

• In Chapter 7, we instead focus on another partial observation problem: opacity,
which, on many aspects, appears like a dual of diagnosability. We introduce the
notion and explain the impact opacity has on the choice of the framework: we
consider here active systems as is done in Chapter 6, however the type of control
is different as the controller is not interpreted in the same manner. We define
multiple measures of opacity and explain how to maximise or minimise them
when possible. The results of this chapter were published in [BHL17a].

Other works. In order to limit the number of frameworks and problems to define and
to give a better coherence to the thesis, some of the works we realised are not detailed
in this document. We give a short description of these results here.

The results of [BHL14] serve as a foundation to our analysis of diagnosability. They
are thus, for the most part, necessary for this thesis and are therefore developed in
Chapter 3 and Chapter 4. However, this work also contains contributions on prediction
and prediagnosis. Prediction describes the ability to detect the fault before its occur-
rence. It had been shown to be in NLOGSPACE for logical systems [GL09]. While using
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probabilities usually increases the difficulty, we gave an NLOGSPACE algorithm for the
prediction problem in stochastic systems. The authors of [CK15] present a similar result
with a notion called “prognosis”. While prediction is limited to the detection of faults
before their occurrence, diagnosis is itself limited to their detection after the occurrence.
That is why we also introduced prediagnosis where one is allowed to either predict or
diagnose the fault. Any predictable or diagnosable system is thus prediagnosable, but
the converse does not hold. We showed that prediagnosability (i.e. the problem of
deciding if a system is prediagnosable) is PSPACE-complete.

For the diagnosability notions studied in this thesis, faults are permanent: once a
fault is triggered, any following behaviour is faulty. However, one may want to consider
faults that are only temporary. For example, a model could contain the possibility
of a reparation. This raises many new problems: one may wish to detect the fault
before the reparation, to count the number of faults occurring within the system, etc.
These questions were investigated in [FHLM18] in a non-stochastic setting. While
diagnosability of permanent faults is known to be in NLOGSPACE for logical systems,
we showed that with repairable faults, it becomes PSPACE-complete. We also discussed
multiple methods to count faults and presented among other things an NLOGSPACE
algorithm to decide if one can count the number of faults while having a delay of at
most one count of fault.

One of the non-stochastic framework where diagnosability was studied is Petri nets
(PN) [CGLS12, BHSS18]. For bounded PN, the usual method to solve diagnosability is
to build the reachability graph of the net, which is an automaton structure representing
the behaviour of the PN and then to use existing results on this kind of models [JHCK01,
YL02]. The issue with this method is the size of the reachability graph. In order
to face this issue, many works try to abstract the graph in order to reduce its size
while keeping the relevant information. In a partial observation setting, this led to
the introduction of the basis reachability graph [CGS09]. In [LGS18], we showed how
to extend this abstraction to unbounded PN, calling the new object “Basis coverability
graph”. We established some results about the properties of the basis coverability graph
and explained how to use it to solve diagnosability of unbounded PN.



34 General Introduction



Chapter 2

Preliminaries

The first step of the theoretical analysis of a problem is the definition of the framework.
The chosen framework possesses different properties depending on the specificities of
the system one wishes to study. Some frameworks are thus better adapted to represent
concurrency, to express infinite-state systems. . . In the first section of this Chapter, we
introduce the main definitions that are used throughout the thesis. More precisely, in
Subsection 1.1, we recall some definitions and results of descriptive set theory. We then
define in Subsection 1.2 the main probabilistic model used in this document and define
a probabilistic measure. In Subsection 1.3, we explain how partial observation can be
added to this model. These definitions give a framework for various problems linked to
partial observation. In this section, we also give definitions related to diagnosis, which is
the main partial observation problem studied during this thesis. Diagnosis corresponds
to a family of questions, focusing on the identification of a faulty behaviour within the
system. We explain in Subsection 1.4 how the notion of fault can be formalised in
our model. Finally, in Subsection 1.5, we discuss different notions of diagnosability.
These notions are used to capture when and how the faulty (or correct) behaviour of
the system must be identified, and with which accuracy. Section 2 finally presents a
state of the art on diagnosis.

1 Framework

Let us start with a few general notations. We denote by N the set of natural numbers,
Q the set of rational numbers and R the real numbers. For a finite alphabet Σ, we
denote by Σ∗ (resp. Σω) the set of finite (resp. infinite) words over Σ. ε represents the
empty word.

1.1 Descriptive set theory

Descriptive set theory [Mos80, Chapter 1] defines and studies classes of “well-behaved”
sets. These sets having good properties, they have applications in many areas. In this
thesis, they have two main applications. First, they are used to evaluate the complexity
of some problems. This is achieved using a hierarchy ranking these sets: the higher a

35



36 Preliminaries

set is in the hierarchy, the more complex it is. Therefore if we can express a property
with a set, the problem complexity can be related to the set complexity. Secondly, these
sets form a building block of the formal definition of the stochastic behaviour of our
model.

Let us first recall some standard facts about Borel sets.

Definition 2.1. Given a space X, the set Y is a topology on X if

• X ∈ Y and ∅ ∈ Y ,

• Y is stable by union, i.e. given (Oi)i∈I a family of elements of Y , ∪i∈IOi ∈ Y ,

• Y is stable by finite intersection, i.e. given (Oi)i∈I a finite family of elements of
Y , ∩i∈IOi ∈ Y ,

We call the sets in Y the open sets.

Example 2.1. Consider the space of infinite words over two letters {a, b}ω. On such a
space, the usual topology uses the notion of cylinder. Given a finite word w of {a, b}∗, the
cylinder of w is the set of infinite words extending w, Cyl(w) = w{a, b}ω. One obtains
a topology by choosing the set of cylinders as its basic components and by adding the
sets created through union and finite intersection. {a, b}ω belongs to this topology as it
is the cylinder of ε, the empty set can be obtained as the intersection of the cylinders of
‘a’ and of ‘b’.

Under this topology, the set of words containing at least k ‘a’, for k ∈ N is an open
set as it is a countable union of cylinders.

Given a space X and a topology Y on X, we define the Borel hierarchy (represented
in Figure 2.1) as the three classes of sets Σ0

n, Π0
n and ∆0

n obtained inductively by

• Σ0
1 = Y is the set of open sets;

• ∀n ≥ 1, a set belongs to Π0
n if its complement belongs to Σ0

n

• ∀n ≥ 2, O is in Σ0
n if there exists a family (Oi)i∈I of elements of Π0

n−1 such that
O = ∪i∈IOi;

• ∀n ≥ 1, ∆0
n = Π0

n ∩ Σ0
n.

The sets in Π0
1 are called closed, the sets Σ0

2 and Π0
2 are respectively called Fσ and Gδ.

A Borel set is a set belonging to some level of the Borel hierarchy. The set of Borel sets
is denoted B.

Example 2.2. Continuing Example 2.1, the set composed of the single word aω is
closed. Indeed, its complement is ∪n∈NCyl(anb) which is an open set. The set of words
with infinitely many ‘a’ is neither open, nor closed. It however belongs to Gδ. Indeed,
it is the complement of the set of words ending by bω. As this set of words is an infinite
union of closed set (each closed set containing a single infinite word), it belongs to Fσ,
thus its complement is a Gδ set.
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Σ0
1 Σ0

2 · · ·
↗ ↘ ↗

∆0
1 ∆0

2 · · ·
↘ ↗ ↘

Π0
1 Π0

2 · · ·

Σ0
α · · ·

↗ ↘
∆0
α ∆0

α+1 · · ·
↘ ↗

Π0
α · · ·

Figure 2.1: Representation of the Borel hierarchy.

In our models, we need to measure the probabilities of certain events. This is done
thanks to Carathéodory’s extension theorem [ADD99]. Before stating this theorem, we
need to introduce some definitions used in measure theory.

Definition 2.2. Given a space X, a ring of sets R of X is a subset of the powerset of
X satisfying:

• ∅ ∈ R;

• R is closed under pairwise union, ∀A,B ∈ R,A ∪B ∈ R;

• R is closed under relative complements, ∀A,B ∈ R,A \B ∈ R.

Definition 2.3. Given a space X, a σ-algebra S of X is a subset of the powerset of X
satisfying:

• ∅ ∈ S;

• S is closed under countable union, ∀(Ai)i∈N ∈ S,
⋃
i∈NAi ∈ S;

• S is closed under complement, ∀A ∈ S, S \A ∈ S.

By definition, a σ-algebra is a ring of sets. Observe that the set of Borel sets B is a
σ-algebra. More precisely, it is the σ-algebra generated by the open sets (i.e. it is the
smallest σ-algebra containing the open sets).

Definition 2.4. Given a ring of sets R on a space X, a pre-measure µ on R is a
function µ : R 7→ [0,+∞] such that:

• µ(∅) = 0;

• for all countable family of sets of R pairwise disjoint, (Ai)i∈N, we have

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

A pre-measure µ is called σ-finite if there exist a countable number of sets A1, A2 · · · ∈ R
such that X =

⋃∞
k=1Ak and for all k ∈ N, µ(Ak) <∞.

If R is a σ-algebra, then µ is called a measure.
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A measure µ is called inner regular if for every set E, we have

µ(E) = sup{µ(F ) | F ⊆ E ∧ F is a closed set}.

In the current work, we require a measure, yet only a pre-measure can efficiently be
defined. Fortunately, Carathéodory’s extension theorem allows to bridge the gap.

Theorem 2.1 ([ADD99]). Let R be a ring on a space X, µ be a pre-measure on R.
There exists a measure µ′ extending µ on the σ-algebra generated by R. Moreover, if µ
is σ-finite, then µ′ is unique and also σ-finite.

Example 2.3. Let us continue Example 2.1 and consider the ring of sets R generated
by the topology based on the cylinders. We define the pre-measure µ on this ring as the
only pre-measure satisfying ∀n ∈ N, w ∈ {a, b}n, µ(Cyl(w)) = 1

2n .
One could interpret the represented system as an infinite number of coin flips, each

result (‘a’ or ‘b’) having 1
2 probability. µ gives the probability of cylinders (a given finite

number of flips) and finite unions of them.
The pre-measure µ is σ-finite as µ({a, b}ω) = 1. According to Carathéodory’s exten-

sion theorem, there is thus an unique measure µ′ extending µ on the σ-algebra generated
by R: the Borel sets. Observe that µ′ is inner regular.

1.2 Probabilistic Labelled Transition Systems

We now define the model that represent the system. The choice of the model depends on
the properties one wishes to have. Petri nets [Dia09] for example, efficiently represent
concurrent systems. Another possibility is to use automata structures as in the seminal
work of [SSL+95] formally defined by:

Definition 2.5. A labelled transition system (LTS) is a tuple A = 〈Q, q0,Σ, T 〉 where:

• Q is a countable set of states with q0 ∈ Q the initial state;

• Σ is a finite set of events;

• T ⊆ Q× Σ×Q is a set of transitions;

Informally, the states of Q represent the different configurations the system can be
in, an event of Σ is an action that can be taken by the system (sending a request,
activating a component. . . ) and T describes how this action affects the system.

Formally, we write q a−→ q′ when there exists a transition (q, a, q′) ∈ T ; this transition
is then said to be enabled in state q. We assume all LTS we consider are live, i.e. in
every state of the LTS at least one transition is enabled. This ensures the system will
not reach a deadlock position and stop activating events. A run ρ of an LTS A is a
(finite or infinite) sequence ρ = q0a0q1 . . . such that for all i ≥ 0, qi ∈ Q, ai ∈ Σ and
when qi+1 is defined, qi

ai−→ qi+1. A run thus represents the evolution of a system over
time. The notion of run can be generalised, starting from an arbitrary state q. Given
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an LTS A, we write ΩA for the set of all infinite runs starting from q0. We only write Ω
when the LTS A is clear from context. When it is finite, ρ ends in a state that we denote
last(ρ) and its length, denoted by |ρ|, is the number of events occurring in it. Given a
finite run ρ = q0a0q1 . . . qn and a (finite or infinite) run ρ′ = qnanqn+1 . . . starting in
last(ρ), we call concatenation of ρ and ρ′ the run ρρ′ = q0a0q1 . . . qnanqn+1 . . . . The
run ρ is then a prefix of ρρ′, which we denote by ρ � ρρ′. The cylinder generated by a
finite run ρ consists of all the infinite runs that extend ρ: Cyl(ρ) = {ρ′ ∈ Ω | ρ � ρ′}.
The sequence associated with ρ = qa0q1 . . . is the word σρ = a0a1 . . ., and we write
indifferently q ρ

=⇒ or q
σρ
=⇒ (resp. q ρ

=⇒ q′ or q
σρ
=⇒ q′) for an infinite (resp. finite) run

ρ starting in q (resp. and ending in q′). A state q is reachable (from the initial state
q0) if there exists a run ρ such that q0

ρ
=⇒ q, which we alternatively write q0 =⇒ q. The

language of an LTS A consists of all infinite words that label runs of A and is formally
defined as Lω(A) = {σ ∈ Σω | ∃ q0

σ
=⇒}. A bottom strongly connected component

(BSCC) of an LTS is a strongly connected component from which no state outside of
the BSCC are reachable.

Example 2.4. Consider the LTS represented in Figure 2.2. It contains three states. q0

is the initial state, representing the machine waiting to receive an order. When such an
order occurs the run takes the transition labelled by the ‘coin’ event and enters the second
state. In this second state, the machine is preparing the coffee, it has the possibility to
add sugar, and after a certain amount has been added, it returns to its initial state by
giving a coffee. In this operating state, the machine can also commit an error, event
‘f ’, leading to a faulty state f1. In f1, the machine cannot serve coffee any more and
sends an ‘out of order’ signal. A normal use of this system by a consumer is given for
example by the run ρ = q0 coin q1 sugar q1 coffee q0.

q0 q1 f1

f

coin

coffee

sugar out of order

Figure 2.2: An LTS representing a coffee machine. q0 is the initial state, which is
represented by the incoming arrow. Transitions between two states are labelled by the
event associated with the transition.

In order to represent the unpredictability of the environment and to neglect events
that have a null probability of occurring, we want to represent stochastic behaviours. To
do so, the model must be enriched using probabilities. More precisely, this is achieved
by adding a probability matrix indicating how the transitions, labelled by events, are
randomly chosen.
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Definition 2.6. A probabilistic labelled transition system (pLTS) is a tuple A =
〈Q, q0,Σ, T,P〉 where:

• A = 〈Q, q0,Σ, T 〉 is an LTS;

• P is the transition matrix from T to Q>0 fulfilling for all q ∈ Q:∑
(q,a,q′)∈T

P[q, a, q′] = 1 .

The LTS A is called the underlying labelled transition system of A.

Note that since we assume the state space to be at most countable, a pLTS is
by definition at most countably branching: in every state q, only countably many
transitions are enabled, so that the summation

∑
(q,a,q′)∈T P[q, a, q′] is well-defined.

The definitions introduced for LTS are naturally lifted to pLTS. Given a countable set
Z, a distribution on Z is a mapping µ : Z → [0, 1] such that

∑
z∈Z µ(z) = 1. The

support of µ is Supp(µ) = {z ∈ Z | µ(z) > 0}. If Supp(µ) = {z} is a single element, µ
is a Dirac distribution on z written 1z. We denote by Dist(Z) the set of distributions
on Z. The transition matrix defines in every state q a distribution on the transitions
whose support are exactly the transitions enabled in q.

Example 2.5. Consider the pLTS represented in Figure 2.3. Its underlying LTS is
represented in Figure 2.2. The difference is thus that probabilities were added on the
transitions so that the sum of the probabilities exiting any state is equal to one. The
run ρ that was described as being a normal use of the system in Example 2.4 can now
be associated with a probability, which is the product of the probability of the events it
triggered. Here, 1× 0.29× 0.7 = 0.203. This result, being low, seems to point out that,
in this representation, most consumers do not take exactly one unit of sugar in their
coffee or do not even get their coffee.

q0 q1 f1

f , 0.01

coin, 1

coffee, 0.7

sugar, 0.29 out of order, 1

Figure 2.3: A pLTS representing a coffee machine. The probability of a transition is
given next to the event labelling it.

We now use the probabilities within the system to formally define the probability
measure that are used on runs. This is done using the descriptive set theory presented
in Subsection 1.1. The construction of the measure uses the Carathéodory’s extension
theorem, similarly to what is done in Example 2.3.
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Here, the set space X we are interested in is the set of all infinite runs Ω. The open
set Σ0

1 is built from the cylinders: Σ0
1 is the smallest set containing ∅, Ω, such that for all

finite run ρ, Cyl(ρ) ∈ Σ0
1, and such that Σ0

1 is stable by union and finite intersection. The
complement of a cylinder is a finite union of cylinders, the complement of an (potentially
infinite) union is an (potentially infinite) intersection and the complement of a finite
intersection is a finite union. A set F is thus closed if and only if F =

⋂
n∈NOn where On

is a union of cylinders. Therefore an Fσ set F can be written as F =
⋃
m∈N

⋂
n∈NOm,n

where Om,n is a union of cylinders whose associated paths have length n. Without loss
of generality, the sequence of closed sets may be chosen as a non-decreasing sequence.
The cylinders are thus used as the basis to build a Borel hierarchy on Ω.

Given a pLTS A, in order to have a probabilistic measure spanning all the sets of
infinite runs of the Borel hierarchy generated by the cylinders, we define a pre-measure
PA on the ring of sets generated by the open sets by: for all finite run q0a0q1 . . . qn,

PA(Cyl(q0a0q1 . . . qn)) = P[q0, a0, q1] · · ·P[qn−1, an−1, qn]

and for all finite sequence of pairwise disjoint cylinders A1, . . . , An,

PA(∪i=1,...,nAi) =
∑

i=1,...,n

PA(Ai) .

According to Carathéodory’s extension theorem, this pre-measure can be extended
uniquely on the whole σ-algebra generated by this ring. We still write PA for the
obtained measure. Moreover, when A is fixed, we may omit the subscript. To simplify,
for ρ a finite run, we sometimes abuse notation and write P(ρ) for P(Cyl(ρ)). If R is
a (countable) set of finite runs such that no run is a prefix of another one, we write
P(R) for

∑
ρ∈R P(ρ) which is consistent since all intersections of associated cylinders

are empty.

1.3 Partial observation

In partial observation problems, one considers an observer of the system (a user, an
attacker. . . ) who perfectly knows the model, yet only partially observes its behaviours.
In this case, one needs to formalise which information can be observed. This allows to
associate with every run of the system, an observation or sequence of observations.

The first question is to determine what part of a run gives an information: events,
states or both. In fact, these three options are equivalent in terms of expressibility.
Thus, for every problem, one selects the option that is the more efficient at representing
the specificities of the problem. For example, when studying diagnosis, we try to detect
a faulty action of the system. As this faulty action is an event, observations are put
on events. This is the option we follow in most chapters of this thesis, see Chapter 7,
page 195, for a model with observations on states.

Events represent actions taken by the system. A formalisation of the observation
could be made by distinguishing internal and external actions. This would mean that
some actions occur within the system and are thus unobservable while others are done
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publicly and are thus observable. Formally, one partitions the set of events Σ into two
disjoint sets Σo and Σu, the sets of observable and unobservable events, respectively.

Example 2.6. Consider the pLTS of Figure 2.3. Clearly, introducing a coin, adding
sugar to the cup and receiving the coffee are observable actions. The other two are more
subject to discussion. Depending on the fault and the sensors within the system, f could
be considered observable or unobservable. Indeed, if f stands for the explosion of the
machine, it would clearly be observable, however if f is an internal error, detecting it
requires the existence of an appropriate sensor within the system. The status of the
last event also depends on which fault occurred. For our example, let us assume f is
unobservable, but the failure of the system is detected, allowing the machine to publicly
send an ‘out of order’ message. In this case, the run “q0 coin q1 sugar q1 f f1 out of
order” produces the sequence of observations “coin sugar out of order”.

A more sophisticated method than this partition would be to equip the pLTS with
a mask function. This mask function associates every event with an observation, taken
from an observation alphabet. This function can map an event to ε meaning that the
event is unobservable or project multiple events onto the same observation, making
them indistinguishable. When using a mask function, Σo is the observation alphabet
and Σu is the set of unobservable events (i.e. events which observation is ε).

Example 2.7. Consider the pLTS of Figure 2.3 again. We use the observation alphabet
Σo = {coin, coffee, beep} and the mask function P such that P(coin) = coin, P(coffee) =
coffee, P(f) = ε and P(sugar) = P(out of order) = beep. Here, we see that two of the
events are indistinguishable as they share the same observation beep. When a beep is
produced, a user does not know whether the machine is out of service or if it is adding
more sugar. In other words, the infinite runs “q0 coin q1ff1(out of order f1)ω” and “q0

coin q1(sugar q1)ω” share the same observation sequence “coin sugar beepω”.

Observe that the mask function setting generalises the partition discussed above. In-
deed, the partition is mimicked by the mask function which projects every unobservable
event to ε and every observable event onto itself. We now define multiple notations using
the mask function formalism. Due to the previous remark, these definitions can easily
be applied to the partition setting. In the future chapters, we mostly use partitions for
simplicity. We state explicitly when we use mask functions.

Given an observation alphabet, a mask function is a mapping P : Σ → Σo. It is
extended to words from Σ∗ inductively by: P(ε) = ε and P(σa) = P(σ)P(a). We
write |σ|o for the observable length of σ, that is |P(σ)|. The observable length of a
run ρ, denoted |ρ|o, is the observable length of its associated sequence. Given a run
ρ and its sequence σρ we sometimes use P(ρ) for P(σρ). When σ is an infinite word
over Σ, its projection (resp. observable length) is the limit of the projections (resp.
observable length) of its finite prefixes. Given a ∈ Σo, |σ|a is the number of occurrences
of a in σ. As usual the mask function P is extended to languages: for L ⊆ Σ∗ ∪ Σω,
P(L) = {P(σ) | σ ∈ L}.

With respect to the mask function P, a pLTS A is said convergent if there is no
infinite sequence of unobservable events from any reachable state: Lω(A) ∩ Σ∗Σω

u = ∅.
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When A is convergent, for every σ ∈ Lω(A), P(σ) ∈ Σω
o . In the rest of the thesis we

assume that pLTS are convergent. We refer to a sequence for a finite or infinite word
over Σ, and to an observed sequence for a finite or infinite word over Σo. The projection
of a sequence onto Σo is thus an observed sequence. The prefix of length n ∈ N of an
observed sequence w is denoted w≤n.

We now define the notion of signalling runs. They correspond to the finite runs
which last event was observable (i.e. finite runs q0a0q1 · · · an−1qn such that P(an−1) 6=
ε). Signalling runs are precisely the relevant runs w.r.t. partial observation issues
since each observable event provides additional information about the execution to an
external observer. In the sequel, SR(A) denotes the set of signalling runs of the pLTS
A, and SRn(A) the set of signalling runs of observable length n. The pLTS is dropped
from the notation when it is clear from context. Since we assume that the pLTS are
convergent, for every n > 0, SRn is equipped with a probability distribution defined
by assigning measure P(ρ) to each ρ ∈ SRn. Given ρ a finite or infinite run, and
n ≤ |ρ|o, ρ↓n denotes the unique prefix of ρ that belongs to SRn. For convenience, the
empty run q0 is defined as the single signalling run of null length. For an observed
sequence w ∈ Σ∗o, we define its cylinder Cyl(w) = wΣω

o and the associated probability
P(Cyl(w)) = P({ρ ∈ Ω | P(ρ↓|w|) = w}) = P({ρ ∈ SR|w| | P(ρ) = w}), often shortened
as P(w).

1.4 Fault and ambiguity

We now give definitions and notations for a partial observation problem, which is par-
ticularly of interest to us, diagnosis. Diagnosis focuses on the detection of a special
unobservable event called the fault f ∈ Σu thanks to the observations received from
the system. Let us now classify runs depending on whether they contain a fault or
not. A run ρ is faulty if its associated sequence σρ contains f , otherwise it is correct.
For n ∈ N, we write Fn (resp. Cn) for the set of infinite runs whose signalling prefix
of observable length n is faulty (resp. correct). We further define the sets of all finite
faulty and correct signalling runs F and C and the sets of infinite faulty and correct runs
F∞ =

⋃
n∈N Fn and C∞ =

⋃
n∈N Cn. A run ρ is a minimal faulty run if it is a faulty run

and there does not exist a prefix ρ′ of ρ that is a faulty run. We write, for all n ∈ N,
minFn for the set of minimal faulty runs of length n and minF =

⋃
n∈N minFn for the

set of all minimal faulty runs.
Given two states q and q′ and an observation a ∈ Σo, we write q ⇒a q′ if there exists

a run ρ = q0a0q1 . . . qn with q0 = q, qn = q′, ρ ∈ SR1 and P(ρ) = a. We also write
q ⇒a

f q
′ (resp. q ⇒a

c q
′) if there exists a faulty (resp. correct) run ρ = q0a0q1 . . . qn with

q0 = q, qn = q′, ρ ∈ SR1 ∩ F (resp. ρ ∈ SR1 ∩ C) and P(ρ) = a.
Except explicit mention of the opposite, we assume that the state space Q of A

is partitioned into correct states and faulty states: Q = Qf ] Qc such that faulty
(resp. correct) states, i.e. states in Qf (resp. Qc), are only reachable by faulty (resp.
correct) runs. This can be done without loss of generality. Indeed, considering a pLTS
A = 〈Q, q0,Σ, T,P〉, we can build the pLTS A′ = 〈Q′, (q0,⊥),Σ, T ′,P′〉 where:

• Q′ = Q× {⊥,>},
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• ((q, i), a, (q′, j)) ∈ T ′ if (q, a, q′) ∈ T , and either a 6= f and i = j or a = f and
j = >,

• for ((q, i), a, (q′, j)) ∈ T ′, P′((q, i), a, (q′, j)) = P(q, a, q′).

Denoting Qf = Q × {>} and Qc = Q × {⊥}, the pLTS A′ has the same behaviour as
A and verifies the partition mentioned above as a run enters Qf if and only if its last
transition was a fault and can never go back to Qc.

While the correct or faulty status of the current run may not be known to the
observer, the observed sequences carry some information about them. An infinite (resp.
finite) observed sequence w ∈ Σω

o (resp. Σ∗o) is called ambiguous if there exists a correct
infinite (resp. signalling) run ρ and a faulty infinite (resp. signalling) run ρ′ such that
P(ρ) = P(ρ′) = w. Otherwise, it is either surely faulty, or surely correct depending on
whether P−1(w) ∩ SR ⊆ F or P−1(w) ∩ SR ⊆ C. A run is ambiguous, surely correct
or surely faulty if its observed sequence is ambiguous, surely correct or surely faulty
respectively. We write Sf∞ (resp. Sc∞) for the set of infinite surely faulty (resp.
correct) runs. In addition Sfn (resp. Scn) is the set of infinite runs whose signalling
prefix of observable length n is surely faulty (resp. correct).

Example 2.8. Consider the pLTS of Figure 2.3 associated with the mask function P
such that P(f) = ε, P(out of order) = P(sugar) = beep and every other event is projected
on itself.

First observe that this pLTS satisfies the partition between faulty and correct states.
Indeed, a run ends in f1 iff it is faulty.

The observed sequence “coin beep” is ambiguous as it can be generated by the correct
run “q0 coin q1 sugar q1” and the faulty signalling run “q0 coin q1 f f1 out of order
f1”. Extending this observed sequence with other observations of beep maintains the
ambiguity. Extending it with ‘coffee’ however makes it surely correct. There does not
exist any surely faulty observed sequence in this pLTS.

1.5 Which diagnosis for pLTS?

The goal of diagnosis is the automatic detection of the fault event. This detection is
performed by a diagnoser, a function observing the system and giving its verdict. For-
mally, a diagnoser is a function D : Σ∗o → {?,>,⊥} assigning to every finite observed
sequence a verdict. Informally, when a diagnoser outputs ? it does not provide any
information, while > means that the diagnoser announces a fault and ⊥ that the di-
agnoser provides some information about the correctness of the current run. Multiple
notions of diagnoser, and thus of diagnosis, can be defined depending on the properties
that we require. In logical systems, three main features of the diagnoser are considered:
verdict, correctness and reactivity. Verdict specifies the nature of the information the
diagnoser provides along the run: it may only be related to detection of faults or may
also assert that (some prefix of) the run does not include a fault. Correctness specifies
that when the diagnoser outputs a verdict, this verdict holds. Reactivity expresses the
regularity at which the diagnoser must provide information about the status of the run.
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The aim of this section is to define appropriate verdict, correctness and reactivity
requirements for probabilistic systems. We start with informal explanations that also
motivate the need for considering different variants of diagnosis. We present these
variants as decision problems which are intuitively easier to understand and simpler to
use. We make the link with diagnosers in Chapter 3.

In seminal works about probabilistic systems, the verdict is limited to fault detec-
tions and the reactivity is usually relaxed by requiring that when a fault occurs, a
diagnoser almost surely detects it after a finite delay [TT05]. Let us look at the pLTS
of Figure 2.4. One cannot detect that the run q0f(f1a)ω is faulty due to the correct run
q0u(q1a)ω with same observed sequence aω. However with probability 1, a faulty run
will produce a ‘b’ and thus almost all faulty runs are unambiguous, so that faults are
almost surely detected. On the other hand, one cannot provide any information about
the single correct run q0u(q1a)ω since its observed sequence is ambiguous as well as any
of its prefix. Observe that the notion of ambiguity described here is qualitative: the
observation of the correct run is considered ambiguous even though the probability to
be faulty, conditioned on the observation, converges to 0.

q0 f1 f2q1

f au

a ba

Figure 2.4: Detecting faults but not correct runs. When probabilities are not specified,
we assume uniform distributions. Dashed edges are used for unobservable transitions.
For observable transitions, the observation given by the mask function labels the edge.

In order to examine which verdict could be provided about correct runs, let us look
at the pLTS of Figure 2.5. The sequence an is ambiguous. However up to the n − 1th

observation, all the runs that correspond to this observed sequence were correct which is
a useful information for instance to restart later the system from a correct state. Along
the (surely correct) observed sequence aω, the observer can always deduce that longer
and longer prefixes of the run were correct while never being able to assert that the
current run is correct.

q0 q2 f1 f2q1

u f au

a bba

Figure 2.5: Detecting correctness for longer and longer prefixes of correct runs.



46 Preliminaries

The correctness requirement may be specified in different ways. For an exact di-
agnosis, we ask that a fault can be claimed only when a fault surely happened (as it
is the case in non-probabilistic systems). However it may be necessary to weaken the
correctness requirement as illustrated by the pLTS of Figure 2.6. Since all observed
sequences are ambiguous no exact diagnosis can be provided. However it is clear that
when in a long enough observed sequence the ratio between occurrences of ‘b’ and ‘a’ is
close to 3, the probability that the corresponding run is faulty is close to 1. Let us fix
any ε > 0 and only require that the probability for the verdict to be erroneous should be
less than ε. Then using the strong law of large numbers, (approximate) fault detection
is possible in this pLTS.

q0 qfqc
f , 1

2u, 1
2

a, 1
4

b, 3
4

a, 3
4

b, 1
4

Figure 2.6: When approximate diagnosis is necessary.

To formalise later the correctness of an approximate diagnoser, with every observed
sequence w ∈ Σ∗o we associate a correctness proportion

CorP(w) =
P({ρ ∈ C ∩ SR|w| | P(ρ) = w})
P({ρ ∈ SR|w| | P(ρ) = w})

,

which is the conditional probability that a signalling run is correct given that its ob-
served sequence is w.

The standard way to specify reactivity in probabilistic systems for fault detection
is to require that whatever the minimal faulty run, almost surely the diagnoser will
output its (faulty) verdict. We may also consider uniform reactivity which strengthens
reactivity by requiring that the (random) delay is independent of the minimal faulty run.
More formally, uniform reactivity ensures that given any positive probability threshold
α > 0 there exists a delay nα independent of the considered minimal faulty run such
that the probability to exceed this detection delay is bounded by α.

q0 q1 qfqc
u, 1

2 f , 13
16u, 1

2

a, 3
16

b, 1

a, 3
4

b, 1
4

Figure 2.7: When reactivity cannot be uniform.
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Let us illustrate these reactivity features with the pLTS of Figure 2.7 for which only
approximate diagnosis is possible. Fix some ε > 0 and consider the minimal faulty run
q0uq1(aq1)mfqf . After a certain number of occurrences of ‘b’ (say n), the correctness
proportion of the observed sequence ambn will be less than ε and thus the diagnoser can
output its verdict. However due to the probabilities of an occurrence of ’a’ in correct and
faulty runs respectively equal to 3

4 and 3
16 , n must depend on m and so this reactivity

cannot be uniform. This can be mathematically seen through the definition of CorP:
for n ≥ 1,

CorP(ambn) =
3m

4m+n

3m

4m+n + ( 3
16)m × 15

16

=
1

1 + 15
16 × 4n−m

In order to have CorP(ambn) ≤ 1/2, one needs n > m. Therefore uniform diagnosis is
not possible.

In order to formalise the different requirements discussed above, we first define
several sets of runs related to ambiguity.

Definition 2.7 (Ambiguous runs). Let A be a pLTS, ε ≥ 0 and n ∈ N>0. Then:

• FAmb∞ is the set of infinite faulty ambiguous runs of A;

• CAmb∞ is the set of infinite correct ambiguous runs of A;

• FAmbn is the set of infinite runs of A whose signalling prefix of observable length
n is faulty and ambiguous;

• CAmbn is the set of infinite runs of A whose signalling prefix of observable length
n is correct and ambiguous.

• FAmbεn is the set of infinite faulty ambiguous runs of A whose observed sequence
of length n, w fulfils: CorP(w) > ε.

By definition, for all n ∈ N, FAmb0
n = FAmbn. Observe that, for all n ∈ N, and

ε ≥ 0, CAmbn,FAmbn and FAmbεn are open sets, thus measurable. However, CAmb∞
and FAmb∞ are not Borel sets in the general case (e.g. see Chapter 3, Section 3).

We propose five specifications of exact diagnosability for probabilistic systems based
on three discriminating criteria: whether the unambiguity requirement holds for faulty
runs only or for all runs, whether ambiguity is defined at the level of infinite runs or
for longer and longer finite signalling prefixes, and whether the delay before detection
of minimal faulty runs is uniform. These notions are summarised in Figure 2.8 except
for uniformity postponed to next figure.

Definition 2.8 (Exact diagnosability). Let A be a pLTS.

• A is IF-diagnosable if P(FAmb∞) = 0.

• A is IA-diagnosable if P(FAmb∞ ] CAmb∞) = 0.
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IF-diagnosis IA-diagnosis

FA-diagnosisFF-diagnosis

Infinite runs

Finite prefixes

All runsFaulty runs
Verdict

Reactivity

Figure 2.8: Summarising the variants of exact diagnosis.

• A is FF-diagnosable if lim supn→∞ P(FAmbn) = 0.

• A is FA-diagnosable if lim supn→∞ P(FAmbn ] CAmbn) = 0.

• A is uniformly FF-diagnosable if for all α > 0 there exists nα ∈ N such that for
all n ≥ nα and all minimal faulty run ρ ∈ minF

P({ρ′ ∈ FAmbn+|ρ|o | ρ � ρ
′}) ≤ α · P(ρ) .

Uniform and/or approximate diagnoses are defined for FF-diagnosis as summarised
in Figure 2.9. We chose FF-diagnosis as it corresponds to the classical notion of diag-
nosis. Moreover there is no clear intuition on what would be the meaning of uniformity
and approximation for the other variants. εFF-diagnosability allows the diagnoser to
claim a fault when the correctness proportion does not exceed ε, and accurate approx-
imate diagnosability denoted by AFF-diagnosability corresponds to εFF-diagnosability
for arbitrary ε > 0.

Definition 2.9 (Approximate diagnosability). Let A be a pLTS, and ε ≥ 0.

• A is εFF-diagnosable if for every minimal faulty run ρ ∈ minF and all α > 0 there
exists nρ,α such that for all n ≥ nρ,α:

P(Cyl(ρ) ∩ FAmbεn+|ρ|o) ≤ α · P(ρ).

• A is uniformly εFF-diagnosable if for all α > 0 there exists nα such that for all
minimal faulty run ρ ∈ minF and all n ≥ nα:

P(Cyl(ρ) ∩ FAmbεn+|ρ|o) ≤ α · P(ρ).
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εFF-diagnosis AFF-diagnosis

uniform
AFF-diagnosis

uniform
εFF-diagnosis FF-diagnosis

uniform

FF-diagnosisSimple

Uniform

Accurate approximateε approximate Exact

Correctness

Reactivity

Figure 2.9: Summarising the approximate variants of FF-diagnosis.

• A is (resp. uniformly) AFF-diagnosable if it is (resp. uniformly) εFF-diagnosable
for all ε > 0.

When studying diagnosis, we are interested in the following problems. First, for
every notion of diagnosability, we want to determine if it is possible to automatically
decide whether a given system is diagnosable. Moreover, in the positive case, we want
to establish the exact complexity of the problem. Then, given a diagnosable system, we
want to build a diagnoser satisfying the corresponding verdict, correctness and reactivity
features. When possible, we represent the diagnoser using a finite-state automaton to
express that only a finite memory is necessary. The problems can vary depending on
the framework. For example, when the system is controllable, we want to decide if one
can control the system in a way ensuring diagnosability.

2 State of the art on diagnosis

Diagnosis of finite LTS. For LTS, diagnosability requires that the occurrence of
unobservable faults can be deduced after a finite delay from the sequence of observable
events occurring before and after the fault [SSL+95]. Using the definitions we introduced
in this chapter, an LTS is diagnosable iff

⋃
n∈N

⋂
m≥n FAmbm = ∅. Diagnosability of

finite LTS was shown to be decidable in NLOGSPACE [JHCK01, YL02]. The algorithm
relies on the twin-plant described page 29. An LTS is not diagnosable iff there exists a
reachable cycle in the twin-plant in which each state is a pair composed of a faulty and a
correct state. Detecting such a cycle can be done in non-deterministic logarithmic space
in the twin-plant, which is quadratic in the size of the original LTS, hence the result.
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Surprisingly, while deciding diagnosability is easy, the construction of the diagnoser can
require exponential time. This construction is based on the belief construction quickly
presented page 29.

Diagnosis of infinite LTS. An LTS with infinitely many states must be represented
by a higher level model in order to be studied. This can be done using Petri nets (PN) for
example. The semantics of a PN is called the reachability graph and can be represented
by an LTS. This LTS is finite iff the PN is bounded. Cabasino et al. studied diagnosis
of both bounded and unbounded PN [CGLS12]. In order to solve diagnosability in
the unbounded case they first build the verifier net, which is a construction similar
to the twin-plant, then construct the coverability graph (a finite abstraction of the
reachability graph) of the verifier net and finally analyse the cycles of the coverability
graph. This final analysis requires some additional properties of the cycles compared to
the analysis in the twin-plant for finite LTS. This algorithm however has a complexity
that depends on the size of the coverability graph, which may be Ackermanian in the
size of the description of the PN. An algorithm with better complexity was developed
in [BHSS18]. It still uses the verifier net, but transforms the diagnosability problem into
an LTL formula and uses model-checking results to obtain an EXPSPACE upper bound.
Interestingly, this paper also studies opacity, confirming the intuition that opacity and
diagnosis are two close problems. See [Bas14] for a presentation of the usual techniques
used for fault diagnosis in PN. LTS with infinitely many states can also be represented
by pushdown systems. Morvan and Pinchinat showed that diagnosability in the general
case is undecidable [MP09]. However, for a large subclass called visibly pushdown
automata, diagnosability can be decided in PTIME. This is done by building once again
a form of twin-plant, this time making the product of the visibly pushdown automata.
Thanks to this product, they can define an appropriate Büchi condition on the twin-
plant so that diagnosability can be deduced from the emptiness of the obtained Büchi
pushdown automaton (checking the emptiness can be done in PTIME). The restriction
to visibly pushdown automata, which we discuss in Chapter 5, is required in order to
build the twin-plant.

Diagnosis of stochastic systems. When diagnosability was adapted to stochastic
systems by Thorsley and Teneketzis in [TT05], two notions of diagnosability were ini-
tially defined: A-diagnosability and AA-diagnosability. In finite pLTS, A-diagnosability
corresponds to our uniform FF-diagnosability and AA-diagnosability corresponds to our
uniform AFF-diagnosability. For A-diagnosability, they gave a necessary and sufficient
condition based on the belief construction: they first build a diagnoser similarly to
what was done for logical systems, then test for the recurrence of ambiguous states
of the belief (i.e. states that can contain both correct and faulty states). The com-
plexity of the algorithm checking this characterisation is not mentioned however. For
AA-diagnosability, they only give a sufficient condition, leaving the general problem
open. The questions left opened by [TT05] were tackled by Chen and Kumar who
gave algorithms with PTIME complexities to answer both diagnosability decision prob-
lems [CK13]. Their algorithm for AA-diagnosability is particularly interesting as they
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translate the problem into a question of language equivalence (in terms of probability
of words) for the original pLTS in a specific initial distribution. Unfortunately, these
two algorithms are erroneous (see Chapter 4 for details on these two problems).

When a pLTS is not diagnosable, one interesting question that can be raised is
how far from diagnosability it is. If there is only a very little chance that the fault
is not detected, the system may be “diagnosable enough”. This direction was studied
in [ND08] where Nouioua and Dague consider an exact notion of diagnosability and
wish to measure the probability of the faulty ambiguous runs. To realise this measure,
they make the product of the pLTS with its belief construction (thus a method that
we already presented page 29). Then they measure the asymptotic probability to be in
each state of this product pLTS. As, thanks to the belief, states contain the relevant
information to determine if they were reached by a faulty ambiguous run, they can
determine the probability to be faulty and ambiguous at the limit. This approach is
continued in [BFG17] where Bazille et al. introduce a notion of k-diagnosability degree,
which is defined as the probability to detect a fault at most k steps after it occurs,
conditioned to the occurrence of a fault. They measure this degree by (1) building
the product of the pLTS with the belief construction and (2) using polynomial time
algorithms that compute the sum of the probabilities of the runs that reach a target
state set (in this case, the states which belief component show they were reached by
faulty ambiguous runs). Using the computation of k-diagnosability degrees for different
values of k, they also investigate the average speed of detection of a fault.

Active diagnosis. One can enrich an LTS by allowing a form of control. This is done
by introducing non-determinism, that is resolved at every step by a controller. One
possibility of control is done through restriction of the enabled events: at every step,
the controller selects a set of observable events Σ• ⊆ Σo and the next transition taken
by the LTS is labelled either by an unobservable event or by an observable one which
observation belongs to Σ•. Some observable events can also be considered uncontrol-
lable and are enabled no matter the choice of the controller. In this framework, the
diagnosability of a system depends on the choice of the controller. Finding a controller
such that the controlled system is diagnosable is the goal of active diagnosis. This
problem was introduced in [SLT98]. Sampath, Lafortune and Teneketzis then solve
the question by building the most permissive controller through a complicated iterative
procedure which complexity is not given (and seems to be doubly exponential). Later,
a planning-based approach via a twin-plant construction was proposed in [CP09]. The
exact complexities were finally established in [HHMS13, HHMS17], where the active
diagnosis problem was shown to be EXPTIME-complete and finite-memory controllers
(most permissive and optimal in memory size) are given. This is done by translating
the active diagnosis problem into a Büchi game (using a variant of the product with the
belief) and then solving the Büchi game, which gives an optimal strategy which can be
translated back into a controller. This analysis was extended to controllable stochastic
systems [BFH+14]. Here, instead of translating the problem to a Büchi game, Bertrand
et al. use partially observable Markov decision processes and show that the problem of
stochastic active diagnosis is also EXPTIME-complete. They also study a safe notion of
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stochastic active diagnosis where the controller is required to keep a positive probability
of infinite correct runs. This second problem is then showed to be undecidable in the
general case and EXPTIME-complete when limited to finite-memory strategies.

The control on the system is not necessarily related to the events, it can also be
applied on the observations. The observations of a system are given by sensors. In
order to detect an event, one needs to have a sensor at the appropriate position and for
it to be switched on. In [CT08] and [TT07] the authors investigate in slightly different
frameworks, how to limit the number of sensors needed and how to build a controller
which chooses at every step which sensor is switched on or off. The main differences
between the two papers are twofold: (1) [TT07] considers both logical and stochastic
systems while [CT08] only focuses on logical systems and (2) [CT08] establishes that
a most permissive finite-state controller can be computed in doubly exponential time,
using a game-theoretic approach while [TT07] does not give the exact complexity of
their algorithm.

See [ZL13] for a survey on diagnosis mainly describing results for logical systems,
but discussing also timed, stochastic and active systems.
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Chapter 3

Semantical analysis of
diagnosability

As explained in Chapter 2, diagnosers observe the system to determine if its behaviour
is correct or not. They are formalised as functions giving a verdict to each sequence of
observation produced by a run of the system. There exist many different ways to define
a diagnoser, depending on the properties a system designer may want. We identified as
the most important features of a diagnoser its verdict, correctness and reactivity.

• The verdict determines what information is given by the diagnoser. Consequently,
changing the verdict literally means modifying the purpose of the diagnoser. For
example, when testing a car, if a component malfunctions, the company needs
to detect it. The diagnoser thus only needs to detect the faulty behaviour of the
system. However, the verdict of a diagnoser could also require to detect the correct
behaviour of a system. For example, when following online a critical system like
a power plant, the technicians needs to know that the system is correct. If the
system can be faulty, they may need to shut it down in order not to take any risk,
which can have an important cost.

• The correctness determines if the diagnoser is allowed to make an erroneous claim
and, if so, how accurate must its claim be. It is of course better to have a diagnoser
that does not make any error, but this restriction is not always realistic. Consider
a program simulating dice throws. If the program outputs 4 a high number of
times in a row, this may be a correct behaviour as such a throw has a positive
probability. However, the longer this streak of 4 continues, the more likely it is
caused by a malfunction of the program.

• The reactivity determines how quickly and how often the diagnoser must output a
verdict. One possibility would be to require that if a fault occurs, after a bounded
delay this fault will be detected. This is the reactivity that is often required in non-
probabilistic systems represented by an automaton [SSL+95]. This requirement
is too strong however for probabilistic systems. Indeed, in probabilistic systems,
one can have for example an event which can occur at every step after a fault

55
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with some probability, say 1/2, and which allows the detection of the fault. In
expectation, the fault is thus detected after two steps, but no bound can be given
on the maximum delay. This is a situation occurring in every system where, after
a fault, the system can, with some probability, continue to act normally. When
studying probabilistic systems, the reactivity requirement must thus be adapted.
This can be done, for example, by requiring that with probability 1 the fault will
be detected. This version of reactivity allows to ignore runs that have a zero
probability of occurring.

The choice of the verdict, correctness and reactivity notions of a diagnoser thus depends
on what information the designer of the system desires and on which guarantees are
demanded. The decisions that are taken also affect the complexity of determining
the diagnosability and of building the diagnoser. They thus also affect the capacities
required from the computer that will carry out the diagnosis. Studying as many relevant
notions as possible and clearly establishing their complexity is thus necessary for an
appropriate application of diagnosis.

In Chapter 2, multiple notions of diagnosability were defined for probabilistic sys-
tems based on the ambiguity of specific sets of runs. This allowed us to establish
diagnosability analysis as a decision problem which is easier to use in proofs and more
intuitive. However, the end goal of analysing the diagnosability of a system being to
build a diagnoser, one could also use the following definition: given notions of verdict,
correctness and reactivity, a system is called diagnosable if there exists a diagnoser of
the system achieving these features. We will show in Section 1 how to reconcile these
two approaches: we will associate a diagnoser with each diagnosability notion previously
defined. Having defined these associated diagnosers will allow us to see how the notions
of diagnosability translate on an actual run of the system.

Once the notions of diagnoser have been clearly defined, we must determine how
the different variants of diagnosability relate to one another. Establishing links between
multiple notions is a classical part of the semantical analysis of a problem. Through
this analysis, one can establish that two definitions that are syntactically different,
are in fact equivalent. In this case, one can choose to use either definition in a proof
for example. Implications between two notions are also useful. If a system verifies a
stronger property, we will not have to check for the weaker ones. For diagnosability, it
allows the system designer to select the strongest available diagnoser without having to
check every notion. Or at least one of the strongest notions as some of them may be
incomparable. Therefore, establishing the links between the notions of diagnosability
defined previously will be the focus of Section 2

The last goal of this chapter, presented in Section 3 will be to give, when possible,
a characterisation of the notions of diagnosability. As we wish to have the simplest
possible characterisation, an important question is to determine what information is
needed to characterise diagnosability. For example, can we restrict ourselves to studying
the structure of the system or do probabilities matter? And if they do, in what way?
In fact, in the general case, a characterisation relies both on the structure of the system
and on its probabilities.
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• The structural part of the characterisation is based on descriptive set theory re-
called in Chapter 2, Section 1.1. We will define a logic generating sets of runs
belonging to a low level of the Borel hierarchy and associate, when possible, a
formula with every notion of diagnosability.

• The probabilistic part then consists in measuring the probability of the set of
runs identified above. The system is then diagnosable if and only if this measure
verifies a qualitative requirement.

Having such a characterisation has multiple advantages. For example, using model-
checking techniques, one could use these characterisations to solve diagnosability as we
explain in Chapter 5. However this is not necessarily the optimal method as shown in
Chapter 4. As another example, each Borel set is associated with a level of the Borel hi-
erarchy. The higher this level, the more complicated the set is. This complexity reflects
a complexity to measure the probability of the set but also a complexity of understand-
ing the meaning behind this set. Having a characterisation with a set belonging to a low
level of the Borel hierarchy thus makes it easier for the system designer to understand
the associated diagnosability notion.

This chapter presents and extends some of the results given in [BHL14, BHL16a,
BHL16b].

1 Diagnoser and diagnosability

In this section we focus on the synthesis of diagnosers for the notions of diagnosis defined
in Chapter 2. Recall the definition of diagnosers:

Definition 3.1. A diagnoser is a function D : Σ∗o → {?,>,⊥} assigning to every finite
observed sequence a verdict.

Multiple verdicts can be required for the diagnosers. Intuitively, ? does not provide
any information, > claims the occurrence of a fault and ⊥ provides information about
the correctness of the current run.

Diagnosability as defined in Chapter 2 considers infinite behaviours: either by fo-
cusing on the ambiguity of infinite runs, or by requiring that the probability of a set of
finite runs converge to 0 when their length diverges to infinity. On the contrary, diag-
nosers are built to react and give an information after a finite number of observations.
There is therefore no easy direct link between diagnosability and diagnosers.

Due to its definition, a diagnoser may use infinite memory or more precisely, un-
bounded memory. While infinite memory is not achievable in real systems, unbounded
memory is. It however raises a question on how to implement this memory and how
much information has to be kept by the diagnoser. For example, if a diagnoser only
needs to remember how many observations occurred, it may rely on a counter which, al-
though unbounded, is easy to represent and to modify. When implementing a diagnoser
(which will be done in Chapter 4), it is still natural to limit oneself to finite memory.
We therefore define now the notion of finite-memory diagnosers.
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Definition 3.2. A finite-memory diagnoser is given by a tuple (M,Σo,m0, up, Dfm)
where:

• M is a finite set of memory states,

• m0 ∈M is the initial memory state,

• up : M × Σo →M is a memory update function,

• Dfm : M → {?,>,⊥} is a diagnoser function.

A finite-memory diagnoser (M,Σo,m0, up, Dfm) can be seen as a deterministic au-
tomaton over Σo where the set of states is M , the initial state is m0 and the transi-
tion function is up. Moreover the states of this automaton are labelled by an element
of {?,>,⊥} which is given by the function Dfm . The update up is extended into a
function up : M × Σ∗o → M defined inductively by up(m, ε) = m and up(m,wa) =
up(up(m,w), a). The size of a finite-memory diagnoser is given by its number of memory
states. A finite-memory diagnoser is not a diagnoser as defined in Chapter 2 and recalled
in Definition 3.1, yet it induces the diagnoser D defined by D(w) = Dfm(up(m0, w)).

Example 3.1. Consider the finite-memory diagnoser (M, {a, b},m0, up, Dfm) (repre-
sented in Figure 3.1) where

• M = {m0,mb},

• up(m0, a) = m0, up(m0, b) = up(mb, a) = up(mb, b) = mb,

• Dfm(m0) =? and Dfm(mb) = >.

It induces a diagnoser D which makes no claim as long as it only observes ‘a’ and claims
a fault as soon as a ‘b’ is observed. It then commits to this choice and keeps claiming a
fault whatever is observed next.

m0

?

mb

>

b

a, ba

Figure 3.1: The finite-memory diagnoser of Example 3.1. The verdict given by Dfm in
a memory state is written below the state.

Each following subsection focuses on one notion of diagnosability. They are ordered
from the easiest to the most difficult definition of diagnoser. Due to the relations that
will be established in Section 2, we won’t detail every notion of diagnosability here.



Diagnoser and diagnosability 59

1.1 FF-diagnosers

We will start by defining the FF-diagnosers of a pLTS, which is the diagnoser associated
with FF-diagnosability. Recall that FF-diagnosability requires the probability of the set
of faulty ambiguous finite runs to converges to 0 (i.e. limn−→∞ P(FAmbn) = 0). These
diagnosers only provide information about faulty runs, they therefore never raise a ⊥
verdict. However they need to raise a > verdict almost surely after a finite delay in
a faulty run. We can thus restrict their verdict to the set {?,>}. We require from
diagnosers associated with exact diagnosability notions that they satisfy an additional
property,commitment, which means that when it claims a fault it will persistently claim
it in the future. This can be done thanks to the permanence of the fault, i.e. a faulty
run will remain faulty.

Definition 3.3. An FF-diagnoser for a pLTS A is a function D : Σ∗o → {>, ?} such
that:

commitment For every w � w′ ∈ Σ∗o, if D(w) = > then D(w′) = >.

correctness For every w ∈ Σ∗o, if D(w) = > then w is surely faulty.

reactivity For every ρ ∈ minF, P({ρ′ ∈ Ω | ρ � ρ′ ∧ D(P(ρ′)) =?}) = 0 where for
w ∈ Σω

o , D(w) = limn→∞D(w≤n).

Let us comment on this definition. The commitment property ensures that if the
diagnoser outputs > at some point it will always output >. The correctness property
forbids the diagnoser to claim a fault during the observation of a correct run. This
reflects that FF-diagnosability is a notion of exact diagnosability. Thus the FF-diagnoser
is exact too. The limit in the reactivity condition of the above definition is well defined.
Indeed, note that if > is produced, due to the commitment property, the limit is >.
Otherwise the diagnoser always outputs ? so that the limit is also a ? verdict.

q0 f1 f2q1
f au

a ba

Figure 3.2: An FF-diagnosable pLTS.

Example 3.2. For the pLTS of Figure 3.2, we define the diagnoser D such that D(ε) =
?, for all n ∈ N, D(an) =? and for every word w 6∈ a∗, D(w) = >. This diagnoser is in
fact the one induced by the finite-memory diagnoser of Example 3.1. Such a diagnoser
is indeed an FF-diagnoser:

commitment Once a ‘b’ is observed, every subsequent observation is also a ‘b’, there-
fore once D produces >, it will keep outputting >.
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correctness If a > has been produced, b was observed. The only transition labelled by
a ‘b’ is the self-loop on f2 which can only be reached by faulty runs. Therefore any
observed sequence for which D outputs > is surely faulty.

reactivity Let ρ be a minimal faulty run. It ends either in f1 or in f2. If it ends in
f1, then with probability 1 a run extending ρ takes the transition to f2. In f2, it
will read a ‘b’ in the next step. In other words, with probability 1, a faulty run
will trigger a ‘b’ and thus > is raised by the diagnoser. Due to the commitment
property, given a faulty run ρ, the probability that the diagnoser outputs ? infinitely
often during the observation of a run extending ρ is thus 0.

Observe also that this pLTS is indeed FF-diagnosable as for n ≥ 1, we have

P(FAmbn) = P({ρ ∈ Fn | P(ρ↓n) = an}) =
1

2n
.

As suggested by the above example, there exists an FF-diagnoser if and only if the
system is FF-diagnosable. We now prove this formally.

Proposition 3.1. A pLTS is FF-diagnosable if and only if it admits an FF-diagnoser.

This proof is done in the following way. Assuming there exists an FF-diagnoser we
study a family of sets of faulty runs FDn that corresponds to runs where the fault is
claimed after n observations. We compute the probability of this set and link this value
to the probability of FAmbn. This then allow us to show that the probability of FAmbn
converges to 0, proving thus the FF-diagnosability of the pLTS. Assuming the pLTS is
FF-diagnosable, we present a diagnoser and then show it is an FF-diagnoser by proving
the properties one by one.

Proof. LetA be a pLTS, and assume there exists an FF-diagnoserD forA. For every n ∈
N, we define FDn = {ρ ∈ F∞ | D(P(ρ↓n)) = >} the set of faulty runs that are diagnosed
faulty after n observed events. We will start by showing that limn−→∞ P(FDn) = P(F∞).
As a consequence of the commitment property, the sequence (FDn)n∈N is non-decreasing
and for every faulty run ρ ∈ F∞, D(P(ρ)) = limn→∞D(P(ρ↓n)) =? is equivalent to
ρ /∈

⋃
n∈N(FDn), i.e. limn−→∞ FDn =

⋃
n∈N(FDn) = {ρ ∈ F∞ | D(P(ρ)) 6=?}. Since D is

reactive, for every minimal faulty run ρ ∈ minF, we have P({ρ′ ∈ Ω | ρ � ρ′∧D(P(ρ′)) =
?}) = 0. As every faulty run is prefixed by an unique minimal faulty run, we have

P({ρ′ ∈ F∞ | D(P(ρ′)) =?}) =
∑

ρ∈minF

P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = 0.

Thus,

P(
⋃
n∈N

(FDn)) = P({ρ′ ∈ F∞ | D(P(ρ′)) 6=?})

= P(F∞)− P({ρ′ ∈ F∞ | D(P(ρ′)) =?})
= P(F∞).
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Moreover since D is correct, for every n ∈ N, FDn ⊆ Sfn. Therefore, for every n ∈ N,
P(FAmbn) = P(Fn)− P(Sfn) ≤ P(Fn)− P(FDn) and

lim
n−→∞P(FAmbn) ≤ lim

n−→∞P(Fn)− P(FDn) = 0.

This shows that A is FF-diagnosable.
Assume now that A is FF-diagnosable. We define the function D : Σ∗o → {>, ?} by

D(w) = > if and only if w is a surely faulty observed sequence. Let us check that D
is an FF-diagnoser. As a surely faulty ambiguous sequence cannot become ambiguous
again, D fulfils the commitment property. Moreover, since D(w) = > iff w is a surely
faulty sequence, D is correct. Now, let ρ be a minimal faulty run.

P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = lim
n→∞

P({ρ′ ∈ FAmbn+|ρ|o | ρ � ρ
′}) .

For every n ∈ N, we have {ρ′ ∈ FAmbn+|ρ|o | ρ � ρ′} ⊆ FAmbn+|ρ|o and, as A is FF-
diagnosable, limn→∞ P(FAmbn) = 0. Therefore P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = 0
and D is reactive.

The notion of FF-diagnoser we defined is therefore appropriate for FF-diagnosability.

1.2 FA-diagnosers

FA-diagnosability and IA-diagnosability not only consider the diagnosis of faults but also
of correct runs. Indeed, recall that they require respectively that the probability of the
set of ambiguous finite runs converges to 0 (i.e. limn−→∞ P(FAmbn ∪ CAmbn) = 0) and
that the probability of infinite ambiguous runs is equal to 0 (i.e. P(FAmb∞∪CAmb∞) =
0). Contrary to FF-diagnosers, FA- and IA-diagnosers have three possible verdicts: >,
related to faulty sequences, ⊥, linked with correctness, and ? when no information can
be derived from the observation. We consider the partial order ≺ on these values defined
by ? ≺ > and ? ≺ ⊥. This order is natural as ? gives less information than the other
verdicts. Although we consider the detection of correct and faulty runs, note that the
situation is not symmetric given that the faults are persistent while correct runs may
become faulty.

Definition 3.4. An FA-diagnoser for a pLTS A is a function D : Σ∗o → {>,⊥, ?} such
that:

commitment For every w � w′ ∈ Σ∗o, if D(w) = > then D(w′) = >.

correctness For every w ∈ Σ∗o,

• if D(w) = > then w is surely faulty;

• if D(w) = ⊥ then w is surely correct.

reactivity P({ρ ∈ Ω | D(P(ρ)) =?}) = 0 where for w ∈ Σω
o , D(w) = lim infn→∞D(w≤n).
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Let us comment on this definition. The commitment property is similar to the one
of the notion of FF-diagnoser. In particular, there is no commitment for a ⊥ verdict.
This is natural as a fault could appear later, forcing the diagnoser to change its verdict.
The correctness property is also similar to the FF-diagnoser for a > verdict. For the
⊥ verdict, it is the dual, the diagnoser cannot output ⊥ while observing a faulty run.
This diagnoser is ‘exact’. The limit in the reactivity requires the partial order. While
if a > is claimed, the limit will be >, a ⊥ verdict can be followed by a ? verdict. Due
to the correctness property, the limit is equal to ⊥ if the observed sequence is, after a
finite number of observations, always surely correct.

q0 f1 f2q1
f au

a ba

c

Figure 3.3: An FA-diagnosable pLTS.

Example 3.3. For the pLTS of Figure 3.3, we define the diagnoser D such that D(ε) =
⊥ and given an observed sequence w ∈ Σ∗o, then D(wb) = >, D(wc) = ⊥ and D(wa) =
D(w). Remarking that once a b or a c is observed, the other cannot appear any more,
this diagnoser is induced by the finite-memory diagnoser of Figure 3.4. Such a diagnoser
is indeed an FA-diagnoser:

commitment Once a ‘b’ is observed, every subsequent observation is also a ‘b’, there-
fore once D produces >, it will keep outputting >.

correctness If a > has been produced, ‘b’ was observed previously. The only transition
labelled by a ‘b’ is the self-loop on f2 which can only be reached by faulty runs.
Therefore any observed sequence for which D outputs a > is surely faulty. Simi-
larly, when D outputs ⊥ it means that a ‘c’ was observed previously and such an
observation can only be made in q1 which is a correct state from which no fault
can ever be triggered. Thus the observed sequence is surely correct.

reactivity The set of infinite observed sequences w for which D(w) =? is restricted
to {aω}. There exist exactly two runs corresponding to this observed sequence
ρ1 = q0u(q1a)ω and ρ2 = q0f(f1a)ω. Moreover, the probability of each of these two
runs is 0 as firing ‘a’ in q1 or in f1 only has probability 1/2. Thus with probability
1, a ‘b’ or a ‘c’ will be observed, ensuring the reactivity of D.

Observe also that this pLTS is indeed FA-diagnosable as for every n ≥ 1, we have
FAmbn = {q0u(q1a)nq1, q0f(f1a)nf1, q0f(f1a)n−1f1af2}. Thus P(FAmbn) = 3

2n+1 .

We now want to establish the link between the existence of an FA-diagnoser and
FA-diagnosability. However, there is no equivalence in the general case. Indeed, let us
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m0

?

mb

>

mc

⊥

b

c

a, b

a, c

a

Figure 3.4: The finite-memory diagnoser of Example 3.3.

consider the pLTS of Figure 3.5. The probability of the set of ambiguous runs of length
n ≥ 1 starting by u1 is the probability to have read a ‘b’ on the n − 1’th observation.
This is equal to 1

n+1 . Moreover, runs initially starting by u2 will almost surely trigger a
‘c’, removing the ambiguity. Thus it is FA-diagnosable. However, a run starting with u1

will almost surely trigger infinitely many ‘b’s. Because of the correctness property, we
have for every diagnoser D, P({ρ ∈ Ω | D(P(ρ)) =?}) ≥ P({ρ ∈ Ω | q0u1q1 � ρ}) = 1

2 .
Thus, D is not reactive.

q0qff1 q1 q2 . . .
1
2 · u2

1
2 · u1

1
3 · f

1
3 · a

1
3 · b

1
2 · b

1
2 · c

1/2 · a

1/2 · b

2/3 · a

1/3 · b

Figure 3.5: An infinite FApLTS which does not accept any FA-diagnoser.

Fortunately, the equivalence holds when restricted to finite pLTS. We postpone the
proof of the following proposition to Chapter 4 (more precisely to Proposition 4.14,
page 126) which focuses on finite pLTS.

Proposition 3.2. A finite pLTS A is FA-diagnosable if and only if it admits an FA-
diagnoser.

As a conclusion, the definition of FA-diagnosers is similar to the one of FF-diagnosers,
but with additional requirements to deal with the correct ambiguous runs. This fits the
definition of FA-diagnosability which becomes equivalent to the one of FF-diagnosability
when the set of correct ambiguous runs can be neglected. However, due to the complex-
ity created by the fact that being correct is not a permanent status of runs (contrary
to being faulty), the link between existence of an FA-diagnoser and FA-diagnosability
cannot be established in the general case.
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1.3 IA-diagnosers

The problem in defining IA-diagnosers is that IA-diagnosability defines ambiguity for
infinite runs while a diagnoser must give its verdict after a finite observation. As a
consequence, the information an IA-diagnoser gives after a finite run is weaker than the
information an FA-diagnoser has to give.

Definition 3.5. An IA-diagnoser for A is a function D : Σ∗o → {>,⊥, ?} such that:

commitment For every w � w′ ∈ Σ∗o, if D(w) = > then D(w′) = >.

correctness For every w ∈ Σ∗o

• if D(w) = >, then w is surely faulty;
• if D(w) = ⊥, letting |D(w)|⊥ = |{0 < n ≤ |w| | D(w≤n) = ⊥}|, then for
every signalling run ρ such that P(ρ) = w, ρ↓|D(w)|⊥ is correct.

reactivity P({ρ ∈ Ω | D(P(ρ)) =?}) = 0 where for any observed sequence w ∈ Σω
o ,

D(w) = lim supn→∞D(w≤n).

Let us comment on the definition. Commitment is once again focused only on the >
verdict. Correctness is usual for > but quite different for ⊥. Indeed, the correctness of
FA-diagnosers requires that a ⊥ verdict means the observed sequence is surely correct.
The interpretation of D(w) = ⊥ for IA-diagnoser is that the diagnoser ensures that any
signalling subrun of length |D(w)|⊥ ≤ |w| of a signalling run for w is correct. Of course
it may deduce this information from the last |w|− |D(w)|⊥ observations. This does not
reveal if the current run is correct or not. However, if the diagnoser outputs ⊥ infinitely
often along an observed sequence w, limn→∞ |D(w≤n)|⊥ = ∞. Therefore the infinite
observed sequence w is surely correct. The reactivity condition uses a limit superior as
we only need ⊥ to be claimed infinitely often but not necessarily without ? in between.

q0q1 f1 f2
fu a

b ca, ba, b

Figure 3.6: An IA-diagnosable pLTS.

Example 3.4. For the pLTS of Figure 3.6 we define the diagnoser D by: for any
observed sequence w if there exists an observed sequence w′ such that w = w′c then
D(w) = >, if w ∈ {w′aa,w′ab}, D(w) = ⊥ else D(w) =?. This diagnoser is induced
by the finite-memory diagnoser represented in Figure 3.7 Such a diagnoser is indeed an
IA-diagnoser:

commitment Once a ‘c’ is observed, only a ‘c’ can appear, thus the diagnoser keep the
> verdict.
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correctness Observing a ‘c’ can only be made for faulty run, thus D correctly raises
a >. For the correct runs the idea is the following. After observing any sequence
waa or wab, with w ∈ {a, b}∗, the diagnoser knows a posteriori that one step
before, that is after the observation of wa, the run was necessarily correct. Indeed,
observing the suffix aa is not possible after a fault, yet wba is not surely correct.
After a run ρ with such an observation we thus know that ρ↓|P(ρ)|−1 is correct
and |D(w)|⊥ is at most equal to |P(ρ)| − 2 as no ⊥ can be claimed after 0 or 1
observation. Thus D is correct.

reactivity With probability 1 a faulty run will trigger a ‘c’ (raising a > verdict) and a
correct run will trigger infinitely many ‘a’s (raising infinitely many ⊥ verdicts).

Moreover this pLTS is IA-diagnosable as CAmb∞ ∪ FAmb∞ = P−1({a, b}∗bω) which
has probability 0 as in every state there is a positive probability to trigger an action
whose observation is different than b.
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Figure 3.7: The finite-memory diagnoser of Example 3.3.

We now aim at establishing the link between IA-diagnosability and the existence
of an IA-diagnoser. Since IA-diagnosability gives an information about infinite runs,
we need a way to translate it to finite runs in order to establish the link with the
diagnoser. Hence, we first introduce a lemma linking the sets FAmbn and FAmb∞ for
n ∈ N. This lemma will be reused in the next section when establishing the link between
FF-diagnosability and IF-diagnosability.

Lemma 3.1. Let A be a pLTS. Then limn→∞ P(FAmb∞ \FAmbn) = 0. Moreover, if A
is finitely branching, then limn→∞ P(FAmbn \ FAmb∞) = 0.

The main difficulty of the following proof is in the second point. There, using the
finitely-branching assumption and invoking König’s lemma, we show that if the prefixes
of a finite run are never surely faulty, then we can build an infinite correct run with the
same observed sequence.
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Proof. Observe that Ω admits the following partitions Ω = FAmb∞ ]C∞ ] Sf∞ and for
all n ∈ N, Ω = FAmbn ] Cn ] Sfn. Thus, for all n ∈ N,

FAmb∞ \ FAmbn = (Cn ] Sfn) ∩ FAmb∞

= (Cn ] Sfn) \ (C∞ ] Sf∞) ⊆ (Cn \ C∞) ] (Sfn \ Sf∞).

Since for all n, Sfn ⊆ Sf∞, one gets:

FAmb∞ \ FAmbn ⊆ Cn \ C∞ .

{Cn}n∈N is a non-increasing family of sets and we claim that C∞ =
⋂
n∈N Cn. Indeed

an infinite run ρ is correct if and only if f does not occur in it i.e. if and only if
all its signalling subruns are correct. Thus, limn→∞ P(Cn \ C∞) = 0 which implies
limn→∞ P(FAmb∞ \ FAmbn) = 0 .

For the other direction, using again the two partitions we obtain:

FAmbn \ FAmb∞ = (C∞ ] Sf∞) ∩ FAmbn

= (C∞ ] Sf∞) \ (Cn ] Sfn) ⊆ (C∞ \ Cn) ] (Sf∞ \ Sfn).

Since for all n, C∞ ⊆ Cn, one gets:

FAmbn \ FAmb∞ ⊆ Sf∞ \ Sfn

Let us show that, under the assumption that A is finitely branching, Sf∞ ⊆
⋃
n∈N Sfn.

Let ρ /∈
⋃
n∈N Sfn. We build a tree as follows:

• Nodes at level n correspond to the correct signalling runs whose observed sequence
is P(ρ↓n);

• The node at level n+1 associated with ρ′ is a child of the node at level n associated
with ρ′′ if ρ′′ � ρ′.

Since ρ /∈
⋃
n∈N Sfn, for all n ∈ N, there exists a correct run with observed sequence

P(ρ↓n), so that the above-defined tree is infinite. Since the pLTS is finitely branching
and convergent, the tree is also finitely branching. By König’s lemma, it must contain
an infinite branch, thus there exists an infinite correct run whose observed sequence is
P(ρ). As a consequence ρ is not surely faulty: ρ /∈ Sf∞. This establishes that Sf∞ ⊆⋃
n∈N Sfn. Thus limn→∞ P(Sf∞ \ Sfn) = 0 implying limn→∞ P(FAmbn \ FAmb∞) = 0

which concludes the proof.

We can now establish the following proposition.

Proposition 3.3. A finitely-branching pLTS A is IA-diagnosable if and only if it admits
an IA-diagnoser.
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Proof. Assume first that there exists an IA-diagnoser D for A, and let ρ be an infinite
run. By reactivity, almost surely D(P(ρ)) ∈ {>,⊥}. If D(P(ρ)) = > then there
exists some n such that D(P(ρ↓n)) = >. By correctness, ρ↓n is surely faulty and thus
ρ is surely faulty. If D(P(ρ)) = ⊥, we claim that ρ is surely correct. Observe that
the diagnoser infinitely often outputs ⊥, so by correctness, for all n, P(ρ↓n) is surely
correct and thus in particular ρ↓n is correct. Assume there exists an infinite faulty run
ρ′ with P(ρ′) = P(ρ). There exists a n such that for all m ≥ n, ρ′↓n is faulty. Thus by
correctness there can be no more than n ⊥ verdicts for P(ρ) contradicting the fact that
D(P(ρ)) = ⊥. Thus with probability 1, an infinite run is unambiguous.

Conversely, assume that A is IA-diagnosable. Given an observed sequence w, we
denote by Nw the largest integer such that Cyl(P−1(w)) ∩ FNw = ∅, i.e. the largest
integer such that every run with observation w was correct after Nw observations. We
define the diagnoser D such that D(ε) =? and for every observed sequence w and
observation a ∈ Σo, if wa is surely faulty, then D(wa) = >, if Nwa > N(w), then
D(wa) = ⊥ else D(wa) =?.

• Commitment is direct from the definition of D.

• Correctness is achieved as > is raised for surely faulty runs and ⊥ is raised
when Nw (for appropriate observed sequence w) increased, thus for all w ∈ Σ∗o,
|D(w)|⊥ ≤ Nw which implies that for a run ρ ∈ P−1(w), ρ↓|D(w)|⊥ is correct.

• Reactivity, however is a bit more complicated, we need the result of Lemma 3.1.
Let ρ 6∈ FAmb∞ ∪ CAmb∞.

– If ρ is correct, then suppose that there exists n0 such that for all n ∈ N,
there exists a run ρf ∈ Fn0 with P(ρf↓n) = P(ρ↓n). Then using König’s
lemma and a construction similar to the one of Lemma 3.1, there exists
ρf ∈ Fn0 such that P(ρ) = P(ρf ) which would mean ρ ∈ CAmb∞ and raise a
contradiction. Thus, as for each n0 there exists n ∈ N such thatNP(ρ↓n) ≥ n0,
NP(ρ) = limn−→∞NP(ρ↓n) = ∞. As every time this value increases, ⊥ is
produced by D, D outputs infinitely many ⊥, thus D(P(ρ)) = ⊥.

– If ρ is faulty, according to Lemma 3.1, limn→∞ P(FAmbn \ FAmb∞) = 0.
Therefore, with probability one, there exists n0 ∈ N such that ρ 6∈ FAmbn for
n ≥ n0. Let n1 such that ρ ∈ Fn1 and n2 = max(n0, n1), then by definition
of D, D(P(ρ↓n2)) = D(P(ρ)) = >.

Therefore D is reactive.

Thus, D is an IA-diagnoser.

IA-diagnosers are thus appropriately associated with IA-diagnosability. They manage
to give information after a finite amount of time about infinite ambiguity. We start
to see a complexity hierarchy between the various exact diagnosability notions. FF-
diagnosability appears as the simplest notion as its equivalence with the existence of
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an FF-diagnoser was established in the general case. Second comes IA-diagnosability
for which we needed to restrict our framework to finitely-branching pLTS. Finally, the
most difficult notion is FA-diagnosability for which the equivalence only holds for finite
pLTS. This hierarchy is however only an intuition for now as it could be the result of
an inappropriate choice of diagnosers definitions.

1.4 εFF-diagnosers

We now define the εFF-diagnosers corresponding to εFF-diagnosability for ε > 0. Recall
that εFF-diagnosability requires that, after any minimal faulty run ρ, the probability of
the set of faulty runs extending ρ whose observed sequence has a correctness proportion
(CorP, defined page 46) above ε converges to 0 (i.e. limn−→∞ P(FAmbεn) = 0)1. Given
ε ≥ 0, εFF-diagnosers are similar to FF-diagnosers in the sense that both only consider
faulty runs and thus never output a ⊥ verdict that would give information about correct
runs. However, εFF-diagnoser may make errors: when they give a > verdict, then the
probability that the claim is wrong is at most ε.

Definition 3.6. Let ε ≥ 0. An εFF-diagnoser for A is a function D : Σ∗o → {>, ?}
such that:

correctness For every w ∈ Σ∗o, if D(w) = > then CorP(w) ≤ ε;

reactivity lim supn→∞ P({ρ ∈ F ∩ SRn | D(P(ρ)) =?}) = 0.

Let us comment on this definition. This diagnoser is no longer exact. Given an
observed sequence w, it is allowed to output >, if the probability of error is below ε as
shown by the requirement CorP(w) ≤ ε. There is no longer a notion of commitment,
allowing the diagnoser to go back from a > verdict to a ? verdict. This absence of
commitment is one of the differences between the definition of εFF-diagnosers and the
one of monitors for distinguishability of hidden Markov chains [SZF11, KS16]. See the
discussion after Lemma 4.3, page 108, for more details about the links between monitor-
ing and diagnosability. Finally, the reactivity condition as defined here is different from
what was done for the other diagnosers. This choice was made in order to be closer to
the corresponding diagnosability notion as approximate notions of diagnosis are harder
to handle than exact ones.

One could introduce a uniform variant of this definition that would correspond to
uniform εFF-diagnosability. However, this definition would not follow the same structure
as the other ones as a uniform reactivity would have to be defined on individual runs
instead of on the global conditions we used here.

Example 3.5. Let us observe the pLTS on the left of Figure 3.8. We define the diag-
noser D such that given an observed sequence w ∈ Σ∗o, then D(w) = > iff w contains
at least as many ‘b’ than ‘a’, else D(w) =?. Clearly, this diagnoser does not satisfy any

1This definition is written slightly differently from the one of Definition 2.9, page 48. Yet, one
can quickly see that they are equivalent. However, we cannot easily express uniformity with a similar
definition.
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Figure 3.8: Left: an 1/2FF-diagnosable pLTS. Right: a pLTS which is not εFF-
diagnosable for any ε > 0.

commitment property, but it is not required for εFF-diagnosers. Moreover, this diagnoser
cannot be translated into a finite-memory diagnoser as we need to keep the difference
between the number of occurrences of ‘a’ and ‘b’. We give a visual representation, using
an infinite number of states, of this diagnoser in Figure 3.9. Such a diagnoser is a
1/2FF-diagnoser:

correctness Given an observed sequence w, if D(w) = >, then CorP(w) = 3|w|a

3|w|a+3|w|b
.

As by definition of D, |w|a ≤ |w|b, CorP(w) ≤ 1/2, thus D is correct.

reactivity Let α > 0, as faulty runs have a probability 3/4 to raise a ‘b’ at each step,
according to the weak law of large number there exists n0 ∈ N such that for all
n ≥ n0, P({ρ ∈ Fn | |P(ρ)|a > |P(ρ)|b}) < α. Let ρ be a faulty run such that
D(P(ρ)) =?. Thus by definition of D, ρ ∈ {ρ′ ∈ Fn | |P(ρ′)|a > |P(ρ′)|b}.
Therefore, for n ≥ n0, P({ρ ∈ F ∩ SRn | D(P(ρ)) =?}) ≤ P({ρ ∈ Fn | |w|a >
|w|b}) < α. Thus D is reactive.

Observe also that this pLTS is indeed 1/2FF-diagnosable as for n ≥ 1,P(FAmb
1/2
n ) =

P({ρ ∈ Fn | |P(ρ↓n)|a > |P(ρ↓n)|b}) which converges to 0 according to the weak law of
large numbers.

m0

>

m1

?

m2

?

. . .m−1

>

m−2

>

. . .

a a a a a a

b b b b b b

Figure 3.9: An automaton representing the diagnoser of Example 3.5.

The diagnoser used in Example 3.5 requires unbounded memory. In fact, there is
no finite-memory 1/2FF-diagnoser for the pLTS on the left of Figure 3.8.

Proposition 3.4. There exists a 1/2FF-diagnosable pLTS that admits no finite-memory
1/2FF-diagnoser.
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Proof. Consider the 1/2FF-diagnosable pLTS on the left of Figure 3.8 and assume there
exists a 1/2FF-diagnoser with m states. After any sequence an for n ≥ 1, it cannot
claim a fault as CorP(an) = 3n

3n+1 >
1
2 . So there exist 1 ≤ i < j ≤ m+ 1 such that the

diagnoser is in the same memory state after observing ai and aj .
Consider the faulty run ρ = q0fqf (aqf )i. Due to the reactivity requirement, there must
be a run ρρ′ for which the diagnoser claims a fault. Thus for all n, the diagnoser
also claims a fault after ρn = q0fqf (aqf )i+n(j−i)ρ′ but limn→∞ CorP(P(ρn)) = 1, which
contradicts the correctness requirement.

We now establish the link between εFF-diagnoser and εFF-diagnosability.

Proposition 3.5. Let ε ≥ 0. A pLTS A is εFF-diagnosable if and only if it admits an
εFF-diagnoser.

This proof has more computations than the previous ones due to the approximate
notion of correctness, however the main ideas are similar: from an εFF-diagnoser we
relate FAmbεn to {ρ′ ∈ Fn | D(P(ρ′)) =?} in order to show that the probability of
FAmbεn converges to 0. In the other direction, assuming A is εFF-diagnosable, we build
an εFF-diagnoser that is reactive for the runs that do not belong to FAmbεn infinitely
often.

Proof. Let A be a pLTS and ε ≥ 0. Assume that there exists an εFF-diagnoser D for
A. Let ρ be a minimal faulty run and α > 0. Since D is reactive, there exists nρ,α ∈ N
such that for all n ≥ nρ,α,

P({ρ′ ∈ F ∩ SRn | D(P(ρ′)) =?}) ≤ α · P(ρ) .

Thus for all n ≥ nρ,α:

P({ρ′ ∈ SRn+|ρ|o | D(P(ρ′)) =? ∧ ρ � ρ′}) ≤ P({ρ′ ∈ F ∩ SRn+|ρ|o | D(P(ρ′)) =?})
≤ α · P(ρ) .

Since D is correct, Cyl(ρ) ∩ FAmbεn+|ρ|o ⊆ Cyl({ρ′ ∈ SRn+|ρ|o | D(P(ρ′)) =? ∧ ρ � ρ′}).
Thus P(Cyl(ρ) ∩ FAmbεn+|ρ|o) ≤ α · P(ρ) . This establishes that A is εFF-diagnosable.
Conversely assume that A is εFF-diagnosable. Let D be the diagnoser defined by: for
all w ∈ Σ∗o, D(w) = > iff CorP(w) ≤ ε. Such an εFF-diagnoser is correct by definition.
Let α > 0. Since (Fn)n∈N is a non-decreasing sequence converging to F∞, there exists
n0 ∈ N such that for all n ≥ n0,P(Fn \ Fn0) < α/2. By εFF-diagnosability of A, for all
ρ ∈

⋃
k≤n0

minFk, there exists nρ such that for all n ≥ nρ

P(Cyl(ρ) ∩ FAmbεn+|ρ|o) ≤
α

2
· P(ρ).
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Define nmax = maxρ∈
⋃
n≤n0

minFn nρ
2. Then for n ≥ n0 + nmax we have

P(FAmbεn) ≤ P(FAmbεn ∩ Fn0) + P(FAmbεn \ Fn0)

≤
∑

ρ∈
⋃
k≤n0

minFk

P(Cyl(ρ) ∩ FAmbεn) + P(Fn \ Fn0)

≤
∑

ρ∈
⋃
k≤n0

minFk

α

2
· P(ρ) +

α

2
≤ α.

So we have established that limn→∞ P(FAmbεn) = 0.
By definition of D, FAmbεn = {ρ ∈ Fn | D(P(ρ)) =?}. Thus D is reactive.

For every ε ≥ 0 we have thus an appropriate notion of εFF-diagnoser associated
with εFF-diagnosability. As a pLTS is AFF-diagnosable if it is εFF-diagnosable for
every ε > 0, we directly obtain the following corollary.

Corollary 3.1. A finite pLTS A is AFF-diagnosable if and only if for all ε > 0 it admits
an εFF-diagnoser.

In other words, when a pLTS is AFF-diagnosable, the designer can choose the accu-
racy they want for the diagnoser.

2 Relationships between diagnosability notions

In this section, we establish the links between the multiple notions of diagnosability
defined in Section 1.5. We gave in Section 1 diagnosers associated with the various
notions of diagnosability. Thus, intuitively requiring a stronger version of one feature
(verdict, correctness or reactivity) defines a diagnoser that gives more information and
thus which is less likely to exist. For example, the difference between FF-diagnosability
and FA-diagnosability is that FA-diagnosability must identify faulty and correct runs,
while FF-diagnosability only cares about faulty runs. Thus FA-diagnosability implies
FF-diagnosability, which can be formally proven immediately since for all n, FAmbn ⊆
FAmbn ]CAmbn. The two notions being entirely distinct as FF-diagnosability does not
imply FA-diagnosability as shown by the pLTS of Figure 3.10: there is a single ambiguous
observed sequence for every n ∈ N, an, this sequence can be observed with a probability
1/2 of correct runs and by a probability 1/2n of faulty runs, i.e. ∀n ∈ N,P(CAmbn) =
1/2 and P(FAmbn) = 1/2n therefore it is FF-diagnosable without being FA-diagnosable.
Similarly, as FAmb∞ ⊆ FAmb∞ ] CAmb∞, IA-diagnosability implies IF-diagnosability
The converse is not true however as the pLTS of Figure 3.103 is IF-diagnosable while it
is not IA-diagnosable.

An interesting case is the link between IF-diagnosability and FF-diagnosability. In-
tuitively, as for IF-diagnosability we can observe the infinite run before giving a verdict

2Note that
⋃
n≤n0

minFn is finite due to A being finitely branching and convergent.
3This pLTS was already displayed in Figure 3.2.
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q0 f1 f2q1
f au

a ba

Figure 3.10: An FF/IF-diagnosable pLTS which is not FA/IA-diagnosable.

while FF-diagnosability only allows for a finite observation, FF-diagnosability implies
IF-diagnosability. This is indeed true. Using the first direction of the Lemma 3.1
we know that limn−→∞ P(FAmb∞ \ FAmbn) = 0. Thus if a pLTS is FF-diagnosable,
limn−→∞ P(FAmbn) = 0, therefore limn−→∞ P(FAmb∞) ≤ limn−→∞ P(FAmb∞ \FAmbn)+
limn−→∞ P(FAmbn) = 0. Hence the pLTS is IF-diagnosable. Moreover, the impli-
cation is strict. Observe the pLTS of Figure 3.11, it is IF-diagnosable (and even
IA-diagnosable in fact) as every correct run ends with an infinity of b which can-
not be observed with a faulty run and the only faulty run only triggers the obser-
vation a, thus FAmb∞ ] CAmb∞ = ∅. However, it is not FF-diagnosable as for all
n ∈ N,P(FAmbn) = 1/2. Indeed, for n ∈ N, there exists a transition from q0 to a state
qn1 labelled by an a and with probability 1/2n+1, the one correct run ρ of observable
lengthn starting by this transition has observation P(ρ) = an, thus the only faulty run of
observable length n, q0f(f1a)nf1 is ambiguous. Moreover this faulty run has probability
1/2. Although we have a strict implication, the pLTS used to prove the strictness has
an infinite branching. This is in fact necessary: given a finitely-branching convergent
pLTS, IF-diagnosability is equivalent to FF-diagnosability. Given a pLTS A, the impli-
cation from IF-diagnosability to FF-diagnosability is shown using once again Lemma 3.1,
which, assuming finite branching, says that limn−→∞ P(FAmbn \FAmb∞) = 0. Thus if A
is IF-diagnosable, limn−→∞ P(FAmbn) = limn−→∞ P(FAmbn \ FAmb∞) + P(FAmb∞) = 0.
Thus A is FF-diagnosable.

q0 q11

q21 q22

f1
...

a, 1/4

a, 1/8

a

f , 1/2
b

b

a

Figure 3.11: An infinitely-branching pLTS that is IA-diagnosable but not FF-
diagnosable.

Although the relationship between IA-diagnosability and FA-diagnosability is the
same as the one between IF-diagnosability and FF-diagnosability, the same link cannot
be established. Indeed, even for finite pLTS, IA-diagnosability does not imply FA-
diagnosability. Let us observe the pLTS of Figure 3.12. It is IA-diagnosable, indeed,
every infinite correct run have observed sequence aω while the observed sequence of
every infinite faulty run is of the form anbω for n > 0, thus CAmb∞ ] FAmb∞ = ∅.
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Consider however the infinite correct run ρ = q0uq1(aq1)ω. It has probability 1
2 , and all

its finite signalling subruns are ambiguous since their observed sequence is an, for some
n ∈ N which is the observed sequence of the faulty signalling run q0u(q2a)n−1q2ff1af2.
Thus for all n ≥ 1, P(CAmbn) ≥ 1

2 , so that this pLTS is not FA-diagnosable.

q0 q2 f1 f2q1
u f au

a bba

Figure 3.12: An IA-diagnosable pLTS which is not FA-diagnosable.

The next theorem summarises the connections between the different diagnosability
notions.

Theorem 3.1. The diagnosability notions for pLTS are related according to the diagram
below, where arrows represent implications. All implications, except the one from IF-
diagnosability to FF-diagnosability and the one from FF-diagnosability to uniform FF-
diagnosability, hold for arbitrary infinite-state pLTS. The latter implications holds for
finitely-branching pLTS and finite pLTS respectively. Implications that are not depicted
do not hold, already in the case of finite-state pLTS.

FA-diagnosable

IA-diagnosable

uniformly
FF-diagnosable

FF-diagnosable

IF-diagnosable

uniformly
AFF-diagnosable

uniformly
εFF-diagnosable

AFF-diagnosable εFF-diagnosable

0FF-diagnosablefor finitely
branching pLTS

for finite pLTS

for all ε > 0

for all ε > 0

Let us first describe this diagram. Omitting 0FF-diagnosability which is equivalent
to FF-diagnosability, the first two columns correspond to exact diagnosis (thus diag-
nosis where the diagnoser cannot claim a fault if there is a probability that the fault
did not occur) while the last two rows correspond to approximate diagnosis. The lower
row contains the notions of diagnosis considering infinite runs, the middle row the ones
considering finite runs and the upper rows the ones considering finite runs and requiring
uniformity on the speed of reactivity of the diagnoser. From any notion of diagnosabil-
ity, the notion above it, if there is one, has a more restrictive reactivity and the one
on its left requires a better correctness or has a verdict extended to more elements.
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FF-diagnosability plays a central role in the diagram as the notion of uniformity and
approximate diagnosis was built from this notion. This notion was chosen as it is the
traditional notion of diagnosis [TT05], moreover there is no clear intuition of what
approximation and uniformity means for infinite runs.

Proof. We prove all implications that were not already stated in the beginning of this
section. Most are pretty straightforward. For all ε > 0, the implications from AFF- to
εFF, uniform AFF- to uniform εFF- and uniform εFF- to εFF- are direct by definitions.
The implications from uniform AFF- to AFF-, uniform FF- to FF-, FF- to AFF- and uni-
form FF- to uniform AFF- comes partially from definitions and from application of other
implications (mostly the equivalence between FF- and 0FF- proven below). The most
complicated implications are (1) the equivalence between FF- and 0FF-diagnosis which
is a careful inspection of sets of runs, taking account the possibly infinite branching, (2)
the implication from FA- to IA-diagnosis which is inspired by Lemma 3.1 and (3) the
implication from FF- to uniform FF-diagnosability for finite pLTS which requires the
characterisation of FF-diagnosability for finite pLTS which will be established later and
is thus postponed (See Proposition 4.3, page 95).

FF ⇔ 0FF.
Let A be a 0FF-diagnosable pLTS and ε > 0. Since (Fn)n∈N is a non-decreasing
sequence converging to F∞, there exists n0 ∈ N such that for all n ≥ n0,P(Fn \
Fn0) < ε

2 . By 0FF-diagnosability of A, for all ρ ∈
⋃
k≤n0

minFk, there exists nρ
such that for all n ≥ nρ

P(Cyl(ρ) ∩ FAmbn+|ρ|o) ≤
ε

4
· P(ρ).

Notice that, because the pLTS may be infinitely branching, the set
⋃
k≤n0

minFk
may be infinite. We therefore define nmax such that P({ρ ∈

⋃
k≤n0

minFk | nρ >
nmax}) ≤ ε

4 . Thus, only a small portion of runs ρ in
⋃
k≤n0

minFk have nρ > nmax.
Then for n ≥ n0 + nmax we have

P(FAmbn) ≤ P(FAmbn \ Fn0) + P(FAmbn ∩ Fn0)

≤ P(FAmbn \ Fn0) + P({ρ ∈
⋃
k≤n0

minFk | nρ > nmax})

+ P({ρ′ ∈ FAmbn | ∃ρ ∈
⋃
k≤n0

minFk, ρ � ρ′, nρ ≤ nmax})

≤ ε

2
+
ε

4
+
ε

4
P({ρ ∈

⋃
k≤n0

minFk | nρ ≤ nmax}) ≤ ε .

Let A be a FF-diagnosable pLTS. Consider ρ ∈ minF and α > 0. There exists
n0 ∈ N such that for all n ≥ n0, P(FAmbn) ≤ α · P(ρ). Thus for all n ≥ n0:

P(Cyl(ρ) ∩ FAmbn+|ρ|o) ≤ P(FAmbn+|ρ|o) ≤ α · P(ρ).
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FA ⇒ IA.
For all n ∈ N, define CAmbn,∞ the set of correct ambiguous runs that admit an
observationally equivalent run which is faulty before its nth observable event.
Observe that the sequence of sets {CAmbn,∞}n∈N is non-decreasing and that
CAmb∞ =

⋃
n∈N CAmbn,∞. Moreover, by definition, CAmbn,∞ ⊆ CAmbn. As-

sume that lim supn→∞ P(FAmbn ] CAmbn) = 0. By Lemma 3.1, P(FAmb∞) = 0.
For all ε > 0, there exists n1 ∈ N such that for all n ≥ n1, P(CAmbn) < ε and
thus P(CAmbn,∞) < ε. On the other hand, there exists n2 ∈ N such that for all
n ≥ n2, P(CAmb∞) − P(CAmbn,∞) < ε. Combining these two inequalities for
n = max(n1, n2), one obtains P(CAmb∞) < 2ε. As ε is arbitrary, P(CAmb∞) = 0.

We now provide counter-examples for the implications that do not hold and which
were not already developed at the beginning of the section. The most interesting exam-
ple is the one establishing the difference between FA-diagnosis to uniform εFF-diagnosis
as it requires an infinite pLTS.

uniform AFF ; IF.
Consider the pLTS depicted on the left of Figure 3.8. All infinite faulty runs
are ambiguous, and the probability of faulty runs is 1

2 , thus this pLTS is not
IF-diagnosable. Fix some ε > 0 and 0 < α < 1. There are two minimal faulty
runs ρa = q0fqfaqf and ρb = q0fqfbqf . Consider first ρa and let ρ be the random
variable of a signalling run of length n that extends ρa. One can express the
correctness proportion of ρ in terms of the number of a’s in its observed sequence,
written |ρ|a:

CorP(ρ) =
(3

4)|ρ|a(1
4)|ρ|−|ρ|a

(3
4)|ρ|a(1

4)|ρ|−|ρ|a + (1
4)|ρ|a(3

4)|ρ|−|ρ|a
.

Simplifying this expression, we obtain: CorP(ρ) = 1
1+3|ρ|−2|ρ|a . Now, by the strong

law of large numbers, for any η > 0, there exists nη such that for every n ≥ nη,
P(|4|ρ|a − |ρ|| > η) < α. So with probability at least 1 − α, the correctness
proportion of ρ is bounded by 1

1+3
η+|ρ|

2

. For a sufficiently large η, this value is

smaller than ε, so that P(CorP(ρ) ≤ ε) ≥ 1− α.
A similar reasoning applies to ρb, and one can then take the maximum of the two
integers nη to prove that the pLTS is uniformly AFF-diagnosable.
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Figure 3.13: An AFF-diagnosable pLTS which is not uniformly εFF-diagnosable for
ε < 3/4.
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AFF; uniform εFF.
Consider the pLTS of Figure 3.13. Fix some 0 < ε < 3

4 , 0 < α < 1 and nα.
Consider the minimal faulty run ρ = q0uq1(aq1)nα+1fqfbqf . Let ρ′ be the sig-
nalling run of length 2nα + 2 such that ρ � ρ′. P(ρ′) = anα+1bnα+1. Thus,
CorP(P(ρ′)) ≥ 3

4 . So

P(Cyl(ρ) ∩ FAmbε2nα+2) = P(ρ) > α · P(ρ).

Thus the pLTS is not uniformly εFF-diagnosable.
Let ρ be a minimal faulty run. Then P(ρ) = an0b for some n0. For all n, let ρn
be the single the single signalling run of observable length |ρ|+ n that extends ρ.
It fulfils P(ρn) = an0bn+1 and P(ρn) = P(ρ). The single correct signalling run ρ′n
with P(ρ′n) = P(ρn) fulfils P(ρ′n) = 3n0

2·4n0+n+1 . Thus limn→∞ CorP(P(ρn)) = 0. So
the pLTS is εFF-diagnosable for all ε > 0 and thus AFF-diagnosable.

FA ; uniform εFF when considering infinite pLTS.
Let us consider the pLTS of Figure 3.14. It is FA-diagnosable as almost surely
a faulty (resp. correct) run contains a b (resp. c) after a finite number of steps
that cannot be mimicked by a correct (resp. faulty) run. We claim that it is not
uniformly εFF-diagnosable for all ε such that 0 < ε < 1

2 . Note that for all n ∈ N,
CorP(an) ≥ 1

2 . Fix some 0 < α < 1 and nα ∈ N. Consider the minimal faulty
run ρ = q0uf1af2 . . . afnαff ′nα . The shortest extension of ρ that is not ambiguous
(i.e. contains a b) contains nα+ 1 observable events more than ρ does. Therefore,
P({ρ′ ∈ FAmbεnα+|ρ|o | ρ � ρ

′}) = P(ρ) > α · P(ρ).
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f1 f2 . . . fk fk+1 . . .
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. . .
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4 f f f f
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Figure 3.14: An infinite FA-diagnosable pLTS that is not uniformly εFF-diagnosable.

uniform εFF ; AFF.
Consider the pLTS of Figure 3.15. There is a single signalling minimal faulty run
q0fqfaqf . Any observed sequence of length at least 1 is ambiguous and corresponds
with equal probability to a signalling correct or a faulty run. Consequently it is
not AFF-diagnosable, yet it is uniformly εFF-diagnosable for ε = 1

2 .

This concludes the proof.
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q0 qfqc
fu

a a

Figure 3.15: A uniform 1
2FF-diagnosable pLTS, that is not AFF-diagnosable.

3 Characterisation of diagnosability

Our goal in this section is to establish “simple” characterisations of the diagnosability
notions for a pLTS. More precisely, we aim at studying whether there exists a Borel
set B ∈ B that only depends on the underlying LTS such that almost surely a random
run belongs to B if and only if the pLTS is diagnosable. Allowing B to depend on
the probabilities of the pLTS would give more expressivity, but strongly increases the
complexity of the information contained in the set which goes against the goal of a
“simple” characterisation. Similarly, as much as possible, we look for a set B belonging
to a low level of the Borel hierarchy.

Approximate notions of diagnosability heavily depend on the probabilities of the
transitions. This can be seen on the two pLTS of Figure 3.8, page 69 for example:
while the one on the left is εFF-diagnosable for every ε > 0, the one on the right,
which is obtained simply by swapping two probabilities, is not εFF-diagnosable system
for all ε > 0. We thus focus here on FA/FF/IA/IF-diagnosis. For these notions, the
characterising Borel sets cannot be obtained directly from the definitions and require
some machinery. Indeed, the notions of FF- and FA-diagnosability are expressed by
the limit of the probability of a family of open sets and the notions of IF- and IA-
diagnosability are expressed by a set which is not a priori a Borel set.

We will specify these Borel sets using a logic called pathL. Logics are tools that are
efficient at giving specifications for a system and, thanks to model checking, at deciding
if these specifications are satisfied by the system. The complexity of model checking a
logic depends on the kind of systems considered (finite, probabilistic,. . . ) and on the
power of expressivity of the logic. This makes thus yet another argument for requiring
simple characterisations of the diagnosability notions.

In this section, we define the logic pathL in Subsection 3.1. Then, in Subsection 3.2
we give, whenever possible, a characterisation of the different diagnosability problems.
Finally in Subsection 3.3, we provide impossibility results that justify why characteri-
sations were not given for some of the diagnosability notions.

3.1 The logic pathL

We define the logic pathL in this section. Similarly to Probabilistic Linear Time Logic
(PLTL) [CY95], pathL first defines a specification, then specifies a probabilistic condition
over this specification. The main difference with PLTL is that pathL is based on the
notion of path formulae instead of using atomic propositions. A path formula p is a
predicate over finite prefixes of runs. Before defining their syntax formally, let us first



78 Semantical analysis of diagnosability

give some examples of path formulae.

Example 3.6. Given a finite run ρ = q0a0q1 . . . qk, let f be defined by f(ρ) = true if
ai = f for some i < k. This path formula characterises the faulty finite runs.

Let U be defined by U(ρ) = true if there exists a correct signalling run ρ′ with P(ρ) =
P(ρ′). If this path formula is false, the current run is surely faulty.

Let us introduce a more intricate path formula. For σ ∈ Σ∗o, we define firstf(σ) as
the smallest value such that there exists a faulty run with observation σ such that its
prefix of length firstf(σ) is faulty, i.e. firstf(σ) = min{k | ∃ρ signalling run P(ρ) =
σ ∧ ρ↓k is faulty} with the convention that min(∅) = ∞. Then the path formula W
is defined by: W(ε) = false and W(q0a0 . . . qn+1) = true if firstf(P(q0a0 . . . qn+1)) =
firstf(P(q0a0 . . . qn)) < ∞. Every time this path formula is false, we increased the size
of the greatest prefix that we are sure is correct.

As shown by the path formula U for example, path formulae are extremely strong as
they may depend on the global structure of the system, here by depending on the other
existing runs with the same observation. This is far stronger than atomic propositions
used in PLTL for example that only depend on the current state of the run.

Formally, a path formula is either generated by a context sensitive grammar or
equivalently its acceptance is decided by a linear bounded automaton [Kur64]. In other
words, one has to be able to determine the truth of a path formula in linear space.

Example 3.7. Among the examples of path formulae given in Example 3.6, the most
difficult one is W. Let us show how one can compute the truth of this path formula
in linear space. We first define for σ ∈ Σ∗o and q ∈ Q, the restriction of firstf to q:
m(σ, q) = min{k | ∃ρ ∈ SR, last(ρ) = q ∧ P(ρ) = σ ∧ ρ↓k is faulty} with the convention
that min(∅) =∞.

Let ρ be a finite run, σ its observed sequence. If σ = ε, W(ρ) = false. Else
σ = σ1 . . . σn For every q ∈ Q, we compute the values m(σ, q) and m(σ1 . . . σn−1, q)
with the following algorithm:

Algorithm 1 Computing the values of m
1: Input: pLTS A, σ ∈ Σ∗o
2: Output: (m(σ≤k, q))k≤|σ|,q∈Q
3: for q ∈ Q do
4: m(ε, q)←∞
5: for i = 1 to n do
6: for q, q′ ∈ Q do
7: m(σ1 . . . σi, q)←∞
8: if q ⇒σi

f q′ then
9: m(σ1 . . . σi, q

′)→ min(m(σ1 . . . σi−1, q
′), i)

10: if q ⇒σi q′ then
11: m(σ1 . . . σi, q

′)→ min(m(σ1 . . . σi−1, q
′),m(σ1 . . . σi−1, q))



Characterisation of diagnosability 79

This algorithm uses linear space in n. Moreover, we have an equivalence between
W(ρ) = true and maxq∈Q{m(σ1 . . . σn−1, q)} < maxq∈Q{m(σ, q)} < ∞. Thus the truth
of W can be decided by a linear bounded automaton. It is therefore a path formula.

We now define the syntax of pathL.

Definition 3.7. The syntax of a pathL formula is:
φ ::= p | ¬φ | φ1 ∧ φ2 | 3φ

where p is a path formula. In the sequel we use the standard shortcut 2φ ≡ ¬3¬φ.

A formula is evaluated at some position k of a run ρ = q0a0q1 . . .. The prefix ρ≤k of
ρ is defined by ρ≤k = q0a0q1 . . . qk. The semantics of pathL is inductively defined by:

• ρ, k |= α if α(ρ≤k), note that only the past of ρ is used;

• ρ, k |= ¬φ if ρ, k 6|= φ;

• ρ, k |= φ1 ∧ φ2 if ρ, k |= φ1 and ρ, k |= φ2;

• ρ, k |= 3φ if there exists k′ ≥ k such that ρ, k′ |= φ.

Finally ρ |= φ if ρ, 0 |= φ. Due to the presence of path formulae (with no restriction) this
language subsumes LTL and more generally any ω-regular specification language, i.e.
any language that can be recognized by an ω-automaton such as a Rabin automaton.

Proposition 3.6. The language generated by pathL subsumes ω-regular languages.

Proof. The language of a deterministic Rabin automaton is determined by a finite family
of pair of sets (Ei, Fi). It consists of the set of runs ρ for which there exists i ∈ N such
that ρ visits finitely often the states of Ei and infinitely often the states of Fi. We define
the path formulae Ei and Fi such that Ei(ρ) = true iff last(ρ) ∈ Ei and Fi(ρ) = true
iff last(ρ) ∈ Fi. The runs accepted by the Rabin automaton equivalently satisfy the
formula

∨
i(32(¬Ei) ∧ (23Fi)). The language accepted by the Rabin automaton is

thus generated by pathL.

In order to reason about the probabilistic behaviour of a pLTS, we introduce the
notion of qualitative probabilistic formulae:

Definition 3.8. The syntax of a qualitative probabilistic formula of pathL is: P./p(φ)
with ./ ∈ {<,>,=}, p ∈ {0, 1} and φ ∈ pathL.

The semantics is obvious: A |= P./p(φ) if and only if P({ρ ∈ Ω | ρ |= φ}) ./ p.

The set of Borel sets defined by pathL is closed by complementation since the comple-
ment of the set of runs generated by a formula φ is generated by the formula ¬φ. There-
fore given a pLTS A and a formula φ, A |= P=1(φ) iff A |= P=0(¬φ) and A |= P<1(φ) iff
A |= P>0(¬φ). The qualitative probabilistic formulae can thus be restricted to P=0(φ)
and P>0(φ).
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3.2 Logical characterisation of diagnosability

We now exhibit qualitative probabilistic formulae ψ such that a pLTS A is diagnosable
iff A |= ψ.

FF-diagnosability. We start with FF-diagnosability. This notion seems to be the
easiest one as it focuses on faulty runs and its definition already uses a family of Borel
sets. Indeed, we can prove a simple characterisation of FF-diagnosability using the path
formulae f and U that we defined in Example 3.6.

Proposition 3.7. Let A be a pLTS. Then A is FF-diagnosable iff A |= P=0(32(f∧U)).

Once a run becomes surely faulty, it cannot become ambiguous. Thus, informally,
this formula means that a pLTS is FF-diagnosable if the measure of runs that are
infinitely often faulty and ambiguous is equal to 0. These runs are the faulty runs for
which the fault can never be claimed by the FF-diagnoser. It is thus natural to require
their probability to be equal to 0.

Proof. We write E = {ρ ∈ Ω | 32(f ∧ U)} for the set of runs we are interested in. We
further define, for every ρ ∈ minF, Eρ = {ρ′ ∈ Ω | ρ � ρ′ ∧ ρ′ |= 2U} and for every
n ∈ N, Enρ = {ρ′ ∈ Ω | ρ � ρ′ ∧ ρ′ |= 2nU} where ρ |= 2nφ if for every k ≤ n, ρ, k |= φ.
As ρ ∈ minF and ρ′, n |= f ∧ U implies ρ′[0, n] is faulty and ambiguous, we have for all
n ≥ 0 Enρ ⊆ FAmbn+|ρ|. Observe that E =

⊎
ρ∈minFEρ and that Eρ = ∩n∈NEnρ . Thus

P(E) =
∑

ρ∈minF P(Eρ) and limn→∞ P(Enρ ) = P(Eρ).
• Assume first that P(E) > 0. Then, there exists ρ ∈ minF such that P(Eρ) > 0. By
definition, for every n > |ρ|o P(FAmbn) ≥ P(Eρ). Thus, A is not FF-diagnosable.
• Assume now that P(E) = 0. So, for every ρ ∈ minF, P(Eρ) = 0. Let us pick some
ε > 0. Since F =

⋃
n∈N Fn, there exists n0 such that for every n ≥ n0, P(F\Fn) ≤ ε

3 . Let
R = {ρ ∈ minF | |ρ|o < n0}. Pick a finite subset R′ of R such that

∑
ρ∈R\R′ P(ρ) ≤ ε

3 .
Define K = |R′|. Let n1 be such that for every n ≥ n1 and every ρ ∈ R′, P(Enρ ) ≤ ε

3K .
Observe now that for every n ≥ n0, FAmbn ⊆ (F \ Fn) ∪

⊎
ρ∈R\R′ C(ρ) ∪

⋃
ρ∈R′ E

n
ρ .

Thus, for every n ≥ n1, P(FAmbn) ≤ ε
3 + ε

3 + K ε
3K = ε. Since ε is arbitrary, A is

FF-diagnosable.

IF-diagnosability. IF-diagnosability focuses on infinite runs and FAmb∞ is not per
se a Borel set. Obtaining a characterisation is thus more difficult. Thanks to Theo-
rem 3.1 however, in finitely-branching pLTS the above characterisation also holds for
IF-diagnosability.

Corollary 3.2. Let A be a finitely-branching pLTS. Then A is IF-diagnosable iff A |=
P=0(32(f ∧ U)).

IA-diagnosability. The assumption of finitely-branching pLTS is also needed in order
to characterise IA-diagnosability. In addition to the path formula U we also use the path
formula W defined in Example 3.6, page 78.
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Proposition 3.8. Let A be a finitely-branching pLTS. Then A is IA-diagnosable iff
A |= P=0(32(U ∧W)).

Intuitively, as a faulty run cannot become correct, if a run does not satisfy U once,
then ρ |= 32(¬U). Thus, ρ 6|= 32(U ∧W) if either (1) it does not satisfy U at least
once, meaning ρ is surely faulty, or (2) does not satisfy W infinitely often. In the latter
case, the intuition is the following. Infinitely often firstf has increased. If there exists
a faulty run ρf with P(ρ) = ρf , then firstf is bounded, on the prefixes of P(ρ), by the
length at which ρf becomes faulty. Thus no faulty run exists with observation P(ρ)
and ρ is surely correct.

Proof. In order to prove formally the adequacy of the formula, it is enough to show that
ρ ∈ Ω is ambiguous if and only if ρ |= 32(U∧W). We focus below on correct runs; the
case of faulty runs can be treated in a similar, and even simpler, way.
• Let ρ ∈ CAmb∞. Since ρ is ambiguous, there exists a faulty run ρ′ such that P(ρ′) =
P(ρ). Let k0 be such that ρ′↓k0

is faulty. Thus for all k ≥ k0, firstf(P(ρ↓k)) ≤ k0 and
in addition it is non-decreasing. So there exists some k1 ≥ k0 such that for all k ≥ k1,
firstf(P(ρ↓k)) is constant. We thus obtain ρ |= 32W. Moreover, since ρ |= 2 U, we
conclude that ρ |= 32(U ∧W).
• Conversely, let ρ be a correct run such that ρ |= 32(U∧W). Thus there is a position
k0 such that for all k ≥ k0, ρ, k |= W. In particular, by definition of W, for all k ≥ k0,
there is a finite signalling run ρ′(k) such that P(ρ′(k)) = P(ρ↓k) and ρ

′(k)
↓k0

is faulty.
Consider the tree of these runs ρ′(k) by merging the common prefixes. This tree is
finitely branching and infinite. By König’s lemma, it must admit an infinite branch,
corresponding to a run ρ′ with P(ρ′) = P(ρ) and ρ′↓k0

faulty. We deduce that ρ is
ambiguous.

q0qf q1 q2 q3

...

· · ·
1
2 · f

1
4 · u

1
8 · u 1

16 · u

1 · a1 · a
1 · a

1 · b

Figure 3.16: An infinitely-branching IA-diagnosable pLTS which does not satisfy
P=0(32(U ∧W)).

The pLTS of Figure 3.16 illustrates the need for the finitely-branching assumption
in Proposition 3.8. The set of unobservable events is {u, f}. Observation b occurs in
every infinite correct run, while the observed sequence of the single infinite faulty run
is aω. This pLTS is thus IA-diagnosable. However, it does not satisfy P=0(32(U∧W))
since the unique infinite faulty run has probability 1

2 and satisfies at the same time
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2W, by unicity, and 2U. Indeed for every n ∈ N, there is a correct signalling run with
observed sequence an.

Observe that the sets of runs specified by the characterisations of FF-diagnosability
(32(f ∧ U)) and IA-diagnosability (32(U ∧W)) are Fσ sets, i.e. countable unions of
closed sets.

3.3 Non-expressivity results

We chose to use a logic where the structural and probabilistic aspects are separated.
This brought some advantages, but also weakens the expressibility. As a consequence,
approximate notions of diagnosability for which the probabilities are important to define
the ambiguity cannot be characterised. We prove this formally by showing that there
is no Borel set E and F such that neither A |= P=0(E) nor A |= P>0(F ) characterises
1/2FF-diagnosability.

Proposition 3.9. There exists a finitely-branching LTS A such that for every Borel
sets E and F of runs, there exists a pLTS A = (A,P) such that:

• either A is 1/2FF-diagnosable and PA(E) > 0;

• or A is not 1/2FF-diagnosable and PA(E) = 0.

and

• either A is 1/2FF-diagnosable and PA(F ) = 0;

• or A is not 1/2FF-diagnosable and PA(F ) > 0.

This proposition is proved by constructing a family of pLTS whose underlying LTS
is the same, thus the Borel set we construct is the same for every member of this family.
However the probabilities can be appropriately chosen in order for the pLTS to model
or not the formula in contradiction with its diagnosability.

Proof. Consider the LTS A = 〈Q, q0,Σ, T 〉 defined as follows and let the set of unob-
servable events be Σu = {f , u}:

• Q = {q0, qf , qc},

• Σ = {a, b, f , u},

• T = {(q0, u, qc), (q0, f , qf ), (qc, a, qc), (qc, b, qc), (qf , a, qf ), (qf , b, qf )}.

We consider a family of pLTS, represented in Figure 3.17 with underlying LTS A. Given
a pair of probabilities (p1, p2), we define the pLTS A(p1,p2) = (A,P(p1,p2)) in which
P(p1,p2)(q0, f , qf ) = P(p1,p2)(q0, u, qc) = 1/2, P(p1,p2)(qc, a, qc) = p1, P(p1,p2)(qc, b, qc) =
1− p1, P(p1,p2)(qf , a, qf ) = p2 and P(p1,p2)(qf , b, qf ) = 1− p2.

First note that A(p1,p2) is 1/2FF-diagnosable iff p1 6= p2. This can be established
similarly to what was done in Example 3.5, page 68. In fact one can show that A(p1,p2)

is AFF-diagnosable iff p1 6= p2.
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q0 qfqc
f , 1

2u, 1
2

a, p2

b, 1− p2

a, p1

b, 1− p1

Figure 3.17: A family of pLTS whose underlying LTS has no appropriate characterisa-
tion for 1/2FF-diagnosability.

Let E be an arbitrary Borel set over the set of runs of A. If there exists a probability
value p such that A(p,p) |= P=0(E) we have the first part of the result. Else, let p and p′

be two probabilities with p 6= p′. As the probabilities of the runs of E inA(p,p′) do not de-
pend simultaneously on p and on p′, PA(p,p′)(E)+PA(p′,p)(E) = PA(p,p)

(E)+PA(p′,p′)(E).
Moreover, for every probability p′′, A(p′′,p′′) 6|= P=0(E), thus either PA(p,p′)(E) > 0 or
PA(p′,p)(E) > 0 which concludes the first part of the proof.

Let F be an arbitrary Borel set. If there exists a probability p such that A(p,p) |=
P>0(E) we have the first part of the result. Else, let p and p′ be two probabilities
with p 6= p′. As before, PA(p,p′)(F ) + PA(p′,p)(F ) = PA(p,p)

(F ) + PA(p′,p′)(F ) = 0. Thus
both A(p,p′) |= P=0(F ) and A(p′,p) |= P=0(E) which concludes the second part of the
proof.

For exact notions of diagnosability, intuitively, FA-diagnosability would be in be-
tween FF-diagnosability and IA-diagnosability in terms of complexity. Surprisingly we
showed that FA-diagnosability does not admit such a characterisation: there is no Fσ
set E such that a pLTS A is FA-diagnosable if and only if A |= P=0(E).

Proposition 3.10. There exists a finitely-branching infinite LTS A such that for every
Fσ set E of runs, there exists a pLTS A = (A,P) such that:

• either A is FA-diagnosable and PA(E) > 0;

• or A is not FA-diagnosable and PA(E) = 0.

This proposition is proved in a similar fashion as Proposition 3.9, it is only more
involved. The family of pLTS we construct has infinitely many states and infinitely
many parametric probabilities. These probabilities can be chosen in order to give a
positive value to either the limit of the probability of CAmbn or to the given Fσ set.

Proof. Consider the LTS A = 〈Q, q0,Σ, T 〉 defined as follows:

• Q = {f1, qf} ∪ {qi | i ∈ N};

• Σ = {a, b, c, u, f};

• T = {(q0, u, qf ), (q0, u, q1), (qf , a, qf ), (qf , b, qf ), (qf , f , f1), (f1, b, f1), (f1, c, f1)}
∪ {(qi, a, qi+1), (qi, b, qi+1)}i≥1;
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• Σu = {f , u}.

q0qff1 q1 q2 . . .
1
2 · u

1
2 · u

1
3 · f

1
3 · a

1
3 · b

1
2 · b

1
2 · c

(1− p1) · a

p1 · b

(1− p2) · a

p2 · b

Figure 3.18: A family of pLTS whose underlying LTS has no appropriate characterisa-
tion of FA-diagnosability.

We consider a family of pLTS, represented in Figure 3.18, with underlying LTS A.
For p = (pn)n≥1 a sequence of probabilities, we define the pLTS Ap = (A,Pp) in
which for every n ≥ 1 the probability that ‘b’ occurs from state qn is Pp(qn, b, qn+1) =
pn, the probability that ‘a’ occurs from state qn is Pp(qn, a, qn+1) = 1 − pn and all
other probabilities are independent of p: Pp(q0, u, qf ) = Pp(q0, u, q1) = Pp(f1, b, f1) =
Pp(f1, c, f1) = 1

2 , Pp(qf , a, qf ) = Pp(qf , b, qf ) = Pp(qf , f , f1) = 1
3 .

Observe that a faulty run almost surely produces a ‘c’, so that limn→∞ P(FAmbn) = 0.
Moreover, as the ambiguous runs are the ones ending by a ‘b’, the probability to be
ambiguous after n observations on the leftmost part is 1

2
2n−1

3n and on the rightmost part
is 1

2pn P(CAmbn) = pn + 2n−1

3n . Therefore, Ap is FA-diagnosable iff limn−→∞ pn = 0.
Let E be an arbitrary Fσ set. We pick some FA-diagnosable Ap i.e. such that

limn−→∞ pn = 0 and write Pp for the probability measure it induces. If Pp(E) > 0
we are done. Assume thus that Pp(E) = 0. In order to define a second pLTS, via p′,
consider an infinite increasing sequence {nj}j≤1 and let for n /∈ {nj}j≤1, p′n = pn and for
n ∈ {nj}j≥1, p′n = 1

2 . Due to the sub-sequence p′nj = 1
2 , Ap′ is not FA-diagnosable. The

sequence {nj}j≤1 depends on Pp and will be defined after some preliminary observations.
Let F = {ρ | q0uq1 � ρ}. Denoting Pp′ the probability measure of the second pLTS,
observe that Pp′(E \ F ) = Pp(E \ F ) = 0. Using the above discussion, the Fσ set
E ∩F =

⋃
m∈N

⋂
n∈NOm,n where for all m,n, Om,n is a disjoint union of cylinders C(ρ)

with |ρ| = n, Om,n+1 ⊆ Om,n and Om,n ⊆ Om+1,n. Denote Fm =
⋂
n∈NOm,n For all m,

limn→∞ Pp(Om,n) = Pp(E ∩ Fm) ≤ Pp(E ∩ F ) = 0.
• n1 is chosen such that for all n ≥ n1, pn ≤ 1

2 . Observe now that for all nj ,

p′nj =
1

2
=

1

2pnj
pnj and 1− p′nj =

1

2
≤ 1− pnj ≤

1

2pnj
(1− pnj ).

By definition of Pp′ , since Om,n is a disjoint union of cylinders C(ρ) with |ρ| = n,
applying inductively the previous inequalities, for all n such that nk < n ≤ nk+1

(denoting n0 = 0):

Pp′(Om,n) ≤ Pp(Om,n)

2k
∏

1≤j<k pnj
. (3.1)
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• Assume that we have chosen n1, . . . , nk. Since limn→∞ Pp(Ok,n) = 0, there exists
nk+1 > nk such that Pp(Ok,nk+1

) ≤
∏

1≤j≤k pnj . We choose such an index.
Equation (3.1) now implies that for all m ≤ k,

Pp′(Om,nk+1
) ≤ Pp′(Ok,nk+1

) ≤ 1

2k
.

Thus for all m,
Pp′(Fm) = lim

k→∞
Pp′(Om,nk+1

) = 0.

Since E ∩ F =
⋃
m∈N Fm, Pp′(E ∩ F ) = 0 and so Pp′(E) = 0.

Beyond Proposition 3.10, we conjecture that the impossibility also holds for arbitrary
Borel sets.

Proposition 3.10 only shows the non-existence for characterisations that requires a
null probability of the given set. There could thus still exists a characterisation asking for
a positive probability. In fact, such a characterisation does not exist. This impossibility
is even stronger than the one of Proposition 3.10 as we show that a positive probability
characterization cannot exist whatever the Borel set (and not only Fσ).

Proposition 3.11. There exists a finitely-branching LTS A such that for every Borel
set E of runs, there exists a pLTS A = ((A,P),Σo,P) such that:

• either A is FA-diagnosable and PA(E) = 0;

• or A is not FA-diagnosable and PA(E) > 0.

This proof is similar to the previous one, albeit with an even more complex family
of pLTS. Indeed, here, instead of having a parametric probability pi for every i ∈ N we
have one for every word w ∈ {a, b}∗.

Proof. Consider the LTS A = 〈Q, q0,Σ, T 〉 defined as follows:

• Q = {f1, qf , q0} ∪ {qw | w ∈ (a+ b)∗};

• Σ = {a, b, c, u, f};

• T = {(q0, u, qf ), (q0, u, q1), (qf , a, qf ), (qf , b, qf ), (qf , f , f1), (f1, b, f1), (f1, c, f1)}
∪ {(qw, a, qwa), (qw, b, qwb)}w∈(a+b)∗ ;

• Σu = {f , u}.

We consider a family of pLTS, represented in Figure 3.19, with underlying LTS A,
parametrised by a mapping p : (a + b)∗ → (0, 1). Let Ap = ((A,Pp),Σo,P) be the
pLTS such that the probability that ‘b’ occurs from state qw is P(qw, b, qwb) = p(w),
the probability that ‘a’ occurs from state qw is P(qw, b, qwa) = 1 − p(w) and all other
probabilities are independent from p: Pp(q0, u, qf ) = Pp(q0, u, q1) = Pp(f1, b, f1) =
Pp(f1, c, f1) = 1

2 , Pp(qf , a, qf ) = Pp(qf , b, qf ) = Pp(qf , f , f1) = 1
3 . In the sequel, for
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q0qff1 qε qw
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)) · a

p(w) · b

Figure 3.19: Another family of pLTS whose underlying LTS has no appropriate charac-
terisation of FA-diagnosability.

convenience, we also write p(w, b) for p(w), and define p(w, a) = 1 − p(w), so that
P(qw, a, qwa) = p(w, a).
Word w can be decomposed into letters w = w[1] . . . w[n], and we give notations for
factors: w[1, k] = w[1] . . . w[k] with the convention that w[1, 0] = ε. Finally we define
pp(w) =

∏
1≤k≤n p(w[1, k − 1], w[k]), as the probability to read w from qε. Since

limn→∞ P(FAmbn) = 0 and P(CAmbn−1) =
∑

w||w|=n−1 p(w, b) + 2n−1

3n , we deduce that
Ap is FA-diagnosable iff limn−→∞

∑
|w|=n−1 p(w, b) = 0.

Let E be an arbitrary measurable set. Pick some pLTS Ap which is FA-diagnosable, i.e.
with limn−→∞

∑
|w|=n−1 p(w, b) = 0. If Pp(E) = 0 where Pp is the probability of this

pLTS, we are done. Assume therefore that Pp(E) > 0. Let F = {ρ | q0uqε v ρ} be the
set of runs starting with a u-transition to qε. Denoting Pp′ the probability measure of
any other pLTS Ap′ , observe that Pp′(E \ F ) = Pp(E \ F ). So, if Pp(E \ F ) > 0, then
by picking any non FA-diagnosable (A,Pp′), we are done. So assume Pp(E \ F ) = 0
which implies Pp(E ∩ F ) > 0. The probability being an inner regular measure (recall
Definition 2.4, page 37), there exists a closed set G ⊆ E ∩ F with Pp(G) > 0.

If G = F then Pp′(G) = Pp(G) = 1
2 . In this case, we can therefore conclude by picking

any non FA-diagnosable pLTS Ap′ .

Assuming G ( F , since G is closed, there is some cylinder C(ρ) with ρ = q0uqε . . . qw
such that G ∩ C(ρ) = ∅. Then we define the pLTS Ap′ as the pLTS Ap except that
for every w � w′ and every x ∈ {a, b}, p′(w′, x) = 1

2 . Thus for every n ≥ |w|,∑
|w′|=n p′(w′, b) ≥ Pp(ρ)

2 . So Ap′ is not FA-diagnosable. On the other hand, Pp′(E ∩
F ) ≥ Pp′(G) = Pp(G) > 0.

With Proposition 3.10 and Proposition 3.11 FA-diagnosability appears to be the most
complicated of the exact diagnosability notions. Indeed, it cannot be characterised by
any set of at least the first two level of the Borel hierarchy contrary to the other notions.
This confirms the intuition that was raised when defining the diagnosers associated
with each notion of diagnosability. For approximate notions of diagnosability, the non-
expressibility result of Proposition 3.9 clearly shows that studying these notions requires
a characterisation that intertwines structural and probabilistic elements.
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4 Conclusion

In Section 1, appropriate diagnosers were associated with notions of diagnosability.
This gave another point of view on the notions of diagnosability and raised the question
of the memory that is necessary for a diagnoser. We showed that for approximate
notions of diagnosability, unbounded memory may be necessary even for finite systems.
However for exact notions of diagnosability, every example we gave used finite memory.
In Chapter 4, we study diagnosability of finite pLTS and establish what memory is
needed for each notion of exact diagnosability.

In Section 2, the links between the various diagnosability notions were established.
This showed multiple interesting facts. In non-probabilistic systems, diagnosability
only focuses on faulty runs as, for finitely-branching systems, if there is an infinite
faulty ambiguous run, there also exists an infinite correct ambiguous run. However,
when probabilistic models are considered, this symmetry is broken. Caring about both
faulty and correct runs make for an entirely new notion. Moreover, probabilities do not
affect correct and faulty runs in the same way concerning ambiguity: while IF- and FF-
diagnosability are equivalent for finitely-branching systems, IA- and FA-diagnosability
are not equivalent even for finite systems. Another interesting point, the uniformity
requirement is not as important for exact notions of diagnosis than for approximate
ones. Last, while AFF-diagnosability could appear to be close to FF-diagnosability as it
forces an arbitrary high accuracy, the two notions are still very different.

In Section 3, characterisations composed of a probabilistic requirement on a set of
paths defined by a pathL formula were established, when possible, for the notions of diag-
nosability. The notions which could not be characterised where the approximate notions
of diagnosability (this is due to the sort of characterisation we were looking for) and FA-
diagnosability. The latter is quite surprising as the definition of FA-diagnosability seems
to be in between the ones of FF- and IA-diagnosability. Using model-checking techniques,
one could derive an algorithm to decide a notion characterised by a logical formula. The
absence of characterisation for approximate diagnosability and FA-diagnosability does
not however mean that there is no algorithm for these problems. Indeed, we show in
Chapter 4 that for finite pLTS, one can give a more specific characterisation of the
exact diagnosability notions, including the FA-diagnosability. These characterisations
have the same descriptive complexity and are used to obtain an algorithm. In Chap-
ter 5, we study diagnosability for infinite-state systems and base our approach on the
characterisations proved in the current section.



88 Semantical analysis of diagnosability



Chapter 4

Algorithmic analysis of the
diagnosability of finite pLTS

In Chapter 3, we studied the notions of diagnosability in a general setting. More
precisely, we showed that a diagnoser could be associated with each notion of diagnos-
ability, we established the links between the different diagnosability definitions and gave
a logical characterisation of multiple versions of exact diagnosability. With additional
assumptions, stronger results can be established: characterisations can be refined and
efficient algorithms can be designed. One of the usual restriction is the finiteness of
systems. Many real systems can be represented with finitely many states (a vending
machine, a Pac-Man game, . . . ). In fact, most of the systems which interaction with
the environment only requires to keep in memory a finite number of events would fit
in such a framework. For example, let us consider a server that receives and processes
requests. If the server uses a finite memory, then after memorising a fixed number of
yet unprocessed requests, the next request might be discarded without being processed
due to a stack overflow. Such servers can be represented with finitely many states.
Servers able to memorise an unbounded number of requests is dealt with in Chapter 5.
When considering finite systems, we immediately get some results as consequences of
the ones of Chapter 3. For example, any finite system being finitely branching, accord-
ing to Theorem 3.1, page 73, IF-diagnosability and FF-diagnosability, two diagnosability
notions focused only on faulty runs, are equivalent. As another example, every logical
characterisation given in Section 3 of Chapter 3 applies.

The first step is to establish what additional results can be obtained for diagnos-
ability when we only study systems with finitely many states. These systems can easily
be represented and have important properties that do not hold in the general case. For
example, there is a finite number of probability values in the system since there is a
finite number of transitions. This is not true in the general case as can be seen in the
example of Figure 3.11, page 72. Using these additional properties, we establish new
characterisations of the diagnosability notions in Section 1. These characterisations are
not given as probabilistic logical formulae but as conditions on the structure or on the
probabilities of the language observed in the system. More precisely, the characterisa-
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tions of the exact diagnosability notions are purely structural (i.e the probability values
do not matter): they rely on a variant of the determinisation of the system. For the
approximate diagnosability notions, the probabilities matter, and cannot be removed
from the characterisation. The given characterisation relies on the comparisons of the
probability of sets of observed sequences that can be observed from pairs of states.

Once the characterisations are established, we apply them to get as many algorithmic
and complexity results as possible. One such application, is to provide an algorithm
to decide the diagnosability of a system. Indeed, given a “simple” characterisation,
one can easily check if it holds on a given system. Checking a characterisation can
be done with many different algorithms, some being more efficient than others. The
efficiency of an algorithm is described by the complexity class the problem belongs
to, in computational complexity theory. When possible we provide algorithms that are
optimal with respect to the standard computational classes. For the other diagnosability
problems, we establish that the associated decision problem is undecidable. This is done
in Section 2.

When a system is diagnosable, there exists a diagnoser for this system. The possible
diagnosers use different amount of memory, give their verdict more or less quickly, etc.
In Section 3, we show how to automatically construct a diagnoser for systems that
are exactly diagnosable. The diagnosers we build have optimal memory and give their
verdict as soon as possible. The constructions of the exact diagnosers are based on
the characterisations given in Section 1. This strengthens the importance of these
characterisations.

This chapter develops and extends some of the results from [BHL14, BHL16a].

1 Characterisations of diagnosability

In this section, we establish characterisations for the different notions of exact diag-
nosability and for one notion of approximate diagnosability. These characterisations
strongly rely on the restriction to finite state systems. Therefore they are easier to
express and check, but in general cannot be adapted to more general cases as will be
seen in Chapter 5. As a direct consequence of the finite-state restriction and of Theo-
rem 3.1, page 73, FF-diagnosability and IF-diagnosability coincide. So we only consider
FF-diagnosability in the rest of this chapter.

For all the exact diagnosability notions, the methodology is similar. We first con-
struct an ad hoc deterministic automaton which gathers all the information needed for
the diagnosis, by tracking possible correct and faulty executions. Secondly, we build
the product of the original pLTS with this deterministic automaton1. Diagnosability
can then be characterised on the product by graph-based properties.

For approximate diagnosability, we show that the diagnosability notions can be
characterised relying on the distance 1 problem for labelled Markov chains (LMC). This
problem, recalled in Chapter 2, receives as input two LMC and asks for the existence

1Using such a product to enrich the initial model was mentioned as an usual technique page 29.
There, the deterministic automaton was called belief automaton.
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of an event, that is almost sure in one LMC, and has null measure in the other. It was
shown to be decidable in PTIME [CK14].

1.1 Exact diagnosis

The deterministic automata we build are variants of the deterministic Büchi automaton
introduced in [HHMS13], that accepts the infinite unambiguous observed sequences.
The latter tracks the subsets of possible states reached by signalling runs associated
with an observed sequence. It looks like the on-the-fly determinisation of A viewing
unobserved events as silent transitions. However, in view of the forthcoming character-
isations, the subsets of correct and faulty states are divided in three sets: U , V and W .
The intuitive meaning of these sets is the following one:

• A state q belongs to U , if there is a correct signalling run with the current observed
sequence ending in q;

• A state q belongs to V ∪W if there is a faulty signalling run with the current
observed sequence ending in q.

• The partition between V and W ensures that for all q ∈ V , q′ ∈W and ρ a faulty
run ending in q, there exists a faulty run ρ′ ending in q′ with an earlier fault than
the fault of ρ. In other words, V andW contain the states reached by faulty runs,
while W keeps track of the runs that have been faulty for the longest time.

W corresponds to the set of faulty states for which the ambiguity with the correct states
of U has to be resolved (when both are not empty), while V corresponds to a waiting
room of states reached by faulty runs that will be examined when the current ambiguity
is resolved.

Before giving the definition of the deterministic automaton associated with a pLTS
and for sake of readability, we define for two sets of states U and V and an observation
a ∈ Σo the set of states

updatefaulty(U, V, a) = {q | ∃q′ ∈ U, q′ ⇒a
f q}

∪ {q | ∃q′ ∈ V, q′ ⇒a q}.

This set contains the states reached from U by a faulty signalling run of observation a
and the ones reached from V by a signalling run of observation a.

Definition 4.1. Given a pLTS A, the deterministic automaton associated with A is
Obs(A) = {S, s0,∆, F} where

• s0 = ({q0}, ∅, ∅) is the initial state of Obs(A);

• the states and transitions of the deterministic Büchi automaton Obs(A) are in-
ductively defined by:

Given (U, V,W ) a state of Obs(A) and a ∈ Σo, there exists a state (U ′, V ′,W ′) ∈ S
and a transition (U, V,W )

a−→ (U ′, V ′,W ′) in ∆ as soon as:
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1. {q ∈ U ∪ V ∪W | q ⇒a} 6= ∅,
2. U ′ = {q | ∃q′ ∈ U, q′ ⇒a

c q},
3. If W = ∅ then V ′ = ∅ and W ′ = updatefaulty(U, V, a),

4. IfW 6= ∅ thenW ′ = updatefaulty(∅,W, a) and V ′ = updatefaulty(U, V, a)\W ′;

• the set F of accepting states consists of all triples (U, V,W ) with U = ∅ or W = ∅.

When U = ∅, the current signalling run is surely faulty, since U tracks the possible
states after a correct run. WhenW = ∅ the current signalling run may be ambiguous (if
V 6= ∅) but the “oldest” possible faulty runs under scrutiny have been discarded. Hence,
any infinite observed sequence of A passing infinitely often through F is not ambiguous
(either it is surely faulty, or ambiguities are resolved one after another).

Example 4.1. Let A be the pLTS of Figure 4.1. We represent the associated determin-
istic automaton Obs(A) in Figure 4.2, where accepting states for the Büchi condition
are doubly framed.

q0 q2 f1 f2q1
u f au

a bba

Figure 4.1: An IA and FF-diagnosable pLTS which is not FA-diagnosable.

Let us consider the observed sequence aω which has probability 1/2 in the pLTS. The
initial state of Obs(A) is ({q0}, ∅, ∅} meaning that the initial state of the pLTS is q0

and no fault occurred so far. Then, observing ‘a’ we reach ({q1, q2}, ∅, {f2}) meaning
that from q0, we can reach q1 and q2 with correct signalling run of observation ‘a’ and
f2 with a faulty signalling run of observation ‘a’. As this faulty run is the oldest one,
it is added to W . The second observed ‘a’ leads to the state ({q1, q2}, {f2}, ∅). The
run that ended in f2 previously cannot be extended by observing an ‘a’, thus the set W
which tracked this run (as the only oldest faulty run) is empty. However a new fault can
be created ending in state f2, this fault being made while W was tracking other faults,
it is not considered “old” and thus is added to V . This state is therefore an accepting
state. Observing yet another ‘a’ leads back to ({q1, q2}, ∅, {f2}). The run tracked by V
disappeared, a new fault was created and as W was empty it is considered a “old” fault
and f2 is put in W . As the path of Obs(A) corresponding to the observed sequence aω

alternates between these two states infinitely often, it visits infinitely often a state where
W = ∅, thus aω is accepted.

For the other observed sequences, a ‘b’ can only be observed in a faulty state, therefore
any observed sequence containing a ‘b’ is surely faulty. This can be seen in Obs(A) as
any path containing a ‘b’ ends in one of the five rightmost states, all of which have
an empty set U (the first component corresponding to the correct reachable states). As
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{q0}, ∅, ∅
s0

{q1, q2}, ∅, {f2}
s1

{q1, q2}, {f2}, ∅s′1

∅, {f1}, {f2}
s2

∅, ∅, {f1, f2}
s′2

∅, ∅, {f1}
s3

∅, ∅, {f2}
s′4

∅, {f2}, ∅
s4

a b

b

a

b

a

a

b
b

b

b

b

aa

Figure 4.2: The deterministic automaton associated with the pLTS of Figure 4.1. The
states that are framed twice are accepting for the Büchi condition.

any state with U = ∅ is accepting, every infinite observed sequence containing a ‘b’ is
accepted.

The next proposition recalls the main property of this automaton.

Proposition 4.1 ([HHMS13]). Let A be a finite pLTS. Then the deterministic Büchi
automaton Obs(A) accepts exactly the infinite unambiguous observed sequences of A.

Example 4.2. As seen in Example 4.1, every observed sequence of the pLTS of Fig-
ure 4.1 is accepted by the associated deterministic automaton. According to Proposi-
tion 4.1, this means that there is no infinite ambiguous sequence in this pLTS, thus it
is FF- and FA-diagnosable.

1.1.1 FF-diagnosability

As explained earlier, for each diagnosability notion, we consider a variant of Obs(A).
For FF-diagnosability, we only need to remove the ambiguity for faulty runs So we can
omit the faulty sets of states V and W . We write FF(A) for the resulting simplified
automaton, called FF-automaton, obtained from Obs(A) by only considering the U -
component of states.

Example 4.3. Figure 4.3 illustrates this construction on the pLTS of Figure 4.1. This
automaton reflects that once b happens, the current signalling run is surely faulty. Thus
the set of possible correct states is empty (state s2).

To recover the stochastic behaviour of A which is not reflected in FF(A), we now
define the pLTS AFF = A × FF(A) as the product of A and FF(A) synchronised over
observed events.

Definition 4.2. Given a pLTS A = 〈Q, q0,Σ, T 〉 associated with the FF-automaton
FF(A) = {S, s0,∆, F}, we define AFF = 〈Q′, (q0, {q0}),Σ, T ′〉 where:
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{q0}
s0

{q1, q2}
s1

∅
s2

a b

b

a, ba

Figure 4.3: The FF-automaton of pLTS of Figure 4.1.

• Q′ = Q× S;

• ((q,B), a, (q′, B)) ∈ T ′ iff (q, a, q′) ∈ T and

– either a ∈ Σu and B = B′,
– or a ∈ Σo and there exists a transition B a−→ B′ in ∆.

Since FF(A) is deterministic and complete, AFF is still a pLTS, with the same
stochastic behaviour as A. More precisely, there is a bijection between the runs of A
and the runs of FF(A). A run and its image by the bijection have the same observation
and the same probability. In addition, the U -component of a state (q, U) of AFF stores
the relevant information w.r.t FF-diagnosability of the observed sequence so far.

Example 4.4. Carrying on with the example pLTS of Figure 4.1, Figure 4.4 shows the
resulting product pLTS. Observe that it has two bottom strongly connected components
(BSCC), consisting of the absorbing states (q1, s1) and (f2, s2).

q0, s0 q2, s0

q2, s1

f1, s0

f1, s1

f1, s2 f2, s1f2, s2

q1, s0

q1, s1

u f

f

a

a

b

b

a b

u

ba

b

a

a a

Figure 4.4: The synchronised product of the pLTS of Figure 4.1 and its FF-automaton.

In a finite pLTS almost all runs ends in a BSCC [BK08], and FF-diagnosability
is a property of runs expressed as an almost sure event. So, the characterisation of
FF-diagnosability can be stated on the BSCC of AFF.

Proposition 4.2. Let A be a finite pLTS. Then A is FF-diagnosable if and only if AFF

has no BSCC containing a state (q, U) with q ∈ Qf and U 6= ∅.
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The proof relies on two elements. First, a run will almost surely reach a BSCC of
the pLTS. Second, for a faulty run to be ambiguous, the set U contained in the state
in which the run ends must not be empty. Therefore if every BSCC corresponds to
either correct runs (i.e. q ∈ Qc) or faulty unambiguous runs (i.e. U = ∅), the pLTS is
FF-diagnosable.

Proof. Suppose first that there exists a reachable BSCC C of AFF and a state s = (q, U)
in C such that q ∈ Qf and U 6= ∅. Let ρ be a signalling run leading from the initial
state s0 of AFF to s. Now, for every state s′ = (q′, U ′) ∈ C, necessarily q′ ∈ Qf and
U ′ 6= ∅, because C is strongly connected2. So for every signalling run ρ′ that extends
ρ, writing s′ = (q′, U ′) for the state ρ′ leads to, there exists a correct signalling run ρ′′

such that P(ρ′′) = P(ρ′) and q0
ρ′′−→ q′′ with q′′ ∈ U ′. As a consequence the observed

sequence P(ρ′′) is ambiguous in AFF, and for every n ≥ |ρ|o, P(FAmbn) ≥ P(ρ). As A
and AFF have the same ambiguous observed sequences and the associated runs have the
same probabilities, A is not FF-diagnosable.

Suppose now that for every state s = (q, U) of a BSCC C, either q ∈ Qc, or U = ∅.
This property is in fact uniform by BSCC: for every BSCC C, either for every state
(q, U) ∈ C, q ∈ Qc, or, for every state (q, U) ∈ C, U = ∅. This is a straightforward
consequence of C being strongly connected. Moreover, if a run ρ reaches a pair (q, U)
then q ∈ Qc implies U 6= ∅. Indeed, let ρ′ be the greatest signalling run prefix of ρ. ρ′

ends in a pair (q′, U ′) where U ′ = U as P(ρ) = P(ρ′). Moreover if q ∈ Qc, then q′ ∈ Qc,
therefore q′ ∈ U implying that U 6= ∅. Therefore in AFF the BSCC are partitioned in
correct ones, in case all q-components of states in C are correct, and faulty ones, in case
all U -components of states in C are empty ensuring unambiguity of faulty runs ending
in a BSCC. Since runs almost surely leave the transient states and reach a BSCC, this
implies that limn−→∞ P(FAmbn) = 0.

As a consequence of this characterisation, we establish the equivalence between FF-
and uniform FF-diagnosability for finite pLTS, claimed in Theorem 3.1.

Proposition 4.3. Let A be a finite pLTS. If A is FF-diagnosable, then it is uniformly
FF-diagnosable.

In a finite FF-diagnosable pLTS, thanks to the characterisation given in Proposi-
tion 4.2, we know that faults can be detected at worst when the run reaches a BSCC.
The proof consists in showing and using that the speed at which a BSCC is reached is
uniform from any state.

Proof. Let A be an FF-diagnosable pLTS. Given a run ρ of A, let ρFF be the corre-
sponding run in AFF: the states in ρFF extend the states appearing along ρ by subsets
of possible correct states after the corresponding prefix of the observed sequence P(ρ).
Let SBSCC denotes the set of states of AFF that belong to a BSCC. Last, for every state
(q, U) of AFF and every n ∈ N, denote by SRq,Un the set of signalling runs in AFF of
length n starting at (q, U).

2Recall that the set Qf is absorbing
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Let α > 0. Our objective is to get nα such that for every n ≥ nα and every minimal
faulty run ρ ∈ minF:

PA({ρ′ ∈ SRn+|ρ|o | ρ � ρ
′ ∧ CorP(P(ρ)) > 0}) ≤ α · P(ρ) .

We first exploit the almost sure convergence towards BSCC in AFF. For every state
(q, U) of AFF, the measure of runs starting in (q, U) and avoiding all BSCC during n
steps tends to 0, when n goes to infinity. Thus, given α, for every reachable (q, U),
there exists nq,U ∈ N such that for every n ≥ nq,U ,

PAFF
({ρ′FF ∈ SRq,Un | last(ρ′FF) 6∈ SBSCC}) ≤ α.

We define nα as the maximum of nq,U over all states (q, U).
Now let ρ be a minimal faulty run of A, and define (q, U) = last(ρFF). Since

nα ≥ nq,U , PAFF
({ρ′FF ∈ SRq,Unα | last(ρ′FF) 6∈ SBSCC}) ≤ α. Therefore, as A and AFF have

the same probabilistic behaviour,

PA({ρ′ ∈ SRnα+|ρ|o | ρ � ρ
′ ∧ last(ρ′FF) 6∈ SBSCC}) ≤ α · P(ρ).

Thanks to the characterisation of Proposition 4.2, all states in BSCC reachable from
(q, U) in AFF necessarily are of the form (q′, ∅). Therefore, if a finite run ρ′FF reaches
such a BSCC, ρ′FF admits no correct run with same observed sequence, and hence
CorP(P(ρ′FF)) = 0. Equivalently, CorP(P(ρ′)) > 0 implies last(ρ′FF) /∈ SBSCC. Thus

PA({ρ′ ∈ SRnα+|ρ|o | ρ � ρ
′ ∧ CorP(P(ρ′)) > 0}) ≤ α · P(ρ)

which shows that A is uniformly FF-diagnosable.

1.1.2 FA-diagnosability

{q0}, ∅
s0

{q1, q2}, {f2}
s1

∅, {f1, f2}
s2

∅, {f1} s3

∅, {f2}s4

a b

a

b

a
b

b

b

a

Figure 4.5: The FA-automaton of the pLTS of Figure 4.1.

For FA-diagnosability, we again start from Obs(A). Here, we need information about
the ambiguity of both faulty and correct runs. Yet, we still do not need to keep all the
information given by Obs(A). Indeed, we can gather the V and W components into
a unique set, that we again call V . In other words we keep the information on which
faulty states could be reached, but not the distinction between “old” and “new” faulty
runs. The resulting simplified automaton is denoted by FA(A).
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Example 4.5. Figure 4.5 illustrates this construction on the pLTS of Figure 4.1. As
expected, the FA-automaton is a refinement of the FF-automaton: the U -component of
a state in FA(A) corresponds to a state in FF(A). For instance, state s2 of Figure 4.3
is split here into s2, s3 and s4.

As we did for the FF case, we now define the pLTS AFA = A×FA(A) as the product
of A and FA(A) synchronised over observed events (the definition has the same structure
as the one of Definition 4.2, only using FA(A) instead of FF(A)). AFA is still a pLTS
with same stochastic behaviour as A augmented with the relevant information of the
observed sequence w.r.t FA-diagnosability.

Example 4.6. Figure 4.6 continues Example 4.5 and shows the synchronised product
for the pLTS of Figure 4.1.

q0, s0 q2, s0

q2, s1

f1, s0

f1, s1 f1, s2

f1, s3

f2, s1 f2, s2 f2, s4

q1, s0

q1, s1

u f

f

a

a

b

u b

b

a

a

a b b

b

b

a

a a

Figure 4.6: The synchronised product of pLTS of Figure 4.1 and its FA-automaton.

Again, FA-diagnosability is characterised through the BSCC of AFA.

Proposition 4.4. Let A be a finite pLTS. A is FA-diagnosable if and only if AFA has
no BSCC that:

• either contains a state (q, U, V ) with q ∈ Qf and U 6= ∅;

• or contains a state (q, U, V ) with q ∈ Qc and V 6= ∅.

Note that the characterisation of FA-diagnosability is symmetric for correct states
and V -component (resp. faulty states and U -component). This reflects the symmetry
of the definition of FA-diagnosability.

The main difference between this proof and the one of Proposition 4.2 is that the
second item is not uniform inside a BSCC: there may exists a BSCC containing two
states (q1, U1, V1) and (q2, U2, V2) with q1, q2 ∈ Qc, V1 = ∅ and V2 6= ∅. As a consequence
it is harder to show that if a BSCC verifies the second item, then the pLTS is not FA-
diagnosable. Instead of having every extension of the run to be correct ambiguous,
the extensions only are ambiguous when they visit some particular states. However,
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the probability that a run ends in such a state converges towards the steady state
distribution of this state which is positive as the state belongs to a BSCC, contradicting
the FA-diagnosability.

Proof. To prove the left-to-right implication, we proceed by contraposition. If one
assumes the first item holds, the same argument as in the proof of Proposition 4.2
applies. Precisely, suppose that there exists a reachable BSCC C of AFA and a state
s = (q, U, V ) in C such that q ∈ Qf and U 6= ∅. Let ρ be a signalling run leading from
the initial state s0 of AFA to s. Now, for every state s′ = (q′, U ′, V ′) ∈ C, necessarily
q′ ∈ Qf and U ′ 6= ∅, because C is strongly connected. So for every signalling run ρ′

that extends ρ, writing s′ = (q′, U ′, V ′) for the state ρ′ leads to, there exists a correct

signalling run ρ′′ such that P(ρ′′) = P(ρ′) and q0
ρ′′−→ q′′ with q′′ ∈ U ′. As a consequence

the observed sequence P(ρ′′) is ambiguous, and for every n ≥ |ρ|o, P(FAmbn) ≥ P(ρ),
so that A is not FA-diagnosable.
Suppose now that there exists a reachable BSCC C of AFA and a state s = (q, U, V ) in
C such that q ∈ Qc and V 6= ∅. Since the pair (U, V ) is unchanged by unobservable
transitions, w.l.o.g we assume that s is the successor of some state of C by an observable
event and we denote C ′ the set of such states. Observe that a signalling run that reaches
s is ambiguous. Denote πi(s′) the probability that a random run of length i ends in
a state s′. In a finite DTMC, for every state s′ of a reachable BSCC the Cesaro-limit
π∞(s′) = limn→∞ 1/(n+ 1)

∑n
i=0 πi(s

′) exists and is greater than 0. For s′ ∈ C ′ denote
by ps′,s the probability of an observable transition from s′ to s. Then

0 <
∑
s′∈C′

π∞(s′)ps′,s ≤ lim inf
n→∞

1

n+ 1

n∑
i=0

αi(s)

where αi(s) is the probability that a random signalling run of length i ends in s. αi
differs from πi by only considering signalling runs. From time 0 to time n, a run can
be a signalling run at most n+ 1 times. Thus:

1

n+ 1

n∑
i=0

αi(s) ≤
1

n+ 1

n∑
i=0

P(CAmbi)

which implies that

0 < lim inf
n→∞

1

n+ 1

n∑
i=0

P(CAmbi) ≤ lim sup
n→∞

P(CAmbn) .

In this case also, we conclude that A is not FA-diagnosable.

The proof of Proposition 4.2 has established that a signalling run reaching a BSCC
C where for every state s = (q, U, V ), q is faulty and U = ∅, is surely faulty. Similarly a
signalling run that reaches a BSCC where for every state s = (q, U, V ), q is correct and
V = ∅, is surely correct. Thus an ambiguous signalling run must only visit transient
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states. Since runs almost surely leave the transient states and reach a BSCC, this
implies that:

lim sup
n→∞

P(FAmbn) + P(CAmbn) = 0 ,

and therefore, the pLTS is FA-diagnosable.

Let us emphasise that although there does not exist a simple logical characterisation
of FA-diagnosability, in finite pLTS, it enjoys a characterisation that is similar to the
one of FF-diagnosability.

1.1.3 IA-diagnosability

IA-diagnosability is the notion of exact diagnosability for which we need to use Obs(A)
with no simplification. However, to stick to the presentation for the other diagnosability
notions, we write here IA(A) for Obs(A). As before, to come up with a characterisation,
one builds AIA = A × IA(A), the product of A and IA(A) synchronised over observed
events.

Example 4.7. Figure 4.7 shows the synchronised product corresponding to the pLTS
depicted in Figure 4.1. Among the BSCC, all the faulty ones ( i.e. the ones reached
after a faulty event) have U = ∅, while {(q1, s1), (q1, s

′
1)}, the single one that is reached

by a correct run, has a state (q1, s
′
1) with W = ∅.

q0, s0 q2, s0

q2, s1

q2, s
′
1

f1, s0

f1, s3

f1, s1 f1, s2

f1, s
′
1 f1, s

′
2

f2, s1

f2, s
′
1 f2, s

′
2

f2, s2

q1, s0

q1, s1

q1, s
′
1 f2, s

′
4

f2, s4

u f

f

f

a

a

b

b

u

b

b

a

a

b
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aa aa
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Figure 4.7: The synchronised product of the pLTS of Figure 4.1 and its IA-automaton.



100 Algorithmic analysis of the diagnosability of finite pLTS

We now establish a characterisation of IA-diagnosability on AIA.

Proposition 4.5. Let A be a finite pLTS. A is IA-diagnosable if and only if AIA has
no BSCC such that:

• either, all its states (q, U, V,W ) fulfil q ∈ Qf and U 6= ∅;

• or all its states (q, U, V,W ) fulfil q ∈ Qc and W 6= ∅.

Proof. This proof relies on Proposition 4.1. An infinite run is not ambiguous if its
observation satisfy the Büchi condition of Obs(A), therefore AIA will be IA-diagnosable
if the pLTS almost surely satisfies the Büchi condition. As a run almost surely reaches
a BSCC, every BSCC must contain a state that allows the diagnosis.

Assume first that AIA has a BSCC with (at least) some state (q, U, V,W ) with
q ∈ Qf and U 6= ∅. Using Proposition 4.2, A is not FF-diagnosable and thus not
IA-diagnosable either, due to Theorem 3.1. Assume now some BSCC C of AIA has all
its states (q, U, V,W ) with q ∈ Qc and W 6= ∅. In particular none of these states are
accepting for the deterministic Büchi automaton IA(A). Let ρ be a finite signalling run
that hits C. By Proposition 4.1, any infinite run ρ′ that extends ρ is ambiguous. From
q ∈ Qc we deduce that P(CAmb∞) ≥ P(ρ) > 0. Therefore A is not IA-diagnosable.

Assume now AIA has no BSCC such that either, all its states (q, U, V,W ) fulfil
q ∈ Qf and U 6= ∅, or all its states (q, U, V,W ) fulfil q ∈ Qc and W 6= ∅. First observe
that in case some BSCC of AIA contains some state (q, U, V,W ) with q ∈ Qf and U 6= ∅,
then all its states satisfy the same constraints. Moreover, if some state (q, U, V,W ) of
a BSCC has q ∈ Qc, then all states of this BSCC have their first component in Qc.
Therefore, the condition can be reformulated as follows: all BSCC C of AIA satisfy:

• either all states (q, U, V,W ) of C fulfil q ∈ Qf and U = ∅;

• or all states (q, U, V,W ) of C fulfil q ∈ Qc and some state (q, U, V,W ) of C fulfils
W = ∅.

Whatever the case, all BSCC contain (at least) an accepting state for the Büchi condi-
tion of IA(A). Since all runs almost surely end in a BSCC and visit each of its states
infinitely often, using Proposition 4.1, almost all runs of AIA are unambiguous. This
proves that A is IA-diagnosable.

Surprisingly, while in general FA-diagnosability could not be characterised by a log-
ical formula contrary to IA-diagnosability, restricted to finite systems, the characterisa-
tion of IA-diagnosability is the more involved one.

1.2 Approximate diagnosis

We now turn to the characterisation of approximate diagnosis and particularly of AFF-
diagnosability. The reason why we only consider AFF-diagnosability here will become
clear in Subsection 2.2.1 where we show that all other approximate diagnosability no-
tions are undecidable. Our characterisation of AFF-diagnosability relies on the notion of



Characterisations of diagnosability 101

distance between two Markov chains with labels on the transitions. A labelled Markov
chain (LMC) is a pLTS where every event is observable: Σ = Σo. In order to exploit
results of [CK14] on LMC in our context of pLTS, we introduce the mapping M that
computes in polynomial time the probabilistic closure of a pLTS w.r.t. unobservable
events and produces an LMC. Informally, the probabilities of all paths of A from state
q to state q′ with same observed sequence a ∈ Σo are gathered to obtain the probability
in M(A) to move from q to q′ with label a. The transformation is formally defined
below. For sake of simplicity, we denote by Aq, the pLTS A where the initial state has
been substituted by q.

Definition 4.3. Given a pLTS A = 〈Q, q0,Σ, T,P〉 with Σ = Σo ] Σu, the labelled
Markov chainM(A) = 〈Q, q0,Σo, T

′,P′〉 is defined by:

• T ′ = {(q, a, q′) | ∃ρ = q · · · aq′ ∈ SR1(Aq)} (and so a ∈ Σo).

• for every (q, a, q′) ∈ T ′, P′(q, a, q′) = P({ρ ∈ SR1(Aq) | ρ = q · · · aq′}).

Example 4.8. The LMC associated with the pLTS of Figure 4.1 is represented in
Figure 4.8. The transition from q0 to q1 which was unobservable has been replaced by a
transition labelled by ‘a’. The new transition has probability 1/2 which is the product of
the probability of the replaced unobservable transition (of value 1/2) and of the transition
labelled by ‘a’ that followed (of value 1). A transition from q0 to f2 appeared, it replaces
the run q0uq2ff1af2 which has probability 1/8.

q0 q2 f1 f2q1
a, 1/4 b, 1/4 a, 1/2a, 1/2

a, 1 b, 1b, 1/2a, 1/2

b, 1/8

a, 1/8

a, 1/4

Figure 4.8: The LMC obtained from the pLTS of Figure 4.1.

Let E be a prospect3 of Σω
o (i.e. a measurable subset of Σω

o for the standard measure),
we denote by PM(E) the probability that prospect E occurs in the LMCM. Given two
LMC M1 and M2, the (probabilistic) distance between M1 and M2 generalises the
concept of distance for distributions. Given a prospect E, |PM1(E)−PM2(E)| expresses
the absolute difference between the probabilities that E occurs inM1 and inM1. The
distance betweenM1 andM2 is defined as the supremum over the prospects:

3The term used in the literature is event. We differ here as we already use event for the letters
labelling the transitions as established in Definition 2.5, page 38
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Definition 4.4. Let M1 and M2 be two LMC over the same alphabet Σo. Then
d(M1,M2) the distance betweenM1 andM2 is:

d(M1,M2) = sup{|PM1(E)− PM2(E)| | E prospect of Σω
o } .

Example 4.9. Consider the LMC of Figure 4.8, calledM1, and the one of Figure 4.9,
called M2. The prospect E = {aω} has probability 1/2 in M1 and 0 in M2. Thus
d(M1,M2) ≥ 1/2. Moreover,M2 can be obtained fromM1 by deleting the state q1 (and
the associated transitions) and merging q0 with q2. As a consequence, for any prospect E
such that aω 6∈ E, PM2(E) = 2.PM1(E). We thus have PM1({aω})−PM2({aω}) = 1/2,
PM2(Σω

o \ {aω})− PM1(Σω
o \ {aω}) = 1/2, and for any other prospect E, the difference

is smaller or equal to 1/2. Therefore d(M1,M2) = 1/2.

q2 f1 f2
b, 1/4 a, 1/2

b, 1b, 1/2a, 1/2

a, 1/4

Figure 4.9: An example of LMC.

The distance 1 problem asks, given two LMCM1 andM2, whether d(M1,M2) = 1.
The next proposition summarises the results of Chen and Kiefer on LMC, that we use
later.

Proposition 4.6 ([CK14]).

• Given two LMCM1,M2, there exists a prospect E such that:

d(M1,M2) = PM1(E)− PM2(E).

• The distance 1 problem for LMC is decidable in polynomial time.

The first item of this proposition states that the supremum is reached (and thus is
a maximum). In fact, given two LMC M1,M2, the authors show that one prospect

reaching the maximum is E = {w ∈ Σω
o | lim

n−→∞
PM1(w≤n)

PM2(w≤n)
≥ 1}.

We now use the notion of distance 1 to characterise AFF-diagnosability. Let us first
consider a subclass of pLTS called initial-fault pLTS. Informally, an initial-fault pLTS
A consists of two disjoint pLTS Af and Ac and an initial state q0 with an outgoing
unobservable correct transition leading to Ac and a transition labelled by f leading to
Af (see Figure 4.10). Moreover no faulty transitions occur in Ac. In other words, if a
fault occurs during a run of an initial-fault pLTS, it does so on the very first transition.

Definition 4.5 (Initial-fault pLTS). A pLTS A = 〈Q, q0,Σ, T,P〉 is an initial fault
pLTS if there exist two disjoint pLTS Af = 〈Qf , qf ,Σ, Tf ,Pf 〉 and Ac = 〈Qc, qc,Σ \
{f}, Tc,Pc〉 such that:
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q0qc qf
f , 1

2u, 1
2Ac

(Σ \ {f})
Af

(Σ)

Figure 4.10: Schematic representation of an initial-fault pLTS.

• Q = {q0} ]Qf ]Qc;

• T = Tf ] Tc ] {(q0, u, qc), (q0, f , qf )} with u ∈ Σu;

• for every t ∈ Tf , we have P(t) = Pf (t) and for every t ∈ Tc, we have P(t) = Pc(t),
and P((q0, u, qc)) = P((q0, f , qf )) = 1/2.

We denote such a pLTS by A = 〈q0,Af ,Ac〉.

Example 4.10. The pLTS of Figure 4.11 is a simple initial-fault pLTS.

q0 qfqc
f , 1

2u, 1
2

a, 1
4

b, 3
4

a, 3
4

b, 1
4

Figure 4.11: A uniformly AFF-diagnosable initial-fault pLTS.

Under the initial-fault restriction, we can get a simple characterisation for AFF-
diagnosability as established in the next lemma. The idea of this characterisation is
then extended to every pLTS.

Lemma 4.1. Let A = 〈q0,Af ,Ac〉 be an initial-fault pLTS. Then A is AFF-diagnosable
if and only if d(M(Af ),M(Ac)) = 1.

We write P, Pf and Pc for the probability measures of pLTS A, Af and Ac. By
construction ofM(Af ) andM(Ac), for every observed sequence σ, PM(Af )(σ) = Pf (σ)
and similarly PM(Ac)(σ) = Pc(σ). In words, the mapping M leaves unchanged the
probability of occurrence of an observed sequence.

AFF-diagnosability is a property of identification (decide whether the run is faulty)
of the finite runs that start by a fault with high probability, using the probability P.
The distance 1 betweenM(Af ) andM(Ac) is also a property of identification (decide
which LMC the run that produces the infinite observed sequence belongs to) of infinite
observed sequences, using the probabilities Pf and Pc. As mentioned above, these three
probability measures are probabilities of parts of the pLTS A and are thus related. The
proof therefore mostly consists in understanding the links between the two identification
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properties: how to translate the set of finite runs identified by AFF-diagnosability into a
set of infinite sequences and reciprocally. The intuition to establish the relation is that
the prefixes of an infinite faulty run reveals the fault with arbitrarily high accuracy if
and only if the associated infinite observed sequence “reveals” that the run belongs to
M(Af ).

Proof. Let us prove the equivalence, starting with the left-to-right implication.
• Assume A is AFF-diagnosable. Then, for every ε > 0 and every minimal faulty run ρ:

lim
n→∞

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ
′ ∧ CorP(P(ρ′)) > ε}) = 0. (4.1)

Pick some 0 < ε < 1. Applying Equation (4.1) on the minimal faulty run ρf = q0fqf
with |P(ρf )| = 0, there exists some n ∈ N such that:

P({ρ ∈ SRn | ρf � ρ ∧ CorP(P(ρ)) > ε}) ≤ ε .

Let S be the set of observed sequences of faulty runs with observable length n and
correctness proportion not exceeding threshold ε:

S = {σ ∈ Σn
o | ∃ρ ∈ SRn,P(ρ) = σ ∧ ρf � ρ ∧ CorP(σ) ≤ ε} .

We define E = Cyl(S) to be the prospect consisting of the infinite suffixes of these
sequences. Let us show that Pc(E) ≤ ε/(1− ε) and Pf (E) ≥ 1− 2ε. We have:

Pf (E) = 1− 2 P({ρ ∈ SRn | ρf � ρ ∧ CorP(P(ρ)) > ε}) ≥ 1− 2ε

where the factor 2 comes from the probability 1/2 in A to enter Af that Pf does not
take into account contrary to P.

Moreover, for every observed sequence σ ∈ S, CorP(σ) ≤ ε. Using the definition of
CorP:

CorP(σ) =
P({ρ ∈ C ∩ SRn | P(ρ) = σ})
P({ρ ∈ SRn | P(ρ) = σ})

=
Pc(σ)

Pc(σ) + Pf (σ)
≤ ε.

Thus, Pc(σ) ≤ ε
1−εPf (σ). Hence:

Pc(E) =
∑
σ∈S

Pc(σ) ≤
∑
σ∈S

ε

1− ε
Pf (σ) =

ε

1− ε
Pf (E) ≤ ε

1− ε
.

Therefore d(M(Ac),M(Af )) ≥ Pf (E)−Pc(E) ≥ 1− ε(2 + 1
1−ε). Since ε was arbitrary,

taking the limit when ε goes to 0, we obtain the desired result: d(M(Ac),M(Af )) = 1.
Note that we did not exhibit the prospect that reaches the maximum but only a prospect
ε-close to it. The proof could be modified to use this maximum prospect, but it makes
the proof unnecessarily more complicated.
• Conversely assume that d(M(Af ),M(Ac)) = 1. Thanks to Proposition 4.6, there
exists a prospect E ⊆ Σω

o such that Pf (E) = 1 and Pc(E) = 0.
For every n ∈ N, let Sn be the set of prefixes of length n of the observed sequences

of E: Sn = {σ ∈ Σn
o | ∃σ′ ∈ E, σ � σ′}. For every ε > 0, we also define Sε

n as the
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subset of Sn consisting of sequences whose correctness proportion exceeds threshold ε:
Sε
n = {σ ∈ Sn | CorP(σ) > ε}.
From

⋂
n∈N Cyl(Sn) = E, we derive that limn→∞ Pc(Sn) = Pc(E) = 0. Thus

limn→∞ Pc(Sε
n) = 0.

On the other hand, for every n ∈ N,

Pc(Sε
n) =

∑
σ∈Sεn

Pc(σ) >
∑
σ∈Sεn

ε

1− ε
Pf (σ) =

ε

1− ε
Pf (Sε

n) .

Since ε is fixed, we have Pf (Sε
n) < 1−ε

ε Pc(Sε
n), thus limn→∞ Pc(Sε

n) = 0 implies that
limn→∞ Pf (Sε

n) = 0.
Let ρ be a minimal faulty run and α > 0. There exists nα ≥ |ρ|o = 1 such that for

all n ≥ nα, Pf (Sε
n) ≤ α. Let n ≥ nα, and S̃n be the set of observed sequences of length

n triggered by a run with prefix ρ and whose correctness proportion exceeds ε:

S̃n = {σ ∈ Σn
o | ∃ρ′ ∈ SRn, ρ � ρ′ ∧ P(ρ′) = σ ∧ CorP(σ) > ε} .

Let us prove that P(S̃n) ≤ α. On the one hand, since Pf (Sn) ≥ Pf (E) = 1, Pf (S̃n ∩
(Σn

o \Sn)) = 0. On the other hand, since Pf (Sε
n) ≤ α, Pf (S̃n ∩Sn) ≤ Pf (Sε

n) ≤ α.
Thus, Pf (S̃n) = Pf (S̃n∩Sn)+Pf (S̃n∩(Σn

o \Sn)) ≤ α. Because α was taken arbitrary,
we obtain that limn→∞ Pf (S̃n) = 0. Observe now that

P({ρ′ ∈ SRn | ρ � ρ′ ∧ CorP(P(ρ′)) > ε}) =
1

2
Pf (S̃n).

Therefore, limn→∞ P({ρ′ ∈ SRn | ρ � ρ′ ∧ CorP(P(ρ′)) > ε}) = 0. In conclusion A is
AFF-diagnosable.

This characterisation shows that, for initial-fault pLTS, AFF-diagnosability can be
reduced to the distance 1 problem. As one can perform the closure w.r.t. unobservable
events and check the distance 1 in polynomial time, AFF-diagnosability for initial-fault
pLTS belongs to PTIME.

Example 4.11. Consider the initial-fault pLTS of Figure 4.11 〈q0,Af ,Ac〉 and the
prospect E = {σ ∈ Σω

o | lim supn∈N
|σ≤n|b
n ≥ 1

2}. As a ‘b’ has a probability 3/4 to be
observed at each step in Af and 1/4 in Ac, Pf (E) = 1 and Pc(E) = 0 where Pf and
Pc are the probability measures of Af and Ac. Therefore this initial-fault pLTS is AFF-
diagnosable. In fact, as this pLTS has a single minimal faulty run, it is even uniformly
AFF-diagnosable.

Remark 4.1. There exists a single minimal faulty run in every initial-fault pLTS. As
a consequence, AFF-diagnosability and uniform AFF-diagnosability are equivalent for
initial-fault pLTS.

In order to understand why characterising AFF-diagnosability for general pLTS is
more involved, consider the pLTS A presented in Figure 4.12. Recall that A is AFF-
diagnosable as shown in the proof of Theorem 3.1, page 73.



106 Algorithmic analysis of the diagnosability of finite pLTS

q0 q1 qfqc
u, 1

2 f , 13
16u, 1

2

a, 3
16

b, 1

a, 3
4

b, 1
4

Figure 4.12: An AFF-diagnosable pLTS where the distance 1 characterisation cannot
be applied in a simple way.

Let us look at the distance between pairs of a correct and a faulty states of A that
can be reached by runs with the same observed sequence. On the one hand, we have
d(M(Aq1),M(Aqf )) ≤ 3/16 since for any prospect E either (1) bω ∈ E implying
PM(Aqf )(E) = 1 and PM(Aq0 )(E) ≥ 13/16 or (2) bω /∈ E implying PM(Aqf )(E) = 0 and
PM(Aq0 )(E) ≤ 3/16. On the other hand, d(M(Aqc),M(Aqf )) = 1 since PM(Aqf )(bω) =

1 and PM(Aqc )(bω) = 0.
Intuitively, the pair (q1, qf ) is irrelevant, since the correct state q1 does not belong to
a BSCC of the pLTS, while (qc, qf ) is relevant since qc belongs to a BSCC triggering a
“recurrent” ambiguity. The next theorem characterises AFF-diagnosability for general
pLTS, establishing the soundness of this intuition.

Theorem 4.1. Let A be a pLTS. Then, A is AFF-diagnosable if and only if for every
correct state qc belonging to a BSCC and every faulty state qf reachable by a faulty run ρf
such that qc is reachable by a run with same observed sequence, d(M(Aqc),M(Aqf )) = 1.

The proof of Theorem 4.1, due to its complexity and length, is divided into two
lemmas, Lemma 4.2 and Lemma 4.3 given below, each of them stating one implication
of the equivalence.

Lemma 4.2. Let A be a pLTS. If there exists qc ∈ Qc belonging to a BSCC, qf ∈ Qf
such that d(M(Aqf ),M(Aqc)) < 1 and runs q0

ρc
=⇒ qc and q0

ρf
=⇒ qf such that P(ρc) =

P(ρf ), then A is not AFF-diagnosable.

This lemma is the easiest of the two. It is proved by contraposition. Assume there
exist two states in A, qc ∈ Qc belonging to a BSCC and qf ∈ Qf reachable resp. by ρc
and ρf with P(ρc) = P(ρf ), and with d(M(Aqc),M(Aqf )) < 1. Applying Lemma 4.1
to the initial-fault pLTS A′ = 〈q′0,Aqf ,Aqc〉 where q′0 is a new state, one deduces that
A′ is not AFF–diagnosable. First we relate the probabilities of runs in A and A′. Then
we show that considering the additional faulty runs with same observed sequence as ρf
does not make A AFF–diagnosable.

Proof. LetA be a pLTS, assume there exists qc ∈ Qc belonging to a BSCC, qf ∈ Qf such
that d(M(Aqf ),M(Aqc)) < 1 and runs q0

ρc
=⇒ qc and q0

ρf
=⇒ qf such that P(ρc) = P(ρf ).

Let us introduce some notations:

σ0 := P(ρf ) = P(ρc), pf := PA(ρf ), pc := PA(ρc) .
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Let pg (≥ pf ) be the probability of the faulty runs with observed sequence σ0:

pg = PA({ρ ∈ SR|σ| | P(ρ) = σ0, and ρ is faulty}) .

For all n ≥ |σ|, let Sn be the set of observed sequences of length n “extending” ρf :

Sn = {σ ∈ Σn
o | ∃ρ ∈ SRn, ρf � ρ ∧ P(ρ) = σ} .

Given σ ∈ Sn, we refine pf , pc and pg as follows.

• pσf = PA({ρ ∈ SRn | ρf � ρ ∧ P(ρ) = σ});

• pσc = PA({ρ ∈ SRn | ρc � ρ ∧ P(ρ) = σ});

• pσg = PA({ρ ∈ SRn | ρ is faulty and P(ρ) = σ}).

We introduce the initial-fault pLTS A′ = 〈q′0,Aqf ,Aqc〉 for some new state q′0. It is
well-defined since qc belongs to a BSCC so that Aqc does not trigger faults. We write P′
for the probability measure in A′. Since d(M(Aqf ),M(Aqc)) < 1, due to Lemma 4.1,
there exist positive reals α′, ε′ ≤ 1 such that for all n0 ∈ N there exists n ≥ n0:

PA′{ρ ∈ SRn | q′0fqf � ρ ∧ CorP(P(ρ)) > ε} > α′ .

This entails the following inequality for A:

P({ρ ∈ SRn | ρf � ρ ∧
p
P(ρ)
c

p
P(ρ)
c + pc

pf
p
P(ρ)
f

> ε′}) > 2pfα
′ .

Indeed in A′, the probability of the set of faulty (resp. correct) run with observed

sequence P(ρ) is
p
P(ρ)
f

2pf
(resp. p

P(ρ)
c
2pc

): the probability in A′ to go in qf (resp. qc) initially,
1/2, times the probability inA of the runs extending ρf (resp. ρc) with observation P(ρ),
p
P(ρ)
f (resp. pP(ρ)

c ), divided by the probability of ρf (resp. ρc), pf (resp. pc). Finally
the 2pf factor of the lower bound takes into account the fact that the probability of
reaching qf in A′ is 1/2 while the probability of ρ in A is pf .

Observe that p
P(ρ)
c

p
P(ρ)
c + pc

pf
p
P(ρ)
f

> ε′ is equivalent to p
P(ρ)
c

p
P(ρ)
c +p

P(ρ)
f

> ε′pc
ε′pc+(1−ε′)pf . So defining

ε̃ = ε′pc
ε′pc+(1−ε′)pf ≤ 1 and α̃ = 2pfα

′ ≤ 2, the previous inequality can be rewritten:

P({ρ ∈ SRn | ρf � ρ ∧
p
P(ρ)
c

p
P(ρ)
c + p

P(ρ)
f

> ε̃}) > α̃ .

Let S′n be the subset of observed sequences of Sn whose correctness proportion is
greater than ε̃ when only considering extensions of ρf , but smaller than ε∗ = α̃ε̃

4 when
considering all faulty runs:

S′n = {σ ∈ Sn |
pσc

pσc + pσf
> ε̃ ∧ pσc

pσc + pσg
≤ ε∗}.
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Let σ ∈ S′n, pσf <
1−ε̃
ε̃ pσc and pσc ≤ ε∗

1−ε∗ p
σ
g . Therefore pσf <

(1−ε̃)ε∗
(1−ε∗)ε̃p

σ
g .

Summing over all sequences of S′n:
∑

σ∈S′n p
σ
f <

(1−ε̃)ε∗
(1−ε∗)ε̃pg.

Since pg ≤ 1:
∑

σ∈S′n p
σ
f ≤

(1−ε̃)α̃
4(1− α̃ε̃

4
)
≤ α̃

2 .

Thus,

P({ρ ∈ SRn | ρf � ρ ∧
p
P(ρ)
c

p
P(ρ)
c + p

P(ρ)
g

> ε∗}) ≥

P({ρ ∈ SRn | ρf � ρ ∧
p
P(ρ)
c

p
P(ρ)
c + p

P(ρ)
f

> ε̃})−
∑
σ′∈S′n

pσ
′
f > α̃− α̃

2
=
α̃

2
.

Observe that given σ ∈ Sn, CorP(σ) ≥ pσc
pσ′c +pσg

, since we ignore correct runs ρ with

P(ρ) = σ that do no extend ρc. So defining ε = ε∗ and α = α̃/2, for all n0 ∈ N there
exists n ≥ n0:

P({ρ ∈ SRn | ρf � ρ ∧
p
P(ρ)
c

p
P(ρ)
c + p

P(ρ)
g

> ε}) > α .

Let ρ0 be the minimal faulty run such that ρ0 � ρf . We observe that Cyl(ρf ) ⊆ Cyl(ρ0),
so that

P({ρ ∈ SRn | ρ0 � ρ ∧
p
P(ρ)
c

p
P(ρ)
c + p

P(ρ)
g

> ε}) > α

which establishes that A is not AFF-diagnosable.

Lemma 4.3. Let A be a pLTS. If for all q0
ρc
=⇒ qc and q0

ρf
=⇒ qf with P(ρc) = P(ρf ),

qf ∈ Qf and qc ∈ Qc belonging to a BSCC, d(M(Aqc),M(Aqf )) = 1, then A is AFF-
diagnosable.

Let ρ0 be a minimal faulty run, α > 0, ε > 0, σ0 = P(ρ0) and n0 = |σ0|. Before
developing the proof, we sketch its structure and illustrate it in Figure 4.13. First, we
extend the runs with observed sequence σ0 by nb observable events where nb is chosen
in order to get a high probability that the runs end in a BSCC.
Let σ ∈ Σnb

o be such an observed sequence. We partition the possible runs with observed
sequence σ0σ into three sets RF

σ , RC
σ′ and RT

σ . RF
σ is the subset of faulty runs while

RC
σ (resp. RT

σ ) is the set of correct runs ending (resp. not ending) in a BSCC. At first,
we do not take into account the transient runs in RT

σ . We apply Lemma 4.1 to obtain
an integer nσ such that from RF

σ and RC
σ , we can diagnose with (appropriate) high

probability and low correctness proportion after nσ observations. Among the runs that
trigger diagnosable observed sequences, some will exceed the correctness proportion, ε,
when taking into account the runs from RT

σ . Yet we show that the probability of such
runs is small when cumulated over all extensions σ leading to the required upper bound
α.
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q0

...
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RT
σ

RF
σ
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negl
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f
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of faulty runs

ρ0

n0 nb

n1

Figure 4.13: Illustration of the proof of Lemma 4.3.

Proof. Let ρ0 be a minimal faulty run, α > 0, ε > 0, σ0 = P(ρ0) and n0 = |σ0|. Since
almost surely a random run ends in a BSCC, there exists nb such that for η = αε

4

P{ρ ∈ SRn0+nb | σ0 � P(ρ) ∧ last(ρ) does not belong to a BSCC} < η .

Let S = {σ ∈ Σnb
o | ∃ρ ∈ SRn0+nb ρ0 � ρ ∧ P(ρ) = σ0σ}. Pick some σ ∈ S and define:

• RF
σ = {ρ ∈ SRn0+nb | P(ρ) = σ0σ ∧ last(ρ) ∈ Qf};

• RC
σ = {ρ ∈ SRn0+nb | P(ρ) = σ0σ ∧ last(ρ) ∈ Qc and belongs to a BSCC};

• RT
σ = {ρ ∈ SRn0+nb | P(ρ) = σ0σ∧last(ρ) ∈ Qc and does not belong to a BSCC}.

Temporarily, we ignore the runs of RT
σ . Let Qσc = {last(ρ) | ρ ∈ RC

σ } and Qσf =

{last(ρ) | ρ ∈ RF
σ }. For every pair (qf , qc) ∈ Qσf × Qσc , consider the initial-fault pLTS

A′ = 〈q′0,Aqf ,Aqc〉 for some new state q′0, and denote P′ its associated probability
measure. Due to Lemma 4.1, for all α′ > 0, ε′ > 0, there exists nqf ,qc such that for all
n ≥ nqf ,qc :

P′{ρ ∈ SRn | q′0fqf � ρ ∧
p′P(ρ)
c

p′
P(ρ)
c + p′

P(ρ)
f

> ε′} ≤ α′

where p′P(ρ)
c (resp. p′P(ρ)

f ) is the probability in A′ of a correct (resp. faulty) run with
observed sequence P(ρ).
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Define in A, pP(ρ)
c (resp. pP(ρ)

f ) to be the probability of a correct (resp. faulty) run
with observed sequence P(ρ), pf = min(P(ρ) | ρ ∈ RF

σ ) and pc =
∑

ρ∈RCσ P(ρ). By a

worst-case reasoning, one gets p′P(ρ)
c ≥ 2

pc
p
σ0σP(ρ)
c and p′P(ρ)

f ≤ 2
pf
p
σ0σP(ρ)
f . Thus for all

n ≥ n0 + nb + max(nqf ,qc):

P{ρ ∈ SRn | ∃ρ′ ∈ RFσ ∧ ρ′ � ρ ∧
p
P(ρ)
c

p
P(ρ)
c + pc

pf
p
P(ρ)
f

> ε′} ≤ 2α′

where the factor 2 takes into account the first transition in A′.
Choosing ε′ =

εpf
εpf+(2−ε)pc and α′ = α

4|S| , after algebraic operations the previous
inequality can be rewritten:

P{ρ ∈ SRn | ∃ρ′ ∈ RFσ ∧ ρ′ � ρ ∧
p
P(ρ)
c

p
P(ρ)
c + p

P(ρ)
f

>
ε

2
} ≤ α

2|S|
.

Let nσ = n0 + nb + max(nqf ,qc | (qf , qc) ∈ Qσf × Qσc ) and n1 = max(nσ | σ ∈ S) and
consider n ≥ n1. Ignoring the runs of RT

σ , one could detect the fault done in ρ0 with
good accuracy and high probability n1 steps after it occurred.
We now take into account the runs of RT

σ . Let ρ ∈ {ρ ∈ SRn | ∃ρ′ ∈ RF
σ ∧ ρ′ � ρ}.

Define pP(ρ)
t to be the probability of runs (1) with observed sequence P(ρ) and (2)

extending runs of RT
σ . Since a correct run with observed sequence P(ρ) must have a

prefix in RT
σ or in RC

σ :

CorP(P(ρ)) ≤ p
P(ρ)
c + p

P(ρ)
t

p
P(ρ)
c + p

P(ρ)
t + p

P(ρ)
f

.

Consider the following set of runs:

R̃n
σ = {ρ ∈ SRn | ∃ρ′ ∈ RF

σ ∧ ρ′ � ρ ∧
p
P(ρ)
c + p

P(ρ)
t

p
P(ρ)
c + p

P(ρ)
t + p

P(ρ)
f

> ε ∧ p
P(ρ)
c

p
P(ρ)
t + p

P(ρ)
f

≤ ε

2
} .

For ρ ∈ R̃n
σ, one gets by algebraic operations, 2p

P(ρ)
t
ε > p

P(ρ)
f .

Thus P(R̃n
σ) < 2P(RTσ )

ε and
∑

σ∈S P(R̃n
σ) <

2
∑
σ∈S P(RTσ )

ε .
Due to the choice of nb,

∑
σ∈S P(RT

σ ) < η, and we derive
∑

σ∈S P(R̃n
σ) < 2η

ε = α
2 .



Verification of the diagnosability 111

Summarising for all n ≥ n1:

P{ρ ∈ SRn | ρ0 � ρ ∧ CorP(P(ρ)) > ε}

=
∑
σ∈S

P{ρ ∈ SRn | ρ0 � ρ ∧ σ0σ � P(ρ) ∧ CorP(P(ρ)) > ε}

≤
∑
σ∈S

P{ρ ∈ SRn | ∃ρ′ ∈ RF
σ ∧ ρ′ � ρ ∧

p
P(ρ)
c

p
P(ρ)
c + p

P(ρ)
f

>
ε

2
}

+P{ρ ∈ SRn | ∃ρ′ ∈ RF
σ ∧ ρ′ � ρ ∧

p
P(ρ)
c

p
P(ρ)
c + p

P(ρ)
f

≤ ε

2
∧ p

P(ρ)
c + p

P(ρ)
t

p
P(ρ)
c + p

P(ρ)
t + p

P(ρ)
f

> ε}

≤|S| α
2|S|

+
α

2
= α

which establishes the AFF-diagnosability of A.

As an alternative to the proof of Theorem 4.1, one could mimic the approach by
Kiefer and Sistla [KS16] for monitorability. The idea would be, from a pLTS A to
derive two hidden Markov chains, say Hc and Hf representing respectively the observed
sequences for correct and faulty runs of A. However, to establish that distinguishability
ofHc andHf corresponds to AFF-diagnosability essentially relies on the same arguments
we used in the above proof (and so this alternative approach would not simplify it).
The difficulty lies in that the properties one conditions by to obtain Hc and Hf , namely
always correct or eventually faulty, anticipate on the future behaviour of the system; in
contrast, the correctness proportion appearing in the definition of AFF-diagnosability
only reasons about the possible behaviours up to the last observation.

2 Verification of the diagnosability

We now study the decidability of the different diagnosability notions for finite pLTS and
in the positive case provide the complexity. The characterisations given in Section 1
play an important role in this study. Indeed, when a simple characterisation exists,
the diagnosability problem is decidable (an algorithm consists in checking this charac-
terisation). Conversely, when we did not exhibit a characterisation, we show that the
problem is undecidable.

2.1 Decidability results and upper bounds

We start by showing how to check the characterisations defined in Section 1, therefore
providing upper bounds to some of the diagnosability problems. We first consider exact
diagnosability notions, and establish that they can all be solved in PSPACE. In all cases,
to obtain the PSPACE upper-bound, we avoid building explicitly the exponential size
product pLTS (that is used in the characterisations) and only explore it on-the-fly.

The three results have similar proofs. As a consequence we first develop the case of
FF-diagnosability then we simultaneously deal with both FA and IA-diagnosability.



112 Algorithmic analysis of the diagnosability of finite pLTS

Proposition 4.7. The FF-diagnosability problem is decidable in PSPACE.

The proof consists in designing a PSPACE algorithm to check the characterisation
given in Proposition 4.2. This algorithm exploits Savitch’s Theorem [Sav70] which
establishes that PSPACE = NPSPACE. This theorem allow us to use non-determinism
in our decision procedure.

Proof. To obtain a PSPACE algorithm, we cannot build explicitly the product pLTS
AFF, which is exponential in the size of A. Given two states s, s′ of AFF, one can
check in polynomial space in the size of A whether s′ can be reached from s. Indeed,
reachability of a state is known to be in non-deterministic logarithmic space in the
size of the system, thus here NPSPACE, which is equal to PSPACE thanks to Savitch’s
Theorem. Using this procedure, we can check whether a state s is not in a BSCC by
guessing another state s′ such that s′ is reachable from s but s is not reachable from s′.
Here again we apply Savitch’s Theorem.
Thus the procedure that decides whether A is not FF-diagnosable consists in guessing
a state s = (q, U) with q ∈ Qf and U 6= ∅, checking that it is reachable from s0 and
whether s belongs to a BSCC.

We state below similar results for FA and IA-diagnosability problems.

Proposition 4.8. The FA- and IA-diagnosability problems are decidable in PSPACE.

The two proofs are similar to the proof of Proposition 4.7: we design a decision pro-
cedure which uses non-determinism to check the characterisation given in the previous
section and the non-determinism is removed using Savitch’s Theorem.

Proof. We first check the characterisation of FA-diagnosability given in Proposition 4.4
without explicitly building the product pLTS AFA. First given a state (q, U, V ) of AFA

we can check in polynomial space whether it belongs to a BSCC (as in the proof of
Proposition 4.7). We can also check in polynomial space whether some state (q′, U ′, V ′)
with U ′ = ∅ or V ′ = ∅ can be reached from (q, U, V ) by guessing such a state and
then checking the reachability condition. Combining the two, this provides a polyno-
mial space algorithm to check whether (q, U, V ) belongs to a BSCC in which no state
(q′, U ′, V ′) fulfils U ′ 6= ∅ and V ′ 6= ∅. Thus the procedure that decides whether A is not
FA-diagnosable consists in guessing a state s = (q, U, V ), checking that it is reachable
from s0 and belongs to a BSCC where all states (q′, U ′, V ′) fulfil U ′ 6= ∅ and V ′ 6= ∅.

We use the characterisation of IA-diagnosability given in Proposition 4.5 without
building explicitly the product pLTS AIA. First, given a state (q, U, V,W ) of AIA, we
can check in polynomial space that it belongs to a BSCC (as in the proof of Propo-
sition 4.7). We can also check in polynomial space whether it is coreachable from a
state (q′, U ′, V ′,W ′) that fulfils U ′ = ∅ or W ′ = ∅ by guessing such a state. Combining
the two procedures, we can check in polynomial space whether (q, U, V,W ) belongs to
a BSCC where all states (q′, U ′, V ′,W ′) of the BSCC fulfil U ′ 6= ∅ and W ′ 6= ∅. Thus
the procedure that decides whether A is not IA-diagnosable consists in guessing a state
s = (q, U, V,W ), checking that it is reachable from the initial state s0 and belongs to a
BSCC where all states (q′, U ′, V ′,W ′) fulfil U ′ 6= ∅ and W ′ 6= ∅.
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For approximate diagnosability, we focus on AFF-diagnosability and establish a com-
plexity upper-bound, relying on the characterisation from the previous section.

Theorem 4.2. The AFF-diagnosability problem is decidable in PTIME for pLTS.

Proof. The decidability and complexity results rely on the characterisation of AFF-
diagnosability showed in Theorem 4.1. Reachability of a pair of states with the same
observed sequence is decidable in NLOGSPACE by an appropriate “self-synchronised
product” of the pLTS that we detail below. Since there are at most a quadratic number
of pairs to check, and given that the distance 1 problem can be decided in polynomial
time due to [CK14] (as recalled in Proposition 4.6), the decidability and PTIME upper-
bound follow.

We now define the appropriate “self-synchronised product” of the pLTS mentioned
above. Given a pLTS A = 〈Q, q0,Σ, T,P〉 we build the product LTS A ⊗ A = 〈Q ×
Q, {q0, q0},Σ, T ′〉 where ((q1, q2), a, (q′1, q

′
2)) ∈ T ′ if

• if a ∈ Σu then either (q1, a, q
′
1) ∈ T and q′2 = q2 or (q2, a, q

′
2) ∈ T and q′1 = q1;

• else (a ∈ Σo), (q1, a, q
′
1) ∈ T and (q2, a, q

′
2) ∈ T .

A pair of state (q, q′) is reachable in A ⊗ A from (q0, q0) if and only if there exist two
runs ρ and ρ′ of A such that last(ρ) = q, last(ρ′) = q′ and P(ρ) = P(ρ′). Therefore, A
is AFF-diagnosable if for any pair of states reachable in A ⊗ A, (q, q′), with q correct,
belonging to a BSCC of A, and q′ faulty, then d(M(Aq),M(Aq′)) = 1. All tests can
be checked in PTIME.

We thus have decidability of every notions of exact diagnosability and of one notion
of approximate diagnosability, AFF-diagnosability. Surprisingly, AFF-diagnosability,
which definition seems more complicated as it depends on the exact probabilistic values
of the transitions contrary to the definitions of the exact notions of diagnosability, has
a lower upper bound.

2.2 Hardness of Diagnosability

We gave upper bounds on the complexity of diagnosability in Subsection 2.1. We
now provide tight lower bounds: on the one hand we establish undecidability of the
approximate diagnosability notions that were not characterised, and on the other hand
we provide a PSPACE lower bound for the exact diagnosis.

2.2.1 Undecidability results

After having previously proved that AFF-diagnosability can be solved in polynomial
time, we now establish that all other specifications of approximate diagnosability are
undecidable. This result could be expected for εFF-diagnosability and uniform εFF-
diagnosability since it is often the case for problems mixing probabilities, partial ob-
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servation and quantitative requirement (here represented by ε)4. On the contrary, the
undecidability of the uniform AFF-diagnosability problem is at first sight surprising
since it is a slight variation of the AFF-diagnosability problem. In fact the reduction
for the latter problem is more intricate than the one for the εFF- and uniform εFF-
diagnosability. We reduce the emptiness problem for probabilistic automata [Paz71]
to both problems. Let us first details this problem. A probabilistic automaton is an
automaton enhanced with probabilities on the transitions so that given a state and a
letter, the sum of the probabilities of the transition exiting each state and labelled by
the given letter is 1.

Example 4.12. Figure 4.14 represents a probabilistic automaton which initial state is
q0 and set of accepting states is {q2}. The sum of the probability of the transitions
exiting q0 is 2 as there is a transition labelled by a ‘a’ and a transition labelled by a ‘b’.
The word bab has probability 1/2 to end in q2 and 1/2 to end in q1.

q0 q1

q2q3

b, 1

a, 1/2

a, 1/2

a, 1 a, 1/2

b, 1

a, 1/2

Figure 4.14: An example of probabilistic automaton.

Definition 4.6. A probabilistic automaton is a tuple A = 〈Q, δ0,Σ, (Pa)a∈Σ, F 〉 where

• Q is a set of states with F ⊆ Q, the set of final states;

• δ0 ∈ Dist(Q) is the initial distribution;

• Σ is an alphabet;

• For every a ∈ Σ, Pa is a stochastic Q×Q matrix.

When Pa[q, q
′] > 0, there is a transition from q to q′ labelled by a and Pa[q, q

′].
Given a word w = a1 . . . an ∈ Σ∗, the acceptance probability of w, PA(w) is defined
by PA(w) =

∑
q0∈Q δ0(q0)

∑
q∈F Pw[q0, q] where Pw = Pa1 · · ·Pan . Given a rational

threshold 0 < ε < 1, the language LA,ε is defined by LA,ε = {w ∈ Σ∗ | PA(w) > ε}.
For a probabilistic automaton A and a threshold ε, the emptiness problem asks whether

4one of the most famous example is the undecidability of the emptiness problem for probabilistic
automaton [Paz71] that we detail below, see also [MHC03] for some examples of undecidable problems
for partially observable Markov decision process, a formalism which also contains a form of control of
the system
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LA,ε = ∅. This problem is undecidable even for a fixed 0 < ε < 1 [Paz71]. The problem
is also undecidable for the language defined by {w ∈ Σ∗ | PA(w) ≥ ε}, i.e. when the
inequality is not strict. One can also restrict oneself to automata such that every word
w satisfies 1/4 ≤ PA(w) ≤ 3/4. This can be ensured by a simple construction. Given
a probabilistic automaton A with initial distribution δ0 and a threshold 0 < λ < 1, we
build the probabilistic automaton A′ that contains the states of A and two additional
states qa and qr. The new initial distribution goes in qa and qr with probability 1/4 and
with probability 1/2 it uses the initial distribution of A. In the last case, the behaviour
is the one of A, from qr and qa everything can be observed with a self-loop and qa is a
final state. For every word w, we have

PA′(w) =
PA(w)

2
+

1

4
.

This is the sum of the probability to be accepted after starting initially in the A compo-
nent of A′ plus the probability to go in qa. As a consequence, every word is accepted in
A′ with probability between 1/4 and 3/4 and a word is above the λ threshold in A iff it
is above 1/4 + λ/2 in A′. Thus the emptiness is also undecidable with this restriction.
Note that this assumption relies on the use of an initial distribution δ0 instead of an
initial state q0. Indeed, with an initial state, the word ε would have probability 0 or
1. When this assumption is not needed, we use an initial state instead of an initial
distribution. Another important undecidable problem that is used in a latter chapter is
the value 1 problem. It asks for a probabilistic automaton A if for all ε > 0 LA,1−ε 6= ∅.
In other words, does there exists words of arbitrarily high probability? This problem is
known to be undecidable [GO10].

Theorem 4.3. For any rational 0 < ε < 1, the εFF-diagnosability and uniform εFF-
diagnosability problems are undecidable for pLTS.

We make a reduction from the emptiness problem of probabilistic automata. From
a given probabilistic automaton A = 〈Q, δ0,Σ, (Pa)a∈Σ, F 〉, we build a pLTS which
produces with probability 1 runs whose observed sequence belongs to Σ∗]ω (where
] 6∈ Σ) and for all n ≥ 2, the correctness proportion CorP of w]n, with w ∈ Σ∗, satisfies
CorP(w]n) = PA(w). In other words, if a word w is accepted with probability greater
than ε, then the ambiguity of the word w]2 is greater than ε and every faulty run with
this observation will remain ambiguous.

Proof. Let A = 〈Q, δ0,Σ, (Pa)a∈Σ, F 〉 be a probabilistic automaton. W.l.o.g we assume
1/4 ≤ PA(w) ≤ 3/4 for every w ∈ Σ∗. Define the pLTS A = 〈Q′, q0,Σ

′, T ′,P′〉 as
follows:

• Σ′ = Σ ] {], f , u}, Σ′u = {f , u};

• Q′ = Q ∪ {q0, q
]
c, q

]
f , f

]};

• T ′ = {(q0, u, q) | q ∈ Q, δ0(q) > 0} ∪ {(q, a, q) | q, q′ ∈ Q, a ∈ Σ,Pa[q, q
′] >

0} ∪ {(q, ], q]c | q ∈ F} ∪ {(q, ], q]f | q ∈ Q \ F} ∪ {q
]
c, ], q

]
c} ∪ {q]f , f , f

]} ∪ {f ], ], f ]}
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• P′ is defined by:

– For all q ∈ Q such that δ0(q) > 0, P′(q0, u, q) = δ0(q);

– For all q ∈ Q and a ∈ Σ, P′(q, a, q′) = Pa[q,q′]
1+|Σ| ;

– For all q ∈ F , P′(q, ], q]c) = 1
1+|Σ| ;

– For all q ∈ Q \ F , P′(q, ], q]f ) = 1
1+|Σ| ;

– P′(q]f , f , f
]) = P′(f ], ], f ]) = P′(q]c, ], q

]
c) = 1.

This reduction is illustrated in Figure 4.15. In each state, the sum of the probabilities
of the exiting transitions correctly sum to 1. For instance, let q ∈ F and a ∈ Σ, then∑

q′∈Q Pa[q, q
′] = 1, thus:

∑
(q,a,q′)∈T ′

P′(q, a, q′) =
∑
a∈Σ

∑
q′∈Q

Pa[q, q
′]

1 + |Σ|
+ P′(q, ], q]c) =

|Σ|
1 + |Σ|

+
1

1 + |Σ|
= 1.

q0 q1

A

q

q′

q]f

q]c

f ]

u, δ0(q1)

a, Pa[q0,q]
1+|Σ| f , 1

], 1
1+|Σ|

], 1
1+|Σ|

], 1

], 1

Figure 4.15: From probabilistic automata to pLTS.

We claim that the following three assertions are equivalent:

1. A is εFF-diagnosable;

2. A is uniformly εFF-diagnosable;

3. LA,ε = ∅.

Given that uniform εFF-diagnosability entails εFF-diagnosability, we only show that
item 1 implies item 3, and item 3 implies item 2. The first implication is proved by
contraposition.

1 implies 3 Assume that there exists a word w ∈ Σ∗ such that PA(w) > ε. Consider
the set of signalling correct runs with observed sequence w]n+2. By construction,
its probability is PA(w)

(1+|Σ|)|w|+1 . Similarly, the set of signalling faulty runs with ob-

served sequence w]n+2 has probability 1−PA(w)

(1+|Σ|)|w|+1 . Thus CorP(w]n+2) = PA(w) >

ε. By assumption on A, PA(w) ≤ 3/4 < 1, so that the set of faulty runs with
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observed sequence w]n+2 is non-empty. Pick ρ a minimal faulty run with observed
sequence w]]. Using the above probability values, for every n ≥ 0:

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ
′ ∧ CorP(P(ρ′)) > ε}) = P(ρ) .

Thus A is not εFF-diagnosable.

3 implies 2 Assume that for every word w ∈ Σ∗, PrA(w) ≤ ε. Let ρ be a minimal
faulty run of A. By construction, its observed sequence is of the form w]2 with
w ∈ Σ∗. Using the same reasoning as above, for every ρ � ρ′: CorP(P(ρ′)) =
PrA(w), and thus CorP(P(ρ′)) ≤ ε. Therefore, for any α > 0, choosing nα = 0,
one gets:

P({ρ′ ∈ SRnα+|ρ| | ρ � ρ′ ∧ CorP(P(ρ′)) > ε}) = 0 .

So A is uniformly εFF-diagnosable.

This completes the proof that εFF-diagnosability and uniform εFF-diagnosability
are undecidable.

Uniform AFF-diagnosability is also shown to be undecidable by a reduction from the
emptiness problem for probabilistic automata.

Theorem 4.4. The uniform AFF-diagnosability problem is undecidable for pLTS.

As this reduction is more involved, we start by a developed sketch of proof and
then give the full proof. We proceed by a reduction from the emptiness problem for
probabilistic automata where w.l.o.g. one assumes that the acceptance probability of
any word lies between 1/4 and 3/4. Given such a probabilistic automaton one builds a
pLTS as follows.

• With probability 1/2 one enters one of the two copies of the automaton whose
probabilities are modified in a similar way as in the previous proof.

• In a non-final (resp. final) state of the first (resp. second) copy, one may exit the
copy of the automaton by taking a transition labelled by [ (resp. f) and enter a
terminating state. In a final state (resp. non-final) state of the first (resp. second)
copy, one may “restart” the copy of the automaton by taking a transition labelled
by ] which lead to the initial state of the copy.

• The terminating state of the first copy iteratively outputs with probability 1/2 ]
or [ while the terminating block of the second copy endlessly outputs [.

Due to the behaviour of the terminating blocks, the correctness proportion of a faulty
run goes to 0 as its length increases. Thus the pLTS is AFF-diagnosable. The element
that will depend on the probabilistic automaton is the uniformity of the convergence.

Observe that the language of the observed sequences of minimal faulty runs extended
by one transition is (Σ∗])∗Σ∗[.
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Assume there exists a word w with acceptance probability strictly greater than 1/2.
Then in A, the correctness proportion of (w])n[ fulfils: limn→∞ CorP((w])n[) = 1.
Due to this property (and the behaviours of the terminating blocks), the pLTS is not
uniformly AFF-diagnosable. If no such word exists, then for any w = w1]w2] . . . wk[,
CorP(w) ≤ 3/4. Due to this property (and the behaviours of the terminating blocks),
the pLTS is uniformly AFF-diagnosable.

We now develop the full proof.

Proof. Let A = 〈Q, δ0,Σ, (Pa)a∈Σ, F 〉 be a probabilistic automaton such that the ac-
ceptance probability of any word lies between 1/4 and 3/4. Define the pLTS A =
〈Q′, q′0,Σ′, T ′,P′〉 as follows.

• Σ′ = Σ ] {], [, u, f}, Σ′uo = {u, f};

• Q′ = {qu, qf | q ∈ Q} ∪ {q′0, bu, bf};

•

T ′ = {(q′0, u, qu) | δ0(q) > 0} ∪ {(q′0, u, qf ) | δ0(q) > 0} ∪ {(qu, ], qu0 ) | q ∈ F, δ0(q) > 0}
∪ {(qf , ], qf ) | q ∈ Q \ F, δ0(q) > 0} ∪ {(qu, [, bu) | q ∈ Q \ F}
∪ {bu, ], bu} ∪ {bu, [, bu} ∪ {bf , [, bf} ∪ {(qf , f , bf ) | q ∈ F}
∪ {(qu, a, q′u), (qf , a, q′f ) | q, q′ ∈ Q, a ∈ Σ,Pa[q, q

′] > 0}

• P′ is defined by:

– For all q ∈ Q with δ0(q) > 0), P′(q′0, u, q
u) = P′(q′0, u, q

f ) = δ0(q)
2 ;

– For all (qu, a, q′u) ∈ T ′, P′(qu, a, q′u) = Pa[q,q′]
1+|Σ| ;

– For all (qf , a, q′f ) ∈ T ′, P′(qf , a, q′f ) = Pa[q,q′]
1+|Σ| ;

– For all (qu, ], qu0 ) ∈ T ′, P′(qu, ], qu0 ) = δ0(q0)
1+|Σ| ;

– For all (qf , ], qf0 ) ∈ T ′, P′(qf , ], qf0 ) = δ0(q0)
1+|Σ| ;

– For all (qu, [, bu) ∈ T ′, P′(qu, [, bu) = 1
1+|Σ| ;

– For all (qf , f , bf ) ∈ T ′, P′(qf , f , bf ) = 1
1+|Σ| ;

– P′(bu, [, bu) = P′(bu, ], bu) = 1
2 ;

– P′(bf , [, bf ) = 1.

This reduction is illustrated in Figure 4.16. In each state, the sum of the probabilities
of the exiting transitions correctly sum to 1. For instance, let q ∈ Q,∑

(qf ,a,q′)∈T ′

P′(qf , a, q′) =
∑
a∈Σ

∑
q′∈Q

Pa[q, q′]

1 + |Σ|
+

1

1 + |Σ|
=

|Σ|
1 + |Σ|

+
1

1 + |Σ|
= 1.
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q0

qu1 qu2

bu

u, δ0(q1)
2

u, δ0(q2)
2

a, Pa[q1,q2]
1+|Σ|

a, Pa[q2,q1]
1+|Σ|

], 1
1+|Σ|

[, 1
2], δ0(q1)

2

[, 1
1+|Σ|

], δ0(q2)
1+|Σ|

qf1 qf2

bf

u, δ0(q1)
2

u, δ0(q2)
2

], δ0(q2)
1+|Σ| a, Pa[q1,q2]

1+|Σ|

a, Pa[q2,q1]
1+|Σ|

], δ0(q1)
1+|Σ|

[, 1

f , 1
1+|Σ|

Figure 4.16: From probabilistic automata to pLTS: rectangles surround the two copies
of the state space of the probabilistic automaton.

We claim that A is uniformly AFF-diagnosable if and only if LA,1/2 = ∅.
Observe first that for all q ∈ Q, Lω(Aqf ) ⊆ Lω(Aqu) so that all faulty runs are ambigu-
ous.
• Assume that there exists a word w ∈ Σ∗ such that PA(w) > 1/2. We prove that A is
not uniformly 1

2FF-diagnosable. So we pick arbitrary 0 < α < 1 and nα.
Consider the observed sequence σn = (w])n[ for some n to be fixed later. As every
word is accepted with positive probability by A, it is ambiguous. Let

γn =
P({ρ′ ∈ C | P(ρ′) = σn})
P({ρ′ ∈ F | P(ρ′) = σn})

.

Since PA(w) > 1/2, γn fulfils limn→∞ γn =∞.
Let ρn be a minimal faulty run with P(ρn) = σn. Let ρ be a signalling run extending
ρn with |ρ|o = |ρn|o + nα. Then P(ρ) = σn[

nα . By a straightforward examination of A
one gets:

P({ρ′ ∈ C | P(ρ′) = σn[
nα})

P({ρ′ ∈ F | P(ρ′) = σn[nα})
=

γn2−nα

1 + γn2−nα
.

Choosing n such that γn2−nα > 1, one gets: CorP(ρ) > 1/2. So:

P({ρ ∈ SRnα+|ρn|o | ρn � ρ ∧ CorP(P(ρ)) >
1

2
}) = P(ρ) > αP(ρ) .

Thus A is not uniformly 1
2FF-diagnosable.
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• Conversely assume that for every word w ∈ Σ∗, PA(w) ≤ 1/2. Combining this
assumption with the hypothesis that PA(w) ≥ 1/4, one deduces that for every observed
sequence σ ∈ (Σ ∪ {]})∗[, CorP(σ) ≤ 3/4. On the other hand, for every minimal faulty
run ρ, P(ρ) ∈ (Σ ∪ {]})∗[.
Pick any positive ε, α and consider an arbitrary minimal faulty run ρ. The observed
sequence σ′ of a faulty run ρ′ that extends ρ fulfils σ′ = P(ρ)[n for some n. After a
new occurrence of [ the fraction between the probability of correct runs with observed
sequence σ′[ over the probability of faulty runs with observed sequence σ′[ is halved.
Thus choosing nα such that 3·2−nα

1+3·2−nα ≤ ε, for all n ≥ nα:

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ
′ ∧ CorP(P(ρ)) ≤ ε) = P(ρ) ≥ (1− α)P(ρ) .

Thus A is uniformly εFF-diagnosable and since ε was chosen arbitrarily, A is uniformly
AFF-diagnosable.

The undecidability of (uniform) εFF- and of uniform AFF-diagnosability are due
to different reasons. For (uniform) εFF-diagnosability, it is mainly caused by the use
of a quantitative requirement (shown through the use of ε). For the uniform AFF-
diagnosability, the problem arises as the detection speed of the fault strongly depends
on the behaviour of the system before the occurrence of the fault. Limiting the behaviour
of the system before the occurrence of a fault can raise decidability results (as in initial-
fault pLTS where uniform AFF-diagnosability is diagnosable as it is equivalent to AFF-
diagnosability).

Thanks to Proposition 3.5, page 70, and the definition of AFF-diagnosability, we
know that a system is AFF-diagnosable iff for all ε > 0 there exists an εFF-diagnoser of
the system. Limiting oneself to finite memory can sometimes bring better decidability
or complexity results (in [BFH+14] for example). It is therefore natural to question if
such a restriction would make uniform AFF-diagnosability decidable. There is several
ways to add the finite-memory restriction to AFF-diagnosability:

1. a system is AFF-diagnosable with finite memory if for all ε > 0 there exists a
finite-memory εFF-diagnosers;

2. a system is AFF-diagnosable with finite memory if there exists λ > 0, such that
for all 0 < ε < λ there exists a finite-memory εFF-diagnosers;

3. a system is AFF-diagnosable with finite memory if there exists a sequence (εn)n∈N
such that ∀n, εn > 0, εn

n−→∞−−−−→ 0 and for all n ∈ N there exists a finite-memory
εn-diagnosers;

These three notions are however equivalent since if D is a finite-memory εFF-diagnosers
for some ε > 0, then D is a finite-memory ε′-diagnoser for all ε′ > ε. Surprisingly, this
restriction complexifies the problem as stated in the following proposition.

Proposition 4.9. The AFF-diagnosability with finite memory problem is undecidable
for pLTS.
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The proof is obtained thanks to the reduction made in the proof of Theorem 4.4.
Indeed, in this particular case, we can show that the uniform property is equivalent to
the finite-memory restriction.

Proof. Given a probabilistic automaton A, let A be the pLTS built in the reduction of
the proof of Theorem 4.4. We know that A is uniformly AFF-diagnosable if and only
if LA,1/2 = ∅. We show that A is uniformly AFF-diagnosable iff for every ε > 0 there
exists a finite-memory εFF-diagnoser of A, which establishes the undecidability.

Assume that A is uniformly AFF-diagnosable. Let ε > 0. By definition of uniform
AFF-diagnosability, there exists n0 ∈ N such that for all minimal faulty run ρ ∈ minF
and all n ≥ n0, P(Cyl(ρ) ∩ FAmbεn+|ρ|o) ≤

P(ρ)
2 . As Cyl(ρ) is a single infinite run, this

means that P(Cyl(ρ)∩ FAmbεn+|ρ|o) = 0. Let D be the diagnoser that counts how many
[ were observed and outputs > iff this number is above n0 and no ] was observed after
the first [. This diagnoser can be represented with finite memory as it only needs to
count up to a fixed value n0. Moreover it is an εFF-diagnoser:

correctness. if D(w) = > for some w ∈ Σo ∪ {[, ]}∗, then there exists w′ ∈ Σo ∪ {]}∗ such that
w = w′[n

′ with n′ ≥ n0. As in A, every word is accepted with positive probability,
there exists a minimal faulty run ρ with observation w′. Let ρf be the infinite
run of Cyl(ρ). By uniformity, ρf 6∈ FAmbεn′+|ρ|o . Moreover, the prefix of length
n′ + |ρ|o of ρf has observation w. Thus CorP(w) ≤ ε.

reactivity. The n observations following a fault are [, and no ] can be observed after the first
[ in a faulty run. Thus, for all m ≥ n, P(ρ′ ∈ F ∩ SRm | D(P(ρ)) =?) = 0 which
implies reactivity.

Conversely, assume thatA is not uniformly AFF-diagnosable. There thus exists ε > 0
such that A is not uniformly εFF-diagnosable. Suppose there exists a finite-memory
εFF-diagnoser with m memory states. As A is not uniformly εFF-diagnosable, there
exists a minimal faulty run ρ such that for all n ≤ m+ 1, P(Cyl(ρ) ∩ FAmbεn+|ρ|o) > 0.
Since there exists only one infinite run ρf extending ρ, this means ρf ∈ FAmbεn+|ρ|o .
Consider the observation P(ρ)[m+1. The last m+ 1 memory states visited in the finite-
memory diagnoser while reading this observation are denoted s1, . . . sm+1. None of these
memory state can claim a fault by correctness of the diagnoser and as ρf ∈ FAmbεn+|ρ|o
for n ≤ m + 1. Moreover, as the finite-memory diagnoser has m states, there exists
i, j ≤ m + 1 such that si = sj . there thus exists a cycle labelled by a number of [ in
the finite-memory diagnoser. By determinism of the diagnoser, it means that for all
n ∈ N, D(P(ρ)[m+1) =? which contradict the reactivity requirement. There thus does
not exists a finite-memory εFF-diagnoser.

2.2.2 PSPACE-hardness of exact diagnosability

In order to establish a lower bound for the complexity of exact diagnosability, we intro-
duce a variant of language universality.
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Definition 4.7. A language L over an alphabet Σ is said eventually universal if there
exists a word v ∈ Σ∗ such that v−1L = Σ∗.

Several variants of the universality problem were shown to be PSPACE-complete
in [RSX12] but, to the best of our knowledge, eventual universality has not been con-
sidered.

Because of our diagnosis framework, we focus on live non-deterministic finite au-
tomata (NFA). Similarly to pLTS, an NFA is live if from every state there is at least
one outgoing transition. The language of an NFA A, denoted L(A), is defined as the
set of finite words that are accepted by A.

Proposition 4.10. Let A be a live NFA where all states are terminal. Then deciding
whether L(A) is eventually universal is PSPACE-hard.

Proof. We reduce the universality problem for NFA, which is known to be PSPACE-
complete [MS72] to the eventual universality problem. Let A = (Q, q0,Σ, T, F ) be an
NFA. Starting from A, one builds in polynomial time the NFA A′ = (Q′, q0,Σ

′, T ′, Q′)
where Σ′ = Σ ] {]}, Q′ = Q ] {s}, and

T ′ = T ∪ {(q, ], q0) | q ∈ F} ∪ {(s, a, s) | a ∈ Σ} ∪ {(q, a, s) | a ∈ Σ, q 6→A}

with q 6→A meaning that there is no transition exiting q in A. The additional state s
and the associated transitions are added to ensure that A′ is live, they do not alter the
accepted language.
• Assume that L(A) = Σ∗. Any word w over the alphabet Σ′ can be decomposed into
w = w1]w2] . . . ]wn with wi ∈ Σ∗. For each factor wi, since A is universal, there exists a
run ρi on wi ending in some terminal state qi ∈ F . Therefore w is accepted in A′ by the
run ρ1]ρ2] . . . ]ρn. Hence A′ is universal, and thus eventually universal: ε−1L(A′) = Σ′∗.
• Conversely assume that A′ is eventually universal and let v ∈ Σ′∗ be such that
v−1L(A′) = Σ′∗. Given w ∈ Σ∗, we consider the word w′ = v]w]. Since A′ is eventually
universal with witness v, w′ ∈ L(A′) and there exists an accepting run that can be
decomposed as: ρ]ρ′]q0. As a ] can only be read in a final state and leads to q0, the
run ρ′, which corresponds to the word w, has q0 as initial state, ends in a final state of
A, and by construction of A′ only uses transitions of A. So ρ′ is a run of A that accepts
w. Therefore w ∈ L(A), and A is universal.

Now that we established that universal eventuality is PSPACE-hard, we can use it
to establish a complexity lower bound for the different exact diagnosability problems.

Proposition 4.11. The FF-diagnosability, FA-diagnosability and IA-diagnosability prob-
lems are PSPACE-hard.

Proof. The proof is by reduction from the eventual universality problem. Let A be a live
NFA over Σ, in which all states are final. One builds in polynomial time the initial-fault
pLTS A = 〈q′0,Af ,Ac〉 depicted in Figure 4.17 where Σo = Σ]{]}, Σu = {u, f} and all
transitions outgoing a state have the same probability. Af consists of a single state on
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which any letter of Σ can be read with a self loop. Ac is a copy of A to which we add a
new state q] to which one can access by a transition labelled by ] from any state of the
copy of A.

We establish the following two implications (note that they do not use the same
diagnosability notion):

• A is not FA-diagnosable implies A is eventually universal;

• A is eventually universal implies A is not FF-diagnosable.

Since FA-diagnosability implies IA-diagnosability, which implies IF-diagnosability which
is equivalent to FF-diagnosability according to Theorem 3.1, page 73, this proves that
all three notions are at least as hard as eventual universality.

q′0 f0q0qq]
f

Σ
u]

]]
A

Figure 4.17: A reduction for PSPACE-hardness of IF-, FA- and IA-diagnosability.

• Assume that A is not FA-diagnosable. By Proposition 4.4, either AFA contains a
reachable BSCC C with some state s = (q, U, V ) ∈ C such that q ∈ Qf and U 6= ∅ or
AFA contains a reachable BSCC C with some state s = (q, U, V ) ∈ C such that q ∈ Qc
and V 6= ∅. The latter case is excluded since the only correct state belonging to a BSCC
of AFA contains q] as first component and q] is only reachable by a transition labelled
by ]. As this observation cannot occur in a faulty run, q = q] implies V = ∅. Consider
the former case: obviously q = f0. Since C is a BSCC and f0 is a sink state in A, for
every state s′ = (q′, U ′, V ′) ∈ C, one has q′ = f0 and U ′ 6= ∅. Since in f0 all events of Σ
are enabled, this implies that for all w ∈ Σ∗, there is a correct run ρ1 in A starting from
some state of q ∈ U with observed sequence w. Consider an observed sequence v ∈ Σ∗

labelling a run in AFA from the initial state to s. Then there is correct run in A from
q′0 to q with observed sequence v. So the run ρ = ρ0ρ1 has vw as observed sequence.
Since ρ = q′0uρ

′ with ρ′ a run of A starting from q0, vw ∈ L(A). This holds for any
word w, thus v−1L(A) = Σ∗ and A is eventually universal.

• Assume that there exists a word v ∈ Σ∗ such that v−1L(A) = Σ∗. Of course, any
word extending v is also a witness that A is eventually universal. Let v′ ∈ Σ∗ be such
that some faulty run with observed sequence vv′ ends in a BSCC C of AFF. Since
(vv′)−1L(A) = Σ∗, all states of C are of the form (f0, U) with U 6= ∅. Therefore, by
Proposition 4.2, A is not FF-diagnosable.

Since the lower bounds matches the upper bounds, the different notions of exact
diagnosability are PSPACE-complete for finite pLTS.
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3 Diagnoser construction

When a system is shown to be diagnosable, the next step is to build a diagnoser. A
diagnoser that works in every case would keep track of every run compatible with the
observed sequence and give a verdict depending on the nature of this set of runs. This
diagnoser, by nature, uses unbounded memory. For implementation purpose, we are
rather interested in finite-memory diagnosers as defined in Section 1 of Chapter 3. We
explain how to automatically build a finite-memory diagnoser for a diagnosable system.
This is not possible for every notion of diagnosability however. Indeed, we showed in
Proposition 3.4, page 69, that εFF-diagnosers may need infinite memory. Therefore we
do not develop approximate diagnosability here, and focus on exact diagnosability.

3.1 FF-diagnoser

We start with FF-diagnosers. These diagnosers only provide information about faulty
runs. In the sequel we fix A a finite pLTS.

Proposition 4.12. If A is an FF-diagnosable pLTS with n correct states, one can build
an FF-diagnoser for A with at most 2n memory states.

Proof. The idea of this proof and of all the following proofs for constructing a finite-
memory diagnoser is to use the characterisation given in Section 1. For example, in order
to construct the FF-diagnoser, we first build the FF-automaton of A. Then we define
the finite-memory diagnoser on its structure. Finally we show that the constructed
diagnoser is indeed an FF-diagnoser thanks to the FF-diagnosability of the system.

For an FF-diagnosable pLTS A with FF(A) = (S, s0,∆, F ), its deterministic and
complete FF-automaton, we define the finite memory diagnoser (S,Σo, up, s0, Dfm) with
up(s, a) = s′ if (s, a, s′) ∈ ∆ and Dfm(U) = > iff U = ∅. Let us show that the induced
diagnoser D is indeed an FF-diagnoser, and that it has at most 2n memory states, where
n is the number of correct states of A.

commitment When U is empty, it remains empty forever which implies commitment.

correctness When D outputs the verdict >, FF(A) is in the state associated with
∅. As U contains the set of correct states reachable with the current observed
sequence, the observed sequence is surely faulty.

reactivity If an infinite faulty run ρ is such that D(P(ρ)) =? then, by construction
of FF(A) and definition of D, for every length n ∈ N, there exists a finite correct
signalling run ρn ∈ SRn such that P(ρn) = P(ρ↓n). Using König’s lemma, since
A is finitely branching, one can extract an infinite correct run ρ∞ such that
P(ρ∞) = P(ρ), so that ρ ∈ FAmb∞. Moreover P(FAmb∞) = 0 as A is FF-
diagnosable. Putting everything together, for every minimal faulty run ρ, P({ρ′ ∈
Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = 0.

size The memory states are states of FF(A), which are themselves subsets of correct
states of A. Therefore, D uses at most 2n memory states, with n = |Qc|.
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We now show that the size order of the previous FF-diagnoser is optimal.

Proposition 4.13. There is a family {An}n∈N of FF-diagnosable pLTS such that An
has 2n+ 2 correct states and it admits no FF-diagnoser with less than 2n states.

An

q0

l0 l1 l2 . . . ln

r1 r2 . . . rn

f

a a, b a, b a, b

b a, b a, b a, b

a, b

c

c

Figure 4.18: An FF-diagnosable pLTS requiring an FF-diagnoser with exponential size.

Proof. This proof is inspired by a similar result of lower bounds on controllers es-
tablished in [HHMS13]. Consider the example of Figure 4.18 where Σo = {a, b, c}
and the initial state is q0. Consider a finite faulty run including a c event. Its ob-
served sequence belongs to L = {a, b}∗a{a, b}n−1c+. Since any finite correct run has
an observed sequence belonging to L′ = {a, b}∗ ∪ {a, b}∗b{a, b}n−1c+ and L ∩ L′ = ∅,
FAmbn ]CAmbn ⊆ {ρ | P(ρ) ∈ {a, b}n}. Since limn→∞ P({ρ | P(ρ) ∈ {a, b}n}) = 0, the
pLTS is FA-diagnosable and so IA-diagnosable and FF-diagnosable.

Intuitively, when a c is observed, any FF-diagnoser must have remembered the ob-
servable event that happened n steps earlier to know if the run is faulty or not. Thus,
it must remember the last n observed events, in case a c event occurs.

More formally, assume there exists a diagnoser D = (M,Σ,m0, up, Dfm) with less
than 2n memory states. Then there exist two distinct words w1 ∈ {a, b}n and w2 ∈
{a, b}n leading to the same memory state: up(m0, w1) = up(m0, w2). The words w1

and w2 differ at least from one letter say w1[i] = b and w2[i] = a. Consider for
k ≥ 1, the signalling correct run ρ1,k corresponding to observed sequence w1a

i−1ck whose
sequence of visited states is qi0r1 . . . r

k+1
n and the signalling faulty run ρ2,k corresponding

to observed sequence w2a
i−1ck whose sequence of visited states is qi0l0l1 . . . lk+1

n . They
also lead to the same memory state. By correctness, D(w1a

i−1ck) =?. Thus for all
suffixes ρ of ρ2,1, D(ρ) =? contradicting the reactivity of D.

3.2 FA-diagnoser

We now turn to FA-diagnosability which not only considers the diagnosis of faults but
also of correct runs. We build the FA-diagnoser from the FA-automaton similarly to
what was done in Proposition 4.12.
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Proposition 4.14. A pLTS A is FA-diagnosable if it admits an FA-diagnoser. More-
over, if A is a FA-diagnosable pLTS with n states, one can build an FA-diagnoser with
at most 2n memory states.

Proof. Let A be a pLTS. Assume first that there exists an FA-diagnoser D for A. For
every n ∈ N, we define FDn = {ρ ∈ Ω | D(P(ρ↓n)) = >} the set of runs that are
diagnosed faulty after n observed events, and symmetrically CDn = {ρ ∈ Ω | ∀m ≥
n,D(P(ρ↓m)) = ⊥} the set of runs that are persistently diagnosed correct after n
observed events. The sequences (CDn)n∈N and (FDn)n∈N are non-decreasing. As ? ≺ ⊥
and ? ≺ >, for every run ρ ∈ Ω, Dinf(P(ρ)) =? is equivalent to ρ /∈

⋃
n(FDn ∪ CDn).

Thus we have
⋃
n∈N(FDn ∪ CDn) = {ρ ∈ Ω | Dinf(P(ρ)) 6=?}. Since D is reactive,

P({ρ ∈ Ω | Dinf(P(ρ)) 6=?}) = 1. Moreover, since D is correct, for every n ∈ N,
FDn ⊆ Sfn and CDn ⊆ Scn. Thus for every n ∈ N, P(FAmbn ∪ CAmbn) = 1 − P(Sfn ∪
Scn) ≤ 1 − P(FDn ∪ CDn) and limn−→∞ P(FAmbn ∪ CAmbn) ≤ 1 − lim infn−→∞ P({ρ ∈
SRn | D(P(ρ)) 6=?}) = 0. This shows that A is FA-diagnosable.
Assume now that A is FA-diagnosable and has n states. From FA(A) = (S, s0,∆, F )
the FA-automaton of A, we define D = (S,Σo, s0, up, Dfm) the finite-memory diagnoser
where up(s, a) = s′ if (s, a, s′) ∈ ∆, Dfm((U, V )) = > iff U = ∅ and Dfm((U, V )) = ⊥
iff V = ∅. Let us check that D is an FA-diagnoser, and that its size is at most 2n if n
denotes the number of states of A.

commitment When U is empty, it remains empty forever which implies commitment.

correctness Let w ∈ Σ∗o be an observed sequence. If (U, V ) is the state in FA(A)
reached after reading w, then recall that U (resp. V ) is the set of states in A
that can be reached by correct (resp. faulty) signalling runs labelled by w. By
construction, if D(w) = > then w is surely faulty, and if D(w) = ⊥ then w is
surely correct.

reactivity Let ρ be a signalling run such that D(P(ρ)) =?. Due to the characterisation
of Proposition 4.4, the strictly connected component of AFA that ρ has reached
cannot be a BSCC. So given some n ∈ N,

P({ρ ∈ Ω | ∃m ≥ n D(P(ρ↓m) =?}) ≤ P({ρ ∈ Ω | ρ↓n does not reach a BSCC}).

Thus

P({ρ ∈ Ω | Dinf(P(ρ)) =?}) = lim
n→∞

P({ρ ∈ Ω | ∃m ≥ n D(P(ρ↓m) =?})

≤ lim sup
n→∞

P({ρ ∈ Ω | ρ↓n does not reach a BSCC})

= 0 .

size D has at most 2n memory states because every state of FA(A) consists of a pair
(U, V ) with U ⊆ Qc and V ⊆ Qf .
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As the pLTS of Figure 4.18 is FA-diagnosable, and since any FA-diagnoser is also an
FF-diagnoser, using Proposition 4.13 we obtain the following lower bound for the size
of FA-diagnosers.

Proposition 4.15. There is a family {An}n∈N of FA-diagnosable pLTS such that An
has 2n+ 2 states and it admits no FA-diagnoser with less than 2n memory states.

3.3 IA-diagnoser

We end with IA-diagnosability and build an IA-diagnoser similarly as to what was done
in Proposition 4.12.

Proposition 4.16. If A is a IA-diagnosable pLTS with nc correct states and nf faulty
states, one can build an IA-diagnoser with at most 2nc3nf states.

Proof. Let A be an IA-diagnosable pLTS. From IA(A) = (S, s0,∆, F ) the IA-automaton
of A, we define D = (S,Σo, s0, up, Dfm) the finite-memory diagnoser where up(s, a) = s′

if (s, a, s′) ∈ ∆, Dfm((U, V,W )) = > iff U = ∅ and Dfm((U, V,W )) = ⊥ iff W = ∅. Let
us prove that D is indeed an IA-diagnoser for A.

commitment. When U is empty, it remains empty forever which implies commitment.

correctness. For any word w ∈ Σ∗o, we denote by (Uw, Vw,Ww) the state in IA(A)
reached after reading w. For any word w, if Uw = ∅, by construction of IA(A),
w is surely faulty. Assume now that Ww = ∅ and Uw 6= ∅. Let w′ be the longest
proper prefix of w such that Ww′ = ∅. Let ρ be any signalling run with P(ρ) = w.
Assume that ρ↓|w′| is faulty. Thus the states visited by ρ↓n for |w′| < n ≤ |w| were
always in Wρ↓n . Since Ww = ∅, this is not possible and so ρ↓|w′| is correct. Thus
every time a state with W = ∅ is visited, the length of the greatest prefix, for
which all signalling subruns corresponding to this prefix are correct, is increased.
This establishes correctness.

reactivity. Let ρ be an infinite run such that Dsup(P(ρ)) =?. Due to the characterisa-
tion of Proposition 4.5, either (1) the strongly connected component of AIA that
ρ infinitely often visits is not a BSCC or (2) ρ does not visit infinitely often all
the states of this strongly connected component. The probability of such runs is
null which establishes the reactivity.

size D has at most 2nc3nf memory states because every state of IA(A) consists of a
triple (U, V,W ) with U ⊆ Qc and V ∪W ⊆ Qf . Moreover, one does not keep in
V the states that are tracked in W , ensuring V ∩W = ∅.

The following lower bound can be derived from the proof of Proposition 4.13, since
the pLTS of Figure 4.18 is IA-diagnosable, and because any IA-diagnoser is also an
FF-diagnoser.
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Proposition 4.17. There is a family {An}n∈N of IA-diagnosable pLTS such that An
has 2n+ 2 states and it admits no IA-diagnoser with less than 2n memory states.

The construction of an exact diagnoser can thus require exponential time, which is
one class above the verification of exact diagnosability. This exponential time is only
necessary if we want to build the full diagnoser though. Another possibility would be
to update the state of the diagnoser on-the-fly during a run. One would only need to
keep the current memory state (which has linear space), but the update process would
take a polynomial time, instead of the constant time obtained when using a fully-built
diagnoser.

4 Conclusion

In Section 1, we gave characterisations of the different notions of exact diagnosability
and of one notion of approximate diagnosability for finite systems. The characterisations
of the notions of exact diagnosability are of the same descriptive complexity, something
that is impossible in the general case as shown in Section 3 of Chapter 3, page 77.
The characterisation of the notion of approximate diagnosability has two important
differences compared to the ones of exact diagnosability: (1) it depends on the exact
probabilities of the system and (2) it only requires a comparison between pairs of states.

In Section 2, we gave matching upper and lower bounds for the various diagnos-
ability problems for finite systems. These results heavily relied on the characterisations
given in Section 1. Thus, as the characterisations of every notion of exact diagnosabil-
ity have the same descriptive complexity, it is not surprising that they end up having
the same complexity. The results on the approximate diagnosability notions are more
surprising. AFF-diagnosability, the notion for which a characterisation was obtained, is
decidable in polynomial time, a better complexity than what is needed for the exact
diagnosability notions. This gain in complexity is obtained as, contrary to exact diag-
nosability where one needs to follow sets of states, for AFF-diagnosability, only pairs of
states have to be compared. The comparison however depends on the exact values of
the probabilities of the system, which brings a different kind of difficulty to the analysis.
While this difficulty could be solved for AFF-diagnosability, it is the main reason of the
undecidability of all the other notions of approximate diagnosability: (uniform) εFF-
and uniform AFF-diagnosability. On this point, uniform AFF-diagnosability is equiva-
lent to the notion of AA-diagnosability introduced in [TT05] which decidability was left
open (only necessary conditions were given). Our undecidability result thus answers
negatively to this question.

In Section 3, we gave automatic methods to construct finite-memory diagnosers for
systems that are exactly diagnosable. We also showed that the sizes of the generated
diagnosers are asymptotically optimal. For approximate notions of diagnosability, there
does not necessarily exist finite-memory diagnosers and deciding the existence of such
a diagnoser is undecidable. When such a diagnoser does not exist, one may need un-
bounded memory. Depending on the form of the unbounded memory required, it can
be more or less manageable (for example a counter can easily be implemented).



Chapter 5

Algorithmic analysis of the
diagnosability of infinite pLTS

In Chapter 4, we showed how to solve diagnosability for systems that can be represented
by a pLTS with finitely many states.While this encompasses many kinds of systems,
this is far from being exhaustive. Often, in order to satisfy its specification, a system
will require unbounded memory: for example, when the system receives and records
information or requests from the environment. Observe that an infinite number of
states does not mean an infinite memory per se, but only an unbounded one. Stacks
and queues are instances of such dynamic data structures.

While allowing an infinite amount of states increases the expressive power of the
model, it increases the difficulty of its study. First, the studied systems must possess
a finite representation. This can be done by assuming only a finite part of the system
needs to be studied (e.g. infinite systems with finite attractors [BBS06]) or by using
a higher level model whose semantics is an infinite-state system (Petri nets [Mur89,
Dia09, CGS14], well structured transition systems [FS01], pushdown automata [AM04,
KEM06, MP09, HS10, EY12]). We study such a formalism in this chapter.

Diagnosability has already been studied for infinite-state non-stochastic systems:
represented by pushdown automata [MP09] or by Petri nets [CGLS12, BHSS18]. Par-
tially observable visibly pushdown automata is a subclass of partially observable push-
down automata for which diagnosability was studied in [MP09]; for such models, di-
agnosability is decidable (using the determinisation procedure of [AM04]). With a
restriction on the unobservable subnet akin to our convergence assumption, [CGLS12]
gives a decidable characterisation of a non-stochastic notion of diagnosability for par-
tially observable Petri nets. However the algorithm is non-primitive recursive. The
authors of [BHSS18] extend this work by considering different classes of Petri nets and
reducing the complexity (EXPSPACE for the general case). However to the best of our
knowledge diagnosis of probabilistic infinite-state systems has not yet been studied.

So we extend these works by considering the probabilistic variants of diagnosabil-
ity. In Section 1, we study the stochastic diagnosability of partially observable prob-
abilistic pushdown automata (POpPDA). As diagnosability is already undecidable for
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non-stochastic systems [MP09], the decidability of the stochastic variants is unlikely.
However the notations introduced here will be used in Section 2 where we consider a
restriction of POpPDA called partially observable probabilistic visibly pushdown au-
tomata (POpVPA). This restricted class has many advantages. It naturally benefits
from the numerous results which are known for POpPDA [BEKK13], especially the
ones on model-checking algorithms [KEM06, EY12]. Moreover, the authors of [AM04]
gave an algorithm for the determinisation of a POpVPA. PopVPA generates an infinite-
state pLTS and the efficient characterisations given in Chapter 4 strongly rely on the
finiteness of the models. They thus cannot be used any more. So, we use the char-
acterisations from the Section 3 of Chapter 3 based on the pathL logic. However the
model-checking algorithm cannot be directly applied to the formulae of the pathL logic.
Some tricky machinery will be required to “encode” the path formulae of the pathL logic
in the system in order to use the results of [EY12]. Finally, in Section 3, we study
the diagnosability of partially observable stochastic Petri nets (POSPN), we mimic the
restriction used on POpPDA in Section 2, and discuss the case of partially observable
stochastic visible Petri nets (VSPN).

This chapter develops and extends some of the results from [BHL16b, LGS18].

1 Diagnosability of probabilistic pushdown automata

In this section we study infinite-state pLTS generated by probabilistic pushdown au-
tomata (pPDA). First, we define pPDA and the infinite-state pLTS generated by a
pPDA. The pPDA model being very expressive, we show that diagnosability of pPDA
is undecidable.

1.1 Probabilistic pushdown automata

A pPDA randomly generates infinite behaviours using a stack. This stack contains
letters of a stack alphabet with the most recently added letter put at the top. Transitions
of the pPDA can be conditioned by the top of the stack. Moreover, a transition can
push a new element onto the stack, pop one element off it or modify the top of the
stack. Let us first see an example of an infinite state pLTS, that we will be able to
represent by a pPDA.

Example 5.1. The pLTS of Figure 5.1 represents a server that accepts jobs (event in)
until it randomly decides to serve the jobs (event serve). When a job is done the result
is delivered (event out). When all jobs are done, the server waits for a new batch of
jobs. However randomly, the server may trigger a fault (event f) and then abort all
remaining jobs (event abort). Afterwards, the server is reset (event reset).

The infinite number of states in this system comes from the unbounded number of
jobs the server can receive before he starts serving them. To see this system using a
stack, one could use a stack letter to represent a job and add one such letter to the stack
every time a new job comes in. Dealing with a job (event out) or aborting it (event
abort) removes an element of the stack.
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q0

q10

f10

q01

q11

f11

q02

q12

f12
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in, 1 in, 1
2 in, 1

2

out, 1
2 out, 1

2 out, 1
2

empty, 1 serve, 1
2 serve, 1

2

abort, 1 abort, 1 abort, 1

f , 1
2 f , 1

2

reset, 1

Figure 5.1: An infinite-state pLTS that can be represented by a pPDA.

We now define pPDA similarly to what can be found in [KEM06].

Definition 5.1. A probabilistic pushdown automaton (pPDA) is defined by a tuple
V = (Q, q0,Σ,Γ, δ,P) where:

• Q is a finite set of states with q0 the initial state;

• Σ is a finite alphabet of events;

• Γ is a finite alphabet of stack symbols including a set of bottom stack symbols Γ⊥
with initial symbol ⊥0 ∈ Γ⊥;

• δ ⊆ Q×Γ×Σ×Q×Γ∗ is the set of transitions such that for every (q, γ, a, q, w) ∈ δ,
|w| ≤ 2, γ ∈ Γ⊥ implies w ∈ Γ⊥(Γ \ Γ⊥)∗ and γ /∈ Γ⊥ implies w ∈ (Γ \ Γ⊥)∗;

• P is the transition probability function fulfilling for every q ∈ Q and γ ∈ Γ:∑
(q,γ,a,q′,w)∈δ

P[(q, γ, a, q′, w)] = 1.

A pPDA may be viewed as a pLTS equipped with a stack. The transitions of
the pPDA can depend on the top symbol of the stack and modify it. The definition
ensures that the stack is never empty: the bottom stack symbols Γ⊥ are never removed.
Moreover symbols of Γ⊥ never occurs elsewhere in the stack. Let T = (q, γ, a, q′, w) ∈ δ
be a transition of a pPDA. If |w| = 1 (resp. |w| = 2, |w| = 0) then T is said to be a local
(resp. push, pop) transition. A local transition can update the top symbol and a push
transition can modify the top symbol and add another symbol on top of it. Notions
such as runs are defined on pPDA analogously to what was done for pLTS. We call
configuration the pair composed by a state and a stack.

The semantics of a pPDA is the (potentially infinite) pLTS representing its be-
haviour. The states of this pLTS are pairs consisting of a state and a stack contents.
They therefore contains all the information that are necessary in the pPDA to determine
the available transitions and their probabilities.
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Definition 5.2. A probabilistic pushdown automaton pPDA V = (Q, q0,Σ,Γ, δ,P) de-
fines a pLTS AV = (QV , (q0,⊥),Σ, TV ,PV) where:

• QV = {(q, z) | q ∈ Q ∧ z ∈ ⊥Γ∗};

• TV = {((q, zγ), a, (q′, zw)) | zγ ∈ ⊥Γ∗ ∧ (q, γ, a, q′, w) ∈ δ};

• For every ((q, zγ), a, (q′, zw)) ∈ TV , PV [((q, zγ), a, (q′, zw))] = P[(q, γ, a, q′, w)].

As a pPDA has a finite number of states, the associated pLTS is finitely branching.

Example 5.2. Figure 5.2 gives an example of a pPDA whose semantics is the pLTS
from Figure 5.1. Indeed, the stack alphabet has only one letter. We could thus replace
it by a counter giving the number of element in the stack. The pLTS of Figure 5.1 does
exactly that by representing the configuration (q1, γ

n) of the semantics of the pPDA by
the state q1n and similarly for the other configurations. A transition t = (q, γ, a, q′, w)
is represented by an edge from state q to state q′ and labelled by P[t] · γ, a, w.

Observe that in this example the set of states is not partitioned between faulty and
correct states as from the state f1 reached by a faulty run, one can go back to the initial
state with the reset event (event r).

q0 q1 f1

1
2 · γ, serve, γ

1 · ⊥0, empty,⊥0

1
2 · γ, f , γ

1 · ⊥0, reset,⊥0

1
2 · γ, in, γγ

1 · ⊥0, in,⊥0γ

1
2 · γ, out, ε 1 · γ, abort, ε

(q0,
∣∣⊥0

∣∣) (q0,

∣∣∣∣ γ⊥0

∣∣∣∣) (q0,

∣∣∣∣∣∣
γ
γ
⊥0

∣∣∣∣∣∣) (q1,

∣∣∣∣∣∣
γ
γ
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∣∣∣∣∣∣) (q1,
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γ
γ
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∣∣∣∣ γ⊥0

∣∣∣∣) (f1,
∣∣⊥0

∣∣) (q0,
∣∣⊥0

∣∣)

in in serve out out empty

f

abort abort reset

Figure 5.2: A pPDA generating the pLTS from Figure 5.1 and two finite of its runs.

As for pLTS, we enlarge pPDA with partial observation features. As discussed in
Section 1.3 of Chapter 2, this can be done either by partitioning the alphabet of events
into observable and unobservable events or by providing a mask function associating
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with every event an observation. In the previous chapters we used the partition of the
alphabet of events. Here, we use the mask function which is more appropriate for our
needs.

Definition 5.3. A partially observable pPDA (POpPDA) is a tuple 〈V,Σo,P〉 consist-
ing of a pPDA V equipped with a mapping P : Σ → Σo ∪ {ε} where Σo is the set of
observations.

A POpPDA is diagnosable according to a notion of diagnosability if the pLTS it
generates is diagnosable. As the generated pLTS are finitely branching, thanks to
Theorem 3.1 a POpPDA is FF-diagnosable iff it is IF-diagnosable.

Example 5.3. Consider the pPDA V of Figure 5.2, we define Σo = {in, out, loc, reset}
and two observation masks P1 and P2 with P1(in) = in, P1(serve) = P1(empty) =
P1(reset) = loc, P1(abort) = P1(out) = out and P1(f) = ε, P2(reset) = reset and for
every event t 6= reset, P2(t) = P1(t). 〈V,Σo,P1〉 and 〈V,Σo,P2〉 are two POpPDA
differentiated only by the observation of the event reset. As a faulty run will inevitably
contain a reset and a correct run that leaves q0 will contain a serve, the POpPDA
〈V,Σo,P2〉 which distinguishes these two events is diagnosable for every non-uniform
exact notion of diagnosability. However, the POpPDA 〈V,Σo,P1〉 is not diagnosable as
serving the requests and going back to q0 has the same observation as making a fault,
aborting the requests and going back to q0.

1.2 Undecidability of diagnosability for POpPDA

Unfortunately, for every notion of diagnosability, the diagnosability problem for POp-
PDA is undecidable. The undecidability can be obtained by adapting the proof for
diagnosability of non-probabilistic pushdown automata [MP09]. However, in order to
show how robust the result is, we rather reduce from the Post Correspondence Prob-
lem (PCP). An instance of PCP is given by an integer n ∈ N and two families of
non-empty words {vi}i≤n and {wi}i≤n on the alphabet {a, b}. The following question
is undecidable [Pos46]: does there exist k > 0 and i1, . . . ik ∈ {1, . . . , n} such that
wi1 . . . wik = vi1 . . . vik?

We show in Theorems 5.1 and 5.2 that undecidability already holds for two (in-
comparable) subclasses of POpPDA with restriction on what is observable and on the
number of phases of any run. A phase is a portion of a run in which the stack either
never decreases or never increases.

Theorem 5.1. The diagnosability problems are undecidable for POpPDA even when
(1) a local transition does not update the top of the stack, (2) every event labelling a
push transition is fully observable and corresponds to the pushed symbol, and (3) every
run has at most two phases.

The use of the stack is obviously central to the proof of the undecidability. Moreover
conditions (1) and (2) limit the ability of push and local transitions to silently manip-
ulate the stack. There is no such limitation for pop transitions however as the proof of
undecidability heavily rely on hiding when the pop transitions are performed.
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Let us sketch the proof. We reduce the PCP problem to the diagnosability problem.
To do so, the POpPDA we build, from a PCP instance (n, {vi}i≤n, {wi}i≤n), is divided
in three parts. In the first one, it will select and push onto its stack a sequence of
numbers, i1 . . . ik, with ∀j ≤ k, ij ≤ n. Then it goes randomly to one of the two other
parts of the POpPDA, one part being accessed by a faulty transition. Each of these two
parts is associated with a family of words of the PCP instance. Once it reached one of
these parts, say the one associated with the wi, the run will read the words of wi induced
by the numbers pushed on the stack. The resulting observation is w = wi1 . . . wik . On
the other part, the observation is similarly v = vi1 . . . vik . The fault can be detected if
and only if v 6= w. Having the pop transition undetected is fundamental as it allows to
hide when the word wij starts being read.

Proof. Let (n, {vi}i≤n, {wi}i≤n) be a PCP instance In this proof, we let `i (resp. mi)
be the length of vi (resp. wi). Also, given a word w and k ≤ |w| we use w[k] to denote
the kth-letter of w.

We build a pPDA V = (Q,Σ,Γ, δ,P) as follows:

• Q = {q0, qc, qs, fs} ∪ {qki | 1 ≤ i ≤ n, 1 ≤ k ≤ `i} ∪ {fki | 1 ≤ i ≤ n, 1 ≤ k ≤ mi} ;

• Σ = {1, . . . , n, \, u, r, f , a, b};

• Γ = {1, . . . , n,⊥0} with Γ⊥ = {⊥0};

• δ consists of the following transitions:

{(q0,⊥0, x,⊥0x, qc) | 1 ≤ x ≤ n} ∪ {(qc, x, y, xy, qc) | 1 ≤ x, y ≤ n}
∪ {(qki , z, vi[k], z, qk+1

i ) | 1 ≤ i ≤ n, 1 ≤ k < `i, z ∈ {⊥0, 1, . . . , n}}
∪ {(fki , z, wi[k], z, fk+1

i ) | 1 ≤ i ≤ n, 1 ≤ k < mi, z ∈ {⊥0, 1, . . . , n}}
∪ {(q`ii , z, vi[`i], z, qs) | 1 ≤ i ≤ n, z ∈ {⊥0, 1, . . . , n}} ∪ {(qs, x, r, ε, q1

x) | 1 ≤ x ≤ n}
∪ {(fmii , z, wi[mi], z, fs) | 1 ≤ i ≤ n, z ∈ {⊥0, 1, . . . , n}} ∪ {(fs, x, r, ε, f1

x) | 1 ≤ x ≤ n}
∪ {(qc, x, u, x, qs), (qc, x, f , x, fs) | 1 ≤ x ≤ n} ∪ {(qs,⊥0, \,⊥0, qs), (fs,⊥0, \,⊥0, fs)}.

• P assigns arbitrary positive probabilities to transitions in δ:

P(q, γ, a, q′, w) > 0⇔ (q, γ, a, q′, w) ∈ δ and
∑

(q,γ,a,q′,w)∈δ

P[(q, γ, a, q′, w)] = 1.

We further consider the POpPDA 〈V,Σo,P〉 with Σo = Σ \ {r, u, f}, and the masking
function satisfies P(u) = P(r) = P(f) = ε and P(x) = x for any other event x. This
POpPDA is represented in Figure 5.3.

Let us prove that the instance of the PCP is positive if and only if the POpPDA is
IF-, IA-, FA- and AFF-diagnosable.

First, observe that \ almost surely occurs in an infinite run of the pPDA V. Thus, for
any ε > 0, there exists Nε ∈ N such that the measure of signalling runs with observable
length Nε that reach configurations (qs,⊥0) or (fs,⊥0) by an event \ is at least 1− ε.
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•Assume that there exists a solution i1, . . . , ik to the PCP instance (n, {vi}i≤n, {wi}i≤n).
Consider in the POpPDA the faulty run:

ρf = q0(ijqc)j≤kf(fsr(f
p
ij
wij [p])p≤mij )j≤k(fs\)

ω ,

and the correct run:

ρc = q0(ijqc)j≤ku(qsr(q
p
ij
vij [p])p≤`ij )j≤k(qs\)

ω .

q0 qc

fs

qs

q1
1

. . . q`11

...

q1
n

. . . q`nn

f1
1

. . . fm1
1
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n

. . . fmnn
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z, wn[1], z z, wn[mn−1], z

z, wn[mn], z

⊥0, \,⊥0

Figure 5.3: A POpPDA for the proof of Theorem 5.1.

These two runs have the same observed sequence: P(ρf ) = P(ρc) = i1 . . . ikw\
ω with

w = wi1 . . . wik = vi1 . . . vik . Therefore, ρf is an infinite ambiguous faulty run. Given
that P(ρf ) > 0, we deduce that the POpPDA 〈V,Σo,P〉 is not IF-diagnosable. From
Theorem 3.1, it is also neither IA-diagnosable nor FA-diagnosable. Moreover, after the
occurrence of a fault, there is no probabilistic choice. As a consequence the correctness
proportion is either 0 or 1/2. As the correctness proportion of the faulty prefixes of ρf
is never 0 as seen above, the POpPDA is not AFF-diagnosable.
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• Conversely, assume that the PCP instance (n, {vi}i≤n, {wi}i≤n) has no solution. Let
ε > 0, let Nε ∈ N be the integer obtained with our earlier observation. Consider a
correct run ρc with observable length Nε, ending in (qs,⊥0) and containing at least an
occurrence of \. Its observed sequence is of the form P(ρc) = i1 . . . ikvi1 . . . vik\

m for
some i1, . . . , ik,m. Due to the fact that (n, {vi}i≤n, {wi}i≤n) has no solution, no faulty
run can have the same observed sequence. Therefore, ρc is surely correct. Symmetrically,
any faulty run ending in (fs,⊥0) after an occurrence of \ is surely faulty. We thus
conclude that, for any ε > 0, there exists Nε ∈ N such that P(FAmbNε ] CAmbNε) ≤ ε.
As a consequence, the POpPDA 〈V,Σo,P〉 is FA-diagnosable. By Theorem 3.1 it is also
IA-diagnosable, IF-diagnosable and AFF-diagnosable.

A similar undecidability result holds for a class of POpPDA in which pop events are
fully observable, and the number of phases is constant:

Theorem 5.2. The diagnosability problems are undecidable for POpPDA even when
(1) a local transition does not update the top of the stack, (2) every event labelling a
pop transition is fully observable and corresponds to the popped symbol, and (3) every
run has at most two phases.

Proof. The proof follows the same line as the one for Theorem 5.1. The difference is
that instead of choosing first the words that will be read by pushing them on the stack
and later popping them off discreetly, the pPDA reads the words and silently push on
the stack which words were read and at the end pop them off and verify if the same
sequence could indeed be used for both family of words.
From an instance (n, {vi}i≤n, {wi}i≤n) of PCP, let us define a pPDA V = (Q,Σ,Γ, δ,P)
where:

• Q = {q0, qs, fs, qe, fe}∪{qki | 1 ≤ i ≤ n, 1 ≤ k ≤ `i}∪{fki | 1 ≤ i ≤ n, 1 ≤ k ≤ mi};

• Σ = {1, . . . , n, \, u, c, f , a, b};

• Γ = {1, . . . , n,⊥0} with Γ⊥ = {⊥0};

• δ consists of the following transitions:

{(q0,⊥, u,⊥, qs), (q0,⊥, f ,⊥, fs), (qe,⊥, \,⊥, qe), (fe,⊥, \,⊥, fe)}
∪ {(qki , z, vi[k], z, qk+1

i ) | 1 ≤ i ≤ n, 1 ≤ k < `i, z ∈ {⊥, 1, . . . , n}}
∪ {(fki , z, wi[k], z, fk+1

i ) | 1 ≤ i ≤ n, 1 ≤ k < mi, z ∈ {⊥, 1, . . . , n}}
∪ {(q`ii , z, vi[`i], z, qs) | 1 ≤ i ≤ n, z ∈ {⊥, 1, . . . , n}}
∪ {(fmii , z, wi[mi], z, fs) | 1 ≤ i ≤ n, z ∈ {⊥, 1, . . . , n}
∪ {(qs, z, c, zx, q1

x) | z ∈ {⊥, 1, . . . , n}, x ∈ {1, . . . , n}}
∪ {(fs, z, c, zx, f1

x) | z ∈ {⊥, 1, . . . , n}, x ∈ {1, . . . , n}}
∪ {(qs, x, x, ε, qe) | x ∈ {1, . . . , n}} ∪ {(fs, x, x, ε, fe) | x ∈ {1, . . . , n}}
∪ {(qe, x, x, ε, qe) | x ∈ {1, . . . , n}} ∪ {(fe, x, x, ε, fe) | x ∈ {1, . . . , n}}.
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• P assigns arbitrary positive probabilities to transitions in δ.

We further consider the POpPDA 〈V,Σo,P〉 with Σo = Σ \ {c, u, f}, and the masking
function satisfies P(u) = P(c) = P(f) = ε and P(x) = x for any other event x. This
POpPDA is represented in Figure 5.4.

q0

fs

fe

qs

qe q1
1

. . . q`11

...

q1
n

. . . q`nn

f1
1

. . . fm1
1

...

f1
n

. . . fmnn

⊥0, f ,⊥0

⊥0, u,⊥0

z, c, z1

1, v1[1], 1 1, v1[`1−1], 1

1, v1[`1], 1

z, c, zn

n, vn[1], n n, vn[`n−1], n

n, vn[`n], n

⊥0, \,⊥0

x, x, ε

x, x, ε

z, c, z1

1, w1[1], 1 1, w1[m1−1], 1

1, w1[m1], 1

z, c, zn

n,wn[1], n n,wn[mn−1], n

n,wn[mn], n

⊥0, \,⊥0

x, x, ε

x, x, ε

Figure 5.4: A POpPDA for the proof of Theorem 5.2.

Let us prove that the instance of the PCP is positive if and only if the POpPDA is
IF-, IA-, FA- and AFF-diagnosable.

First, observe that \ almost surely occurs in an infinite run of the pPDA V. Thus, for
any ε > 0, there exists Nε ∈ N such that the measure of signalling runs with observable
length Nε that reach configurations (qe,⊥0) or (fe,⊥0) by an event \ is at least 1− ε.
•Assume that there exists a solution i1, . . . , ik to the PCP instance (n, {vi}i≤n, {wi}i≤n).
Consider the faulty run:

ρf = q0ffs(c(f
p
ij
wij [p])p≤mij fs)j≤k(ijfe)j≤k(\fe)

ω ,

and the correct run:

ρc = q0uqs(c(q
p
ij
vij [p])p≤`ij qs)j≤k(ijqe)j≤k(\qe)

ω .
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These two runs have the same observed sequence: P(ρf ) = P(ρc) = wi1 . . . ik\
ω with

w = wi1 . . . wik = vi1 . . . vik . Therefore, ρf is an infinite ambiguous faulty run. Given
that P(ρf ) > 0, we deduce that the POpPDA 〈A,Σo,P〉 is not IF-diagnosable. From
Theorem 3.1, it is also neither IA-diagnosable nor FA-diagnosable. Moreover, after
reaching the state fe or qe, there is no probabilistic choice. As a consequence the
sequence of the correctness proportion of the faulty prefixes of ρf is stationary. As it is
never 0 as seen above, the POpPDA is not AFF-diagnosable.
• Conversely, assume that the PCP instance (n, {vi}i≤n, {wi}i≤n) has no solution. Let
ε > 0, let Nε ∈ N be the integer obtained with our earlier observation. Consider a
correct run ρc with observable length Nε ending in (qe,⊥0) and with an occurrence
of \. Its observed sequence is of the form vi1 . . . viki1 . . . ik\

m for some i1, . . . , ik,m.
Due to the fact that (n, {vi}i≤n, {wi}i≤n) has no solution, no faulty run can have the
same observed sequence. Therefore, ρc is surely correct. Symmetrically, any faulty run
ending in (fe,⊥0) by an occurrence of \ is surely faulty. We thus conclude that, for any
ε > 0, there exists Nε ∈ N such that P(FAmbNε ] CAmbNε) ≤ ε. As a consequence,
the POpPDA 〈V,Σo,P〉 is FA-diagnosable. By Theorem 3.1 it is also IA-diagnosable,
IF-diagnosable and AFF-diagnosable.

2 Diagnosability of probabilistic visibly pushdown automata

As diagnosability is undecidable for pPDA, we now turn to a more restrictive model:
probabilistic visibly pushdown automata (pVPA) [AM04]. While keeping a signifi-
cant expressive power, pVPA is a natural subclass of pushdown automata that is more
tractable than the general model and which language has many of the desirable prop-
erties that regular languages have. In particular, there exists a method for the deter-
minisation of a non-deterministic visibly pushdown automaton [AM04].

We formally define pVPA and describe how to build a diagnosis-oriented determin-
isation of a pVPA. Then, we give a decision procedure for diagnosability and study the
hardness of the diagnosability problems.

2.1 Probabilistic visibly pushdown automata and diagnosis-oriented
determinisation

A pVPA is a pPDA where events are partitioned into three sets depending on if they
correspond to push, pop, or local transitions.

Definition 5.4. A probabilistic visibly pushdown automaton (pVPA) is a pPDA V =
(Q, q0,Σ,Γ, δ,P) whose event alphabet is partitioned into local, push and pop events
Σ = Σ\ ] Σ] ] Σ[ and such that for every transition T = (q, γ, a, q′, w) ∈ δ, T is a local
(resp. push, pop) transition iff a is a local (resp. push, pop) event.

A pVPA without the transition probability function P is called a visibly pushdown
automata (VPA).

The definitions of pPDA carry on to pVPA in particular the semantics of a pVPA
is an infinite-state finitely-branching pLTS.
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Example 5.4. Consider the pPDA of Figure 5.2. This pPDA is a pVPA as shown by the
partition of events given by Σ] = {in},Σ[ = {out, abort} and Σ\ = {serve, empty, reset, f}.

To define partially observable pVPA, we equip a pVPA with a mask function and
require that only local events may be unobservable, and that pushes and pops can still
be distinguished. As a consequence, given the observed sequence of one run, one can
deduce the height of the stack as the difference between pushes and pops, plus one (the
bottom symbol).

Definition 5.5. A partially observable pVPA (POpVPA) is a tuple 〈V,Σo,P〉 consist-
ing of a pVPA V equipped with a mapping P : Σ→ Σo ∪ {ε} such that:

• Σo = Σo,\ ] Σo,] ] Σo,[ is the set of observations;

• P(Σ\) ⊆ Σo,\ ∪ {ε}, P(Σ]) ⊆ Σo,] and P(Σ[) ⊆ Σo,[.

When we aimed to verify the diagnosability of finite pLTS in Chapter 4, one of the
first step was to build a diagnosis-oriented determinisation of the pLTS (see Defini-
tion 4.1, page 91). While this could not be done for pPDA, a determinisation for pVPA
was established by Alur and Madhusudan [AM04]. Following the same approach, we
now explain how to adapt the determinisation of [AM04] for diagnosability. For a pVPA
V, its determinisation is called the estimate VPA of V and is denoted A(V). As in the
finite case, we need tags that reflect the category of runs (faulty or correct) given an
observed sequence with a distinction between “old” and “young” faulty runs. Due to its
technicality, we postpone the formal definition of A(V): we first explain some features
of the construction and illustrate them on an example (represented in Figure 5.5).
States and stack symbols. The VPA A(V) tracks all runs with same observation in
parallel memorising their status w.r.t. faults. More precisely to the current set of runs
corresponds the symbol on the top of the stack which is a set of tuples where each tuple
is written as a fraction γ,X,q

γ−,X−,q− . Let us describe the meaning of this tuple:

• q is the current state of the run and γ is the symbol on the top of its stack;

• X ∈ Tg = {U,V,W} is the status of the run: U for a correct run, V for a young
faulty run and W for an old faulty run;

• The denominator (γ−,X−, q−), is related to the configuration just after the last
push event of the run: γ− is the stack symbol under the top symbol, while X− is the
status of the run reaching this configuration and q− the state of this configuration.

A priori, a single state run would be enough. However the simulation of a pop event
in the original VPA is performed in two steps requiring some additional states that we
explain later.

Example 5.5. The initial configuration of the VPA A(V) of Figure 5.5 (run,
∣∣∣{⊥0,U,q0
⊥0,U,q0

}
∣∣∣)

corresponds to the empty run represented by a singleton. The denominator of bottom
stack symbols is by convention (⊥0,U, q0) and is irrelevant for specifying the transitions
of A(V).
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aX0 = {⊥,X,q0⊥,X,q0 }, a
X
1 = { γ,X,q0⊥,X,q0 }, a

X
∞ = {γ,X,q0γ,X,q0

}, bX1 = { γ,X,q1⊥,X,q0 }, b
X
∞ = {γ,X,q1γ,X,q0

}

cX0 = {⊥,X,q1⊥,U,q0 ,
⊥,X,f1

⊥,U,q0 }, c
X
1 = { γ,X,q1⊥,X,q0 ,

γ,X,f1

⊥,X,q0 }, c
X
∞ = {γ,X,q1γ,U,q0

, γ,X,f1

γ,U,q0
}, X ∈ {U,W}

run

{ U,q1
⊥0,U,q0

, W,f1

⊥,U,q0 }
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⊥0,W,q0

, W,f1
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}
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⊥0,U,q0

}

∣∣∣∣∣) (run,
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{γ,U,q0γ,U,q0

}
{ γ,U,q0⊥0,U,q0

}
{⊥0,U,q0
⊥0,U,q0

}

∣∣∣∣∣∣∣) (run,

∣∣∣∣∣∣∣
{γ,U,q1γ,U,q0

}
{ γ,U,q0⊥0,U,q0

}
{⊥0,U,q0
⊥0,U,q0

}

∣∣∣∣∣∣∣)

({ U,q1
γ,U,q0

, W,f1

γ,U,q0
},

∣∣∣∣∣{ γ,U,q0⊥0,U,q0
}
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}

∣∣∣∣∣)(run,

∣∣∣∣∣{ γ,U,q1⊥0,U,q0
, γ,W,f1

⊥0,U,q0
}

{⊥0,U,q0
⊥0,U,q0

}

∣∣∣∣∣)({ U,q1
⊥0,U,q0

, W,f1

⊥0,U,q0
},
∣∣∣{⊥0,U,q0
⊥0,U,q0

}
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(run,
∣∣∣{⊥0,U,q1
⊥0,U,q0

, ⊥0,W,f1

⊥0,U,q0
}
∣∣∣)

(run,
∣∣∣{⊥0,U,q0
⊥0,U,q0
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(run,
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εpop

ε
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Figure 5.5: The VPA A(V) associated with the POpVPA 〈V,Σo,P2〉 of Example 5.3
with two runs. The tag V was ignored to remove redundancy and simplify the figure.
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Tag updates. Let us explain how the tag X of an item γ,X,q
γ−,X−,q− of the current stack

symbol is determined. If this item corresponds to a correct run then X = U. When after
a transition of A(V) a (tracked) correct run becomes faulty, there are two cases. Either
there was no tag W in (the numerators of items of) the top stack symbol of the stack
then the run is tagged by W. Otherwise it is tagged by V meaning that it is a young
faulty run. The tag V (young) becomes W (old) when, in the previous state, there was
no tag W in the top stack symbol. A tag W is unchanged along the run.
Local transitions. Given an observed local event o ∈ Σo,\, from the state run with top
stack symbol bel, there is a local transition (run, bel, o, run, bel′) in A(V) looping over
run that encodes the possible signalling runs with observation o in V. More precisely
for every transition sequence (q, α)

o
=⇒ (r, β) in V (i.e. a sequence of unobservable local

events ended by an event e with P(e) = o) and α,X,q
α−,X−,q− ∈ bel one inserts β,Y,r

α−,X−,q− in
bel′. The value of Y follows the rules of tag updates.

Example 5.6. In the VPA A(V) of Figure 5.5 there are several transitions correspond-
ing to the transition (q0, γ, serve, q1, γ) of V including (run, {γ,U,q0γ,U,q0

}, loc, run, {γ,U,q1γ,U,q0
}).

For example, the runs represented in Figure 5.5 use this transition.

Push transitions. Given an observed push event o ∈ Σo,], from the state run with top
stack symbol bel, there is a push transition (run, bel, o, run, bel′bel′′) in A(V) looping
over run that encodes the possible signalling runs with observation o in V. More precisely
for every transition sequence (q, α)

o
=⇒ (r, β−β) in V and α,X,q

α−,X−,q− ∈ bel one inserts
β−,Y,r

α−,X−,q− in bel′ and β,Y,r
β−,Y,r in bel′′. The value of Y follows the rules of tag updates.

Example 5.7. In Figure 5.5 several transitions of A(V) correspond to the transition
(q0,⊥0, in, q0,⊥0γ) of V, including (run, {⊥0,U,q0

⊥0,U,q0
}, in, run, {⊥0,U,q0

⊥0,U,q0
}{ γ,U,q0⊥0,U,q0

}) and sev-
eral transitions of A(V) correspond to the transition (q0, γ, in, q0, γγ) of V, including
(run, { γ,U,q0⊥0,U,q0

}, in, run, { γ,U,q0⊥0,U,q0
}{γ,U,q0γ,U,q0

}). Here, the specification of the tag updates is
straightforward since it does not involve faulty runs. The runs represented in Figure 5.5
use these two transitions from the initial state.

Pop transitions. Given an observed pop event o ∈ Σo,[, from the state run with top
stack symbol bel, the “pop operation” is performed by a sequence of two transitions:
a pop transition labelled by o reaching another state that contains some information.
This information is then used by the next (local) transition labelled by ε to move back
to state run with a consistent stack symbol. Given an intermediate stack symbol, there
is exactly one possible such transition. Thus despite these transitions, A(V) is still
deterministic. The first transition (run, bel, o, `, ε) in A(V) is specified as follows. The
next state ` is a set of items of the following shape X,q

α−,X−,q− . More precisely for every

transition sequence (q, α)
o

=⇒ (r, ε) in V (i.e. a sequence of unobservable local events
ended by an event e with P(e) = o) and α,X,q

α−,X−,q− ∈ bel one inserts Y,r
α−,X−,q− in `. The

value of Y follows the rules of tag updates. A transition (`, bel, ε, run, bel′) is specified
as follows. For every X′,q′

γ,X,q in ` and γ,X,q
γ−,X−,q− in bel (i.e. the denominator of the first

fraction and the numerator of the second fraction match), one inserts γ,X′,q′

γ−,X−,q− in bel′.
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Example 5.8. Let us describe how the pop is performed by two transitions in the runs
of the VPA of Figure 5.5 from the state reached after event serve. From q1 with γ as
top of the stack there are two transitions whose observation is pop: (q1, γ, out, q1, ε) and
(q1, γ, abort, f1, ε). Thus starting from run with top stack symbol {γ,U,q1γ,U,q0

}, one reaches
state ` = { U,q1

γ,U,q0
, W,f1

γ,U,q0
}. The faulty run is tagged with W as there was no tag W in the

former top stack symbol. In the next configuration, the top stack symbol is { γ,U,q0⊥0,U,q0
}.

So the transition labelled by ε moves back to state run with updated top stack symbol
{ γ,U,q1⊥0,U,q0

, γ,W,f1

⊥0,U,q0
}.

We now give the definition of the estimate VPA A(V) associated with a given
POpVPA V. Let µ ∈ {g, c, f} we write (q, γ)

o
=⇒µ (q′, w) with o ∈ Σo if when µ = g

(resp. c, f), there exists a (resp. correct, faulty) run of transitions starting from (q, γ)
to (q′, w) such that all transitions are unobservable except the last one labelled by e
with P(e) = o. Let ρ be such a run then we also write (q, γ)

ρ
=⇒µ (q′, w) All transitions

of such runs are local except the last one whose type depends on the type of o.

Definition 5.6. Given 〈V,P,Σo〉 a POpVPA with V = (Q,Σ,Γ, δ,P), its estimate
VPA is the deterministic VPA A(V) = (Qe,Σo,Γ

e, δe) defined by:

• Qe = {run} ] (2Γ×(Tg×Q)2 \ ∅) is the set of states with initial state qe0 = run;

• Γe = 2(Γ×Tg×Q)2 \ ∅ is the stack alphabet with set of bottom stack symbols Γe⊥ =

2Init \ ∅ where Init = { ⊥0,X,q
⊥0,U,q0

| (X, q) ∈ Tg × Q} and initial stack symbol ⊥e0 =

{ q0,U,⊥0

q0,U,⊥0
};

• The transition relation δe is defined as follows.

local transitions (run, bel , o, run, bel ′) ∈ δe if:

• β,U,r
α−,U,q− ∈ bel ′ iff there exists α,U,q

α−,U,q− ∈ bel and (q, α)
o

=⇒c (r, β).

• If W occurs in bel , β,W,r
α−,X,q− ∈ bel ′ iff there exists α,W,q

α−,X,q− ∈ bel and (q, α)
o

=⇒g

(r, β).

• If W occurs in bel , β,V,r
α−,X,q− ∈ bel ′ iff

(1) there exists α,U,q
α−,U,q− ∈ bel and (q, α)

o
=⇒f (r, β) or

(2) there exists α,V,q
α−,X,q− ∈ bel and (q, α)

o
=⇒g (r, β).

• If W does not occur in bel , β,W,r
α−,X,q− ∈ bel ′ iff

(1) there exists α,U,q
α−,X,q− ∈ bel and (q, α)

o
=⇒f (r, β) or

(2) there exists α,V,q
α−,X,q− ∈ bel and (q, α)

o
=⇒g (r, β).

push transitions (run, bel , o, run, bel ′bel ′′) ∈ δe if:

• β−,U,r
α−,U,q− ∈ bel ′ and β,U,r

β−,U,r ∈ bel ′′ iff there exists α,U,q
α−,U,q− ∈ bel and (q, α)

o
=⇒c

(r, β−β).
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• If W occurs in bel , β−,W,r
α−,X,q− ∈ bel ′ and β,W,r

β−,W,r
∈ bel ′′ iff there exists α,W,q

α−,X,q− ∈
bel and (q, α)

o
=⇒g (r, β−β).

• If W occurs in bel , β−,V,r
α−,X,q− ∈ bel ′ and β,V,r

β−,V,r ∈ bel ′′ iff

(1) there exists α,U,q
α−,U,q− ∈ bel and (q, α)

o
=⇒f (r, β−β) or

(2) there exists α,V,q
α−,X,q− ∈ bel and (q, α)

o
=⇒g (r, β−β).

• If W does not occur in bel , β−,W,r
α−,X,q− ∈ bel ′ and β,W,r

β−,W,r
∈ bel ′′ iff

(1) there exists α,U,q
α−,U,q− ∈ bel and (q, α)

o
=⇒f (r, β−β) or

(2) there exists α,V,q
α−,X,q− ∈ bel and (q, α)

o
=⇒g (r, β−β).

pop transitions (run, bel , o, `, ε) ∈ δe with ` ∈ Qe \ {run} if:

• U,r
α−,U,q− ∈ ` iff

α,U,q
α−,U,q− ∈ bel and (q, α)

o
=⇒c (r, ε).

• If W occurs in bel , W,r
α−,X,q− ∈ ` iff there exists α,W,q

α−,X,q− ∈ bel and (q, α)
o

=⇒g

(r, ε).

• If W occurs in bel , V,r
α−,X,q− ∈ ` iff

(1) there exists α,U,q
α−,U,q− ∈ bel and (q, α)

o
=⇒f (r, ε) or

(2) there exists α,V,q
α−,X,q− ∈ bel and (q, α)

o
=⇒g (r, ε).

• If W does not occur in bel , W,r
α−,X,q− ∈ ` iff

(1) there exists α,U,q
α−,U,q− ∈ bel and (q, α)

o
=⇒f (r, ε) or

(2) there exists α,V,q
α−,X,q− ∈ bel and (q, α)

o
=⇒g (r, β−β).

ε-transitions (`, bel , ε, run, bel ′) ∈ δe if:
α,X′,r

α−,X−,q− ∈ bel ′ iff there exists α,X,q
α−,X−,q− ∈ bel and X′,r

α,X,q ∈ `.

We say that a configuration is stable if its associated state is run.

Example 5.9. Let us explain the runs given in the Figure 5.5. It starts in the initial
configuration (run,

∣∣∣{⊥0,U,q0
⊥0,U,q0

}
∣∣∣) which represents the empty run.

From q0 there exists only one path of observation in in the POpVPA. As this path is

correct, by reading in on the estimate VPA we reach (run,

∣∣∣∣∣{ γ,U,q0⊥0,U,q0
}

{⊥0,U,q0
⊥0,U,q0

}

∣∣∣∣∣). The new element

of the stack { γ,U,q0⊥0,U,q0
} means that the stack of the possible run has head γ and its current

state is q0 after a correct run, moreover the run entered q0 when it pushed this γ and
it does not have a second non-terminal element in our stack. Reading a second in is

still doable by a single run, we reach (run,

∣∣∣∣∣∣∣
{γ,U,q0γ,U,q0

}
{ γ,U,q0⊥0,U,q0

}
{⊥0,U,q0
⊥0,U,q0

}

∣∣∣∣∣∣∣) which modifies one information

compared to before: we know from the bottom part of the head stack that the stack has
at least a second γ.
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Reading a serve then is possible as there exists a correct signalling run from q0 to
q1 with observation serve. The estimate VPA modifies the head stack so as to represent
that the run we follow is now in q1 but without modifying anything else.

Reading a pop event is more involved: from q1 with head of stack γ, triggering a
pop can be done by a correct run staying in q1 or by a faulty run going in f1. To
represent this and the popping of the stack, we go in two steps. In the first step, we go
to the state { U,q1

γ,U,q0
, W,f1

γ,U,q0
} which keeps the information of the two possibilities of cur-

rent configuration and we pop the stack. In the second step, we deterministically take
an ε transition that transfer this information from the state to the stack. In order to
transfer the information, the estimate VPA checks which of the current possible runs
(represented by U,q1

γ,U,q0
and W,f1

γ,U,q0
) corresponds to each of the new head of stack. This

is done by comparing the bottom part of the run with the top part of the head of stack,
here γ,U, q0 in every cases. Reading a second pop realises a similar process reaching
(run,

∣∣∣{⊥0,U,q1
⊥0,U,q0

, ⊥0,W,f1

⊥0,U,q0
}
∣∣∣). An empty would lead to (run,

∣∣∣{⊥0,U,q0
⊥0,U,q0

}
∣∣∣) as there is a cor-

rect run from q1 to q0 labelled by empty but no run from f1 with such label. Similarly a
reset cannot be taken from q1 but it can be read from f1, thus we reach (run,

∣∣∣{⊥0,W,q0
⊥0,U,q0

}
∣∣∣).

The following proposition links runs of V and observed sequences of A(V).

Proposition 5.1. Let σ be an observed sequence of A(V) and ρ∗ be its correspond-
ing finite run with successive stable configurations (run,w0) . . . (run,wn). Let wn =
bel1 . . . belh and for i < n, bel(i) be the top stack symbol of wi. Then:
• For all γh,Xh,qh

γh−1,Xh−1,qh−1
∈ belh, there exists a sequence ( γi,Xi,qi

γi−1,Xi−1,qi−1
)0<i<h such that for

all i, γi,Xi,qi
γi−1,Xi−1,qi−1

∈ beli and a signalling run ρ of V such that P(ρ) = σ that reaches
configuration (qh, γ1 . . . γh). In addition:

• if Xh = U then ρ may be chosen correct;

• if Xh 6= U then ρ may be chosen faulty;

• if Xh = W then there exists 0 < k ≤ n, such that ρ↓k is faulty and W does not
occur in bel(k−1).

• Conversely, let ρ be a signalling run of V such that P(ρ) = σ reaching configu-
ration (qh, γ1 . . . γh), there exists a sequence ( γi,Xi,qi

γi−1,Xi−1,qi−1
)0<i≤h such that for all i,

γi,Xi,qi
γi−1,Xi−1,qi−1

∈ beli. In addition:

• if ρ is correct then Xh = U;

• if ρ is faulty then Xh 6= U;

• if there exists 0 < k ≤ n, such that ρ↓k is faulty and W does not occur in bel(k−1)

then Xh = W.

The difficulty of this proof is the number of cases that have to be studied: what is the
tag and which kind of transition (local, push or pop) is considered. As a consequence,
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we only detail the most involved case (when the event is a pop and the tag is W. The
result is obtained by induction on the size of the observed sequence and mostly consists
in understanding the definitions of A(V) and especially of the tag updates.

Proof. We prove the result by induction on |σ|. The basis case is straightforward. For
the inductive step, we only detail the most involved case: σ[n] ∈ Σo,[. For the properties
related to tags, we only detail the ones related to W. Denote σ′ = σ[1] . . . σ[n− 1] and
wn−1 = bel′1 . . . bel

′
hbel

′
h+1.

• Let γh,Xh,qh
γh−1,Xh−1,qh−1

∈ belh. By construction, there exists
γ′h+1,X

′
h+1,q

′
h+1

γ′h,X
′
h,q
′
h

∈ bel′h+1 with

γ′h = γh, a signalling run (q′h+1, γ
′
h+1)

ρ′′
=⇒ (qh, ε) with proj(ρ′′) = σ[n], γ′h,X

′
h,q
′
h

γ′h−1,X
′
h−1,q

′
h−1
∈

bel′h where (γ′h−1,X
′
h−1, q

′
h−1) = (γh−1,Xh−1, qh−1) and Xh is obtained by updating X′h+1

w.r.t. bel′h+1 and ρ′′. In particular if Xh = W then:
(1) X′h+1 = W, or
(2) W does not occurs in bel′h+1 and (a) X′h+1 = V or (b) X′h+1 = U and ρ′′ is faulty.

By inductive hypothesis, there exists a sequence (
γ′i,X

′
i,q
′
i

γ′i−1,X
′
i−1,q

′
i−1

)0<i≤h such that for all i,
γ′i,X

′
i,q
′
i

γ′i−1,X
′
i−1,q

′
i−1
∈ bel′i and a signalling run ρ′ of V such that P(ρ′) = σ′ reaching configu-

ration (q′h+1, γ
′
1 . . . γ

′
h+1). Consider the signalling run ρ = ρ′ρ′′; it reaches configuration

(qh, γ
′
1 . . . γ

′
h). Since for all i < h, bel′i = beli, the sequence (

γ′i,X
′
i,q
′
i

γ′i−1,X
′
i−1,q

′
i−1

)0<i<h and
the run ρ are appropriate. The three additional properties follow from the rules of tag
updates. In particular, if Xh = W, then:
◦ the assertion (1) holds and then the property comes from the inductive hypothesis, or
◦ the assertion (2) holds which implies that W does not occur in bel′h+1 and ρ is faulty.
• Let ρ be a signalling run of V such that P(ρ) = σ which reaches configuration

(qh, γ1 . . . γh). Let us write ρ = ρ↓n−1ρ
′′ with (q′h+1, γ

′
h+1)

ρ′′
=⇒ (qh, ε). By the in-

ductive hypothesis, there exists a sequence (
γ′i,X

′
i,q
′
i

γ′i−1,X
′
i−1,q

′
i−1

)0<i≤h+1 such that for all i,
γ′i,X

′
i,q
′
i

γ′i−1,X
′
i−1,qi−1

∈ bel′i and for all i ≤ h, γ′i = γi. By construction, γh,Xh,qh
γ′h−1,X

′
h−1,q

′
h−1
∈ belh for

some Xh. Since beli = bel′i for all i < h, we obtain the required sequence of items.
The three additional properties follow from the rules of tag updates. In particular,

assume there exists 0 < k ≤ n, such that ρ↓k is faulty and W does not occur in belk−1.
◦ If ρ↓n−1 is correct then, as ρ is faulty, ρ′′ is faulty and W does not occur in beln−1 =
bel′h+1. So by construction Xh = W.
◦ If ρ↓n−1 is faulty then:

• either X′h+1 = W and by construction Xh = W,

• or X′h+1 = V. By induction hypothesis there does not exist 0 < k ≤ n − 1,
such that ρ↓k is faulty and W does not occur in belk−1. So W does not occur in
beln−1 = bel′h+1. Therefore Xh = W.
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2.2 Decidability of diagnosability for POpVPA

Our goal in this subsection is to use the characterisations from the Section 3 of Chap-
ter 3 to decide the diagnosability of POpLTS generated by POpVPA. To do so, we
face the difficulty that the Borel sets that characterise IF-, IA- and FF-diagnosability
are not a priori regular, even in the finitely-branching case. Yet, for POpVPA, we cir-
cumvent this problem, and manage to specify these sets by pLTL formula on a product
of the POpVPA with its estimate VPA, the tags are used to define the atomic propo-
sitions. The decidability of the qualitative model checking for recursive probabilistic
systems [EY12] then yields the decidability of the above three diagnosability notions
for POpVPA.

The first step is to build the product of the POpVPA and its estimate VPA. From
this point on, we assume that the set of states of the POpVPA is separated between
correct and faulty states Q = Qc ∪ Qf . This can be done without loss of generality:
the transformation ensuring this is similar to the one shown for pLTS in Section 1.4
of Chapter 2. We build VA(V) = V × A(V) the product automaton of V and A(V)
synchronised on the alphabet of observed events Σo. The transitions of V labelled by
unobservable events do not change the second component of the state and the transitions
of A(V) labelled by ε do not change the first component of the state. Due to the
determinism of A(V), VA(V) has the same probabilistic behaviour as the one of V except
that it memorises additional information along the run. More precisely, let ρ be a run
of V, then ρ̄, a run of VA(V), is obtained from ρ by following the same transitions and
adding the single 	 transition firable after any pop transition. One immediately gets
PVA(V)

(ρ̄) = PV(ρ). Formally we have:

Definition 5.7. Given 〈V,P,Σo〉 a POpVPA V = (Q,Σ,Γ, δ,P) and its estimate VPA
A(V) = (Qe, run,Σo,Γ

e, δe), their synchronised product is the pVPA VA(V) = (QA,Σ ∪
{	},ΓA, δA,PA) where:

• QA = Q×Qe is the set of states with initial state qA0 = (q0,c, run);

• ΓA = Γ × Γe is the stack alphabet with Γ⊥ × Γe⊥ the set of bottom stack symbols
and ⊥A0 = (⊥0,

⊥0,U,q0
⊥0,U,q0

) the initial symbol;

• The transition relation δA consists of:

local transitions.
• For all (q, γ, a, q′, γ′) ∈ δ with a unobservable and bel ∈ Γe, we have
((q, run), (γ, bel), a, (q′, run), (γ′, bel)) ∈ δA;
• For all (q, γ, a, q′, γ′) ∈ δ and (run, bel, o, run, bel′) ∈ δe with P(a) = o, we
have ((q, run), (γ, bel), a, (q′, run), (γ′, bel ′)) ∈ δA;
• For all (`, bel , ε, run, bel ′) ∈ δe, q ∈ Q and γ ∈ Γ, we have

((q, `), (γ, bel),	, (q, run), (γ, bel ′)) ∈ δA;

push transitions.
• For all (q, γ, a, q′, γ′γ′′) ∈ δ and (run, bel, o, run, bel′bel′′) ∈ δe with P(a) =
o, we have ((q, run), (γ, bel), a, (q′, run), (γ′, bel ′)(γ′′, bel ′′)) ∈ δA;
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pop transitions.
• For all (q, γ, a, q′, ε) ∈ δ and (run, bel, o, `, ε) ∈ δe with P(a) = o, we have
((q, run), (γ, bel), a, (q′, `), ε) ∈ δA;

• The transition probability function PA is defined by:

– PA((q, run), (γ, bel), a, (q′, run), (γ′, bel ′)) = P(q, γ, a, q′, γ′);
– PA((q, run), (γ, bel), a, (q′, run), (γ′, bel ′)(γ′′, bel ′′)) = P(q, γ, a, q′, γ′γ′′);
– PA((q, run), (γ, bel), a, (q′, `), ε) = P(q, γ, a, q′, ε);
– for ` ∈ Qe \ {run},PA((q, `), (γ, bel),	, (q, run), (γ, bel ′)) = 1.

Example 5.10. The product POpVPA contains the current run of the POpVPA and
the information given by the estimate POpVPA. Let us consider the faulty run given as
example in the Figure 5.2. This POpVPA does not follow the separation between correct
and faulty states. Here we write qc (resp. qf ) if the state q was reached by a correct
(resp. faulty) run. After reading in, we are in state (q0,c, run) meaning that the state
of the possible run is q0, it was reached by a correct run and our estimate VPA is in

state run, the head of stack is (γ,

∣∣∣∣∣{
γ,U,q0,c
⊥0,U,q0,c

}
{⊥0,U,q0,c
⊥0,U,q0,c

}

∣∣∣∣∣), meaning our real head is γ and the rest

is the head of the estimate VPA. If we follow the faulty run until after the first pop,
we reach the state (f1,f , { U,q1

γ,U,q0,c
,
W,f1,f

γ,U,q0,c
}), we are thus in f1 with a faulty run and the

estimate VPA is in one of the temporary states. In order to leave this state, we read
a 	 which leads to the state (f1,f , run). 	 is an event only affecting the part of the
POpVPA corresponding to the estimate VPA, allowing it to realise the ε transition that
follows the observation of a pop event.

Given a finite run ρ of V, we inductively define the run ρ̄ of VA(V) as follows. First
(q0,⊥0) = (qA0 ,⊥A0 ). Let ρ of length n ≥ 1, a ∈ Σ and q ∈ Q and γ1, . . . , γh ∈ Γ such
that ρ = ρ′a(q, γ1 . . . γh). If a 6∈ Σ[ then ρ̄ = ρ̄′a((q, run), (γ1, bel1) . . . (γh, belh)) where
(run, bel1 . . . belh) is the configuration reached by P(ρ) in A(V). If a ∈ Σ[ then ρ̄ =
ρ̄′a((q, `), (γ1, bel1) . . . (γh, belh))	 ((q, run), (γ1, bel1) . . . (γh−1, belh−1)(γh, bel

′
h)) where

(`, bel1 . . . belh) is the configuration reached by P(ρ) inA(V) and (run, bel1 . . . belh−1bel
′
h)

is the single next configuration reached by an ε transition. As previously observed,
P(ρ) = P(ρ̄).

In order to prove decidability of diagnosability for a POpVPA V, one wants to check
whether the formulae characterising diagnosability defined in Chapter 3 hold on V. Let
us first recall the relevant results of Chapter 3. We defined three path formulae:

• f: for every run ρ, f(ρ) = true if ρ is faulty;

• U: for every run ρ, U(ρ) = true if there exists a correct signalling run ρ′ with
P(ρ) = P(ρ′);

• W: W(ε) = false and W(q0a0 . . . qn+1) = true if

firstf(P(q0a0 . . . qn+1)) = firstf(P(q0a0 . . . qn)) <∞
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where firstf(σ) = min{k | ∃ρ signalling run P(ρ) = σ ∧ ρ↓k is faulty} with the
convention that min(∅) =∞.

Using these path formulae, given a pLTS A, we obtained the following results:

• A is FF-diagnosable iff A |= P=0(32(f ∧ U));

• if A is finitely branching, A is IA-diagnosable iff A |= P=0(32(U ∧W)).

The paths formulae f, U and W depends on the past of the run and not only on the
current configuration. We therefore transform the pathL formulae into pLTL properties
that are checked on VA(V). First, for each path formula we define an atomic propositions
on the pairs ((q, run)(γ, bel)) consisting of a state of VA(V) together with a top stack
contents.

Definition 5.8. Let bel ⊆ 2(Γ×Tg×Q)2, we say that the tag X occurs in bel if there exists
γ,X,q

γ−,X−,q− ∈ bel .
The atomic propositions νf , νu and νw corresponding to the path formulae f, U and

W are defined by:

• νf ((q, run)(γ, bel)) = true if and only if q ∈ Qf ;

• νu((q, run)(γ, bel)) = true if and only if U occurs in bel ;

• νw((q, run)(γ, bel)) = true if and only if W occurs in bel .

We extend νf , νu and νw over configurations cf = ((q, `), w)) with ` 6= run by
νf (cf ) = νu(cf ) = νw(cf ) = true.

The atomic propositions νf and νu perfectly reflect the paths formula f and U, and
νw is eventually forever true if and only if W is.

Proposition 5.2. Let ρ be an infinite run of V. Then:

• For all k ∈ N, f(ρ↓k)⇔ νf (last(ρ̄↓k)) and U(ρ↓k)⇔ νu(last(ρ̄↓k));

• ρ |= 32W⇔ ∃K∀k ≥ K. νw(last(ρ̄↓k)) = true.

The second component of VA(V) representing A(V), one can use the results of Propo-
sition 5.1 to link the tags and the runs associated with the observed sequence. This is
what we do here. The most complicated (and interesting) case being the link between
W and W. The idea is the following. When the tag W disappears after following an
observation in A(V), let n be the observed length of the last time W was not tagging
any state, then the oldest fault in the current run occurred after the n’th observation.
Thus every time W is not present, the longest prefix of the run that is surely correct
increased, ensuring that W is false. Of course, W can be false more often than the
absences of W. However, if after the n’th observation, for n ∈ N, W always tag a state
of the belief, it means that there exists a run consistent with the observation for which
a fault occurred at most at the n’th step. Therefore firstf is bounded, which implies
that W will eventually become forever true.
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Proof. First, note that f and νf obviously coincide: they both express that a fault
occurred.
To prove the second item, about U and νu, we use the link between observed sequences
and the tag U in VA(V). Let σ be an observed sequence triggered by a run of V. Then belσ
is the top stack symbol of the stable configuration in A(V) reached by the run accepting
σ (so ending by an ε-transition if the last event is a pop event). Due to Proposition 5.1,
U occurs in belσ iff there is a correct signalling run of V with observed sequence σ.
According to the definition of νu, we thus deduce that for any finite signalling run ρ of
V, νu(last(ρ)) = true iff U(ρ) = true.
We now establish the link between W and νW . To show the left-to-right implication,
let ρ ∈ Ω and K0 ∈ N be such that ρ,K0 |= 2W. By definition of W, firstf(P(ρ↓k))
is constant and bounded by K0 for k ≥ K0. For all k ∈ N, let belk be the top stack
symbol reached in A(V) after reading the observed sequence P(ρ↓k). If for all k ≥ K0,
W occurs in belk, then for all k ≥ K0, νw(last(ρ̄↓k)) = true. Otherwise there exists
K1 ≥ K0 such that W does not occur in belK1 . Let k > K1, as firstf(P(ρ↓k)) ≤ K0,
there exists a faulty run ρ′ of VA(V) such that P(ρ′) = P(ρ̄↓n) and ρ′↓K0

is faulty. W
does not occur in belK1 and ρ′↓K1+1 is faulty. Thus by Proposition 5.1, W occurs in belk.
Therefore for all n > K1, νw(last(ρ̄↓n)) = true.
Let us show the right-to-left implication. Let ρ ∈ Ω and K ∈ N be such that for all
k ≥ K, νw(last(ρ̄↓k)) = true. By definition of νw for all k ≥ K, W occurs in belk
(defined as above). Let k ≥ K, by Proposition 5.1, there exists a run ρ′ of VA(V) such
that P(ρ′) = P(ρ̄↓k) and there exists n ≤ k such that ρ′↓n is faulty and W does not
occur in beln−1. Thus n ≤ K. Therefore for all k ≥ K, firstf(P(ρ↓k)) ≤ K. Since
beyond K, firstf is bounded, it is non decreasing and then ultimately constant. Let K ′

such that for all k ≥ K ′, firstf(P(ρ↓k)) = firstf(P(ρ↓k−1)). So ρ,K ′ |= 2W and thus
ρ |= 32W.

Thanks to the relationships between the path formulae, and the atomic propositions,
and using the characterisations from Section 3 of Chapter 3, we reduce the FF-, IF- and
IA-diagnosability to the model checking of a pLTL formula on the product VPA VA(V).
Model checking qualitative pLTL for probabilistic pushdown automata is doable in
polynomial space in the size of the model [EY12]. In our case, VA(V) is exponential in
the size of V. We thus obtain the decidability and a complexity upper-bound for the
diagnosability problems for POpVPA.

Theorem 5.3. FF-diagnosability, IF-diagnosability and IA-diagnosability are decidable
in EXPSPACE for POpVPA.

Proof. Thanks to the Propositions 5.2 and 5.1 and the characterisations of Proposi-
tions 3.7 (page 80) and 3.8 (page 81), we can derive pLTL characterisations of diag-
nosability for POpVPA. Namely, for V a POpVPA, as V and VA(V) have the same
probabilistic behaviour,

• V is FF-diagnosable iff VA(V) |= P=0(32(νf ∧ νu));

• V is IA-diagnosable iff VA(V) |= P=0(32(νu ∧ νw)).
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Moreover, since POpPDA have finitely many states, the POpLTS they generate are
finitely-branching. Therefore, IF-diagnosability coincides with FF-diagnosability accord-
ing to Theorem 3.1. The two above qualitative pLTL formulae can be checked on proba-
bilistic pushdown automata thanks to [EY09]. More precisely, one can transform VA(V)

into a recursive Markov chain (the transformation is linear) [EY12]. Then, the model
checking of qualitative pLTL on recursive Markov chains is doable in PSPACE in the
size of the Recursive Markov Chain and EXPTIME in the size of the formulae [EY09].
In our case, the product VPA VA(V) is exponential in the size of V and the size of the
formulae is constant. This yields an EXPSPACE algorithm for checking diagnosability
of POpVPA.

2.3 EXPTIME-hardness of the diagnosability for POpVPA

While the notions of diagnosability we studied in the previous section are decidable
in EXPSPACE (Theorem 5.3), this is not necessarily optimal. Here, we only show an
EXPTIME lower bound on the complexity. This lower bound is obtained by reducing the
universality problem for VPA, which is known to be EXPTIME-complete [AM04]. This
reduction also applies to FA-diagnosability for which the decidability status is unknown.

Theorem 5.4. FF-, IF-, FA- and IA-diagnosability are EXPTIME-hard for POpVPA.

Proof. Let us start with FF-diagnosability. The proof is done by reduction from the
universality problem for VPA, which is known to be EXPTIME-hard [AM04]. Recall the
universality problem for VPA: given a VPA A and a set of final states QF , do we have
P({ρ ∈ SR | last(ρ) ∈ QF }) = Σω

o ?
Starting from a VPA A we build a pVPA V ′ (see Figure 5.6) with two components:

one correct and one faulty, both reachable in one step from the initial state. The correct
component is a copy of A with a positive probability of making a reset (emptying its
stack and going back to the initial state of A) in a final state. Every reset starts by a
new observable event \,followed by some pop event [ and ends by a second \. In the
faulty component, one can read any observation of Σ∗o and also has the possibility to
produce \ and [ in a way that mimics a reset. If a \ is read, then the faulty component
triggers some [ and a \ as would be done in the correct component. This way, the
observation associated with a reset does not give any information on the correctness
of a system. What matters is after which observed sequence can a reset occur. If an
observed sequence cannot end in an accepting state of A, then in a faulty run, with
probability 1 this observed sequence will be read in between two resets, revealing the
fault. Reciprocally, if A is universal, everything that can be observed on a faulty run
can also be observed in the correct component establishing that V ′ is not diagnosable.

Formally, from a VPA A = (Q,Σ,Γ, δ) and a subset of accepting states QF ⊆ Q,
we build a pVPA V ′ = (Q′,Σ′,Γ′, δ′,P′) as follows:

• Q′ = Q ∪ {f0, f[, q
′
0, q[} and q′0 is the initial state;

• Σ′ = Σ ] {f , u, [, \};
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• Γ′ = Γ ] {B} and Γ′⊥ = Γ⊥;

• Writing δ\, resp. δ] and δ[ for the set of local resp. push and pop transitions of
V, δ′ consists of the following transitions:

local δ\ ∪ {(q′0,⊥0, u,⊥0, q0), (q′0,⊥0, f ,⊥0, f0), (f0, γ, \, γ, f[) | γ ∈ Γ ∪ {⊥0}} ∪
{(q, γ, \, γ, q[) | q ∈ QF , γ ∈ Γ ∪ {⊥0}} ∪ {(f0, γ, a, γ, f0) | a ∈ Σ\, γ ∈
{B,⊥0}} ∪ {(q[,⊥0, \,⊥0, q0), (f[,⊥0, \,⊥0, f0)};

push δ] ∪ {(f0, γ, a, γB, f0) | a ∈ Σ], γ ∈ {B,⊥0}};
pop δ[ ∪ {(f0, B, a, ε, f0) | a ∈ Σ[} ∪ {(f[, B, [, ε, f[)} ∪ {(q[, γ, [, ε, q[) | γ ∈ Γ};

• P′ is such that for every γ ∈ Γ, P′(f0, γ, \, γ, f[) = 1
2 , and assigns arbitrary positive

probabilities to the other transitions in δ′.

We further consider the POpVPA 〈V ′,Σo,P〉 with Σo = Σ ∪ {[, \} and the masking
function satisfies P(u) = P(f) = ε and P(x) = x for any other event x ∈ Σ′. This
construction is illustrated in Figure 5.6. The figure uses the following shortcuts: a[ ∈ Σ[,
a\ ∈ Σ\, a] ∈ Σ], γ ∈ Γ, γ′ ∈ {B,⊥0} and z ∈ Γ \ {⊥0}.

q′0 f0q0 f[

q[

qf
⊥0, f ,⊥0

B, a[, ε
γ′, a\, γ

′

γ′, a], γ
′B

⊥0, u,⊥0

γ′, \, γ′

B, [, ε

⊥0, \,⊥0

γ, \, γ

z, [, ε

⊥0, \,⊥0

V

Figure 5.6: A POpVPA for the EXPTIME-hardness of FF-diagnosability.

The observed sequences corresponding to correct runs in 〈V ′,Σo,P〉 are either of
the form w1\[

k1\w2 . . . \[
kn−1\wn or of the form w1\[

k1\w2 . . . \wn−1\[
m. In these de-

compositions, wi, for i < n, is a sequence corresponding to a run of V starting in q0

and ending in some accepting state qf ∈ QF , ki is the number of elements in the stack
after reading wi in V and also in V ′ (apart from the bottom stack symbol ⊥0), wn is
the sequence associated with a run of V starting in q0, and m is at most the number of
elements in the stack after reading wn−1 in V. Note that ki only depends on wi, and
does not depend on the exact run over wi, since V is a VPA.
The observed sequences corresponding to faulty runs in 〈V ′,Σo,P〉 are less constrained.
They are of one of the two forms presented above, however the words wi for i ≤ n can
be any word of Σ∗.

Let us show that V is not universal if and only if 〈V ′,Σo,P〉 is FF-diagnosable.
First assume that V is not universal. Then there exists a word w ∈ Σ∗ such that no
run of V reading w ends in an accepting state qf . However, the observed sequence of
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any faulty run almost-surely contains the factor \w\. Indeed, faulty runs almost surely
visit infinitely often the configuration (f[,⊥0), and from there, the probability λ to
read \w\ is positive. Let ρ be an infinite faulty run. Its observed sequence is of the
form P(ρ) = w1\[

k1\w2\[
k2\w3 . . . with ki ≤ |wi| for every i. If there exists i ≤ n such

that wi = w then ρ is surely faulty, since it has no corresponding correct run. The
latter statement can be refined. For n ≥ |w|, if, for every i ≤ n, |wi| ≤ n and there
exists i ≤ n such that wi = w then ρ↓2n2+n is surely faulty. Indeed, |wi\[ki | ≤ 2n + 1,
w occurs at the latest for i = n, and once it occurs the prefix is surely faulty. Let
us therefore consider faulty runs that do not satisfy this property. We let Avoidn =
{ρ ∈ F | P(ρ) = w1\[

k1\w2\[
k2\w3 · · · ∧ (∀i ≤ n wi 6= w ∨ ∃i ≤ n |wi| > n)}. By

construction, FAmb2n2+n ⊆ Avoidn. Moreover, using standard union-sum inequalities,
P(Avoidn) ≤ (1 − λ)n + n

2n (recall that λ is the probability to read \w\ from (f0,⊥0)).
Thus limn→∞ P(Avoidn) = 0 and hence limn→∞ P(FAmbn) = 0 so that 〈V ′,Σo,P〉 is
FF-diagnosable.
Assume now that V is universal. Let ρ be an infinite surely faulty run of 〈V ′,Σo,P〉.
We write ρ′ for the greatest ambiguous prefix of ρ and a ∈ Σo ∪ {\, [} such that ρ′a is
again a prefix of ρ. Observe that a cannot be [ since the number of [’s between two
\’s, whether on the left or right-hand-side of V ′, is entirely determined by the word of
Σ∗o read before the first \. For the same reason, if a = \, P(ρ′) ends with a word of Σ∗o
(i.e. the number of \’s in P(ρ′) is even). Let w be the greatest suffix of P(ρ′) contained
in Σ∗o. If a = \, we deduce that there is no run starting in q0 with observed sequence
w and ending in an accepting state of V. Therefore, V is not universal. Similarly,
if a ∈ Σo, then there is no run starting in q0 and with observed sequence wa. In
that case also, V is not universal. We hence conclude that there is no infinite surely
faulty run in 〈V ′,Σo,P〉. As the probability to generate faulty runs is positive, this
implies that 〈V ′,Σo,P〉 is not IF-diagnosable. Now, IF-diagnosability is equivalent to
FF-diagnosability for finitely-branching POpLTS (see Theorem 3.1), and so 〈V ′,Σo,P〉
is not FF-diagnosable.

Let us now argue for the EXPTIME-hardness of FA-diagnosability and IA-diagnosability.
The reduction is very similar to the previous one: it only requires an additional state
in the correct component that ensures that almost surely any correct run will be iden-
tified as being correct. Therefore the problem may only come from the faulty runs
which are dealt with exactly as above. From the VPA V = (Q,Σ,Γ, δ) and pVPA
V ′ = (Q′,Σ′,Γ′, δ′) defined above, we construct a pVPA V ′′ = (Q′′,Σ′′,Γ′′, δ′′,P′′) such
that

• Q′′ = Q′ ∪ {qc} and q′0 is the initial state;

• Σ′′ = Σ ∪ {f , u, ], α};

• Γ′′ = Γ;

• δ′′ = δ′ ∪ {(q, α, γ, qc) | γ ∈ Γ ∪ {⊥0}, q ∈ Q ∪ {qc}};

• P′′ assigns arbitrary positive probabilities to transitions in δ′′.
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We further consider the POpVPA 〈V ′′,Σo,P〉 with Σo = Σ′′ \ {f , u}, and the masking
function satisfies P(f) = P(u) = ε and P(x) = x for any other event x. The construction
is illustrated in Figure 5.7, where we use the shortcuts: a[ ∈ Σ[, a\ ∈ Σ\, a] ∈ Σ], γ ∈ Γ,
γ′ ∈ {B,⊥0} and z ∈ Γ \ {⊥0}.

q′0 f0q0 f[

q[

qf

qqc
⊥0, f ,⊥0

B, a[, ε
γ′, a\, γ

′

γ′, a], γ
′B

⊥0, u,⊥0

γ′, \, γ′

B, [, ε

⊥0, \,⊥0

γ, \, γ

z, [, ε

⊥0, \,⊥0

γ, α, γ

γ, α, γ

γ, α, γ

V

Figure 5.7: A POpVPA for EXPTIME-hardness of FA-diagnosability and IA-
diagnosability.

V ′′ is a slight modification of V ′: from any state of V (accepting or not), reading
the new letter α leads to the sink state qc. As a consequence, for any correct run of
〈V ′′,Σo,P〉, there is a positive probability at each step to perform event α and become
surely correct. This implies limn→∞ P(CAmbn)n∈N = 0. Observe that the above proof
for V ′ also applies to V ′′: V is not universal if and only if 〈V ′′,Σo,P〉 is FF-diagnosable.
Now, since limn→∞ P(CAmbn)n∈N = 0, FF-diagnosability, FA-diagnosability and IA-
diagnosability coincide for 〈V ′′,Σo,P〉. We conclude that V is not universal if and only
if 〈V ′′,Σo,P〉 is diagnosable (for any notion of diagnosability).

While diagnosability was undecidable for POpPDA, the situation is more complex
with POpVPA. Some notions become decidable, although we may not have the ex-
act complexity, while for others decidability remains open. The method used here
requires a characterisation that can be translated in pLTL. This is not possible for FA-
diagnosability or the approximate notions of diagnosability which cannot be expressed
in pathL. Recall that pathL is more expressive than LTL according to Proposition 3.6,
page 79.

3 Diagnosability of infinite pLTS represented by stochastic
Petri nets

In this section we study infinite-state pLTS generated by stochastic Petri nets (SPN).
This model is incomparable to pPDA and therefore generates different kinds of pLTS.
In Subsection 3.1 we formally define SPN and the infinite-state pLTS generated by an
SPN. We then show in Subsection 3.2 that, as for pPDA, diagnosability is undecidable
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in SPN, and that a restriction similar to what pVPA are to pPDA is not enough to
regain decidability.

3.1 Stochastic Petri nets

A Petri net contains places and transitions. In each place there are tokens and a
transition consumes tokens from input places and produces tokens in output places.
From a manufacturing point of view, these tokens can be seen as different items that are
received, assembled with other items, processed and the final product can be exported.
Due to the locality of transitions, Petri nets are appropriate for modelling concurrent
systems. The infinite behaviour comes from the potentially unbounded number of tokens
inside the net. The sets of infinite-state pLTS that can be generated by pushdown
systems and Petri nets are incomparable.

Definition 5.9. A Petri net (PN) is a structure N = (P,M0, T, Pre, Post), where P
is a set of m places; M0 is the initial marking, i.e. a vector M : P → N that assigns to
each place of a PN a non-negative integer number of tokens; T is a set of n transitions;
Pre : P × T → N and Post : P × T → N are the pre– and post– incidence functions
that specify the arcs. We also define C = Post−Pre as the incidence matrix of the net.

For Mat ∈ {Pre, Post, C} and t ∈ T , we write Mat(· , t) for the column vector which,
for every i ∈ N, contains at the row i the value Mat(i, t). A transition t is enabled from
M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ = M + C(· , t). One writes
M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk is enabled from M , and
M [σ〉 M ′ to denote that the firing of σ yields M ′. One writes t ∈ σ to denote that a
transition t is contained in σ. The length of the sequence σ (denoted |σ|) is the number
of transitions in the sequence, here k.

Example 5.11. Consider the PN of Figure 5.8. The initial marking isM0 = [2, 0, 0, 0, 0].
Two tokens are needed to fire t2, one in place p1 and one in place p2. In order to take
the manufacturing analogy again, this means two items must be assembled here. In p1

two items are already here, ready for assembling, however p2 is empty. Firing t1 de-
livers one item to p2, enabling the transition t2. Once t2 was fired, one token in p1

and one token in p2 are consumed and one token (the assembled product) is produced
in p3. There two transitions can be fired. For example, the token can be consumed by
t4 producing a new token in p4 which enables t6. This last transition consumes a token
without creating any new one, so it could correspond to the finished product being sent,
and thus removed from consideration by this system. A sequence of transitions corre-
sponding to the arrival of new products, their processing and removing from the system
is σ = t0t1t2t4t6. Firing this sequence uses exactly the tokens that are created inside it.
Therefore it can be repeated: σk is enabled from M0 for all k ∈ N.

The set of all sequences that are enabled at the initial markingM0 is denoted L(N),
i.e., L(N) = {σ ∈ T ∗ | M0[σ〉}. A marking M is reachable in N iff there exists a firing
sequence σ such that M0 [σ〉 M . The set of all markings reachable from M0 defines
the reachability set of N and is denoted R(N). Given k ∈ N, a place p of a PN N is
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p1

p2

p3 p4

p5

t1

t0 t2

t3

t4

t5

t6

Figure 5.8: A Petri net. Circles are places and rectangles are transitions. In the initial
marking, p1 has two tokens represented by the two black dots.

k-bounded if for all M ∈ R(N), M(p) ≤ k. It is bounded if there exists k ∈ N such that
p is k-bounded. A PN is bounded (resp. k-bounded) iff all of its places are bounded
(resp. k-bounded).

Example 5.12. Consider again the PN of Figure 5.8. Firing t1 k times in M0 leads
to the marking M1 = [2, k, 0, 0, 0]. Therefore the place p2 is not bounded.

Probabilities are added to a PN by adding a fire rate to every transition in the
following way.

Definition 5.10. A Stochastic Petri Net (SPN) is a pair N = (N,µ) where N is a PN
and for all t ∈ T, µ(t) ∈ R+ is the rate of firing of transition t.

The usual interpretation of rates is that, in a given marking, a delay is computed
for every enabled transition t with an exponential probability distribution function of
parameter µ(t), i.e. the probability distribution function for the delay of transition t is
ft : x ∈ R+ 7→ µ(t)e−µ(t)x. Multiple time semantics [HM09] can be chosen in an SPN to
decide how these delays are used to determine which transition is fired. For instance,
one could use (a) a single server policy : each transition can only be fired once by a given
marking, (b) a race policy : the transition whose firing delay elapses first is assumed to
be the one that will fire next and (c) a resampling memory policy : at the entrance in
a marking, the remaining delays associated with all transitions are forgotten. Observe
that as we use an exponential probability distribution, whether the delays are forgotten
or not does not modify the probabilistic semantic. Using these choices, one could then
define the semantics of the SPN as a continuous time Markov chain. However, as we
only focus on discrete-time semantics here, we simplify the definition of the probabilistic
behaviours of the SPN. We remove the time consideration from the semantics, and only
keep the discrete time Markov chain induced by the continuous time Markov chain.
This semantics keeps enough information to answer questions expressed for example by
pLTL or pCTL formulae, but cannot address time-related issues such as mean reaction
time.

Using the simplified interpretation of rates, as for pLTS, a probability measure can
be defined on the sequences of transitions of a PN. Given a sequence σ ∈ T ∗, we
write C(σ) for the set of infinite sequences prefixed by σ, C(σ) = {σ′ ∈ Tω | ∃σ′′ ∈



156 Algorithmic analysis of the diagnosability of infinite pLTS

Tω : σ′ = σσ′′}. The set of infinite sequences is the support of a probability measure
defined by Caratheodory’s extension theorem from the probabilities of the cylinders:
the probability of the cylinder starting by the empty sequence ε is equal to 1 and, for
σt a sequence, the probability of C(σt) in M0, written P(σt), satisfies

P(σt) = P(σ)× µ(t)∑
t′∈T,M0[σt′〉 µ(t′)

As for pPDA, we enhance SPN with a mask function.

Definition 5.11. A partially observable SPN (POSPN) is a tuple 〈N ,Σo,P〉 consisting
of an SPN N equipped with a mapping P : T → Σo ∪ {ε} where Σo is the set of
observations.

From now on, we assume that there does not exist a marking M reachable from
M0 and an infinite sequence σ ∈ Tω such that P(σ) = ε and M [σ〉. This assump-
tion corresponds to the assumption of convergence that was made for pLTS. The ob-
served sequence w of observations associated with the sequence σ is w = P(σ). Note
that the length of a sequence σ is always greater than or equal to the length of the
corresponding observed sequence w (denoted |w|). Given a word w ∈ L∗, we write
P(w) =

∑
σ∈P−1

e (w) P(σ). Thanks to our earlier assumption, this sum is finite.

Example 5.13. Consider again the PN N of Figure 5.8. We define the POSPN
〈(N,µ), {a, b, c},P〉 such that for all t ∈ T, µ(t) = 1 and P(t0) = P(t1) = b,P(t2) =
a,P(t3) = P(t4) = ε and P(t5) = P(t6) = c. The observed sequence bac corresponds
to the sequences t1t2t3t5 and t1t2t4t6, each of which has a probability 1

72 . Therefore
P(bac) = 1

36 .

The (potentially infinite) pLTS associated with a POSPN is based on the reachability
graph of the PN: every state corresponds to a reachable marking.

Definition 5.12. A POSPN 〈N ,Σo,P〉 defines a pLTS AV = (QN ,M0, T, TN ,PN )
where:

• QN = R(M0);

• Tspn = {(M, t,M ′) |M [t〉M ′};

• For every (M, t,M ′) ∈ TN , PN [(M, t,M ′)] = µ(t)∑
t′∈T,M [t′〉 µ(t′) .

This pLTS is infinite when the reachability set is infinite. This happen iff the PN is
not bounded. If the PN is k-bounded, for k ∈ N, then the size of the generated pLTS
is exponential in the size of the PN and in k. A POSPN is diagnosable according to a
notion of diagnosability if the pLTS it generates is diagnosable.

In order to mirror the POpVPA restriction of POpPDA, we introduce the notion of
visible POSPN.

Definition 5.13. A visible POSPN (VSPN) is a POSPN such that
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• an unobservable transition does not modify the number of tokens in the system;

• for every pair of two transitions t1 and t2 with P(t1) = P(t2) Post(· , t1)1v −
Pre(· , t1)1v = Post(· , t2)1v − Pre(· , t2)1v where 1v is the vector with 1 in every
position.

This second condition means that the number of tokens is modified similarly by t1
and t2. An observer of a VSPN thus knows at all time how many tokens are present in
the system.

3.2 Undecidability of diagnosability for stochastic Petri nets

The exact diagnosability problems for k-bounded Petri nets are decidable as the gen-
erated pLTS is exponential and the exact diagnosability problems for finite pLTS are
decidable. Moreover deciding if a Petri net is bounded is also decidable [Rac78]. For un-
bounded Petri nets however, while non-stochastic variants of diagnosability are known
to be decidable on Petri nets, this is not the case for the stochastic notions of exact di-
agnosability. In order to show the undecidability, we reduce the problem of the language
inclusion for Petri nets, namely: given two PN N1 and N2, an observation alphabet Σo

and a mask function P does P(L(N1)) ⊆ P(L(N2)) hold? This problem is known to
be undecidable(see the survey [EN94]).

Theorem 5.5. The FF-, IA- and FA-diagnosability problems of POSPN are undecidable.

Given two PNN1 andN2, we build an SPN where the initial transition (which can be
faulty), produces tokens in one among two components. This component corresponds to
an enhanced copy of one of the two given PN. Then, a sequence of this PN is triggered.
At any moment during this sequence, a transition starting a reset operation can be
taken. This reset operation removes all the tokens from the PN then produces the
tokens corresponding to the initial marking so that a new sequence can be read by the
PN. The goal is that the fault is detected iff an observed sequence that can only be
triggered from N1 is observed in between two resets operation.

The difficulty of this reduction lies in the reset operation as one cannot test directly
whether the places of the PN were correctly emptied. This information however, can
be encoded in the observation. Let us now describe what happens in a reset. The reset
starts and ends by an observable ] and, in between, produces a certain number of [.
Each of these [ removes a token that was left inside the PN, so that at any moment, the
observer knows precisely the number of tokens within the system. If there is still at least
one token in the system when the second ] occurs, a gadget is used to allow the system
to trigger any observed sequence so that no information is given to the observer. In
other words, the observed sequence in between two reset operations give an information
on the system iff the previous reset had correctly emptied the PN.

Proof. Let N1 = (P 1,M1
0 , T

1, P re1, Post1) and N2 = (P 2,M2
0 , T

2, P re2, Post2) be two
PN, with the mask function P and the observation alphabet Σo.
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Without loss of generality, we assume that the initial markingM i
0 has a single token

in a place pi0 for i = 1, 2, that every transition is observable and that there exists an
integer k ∈ N such that the number of tokens in the system is equal to k times the
length of the sequence plus 1. This last assumption could be ensured by choosing k as
the maximum number of tokens added by a transition (this means number of tokens
created minus number of tokens consumed) and adding an additional place where the
unnecessary tokens are put (i.e. if a transition adds k′ tokens with k′ < k, then this
new place receives k − k′ tokens).

p0p1
0 p2

0

Box1 Box2

p1
run p2

run

t1in, ]

f

t2in, ]

Figure 5.9: Reduction from language inclusion. The Figure 5.10 represents the content
of the box Box1, it is similar for Box2. Transitions are labelled by their name and their
observation.

We build the POSPN (P,M0, T, Pre, Post, µ,Σo ∪ {], [},P ′) (represented in Fig-
ure 5.9) where:

• P = P 1 ∪ P 2 ∪ {p0} ∪ {piemp, pirun, pierr | i = 1, 2};

• T = T 1 ∪ T 2 ∪ {tiin, ti], tirese, tiresn | i = 1, 2} ∪ {tia | a ∈ Σ, i = 1, 2} ∪ {tpemp, tperr |
p ∈ P 1 ∪ P 2};

• for i ∈ {1, 2}, p ∈ P i, t ∈ T i, P re(p, t) = Prei(p, t) and Pre(pirun, t) = 1,
Pre(p0, t

i
in) = 1, Pre(piemp, ti]) = 1, Pre(pirun, tiresn) = 1, Pre(pierr, tirese) = 1,

for a ∈ Σ, P re(pierr, t
i
a) = 1, Pre(p, tpemp) = Pre(piemp, t

p
emp) = 1, Pre(p, tperr) =

Pre(piemp, t
p
err) = 1. When undefined, Pre(p, t) = 0;

• for i ∈ {1, 2}, p ∈ P i, t ∈ T i, Post(p, t) = Posti(p, t) and Post(pirun, t) = 1,
Post(pi0, t

i
in) = Post(pirun, t

i
in) = 1, Post(pirun, ti]) = Post(pi0, t

i
]) = 1, for a ∈

Σ, Post(pierr, t
i
a) = 1, Post(pi0, t

i
a) = k, Post(piemp, tiresn) = Post(piemp, t

i
rese) = 1,

Post(piemp, t
p
emp) = 1, Post(pi0, t

p
err) = 2, Post(pierr, t

p
err) = 1. When undefined,

Post(p, t) = 0;

• P ′ extends P on N by, for p ∈ P 1 ∪ P 2, i ∈ {1, 2}, a ∈ Σ, P ′(tiin) = ], P ′(ti]) =

P ′(tperr) = P ′(tirese) = P ′(tiresn) = ], P ′(tia) = a, P ′(tpemp) = [;

• for i ∈ {1, 2}, p ∈ Pi, µ(t1rese) = µ(t1resn) = µ(tpemp) = 2k(|Σ| + |T1|) (assuming
|T1| ≥ 1) and for every other transition t µ(t) = 1.
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Figure 5.10: Content of the box Box1.

Moreover, t1in = f is the fault transition.
We show that the system is FF-diagnosable iff P(L(N1)) 6⊆ P(L(N2)).
First note that the set of observed sequences associated with the infinite sequences

starting by the transition tiin, denoted Li, contains exactly the words of the form
]w1][

n1] . . . wk][
nk] . . . where for all 1 ≤ j ≤ k, (1) wj ∈ Σ∗o, (2)

∑j
m=1 k|wm| + 1 ≥∑j

m=1 nm and (3)
∑j−1

m=1 k|wm|+ 1 =
∑j−1

m=1 nm implies wj ∈ P(L(N i)).
Suppose that P(L(N1)) ⊆ P(L(N2)). Let σ be an infinite faulty sequence. As

σ is faulty, it initially fired t1in, thus P(σ) ∈ L1. Thanks to the above remark on
the languages Li, and as P(L(N1)) ⊆ P(L(N2)), P(σ) ∈ L2, therefore there exists
a sequence σ′ starting by the transition t2in with same observation as σ. Moreover
this transition is not faulty as it did not fire t1in initially and cannot fire it after the
first transition. Therefore P(σ) is not surely faulty. As this is true for every faulty
sequence, the system is not IF- diagnosable. The pLTS generated by this POSVN
being finitely branching, according to Theorem 3.1, this implies that the POSPN is not
FF-diagnosable.

Suppose now that P(L(N1)) 6⊆ P(L(N2)). There thus exists a word w such that
w ∈ P(L(N1)) \ P(L(N2)). The observed sequences of L1 such that there exists i ∈ N
with

∑i−1
m=1 k|wm|+ 1 =

∑i−1
m=1 nm and wi = w are surely faulty as they do not belong

to L2. We denote SL1 the set of these observed sequences. Let us show now that with
probability 1 an infinite faulty sequence belongs to SL1.
While a token is in p1

err or p1
run, every transition taken with observation other than

] produces k tokens in the copy of N1. Moreover, there are at most |Σ| + |T1| such
transitions, each with rates 1. As the transition triggering ] has rate 2k(|Σ|+ |T1|), the
expectation of the number of tokens produced before a ] is below 1+2k. During a reset
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operation, as for all places p ∈ P1, µ(tpemp) = 2k(|Σ| + |T1|) and the two transitions
producing ] have rates 1, the expectation of the number of token removed from the
copy of N1, assuming there are enough tokens within the system, is greater than 1 +
k(|Σ|+ |T1|)1. Thus, with probability 1, a faulty sequence will infinitely often remove all
the tokens from P 1. Therefore with probability 1, the observation of an infinite faulty
sequence will be of the form ]w1][

n1] . . . wk][
nk] · · · ∈ L1 with infinitely many i ∈ N

such that
∑i−1

m=1 k|wm|+ 1 =
∑i−1

m=1 nm. There is a probability p > 0 that for any such
i, wi = w as w ∈ P(L(N1)). Therefore with probability 1, there exists i ∈ N such that
wi = w. Hence with an infinite faulty sequence almost surely belongs to SL1. This
implies that the POSPN is IF-diagnosable and thus FF-diagnosable.

In order to reduce the problem to FA-diagnosability and IA-diagnosability, we pro-
ceed similarly to the proof of Theorem 5.4: we add another place pc and a transition
tc that takes a token from p2

run and puts it in pc. This transition has firing rate 1 and
observation \. This is thus the only transition with this observation. As a consequence,
taking this transition ensures the run is surely correct and remains that way. As a run
entering Box2 almost surely infinitely often contains a token in p2

run, every run almost
surely either becomes faulty or surely correct. Therefore limn−→∞ CAmbn = 0. This
implies that in this POSVN, FF-diagnosability is equivalent to FA-diagnosability and
IA-diagnosability. The rest of the proof above then applies.

An interesting feature of this proof is that the number of tokens in the POSPN used
in the reduction can be deduced from the observation at all time. Therefore it is a
VSPN. This gives the following result.

Corollary 5.1. The FF-, IA- and FA-diagnosability problems of VSPN is undecidable.

Thus, a restriction similar to what allowed us to regain decidability in POpPDA is
not enough for POSPN.

4 Conclusion

The study of diagnosability for infinite-state pLTS depends heavily on the model used
to finitely represent such a pLTS. Choosing a model that is too powerful leads quickly
to undecidability. This has been shown with the undecidability proofs established for
restricted classes of POpPDA and POSPN. These proof contains important differences.
For instance, while undecidability is proven for every notion of stochastic (and in fact
even non-stochastic) diagnosability in POpPDA, it is only proven for the exact notions
of diagnosability in POSPN. Moreover, it is known that non-stochastic diagnosability
is decidable in PN. In this sense, PN is a model for which there is still hope to get
decidability results. We did not use the notion of coverability graph here, which gives a
finite over-approximation of the reachability graph. Maybe an analysis of its language
coupled with a study of the pathological behaviours (due to the over-approximation)
may help in solving AFF-diagnosability. Moreover, the restriction that was used for

1This value is obtained by analysing the case where only one place contains tokens.
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POSPN was chosen to mimic the one used on POpPDA, but is not necessarily the most
suited to the model.

Even if the POpPDA model has the strongest undecidability results, the appropriate
restriction allows to regain decidability. For POpVPA, we could use model-checking
methods to verify pLTL formula equivalent to the logical characterisation of Section 3 of
Chapter 3. This only gave decidability of the notions for which a logical characterisation
was known. Many questions are still left open partially as a consequence.

First, it would be interesting to find ways to close the complexity gap between our
upper and lower bound for the decidable diagnosability notions. The complexity of the
current decision procedure comes from an exponential determinisation and the use of a
PSPACE model-checking result. As we are interested in specific simple formula, there
may be a way to verify them in PTIME instead. The exponential of the determinisation
seems harder to remove.

Second, we would want to determine the decidability status of FA-diagnosability. If
it is undecidable, it would confirm the difference in complexity with the other notions of
exact diagnosability that the logical characterisations showed. However, this difference
was shown for infinite-state pLTS in general, not for pLTS generated by POpVPA. It
is possible that, as for finite systems, FA-diagosability could be decided for POpVPA
with the same complexity as the other exact diagnosability notions.

Finally, one may be interested in considering the case of the approximate diagnos-
ability notions. The method used here cannot be applied. Moreover, it is unclear now
what the POpVPA restriction simplifies for approximate notions of diagnosability. Re-
call that in the finite case, no determinisation were used to solve these notions, allowing
for a PTIME algorithm. We conjecture that this notion remains undecidable.
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Chapter 6

Control of the degradation in
probabilistic systems

Embedded systems are often equipped with one (or more) controller(s) that can modify
the behaviour of the system in reaction to the environment. Controllers can, for exam-
ple, be used in order to maintain some vital functionalities of the system when facing
a failure of a component. As controllers need to detect failures to react efficiently, it is
tempting to add to controllers a diagnosis task. In other words, the system will contain
some choices that can be made and which will alter the behaviour of the system while
satisfying its specification. Controllers will then resolve these choices in order to render
the system diagnosable. Controllers can be formalised in multiple different ways. For
example, controllers could be within the system and thus have have full knowledge of the
behaviour of the system or they could rely on partial observation similarly to diagnosers.
Since the goal is for controllers to deduce the existence of a fault, we cannot assume
they know exactly the state of the system, and thus it must rely on partial observation.
Formally, some of the observable events are controllable and, considering its current
observation, the controller chooses which subset of events the system can trigger. A
system is then said to be actively diagnosable if there exists a controller ensuring its
diagnosability. In [SLT98], the authors showed that the active diagnosability problem is
decidable in doubly exponential time for non-probabilistic systems. Then in [HHMS17],
the authors designed a single exponential time algorithm and proved this complexity to
be optimal. In the probabilistic case, the controllable system can be represented by a
weighted transition system in the active case. This weighted transition system, coupled
with a controller, produces a pLTS that can have infinitely many states (depending on
the memory required by the controller). Thus, unsurprisingly, the active probabilistic
diagnosability is more complicated than the corresponding passive problem: exact diag-
nosability is PSPACE-complete in pLTS (see Chapter 4) while it is EXPTIME-complete
(see [BFH+14]) for controllable weighted LTS (a controllable variant of pLTS).

However the choices performed by the controller ensuring active diagnosis may have
a pernicious effect: to detect faults, controllers sometimes could favour the occurrence of
these faults! Forcing a fault in the system easily ensures diagnosability but contradicts
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the initial goal of trying to maintain important functionalities of the system. Additional
requirements can thus be made to controllers in order to manage the degradation of the
system. Thus, a controller ensures safe active diagnosability if the controlled system is
diagnosable and there is a positive probability that an infinite run is correct. In other
words, the controller is allowed to increase the probability of a fault in order to ensure
diagnosability, however it must maintain a positive probability of correct behaviours. A
quantitative version of this requirement fixes a threshold ε to the probability of correct
runs that the controller must achieve. Unfortunately, safe active probabilistic diagnos-
ability is undecidable [BFH+14]. However, when limited to finite-memory controllers,
the problem becomes decidable in NEXPTIME [BFH+14]. Safe active diagnosability
may be too strong a requirement for some real systems. Indeed, systems age and what-
ever control is applied, their components will eventually fail. Thus, in many cases, the
fault can be considered unavoidable by the system. As a consequence, some systems are
designed to behave correctly for a long period of time at the end of which they will be
replaced by a new system. Instead of trying to force runs to stay correct, a controller
could try to slow the speed at which the system fails. This expresses a different kind of
requirements for the degradation control of a system. We formalise the framework and
these requirements in Section 1, establishing a few semantical results along the way.
Then, in Section 2.1 we present the algorithmic results.

This chapter develops and extends some of the results from [BHL17b].

1 Degradation of a probabilistic system

In this section, we give formal definitions of the degradation of a system. These degra-
dation notions have to be satisfied by the system simultaneously to diagnosability, en-
suring that any fault is detected and the system does not produce faults too often or too
quickly. As this combination depends on the notion of diagnosability chosen and our
focus here is more on degradation, we only use FF-diagnosability (which is the simplest
notion of exact diagnosability that we introduced in Chapter 2).

In terms of observation, we use in this chapter a partition between observable and
unobservable events (see discussion of Section 1.3 of Chapter 2).

In Subsection 1.1, we give the definitions of degradation for pLTS. Then, in Subsec-
tion 1.2, we show how to add a form of control and state the problems we are interested
in.

1.1 Degradation in passive systems

When protecting a system from degradation, we want that it has a sufficient probability
not to trigger a fault, or at least, that if a fault has to occur, it can be postponed as
much as possible. We study different notions of the degradation of a system: safety,
fault freeness and resiliency.

A pLTS is safe [BFH+14] if it guarantees a positive probability of infinite correct
runs. A pLTS that is not safe is thus doomed to trigger a fault with probability 1. The
probability to stay correct could however be arbitrarily low. So we can quantify the
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notion in order to refine it: for ε > 0, a pLTS is ε-safe if this probability is greater or
equal to ε.

Definition 6.1. Let A be a pLTS, ε > 0. A is ε-safe if P(C∞) ≥ ε. It is safe if
P(C∞) > 0.

As pointed out in the introduction, in some cases, safety is a too strong requirement.
We formalise now two alternatives: fault freeness and resiliency. Fault freeness aims
at quantifying the period of time during which the pLTS is correct. We introduce
a discount factor γ ≤ 1 on duration in order to vary the importance given to the
length of the correct runs. When γ is chosen small, only the beginning of the runs
matter. This focus on the short-term is useful for systems that are regularly replaced
for example. A greater γ will on the opposite be chosen if one wants the system to be
correctly performing for a longer time. The expectation of this discounted value is then
compared to a threshold v.

Definition 6.2. Let A be a pLTS, 0 < γ ≤ 1 and v ∈ [0,∞].

• A is (γ, v)-fault free if
∑

n≥1 P(Cn)γn ≥ v.

• A is lasting fault free if it is (1,∞)-fault free.

Clearly, for any fixed value of γ, the greater v is, the better the system. Remark
also that for γ < 1, the sum

∑
n≥1 P(Cn)γn is finite and smaller than 1

1−γ . For γ = 1,∑
n≥1 P(Cn)γn is the mean observable length of the maximal correct signalling prefix

of a random run, which can be infinite. This justifies the name lasting fault free when
the expectation is infinite.

The notion of resiliency is an alternative measure of degradation based on a factor
of degradation ratio per time unit α < 1. A pLTS is α-resilient if the proportion of
finite correct runs which stays correct on the next occurrence of an observable event is
asymptotically greater than α. This requirement has two qualitative variants: strong
resiliency (resp. weak resiliency) requires α-resiliency for every (resp. for at least one)
α < 1. In other words, a system is weakly resilient if asymptotically, the probability
to be in a correct run of observable length n is greater than an exponential αn. And
a system is strongly resilient if this probability is asymptotically greater than all such
exponential.

Definition 6.3 (Resilient pLTS). Let A be a pLTS.

• Let 0 < α < 1. A is α-resilient if lim supn→∞
αn

P(Cn) = 0;

• A is strongly resilient if for all 0 < α < 1, A is α-resilient;

• A is weakly resilient if there exists 0 < α < 1 such that A is α-resilient.

Example 6.1. Let us consider the pLTS A of Figure 6.1. We give examples of the
different notions of degradation by studying some choices of probabilities (pi)i∈N.
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q0 q1 q2 q3

f1

· · ·

· · ·
a, p1 a, p2 a, p3

f , 1− p1 f , 1− p2 f , 1− p3

b

Figure 6.1: An example of infinite pLTS with parametric probabilities (pi)i∈N.

A has a single correct run ρ = q0aq1aq2 . . ., with observation aω while every faulty
run contains an infinite number of ‘b’. A is thus FF-diagnosable. Moreover, the prob-
ability of ρ is

∏
n≥1 pn and the probability of its prefix of length n is rn =

∏
i≤n pi.

Consequently, A is safe iff limn→∞ rn > 0. This can be achieved by choosing pi = 1− 1
2i

for example.
Also, by direct application of the definition, A is lasting fault free iff

∑
n≥1 rn =∞.

Let us consider different values of (pi)i∈N.
• Let pi = i

i+1 . Then rn = 1
n+1 . Thus A is not safe but is lasting fault free. For every

α < 1, limn→∞(n+ 1)αn = 0. Thus A is also strongly resilient.

• Let pi = i2

(i+1)2 . Then rn = 1
(n+1)2 . Thus A is neither safe nor lasting fault free. For

every α < 1, limn→∞(n+ 1)2αn = 0. Thus A is strongly resilient.
• We inductively define two sequences mk and nk by:

nk = 2
∑
j<kmj (hence n0 = 1) and mk = nk +

∑
j<kmj + nj.

We also define the intervals:

• Ik = [nk +
∑

j<kmj + nj ,
∑

j≤kmj + nj [;

• Jk = [
∑

j≤kmj + nj , nk+1 +
∑

i≤kmj + nj [.

When i ∈ Ik, we choose pi = 1
2 . When i ∈ Jk, we choose pi = 1.

Observe that for all n ∈ Jk, rn = 2−
∑
j≤kmj . Consequently∑

n≥1

rn ≥
∑
k≥0

∑
n∈Jk

rn =
∑
k≥0

2
∑
j≤kmj2−

∑
j≤kmj =∞.

Thus A is lasting fault free.
Let k ∈ N and n =

∑
j≤kmj + nj. Consequently, rn = 2−

∑
j≤kmj . Fix α = 1√

2
.

αn

rn
= 2

∑
j≤kmj (

√
2)−

∑
j≤kmj+nj ≥ 2mk(

√
2)−2mk = 1.

Therefore A is not α-resilient.

The next theorem establishes the precise links between the qualitative versions of
the three degradation notions for pLTS.
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Theorem 6.1. Let A be a pLTS.

• If A is safe then A is lasting fault free and strongly resilient;

• If A if finite then:
A is safe iff A is lasting fault free iff A is strongly resilient;

• There exists a lasting fault free pLTS that is not strongly resilient;

• There exists a strongly resilient pLTS that is not lasting fault free.

The first assertion is quickly obtained from the definitions and the last two come
directly from the previous examples. The second one requires a bit more development.
As the pLTS A is finite, one can use the notion of bottom strictly connected component
used in Chapter 4 to characterise the diagnosability notions for finite pLTS. A notable
difference is that, in Chapter 4, we had to consider the BSCC of an enriched pLTS. Here,
we show that every notion of degradation is equivalent to the existence of a reachable
correct BSCC of the pLTS A.

Proof. Let A be a safe pLTS. There exists ε > 0 such that for all n, P(Cn) ≥ ε. Thus,∑
n≥1 P(Cn) ≥

∑
n≥1 ε =∞. Moreover, for all α < 1, limn→∞

αn

P(Cn) ≤ limn→∞
αn

ε = 0.
Thus A is both lasting fault free and strongly resilient.

Let A be a finite pLTS. Observe that every BSCC of A contains either only correct
states or only faulty states. Accordingly we can speak of faulty BSCC or correct BSCC.
As A is a finite pLTS, we know that almost surely an infinite run reaches a BSCC and
that the mean time to reach a BSCC is finite (see e.g. [BK08]). Due to the first result,
A is safe iff there exists a reachable correct BSCC.

Suppose that A is not safe.
• Every reachable BSCC are faulty which implies that the mean time to reach a faulty
BSCC if finite. This mean time is an upper bound on the mean observable length of
the maximal signalling prefix of a correct run. Thus A is not lasting fault free.
• We note m = |Q|. For all q ∈ Qc, there exists ρq a run starting in q composed of an
elementary run from q to a faulty BSCC followed by an elementary run (or circuit) in
the BSCC of which only the last event is observable (by convergence). This run has an
observable length smaller or equal to m. We note µq, the probability of that run and
µ = minq∈Qc µq. Consider a signalling run ρ of observable length n for an arbitrary n and
ending in q ∈ Qc. From the existence of ρq, P({ρ′ ∈ SRn+m∩C | ρ � ρ′}) ≤ (1−µ)P(ρ).
Thus P(Cn+m) ≤ (1− µ)P(Cn). So, P(Cn) ∈ O((1− µ)

n
m ). Choosing α = (1− µ)

1
m , A

is not α-resilient and thus not strongly resilient.

1.2 Controlled systems

Extending the pLTS formalism in order to express control requires to fix at least two
features of this formalism: the nature of the control and the distribution of probabili-
ties of the controlled system. Intuitively, we want the control and the diagnosis to be
realised by the same device: from its observations, it restricts the system in order to
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diagnose it and limit its degradation. The control is thus done with partial observation.
So we recall the Controllable Labelled Transition System (CLTS) from [BFH+14]. In
this model, in order to specify the control, a subset of observable events is considered
controllable. The controller forbids a subset of controllable events depending on the
sequence of observations it has received. Thus the controller cannot modify its choice
between two observations. The transitions of the system are no more labelled by (ra-
tional) probabilities but by (integer) weights which measure their relative possibility of
occurrence. Given a state and a set of forbidden controllable actions, the weights of
the transitions exiting this state and labelled by uncontrollable or allowed controllable
actions are normalised to obtain a probability distribution. If the controller does not
introduce any deadlock, the controlled system is a live pLTS.

Definition 6.4. A Controllable Labelled Transition System (CLTS) is a tuple C =
〈Q, q0,Σ, T 〉 where:

• Q is a set of states with an initial state q0 ∈ Q;

• Σ = Σo ] Σu is a finite set of events partitioned into the set of observable events
Σo containing controllable events Σc ⊆ Σo and the set of unobservable events Σu

containing the fault f ;

• T : Q × Σ × Q → N is the transition function that associates an integer weight
with each transition.

A CLTS induces a labelled transition system which transition relation is defined by
q

a−→ q′ if T (q, a, q′) > 0. The extended relation =⇒ and the other usual definitions are
defined as for pLTS. We assume that the CLTS is convergent and live.

q0

q1 q2 q3

f1

u
b f

f

a, b

a a

Figure 6.2: An example of CLTS. Weights are all equal to 1 and omitted on the figure.
The only controllable event is b.

Example 6.2. A CLTS C is represented in Figure 6.2. If the control enables every
event, the run q0uq1aq1bq2 has probability 1/8. If the control always forbids ‘b’, this
same run has probability 0. And if it only allows ‘b’ after observing one ‘a’, it has
probability 1/4.
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We now formalise the ingredients necessary to define how to control CLTS. Let
Σ• ⊆ Σ and q ∈ Q, let us write GΣ•(q) for the sum of the weights of the transitions
exiting q and labelled by an event of Σ•. Using this sum, we define a normalisation of
the transition relation restricted to the events of Σ• by:

TΣ•(q, a, q′) =

{
T (q,a,q′)
GΣ• (q)

if a ∈ Σ• and GΣ•(q) > 0

0 otherwise.

A strategy of a CLTS C is a function π : Σ∗o → Dist(2Σ) such that for all w ∈ Σ∗o and all
Σ• ∈ Supp(π(w)), Σ\Σc ⊆ Σ•. In other words, given an observation, a strategy chooses
(possibly with randomisation) a set of allowed events that contains the uncontrollable
events. Let C be a CLTS and π be a strategy, we consider the configurations of the
form (w, q,Σ•) ∈ Σ∗o × Q × 2Σ with w the observed sequence, q the current state and
Σ• the set of allowed events by π after observation of w. We inductively define the set
Reachπ(C) of the reachable configurations under π by:

• for all Σ• ∈ Supp(π(ε)), we have (ε, q0,Σ
•) ∈ Reachπ(C);

• for all (w, q,Σ•) ∈ Reachπ(C) and all a ∈ Σu such that q a−→ q′, we have (w, q′,Σ•) ∈
Reachπ(C), and the corresponding transition is denoted by (w, q,Σ•)

a−→π (w, q′,Σ•);

• for all (w, q,Σ•) ∈ Reachπ(C), all a ∈ Σo ∩ Σ• such that q a−→ q′ and all Σ•′ ∈
Supp(π(wa)), we have (wa, q′,Σ•′) ∈ Reachπ(C), and the corresponding transition
is denoted by (w, q,Σ•)

a−→π (wa, q′,Σ•′).

A strategy π is called live if for every configuration (w, q,Σ•) ∈ Reachπ(C), we have
GΣ•(q) 6= 0. Only the live strategies are relevant as the other strategies create deadlocks.
We are now in a position to introduce the semantics of a CLTS controlled by a live
strategy π in terms of a live pLTS. Its set of states is Reachπ(C) augmented by an
initial state to randomly choose the initial control according to π(ε). The probability
distributions are based on TΣ• if the current control is Σ• combined with the random
choice of π in case of an observable event occurrence.

Definition 6.5. Let C be a CLTS and π be a live strategy, the pLTS Cπ induced by the
strategy π on C is defined by Cπ = 〈Qπ,Σ, q0π, Tπ,Pπ〉 where:

• Qπ = {q0π} ∪ Reachπ(C);

• for every (ε, q0,Σ
•) ∈ Reachπ(C), (q0π, u, (ε, q0,Σ

•)) ∈ Tπ;

• for every (w, q,Σ•), (w′, q′,Σ•′) ∈ Reachπ(C),(
(w, q,Σ•), a, (w′, q′,Σ•′)

)
∈ Tπ iff (w, q,Σ•)

a−→π (w′, q′,Σ•′);

• for every (ε, q0,Σ
•) ∈ Reachπ(C), Pπ(q0π, u, (ε, q0,Σ

•)) = π(ε)(Σ•);

• for every ((w, q,Σ•), a, (w, q′,Σ•)) ∈ Tπ and every a ∈ Σu,
Pπ ((w, q,Σ•), a, (w, q′,Σ•)) = TΣ•(q, a, q′);
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• for every
(

(w, q,Σ•), a, (wa, q′,Σ•
′
)
)
∈ Tπ and every a ∈ Σo ∩ Σ•,

Pπ

(
(w, q,Σ•), a, (wa, q′,Σ•

′
)
)

= TΣ•(q, a, q′) · π(w.a)(Σ•′).

Example 6.3. Consider the CLTS C depicted in Figure 6.2. There are two possible
enabled subsets: Σ and Σ \ {b} that we denote Σ−. Let us define the strategy π by
π(an) = pn · Σ− + rn · Σ with pn + rn = 1 for all n ∈ N and π(w) = 1Σ otherwise. The
generated pLTS Cπ is infinite. A part of it is represented in Figure 6.3. Let us develop
the distribution of probabilities exiting the configuration (ε, q1,Σ). The two transitions
exiting q1 are enabled with equal probabilities, thus normalised to 0.5. Since ‘a’ and
‘b’ are observable, the new control is chosen, in the case where a ‘a’ is observed, by a
probabilistic choice p1 ·Σ−+r1 ·Σ while if a ‘b’ is observed, there is a deterministic choice
1Σ. This results in three transitions with probability 0.5p1, 0.5r1 and 0.5 respectively.

q0π

ε, q0,Σ
−

ε, q0,Σ

ε, q1,Σ
−

ε, f1,Σ
−

ε, f1,Σ

ε, q1,Σ

b, q2,Σ

a, q1,Σ
−

a, q1,Σ

a, f1,Σ
−

a, f1,Σ

b, f1,Σ

· · ·

· · ·

· · ·

· · ·

· · ·

u, p0

u, r0

u, 0.5

f , 0.5

f , 0.5

u, 0.5 a, p1

a, r1

a, p1

a, r1

a, 0.5p1

a, 0.5r1

a, 0.5

b, 0.5

a, 0.5p1

a, 0.5r1

Figure 6.3: An example of controlled CLTS.

In Definition 3.2, page 58, we introduced finite-memory diagnosers. Similarly, one
can formally define finite-memory strategies for CLTS using a set of memory states, a
memory update function indicating how observations modify the memory state and a
decision function mapping every memory state to a choice of the strategy. The size of
the memory is the number of memory states. If the size of the memory of a strategy π
of a CLTS C is finite, then Cπ is also finite.
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Let us define the problems of active diagnosis in the context of the degradation
control. Roughly speaking, given a CLTS, one asks whether there exists a strategy such
that the associated pLTS is FF-diagnosable and satisfies the required property related
to degradation. We distinguish, as usually done, the quantitative problems and the
qualitative ones (such as safety, lasting fault freeness and strong/weak resiliency).

Definition 6.6 (Quantitative problems). Given a CLTS C, 0 < ε, α < 1, 0 < γ ≤ 1
and v ∈ [0,∞]:

• The ε-safe active diagnosis problem consists in deciding if there exists a strategy
π such that Cπ is FF-diagnosable and ε-safe;

• The (γ, v)-fault free active diagnosis problem consists in deciding if there exists a
strategy π such that Cπ is FF-diagnosable and (γ, v)-fault free;

• The α-resilient active diagnosis problem consists in deciding if there exists a strat-
egy π such that Cπ is FF-diagnosable and α-resilient.

Definition 6.7 (Qualitative problems). Given a CLTS C:

• The safe active diagnosis problem consists in deciding if there exists a strategy π
such that Cπ is FF-diagnosable and safe;

• The lasting fault free active diagnosis problem consists in deciding if there exists
a strategy π such that Cπ is FF-diagnosable and lasting fault free;

• The strongly resilient active diagnosis problem consists in deciding if there exists
a strategy π such that Cπ is FF-diagnosable and strongly resilient;

• The weakly resilient active diagnosis problem consists in deciding if there exists a
strategy π such that Cπ is FF-diagnosable and weakly resilient.

When tackling problems on strategies, the first step is to wonder if one can re-
strict the strategies that are considered. For example, can we use strategies with finite
memory. This cannot be done as shown in the following example.

Example 6.4. In order to illustrate the impact of taking into account infinite memory
strategies, let us examine the CLTS C of Figure 6.2. The only ambiguous observed
sequence is aω. A strategy π thus makes it FF-diagnosable iff the probability of faulty
runs with this observed sequence in Cπ is 0. This is done by allowing ‘b’ often enough
so that it occurs with probability 1. However, the only correct run is ρ = qou(q1a)ω with
observation aω. Thus, C is not actively safely diagnosable.

Let us denote, as in Example 6.3, by pn the probability to forbid ‘b’ after the observed
sequence an given by the strategy π. Then PCπ(qou(aq1)n) = 1

2

∏
i≤n

1+pi
2 . Thus, by

choosing pn = 1 − 1
n+1 , Cπ is FF-diagnosable, lasting fault free and strongly resilient.

On the other hand, no finite-memory strategy could achieve this goal since otherwise by
Theorem 6.1, C would be actively safely diagnosable.

Restricting one-self to finite-memory strategies is thus a loss of generality. It can
however be useful to regain decidability of difficult problems as we will see later.
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2 Algorithmic analysis of degradation

In this section we answer the problems listed above by establishing if they are decidable
and in the positive case by giving their exact complexities. We start in Subsection 2.1
by proving the undecidability of the quantitative problems. As a consequence, in Sub-
section 2.2, we focus on the qualitative problems and prove the EXPTIME-completeness
of all of them except the safe active diagnosis problem. Lastly, in Subsection 2.3, we see
that the safe active diagnosis problem is more difficult but can still be decided efficiently
when restricted to finite-memory strategies.

2.1 Undecidability of the quantitative problems

The quantitative problems turn out to all be undecidable. The proofs of these results
are obtained by reductions from the emptiness problem of probabilistic automata1.

We start by showing the result for the ε-safe diagnosis problem, with ε > 0.

Proposition 6.1. The ε-safe active diagnosis problem is undecidable.

The idea of this proof is the following. Given a probabilistic automaton A with
alphabet Σ, one builds a CLTS C composed of two independent parts each one initially
entered with probability 1

2 by an unobservable transition. The unobservable event
leading to the first part is the fault f which can only be detected almost surely if the
observable event ] /∈ Σ occurs with probability 1. The second part is constituted of a
CLTS version of A augmented by exiting transitions. One can exit A by allowing a ].
When this happens, if the system was in a final state of A it goes to a correct BSCC
of the CLTS, ensuring the run will remain correct. Else a fault is triggered on the next
step. This construction ensures the following properties. If there exists a word w with
an acceptance probability at least 2ε, the strategy which consists in forcing the observed
sequence w] ensures a probability of the set of infinite correct runs of at least ε. In the
opposite case, we show that no strategy can achieve this threshold.

Proof. Let 0 < ε < 1/2. We proceed here by reduction from the problem of the
existence of a word w such that PA(w) ≥ 2ε. We consider a probabilistic automaton
A = 〈Q, q0,Σ, (Pa)a∈Σ, F 〉 for which w.l.o.g. we assume that: (1) Σ ∩ {u, f , ], \} = ∅
and (2) the probabilities are fractions n

d with fixed denominator d ∈ N. One builds the
CLTS C = 〈Q′, q′0,Σ′, T 〉 described in Figure 6.4 and defined by:

• Q′ = Q ∪ {q′0, qc, qf , f1, f2};

• Σ′ = Σ ∪ {f , u, ], \}, Σu = {f , u} and Σc = Σ ∪ {]};

• the transition function T is defined as follows.

1.

T (q′0, f , f1) = T (q′0, u, q0) = T (qc, ], qc) = T (qf , f , f2) = T (f2, \, f2)

= T (f1, ], f2) = 1;

1see page 115.
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2. for every a ∈ Σ, T (f1, a, f1) = 1;

3. for every s, s′ ∈ Q and every a ∈ Σ, T (s, a, s′) = d ·Pa(s, s
′);

4. for every s ∈ F , T (s, ], qc) = 1 and for every s ∈ S \ F , T (s, ], qf ) = 1;

5. for every other triplet, T is equal to 0.

As detailed above, the probabilities in A are all multiplied by their common denominator
d, to obtain integer weights, and we write d ·A in the figure to represent this scaling.

q0

f1

s1

s2
d ·A

qf f2

qc

f , 1

u, 1

], 1

], 1

f , 1

], 1
Σ, 1

], 1

\, 1

Figure 6.4: Reduction to ε-safe diagnosability.

Let us show that there exists a strategy π such that Cπ is ε-safe and FF-diagnosable
iff there exists a word w accepted in A with probability at least 2ε.

Remark first that, for π an arbitrary strategy, Cπ is FF-diagnosable iff ] occurs almost
surely in a run. Indeed, an observed sequence w ∈ Σ∗ is ambiguous. On the other hand
every faulty run ρ triggering a ] will produce a \ removing the ambiguity.

• Assume there exists a word w = a1 . . . ak ∈ Σ∗ such that PA(w) ≥ 2ε. We define the
deterministic strategy π by:

• π(w) = {f , u, ], \};

• for all 0 ≤ i < k, π(a1 . . . ai) = {f , u, ai+1, \};

• π(w′) = Σ′ for any other word w′.

Observe that after at most k + 1 observable events, any run leaves Q ∪ {f1} and thus
\ occurs almost surely implying that Cπ is FF-diagnosable. Moreover, the probability
of correct runs with observation w]] is equal to PA(w)

2 : it is the probability to take u
initially times the probability to end the observation of w in an accepting state of A.
As PA(w) ≥ 2ε, this ensures that Cπ is ε-safe.
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• Assume now that for all w ∈ Σ∗, PA(w) < 2.ε. Let π be a strategy such that Cπ is
FF-diagnosable, thus with probability 1 an infinite run contains a ]. Moreover, this run
is correct iff the first ] is followed by a second ]. Then we have:

Pπ(C∞) =
∑
w∈Σ∗

Pπ(w]])

=
∑
w∈Σ∗

Pπ(w]) ·PA(w)

2

< ε
∑
w∈Σ∗

Pπ(w])

= ε.

Therefore, Cπ is not ε-safe, which concludes the reduction and proves undecidability of
the ε-safe active diagnosis problem.

We now turn to the (γ, v)-fault free active diagnosis problem. It is done once again
by reduction from the emptiness problem of PA. In fact, it has many similarities with
the previous proof, but instead of reaching a state qc where the run will stay correct,
being accepted by the PA only postpones the fault by one step.

Proposition 6.2. The (γ, v)-fault free active diagnosis problem is undecidable.

The idea of this proof is the following. Given a probabilistic automaton A with
alphabet Σ, one builds a CLTS C composed of two independent parts each one initially
entered with probability 1

2 by an unobservable transition. The unobservable event
leading to the first part is the fault f which can only be detected almost surely if the
observable event ] /∈ Σ occurs with probability 1. The second part is constituted of a
CLTS version of A augmented by exiting transitions. One exits A with probability 1

2 at
every step towards a faulty sub-part except if the ] event is triggered. In this case, if the
system was in a final state of A it leaves the states of A and postpones the occurrence
of a fault by one time step compared to if it stayed in A. This construction ensures the
following properties. If there exists a word w with an acceptance probability at least 1

2 ,
the strategy which consists in forcing the observed sequence w] as long as the run stays
in A ensures an average observable length (without discount) of the maximal correct
signalling prefix greater or equal to 1. In the opposite case, we show that no strategy
can achieve this threshold.

Proof. We proceed here by reduction from the problem of the existence of a word w such
that PA(w) ≥ 1

2 . We consider the probabilistic automaton A = 〈Q, q0,Σ, (Pa)a∈Σ, F 〉
for which w.l.o.g. we assume that: (1) Σ ∩ {u, f , ], \} = ∅ and (2) the probabilities are
fractions nd with fixed denominator d. One builds the CLTS C = 〈Q′, q′0,Σ′, T 〉 described
in Figure 6.5 and defined by:

• Q′ = Q ∪ {q′0, q1
c , q

2
c , q

3
c , f1, f2};

• Σ′ = Σ ∪ {f , u, ], \}, Σu = {f , u} and Σc = Σ ∪ {]};
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• the transition function T is defined as follows.

1.

T (q′0, f , f1) = T (q′0, u, q0) = T (q1
c , ], q

3
c ) = T (q3

c , ], q
3
c ) = T (q3

c , f , f2)

= T (q2
c , f , f2) = T (f2, \, f2) = T (f1, ], f2) = 1;

2. for every a ∈ Σ, T (f1, a, f1) = 1;

3. for every s, s′ ∈ Q and every a ∈ Σ, T (s, a, s′) = d ·Pa(s, s
′) and T (s, a, q2

c ) =
d;

4. for every s ∈ F , T (s, ], q1
c ) = 1 and for every s ∈ S \ F , T (s, ], q2

c ) = 1;

5. for every other triplet, T is equal to 0.

Here again, the probabilities in A are multiplied by the constant d, which we abbreviate
in the figure by d ·A.

q′0

q0

f1

s1

s2
d ·A

q1
c

q2
c f2

q3
c

f , 1

u, 1

], 1

Σ, d

Σ, d ∪ {(], 1)}

f , 1

f , 1

], 1

], 1

Σ, 1

], 1

\, 1

Figure 6.5: Reduction to (γ, v)-fault free active diagnosability.

Let us show that there exists a strategy π such that Cπ is (1, 1)-fault free and FF-
diagnosable iff there exists a word w accepted in A with probability at least 1

2 .
Remark first that, for π an arbitrary strategy, Cπ is FF-diagnosable iff \ occurs almost

surely in a run. Indeed an observed sequence w ∈ Σ∗ is ambiguous. On the other hand
every run ρ leaving Q ∪ {f1} almost surely reaches f2 where \ occurs and, whatever ρ,
a fault has occurred.
• Assume that there exists w = w1 . . . wk ∈ Σ∗ such that PA(w) ≥ 1

2 . We define the
deterministic strategy π by:

• π(w) = {f , u, ], \};

• for all 0 ≤ i < k, π(w1 . . . wi) = {f , u, wi+1, \};
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• π(w′) = Σ′ for any other word w′.

Observe that after at most k + 1 observable events, any run leaves S ∪ {f1} and thus \
occurs almost surely implying that Cπ is diagnosable.

By definition of C and π, a correct signalling run ρ such that P(ρ) = w1 . . . wi for i <
k has probability 1

2 of staying correct at the next step depending on if the current state
is q2

c or belongs to Q. Similarly, a correct signalling run ρ such that P(ρ) = w1 . . . wk
has a probability PA(w) of being at the next step in q1

c and 1−PA(w) in q2
c . Moreover,

in state q3
c , a correct signalling run has a probability 1

2 of staying correct and in q3
c at

the next step. Therefore for all n ∈ N, we have n ≤ k implies P(Cn) = (1
2)n and n > k

implies P(Cn) = (1
2)n−1PA(w) ≥ (1

2)n. Finally:
∑∞

n=1 P(Cn) ≥
∑∞

n=1(1
2)n = 1.

• Assume that for all w ∈ Σ∗, PA(w) < 1
2 . Let π be a strategy such that Cπ is

diagnosable. Observe that (using a slight and understandable abuse of language):

Pπ(Cn) =
∑
w∈Σn

Pπ(w ∧ C) +
∑

w∈Σn−1

Pπ(w] ∧ C) +
∑

1<k≤n

∑
w∈Σn−k

Pπ(w]k ∧ C).

Let us show that Pπ(Cn+1) ≤ Pπ(Cn)
2 with a strict inequality if there exists w ∈ Σn−1

with Pπ(w]) > 0.

Pπ(Cn+1) =
∑
w∈Σn

∑
x∈Σ∪{]}

Pπ(wx ∧ C) +
∑

w∈Σn−1

Pπ(w]2 ∧ C)+

∑
1<k≤n

∑
w∈Σn−k

Pπ(w]k+1 ∧ C)

Let us examine the three terms.
◦ A correct run ρ with observed sequence w has a conditional equiprobability that
last(ρ) ∈ Q or last(ρ) = q2

c . Thus,
∑

w∈Σn
∑

x∈Σ∪{]} Pπ(wx) = 1
2

∑
w∈Σn Pπ(w).

◦ A correct run ρ with observed sequence w]k such that k > 1 verifies last(ρ) = q3
c .

Thus,
∑

1<k≤n
∑

w∈Σn−k Pπ(w]k+1 ∧ C) = 1
2

∑
1<k≤n

∑
w∈Σn−k Pπ(w]k ∧ C)

◦ A correct run ρ of observed sequence w] has a conditional probability PA(w) that
last(ρ) = q1

c and 1−PA(w) that last(ρ) = q2
c . Thus:∑

w∈Σn−1

Pπ(w]2 ∧ C) =
∑

w∈Σn−1

PA(w)Pπ(w] ∧ C) ≤ 1

2

∑
w∈Σn−1

Pπ(w] ∧ C)

with a strict inequality if there exists a word w ∈ Σn−1 with Pπ(w]) > 0.
By assumption, Cπ is diagnosable. Thus, according to our characterisation of a

strategy ensuring FF-diagnosability, there exists a word w such that Pπ(w]) > 0. As a
consequence,

∑∞
n=1 P(Cn) <

∑∞
n=1(1

2)n = 1, thus A is not (1, 1) fault free.

Remark 6.1. A straightforward adaptation of the proof shows that for every 0 < γ < 1,
A is (γ, γ

2−γ ) fault free iff there exists a word w such that PA(w) ≥ 1
2 .
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We end with the α-resilient active diagnosis problem. The construction of the reduc-
tion is a bit simpler. This is due to the fact that the system is FF-diagnosable for any
arbitrary strategy. In other words, the reduction only relies on the α-resilient property
to establish undecidability.

Proposition 6.3. The α-resilient active diagnosis problem is undecidable.

This time, given a probabilistic automaton A with alphabet Σ, one transforms A
into a CLTS, augmented by two states and some transitions. This CLTS is called C
and its initial state is the initial state of A. At each step, when reading an event of
Σ, with probability 1/2 we exit A and will commit a fault in the next step. When a ]
is read after a word w1] . . . ]wk with for all i ≤ k wi does not contain ], either we go
back to the initial state of A or we will trigger a fault on the next turn depending on
the probability to accept wk. If a strategy can regularly trigger a word with acceptance
probability greater than 1/2, it can slow the speed at which the runs become faulty.

Proof. We proceed here by reduction from the problem of the existence of a word w such
that PA(w) > 1

2 . We consider a probabilistic automaton A = 〈Q, q0,Σ, (Pa)a∈Σ, F 〉 for
which we assume w.l.o.g. that: (1) Σ ∩ {u, f , ], \} = ∅ and (2) the probabilities are
fractions n

d with d ∈ N fixed. One builds the CLTS C = 〈Q′, q0,Σ
′, T 〉 represented in

Figure 6.6 (with some shortcuts to ease readability) and defined by:

• Q′ = Q ∪ {q1, f1};

• Σ′ = Σ ∪ {f , ], \}, Σu = {f} et Σc = Σ ∪ {]};

• the transition function T is defined by:

1. T (q1, f , f1) = T (f1, \, f1) = 1;

2. for every s, s′ ∈ Q, a ∈ Σ, T (s, a, s′) = d ·Pa(s, s
′) and T (s, a, q1) = d;

3. for every s ∈ F , T (s, ], s0) = 1 and for every s ∈ S \ F , T (s, ], q1) = 1;

4. for every other triplet, T is equal to 0.

Once again, the probabilities in A are multiplied by the constant d, which we abbreviate
in the figure by d ·A.

As every fault is followed by a \, whatever the strategy π, Cπ is FF-diagnosable.

• Assume there exists w = w1 . . . wk ∈ Σ∗ such that PA(w) > 1
2 . We denote v = PA(w).

We define the deterministic strategy π by:

• π((w])∗w) = {f , \, ]};

• for all 0 ≤ i < k, π((w])∗w1 . . . wi) = {f , \, wi+1};

• π(w′) = Σ′ for any other word w′.
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s2
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\, 1

Figure 6.6: Reduction to α-resilient active diagnosability.

Under strategy π, the observed sequence of a correct run ρ is some (w])mw1 . . . wi with
0 ≤ i ≤ k.
◦ If P(ρ) = (w])mw1 . . . wi with 0 < i then with conditional equiprobability, last(ρ) ∈
Q or last(ρ) = q1. Thus with probability 1

2 , the run will be correct after the next
observation.
◦ If P(ρ) = (w])m then with conditional probability v, last(ρ) = q0 and with probability
1 − v, last(ρ) = q1. Thus with probability v, the run will be correct after the next
observation.

Consider an arbitrary n and write the Euclidian division of n−1 by k+1 as n−1 =

m(k + 1) + i with i ≤ k. One has 2−(n−1)Pπ(Cn) = (2v)m. Hence 2(n−1)

Pπ(Cn) =
(

1
2v

)bn−1
k+1
c

implying limn→∞
2−n

Pπ(Cn) = 0. So Cπ is 1
2 -resilient.

• Assume now that for every word w ∈ Σ∗, PA(w) ≤ 1
2 . Let π be an arbitrary strategy.

The observed sequence of a correct run ρ is some u1] . . . ]um such that for all i, ui ∈ Σ∗.
◦ If um 6= ε with 0 < i then with conditional equiprobability, last(ρ) ∈ Q or last(ρ) = q1.
Thus with probability 1

2 , the run will be correct after the next observation.
◦ If um = ε then with conditional probability PA(um−1), last(ρ) = q0 and with proba-
bility 1−PA(um−1), last(ρ) = q1. Thus with probability PA(um−1) ≤ 1/2, the run will
be correct after the next observation.

Summarising, one has: Pπ(Cn) ≤ 2−(n−1) implying lim supn→∞
2−n

Pπ(Cn) ≥
1
2 .

So Cπ is not 1
2 -resilient.

2.2 Decidability of the Qualitative Problems

In contrast to the quantitative notions, and to the notable exception of the safe active
diagnosis problem, all the qualitative problems of diagnosability under degradation
constraints we introduced are decidable and EXPTIME-complete. The simplest case
is the one of weak resilient active diagnosability. The proof idea is common to all
cases: starting from a construction that gives an efficient characterisation of active
diagnosability (inspired from [BFH+14] and detailed below), we establish a necessary
and sufficient condition for the existence of a control strategy that ensures the given
notion of diagnosability under a degradation constraint.
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Let us start by defining a construction inspired from [BFH+14] 2. This construction
is the adaptation to the active setting of the FF-automaton used in Subsection 1.1.1
of Chapter 4, page 93. This construction uses the notion of belief. The initial belief is
{q0}, and given a current belief B and an observed event b, the belief obtained after b
has been observed is defined by:

∆(B, b) = {q ∈ Q | ∃q′ ∈ B, ρ ∈ SR1, q
′ ρ
=⇒ q ∧ P(ρ) = b} .

∆(B, b) is thus the set of states a partially observable systems may be in, given that
the previous belief was B and observation O occurred. Importantly, it does not depend
on the strategy as every controllable event is observable. The set of beliefs of a CLTS
C is denoted BlC and we drop the subscript when there is no risk of confusion. Beliefs
are of importance since they formalize the discrete information an observer has on the
current state of the system. Thus, to decide FF-diagnosability of a CLTS, the states
of the CLTS are enriched with two sets U and V that correspond, respectively, to the
subset of correct, or faulty, states, that are reachable by a signalling run corresponding
to the current observed sequence, i.e. to the set of correct, or faulty, states of the
current belief. Such a pair of sets (U, V ) is therefore called a separated belief. As we
study FF-diagnosability here, one could wonder why we do not only use a set U as we
did in Chapter 4. In fact, in some of the constructions that we make later, we need to
know the full belief. For example, forgetting a faulty state could result in a controller
making a choice that creates a deadlock in this faulty state. By using U and V , we
have the information pertaining to FF-diagnosis (U) and to the current belief (U ∪ V ).

Formally, from a CLTS C = 〈Q, q0,Σ, T 〉, we define its belief version on the same
event alphabet CB = 〈QB, qB0 ,Σ, TB〉 by:

• QB = Q× 2Q × 2Q and qB0 = (q0, {q0}, ∅);

• for every (q, U, V ) ∈ Q× 2Q × 2Q, for every a ∈ Σ, and every q′ ∈ Q

– if a /∈ Σo, TB((q, U, V ), a, (q′, U, V )) = T (q, a, q′);

– if a ∈ Σo, letting U ′ = ∆(U, a) ∩ Qc and V ′ = ∆(U ∪ V, a) ∩ Qf , then
TB((q, U, V ), a, (q′, U ′, V ′)) = T (q, a, q′).

– for every other triplet ((q, U, V ), a, (q′, U ′, V ′)), T is equal to 0.

The size of the belief CLTS CB is exponential in the size of C. For the properties we
are interested in, they have the same behaviour. We introduce Θ, a discrete version of
TB, extended to observed sequences. For w ∈ Σ∗o, (q′, U ′, V ′) ∈ Θ((q, U, V ), w) as soon
as there exists a run ρ such that P(ρ) = w and (q, U, V )

ρ
=⇒ (q′, U ′, V ′).

We now construct Win the set of all separated beliefs (U, V ) such that, starting from
any (q, U, V ) with q ∈ U ∪ V , CB is actively diagnosable. This set is computed as a
greatest fixpoint. We let Win0 = 2Qc × 2Qf and for n ∈ N, Winn+1 is the set of the

2The difference with the construction of [BFH+14] is that we focus here on FF-diagnosability rather
than IA-diagnosability which simplifies the writing of the proofs. The results of this chapter and
of [BFH+14] however hold for both notions of diagnosability.
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separated beliefs (U, V ) of Winn such that for all state q ∈ U∪V , there exists a sequence
of sets of allowed events (Σ•i )1≤i≤k and an observed sequence w = o1 . . . ok with oi ∈ Σ•i
verifying:

• there exists a run ρ starting in (q, U, V ) with P(ρ) = w and reaching (q∗, U∗, V ∗)
with q∗ ∈ Qc (i.e. the current state is correct) or U∗ = 0 (the fault is claimed);

• Consider a state qi reached from q′ ∈ U ∪ V by a run with observed sequence
o1 . . . oi with 0 ≤ i < k, i.e. (qi, Ui, Vi) ∈ Θ((q′, U, V ), o1 . . . oi) for a separated
belief (Ui, Vi). then:

1. the control induced by Σ•i+1 does not create any deadlock: GΣ•i+1(qi) 6= 0;

2. Every new separated belief obtained by an observable step o ∈ Σ•i+1 starting
in qi belongs to Winn: ∀o ∈ Σ•i+1,∀(qo, Uo, Vo) ∈ Θ((qi, Ui, Vi), o), (Uo, Vo) ∈
Winn.

The computation of Win is in polynomial time in the size of CB, given that in every
non-terminal iteration at least one separated belief is removed. The correctness of Win
is established in the richer context of IA-diagnosability in [BFH+14], and π∗ a (deter-
ministic finite-memory) strategy ensuring diagnosability consists in, given a separated
belief (U, V ) ∈ Win choosing the greatest set Σ• such that every possible separated
belief reached on the next step still belongs to Win. Thus, π∗ is the most permissive
strategy ensuring active diagnosability.

To decide weakly (resp. strongly) resilient active diagnosability, and lasting fault
free active diagnosability, we build on the belief CLTS construction.

Theorem 6.2. Weakly resilient active diagnosability is EXPTIME-complete.

Analysing the set of separated beliefs Win gave a condition for the active diagnos-
ability and in the positive case a deterministic finite-memory strategy π∗ ensuring it.
We show in this proof, that in order for a CLTS to be weakly resilient active diag-
nosable, it needs (1) to be actively diagnosable and (2) CB must contain a reachable
cycle of correct states associated with separated beliefs of Win. The idea is that if such
a cycle exists, playing a strategy permissive enough (for example π∗), there is a fixed
probability to stay within this cycle and this probability can be used to establish a lower
bound to the speed at which the system becomes faulty.

The lower bound is straightforward considering that active diagnosability was al-
ready proven to be EXPTIME-hard [BFH+14].

Proof. We first establish the membership in EXPTIME. Given a CLTS C, its belief CLTS
CB, and the strategy π∗, we derive a pLTS A. It is obtained from CB by restricting
it to the states with separated belief in Win and controlled by π∗. We claim that C is
actively diagnosable with guarantee of weak resiliency iff there exists in A a reachable
cycle such that the first component of every state along the cycle is a correct state of C.
• Suppose first that such a cycle exists in A. We let α > 0 be the probability of this
cycle, n1 its length, n0 the observed length of the shortest run reaching a state of the
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cycle and µ the probability of this run. For all n ≥ n0, PA(Cn) ≥ µα
dn−n0

n1
e. As a

consequence, A is α′-resilient for all α′ < α. A is thus weakly resilient. Therefore, Cπ∗ ,
which has the same probabilistic behaviour as A is weakly resilient too.
• Conversely, suppose that there is no such cycle in A. Let π′ be a (live) strategy such
that Cπ′ is FF-diagnosable. This strategy can be mimicked in CB, ignoring the separated
belief information. The reachable states of CBπ′ are associated with separated beliefs of
Win (due to the characterisation recalled above). As π∗ is the most permissive strategy
ensuring to stay in Win, there does not exist any such cycle in CBπ′ either. Consequently,
there exists nf ∈ N such that every run ρ in CBπ′ with |ρ| ≥ nf ends in a state which
first component is faulty. Thus PCπ′ (Cnf ) = PCB

π′
(Cnf ) = 0, which means that Cπ′ is not

weakly resilient.
The complexity lower-bound is obtained by reduction from the active diagnos-

ability problem for CLTS, which is known to be EXPTIME-hard [BFH+14]. From
C = 〈Q, q0,Σ, T 〉 a CLTS, we define the CLTS C′ = 〈Q ∪ {q′0, qs}, q′0,Σ ∪ {]}, T ′〉 with
] a fresh observable event, and such that T ′(q′0, ], q0) = T ′(q′0, ], qs) = T ′(qs, ], qs) = 1,
for every q, q′ ∈ Q and a ∈ Σ, T ′(q, a, q′) = T (q, a, q′) and for every other triplet
T ′(q, a, q′) = 0. Clearly enough, C′ is actively diagnosable iff C is actively diagnos-
able. Moreover, C′ is safe by construction, and thanks to Theorem 6.1(a), it is strongly
resilient, and thus weakly resilient.

The proof of the next theorem also relies on the set of separated beliefs Win. We
build a subset of Win, called WinK. A separated belief (U, V ) of Win belongs to WinK
if there exists a strategy π such that from every distribution with support U ∪ V , π
guarantees to stay in Win, and to give a positive probability to the set of infinite correct
runs. The CLTS is actively diagnosable with guarantee of strong resiliency iff from
the initial belief one can reach a belief of WinK while staying in Win. The strategy
π defined with the construction of WinK does not necessarily allows to diagnose the
system. So the winning strategy consists in cleverly combining the strategy used to
make the system FF-diagnosable and π.

Theorem 6.3. Strongly resilient active diagnosability is EXPTIME-complete.

Proof. Let C be a CLTS. As in the construction preliminary to Theorem 6.2, we build
CB, Win and π∗. We then define WinKU ⊆ 2Q×Win by a greatest fix point computation.
For (U ′, (U, V ) ∈ WinKU , (U, V ) is a separated belief for which there exists a strategy
allowing to a set of runs starting in U ∪ V to stay in the states of CB associated with
a belief of Win, and if the run started in U ′, it stayed correct. WinKU is obtained
as the limit of a non-increasing sequence (WinKn)n∈N defined inductively by: WinK0 =
{(U ′, (U, V )) | (U, V ) ∈Win∧∅ 6= U ′ ⊆ U} and for n ∈ N, WinKn+1 is the set of elements
(U ′, (U, V )) of WinKn such that there exist a set of allowed events Σ• verifying:

• Σ• does not create a deadlock: ∀q ∈ U ∪ V,GΣ•(q) 6= 0;

• under the control Σ• no run starting in a state of U ′ will make a fault before the
next observation: ∀qc ∈ U ′, ∀ρ ∈ SR1, qc

ρ
=⇒ q∧P(ρ) ∈ Σ• ⇒ q ∈ Qc;



184 Control of the degradation in probabilistic systems

• every triplet reached by an observable step o ∈ Σ• belongs to WinKn:
(Ũ ′, (Ũ , Ṽ )) ∈WinKn with:

1. Ũ ′ = {q′c ∈ Qc | ∃qc ∈ U ′1, ∃ρ ∈ SR1, qc
ρ

=⇒ q′c ∧ P(ρ) = a};
2. Ũ = ∆(U, o) ∩Qc and Ṽ = ∆(U ∪ V, o) ∩Qf .

From WinKU , we define the set WinK ⊆ Win by keeping only the second component of
WinKU : WinK = {(U, V ) ∈ Win | ∃U ′, (U ′, (U, V )) ∈ WinKU}. Let us state some of the
properties of this construction.

• By induction, if (U ′, (U, V )) /∈ WinKn then for every (live) strategy and q ∈ U ,
there exists a faulty run starting in q of observable length n;

• If ∅ 6= U ′′ ⊆ U ′ then (U ′, (U, V )) ∈ WinKU implies (U ′′, (U, V )) ∈ WinKU . Thus,
if (U, V ) /∈WinK, for all q ∈ U , ({q}, (U, V )) /∈WinKU .

We also define PreWin the set of states of CB of the form Q ×Win from which a
state (q, U, V ) with (U, V ) ∈WinK is reachable. Let us show that C is diagnosable and
strongly resilient iff the initial state of CB belongs to PreWin.
• Suppose that the initial state belongs to PreWin. Let (U ′, (U, V )) be an element of
WinKU . We define π(U ′,(U,V )) the strategy that ensures to stay in WinKU . This strategy
immediately derives from the fixpoint definition of WinKU . For (U, V ) ∈WinK, we also
define π(U,V ) = π(U ′,(U,V )) for an arbitrary U ′ such that (U ′, (U, V )) ∈ WinKU . Finally,
we let π0 be the following strategy working in three successive phases which may not
all be triggered.

1. First π0 mimics π∗ until a separated belief (U, V ) ∈WinK is reached;

2. Then, at every observed sequence w, π0 chooses to apply π(U,V ) with probability
pw = |w|

|w|+1 , and to switch to the third phase with probability 1− pw;

3. Finally, π0 behaves forever as π∗.

We observe that Cπ0 is FF-diagnosable. Indeed, on the one hand, the events allowed by
π0 are included in those allowed by the maximally permissive strategy π∗, and on the
other hand almost-surely, π∗ is applied from some moment on. Therefore every fault
will almost surely be detected.

Moreover, let us prove that it is strongly resilient. Indeed, by definition of PreWin,
there exists a run ρ starting in the initial state and reaching a state (q, U, V ) such that
(U, V ) belongs to WinK. Let U ′ ⊆ U the one chosen arbitrarily when defining π(U,V ).
Without loss of generality, we suppose that ρ reaches a state of U ′. As a fault can only
be created after ρ if π0 switches to its third phase, for n ≥ |ρ|o we have

Pπ0(ρ̃ ∈ Cn | ρ � ρ̃) ≥ Pπ0(ρ)
n∏

i=|ρ|

i

i+ 1
= Pπ0(ρ)

|ρ|
n+ 1

.
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Thus, for every 0 < α < 1, similarly to nαn, αn

Pπ0 (Cn) converges to 0.

• Conversely, suppose that the initial state does not belong to PreWin. Let π be a
strategy ensuring diagnosability. For every state (q, U, V ) with q ∈ U reachable by a
run ρ0 with π, (U, V ) 6∈WinK and due to one of our observations ({q}, (U, V )) 6∈WinKU .
Let K be the number of iterations in the fixpoint computation of WinK. Then, for every
sequence of K random choices under π, there exists a faulty run ρ ∈ F, compatible with
these choices, starting in (q, U, V ) and of observable length smaller than K. Adding up
the probabilities of runs corresponding to every sequence of choices of π we obtain

Pπ(ρ ∈ F|ρ0|o+K | ρ0 � ρ) ≥ λK|Q|Pπ(ρ0)

where λ = minq′∈Q
1

GΣ(q′)
. Thus, for every n ∈ N,Pπ(Cn+K) ≤ Pπ(Cn)(1 − λK|Q|).

Letting α = (1 − λK.|Q|)
1
K , we obtain limn→∞

αn

Pπ(Cn) > 0, so that Cπ0 is not strongly
resilient.

To conclude the proof, we observe that the EXPTIME-hardness derives from the
same reduction as in the proof of Theorem 6.2.

It turns out that this same combination of strategies can be used to ensure lasting
fault freeness and FF-diagnosability. In fact, the following theorem establishes that the
characterisation of the strongly resilient active diagnosability also applies to the lasting
fault free active diagnosability.

Theorem 6.4. Lasting fault free active diagnosability is equivalent to strongly resilient
active diagnosability.

We show here that the characterisation given in the proof of Theorem 6.3 for a
CLTS to be actively diagnosable with guarantee of strong resiliency also characterises
the fact that the CLTS is actively diagnosable with guarantee of lasting fault freeness.
This shows the equivalence of the two notions in the active case.

Proof. We reuse the definitions from the proof of Theorem 6.3. Let us show that C is
actively diagnosable with guarantee of lasting fault freeness iff the initial state of CB
belongs to PreWin.
• Suppose that the initial state belongs to PreWin. Then, as discussed in the proof of
Theorem 6.3, Cπ0 is diagnosable and there exists a finite run ρ such that P(ρ̃ ∈ Cn | ρ �
ρ̃) ≥ P(ρ) |ρ|n+1 . Thus:

∞∑
n=1

P(Cn) ≥
∞∑

n=|ρ|

P(ρ̃ ∈ Cn | ρ � ρ̃) ≥ P(ρ)|ρ|
∞∑

n=|ρ|

1

n+ 1
=∞.

• Conversely, if the initial state does not belong to PreWin. Let π be a strategy ensuring
diagnosability. For every n ∈ N,P(Cn+K) ≤ P(Cn)(1− λK.|Q|). Thus:

∞∑
n=1

P(Cn) ≤ K
∞∑
n=1

(1− λK.|Q|)n ≤ K.|QB|.
1

λK.|Q|
<∞.
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Given the equivalence of strong resiliency and lasting fault freeness, from Theo-
rem 6.3 we derive:

Corollary 6.1. Lasting fault free active diagnosability is EXPTIME-complete.

2.3 Safe active diagnosis problem under finite-memory strategies

Contrary to the other qualitative problems, safe active diagnosability is known to be
undecidable [BFH+14]. In order to regain decidability, one can restrict the strategies
so that they only use finite memory. Note first that decidability is not immediate
even if the strategies are assumed to be finite-memory, since no a priori bound on the
memory is known3. This restriction was studied in [BFH+14] where the authors give
an NEXPTIME algorithm. However, the known lower bound is only EXPTIME, leaving
a gap. We refine here this complexity result by proving that safe active diagnosis can
be solved in EXPTIME when restricting to finite-memory strategies.

To do so, we prove a more general result in the context of a well-known model, quite
popular in artificial intelligence and more recently in formal methods, that combines par-
tial observation, probabilities and control, namely Partially Observable Markov Decision
Processes (POMDP) [Å65, KLC98]. We establish that the existence of finite-memory
schedulers that ensure a Büchi objective with probability 1 and a safety objective with
positive probability in a POMDP is decidable in EXPTIME. We then reduce the safe
active diagnosis of a CLTS C restricted to finite-memory strategies to the existence of a
finite-memory scheduler in a POMDP MC ensuring at the same time a Büchi objective
with probability 1 and a safety objective with positive probability.

Definition 6.8. A partially observable Markov decision process (POMDP) is a tuple
M = 〈Q, q0,Obs,Act, T 〉 where

• Q is a finite set of states with q0 the initial state;

• Obs : Q→ O ∪ {ε} assigns an observation O ∈ O to each state.

• Act is a finite set of actions;

• T : Q × Act → Dist(Q) is a partial transition function. Letting Ena(q) = {a ∈
Act | T (q, a) is defined} the set of enabled actions in state q, we assume that:

– for all q ∈ Q, Ena(q) 6= ∅, and
– whenever Obs(q) = Obs(q′), then Ena(q) = Ena(q′) and slightly abusing our

notation, we denote by Ena(O) the set of events enabled in every state with
observation O.

A decision rule of a POMDP is a distribution from Dist(Act) that resolves one non-
determinism choice by randomization. A scheduler for a POMDP maps histories of
observations to decision rules. Formally, a scheduler is a function τ : O+ → Dist(Act)

3In the case of Proposition 4.9, page 120, the restriction in fact made the problem more difficult.
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such that for every O1 · · ·Oi, Supp(τ(O1 · · ·Oi)) ⊆ Ena(Oi). Given a scheduler τ , a
POMDP M yields a stochastic process. This stochastic process can be represented by
an infinite state pLTS, denoted M(τ) in which states are histories of observations. One
denotes by PM

τ (Ev) the probability that an infinite observed sequence of Ev is realized
in this pLTS.

Similarly to what was said for strategies, one can define finite-memory schedulers
for POMDP. The notion of belief can be adapted to POMDP. As for CLTS, it is a non-
empty set of states that represents the current state estimate, i.e. the set of states the
system may be in, given the actions (which affect the reachable set of states contrary
to what is done for CLTS) and observations so far. The initial belief is {q0}, and given
a current belief B, a decision rule δ and an observation O, the belief obtained after δ
has been applied and O has been observed is defined by:

∆(B, (δ,O)) =
⋃

q∈B, a∈Supp(δ)

Supp(T (q, a)) ∩ Obs−1(O) .

Aiming at providing a POMDP MC for the safe active diagnosis problems of a CLTS
C, we face several difficulties. First, in a CLTS the observations are related to events
while in a POMDP they are related to states. As a consequence, we need to label
the states by the latest observation made by the system. Secondly, our objectives are
not based on states but on observed sequences. Fortunately, the relevant information
pertaining to the observations, namely the information about ambiguity of observed
sequences, is available in the belief. Thus (with two exceptions) the states are triples
formed of a state q, an event ‘a’ and a belief B of the CLTS. A third adaptation
concerns the control mechanism. In C, the control is performed by choosing (possibly
randomly) a subset of allowed controllable events. Thus actions of MC are subsets of
events that include the uncontrollable events. Given some control decision Σ•, to define
the transition probability of MC from (q, a,B) to (q′, a′, B′), one must consider all runs
in C labelled by events of Σ• from q to q′ such that the last event, labelled by ‘a′’, is
the only observable one. The probability of any such run is obtained by the product of
the individual step probabilities. The latter are then defined by the normalization of
weights w.r.t. Σ•. Finally, there cannot be infinite runs of unobservable events due to
the convergence of C. However some runs can reach, via unobservable events, a state
from which no event of Σ• is enabled. In other words, the control Σ• applied in (q, a,B)
may have a positive probability to reach a deadlock (i.e. the chosen decision rule leads
to a strategy for the CLTS which is not live). In order to capture this behaviour and to
obtain a non defective probability distribution, we add an additional state lost, that
corresponds to such deadlocks. The next definition formalizes our approach.

Definition 6.9. The POMDP MC = 〈QMC , qMC0 ,Obs,Act, TMC〉 derived from a CLTS
C = 〈Q, q0,Σ, T 〉 is defined by:

• QMC = Q× Σo × BlC ] {(q0, ε, {q0}), lost} with qMC0 = (q0, ε, {q0});

• the set of observations is O = Σo∪{lost}, with Obs(lost) = lost and for (q, a,B) ∈
QMC , Obs((q, a,B)) = a;
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• Act = {Σ• ⊆ Σ | Σ• ⊇ Σ \ Σc};

• for every (q1, a, B) ∈ QMC and Σ• ∈ Act, TMC((q1, a, B),Σ•) = µ ∈ Dist(QM)
where for b ∈ Σ• ∩ Σo:

– µ((q′, b,∆(B, b))) =

∑
q1

a1−→q2···
an−→qn+1

b−→q′

a1···an∈Σ•∩Σu

( n∏
i=1

TΣ•(qi, ai, qi+1)
)
· TΣ•(qn+1, b, q

′);

– µ(lost) =
∑

q1
a1−→q2···

an−→qn+1

a1···an∈Σ•∩Σu
GΣ• (qn+1)=0

n∏
i=1

TΣ•(qi, ai, qi+1);

• for every Σ• ∈ Act, TMC(lost,Σ•) = 1lost.

Given C, the construction of MC , which is of size in 2O(|Q|+|Σ|), can be done in ex-
ponential time. Also, the probability distributions over next states (µ in Definition 6.9)
are presented as sums over runs of C, but they can be computed in polynomial time by
matrix operations.

A CLTS C and its associated POMDP MC are closely related. In particular, strate-
gies in C and schedulers in MC are in a one-to-one correspondence. First, let us explain
how to naturally derive a strategy π for C from a scheduler τ in MC . For an observed
sequence a1 · · · an ∈ Σ∗o, we set π(a1 · · · an) = τ(a1 · · · an) Notice that the strategy π
obtained that way is not necessarily live: for example, if after a1 · · · an the choice of
τ leads with positive probability to lost, then π is not live. However, as soon as τ
ensures to avoid state lost, then the corresponding strategy π is live. Similarly, to a
live strategy π for C, we can associate a scheduler τ in MC that always avoids lost:
given a sequence of observations that does not contain lost, thus of the form a1 · · · an,
with ai ∈ Σo for all i, we set τ(a1 · · · an) = π(a1 · · · an).

Moreover, if (π, τ) is a pair of live strategy and corresponding scheduler (that always
avoids lost), the probability measures PCπ and PMC

τ are essentially equivalent. More
precisely, the product in MC with the observation and the belief does not change the
probability measure defined by Cπ.

We now show how to decide for POMDP the existence of a finite-memory scheduler
that ensures a Büchi objective with probability one and a safety objective with positive
probability. We use LTL notations to denote sets of runs in a POMDP, such as 3, 2
and 23 for eventually, always and infinitely often respectively (given a state q, 23q
thus represents the set of runs containing q infinitely often).

Theorem 6.5. The problem whether, given a POMDP M with subsets of states F and
I, there exists a finite-memory scheduler τ such that PM

τ (23F ) = 1 and PM
τ (2I) > 0 is

EXPTIME-complete.
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Theorem 6.5 derives from Propositions 6.4 and 6.5 below, that state, respectively,
the upper bound in the general case, and the lower bound in a particular case, namely
for the safe active diagnosability under finite-memory strategies.

Proposition 6.4. Given a POMDP M with subsets of states F and I, one can decide
in EXPTIME whether there exists a finite-memory scheduler τ such that PM

τ (23F ) = 1
and PM

τ (2I) > 0.

Due to the complexity of this proof, we decompose it using two lemmas. The idea
is the following. We first define a set Win=1 of pairs of beliefs (B,B′) with B ⊆ B′ such
that there exists a scheduler that ensures with probability 1 to stay in I from any state
of B and to reach F from any state of B′. As B ⊆ B′, this implies that if one starts
with a distribution which support is B′, there is a scheduler satisfying both the Büchi
objective with probability one and the safety objective with positive probability. Such
a belief B′ is a “winning” belief. However, there are “winning” beliefs that cannot be
obtained directly from Win=1. In Lemma 6.1, we show how to compute efficiently Win=1

through a greatest fixed point algorithm. Using Win=1, we then build a set of beliefs
Win, which contains intuitively the beliefs from which there exists a scheduler that can
reach a belief that corresponds to the second component of a pair in Win=1 with positive
probability while never reaching a “losing” belief (a belief from which we cannot satisfy
the Büchi requirement). Finally, in Lemma 6.2 we show that Win contains exactly the
set of “winning” beliefs. Thus, there exists a scheduler satisfying the two objectives iff
the initial belief {q0} belongs to Win.

Proof. In this proof, the POMDP M = 〈Q, q0,Obs,Act, T 〉 is fixed, and we use notation
Pδ0τ (Ev) to denote the probability of Ev under scheduler τ assuming that instead of q0,
the initial state in M is given by the distribution δ0 ∈ Dist(Q).

Let us first explain how to compute the following set of pairs of beliefs:

Win=1 = {(B′, B) | B′ ⊆ I, B′ ⊆ B s.t. ∃τ s.t.

∀δ0 with Supp(δ0) = B, Pδ0τ (23F ) = 1, and

∀δ′0 with Supp(δ′0) = B′, Pδ
′
0
τ (2I) = 1} .

Intuitively, Win=1 denotes pairs of beliefs such that there exists a scheduler that ensures
a Büchi objective almost-surely from the larger belief, and a safety objective almost-
surely from the smaller one. Note that, (1) in the definition of Win=1, we do not require
the scheduler τ to be finite-memory and (2) as schedulers associate a decision rule to
every sequence of observation, the same choices are taken after the same sequence of
observations for the Büchi and the safety objective although the initial distribution
differs. Given that we consider pairs of beliefs, we introduce the following notation:
∆((B′, B),O1) =

(
∆(B′,O1),∆(B,O1)

)
, and similarly for sequences of actions and

observations. Also, for X ⊆ Q a subset of states, we denote by Bl⊆X = {B ∈ Bl | B ⊆
X} the set of beliefs contained in X.

We now show how to efficiently compute Win=1.



190 Control of the degradation in probabilistic systems

Lemma 6.1. Let Win∞ be the greatest fixed point starting from {(q,B′, B) ∈ Q×Bl×
Bl | q ∈ B,B′ ⊆ B, B′ ⊆ I} of the following operator:

W 7→ {(q,B′1, B1) | ∃n ≥ 1, ∃q0 . . . qn ∈ Q, ∃α1, · · ·αn∃O1 · · ·On,

(B′2, B2) = ∆
(
(B′1, B1), (α1,O1) · · · (αn,On)

)
, ∀q′ ∈ B2, (q

′, B′2, B2) ∈W,
q0 = q, qn ∈ F, ∀i < n, T (qi, αi+1)(qi+1) > 0,∀1 ≤ j ≤ n,Obs(qj) = Oj ,

∀i ≤ n, ∀O′i, for (B′3, B3) = ∆
(
(B′, B), (α1,O1) · · · (αi−1,Oi−1)(αi,O

′
i)
)

we have ∀q′ ∈ B3, (q,B′3, B3) ⊆W ∩Q× Bl⊆I × Bl} .

We have Win=1 = {(B′, B) | ∀q ∈ B, (q,B′, B) ∈Win∞}.

Proof of Lemma 6.1. To establish that Win=1 corresponds to the projection on the pair
of beliefs of Win∞, we first assume that for all q ∈ B, (q,B′, B) belongs to Win∞, and
exhibit a scheduler τ that witnesses (B′, B) ∈ Win=1. Let us define τ as follows. The
scheduler τ has finite memory Bl × Bl. From memory state (B′, B), τ dictates to play
uniformly all actions α such that for every observation O and every q ∈ ∆(B,α,O),
we have (q,∆((B′, B), α,O)) ∈Win∞. Note that this set of “safe” actions is necessarily
non empty because (q,B′, B) ∈ Win∞. If α is played, and O is observed, the memory
state of τ is updated to ∆((B′, B), α,O), which is still in Win∞, by assumption on
α. The scheduler τ then continues similarly with memory state ∆((B′, B), α,O). So
defined, let us show that τ witnesses (B′, B) ∈ Win=1. First, let δ0 be a distribution
with support B. The scheduler τ ensures to stay (surely) in Win∞. Moreover, for every
q ∈ B, with a positive probability, say p(q,B′,B) > 0, the sequence (α1,O1) · · · (αn,On) of
actions and observations leading to F that derives from the fixpoint definition, happens
from q. There are finitely many p(q,B′,B), all are positive, so they are lower bounded
by some positive value p. Playing τ forever thus ensures visiting F almost surely,
and iterating this reasoning, even visiting F infinitely often with probability 1. Now,
assuming B′ 6= ∅ let δ′0 be a distribution with support B′. Any action picked by τ ensures
that, whatever the observation, the first belief-component remains in I. Therefore,
surely, from distribution δ′0 the plays stay in the invariant I.

Let us now assume that the triplet (q,B′, B) is removed during the iterative compu-
tation of the fixed point W∞. We prove, by induction on k, that if (q,B′, B) is removed
at iteration k, then, (B′, B) /∈ Win=1. If k = 0, the pair is removed at initialization,
hence B′ 6⊆ I or B′ 6⊆ B, and obviously (B′, B) /∈Win=1. Otherwise it happens at the k-
th iteration, for some k ≥ 1. Assume, towards a contradiction, that there exists a sched-
uler τ , witnessing that (B′, B) ∈ Win=1. In particular, there exists a sequence of pairs
of actions and observations allowed by the scheduler (α1,O1) · · · (αn,On) so that there
exists q0 . . . qn ∈ Q with q0 = q, qn ∈ F, ∀i < n, T (qi, αi+1)(qi+1) > 0,∀1 ≤ j ≤ n and
Obs(qj) = Oj . Because the triple (q,B′, B) was removed at iteration k, it must be that,
either (1) for (B′2, B2) = ∆

(
(B′, B), (α1,O1) · · · (αn,On)

)
, there exists q2 ∈ B2 such

that (q2, B
′, B) /∈ Wk−1, (2) no run corresponding to a sequence (α1,O1) · · · (αn,On)

satisfying (1) and starting in q ends in F or (3) there exists an index i and an ob-
servation O′i such that for (B′3, B3) = ∆

(
(B′, B), (α1,O1) · · · (αi−1,Oi−1)(αi,O

′
i)
)
there

exists q ∈ B3, (q,B′3, B3) /∈ Wk−1 ∩ Q × Bl⊆I × Bl. In the first case, it means that
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there is a positive probability, under τ to reach a pair of beliefs out of Wk−1, and
thus out of Win=1 by induction hypothesis. As the sequence of action and observa-
tions was chosen so that one can reach F from q, the second case implies that the
first case holds with our selected sequence of actions and observations. For the third
case, let (B′3, B3) = ∆

(
(B′, B), (α1,O1) · · · (αi−1,Oi−1)(αi,O

′
i)
)
. Either there exists

q′ ∈ B3 such that (q,B′3, B3) /∈Wk−1, then it is treated similarly to the first case. Else
B′3 /∈ Bl⊆I . Observe that, in this case, the second requirement on τ is not satisfied since
Pδ
′
0
π (2I) < 1.

Thanks to Lemma 6.1, Win=1 can be computed in EXPTIME. Let us now define Lose
as the set of beliefs that are clearly losing:

Lose = {B ∈ Bl | ¬∃τ ∀δ0 with Supp(δ0) = B,Pδ0τ (23F ) = 1} .

As established e.g. in [BGG09] in the more general framework of 2-player stochastic
games with signals, Lose can also be computed in EXPTIME.

Informally, we now consider the set of beliefs from which one can reach, while staying
in I, and not risking to fall in Lose, some belief B such that there exists B′ 6= ∅ with
(B′, B) ∈ Win=1. In order to easily represent what staying in I means, we assume
without loss of generality that the set of states Q \ I is absorbing4. Formally, let Win
be the following set of beliefs:

Win = {B0 ∈ Bl | ∃(B′, B) ∈Win=1 s.t. B′ 6= ∅ and
∃α1 · · ·αn, ∃O1 · · ·On, ∆

(
B0, (α1,O1) · · · (αn,On)

)
= B

∀i ≤ n, ∀O′i, ∆
(
B0, (α1,O1) · · · (αi−1,Oi−1)(αi,O

′
i)
)
/∈ Lose}.

The set Win characterizes winning beliefs, that is, beliefs from which there exists a finite-
memory scheduler (called a winning scheduler) ensuring at the same time, the Büchi
objective 23F almost-surely, and the safety objective 2I with positive probability.
Formally:

Lemma 6.2. B0 ∈ Win if and only if for every δ0 with Supp(δ0) = B0, there exists a
finite-memory scheduler τ such that Pδ0τ (23F ) = 1 and Pδ0τ (2I) > 0.

Proof of Lemma 6.2. Assume first that B0 ∈Win. We design a finite memory scheduler
τ that is winning from any initial distribution δ0 with support B0. In a first mode, τ
aims at reaching a pair of beliefs (B′, B) ∈ Win=1 from B0. More precisely, τ plays
the sequence of actions that leads with positive probability from B0 to some B ∈ Bl
such that there exists B′ 6= ∅ with (B′, B) ∈ Win=1. If this succeeds, τ then switches
to another mode, where it behaves as the winning scheduler that starts from (B′, B) in
Lemma 6.1. If it fails, the play ends in a belief B1 /∈ Lose (by definition of Win), and
from there τ plays to ensure visiting F infinitely often with probability 1. All in all,
τ ensures almost surely visiting F infinitely often, and with positive probability (the

4This can be ensured similarly to what was done for the set Qf in Subsection 1.4 of Chapter 2,
page 43.
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probability of the prefix leading to B, times the probability that the play is in B′ at
that time point) to stay in I. Note that the size of the memory τ uses is in O(|Bl|2).
Indeed, in its first phase, it tries to reach a belief by using a set of actions of length
smaller than |Bl| as it does not need to visit the same belief twice. If it fails to reach
the target belief, then ensuring the Büchi requirement can be done with a belief-based
scheduler, i.e. a scheduler that only remembers the current belief, thus with memory of
size |Bl|. If it reaches its target however, it needs to remember pairs of beliefs as done
in Lemma 6.1, thus requires a memory of size |Bl|2.

Let now δ0 be an initial distribution with support B0, and assume that there exists
a finite-memory scheduler τ such that Pδ0τ (23F ) = 1 and Pδ0τ (2I) > 0. We consider
M(τ) the pLTS generated by τ , with finite state space Q × Mem, where Mem is a
finite set of memory states. Without loss of generality, we iteratively tag each state of
M(τ) with its associated belief. Since τ is winning and almost surely a run reach a
BSCC, there must exist a BSCC C in Mτ , reachable from some (q0,m0) via an I-run
ρ (a run where all state are included in I), and such that all states (q,m) ∈ C satisfy
q ∈ I, and there exists a state (qf ,mf ) ∈ C such that qf ∈ F . Let (q,m) ∈ C be the
state reached by run ρ, B be the belief obtained after observing ρ. From (q,m), under
scheduler τ , all plays stay in I. Moreover, for any q′ ∈ B, from (q′,m), under scheduler
τ , almost all runs visit F infinitely often. As a consequence, by the definition of Win=1,
({q}, B) ∈ Win=1. Then, we conclude that B0 ∈ Win, exploiting the I-run ρ, and the
fact that τ ensures 23F almost-surely, and thus always avoids Lose.

Win characterizes the winning beliefs, and can be computed in EXPTIME. We thus
showed the computability in EXPTIME of the set of supports B from which for every
distribution δ0 with Supp(δ0) = B there exists a finite-memory scheduler τ such that
Pδ0τ (23F ) = 1 and Pδ0τ (2I) > 0.

Now the safe active diagnosis restricted to finite-memory strategies can be reduced
to the existence for POMDP of a finite-memory scheduler that ensures a Büchi objective
almost surely, and a safety objective with positive probability. As MC is exponential
in the size of C and the algorithm on the POMDP is in EXPTIME, we obtain a 2EX-
PTIME complexity upper-bound. Fortunately, in order to avoid a doubly exponential
blowup and to establish the EXPTIME complexity, we observe that the exponential
comes in both cases from the computation of beliefs depending only on the original
CLTS. This implies that the safe active probabilistic diagnosis problem is in EXPTIME
when restricted to finite-memory strategies.

Corollary 6.2. The safe active diagnosis problem restricted to finite-memory strategies
is decidable in EXPTIME.

Proof. Given a CLTS C, we build MC and decide if there exists a scheduler τ ensuring
Pδ0τ (23F ) = 1 and Pδ0τ (2I) > 0 with I = {(q, a,B) | q ∈ Qc} and F = {(q, a,B) |
B ⊆ Qf ∨ q ∈ Qc} and δ0 is the Dirac distribution of support {qMC0 }. Due to the link
between MC and C, this choice of F corresponds to runs that are either correct or surely
faulty in C and this choice of I corresponds to runs that are correct. Thus there exists a
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finite-memory scheduler τ as defined above iff the corresponding strategy π in C ensures
safe active diagnosis. Moreover, as explained above the corollary, deciding the existence
of this scheduler can be done in EXPTIME.

A matching lower-bound is already known from the literature:

Proposition 6.5 ([BFH+14]). The safe active diagnosis problem restricted to finite-
memory strategies is EXPTIME-hard.

Obviously, this lower bound also holds for the more general problem: on POMDP,
whether there exists a finite-memory strategy ensuring a Büchi objective almost-surely
and a safety objective with positive probability.

3 Conclusion

Degradation of a controllable probabilistic system combines two objectives. The system
must satisfy at the same time a diagnosability and a degradation condition. Interestingly
and as shown first in [BFH+14], having to satisfy both conditions at the same time
increases the difficulty: safe active diagnosability combines two decidable problems
yet ends up being undecidable. In order to regain decidability, we introduced two
new degradation notions both in a qualitative and a quantitative ways. While the
quantitative versions are undecidable, the qualitative ones brings interesting results.
Indeed, on the one hand, they are close to safe active diagnosability as two of the
notions are equivalent to it for finite pLTS. On the other hand, they are decidable in
EXPTIME. As EXPTIME is the lower bound of the complexity of active diagnosability,
it is unsurprisingly also a lower bound of the complexity of the combination of active
diagnosability and of a degradation condition. Therefore we can test the combination of
active diagnosability with a degradation condition without reaching a new complexity
class.

This analysis however can result in diagnosers requiring infinite memory. When
restricted to finite-memory controllers, many differences appear. First, as the pLTS
obtained by controlling a CLTS with a finite-memory strategy is finite, then accord-
ing to Theorem 6.1, safety, strong resiliency and lasting fault freeness are equivalent.
Studying the safe active diagnosability, we showed it to be EXPTIME-complete. Thus,
the restriction to finite memory helped regain decidability. For weakly resilient active
diagnosability, the restriction to finite memory is not necessary as, as shown in Theo-
rem 6.2, if the system is weakly resilient active diagnosable, there exists a strategy with
finite memory.

The notions of degradation introduced here were inspired from the notion of safe
active diagnosability. One could be interested in other notions of degradations repre-
senting different forms of failures within the system. For example, in our framework,
the notion of faulty run is a Boolean one; once a fault occurred, the run is faulty. The
fault is thus seen as a definitive and complete damage of the system. But a fault could
only represent a small degradation of the system which would still be partially available.
In this alternative framework, the degradation to be evaluated would be the evolution
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of the number of faults in a run w.r.t. its length. Another possible direction of research
would be to take a more general approach to the notion of combined objectives. It
would be interesting to determine which pairs of objectives can be studied separately
and which ones lead to undecidability.



Chapter 7

Opacity

This thesis consists in a study of the control of the information in probabilistic systems,
mainly focusing on diagnosis. While the goal of diagnosis is to analyse an observation
in order to reveal a hidden information (the fault), one could be interested in asking a
dual question: can we limit the amount of hidden information that is revealed by the
system. This question belongs to an important domain of partial observation issues
called opacity. While the two notions can appear similar, the motivations behind them
are different. Diagnosability is a notion of safety of a system while opacity is one of
security. This difference in motivations implies that the questions asked for opacity are
not be the same as the ones asked for diagnosis. Moreover, the model itself can differ
in order to possess different properties. In this introduction, we first present informally
opacity and some questions related to this domain of research: in the passive framework
then in the active one. Finally, we discuss the form of control used in the active opacity
framework, emphasising the differences with active diagnosability.

Opacity problems for passive systems. Given a set of secret runs, a run discloses
the secret if every run with the same observed sequence is secret. With this definition,
the disclosure of the secret is akin to exact diagnosability. One can also define a notion
of disclosure that would resemble approximate diagnosability: for ε > 0, a secret run
ε-discloses the secret if the probability of runs with the same observed sequence that
are not secret conditioned on the probability of the observed sequence is at most ε. For
non-probabilistic systems, opacity boils down to detecting if there exist a run disclosing
the secret to an observer. For probabilistic systems, we are interested in quantifying
the opacity of the system [BMS15, SH14, BKM12]. For instance we would want to
determine if the measure of disclosing runs of a given length is positive, if it is above a
certain threshold, and how this measure evolves with the observed length of the runs.
This precise quantification of the measure of disclosing runs, called disclosure, does
not appear in the diagnosability notions we studied. Indeed, a fault was considered a
dangerous event which cannot, in any case, be missed. For the disclosing of the secret
however, it is more usual to tolerate that part of the secret may be leaked, as long as it
is a limited amount.

195
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Opacity problems for active systems. The focus on disclosure takes a whole new
meaning when considering active systems. Indeed, a controller will have an effect on the
system, and depending on its choices, this disclosure will increase or decrease. Existing
works study the case where the controller maximises the disclosure [BCS15, BKMS18].
This corresponds to a worst-case analysis of the system, i.e. for the worst possible
control. This kind of analysis aims at representing the case where the control is done
by an attacker that is observing the system. This control can be obtained by the
attacker by using a virus for example. The opposite direction, where the control tries to
minimise the disclosure is also worthy of analysis. Indeed, for example, if a system has
been designed in order to satisfy a specification, yet there are still some liberties within
the system, some choices that are possible and that do not affect the specification, then
these choices can be made in order to optimise opacity of the system. In this case, the
control is realised during the design of the system and is made in order to minimise
the disclosure of the system. Thus, both maximisation and minimisation corresponds
to real issues.

Formalisation of the control. When we studied active diagnosis in Chapter 6, the
control was exterior to the system: from the observations it received, it was able to
stop some controllable actions from occurring. The controller and the observer had the
same information and thus could be thought as the same mechanism. In the examples
given earlier (the virus for maximisation and the system design for the minimisation),
the control comes from within the system. There is thus a clear separation between the
controller and the observer/attacker. To formalise this opposition, the control is realised
with a full knowledge of the system: it knows what is the exact run that is followed
and especially what is the current state and make its decision based on this. However,
as the attacker is not himself within the system a run only discloses the secret with its
observation. In other words, the controller will try to minimise or maximise a set of
runs satisfying a condition that is based on their observations. Moreover, we assume
the attacker is aware of how the controller makes its choices. Indeed, the security of
the system should not be based on the black box hypothesis (that an attacker is lacking
information). Especially when considering cases such as the virus example: the virus
could very well have been implanted in the system by the attacker, ensuring he is aware
of how the virus works.

In Section 1, we establish the specifications and important questions of opacity that
we consider throughout the chapter. These definitions present two different horizons
over which to consider opacity: a given fixed horizon and an unbounded yet finite hori-
zon. In Section 2 and Section 3, we study opacity over finite horizon for maximisation
and minimisation respectively. These two sections echo one another emphasising the
differences between the two. Finally in Section 4 we detail our results for opacity over
fixed horizon for both maximisation and minimisation.

This chapter develops and extends some of the results from [BHL17a].
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1 Specification for Opacity

The notion of opacity is very similar to the one of diagnosis. They both consider the
information revealed by runs of partially observable systems. The difference is that the
goal of diagnosis is to reveal an information about the current state of the system, while
opacity tries to hide an information. Despite these similarities, the framework of opacity
contains important differences with the one of diagnosis. We first define formally the
framework of opacity for passive systems (Subsection 1.1), then extend the definitions
to allow a control of the system (Subsection 1.2).

1.1 Opacity for Markov chains

Labelled Markov chains, as introduced in Chapter 4, are pLTS where every event is
observable. We now define another kind of Markov chains called observable Markov
chains which are pLTS where the observation is associated with the state instead of the
transition. This labelling of states thus describes what an external observer can see and
is given by an observation function1. We use this new framework as, while diagnosis
aimed to detect an event (the fault), opacity consists in hiding that the system is
currently in a secret behaviour represented by its state. This could however easily be
translated as the detection of a transition triggered when entering a secret state. In
fact, the equivalence of associating events with transitions or with states is a folk result.
Figure 7.1 gives the informal idea of how to push events from states to transitions
and Theorem 7.1 starts by a modification of the system that is close to the usual
transformation allowing to associate the labels with the states rather than with the
transitions.

o0

o1

o2

. . .

. . .

. . .

. . .

o0

o0

o2

o1

Figure 7.1: Pushing observations from states to transitions.

Definition 7.1. An observable Markov chain (OMC) over alphabet Σo is a tupleM =
(S, p,O) where S is a countable set of states, p : S → Dist(S) is the transition function,
and O : S → Σo ∪ {ε} is the observation function.

We write p(s′|s) instead of p(s)(s′) to emphasise the fact that the probability of
going to state s′ is conditioned by being in state s. Given a distribution µ0 on S, we

1The equivalent of the observation function for pLTS was called mask function.
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denote byM(µ0) the Markov chain with initial distribution µ0. The definitions of runs,
observed sequences, probability measure, . . . can easily be adapted to OMC. To give an
example, an infinite run of M(µ0) is a sequence of states ρ = s0s1 . . . ∈ Sω such that
µ0(s0) > 0 and for each i ≥ 0, p(si+1|si) > 0. The observed sequence of this infinite
run is O(ρ) = O(s0)O(s1)... ∈ Σ∞o . The observation function is called non erasing if
O(S) ⊆ Σ (all states are visible).

As in opacity one aims to hide a secret behaviour of the system, a way to represent
what is secret is needed. There are various ways to define it depending on if we want
the secret to be permanent, intermittent, described within the system. . .We consider
here the case where the secret is permanent and given by a subset of states Sec ⊆ S of
the model: a (finite of infinite) run s0s1 . . . is secret if si ∈ Sec for some i, otherwise it
is public. Under this choice, the secret itself behaves very similarly to the fault. As for
pLTS where we could make the partition between faulty and correct states without loss
of generality, we assume here that the set of secret states Sec is absorbing. To show
this can be done without loss of generality, a new Markov chain M′ = (S′, p′,O′) is
defined fromM by: S′ = (S × {0, 1}), where (s, 0) represents state s where the secret
has not been visited while (s, 1) represents the opposite situation. The transitions are
then duplicated accordingly: (1) p′((s′, i)|(s, i)) = p(s′|s) for all s ∈ S, s′ ∈ S \ Sec, and
i ∈ {0, 1}, (2) p′((s′, 1)|(s, i)) = p(s′|s) for all s ∈ S, s′ ∈ Sec, and i ∈ {0, 1}. The new
observation function is defined by O′((s, i)) = O(s) for all s ∈ S and i = 0, 1 and the new
set of secrets is S × {1}. There is a one-to-one probability-preserving correspondence
between the runs inM and the ones inM′.

Example 7.1. Consider the OMC of Figure 7.2 with initial distribution 1q0. The
observation associated with a state by the observation function is displayed next to it.
The secret state is shaded. Assuming o1 6= ε and o2 6= ε, every state is associated with
an observation different than ε, therefore the observation function is non-erasing.
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Figure 7.2: An infinitely-branching OMC with Sec = {qs}.

One quantitative way to define the disclosure of a system is to consider that a
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run discloses the secret if the probability that the current run belongs to the secret,
conditioned over the observation of the run, is greater than some given threshold ε > 0.

Definition 7.2. Given an OMCM = (S, p,O), an initial distribution µ0, Sec ⊆ S and
an observation w ∈ Σ∗, the proportion of secret runs with observation w is:

PsecM(µ0)(w) =
PM(µ0)({ρ ∈ O−1(w) | ρ is secret})

PM(µ0)(w)
.

For ε > 0, w is ε-min-disclosing if PsecM(µ0)(w) > 1 − ε and no prefix of w sat-
isfies this inequality. Writing Dε

min for the set of ε-min-disclosing observations, the ε-
disclosure is defined by Discε(M(µ0)) =

∑
w∈Dεmin

PM(µ0)(w). The positive ε-disclosure
problem consists in deciding whether Discε(M(µ0)) > 0.

To establish a parallel with diagnosability, positive ε-disclosure is similar to εFF-
diagnosability. Indeed, in εFF-diagnosability (resp. the positive ε-disclosure problem)
one considers the fault (resp. secret) revealed if the likelihood of the fault (resp. secret)
conditioned on the observation is above 1 − ε. The difference is that for opacity, we
ask whether the measure of the set of runs disclosing the secret is positive while for
diagnosability, we require this probability to be equal to the probability of faulty runs. In
other words, considering a run to be faulty iff it is secret, the system is εFF-diagnosable
iff Discε(M(µ0)) = P(F∞).

In this chapter, we aim at studying active notions of opacity. While being the most
realistic notion of probabilistic disclosure, ε-disclosure is unfortunately a too complex
notion. Indeed, the problem is already undecidable for OMC:

Theorem 7.1. The positive ε-disclosure problem is undecidable for OMC.

To establish this undecidability result, we reduce the emptiness problem for proba-
bilistic automata. The reduction itself is pretty straightforward. Note however that the
reduction requires to first translate the PA into an OMC such that the probability of
acceptance of a word w in the PA is equal to the probability to end in a secret state in
the Markov chain knowing that the run has observed sequence w.

The emptiness problem and the value 1 problem2 are undecidable for PA already
with a two-letter alphabet [Paz71, GO10]. Hence in the various reductions we use the
alphabet {a, b}.

Proof. Given a PA A = (Q, q0, {a, b}, (Pa,Pb), F ) that we suppose complete without
loss of generality, we first transform A into an incomplete OMC Â where {a, b, [} is
the observation alphabet (an illustration is given in Figure 7.3). The set of states is
Q̂ = Q ∪ {qtag | q ∈ Q ∧ tag ∈ {a, b}}, with initial distribution 1q0 . The observation
function Ô is defined by Ô(q) = [ and Ô(qc) = c for q ∈ Q and c ∈ {a, b}. The
transition function p̂ is defined for q, q′ ∈ Q and c ∈ {a, b} by p̂(q′ | qc) = Pc(q, q

′)
and p̂(qc | q) = 1

4 . This OMC is incomplete as for every state q ∈ Q, the sum of the
probabilities exiting q in Â is 1/2.

2These notions were defined before Theorem 4.3, page 115
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Figure 7.3: From PA A to incomplete OMC Â.
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Figure 7.4: Reduction to the positive ε-disclosure problem.

We now build the OMC MA = (S, p,O) over alphabet {a, b, [, ]} by adding two
states to complete Â (see Figure 7.4 where the doubly circled state qf is a final state of
A):

• S = {spub, ssec} ∪ Q̂, with Sec = {ssec};

• The function p is obtained from p̂ by adding the transitions: For every q ∈ F ,
p(ssec | q) = 1

2 , for every q ∈ Q \ F , p(spub | q) = 1
2 , and p(spub | spub) = p(ssec |

ssec) = 1;

• O extends Ô by O(ssec) = O(spub) = ].

We now prove that, given ε ∈]0, 1[, A accepts a word with probability strictly greater
than 1− ε iff Discε(M(µ0)) > 0. First assume that there exists a word w = a1 . . . an ∈
{a, b}∗ with PA(w) > 1 − ε. Then w corresponds to a non secret run with observed
sequence ŵ = [a1[ . . . an[ in MA and PsecM(µ0)(ŵ]) = PA(w) > 1 − ε, which implies
Discε(M(µ0)) > 0.
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Conversely, if Discε(M(µ0)) > 0, then there exists an observation w′ in ({a, b, [, ]})∗
such that PsecM(µ0)(w

′) > 1−ε. In this case, w′ is of the form [a1[ . . . an[]]
∗ where, let-

ting w = a1 . . . an, we have PsecM(µ0)(w
′) = PsecM(µ0)([a1[ . . . an[]) = PA(w). There-

fore L>1−ε(A) is not empty.

This undecidability result leads us to consider the simpler case where the disclosure is
the probability of the set of runs surely leaking the secret, i.e., such that all runs with
the same observation are secret. One such disclosure notion, the ω-disclosure (used
in [BCS15, BMS15, BKMS16]), was defined for a Markov chain M = (S, p,O) with
initial distribution µ0 by considering a measurable set of secret runs SecRuns ⊆ ΩM(µ0).
In our context, as mentioned earlier, SecRuns is Reach(Sec), the set of infinite runs
visiting a state from Sec. Moreover an infinite observation w ∈ Σω discloses the secret
if all runs ρ ∈ O−1(w) are secret. Setting SecRuns = ΩM(µ0) \ SecRuns, we define:

Definition 7.3. For an OMC M = (S, p,O), an initial distribution µ0 and a subset
Sec ⊆ S, with SecRuns = Reach(Sec), the ω-disclosure of Sec inM is:

Discω(M(µ0)) = PM(µ0)(SecRuns \ O−1(O(SecRuns))).

The downside of this definition is that it only considers infinite observed sequences.
In reality, an attacker will only have access to finite observed sequences before having
to deduce if the system is in a secret state. To obtain measures directly related to the
finite observation of a potential attacker, we assume thatM = (S, p,O) is convergent :
each infinite run ρ has an infinite observation O(ρ) ∈ Σω. Two measures can then be
defined: using fixed or finite horizon. In the fixed-horizon case, the attacker observes
the system for a fixed amount of time and has to make his deduction at the end of
this observation. In order to link the amount of time the attacker observes the system
and the number of observations they receive, in this case, we only consider non-erasing
observation functions O. In the finite-horizon case, the attacker can wait as long as
they want, as long as it is a finite amount of time.

Definition 7.4. LetM = (S, p,O) be an OMC, µ0 an initial distribution and Sec ⊆ S.
A finite observation w ∈ Σ∗ discloses the secret if all runs ρ ∈ O−1(w) are secret. It is
min-disclosing if it discloses the secret and no strict prefix of w does.

n-disclosure : When O is non-erasing, we denote by Dn, for n ∈ N, the set of disclos-
ing observations of length n. The n-disclosure (disclosure with fixed horizon n) is
Discn(M(µ0)) =

∑
w∈Dn PM(µ0)(w);

Disclosure : Writing Dmin for the set of min-disclosing observations, the disclosure
(w.r.t. finite horizon) is defined by Disc(M(µ0)) =

∑
w∈Dmin

PM(µ0)(w).

Note that if D is the set of disclosing observations, and V(µ0) = ∪w∈D ∪ρ∈O−1(w)

Cyl(ρ) the set of runs disclosing the secret, then Disc(M(µ0)) equals PM(µ0)(V(µ0)).
As waiting longer gives more information, the disclosure with finite horizon is always
at least as large as the disclosure with fixed horizon. In fact, (Discn(M(µ0)))n∈N is a
non-decreasing sequence with limit Disc(M(µ0)).
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Example 7.2. Consider the infinitely-branching OMC of Figure 7.2. The single secret
run is SecRuns = {q0q

ω
s } and its observation is oω1 . Moreover, the observations of the

public (as opposed to secret) infinite runs is O(SecRuns) = o+
1 o

ω
2 . As a consequence, the

infinite observed sequence of the secret run discloses the secret, Discω = 1
2 . However,

no finite observation is disclosing: ∀n ∈ N,Discn = Disc = 0.
This shows that disclosure and ω-disclosure differ.

However, both notions coincide for convergent finitely-branching OMC.

Lemma 7.1. Let M = (S, p,O) be a Markov chain, µ0 an initial distribution and
Sec ⊆ S. For SecRuns = Reach(Sec), Disc(M(µ0)) ≤ Discω(M(µ0)) with equality when
M is convergent and finitely branching.

Proof. We first establish the following claim: ifM is convergent and finitely branching,
then the set of runs ρ such that O(ρ) has length n is finite for any n > 0.

We first prove the claim for signalling runs. We proceed by induction on the ob-
servable length. There exist finitely many signalling runs of length 0: by convention
they are the runs that (1) do not contain any event and (2) start in an unobserv-
able state of Supp(µ0) ∩ O−1(ε). Let us assume the hypothesis holds for n ∈ N.
For every signalling run ρ0 with |ρ0|o = n we consider the tree formed by the set
On+1 = {ρ ∈ SR | ρ0 � ρ∧ |O(ρ)| = n+ 1} by sharing common prefixes. Internal nodes
of this tree correspond to unobservable states while all leaves are observable. Since the
OMC is finitely branching, the tree is of bounded degree. By contradiction, assume that
the tree is infinite. König’s lemma yields an infinite branch containing only unobservable
states, which contradicts the convergence hypothesis. Therefore there exist only finitely
many signalling runs of observable length n + 1 extending ρ0. As there exist finitely
many signalling runs of observable length n according to the induction hypothesis, one
deduces that there exist finitely many signalling runs of observable length n+ 13. This
concludes the induction. The result can then be extended to every runs as, from the
convergence hypothesis, for every n ∈ N and every run ρ of observable length n, there
exists a signalling run ρ′ ∈ SRn+1 such that ρ � ρ′. As |SRn+1| <∞, there are finitely
many runs of observable length n.

We now prove that the set of infinite runs V = ∪w∈D ∪ρ∈O−1(w) Cyl(ρ) is contained
in SecRuns\O−1(O(SecRuns)). Let ρ1 be an infinite run in V. Then there is a disclosing
observation w1 ∈ Σ∗ and a signalling prefix ρ′1 of ρ1 such that O(ρ′1) = w1 and ρ′1 is
secret. For any infinite run ρ2 such that O(ρ1) = O(ρ2), the observation w1 is also a
prefix of O(ρ2), hence there is a finite signalling prefix ρ′2 of ρ2 such that O(ρ′2) = w1.
Since w1 is disclosing, ρ′2 is also secret, hence ρ1 belongs to SecRuns \O−1(O(SecRuns))
and Disc(M(µ0)) ≤ Discω(M(µ0)).

For the converse inclusion, let ρ be an infinite run in SecRuns\O−1(O(SecRuns)) with
observation O(ρ) = w = o1o2 . . . ∈ Σω. We prove by contradiction that there is a finite
disclosing prefix ŵ of w and a signalling prefix ρ̂ of ρ such that ρ ∈ Cyl(ρ̂) and O(ρ̂) = ŵ.

3For the case n = 0 one must also consider the signalling runs obtained from runs starting in states
of Supp(µ0) \ O−1(ε). There are finitely many such runs too.
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Otherwise, for any n ≥ 1, wn = o1 . . . on is not disclosing and there exists a signalling
run ρn such that O(ρn) = wn but ρn is not secret. The set T = {ρ′ ∈ SR | ∃n ρ′ ≤ ρn}
of all signalling prefixes of the ρn’s form a tree: the root of the tree is ε and the nodes
at level k are the prefixes with observation wk, {ρ′ ∈ T | |O(ρ′)| = k}. A node ρ′′ is a
child of ρ′ if |O(ρ′)| = wk, |O(ρ′′)| = wk+1 for some k and ρ′ � ρ′′. From the claim, we
know that T is of bounded degree. Assuming that it is infinite, König’s lemma again
yields an infinite branch ρ∞ such that each prefix of length k is not secret and has
observation wk. Hence ρ∞ is not secret and has observation O(ρ∞) = w, which is a
contradiction.

In the following we only consider finitely-branching convergent systems. As a con-
sequence, we will only focus on disclosure over fixed or finite horizon.

1.2 Opacity for Markov Decision Processes

We now want to add control to the system. The form of control we define here differs
from the one used in Chapter 6. Indeed, in the context of diagnosability, the controller
observed the system and from this observation, they chose some controllable actions
that they blocked until the next observation. Thus the control had to make decisions
without an exact knowledge of the state of the system. For opacity we are interested
by a control acting with full knowledge. Therefore, the control can be more accurate.
We use Markov decision processes where in each state there is a set of possible actions
and the controller chooses one of them. This action induces a probability distribution
on the next state reached.

Definition 7.5. An observable Markov Decision Process (OMDP) over alphabet Σ is
a tuple M = (S,Act, p,O) where S is a finite set of states, Act = ∪s∈SA(s) where A(s)
is a finite non-empty set of actions for each state s ∈ S, p : S × Act → Dist(S) is a
(partial) transition function defined for (s, a) when a ∈ A(s) and O : S → Σ ∪ {ε} is
the observation function.

The difference with POMDP described in Definition 6.8, page 6.8, beside some
syntactic modifications is on how the control is defined. As for OMC, we write p(s′|s, a)
instead of p(s, a)(s′). We use the same kind of definitions as usual for runs, observed
sequences, . . . For example, given an initial distribution µ0, an infinite run of M is
a sequence ρ = s0a0s1a1 . . . where µ0(s0) > 0 and p(si+1|si, ai) > 0, for si ∈ S,
ai ∈ A(si), for all i ≥ 0. We denote by M(µ0) the OMDP M with initial distribution
µ0. For decidability and complexity results, we assume that all probabilities occurring
in the model (transition probabilities and initial distribution) are rational.

Example 7.3. Consider the OMDP of Figure 7.5. From the initial state q0, two actions
are possible. If action a is chosen, the system moves to q1 with probability 1/2 and to
q2 with probability 1/2. If b is chosen, every state has a probability 1/3 to be reached.

The OMDP model uses both non-deterministic choice (the choice of the action)
and probabilistic choice (the induced distribution). The non-determinism is where the
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Figure 7.5: An example of OMDP where the initial distribution is a Dirac distribution
on q0. Transitions are labelled by a set of pairs of actions and of the probability to take
this transition under that action.

control can be operated. It is resolved by a strategy which associates with every run
a distribution on the actions enabled at the last state of the run. Given a finite run
ρ with last(ρ) = s, a decision rule of an OMDP for ρ is a distribution δ ∈ Dist(A(s))
representing the action chosen after ρ. For such a decision rule δ, we write p(s′|s, δ) =∑

a∈A(s) δ(a)p(s′|s, a).

Definition 7.6. A strategy for the OMDP M = (S,Act, p,O) is a mapping σ associating
to every finite run ρ a decision rule σ(ρ).

Given a strategy σ, a run ρ = s0a0s1a1 . . . of M is σ-compatible if for all i, ai ∈
Supp(σ(s0a0s1a1 . . . si)).

In order to apply the strategies as defined here one requires to remember the whole
run that occurred. Moreover, the strategies are allowed to choose randomly between
the different allowed actions. All of this may not always be necessary however. We
are thus interested specifically in strategies satisfying specific properties. A strategy
σ is deterministic if σ(ρ) is a Dirac distribution for each finite run ρ. In this case,
we denote by σ(ρ) the single action a ∈ A(last(ρ)) such that σ(ρ) = 1a. A strategy
σ is observation-based if for any finite run ρ, σ(ρ) only depends on (1) the observed
sequence O(ρ) and (2) the current state last(ρ), i.e. given ρ′ such that O(ρ) = O(ρ′)
and last(ρ) = last(ρ′), we have σ(ρ) = σ(ρ′). We then write σ(O(ρ), last(ρ)) for σ(ρ).

Let σ be a strategy and ρ be a σ-compatible run. We define Bσ
ρ the belief of ρ w.r.t.

σ about states as follows:

Bσ
ρ = {s ∈ S | ∃ρ′ σ-compatible, O(ρ′) = O(ρ) ∧ s = last(ρ′) ∧ O(s) 6= ε}.

The belief Bσ
ρ contains the set of states that can be reached under the strategy σ and

with observation O(ρ). A strategy σ is belief-based if for all finite run ρ, σ(ρ) only
depends on the belief Bσ

ρ and the current state last(ρ), i.e. given ρ′ such that Bσ
ρ = Bσ

ρ′
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and last(ρ) = last(ρ′), we have σ(ρ) = σ(ρ′). Observe that a belief-based strategy is
observation-based since Bσ

ρ only depends on w = O(ρ). So we also write Bσ
w for Bσ

ρ . A
strategy σ is memoryless if σ(ρ) only depends on last(ρ) for all ρ.

The semantics of a OMDP M with initial distribution µ0 under the strategy σ is a
(possibly infinite)observable Markov chain Mσ(µ0) where each state is associated with
a finite σ-compatible run of M(µ0), that can be equipped with the observation function
mapping O(last(ρ)) to the state associated with the finite run ρ. The transition function
pσ is defined for ρ a finite run and ρ′ = ρas′ by pσ(ρ′|ρ) = σ(ρ)(a)p(s′|s, a) and we denote
by PMσ(µ0) (or Pσ for short when there is no ambiguity) the associated probability
measure. Writing Vσ(µ0) for the set of runs disclosing the secret in Mσ(µ0), we have
Disc(Mσ(µ0)) = PMσ(µ0)(Vσ(µ0)). We assume all OMDP considered are convergent
(there is no cycle of unobservable states), which implies the convergence of all OMC
induced by strategies.

Example 7.4. Consider the OMC of Figure 7.6. It represents the semantics of the
OMDP of Figure 7.5 with the strategy σ choosing the action b initially, then always
choosing action a. σ is observation-based as the only run for which it does not select a
is the empty run, which is the only run with observed sequence o2. It is also belief-based
as the empty run is the only run with belief {q0}. Indeed, after some observations, the
current belief is either {q0, q2} or {q1}. It is however not memoryless as the empty run
and q0bq0 both ends in q0 but the same action is not chosen in both cases. After three
observations, under σ, the system cannot be in q0 any more, it is thus necessarily in a
secret state. Therefore, Disc(Mσ(µ0)) = 1.
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q0bq2
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q0bq0aq2
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1
3

1
2

1
2

1

1
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Figure 7.6: The OMC induced by the strategy choosing the action b initially, then
always choosing action a for the OMDP of Figure 7.5.

The control can be either adversarial or cooperative with respect to the system: it
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can try to either maximise or minimise the opacity. We therefore define the disclosure
value of an OMDP according to the type of the strategies. We only consider ε-disclosure
for fixed horizon in light of the undecidability result of Theorem 7.1.

Definition 7.7. Given an OMDP M = (S,Act, p,O), an initial distribution µ0 and a
secret Sec ⊆ S, for disc ∈ {Disc,Discn,Discεn}, n ∈ N and 0 < ε < 1, the maximal dis-
closure of Sec in M is discmax(M(µ0)) = supσ disc(Mσ(µ0)) and the minimal disclosure
of Sec is discmin(M(µ0)) = infσ disc(Mσ(µ0)).

Note that the construction ensuring that once a secret state is visited, the run
remains in a secret state forever, extends naturally from OMC to OMDP. We only
consider OMDP of this form in the rest of this chapter.

Example 7.5. Consider the OMDP of Figure 7.5. As soon as the strategy selects action
a, the system enters a secret state and discloses the secret with probability 1. Therefore
Discmax(M(µ0)) = 1. If the strategy only selects action b however, observing a ‘o1’
clearly shows the system is in q1, thus disclosing the secret, while after observing at
least two ‘o2’, the belief is {q0, q2} which does not disclose the secret. The probability to
observe at some point ‘o1’ being equal to 1/2, Discmin(M(µ0)) = 1.

We study the following problems for OMDP over finite or fixed horizon:

• Computation problems.

– The value problem: compute the disclosure;

– The strategy problem: compute an optimal strategy whenever it exists.

• Quantitative decision problems. Let ./ = ≥ for maximisation and ./ = ≤ for
minimisation.

– The disclosure problem: Given M and a threshold θ ∈ [0, 1], decide if disc(M) ./
θ;

– The strategy decision problem: decide if there exist a strategy σ such that
disc(Mσ) ./ θ.

• Qualitative decision problems.

– The limit-sure disclosure problem: the disclosure problem when θ = 1 for
maximisation and θ = 0 for minimisation;

– The almost-sure disclosure problem: the strategy decision problem when θ =
1 for maximisation and θ = 0 for minimisation.

For the complexity results regarding a fixed horizon n, we assume that n is written
in unary representation or bounded by a polynomial in the size of the model where
the polynomial is independent of the model as done in classical studies (see for in-
stance [PT87]).
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As said earlier, the whole power of the strategies we defined may not be necessary to
answer the above problems. Restricting ourself to a subset of strategies that gives the
same disclosure values can help simplify the proofs and the representation in practice
of these strategies. Moreover, it helps understanding what is important in the control
of an OMDP to optimise the disclosure. We thus show that for disclosure problems we
can restrict strategies to observation-based ones.

Proposition 7.1. Given an OMDP, a secret and a strategy σ, there exists an observation-
based strategy σ′ such that for disc ∈ {Disc,Discn,Discεn}, disc(Mσ(µ0)) = disc(Mσ′(µ0)).

For this proof, from an arbitrary strategy σ, we build an observation-based strategy
σ′ with the same disclosure value. The strategy σ′ is randomised and is obtained by
choosing, after an observed sequence w, a distribution on the different choices made by
σ on runs with observed sequence w. This is done so that the probability of choosing
an action after observing w is the same for both strategies.

We then prove that σ′ meets the same disclosure value as σ. More precisely, we
establish that the probability to reach a state with a given observation is the same for
both strategies. This is done by induction on the length of the observed sequence and
on an ordering of the unobservable states. Two cases have to be considered, depending
on if the last state is observable or not. However, each case is dealt with in the same
way (both for the initialisation and for the induction step). Thus we only detail the
first one.

Proof. Let M = (S,Act, p,O) be an OMDP with initial distribution µ0, and let σ be a
strategy. For an observation w ∈ Σ∗ and a state s ∈ S, we define the sets (note that
these are finite sets given the claim in Lemma 7.1) R(w, s) = {ρ finite run of Mσ(µ0) |
O(ρ) = w ∧ last(ρ) = s}.

We now define a mapping σ̂ from Σ∗ × S to Dist(Act) by

σ̂(w, s) =
1∑

ρ∈R(w,s) Pσ(ρ)

∑
ρ∈R(w,s)

Pσ(ρ)σ(ρ).

σ̂(w, s) corresponds to the average choice made by σ after a run with observed sequence
w and ending in s. Using σ̂, we define the new strategy σ′ for a finite run ρ by
σ′(ρ) = σ̂(O(ρ), last(ρ)). We claim that Pσ′(R(w, s)) = Pσ(R(w, s)) for any observation
w and any state s, which entails equality of disclosure.

Partitioning the set of states into S = So ] Su where Su = O−1(ε), we can assume
a topological sort on the subgraph obtained by removing all edges in S × So (this
subgraph is acyclic due to the hypothesis of convergence). This means that there exists
a numbering η of the states so that if η(s′) > η(s), there is no transition from s to s′.
We proceed to prove the above claim by a joint induction on the pairs (w, s) using |w|
and η(s).

For the base cases, we need to establish the property for w = ε with s ∈ Su, and for
w ∈ Σ with s ∈ So, where µ0(s) > 0 in both cases.
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Case 1. By induction on η(s), we consider a state s ∈ Su such that η(s) = mins′∈Su(η(s′)).
Then Pσ′(R(ε, s)) = µ0(s) = Pσ(R(ε, s)). Assuming the property holds for (ε, s) with
η(s) ≤ n, we prove it for s′ with η(s′) = n+ 1. We have:

Pσ′(R(ε, s′)) = µ0(s′) +
∑

s∈Su,η(s)<η(s′)

∑
a∈A(s)

p(s′|s, a)
∑

ρ∈R(ε,s)

Pσ′(ρ)σ′(ρ)(a)

and using the definition of σ′ yields:

Pσ′(R(ε, s′)) = µ0(s′) +
∑

s∈Su,η(s)<η(s′)

∑
a∈A(s)

p(s′|s, a)σ̂(ε, s)(a)
∑

ρ∈R(ε,s)

Pσ′(ρ)

= µ0(s′) +
∑

s∈Su,η(s)<η(s′)

∑
a∈A(s)

p(s′|s, a)

∑
ρ∈R(ε,s) Pσ(ρ)σ(ρ)(a)∑

ρ∈R(ε,s) Pσ(ρ)

∑
ρ∈R(ε,s)

Pσ′(ρ).

Applying the induction hypothesis on (ε, s) yields
∑

ρ∈R(ε,s) Pσ′(ρ) = Pσ′(R(ε, s)) =
Pσ(R(ε, s)) =

∑
ρ∈R(ε,s) Pσ(ρ) thus:

Pσ′(R(ε, s′)) = µ0(s′)+
∑

s∈Su,η(s)<η(s′)

∑
a∈A(s)

p(s′|s, a)
∑

ρ∈R(ε,s)

Pσ(ρ)σ(ρ)(a) = Pσ(R(ε, s′)).

Case 2. We now consider w = o ∈ Σ and s′ ∈ So, hence O(s′) = o. Then:

Pσ′(R(o, s′)) = µ0(s′) +
∑
s∈Su

∑
a∈A(s)

p(s′|s, a)
∑

ρ∈R(ε,s)

Pσ′(ρ)σ′(ρ)(a)

and a reasoning similar as above yields the result.

For the induction step, we first need to prove the property for (w, s′) with s′ ∈ Su,
assuming it holds for all (w, s) with s ∈ So and for all (w, s) with s ∈ Su and η(s) < η(s′).
Then we have:

Pσ′(R(w, s′)) =
∑
s∈So

s∈Su,η(s)<η(s′)

∑
a∈A(s)

p(s′|s, a)
∑

ρ∈R(w,s)

Pσ′(ρ)σ′(ρ)(a)

and we can conclude along the same lines as above.
Finally, we consider (w′, s′) with w′ = wo ∈ Σ∗Σo and s ∈ So, with:

Pσ′(R(w′, s′)) =
∑
s∈S

∑
a∈A(s)

p(s′|s, a)
∑

ρ∈R(w,s)

Pσ′(ρ)σ′(ρ)(a)

which again implies the desired result.
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As seen in the previous proof, erasing observations leads to technical and cum-
bersome developments. In order to avoid them in the design of procedures for the
finite-horizon case, we apply the preliminary transformation that ensures the observa-
tion is non-erasing described in the next proposition. We precisely state the size of the
obtained OMDP in view of complexity results.

Proposition 7.2. Given an OMDP M = (S,Act, p,O), an initial distribution µ0 and a
secret Sec, one can build in exponential time an OMDP M′ = (S′,Act′, p′,O′), an initial
distribution µ′0 and a secret Sec′ where O′ is non-erasing and for disc ∈ {Discmin,Discmax}
disc(M(µ0)) = disc(M′(µ′0)). In addition, the size of S′, p′ and µ′0 is polynomial w.r.t.
the ones of S, p and µ0. The size of Act′ is polynomial w.r.t. the size of Act and
exponential w.r.t. the size of S.

The main idea of the construction is that every time a run visits an observable
state, an observation-based strategy can fix a set of action for the current state and
for every unobservable state. It will then keep this choice until the run visits a new
observable state. Once such a set of actions is fixed, one can easily compute the proba-
bility distribution to reach the next observable state. Unobservable states can thus be
removed from the system. We also add a new state to deal with the possibility that an
unobservable state had a positive probability in the initial distribution.

Proof. We first build the new OMDP and then explain the correspondence between
strategies in both models, which induces the relationship between disclosures.
Construction of the OMDP. We start from OMDP M = (S,Act, p,O) with Act =
∪s∈SA(s), observation alphabet Σ, and a set of secret states Sec ⊆ S. Choosing a fresh
observation symbol ] and a fresh state s], we build an OMDP M′ = (S′,Act′, p′,O′)
with set of states S′ = {s]} ∪ (S \ O−1(ε)), and observation alphabet Σ ∪ {]}, where
the initial distribution is 1s] . The observation function O′ is defined by O′(s]) = ] and
O′(s) = O(s) otherwise. Note that all states have non-trivial observation. The set of
actions of M′ is Act′ = DR where DR is the set of vectors of deterministic decision rules
~δ over S, i.e. such that ~δ(s) ∈ A(s). The intuition of DR is that the actions associated
with the current state and any unobservable state by the strategy after an observation
is fixed until the next observable state, so we can gather this set of action into a single
action.

We now define the transition probabilities, starting by the transitions exiting s].
For a run ρ = s0a1 . . . ansn, we write π(ρ) =

∏n
i=1 p(si|si−1, ai) and first(ρ) = s0.

Given an observable state s ∈ S and ~δ ∈ DR, the set Ê(s], ~δ, s) contains the finite runs
ρ = s0a1s1 . . . ansn starting from some s0 ∈ Supp(µ0) and ending in sn = s such that
ai = ~δ(si−1) for all i, 1 ≤ i ≤ n and all states s0, . . . , sn−1 are unobservable. Observe
that the intermediary states are all distinct due to the convergence of the OMDP. We set
p′(s | s], ~δ) =

∑
ρ∈Ê(s],~δ,s)

µ0(first(ρ))π(ρ). If s ∈ Supp(µ0), the set Ê(s], ~δ, s) contains
the run reduced to ρ = s.

We turn to the transitions exiting the other states. It is easier as we do not need
to take the initial distribution into account. Given a state s 6= s], an action ~δ ∈ DR

and an observable state s′, we consider the finite set Ê(s, ~δ, s′) of signalling runs of
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M ρ = s0a1 . . . ansn starting in s0 = s and ending in sn = s′ such that for each
i, 1 < i ≤ n, ai = ~δ(si−1), and all intermediate states are unobservable. We set
p′(s′|s, ~δ) =

∑
ρ∈Ê(s,~δ,s′) π(ρ). Note that Ê(s, ~δ, s′) may include runs like ρ = s ~δ(s)s′.

In order to efficiently compute the transition function of some ~δ, one uses a topo-
logical sort of the unobservable states thanks to the convergence hypothesis, and then
compute the probability from observable states to reach first the unobservable states
topologically sorted and then the observable states. This gives a polynomial time com-
putation of the transition function of ~δ. Thus, the size of S′, p′ and µ′0 is polynomial
w.r.t. the ones of S, p and µ0. Moreover, the size of Act′ is polynomial w.r.t. the size
of Act and exponential w.r.t. the size of S.
Correspondence between strategies. The above construction ensures that any run
ρ′ = s]~δ1s1 . . . ~δksk of M′ corresponds to the set of runs ρ = ρ1s1, . . . ρksk of M containing
the sequence s1 . . . sk of observable states, with ρ1 ∈ Ê(s], ~δ1, s1) and ρi ∈ Ê(si−1, ~δi, si)
for 1 < i ≤ k. All runs in the set have the same observation w = O(s1) . . .O(sk) with
O′(ρ′) = ]w.

To show that disclosure over finite horizon is the same in both OMDP, we establish
correspondences between the strategies of M and M′ and the associated disclosure value.
From Proposition 7.1, we can restrict to observation-based strategies.
• Let σ′ be an observation-based strategy of M′, defined on ]Σ∗ × S′. Given an obser-
vation w ∈ Σ∗ there exists ~δ such that for every state s ∈ S′, we have σ′(]w, s) = ~δ. We
define σ(w, s) = ~δ(s). Then, writing Pσ (resp. Pσ′) instead of PMσ(µ0) (resp. PM′

σ′ (µ
′
0)),

and defining for w ∈ Σ∗ and s ∈ S \ O−1(ε), R(w, s) = {ρ ∈ SRMσ(µ0) | O(ρ) =

w ∧ last(ρ) = s} and R′(w, s) = {ρ′ ∈ SRM′
σ′ (µ

′
0) | O(ρ′) = ]w ∧ last(ρ′) = s}, we have

Pσ(R(w, s)) = Pσ′(R′(w, s)).
• Conversely, given an observation-based strategy σ of M, we build an observation-
based strategy σ′ of M′ as follows: Given w ∈ Σ∗, we define the mapping σ′(]w) : S →
Dist(DR) by σ′(]w)(s) = σ(w, s) for any s ∈ S. Then, using the same notations as
above, we have Pσ(R(w, s)) = Pσ′(R′(w, s)).

Therefore, defining the set of secret states of S′ by Sec′ = Sec ∩ S′, as the set of
secret states is absorbing, the disclosures over finite horizon are equal for σ and σ′.

Thus for finite horizon, one can restrict oneself to non-erasing observation functions
with some care on the complexity of the actions. Also, on fixed horizon, we assume
the observation function is non-erasing. Thus in both cases we are able to use this
assumption.

2 Maximisation with finite horizon

We start the study of the disclosure problem with the maximisation objective over finite
horizon. In other words, here the strategy tries to maximise the disclosure of the secret
after an arbitrarily long, yet finite, amount of time.

In Subsection 2.1, we show how to restrict the study to deterministic strategies
without loss of generalities. We show that most of the notions are unfortunately un-
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decidable in Subsection 2.2, and prove the decidability of the almost-sure disclosure in
Subsection 2.3.

2.1 Deterministic strategies are sufficient

We showed in Proposition 7.1 that one can limit oneself to observation-based strategies.
In fact, for maximisation problems, one can do even better. Indeed, the additional
power given by randomisation is not useful and thus observation-based deterministic
strategies are sufficient.

Proposition 7.3. Given an OMDP M, a secret Sec and a disclosure notion disc ∈
{Disc,Discn,Discεn}, for any observation-based strategy σ there exists a deterministic
observation-based strategy σ′ such that disc(Mσ(µ0)) ≤ disc(Mσ′(µ0)).

This proof strongly uses Lemma 1 of [CDGH10] (or alternatively [GS14]) which
establishes, in an active stochastic setting, that deterministic strategies are sufficient to
optimise an objective defined by a set of infinite runs. This Lemma does not directly
give the result we want as, contrary to the objectives used in their paper, the choice
of the strategy modifies which runs are disclosing. However, as a disclosing run for a
randomised strategy is also a disclosing run for a deterministic strategy that does not
introduce new runs, we can use parts of their proof to show our result.

Proof. In the proof of Lemma 1 of [CDGH10], the authors show that a randomised
observation-based strategy can be seen as a convex combination of a family of deter-
ministic observation-based strategy. As a consequence, in our framework, given an
observation-based strategy σ and a disclosure notion disc, there exists an observation-
based deterministic strategy σdet such that for every finite run ρ, Supp(σdet(ρ)) ⊆
Supp(σ(ρ)) and PMσdet

(µ0)(Vσ(µ0)) ≥ PMσ(µ0)(Vσ(µ0)).
The second property is not enough to conclude, as a disclosing run under σ is not

necessarily a disclosing run under σ′. However, thanks to the first property we can
obtain that Vσ(µ0) ∩ΩMσdet

(µ0) ⊆ Vσdet(µ0). Indeed, as σ is more permissive than σdet,
ΩMσdet(µ0) ⊆ ΩMσ(µ0). This implies that, given a run ρ, if O(ρ) discloses the secret
with the strategy σ then either O(ρ) discloses the secret with the strategy σdet or O(ρ)
cannot be observed with σdet.

This implies: Pσdet(Vσ(µ0)) = Pσdet(Vσ(µ0) ∩ ΩMσdet
(µ0)) ≤ Pσdet(µ0)(Vσdet(µ0)).

Therefore, disc(Mσdet(µ0)) = Pσdet(Vσdet(µ0)) ≥ Pσdet(Vσ(µ0)) ≥ Pσ(Vσ(µ0)) and
the result holds since Pσ(Vσ(µ0)) = disc(Mσ(µ0)).

Observe that this proof shows that the restriction to deterministic strategy does not
decrease the disclosure. However, it does not necessarily keep the same disclosure as
before contrary to the proof used to restrict to observation-based strategies. Therefore
it cannot be applied for minimisation problems.
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2.2 Undecidability of the disclosure and limit-sure disclosure prob-
lems

As mentioned in the previous proof, one of the difficulties of opacity is that the set of
disclosing runs depends on the strategy: a transition can be completely blocked by some
strategy, modifying the set of disclosing observations. This was illustrated in Figure 7.5,
where choosing action a in state q0 removes the edge to q0. This situation was excluded
in the computation of the disclosure presented in [BKMS16, BKMS18] where the authors
study a restricted form of Interval Markov Chains [JL91]. The disclosure problem for
the general class of OMDP was left open. We answer negatively to the general problem
by proving undecidability of the disclosure problem, hence the disclosure cannot be
computed in general. Undecidability also holds for limit-sure disclosure.

Writing I for the set of intervals in [0, 1], an interval Markov chain (IMC) over
an alphabet Σ is a tuple M = (S, sinit, I,O) where S is the set of states, sinit is the
initial state, I : S → IS associates with every state s ∈ S a mapping from S to I, and
O : S → Σ ∪ {ε} is the observation function. We abuse notations by writing µ ∈ I(s)
to denote any distribution µ : S → [0, 1] such that for all s′ ∈ S, µ(s′) ∈ I(s′ | s).
The notion of run ρ is the same as for an OMC but a transition from s = last(ρ) to
some successor requires the choice of a distribution µ ∈ I(s). A strategy of IMC M
is thus a mapping σ associating with each finite run ρ with s = last(ρ) a distribution
σ(ρ) ∈ I(s). In other words, an IMC is a OMDP where the chosen action represents a
set of probabilities satisfying the interval conditions set by I and summing to 1. In fact,
an IMC can be transformed into an (exponentially larger) OMDP where actions are the
basic feasible solutions of the linear program specified by the constraints associated with
intervals [SVA06, CSH08]. Thus undecidability results for IMC also hold for OMDP.

Example 7.6. Consider the IMC of Figure 7.7. From the initial state, the strategy
must attach a probability p1 ∈ [0, 1

2 ] to the transition to s1 and a probability p2 ∈ [1
4 , 1]

to the transition to s2. As, in order to obtain a distribution, we require that p1 +p2 = 1,
p2 is de facto restricted to the interval [1

2 , 1]. If p1 = 1
4 is selected, then p2 = 3

4 and the
run has a probability p1 to move to s1 and p2 to move to s2. In these two states, the
only exiting transition is labelled by the interval {1} which we simplified by removing
the braces in the figure. Thus, the run then loops indefinitely on the state.

s0

o1

s1

o1

s2

o2

[0, 1
2 ][1

4 , 1]
1 1

Figure 7.7: Example of IMC.

Theorem 7.2. The maximal finite-horizon disclosure problem is undecidable for OMDP,
even when the secret is reached with probability 1 and for a non-erasing observation func-
tion.
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The maximal finite-horizon disclosure problem when restricted to finite-memory strate-
gies is undecidable (even with the same additional assumptions).

Starting from a PA A, we build an IMC MA = (S, s0, I,O) such that there exists
a word w ∈ {a, b}∗ with PFA(w) > 1

2 if and only if Discmax(MA) > 1
4 . The proof of

Theorem 7.2 is more involved than the proof of Theorem 7.1 because the strategies
must be taken into account. The goal is to have the strategy choose a single word then
"plays" it in the IMC and the probability to disclose the secret is half of the probability
of the selected word. However, just with this, nothing would prevent the strategy to
switch words during the run if it realises that the current run will not disclose the secret.
We add a second component that ensures that if the strategy deviated from the single
selected word the current run will not disclose the secret. Doing so, the strategy loses
the advantage of knowing the current state of the run.

Proof. We first give the construction in two steps. The first step is very similar to what
was done in the proof of Theorem 7.1. Starting from a PA A = (Q, q0, {a, b}, T, F )
that is supposed complete, we build an IMC Â = (Q̂, q0, Î, Ô) where Σ = {a, b} is the
observation alphabet. The set of states is Q̂ = Q∪{qc | q ∈ Q∧ c ∈ {a, b}}, with initial
state q0. The observation function Ô is defined by Ô(q) = ε and Ô(qc) = c for q ∈ Q
and c ∈ {a, b}. The interval mapping Î : Q̂→ IQ̂ is defined for q, q′ ∈ Q and c ∈ {a, b}
by:

• Î(q′ | qc) = T (q′ | q, c) is a point interval;

• Î(qc | q) = [0, 1].

Compared to the illustration given in Figure 7.3, this construction amounts to replacing
all [ by ε (making the states non observable) and the probabilities 1

4 from original states
to new ones by the interval [0, 1].

However, the construction of the complete IMC MA = (S, s0, I,O) from A is more
involved and requires to add a supplementary gadget limiting the power of the strategy.
This is why we first use an observation function which can erase states and explain at
the end how to relax this hypothesis. The construction is illustrated in Figure 7.8 with
some conventions to avoid too many edges, a final state from A (e.g. like qf ) is doubly
circled.

• S = {s0, s1, q
1
] , q

2
] , q[, qs} ∪ Q̂ ∪ {sc | c ∈ {a, b, ]}} ∪ {rc | c ∈ {a, b, ], [}};

• I(s1 | s0) = I(q0 | s0) = 1
2 and the restriction of I to Q̂ is Î. For all c ∈ {1, a, b, ]},

c′ ∈ {a, b, ]}, I(sc′ | sc) = 1
6 and I(rc′ | sc) = [0, 1

4 ], for all c, c′ ∈ {a, b, ], [},
I(rc′ | rc) = 1

5 and I(qs | rc) = 1
5 . For all q ∈ Q \ F , I(q1

] | q) = [0, 1], for all
q ∈ F , I(q2

] | q) = [0, 1], and I(qs | q1
] ) = I(q[ | q2

] ) = I(qs | q[) = I(qs | qs) = 1.

• O extends Ô by: O(s0) = O(s1) = ε, O(q1
] ) = O(q2

] ) = O(qs) = ], O(q[) = [, for
all c ∈ {a, b, ], [},O(rc) = c, and for all c ∈ {a, b, ]},O(sc) = c.
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Figure 7.8: Reduction from the strict emptiness problem of PA to the maximal finite-
horizon disclosure problem. An edge outgoing from a dotted box should be duplicated
to originate from all states in the box and an edge entering a dotted box from a state
s should be duplicated from s to any state in the box. Hence a loop on a dotted box
represents a complete graph inside the box (including self-loops).

Informally, for Sec = {qs}, the upper gadget ensures that for any strategy σ there
is at most one word w ∈ {a, b}∗ such that the observation w][] discloses the secret.
The lower gadget allows one to generate secret runs of observation w][] with half the
probability as the one assigned by the PA to w.

We now formally prove that there exists a word w ∈ {a, b}∗ with PFA(w) > 1
2 if and

only if Discmax(MA) > 1
4 .

First suppose there exists a word w = a1 . . . an ∈ {a, b}∗ accepted with probability
greater than 1

2 in A. We define the strategy σ for a finite run ρ in both parts of MA

(when relevant) as follows:

• In the upper part, assume that ρ ends in a state sc with c ∈ {1, a, b, ]}. If there
exists i < n such that O(ρ) = a1 . . . ai then σ(ρ)(rai+1) = 0, leaving no choice for
the rest of the distribution: In order for the sum of probabilities to be equal to 1
we have for b 6= ai+1, σ(ρ)(rb) = 1

4 . If O(ρ) = w, then σ(ρ)(r]) = 0, which also
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leaves no choice for the rest of the distribution.

• In the bottom part, we can assume that ρ ends in a state q ∈ Q. If there exists
i < n such that O(ρ) = a1 . . . ai then σ(ρ)(qai+1) = 1. Finally, if O(ρ) = w then
σ(ρ)(q2

] ) = 1 if q ∈ F , and σ(ρ)(q1
] ) = 1 otherwise.

At the beginning the system will move with probability 1
2 to Â, where the strategy

ensures that the word w] is observed. This leads to the state q1
] with probability 1

2P
F
A(w)

and thus the next observations belong to []∗ and the runs with observations in w][]+

belong to the secret. On the other hand, the system can also go to s1 with probability
1
2 from where, due to the decisions of the strategy, a run with observation w] ends in s]
(the decisions of the strategy ensure that either the run does not have observation w],
or it could not go in a r state). Moreover, from s], [ cannot be observed. This implies
that w][] is a min-disclosing observation in MA,σ, hence Disc(MA,σ) ≥ 1

2P
F
A(w) > 1

4 .
Since Discmax(MA) = supσ Disc(MA,σ), we can conclude that Discmax(MA) > 1

4 .
Conversely, suppose that the disclosure is strictly greater than 1

4 and let σ be a
strategy such that Disc(MA,σ) > 1

4 . Then, σ must forbid states in {rc | c ∈ {a, b, ]}},
otherwise there would be no disclosing observation since every observation can be sim-
ulated once a state rc is reached. Writing Σ = {a, b, ]}, we inductively define the word
w ∈ Σ

∞ ∪ Σ
∗ by a sequence (wi)i≥0 of non-decreasing prefixes of w:

• We start with w0 = ε;

• Assume wi is built and let ρi be a run ending in state sx for some x ∈ {1, a, b, ]},
with O(ρi) = wi. If σ(ρi)(rc) = 0 for some c ∈ {a, b, ]}, then wi+1 = wic, otherwise
wi+1 = wi.

The set of ambiguous observations (i.e. corresponding to both secret and non-secret
runs) are the ones reaching the set of states {rc | c ∈ {a, b, ], [}}:⋃

wix 6= wi+1

x 6= [

wix(Σ ∪ {[})∗]ω.

Hence, the set of disclosing observations is reduced to either w][]ω, where w is the largest
prefix of w in {a, b}∗ if ] occurs in w, and empty otherwise. Since the disclosure is greater
than 0, we obtain w][] as the single min-disclosing observation with Disc(MA,σ) =
PMA,σ

(w][]). Since PFA(w) ≥ 2.PMA,σ
(w][]), we can conclude that PFA(w) > 1

2 .
The proof can be extended with a non-erasing observation function by replacing

ε with a fresh symbol (like in the proof of Theorem 7.1). This requires to slightly
modify the parts of the IMC corresponding to the sets of states {sc | c ∈ {a, b, ]}} and
{rc | c ∈ {a, b, ]}} in order to ensure alternation of letters from {a, b} and this new
symbol.

The undecidability result holds even when restricted to finite-memory strategy as
the strategy defined in the first direction of the proof only uses finite memory.
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If we could compute the maximal finite-horizon disclosure, we could solve the asso-
ciated decision problem. Thus, as a consequence of the previous theorem, we obtain:

Corollary 7.1. The maximal finite-horizon disclosure of an OMDP cannot be computed.

We now turn to the qualitative disclosure problems, and using a reduction from the
value 1 problem in PA, we also have:

Theorem 7.3. The maximal finite-horizon limit-sure disclosure problem is undecidable
for OMDP.

Proof. The reduction from the value 1 problem for PA done here is similar to the one
of the proof of Theorem 7.2. The difference is that any run initially moving from s0

to s1 (thus moving to the part of the IMC which was used to limit the power of the
strategy) will now almost-surely disclose the secret. More precisely, the construction of
MA depicted in Figure 7.8 for the proof of Theorem 7.2 is slightly modified as follows
(see Figure 7.9): a new state q\ with O(q\) = \ is added in the upper part just before
reaching the secret state qs. In this case, the runs reaching the secret in the upper part
disclose the secret as they end with \]ω.

The disclosure on the bottom part is performed as before. As a consequence, if
a word w is "selected" by the strategy, the finite-horizon disclosure will be equal to
1/2.(1 + PFA(w)). This value can be arbitrarily close to 1 iff A accepts words with
probabilities arbitrarily close to 1, which yields the result.

· · ·

· · ·

=⇒
qs

]

1
1
5

1
5 · · ·

· · ·

q\

\ qs

]

1

1
5

1
5

1

Figure 7.9: Modification of Figure 7.8 for limit disclosure.

2.3 Decidability of the almost-sure disclosure problem

Fortunately the maximal finite-horizon almost-sure disclosure problem is decidable. The
proof relies on results for partially observable MDP (POMDP) described in Defini-
tion 6.8, page 186.

Theorem 7.4. The maximal finite-horizon almost-sure disclosure problem in OMDP is
EXPTIME-complete. Moreover, if the system is almost-surely disclosing, one can build
a belief-based strategy with disclosure 1.

We reduce the almost-sure disclosure problem for maximisation in OMDP to almost-
sure reachability in POMDP. The POMDP we build is exponential in the size of the
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original OMDP and the algorithm to solve almost-sure reachability is exponential in the
size of the POMDP [CDH10]. A naive application of the two successive results would
give a 2-EXPTIME algorithm. However, a finer analysis yields EXPTIME complexity of
our algorithm as these two exponentials do not stack. The hardness is obtained by a
reduction from the safety problem in games with imperfect information that was shown
to be EXPTIME-complete in [BD08]. The reduction for the lower bound is similar to
the one of Theorem 7.2.

Proof. We start by giving the construction of the POMDP, then we show that solving
almost-sure reachability in the POMDP is equivalent to the finite-horizon almost-sure
disclosure problem for maximisation. Finally we prove the hardness.
Construction of the POMDP. We start from an OMDP M = (S,Act, p,O) with
Act = ∪s∈SA(s), observation alphabet Σo, and a set of secret states Sec ⊆ S. Thanks
to Proposition 7.2, we can assume O to be non-erasing (the potentially exponential blow
up of the number of actions does not affect the complexity result as we will see later).
Let µ0 be an initial distribution. We assume w.l.o.g. that µ0 is a Dirac distribution
on some state s0 ∈ S. We build a POMDP M′ = 〈Q, q0,Obs,Act, T 〉 with set of states
Q = S×2S , with q0 = (s0, {s0}) and observation alphabet Σo. The observation function
Obs is defined by Obs((s,B)) = O(s). The set of actions of M′ is Act′ = DR where DR
is the set of vectors of deterministic decision rules ~δ over S. Given a state (s,B) ∈ S′,
an action ~δ ∈ DR and an observable state s′, we have

T ((s,B), ~δ)(s′, B′) =


p(s′|s, ~δ(s)), for B′ = {s′′ | O(s′′) = O(s′)∧

∃ŝ ∈ B, p(s′′|ŝ, ~δ(ŝ)) > 0}
0, otherwise.

Correspondence between strategies. To show that M is almost-surely disclosing
for Sec iff Sec× 2Sec can almost-surely be reached in M′, we establish a correspondence
between the strategies of M and the scheduler of M′. From Proposition 7.3, we can
restrict to deterministic observation-based strategies for M, and from [CDH10], we also
restrict to deterministic schedulers for M′.

In both direction of the equivalence, given a strategy σ and a scheduler τ , we write
Pσ (resp. Pτ ) instead of PMσ(µ0) (resp. PM′(τ)), and define, for w ∈ Σ∗o and s ∈ S,
the sets of finite runs R(w, s) = {ρ finite run of Mσ(µ0) | O(ρ) = w ∧ last(ρ) = s} and
R′(w, s) = {ρ′ finite run of M′(τ) | O(ρ′) = w ∧ last(ρ′) = (s,Bσ

w)}.
• Let τ be a scheduler of M′, defined on Σ∗o. We define σ for any observation w ∈ Σ∗o

and state s ∈ S by σ(w, s) = τ(w)(s,Bσ
w). Note that a τ -compatible run ρ′ of M′

ends in a state (s,B) where B = Bσ
w (the belief w.r.t. σ) if O(ρ′) = w. We have

Pσ(R(w, s)) = Pτ (R′(w, s)).
Now let Reach(Sec × 2Sec) be the set of runs reaching Sec × 2Sec in M′(τ). Then

we claim that Discmax(Mσ(µ0)) = Pτ (Reach(Sec × 2Sec)). Indeed, an observation w
discloses the secret under strategy σ iff all observable states reachable with observed
sequence w belong to the secret, i.e. iff Bσ

w ⊆ Sec. Thus the runs ρ′ in M′ with a
disclosing observation for M are the ones for which last(ρ′) ∈ Sec × 2Sec. Therefore,
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thanks to the earlier remark, we have that the probability of reaching Sec× 2Sec in M′

under strategy τ is also the probability of disclosing Sec in M under strategy σ.
• Conversely, given an observation-based strategy σ of M, we build a scheduler τ

of M′ as follows: we define the mapping τ(w) : Σ∗o → Dist(Act) by τ(w)(s,Bσ
w) =

σ(w, s) for any s ∈ S. With the same reasoning as above, we immediately get that
the probability of reaching Sec × 2Sec in M′ under strategy τ is also the probability of
disclosing Sec in M under strategy σ.

We can conclude that M is almost-surely disclosing if and only if the runs of M′

reach almost-surely the set Sec × 2Sec. Moreover, if M′ almost-surely reaches the set
Sec × 2Sec, we can build a scheduler τ doing so. Using the transformation described
above and the results from [CDH10], we extract from τ a belief-based strategy σ of M
that almost-surely discloses the secret.

Let us argue that the whole algorithm is in EXPTIME. The exponential in the algo-
rithm of [CDH10] comes from a determinisation of the system, which is already done in
our transformation from M to M′, and thus not required a second time. Moreover, the
non-erasing assumption on the observation could have created exponentially many new
actions, which are exactly the ones built by the use of a vector of decision rules in our
construction. Thus the exponentials do not stack.

The hardness is shown with a reduction from safety games with imperfect informa-
tion.

Definition 7.8. A safety game with imperfect information is defined by a tuple G =
(L, `0,Σ,∆, O, F, obs) where

• L is a finite set of locations with initial location `0 ∈ L;

• Σ is a finite alphabet;

• ∆ ⊆ L × Σ × L is the transition relation such that for all ` ∈ L and a ∈ Σ there
exists at least one `′ with (`, a, `′) ∈ ∆;

• O is a finite set of observations, and F ⊆ O are the final observations;

• obs : L→ O is the observation mapping.

A safety game with imperfect information G is a turn-based game played by two
players Control and Environment. It starts in location `0 with Control to play. In the
first round, Control chooses a letter a0 ∈ Σ, then Environment chooses a location `1
such that (`0, a0, `1) ∈ ∆ and Control only observes o1 = obs(`1). The next rounds
are played similarly and Control wins if for all i, oi 6∈ F . The problem of existence
of a winning strategy for Control is EXPTIME-complete [BD08]. We now describe a
reduction from this problem to the almost-sure disclosure problem of OMDP.

The reduction is similar to the one in the proof of Theorem 7.2 except that we
replace the probabilistic automaton by a safety game G = (L, `0,Σ,∆, O, F, obs) with
imperfect information and directly build an OMDP M = (S,Act, p,O) over alphabet
(O ∪ {], [, \}) ∪ Σ× (O ∪ {], [}), with:
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• S = {s0, `0, q
1
] , q

2
] , q[, q

1
s , q

2
s}∪{`c | ` ∈ L, c ∈ Σ×O}∪{sc | c ∈ Σ×(O∪{]})}∪{rc |

c ∈ Σ× (O ∪ {], [})};

• Act = Σ;

• For all a ∈ Σ, o ∈ O, `c ∈ S, `′ ∈ obs−1(o), p(`′a,o | `c, a) > 0 iff (`, a, `′) ∈ ∆. If
` ∈ obs−1(F ) then p(q1

] | `c, a) > 0 and if ` 6∈ obs−1(F ) then p(q2
] | `c, a) > 0. For

all a ∈ Σ, c ∈ {0} ∪ (Σ× (O ∪ {]})), (b′, o′) ∈ Σ× (O ∪ {]}), p(s(b′,o′) | sc, a) > 0
and if b′ 6= a, p(r(b′,o′) | sc, a) > 0. For all c, c′ ∈ Σ × (O ∪ {]}), p(rc′ | rc, a) > 0
and p(q2

s | rc, a) > 0. For all a, a′ ∈ Σ, p(q1
s | q1

] , a) = p(q[ | q2
] , a) = p(q1

s | q[, a) =

p(q1
s | q1

s , a) = p(q2
s | q2

s , a) = 1.

• O(s0) = O(`0) = obs(`0); For z ∈ L, s, r, a ∈ Σ, o ∈ O, O(za,o) = (a, o); For
o ∈ {], [}, O(za,o) = o, and O(q1

] ) = O(q2
] ) = ] = O(q1

s), O(q[) = [, O(q2
s) = \.

The initial distribution is µ0(s0) = 1/2 = µ0(`0) and the secret is Sec = {q1
s , q

2
s}.

This proof being similar to the one of Theorem 7.2, we only detail here the differ-
ences. A run starting in s0 will almost surely trigger a \ and disclose the secret. A run
starting in `0 will almost surely reach q1

s as after any action in the copy of G there is a
positive probability to reach q1

] or q2
] . In order for a finite run starting in `0 to disclose

the secret, it cannot go through q1
] and should not share its observed sequence with a

run ending in a state rc. Given a strategy σ of M, if there exists a σ-compatible run
ρ visiting a state `c with an observation O(`c) ∈ Σ × F , then there is a σ-compatible
path ρ′ visiting q1

] , therefore a set of runs with positive probability do not visit the
secret. Thus a deterministic strategy almost surely disclosing the secret in M never
visits a state triggering an observation of the form Σ × F . Moreover such a strategy
does not take the current state into account. Indeed, let ρ and ρ′ be two runs such that
O(ρ) = O(ρ′) and ending in two states `c and sc. If σ(ρ) = a and σ(ρ′) = a′ are two
actions in Σ with a 6= a′ then there exists o ∈ O such that ρa`a,o is a σ-compatible
run. Since a 6= a′, ρ′ara,o is also a σ-compatible run with same observation than ρa`a,o.
Hence no observation prefixed by O(ρa`a,o) would disclose the secret.

Therefore, similarly as in Theorem 7.2, Control has a winning strategy iff there
exists a deterministic strategy considering only the observed sequence that almost-surely
discloses the secret. This implies EXPTIME-hardness of the maximal finite-horizon
almost-sure disclosure problem.

In this section on the maximisation of the disclosure over finite horizon, we saw
that although we could restrict ourselves to deterministic strategies, most of the finite-
horizon problems are very complicated (all but one are undecidable).

3 Minimisation with finite horizon

We now turn to minimisation over finite horizon where strategies try to hide the secret
from an observer, and thus to minimise the disclosure.
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This section shows a surprising result. Indeed, in Subsection 3.1 we show that
for minimisation we cannot assume strategies to be deterministic any more, thus the
problem seems more complex. However, the disclosure value can be computed as we
establish in Subsection 3.2.

3.1 Deterministic strategies are not enough

After the proof of Proposition 7.3, we remarked that the proof showed that deterministic
strategies do not decrease the disclosure, thus the proof could only work for maximi-
sation. In fact, the result itself is limited to maximisation as randomisation may be
necessary to minimise the disclosure. Let us see that on an example. Consider the
OMDP depicted in Figure 7.10 with Sec = {q2, q3}. There are two deterministic strate-
gies, choosing respectively a or b in q0. In both cases, the disclosure is 1

2 . On the other
hand, for randomized strategies σp such that σp(q0) = pa + (1 − p)b with 0 < p < 1,
there are no disclosing observations, hence the disclosure is 0.

o0

q0

o1

q1

o2

q2

o1

q3

o2

q4

a, 1
2

a, 1
2

b, 1
2

b, 1
2

a, 1

a, 1b, 1

b, 1

Figure 7.10: With Sec = {q2, q3}, deterministic strategies are not sufficient for minimi-
sation.

While we cannot restrict ourselves to deterministic strategies, we still use in the
decision procedures a restricted class of strategies. These strategies are called families
of almost-deterministic strategies and are based on ε-decision rules.

Definition 7.9. Let δ be the deterministic decision rule for state s selecting action
a ∈ A(s). Then, for ε > 0, the ε-decision rule δε ∈ Dist(A(s)) is defined by:

1. If |A(s)| > 1 then δε(a) = 1− ε and for all b ∈ A(s) \ {a}, δε(b) = ε
|A(s)|−1 ;

2. Else δε = 1a.

δε is said to favour a.

ε-decision rules are used to define approximations of deterministic strategies.

Definition 7.10. Let σ be an observation-based deterministic strategy. Then {σε}ε>0

is a family of observation-based almost-deterministic strategies defined for any state s
and w ∈ Σn by: σε(w, s) = σ(w, s)2−nε.
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In other words, given a strategy σ we define a family of strategies that have an
increasingly high probability to play like σ as the run goes on, yet always allow the other
actions with positive probability. We will see that strategies of this form are dominant
in the sense that they are sufficient to compute the disclosure value. However, if there
exists a strategy that minimises the disclosure, this strategy does not always belong to
a family of almost-deterministic strategy.

3.2 The minimal disclosure value is computable

Using Proposition 7.2, we assume in the following that the observation function we
consider is non-erasing. The complexity of the transformation does not affect the re-
sults since the polynomial complexity in the number of actions is dominated by the
exponential complexity in the number of states.

In order to compute the minimal disclosure value, we build from an OMDP M,
another OMDP Mmin which is a “correct abstraction” (as is stated by Proposition 7.4)
for reducing minimal disclosure problems to minimal reachability problems. Intuitively,
in Mmin, the states are enlarged by the maximal belief that can occur independently of
the action that has been selected.

Given a set of potential current states B and a new observation o, we define the
maximal set of potential next states NextMax(B, o) over decision rules applied to B by:

NextMax(B, o) = {s′ ∈ O−1(o) | ∃s ∈ B ∃a ∈ A(s) p(s′|s, a) > 0}.

NextMax is intuitively the belief obtained with a strategy allocating some probabilities
to every action. Observe that given a family of almost deterministic strategies {σε} and
a run ρas of M with O(s) = o, one has for all ε > 0, Bσε

ρas = NextMax(Bσε
ρ , o). Then

Mmin is formally defined as follows:

• Smin, the set of states, is defined by: Smin = {(s,B) | s ∈ B ⊆ O−1(O(s))};

• for every (s,B) ∈ Smin, A(s,B) = A(s);

• for every (s,B), (s′, B′) ∈ Smin,

p((s′, B′)|(s,B), a) =

{
p(s′|s, a) if B′ = NextMax(B,O(s′)),

0 otherwise;

• for every (s,B) ∈ Smin, O(s,B) = O(s).

Given µ0 an initial distribution over S, the associated initial distribution µmin over Smin

is defined by µmin(s,Supp(µ0)∩O−1(O(s))) = µ0(s) and µmin(s,B) = 0 for all other B.
We define the subset Avoid(Sec) ⊆ Smin by Avoid(Sec) = {(s,B)|B ⊆ Sec}.

Proposition 7.4. The minimal disclosure value for Sec in M(µ0) is equal to the minimal
probability to reach Avoid(Sec) in Mmin(µmin). Furthermore it is asymptotically reached
by a family of belief-based almost deterministic strategies.
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We show this result in two steps. First we show that, using families of belief-based
almost-deterministic strategies, one can obtain a disclosure value in M arbitrarily close
to the minimal reachability probability in Mmin. This ensures that the disclosure value
is below this probability. Second, we show that the disclosure obtained by an arbitrary
strategy is greater or equal to the probability to reach Avoid(Sec).

Proof. We know that the minimal reachability probability for Avoid(Sec) in Mmin(µmin)
is obtained by a memoryless deterministic strategy σmin that selects some action as,B
in state (s,B) (see e.g. [BK08]). Consider {σε} the family of belief-based almost-
deterministic strategies defined by favouring as,B in state s after a run ρ such that
Bσε
ρ = B. Given a run ρ = s0a0 . . . an−1sn in M(µ0) we inductively define the run

b(ρ) = (s0, S0)a0 . . . an−1(sn, Sn) in Mmin(µmin) by: S0 = Supp(µ0) ∩ O−1(O(s0)) and
Si+1 = NextMax(Si,O(si+1)). Due to the observation given when introducing NextMax,
with strategy σε, the observation of run ρ discloses the secret iff b(ρ) reaches Avoid(Sec).
Consider, under strategy σε, the probability to disclose the secret with runs ρ such that
b(ρ) includes at least once an action not selected by σmin. By construction, at each step
i, the probability of not choosing the action favoured by σε is ε

2i
, hence the probability

of this set of runs is
∑

i≥0(1 − ε)i ε
2i
≤ 2ε. Consider now a finite run s0a0 . . . an−1sn

such that b(ρ) is σmin-compatible. Then the probability of the original run is less than
or equal to the probability of its corresponding run. So we deduce that the minimal
disclosure value of M(µ0) is bounded above by ν+2ε where ν is the minimal reachability
probability for Avoid(Sec) in Mmin(µmin). Since this holds for all ε > 0, we obtain that
the minimal disclosure value of M(µ0) is bounded above by the minimal reachability
probability for Avoid(Sec) in Mmin(µmin).

Conversely consider an arbitrary strategy σ in M(µ0). This strategy may also be applied
in Mmin(µmin) by forgetting the second component of the state, defining a strategy
σ′. For any run s0a0 . . . sn in Mσ(µ0), there is a single run (s0, S0)a0 . . . (sn, Sn) in
Mmin(µmin) under σ′ with the same probability. Given the run s0a0 . . . sn, consider
the successive associated subsets of beliefs according to σ, B0, . . . , Bn. By induction
(and definition of Mmin) it is straightforward to show that Bi ⊆ Si. So s0a0 . . . sn does
not disclose the secret in M under σ implies that (s0, S0) . . . (sn, Sn) does not reach
Avoid(Sec). This entails that the reachability probability of Avoid(Sec) in Mmin(µmin)
under σ′ is less than or equal to the disclosure probability in M(µ0) under σ.

Since minimal reachability probability in OMDP can be computed in polynomial
time(see e.g. [BK08])4 we immediately obtain the first part of the next theorem. We
establish the second part (PSPACE-hardness) in the proof of Theorem 7.8 as the proof
holds also for disclosure over fixed-horizon.

Theorem 7.5. The minimal disclosure value of M(µ0) can be computed in EXPTIME.
The associated decision problem is PSPACE-hard.

4Note that since observations are not useful for this reachability objective, observations could be re-
moved from the OMDP Mmin, yielding a Markov decision process, which is the model studied in [BK08].
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We now turn to the existence of a strategy that achieves the minimal value. As
remarked earlier, we cannot assume such a strategy belongs to an almost-deterministic
family of strategies. We establish that it can be analysed without additional complexity.

Theorem 7.6. The existence of a strategy that achieves the minimal disclosure value
can be decided in EXPTIME. In the positive case, this strategy can be computed in EX-
PTIME.

The main ingredient of the proof is an elimination algorithm that removes iteratively
the beliefs from which no strategy can reach the maximal disclosure. Once al these
beliefs were removed, if the initial belief was not deleted, then there exists a belief-
based strategy minimising the disclosure and this strategy plays in order to stay within
the beliefs kept by the algorithm.

Proof. Let us first introduce multiple notations that are used within the proof. We define
disc∗(M(s,B)) as the minimal disclosure value when starting in M in state s with belief
B. Given some belief B and some decision rule vector ~δ over B we introduce the possible
successors of B when applying ~δ: Next(B,~δ) = {s′ | ∃s ∈ B ∃a ∈ Supp(~δ[s]) p(s′|s, a) >
0} and Next(B,~δ, o) = Next(B,~δ) ∩ O−1(o).

The algorithm simultaneously solves the existence and the synthesis problem.
First, using Proposition 7.4, the algorithm computes for all (s,B) ∈ Smin, disc∗(M(s,B)).
Then it maintains a set Win of beliefs initially set to all beliefs from which it iteratively
eliminates items and stops when no more elimination is possible. Given B ∈ Win, it
looks for a decision rule vector ~δ over B such that:

• for all o ∈ O(Next(B,~δ)), Next(B,~δ, o) ∈Win;

• for all s ∈ B, disc∗(M(s,B)) =
∑
o∈Σ

∑
s′∈O−1(o)

p(s′|s, ~δ[s])disc∗(M(s′,Next(B,~δ, o))).

If such a ~δ does not exist then B is eliminated from Win. In other words, a belief
is eliminated if there does not exist a decision rule that meets the minimal disclosure
value. Each iteration can be performed in polynomial time w.r.t. |Smin| and the number
of iterations is at most |Smin|. Observe that when a belief is eliminated, it should not be
“reached” by a strategy that obtains the minimal disclosure value. So the elimination
is sound.
When the elimination stops, the algorithm answers positively iff for all o ∈ O(Supp(µ0)),
Supp(µ0)∩O−1(o) ∈Win. Thus, by the soundness of the elimination step, if the answer
is negative there is no optimal strategy for minimal disclosure value.
If the answer is positive, let us consider the belief-based strategy σ defined by applying
the decision rules obtained during the last iteration of the algorithm. On the one hand,
under σ when visiting a state s with belief B such that disc∗(M(s,B)) = 0, one never
leaves such kind of pairs of states and beliefs. So the secret is never disclosed, showing
that the disclosure value obtained by σ for such (s,B) is null. Under σ, the disclosure
value of all the other pairs of states and beliefs fulfil the equations of the elimination step.
It is known that the single solution of this system is the vector of minimal reachability
probabilities of Avoid in Mmin(µmin) (see [BK08] for instance) which yields the result.
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4 Fixed-horizon problems

We focus now on fixed-horizon problems for both maximal (Subsection 4.1) and minimal
(Subsection 4.2) disclosure. In both cases, the algorithms and hardness results have
similarities.

4.1 Maximal disclosure

In order to compute the value of the maximal disclosure within a fixed horizon, one
could build the POMDP described in the proof of Theorem 7.4, then use pre-existing
results on POMDPs. This would result in an EXPTIME algorithm, whereas we provide
below an algorithm with a better complexity in PSPACE.

Theorem 7.7. The fixed-horizon maximal value (when the horizon n is described in
unary representation) is computable in PSPACE and the fixed-horizon maximal disclo-
sure problem is PSPACE-complete.

Due to the complexity of the proof, we separate the algorithm computing the value
from the hardness of the decision problem in two separate proofs.

In order to compute the value, we first order the observation alphabet Σ. Then, a
non-deterministic decision procedure operating in PSPACE enumerates every observed
sequence of length n while maintaining the sets of states that were possible after every
prefix of this observation, the actions that were chosen non-deterministically in these
states and values used in the computation of the disclosure. The information kept is of
polynomial size and when every observation has been read, one of the values computed
are exactly the disclosure of the system at time n. This provides an NPSPACE algorithm
which can be turned in to a PSPACE one using Savitch’s Theorem [Sav70]. In order to
get the value we observe that we can compute the polynomially sized denominator of
this value and then we make iterative calls to the decision algorithm.

Proof. We first present a non-deterministic procedure that decides in NPSPACE the
disclosure problem. It can then be determinised using Savitch’s Theorem [Sav70].

From an arbitrarily ordered observation alphabet Σ, the procedure operates as fol-
lows for horizon n:

• It maintains a disclosure value v, a sequence of observations o0 · · · oi with i ≤ n,
a sequence of sets of states B1 · · ·Bi with Bj ⊆ O−1(oj) for all j ≤ i, an action
aj,s ∈ A(s) for all (j, s) with j < i and s ∈ Sj , and for all (j, s) with j ≤ i and
s ∈ Bj the probability pj,s to reach s after the sequence of observations o0 · · · oi;

• Initially v = 0, o0 is the smallest observation in O(Supp(µ0)), where µ0 is the
initial distribution, B0 = Supp(µ0) ∩ O−1(o0) and p0,s = µ0(s) for s ∈ B0;

• If i < n then for all s ∈ Bi, the procedure guesses an action ai,s ∈ A(s). Let
oi+1 be the smallest observation such that there exists a state s ∈ Bi and a state
s′ ∈ O−1(oi+1) with p(s′|s, ai,s) > 0. Then Bi+1 is set to {s′ ∈ O−1(oi+1) | ∃s ∈
Bi p(s

′|s, ai,s) > 0} and for all s′ ∈ Bi+1, pi+1,s′ =
∑

s∈Bi pi,sp(s
′|s, ai,s);
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• If i = n, the procedure examines Bn. If Bn ⊆ Sec then v = v +
∑

s∈Bn pn,s
otherwise v is unchanged. Afterwards it “backtracks” to the greatest 0 < i ≤ n
such that there exists o′i > oi with some s ∈ Bi−1 and a state s′ ∈ O−1(o′i)
with p(s′|s, ai−1,s) > 0. Then Bi and the pi,s′ ’s are updated accordingly and the
procedure carries on. If there is no such i, the procedure returns to i = 0 and
similarly looks for some o′0 > o0, where the initialisation step is again performed
except for the value of v which is unchanged. When the maximal observation
in Σ ∩ O(Supp(µ0)) is handled, the procedure terminates by comparing v to the
threshold.

The correctness of the procedure follows from the fact that there exists an optimal
deterministic strategy where the selection of the action for the current state depends
only on the sequence of observations (and not on the sequence of visited states).

The space complexity of the procedure is in O(n|S|(log(|A|) + nb)) where b is the
maximal number of bits used to represent a transition probability of the OMDP.

Observe now that, since the maximal value is obtained by a deterministic strategy,
one knows a denominator of this value: it is dn where d is the least common multiple of
the denominators of the probabilities occurring in the model. Its bit size is polynomial
w.r.t. the size of the model. So by iteratively solving the disclosure problem for i

dn for
increasing values of i, one computes the maximal value in PSPACE.

As can be seen in the proof, the optimal strategy could be computed when solving
the value problem. However the size of this strategy may be exponential due to the
beliefs and thus this strategy is computable in EXPTIME.

For the hardness result, we reduce the validity of Quantified Boolean Formulae
(QBF). Recall that QBF extends propositional formulas by allowing quantification over
the Boolean variables. Syntactically, the formulae are described by the following gram-
mar:

φ ::= ψ | ∃x.φ | ∀x.φ
ψ ::= x | ψ ∧ ψ | ψ ∨ ψ | ¬ψ | true

A QBF is closed if every Boolean variable is bound by a quantifier. Deciding if a
closed QBF is valid (i.e. equivalent to true) is PSPACE-hard [Sip06].

The idea of the reduction is the following. Given φ a closed QBF (w.l.o.g. in 3CNF
with n variables and m clauses), we build an OMDP M such that φ is true iff the
disclosure of M is greater or equal to 1

22n in 2(n+m) + 3 steps. In fact, 1
22n is exactly

the measure of runs reaching the secret in 2(n+m) + 3 steps, thus every path reaching
the secret must be disclosing. Such a run discloses the secret iff some Boolean variable
of φ and its negation (x and ¬x for example) do not occur in its observation.

In M, during the first 2n steps, an assignment is ‘given’ to each Boolean variable:
(i) for each existentially quantified Boolean variable x, the strategy chooses whether x
or ¬x occurs in the observation and (ii) for each universally quantified Boolean variable
y, by a random choice with probability 1

2 . During the last 2m steps, the strategy must
trigger a Boolean variable in every clause of φ so that if a clause is not satisfied by the
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Figure 7.11: Reduction of the validity problem to the disclosure on a fixed horizon. The
box Sx1 is represented in Figure 7.12.

current assignment, then a Boolean variable is observed as both true and false during
the run. Thus the observation would not disclose the secret.

Proof. We reduce the validity of a quantified Boolean formula: Given a closed QBF in
3CNF φ = ∃x1∀y1∃x2 . . . ∀ynψ with ψ =

∧
i=1...m(zi1 ∨ zi2 ∨ zi3), we build an OMDP M

such that φ is true if and only if Disc2(n+m)+3,max(M) ≥ 1
22n .

The OMDP M = (S,Act, p,O) (depicted in Figure 7.11 with some conventions to
avoid having too many edges) is defined by:

• S = {sinit, send, s]}∪{szi | z ∈ {x, y}, i = 1 . . . n}∪{s¬zi | z ∈ {x, y}, i = 1 . . . n}∪
{sit | i ∈ {1, . . . ,m}} ∪ {s

zij | i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}} ∪i∈{1,...n} (Sxi ∪ Syi ∪
S¬xi ∪S¬yi) where for zi one of the Boolean variable, Szi = {szi,1a | a ∈ {], zi,¬zi |
z ∈ {x, y}, i ∈ {1, . . . , n}}} ∪ {szi,2a | a ∈ {], [, zi,¬zi | z ∈ {x, y}, i ∈ {1, . . . , n}}}.
Similar for the box S¬zi of the negation of a variable.

• A(sinit) = {x1,¬x1}, and for all i < n, A(syi) = A(s¬yi) = {xi+1,¬xi+1}. For
i ∈ {1, . . . ,m}, A(sit) = {1, 2, 3} and A(s) = {next} for all other states (even in
boxes).
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Figure 7.12: Representation of the box Sx1 . We use the convention of Figure 7.8.

• p(sa | sinit, a) = p(sa,1a | sinit, a) = 1/2. For all i < n, p(sa | syi , a) = p(sa,1a |
syi , a) = p(sa | s¬yi , a) = p(sa,1a | s¬yi , a) = 1/2. For all i ≤ n, p(syi |
sxi , next) = p(syi,1yi | sxi , next) = p(s¬yi | sxi , next) = p(s¬yi,1¬yi | sxi , next) =

p(syi | ¬sxi , next) = p(syi,1yi | s¬xi , next) = p(s¬yi | s¬xi , next) = p(s¬yi,1¬yi |
s¬xi , next) = 1/4, and p(s1

t | s], next) = 1. For all i = 1 . . .m, j ∈ {1, 2, 3}, p(szij |
sit, j) = 1, and if i < m, p(si+1

t | szij , next) = 1. Finally, p(send | szmj , next) =
p(send | send, next) = 1.

We now describe p for the box Sx1 other boxes being similar. For all a, b ∈
{], x1, zi,¬zi | z ∈ {x, y}, i ∈ {2, . . . , n}}, p(sx1,1

b | sx1,1
a , next) = p(sx1,2

¬x1 |
sx1,1
a , next) = 1/(4n+1) and for all c, d ∈ {], [, zi,¬zi | z ∈ {x, y}, i ∈ {1, . . . , n}},
p(sx1,2

d | sx1,2
c , next) = 1/(4n+ 2).

• O(send) = [,O(sba) = a and O(sa) = a when a is a Boolean variable or its negation
and for all other state s, O(s) = ].

The initial distribution µ0 is 1sinit and the set of secret states is Sec = {send}.
We show that φ is true iff the disclosure of M for observations of length 2(n+m)+3

is greater than or equal to 1
22n . First observe that for any strategy, the measure of runs

reaching state send with observation of length 2(n+m)+3 is exactly 1
22n . Indeed, during

each of the first 2n actions, whatever the choices of the strategy, there is a probability
1
2 to go in one of the boxes and 1

2 to advance to the next choice, thus a probability
1

22n to reach the state s]. From there every run reaches send in 2(m + 1) steps. If the
strategy is such that some variable and its negation are read on the way to send, then
there exists a run with same observation reaching the second part of a box where every
observation can be triggered, and thus the run reaching send will not disclose the secret.

Intuitively, during the first 2n steps, every Boolean variable is assigned a value:
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either chosen by the strategy as it chooses whether xi or ¬xi occurs in the observation
for all 1 ≤ i ≤ n, or randomly as yi and ¬yi both have equal chance of being triggered.
During the last 2m steps, the strategy must trigger a Boolean variable in every clause
of the disjunction so that if a clause is not satisfied by the current assignment, then a
Boolean variable is observed as both true and false during the run. Thus the observation
would not disclose the secret. In order for a measure of 1

22n of runs to disclose the secret,
for every assignment of the yi the controller must force the run reaching send to disclose
the secret.

Suppose that φ is equivalent to true. Thus there exist functions (fi)i=1...n (expressing
the choices for x1, . . . , xn) such that for every set of assignments (a1, . . . , an) of the vari-
ables y1, . . . , yn the Boolean formula ψ[f1(), a1, f2(a1), . . . , fn(a1, . . . , an−1), an] is true.
We choose a strategy σ such that for every possible set of assignments (a1, . . . , an) for the
variables y1, . . . , yn, for all i ∈ {0, . . . n − 1}, σ(]f1()a1f2(a1) . . . ai) = fi+1(a1, . . . , ai).
Moreover for i1, . . . , ik ∈ {1, 2, 3}, there exists zk+1ik+1

∈ {f1(), a1, f2(a1), . . . , an}
such that σ(]f1()a1f2(a1) . . . an]]z1i1

z2i2
. . . zkik ) = zk+1ik+1

. The choice of the strat-
egy is arbitrary in the other cases. Such a strategy can be defined since the formula
ψ[f1(), a1, f2(a1), . . . , fn(a1, . . . , an−1), an] is true and thus every clause is satisfied by
this choice of assignments.

With this strategy, the fixed-horizon disclosure in 2(n+m+1) steps is 1
22n . In other

words, all the runs reaching the secret disclose it. Indeed let ρ be a secret run of length
2(n + m + 1). There exists an assignment a1, . . . , an ∈ {y1,¬y1, . . . yn,¬yn} such that
O(ρ) = ]f1()a1f2(a1) . . . an]]z1i1

z2i2
. . . zmim [. By choice of σ, if, for z ∈ {x, y} and

i ∈ {1, . . . n}, zi appears in the observation of ρ, ¬zi does not appear, and vice versa.
Therefore as [ can be read either in send or in a state reachable only by runs observing
a Boolean variable and its negation, ρ discloses the secret.

Conversely, suppose that φ is not equivalent to true and let σ be a strategy, which
can be assumed to be deterministic thanks to Proposition 7.3. We build partial functions
fi : Σ2i 7→ Act consistent with σ: for every observation ]w ∈ ]Σ2i of some run ρ, if σ
chooses action a ∈ A(last(ρ)) for ρ (i.e., σ(ρ)(a) = 1) then fi(w) = a. As φ is not
equivalent to true, there exists an assignment (a1, . . . , an) for the variables y1, . . . , yn
such that the Boolean formula ψ[f1(), a1, f2(a1), . . . , fn(a1, . . . , an−1), an] is false. We
now build a run with non null probability, reaching the secret but not disclosing it.

By construction, there exists ρ such that O(ρ) = ]f1()a1f2(a1) . . . fn(a1 . . . an−1)an],
with last(ρ) = s] and Pσ(ρ) > 0 (where again Pσ stands for PMσ(µ0)). Let i ∈ N
be an integer such that the clause zi1 ∨ zi2 ∨ zi3 is not true under the assignment
[f1(), a1, f2(a1), . . . , fn(a1, . . . , an−1), an], in other words such that the negations of
zi1 , zi2 and zi3 were chosen as assignment. Let ρ′ be the run of length 2(n+m) + 2 ex-
tending ρ and ending in send. Then ρ′ does not disclose the secret: indeed, there exists
j ∈ {1, 2, 3} such that zij appears in its last 2m observations while its negation (written
¬zij here) appears in the first 2n + 1 observations. Thus there exists a run with same
observation leading to the second part of the box S¬zij which is outside the secret and
where every observation is possible. As the total measure of runs reaching the secret
is 1

22n and at least a subset of measure Pσ(ρ) of the runs reaching the secret do not
disclose it, the disclosure of M is strictly smaller than 1

22n in 2(n+m) + 3 observation
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steps.

The existence of an optimal strategy in the first part of the proof implies that
the limit-sure and the almost-sure problem are equivalent. Moreover, the secret being
revealed with probability 1 in a given number of steps, every run must reach the secret
in this number of steps. Testing if there exists a strategy such that every run reaches a
set of target states in a given number of steps in an OMDP can be solved in polynomial
time.

Remark 7.1. The proof of hardness can be adapted for maximal fixed-horizon ε-disclosure,
but the algorithm for membership cannot be directly applied. The ε-disclosure could
however be computed by maximising an exponential system of equations, resulting in an
exponential time algorithm.

4.2 Minimal disclosure

The proof of the next theorem is similar to the proof of Theorem 7.7 on the fixed-horizon
maximal disclosure.

The hardness result is obtained once again using a reduction from the validity of a
QBF. Many of the ideas used in the proof of Theorem 7.7 reappears here: the run is still
composed of two parts, in the first one it gives an assignment to the Boolean variables
and in the second one the strategies goes through the clauses of the formula and verify
it can satisfy them. We however give the full proof due to non-negligible differences.
Now the strategy must satisfy every clause of the formula in order for the run not to
disclose the secret.

For the strategy decision problem, contrary to the maximisation case, due to the
randomisation, there does not necessarily exists an optimal strategy. In order to get the
same complexity for the strategy decision problem, we establish that when a randomised
decision rule must be selected in the optimal strategy, it can always be uniformly dis-
tributed over its support.

Theorem 7.8. The fixed-horizon minimal value is computable in PSPACE. The fixed-
horizon minimal disclosure problem is PSPACE-complete. In addition, the strategy de-
cision problem is also decidable in PSPACE.

Proof. The procedures for the first two problems are very similar to the ones used in
Theorem 7.7. There are only two differences. First, given Bi the current belief and oi+1

one computes Bi+1 = NextMax(Bi, oi+1) (independently of the guessed actions ai,s).
Second, the computation procedure operates by decreasing values of i when the value
is less or equal than i

dn .
In order to decide whether a strategy exists that provides the minimal value, one

guesses this strategy in PSPACE as before. However there is an additional difficulty since
the (possible) optimal strategy may be randomised. Thus during the procedure, given
some belief B and some state s, one guesses the support A′ ⊆ As of the decision rule
and one defines the decision rule say δ as a uniform choice over A′. We claim that this
restriction is sound. Assume another decision rule δ′ with same support would provide
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a smaller value. Then, since the support are unchanged, the decision rule informally
described as (1+ε)δ′−εδ for small enough ε would still provide a better value, meaning
that the support A′ cannot be used to find an optimal strategy.
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Figure 7.13: Reduction of the validity problem to the disclosure on a fixed horizon. The
box Sx1 is represented in Figure 7.14

Like for the case of maximisation, the hardness of the fixed-horizon minimal dis-
closure problem is obtained by a reduction from the validity of a quantified Boolean
formula. Let φ = ∃x1∀y1∃x2 . . . ∀ynψ with ψ =

∧
i=1...m(zi1 ∨ zi2 ∨ zi3) a closed QBF

where we assume w.l.o.g. that in every clause the literals are distinct. We build the
OMDP M = (S,Act, p,O) (represented in Figure 7.13) where:

• S = {sinit, send, s]} ∪ {szi | z ∈ {x, y}, i = 1 . . . n} ∪ {s¬zi | z ∈ {x, y}, i =
1 . . . n} ∪ {sit | i ∈ {1, . . . ,m}} ∪ {s

zij | i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}} ∪ {sziend | z ∈
{x, y}, i = 1 . . . n}∪i∈{1,...n} (Sxi∪Syi∪S¬xi∪S¬yi) where for zi one of the Boolean
variable, Szi = {szia | a ∈ {], zi,¬zi | z ∈ {x, y}, i ∈ {1, . . . , n}}} ∪ {s

zi
[ , s

zi
f }.

Similar for the box S¬zi of the negation of a variable.

• A(sinit) = {x1,¬x1}, and for all i < n, A(syi) = A(s¬yi) = {xi+1,¬xi+1}. For
i ∈ {1, . . . ,m}, A(sit) = {1, 2, 3} and for every other state (even in boxes), A(s) =
{next}.
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x1

¬y1y1

¬x2x2

...
...

]

¬x1

[ 1

1
4n+2

1
4n+2

1
4n+2

Figure 7.14: Representation of the box Sx1 (with the conventions of Figure 7.8).

• p(sa | sinit, a) = p(sa,1a | sinit, a) = 1/2. For all i < n, p(sa | syi , a) = p(sa,1a |
syi , a) = p(sa | s¬yi , a) = p(sa,1a | s¬yi , a) = 1/2. For all i ≤ n, p(syi | sxi , next) =

p(syi,1yi | sxi , next) = p(s¬yi | sxi , next) = p(s¬yi,1¬yi | sxi , next) = p(ssyi |¬xi , yi) =

p(syi,1yi | s¬xi , yi) = p(s¬yi | s¬xi , next) = p(s¬yi,1¬yi | s¬xi , next) = 1/4. p(s1
t |

s], next) = 1. For all i = 1 . . .m, j ∈ {1, 2, 3}, p(szij | sit, j) = 1, and if i < m,
p(si+1

t | szij , next) = 1. Finally p(send | szmj , next) = 1, and for all z ∈ {x, y},
i = 1 . . . n, p(sziend | send, next) = 1/(2n).

We now describe p for the box Sx1 other boxes being similar. For all a ∈
{], x1, zi,¬zi | z ∈ {x, y}, i ∈ {2, . . . , n}}, b ∈ {], [, zi,¬zi | z ∈ {x, y}, i ∈
{1, . . . , n}} p(sx1

b | s
x1
a , next) = 1/(4n + 2), and p(sx1

¬x1
| sx1
¬x1

, next) = p(sx1
f |

sx1

[ , next) = p(sx1
f | s

x1
f , next) = 1.

• O(send) = [, O(sba) = a and O(sa) = a when a is a Boolean variable, its negation
or [. For i = 1 . . . n, O(sxiend) = O(sxif ) = O(s¬xif ) = 2i− 1 and O(syiend) = O(syif ) =

O(s¬yif ) = 2i, and for any other state s, O(s) = ].

The initial distribution µ0 is 1sinit and the secret runs are the ones visiting send (Sec =
{send} ∪ {sziend | z ∈ {x, y}, i = 1 . . . n}).

In a similar fashion as what was done in the hardness part of the proof of Propo-
sition 7.7, we show that φ is true iff the disclosure of M is equal to 0 in 2(n + m + 2)
steps. First observe that a run ρ reaching send can be extended for all j ∈ {1, . . . , 2n}
in a run ρj such that O(ρj) = O(ρ)j. Moreover, ρ1 discloses the secret iff x1 and ¬x1

both occur in O(ρ1) (and similarly for the other ρjs). Indeed a run reaching Sx1 or S¬x1

cannot have triggered both observations x1 and ¬x1 and also end with observation 1.
Intuitively, during the first 2n steps, all Boolean variables are be assigned a value:

either chosen by the strategy as it chooses whether xi or ¬xi occurs in the observation
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for each 1 ≤ i ≤ n, or randomly as yi and ¬yi both have half a chance of being triggered.
During the last 2m+1 steps, the strategy must choose a Boolean formula in every clause
so that if a clause is not satisfied by the current assignment, then a Boolean variable is
observed as both true and false during the run. The last step then triggers randomly
the observation j for j ∈ {1, . . . 2n}.

Suppose that φ is equivalent to true. Then there exist functions (fi)i=1...n such
that for every set of assignments (a1, . . . , an) for the variables y1, . . . , yn the Boolean
formula ψ[f1(), a1, f2(a1), . . . , fn(a1, . . . , an−1), an)] is true. We choose a strategy σ
such that for every possible set of assignments (a1, . . . , an) for the variables y1, . . . , yn,
and for all i, 0 ≤ i ≤ n − 1, σ(]f1()a1f2(a1) . . . ai) = fi+1(a1, . . . , ai). Moreover for
k ∈ {1, . . . ,m} and i1, . . . , ik ∈ {1, 2, 3}, there exists zk+1ik+1

∈ {f1(), a1, f2(a1), . . . , an}
such that σ(]f1()a1f2(a1) . . . an]]z1i1

z2i2
. . . zkik ) = zk+1ik+1

. The choice of the strategy
is arbitrary in the other cases. Since ψ[f1(), a1, f2(a1), . . . , fn(a1, . . . , an−1), an)] is true,
every clause is satisfied by this choice of assignments, hence it is possible to define such
a strategy.

With this strategy, the fixed-horizon disclosure in 2(n + m + 2) steps is 0. In
other words, none of the runs reaching the secret discloses it. Indeed let ρ be a secret
run of length 2(n + m + 2), then there exist a1, . . . , an ∈ {y1,¬y1, . . . yn,¬yn} and
j ∈ {1, . . . , 2n} such that O(ρ) = ]f1()a1f2(a1) . . . an]]z1i1

z2i2
. . . zmim [j. By choice of

σ, if, for z ∈ {x, y} and i ∈ {1, . . . n}, zi appears in the observation of ρ, ¬zi does not,
and vice versa. Therefore as [j can be read either from send or in a box state outside
of the secret reachable only by runs that do not observe a Boolean variable and its
negation, ρ does not disclose the secret.

Conversely, suppose that φ is not equivalent to true and let σ be an arbitrary
strategy. We first build a deterministic strategy σ′ with smaller or equal disclosure.
The first choice concerns {x1,¬x1} and the next observation in a run corresponds to
that choice. Consider σ1 (resp. σ′1) the strategy that selects x1 (resp. ¬x1) and then
plays like σ. Due to the fact that observations are distinct, the disclosure value w.r.t. σ
is a convex combination of the ones of σ1 and σ′1. So one substitutes σ by the one with
smaller or equal disclosure. A similar pattern applies for every choice until reaching the
horizon. Thus by iterating this transformation we obtain a deterministic strategy. So
we assume now that σ is deterministic. Since there is a finite number of such strategies
for fixed horizon, it only remains to prove that the disclosure value under σ is positive.
We build partial functions fi : Σ2i 7→ Act consistent with σ: for every observation
]w ∈ ]Σ2i of some run ρ, if σ chooses action a ∈ A(last(ρ)) for ρ, then we set fi(w) = a.
As φ is not equivalent to true, there exists an assignment (a1, . . . , an) for the variables
y1, . . . , yn such that the Boolean formula ψ[f1(), a1, f2(a1), . . . , fn(a1, . . . , an−1, an)] is
false.

We now build a run disclosing the secret. By construction, there exists ρ such that
O(ρ) = ]f1()a1f2(a1) . . . fn(a1 . . . an−1)an], leading to last(ρ) = s] with Pσ(ρ) > 0. Let
i ∈ {1, . . . ,m} such that the negations of zi1 , zi2 and zi3 were chosen as assignment hence
zi1∨zi2∨zi3 is not true under the assignment [f1(), a1, f2(a1), . . . , fn(a1, . . . , an−1), an)].
Let ρ′ be a run of length 2(n + m) + 3 extending ρ and ending in send. Then ρ′ does
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not disclose the secret because there exists j ∈ {1, 2, 3} such that zij appears in the
previous 2m observations while its negation (written ¬zij here) appears in the first
2n+1 observations. Let ρ′′ of length 2(n+m+2) extending ρ′ by ending in s

zij
end. There

is no other run with the same observation and ρ′′ is a secret run, thus ρ′′ discloses the
secret. Therefore the disclosure of M is positive.

Observe that this reduction also works for finite horizon since no further disclosure
may occur after the first occurrence of a state in {sx1

end, . . . , s
xn
end, s

y1

end, . . . , s
yn
end}.

Contrary to the case of maximisation, the above proof implies PSPACE-completeness
for the limit-sure and almost-sure problem for disclosure minimisation.

Remark 7.2. As for maximisation, the proof of hardness can be adapted for ε-disclosure
and the algorithm for membership cannot be directly applied. The minimal fixed hori-
zon ε-disclosure could however be computed by minimising an exponential system of
equations, resulting in an exponential time algorithm.

5 Conclusion

To our knowledge, the opacity of probabilistic systems had only been studied in order
to maximise the disclosure of the system. Moreover, these studies always restricted the
framework so that the strategy that is chosen does not modify if an observed sequence
is disclosing or not, leaving the general case open. In the context of the previous
studies, only maximisation was considered, which is understandable as maximisation
and minimisation of disclosure are similar: they both consists in the optimisation of
a fixed event. We, however, focused on the general case, both for maximisation, and
for minimisation. In our framework, maximisation and minimisation present a strong
asymmetry. Indeed, when considering finite horizon, most maximisation problems are
undecidable although deterministic strategies are optimal. In contrast, minimisations
problems are decidable, but good strategies often require randomisation. Note that
a complexity gap (PSPACE-hard versus in EXPTIME) remains to fill for the finite-
horizon minimisation problem. For fixed horizon, there is still an asymmetry between
maximisation and minimisation that clearly appears in some parts of the proofs. But
it is not as strong as in finite horizon and algorithms with good complexities can be
obtained for both.

Although we used a variant of Markov decision processes enriched with observation)
to represent our models, opacity is not an usual MDP problem. Indeed, opacity is an
hyper property as the disclosure depends on a set of paths linked by their observation.
This gives a partial observation flavour to opacity. Opacity as seen here is therefore
a problem in between OMDP and POMDP. For this kind of problems, as seen in this
chapter, it is important to determine whether the problem can be translated to an
MDP or a POMDP problem in order to use the results known on these models. Here,
maximisation of the disclosure was closer to POMDP problems while minimisation was
closer to OMDP problems.
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A promising research direction to consider is the approximate notion of opacity. It
is the most natural notion of opacity. Indeed, if an attacker knows there is a 99% chance
to be in the secret, the secret could be considered to be disclosed. As we have shown in
Section 1, the most naive definition of approximate opacity is undecidable even with-
out control. For diagnosability, we showed in Chapter 4 that AFF-diagnosability, an
elaborate notion of approximate diagnosability was decidable for passive systems. A
natural question is thus to determine if we can define a similar notion of opacity. A
notion that would measure the set of infinite secret runs which disclose with arbitrarily
high probability the secret for example. As it is close to AFF-diagnosability, we con-
jecture that it should be decidable for observable Markov chains. However, in active
system, the finite-horizon maximisation/minimisation disclosure problem are likely to
be undecidable.



Chapter 8

Conclusion

Contributions

This thesis constitutes part of the work towards a theoretical analysis of partial obser-
vation problems in a stochastic framework. More specifically it focused on the problem
of diagnosis. Diagnosis had already been studied for stochastic systems [TT05, CK13,
BFH+14], however the definitions used varied and many central issues had been left
open. The first step to set solid foundations for the analysis of diagnosis in probabilis-
tic systems was thus to define precise and realistic notions of diagnosis which would
encompass the ones already established. This was done in Chapter 2. Before focus-
ing on any specific framework, we performed in Chapter 3 a semantical analysis of the
different notions of diagnosability. While some intuitions on the relations between the
notions could be obtained directly from the definitions, the analysis allowed, among
other things, to establish formally these links, with a few surprises due mostly to the
distinction between finite systems, finitely-branching systems and infinitely-branching
systems.

We then turned to multiple specific frameworks and developed methods to decide
diagnosability with optimal complexity. First, we focused on passive systems. More-
over, in Chapter 4, we restricted ourselves to finite systems. This important restriction
pushed us to make once again some semantical analysis in order to obtain refined re-
sults exploiting the finite number of states. This gave us precise characterisations of
the decidable notions of diagnosis, allowing us to establish the exact complexities of
the problems. We also showed how to automatically build diagnosers associated with
each notion of diagnosability. In Chapter 5, we extended our analysis to infinite-state
systems. This immediately raised one important issue that we did not have for finite
systems: how to represent such systems. In consequence, we studied several possible
representations, one of which yielded multiple decidability results. These decidability
results were obtained in large part thanks to the analysis made in Chapter 3. This
emphasizes the importance of a good understanding of a notion and how to characterise
it as a preamble to study the problem.

We then considered active systems. As for stochastic infinite systems, many different
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frameworks may be studied. But contrary to stochastic infinite systems, diagnosis had
already been studied for stochastic active systems [BFH+14], providing a framework
our developments. The latter revealed an issue with the control of a system: ensur-
ing diagnosability could be at the expense of the correct performance of the system.
We studied in Chapter 6 how to limit the degradation of the system while preserving
diagnosability. More precisely, we defined notions of the degradation of a system and
showed the decidability and precise complexity for some of them, and established the
undecidability of the others.

In the last chapter, Chapter 7, we switched our focus to opacity, another partial
observation problem. In active systems, we showed how, when possible, one could
develop strategies maximising or minimising the opacity of a system. The main element
that made this analysis successful is the understanding of the forms that the optimal
strategies would take.

Our contributions, while providing a good foundation for the diagnosis of proba-
bilistic systems and many interesting results, are far from giving the whole picture. In
the next section we provide a list of remaining open questions and research directions
extending the thesis.

Perspectives

The current thesis opens quite a few perspectives, some of which were already given
in each chapter conclusion and are partially repeated here. We classify these ideas
depending on whether they are short-term, mid-term or long-term objectives. This
decomposition represents how direct the link between the current work and the per-
spective is. We start with the short-term perspectives, i.e. the problems immediately
raised by the works presented here.

• The most immediate perspectives are the ones given by the gaps within our results:
notions for which we could not establish the decidability status, complexities that
are not tight, etc. For example, the algorithms given to decide the exact notions
of diagnosability in probabilistic visibly pushdown automata are in EXPSPACE
while the proven lower bound is only EXPTIME. Another open question is the
exact complexity of computing the minimal disclosure of the opacity (PSPACE
lower bound versus EXPTIME upper bound). The main open question however
is the decidability status of the FA-diagnosability in pVPA. We showed that this
notion was harder than the other notion of exact diagnosability by studying its
membership in the Borel hierarchy, but could not give an algorithm nor an unde-
cidability proof. We conjecture that this notion is decidable and, in fact, with an
algorithm of the same complexity than the other. Indeed, the proofs of the the
non-expressivity results that limited the study of FA-diagnosability uses systems
that cannot be expressed by pVPA. There could exists a pathL formula that would
characterise FA-diagnosability when restricted to pVPA. An ongoing work seems
to confirm this to be true.
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• Another immediate perspective is raised by the introduction of the pathL logic.
It was used in Chapter 5 in order to decide some notions of exact diagnosability.
This logic may be useful for example to test properties such as the uniformity of
the speed of diagnosis, the boundedness of the mean detection time of a fault (or
mean time before an information about the correctness of a run), etc. Moreover,
if the pathL logic cannot be used directly, one could define an enriched version of
this notion with greater expressive power. This enriched version must be carefully
designed so that the generated formulae can be checked.

• The last immediate perspective relates to the active framework. Whether it be
for diagnosis or opacity, we only focused on exact notions. It would be natural to
tackle the, usually harder, approximate notions. This is in fact an ongoing work.
The current results seem to point toward decidability for AFF-diagnosability in
active systems while similar approximate notions are undecidable for opacity, both
for maximisation and minimisation.

We now turn to mid-term perspectives. They correspond to problems that are
strongly connected to this thesis, while not being immediate.

• In our active framework, the observations are clearly given by the model. This
represents in reality sensors within the system. Using a sensor has a cost. There-
fore, instead of having fixed sensors, one could have a list of potential sensors
associated with costs. The goal would then be to obtain diagnosability while
minimising the cost. A cost could also be given to having the sensor turned on,
forcing the optimal strategy to decide when it needs to have the sensor operating.
Some works were already done on this subject, see [CT08] and [TT07].

• Faults, as defined in this document, are a boolean property: a system is either
faulty or correct. Moreover, they are permanent. Once a fault occurred, we
did not consider as important to decide if more faults would be created later for
example. No matter the number of faults, the run is deemed faulty. One could
envision a different idea for the fault. A fault could represent a partial degradation
of the system, the failure of one of its non-vital component or something that can
be repaired (see [FHLM18] for a study of repairable faults in a non-stochastic
framework). Seen this way, many new questions arise. In passive systems, this
means defining measures of correctness for a system and testing properties, for
example on the delay of the fault counter (one can test if this delay is bounded,
if it is unbounded but in o(n) where n is the length of the run, in O(n). . . ).
In active systems, we would wish to find controllers that optimise the measures
of interests or that ensure good delays of detection for the fault counter. This
would obviously only be an interesting study for systems where many faults will
be triggered. However, this is not an unrealistic assumption as every system is
slowly degraded due to time elapsing.

• Our diagnosability algorithms currently only gives a Boolean answer. In order for
system designers to modify its system so that it becomes diagnosable for example,
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they need to know what is the cause of the missed fault. As a consequence, it
would be interesting to design algorithm able to give a counter-example to the
diagnosability of the system whenever it exists. This notion of counter-example
needs to be made precise. In an LTS, a counter-example can be given by an
ambiguous cycle of the system. As with probabilistic systems, this cycle may
have a zero probability, the counter-example must thus be able to describe a set
of runs with positive probability. For example, by giving a finite faulty run such
that any extension of it is ambiguous. However, this kind of counter-example
does not necessarily exist, in pushdown systems for example. The generation of
counter-examples in stochastic systems has been studied, see [ÁBD+14], but for
different objectives than diagnosability.

• The main formalism we chose, probabilistic labelled transition systems, has its
limitations. One could be interested in studying higher-level models such as
stochastic Petri nets, stochastic process algebra (with PEPA for example [Hil96,
Chapter 3]), etc. can be more appropriate to represent some real life systems.
Indeed, high-level formalisms usually are (often exponentially) more concise than
low level formalisms, hence a greater comfort for designers. Moreover, high-level
formalisms usually have a structure, which allows to conceive more efficient al-
gorithms as the generated systems (pLTS, MDP, etc.) benefit from additional
properties. For example, when a system is a synchronised product of several com-
ponents, the transition matrix or the infinitesimal generator can be computed
using tensor products of the matrix representing the different components (see
e.g. [HM95, HM96]).

• During this thesis, we designed many algorithms. In parallel to the previous
item, it would be useful to implement these algorithms. This tool could then
be used to solve the diagnosability problems for pLTS or for some higher-level
models whose semantics is an appropriate pLTS. This implementation should be
integrated within an existing tool to benefit from the possibilities offered while
enriching it. A good candidate would be COSMOS [BBD+15], a statistical model
checker for the hybrid automata stochastic logic.

We now end with the long-term perspectives, more remote to our current work.

• We established many results within this thesis. Some of which used methods
that are quite usual, some required to use new ideas such as the pathL logic.
These new ideas may be useful in order to tackle other issues related to partial
observation such as identification problems, stochastic games. . . It could therefore
be interesting to see which kind of problems, in these other frameworks, would
benefit from our approach.

• Another direction comes from another interpretation of faults. Let us proceed
through an example. When someone is sick, multiple symptoms appear or do
not appear in the body. These symptoms each correspond to a failure of the
human body, so each are a fault that must be detected. However, in order to
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cure the patient one needs to link the patterns to a common cause: an illness.
In other words, one wants to deduce a meta-information from the behaviour of
the system. Finding the origin of the fault has been studied under the term
causality, but, as explained in [GSS17], this approach focused on static systems.
In dynamic systems, this meta-information may be seen as a pattern that must
be detected [JMPC06]. This objective can be seen as an extension of diagnosis,
but it goes into the long-term category as it corresponds to what seems to be a
far more general question. It can also be linked to questions of identification of
complex behaviour, possibly similar to what was studied in [Pie14].

• Diagnosis is a research domain with clear applications. As a consequence, it would
gain a lot from being studied in cooperation with the industry. This would allow
researchers to better understand the industry’s need. For example, there could
exists definitions of diagnosability that we did not focus on, yet have relevance
from an industrial point of view. Moreover, while our methods are efficient in
theory, they may raise practical issues that we did not consider. There are already
some cooperations such as [HF12] where the authors investigate the problem of
building a model appropriate for diagnosis out of a real system, in their case, a
network.

• The last perspective discussed here is of a different nature: it is not a research
direction. However, it could still have a great impact on the domain of research.
There exist many contributions which either establish a known result or have an
erroneous proof for a theorem that was already proven false (trying to give a
PTIME algorithm for a PSPACE-hard problem for example). This clearly shows
the difficulty for researchers to know the current state of the research, even for a
specific domain such as diagnosis. To tackle this issue, one possibility may be to
try to build a cooperative website that would gather all the results on diagnosis,
something in the spirit of the POMDP webpage [POM]. This way, one could
efficiently find the current state of the art on the domain and this would save a
lot of useful time to many researchers. This obviously has some issues. To be
useful, the existence of such a website has to be spread and people must keep it
up to date. It would also raise many questions of organisation due to the width
of the domain, even when restricted to diagnosis (the many existing frameworks,
diagnosability notions, methods of approach,...). The various surveys on diagnosis
issues [ZL13, Bas14] would help dealing with this point. But most of all, building
such a website is extremely time-consuming.
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Titre : Le contrôle de l’information dans les systèmes

probabilistes

Mot clés : Vérification de modèles, systèmes probabilistes, diagnostic, chaînes de
Markov, observation partielle

Resumé : Le contrôle de l’information
émise par un système a vu son utilité gran-
dir avec la multiplication des systèmes
communicants. Ce contrôle peut être réa-
lisé par exemple pour révéler une informa-
tion du système, ou au contraire pour en
dissimuler une. Le diagnostic notamment
cherche à déterminer, grâce à l’observa-

tion du système, si une faute a eu lieu au
sein de celui-ci. Dans cet document, nous
établissons des bases formelles à l’ana-
lyse des problèmes du diagnostic pour
des modèles stochastiques. Nous étu-
dions ensuite ces problèmes dans plu-
sieurs cadres (fini/infini, passif/actif).

Title : Controlling Information in Probabilistic Systems

Keywords : Model checking, probabilistic systems, diagnosis, Markov chains, partial
observation

Abstract : The control of the informa-
tion given by a system has recently seen
increasing importance due to the omni-
presence of communicating systems, the
need for privacy, etc. This control can
be used in order to disclose an informa-
tion of the system, or, oppositely, to hide
one. Diagnosis for instance tries to deter-
mine from the observation produced by

the system whether a fault occurred wi-
thin it or not. In this PhD, we study the
diagnosis of stochastic systems through a
model-based approach. The goal is to es-
tablish the decidability and optimal com-
plexity of the decision problems and to
build the adequate diagnosers. We consi-
der these problems in multiple frameworks
(finite/infinite, passive/active).
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