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Surface deformation, or skinning is a crucial step in 3D character animation. Its role is to deform the surface representation of a character to be rendered in the succession of poses specified by an animator. The quality and plausiblity of the displayed results directly depends on the properties of the skinning method. However, speed and simplicity are also important criteria to enable their use in interactive editing sessions.

Current skinning methods can be divided in three categories. Geometric methods are fast and simple to use, but their results lack plausibility. Example-based approaches produce realistic results, yet they require a large database of examples while remaining tedious to edit. Finally, physical simulations can model the most complex dynamical phenomena, but at a very high computational cost, making their interactive use impractical.

The work presented in this thesis are based on, Implicit Skinning a corrective geometric approach using implicit surfaces to solve many issues of standard geometric skinning methods, while remaining fast enough for interactive use. The main contribution of this work is an animation model that adds anatomical plausibility to a character by representing muscle deformations and their interactions with other anatomical features, while benefiting from the advantages of Implicit Skinning. Muscles are represented by an extrusion surface along a central axis. These axes are driven by a simplified physics simulation method, introducing dynamic effects, such as jiggling. The muscle model guarantees volume conservation, a property of real-life muscles. This model adds plausibility and dynamics lacking in state-of-the-art geometric methods at a moderate computational cost, which enables its interactive use. In addition, it offers intuitive shape control to animators, enabling them to match the results with their artistic vision.
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Résumé

En animation de personnages 3D, la déformation de surface, ou skinning, est une étape cruciale. Son rôle est de déformer la représentation surfacique d'un personnage pour permettre son rendu dans une succession de poses spécifiées par un animateur. La plausibilité et la qualité visuelle du résultat dépendent directement de la méthode de skinning choisie. Sa rapidité d'exécution et sa simplicité d'utilisation sont également à prendre en compte pour rendre possible son usage interactif lors des sessions de production des artistes 3D. Les différentes méthodes de skinning actuelles se divisent en trois catégories. Les méthodes géométriques sont rapides et simples d'utilisation, mais leur résultats manquent de plausibilité. Les approches s'appuyant sur des exemples produisent des résultats réalistes, elles nécessitent en revanche une base de données d'exemples volumineuse, et le contrôle de leur résultat est fastidieux. Enfin, les algorithmes de simulation physique sont capables de modéliser les phénomènes dynamiques les plus complexes au prix d'un temps de calcul souvent prohibitif pour une utilisation interactive. Les travaux décrits dans cette thèse s'appuient sur Implicit Skinning, une méthode géométrique corrective utilisant une représentation implicite des surfaces, qui permet de résoudre de nombreux problèmes rencontrés avec les méthodes géométriques classiques, tout en gardant des performances permettant son usage interactif. La contribution principale de ces travaux est un modèle d'animation qui prend en compte les effets des muscles des personnages et de leur interactions avec d'autres éléments anatomiques, tout en bénéficiant des avantages apportés par Implicit Skinning. Les muscles sont représentés par une surface d'extrusion le long d'axes centraux. Les axes des muscles sont contrôlés par une méthode de simulation physique simplifiée. Cette représentation permet de modéliser les collisions des muscles entre eux et avec les os, d'introduire des effets dynamiques tels que rebonds et secousses, tout en garantissant la conservation du volume, afin de représenter le comportement réel des muscles. Ce modèle produit des déformations plus plausibles et dynamiques que les méthodes géométriques de l'état de l'art, tout en conservant des performances suffisantes pour permettre son usage dans une session d'édition interactive. Elle offre de plus aux infographistes un contrôle intuitif sur la forme des muscles pour que les déformations obtenues se conforment à leur vision artistique. v A doctorate curriculum is often seen a solitary endeavour. In my case, this could not be further from the truth. I wish to thank, first and foremost, my thesis supervisor Loïc Barthe, who has been very supportive, positive, and benevolent from the very beginning of our work together, through the ups and downs of research and publication. His thoughts, his scientific guidance, and his constant

Introduction

Anatomical studies by Leonardo Da Vinci. © The Royal Collection. Animated characters are our digital doubles in a virtual world. They are initially designed as 3D models: a surface mesh made of polygons. These meshes are then set in motion by computer artists in several steps: rigging, animation and skinning. Rigging creates a set of controllers that function as an intermediate representation for the animator to set the model of the character in different poses. A dedicated 3D artist, the rigger, creates this control layer or rig. This rig often takes the form of a skeleton articulated around joints, imitating the real life skeletal system, and its control parameters are the joints transforms.

It is then up to the animators to manipulate these controllers to set the characters into motion, and imbue the characters with life, purpose, and meaning. Skinning is the function linking the rig parameters and the deformation of the character model. Thus, the properties of the skinning method have a great influence on the visual appearance of the animated character.

Virtual characters are only limited by the imaginations of their creators: they can be dragons, unicorns, or impossibly muscular super-heroes. They can fly, become invisible, or dodge bullets. Thus realism, the imitation of reality, is not the primary goal of skinning.

The main purpose of skinning is rather plausibility: the visual result must look correct to our eyes, however unrealistic the characters or the situation. Additionally, animators must be able to tune the attitude of a character much like a live-action actor would do. As a consequence, a good skinning method must be predictable and offer intuitive controls to artists, allowing them to align the resulting animation to their vision. Speed of evaluation is also a desirable property of skinning to speed up the production cycle: animators wish to see the effect of a change of rig parameters instantaneously, so they can adjust it interactively and converge quickly to the desired result. The speed requirement becomes a hard constraint in video games, where the animation is played in real-time.

Among skinning methods, the fastest and simplest are purely geometric: they directly apply the skeletal transforms to the vertices of the character mesh. These methods may be blazingly fast, but they often lack plausibility in complex animations. This shortfall in realism is essentially due to geometric methods only taking into account the surface of the character's skin, while the effects visible on the character are often a result of what happens underneath the skin.

The two other families of skinning methods attempt to fully replicate these effects to produce more realistic deformations. Example-based methods reproduce the deformations from a database of skin surfaces for a given character. Physics-based methods simulate the mechanics of the underlying tissues in a character's body to deform the skin. These methods produce quality results, but require a high investment to be useful: example databases require models be acquired or hand-crafted; physical models are notoriously difficult to configure and computationally intensive. This restricts their use to high-budget productions which can afford the time and manpower to use these complex methods.

There is a growing body of work dedicated to extending geometric skinning to replicate some effects of more complex methods, trading off a small computational cost for improvement on the plausibility and liveliness of the character animations, by adding volumetric effects to the surfacic representation of the mesh. Implicit surfaces are especially useful for this purpose, because of their properties to represent a surface along with the enclosed volume in a succinct mathematical form. A recent research direction, known as Implicit Skinning, has shown that using an implicit representation of the skin along with the standard polygonal mesh handles contact between body parts. This contact handling prevents mesh self-intersection on the resulting skin, an issue that has plagued geometric skinning methods for a long time.

I chose to extend this research by using implicit surfaces to model the volume occupied by muscles under the skin. Muscles make up a large portion of the body, and the effect of their action is particularly visible on the skin. In many cases, the precise shape of the skin in a limb is primarily dictated by the muscles underneath. Traditional media artists have since long studied anatomy in order to picture humans and animals more realistically, as illustrated by the anatomic studies of Leonardo Da Vinci at the opening of this chapter.

Because they set the body in motion, the appearance of muscles sets emphasis on the action of the character: for example, characters flexing their arms under efforts or taking a strong hit. Currently, most animators work with hand-crafted muscle deformers using ad-hoc models to create muscle deformations on the skin, which is a tedious process.

In this work, I present an animation method for representing muscles using implicit surfaces to model the volumetric effects they cause on the skin, producing high-quality skin deformations, including contact handling. This model takes several important phenomena contributing to the muscle deformations into account: volume conservation in muscle tissue, activation and isometric deformations. Integrating this model with a physics simulation produces dynamic effects such as jiggling motions and to detect and resolve muscle-muscle and muscle-bone collisions.

Overview of contributions

The main contributions detailed in this thesis are twofold. First, the specification of an implicit muscle model, giving a family of shapes able to represent most skeletal muscles in the human body and their deformation modes. These muscles are defined as curve-sweep surfaces, and dynamically driven by Position Based Dynamics, a fast approximate physical simulation method. Second, the integration of this model with Implicit Skinning, in order to benefit from its skin contact resolution on the final skinning solution. The implementation of this model offers a small set of intuitive parameters to control the shape of the muscles and their dynamic behaviour, avoiding the need for tedious sculpting of custom deformers. Setting the muscle parameters can be done interactively during the rigging process, and the total compute time of our method remains small enough for interactive editing. This thesis is divided in two parts. The first part presents the work upon which the animation method is built. In Chapter 1, I survey the three different categories of skinning methods: geometric, example-based and physics-based. The next chapter (Chapter 2) is an introduction to the formalism of implicit surfaces, which will be used in the following chapters. Chapter 3 introduces Implicit Skinning, using implicit surfaces to resolve collisions in the skin of a character.

In the second part, I present a muscle model made of implicit surfaces which represent the muscles of an animated character. Chapter 4 presents the muscle model and discusses the rationale behind the choices in this approach. In Chapter 5, a physics simulation is added to the muscle model, enabling to represent dynamic phenomena. Finally, Chapter 6 describes how to implement this model within a skinning pipeline using Implicit Skinning and discusses the practical implications of such an implementation.

I

Skinning with implicit surfaces

1.1 The skeletal animation pipeline 1.1.1 Models, rigs, and skeletons Animated objects and characters are usually represented as polygon meshes, which are fast to display with current rendering hardware. Animating these objects thus requires to deform the mesh to the desired shape at each frame.

Describing the movement of the millions of vertices of a modern display mesh cannot be expected to be done manually, hence the idea of rigging: setting a mesh with a set of simple spatial transform parameters. Animators only manipulate these high-level parameters, whose evolution in time guides the mesh vertices to their desired position. A natural idea for rigging a character is to use an animation skeleton, which was initially proposed by Magnenat-Thalmann et al. [START_REF] Magnenat-Thalmann | Joint-Dependent Local Deformations for Hand Animation and Object Grasping[END_REF]. The skeleton is defined as a hierarchic kinematic chain of joints, as shown in Figure 1 Definition. An animation skeleton 𝒮 is given by a tree 𝒢 𝒮 of 𝑚 joint nodes, the root being conventionally the first node; and a set of rigid transforms {M 𝑗 } 𝑗=0..𝑚-1 giving the local frame of each joint.

In this model, bones are nominally associated with the edges of the graph, linking two joints: the proximal joint being the closest from the root and the distal joint the farthest. For humanoid characters, the root joint is generally located on the spine, near the centre of gravity.

The transforms at joints M 𝑗 are the key parameters of the skeleton rig. They are usually set by manipulating the bones in an animation tool, hence the very common abuse of terminology where a bone is associated to its proximal joint. Thus expressions such as "bone transform" must be understood as referring to the transform of the rigid bones applied at the proximal joint.

Each joint transform defines a local space, in which the bone usually occupies one of the axis. When manipulating bones to setup a skeleton in an application, it is much more intuitive to modify the parent-space transform of a joint, defined relatively to its parent joint in the tree, rather than the absolute transform. This way, when a bone is moved, all the subsequent bones in the chain follow the movement: for example, raising the arm by modifying the shoulder joint's transform will also raise the forearm and hand bones.

Definition. The parent-space transform of joint 𝑗, whose parent joint is indexed by 𝑝 is

M 𝑗 = M -1 𝑝 M 𝑗 .
For the root joint, the parent-space transform of the root joint is the same its model transform: M 0 = M 0 . The animation skeleton is a very useful tool for character animation setup because of its resemblance, albeit imperfect, with its real-life counterpart. Many other rigging systems have been devised for specific usages. Simply using independent points is especially useful for simple objects or 2D animations. Using points linked in a coarse lattice which envelops the object to deform is another fruitful approach introduced by Sederberg and Parry [START_REF] Sederberg | Free-form Deformation of Solid Geometric Models[END_REF]: cage-based deformation. Nieto and Susín [START_REF] Jesús | Cage Based Deformations: A Survey[END_REF] provide a recent survey of these methods. This thesis focuses on skeletal-based skinning which is still the ubiquitous rigging method for character animation.

Animating a rigged character

Displaying an animation is then done in two logically separate steps: an animation system is responsible for providing the rig parameters at each time step 𝑡, and then an algorithm deforms the mesh given these parameters. In the case of an animated skeleton, the rig parameters are the joint transforms M 𝑗 .

Definition. Given an animation skeleton 𝒮, an animation function associates a set of rigid transforms 𝑃(𝑡) = {M 𝑗 (𝑡)} 𝑗=0...𝑚-1 to each time step 𝑡. The set 𝑃(𝑡) is called the pose of the skeleton at time 𝑡. Transforms M 𝑗 represent the position and orientation of the joints in world space.

Usually, the skeleton is set up by an artist on the undeformed mesh. This initial pose of the skeleton, associated with the initial state of the mesh, is known as the reference or rest pose: 𝑃 ref = {M ref 𝑗 } 𝑗=0..𝑚-1 . A deformation of the mesh vertices is usually expressed more easily with transforms from the reference pose to the current pose, leading to the following notation.

Definition. The relative bone transform B 𝑗 (𝑡) of bone 𝑗 at time 𝑡 is the transform of joint 𝑗 relatively to the reference pose, given by:

B 𝑗 (𝑡) = (M ref 𝑗 ) -1 M 𝑗 .
Generating the right succession of poses to express motion is both an artistic field and an entire research area. The animations can be created by an animator (and usually stored as a set of key poses through which the others are interpolated), acquired from an actor equipped with a motion capture device, or even synthesized procedurally with machine learning methods [START_REF] Holden | A Deep Learning Framework for Character Motion Synthesis and Editing[END_REF].

Once the rig parameters are determined for a given time 𝑡, the goal is to deform the display model of the character according to these parameters. As the display model usually represents the surface of the character (or skin), this step is naturally called Skinning is a vastly under-constrained problem. A typical animation skeleton has about 30 to 40 joints, each with 3 to 6 degrees of freedom, while a character mesh usually has from tens of thousands to millions of vertices.

Moreover, it is hard to quantify what constitutes a good deformation. We are used to see human characters evolve in real-life, and thus can quickly tell when a computer-generated character does not look right. Yet, finding which geometric properties of the resulting mesh must be constrained for the result to look correct is challenging even for simple cases.

Primary and secondary motion

Animators often stress the difference between primary and secondary motion, exposed as a major principle of animation by Disney animators Thomas and Johnston [START_REF] Thomas | The illusion of life: Disney animation[END_REF]. The limits between what constitutes primary and secondary motion is somewhat ill-defined. In principle, primary motion is the direct result of the controlled action of the character and makes up the bulk of the character's appearance at a given pose. Secondary motion refers to all movements and effects which appear as a reaction to the character's primary motion. This includes many dynamic effects such as body parts jiggling when a person is moving, muscles contracting under effort, strands of hair or cloth flying in the wind, etc.

While primary motion conveys the action of the character, secondary motion adds more life and more dimension to the character's animation, significantly increasing the realism of an animated scene. Movements with secondary motion seem more natural, and artists often use it to emphasise the character's action and create more expressive scenes.

In skeletal animation, secondary motion is often understood as motion on the skin that is not the result of the direct manipulation of the joints. This usually requires to increase the complexity of the rig by adding an extra layer between the rig parameters and the final effect on the skin. The high number of degrees of freedom in these effects adds to the difficulty of animating secondary motion. Methods that generate secondary motion are often computationally expensive and expose many unintuitive parameters which require hand-tuning. These shortcomings burden the animators with complexity and only high-budget animation productions can afford to use them. In this work, we focus on secondary motion caused by the anatomy of a character, and most prominently on the effect of muscles on its visual aspect.

The next sections provide an overview of the different families of skinning algorithms.

Recent reviews on the field include the tutorial by Jacobson et al. [START_REF] Jacobson | Skinning: Realtime Shape Deformation[END_REF], which provides a good introduction, and the recent survey by Abu Rumman and Fratarcangeli [START_REF] Abu | State of the Art in Skinning Techniques for Articulated Deformable Characters[END_REF] for a complete coverage of skinning techniques. In addition, a specific review dedicated to muscle simulations in computer graphics can be found in the survey by Lee et al. [START_REF] Lee | Modeling and simulation of skeletal muscle for computer graphics: A survey[END_REF].

Methods able to reproduce secondary motion effects on the skin can be classified in three categories. First, physics-based methods (Section 1.2) use mechanical simulation of deformable bodies to compute the motion of the different parts of the character's anatomy (muscles, bones, soft tissues and skin). In contrast, example-based methods (Section 1.3) seek to reproduce the deformations from example data, either crafted by artists or acquired from the real world. Finally, geometric skinning (Section 1.4) directly uses the skeleton transforms to compute the final positions of the vertices, while secondary motion is generally added post-hoc with specific deformers. (Picture from [START_REF] Porcher | Real time muscle deformations using mass-spring systems[END_REF])

Physically-based skinning

Deformations appearing on the skin are the result of the complex biomechanical processes happening in a moving character. To reproduce these results in computer graphics, it is possible to see skinning as the result of a biomechanical simulation of a virtual human body. Physical simulation methods were introduced early in computer graphics [SDN84;

GM85; CHP89] and have since taken an important role in realistic animation methods.

They offer representations for complex dynamic deformations such as collision resolution, bulging and jiggling of soft tissues.

The following section gives an overview of the main families of physics-based approaches. Detailed reviews of the field include Nealen et al.'s [START_REF] Nealen | Physically Based Deformable Models in Computer Graphics[END_REF] and the survey by Abu Rumman and Fratarcangeli [AF16, Section 4].

Force-based muscle models

Methods used in biomechanical research usually focus on computing the forces exerted by the muscles. To that effect, muscle models are often reduced to a line of action through which the forces are transmitted. A model of the physical behaviour of the human musculature for computer simulation was presented by Zajac [START_REF] Zajac | Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[END_REF], modelling the muscle as an actuator and describing mechanical properties of muscle tissues and tendons.

However, a simulation of muscles for computer graphics must also take into account the shape of each muscle and their volume. Chen and Zeltzer [START_REF] Chen | Pump It Up: Computer Animation of a Biomechanically Based Model of Muscle Using the Finite Element Method[END_REF] introduced the simulation of forces through a finite-element method (FEM) on a mesh representation of the muscle. At the time, this method was too slow for interactive visualisation of the results, which led Thalmann et al. [START_REF] Daniel Thalmann | Fast realistic human body deformations for animation and VR applications[END_REF] and Nedel and Thalmann [START_REF] Porcher | Real time muscle deformations using mass-spring systems[END_REF] to introduce a model based on a mass-spring system, used over a simplified mesh of the muscle. Their method, illustrated on Figure 1.3, was fast enough for the simulation of one muscle in real-time.

Several approaches attempted to tackle muscle simulation more efficiently. Teran et al. 

Simulation of anatomic models

With the growing of computing power, new methods were developed to model not only muscles, but also other soft tissues and skin to represent a fully simulated human body.

The OpenSIM software [START_REF] Scott | OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement[END_REF] or the full upper body model of Lee et al. 

Simulation space reduction

An interesting venue to reduce the high computational cost of a full physical simulation on a detailed model is to try to restrict the state-space to a smaller dimensional space, based on prior knowledge of the result. Since only the character's skin surface is visible in an animation, it makes sense to focus on the skin deformation only, e.g. by using thin-shell models [START_REF] Li | Thin Skin Elastodynamics[END_REF] or by reproducing the effect of corotational elasticity on the surface [START_REF] Gao | Steklov-Poincaré Skinning[END_REF].

Another animation-specific space reduction was presented by Hahn et al. [START_REF] Hahn | Rig-space physics[END_REF].

Their method restricts the simulation's state-space to the subspace of deformations allowed by the animation rig. This method has the extra advantages of fitting in the standard animation pipeline and enabling the animators to exert control over the type of deformation, and edit post-hoc the resulting animated rig parameters.

Recently, Xu and Barbič [START_REF] Xu | Pose-space Subspace Dynamics[END_REF] obtained real-time frame rates running a finite-element method in the pose-space, i.e. the space defined by interpolation between example poses (see Section 1.3.1).

Simulation control and coupling

A key issue in physically-based animation and skinning is to interface the force-based physics simulation with the kinematic input of the skeleton. In real life, motion is transmitted from the muscles to the bones, but in character animation, the animation skeleton bones are directing the character's motion, and thus drive the position of the muscles.

The works of Capell et al. [Cap+02;[START_REF] Capell | Physically Based Rigging for Deformable Characters[END_REF] showed how to generate forces from the animation skeleton as inputs to a finite-elements methods. Nevertheless, these methods may violate conservation of momentum and thus become unstable for large time steps.

Shinar et al. [START_REF] Shinar | Two-way Coupling of Rigid and Deformable Bodies[END_REF] exposed a two-way coupling model between soft and rigid bodies.

In this model, the deformable bodies could exert force on the rigid bones. Two-way simulation has also been used to represent effects of external bodies on the characters [KP11;

Liu+13], e.g. throwing a ball at a character.

Discussion

Physical simulation methods use the most detailed and realistic models of a character to replicate the complex phenomena that govern the aspect of a body in motion. Unfortunately, this complexity comes with a cost. FEM simulations are very computationally expensive, and the high resolution necessary to reproduce the finest details of human anatomy makes a full-fledged simulation very slow. State-of-the-art methods take from 3 to 4 seconds per frame for simple models such as the arm of Fan et al. [START_REF] Fan | Active Volumetric Musculoskeletal Systems[END_REF] (4 muscles and 3 bones); complete anatomical models such as the one presented by Kadleček et al.

[Kad+16] (60 bones and more than 100 muscles) take about 30 seconds to a minute to compute one frame of animation.

In addition, a soft-body simulation exposes many parameters: material constants such as stiffness, Lamé constants or Young's modulus, as well as simulation parameters: integration time step, solving method, etc. These parameters must be chosen carefully to ensure a plausible result and remain within some boundaries, lest the simulation becomes unstable.

The nature of a physical simulation also makes it hard to predict beforehand what the result will look like at a given point in time without running the simulation itself. As a consequence, animating a character through physical simulation is a long and tedious process. Animators must be familiar with the technicalities of elastic material models and their properties, and often proceed by trial-and-error to set the parameters that achieve the results that match their artistic direction. The time and manpower required for using such methods thus restricts their practical use to high-budget productions, and forbids their use in real-time applications. 

Data-driven skinning

While physical simulation attempts to model the body in order to simulate its motion, datadriven approaches attempt to imitate the results obtained by a set of example deformations.

They provide an easy way to generate consistent solutions for a problem with such a large state-space such as skinning, but without the tedious work of finding the correct parameters of a physical simulation. Mukai [START_REF] Mukai | Example-Based Skinning Animation[END_REF] presents a recent survey of examplebased methods.

Pose-space deformation

Introduced by Lewis et al. [START_REF] Lewis | Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-driven Deformation[END_REF], pose-space deformation (PSD) has the artist manually position the skeleton in a set of key poses, and sculpt the mesh in each of these poses, usually as a correction over a direct geometric skinning method (see Section 1.4). Subsequently, during animation, the current pose is expressed in terms of the example poses and the shape of the mesh is interpolated from the associated sculpted shapes.

The pose-space lends itself naturally to space reduction using principal component analysis [START_REF] Paul | EigenSkin: Real Time Large Deformation Character Skinning in Hardware[END_REF] which helps speed up the computations. This method was later extended by Kurihara and Miyata [START_REF] Kurihara | Modeling Deformable Human Hands from Medical Images[END_REF] and Rhee et al. [START_REF] Rhee | Real-Time Weighted Pose-Space Deformation on the GPU[END_REF] to support weights, reducing the number of example poses. Weighted pose-space deformation (WPSD) can then handle a sparser pose-space but at the cost of an increased computational complexity.

Pose-space deformation is especially popular in facial animation [START_REF] Lee | Practical Experiences with Pose Space Deformation[END_REF] where it is generally known as blendshapes. Key poses of the face are often mapped to different emotions (such as fear, excitement, happiness or surprise, as illustrated by Figure 1.5) enabling the artists to generate compelling faces showing transitions between emotions [START_REF] Lewis | Practice and Theory of Blendshape Facial Models[END_REF].

Data-driven skinning

Example-based deformation algorithms critically depend on the interpolation method used to reconstruct the blended mesh deformation from the key shapes. Covering a high-dimensional space such as the pose space by hand-tuned mesh shapes would be intractable, so the interpolation methods must behave well with scattered data points [see [START_REF] Loper | MoSh: Motion and shape capture from sparse markers[END_REF] showed that it was possible to capture the soft tissue deformations from standard motion capture markers.

Statistical shape models

To support the acquisition of several animations of the same person, or even of persons 

v 𝑖 = 𝑆(𝛽, 𝑃(𝑡), v ref 𝑖 ) ,
where 𝑃(𝑡) is the current pose, 𝛽 is the shape parameter representing the body type variation of the character relatively to a default mean shape, and v ref 𝑖 is the vertex position in the reference pose.

Processing scans from different capture sessions with different people suffers from issues associated with captured 3D data: noise and registration. Efforts to mitigate this problem led Allen et al. [START_REF] Allen | Learning a correlated model of identity and pose-dependent body shape variation for real-time synthesis[END_REF] to use statistical models of correlation between shapes to account for missing or noisy scan data, and Weber et al. [START_REF] Weber | Context-Aware Skeletal Shape Deformation[END_REF] to use harmonic interpolation to increase the number of joints influencing a vertex. Later developments include the co-registration method BlendSCAPE [START_REF] Hirshberg | Coregistration: Simultaneous Alignment and Modeling of Articulated 3D Shape[END_REF] which incrementally registers various input meshes together while learning a deformation model.

Later development in statistical shape models include SMPL [START_REF] Loper | SMPL: A Skinned Multi-Person Linear Model[END_REF] which uses a wide database of scanned shapes to separate body type and pose deformation directly as a linear function of the pose 𝑃, helping its integration into a production skinning pipeline.

Learning dynamics

As the amount of available scanned data increased, it became possible to use machine learning algorithms on body shape deformations to fit the parameters of a physical simulation from learned data. 

The

Discussion

Example-based skinning provides high-level context for surface deformations. While high realism can be achieved by using scanned data, the final result is conditionned by the availability of specific poses in the database or the capacity to record new key poses. Cases often arise when scanned data is not desirable or possible: for unrealistic characters such as monsters, or impossible poses (e.g. exaggerated fighting stances). It is then up to the artists to generate the key poses and then hand-tune the weights until the results of the deformation are good in all poses of the animation, which is a tedious process. In particular, even with high quality example data, avoiding self-intersection of the deformed mesh in every pose is not guaranteed unless they are separately resolved using collision detection.

Lastly, data-based approaches can be problematic for interactive applications (such as video games) which usually require to display a large number of different characters (sometimes appearing only in a few scenes). The memory consumption of the pose database, requiring to store a set of meshes per character, can quickly become prohibitive.

Geometric skinning

On the other side of the realism versus complexity trade-off, geometric methods are the most straightforward because they rely only on the kinematic input, provided by the skeleton, to compute the new vertices positions.

These approaches are very popular for interactive applications as their simplicity makes them very efficient. They remain the standard skinning method in most production applications, from feature film animation to video games [AHH08, pp. 80-85].

Linear blend skinning and skinning weights

One of the simplest skinning method which can be considered would associate each vertex v 𝑖 of the mesh to one of the joints 𝑗 and move it according to this joint's transform only:

v 𝑖 (𝑡) = B 𝑗 (𝑡)v ref 𝑖 .
The results of this method (sometimes called rigid skinning, as the vertices are rigidly transformed) are of very poor quality. Yet, most vertices which lie in the middle sections of the limbs are correctly placed, and the problematic areas are located around the joints, as illustrated by Figure 1.7(a).

It is clear that vertices around a joint should be influenced by more than just one bone.

Each vertex v 𝑖 is thus given a set of skinning weights w 𝑖 = {𝑤 𝑖𝑗 } 𝑗=0..𝑚-1

which are used to combine transforms of multiple bones. Each vertex has partition of unity weights (

∑ 𝑗 𝑤 𝑖𝑗 = 1)
. Vertices in the middle of the limbs move with only one bone (thus have one weight equal to 1 and the others to 0); while vertices around joints smoothly transition between two bones (and sometimes more for complex joints). The vertex position v 𝑖 (𝑡) is simply expressed as the linear combination of the transforms of each bone weighted by its weight, applied to its reference position v ref 𝑖 :

v 𝑖 (𝑡) = 𝑚-1 ∑ 𝑗=0 𝑤 𝑖𝑗 B 𝑗 (𝑡)v ref 𝑖 .
This method was introduced by Magnenat-Thalmann et al. [START_REF] Magnenat-Thalmann | Joint-Dependent Local Deformations for Hand Animation and Object Grasping[END_REF] and is now known as linear blend skinning or LBS 1 .

This method is easy to implement on current graphics hardware, and has therefore proven to be very efficient and successful. Even now, it is the de facto standard for real-time skinning. Nonetheless, it suffers from major drawbacks.

Firstly, while the result is visually plausible for small deformations, the quality of the deformed mesh degrades quickly when the joints bend or twist too widely. These visual artefacts are frequent enough to have earned their own nickname in the animation community: a joint bent too far will make the surface thinner on the exterior of the bend, leading to the collapsing elbow artefact (Figure 1.8(a)) while a twist of 180°will project all nearby points towards the center of the joint causing the dreaded candy-wrapper artefact (Figure 1.8(c)).

Secondly, weight-based methods such as LBS also rely on user input, as the animator usually provides the weights by painting on the mesh, as depicted in Figure 1.9. Getting the weights right for a given animation usually takes time and practice, and relies a lot on trial-and-error. Jacobson et al. [START_REF] Jacobson | Bounded Biharmonic Weights for Real-time Deformation[END_REF] provided a method to automatically compute weights from a given mesh with its animation skeleton, and a set of target poses. Yet subsequent research by Kavan and Sorkine [START_REF] Kavan | Elasticity-Inspired Deformers for Character Articulation[END_REF] showed that merely optimizing the weights is not enough to produce good deformations in the most complex cases and that non-linear deformers are required.

Dual quaternion skinning

Artefacts such as the candy-wrapper or the collapsing elbow appear as LBS tries to apply a linear combination in the space of rigid transforms, whose topology is spherical. These issues can be avoided by combining the transforms using non-linear blending. Several non-linear approaches were subsequently investigated, such as log-matrix skinning [START_REF] Marc | Linear Combination of Transformations[END_REF] or spherical blend skinning [START_REF] Kavan | Spherical Blend Skinning: A Real-time Deformation of Articulated Models[END_REF]. The most successful non-linear method was proposed by Kavan et al. [START_REF] Kavan | Skinning with Dual Quaternions[END_REF], who used the space of unit dual quaternions to represent rigid transforms, similarly to how the space of unit quaternions can represent rotations [START_REF] Rowan | On quaternions; or on a new system of imaginaries in algebra[END_REF]. Dual quaternion skinning (DQS) uses the same input as linear blend skinning but converts the transforms B 𝑗 to their unit dual quaternions representation q 𝑗 and computes the blended transform in the dual-quaternion space by linear combination and normalization.

q 𝑖 (𝑡) = ∑ 𝑚-1 𝑗=0 𝑤 𝑖𝑗 q 𝑗 (𝑡) ∥∑ 𝑚-1 𝑗=0 𝑤 𝑖𝑗 q 𝑗 (𝑡)∥
The resulting unit dual quaternion q 𝑖 represents a rigid transform T q𝑖 which is then applied to the vertex.

v 𝑖 (𝑡) = T q𝑖 (𝑡)v ref 𝑖
The topological properties of the space of dual quaternions avoid the candy wrapper and elbow collapse artefacts (Figures A more recent work by Le and Hodgins [START_REF] Binh | Real-time Skeletal Skinning with Optimized Centers of Rotation[END_REF] systematically removes these artefacts by computing the optimal centre of rotation for each vertex. For each vertex v ref 𝑖 of the mesh in reference pose, an optimal rotation centre p * 𝑖 is pre-computed by averaging all vertices of the original meshes over the whole surface, weighted by a weight similarity function.

During skinning, the vertex's rotation is computed by spherical linear interpolation around the transformed centre of rotation. This method avoids most of the artefacts of other geometric skinning methods, and only requires an expensive precomputation step for the centre of rotations p * 𝑖 .

Improving geometric skinning

The case for improved geometric skinning arises as the simplistic nature of these methods exposes their weakness. The basic deformations generated by geometric methods cannot hope to reproduce the richness of the complex phenomena of skin deformation. Characters often seem lifeless or made out of plastic, and body parts are self-intersecting as soon as joints bend at sharp angles.

A natural extension to these standard methods is to increase the number of weights per-vertex. Instead of one weight per transform as in LBS or DQS, one could take several weights, one per principal direction of the transform. This was the approach described by Wang and Phillips [START_REF] Xiaohuan | Multi-weight Enveloping: Leastsquares Approximation Techniques for Skin Animation[END_REF], which uses twelve weights per vertex-bone pair. Setting so many weights manually by painting becomes unfeasible. Their method proposes instead to optimize them from example poses, similarly to pose-space deformation methods (see Section 1.3.1).

Principal component analysis can also be used to reduce the number of weights [START_REF] Alexa | Representing Animations by Principal Components[END_REF]. Merry et al. [MMG06b;[START_REF] Merry | Animation Space: A Truly Linear Framework for Character Animation[END_REF] proposed to use four weights per pair by solving for rotational invariants (mimicking an elastic deformation), while Jacobson and Sorkine [START_REF] Jacobson | Stretchable and Twistable Bones for Skeletal Shape Deformation[END_REF] used two weights, one for bending and one for twisting.

In production settings, animators often increase the range of possible deformations by adding extra joints who do not necessarily correspond to real-life joints. This is often done by hand on a case-by-case basis, but several efforts were made to generalize this approach.

For example, Mohr and Gleicher [START_REF] Mohr | Building Efficient, Accurate Character Skins from Examples[END_REF] systematically adds several joints to each existing bone. Wang et al. [START_REF] Wang | Real-time Enveloping with Rotational Regression[END_REF] proposed to learn the position of extra joints from example poses, and to set the weights accordingly, and Kavan et al. [START_REF] Kavan | Automatic Linearization of Nonlinear Skinning[END_REF] to approximate the non-linear deformations with linear skinning using only the input animation as a prior.

While at runtime, the skinning computation remains a linear weighted sum of transforms, extra weights and extra bones and offer a more intuitive interface to the animator, a fruitful approach is to add muscle-specific deformers to joint-centred geometric skinning.

An important property to consider when modelling muscle shapes is volume preservation.

Muscles generally combine two types of deformation: isotonic and isometric. Isotonic deformation happens when the limbs move and the muscles endpoints (origin and insertion) are drawn closer together or pushed farther apart, while isometric deformation is caused by the activation of the muscle (the increase of tension in the muscle fibres) without motion of the endpoints. In real life, the conservation of volume is what makes muscles bulge when contracted or activated [START_REF] Kardel | Niels Stensen's geometrical theory of muscle contraction (1667): A reappraisal[END_REF]. It is therefore crucial for the shapes representing the muscles to deform at constant volume and to be able to reproduce these two modes of deformation.

Wilhelms [START_REF] Wilhelms | Modeling Animals with Bones, Muscles, and Skin[END_REF] modeled muscles, bones and soft tissues with ellipsoids, including deformable muscles which maintain their volume when contracting, using the analytic formula for the volume of the ellipsoid. Her method works by directly linking the mesh vertices to the nearest ellipsoid primitive with a mass-spring model which pulls the Then, the muscle deformation is transformed back in the reference pose, and the vertex is skinned with the muscle weights relatively to the deformed muscle vertex.

v (muscle) 𝑖 = ∑ 𝑤′ 𝑖𝑘 T (muscle) 𝑘 v ref 𝑖 ,
where T

(muscle) 𝑘

is the transform of mesh vertex 𝑘 relatively to its reference pose position.

The computed point v (muscle) 𝑖 is interpreted as the displacement generated by the deformed muscle. The two are then combined by simply adding the muscle displacement to the result of LBS:

v 𝑖 = v (LBS) 𝑖 + v (muscle) 𝑖 .
A similar approach, presented by Ramos and Larboulette [START_REF] Ramos | A Muscle Model for Enhanced Character Skinning[END_REF], can represent more shapes by using two Bézier curves, one for the muscle axis as in the previous method, and one to design the muscle profile. A sample of these shapes can be seen in Figure 1.12.

These two methods extend geometric skinning by having the vertices deformed both by the skeleton and the nearby muscles, by using extra weights to blend the deformation transform of the muscle with the skeleton joints transforms. However, as with other geometric methods relying on extra bones, this only makes the rigging process more cumbersome, as the number of weights for each vertex increases by a factor of two or three.

Discussion

Direct geometric methods based on skinning weights reign supreme when speed and efficiency are required, as in real-time applications. Nonetheless, deformations that they can reproduce in practice is limited. The indirect link between the skinning weights and the final skinning results makes weight painting a long and tedious process which requires a lot of trial and error, as correcting the weights to improve the aspect of the skin in one pose can destroy the appearance of another unrelated pose.

Being purely kinematic, direct methods cannot reproduce dynamic effects such as elastic or plastic deformations. To create more complex effects such as a muscle bulging, the only options are either to add more bones and control points to the rig, which in turn increases the number of weights to set, limiting these effects in practical applications, or to use dedicated muscle deformers.

Finally, these methods fail to take self-collision into account. Often, when bending a character's arm or leg at a sharp angle, parts of the skinned mesh will traverse each other, creating a final skin which intersects itself. This becomes especially problematic with shape-based muscle deformers that work on top of standard geometric skinning: the bulging muscles often worsen the problem of self-collisions.

Removing these intersections post-hoc is a costly operation. Despite the availability of spatial acceleration structures (𝑘-d tree, spatial hashing), solving mesh-mesh collision for complex character meshes often makes framerates drop below the second [START_REF] Abu | Position-Based Skinning for Soft Articulated Characters[END_REF].

A recent effort to avoid self intersection in the mesh was presented by Vaillant et al. [START_REF] Vaillant | Implicit Skinning: Real-time Skin Deformation with Contact Modeling[END_REF][START_REF] Vaillant | Robust Iso-surface Tracking for Interactive Character Skinning[END_REF]. Their method uses implicit surfaces to model the skin along with dedicated contact operators, representing an interaction surface between body parts. This approach models contact in the skin efficiently and solves the volume loss and bulging artefacts of LBS and DQS.

This technique lends itself to extension, because it makes no assumption over the nature of the implicit surfaces used in the skin representation. In this thesis we present implicit deformers integrated into this skin representation that can represent muscles and other anatomic elements while elegantly solving the self-intersection problem.

This thesis presents a model which brings together Implicit Skinning with an implicit muscle shape deformer. While the muscle model is in line with the approaches described in Section 1.4.4, its integration with implicit skinning avoids the complex weight setup required by these methods, while reaping the benefits of Implicit Skinning. The next chapters provide a general background on implicit modelling and specifically on Implicit Skinning, defining the concepts used to design the model and integrate it with Implicit Skinning.

2

Introduction to implicit surfaces

No need to ask, he's a smooth operator

-Sade, Smooth Operator
This chapter presents the elemental concepts used to build implicit surfaces for 3D modelling, which we leverage for skinning.

Firstly, we start with the basic definitions of scalar fields and their iso-surfaces in Section 2.1. The following section (Section 2.2) presents the primitive models used in implicit modelling. We describe the main orientation and iso-value conventions: global support functions (Section 2.2.1) and compact support functions (Section 2.2.2). We then focus on extrusion surfaces, which are specifically used to model muscles in this work (Section 2.2.3).

Secondly, we introduce composition operators (Section 2.3) and transformation of scalar fields (Section 2.4) as means to assemble objects from several implicit primitives. Lastly, we expose the equations derived when using implicit surfaces in animation (Section 2.5).

Scalar fields and implicit surfaces

Implicit surfaces are geometric surfaces defined by an equation: they provide a convenient representation of many 3D objects. Historically, algebraic surfaces (implicit surfaces whose equation is polynomial) where among the first three-dimensional objects studied [HC32, chapter I and IV]. In computer graphics, implicit surfaces were used as representations for models in CAD software as early as the 1960s [START_REF] Sabin | The use of potential surfaces for numerical geometry[END_REF].

Their strengths and weaknesses are complementary to other common surface representations in computational geometry [START_REF] Hughes | Implicit Representation of Shape[END_REF][START_REF] Wyvill | Implicit Modeling[END_REF]. In contrast to polygonal meshes, implicit surfaces can represent infinitely smooth surfaces; and, unlike parametric surfaces, they can define objects with arbitrarily complex topology. Definition. A 3D scalar field is a real-valued function 𝑓 defined over ℝ 3 . This function 𝑓 can then be used to define a surface in 3D space, by considering the preimage of a value 𝐶 ∈ ℝ, i.e. the set of points p such that 𝑓 (p) is equal to 𝐶:

𝑆 𝐶 = 𝑓 -1 (𝐶) = {p ∈ ℝ 3 | 𝑓 (p) = 𝐶} .
Scalar fields are also known as potential fields by analogy with their use in physics as potential energy fields from which some forces derive.

In this work, it is assumed that functions 𝑓 are at least 𝒞 1 almost everywhere (discontinuities are limited to a null-measure subset) and that 𝑆 𝐶 contains only regular points, i.e. points where the gradient ∇𝑓 is non-zero. Under these conditions, the set 𝑆 𝐶 is a 2D-manifold and is called the 𝐶-iso-surface of the scalar field 𝑓. Iso-surfaces are implicitly defined by the equation 𝑓 (p) = 𝐶, rather than by an explicit list of points or parametrization. They are thus known as implicit surfaces.

A scalar field thus represents an infinite family of implicit surfaces, one for each value of 𝐶 (though some can be degenerate -e.g. reduced to a point -or empty). If 𝑓 is differentiable, the scalar field not only gives the set of points on the surface but also a normal vector on each of these points:

⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n(p) = ∇𝑓 (p) ∥∇𝑓 (p)∥ .
From the first partial derivatives of 𝑓 it is also possible to obtain closed formulae for the tangent and binormal vectors. Similarly, if 𝑓 is twice differentiable, the Hessian matrix of 𝑓 gives informations about the implicit surface's curvature [START_REF] Goldman | Curvature formulas for implicit curves and surfaces[END_REF].

If 𝐶 is a regular value of 𝑓, it divides the space ℝ 3 into two subsets, Ω + and Ω -, where

Ω + = {p ∈ ℝ 3 | 𝑓 (p) > 𝐶} and Ω -= {p ∈ ℝ 3 | 𝑓 (p) < 𝐶} .
Which of these two subsets represents the inside of the object and which is the outside depends on the function. In general, the interior is often a bounded subset (and the exterior is unbounded), but this is not always the case (e.g. if 𝑆 𝐶 is an infinite plane).

In practice, a convention on the surface orientation along with a standard value for the constant 𝐶 is chosen in advance.

Example. The simplest implicit surface is perhaps the sphere; by defining

𝑓 (p) = ∥p∥ 2 = 𝑥 2 + 𝑦 2 + 𝑧 2 ,
the iso-surface where 𝑓 (p) = 𝑅 2 (for 𝑅 > 0) is a sphere of radius 𝑅 centred on the origin.

The sphere belongs to the family of algebraic surfaces called quadrics, where the function 𝑓 is a second order polynomial. Other quadrics include ellipsoids, paraboloids, hyperboloids, cones and cylinders. Higher degree algebraic surfaces generate a wider array of shapes: Möbius strips (degree 3), tori (degree 4), Klein bottles (degree 12), as illustrated by Figure 2.1.

Implicit shape models 2.2.1 Distance fields and global support functions

Distance fields are another important family of scalar fields, where the function 𝑓 (p) is defined as the distance between p and a given geometric set (sometimes called skeleton or source of the field).

Example. With a given point p 0 ∈ ℝ 3 and 𝑓 (p) = ∥p -p 0 ∥ , the iso-surface where 𝑓 (p) = 𝑅 is a sphere of radius 𝑅 centred on p 0 .

Distance fields have useful mathematical properties of their own: they are continuous, and their gradient is unitary, i.e. ∥∇𝑓 (p)∥ = 1. The generated shapes depend on the type of the skeleton: the previous example of the sphere is a distance field where the source is a single point p 0 , while using a segment as the skeleton will result in a capsule shape.

Distance fields can be easily extended to signed distance fields or SDF, where the sign of the field function at point p determines whether 𝑝 is inside or outside the object, and the object's surface is conventionally defined as 𝑓 (p) = 0.

Example. Defining a sphere as a signed distance field from its centre point p 0 :

𝑓 (p) = ∥p -p 0 ∥ -𝑅 .
A SDF is thus naturally oriented, using the sign of 𝑓 to tell the inside from the outside of the object: with the previous example, a point is inside the sphere if ∥p -p 0 ∥ < 𝑅 i.e.

where 𝑓 (p) < 0. This convention (referred in the following as the global support convention) can be extended to give a standard orientation to many 3D objects limited by implicit surfaces:

• the surface 𝜕Ω is the set 𝑆 0 where 𝑓 (p) = 0.

• the inside is the region Ω -where 𝑓 (p) is negative 

•

Compact support functions

Definition. The support supp(𝑓 ) of a scalar field 𝑓 is the set of points where 𝑓 is non-zero:

supp(𝑓 ) = {p ∈ ℝ 3 | 𝑓 (p) ≠ 0} .
SDF and similar functions usually have global support, which means supp(𝑓 ) is not bounded. Moreover, the absolue value of 𝑓 (p) grows higher as the distance from p to the surface increases.

From a computational point of view, this is an undesirable property: when evaluating several field functions, the value of distant objects will influence the result, and could create problems such as numerical instability and loss of precision, especially when blending several implicit surfaces together (see Section 2.3). On the other hand, when supp(𝑓 ) is bounded, the function 𝑓 is said to have compact support. In practice, this means their region of influence is limited to the neighbourhood of the implicit surface. This helps improving the efficiency of evaluating the composition of several implicit surfaces at a given point p, as only functions having p in their support need to be evaluated, while others can be discarded based on a simple spatial test (e.g. a bounding box). This is also helpful for [START_REF] Wyvill | Data structure for soft objects[END_REF].

storing
Given their nature, these functions follow a different convention than the global support convention:

• values of 𝑓 are usually bounded between 0 and 1.

• the surface 𝜕Ω is the set 𝑆 1 2

where

𝑓 (p) = 1 2
.

• the inside is the region Ω + where 𝑓 (p) > 1 2

• the outside is the region Ω -where 𝑓 (p) <

1 2
Compact support functions thus have the opposite orientation of SDF and similar fields.

The normal (pointing outwards) of an implicit surface following the compact support convention is:

⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n(p) = - ∇𝑓 (p) ∥∇𝑓 (p)∥ .
A summary of the differences between conventions can be found in Table 2.1.

Skeleton-based compact support functions provide somewhat of an equivalent to the globally supported skeleton surfaces. Their field functions are defined as a decreasing function 𝐾 of the distance 𝑑 from p to their skeleton.

𝑓 (p) = 𝐾(𝑑)

Similarly to distance fields, the nature of the skeleton will change the overall shape (point skeletons create spheres, segments create capsules, etc.).

The choice of the fall-of filter function 𝐾 has an influence on the properties of the field.

The first function proposed for point-based surfaces was a Gaussian kernel, which was drawn from actual physical models of electromagnetic fields of molecules to help with their graphical representation [START_REF] Blinn | A Generalization of Algebraic Surface Drawing[END_REF]:

𝐾(𝑑) = exp (- 𝑑 2 𝜎 2 ) ,
of which an illustration can be seen in Figure 2.3.

This function tends to zero as 𝑑 increases, yet never reaches it (it is not a proper compact support function). Even so, for numerical applications, the value of 𝐾 can be considered to vanish after a certain distance threshold (for example 𝐾(4𝜎) ≈ 10 -7 ). Many different fall-of filter functions subsequently published explicitly set a threshold 𝑅 (the radius of the support) after which 𝐾 vanishes.

Metaballs [Nis+85; NN94], degree 2:

𝐾(𝑑) = ⎧ { { { ⎨ { { { ⎩ 1 -3 ( 𝑑 𝑅 ) 2 if 𝑑 < 𝑅 3 3 2 (1 - 𝑑 𝑅 ) 2 if 𝑑 ∈ [ 𝑅 3 , 𝑅] 0 if 𝑑 > 𝑅
Soft objects [START_REF] Wyvill | Data structure for soft objects[END_REF], degree 6:

𝐾(𝑑) = ⎧ { { ⎨ { { ⎩ 1 - 4 9 ( 𝑑 𝑅 ) 6 + 17 9 ( 𝑑 𝑅 ) 4 - 22 9 ( 𝑑 𝑅 ) 2 if 𝑑 < 𝑅 0 if 𝑑 ≥ 𝑅
Blobby model [START_REF] Bloomenthal | Introduction to implicit surfaces[END_REF], degree 6:

𝐾(𝑑) = ⎧ { { ⎨ { { ⎩ (1 -( 𝑑 𝑅 ) 2 ) 3 if 𝑑 < 𝑅 0 if 𝑑 ≥ 𝑅
These functions define compact support scalar fields, and usually use a polynomial formula for faster evaluation. Using a higher degree polynomial guarantees a higher order of continuity of the field at the threshold. shows its extrusion along an helix curve 𝒞 Skeleton surfaces, described in the previous section, can be seen as a special case where 𝒫 is a circle of constant radius. The profile can however depend on the curvilinear coordinate of the axis curve 𝑠, for example, by making the radius grow and shrink with 𝑠.

Extrusion surfaces

Circles of varying radius can produce worm-like shapes, which are suitable for modelling organic objects (animals, human limbs, etc.). Anisotropic profile curves extend the range of possible objects even more: by providing a frame orthogonal to the axis curve, the profile function can be described by a polar curve in the plane orthogonal to the axis curve, as shown in Figure 2.4(a). This gives a polar curve 𝒫 defined by a radial function 𝑅(𝑠, 𝜃) in its most general form. This allows to define the extrusion of the polar curve along the axis curve, as illustrated by Figure 2.4(b).

Evaluating the field function at any query point q requires the projection of this point on the axis curve and computing the polar curve frame (⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ u, ⃗ v) which is locally orthogonal to 𝒞 at this projected point. After that, it is possible to evaluate the radius 𝑅 of the profile curve in the angular direction 𝜃. The function evaluates to the difference between this radius, and the distance between q and the axis curve. This process is described in detail in Algorithm 2.1 and illustrated by Figure 2.5.

This definition yields a global support function but can be converted to a compact support function by any of the fall-off filter functions mentioned in Section 2.2.2.

q ⃗ v 𝜃 h ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ u Figure 2
.5: Evaluation of an extrusion surface field function: the point q is projected on the axis curve 𝒞 on point h. The evaluation is the difference between the distance

∥ ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ qh∥
and the radius of the profile curve 𝑅(𝑠(q), 𝜃), defined in the orthogonal plane

(⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ u, ⃗ v).
Algorithm 2.1 f_extrusion: field function evaluation for an extrusion surface input: a query point q, an axis curve 𝒞 and a profile curve defined along the axis 𝒫 (𝑠).

output: the value of the field function 𝑓 (q) h = project(q, 𝒞)

Let 𝑠(q) be the curvilinear parameter of h on 𝒞

Evaluate the local normal frame (⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ u, ⃗ v) at h Let 𝜃(q) be the angle between ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ u and ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ qh
Evaluate the radius of the polar curve 𝑅(𝑠(q), 𝜃)

return ∥ ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗
qh∥ -𝑅(𝑠(q), 𝜃)

Composition of implicit surfaces

A key feature of implicit surfaces is the ability to combine several field functions to define a new surface whose properties are defined by the underlying fields.

Composition operators

Definition. Given 𝑛 field functions {𝑓 𝑖 } 𝑖=1..𝑛 , a n-ary composition operator is a function

𝐺 ∶ ℝ 𝑛 → ℝ which defines a new scalar field 𝐹 such as 𝐹(p) = 𝐺(𝑓 1 (p), ..., 𝑓 𝑛 (p)) .
The gradient of this new field ∇𝐹 is easily computed by the chain rule:

∇𝐹(p) = 𝑛 ∑ 𝑖=1 𝜕𝐺 𝜕𝑥 𝑖 | 𝑓 𝑖 (p) ∇𝑓 𝑖 (p) .
In general, the continuity class of 𝐹 is the minimum of the continuity of all the 𝑓 𝑖 and the continuity of 𝐺 itself. This means discontinuities can appear if the operator is non-smooth even if all the underlying fields are.

Example. Set-theoretic operators 𝐺 min and 𝐺 max can be defined as:

𝐺 min (𝑓 1 , ...𝑓 𝑛 ) = min(𝑓 1 , ...𝑓 𝑛 ) 𝐺 max (𝑓 1 , ...𝑓 𝑛 ) = max(𝑓 1 , ...𝑓 𝑛 )
In the global support convention, the field resulting from applying the min operator defines the geometric union of the two objects while the max operator defines the intersection.

The opposite is true for the compact support convention (see Table 2.1).

It is easy to express the usual Constructive Solid Geometry (CSG) operations such as geometric union, intersection and difference in the implicit surfaces framework [START_REF] Aristides | Representations of Rigid Solids: Theory, Methods, and Systems[END_REF].

It is natural to define complex objects by repeated assembly of implicit primitives recursively composed by operators which leads to define tree structures much like a classical CSG tree [START_REF] Wyvill | Data structure for soft objects[END_REF]. This composition tree, referred to as the blob-tree in the subsequent literature, has become the standard for implicit modelling.

Composition operators have been extensively studied, as they are the key to modelling complex objects as assemblies of implicit surfaces. To have more control on the assembly result, it is convenient to restrict the blending operators to binary: while it is possible to add a few parameters to control a binary composition, extending it to 𝑛-ary would require too many due to the combinatorial explosion.

An example of such a controllable binary operator for global support scalar fields was proposed by Pasko et al. [START_REF] Pasko | Function representation in geometric modeling: concepts, implementation and applications[END_REF]:

𝐺(𝑓 1 , 𝑓 2 ) = 𝑓 1 + 𝑓 2 -√ 𝑓 2 1 + 𝑓 2 2 + 𝑎 0 1 + ( 𝑓 1 𝑎 1 ) 2 + ( 𝑓 2 𝑎 2 ) 2 .
This operator provides three parameters: 𝑎 0 controls the global strength of the blend while 𝑎 1 and 𝑎 2 can give more weight to 𝑓 1 or 𝑓 2 , creating an asymmetric composition operator.

With 𝑎 0 = 0 this operator behaves as a clean union: it generates an exact (sharp) union between the two implicit surfaces and a 𝒞 1 field everywhere else, as demonstrated by space defined by (𝑓 1 , 𝑓 2 ). Points p 𝑖 in 3D space are mapped to the points of coordinates

(𝑓 1 (p 𝑖 ), 𝑓 2 (p 𝑖 )).

Graphical representation of operators

At this point, it is necessary to introduce a visualisation method to illustrate the operators discussed in this section. Graphical representations are extremely useful to better understand, control and design composition operators. For binary operators, it is possible to illustrate the operator by displaying the graph of the function 𝐺(𝑓 1 , 𝑓 2 ) on a 2D plane [START_REF] Hoffmann | Automatic surface generation in computer aided design[END_REF].

On this 2D graph, the 𝑥-axis plots values of 𝑓 1 and the 𝑦-axis values of 𝑓 2 . To each point p in 3D space corresponds a point on the 2D plane where the coordinates are 𝑓 1 (p) and Operators are shown by plotting different curves corresponding to iso-values of 𝐺.

For example, the resulting surface of the composed field is represented by the curve 𝐺(𝑓 1 , 𝑓 2 ) = 0.5 in the graph. Other iso-values curves depict the result of the composition on the inside and the outside of the object. For example, Figure 2.8 depicts an operator which smoothly blends two spheres.

Blending operators

Union and clean-union operators are often used in computer-assisted design to model objects with sharp edges. Blending operators are another important family of operators, enabling to assemble implicit objects and maintain the smoothness of the resulting assembled surface. To achieve this result, the operator itself must be continuous (ideally 𝒞 ∞ ) as recursive blending with low-order continuity operators can lead to discontinuities in the final result. This property is especially useful to model organic objects or fluids.

When introducing compact-support blobby objects for rendering atoms and molecules, Blinn [START_REF] Blinn | A Generalization of Algebraic Surface Drawing[END_REF] naturally defined the sum operator for field functions representing the probability of presence of electrons (see Figure 2.3): An early attempt on expanding the set-theoretic operations by Ricci [START_REF] Ricci | A constructive geometry for computer graphics[END_REF] led to defining a family of operators:

𝐺 + (𝑓 1 , ...𝑓 𝑛 ) = 𝑛 ∑ 𝑖=1 𝑓 𝑖 .
𝐺 𝑘 (𝑓 1 , ...𝑓 𝑛 ) = 𝑘 √ 𝑛 ∑ 𝑖=1 𝑓 𝑘 𝑖 .
The parameter 𝑘 controls the behaviour of the blending; 𝐺 1 is actually the sum operator, but as 𝑘 increases, 𝐺 𝑘 tends towards the max operator, while remaining 𝒞 ∞ . In Figure 2.9, we illustrate the result of composition with several operators, by showing their 2D graph, along with their application to two spheres.

The blending of implicit surfaces is useful for modelling, yet blending operators can behave quite unintuitively or lead to unwanted artefacts. As a consequence, many research efforts were directed towards providing more control on the final result to the designer and avoiding several pitfalls associated with blending [BGC01; Bar+03].

While compact-support functions are especially useful for composition, the blending operators described above will sometimes generate a composed function whose values go higher than 1. This can be problematic when chaining several composition operations together. It is always possible to clamp the results to 1, but this has an adverse effect on the metric in the inside parts of the objects. Canezin et al. [START_REF] Canezin | Adequate inner bound for geometric modeling with compact field functions[END_REF] developed an efficient solution by crafting specific operators whose value stays between 0 and 1.

In addition, they provide two new operators: a detail operator and a difference operator which respectively enable to add or remove small parts of a main object without creating critical points near the border. As shown on Figure 2.10, the resulting surface of the detail blending is not modified but the regularity of the scalar field inside is improved, by eliminating the critical point at the centre of the sphere detail.

Blending operators have been also been plagued by three common types of unwanted features which arise in modelling.

Bulging is the appearance of unwanted bumps on the surfaces. The blending operators add volume around the edges to create a smooth surface, but the addition is not localized and can create a bulge, e.g. in the case of the T-junction shown in Figure 2.11(a).

Blurring of details is caused by the difference of metric in the scalar fields which can make small objects deformed when blended with a larger object. This case is illustrated by Figure 2.11(b).

Changes of topology include blending at a distance when two separate objects are blended because of their proximity (Figure 2.11(c)), and the closing of holes, changing the surface's genus (Figure 2.11(d)). Computing the composition of two functions 𝑓 1 and 𝑓 2 is thus a multi-step process. Gradient-based operators provide an extra degree of freedom to model complex interactions between two scalar fields, with the specification of the controller function to enable the blending only at selected angles. With a specific controller, each of the three aforementioned blending artefacts can be avoided. For example, Figure 2.12 shows how a gradient-based operator resolves the bulging artefact of the T-junction.

Gradient-based operators

For practical applications in modelling, it is often preferable to specify the operator in terms of the desired result instead of using complex closed-formulae. For example, the contact operators by Vaillant et al. [START_REF] Vaillant | Robust Iso-surface Tracking for Interactive Character Skinning[END_REF] create a contact surface between two colliding implicit surfaces, shown on Figure 2.13. This family of operators was designed by imposing boundary conditions on the operator: 𝐺(𝑓 1 , 0) = 𝑓 1 and 𝐺(0, 𝑓 2 ) = 𝑓 2 . In addition, the 0.5-isosurface must be the union of the two initial surfaces, with an added contact surface at the intersection of the two objects, yielding the pattern seen in Figure 2.14. The remainder The warp function maps the input implicit surface's space to the space where it is deformed. When computing the value of 𝑓(p), the query point must be transported back from this deformed space to the initial space for 𝑓 to be computed, hence the inverse of 𝑤 appearing in the formula (see Figure 2.15 for an illustration of this process). Warping requires that 𝑤 is at least locally invertible, meaning that 𝑤 is 𝒞 1 and that its Jacobian matrix is nonsingular, i.e. |J 𝑤 | ≠ 0.

Gradient of a deformed field

The gradient of a transformed implicit function ∇𝑓 can be computed by the chain rule:

∇𝑓(p) = (J 𝑤 -1 (p)) T ∇𝑓 (𝑤 -1 (p)) ,
where J 𝑤 -1 (p) is the Jacobian matrix of 𝑤 -1 at 𝑤 -1 (p), which is the inverse of the Jacobian matrix of 𝑤 at 𝑤 -1 (p):

J 𝑤 -1 (p) = (J 𝑤 (𝑤 -1 (p)) -1 .
The matrix that locally transforms gradients (and thus normals) is the inverse transpose of the Jacobian matrix of 𝑤:

∇𝑓(p) = (J 𝑤 (𝑤 -1 (p))) -T ∇𝑓 (𝑤 -1 (p)) .
Example. In the simple case where 𝑤 is an invertible affine transform T(p) = Mp + ⃗ t,

the Jacobian matrix J T is constant and is equal to the linear part of T: J T = M. This yields

∇𝑓(p) = M -T ∇𝑓 (T -1 (p)) .
If T is actually a rigid transform (i.e. an isometry), then M is a rotation R ∈ SO(3) and R -T = R, which simplifies the formula even further :

∇𝑓(p) = R∇𝑓 (T -1 (p)) .

Figure 2.16:

Tracking points on a translating implicit sphere. Left: points on a translating sphere theoretically have the same velocity everywhere. Right: after advancing the sphere the tracking points will project radially to the surface and slide towards the back of the sphere. This equation is of great importance for the tracking of animated implicit surfaces [START_REF] Witkin | Using Particles to Sample and Control Implicit Surfaces[END_REF],

Animated implicit surfaces

i.e. attempting to find the trajectory of a set of points initially on the surface at 𝑡 = 0.

Tracking is used, for example, to keep a point cloud or a polygon mesh in sync with an implicit surface. Initial points can be user-supplied or obtained by any polygonisation method (e.g. marching cubes [LC87; Nie04]), and then track the surface during the animation, maintaining a consistent representation of the moving surface.

As a consequence, 𝑓 (p(𝑡), 𝑡) is constant (as p stays on the same iso-surface during motion), but p(𝑡) is not, thus the previous relationship gives a differential equation on the velocity of p:

dp(𝑡) d𝑡 ⋅ ∇𝑓 (p(𝑡), 𝑡) = - 𝜕𝑓 𝜕𝑡 (p(𝑡), 𝑡)
This differential equation gives only a radial constraint on the velocity of p (along ∇𝑓), leaving the tangential components unknown. This is a common issue with implicit surfaces, as the scalar field itself has no tangential parametrization per se. For example, the field of a sphere spinning on itself would be identical to a static field.

Solving the tracking problem thus requires to supply these tangential components with additional hypotheses. Ignoring the tangential component will lead to errors even in simple cases such as a translating sphere: the tracking points which are not aligned with the velocity vector will simply slide along the surface until they are concentrated to the points aligned with the translation vector, as can be seen in Figure 2.16. Stam and Schmidt [START_REF] Stam | On the Velocity of an Implicit Surface[END_REF] proposed to avoid these errors by maintaining the normals at the tracking points constant during the animation, which works for objects in translation, but not in rotation or for deforming objects. Fujisawa et al. [START_REF] Fujisawa | Calculation of Velocity on an Implicit Surface by Curvature Invariance[END_REF] presented a more robust approach based on curvature invariance.

This highlights how implicit surfaces and meshes complement each other in animation.

Vertices of a mesh can track a moving implicit surface by combining normal information from the field and its gradient, and use the tangential information of the original mesh.

This idea is at the core of the Implicit Skinning algorithm, which uses the tools presented in this chapter to solve several issues of geometric skinning.

3

Implicit Skinning

All problems in computer graphics can be solved with a matrix inversion.

-James F. Blinn, Jim Blinn's Corner: Dirty Pixels

With their capacity to define smooth organic-looking surfaces with only a small number of parameters, implicit surfaces were considered early on for character animation.

Their low memory footprint was seen as a key point for storage and transmission of digital animated characters in applications such as video-conferences [START_REF] Singh | Human figure synthesis and animation for virtual space teleconferencing[END_REF] or virtual reality [START_REF] Daniel Thalmann | Fast realistic human body deformations for animation and VR applications[END_REF].

As GPUs became increasingly common, the cost of rendering polygon meshes became lower while the display of implicit surfaces remained computationally expensive. Implicit surfaces thus fell out of favour in mainstream animation applications. Yet they remain a useful complement surface representation to polygon meshes. This complementarity was exploited by Vaillant et al. [START_REF] Vaillant | Implicit Skinning: Real-time Skin Deformation with Contact Modeling[END_REF][START_REF] Vaillant | Robust Iso-surface Tracking for Interactive Character Skinning[END_REF]. Their method is able to correct many issues of geometric skinning while remaining fast enough for interactive use.

In the following sections, we detail the necessary steps to define the skin scalar field and describe how this representation is used for skinning.

A first step, described in Section 3.1, constructs the implicit surface representation of the skin from the character mesh in the reference pose and maintains its consistency with the skeleton during the animation. The mesh is segmented according to the skeleton bones, and each part of the mesh is represented by a separate scalar field (Section 3.1.1). These primitive fields are then combined with composition operators (Section 3.1.2). The result of this process is an implicit surface which closely matches the initial character mesh.

During the animation, the implicit surfaces are transformed rigidly with the animation skeleton, and the resulting surface obtained by composition of these primitives thus adapts to the current animation pose, as described in Section 3.1.3. The next sections detail the Implicit Skinning algorithm. As a first step, DQS (described in Section 1.4.2) moves the vertices to their starting position. From this initial guess, the vertices are alternatively projected towards their target iso-surface on the implicit skin and displaced tangentially to minimize a local deformation energy. We first present each operation independently: the iso-surface tracking in Section 3.2 and the energy minimization in Section 3.3. Finally, we detail how these two steps are interleaved to make the vertices converge to their final position in Section 3.4.

Implicit skin representation 3.1.1 HRBF primitives

The first step to setup Implicit Skinning is to generate an implicit surface which approximates the character mesh, while being able to deform with the skeletal movements. To this effect, the character mesh (in rest pose) is partitioned by associating each vertex with the skeleton bone which has the most influence on its movement (Figure 3.1(a)). If skinning weights are available, vertices are associated with the highest weighted bone; if not, automatic partition methods or a user-supplied partition can still be used. 

p i ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n i
∇𝑓 (p i ) = ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n i , as shown in Figure 3.2.
Definition. Given a basis function 𝜙 ∶ ℝ → ℝ, an HRBF is defined as

𝑓 H (p) = 𝑁 H ∑ 𝑖=1 𝑎 𝑖 𝜙 (‖p -p 𝑖 ‖) + ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ b 𝑖 ⋅ ∇(𝜙 (‖p -p 𝑖 ‖)) .
This field 𝑓 H is expressed as a linear combination of radial-basis functions 𝜙, whose value only depend on the distance to a center point, and their gradient. Computing the coefficients 𝑎 𝑖 and ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ b i of the linear combination thus requires to solve the equations:

⎧ { { ⎨ { { ⎩ 𝑓 H (p i ) = 0 ∇𝑓 H (p i ) = ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n i
which can be done by solving a linear system of size 4𝑁 H . The function 𝜙 used in Implicit Skinning is 𝜙(𝑟) = 𝑟 3 .

The Poisson sampling gives generally good results but its random nature sometimes makes the HRBF's shape quite different from the initial mesh part it is supposed to represent. Such problems arise generally when sampling high-frequency areas of the mesh where the sampled point can lie on sharp details and thus distort the shape representation. (Pictures from [START_REF] Vaillant | Implicit Skinning: Real-time Skin Deformation with Contact Modeling[END_REF])

Fortunately, after HRBF points are sampled, they can still be manually edited by adding, deleting points or changing the sampled points' position or normal, to better capture the shape without the high-frequency details.

Because the mesh vertices belonging to one part often exhibit a cylindrical shape, the reconstructed HRBF fails to capture the shape at the end of this part, where the mesh connects with the next part over a skeleton joint. This yields an unwanted bulge when the joint bends, as shown in Figure 3.3(a). To correct this artefact, two points are added at each end of the shape. Computing the distance between the proximal and distal end points of the bone and the group of vertices v i gives a radius 𝑟 𝑗 for each endpoint. A new HRBF sample point is then added at this distance, following the direction of the bone segment, as illustrated in Figure 3.

3(b).

Once the HRBF surface closely matches the input mesh, the result can be saved alongside the model and reused in subsequent animations. Each HRBF field is converted to a compact support scalar field with the following fall-of filter function:

𝐾(𝑑) = ⎧ { { { ⎨ { { { ⎩ 1 if 𝑑 < -𝑅 - 3 16 
( 𝑑 𝑅 ) 5 + 5 8 ( 𝑑 𝑅 ) 3 - 15 16 
( 𝑑 𝑅 ) + 1 2 if 𝑑 ∈ [-𝑅, +𝑅] 0 if 𝑑 > 𝑅 , (3.1) 
which guarantees 𝒞 2 continuity at 𝐾(𝑑) = 0 and 𝐾(𝑑) = 1. The support radius 𝑅 is set at the highest distance from the sampled points p i to the bone axis, given that limbs usually exhibit a rough rotational symmetry around their animation bone. 

Composition operators

Each vertex group associated to bone 𝑗 now has a compact-support field function 𝑓 𝑗 ; all these functions have to be combined together to provide a unique skin field 𝐹 using composition operators. In skinning, the contact operator defined in Section 2.3.4 is employed for its ability to model a contact surface between two intersecting body parts, such as the arm and forearm (Figure 3.4). (Pictures from [START_REF] Vaillant | Robust Iso-surface Tracking for Interactive Character Skinning[END_REF])

For this operator, the controller function 𝜅, which maps the gradients angle with the operator's parameter 𝛼 is set to a default function shown in Figure 3.5. This default controller smoothly interpolates between the union and the contact around a gradients

angle of 𝜃 = 𝜋 2
. This controller works for most joints of the character. For joints that can bend to sharp angles (such as the elbow or the knee), a sharper transition, starting at wider angles, will increase the consistency of the contact surface. Another option is to use the bulge-in-contact operator, which inflates the surfaces in the contact areas. This behaviour increases the plausibility of the deformed surface at the finger joints, as illustrated by Figure 3.6. In this case, a specific controller is specified for the bulge operator.

The final surface building algorithm proceeds recursively, following the tree structure of the skeleton. Functions associated with leaf bones are first composed with their parent bone's function. Then, the resulting composed function is composed with its parent, and so on. Typically, in humanoid skeletons, some joints have more than one child: for example the hips or the neck. Because the composition operators are binary, separate branches are assembled two by two, until all branches are taken into account. This process is illustrated in Figure 3.7. At the end, the topmost composition operator defines the scalar field 𝐹 which represents the whole skin. With this definition of 𝐹, the evaluation of its value at a given point p might appear costly, because it would require the evaluation of each primitive function 𝑓 𝑗 (p), and the recursive composition of all these values with the tree of operators. However, because the 𝑓 𝑗 are compact-support functions, only the surfaces closest to p will influence the result, as the other primitives will evaluate to 0.

The composition tree also includes a bounding volume hierarchy (BVH) tree to speed up the evaluation by discarding any request at a point outside the node's bounding volume. 

Animation of the implicit surface

During animation, at each time step 𝑡, the scalar fields are transformed by their associated bone transform B 𝑗 (𝑡). Using the field spatial transformation formula defined in Section 2.4,

𝑓 𝑗 (p, 𝑡) = 𝑓 𝑗 ((B 𝑗 (𝑡)) -1 p) ∇𝑓 𝑗 (p, 𝑡) = R 𝑗 (𝑡) ∇𝑓 𝑗 ((B 𝑗 (𝑡)) -1 p) ,
where R 𝑗 (𝑡) is the rotational part of B 𝑗 (𝑡).

This yields a time-varying topmost skin field 𝐹 𝑡 which represents the recursive composition of the transformed primitive fields. The skin field follows the motion of the skeleton and, thanks to the contact operator, generates a contact surface inside the two colliding fields, as shown in Figure 3.4(a). 

𝑓 𝑖 = 𝐹 𝑡 (v 𝑖 ) ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ g i = ∇𝐹 𝑡 (v i ) 𝑑 = 𝑓 𝑖 -𝑒 𝑖 if (|𝑑| < 𝜖) then // Stop case: the point is already at 𝑒 𝑖 return v 𝑖 end if ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ h = -𝜆𝑑 ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ g i ∥⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ g i ∥ 2 // Compute displacement vector v ′ 𝑖 = v 𝑖 + ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ h // Advance the point along the displacement direction 𝑑 ′ = 𝑓 (v ′ 𝑖 ) -𝑒 𝑖 if (𝑑(𝑑 -𝑑 ′ ) < 0) then // Stop case: the iso-value difference has increased return v 𝑖 end if if (𝑑𝑑 ′ < 0) then // Stop case: intersection found along the displacement direction return dichotomy_search (𝑓 , v 𝑖 , v ′ 𝑖 , 𝑒 𝑖 ) end if return v ′ 𝑖 // Advance by the full length of ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ h v 1 v 2 v 3 v 4 ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ h v ′ 3 v ′ 4 ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ h ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ h v ′ 2 Figure 3
.8: Implicit Skinning projection step, illustrating all possible cases. v 1 is already on its target iso-surface, and does not move. v 2 is advanced along the gradient direction and crosses its target iso-surface. The points moves to the intersection. v 3 is advanced along the gradient, but falls short of the target surface. The points moves the full length of the displacement vector ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ h. v 4 is advanced along the gradient, but its new position is further away from the surface. It remains at the same position.

Surface tracking

As seen in Figure 3.2, the skin field's surface does not perfectly matches the mesh, but instead attempts to capture the overall low-frequency shape. This field is used as a guideline to correct the shortcomings of a geometric skinning approach.

Before animating the mesh, the value of the field 𝑒 𝑖 = 𝐹 𝑡=0 (v ref 𝑖 ) is evaluated at each vertex of the mesh in its reference position. During animation, the vertices of the mesh are first deformed using a geometric skinning method to a starting position v 𝑖 . Comparing the value of the animated field 𝐹 𝑡 at these new positions to the initial value identifies which vertices positions need to be corrected.

These vertices are displaced to pull them back to their correct iso-surface of the scalar field 𝐹 𝑡 ; in essence each vertex v 𝑖 is tracking the 𝑒 𝑖 iso-surface 𝑆 𝑒 𝑖 of 𝐹 𝑡 . This process, described in Algorithm 3.1, is implemented as an iterative gradient descent, until the target iso-value is reached. At each tracking step, the value and gradient of 𝐹 𝑡 at the current position 𝑣 𝑖 is evaluated, and a displacement vector ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ h is computed. This vector's direction is given by the gradient of 𝐹 𝑡 and its length is proportional to the difference 𝑑 between the current value 𝐹 𝑡 (v 𝑖 ) and the target value 𝑒 𝑖 , and a step scale factor 𝜆 which controls the speed at which the points converge to their iso-surface.

If the displacement of v 𝑖 crosses the target iso-surface, the precise location of the intersection is located by dichotomy search, and the point is only moved to this intersection.

Otherwise, the point is moved along the displacement vector, but only if the new position has a value closer to the target. If the move would increase the target value difference, the point stays in the same position, waiting for a subsequent step (with a smaller step factor 𝜆) to find the correct moving position. Figure 3.8 gives an illustration of the possible cases of the tracking step.

Being a gradient-descent step, the tracking will fail to compute a displacement direction if the gradient is 0 at the current position of the vertex. For that reason, it is crucial to maintain a field without singular points near the surface of the mesh, or some vertices can get trapped. HRBFs used in modelling character body parts usually have singular points near their axis (i.e. the skeleton bone). This is averted by the use of DQS as a first geometric skinning method as the candy-wrapper artefact of LBS would bring the point too close to the central axis. In contrast, DQS has a natural tendency to push the vertices outwards which prevents the vertices from being to close from the inside. Additionally, since 𝐹 𝑡 is a compact support function, the field and gradient are both null outside of its support. The choice of the support radius 𝑅 (as defined in Section 3.1.1) is therefore important to prevent the vertices from getting stuck too far away from the surface. By following the gradient, each vertex will converge towards the nearest point on their target iso-surface. Yet, as mentioned is Section 2.5, this only corrects the vertex normal position without considering problems that arise in the tangential direction. In practice, the vertices will slide along the surface, distorting the mesh's triangles and yielding a visually unappealing deformation, calling for a tangential scheme to avoid these distortions.

Tangential relaxation and skin elasticity

To mitigate the distortions, the structure of the mesh can be exploited to correct the position of the vertices v (p) 𝑖 after the projection step in the tangent plane 𝒯, i.e. the plane normal to

∇𝐹 (v (p) 
𝑖 ). Vaillant et al. [START_REF] Vaillant | Implicit Skinning: Real-time Skin Deformation with Contact Modeling[END_REF] initially proposed to use a relaxation scheme based on barycentric coordinates but later moved on [START_REF] Vaillant | Robust Iso-surface Tracking for Interactive Character Skinning[END_REF] to a formulation based on the as-rigid-as-possible (ARAP) energy introduced by Sorkine and Alexa [START_REF] Sorkine | As-rigid-as-possible surface modeling[END_REF].

The ARAP energy is a function defined on the mesh which measures its deformation relatively to its reference shape. For any vertex v 𝑖 , the local deformation energy 𝐸 𝑖 is defined as:

𝐸 𝑖 = ∑ v 𝑘 ∈𝒩(v 𝑖 ) 𝑐 𝑖𝑘 ∥(v 𝑖 -v 𝑘 ) -R 𝑖 (v ref 𝑖 -v ref 𝑘 )∥ 2
where 𝒩(v 𝑖 ) is the neighbourhood of v 𝑖 , that is to say, the vertices immediately connected to v 𝑖 through an edge of the mesh, and R 𝑖 is a rotation matrix. The weights 𝑐 𝑖𝑘 are the classical lying on the iso-surface, then is moved by the relaxation to v (r) 𝑖 , which is the projection on the tangent plane of the result of 𝑁 𝐴 ARAP Jacobi iterations v

(N A ) 𝑖
ARAP energy 𝐸 is the sum of all individual vertex deformation energies over the whole mesh:

𝐸 = 𝑛-1 ∑ 𝑖=0 𝐸 𝑖 .
In the standard ARAP formulation, the deformation energy is minimised by iterating a two step process. The first step finds the optimal rotation matrices R 𝑖 which transform 𝒩(v ref 𝑖 ) into 𝒩(v 𝑖 ). The second step moves the vertices v 𝑖 to minimize the energy. As the energy is quadratic in terms of the vertex positions, the local minimum can be found with Newton's method by solving a 3𝑛 × 3𝑛 linear system.

Because of the first step, the overall algorithm is non-linear and thus requires an iterative approach to find a satisfying solution. Additionally, computing the optimal rotations requires a polar decomposition of the Jacobian of the local deformation per vertex, which is a costly operation. Moreover, this estimation is prone to introduce errors in the subsequent mesh such as triangle inversion or edge collapse [START_REF] Bouthors | Twinned Meshes for Dynamic Triangulation of Implicit Surfaces[END_REF]. However, in the case of skinning, this expensive step can be avoided by using the skeleton transforms as an additional source of information. The rotations R 𝑖 are set a priori to the rotational part of the dual-quaternion transform from 𝑃 ref to 𝑃 affecting v 𝑖 , in other words, a blend of the skeleton bones transform for which v 𝑖 has a non-zero skinning weight (as described in Section 1.4.2).

As said above, with the rotation fixed, it is possible to compute the optimal positions of the vertices v 𝑖 from their position after the projection step v (p) 𝑖 by solving the linear system:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ v0 v1 ⋮ v𝑛-1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ v (p) 0 v (p) 1 ⋮ v (p) 𝑛-1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ -H 𝐸 -1 ∇𝐸 ,
where H 𝐸 is the Hessian of 𝐸.

The chosen implementation for the relaxation step is the Jacobi method, an iterative method converging to the optimal solution. At a given Jacobi step 𝑗, the positions of the vertices is updated with the following formula

v (j+1) 𝑖 = ∑ 𝑘∈𝒩(v 𝑖 ) 𝑐 𝑖𝑘 v (j) 𝑘 + b 𝑖 ,
where 𝑐 𝑖𝑘 are the normalized cotangent weights

𝑐 𝑖𝑘 = 𝑐 𝑖𝑘 ∑ 𝑛 𝑘=0 𝑐 𝑖𝑘
, and b i is defined as

1 2 𝑛 ∑ 𝑘=0 𝑐 𝑖𝑘 (R 𝑖 + R 𝑘 )(v ref 𝑖 -v ref 𝑘 ) .
The derivation of the previous expressions is detailed in Appendix A.1.

Yet, when moving the vertex towards the computed optimal position, it could move away from its iso-surface, defeating the purpose of the projection step. The relaxation is therefore constrained to the tangent plane 𝒯, by projecting the last point v

(N A ) 𝑖
onto the tangent plane, as shown in Figure 3.10. The resulting point v (r)

𝑖 is the output of the ARAP step described in Algorithm 3.2.

The tangent plane projection is a linearisation of the iso-surface constraint, and thus does not guarantees that v (r) 𝑖 will satisfy 𝐹 𝑡 (v (r) 𝑖 ) = 𝑒 𝑖 . This suggests to use an iterative process interleaving the projection step with the relaxation step, repeated until the point has reached a position that both minimizes the deformation energy and is on the target iso-surface.

Implicit Skinning algorithm

The success of Implicit Skinning requires a careful balance between the surface tracking and the relaxation scheme. The progress of the projection step towards the target iso- 

∑ 𝑛 𝑘=0 𝑐 𝑖𝑘 (R 𝑖 + R 𝑘 )(v ref 𝑖 -v ref 𝑘 ) for 𝑗 = 0 to 𝑁 𝐴 do v (j+1) 𝑖 = b 𝑖 + ∑ 𝑛 𝑘∈𝒩(v 𝑖 ) 𝑐 𝑖𝑘 v ( 

Time-dependency

Implicit Skinning is a corrective algorithm: it starts with an initial solution and moves the vertices to a position that fits the iso-surface constraint and the ARAP energy minimization.

In practice, a better consistency can be achieved at the cost of the independence of history. In this case, for the initial solution DQS is not applied from the reference vertices, but from the vertices of the previous frame of animation. In other words, the previous frame is treated as the reference mesh for the next frame. This time-dependency means that the result of skinning depends not only on the current pose, but also on the previous poses:

two different animations will yield different results even if they reach the exact same pose.

This has a positive effect on performance, because it limits the number of projection and ARAP iteration steps, as the vertices start closer from the optimal solution. In addition to the performance gain, it renders the result of the skinning almost insensitive to the skinning weights distribution. In their implementation, Vaillant et al. [START_REF] Vaillant | Robust Iso-surface Tracking for Interactive Character Skinning[END_REF] achieve smooth deformations even with rigid weights (i.e. the weight of the nearest bone is 1 and all the others are 0). The loss of history-independence can however be a problem to attain reproducible results interactively. The method is still deterministic when playing the same animation twice.

Discussion

Implicit Skinning greatly improves the results of its initial geometric solution by focusing on the modelling of the joints. Because the points track their iso-surface, collapsing or bulging at joints is averted. Moreover, the use of operators to generate a contact surface on which the vertices project resolves self-penetration of the mesh, a problem that was difficult to avoid with purely geometric methods.

Despite its complexity, this method is able to run at interactive frame-rates. Several design and implementation choices of Implicit Skinning are dictated by the performance requirements. Since the function and its gradient are evaluated several times for each vertex, inefficiency in this evaluation can degrade the frame-rate dramatically. As seen in Section 3.1, memory is traded off to increase the function evaluation efficiency by storing the values in a 3D grid, and using a BVH tree for the global field evaluation. Moreover, the two main subroutines of the algorithm can be processed in parallel for each vertex v 𝑖 either on a GPU or on a multithreaded CPU.

On a more theoretical standpoint, the usefulness of the approach, arises from its separation between the volumic effects, which are represented by the implicit surfaces and their interaction, and the surfacic effects, which are computed from the mesh. However, the modelling approach using HRBFs and contact operators limits the kind of effects that can be represented around the joints. This produces some sort of dynamic effects with the bulge-in-contact operation on the fingers of Figure 3.6(c), but this is a very limited use-case. Except for their rigid transformations, the surfaces do not deform and cannot reproduce dynamic deformations happening in the limbs, in particular, those due to muscles.

However, because the tracking algorithm does not rely on any assumption on the underlying scalar field, it is possible to enrich the implicit skin representation in order to account for dynamic anatomic effects localized in the different parts of the body. Our contribution, described in the next part, is the definition of such a model to simulate the dynamics of muscles on the skin, thus increasing the liveliness of the characters animated with this method.

4

Implicit muscle models

We admire the skillful construction of the fibers in each muscle; how much more then ought we to admire it in the brain.

-Niels Steensen (1638 -1686), Discours sur l'anatomie

In this chapter, we present an implicit model which can represent muscle shapes. First, we examine the physical properties of real-life muscles that the model must take into account to produce plausible shapes and deformations. Second, we introduce a family of extrusion surfaces (presented in Section 2.2.3) defined by a scalar field function 𝑓 𝑀 whose iso-surface represents a muscle. We then describe the parameters of this model, how they are constrained to represent plausible muscle shapes and ensure volume preservation.

This chapter concludes by a discussion on the practical consequences of the choices made for this model.

Muscle anatomy 4.1.1 The different types of muscles

The human body has more than 400 muscles divided in two categories. Skeletal muscles, or voluntary muscles, set the body in motion by contracting or extending, generating a force that moves the bones of the skeleton. These motions happen either consciously, e.g.

when walking, or unconsciously as reflexes, e.g. when maintaining balance. Involuntary muscles, on the other hand, are muscles that are only controlled by unconscious processes.

They include the walls of the heart and smooth muscle tissues that surround other organs (such as the stomach and intestine). These muscles lie deep in the human body and have no visible effect on the skin. We thus focus our study on skeletal muscles. As an example, Skeletal muscles exert force on the skeleton through tendons, located at their extremities.

Tendons are made of stiff tissue and connect the muscular system to the bones. The attachment which is static during the muscle's contraction is the origin, while the attachment which tends to be moved is the insertion. Typically, the origin is proximal (i.e. closer to the body's centre of gravity) and the insertion is distal, such as in the biceps and the pectoral of Muscles in this category are characterized by a wide origin and a relatively smaller insertion point. Their cross-section is flat, and their longitudinal shape is roughly triangular.

Deformations

A key property of muscle deformation is the conservation of volume [START_REF] Stensen | De musculis et glandulis observationum specimen: cum epistolis duabus anatomicis[END_REF]. When moving, the shape of the muscle changes, but its volume remains constant. This is, of course, a property that is not valid for very long timescales as muscles grow with physical exercise or shrink with inactivity. For the range of motions we consider in animation, however, this assumption is largely verified.

Muscles have two modes of deformation: isotonic and isometric. Isotonic deformation happens when the muscle contracts or extends, setting into motion the bones to which it is attached. For example, the biceps will drive the forearm closer to the arm to bend it. Because the muscle's length is shortening, its width will increase, keeping its volume constant, creating the familiar bulging of the arm. In isometric deformation, the muscle's length does not change, but the tension of the muscle increases, for example to counteract the weight of an heavy object. This phenomenon is known as activation. In that case, the muscle's shape changes to increase the force exerted by the muscle but the endpoints stay static. These two modes are illustrated by Figure 4.4. Except in dedicated physical exercises, the deformations observed during human motion are often a combination of these two modes.

A muscle model for skinning

Skeletal muscles are made of fibers which can contract and expand. In real life, the muscles exert force on the bones to set them in motion. However, in the case of animation, the skeleton rig drives the position of the character. Our goal is therefore not to model the physical behaviour of the muscles as in physics-based animation methods (as described in Section 1.2), but to define a model which produces shapes similar to the shapes of real muscles. Our muscles have to be set up on the reference pose of the mesh, typically by their end points and initial shape, and deform with the animation skeleton according to a set of rules inspired from real muscles. This model should be able to account for isotonic deformations caused by the skeleton motion, but also offer the possibility to be activated to reflect isometric deformations. As seen above, volume conservation is a crucial constraint which affects the muscle's shape and it must be preserved during deformation.

Our muscles should be represented by an implicit surface, as our goal is to integrate them within the implicit skin representation. We thus seek to define a continuously differentiable scalar field 𝑓 𝑀 which can produce the different shapes of muscles described above. We define several parameters specifying the shapes of muscles at rest and in the deformation modes discussed in this section, maintaining volume conservation as the shape of the muscle deforms over time. Given the roughly circular cross-section of most muscles, the surfaces we define are sweep surfaces around a central axis representing the line of action of the muscle. Additionally, we model the elasticity of muscle tissue by enabling deformations on this central axis.

Muscle model

A muscle is defined as a 3D scalar field 𝑓 𝑀 ∶ ℝ 3 → ℝ which represents an extrusion surface, as defined in Section 2.2.3. The axis curve is a polyline 𝒞, which defines the central axis of the muscle, and the shape is defined by a profile function 𝑅. A summary of notations is given in Figure 4.5.

The initial state of the axis is defined by positioning the two end points, origin and insertion, and attaching them to the animation skeleton. The shape of the muscle is controlled by the parameters of the profile function 𝑅.

The computation of the value of the scalar field 𝑓 𝑀 at any given point q ∈ ℝ 3 is broken down in the following steps:

p 𝑖 m 0 m 1 q 𝒞 ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n m 0 ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n m 1 𝑓 𝑀 = 0 𝜃(q)
q cross-sectional view: • construction of the polyline 𝒞,

⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n 𝑖 𝒞(𝑠(q))
• projection of q on 𝒞, yielding the projection point h = proj(q) with its curve coordinate 𝑠,

• evaluation of the normal on the axis at 𝑠 and the angle 𝜃 within the normal plane,

• evaluation of the sweeping profile function 𝑅(𝑠, 𝜃).

The value of the field at q is then given by

𝑓 𝑀 (q) = ∥ ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗
qh∥ -𝑅(𝑠, 𝜃) .

Construction of the central axis

The muscle is defined by its two endpoints m 0 and m 1 , each attached to an animation bone: they move kinematically during the animation. The segment [m 0 m 1 ] is divided into 𝑁 𝑀 parts with intermediate control points p 𝑖 . The resulting polyline 𝒞 is parametrized by 𝑠 ∈ [0, 1], and we note 𝑠(q) the curvilinear parameter of the projection h of q on 𝒞. While the control points p 𝑖 start on the straight line between the end points, they are allowed to move during the animation, as described in Chapter 5.

In order to define the polar profile along the central axis, the polyline is oriented at each endpoint by given normal vectors ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n m 0 and ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n m 1 . From these two endpoint normals, we define a normal vector at each point of 𝒞 as follows. We associate to each control point of the polyline p 𝑖 a normal vector ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n 𝑖 . Firstly, we interpolate the end points normal by spherical linear interpolation at each intermediate point p 𝑖 . In order to account for the local deformation of the polyline, these interpolated vectors are projected on the plane defined by p 𝑖-1 , p 𝑖 and p 𝑖+1 when the points are not aligned. If the three points are aligned, we interpolate the normals of the two closest points for which they are defined. Secondly, the polyline normal at 𝑠(q) is then computed by spherical linear interpolation of the control points normals ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n 𝑖 , ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n 𝑖+1 of the polyline segment it belongs to.

Projection on the axis

In the evaluation of the function, the projection operation is crucial to the continuity of the implicit surface. Projecting the query point orthogonally on the closest segment yields discontinuities when the polyline deforms, as is illustrated by Figure 4.6. Discontinuities appear in the inner part of the dihedral angles of two consecutive segments, where the discrepancy in distance caused by the variation of the profile's radius leads to a sudden jump. This is especially prominent if there is a local twist defined on the segment, as the orientation of the polar curve, which depends on the normal, will not vary continuously.

On the other hand, the outer part of the dihedral angles always projects to a spherical wedge, maintaining a continuous surface. This issue, which arises from the angles of the polyline, is similar to the problem of interpolating a smooth normal on a polygon mesh

[KVS99; Pan+13].
We solve this problem by detecting when the point is in the inside part of an angle, and reparametrizing the projection in this case. We start by computing the closest point h 𝑖 from q to each segment [p 𝑖 p 𝑖+1 ]. Standard orthogonal projection would then return the nearest point on the polyline , i.e. the point which minimizes

∥ ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗
qh i ∥, creating the discontinuities mentioned above. In our case, we detect cases when the point is in the inner part of the dihedra between two successive segment by examining if the projected h 𝑖 point lies on the interior of the segment or on its extremities. The re-projection is applied when the query point's projection on two consecutive segments is an interior point, as

shown in Figure 4.7.

If the point is indeed in the problematic area, we reparametrize the projection point using the cotangent of the angles 𝜆 𝑖 and 𝜆 𝑖+1 formed between the point and the two segments (as depicted in Figure 4.8). This process is summarized in Algorithm 4.1. The

h 0 q h 1 h 2 h 3 h 4 h 0 q h 1 h 2 h 3 h 4 Figure 4
.7: Projection on a polyline. The query point q is projected on each segment of the polyline. Each point h 𝑖 is the nearest point from q on segment 𝑖. Top figure: When two consecutive nearest points h 1 and h 2 belong to the interior of their segment, the query point is in the inner part of the dihedra (red area). Bottom figure: when the query point is in the outer part of an angle, at most one of the nearest point will not be an extremity of its segment.

p 𝑖 p 𝑖+1 p 𝑖+2 h 𝑖 h 𝑖+1 𝜆 𝑖+1 𝜆 𝑖 q Figure 4
.8: Reparametrization of inner angle. The projection of q is computed by weighting the curvilinear coordinate of the projected points on each segment h 𝑖 and h 𝑖+1 by the cotangent of the associated angles 𝜆 𝑖 and 𝜆 𝑖+1 .

Algorithm 4.1 Re-parametrization of the polyline projection

input: A polyline 𝒞 defined by its control points p 𝑖 and a query point q output: A projected point h on 𝒞 and the corresponding parameter 𝑠(q) for all segments [p 𝑖 , p 𝑖+1 ] of 𝒞 do compute h 𝑖 , the nearest point from q to the segment and 𝑠 𝑖 its parameter end for Let h * be the nearest point from q among all h 𝑖 , and 𝑠 * its parameter.

// Check if the point projects on the interior of two consecutive segments

if ∃ 𝑖 such as ((h * = h 𝑖 or h * = h 𝑖+1 ) and (none of h 𝑖 , h 𝑖+1 belongs to {p 0 , … p 𝑁 𝑀 } ))

then

𝑠(q) = 𝑠 𝑖 cot 𝜆 𝑖 +𝑠 𝑖+1 cot 𝜆 𝑖+1 cot 𝜆 𝑖 +cot 𝜆 𝑖+1 else 𝑠(q) = 𝑠 * end if return h = 𝒞(𝑠(q))
Orthogonal projection Our projection operator Figure 4.9: Comparison between standard point-to-segment orthogonal projection, and ours. Colors are computed from the curvilinear coordinates 𝑠(q). Note the discontinuities appearing when using standard orthogonal projection are avoided with our operator.

projection algorithm guarantees a smooth transition of the projection instead of a jump from the area of influence of one segment to the next. The result of this reprojection is shown in Figure 4.9.

Function evaluation

The extrusion surface is defined by sweeping a polar curve over the central axis 𝒞. To describe the shape we specify a radial function 𝑅(q) which depends on:

• The curvilinear parameter 𝑠(q),

• The angle 𝜃(q) between the polyline normal at 𝑠(q) and the vector ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ qh.

We specify 𝑅 as a separable function in each parameter:

𝑅(q) = 𝑤Φ(𝑠(q))𝑟(𝜃(q)).

This definition distinguishes between the shape of cross-section of the muscle, defined by 𝑟(𝜃), and the evolution of its width along its axis, specified with Φ(𝑠). The separability is also useful to simplify the evaluation of the volume of the muscle to ensure its conservation, as will be shown in the next section.

Shape parameters and volume preservation

The model presented above is defined by several parameters which control the shape of the muscle:

• The central polyline 𝒞,

• The width scale factor 𝑤,

• The profile function Φ,

• The cross-section function 𝑟.

These parameters evolve during the animation as the result of the motion of the character or as prescribed by an animator. We first show how they must be constrained in order to model volume preservation. We then define functions which respect these constraints and show how to use them to model the two deformation modes of the muscle.

Evaluation of volume

When 𝒞 is a straight line, we can evaluate the volume of the muscle in cylindrical coordinates (𝜌, 𝜃, 𝑠) as

𝑉 = ∭ d𝜌 𝜌d𝜃 𝑙d𝑠 ,
where 𝑙 is the total length of the polyline, and 𝜌 is the radial integration variable (𝜌 ∈ [0, 𝑅(𝑠, 𝜃)]). This can be further developed by integrating successively each variable:

𝑉 = ∫ 1 𝑠=0 ∫ 2𝜋 𝜃=0 ∫ 𝑅(𝑠,𝜃) 𝜌=0 𝜌d𝜌 d𝜃 𝑙d𝑠 .
Integrating in 𝜌 yields: Using the separability of 𝑅:

𝑉 = 𝑙 ∫ 1 𝑠=0 ∫ 2𝜋 𝜃=0 (𝑅(𝑠, 𝜃)) 2 2 d𝜃d𝑠 .
𝑉 = 𝑤 2 𝑙 ∫ 1 𝑠=0 (Φ(𝑠)) 2 d𝑠 ∫ 2𝜋 𝜃=0 (𝑟(𝜃)) 2 2 d𝜃 .
We thus require that the profile function Φ and the cross-section function 𝑟 each satisfy:

∫ 1 𝑠=0 (Φ(𝑠)) 2 d𝑠 = constant , (4.1) 
∫ 2𝜋 𝜃=0 (𝑟(𝜃)) 2 2 d𝜃 = constant. ( 4.2) 
This constant can be arbitrarily chosen by scaling the functions with a multiplicative factor, but we set it to 1 to further simplify the calculus.

Under these conditions, the muscle's volume can be written as

𝑉 = 𝜋𝑤 2 𝑙 . (4.3) 
A detailed derivation is exposed in Appendix A.2. As stated in Section 4.2.1, during the animation, the muscle endpoints will move with their respective animation bones. This may cause the axis to shorten or lengthen, 𝑙 will change to a new value 𝑙′. Equation (4.3)

shows that to keep the volume constant, 𝑤 must be changed to a new value 𝑤′ such that

𝑤′ = 𝑤 √ 𝑙 𝑙′ .
This rule causes the muscle to inflate when it contracts and shrink when it is stretched while preserving its volume, thus representing isotonic contraction, as can be seen in Figure 4.10.

Shape profile and activation

The profile function Φ must be able to represent various tapered shapes to model the different muscles of the human body. Additionally, it must be capable of interpolating smoothly between the rest shape and the activated shape of the muscle during isometric deformations. To this effect, we introduce a definition of Φ inspired by the beta probability distribution:

Φ(𝑠) = 𝜙(𝛼, 𝛽; 𝑠),
where 𝛼 and 𝛽 are scalar parameters controlling the shape of the profile.

As per Equation (4.1), the conservation of volume is guaranteed only if the integral of the square of Φ is always constant, regardless of 𝛼 and 𝛽. We thus define 𝜙 as a function of unit norm in the ℒ 2 space of square-integrable functions:

𝜙(𝛼, 𝛽, 𝑠) = 𝜙 0 (𝛼, 𝛽; 𝑠) ‖𝜙 0 (𝛼, 𝛽; 𝑠)‖ 2 ,
where 𝜙 0 is defined for 𝑠 ∈ [0, 1] as:

𝜙 0 (𝛼, 𝛽; 𝑠) = 𝑠 𝛼-1 (1 -𝑠) 𝛽-1 .
As such 𝜙(𝛼, 𝛽; 𝑠) can be explicitly written as

𝜙(𝛼, 𝛽; 𝑠) = 𝑠 𝛼-1 (1 -𝑠) 𝛽-1 √∫ 1 0 𝑦 2(𝛼-1) (1 -𝑦) 2(𝛽-1) d𝑦 . ( 4.4) 
In principle, 𝛼 and 𝛽 can be any positive numbers. For muscle profiles we consider only integer values for efficiency of evaluation. We additionally impose 𝛼 > 1 and 𝛽 > 1 to yield a function where 𝜙(0) = 𝜙(1) = 0, and 𝛼 ≤ 9 and 𝛽 ≤ 9. Larger values leading first to very sharp profiles that do not correspond to realistic muscle shapes, and second, to numerical precision issues due to the high values of both the numerator and the denominator. The denominator of Equation (4.4) is in fact independent of 𝑠 and can be pre-computed for all allowed values of 𝛼 and 𝛽 using the Euler beta function [START_REF] Askey | The Euler Beta Function[END_REF].

The ratio 𝛼/𝛽 controls the asymmetry of the shape (with the distribution being symmetric for 𝛼 = 𝛽) while the individual values of 𝛼 and 𝛽 control the sharpness of the function's rise on each side, as illustrated by Figure 4.11. To account for isometric deformation, our model must represent the muscle in its rest shape and its activated shape, and to interpolate smoothly from one to the other. This is represented by picking two pairs of parameters (𝛼 0 , 𝛽 0 ) and (𝛼 1 , 𝛽 1 ) representing respectively the rest shape and activated shape.

To interpolate between these two shapes while preserving volume, it is necessary to ensure that all interpolated functions also verify Equation (4.1) by ensuring their square integrate to 1. It can also be seen as spherical interpolation along the unit sphere of ℒ 2 .

Let 𝑎 be the interpolation parameter between 𝜙(𝛼 0 , 𝛽 0 ; 𝑠) and 𝜙(𝛼 0 , 𝛽 0 ; 𝑠). The rest shape corresponds to 𝑎 = 0 and full activation to 𝑎 = 1. The interpolated function is defined as

Φ 𝑎 (𝑠) = (1 -𝑎)𝜙(𝛼 0 , 𝛽 0 , 𝑠) + 𝑎𝜙(𝛼 1 , 𝛽 1 , 𝑠)
√𝐹(𝑎) , 𝑒 = 0 𝑒 = 0.5 𝑒 = 0.7 𝑒 = 0.9 where

𝐹(𝑎) = ∫ 1 0 ((1 -𝑎)𝜙(𝛼 0 , 𝛽 0 ; 𝑠) + 𝑎𝜙(𝛼 1 , 𝛽 1 ; 𝑠)) 2 d𝑠
is a normalization term. While the value of 𝐹 might appear to be expensive to compute

for each 𝑎, it can be formulated as

𝐹(𝑎) = (1 -𝑎) 2 + 𝑎 2 + 2𝑎(1 -𝑎) 𝐾(𝛼 0 , 𝛼 1 , 𝛽 0 , 𝛽 1 ) ,
where 𝐾 is a constant term which can be expressed in terms of the Euler beta function 𝐵

𝐾(𝛼 0 , 𝛼 1 , 𝛽 0 , 𝛽 1 ) = 𝐵(𝛼 0 + 𝛼 1 -1, 𝛽 0 + 𝛽 1 -1) √𝐵(2𝛼 0 -1, 2𝛽 0 -1)𝐵(2𝛼 1 -1, 2𝛽 1 -1) ,
as shown in Appendix A.3. In practice, 𝐾 can be tabulated prior to the execution, resulting in fast runtime evaluations. Figure 4.12 shows an example family of functions at various levels of interpolation 𝑎.

Cross-section

To model the cross section of muscles, we set 𝑟(𝜃) to be an ellipse defined by semi-length axis 𝑢 and 𝑣:

𝑟(𝜃) = 𝑢𝑣 √ 𝑢 2 cos 2 𝜃 + 𝑣 2 sin 2 𝜃 .
The aspect ratio of the ellipse is defined by one parameter, the eccentricity, denoted 𝑒 ∈ [0, 1[. Thus, we ensure that 𝑢𝑣 = 1, that is to say, the area of the ellipse is equal to that of a circle of radius 1. This property guarantees that ∫ 𝑟 2 d𝜃 stays constant, so that the volume does not change as 𝑒 varies in time, because it satisfies Equation (4.2).

Summary

The muscle defined in the previous section can be completely described by the following parameters:

• The shape parameters of the muscle in rest state (𝛼 0 , 𝛽 0 ) and in activated state

(𝛼 1 , 𝛽 1 ),
• The initial position of the endpoints m 0 and m 1 and the animation bone to which they are attached,

• The normals ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n m 0 and ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n m 1 orienting the muscle at each extremity,

• The width scale factor 𝑤,

• The eccentricity of the cross-section 𝑒,

• The activation level 𝑎.

The shape parameters are picked beforehand to model the desired shapes of muscles.

For example, the biceps of Figure 4.10 use 𝛼 0 = 𝛽 0 = 3; yielding a smooth symmetric The endpoints positions and normals are set on the reference shape of the mesh and move kinematically with the skeleton, their motion being prescribed by the animation.

In contrast, the activation and eccentricity can change freely during the motion, as our model ensures that the volume of the muscle is preserved regardless of their value. We found useful to keyframe them with the animation key poses to simulate the activation of muscles during the animations used in our experiments. It is also possible to override the volume preservation by setting the width parameter, amplifying the shape of the muscle bulge, as shown in Figure 4.15.

Discussions

Alternatives to the beta function

The beta function profile is carefully chosen to satisfy both the need for a variety of shapes to represent different muscles and efficiency of evaluation. Several other function models were considered, and ultimately discarded for these reasons. For example, Lee and Ashraf [LA07] uses a sine function profile:

Φ sin (𝑠) = sin(𝜋𝑠).
Another similar function is the exponential bump function:

Φ bump (𝑠) = exp ( -1 4𝑠(1 -𝑠)
) .

These functions yield a symmetrical shape for the muscle (as Φ(𝑠) = Φ(1 -𝑠)), however, to represent activated muscles or asymmetrical muscles, the model needs to be able to produce skewed shapes, while maintaining constant volume, i.e. ∫ Φ 2 d𝑠 = 1. When introducing assymetry in the profile either by piecewise definition or non-uniform scaling or the parameter space, the conservation of volume becomes either impossible to formulate in closed-form, or the scaling conditions become rapidly too expensive to evaluate, as opposed to the polynomial 𝐹(𝑎) in the derivation of the beta function.

Instead of trying to introduce skewness post-hoc, it is better to design a family of functions with a skewness parameter whose square integral is constant. An example would be a piecewise cubic spline designed with constraints on the end points (𝑠 = 0 and 𝑠 = 1) and the position of the maximum at 𝑠 = 𝑎, as shown on Figure 4.16: These constraints define a family of piecewise cubic polynomial parametrized by 𝑎. In addition, the square integral of any such function Φ cubic does not depend on 𝑎:

Φ cubic (0) = 0 Φ ′ cubic (0) = 0 Φ cubic (1) = 0 Φ ′ cubic (1) = 0 Φ cubic (𝑎) = 1 Φ ′ cubic (𝑎) = 0 .
∫ 1 0 (Φ cubic (𝑠)) 2 d𝑠 = 13 35 .
The derivation of this property is found in Appendix A.4. As can be seen in Table 4.1, this function is very fast to evaluate. However this profile function is limited in the types of shapes that it can represent, with only one degree of freedom to represent both the extremal shapes (rest shape and activated) and their interpolation.

This led to the choice of the beta function family, as its performance is close to the cubic profile but offers a much wider shape choice.

Sketching profile

Our criteria for the choice of Φ are dictated by the application in interactive skinning, hence the need for a trade-off between the variety of shapes and evaluation speed.

Another type of possible input is sketching, which would be artist-friendly and could enable them to draw muscles fitting a character to the desired artistic effect, in a manner similar to écorchés in traditional media drawing. In our model, this can be seen as an optimization problem where one fits a muscle shape to a given sketch, such as the ones depicted in Figure 4.17, and tries to position it within the existing 3D model. A related approach is the method of Turchet et al. [START_REF] Turchet | Physically-based Muscles and Fibers Modeling from Superficial Patches[END_REF] which grows muscles for FEM simulation from painted patches on the mesh.

Given the closed-formula of the profile function, it is possible to optimize the shape parameters directly by minimizing the absolute error between the projection of the profile on the sketching plane and the sketch itself. Our proposed model of radial profile is differentiable in all its continuous parameters, making it possible to evaluate the gradient of Φ relatively to m 0 , m 1 , 𝑤 and 𝑎. The discrete parameters 𝛼 and 𝛽, however, must be optimized separately.

Our implementation extracts the shape from a 2D sketch (stored in a 100 × 100 pixels black-and-white image). The inital step is to determine the muscle axis as the first principal direction in the pixel space, locating the muscle endpoints by intersecting the axis with the oriented bounding box of the muscles as a starting point. Given that there are only 81 possible pairs of (𝛼, 𝛽) parameters, we run a continuous optimization of all the other parameters for all possible pairs, and select the best fit at the end of the process.

While the definition of the beta profile in terms of discrete parameters was an advantage to speed up its evaluation, it is a drawback to fit with a sketch, as it complicates the optimization process. Moreover, even the optimal profile fails to fit with some input sketches, as shown on Figure 4.18. To fit this profile, we would need to allow 𝛼 and 𝛽 to vary continuously, or to let them increase over 9, which in both cases result in numerical evaluation problems. While the DST profile function is slower to evaluate than the other profile functions presented in this section, they are better suited for applications deriving the shape from user input, such as sketching. They still offer a closed-formula evaluation for their volume, as: defining a unit ℒ 2 norm DST profile function with the same approach as with the beta functions. This illustrates the flexibility of our model which is independent on the choice of profile function, given that it satisfies Equation (4.1) to maintain constant volume.

∫ 1 𝑠=0 Φ DST (𝑠)d𝑠 = 1 𝑁 2 𝑐 𝑁 𝑐 ∑ 𝑖=1 𝑐 2 𝑖 ,
The specific profile function can thus be designed to answer the specific criteria of the application or use case.

Volume conservation and non-fusiform muscles

The derivation of Section 4.3 holds for a straight central axis 𝒞, but when the axis deforms, the volume might slightly change even if the volume constraints are satisfied. Due to the discontinuous nature of the polyline and the addition of the reprojection operator, a closed formula for the volume becomes inaccessible. We nonetheless evaluate the volume numerically, using the volume of the representative mesh as a proxy for the implicit While we were able to capture the shape of fusiform muscles in the whole body, the motion of these complex convergent muscles (such as the pectoral) or multipennate muscles (e.g. the deltoid) is imperfectly represented with such a model. In particular, it becomes difficult to predict the type of deformations created by these muscles on the skin surface. The placement of these muscles and the setup of their parameters requires much time to achieve the correct looking skin deformations.

Increasing the number of fibers can lead to better results, but also increases the simulation time, and the number of parameters to set, slowing down the rigging process and the animation frame rate. To help with this setup, we define origin and insertion curves and sample the parameters of the muscles along the curve for the individual fibers instead of setting each independently. In addition, to provide a muscle representation that creates smoother shapes for the whole muscle, it could be possible to use blending operators (Section 2.3) to assemble the fusoid fibers in a coherent muscle shape before using it as a deformer, but keeping the volume of the resulting shape constant requires dedicated operators that preserve volume of the resulting surface.

Dynamic muscle deformations

It's simple: if it jiggles, it's fat -Arnold Schwarzenegger, Pumping Iron

In the previous chapter, we introduced a muscle model which was kinematically driven by the animation skeleton and deforms at constant volume. We now extend this model to deform the muscles by reacting dynamically to the animation motion. More specifically, we let the muscle axis control points p 𝑖 be driven by a physical simulation, which we present in Section 5.1. This physics-based approach enables us to model dynamic effects such as inertia or jiggling, as described in Section 5.2. We then show how to implement collision detection within the simulation to resolve collision between the muscle and other anatomic elements: bones, skin and other muscles (Section 5.3). We finish by a discussion on the consequences of using such an approximate method, and how some issues can be mitigated by recent work.

Position Based Dynamics

The sweep surface presented in the previous chapter is defined in terms of the position of the control points p 𝑖 defining its central polyline 𝒞. While these points could be animated directly by specifying their trajectory, we rather use a physics simulation to generate complex motions such as inertial effects and jiggling.

Standard physical simulation is generally force-based and explicitly solve Newton's laws of motion by computing the force and integrating twice to update the position of objects. Force-based methods are physically realistic and simulate a variety of dynamical systems, but suffer from instability depending on the chosen integration method and time step. In our case, we seek to compute the position of the control points, modelled as particles, to simulate the elasticity between the particles of a given muscle axis, and to avoid collisions between anatomy primitives.

Introduced by Müller et al. [START_REF] Müller | Position based dynamics[END_REF], Position Based Dynamics (PBD) is a real-time approximate method for physical simulation modelling dynamic particles tied by constraints. This section describes briefly the concepts underlying a PBD simulation. Further details can be found in the surveys by Bender et al. [Ben+14;[START_REF] Bender | Position-Based Simulation Methods in Computer Graphics[END_REF].

PBD models a physical system by simulating particles with masses. Contrarily to standard physical simulation methods, the external and internal forces are not modeled directly, but represented as constraint functions 𝐶(p) = 0 (equality constraint) or 𝐶(p) ≥ 0 (inequality constraint) depending only on the position of the particles p. Time-integration updates the position and velocities of the particles by taking into account only inertial effects, using a semi-implicit Euler scheme. A constraint solver then iteratively attempts to satisfy all constraints, or at least to minimize the total deviation from the constraints.

Non-linear constraints are linearised by a first-order approximation:

𝐶(p + Δp) ≈ 𝐶(p) + ∇ p 𝐶(p) ⋅ Δp.
The solver then finds the correction Δp to apply to the positions which minimizes the constraint in the direction of the constraint gradient ∇ p 𝐶(p). The proposed solver works by solving iteratively each constraint using a Gauss-Seidel approach.

This physics simulation method offers many advantages over force-based methods.

It is unconditionally stable, meaning that the energy of the system is never increasing regardless of the simulation conditions. The constraint functions are generic, their only requirement being the definition of function 𝐶 and its gradient. This simplifies the implementation of many phenomena which were otherwise modelled separately within the same framework, such as rigid bodies [START_REF] Deul | Position-Based Rigid Body Dynamics[END_REF], fluid simulations [START_REF] Macklin | Position Based Fluids[END_REF] or deformable bodies and cloth [START_REF] Macklin | Unified Particle Physics for Real-time Applications[END_REF]. While this method has no ambition to simulate such dynamic phenomena realistically, it produces a visually plausible approximation.

To imbue the muscles with dynamic behaviour, we use PBD to control the position of the control points p 𝑖 of the central axis 𝒞. We leverage the generality of PBD constraints to avoid collision between the skin, bones and muscles which are all represented by implicit surfaces.

Elasticity and inertial effects

Particles setup

The control points p 𝑖 of each muscle axis are represented by particles of a Position Based Dynamics simulation. They behave as point masses obeying the differential equations of motion. The first step of the simulation setup is thus to set the mass of each particle.

As discussed in the previous chapter, the endpoints move with their respective skeleton bones. From the point of view of the physical simulation, these points are set as kinematic particles with an infinite mass (so that other particles and constraints cannot move it).

Their motion is set at the beginning of each physics step by setting their velocity to follow their animation bone.

The total mass 𝑚 of the muscle is distributed among the other particles p 𝑖 to give each particle a mass 𝑚 𝑖 . First, the muscle mass 𝑚 is computed from its total volume 𝑉: 𝑚 = 𝑉𝜌 𝑀 .

We use an average density of muscle tissue of 𝜌 𝑀 = 1.06 g.cm -3 [Urb+01], while the value of 𝑉 is directly obtained from Equation (4.3). Each intermediate particle p 𝑖 is given a mass 𝑚 𝑖 in proportion to the width of the muscle at the initial position of the particle:

𝑚 𝑖 = Φ(𝑠(p 𝑖 )) ∑ 𝑗 Φ(𝑠(p 𝑗 )) 𝑚 .
To represent the fact that the muscle evolves along soft tissues which restain its movement, we introduce a global damping coefficient 𝜇 on the velocities at each integration step of PBD. The semi-implicit Euler integration step is thus written, for each particle:

⃗ v(𝑡 𝑛+1 ) = 𝜇 ⃗ v(𝑡 𝑛 ) + ⃗ a(𝑡 𝑛 )Δ𝑡 p(𝑡 𝑛+1 ) = p(𝑡 𝑛 ) + ⃗ v(𝑡 𝑛+1 )Δ𝑡 ,
where ⃗ v(𝑡 𝑛 ) is the velocity of a particle, p(𝑡 𝑛 ) its position, and ⃗ a(𝑡 𝑛 ) its acceleration at the time step 𝑡 𝑛 . This damping coefficient (set to 𝜇 = 0.9 in our experiments) prevents the jiggling motions to generate long-term oscillations in the muscles by dissipating their velocity quickly. 

Elastic distance constraints

To model the tension and elasticity of the muscle, we introduce elastic distance constraints [START_REF] Jakobsen | Advanced Character Physics. gamastutra[END_REF][START_REF] Müller | Position based dynamics[END_REF] between two successive particles p 𝑖 and p 𝑖+1 :

𝐶(p 𝑖 , p 𝑖+1 ) = ∥⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ p i p i+1 ∥ -𝑑 0 ,
where 𝑑 0 is the rest distance. This constraint's strength is controlled by a stiffness parameter 𝑘, which is a multiplicative factor applied to the computed position update Δp. It is used to increase the time it takes for the constraint to bring back the particles to their rest length, simulating a looser tie between the two particles, thus increasing the effect of inertia.

Constraints are set up differently depending on their position in the muscle. On each extremity of the muscle axis, the first and last 10% of its length is considered as tendon, as shown in Figure 5.1. Tendons constraints are stiff (𝑘 ≈ 0.9) and have a rest length 𝑑 0 equal to their initial length, to model their tendency to bend rather than stretch. Constraints belonging to the middle section are assigned a much smaller rest length (approximately 2 % of their starting length) to represent the tension in the muscle fibers. The stiffness of muscle body controls the strength of the muscle tone and thus the amount of influence between inertial effects and muscle tension. In our experiments, a small value of 𝑘 (e.g. 𝑘 ≈ 0.1) generates a muscle following its attachment bones with visible inertia, producing a noticeable jiggle. Conversely, a high value of the stiffness (𝑘 > 0.7) produces a very tense muscle which reacts quickly to motion changes. Similarly to the shape parameters of the previous chapter, the stiffness of the muscle body constraints can evolve over time. They can be keyframed by an animator to create different muscle behaviours depending on the action of the character. For example, in the jump scene, we lower the stiffness of the calf muscles during the landing to emphasise the jiggling created by the contact of the legs with the ground, giving a more noticeable visual cue to the muscular reaction.

Collision resolution

In our body, the shape of muscles is constrained by the presence of rigid bones, other muscles, soft tissues and skin. To generate more plausible muscle deformation, and to better capture the effect of volume preservation, it helps to resolve collisions among the individual organs. The use of scalar fields to define the muscles provides an efficient way to solve the collision in PBD by defining a collision constraint against an implicit surface.

Definition. Let p 𝑖 be a particle, 𝑓 a globally-supported 3D signed distance field and 𝐷 𝑖 the collision radius of the particle. The implicit surface constraint which maintains the particle at a distance 𝐷 𝑖 outside of the implicit surface defined by 𝑓 (p) = 0 is:

𝐶(p 𝑖 ) = 𝑓 (p 𝑖 ) -𝐷 𝑖 ≥ 0 .

Muscle elasticity Muscle-Bone

Muscle-Muscle Muscle-Skin The constraint gradient is immediately derived:

∇ p 𝑖 𝐶(p 𝑖 ) = ∇𝑓 (p 𝑖 ) .
The collision radius 𝐷 𝑖 effectively treats the particle as a sphere for collision with other elements. It is by default initialized to the average width of the muscle at the position of the particle:

𝐷 𝑖 = 𝑤Φ(𝑠(p 𝑖 )).
Because this radius evolves with time (for example, due to activation of the muscle, as described in Section 4.3.2), it must be updated at each frame. With this constraint, we can resolve collision between muscles and other anatomic elements represented by scalar fields, such as bones, skin and other muscles (Figure 5.3).

Muscle-bone and muscle-muscle collision

The muscle axis constraint has a tendency to keep the muscle axis straight. When a limb such as the arm or the leg bends, this draws the end point of the muscle further inside the skin. This has the effect of burrowing the muscle under the skin, limiting its influence despite the bulging caused by the contraction. In the body, muscles are prevented to move away from the skin surface by the rigid bones. We seek to capture this effect by adding bones to our model.

To represent anatomically correct bones, we capture their shape from an anatomic model by using distance fields from bone meshes (as can be seen on the model pictured in Figures 4.10 which it moves rigidly, as shown in Figure 5.4. The distance field computation against a mesh is expensive: to evaluate the distance from a point to a mesh, one must compute the distance from the query point to each triangle of the mesh [START_REF] Baerentzen | Generating signed distance fields from triangle meshes[END_REF]. To speed up the computation, we discretize the distance field and store each value in a grid of the same size as the HRBF grid of the associated animation bone (as defined in Section 3.1.1).

When anatomic bone shapes are not available, we use a cylinder as a proxy shape.

The cylinder, defined by a constant radius 𝑅 cyl around the animation bone, is evaluated analytically:

𝑓 bone (p) = 𝑑(p, [b 𝑗 , b 𝑗+1 ]) -𝑅 cyl ,
where [b 𝑗 , b 𝑗+1 ] is the segment defined by the animation joints of the current bone and the next and 𝑑 is the distance function. Given that muscles often collide on the shaft of the bones which has a roughly cylindrical shape, the results produced with the proxy shapes are very close to the ones using an anatomical bone model, as shown in Figure 5.5.

We optionally model collision between muscles with the same constraint. In this case, each particle of a given muscle will collide against the implicit surface of the other muscles. This is especially useful to model multipennate muscles such as the deltoid, as seen in on one side of the body, yielding unrealistic behaviour. We keep this feature optional because the computational cost of muscle-muscle collision grows as the square of the number of muscles in a given limb, which slows down the physics simulation.

Muscle-skin interaction

To represent the effect of the skin containing the muscles, we add a third field-based constraint to keep the particles inside the surface of the nearest HRBF 𝑓 𝑗 (Section 3.1). In this case, the constraint is meant to keep the particles inside an implicit surface. This can be achieved by simply reversing the sign of the constraint function 𝐶. In this case, the collision radius of the particle is 0: this constraint should not prevent the muscle from pushing the skin outwards, but the axis must remain inside the initial skin shape.

This effect is especially useful for muscles going across complex joints, such as the pectoral across the shoulder, since the effect of the muscle axis will otherwise tend to form a straight line and stick out the body. It also prevents inertial effects from dragging the particles outside the skin in fast motions such as running or jumping.

Friction

We model the friction in a similar manner to rigid body PBD [START_REF] Deul | Position-Based Rigid Body Dynamics[END_REF], by adding a tangential friction term to each particle which collides against a bone or a muscle. If Δp 𝑖 is the position correction of the 𝑖 th particle computed by the constraint solver, then the The constraint correction computed by the solver Δp 𝑖 is normal to the surface of the colliding object. Friction adds a correction term which is proportional to the tangential velocity ⃗ v T 𝑖 , the projection of the velocity on the tangent plane. final position variation Δp′ 𝑖 is given by:

Δp 𝑖 p 𝑖 ⃗ v 𝑖 Δp′ 𝑖 ⃗ v T 𝑖
Δp′ 𝑖 = Δp′ -𝜂 ⃗ v T 𝑖 ,
where 𝜂 is a friction coefficient and ⃗ v T 𝑖 is the tangential velocity of the particle, i.e. the projection of the particle velocity ⃗ v 𝑖 on the tangent plane of the surface. This plane is normal to ∇𝐶 and Δp, as the initial correction is colinear to the constraint gradient. This friction is opposed to the tangential velocity of the particle with relation to the contact surface, simulating the loss of energy when the two objects interact. These notations are detailed in Figure 5.6.

Discussion

Anatomic bones

For most animation models, anatomic bones are not available. While our method proposes to use cylinders in the absence of anatomically correct bone shapes, it is also possible to import a generic anatomic model of the human body to any humanoid character. This method, presented by Ali-Hamadi et al. [START_REF] Ali-Hamadi | Anatomy Transfer[END_REF] is known as Anatomy Transfer.

In general, animation bones correspond more or less to an anatomic bone or group of bones, as shown in Figure 5.4. While this model works for swing around a joint (such as the elbow or the leg bending), a more complex behaviour is required to model twist properly, especially for group of bones such as the ulna and radius in the forearm. A study undertaken by Zhu et al. [START_REF] Zhu | Adaptable Anatomical Models for Realistic Bone Motion Reconstruction[END_REF] shows that it is possible to control anatomic bones with skeleton bones by using skinning weights to map the animation transforms to realistic bone twist and swing.

Particles collision shape

As stated above, the particles have a spherical collision shape when they collide against bones or other muscles. Assuming spheres greatly simplifies the constraint evaluation, and is a valid approximation when the eccentricity of the muscle cross-section is close to 0. However, it fails to represent the muscle shape when the eccentricity parameter 𝑒 becomes closer to 1. It is possible to represent ellipsoids with the same excentricity instead of spheres, but this greatly increases the evaluation cost of constraints, as this requires to compute the local frame of the particle and the angle, for a minimal effect on the visual result on the skin.

Stiffness in PBD

A major limitation of Position Based Dynamics is the dependency between the constraint solver time step, the number of solver iterations and the overall behaviour of the simulation.

Despite the stiffness parameter 𝑘, the solver eventually converges towards an infinitely stiff simulation as the number of iterations increase. This coupling is problematic when trying to achieve a specific results with muscles of various stiffnesses, as changing the solver parameters (e.g. reducing iteration count to speed up the simulation) requires to adjust all the stiffnesses. This issue was recently solved by Macklin et al. [START_REF] Macklin | XPBD: Positionbased Simulation of Compliant Constrained Dynamics[END_REF], and the implementation recently published in the Flex GPU physics engine. The integration of this method in our implementation could improve the predictability of the results, and exhibit a more meaningful stiffness parameter.

Integration with Implicit Skinning

Every program is a part of some other program, and rarely fits.

-Alan J. Perlis, Epigrams on programming

This chapter discusses the integration of the muscle model within the Implicit Skinning algorithm. In Section 6.1, we show how the muscles influence the result of skinning by using implicit composition operators to blend the muscles with the implicit skin representation defined in Section 3.1. Next, we describe the full pipeline of operations necessary to add dynamic muscle deformations to Implicit Skinning in Section 6.2. Finally, Section 6.3 presents the results obtained with our method and discusses how the performance of our implementation scales with the complexity of the model and the parameters of the method.

Scalar field composition

As detailed in Section 3.1, the shape of each part of the mesh associated with an animation bone 𝑗 is captured by the scalar field 𝑓 𝑗 . All partial skin fields 𝑓 𝑗 are combined together to create the implicit skin representation 𝐹. To apply the deformations of the muscle shapes into the skin, we must integrate the muscle fields 𝑓 𝑀 within the composition tree, so that their motion is reflected in 𝐹 and eventually, in the skin vertices through the surface tracking process.

Each muscle in our model is set to affect only one part of the skin, by associating it with one animation bone 𝑗 and the related mesh part. For example, the biceps and triceps muscles should deform the skin representing the arm bone, while the brachialis and brachoradialis must be associated with the forearm. It is crucial to integrate the muscles at the skin part level, and not later in the implicit composition process, in order to benefit from the contact surface generated by the contact operator (Section 3.1.2). When body parts are in contact, the effect of the muscles must be taken into account before the contact operator is applied.

We are thus led to replace the HRBF-only representation of body part 𝑗 by defining a new 𝑓 𝑗 blending the HRBF and the muscles primitives associated with this part, as depicted in Figure 6.1. Note that the animation bone 𝑗 with which we associate the muscle is not necessarily one of the bones associated with the muscles' attach points (defined in Section 4.1). For example, the biceps will influence the skin shape of the arm bone, but its attach points are moving with the shoulder bone and the forearm bone respectively.

The sweep surface 𝑓 𝑀 defined in Chapter 4 is a distance field with global support. To be able to blend it with the HRBF scalar fields, it is necessary to adopt a homogeneous representation [START_REF] Barthe | Controllable binary CSG operator for "soft objects[END_REF]. The first step is thus to convert this field into a compact support function (see Section 2.2.2). We use the 𝒞 2 fall-of filter function 𝐾(𝑑) defined in Equation (3.1), similarly to how the HRBF fields are converted from global support to compact support. The compact muscle function is thus defined as 𝐾(𝑓 𝑀 (p)). The fall-of function's radius 𝑅 is chosen to be equal to the maximal width radius of the muscle:

𝑅 = max 𝑠∈[0,1]
(𝑤𝑢Φ(𝑠)). We then assemble all muscular fields associated with a given animation bone to form the anatomic field. We stressed in Section 3.2 the importance, for the skin field 𝐹 to be free of gradient discontinuities and critical points (i.e. points where ∇𝐹 = 0) near the skin surface. The standard union operator on field functions is known to produce such gradient discontinuities. For this reason, we use the clean union operator defined in Section 2.3.1 which does not produce discontinuities. The next step is to blend the anatomic field with the HRBF partial skin field. Unfortunately, the muscle field's gradient is by definition null on the muscle axis. Using a union or a clean union operator will introduce singular points on the resulting field inside the skin's surface, as well as gradient pointing in the wrong direction, as shown in Figures 6.2 During the animation, we want the skin to capture the underlying muscle's shape when it bulges out, but also when it contracts. In our approach, muscles are added to the initial HRBF skin approximation using the blending operator mentioned above. However, since the shape of the muscles is often apparent in the reference pose mesh, the HRBF captures the muscle shape with the rest of the skin, as can be seen in Figure 6. 4(a). This means that 

Integration in the Implicit Skinning pipeline

From an algorithmic perspective, the operations relative to the muscle model update must be incorporated in the Implicit Skinning pipeline. The implementation of this pipeline is illustrated in Figure 6. 

Skinning with muscles 6.3.1 Results and discussion

To demonstrate the effects of our method, we set up a variety of scenes, ranging from simple motions, such as an arm shake or a biceps curl, involving only a few muscles, to more challenging motions, such as jumping or running, with a fully rigged model. The jump and run scenes (Figures 6.6(c), 6.6(d), 6.9 and 6.10) are designed to be stress tests of our model. The animations show fast-changing motion (the jumping impulsion and reception, the run contact and up/down poses), which could be challenging for an inertial system to follow without the bone and skin collision constraints described in Section 5.3. The model used in these scenes is also a higher resolution mesh and has been rigged with 50 muscles with all types of constraints (elasticity, muscle-bone, musclemuscle and muscle-skin) resulting in 1 500 particles and more than 4 000 constraints.

The model is a regular animation model using cylindrical bone proxies for muscle-bone collision.

Performance

Our study is both qualitative, to show the effect of the muscles primitive on the skinning result, and quantitative, to report on the timings of our method and the CPU and memory overhead it incurs on the default Implicit Skinning implementation. In particular, we study the average time per frame of our scenes with regard to the complexity of the model, and study the influence of the parameters of the simulation on the frame rate. These timings were generated on a 3.6 GHz Intel Xeon E5-1650 CPU with 64 GB of memory.

By far, the two more intensive steps of the computation are the PBD simulation step and the mesh tracking step from Implicit Skinning. A breakdown of the timings can be found in Table 6 In our most complex scene with 50 muscles each including 30 particles, we maintain a total frame time below the second. It is possible to improve the performance in cases where more interactive frame rates are required, for example when editing the muscle parameters (Figure 6.11). In this case, the skinning can be deactivated to reach interactive response times. The number of particles can be safely decreased for muscles which are only subject to small deformations, increasing the simulation speed, as shown in Figure 6.12.

Implicit Skinning PBD Simulation There is also room for improvement in the evaluation of the field functions, which quickly becomes the main bottleneck when the number of vertices of the skinned model increases. Specifically, a smarter spatial data structure (e.g. spatial hashing) or value caching could improve the function evaluation time. Our current implementation in a multi-threaded application handles parallelism at the task level, but the costliest steps (PBD and IS) have to be handled sequentially. Nonetheless, both PBD and IS are heavily parallelizable. The PBD solver is designed to be order independent so that particles position can be solved in parallel. Similarly, the Implicit Skinning algorithm steps can be run simultaneously per-vertex. While our implementation leverages CPU multi-threading, better performances could thus be achieved with a GPU implementation of both PBD and IS.

From a memory standpoint, the overhead to Implicit Skinning is minimal, due to the compact representation of muscles in memory, as the function and its gradient are evaluated in closed form from the muscle parameters (position and normals of the polyline points and shape parameters). Each muscle thus occupies only about one kilobyte of memory (with 30 particles per muscle), assuming single-precision floats. The look-up 

Limitations

The main limitations of our method come from the limits of the muscle model itself which were exposed in Section 4.4.3, in particular, the difficulty to model complex muscles such as the pectorals, the buttocks, or the deltoids. This issue is aggravated by the high degree of freedom of the related joints. While the elbow or knee function mostly as mechanical hinges and rotate only around one axis, the shoulder and hips have several rotational degrees of freedom, which makes it difficult to predict the muscle's motion in all cases.

Another limitation is the necessity to manually edit the HRBFs around the muscles to let the vertices be deformed only by their nearest muscles. While it might be possible to do this editing automatically, this might be the sign that another skin representation is necessary to replace the HRBFs with a more flexible representation. Another way of overcoming this limitation would be to define a local scalar field around the vertices, in order to let each vertex be deformed by the most relevant anatomic primitives.

Finally, the dynamic behaviour of the muscles, being governed mostly by the scaleless stiffness parameter 𝑘 sometimes yields counter-intuitive inertial deformations and requires tuning. In some cases it is necessary to keyframe it to obtain a stiffer or looser behaviour than expected. For example, during the jump scene, we artificially lowered the stiffness to exhibit a more visible jiggle at the reception of the jump. While this might be useful to represent the varying tension force in the muscle depending on its action, there is no guideline for the setting of this parameter except by trial and error, because it is not tied to a physical value which could be used as a reference. This issue is tied to the nature of PBD as an approximation of physics, and could be solved by using a more realistic physics method for the dynamic simulation, at the expense of an increased computational cost.

Towards implicit anatomic volumes

We showed that our model can blend the skin contact and elasticity modelling of Implicit Skinning with deformations generated by muscle primitives. While we focused our study on muscles, the integration with the Implicit Skinning algorithm is in fact generic and could take into account primitives representing other volumetric effects from the character's anatomy. Using similar models to define other dynamic elements induces different types of secondary motion, for example, fat tissues jiggling. We experimented this approach by using an ellipsoid field 𝑓 fat centered on one particle p:

𝑓 fat (q) = (𝑥 q -𝑥 p ) 2 𝑎 2 + (𝑦 q -𝑦 p ) 2 𝑏 2 + (𝑧 q -𝑧 p ) 2 𝑐 2 -1 .
Similarly to the setup of a muscle, this particle is tied to the animation through kinematic particles and elastic distance constraints, as seen in Figure 6.13(a). We set the mass of the particle to 𝑚 = 20 kg and set the distance constraints rest length to their initial length, and their stiffness to a low value (𝑘 = 0.1). This setup creates a high inertia fat lump implicit primitive which is integrated in the implicit skin model like the muscle primitives, as described in Section 6.1. The effect of this primitive creates a belly jiggle effect on the skin, shown in Figure 6.13(b).

The behaviour of fat tissues and their resulting action on the skin's surface is surely not completely captured by this model, and would require a dedicated study to the same extent as our modelling of muscle behaviour in Chapter 4. The ability to integrate fat tissues shows that our proposed integration of implicit primitives into the Implicit Skinning pipeline is sufficiently flexible to integrate primitives representing not only muscles but other anatomic elements.

Conclusion

That's a very nice rendering, Dave. I think you've improved a great deal.

-HAL 9000, 2001: A Space Odyssey

Through this dissertation, my goal was to broaden the scope of the core idea behind Implicit Skinning: the joint use of meshes and implicit surfaces for character animation.

In particular, the implicit approach to modelling has proven useful to design families of shapes representing muscles, giving freedom to choose the functional definition adapted to the use case, while deriving mathematical constraints to ensure the plausibility of muscle deformations. Moreover, the scalar fields defining the implicit surfaces enable the seamless integration of these shapes into a physics simulation, elegantly resolving collisions between muscles and bones. The combination of these two advantages, coupled to the existing Implicit Skinning algorithm, has enabled me to replace the many disparate deformers, whose configuration is often burdensome and ad-hoc for the artists, with a unified representation of the skin, and a way to blend in their dynamic effects. The focus of this work has been specifically on muscles because of their great role in the appearance of a character and its actions. The generic principles used in the definition of the muscle model within the skinning pipeline, however, are generic enough to allow subsequent research for models of other anatomic elements or other secondary animation effects.

Besides the fat tissue representation discussed in the last chapter, scalar fields can also be used to generate wrinkles and folds in the skin, or to simplify collision detection, for example, with a cloth simulation. Of course, this warrants further research, in order to derive the correct mathematical properties of such applications to be implemented in a skinning pipeline.

My work brings together concepts from skinning methods, implicit surfaces modelling and composition, and dynamic simulation, in order to achieve an efficient implementation of the proposed rigging and animation method. To this effect, I implemented these various systems under a common interface in in my animation engine, with the ability to edit interactively the parameters of the muscles and to run concurrently each component of the animation pipeline. This implementation extracts the benefits of each of its components and provides ways for extensibility by limiting the coupling between them. It also suffers from the induced drawbacks inherent to each component: the difficulty to model complex muscles and joints with the muscle model, the unintuitive material parameters of Position Based Dynamics, and the necessity to manually edit the implicit skin representation to enable all muscle effects. In addition, the performances of the implementation degrade as the complexity of the model increases, which effectively limits the interactive use-case to one complex character at most. Many of the functional limitations of the method can be overcome by replacing the proposed model with more complex approaches, for example, replacing PBD with a more accurate physics simulation. This would in turn decrease the performances of the implementation. Conversely, the implementation could be made faster, settling for a degraded solution by doing without some of the features of the model or limiting the accuracy of the simulation. In computer graphics, there is often a trade-off between performance and quality, and the right setup depends on the application and the time budget an implementation can afford to spend on animation effects.

While the method presented in this thesis makes the case for a wider use of implicit surfaces in skinning, it remains to be seen whether they will be adopted by animators in the future, and how they could be used for future research in geometric skinning.

Because of the high learning curve of computer animation (which requires a great deal of both artistic and technical skill) and the imperatives of production, animators often prefer to deal with tried-and-tested methods, even if it means handling their shortcomings manually. Animators are often not familiar with implicit surfaces and the mathematical background behind them. Thus, if implicit objects are to see more use in future animation software, it would require to devise controls that animators can use with familiarity and simplicity. The genericity of methods based on scalar fields, however, is a advantage: meshes, cages or parametric surfaces can be used as proxies and converted to an implicit representation internally, exposing only the geometrically meaningful parameters to the artists. They can also be designed by artist-friendly interfaces such as sketching. The processes presented in this thesis make no assumption on the nature of the scalar fields but only on mathematical properties that are simple to enforce. This loose coupling between the surface representation and the skinning algorithm makes it easier to use the methods discussed in this dissertation as building blocks for better animation tools. However, a major limitation of basing an approach on Implicit Skinning is that it works only as the last skin deformation in the sequence of skinning operations. Our muscle deformers are built with this requirement in mind. This will be a problem for a practical implementation in where 𝐶 is a constant term.

This yields a formula for the gradient:

∇ 𝑢 𝐸 = 2 ⎛ ⎜ ⎝ 𝑛 ∑ 𝑘=0 𝑐 𝑢𝑘 ((v 𝑢 -v 𝑘 ) -R 𝑢 (v ref 𝑢 -v ref 𝑘 )) - 𝑛 ∑ 𝑖=0 𝑐 𝑖𝑢 ((v 𝑖 -v 𝑢 ) -R 𝑖 (v ref 𝑖 -v ref 𝑢 )) ⎞ ⎟ ⎠ .
We rewrite the two sums in one:

∇ 𝑢 𝐸 = 2 ⎛ ⎜ ⎝ 𝑛 ∑ 𝑘=0 𝑐 𝑢𝑘 ((v 𝑢 -v 𝑘 ) -R 𝑢 (v ref 𝑢 -v ref 𝑘 )) -𝑐 𝑘𝑢 ((v 𝑘 -v 𝑢 ) -R 𝑘 (v ref 𝑘 -v ref 𝑢 )) ⎞ ⎟ ⎠ .
By definition 𝑐 𝑢𝑘 = 𝑐 𝑘𝑢 , thus it yields:

∇ 𝑢 𝐸 = 2 𝑛 ∑ 𝑘=0 𝑐 𝑢𝑘 (2(v 𝑢 -v 𝑘 ) -(R 𝑢 (v ref 𝑢 -v ref 𝑘 ) -R 𝑘 (v ref 𝑘 -v ref 𝑢 ))) = 2 𝑛 ∑ 𝑘=0 𝑐 𝑢𝑘 (2(v 𝑢 -v 𝑘 ) -(R 𝑢 + R 𝑘 ) (v ref 𝑢 -v ref 𝑘 )) .
We differentiate once more in 𝑣 to get the 3 × 3 block (𝑢, 𝑣) of the Hessian matrix H 𝐸 :

∇ 2 𝑢𝑣 𝐸 = ∇ 𝑣 ∇ 𝑢 𝐸.
First, we derive the diagonal blocks (i.e. assuming 𝑢 = 𝑣)

∇ 2 𝑢𝑢 𝐸 = 2 𝑛 ∑ 𝑘=0 𝑐 𝑢𝑘 ∇ 𝑢 (2(v 𝑢 -v 𝑘 ) -(R 𝑢 + R 𝑘 )) (v ref 𝑢 -v ref 𝑘 )) = 4 𝑛 ∑ 𝑘=0 𝑐 𝑢𝑘 I 3 .
Now the non-diagonal blocks where 𝑢 ≠ 𝑣:

∇ 2 𝑢𝑣 𝐸 = 2 𝑛 ∑ 𝑘=0 𝑐 𝑢𝑘 ∇ 𝑣 (2(v 𝑢 -v 𝑘 ) -(R 𝑢 + R 𝑘 )) (v ref 𝑢 -v ref 𝑘 )) .
leaving only one non-zero term of the sum where 𝑘 = 𝑣:

∇ 2 𝑢𝑣 𝐸 = -4𝑐 𝑢𝑣 I 3 .
Since the cotangent coefficients 𝑐 𝑢𝑣 are 0 when v 𝑢 and v 𝑣 are not neighbours, the resulting Hessian matrix is very sparse and diagonal-dominant.

We are looking for the positions of vertices ( v1 , ... v𝑛 ) minimizing 𝐸. Because 𝐸 is quadratic, the optimal solution can be found in one iteration of Newton's method. Given a starting mesh (v

(p) 1 , ..., v (p) 
𝑛 ), we define 

(v (p) 1 , ..., v (p) 

A.2 Volume of extrusion surface

Because H 𝐸 is diagonal-dominant, the Jacobi method finds an iterative solution. Writing H 𝐸 = D + N where D is diagonal (D = diag(4 ∑ 𝑘 𝑐 𝑖𝑘 )) and N contains the non-diagonal elements.

ΔV (k+1) = -D -1 (∇𝐸 + NΔV (k) ) .
With the previous formula we can write the iterative equation for each vertexv 𝑖 :

v (j+1) 𝑖 = 1 4 ∑ 𝑛 𝑘=0 𝑐 𝑖𝑘 ⎛ ⎜ ⎝ 2 ⎛ ⎜ ⎝ 𝑛 ∑ 𝑘=0 𝑐 𝑖𝑘 (2(v (j) 𝑖 -v (j) 𝑘 ) -(R 𝑖 + R 𝑘 )(v ref 𝑖 -v ref 𝑘 )) ⎞ ⎟ ⎠ - 𝑛 ∑ 𝑘=0 4𝑐 𝑖𝑘 v (j) 𝑘 ⎞ ⎟ ⎠ v (j+1) 𝑖 = 1 ∑ 𝑛 𝑘=0 𝑐 𝑖𝑘 ⎛ ⎜ ⎝ 1 2 𝑛 ∑ 𝑘=0 𝑐 𝑖𝑘 (R 𝑖 + R 𝑘 )(v ref 𝑖 -v ref 𝑘 ) + 𝑛 ∑ 𝑘=0 𝑐 𝑖𝑘 v (j) 𝑘 ⎞ ⎟ ⎠ .
We now introduce the normalized cotangent weights 𝑐 𝑖𝑘 for each vertex v 𝑖 :

𝑐 𝑖𝑘 = 𝑐 𝑖𝑘 ∑ 𝑛 𝑢=0 𝑐 𝑖𝑢 , which simplifies the notation: v (j+1) 𝑖 = 1 2 ⎛ ⎜ ⎝ 𝑛 ∑ 𝑘=0 𝑐 𝑖𝑘 (R 𝑖 + R 𝑘 )(v ref 𝑖 -v ref 𝑘 ) + 𝑛 ∑ 𝑘=0 𝑐 𝑖𝑘 v (j) 𝑘 ⎞ ⎟ ⎠ . Finally, we define b i = 1 2 𝑛 ∑ 𝑘=0 𝑐 𝑖𝑘 (R 𝑖 + R 𝑘 )(v ref 𝑖 -v ref 𝑘 ) ,
which yields the update equation proposed in Section 3.3.

A.2 Volume of extrusion surface

The volume enclosed by the muscle's extrusion surface is given by

𝑉 = 𝜋𝑤 2 𝑙,
where 𝑤 is the width factor and 𝑙 the length of the axis.

Proof. Integrating in 𝜌 yields:

𝑉 = ∫

𝑉 = 𝑙 ∫ 1 0 ∫ 𝜋 -𝜋 (𝑤Φ(𝑠)𝑟(𝜃)) 2 2 d𝜃d𝑠 = 𝑤 2 𝑙 ∫ 1 0 (Φ(𝑠)) 2 d𝑠 ∫ 𝜋 -𝜋 (𝑟(𝜃)) 2 2 d𝜃 .
The integral in 𝜃 is the area of an ellipse of semi-axis length 𝑢 and 𝑣:

∫ 𝜋 𝜃=-𝜋 (𝑟(𝜃)) 2 2 d𝜃 = 1 2 ∫ 𝜋 -𝜋 𝑢 2 𝑣 2 𝑢 2 (cos(𝜃)) 2 + 𝑣 2 (sin(𝜃)) 2 d𝜃 = ∫ 𝜋 2 -𝜋 2 𝑢 2 𝑣 2 𝑢 2 (cos(𝜃)) 2 + 𝑣 2 (sin(𝜃)) 2 d𝜃, since the function is 𝜋-periodic.
We compute this integral by noticing that on ]

-𝜋 2 , 𝜋 2 [, d d𝜃 [𝑢𝑣 arctan ( 𝑣 tan(𝜃) 𝑢 )] = 𝑢𝑣 𝑣 𝑢(cos(𝜃)) 2 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 ( 𝑣 tan(𝜃) 𝑢 ) 2 + 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ = 𝑢𝑣 2 𝑢(cos(𝜃)) 2 ( 𝑣 2 𝑢 2 (tan(𝜃)) 2 + 1) = 𝑢 2 𝑣 2 𝑢 2 (cos(𝜃)) 2 + 𝑣 2 (sin(𝜃)) 2 .
The integral in 𝜃 is expressed as a limit:

∫ 𝜋 𝜋 (𝑟(𝜃)) 2 2 d𝜃 = lim 𝑥→ 𝜋 2 -𝑢𝑣 (arctan ( 𝑣 tan(𝑥) 𝑢 ) -arctan ( 𝑣 tan(-𝑥) 𝑢 )) = 2𝑢𝑣 lim 𝑥→ 𝜋 2 -arctan ( 𝑣 tan(𝑥) 𝑢 ) = 2𝑢𝑣 lim 𝑥→ 𝜋 2 - 𝜋 2 -arctan ( 𝑢 𝑣 tan(𝑥)
) .

This limit is now determined, because

lim 𝑥→ 𝜋 2 -arctan ( 𝑢 𝑣 tan(𝑥) ) = arctan(0) = 0, thus, lim 𝑥→ 𝜋 2 -arctan ( 𝑣 tan(𝑥) 𝑢 ) = 𝜋 2 .
Finally,

∫ 𝜋 -𝜋 (𝑟(𝜃)) 2 2 d𝜃 = 𝜋𝑢𝑣 .
The constraints above can be written as 8 equations (as the constraints at 𝑎 yield one equation for each piece), yielding a linear system:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 𝑎 𝑎 2 𝑎 3 0 0 0 0 0 1 2𝑎 3𝑎 2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 2 3 0 0 0 0 1 𝑎 𝑎 2 𝑎 3 0 0 0 0 0 1 2𝑎 3𝑎 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑥 0 𝑥 1 𝑥 2 𝑥 3 𝑦 0 𝑦 1 𝑦 2 𝑦 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 1 0 0 0 1 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
The determinant of the system is 𝑎 4 (𝑎 -1) 4 . This system is therefore invertible for any 𝑎 ∈]0, 1[, yielding the following piecewise polynomial:

Φ cubic (𝑠) = ⎧ { { ⎨ { { ⎩ - 2 𝑎 3 𝑠 3 + 3 𝑎 2 𝑠 2 if 𝑠 ∈ [0, 𝑎] - 2 (𝑎-1) 3 𝑠 3 + 3(𝑎+1) (𝑎-1) 3 𝑠 2 - 6𝑎 (𝑎-1) 3 𝑠 + 3𝑎-1 (𝑎-1) 3 if 𝑠 ∈ [𝑎, 1]
.

We then show that this family of functions also guarantee volume conservation regardless of 𝑎. More precisely we show that

𝐼 = ∫ 1 0 (Φ cubic (𝑠)) 2 d𝑠 = 13 35 . ∫ 1 0 (Φ cubic (𝑠)) 2 d𝑠 = ∫ 𝑎 0 (Φ cubic (𝑠)) 2 d𝑡 + ∫ 1 𝑎 (Φ cubic (𝑠)) 2 d𝑠 = ∫ 𝑎 0 (- 2 𝑎 3 𝑠 3 + 3 𝑎 2 𝑠 2 ) 2 d𝑠 + ∫ 1 𝑎 (- 2 (𝑎 -1) 3 𝑠 3 + 3(𝑎 + 1) (𝑎 -1) 3 𝑠 2 - 6𝑎 (𝑎 -1) 3 𝑠 + 3𝑎 -1 (𝑎 -1) 3 ) 2 d𝑠 .
Integrating the first term is simple:

𝐼 1 = ∫ 𝑎 0 (- 2 𝑎 3 𝑠 3 + 3 𝑎 2 𝑠 2 ) 2 d𝑠 = ∫ 𝑎 0 ( 4 𝑎 6 𝑠 6 - 12 𝑎 5 𝑠 5 + 9 𝑎 4 𝑠 4 ) d𝑠 = 4𝑎 7 7𝑎 6 - 12𝑎 6 6𝑎 5 + 9𝑎 5 5𝑎 4 = 13𝑎 35 .
The second term is more complex but still straightforward by expanding the polynomial in 𝑥, integrating each term and then expanding again the polynomial in 𝑎: L'évaluation de 𝑓 𝑀 en un point q consiste en trois étapes : la construction de la ligne polygonale centrale 𝒞, la projection de q sur celle-ci, ce qui permet de calculer la distance 𝑑 entre le point et la courbe, et l'évaluation du profil de balayage 𝑅(q). La valeur du champ scalaire en q est alors : Résumé : En animation de personnages 3D, la déformation de surface, ou skinning, est une étape cruciale.

𝐼 2 = ∫ 1 𝑎 (- 2 (𝑎 -1) 3 𝑠 3 + 3(𝑎 + 1) (𝑎 -1) 3 𝑠 2 - 6𝑎 (𝑎 -1) 3 𝑠 + 3𝑎 -1 (𝑎 -1) 3 ) 2 d𝑠 = 1 (𝑎 -1) 6 ∫ 1 𝑎 4𝑠 6 -(12𝑎 + 12)𝑠 5 + (9𝑎 2 + 42𝑎 + 9)𝑠 4 -(36𝑎 2 -48𝑎 -4)𝑠 3 + (54𝑎 2 + 12𝑎 -6)𝑠 2 -(36𝑎 2 -12𝑎)𝑠 + (9𝑎 2 -6𝑎 + 1) = 1 (𝑎 -1) 6 ( 4(1 -𝑎 7 ) 7 + (-12𝑎 -12)(1 -𝑎 6 ) 6 + (9𝑎 2 + 42𝑎 + 9)(1 -𝑎 5 ) 5 + (-36𝑎 2 -48𝑎 + 4)(1 -𝑎 4 ) 4 + (54𝑎 2 + 12𝑎 -6)(1 -𝑎 3 ) 3 + (-36𝑎 2 + 12𝑎)(1 -𝑎 2 ) 2 + (9𝑎 2 -6𝑎 + 1)(1 -𝑎)) = 1 (𝑎 -
𝑓 𝑀 (q) = 𝑑 -𝑅(q) .
Son rôle est de déformer la représentation surfacique d'un personnage pour permettre son rendu dans une succession de poses spécifiées par un animateur. La plausibilité et la qualité visuelle du résultat dépendent directement de la méthode de skinning choisie. Sa rapidité d'exécution et sa simplicité d'utilisation sont également à prendre en compte pour rendre possible son usage interactif lors des sessions de production des artistes 3D. Les différentes méthodes de skinning actuelles se divisent en trois catégories. Les méthodes géométriques sont rapides et simples d'utilisation, mais leur résultats manquent de plausibilité. Les approches s'appuyant sur des exemples produisent des résultats réalistes, elles nécessitent en revanche une base de données d'exemples volumineuse, et le contrôle de leur résultat est fastidieux. Enfin, les algorithmes de simulation physique sont capables de modéliser les phénomènes dynamiques les plus complexes au prix d'un temps de calcul souvent prohibitif pour une utilisation interactive. Les travaux décrits dans cette thèse s'appuient sur Implicit Skinning, une méthode géométrique corrective utilisant une représentation implicite des surfaces, qui permet de résoudre de nombreux problèmes rencontrés avec les méthodes géométriques classiques, tout en gardant des performances permettant son usage interactif. La contribution principale de ces travaux est un modèle d'animation qui prend en compte les effets des muscles des personnages et de leur interactions avec d'autres éléments anatomiques, tout en bénéficiant des avantages apportés par Implicit Skinning. Les muscles sont représentés par une surface d'extrusion le long d'axes centraux. Les axes des muscles sont contrôlés par une méthode de simulation physique simplifiée. Cette représentation permet de modéliser les collisions des muscles entre eux et avec les os, d'introduire des effets dynamiques tels que rebonds et secousses, tout en garantissant la conservation du volume, afin de représenter le comportement réel des muscles. Ce modèle produit des déformations plus plausibles et dynamiques que les méthodes géométriques de l'état de l'art, tout en conservant des performances suffisantes pour permettre son usage dans une session d'édition interactive. Elle offre de plus aux infographistes un contrôle intuitif sur la forme des muscles pour que les déformations obtenues se conforment à leur vision artistique.

Abstract: Surface deformation, or skinning is a crucial step in 3D character animation. Its role is to deform the surface representation of a character to be rendered in the succession of poses specified by an animator. The quality and plausiblity of the displayed results directly depends on the properties of the skinning method. However, speed and simplicity are also important criteria to enable their use in interactive editing sessions. Current skinning methods can be divided in three categories. Geometric methods are fast and simple to use, but their results lack plausibility. Example-based approaches produce realistic results, yet they require a large database of examples while remaining tedious to edit. Finally, physical simulations can model the most complex dynamical phenomena, but at a very high computational cost, making their interactive use impractical. The work presented in this thesis are based on, Implicit Skinning a corrective geometric approach using implicit surfaces to solve many issues of standard geometric skinning methods, while remaining fast enough for interactive use. The main contribution of this work is an animation model that adds anatomical plausibility to a character by representing muscle deformations and their interactions with other anatomical features, while benefiting from the advantages of Implicit Skinning. Muscles are represented by an extrusion surface along a central axis. These axes are driven by a simplified physics simulation method, introducing dynamic effects, such as jiggling. The muscle model guarantees volume conservation, a property of real-life muscles. This model adds plausibility and dynamics lacking in state-of-the-art geometric methods at a moderate computational cost, which enables its interactive use. In addition, it offers intuitive shape control to animators, enabling them to match the results with their artistic vision.

  .1.

Figure 1 . 1 :

 11 Figure 1.1: A model of a hand with its skeleton rig.

Figure 1 . 2 :

 12 Figure 1.2: Animation and skinning of a character. Left: the initial model, represented by a polygon mesh, is rigged with a skeleton in its reference pose. Right: the animator moves the skeleton to the desired pose. A skinning algorithm moves each vertex of the initial mesh v ref 𝑖 to its new position v 𝑖 .

skinning, as illustrated by Figure 1 . 2 .

 12 Definition. Given a set of 𝑁 vertices {v ref 𝑖 } representing the object's surface in the reference pose {M ref 𝑗 }, a skinning function gives for each pose 𝑃(𝑡) = {M 𝑗 (𝑡)} 𝑗=0...𝑚-1 , the new position of each vertex v 𝑖 (𝑡).

Figure 1 . 3 :

 13 Figure 1.3: Early mesh-based muscle simulation.

[ Ter+03 ;

 Ter+03 Ter+05] used finite-volume methods to compute the stress tensor inside the muscles, coupled with a spline-based fibre model, while work by Pai et al. [PSW05] attempts to blend the line-based methods used in biomechanical research and volumetric approaches by using a strand representation. Their work was extended by Sueda et al. [SKP08; Sue+11] specifically for skin deformations of the hand.

Figure 1 . 4 :

 14 Figure 1.4: A physics-based anatomic template with volumetric muscles and fat tissue.

Figure 1 . 5 :

 15 Figure 1.5: Typical blendshape expressions. From left to right: half-smile, full smile and open-mouth expression.

Figure 1 . 6 :

 16 Figure 1.6: Data-driven soft tissue model showing physical parameters learned from capture data and extrapolated to new poses and external forces.

  Dyna model by Pons-Moll et al. [Pon+15] was the first to present a statistical model of dynamics on the surface of the skin based on example data. Loper et al. [Lop+15] used a similar approach with SMPL to learn an additional dynamic deformation term on top of their statistical body type and shape deformer. The most recent work by Kim et al. [Kim+17] goes beyond the surfacic representation and sucessfully fits a full volumetric model of a human body with the help of a large database of registered skin deformations (Figure 1.6).

Figure 1 . 7 :

 17 Figure 1.7: Geometric skinning methods

( a )Figure 1 . 8 :

 a18 Figure 1.8: Typical artefacts of geometric skinning methods. Notice the loss of volume with LBS when bending (a), and the bulging with DQS (b).Figure (c) shows the candy-wrapper artefact with LBS and its mitigation by DQS (d).

  Figure 1.8: Typical artefacts of geometric skinning methods. Notice the loss of volume with LBS when bending (a), and the bulging with DQS (b).Figure (c) shows the candy-wrapper artefact with LBS and its mitigation by DQS (d).

Figure 1 . 9 :

 19 Figure 1.9: Weight painting in Blender, showing the influence of the arm bone over the jacket vertices from 𝑤 𝑖𝑗 = 1 in red (maximal influence) to 𝑤 𝑖𝑗 = 0 in blue (no influence).

Figure 1 . 10 :

 110 Figure 1.10: Examples of geometric muscle deformers

Figure 1 .

 1 Figure 1.11: A dynamic muscle shape model based on Bézier curves. Figure (a) shows the two end points (yellow) and a middle point (red) defining the curves. Figure (b): the width of the muscle is sinusoidal, yielding deformable fusoid shapes.

Figure 1 . 12 :

 112 Figure 1.12: Muscles shapes obtained with an axis curve and a thickness curve.

Figure 2 . 1 :

 21 Figure 2.1: A sample of implicit surfaces. From left to right: a sphere, a torus, a blend of two blobs, a Klein bottle, an inflated lemmniscate, an ellipsoid and a capsule.

Figure 2 . 2 :

 22 Figure 2.2: Skeleton-based surface (in red) defined relatively to a skeleton made of a point and two line segments.

Figure 2 . 2 .

 22 Figure 2.2. Note that the use of skeleton in this context is unrelated to the animation skeleton defined in Chapter 1.

Figure 2 . 3 :

 23 Figure 2.3: Blinn's blobby molecules: each atom is represented by a spherical primitive, the resulting molecule is rendered as a blending between all its atoms.

  Extrusion surfaces, also known as generalized cylinders or sweep surfaces, are natural extensions of skeleton-based implicit surfaces [CBS96; GH99]. They start from a curve 𝒞(𝑠), 𝑠 being the curvilinear parameter of the curve, and sweep a profile curve 𝒫 along the axis curve 𝒞.𝜃 𝑅(𝜃) 𝒫 (a) Polar profile function. 𝒞 𝒫 (b) Extrusion along an helix curve.

Figure 2 . 4 :

 24 Figure 2.4: Example of a sweep surface. Figure (a) shows the polar profile 𝒫 . Figure (b) shows its extrusion along an helix curve 𝒞

Figure 2 . 6 .

 26 Figure 2.6. This operator helps to maintain the continuity of the field over recursive compositions while maintaining the sharp features of the modelled surfaces. Barthe et al. [BWG04] and Bernhardt et al. [Ber+10] adapted these operators to the compact support convention.

Figure 2 . 6 : 2 p 1

 2621 Figure 2.6: Clean union of two spheres. The implicit surface (black line) is the union of two spheres generating a sharp edge at their interface. The other iso-values (dashed lines) are smooth.

Figure 2 . 7 :

 27 Figure 2.7: Two implicit spheres and 2D space of field values. Figure (a) shows two implicit spheres 𝑆 1 and 𝑆 2 defined by 𝑓 1 = 0.5 and 𝑓 2 = 0.5. Figure (b) shows the 2D

𝑓 2 1 𝐺(𝑓 1 ,Figure 2 . 8 :

 21128 Figure 2.8: Graphical representation of binary operators. Figure (a) shows the composition of the two spheres of the previous figure, whith highlighted iso-surfaces. Curves on Figure (b) are the iso-lines of the operator function 𝐺 depicted in the 2D-space of valuescorresponding the higlighted iso-surfaces. The purple curve corresponds to 𝐺(𝑓 1 , 𝑓 2 ) = 0.5, i.e. the implicit surface defined by the composition using 𝐺. Two other curves are shown, the red curve 𝐺(𝑓 1 , 𝑓 2 ) = 0.7 belongs to the inside of the composition, while the blue curve 𝐺(𝑓 1 , 𝑓 2 ) = 0.3 belongs to the outside. These colours are adopted throughout this work.

Figure 2 . 9 :

 29 Figure 2.9: Top row: example of composition operators, showing their graphical representation on a 2D plane. Bottom row: result of their application to blend two spheres.

Figure 2 . 10 :

 210 Figure 2.10: Figure (a): effect of detail operator on the blending of a spherical detail on a box. Figure (b): using regular blending generates critical points inside the surface.Figure (c): using the detail operator improves the quality of the resulting field. Figure (d) shows the operator itself.

  Gourmel et al.'s[START_REF] Gourmel | A Gradient-based Implicit Blend[END_REF] gradient-based operators provide a solution to the blending issues by defining an operator whose result depends not only on the blended fields values but also on their gradients. The key idea of gradient-based operators is to define a family of operators 𝐺 𝛼 controlled by a parameter 𝛼 ∈ [0, 1]. Variations of 𝛼 interpolate 𝐺 𝛼 between a clean union and a blending operator. While Barthe et al.[START_REF] Barthe | Controllable binary CSG operator for "soft objects[END_REF] andBernhardt et al. 

Figure 2 . 11 :

 211 Figure 2.11: Top row: common blending artefacts. Bottom row: expected solutions.

1 .

 1 Evaluate 𝑓 1 (p), 𝑓 2 (p), ∇𝑓 1 (p) and ∇𝑓 2 (p); 2. Compute 𝜃 = arccos(∇𝑓 1 (p) ⋅ ∇𝑓 2 (p)); 3. Compute 𝛼 = 𝜅(𝜃); 4. Return 𝐹(p) = 𝐺 𝛼 (𝑓 1 (p), 𝑓 2 (p)).

p 1 p 2 p 3 (

 3 a) Gradient-based blending 𝛼 = 1 (full blend) 𝛼 = 0 (clean union) 0

Figure 2 .Figure 2 . 13 :Figure 2 . 14 :

 2213214 Figure 2.12: Solving the bulging artefact with gradient-based blending. Figure (a) shows the T-junction of two surfaces. Three points are shown with the gradients of the two primitive fields. On Figure (b), a plot of the controller is shown with the corresponding value of 𝛼 for the three points.

1 𝑤Figure 2 . 15 :

 1215 Figure 2.15: Warping of an implicit surface.

  Computer-generated animation has often made use of implicit surfaces since their appearance in computer graphics. They provide a simple representation that handles situations such as soft objects, objects changing topology or fluids much better than the ubiquitous polygon meshes [YT13; CGB16]. Desbrun and Cani [DC98] started investigating on the issues raised by time-varying scalar fields 𝑓 (p, 𝑡), most importantly the trajectories of points on the surface. Considering a point p(𝑡) which is constrained on the 𝐶-iso-surface of 𝑓, can be expressed as: ∀𝑡 , 𝑓 (p(𝑡), 𝑡) = 𝐶. Differentiating this equation in 𝑡 yields: d𝑓 d𝑡 (p(𝑡), 𝑡) = 𝜕𝑓 𝜕𝑡 (p(𝑡), 𝑡) + ∇𝑓 (p(𝑡), 𝑡) ⋅ dp(𝑡) d𝑡 = 0 .

Figure 3 . 1 :

 31 Figure 3.1: Partition and reconstruction of the mesh. Vertices are separated in parts associated to skeleton bones (a) and each part is represented by a scalar field, which are composed together to form the implicit skin (b)

Figure 3 . 2 :

 32 Figure 3.2: HRBF surface reconstruction: Points p i and normals ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗n i are sampled from the mesh surface (red line). The implicit surface interpolates the input to reconstruct a smooth approximation of the mesh.

( a )Figure 3 . 3 :

 a33 Figure 3.3: Effect of extra endpoints on the implicit skin. The reconstructed HRBF shape is often elongated near the joints, yielding unwanted bulging when the joint bends (a). By adding extra points at each end along the skeleton bone (b), this bulge is averted (c).

( a )Figure 3 . 4 :Figure 3 . 5 :

 a3435 Figure 3.4: Effect of the contact operator on skinning: two scalar fields (arm and forearm) are blended with a contact operator, generating a contact surface visible on Figure (a) in green. Skin vertices project on this surface, resulting in a mesh without interpenetration (b).

Figure 3 . 6 :

 36 Figure 3.6: Implicit Skinning on fingers, showing geometric skinning with no contact handling (a), the surface obtained with the contact operator (b), and the extra volume gained with the bulge operator (c).

Figure 3 . 7 :

 37 Figure 3.7: Building of the skin composition tree. Each color node correspond to the primitive scalar field 𝑓 𝑗 associated with skeleton bone 𝑗, and each white node is a composition operator. The topmost operator is the skin scalar field 𝐹.

Algorithm 3 . 1

 31 projection: Implicit surface tracking step input: a scalar field 𝐹 𝑡 , a vertex v 𝑖 tracking its iso-value 𝑒 𝑖 and a step factor 𝜆 output: an updated position v (p) 𝑖

Figure 3 . 9 :

 39 Figure 3.9: Neighbourhood of vertex v 𝑖 and angles 𝛼 𝑖𝑘 and 𝛽 𝑖𝑘 involved in the computation of cotangent weight 𝑐 𝑖𝑘 .

Figure 3 . 10 :

 310 Figure 3.10: Projection and tangential relaxation. Vertex v 𝑖 is projected to v (p) 𝑖

Algorithm 3 . 2

 32 arap_iter: Jacobi iterations of the ARAP energy minimization. input: starting positions of vertices v (0) 𝑖 , reference positions v ref 𝑖 , rotations R 𝑖 , normalized cotangent weights 𝑐 𝑖𝑘 , and number of ARAP steps 𝑁 𝐴 output: updated position v (r) 𝑖 b 𝑖 = 1 2

Algorithm 3 . 3

 33 // project the last point on tangent plane surface is controlled by the step scale parameter 𝜆, while the convergence of the ARAP optimization is driven by the number of ARAP Jacobi steps 𝑁 𝐴 .The main algorithm consists in a central loop which successively applies the projection step and the ARAP Jacobi steps, until the prescribed number of iterations is reached. For each of these central loop iterations, a value of 𝜆 and 𝑁 𝐴 is supplied, determining the balance between the normal and the tangential progression of the vertices. The sequence of 𝜆 is decreasing, yielding smaller and smaller step sizes. This behaviour stabilizes the march of the vertices, first by moving in large steps and then by advancing towards their target surface with a higher precision. Between the projection step, only one ARAP Jacobi iteration is run (i.e. 𝑁 𝐴 = 1). This way the algorithm prioritizes the normal displacement to the tangential displacement. After the central loop has run for the prescribed number of iterations, tangential ARAP Jacobi iterations are run until the mesh converges to the optimal solution. Implicit Skinning algorithm input: a vertex v ref 𝑖 , a sequence of 𝜆 and 𝑁 𝐴 output: a final skinning position v (final) 𝑖 v 𝑖 = T q𝑖 v ref 𝑖 // Initial DQS solution for 𝑛 = 0 to 𝑁 do v (p) 𝑖 = projection_step (𝐹 𝑡 , v 𝑖 , 𝑒 𝑖 , 𝜆 𝑛 ) // Projection step v (r) 𝑖 = arap_iter(H, v (p) 𝑖 , 𝑁 𝐴,𝑛 ) // ARAP Jacobi step v 𝑖 = v (r) 𝑖 // Update the positions and start over end for repeat v 𝑖 = arap_iter(H, v 𝑖 , 1) until convergence

Figure 4 . 1 :

 41 Figure 4.1: A 3D anatomical model of the left arm.

Figure 4 . 2 .

 42 Muscles come in many shapes in the body and are usually classified according to their architecture: the arrangement of fibers within the muscle. Muscles driving large movements generally have fibers running parallel to the muscle axis, yielding the familiar fusiform shape found in the biceps, triceps or hamstrings. In more complex muscles, the fibers are arranged diagonally in one, two, or more rows and are known as pennate muscles (unipennate, bipennate or even multipennate). The architecture of these various types of muscles produces different physical aspect, as illustrated by Figure 4.3. They nonetheless origin insertion

Figure 4 . 2 :

 42 Figure 4.2: Figure (a): endpoints of the biceps, with its origin on the humerus and its insertion on the radius. Figure (b): endpoints of the pectoral, its origin on the sternum and its endpoint on the humerus.

Figure 4 . 3 :

 43 Figure 4.3: The different types of muscles. A: fusiform, B: unipennate, C: bipennate. (PCS: physical cross section).

Figure 4 . 4 :

 44 Figure 4.4: Deformation modes of a skeletal muscle. From left to right: muscle in a rest state, isotonic contraction and isometric deformation.

Figure 4 . 5 :

 45 Figure 4.5: Schematic view of muscle primitive with notations.

Figure 4 . 6 :

 46 Figure 4.6: Discontinuities of the orthogonal projection. Left: a muscle profile on an undeformed axis. Right: Surface discontinuities appear after the deformation of the axis due to the orthogonal projection.

Figure 4 . 10 :

 410 Figure 4.10: Effect of muscle contraction on the muscle shape. Figure (a): rest shape of the muscle. Figure (b): shape of the contracted muscle. The shortening of the axis caused the width of the muscle to increase to preserve volume.Figure (c): shape of the contracted muscle at full activation.

Figure 4 . 11 :

 411 Figure 4.11: Profiles of the 𝜙 function for values of 𝛼 and 𝛽.

Figure 4 . 12 :

 412 Figure 4.12: Profile function interpolation between 𝛼 0 = 𝛽 0 = 3 and (𝛼 1 , 𝛽 1 ) = (4, 7).

Figure 4 . 13 :

 413 Figure 4.13: Ellipses of constant area and various eccentricities.

Figure 4 . 4 √( 1 -𝑒 2

 4412 Figure 4.13 shows the effect of eccentricity on the shape of the ellipse. An eccentricity of 𝑒 = 0 defines a circle, and eccentricities closer to one define wider and flatter ellipses. The semi-axis lengths 𝑢 and 𝑣 are computed directly from the eccentricity 𝑒:

Figure 4 .

 4 Figure 4.14: Figure (a): Calf muscles, one in its rest state (𝛼 0 = 3, 𝛽 0 = 3) and one in its activated state. (𝛼 1 = 4, 𝛽 1 = 8) Figure (b): Dorsals muscles in their rest state (𝛼 0 = 2, 𝛽 0 = 3).

Figure 4 . 15 :

 415 Figure 4.15: Amplification of muscle width. Left : normal biceps curl. Right : muscle width increased by 30 %.

Figure 4 . 16 :

 416 Figure 4.16: Piecewise cubic muscle profile.

Figure 4 . 17 :

 417 Figure 4.17: Example sketches of muscle profile.

Figure 4 . 18 :

 418 Figure 4.18: Fitting the beta function profile on sketches. Left: the optimization finds a good solution for the muscle endpoints and profile. Right: while the endpoints are correctly placed, the best fitting profile still fails to capture the sketch faithfully.

Figure 4 . 19 :.

 419 Figure 4.19: Sampling values on the sketch. Left: we sample alternatively each side of the axis to find the width given by the input sketch. Right: the DCT profile obtained with the samples.

Figure 4 . 20 :Figure 4 . 21 :

 420421 Figure 4.20: Muscle profiles of sketches fitted with DST with 10 harmonics, from 200 samples.

Figure 4 .

 4 Figure 4.22: Pectoral (green) and shoulder (blue) muscles represented by sets of fusiform fibers.In this case, shoulder muscles collide against each other, while the pectorals are allowed to overlap to better approximate the desired shape.

Figure 4 .

 4 22shows an example of pectoral and shoulder muscles. Depending on the desired deformation effects, muscle collisions can be ignored (Figure4.22 between green muscles) or enabled as explained in Section 5.3 (Figure4.22 between blue muscles).

Figure 5 . 1 :

 51 Figure 5.1: Position of tendons in the dynamic muscle model. The tendons particles have stiffer links, while the muscle body particles have looser distance constraint stiffness but smaller rest lengths.

Figure 5 .

 5 2 shows a comparison of the same animation played with different stiffness values on the muscles.

Figure 5 . 2 :

 52 Figure 5.2: Comparison between stiff and loose muscles. Top row: stiff muscles (𝑘 = 0.9). Bottom row: loose muscles (𝑘 = 0.4).

Figure 5 . 3 :

 53 Figure 5.3: PBD constraints in the dynamic muscle model used to represent muscle properties and interactions with surrounding elements.

  , 4.21 and 5.2). Each anatomic bone is attached to an animation bone, with

Figure 5 . 4 :

 54 Figure 5.4: Anatomic bones and animation bones. Left: skin and animation skeleton in rest state. Center: Anatomic bones are added and tied to the animation skeleton. The humerus (in red) moves with the arm bone, and the radius and ulna (blue) with the forearm bone. Left: Anatomic bones move with their skeleton bones.

Figure 4 .

 4 Figure 4.22. In our model, this muscle is represented by several fusiform shapes. If they are not prevented to collide, the complex motion of the shoulder can draw all fibers together

Figure 5 . 5 :

 55 Figure 5.5: Comparison between anatomical bones and proxy. Figure (a): biceps and triceps colliding against a distance field from an anatomical bone mesh. Figure (b): biceps and triceps colliding against a cylinder proxy shape.

Figure 5 . 6 :

 56 Figure 5.6: Friction in collision resolution. Particle p 𝑖 is colliding against the grey object.

Figure 6 . 1 :

 61 Figure 6.1: Integration of muscle field in the composition tree. Both figures detail the field of a single skin part 𝑓 𝑗 (greyed out area). Figure (a): without muscles, the skin part field 𝑓 𝑗 is only made of the HRBF field. Figure (b): when muscles are enabled, the muscles field 𝑓 𝑀 are blended together with a clean union operator, then blended with the HRBF thanks to the detail operator. The result of this blend is the skin part field 𝑓 𝑗 .

Figure 6 . 2 :

 62 Figure 6.2: Blending muscle and bones with a HRBF. Left: muscle and bones are added to the skin representation of the arm. Center: using a clean union operator yields an irregular field, as shown on the level curves. Right: using Canezin et al.'s [CGB13] operator avoids these problems and creates a regular field. See also the enlargement in Figure 6.3.

  and 6.3(b). This problem of implicit modelling, raised by Canezin et al. [CGB13] happens when adding small details to comparatively larger objects. The solution is to use Canezin et al.'s [CGB13] detail operator described in Section 2.3.3 and Figure 2.10. This operator blends only the outside part of the muscle fields without including the central singular points and the bone-facing gradients, generating a suitable field for surface tracking, as can be seen in

Figure 6 . 2 (

 62 Figure 6.2 (right) and Figure 6.3(c).

( a )Figure 6 . 3 :

 a63 Figure 6.3: Gradient field of blended muscle field: detail of Figure 6.2 displaying the gradient field over the level curves. Figure (a): setup with skin and muscle primitives.Figure (b): with the union operator, the gradient field is influenced by the muscle, yielding gradients with erroneous directions or length (red arrows) and an area with singular points (dotted line).Figure (c): the detail operator guarantees a regular gradient field and removes the singular points near the surface.

  Figure 6.3: Gradient field of blended muscle field: detail of Figure 6.2 displaying the gradient field over the level curves. Figure (a): setup with skin and muscle primitives.Figure (b): with the union operator, the gradient field is influenced by the muscle, yielding gradients with erroneous directions or length (red arrows) and an area with singular points (dotted line).Figure (c): the detail operator guarantees a regular gradient field and removes the singular points near the surface.

5 .Figure 6 . 4 :Figure 6 . 5 :

 56465 Figure 6.4: HRBF modification to integrate muscles. Figure (a): The initial HRBF obtained by sampling the mesh part (in blue), with a muscle representing the triceps. Figure (b):When the forearm bends, the triceps gets thinner, but the blending of the two surfaces (in red) does not change, as the HRBF itself did not move. The effect of the muscle extension cannot be seen on the skin. Figure(c):In this case the HRBF is thinned to leave the muscle responsible for the skin shape around its area of influence. Figure(d):When the forearm bends, the triceps gets thinner. This time, the effect on the skin is visible, as the vertices will track the muscle's surface (green arrows).

(a)Figure 6 . 6 :Figure 6 . 9 :

 6669 Figure 6.6: Test scenes used for our results (see description in Table6.1).

Figure 6 . 10 :

 610 Figure 6.10: Detail of the arm during the run scene.Figure (a): Standard Implicit Skinning solution. Figure (b): Implicit Skinning with muscles, showing the bulged biceps, deltoid and pectoral.

  (a) and 6.7) shows a very fast motion of the arm, which allows to exhibit the inertial effects of our muscle model and the effect of the stiffness of the muscles, as detailed in Section 5.2. The biceps curl scene (Figures 6.6(b) and 6.8) is a prime example of the effect of muscle contraction (for the biceps) and extension (for the triceps), as well as showing the contact handling between the arm and the forearm.These scenes use skin and bones meshes derived from a commercial anatomic model (Anatoscope).

Figure 6 . 11 :

 611 Figure 6.11: Interactive muscle editing session in our animation and modelling application, showing the exposed muscle shape parameters and the end points position manipulation.

Figure 6 . 12 :

 612 Figure 6.12: Average times in seconds for the computation of an animation frame, for different number of particles per muscle. The brown bars represents the time spent in computation of mesh tracking, the salmon bars represents the time spent in PBD simulation.

( a )

 a Model setup. (b) Effect of the fat lump.

Figure 6 . 13 :

 613 Figure 6.13: Implicit fat tissue jiggling. Figure (a): setup of a jiggling belly. The center of the ellipsoid is a PBD particle (in grey) attached by elastic distance constraints (in red) to kinematic particles(in white) attached to a skeleton bone. Figure (b): side-by-side comparison of the model without the fat primitive (left) and with the fat primitive(right), showing the deformation induced on the skin.

  animation software: one cannot expect every skin deformation operation available in Maya or Blender to be rewritten specifically for Implicit Skinning. Moreover, it is particularly inefficient to provide an implicit representation of the whole skin when only some areas are affected by the implicit-based deformers and corrections. An elegant solution to these two issues would provide a local implicit model and blend smoothly the implicit-based deformations with any other skinning method, paying the computational cost only where needed and to integrate the deformations caused by implicit surfaces at any point in the skinning process.The latest work in high-quality skinning research show a convergence of physics-based and data-based methods, either by fitting a generic physics template to a specific model, or by extrapolating a physics simulation from captured data. These progress is due in part to the recent advances in machine learning and specifically the application of deep learning methods to computer animation. The applicability of machine learning to geometric skinning methods is still an ongoing research topic. While neural networks can learn to reproduce complex non-linear operations such as skinning, their users often need to make sense of the parameters of models. Besides, learning algorithms benefit from models with compact representations, which reduces the combinatorial explosions of parameters in the learning process. Indeed, one of the goals of my work was to define a muscle with a compact representation and meaningful parameters, which humans -and machine learning algorithms -find easier to manipulate. Thus, a complexity-reducing model such as the one presented in this thesis could be a stepping stone towards the next generation of geometric skinning algorithms.

  𝑛 ) + (Δv 1 , ..., Δv 𝑛 ) = ( v1 , ..., v𝑛 ) , where ΔV = (Δv 1 , ..., Δv 𝑛 ) is the solution to the linear problem [H 𝐸 (V)] ΔV = -∇𝐸(V) .
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 22114151 Primitive musculaireConstruction de l'axe central Les deux points extrémaux m 0 et m 1 de la primitive musculaire sont attachés à un os d'animation, et y sont liés rigidement pendant l'animation. Le segment [m 0 m 1 ] est alors divisé en 𝑁 𝑀 segments égaux, dont les points intermédiaires sont notés p 𝑖 . La ligne polygonale (polyligne) 𝒞 est paramétrée par 𝑠 ∈ [0, 1] et on note 𝑠(q) le paramètre correspondant à la projection d'un point q quelconque sur 𝒞. Afin de modéliser des profils de coupe elliptiques, la polyligne est orientée à chaque extrémité par un vecteur normal, respectivement ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n m 0 et ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n m 1 . Chaque point de contrôle p 𝑖 se voit associer une normale ⃗⃗ ⃗ ⃗ ⃗ ⃗ ⃗ n 𝑖 de la manière suivante :1. Interpolation sphérique des normales par rapport aux extrémités 2. projection du vecteur interpolé sur le plan tangent formé par les deux segments ayant leur extrémité en p 𝑖 .La normale en un point quelconque de la polyligne est interpolée sphériquement entre les normales des points de contrôle du segment sur lequel il se trouve.Opérateur de projection La projection d'un point q sur 𝒞 est une étape critique de l'évaluation de la fonction 𝑓 𝑀 car elle influe sur les propriétés du champ scalaire final, notamment la continuité. La projection orthogonale n'est pas satisfaisante car elle génère des discontinuités dans les régions intérieures des angles formés par les segments consécutifs (voir Figure 4.6). Nous proposons une nouvelle paramétrisation de la projection d'un point q lorsqu'il se projette orthogonalement à l'intérieur d'un angle de deux segments consécutifs. Le schéma de la Figure 4.8 illustre le procédé : le paramètre curviligne du point projeté sur 𝒞 est une combinaison linéaire des paramètres du point projeté sur chacun des segments pondérés par la cotangente de l'angle 𝜆 𝑖 formé avec les segments respectifs. Surface de balayage La surface est définie en extrudant le profil 𝑅 le long de l'axe 𝒞. Pour définir la forme des muscles, la fonction de profil 𝑅 est paramétrée par l'abscisse curviligne 𝑠 et l'angle 𝜃 formé entre le vecteur reliant q et son projeté d'une part et le vecteur normal en ce point d'autre part. 𝑅 est définie comme étant séparable en chacune des variables, c'est à dire : 𝑅 = 𝑤𝑟(𝜃)Φ(𝑠) . La fonction Φ représente la distribution de la masse musculaire le long de l'axe et 𝑟 sa coupe transversale, tandis que 𝑤 est un facteur d'échelle. Cette séparabilité permet d'établir que le volume du muscle reste constant si et seulement si les fonctions Φ et 𝑟 vérifient : Sous ces conditions, en choisissant les constantes égales à 1, le volume du muscle lorsque son axe est une ligne droite s'écrit : 𝑉 = 𝜋𝑤 2 𝑙, , où 𝑙 est la longueur de l'axe, comme démontré dans l'Annexe A.2. L'équation précédente permet de modéliser la contraction et l'extension des muscles. Les points extrémaux étant liés à des os d'animations différents, la longueur de l'axe varie au fil des mouvements du personnage. Lorsque celle-ci se raccourcit d'un facteur 𝛾, maintenir le volume constant nécessite donc de faire grossir la largeur 𝑤 d'un facteur √𝛾, et inversement lorsque l'axe musculaire s'allonge, reproduisant ainsi les contractions et extensions isotoniques du muscle. Fonctions de profil Nous présentons ci-dessous des fonctions vérifiant ces équations et disposant de paramètres permettant de contrôler efficacement la forme résultante. Premièrement, la fonction de distribution de masse Φ, est inspirée de la loi bêta de probabilités : Φ(𝑠) = 𝜙(𝛼, 𝛽; 𝑠), où 𝛼 et 𝛽 sont deux paramètres entiers (> 1) contrôlant la forme du profil. La fonction 𝜙 est définie de sorte à ce que son carré s'intègre à 1, c'est à dire une fonction unitaire au sens de la norme ℒ 2 :𝜙(𝛼, 𝛽; 𝑠) = 𝑠 𝛼-1 (1 -𝑠) 𝛽-𝑦 2(𝛼-1) (1 -𝑦) 2(𝛽-1) d𝑦 .Le ratio 𝛼/𝛽 contrôle l'asymétrie de la distribution (les profils symétriques sont pour 𝛼 = 𝛽) et les valeurs individuelles de 𝛼 et 𝛽 déterminent l'aspect de la fonction à chaque extrémité.Nous proposons de modéliser l'activation en interpolant entre deux paires de paramètres (𝛼 0 , 𝛽 0 ) et (𝛼 1 , 𝛽 1 ) selon un paramètre d'interpolation 𝑎 ∈ [0, 1]. Le premier jeu de paramètres représente la forme du muscle au repos et le second la forme du muscle au maximum de son activation (contraction isométrique). Pour préserver le volume du B.3 Déformations dynamiques muscle et respecter les équations, on emploie l'interpolation sphérique-linéaire (au sens de ℒ 2 ) entre les deux fonctions 𝜙(𝛼 0 , 𝛽 0 ; 𝑠) et 𝜙(𝛼 1 , 𝛽 1 ; 𝑠). On montre à l'Annexe A.3 que la normalisation de la fonction interpolée est équivalente à un polynôme du second degré en 𝑎, permettant d'évaluer cette fonction à un coût d'évaluation faible. Le profil de section transversale est une ellipse contrôlée par un seul paramètre d'excentricité 𝑒, les longueurs des demi-axes 𝑢 et 𝑣 de l'ellipse s'en déduisant déduisant par l'Équation (B.2). 𝑢 = 𝑒 2 ) 𝑣 = 1/𝑢. B.3 Déformations dynamiques Le modèle de muscle décrit précédemment est purement cinématique. Dans cette section nous présentons l'addition d'effets dynamiques par l'introduction d'une simulation physique. Les points de contrôle p 𝑖 de l'axe central 𝒞 peuvent maintenant se déplacer selon les résultats d'un moteur physique simplifié : Position based dynamics (PBD) [Mül+07]. Chaque point est représenté dans ce cadre par une particule de masse 𝑚 𝑖 représentant une fraction de la masse du muscle(les extrémités demeurent liées cinématiquement à leur os d'animation). L'approche PBD prend en compte non pas les forces agissant sur les particules, mais des fonctions de contraintes, qui sont optimisées par le solveur Gauss-Seidel de PBD. Ce solveur converge itérativement vers une position des particules satisfaisant aux contraintes. Notre approche utilisant les champs scalaires est ici un atout, puisqu'elle permet de définir des contraintes modélisant efficacement les collisions entre objets.Contraintes d'élasticité Nous introduisons une contrainte de distance élastique entre les particules de l'axe musculaire se comportant comme des ressorts, caractérisés par une raideur 𝑘 et une distance de repos 𝑑 0 , ces paramètres déterminant le comportement dynamique du muscle : une faible raideur créera beaucoup d'effets inertiels et des secousses visibles, alors qu'une raideur forte maintient l'axe du muscle quasi immobile relativement à ses extrémités. Détection des collisions Les collisions sont évitées en introduisant des contraintes entre une particule et un champ scalaire, c'est à dire en forçant une particule à demeurer à une certaine distance de la surface implicite correspondante. Chaque particule se comporte alors comme une sphère, et les os sont représentés soit par des champs de distance discrétisés par rapport à un modèle anatomique existant ou comme de simple cylindres. La prise en compte des os donne des déformations musculaires plus réalistes. De même nous proposons de modéliser la collision entre muscles : chaque particule de l'axe d'un muscle est repoussée par le champ scalaire correspondant aux autres muscles proches. Enfin, nous proposons une modélisation de l'interaction entre le muscle et la peau, en contraignant les particules de muscles à rester à une certaine distance à l'intérieur de la peau telle que définie dans la position initiale du personnage. B.4 Intégration à Implicit Skinning Opérateurs de mélange Les déformations générées par les muscles sont intégrées dans la représentation implicite de la peau proposée par Implicit Skinning [Vai+13 ; Vai+14]. Chaque champ scalaire musculaire 𝑓 𝑀 est un champ de distance à support global. Pour être intégrés avec les champs scalaires de l'Implicit Skinning, il est tout d'abord nécessaire de les convertir en fonction à support compact [BWG04]. Nous utilisons pour cela la fonction compactifiante utilisée par Vaillant et al. [Vai+13]. Les différents muscles appartenant à une partie du corps distincte associée à un os d'animation sont alors mélangées au champ scalaire HRBF représentant la surface de la peau, pour produire un nouveau champ scalaire. Ces différents champs scalaires, représentant chacun une partie mobile du corps du personnages, sont ensuite combinés au moyen de l'opérateur de contact décrit par Vaillant et al. [Vai+14] pour représenter le personnage entier. Durant l'animation, les sommets du maillage représentant le personnage suivent cette surface implicite se déformant selon les mouvements du squelette, ce qui permet à la fois d'éviter les auto-intersections, et de prendre en compte les effets des muscles. Toutefois, le mélange entre les muscles et la HRBF requiert une attention particulière. En utilisant un opérateur d'union, le champ scalaire résultant présente des discontinuités et des points critiques à proximité de la surface de la peau. Or, les points critiques induisent l'algorithme de suivi d'Implicit Skinning en erreur, et provoquent des artefacts visuels qu'il convient d'éviter. Pour cela, nous utilisons l'opérateur de détail décrit par Canezin et al. [CGB13], qui évite l'apparition de ces points singuliers. Pour que l'effet du muscle soit visible en extension comme en flexion, les HRBFs représentant la peau du modèle sont modifiées de sorte à ce que ce soit le muscle qui capture la forme de la peau et non la HRBF statique. Ainsi lorsque le muscle se dégonfle, la peau est visiblement creusée. Intégration à l'algorithme d'animation La mise à jour de l'algorithme Implicit Skinning tenant compte des muscles est illustrée par la Figure 6.5. À chaque nouvelle trame, le squelette d'animation est transformé pour atteindre sa pose cible. Les éléments liés cinématiquement au squelette d'animation (HRBF et particules extrémales) sont mis à jour. Les paramètres de forme du muscle (𝛼, 𝛽, l'excentricité ou l'activation) peuvent être éventuellement spécifiés sous forme de keyframes et sont calculés à ce moment. Ensuite, le solveur PBD calcule la nouvelle position des particules, et les champs scalaires représentant les muscles sont mis à jour. Cela permet d'atteindre la représentation implicite de la peau pour cette trame, qui sera utilisé pour corriger la position des sommets par l'algorithme Implicit Skinning. Pour tester cette méthode d'animation, nous avons utilisé plusieurs scènes allant de mouvements simples comme une flexion de l'avant-bras ou un mouvement oscillant du bras, à des mouvements plus complexes comme la course ou le saut. Les résultats obtenus démontrent la possibilité d'exécuter cette méthode à des vitesses permettant son usage interactif, allant d'environ 30 images par secondes dans les cas les plus simples à 2 images par secondes dans les plus complexes. La complexité des scènes dégrade les performances assez rapidement, mais lors des sessions d'édition, il est possible de favoriser la vitesse au détriment de la précision en réduisant le nombre de particules par muscles, ou en simulant uniquement les muscles en cours d'édition. De plus, la mise en oeuvre de notre méthode pourrait également être rendue plus rapide en exécutant les tâches les plus coûteux (la simulation physique et l'algorithme de suivi d'Implicit Skinning) sur un GPU. En effet, ces deux calculs sont essentiellement parallélisables, et bénéficieraient grandement d'une implémentation sur carte graphique. B.6 Conclusion Les travaux présentés dans cette thèse mettent donc en évidence qu'il est possible d'améliorer la plausibilité des résultats d'Implicit Skinning par l'adjonction de primitives représentant l'effet des muscles en conservant des performances suffisantes pour l'interactivité. La formulation implicite des formes des muscles est un atout pour l'évaluation du volume en formule fermée et donc pour dériver des règles permettant la déformation des muscles à volume constant. De plus, cette formulation s'intègre élégamment dans le modèle physique de Position based dynamics, permettant d'ajouter des effets dynamiques dans le mouvement des muscles à moindre frais calculatoires. Enfin, ces travaux augurent de l'applicabilité de méthodes inspirées de l'Implicit Skinning dans un contexte de production infographique. The skeletal animation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Models, rigs, and skeletons . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Animating a rigged character . . . . . . . . . . . . . . . . . . . . . . 9 1.1.3 Primary and secondary motion . . . . . . . . . . . . . . . . . . . . . 10 1.2 Physically-based skinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1 Force-based muscle models . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Simulation of anatomic models . . . . . . . . . . . . . . . . . . . . . 13 1.2.3 Simulation space reduction . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.4 Simulation control and coupling . . . . . . . . . . . . . . . . . . . . 15 1.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Data-driven skinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Pose-space deformation . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.2 Pose and shape capture . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.3 Statistical shape models . . . . . . . . . . . . . . . . . . . . . . . . . 171.3.4 Learning dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4 Geometric skinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4.1 Linear blend skinning and skinning weights . . . . . . . . . . . . . 20 1.4.2 Dual quaternion skinning . . . . . . . . . . . . . . . . . . . . . . . . 21 1.4.3 Improving geometric skinning . . . . . . . . . . . . . . . . . . . . . 23 1.4.4 Shape-based muscle deformers . . . . . . . . . . . . . . . . . . . . . 24 1.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ♠ Colophon This document is the defense version of the thesis. It was typeset with LuaL A T E X on June 20, 2018 using the scrbook class from the KOMA-Script package. Pagella is the main font used for the text and maths. A font in the style of Palatino, a humanist serif typeface, designed by Herman Zapf in 1949. This typeface comes from the T E X Gyre project maintained by the Polish T E X user group GUST. Additional glyphs from XITS-Math from STIX Fonts were used for the cursive math letters. Fira Sans designed by Erik Spiekermann and Carois Type Design for the Mozilla Foundation in 2013 is used for parts, chapters and section titles. Fonts are released under open licences (GUST and SIL). ♠ All the material used in the preparation of this thesis was produced with free and open source software.

  

  

  

Table 2 .

 2 

1: A summary of the two main convention of implicit surfaces

  and retrieving the values in a spatial data structure (e.g. in a grid) by discretising the field's bounding box. Compact support functions were introduced early on independently by several seminal papers under many different names such as Blinn's Blobs [Bli82], Nishimura et al.'s Metaballs [Nis+85] and Wyvill et al.'s Soft Objects

Table 4 . 1 :

 41 Average number of evaluations per microsecond of several muscle profile functions (higher is faster).

	The muscle field function

Skinning performance. On the other hand, simplistic functions cannot account for the variety of shapes required for all muscles.

Table 6 .

 6 1 and Figure 6.6 summarize the setup of each scene, and side-by-side comparison are illustrated in Figures 6.7 to 6.10.

	The arm shake (Figures 6.6

Table 6 . 2 :

 62 .2.While Implicit Skinning runs at real-time frame rates even in more demanding scenes, adding more muscles or increasing the number of particles per muscle increases both the physics simulation time, and the tracking time. The former is caused by the increased numbers of particles to simulate and of constraints to solve. The latter occurs because the Implicit Skinning algorithm evaluates the skin field 𝐹 several times per vertex in a frame. The cost of computing 𝐹 itself depends on the number of primitive fields functions to evaluate. While the use of compact support function with a BVH tree prunes out many Average times in seconds per frame for our different scenes and 30 particles per muscle. Times are given for standard Implicit Skinning without muscle, and for Implicit Skinning with muscles detailing the time spent by the IS tracking, and by the PBD simulation.

	Scene	Standard IS	IS + Muscles
			Tracking PBD Total
	Arm shake	0.008	0.013 0.055 0.068
	Biceps curl	0.005	0.015 0.042 0.057
	Jump	0.050	0.462 0.096 0.558
	Run	0.051	0.473 0.096 0.569

  table for the 81 possible beta function values (one for each pair of (𝛼, 𝛽)), which is common to all muscles, requires an additional 324 bytes. The blending also requires storing the detail operator in a 2D grid, adding 200 kilobytes. Using anatomical bone shapes, each stored as a discretized distance field in a 128 × 128 × 128 3D grid requires approximately 8 megabytes per bone shape. If memory consumption becomes an issue, the resolution of the 3D grid can be lowered, or the bone distance fields replaced by proxy cylinders, as detailed in Chapter 5.

  inhérentes aux méthodes de skinning sous-jacentes (LBS et DQS), c'est à dire le manque de prise en compte des contacts de la peau et du volume au niveau des articulations. La troisième famille utilise des base de données capturées pour inférer Cette méthode permet de corriger les auto-intersections du maillage et de représenter l'élasticité de la peau. Nous y ajoutons la modélisation des muscles, de leur interaction avec d'autres éléments anatomiques comme les os, et des effets dynamiques, crées par la mise en mouvement du squelette d'animation. En particulier, nous présentons de nouvelles primitives musculaires qui imitent les formes des muscles et reproduisent leur déformations : flexion, extension et activation, en maintenant leur volume constant, à Un muscle est défini comme un champ scalaire 𝑓 𝑀 ∶ ℝ 3 → ℝ construit par balayage d'une fonction profil 𝑅 le long d'une ligne polygonale 𝒞. Ce champ scalaire continu définit en sa 0-isovaleur une surface implcite représentant la surface du muscle.

	les déformations sur les maillages [MG03 ; WPP07]. Les déformations produites sont
	toutefois limités par la taille des données d'apprentissages et la difficulté pour les artistes
	de contrôler le résultat.								
	Nous décrivons une approche qui permet de cumuler les avantages des primitives
	musculaires avec une méthode de skinning géométrique produisant des résultat de bonne
	qualité, notamment au niveau de sa gestion des contacts : l'Implicit Skinning [Vai+13 ;
	Vai+14].												
			1) 6	(-	13 35	𝑎 7 +	13 5	𝑎 6 -	39 5	𝑎 5 + 13𝑎 4 -13𝑎 3 +	39 5	𝑎 2 -	13 5	𝑎 +	13 35	)
	=	13 35	(1 -𝑎) 7 (1 -𝑎) 6										
	=	13 35	(1 -𝑎) .										
	Finally, for the whole integral, 𝑎 vanishes:			
								𝐼 = 𝐼 1 + 𝐼 2			
									=	13 35	(𝑎 + (1 -𝑎))			
									=	13 35	.			
	ces déformations musculaires, de nombreuses techniques ont été développées, allant des
	méthodes géométriques rapides en calcul aux simulations physiques détaillées mais coû-
	teuses. Les travaux de cette thèse explorent l'adjonction de déformations musculaires aux
	méthodes géométrique de skinning par squelette. Parmi ces approches, trois familles ont
	chacune étendu le Linear Blend Skinning (LBS) [MLT88] et le Dual Quaternion Skinning
	[Kav+07]. La première de ces familles regroupe les méthodes utilisant les poses clefs
	[LCF00] sculptées directement avec des logiciels de modélisation. Ces méthodes sont très
	générales, mais cette étape de modélisation manuelle est particulièrement fastidieuse. La
	deuxième famille utilise des primitives musculaires, positionnées à l'intérieur du corps

B Résumé en français B.1 Introduction L'animation de personnages est un composant central des médias numériques modernes : films, jeux vidéos ou réalité virtuelle. Produire des déformations de qualité sur un modèle de personnage, ce qui est crucial pour rendre celui-ci crédible aux yeux du spectateur, demeure néanmoins un défi technique. La complexité du corps humain, composé d'os, de muscles, et de divers tissus organiques est en effet difficile à reproduire sous forme numérique tout en maintenant des vitesses d'exécution élevées et une simplicité de paramétrisation. Idéalement, le calcul des déformations du personnage s'exécuterait en temps réel sur une machine standard, et offrirait à son utilisateur des paramètres intuitifs permettant un contrôle précis du résultat. Le modèle de base est celui de la déformation basée sur un squelette articulé ; l'addition de déformations causées par les muscles sur la peau améliore significativement la plausibilité du résultat. Pour prendre en compte du personnages, agissant comme déformeurs sur la peau [WV97]. Ils sont généralement contrôlables à l'aide de paramètres intuitifs et éditables en temps réels, mais souffrent des limitations l'instar des muscles réels. Ces primitives musculaires sont représentées par des surfaces de balayage autour d'un axe central. La dynamique des muscles est induite sur lesdits axes par Position Based Dynamics [Mül+07], une méthode de simulation physique approximative. L'utilisation de champs scalaires 3D pour nos primitives musculaires nous permet de l'intégrer dans le cadre de l'Implicit Skinning, et de détecter simplement les collisions entre muscles ou avec les os. La mise en oeuvre de ces primitives permet de contrôler les formes des muscles virtuels et leur comportement dynamique à l'aide d'un petit nombre de paramètres intuitifs, évitant ainsi de fastidieuses phases de modélisation de formes correctives ou de coûteuses simulations physiques. B.2 Primitive musculaire

In fact, this skinning technique has been used many times and under many different names such as stitching or vertex blending[START_REF] Woodland | Filling the Gaps -Advanced Animation Using Stitching and Skinning[END_REF] , skeletal subspace deformation or envelopping[START_REF] Lewis | Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-driven Deformation[END_REF], etc.

(cot(𝛼 𝑖𝑘 ) + cot(𝛽 𝑖𝑘 )), with 𝛼 𝑖𝑘 and 𝛽 𝑖𝑘 the angles opposite to the edge [v 𝑖 v 𝑘 ] (see Figure

3.9). The weights 𝑐 𝑖𝑗 are precomputed for all neighbouring vertices on the reference mesh. The total
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Appendix

A

Proofs

A.1 ARAP Jacobi iteration

Recall the expression of the ARAP energy:

assuming the weights 𝑐 𝑖𝑘 are the cotangent weights if v 𝑖 and v 𝑘 are neighbours and 0 if not.

We can derive the gradient of 𝐸 relatively to a given vertex v 𝑢 :

This yields two family of non-null terms:

Now differentiating the norm-squared terms yields:

A.3 Interpolation of beta function

We substitute the integral in 𝜃 by the expression above in the computation of 𝑉:

Since we enforce 𝑢𝑣 = 1, it yields

We also constrain ∫ Φ 2 = 1, thus we have

A.3 Interpolation of beta function

The Euler beta function 𝐵 is defined as

which appears in the denominator of Equation (4.4).

We define the linear interpolation Φ(𝑠) between 𝜙(𝛼 0 , 𝛽 0 ; 𝑠) and 𝜙(𝛼 1 , 𝛽 1 ; 𝑠), governed by the activation parameter 𝑎, such that ∫ 1 0 (Φ(𝑠)) 2 d𝑠 = 1, ∀𝑎 ∈ [0, 1] as:

where √𝐹(𝑎) is the ℒ 2 -norm of the numerator:

We show that 𝐹(𝑎) can be expressed as a second-order polynomial in 𝑎 whose coefficients depend only on the chosen values for 𝛼 1 , 𝛼 2 , 𝛽 1 and 𝛽 2 .

Proof.

where 𝐾(𝛼 0 , 𝛼 1 , 𝛽 0 , 𝛽 1 ) is the constant term equal to:

, which can be expressed in terms of the beta function B as:

A.4 Square integral of piecewise cubic profile

Let 𝑎 ∈]0, 1[ Recall the definition of Φ cubic through Hermite constraints:

We can show that there is only one piecewise third-degree polynomial Φ cubic fitting these constraints.
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