
HAL Id: tel-02058749
https://theses.hal.science/tel-02058749v1

Submitted on 6 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implicit muscle models for interactive character skinning
Valentin Roussellet

To cite this version:
Valentin Roussellet. Implicit muscle models for interactive character skinning. Image Processing
[eess.IV]. Université Paul Sabatier - Toulouse III, 2018. English. �NNT : 2018TOU30055�. �tel-
02058749�

https://theses.hal.science/tel-02058749v1
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
délivré par

l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

présentée et soutenue par

Valentin Roussellet
le 25 juin 2018

Implicit muscle models
for interactive character skinning

École doctorale et spécialité :
MITT : Image, Information, Hypermédia

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5055)

Directeur de Thèse :
Loïc Barthe, Professeur à l’Université Toulouse III Paul Sabatier

JURY

Raphaëlle Chaine Professeur à l’Université Lyon I Claude Bernard Examinatrice
Paul G. Kry Professeur à l’Université McGill Rapporteur
Maud Marchal Maître de Conférences à l’INSA Rennes Examinatrice
Damien Rohmer Professeur à l’École Polytechnique Rapporteur
Mathias Paulin Professeur à l’Université Toulouse III Paul Sabatier Examinateur

Implicit muscle models
for interactive character skinning

Valentin Roussellet

Aux carabistouilles,
aux pièces de théâtre,
aux notes de musique,

aux éclats de rire.

Abstract

Surface deformation, or skinning is a crucial step in 3D character animation. Its role is to
deform the surface representation of a character to be rendered in the succession of poses
specified by an animator. The quality and plausiblity of the displayed results directly
depends on the properties of the skinning method. However, speed and simplicity are
also important criteria to enable their use in interactive editing sessions.
Current skinning methods can be divided in three categories. Geometric methods

are fast and simple to use, but their results lack plausibility. Example-based approaches
produce realistic results, yet they require a large database of examples while remaining
tedious to edit. Finally, physical simulations can model the most complex dynamical
phenomena, but at a very high computational cost, making their interactive use impractical.
The work presented in this thesis are based on, Implicit Skinning a corrective geometric

approach using implicit surfaces to solve many issues of standard geometric skinning
methods, while remaining fast enough for interactive use. The main contribution of
this work is an animation model that adds anatomical plausibility to a character by
representing muscle deformations and their interactions with other anatomical features,
while benefiting from the advantages of Implicit Skinning. Muscles are represented by
an extrusion surface along a central axis. These axes are driven by a simplified physics
simulation method, introducing dynamic effects, such as jiggling. The muscle model
guarantees volume conservation, a property of real-life muscles.

Thismodel adds plausibility anddynamics lacking in state-of-the-art geometricmethods
at a moderate computational cost, which enables its interactive use. In addition, it offers
intuitive shape control to animators, enabling them to match the results with their artistic
vision.

iii

Résumé

En animation de personnages 3D, la déformation de surface, ou skinning, est une étape
cruciale. Son rôle est de déformer la représentation surfacique d’un personnage pour
permettre son rendu dans une succession de poses spécifiées par un animateur. La plausi-
bilité et la qualité visuelle du résultat dépendent directement de la méthode de skinning
choisie. Sa rapidité d’exécution et sa simplicité d’utilisation sont également à prendre
en compte pour rendre possible son usage interactif lors des sessions de production des
artistes 3D.
Les différentes méthodes de skinning actuelles se divisent en trois catégories. Les mé-

thodes géométriques sont rapides et simples d’utilisation, mais leur résultats manquent de
plausibilité. Les approches s’appuyant sur des exemples produisent des résultats réalistes,
elles nécessitent en revanche une base de données d’exemples volumineuse, et le contrôle
de leur résultat est fastidieux. Enfin, les algorithmes de simulation physique sont capables
de modéliser les phénomènes dynamiques les plus complexes au prix d’un temps de
calcul souvent prohibitif pour une utilisation interactive.
Les travaux décrits dans cette thèse s’appuient sur Implicit Skinning, une méthode géo-

métrique corrective utilisant une représentation implicite des surfaces, qui permet de
résoudre de nombreux problèmes rencontrés avec les méthodes géométriques classiques,
tout en gardant des performances permettant son usage interactif. La contribution princi-
pale de ces travaux est un modèle d’animation qui prend en compte les effets des muscles
des personnages et de leur interactions avec d’autres éléments anatomiques, tout en béné-
ficiant des avantages apportés par Implicit Skinning. Les muscles sont représentés par une
surface d’extrusion le long d’axes centraux. Les axes des muscles sont contrôlés par une
méthode de simulation physique simplifiée. Cette représentation permet de modéliser les
collisions des muscles entre eux et avec les os, d’introduire des effets dynamiques tels que
rebonds et secousses, tout en garantissant la conservation du volume, afin de représenter
le comportement réel des muscles.

Ce modèle produit des déformations plus plausibles et dynamiques que les méthodes
géométriques de l’état de l’art, tout en conservant des performances suffisantes pour
permettre son usage dans une session d’édition interactive. Elle offre de plus aux infogra-
phistes un contrôle intuitif sur la forme des muscles pour que les déformations obtenues
se conforment à leur vision artistique.

v

Acknowledgements

A doctorate curriculum is often seen a solitary endeavour. In my case, this could not be
further from the truth.

I wish to thank, first and foremost, my thesis supervisor Loïc Barthe, who has been
very supportive, positive, and benevolent from the very beginning of our work together,
through the ups and downs of research and publication. His thoughts, his scientific
guidance, and his constant backing of my own ideas were invaluable in the production of
this work.

I am also greatly indebted to Nicolas Mellado. Besides being a skilled young researcher,
Nicolas has helped me countless times in my struggles with difficult maths, in debugging
complex code, and in writing our papers, and I would not have gotten far without his
help.

I am as much indebted to the other Storm team professors, David Vanderhaeghe and
Matthias Paulin, who provided an excellent work environment, whose discussions were
always useful and who encouraged me to invest my efforts for the team.

Working with my co-author and colleague Nadine Abu Rumman was very inspiring.
Her skills, her great scientific outlook and her unfaltering motivation were instrumental
in bringing our work to publication. In addition to his scientific contributions on which
much of my work relies, I would also like to thank fellow team-mate Florian Canezin, who
helped me out of technical difficulties on many occasions, and accepted to work with the
massive amount of research code without (much) protesting.

Members of the research team have all been very supportive during my work: heartfelt
thanks to Charly, whose code is so perfect it must never be fixed, to Rodolphe, who started
it all, to Maurizio, who worked tirelessly on ibl, to Thomas and Céline, who welcomed me
as an aspiring Ph.D. student, to Caroline, who took on the burden of the weekly seminars
with me, to Thibault, who keeps it now, and to Anahid, who shared my fate from day one
and never failed to entertain and support me.

The regular visits of Professor Brian “Blob” Wyvill in Toulouse always were a source of
inspiration, never running out of great research insight and funny historical anecdotes.
He was also very kind to correct the English writing of my thesis.

vii

I am very grateful to Professor Ladislav Kavan, who welcomed me at the University
of Utah. I spent a very fruitful and helpful summer in his team, and in addition to his
great contribution to shape our common paper, he sharpened my interest in many areas
of computer graphics. I also wish to thank Professor Daniel Sýkora, who gave me the
idea of Discrete Fourier Transform for the sketch-based interface. In the Utah team, I
am particularly indebted to Petr Kadleček, whose friendly welcome, and wise advice
largely contributed to make this visit enjoyable, and to Dimitar Dinev, who offered me
accommodation in Salt Lake City.

I am very grateful to the thesis committeewho accepted to reviewmywork, and in partic-
ular, I would like to thank the rapporteurs, Professor Paul Kry and Professor Damien Rohmer,
for their helpful comments and remarks which helped me improve my manuscript.
This work would not have been possible without the funding provided by the Labo-

ratoire d’Excellence CIMI, scholarship (ANR-11-LABX-0040) and the ANR FOLD-Dyn
project (ANR-16-CE33-0015-01). I also wish to thank Professor François Faure and his
company Anatoscope who gave us access to their anatomic model which was very helpful
for our experiments.

♠

“Truly there would be reason to go mad, were it not for music”: these words from
Tchaikowsky express my feelings towards the amazing student orchestra of Toulouse. I
joined OSET soon after starting my Ph.D. curriculum, and their musical talent and joie de

vivre was one of the greatest source of happiness I found while in Toulouse.
I wish to thanks my flatmates, who put up with the hectic lifestyle of a grad student

for a surprising long time, and Morgane, a dedicated Ph.D. student and great musician.
I count myself lucky to be friends with Alif, and with the ever faithful Bronze Knights
travel buddies, with whom many adventures were shared, and with Momo and our great
conversations about science, the universe and everything. I owe many heartfelt thanks to
Élise, for her unconditionnal love and support.
Finally, my whole family has always been a source of confidence and encouragement,

through the good times and the bad. Mymost special thanks go tomy father Jean-François,
who always brought the best in me, and to Guillaume, my little brother, who I look up to
in everything that matters.

viii

Short contents

Notations xi

Introduction 1

I Skinning with implicit surfaces 5

1 Character animation and skinning 7

2 Introduction to implicit surfaces 29

3 Implicit Skinning 49

II Implicit muscle deformers 65

4 Implicit muscle models 67

5 Dynamic muscle deformations 91

6 Integration with Implicit Skinning 101

Conclusion 115

Appendix 119

A Proofs 121

B Résumé en français 129

Bibliography 137

Full table of contents 147

List of Figures 151

ix

Notations

Common notations
Unless specified otherwise, the following conventions are adopted in this work:

Type Notation Examples

angle lowercase Greek 𝛼𝑖, 𝛾, 𝜃
scalar lowercase italic 𝑎, 𝑏, 𝑘, 𝑤𝑖𝑗
point in affine space ℝ3 lowercase bold p, q,m
vector in vector space ℝ3 lowercase bold with arrow x⃗, ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d0

matrix capital bold M,Rx(𝜃)
curve capital cursive 𝒞, 𝒫(𝑢)

The following section summarizes the specific notations defined specifically in each
chapter.

General geometry
R rotation matrix

q̂ dual-quaternion

⃗⃗⃗⃗⃗⃗n⃗(p) normal of a surface at point p

Animation and skinning
v𝑖 vertex 𝑖 of a 3D mesh

v′
𝑖 updated position of v𝑖

vref 𝑖 reference position of v𝑖

𝒩(v𝑖) neighbourhood (set of adjacent vertices) of
v𝑖

𝒮 animation skeleton

𝑃(𝑡) pose of the skeleton at time 𝑡

𝑃ref reference pose of the skeleton.

M𝑗 model-space transform of joint 𝑗

M𝑗 parent-space transform of joint 𝑗

Mref 𝑗 model-space transform of joint 𝑗 in the refer-
ence pose

B𝑗 model-space transform of joint 𝑗 relative to the
reference pose

B𝑗 parent-space transform of joint 𝑗 relative to the
reference pose

𝑤𝑖𝑗 skinning weight of vertex 𝑖 relatively to bone 𝑗

Scalar fields and implicit surfaces
𝒞𝑛 class of functions whose derivatives are continu-

ous up to order 𝑛.

𝜙, 𝜓 numerical functions (ℝ → ℝ)

𝜅 gradient-based operator controller function
([0, 𝜋] → [0, 1])

𝑓 , 𝑔 3D scalar fields (ℝ3 → ℝ)

p,q point at which the function is evaluated

𝑤 3D warping function (ℝ3 → ℝ3)

∇𝑓 gradient of 𝑓

J𝑤 Jacobian matrix of function 𝑤.

𝑆𝐶 C-iso surface of a scalar field (𝑓 −1(𝐶))

Ω arbitrary 3D volumic object, subset of ℝ3

xi

Notations

𝜕Ω the frontier surface of Ω

𝐺 composition operator

𝐹 composite 3D scalar field.

Implicit skinning
𝑓H HRBF field function

𝑁H number of HRBF points

𝑓𝑗 Compact-support field function representing
mesh vertices associated to bone 𝑗

𝐹𝑡 Top-level skin field function at time 𝑡.

v𝑖 Starting position of the 𝑖th vertex

⃗⃗⃗⃗⃗⃗h⃗ Displacement vector during the projection step

𝜆 Projection step factor

𝑒𝑖 Tracked iso-surface of v𝑖

v
(p)
𝑖 Position of v𝑖 after the projection step.

𝑐𝑖𝑘 Cotangent weight between v𝑖 and v𝑘

v
(j)
𝑖 Position of v𝑖 after the 𝑗th ARAP Jacobi iteration

v(r)
𝑖 Position of v𝑖 after the ARAP relaxation step.

𝑁𝐴 Number of ARAP Jacobi steps.

𝒯 Tangent plane at a given vertex

𝑁 number of Implicit Skinning iterations

Implicit muscle model
𝑓𝑀 Muscle scalar field function

𝒞 Central polyline axis of the muscle

𝑠 Curvilinear coordinate along the central axis

m0,m1 End points (origin and insertion) of the
muscle central axis

⃗⃗⃗⃗⃗⃗n⃗m0
, ⃗⃗⃗⃗⃗⃗n⃗m1

Normals orienting the respective end
points of the central axis

p𝑖 Intermediate control point of the central axis

⃗⃗⃗⃗⃗⃗n⃗𝑖 Intermediate control normal of the central axis

q Point at which the muscle field function is evalu-
ated

h Projection of q on the central axis

h𝑖 Projection of q on the 𝑖th segment of the polyline
𝒞

𝜃 Angle between the normal of the axis at h and the
projection vector ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗qh

Φ Part of the profile function depending on 𝑠

𝑟 Part of the profile function depending on 𝜃 (cross-
section)

𝑉 Volume of the muscle

𝑤 Width scale factor of the profile function

𝑙 Length of polyline 𝒞

𝑒 Eccentricity of the elliptic cross-section

𝑢, 𝑣 Semi-axis length of elliptic cross-section

𝑎 Activation level

𝛼, 𝛽 Shape parameters of the beta profile function

ℒ2 Space of square-integrable functions.

Position-based dynamics
𝐶(p) Constraint function evaluated for the particles

at position p.

𝜌𝑀 Average density of muscle tissue

𝑚 Total mass of the muscle

𝑚𝑖 Mass of particle 𝑖

⃗⃗⃗⃗⃗⃗v⃗𝑖(𝑡𝑛) Velocity of particle 𝑖 at time step 𝑡𝑛

𝐷𝑖 Collision radius of particle 𝑖

𝑘 Stiffness of elastic distance constraint

𝑑0 Rest distance of elastic distance constraint

𝜇 Velocity damping coefficient

𝜂 Friction coefficient

xii

Introduction

Anatomical studies by Leonardo Da Vinci. © The Royal Collection.

Animated characters are our digital doubles in a virtual world. They are initially
designed as 3D models: a surface mesh made of polygons. These meshes are then set in
motion by computer artists in several steps: rigging, animation and skinning. Rigging creates
a set of controllers that function as an intermediate representation for the animator to
set the model of the character in different poses. A dedicated 3D artist, the rigger, creates
this control layer or rig. This rig often takes the form of a skeleton articulated around joints,
imitating the real life skeletal system, and its control parameters are the joints transforms.
It is then up to the animators to manipulate these controllers to set the characters into
motion, and imbue the characters with life, purpose, and meaning. Skinning is the
function linking the rig parameters and the deformation of the character model. Thus,
the properties of the skinning method have a great influence on the visual appearance of
the animated character.
Virtual characters are only limited by the imaginations of their creators: they can be

dragons, unicorns, or impossibly muscular super-heroes. They can fly, become invisible,
or dodge bullets. Thus realism, the imitation of reality, is not the primary goal of skinning.
The main purpose of skinning is rather plausibility: the visual result must look correct to our
eyes, however unrealistic the characters or the situation. Additionally, animators must

1

Introduction

be able to tune the attitude of a character much like a live-action actor would do. As a
consequence, a good skinning method must be predictable and offer intuitive controls to
artists, allowing them to align the resulting animation to their vision. Speed of evaluation
is also a desirable property of skinning to speed up the production cycle: animators
wish to see the effect of a change of rig parameters instantaneously, so they can adjust it
interactively and converge quickly to the desired result. The speed requirement becomes
a hard constraint in video games, where the animation is played in real-time.

Among skinning methods, the fastest and simplest are purely geometric: they directly
apply the skeletal transforms to the vertices of the character mesh. These methods may be
blazingly fast, but they often lack plausibility in complex animations. This shortfall in
realism is essentially due to geometric methods only taking into account the surface of
the character’s skin, while the effects visible on the character are often a result of what
happens underneath the skin.

The two other families of skinning methods attempt to fully replicate these effects to pro-
duce more realistic deformations. Example-based methods reproduce the deformations
from a database of skin surfaces for a given character. Physics-based methods simulate
the mechanics of the underlying tissues in a character’s body to deform the skin. These
methods produce quality results, but require a high investment to be useful: example
databases require models be acquired or hand-crafted; physical models are notoriously
difficult to configure and computationally intensive. This restricts their use to high-budget
productions which can afford the time and manpower to use these complex methods.

There is a growing body of work dedicated to extending geometric skinning to replicate
some effects of more complex methods, trading off a small computational cost for improve-
ment on the plausibility and liveliness of the character animations, by adding volumetric
effects to the surfacic representation of the mesh. Implicit surfaces are especially useful
for this purpose, because of their properties to represent a surface along with the enclosed
volume in a succinct mathematical form. A recent research direction, known as Implicit
Skinning, has shown that using an implicit representation of the skin along with the
standard polygonal mesh handles contact between body parts. This contact handling
prevents mesh self-intersection on the resulting skin, an issue that has plagued geometric
skinning methods for a long time.

I chose to extend this research by using implicit surfaces to model the volume occupied
by muscles under the skin. Muscles make up a large portion of the body, and the effect of
their action is particularly visible on the skin. In many cases, the precise shape of the skin
in a limb is primarily dictated by the muscles underneath. Traditional media artists have
since long studied anatomy in order to picture humans and animals more realistically, as
illustrated by the anatomic studies of Leonardo Da Vinci at the opening of this chapter.

2

Because they set the body in motion, the appearance of muscles sets emphasis on the
action of the character: for example, characters flexing their arms under efforts or taking a
strong hit. Currently, most animators work with hand-crafted muscle deformers using
ad-hoc models to create muscle deformations on the skin, which is a tedious process.
In this work, I present an animation method for representing muscles using implicit

surfaces tomodel the volumetric effects they cause on the skin, producing high-quality skin
deformations, including contact handling. This model takes several important phenomena
contributing to the muscle deformations into account: volume conservation in muscle
tissue, activation and isometric deformations. Integrating this model with a physics
simulation produces dynamic effects such as jiggling motions and to detect and resolve
muscle-muscle and muscle-bone collisions.

Overview of contributions
The main contributions detailed in this thesis are twofold. First, the specification of an
implicitmusclemodel, giving a family of shapes able to representmost skeletalmuscles in
the human body and their deformation modes. These muscles are defined as curve-sweep
surfaces, and dynamically driven by Position Based Dynamics, a fast approximate physical
simulation method. Second, the integration of this model with Implicit Skinning, in
order to benefit from its skin contact resolution on the final skinning solution. The
implementation of this model offers a small set of intuitive parameters to control the shape
of the muscles and their dynamic behaviour, avoiding the need for tedious sculpting of
custom deformers. Setting the muscle parameters can be done interactively during the
rigging process, and the total compute time of our method remains small enough for
interactive editing.
This thesis is divided in two parts. The first part presents the work upon which the

animation method is built. In Chapter 1, I survey the three different categories of skinning
methods: geometric, example-based and physics-based. The next chapter (Chapter 2) is
an introduction to the formalism of implicit surfaces, which will be used in the following
chapters. Chapter 3 introduces Implicit Skinning, using implicit surfaces to resolve collisions
in the skin of a character.

In the second part, I present a muscle model made of implicit surfaces which represent
the muscles of an animated character. Chapter 4 presents the muscle model and discusses
the rationale behind the choices in this approach. In Chapter 5, a physics simulation is
added to the muscle model, enabling to represent dynamic phenomena. Finally, Chapter 6
describes how to implement this model within a skinning pipeline using Implicit Skinning

and discusses the practical implications of such an implementation.

3

I
Skinning with implicit surfaces

5

1
Character animation and skinning

And all the carnall beauty of my wife,

Is but skin-deep, but to two senses known
— Thomas Overbury (1581 – 1613), A Wife

This chapter presents skinning as the last stage of the character animation process, follow-
ing the sculpting of a character model, ormodelling, and the definition of animation controls,
or rigging. After the elementary concepts and notations are exposed in Section 1.1, the
subsequent sections review the different families of skinning methods: physically-based
(Section 1.2), example-based (Section 1.3), and geometry-based (Section 1.4).

1.1 The skeletal animation pipeline

1.1.1 Models, rigs, and skeletons

Animated objects and characters are usually represented as polygon meshes, which are fast
to display with current rendering hardware. Animating these objects thus requires to
deform the mesh to the desired shape at each frame.

Describing the movement of the millions of vertices of a modern display mesh cannot be
expected to be done manually, hence the idea of rigging: setting a mesh with a set of simple
spatial transform parameters. Animators only manipulate these high-level parameters,
whose evolution in time guides the mesh vertices to their desired position. A natural
idea for rigging a character is to use an animation skeleton, which was initially proposed
by Magnenat-Thalmann et al. [MLT88]. The skeleton is defined as a hierarchic kinematic
chain of joints, as shown in Figure 1.1.

7

Chapter 1 Character animation and skinning

Figure 1.1: A model of a hand with its skeleton rig.

Definition. An animation skeleton 𝒮 is given by a tree 𝒢𝒮 of 𝑚 joint nodes, the root being
conventionally the first node; and a set of rigid transforms {M𝑗}𝑗=0..𝑚−1 giving the local
frame of each joint.

In this model, bones are nominally associated with the edges of the graph, linking two
joints: the proximal joint being the closest from the root and the distal joint the farthest. For
humanoid characters, the root joint is generally located on the spine, near the centre of
gravity.

The transforms at jointsM𝑗 are the key parameters of the skeleton rig. They are usually
set by manipulating the bones in an animation tool, hence the very common abuse of
terminology where a bone is associated to its proximal joint. Thus expressions such as
“bone transform” must be understood as referring to the transform of the rigid bones
applied at the proximal joint.
Each joint transform defines a local space, in which the bone usually occupies one of

the axis. When manipulating bones to setup a skeleton in an application, it is much more
intuitive to modify the parent-space transform of a joint, defined relatively to its parent joint
in the tree, rather than the absolute transform. This way, when a bone is moved, all the
subsequent bones in the chain follow the movement: for example, raising the arm by
modifying the shoulder joint’s transform will also raise the forearm and hand bones.

Definition. The parent-space transform of joint 𝑗, whose parent joint is indexed by 𝑝 is

M𝑗 = M−1
𝑝 M𝑗 .

For the root joint, the parent-space transform of the root joint is the same its model
transform: M0 = M0.

8

1.1 The skeletal animation pipeline

initial model

B𝑗(𝑡)

desired pose 𝑃(𝑡)

vref 𝑖
v𝑖(𝑡)

reference pose skeleton 𝑃ref skinned model

Figure 1.2: Animation and skinning of a character. Left: the initial model, represented by
a polygon mesh, is rigged with a skeleton in its reference pose. Right: the animator moves the
skeleton to the desired pose. A skinning algorithm moves each vertex of the initial mesh
vref 𝑖 to its new position v𝑖.

The animation skeleton is a very useful tool for character animation setup because of its
resemblance, albeit imperfect, with its real-life counterpart. Many other rigging systems
have been devised for specific usages. Simply using independent points is especially useful
for simple objects or 2D animations. Using points linked in a coarse lattice which envelops
the object to deform is another fruitful approach introduced by Sederberg and Parry
[SP86]: cage-based deformation. Nieto and Susín [NS13] provide a recent survey of these
methods. This thesis focuses on skeletal-based skinning which is still the ubiquitous
rigging method for character animation.

1.1.2 Animating a rigged character

Displaying an animation is then done in two logically separate steps: an animation system is
responsible for providing the rig parameters at each time step 𝑡, and then an algorithm
deforms the mesh given these parameters. In the case of an animated skeleton, the rig
parameters are the joint transformsM𝑗.

Definition. Given an animation skeleton 𝒮, an animation function associates a set of rigid
transforms 𝑃(𝑡) = {M𝑗(𝑡)}𝑗=0...𝑚−1 to each time step 𝑡. The set 𝑃(𝑡) is called the pose of the
skeleton at time 𝑡. TransformsM𝑗 represent the position and orientation of the joints in
world space.

9

Chapter 1 Character animation and skinning

Usually, the skeleton is set up by an artist on the undeformed mesh. This initial pose
of the skeleton, associated with the initial state of the mesh, is known as the reference or
rest pose: 𝑃ref = {Mref 𝑗}𝑗=0..𝑚−1. A deformation of the mesh vertices is usually expressed
more easily with transforms from the reference pose to the current pose, leading to the
following notation.

Definition. The relative bone transform B𝑗(𝑡) of bone 𝑗 at time 𝑡 is the transform of joint 𝑗
relatively to the reference pose, given by:

B𝑗(𝑡) = (Mref 𝑗)
−1M𝑗 .

Generating the right succession of poses to express motion is both an artistic field and
an entire research area. The animations can be created by an animator (and usually stored
as a set of key poses through which the others are interpolated), acquired from an actor
equipped with a motion capture device, or even synthesized procedurally with machine
learning methods [HSK16].
Once the rig parameters are determined for a given time 𝑡, the goal is to deform the

displaymodel of the character according to these parameters. As the displaymodel usually
represents the surface of the character (or skin), this step is naturally called skinning, as
illustrated by Figure 1.2.

Definition. Given a set of 𝑁 vertices {vref 𝑖} representing the object’s surface in the refer-
ence pose {Mref 𝑗}, a skinning function gives for each pose 𝑃(𝑡) = {M𝑗(𝑡)}𝑗=0...𝑚−1, the new
position of each vertex v𝑖(𝑡).

Skinning is a vastly under-constrained problem. A typical animation skeleton has about
30 to 40 joints, each with 3 to 6 degrees of freedom, while a character mesh usually has
from tens of thousands to millions of vertices.

Moreover, it is hard to quantify what constitutes a good deformation. We are used to see
human characters evolve in real-life, and thus can quickly tell when a computer-generated
character does not look right. Yet, finding which geometric properties of the resulting
mesh must be constrained for the result to look correct is challenging even for simple
cases.

1.1.3 Primary and secondary motion

Animators often stress the difference between primary and secondary motion, exposed as
a major principle of animation by Disney animators Thomas and Johnston [TJ95, pp.
64–65]. The limits between what constitutes primary and secondary motion is somewhat

10

1.1 The skeletal animation pipeline

ill-defined. In principle, primary motion is the direct result of the controlled action of the
character and makes up the bulk of the character’s appearance at a given pose. Secondary
motion refers to all movements and effects which appear as a reaction to the character’s
primary motion. This includes many dynamic effects such as body parts jiggling when a
person is moving, muscles contracting under effort, strands of hair or cloth flying in the
wind, etc.

While primary motion conveys the action of the character, secondary motion adds more
life and more dimension to the character’s animation, significantly increasing the realism
of an animated scene. Movements with secondary motion seem more natural, and artists
often use it to emphasise the character’s action and create more expressive scenes.

In skeletal animation, secondary motion is often understood as motion on the skin
that is not the result of the direct manipulation of the joints. This usually requires to
increase the complexity of the rig by adding an extra layer between the rig parameters
and the final effect on the skin. The high number of degrees of freedom in these effects
adds to the difficulty of animating secondary motion. Methods that generate secondary
motion are often computationally expensive and expose many unintuitive parameters
which require hand-tuning. These shortcomings burden the animators with complexity
and only high-budget animation productions can afford to use them. In this work, we
focus on secondary motion caused by the anatomy of a character, and most prominently
on the effect of muscles on its visual aspect.

The next sections provide an overview of the different families of skinning algorithms.
Recent reviews on the field include the tutorial by Jacobson et al. [Jac+14], which provides
a good introduction, and the recent survey by Abu Rumman and Fratarcangeli [AF16]
for a complete coverage of skinning techniques. In addition, a specific review dedicated to
muscle simulations in computer graphics can be found in the survey by Lee et al. [Lee+12].

Methods able to reproduce secondary motion effects on the skin can be classified in
three categories. First, physics-based methods (Section 1.2) use mechanical simulation of
deformable bodies to compute the motion of the different parts of the character’s anatomy
(muscles, bones, soft tissues and skin). In contrast, example-basedmethods (Section 1.3) seek
to reproduce the deformations from example data, either crafted by artists or acquired
from the real world. Finally, geometric skinning (Section 1.4) directly uses the skeleton
transforms to compute the final positions of the vertices, while secondary motion is
generally added post-hoc with specific deformers.

11

Chapter 1 Character animation and skinning

Figure 1.3: Early mesh-based muscle simulation.

(Picture from [NT98])

1.2 Physically-based skinning

Deformations appearing on the skin are the result of the complex biomechanical processes
happening in a moving character. To reproduce these results in computer graphics, it is
possible to see skinning as the result of a biomechanical simulation of a virtual human
body. Physical simulation methods were introduced early in computer graphics [SDN84;
GM85; CHP89] and have since taken an important role in realistic animation methods.
They offer representations for complex dynamic deformations such as collision resolution,
bulging and jiggling of soft tissues.
The following section gives an overview of the main families of physics-based ap-

proaches. Detailed reviews of the field include Nealen et al.’s [Nea+06] and the survey
by Abu Rumman and Fratarcangeli [AF16, Section 4].

1.2.1 Force-based muscle models

Methods used in biomechanical research usually focus on computing the forces exerted by
the muscles. To that effect, muscle models are often reduced to a line of action throughwhich
the forces are transmitted. A model of the physical behaviour of the human musculature
for computer simulation was presented by Zajac [Zaj89], modelling the muscle as an
actuator and describing mechanical properties of muscle tissues and tendons.

12

1.2 Physically-based skinning

However, a simulation of muscles for computer graphics must also take into account
the shape of each muscle and their volume. Chen and Zeltzer [CZ92] introduced the
simulation of forces through a finite-element method (FEM) on a mesh representation
of the muscle. At the time, this method was too slow for interactive visualisation of the
results, which led Thalmann et al. [TSC96] andNedel and Thalmann [NT98] to introduce
a model based on a mass-spring system, used over a simplified mesh of the muscle. Their
method, illustrated on Figure 1.3, was fast enough for the simulation of one muscle in
real-time.

Several approaches attempted to tackle muscle simulation more efficiently. Teran et al.
[Ter+03; Ter+05] used finite-volume methods to compute the stress tensor inside the
muscles, coupled with a spline-based fibre model, while work by Pai et al. [PSW05]
attempts to blend the line-based methods used in biomechanical research and volumetric
approaches by using a strand representation. Their work was extended by Sueda et al.
[SKP08; Sue+11] specifically for skin deformations of the hand.

1.2.2 Simulation of anatomic models

With the growing of computing power, new methods were developed to model not only
muscles, but also other soft tissues and skin to represent a fully simulated human body.
The OpenSIM software [Del+07] or the full upper body model of Lee et al. [LST09] are
examples of methods striving for a general simulation model of the human body. The
most recent musculoskeletal models now include complex multibody rigid dynamics for
the skeleton coupled with shape-varying muscles whose motion takes into account inertia
and mass transfer [Mur+14; HHP15].

A key advantage of physically-based anatomic methods is their ability to model skin
elasticity and contact [McA+11]. The ability to handle self-contact of the skin, a situation
that happens often in animation (for example, with strong bending of the elbow and knee)
is especially difficult to model accurately with other methods. Fan et al. [FLP14] presented
an Eulerian-on-Lagrangian approach to model musculoskeletal systems, including muscle
and bone contact. This work was later extended by Sachdeva et al. [Sac+15] to take
tendons into account.

These approaches however require intensive modelling work. A volumetric map of the
initial position of muscles, bones, tendons, fat tissues and skin is generally required as
the input to the simulation. Propositions to tackle this problem include the transfer from
an existing anatomic model [Ali+13] or the simulation of muscle growth [SZK15]. The
most recent work by Kadleček et al. [Kad+16] (Figure 1.4) proposes to adapt an anatomy

13

Chapter 1 Character animation and skinning

Figure 1.4: A physics-based anatomic template with volumetric muscles and fat tissue.

(Picture from [Kad+16])

template to user-supplied body scan, bridging the gap between physical simulation and
data-driven methods (Section 1.3).

1.2.3 Simulation space reduction

An interesting venue to reduce the high computational cost of a full physical simulation
on a detailed model is to try to restrict the state-space to a smaller dimensional space,
based on prior knowledge of the result. Since only the character’s skin surface is visible
in an animation, it makes sense to focus on the skin deformation only, e.g. by using
thin-shell models [Li+13] or by reproducing the effect of corotational elasticity on the
surface [GMS14].

Another animation-specific space reduction was presented by Hahn et al. [Hah+12].
Theirmethod restricts the simulation’s state-space to the subspace of deformations allowed
by the animation rig. This method has the extra advantages of fitting in the standard ani-
mation pipeline and enabling the animators to exert control over the type of deformation,
and edit post-hoc the resulting animated rig parameters.

Recently, Xu and Barbič [XB16] obtained real-time frame rates running a finite-element
method in the pose-space, i.e. the space defined by interpolation between example poses
(see Section 1.3.1).

14

1.2 Physically-based skinning

1.2.4 Simulation control and coupling

A key issue in physically-based animation and skinning is to interface the force-based
physics simulation with the kinematic input of the skeleton. In real life, motion is trans-
mitted from the muscles to the bones, but in character animation, the animation skeleton
bones are directing the character’s motion, and thus drive the position of the muscles.
The works of Capell et al. [Cap+02; Cap+05] showed how to generate forces from the
animation skeleton as inputs to a finite-elements methods. Nevertheless, these methods
may violate conservation of momentum and thus become unstable for large time steps.

Shinar et al. [SSF08] exposed a two-way coupling model between soft and rigid bodies.
In this model, the deformable bodies could exert force on the rigid bones. Two-way simu-
lation has also been used to represent effects of external bodies on the characters [KP11;
Liu+13], e.g. throwing a ball at a character.

1.2.5 Discussion

Physical simulation methods use the most detailed and realistic models of a character
to replicate the complex phenomena that govern the aspect of a body in motion. Unfor-
tunately, this complexity comes with a cost. FEM simulations are very computationally
expensive, and the high resolution necessary to reproduce the finest details of human
anatomy makes a full-fledged simulation very slow. State-of-the-art methods take from 3
to 4 seconds per frame for simple models such as the arm of Fan et al. [FLP14] (4 muscles
and 3 bones); complete anatomical models such as the one presented by Kadleček et al.
[Kad+16] (60 bones and more than 100 muscles) take about 30 seconds to a minute to
compute one frame of animation.

In addition, a soft-body simulation exposes many parameters: material constants such
as stiffness, Lamé constants or Young’s modulus, as well as simulation parameters: in-
tegration time step, solving method, etc. These parameters must be chosen carefully to
ensure a plausible result and remain within some boundaries, lest the simulation becomes
unstable.

The nature of a physical simulation also makes it hard to predict beforehand what the
result will look like at a given point in time without running the simulation itself. As a
consequence, animating a character through physical simulation is a long and tedious
process. Animators must be familiar with the technicalities of elastic material models and
their properties, and often proceed by trial-and-error to set the parameters that achieve
the results that match their artistic direction. The time and manpower required for using
such methods thus restricts their practical use to high-budget productions, and forbids
their use in real-time applications.

15

Chapter 1 Character animation and skinning

Figure 1.5: Typical blendshape expressions. From left to right: half-smile, full smile and
open-mouth expression.

(Picture from [Lew+14])

1.3 Data-driven skinning
While physical simulation attempts to model the body in order to simulate its motion, data-
driven approaches attempt to imitate the results obtained by a set of example deformations.
They provide an easy way to generate consistent solutions for a problem with such a
large state-space such as skinning, but without the tedious work of finding the correct
parameters of a physical simulation. Mukai [Muk16] presents a recent survey of example-
based methods.

1.3.1 Pose-space deformation

Introduced by Lewis et al. [LCF00], pose-space deformation (PSD) has the artist manually posi-
tion the skeleton in a set of key poses, and sculpt the mesh in each of these poses, usually
as a correction over a direct geometric skinning method (see Section 1.4). Subsequently,
during animation, the current pose is expressed in terms of the example poses and the
shape of the mesh is interpolated from the associated sculpted shapes.
The pose-space lends itself naturally to space reduction using principal component

analysis [KJP02] which helps speed up the computations. This method was later extended
by Kurihara and Miyata [KM04] and Rhee et al. [RLN06] to support weights, reducing
the number of example poses. Weighted pose-space deformation (WPSD) can then handle
a sparser pose-space but at the cost of an increased computational complexity.
Pose-space deformation is especially popular in facial animation [LH09] where it is

generally known as blendshapes. Key poses of the face are oftenmapped to different emotions
(such as fear, excitement, happiness or surprise, as illustrated by Figure 1.5) enabling the
artists to generate compelling faces showing transitions between emotions [Lew+14].

16

1.3 Data-driven skinning

Example-based deformation algorithms critically depend on the interpolation method
used to reconstruct the blended mesh deformation from the key shapes. Covering a
high-dimensional space such as the pose space by hand-tuned mesh shapes would be
intractable, so the interpolation methods must behave well with scattered data points [see
Jac+14, section III.4].

1.3.2 Pose and shape capture

In the last decades, 3D data acquisition methods from real-world objects and persons
became increasingly available. As a consequence, subsequent research investigated cap-
turing and exploiting shapes acquired from real world data instead of relying on an artist
sculpting the example poses. The earliest work by Allen et al. [ACP02] directly computes
interpolations between skin shapes captured from a range scanner.
Later work benefited from improved acquisition methods: medical imagery, [KM04],

motion capture systems [PH06; PH08], depth sensors [Cas+16] and even smartphone-
based capture [IBP15]. In particular, the work of Neumann et al. [Neu+13] and Loper
et al. [LMB14] showed that it was possible to capture the soft tissue deformations from
standard motion capture markers.

1.3.3 Statistical shape models

To support the acquisition of several animations of the same person, or even of persons
of different body type led to the development of models able to separate deformations
caused by the change of pose from deformation due to varying body types, e.g. characters
that vary in gender, size, body weight or musculature. The SCAPE model by Anguelov
et al. [Ang+05] can represent shape variations caused by both position and body type as
a function of the pose. This amounts to defining a function 𝑆 such as each vertex v𝑖 of the
body’s surface can be written as

v𝑖 = 𝑆(𝛽, 𝑃(𝑡),vref 𝑖) ,

where 𝑃(𝑡) is the current pose, 𝛽 is the shape parameter representing the body type variation
of the character relatively to a default mean shape, and vref 𝑖 is the vertex position in the
reference pose.
Processing scans from different capture sessions with different people suffers from

issues associated with captured 3D data: noise and registration. Efforts to mitigate this
problem led Allen et al. [All+06] to use statistical models of correlation between shapes
to account for missing or noisy scan data, and Weber et al. [Web+07] to use harmonic

17

Chapter 1 Character animation and skinning

Figure 1.6: Data-driven soft tissue model showing physical parameters learned from
capture data and extrapolated to new poses and external forces.

(Picture from [Kim+17])

interpolation to increase the number of joints influencing a vertex. Later developments
include the co-registration method BlendSCAPE [Hir+12] which incrementally registers
various input meshes together while learning a deformation model.

Later development in statistical shape models include SMPL [Lop+15] which uses a
wide database of scanned shapes to separate body type and pose deformation directly as
a linear function of the pose 𝑃, helping its integration into a production skinning pipeline.

1.3.4 Learning dynamics

As the amount of available scanned data increased, it became possible to use machine
learning algorithms on body shape deformations to fit the parameters of a physical
simulation from learned data.

The Dynamodel by Pons-Moll et al. [Pon+15]was the first to present a statistical model
of dynamics on the surface of the skin based on example data. Loper et al. [Lop+15] used
a similar approach with SMPL to learn an additional dynamic deformation term on top of
their statistical body type and shape deformer.
The most recent work by Kim et al. [Kim+17] goes beyond the surfacic representation

and sucessfully fits a full volumetric model of a human body with the help of a large
database of registered skin deformations (Figure 1.6).

1.3.5 Discussion

Example-based skinning provides high-level context for surface deformations. While high
realism can be achieved by using scanned data, the final result is conditionned by the
availability of specific poses in the database or the capacity to record new key poses.

18

1.4 Geometric skinning

(a) Rigid skinning (b) LBS (c) DQS

Figure 1.7: Geometric skinning methods

Cases often arise when scanned data is not desirable or possible: for unrealistic char-
acters such as monsters, or impossible poses (e.g. exaggerated fighting stances). It is
then up to the artists to generate the key poses and then hand-tune the weights until
the results of the deformation are good in all poses of the animation, which is a tedious
process. In particular, even with high quality example data, avoiding self-intersection of
the deformed mesh in every pose is not guaranteed unless they are separately resolved
using collision detection.

Lastly, data-based approaches can be problematic for interactive applications (such
as video games) which usually require to display a large number of different characters
(sometimes appearing only in a few scenes). The memory consumption of the pose
database, requiring to store a set of meshes per character, can quickly become prohibitive.

1.4 Geometric skinning

On the other side of the realism versus complexity trade-off, geometric methods are the
most straightforward because they rely only on the kinematic input, provided by the
skeleton, to compute the new vertices positions.

These approaches are very popular for interactive applications as their simplicity makes
them very efficient. They remain the standard skinning method in most production
applications, from feature film animation to video games [AHH08, pp. 80–85].

19

Chapter 1 Character animation and skinning

1.4.1 Linear blend skinning and skinning weights

One of the simplest skinning method which can be considered would associate each vertex
v𝑖 of the mesh to one of the joints 𝑗 and move it according to this joint’s transform only:

v𝑖(𝑡) = B𝑗(𝑡)vref 𝑖 .

The results of this method (sometimes called rigid skinning, as the vertices are rigidly
transformed) are of very poor quality. Yet, most vertices which lie in the middle sections
of the limbs are correctly placed, and the problematic areas are located around the joints,
as illustrated by Figure 1.7(a).

It is clear that vertices around a joint should be influenced by more than just one bone.
Each vertex v𝑖 is thus given a set of skinning weights w𝑖 = {𝑤𝑖𝑗}𝑗=0..𝑚−1

which are used
to combine transforms of multiple bones. Each vertex has partition of unity weights (
∑𝑗 𝑤𝑖𝑗 = 1). Vertices in the middle of the limbs move with only one bone (thus have one
weight equal to 1 and the others to 0); while vertices around joints smoothly transition
between two bones (and sometimes more for complex joints). The vertex position v𝑖(𝑡) is
simply expressed as the linear combination of the transforms of each bone weighted by
its weight, applied to its reference position vref 𝑖:

v𝑖(𝑡) =
𝑚−1

∑
𝑗=0

𝑤𝑖𝑗B𝑗(𝑡)vref 𝑖 .

This method was introduced by Magnenat-Thalmann et al. [MLT88] and is now known
as linear blend skinning or LBS 1.
This method is easy to implement on current graphics hardware, and has therefore

proven to be very efficient and successful. Even now, it is the de facto standard for real-time
skinning. Nonetheless, it suffers from major drawbacks.
Firstly, while the result is visually plausible for small deformations, the quality of

the deformed mesh degrades quickly when the joints bend or twist too widely. These
visual artefacts are frequent enough to have earned their own nickname in the animation
community: a joint bent too far will make the surface thinner on the exterior of the bend,
leading to the collapsing elbow artefact (Figure 1.8(a)) while a twist of 180° will project all
nearby points towards the center of the joint causing the dreaded candy-wrapper artefact
(Figure 1.8(c)).

Secondly, weight-based methods such as LBS also rely on user input, as the animator
usually provides the weights by painting on the mesh, as depicted in Figure 1.9. Getting
1In fact, this skinning technique has been used many times and under many different names such as

stitching or vertex blending [Woo00] , skeletal subspace deformation or envelopping [LCF00], etc.

20

1.4 Geometric skinning

(a) LBS of bent elbow (b) DQS of bent elbow

(c) LBS of twisted elbow (d) DQS of twisted elbow

Figure 1.8: Typical artefacts of geometric skinningmethods. Notice the loss of volumewith
LBS when bending (a), and the bulging with DQS (b). Figure (c) shows the candy-wrapper
artefact with LBS and its mitigation by DQS (d).

the weights right for a given animation usually takes time and practice, and relies a lot
on trial-and-error. Jacobson et al. [Jac+11] provided a method to automatically compute
weights from a given mesh with its animation skeleton, and a set of target poses. Yet
subsequent research by Kavan and Sorkine [KS12] showed that merely optimizing the
weights is not enough to produce good deformations in the most complex cases and that
non-linear deformers are required.

1.4.2 Dual quaternion skinning

Artefacts such as the candy-wrapper or the collapsing elbow appear as LBS tries to apply
a linear combination in the space of rigid transforms, whose topology is spherical. These
issues can be avoided by combining the transforms using non-linear blending. Several
non-linear approaches were subsequently investigated, such as log-matrix skinning [Ale02] or
spherical blend skinning [KŽ05]. The most successful non-linear method was proposed by Ka-
van et al. [Kav+07], who used the space of unit dual quaternions to represent rigid transforms,
similarly to how the space of unit quaternions can represent rotations [Ham44].

21

Chapter 1 Character animation and skinning

Figure 1.9: Weight painting in Blender, showing the influence of the arm bone over the
jacket vertices from 𝑤𝑖𝑗 = 1 in red (maximal influence) to 𝑤𝑖𝑗 = 0 in blue (no influence).

Dual quaternion skinning (DQS) uses the same input as linear blend skinning but converts
the transforms B𝑗 to their unit dual quaternions representation q̂𝑗 and computes the
blended transform in the dual-quaternion space by linear combination and normalization.

q̂𝑖(𝑡) =
∑𝑚−1

𝑗=0 𝑤𝑖𝑗q̂𝑗(𝑡)

∥∑𝑚−1
𝑗=0 𝑤𝑖𝑗q̂𝑗(𝑡)∥

The resulting unit dual quaternion q̂𝑖 represents a rigid transformTq̂𝑖
which is then

applied to the vertex.

v𝑖(𝑡) = Tq̂𝑖
(𝑡)vref 𝑖

The topological properties of the space of dual quaternions avoid the candy wrapper
and elbow collapse artefacts (Figures 1.8(b) and 1.8(d)), and the performance of a typical
implementation of DQS can be almost as fast as LBS,whichmade dual-quaternion skinning
increasingly popular in real-time applications.

However, DQS is not exempt of pitfalls. First, care must be taken when implementing
dual quaternion skinning, especially to avoid antipodality problems when composing the
dual quaternions [see Kav+08, section 4].

Second, DQS introduces an unwanted bulge around bent joints, because vertices moving
around a joint are constrained to share a common centre of rotation located exactly at that

22

1.4 Geometric skinning

joint. This has led Kim and Han [KH14] to introduce a correction technique to mitigate
this effect.

Amore recentwork by Le andHodgins [LH16] systematically removes these artefacts by
computing the optimal centre of rotation for each vertex. For each vertex vref 𝑖 of the mesh
in reference pose, an optimal rotation centre p∗

𝑖 is pre-computed by averaging all vertices
of the original meshes over the whole surface, weighted by a weight similarity function.
During skinning, the vertex’s rotation is computed by spherical linear interpolation around
the transformed centre of rotation. This method avoids most of the artefacts of other
geometric skinning methods, and only requires an expensive precomputation step for the
centre of rotations p∗

𝑖 .

1.4.3 Improving geometric skinning

The case for improved geometric skinning arises as the simplistic nature of these methods
exposes their weakness. The basic deformations generated by geometric methods cannot
hope to reproduce the richness of the complex phenomena of skin deformation. Characters
often seem lifeless or made out of plastic, and body parts are self-intersecting as soon as
joints bend at sharp angles.
A natural extension to these standard methods is to increase the number of weights

per-vertex. Instead of one weight per transform as in LBS or DQS, one could take several
weights, one per principal direction of the transform. This was the approach described
by Wang and Phillips [WP02], which uses twelve weights per vertex-bone pair. Setting so
many weights manually by painting becomes unfeasible. Their method proposes instead
to optimize them from example poses, similarly to pose-space deformation methods (see
Section 1.3.1).

Principal component analysis can also be used to reduce the number of weights [AM00].
Merry et al. [MMG06b; MMG06a] proposed to use four weights per pair by solving for
rotational invariants (mimicking an elastic deformation), while Jacobson and Sorkine
[JS11] used two weights, one for bending and one for twisting.

In production settings, animators often increase the range of possible deformations by
adding extra joints who do not necessarily correspond to real-life joints. This is often done
by hand on a case-by-case basis, but several efforts were made to generalize this approach.
For example, Mohr and Gleicher [MG03] systematically adds several joints to each exist-
ing bone. Wang et al. [WPP07] proposed to learn the position of extra joints from example
poses, and to set the weights accordingly, and Kavan et al. [KCO09] to approximate the
non-linear deformations with linear skinning using only the input animation as a prior.
While at runtime, the skinning computation remains a linear weighted sum of transforms,

23

Chapter 1 Character animation and skinning

(a) Ellipsoids (b) Generalized cylinders (c) Skeleton implicit surfaces

Figure 1.10: Examples of geometric muscle deformers

(Pictures from [LAG01; WV97; Min+00])

these approaches will suffer from the same drawbacks as example-based methods, i.e. the
necessity to obtain sculpted or scanned data beforehand.

1.4.4 Shape-based muscle deformers

Muscle deformations are especially prominent in skinning, and the ability to reproduce
muscle bulging is often the principal type of secondary deformation that many methods
seek to reproduce [LCF00; SRC01; KJP02; MG03; WPP07; MK16]. To avoid the need for
extra weights and extra bones and offer a more intuitive interface to the animator, a fruitful
approach is to add muscle-specific deformers to joint-centred geometric skinning.

An important property to consider when modelling muscle shapes is volume preservation.
Muscles generally combine two types of deformation: isotonic and isometric. Isotonic defor-
mation happens when the limbs move and the muscles endpoints (origin and insertion) are
drawn closer together or pushed farther apart, while isometric deformation is caused by
the activation of the muscle (the increase of tension in the muscle fibres) without motion
of the endpoints. In real life, the conservation of volume is what makes muscles bulge
when contracted or activated [Kar90]. It is therefore crucial for the shapes representing
the muscles to deform at constant volume and to be able to reproduce these two modes of
deformation.

Wilhelms [Wil94] modeled muscles, bones and soft tissues with ellipsoids, including
deformable muscles which maintain their volume when contracting, using the analytic
formula for the volume of the ellipsoid. Her method works by directly linking the mesh
vertices to the nearest ellipsoid primitive with a mass-spring model which pulls the

24

1.4 Geometric skinning

(a) Control points (b) Muscle shapes

Figure 1.11: A dynamic muscle shape model based on Bézier curves. Figure (a) shows
the two end points (yellow) and a middle point (red) defining the curves. Figure (b): the
width of the muscle is sinusoidal, yielding deformable fusoid shapes.

(Pictures from [LA07])

vertices when they move too far from their primitive. Leclercq et al. [LAG01] described a
similar approach with ellipsoid primitives to model muscles (Figure 1.10(a)). They used
a ray-marching method to project the vertices of the mesh to the desired distance of the
ellipsoids.

Subsequent methods sought to improve the geometric models with a better represen-
tation of the natural shape of muscles. Scheepers et al. [Sch+97] and Wilhelms and
Van Gelder [WV97] used generalized cylinders with varying width along a single axis
(Figure 1.10(b)). Min et al. [Min+00] use skeleton-based implicit surfaces, which model
fusiform muscles and more complex shapes such as pectorals, as shown in Figure 1.10(c),
and used the gradient of the implicit field function to project the vertices to the correct
distance to the surface.

More recently, Lee and Ashraf [LA07] represented muscles with an axis made of
quadratic Bézier curbes defined by two end points (origin and insertion) and a middle
point (Figure 1.11(a)). While the origin and insertion are kinematically driven by the
animation skeleton, the middle point is controlled by a dynamic mass-spring system
linking it to the end points. The muscles width along the axis is given by a sinusoidal
function, which is then sampled to create a low-resolution mesh representation of the
muscle.

In the reference pose, the vertices vref 𝑖 are bound to the joint deformations with the
standard LBS skinning weights w𝑖 (as described in Section 1.4.1). They are given an
additional set of weightsw′𝑖 for each neighbouring muscle vertex. During the animation,

25

Chapter 1 Character animation and skinning

Figure 1.12: Muscles shapes obtained with an axis curve and a thickness curve.

(Picture from [RL13])

the position of the vertices is first computed by LBS

v(LBS)
𝑖 = ∑ 𝑤𝑖𝑗B𝑗vref 𝑖 .

Then, the muscle deformation is transformed back in the reference pose, and the vertex is
skinned with the muscle weights relatively to the deformed muscle vertex.

v(muscle)
𝑖 = ∑ 𝑤′𝑖𝑘T

(muscle)
𝑘 vref 𝑖 ,

whereT(muscle)
𝑘 is the transform of mesh vertex 𝑘 relatively to its reference pose position.

The computed point v(muscle)
𝑖 is interpreted as the displacement generated by the deformed

muscle. The two are then combined by simply adding the muscle displacement to the
result of LBS:

v𝑖 = v(LBS)
𝑖 + v(muscle)

𝑖 .

A similar approach, presented by Ramos and Larboulette [RL13], can represent more
shapes by using two Bézier curves, one for the muscle axis as in the previous method,
and one to design the muscle profile. A sample of these shapes can be seen in Figure 1.12.
These two methods extend geometric skinning by having the vertices deformed both by
the skeleton and the nearby muscles, by using extra weights to blend the deformation
transform of the muscle with the skeleton joints transforms. However, as with other
geometric methods relying on extra bones, this only makes the rigging process more
cumbersome, as the number of weights for each vertex increases by a factor of two or
three.

1.4.5 Discussion

Direct geometric methods based on skinning weights reign supreme when speed and
efficiency are required, as in real-time applications. Nonetheless, deformations that they
can reproduce in practice is limited. The indirect link between the skinning weights and

26

1.4 Geometric skinning

the final skinning results makes weight painting a long and tedious process which requires
a lot of trial and error, as correcting the weights to improve the aspect of the skin in one
pose can destroy the appearance of another unrelated pose.
Being purely kinematic, direct methods cannot reproduce dynamic effects such as elastic

or plastic deformations. To create more complex effects such as a muscle bulging, the
only options are either to add more bones and control points to the rig, which in turn
increases the number of weights to set, limiting these effects in practical applications, or
to use dedicated muscle deformers.
Finally, these methods fail to take self-collision into account. Often, when bending a

character’s arm or leg at a sharp angle, parts of the skinned mesh will traverse each other,
creating a final skin which intersects itself. This becomes especially problematic with
shape-based muscle deformers that work on top of standard geometric skinning: the
bulging muscles often worsen the problem of self-collisions.

Removing these intersections post-hoc is a costly operation. Despite the availability of
spatial acceleration structures (𝑘-d tree, spatial hashing), solving mesh-mesh collision for
complex character meshes often makes framerates drop below the second [AF15].
A recent effort to avoid self intersection in the mesh was presented by Vaillant et al.

[Vai+13; Vai+14]. Their method uses implicit surfaces to model the skin along with
dedicated contact operators, representing an interaction surface between body parts. This
approach models contact in the skin efficiently and solves the volume loss and bulging
artefacts of LBS and DQS.

This technique lends itself to extension, because it makes no assumption over the nature
of the implicit surfaces used in the skin representation. In this thesis we present implicit
deformers integrated into this skin representation that can represent muscles and other
anatomic elements while elegantly solving the self-intersection problem.
This thesis presents a model which brings together Implicit Skinning with an implicit

muscle shape deformer. While the muscle model is in line with the approaches described
in Section 1.4.4, its integration with implicit skinning avoids the complex weight setup
required by these methods, while reaping the benefits of Implicit Skinning. The next
chapters provide a general background on implicit modelling and specifically on Implicit
Skinning, defining the concepts used to design the model and integrate it with Implicit
Skinning.

27

2
Introduction to implicit surfaces

No need to ask, he’s a smooth operator
— Sade, Smooth Operator

This chapter presents the elemental concepts used to build implicit surfaces for 3D
modelling, which we leverage for skinning.
Firstly, we start with the basic definitions of scalar fields and their iso-surfaces in

Section 2.1. The following section (Section 2.2) presents the primitive models used in
implicit modelling. We describe the main orientation and iso-value conventions: global
support functions (Section 2.2.1) and compact support functions (Section 2.2.2). We then
focus on extrusion surfaces, which are specifically used to model muscles in this work
(Section 2.2.3).

Secondly, we introduce composition operators (Section 2.3) and transformation of scalar
fields (Section 2.4) as means to assemble objects from several implicit primitives. Lastly,
we expose the equations derived when using implicit surfaces in animation (Section 2.5).

2.1 Scalar fields and implicit surfaces

Implicit surfaces are geometric surfaces defined by an equation: they provide a convenient
representation ofmany 3D objects. Historically, algebraic surfaces (implicit surfaces whose
equation is polynomial) where among the first three-dimensional objects studied [HC32,
chapter I and IV]. In computer graphics, implicit surfaces were used as representations
for models in CAD software as early as the 1960s [Sab68].

Their strengths and weaknesses are complementary to other common surface represen-
tations in computational geometry [Hug+13; Wyv15]. In contrast to polygonal meshes,
implicit surfaces can represent infinitely smooth surfaces; and, unlike parametric surfaces,
they can define objects with arbitrarily complex topology.

29

Chapter 2 Introduction to implicit surfaces

Figure 2.1: A sample of implicit surfaces. From left to right: a sphere, a torus, a blend of
two blobs, a Klein bottle, an inflated lemmniscate, an ellipsoid and a capsule.

Definition. A 3D scalar field is a real-valued function 𝑓 defined over ℝ3. This function 𝑓
can then be used to define a surface in 3D space, by considering the preimage of a value
𝐶 ∈ ℝ, i.e. the set of points p such that 𝑓 (p) is equal to 𝐶:

𝑆𝐶 = 𝑓 −1(𝐶) = {p ∈ ℝ3 ∣ 𝑓 (p) = 𝐶} .

Scalar fields are also known as potential fields by analogy with their use in physics as
potential energy fields from which some forces derive.

In this work, it is assumed that functions 𝑓 are at least 𝒞1 almost everywhere (discontinu-
ities are limited to a null-measure subset) and that 𝑆𝐶 contains only regular points, i.e. points
where the gradient ∇𝑓 is non-zero. Under these conditions, the set 𝑆𝐶 is a 2D-manifold
and is called the 𝐶-iso-surface of the scalar field 𝑓. Iso-surfaces are implicitly defined by the
equation 𝑓 (p) = 𝐶, rather than by an explicit list of points or parametrization. They are
thus known as implicit surfaces.

A scalar field thus represents an infinite family of implicit surfaces, one for each value
of 𝐶 (though some can be degenerate – e.g. reduced to a point – or empty). If 𝑓 is
differentiable, the scalar field not only gives the set of points on the surface but also a
normal vector on each of these points:

⃗⃗⃗⃗⃗⃗n⃗(p) =
∇𝑓 (p)

∥∇𝑓 (p)∥
.

30

2.2 Implicit shape models

From the first partial derivatives of 𝑓 it is also possible to obtain closed formulae for the
tangent and binormal vectors. Similarly, if 𝑓 is twice differentiable, the Hessian matrix of 𝑓
gives informations about the implicit surface’s curvature [Gol05].

If 𝐶 is a regular value of 𝑓, it divides the space ℝ3 into two subsets, Ω+ and Ω−, where

Ω+ = {p ∈ ℝ3 | 𝑓 (p) > 𝐶} and Ω− = {p ∈ ℝ3 | 𝑓 (p) < 𝐶} .

Which of these two subsets represents the inside of the object and which is the outside
depends on the function. In general, the interior is often a bounded subset (and the
exterior is unbounded), but this is not always the case (e.g. if 𝑆𝐶 is an infinite plane).
In practice, a convention on the surface orientation along with a standard value for the
constant 𝐶 is chosen in advance.

Example. The simplest implicit surface is perhaps the sphere; by defining

𝑓 (p) = ∥p∥2 = 𝑥2 + 𝑦2 + 𝑧2 ,

the iso-surface where 𝑓 (p) = 𝑅2 (for 𝑅 > 0) is a sphere of radius 𝑅 centred on the origin.

The sphere belongs to the family of algebraic surfaces called quadrics, where the function
𝑓 is a second order polynomial. Other quadrics include ellipsoids, paraboloids, hyper-
boloids, cones and cylinders. Higher degree algebraic surfaces generate a wider array of
shapes: Möbius strips (degree 3), tori (degree 4), Klein bottles (degree 12), as illustrated
by Figure 2.1.

2.2 Implicit shape models

2.2.1 Distance fields and global support functions

Distance fields are another important family of scalar fields, where the function 𝑓 (p) is
defined as the distance between p and a given geometric set (sometimes called skeleton or
source of the field).

Example. With a given point p0 ∈ ℝ3 and

𝑓 (p) = ∥p − p0∥ ,

the iso-surface where 𝑓 (p) = 𝑅 is a sphere of radius 𝑅 centred on p0.

Distance fields have useful mathematical properties of their own: they are continuous,
and their gradient is unitary, i.e. ∥∇𝑓 (p)∥ = 1. The generated shapes depend on the type

31

Chapter 2 Introduction to implicit surfaces

Figure 2.2: Skeleton-based surface (in red) defined relatively to a skeleton made of a point
and two line segments.

of the skeleton: the previous example of the sphere is a distance field where the source is
a single point p0, while using a segment as the skeleton will result in a capsule shape.
Distance fields can be easily extended to signed distance fields or SDF, where the sign of

the field function at point p determines whether 𝑝 is inside or outside the object, and the
object’s surface is conventionally defined as 𝑓 (p) = 0.

Example. Defining a sphere as a signed distance field from its centre point p0:

𝑓 (p) = ∥p − p0∥ − 𝑅 .

A SDF is thus naturally oriented, using the sign of 𝑓 to tell the inside from the outside
of the object: with the previous example, a point is inside the sphere if ∥p − p0∥ < 𝑅 i.e.
where 𝑓 (p) < 0. This convention (referred in the following as the global support convention)
can be extended to give a standard orientation to many 3D objects limited by implicit
surfaces:

• the surface 𝜕Ω is the set 𝑆0 where 𝑓 (p) = 0.

• the inside is the region Ω− where 𝑓 (p) is negative

• the outside is the region Ω+ where 𝑓 (p) is positive

More generally, skeleton-based surfaces are defined by functions whose value depend on the
distance to their skeleton. The dependency to the distance can be any arbitrary function
𝜙 ∶ ℝ → ℝ. Distance fields are a special case where 𝜙 is linear. Common examples using
non-linear functions include radial-basis-functions (RBF), where the skeleton is only a
point c:

𝑓 (p) = 𝜙 (∥p − c∥) .

More often, skeleton-based surfaces use segments or curves as their skeleton, as shown in
Figure 2.2. Note that the use of skeleton in this context is unrelated to the animation skeleton

defined in Chapter 1.

32

2.2 Implicit shape models

Figure 2.3: Blinn’s blobby molecules: each atom is represented by a spherical primitive, the
resulting molecule is rendered as a blending between all its atoms.

(Picture from [Bli82])

Global support Compact support

Iso-surface 𝑓 (p) = 0 𝑓 (p) = 0.5
Inside 𝑓 (p) < 0 𝑓 (p) > 0.5
Outside 𝑓 (p) > 0 𝑓 (p) < 0.5
Normal direction ∇𝑓 −∇𝑓
Union operator min max
Intersection operator max min
Complement −𝑓 1 − 𝑓

Table 2.1: A summary of the two main convention of implicit surfaces

2.2.2 Compact support functions

Definition. The support supp(𝑓) of a scalar field 𝑓 is the set of points where 𝑓 is non-zero:

supp(𝑓) = {p ∈ ℝ3 | 𝑓 (p) ≠ 0} .

SDF and similar functions usually have global support, which means supp(𝑓) is not
bounded. Moreover, the absolue value of 𝑓 (p) grows higher as the distance from p

to the surface increases.

From a computational point of view, this is an undesirable property: when evaluating
several field functions, the value of distant objectswill influence the result, and could create
problems such as numerical instability and loss of precision, especially when blending
several implicit surfaces together (see Section 2.3). On the other hand, when supp(𝑓) is

33

Chapter 2 Introduction to implicit surfaces

bounded, the function 𝑓 is said to have compact support. In practice, this means their region
of influence is limited to the neighbourhood of the implicit surface. This helps improving
the efficiency of evaluating the composition of several implicit surfaces at a given point
p, as only functions having p in their support need to be evaluated, while others can be
discarded based on a simple spatial test (e.g. a bounding box). This is also helpful for
storing and retrieving the values in a spatial data structure (e.g. in a grid) by discretising
the field’s bounding box.

Compact support functions were introduced early on independently by several seminal
papers under many different names such as Blinn’s Blobs [Bli82], Nishimura et al.’s Meta-

balls [Nis+85] and Wyvill et al.’s Soft Objects [WMW86].
Given their nature, these functions follow a different convention than the global support

convention:

• values of 𝑓 are usually bounded between 0 and 1.

• the surface 𝜕Ω is the set 𝑆 1
2
where 𝑓 (p) = 1

2 .

• the inside is the region Ω+ where 𝑓 (p) > 1
2

• the outside is the region Ω− where 𝑓 (p) < 1
2

Compact support functions thus have the opposite orientation of SDF and similar fields.
The normal (pointing outwards) of an implicit surface following the compact support
convention is:

⃗⃗⃗⃗⃗⃗n⃗(p) = −
∇𝑓 (p)

∥∇𝑓 (p)∥
.

A summary of the differences between conventions can be found in Table 2.1.
Skeleton-based compact support functions provide somewhat of an equivalent to the

globally supported skeleton surfaces. Their field functions are defined as a decreasing
function 𝐾 of the distance 𝑑 from p to their skeleton.

𝑓 (p) = 𝐾(𝑑)

Similarly to distance fields, the nature of the skeleton will change the overall shape (point
skeletons create spheres, segments create capsules, etc.).
The choice of the fall-of filter function 𝐾 has an influence on the properties of the field.

The first function proposed for point-based surfaces was a Gaussian kernel, which was
drawn from actual physical models of electromagnetic fields of molecules to help with

34

2.2 Implicit shape models

their graphical representation [Bli82]:

𝐾(𝑑) = exp(− 𝑑2

𝜎2) ,

of which an illustration can be seen in Figure 2.3.

This function tends to zero as 𝑑 increases, yet never reaches it (it is not a proper compact
support function). Even so, for numerical applications, the value of 𝐾 can be considered
to vanish after a certain distance threshold (for example 𝐾(4𝜎) ≈ 10−7). Many different
fall-of filter functions subsequently published explicitly set a threshold 𝑅 (the radius of the
support) after which 𝐾 vanishes.

Metaballs [Nis+85; NN94], degree 2:

𝐾(𝑑) =

⎧{{{
⎨{{{⎩

1 − 3 (𝑑
𝑅)

2
if 𝑑 < 𝑅

3
3
2 (1 − 𝑑

𝑅)
2

if 𝑑 ∈ [𝑅
3 , 𝑅]

0 if 𝑑 > 𝑅

Soft objects [WMW86], degree 6:

𝐾(𝑑) =
⎧{{
⎨{{⎩

1 − 4
9 (𝑑

𝑅)
6

+ 17
9 (𝑑

𝑅)
4

− 22
9 (𝑑

𝑅)
2

if 𝑑 < 𝑅

0 if 𝑑 ≥ 𝑅

Blobby model [Blo97], degree 6:

𝐾(𝑑) =
⎧{{
⎨{{⎩

(1 − (𝑑
𝑅)

2
)

3
if 𝑑 < 𝑅

0 if 𝑑 ≥ 𝑅

These functions define compact support scalar fields, andusually use a polynomial formula
for faster evaluation. Using a higher degree polynomial guarantees a higher order of
continuity of the field at the threshold.

2.2.3 Extrusion surfaces

Extrusion surfaces, also known as generalized cylinders or sweep surfaces, are natural
extensions of skeleton-based implicit surfaces [CBS96; GH99]. They start from a curve
𝒞(𝑠), 𝑠 being the curvilinear parameter of the curve, and sweep a profile curve 𝒫 along the
axis curve 𝒞.

35

Chapter 2 Introduction to implicit surfaces

𝜃

𝑅(𝜃)𝒫

(a) Polar profile function.

𝒞

𝒫

(b) Extrusion along an helix curve.

Figure 2.4: Example of a sweep surface. Figure (a) shows the polar profile 𝒫 . Figure (b)
shows its extrusion along an helix curve 𝒞

Skeleton surfaces, described in the previous section, can be seen as a special case where
𝒫 is a circle of constant radius. The profile can however depend on the curvilinear
coordinate of the axis curve 𝑠, for example, by making the radius grow and shrink with 𝑠.
Circles of varying radius can produce worm-like shapes, which are suitable for modelling
organic objects (animals, human limbs, etc.). Anisotropic profile curves extend the range
of possible objects even more: by providing a frame orthogonal to the axis curve, the
profile function can be described by a polar curve in the plane orthogonal to the axis curve,
as shown in Figure 2.4(a). This gives a polar curve 𝒫 defined by a radial function 𝑅(𝑠, 𝜃)
in its most general form. This allows to define the extrusion of the polar curve along the
axis curve, as illustrated by Figure 2.4(b).
Evaluating the field function at any query point q requires the projection of this point

on the axis curve and computing the polar curve frame (⃗⃗⃗⃗⃗⃗u⃗, v⃗) which is locally orthogonal
to 𝒞 at this projected point. After that, it is possible to evaluate the radius 𝑅 of the profile
curve in the angular direction 𝜃. The function evaluates to the difference between this
radius, and the distance between q and the axis curve. This process is described in detail
in Algorithm 2.1 and illustrated by Figure 2.5.
This definition yields a global support function but can be converted to a compact

support function by any of the fall-off filter functions mentioned in Section 2.2.2.

36

2.3 Composition of implicit surfaces

q

v⃗
𝜃

h ⃗⃗⃗⃗⃗⃗u⃗

Figure 2.5: Evaluation of an extrusion surface field function: the point q is projected on
the axis curve 𝒞 on point h. The evaluation is the difference between the distance ∥⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗qh∥
and the radius of the profile curve 𝑅(𝑠(q), 𝜃), defined in the orthogonal plane (⃗⃗⃗⃗⃗⃗u⃗, v⃗).

Algorithm 2.1 f_extrusion: field function evaluation for an extrusion surface
input: a query point q, an axis curve 𝒞 and a profile curve defined along the axis 𝒫 (𝑠).
output: the value of the field function 𝑓 (q)
h = project(q, 𝒞)
Let 𝑠(q) be the curvilinear parameter of h on 𝒞
Evaluate the local normal frame (⃗⃗⃗⃗⃗⃗u⃗, v⃗) at h
Let 𝜃(q) be the angle between ⃗⃗⃗⃗⃗⃗u⃗ and ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗qh

Evaluate the radius of the polar curve 𝑅(𝑠(q), 𝜃)
return ∥⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗qh∥ − 𝑅(𝑠(q), 𝜃)

2.3 Composition of implicit surfaces
A key feature of implicit surfaces is the ability to combine several field functions to define
a new surface whose properties are defined by the underlying fields.

2.3.1 Composition operators

Definition. Given 𝑛 field functions {𝑓𝑖}𝑖=1..𝑛, a n-ary composition operator is a function
𝐺 ∶ ℝ𝑛 → ℝ which defines a new scalar field 𝐹 such as

𝐹(p) = 𝐺(𝑓1(p), ..., 𝑓𝑛(p)) .

The gradient of this new field ∇𝐹 is easily computed by the chain rule:

∇𝐹(p) =
𝑛

∑
𝑖=1

𝜕𝐺
𝜕𝑥𝑖

∣
𝑓𝑖(p)

∇𝑓𝑖(p) .

37

Chapter 2 Introduction to implicit surfaces

In general, the continuity class of 𝐹 is the minimum of the continuity of all the 𝑓𝑖 and the
continuity of 𝐺 itself. This means discontinuities can appear if the operator is non-smooth
even if all the underlying fields are.

Example. Set-theoretic operators 𝐺min and 𝐺max can be defined as:

𝐺min(𝑓1, ...𝑓𝑛) = min(𝑓1, ...𝑓𝑛)

𝐺max(𝑓1, ...𝑓𝑛) = max(𝑓1, ...𝑓𝑛)

In the global support convention, the field resulting from applying the min operator de-
fines the geometric union of the two objects while the max operator defines the intersection.
The opposite is true for the compact support convention (see Table 2.1).

It is easy to express the usual Constructive Solid Geometry (CSG) operations such as
geometric union, intersection and difference in the implicit surfaces framework [Req80].
It is natural to define complex objects by repeated assembly of implicit primitives recur-
sively composed by operators which leads to define tree structures much like a classical
CSG tree [WMW86]. This composition tree, referred to as the blob-tree in the subsequent
literature, has become the standard for implicit modelling.

Composition operators have been extensively studied, as they are the key to modelling
complex objects as assemblies of implicit surfaces. To have more control on the assembly
result, it is convenient to restrict the blending operators to binary: while it is possible to
add a few parameters to control a binary composition, extending it to 𝑛-ary would require
too many due to the combinatorial explosion.

An example of such a controllable binary operator for global support scalar fields was
proposed by Pasko et al. [Pas+95]:

𝐺(𝑓1, 𝑓2) = 𝑓1 + 𝑓2 − √𝑓 2
1 + 𝑓 2

2 +
𝑎0

1 + (𝑓1
𝑎1

)
2

+ (𝑓2
𝑎2

)
2 .

This operator provides three parameters: 𝑎0 controls the global strength of the blend
while 𝑎1 and 𝑎2 can givemore weight to 𝑓1 or 𝑓2, creating an asymmetric composition operator.
With 𝑎0 = 0 this operator behaves as a clean union: it generates an exact (sharp) union
between the two implicit surfaces and a 𝒞1 field everywhere else, as demonstrated by
Figure 2.6. This operator helps to maintain the continuity of the field over recursive
compositions while maintaining the sharp features of the modelled surfaces. Barthe et al.
[BWG04] and Bernhardt et al. [Ber+10] adapted these operators to the compact support
convention.

38

2.3 Composition of implicit surfaces

Figure 2.6: Clean union of two spheres. The implicit surface (black line) is the union of
two spheres generating a sharp edge at their interface. The other iso-values (dashed lines)
are smooth.

𝑆1 𝑆2

p3

p2

p1

(a) Two implicit spheres
0 1 𝑓1

𝑓2

0

1

inside 𝑆1outside 𝑆1

ou
ts
id
e

𝑆 2
in
si
de

𝑆 2
p1(0.5, 0.5)

p2(0.4, 0.8)

p3(0, 0.4)

(b) Plane of scalar fields values

.

Figure 2.7: Two implicit spheres and 2D space of field values. Figure (a) shows two
implicit spheres 𝑆1 and 𝑆2 defined by 𝑓1 = 0.5 and 𝑓2 = 0.5. Figure (b) shows the 2D
space defined by (𝑓1, 𝑓2). Points p𝑖 in 3D space are mapped to the points of coordinates
(𝑓1(p𝑖), 𝑓2(p𝑖)).

2.3.2 Graphical representation of operators

At this point, it is necessary to introduce a visualisation method to illustrate the opera-
tors discussed in this section. Graphical representations are extremely useful to better
understand, control and design composition operators. For binary operators, it is pos-
sible to illustrate the operator by displaying the graph of the function 𝐺(𝑓1, 𝑓2) on a 2D
plane [HH85].

On this 2D graph, the 𝑥-axis plots values of 𝑓1 and the 𝑦-axis values of 𝑓2. To each point
p in 3D space corresponds a point on the 2D plane where the coordinates are 𝑓1(p) and
𝑓2(p). If functions follow the compact support convention, all possible values lie in the
square [0, 1] × [0, 1]. An example of this representation is shown in Figure 2.7.

39

Chapter 2 Introduction to implicit surfaces

(a) Composition of two spheres
0 1 𝑓1

𝑓2

0

1

𝐺(𝑓1, 𝑓2) = 0.7

𝐺(𝑓1, 𝑓2) = 0.5

𝐺(𝑓1, 𝑓2) = 0.3

(b) Iso-lines of operator

Figure 2.8: Graphical representation of binary operators. Figure (a) shows the composi-
tion of the two spheres of the previous figure, whith highlighted iso-surfaces. Curves on
Figure (b) are the iso-lines of the operator function 𝐺 depicted in the 2D-space of values
corresponding the higlighted iso-surfaces. The purple curve corresponds to 𝐺(𝑓1, 𝑓2) = 0.5,
i.e. the implicit surface defined by the composition using 𝐺. Two other curves are shown,
the red curve 𝐺(𝑓1, 𝑓2) = 0.7 belongs to the inside of the composition, while the blue curve
𝐺(𝑓1, 𝑓2) = 0.3 belongs to the outside. These colours are adopted throughout this work.

Operators are shown by plotting different curves corresponding to iso-values of 𝐺.
For example, the resulting surface of the composed field is represented by the curve
𝐺(𝑓1, 𝑓2) = 0.5 in the graph. Other iso-values curves depict the result of the composition
on the inside and the outside of the object. For example, Figure 2.8 depicts an operator
which smoothly blends two spheres.

2.3.3 Blending operators

Union and clean-union operators are often used in computer-assisted design to model
objects with sharp edges. Blending operators are another important family of operators,
enabling to assemble implicit objects and maintain the smoothness of the resulting assem-
bled surface. To achieve this result, the operator itself must be continuous (ideally 𝒞∞) as
recursive blending with low-order continuity operators can lead to discontinuities in the
final result. This property is especially useful to model organic objects or fluids.

When introducing compact-support blobby objects for rendering atoms and molecules,
Blinn [Bli82] naturally defined the sum operator for field functions representing the
probability of presence of electrons (see Figure 2.3):

𝐺+(𝑓1, ...𝑓𝑛) =
𝑛

∑
𝑖=1

𝑓𝑖 .

40

2.3 Composition of implicit surfaces

(a) Sum operator (b) Ricci-3 operator (c) Ricci-10 operator (d) Union operator

Figure 2.9: Top row: example of composition operators, showing their graphical repre-
sentation on a 2D plane. Bottom row: result of their application to blend two spheres.

(Pictures from [Can16])

An early attempt on expanding the set-theoretic operations by Ricci [Ric73] led to
defining a family of operators:

𝐺𝑘(𝑓1, ...𝑓𝑛) =
𝑘

√

𝑛

∑
𝑖=1

𝑓 𝑘
𝑖 .

The parameter 𝑘 controls the behaviour of the blending; 𝐺1 is actually the sum operator,
but as 𝑘 increases, 𝐺𝑘 tends towards the max operator, while remaining 𝒞∞. In Figure 2.9,
we illustrate the result of composition with several operators, by showing their 2D graph,
along with their application to two spheres.
The blending of implicit surfaces is useful for modelling, yet blending operators can

behave quite unintuitively or lead to unwanted artefacts. As a consequence, many research
efforts were directed towards providing more control on the final result to the designer
and avoiding several pitfalls associated with blending [BGC01; Bar+03].
While compact-support functions are especially useful for composition, the blending

operators described above will sometimes generate a composed function whose values go
higher than 1. This can be problematic when chaining several composition operations
together. It is always possible to clamp the results to 1, but this has an adverse effect on
the metric in the inside parts of the objects. Canezin et al. [CGB13] developed an efficient
solution by crafting specific operators whose value stays between 0 and 1.

In addition, they provide two new operators: a detail operator and a difference operator which
respectively enable to add or remove small parts of a main object without creating critical

41

Chapter 2 Introduction to implicit surfaces

(a) Blending scene (b) Regular blend (c) Detail blend (d) Graph of operator

Figure 2.10: Figure (a): effect of detail operator on the blending of a spherical detail
on a box. Figure (b): using regular blending generates critical points inside the surface.
Figure (c): using the detail operator improves the quality of the resulting field. Figure (d)
shows the operator itself.

(Pictures from [CGB13])

points near the border. As shown on Figure 2.10, the resulting surface of the detail blending
is not modified but the regularity of the scalar field inside is improved, by eliminating the
critical point at the centre of the sphere detail.

Blending operators have been also been plagued by three common types of unwanted
features which arise in modelling.

Bulging is the appearance of unwanted bumps on the surfaces. The blending operators add
volume around the edges to create a smooth surface, but the addition is not localized
and can create a bulge, e.g. in the case of the T-junction shown in Figure 2.11(a).

Blurring of details is caused by the difference of metric in the scalar fields which can make
small objects deformed when blended with a larger object. This case is illustrated
by Figure 2.11(b).

Changes of topology include blending at a distance when two separate objects are blended
because of their proximity (Figure 2.11(c)), and the closing of holes, changing the
surface’s genus (Figure 2.11(d)).

2.3.4 Gradient-based operators

Gourmel et al.’s [Gou+13] gradient-based operators provide a solution to the blending issues
by defining an operator whose result depends not only on the blended fields values but
also on their gradients. The key idea of gradient-based operators is to define a family of
operators 𝐺𝛼 controlled by a parameter 𝛼 ∈ [0, 1]. Variations of 𝛼 interpolate 𝐺𝛼 between
a clean union and a blending operator. While Barthe et al. [BWG04] and Bernhardt et al.

42

2.3 Composition of implicit surfaces

(a) Bulging (b) Blurring of details (c) Blending at distance (d) Closing of holes

Figure 2.11: Top row: common blending artefacts. Bottom row: expected solutions.

(Pictures from [Gou+13])

[Ber+10] already defined such families of blending functions; the contribution of Gourmel
et al. [Gou+13] is to tie the value of the parameter 𝛼 to the angle 𝜃 between the gradients
∇𝑓1(p) and ∇𝑓2(p) of the two composed fields. The function 𝛼 = 𝜅(𝜃) is specified by the
user as a controller function.
Computing the composition of two functions 𝑓1 and 𝑓2 is thus a multi-step process.

1. Evaluate 𝑓1(p), 𝑓2(p), ∇𝑓1(p) and ∇𝑓2(p);

2. Compute 𝜃 = arccos(∇𝑓1(p) ⋅ ∇𝑓2(p));

3. Compute 𝛼 = 𝜅(𝜃);

4. Return 𝐹(p) = 𝐺𝛼(𝑓1(p), 𝑓2(p)).

Gradient-based operators provide an extra degree of freedom to model complex interac-
tions between two scalar fields, with the specification of the controller function to enable
the blending only at selected angles. With a specific controller, each of the three afore-
mentioned blending artefacts can be avoided. For example, Figure 2.12 shows how a
gradient-based operator resolves the bulging artefact of the T-junction.
For practical applications in modelling, it is often preferable to specify the operator in

terms of the desired result instead of using complex closed-formulae. For example, the
contact operators by Vaillant et al. [Vai+14] create a contact surface between two colliding
implicit surfaces, shown on Figure 2.13. This family of operators was designed by imposing
boundary conditions on the operator: 𝐺(𝑓1, 0) = 𝑓1 and 𝐺(0, 𝑓2) = 𝑓2. In addition, the
0.5-isosurface must be the union of the two initial surfaces, with an added contact surface at
the intersection of the two objects, yielding the pattern seen in Figure 2.14. The remainder

43

Chapter 2 Introduction to implicit surfaces

p1 p2

p3

(a) Gradient-based blending

𝛼 = 1 (full blend)

𝛼 = 0 (clean union)
0 𝜋

2 𝜋

p1

p2

p3

(b) Controller function

Figure 2.12: Solving the bulging artefact with gradient-based blending. Figure (a) shows
the T-junction of two surfaces. Three points are shown with the gradients of the two
primitive fields. On Figure (b), a plot of the controller is shown with the corresponding
value of 𝛼 for the three points.

(a) 𝛼 = 0 (clean union) (b) 𝛼 = 0.5 (contact) (c) 𝛼 = 1 (full contact)

Figure 2.13: Top row : Contact operator for various values of 𝛼, from clean union without
contact to full contact surface. Bottom row : Scalar fields of two spheres (dashed lines)
and surface resulting from the blend.

(Pictures from [Vai+14])

44

2.4 Transforming implicit surfaces

0 1 𝑓1

𝑓2

0

1

(a) Boundary conditions
(b) Result of interpolation

Figure 2.14: Construction of the contact operator for 𝛼 = 0.5. Figure (a): boundary
conditions are imposed on the sides (when 𝑓1 or 𝑓2 = 0) and at the 0.5-isosurface, which
must include the union of the two surfaces (in purple) and generate a contact surface
when 𝑓1 = 𝑓2 inside the intersecting object (in green). Figure (b) shows the resulting
operator after biharmonic interpolation.

of the field is computed by biharmonic interpolation, guaranteeing a 𝒞2-smooth field
outside of the imposed conditions.

They also describe a bulge-in-contact operator which artificially inflates the surface around
the contact region. The most recent work in operator design enables specification of the
blending result by sketching the desired surface [Ang+17].

2.4 Transforming implicit surfaces

2.4.1 Spatial transformation of a scalar field

Implicit objects can easily be deformed by spatial transforms, which is especially useful
for modelling as it makes it possible to create complex shapes by twisting, bending or
squeezing simple objects [Bar84; WO97].

Definition. If 𝑓 is a scalar field defining an input implicit surface, and 𝑤 ∶ ℝ3 → ℝ3

a continuous spatial transform or warp function. The transformed field ̄𝑓 is defined as
̄𝑓 (p) = 𝑓 (𝑤−1(p)).

The warp function maps the input implicit surface’s space to the space where it is
deformed. When computing the value of 𝑓(p), the query point must be transported back
from this deformed space to the initial space for 𝑓 to be computed, hence the inverse of
𝑤 appearing in the formula (see Figure 2.15 for an illustration of this process). Warping

45

Chapter 2 Introduction to implicit surfaces

p

input surface warped surface

𝑤−1(p)

𝑤−1

𝑤

Figure 2.15: Warping of an implicit surface.

requires that 𝑤 is at least locally invertible, meaning that 𝑤 is 𝒞1 and that its Jacobian matrix
is nonsingular, i.e. |J𝑤| ≠ 0.

2.4.2 Gradient of a deformed field

The gradient of a transformed implicit function ∇𝑓 can be computed by the chain rule:

∇𝑓(p) = (J𝑤−1(p))T∇𝑓 (𝑤−1(p)) ,

where J𝑤−1(p) is the Jacobian matrix of 𝑤−1 at 𝑤−1(p), which is the inverse of the Jacobian
matrix of 𝑤 at 𝑤−1(p):

J𝑤−1(p) = (J𝑤(𝑤−1(p))−1 .

The matrix that locally transforms gradients (and thus normals) is the inverse transpose of
the Jacobian matrix of 𝑤:

∇𝑓(p) = (J𝑤(𝑤−1(p)))−T∇𝑓 (𝑤−1(p)) .

Example. In the simple case where 𝑤 is an invertible affine transformT(p) = Mp + ⃗t,
the Jacobian matrix JT is constant and is equal to the linear part of T: JT = M. This
yields

∇𝑓(p) = M−T∇𝑓 (T−1(p)) .

If T is actually a rigid transform (i.e. an isometry), then M is a rotation R ∈ SO(3)
andR−T = R, which simplifies the formula even further :

∇𝑓(p) = R∇𝑓 (T−1(p)) .

46

2.5 Animated implicit surfaces

Figure 2.16: Tracking points on a translating implicit sphere. Left: points on a translating
sphere theoretically have the same velocity everywhere. Right: after advancing the sphere
the tracking points will project radially to the surface and slide towards the back of the
sphere.

2.5 Animated implicit surfaces

Computer-generated animation has often made use of implicit surfaces since their appear-
ance in computer graphics. They provide a simple representation that handles situations
such as soft objects, objects changing topology or fluids much better than the ubiquitous
polygon meshes [YT13; CGB16].

Desbrun and Cani [DC98] started investigating on the issues raised by time-varying
scalar fields 𝑓 (p, 𝑡), most importantly the trajectories of points on the surface. Considering
a point p(𝑡) which is constrained on the 𝐶-iso-surface of 𝑓, can be expressed as:

∀𝑡 , 𝑓 (p(𝑡), 𝑡) = 𝐶.

Differentiating this equation in 𝑡 yields:

d𝑓
d𝑡

(p(𝑡), 𝑡) =
𝜕𝑓
𝜕𝑡

(p(𝑡), 𝑡) + ∇𝑓 (p(𝑡), 𝑡) ⋅
dp(𝑡)
d𝑡

= 0 .

This equation is of great importance for the tracking of animated implicit surfaces [WH94],
i.e. attempting to find the trajectory of a set of points initially on the surface at 𝑡 = 0.

Tracking is used, for example, to keep a point cloud or a polygon mesh in sync with an
implicit surface. Initial points can be user-supplied or obtained by any polygonisation
method (e.g. marching cubes [LC87; Nie04]), and then track the surface during the animation,
maintaining a consistent representation of the moving surface.

As a consequence, 𝑓 (p(𝑡), 𝑡) is constant (as p stays on the same iso-surface during
motion), but p(𝑡) is not, thus the previous relationship gives a differential equation on
the velocity of p:

47

Chapter 2 Introduction to implicit surfaces

dp(𝑡)
d𝑡

⋅ ∇𝑓 (p(𝑡), 𝑡) = −
𝜕𝑓
𝜕𝑡

(p(𝑡), 𝑡)

This differential equation gives only a radial constraint on the velocity of p (along ∇𝑓),
leaving the tangential components unknown. This is a common issue with implicit surfaces,
as the scalar field itself has no tangential parametrization per se. For example, the field of a
sphere spinning on itself would be identical to a static field.

Solving the tracking problem thus requires to supply these tangential components with
additional hypotheses. Ignoring the tangential component will lead to errors even in
simple cases such as a translating sphere: the tracking points which are not aligned with
the velocity vector will simply slide along the surface until they are concentrated to the
points aligned with the translation vector, as can be seen in Figure 2.16. Stam and Schmidt
[SS11] proposed to avoid these errors by maintaining the normals at the tracking points
constant during the animation, which works for objects in translation, but not in rotation
or for deforming objects. Fujisawa et al. [FMM13] presented a more robust approach
based on curvature invariance.

This highlights how implicit surfaces and meshes complement each other in animation.
Vertices of a mesh can track a moving implicit surface by combining normal information
from the field and its gradient, and use the tangential information of the original mesh.
This idea is at the core of the Implicit Skinning algorithm, which uses the tools presented
in this chapter to solve several issues of geometric skinning.

48

3
Implicit Skinning
All problems in computer graphics can be solved with

a matrix inversion.
— James F. Blinn, Jim Blinn’s Corner: Dirty Pixels

With their capacity to define smooth organic-looking surfaces with only a small num-
ber of parameters, implicit surfaces were considered early on for character animation.
Their low memory footprint was seen as a key point for storage and transmission of
digital animated characters in applications such as video-conferences [SOP95] or virtual
reality [TSC96].

As GPUs became increasingly common, the cost of rendering polygon meshes became
lower while the display of implicit surfaces remained computationally expensive. Implicit
surfaces thus fell out of favour in mainstream animation applications. Yet they remain
a useful complement surface representation to polygon meshes. This complementarity
was exploited by Vaillant et al. [Vai+13; Vai+14]. Their method is able to correct many
issues of geometric skinning while remaining fast enough for interactive use.
In the following sections, we detail the necessary steps to define the skin scalar field

and describe how this representation is used for skinning.
A first step, described in Section 3.1, constructs the implicit surface representation of the

skin from the character mesh in the reference pose and maintains its consistency with the
skeleton during the animation. The mesh is segmented according to the skeleton bones,
and each part of the mesh is represented by a separate scalar field (Section 3.1.1). These
primitive fields are then combined with composition operators (Section 3.1.2). The result
of this process is an implicit surface which closely matches the initial character mesh.
During the animation, the implicit surfaces are transformed rigidly with the animation
skeleton, and the resulting surface obtained by composition of these primitives thus adapts
to the current animation pose, as described in Section 3.1.3.

49

Chapter 3 Implicit Skinning

(a)Mesh partition (b) Implicit surfaces of the parts and recon-
structed skin

Figure 3.1: Partition and reconstruction of the mesh. Vertices are separated in parts
associated to skeleton bones (a) and each part is represented by a scalar field, which are
composed together to form the implicit skin (b)

(Pictures from [Vai+14])

The next sections detail the Implicit Skinning algorithm. As a first step, DQS (described
in Section 1.4.2) moves the vertices to their starting position. From this initial guess,
the vertices are alternatively projected towards their target iso-surface on the implicit
skin and displaced tangentially to minimize a local deformation energy. We first present
each operation independently: the iso-surface tracking in Section 3.2 and the energy
minimization in Section 3.3. Finally, we detail how these two steps are interleaved to make
the vertices converge to their final position in Section 3.4.

3.1 Implicit skin representation

3.1.1 HRBF primitives

The first step to setup Implicit Skinning is to generate an implicit surface which approxi-
mates the character mesh, while being able to deform with the skeletal movements. To
this effect, the character mesh (in rest pose) is partitioned by associating each vertex
with the skeleton bone which has the most influence on its movement (Figure 3.1(a)). If
skinning weights are available, vertices are associated with the highest weighted bone; if
not, automatic partition methods or a user-supplied partition can still be used.

50

3.1 Implicit skin representation

pi

⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ni

Figure 3.2: HRBF surface reconstruction: Points pi and normals ⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ni are sampled from
the mesh surface (red line). The implicit surface interpolates the input to reconstruct a
smooth approximation of the mesh.

Each part of the mesh is then approximately reconstructed by an implicit surface using
Hermite Radial Basis Functions or HRBF [MGV11], as shown on Figure 3.1(b). Starting
from a set of 𝑁H points pi and normals ⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ni, in our case sampled from the mesh’s surface
by Poisson disc sampling [Bri07], HRBFs generates a scalar field 𝑓 for which 𝑓 (pi) = 0 and
∇𝑓 (pi) = ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ni, as shown in Figure 3.2.

Definition. Given a basis function 𝜙 ∶ ℝ → ℝ, an HRBF is defined as

𝑓H(p) =
𝑁H

∑
𝑖=1

𝑎𝑖𝜙 (‖p − p𝑖‖) + ⃗⃗⃗⃗⃗⃗b⃗𝑖 ⋅ ∇(𝜙 (‖p − p𝑖‖)) .

This field 𝑓H is expressed as a linear combination of radial-basis functions 𝜙, whose
value only depend on the distance to a center point, and their gradient. Computing the
coefficients 𝑎𝑖 and ⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗bi of the linear combination thus requires to solve the equations:

⎧{{
⎨{{⎩

𝑓H(pi) = 0

∇𝑓H(pi) = ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ni

which can be done by solving a linear system of size 4𝑁H. The function 𝜙 used in Implicit
Skinning is 𝜙(𝑟) = 𝑟3.
The Poisson sampling gives generally good results but its random nature sometimes

makes the HRBF’s shape quite different from the initial mesh part it is supposed to
represent. Such problems arise generally when sampling high-frequency areas of themesh
where the sampled point can lie on sharp details and thus distort the shape representation.

51

Chapter 3 Implicit Skinning

(a) Without extra end points

𝑟𝑗

(b) Adding the extra points (c) With extra end points

Figure 3.3: Effect of extra endpoints on the implicit skin. The reconstructed HRBF shape
is often elongated near the joints, yielding unwanted bulging when the joint bends (a).
By adding extra points at each end along the skeleton bone (b), this bulge is averted (c).

(Pictures from [Vai+13])

Fortunately, after HRBF points are sampled, they can still be manually edited by adding,
deleting points or changing the sampled points’ position or normal, to better capture the
shape without the high-frequency details.

Because the mesh vertices belonging to one part often exhibit a cylindrical shape, the
reconstructed HRBF fails to capture the shape at the end of this part, where the mesh
connects with the next part over a skeleton joint. This yields an unwanted bulge when
the joint bends, as shown in Figure 3.3(a). To correct this artefact, two points are added
at each end of the shape. Computing the distance between the proximal and distal end
points of the bone and the group of vertices vi gives a radius 𝑟𝑗 for each endpoint. A new
HRBF sample point is then added at this distance, following the direction of the bone
segment, as illustrated in Figure 3.3(b).

Once theHRBF surface closelymatches the inputmesh, the result can be saved alongside
themodel and reused in subsequent animations. EachHRBFfield is converted to a compact
support scalar field with the following fall-of filter function:

𝐾(𝑑) =

⎧{{{
⎨{{{⎩

1 if 𝑑 < −𝑅

− 3
16 (𝑑

𝑅)
5

+ 5
8 (𝑑

𝑅)
3

− 15
16 (𝑑

𝑅) + 1
2 if 𝑑 ∈ [−𝑅, +𝑅]

0 if 𝑑 > 𝑅

, (3.1)

which guarantees 𝒞2 continuity at 𝐾(𝑑) = 0 and 𝐾(𝑑) = 1. The support radius 𝑅 is set at
the highest distance from the sampled points pi to the bone axis, given that limbs usually
exhibit a rough rotational symmetry around their animation bone.

52

3.1 Implicit skin representation

(a) Field composition with contact operator (b) Result after skinning

Figure 3.4: Effect of the contact operator on skinning: two scalar fields (arm and forearm)
are blended with a contact operator, generating a contact surface visible on Figure (a) in
green. Skin vertices project on this surface, resulting in a mesh without interpenetration
(b).

(Pictures from [Vai+14])

𝛼 = 1 (full blend)

𝛼 = 0 (clean union)
0 𝜋

4
𝜋
2

3𝜋
4

𝜋 0 𝜋
4

𝜋
2

3𝜋
4

𝜋 0 𝜋
4

𝜋
2

3𝜋
4

𝜋

𝛼 = 1

𝛼 = 0

default contact high bend contact bulge-in-contact

Figure 3.5: Controller functions used for Implicit Skinning.

The definition of the skin part field 𝑓𝑗 associated to the animation bone 𝑗 is thus a
compact-support HRBF: 𝑓𝑗(p) = 𝐾(𝑓H(p)), i.e. a 15-degree polynomial. To speed up the
evaluation of the function, each field 𝑓𝑗 is sampled in a 3D grid. Subsequent calls to the
value of 𝑓𝑗 are computed by trilinear interpolation inside the sampled grid.

3.1.2 Composition operators

Each vertex group associated to bone 𝑗 nowhas a compact-support field function 𝑓𝑗; all these
functions have to be combined together to provide a unique skin field 𝐹 using composition
operators. In skinning, the contact operator defined in Section 2.3.4 is employed for its
ability to model a contact surface between two intersecting body parts, such as the arm
and forearm (Figure 3.4).

53

Chapter 3 Implicit Skinning

(a) DQS (b) IS with contact operator (c) IS with bulge operator

Figure 3.6: Implicit Skinning on fingers, showing geometric skinning with no contact
handling (a), the surface obtained with the contact operator (b), and the extra volume
gained with the bulge operator (c).

(Pictures from [Vai+14])

For this operator, the controller function 𝜅, which maps the gradients angle with the
operator’s parameter 𝛼 is set to a default function shown in Figure 3.5. This default
controller smoothly interpolates between the union and the contact around a gradients
angle of 𝜃 = 𝜋

2 . This controller works for most joints of the character. For joints that can
bend to sharp angles (such as the elbow or the knee), a sharper transition, starting at wider
angles, will increase the consistency of the contact surface. Another option is to use the
bulge-in-contact operator, which inflates the surfaces in the contact areas. This behaviour
increases the plausibility of the deformed surface at the finger joints, as illustrated by
Figure 3.6. In this case, a specific controller is specified for the bulge operator.

The final surface building algorithm proceeds recursively, following the tree structure
of the skeleton. Functions associated with leaf bones are first composed with their parent
bone’s function. Then, the resulting composed function is composed with its parent,
and so on. Typically, in humanoid skeletons, some joints have more than one child: for
example the hips or the neck. Because the composition operators are binary, separate
branches are assembled two by two, until all branches are taken into account. This process
is illustrated in Figure 3.7. At the end, the topmost composition operator defines the scalar
field 𝐹 which represents the whole skin. With this definition of 𝐹, the evaluation of its
value at a given point p might appear costly, because it would require the evaluation
of each primitive function 𝑓𝑗(p), and the recursive composition of all these values with
the tree of operators. However, because the 𝑓𝑗 are compact-support functions, only the
surfaces closest to p will influence the result, as the other primitives will evaluate to 0.
The composition tree also includes a bounding volume hierarchy (BVH) tree to speed up
the evaluation by discarding any request at a point outside the node’s bounding volume.

54

3.1 Implicit skin representation

skeleton primitives 𝑓𝑗

binary composition tree

𝐹

Figure 3.7: Building of the skin composition tree. Each color node correspond to the prim-
itive scalar field 𝑓𝑗 associated with skeleton bone 𝑗, and each white node is a composition
operator. The topmost operator is the skin scalar field 𝐹.

3.1.3 Animation of the implicit surface

During animation, at each time step 𝑡, the scalar fields are transformed by their associated
bone transformB𝑗(𝑡). Using the field spatial transformation formula defined in Section 2.4,

𝑓𝑗(p, 𝑡) = 𝑓𝑗 ((B𝑗(𝑡))−1p)

∇𝑓𝑗(p, 𝑡) = R𝑗(𝑡) ∇𝑓𝑗 ((B𝑗(𝑡))−1p) ,

whereR𝑗(𝑡) is the rotational part ofB𝑗(𝑡).

This yields a time-varying topmost skin field 𝐹𝑡 which represents the recursive compo-
sition of the transformed primitive fields. The skin field follows the motion of the skeleton
and, thanks to the contact operator, generates a contact surface inside the two colliding
fields, as shown in Figure 3.4(a).

55

Chapter 3 Implicit Skinning

Algorithm 3.1 projection: Implicit surface tracking step
input: a scalar field 𝐹𝑡, a vertex v𝑖 tracking its iso-value 𝑒𝑖 and a step factor 𝜆
output: an updated position v

(p)
𝑖

𝑓𝑖 = 𝐹𝑡(v𝑖)
⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗gi = ∇𝐹𝑡(vi)
𝑑 = 𝑓𝑖 − 𝑒𝑖

if (|𝑑| < 𝜖) then // Stop case: the point is already at 𝑒𝑖

return v𝑖

end if
⃗⃗⃗⃗⃗⃗h⃗ = −𝜆𝑑

⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗gi
∥⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗gi∥2 // Compute displacement vector

v′
𝑖 = v𝑖 + ⃗⃗⃗⃗⃗⃗h⃗ // Advance the point along the displacement direction

𝑑′ = 𝑓 (v′
𝑖) − 𝑒𝑖

if (𝑑(𝑑 − 𝑑′) < 0) then // Stop case: the iso-value difference has increased

return v𝑖

end if
if (𝑑𝑑′ < 0) then // Stop case: intersection found along the displacement direction

return dichotomy_search (𝑓 ,v𝑖,v′
𝑖, 𝑒𝑖)

end if
return v′

𝑖 // Advance by the full length of ⃗⃗⃗⃗⃗⃗h⃗

v1

v2

v3

v4

⃗⃗⃗⃗⃗⃗h⃗

v′
3 v′

4

⃗⃗⃗⃗⃗⃗h⃗

⃗⃗⃗⃗⃗⃗h⃗

v′
2

Figure 3.8: Implicit Skinning projection step, illustrating all possible cases. v1 is already
on its target iso-surface, and does not move. v2 is advanced along the gradient direction
and crosses its target iso-surface. The points moves to the intersection. v3 is advanced
along the gradient, but falls short of the target surface. The points moves the full length
of the displacement vector ⃗⃗⃗⃗⃗⃗h⃗. v4 is advanced along the gradient, but its new position is
further away from the surface. It remains at the same position.

56

3.2 Surface tracking

3.2 Surface tracking

As seen in Figure 3.2, the skin field’s surface does not perfectly matches the mesh, but
instead attempts to capture the overall low-frequency shape. This field is used as a
guideline to correct the shortcomings of a geometric skinning approach.

Before animating the mesh, the value of the field 𝑒𝑖 = 𝐹𝑡=0(vref 𝑖) is evaluated at each
vertex of the mesh in its reference position. During animation, the vertices of the mesh are
first deformed using a geometric skinning method to a starting position v𝑖. Comparing
the value of the animated field 𝐹𝑡 at these new positions to the initial value identifies
which vertices positions need to be corrected.

These vertices are displaced to pull them back to their correct iso-surface of the scalar
field 𝐹𝑡; in essence each vertex v𝑖 is tracking the 𝑒𝑖 iso-surface 𝑆𝑒𝑖

of 𝐹𝑡. This process,
described in Algorithm 3.1, is implemented as an iterative gradient descent, until the
target iso-value is reached. At each tracking step, the value and gradient of 𝐹𝑡 at the current
position 𝑣𝑖 is evaluated, and a displacement vector ⃗⃗⃗⃗⃗⃗h⃗ is computed. This vector’s direction is
given by the gradient of 𝐹𝑡 and its length is proportional to the difference 𝑑 between the
current value 𝐹𝑡(v𝑖) and the target value 𝑒𝑖, and a step scale factor 𝜆 which controls the
speed at which the points converge to their iso-surface.

If the displacement of v𝑖 crosses the target iso-surface, the precise location of the
intersection is located by dichotomy search, and the point is onlymoved to this intersection.
Otherwise, the point is moved along the displacement vector, but only if the new position
has a value closer to the target. If the move would increase the target value difference, the
point stays in the same position, waiting for a subsequent step (with a smaller step factor
𝜆) to find the correct moving position. Figure 3.8 gives an illustration of the possible cases
of the tracking step.

Being a gradient-descent step, the tracking will fail to compute a displacement direction
if the gradient is 0 at the current position of the vertex. For that reason, it is crucial to
maintain a field without singular points near the surface of the mesh, or some vertices
can get trapped. HRBFs used in modelling character body parts usually have singular
points near their axis (i.e. the skeleton bone). This is averted by the use of DQS as a first
geometric skinning method as the candy-wrapper artefact of LBS would bring the point
too close to the central axis. In contrast, DQS has a natural tendency to push the vertices
outwards which prevents the vertices from being to close from the inside. Additionally,
since 𝐹𝑡 is a compact support function, the field and gradient are both null outside of
its support. The choice of the support radius 𝑅 (as defined in Section 3.1.1) is therefore
important to prevent the vertices from getting stuck too far away from the surface.

57

Chapter 3 Implicit Skinning

v𝑖

v𝑘

𝛼𝑖𝑘

𝛽𝑖𝑘

Figure 3.9: Neighbourhood of vertex v𝑖 and angles 𝛼𝑖𝑘 and 𝛽𝑖𝑘 involved in the computation
of cotangent weight 𝑐𝑖𝑘.

By following the gradient, each vertex will converge towards the nearest point on their
target iso-surface. Yet, as mentioned is Section 2.5, this only corrects the vertex normal

position without considering problems that arise in the tangential direction. In practice, the
vertices will slide along the surface, distorting the mesh’s triangles and yielding a visually
unappealing deformation, calling for a tangential scheme to avoid these distortions.

3.3 Tangential relaxation and skin elasticity

Tomitigate the distortions, the structure of themesh can be exploited to correct the position
of the vertices v(p)

𝑖 after the projection step in the tangent plane 𝒯, i.e. the plane normal to
∇𝐹 (v(p)

𝑖). Vaillant et al. [Vai+13] initially proposed to use a relaxation scheme based
on barycentric coordinates but later moved on [Vai+14] to a formulation based on the
as-rigid-as-possible (ARAP) energy introduced by Sorkine and Alexa [SA07].
The ARAP energy is a function defined on the mesh which measures its deformation

relatively to its reference shape. For any vertex v𝑖, the local deformation energy 𝐸𝑖 is
defined as:

𝐸𝑖 = ∑
v𝑘∈𝒩(v𝑖)

𝑐𝑖𝑘 ∥(v𝑖 − v𝑘) − R𝑖(vref 𝑖 − vref 𝑘)∥2

where 𝒩(v𝑖) is the neighbourhood of v𝑖, that is to say, the vertices immediately connected to
v𝑖 through an edge of themesh, andR𝑖 is a rotationmatrix. Theweights 𝑐𝑖𝑘 are the classical
cotangent weights of the discrete Laplace-Beltrami operator [Bot+10], i.e. 𝑐𝑖𝑘 = 1

2(cot(𝛼𝑖𝑘) +
cot(𝛽𝑖𝑘)), with 𝛼𝑖𝑘 and 𝛽𝑖𝑘 the angles opposite to the edge [v𝑖v𝑘] (see Figure 3.9). The
weights 𝑐𝑖𝑗 are precomputed for all neighbouring vertices on the reference mesh. The total

58

3.3 Tangential relaxation and skin elasticity

v𝑖

𝒯 v(N)
𝑖

v(r)
𝑖

v
(p)
𝑖

Figure 3.10: Projection and tangential relaxation. Vertex v𝑖 is projected to v(p)
𝑖 lying on

the iso-surface, then is moved by the relaxation to v(r)
𝑖 , which is the projection on the

tangent plane of the result of 𝑁𝐴 ARAP Jacobi iterations v(NA)
𝑖

ARAP energy 𝐸 is the sum of all individual vertex deformation energies over the whole
mesh:

𝐸 =
𝑛−1

∑
𝑖=0

𝐸𝑖 .

In the standard ARAP formulation, the deformation energy is minimised by iterating a
two step process. The first step finds the optimal rotation matricesR𝑖 which transform
𝒩(vref 𝑖) into 𝒩(v𝑖). The second step moves the vertices v𝑖 to minimize the energy. As
the energy is quadratic in terms of the vertex positions, the local minimum can be found
with Newton’s method by solving a 3𝑛 × 3𝑛 linear system.

Because of the first step, the overall algorithm is non-linear and thus requires an iterative
approach to find a satisfying solution. Additionally, computing the optimal rotations
requires a polar decomposition of the Jacobian of the local deformation per vertex, which is
a costly operation. Moreover, this estimation is prone to introduce errors in the subsequent
mesh such as triangle inversion or edge collapse [BN07]. However, in the case of skinning,
this expensive step can be avoided by using the skeleton transforms as an additional source
of information. The rotationsR𝑖 are set a priori to the rotational part of the dual-quaternion
transform from𝑃ref to𝑃 affectingv𝑖, in otherwords, a blend of the skeleton bones transform
for which v𝑖 has a non-zero skinning weight (as described in Section 1.4.2).

As said above, with the rotation fixed, it is possible to compute the optimal positions
of the vertices ̂v𝑖 from their position after the projection step v

(p)
𝑖 by solving the linear

59

Chapter 3 Implicit Skinning

system:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

̂v0

̂v1

⋮
̂v𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v
(p)
0

v
(p)
1
⋮

v
(p)
𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

− H𝐸
−1∇𝐸 ,

whereH𝐸 is the Hessian of 𝐸.

The chosen implementation for the relaxation step is the Jacobi method, an iterative
method converging to the optimal solution. At a given Jacobi step 𝑗, the positions of the
vertices is updated with the following formula

v
(j+1)
𝑖 = ∑

𝑘∈𝒩(v𝑖)
𝑐𝑖𝑘v

(j)
𝑘 + b𝑖 ,

where 𝑐𝑖𝑘 are the normalized cotangent weights

𝑐𝑖𝑘 =
𝑐𝑖𝑘

∑𝑛
𝑘=0 𝑐𝑖𝑘

,

and bi is defined as
1
2

𝑛

∑
𝑘=0

𝑐𝑖𝑘(R𝑖 + R𝑘)(vref 𝑖 − vref 𝑘) .

The derivation of the previous expressions is detailed in Appendix A.1.

Yet, when moving the vertex towards the computed optimal position, it could move
away from its iso-surface, defeating the purpose of the projection step. The relaxation is
therefore constrained to the tangent plane 𝒯, by projecting the last point v(NA)

𝑖 onto the
tangent plane, as shown in Figure 3.10. The resulting point v(r)

𝑖 is the output of the ARAP
step described in Algorithm 3.2.

The tangent plane projection is a linearisation of the iso-surface constraint, and thus
does not guarantees that v(r)

𝑖 will satisfy 𝐹𝑡(v
(r)
𝑖) = 𝑒𝑖. This suggests to use an iterative

process interleaving the projection step with the relaxation step, repeated until the point
has reached a position that both minimizes the deformation energy and is on the target
iso-surface.

3.4 Implicit Skinning algorithm

The success of Implicit Skinning requires a careful balance between the surface tracking
and the relaxation scheme. The progress of the projection step towards the target iso-

60

3.4 Implicit Skinning algorithm

Algorithm 3.2 arap_iter: Jacobi iterations of the ARAP energy minimization.

input: starting positions of vertices v(0)
𝑖 , reference positions vref 𝑖, rotationsR𝑖, normal-

ized cotangent weights 𝑐𝑖𝑘, and number of ARAP steps 𝑁𝐴

output: updated position v(r)
𝑖

b𝑖 = 1
2 ∑𝑛

𝑘=0 𝑐𝑖𝑘(R𝑖 + R𝑘)(vref 𝑖 − vref 𝑘)
for 𝑗 = 0 to 𝑁𝐴 do

v
(j+1)
𝑖 = b𝑖 + ∑𝑛

𝑘∈𝒩(v𝑖)
𝑐𝑖𝑘v

(j)
𝑘

end for
return v(r)

𝑖 = project (v(NA)
𝑖 , 𝒯) // project the last point on tangent plane

surface is controlled by the step scale parameter 𝜆, while the convergence of the ARAP
optimization is driven by the number of ARAP Jacobi steps 𝑁𝐴.

The main algorithm consists in a central loop which successively applies the projection
step and the ARAP Jacobi steps, until the prescribed number of iterations is reached. For
each of these central loop iterations, a value of 𝜆 and 𝑁𝐴 is supplied, determining the
balance between the normal and the tangential progression of the vertices. The sequence
of 𝜆 is decreasing, yielding smaller and smaller step sizes. This behaviour stabilizes the
march of the vertices, first by moving in large steps and then by advancing towards their
target surface with a higher precision. Between the projection step, only one ARAP Jacobi
iteration is run (i.e. 𝑁𝐴 = 1). This way the algorithm prioritizes the normal displacement
to the tangential displacement. After the central loop has run for the prescribed number
of iterations, tangential ARAP Jacobi iterations are run until the mesh converges to the
optimal solution.

Algorithm 3.3 Implicit Skinning algorithm
input: a vertex vref 𝑖, a sequence of 𝜆 and 𝑁𝐴

output: a final skinning position v(final)
𝑖

v𝑖 = Tq̂𝑖
vref 𝑖 // Initial DQS solution

for 𝑛 = 0 to 𝑁 do
v

(p)
𝑖 = projection_step (𝐹𝑡,v𝑖, 𝑒𝑖, 𝜆𝑛) // Projection step

v(r)
𝑖 = arap_iter(H,v(p)

𝑖 , 𝑁𝐴,𝑛) // ARAP Jacobi step

v𝑖 = v(r)
𝑖 // Update the positions and start over

end for
repeat

v𝑖 = arap_iter(H,v𝑖, 1)
until convergence

61

Chapter 3 Implicit Skinning

3.4.1 Time-dependency

Implicit Skinning is a corrective algorithm: it starts with an initial solution and moves the
vertices to a position that fits the iso-surface constraint and the ARAP energyminimization.

In practice, a better consistency can be achieved at the cost of the independence of
history. In this case, for the initial solution DQS is not applied from the reference vertices,
but from the vertices of the previous frame of animation. In other words, the previous frame
is treated as the reference mesh for the next frame. This time-dependency means that the
result of skinning depends not only on the current pose, but also on the previous poses:
two different animations will yield different results even if they reach the exact same pose.
This has a positive effect on performance, because it limits the number of projection and
ARAP iteration steps, as the vertices start closer from the optimal solution. In addition
to the performance gain, it renders the result of the skinning almost insensitive to the
skinning weights distribution. In their implementation, Vaillant et al. [Vai+14] achieve
smooth deformations even with rigid weights (i.e. the weight of the nearest bone is 1
and all the others are 0). The loss of history-independence can however be a problem to
attain reproducible results interactively. The method is still deterministic when playing
the same animation twice.

3.5 Discussion

Implicit Skinning greatly improves the results of its initial geometric solution by focusing
on the modelling of the joints. Because the points track their iso-surface, collapsing or
bulging at joints is averted. Moreover, the use of operators to generate a contact surface
on which the vertices project resolves self-penetration of the mesh, a problem that was
difficult to avoid with purely geometric methods.
Despite its complexity, this method is able to run at interactive frame-rates. Several

design and implementation choices of Implicit Skinning are dictated by the performance
requirements. Since the function and its gradient are evaluated several times for each
vertex, inefficiency in this evaluation can degrade the frame-rate dramatically. As seen in
Section 3.1, memory is traded off to increase the function evaluation efficiency by storing
the values in a 3D grid, and using a BVH tree for the global field evaluation. Moreover,
the two main subroutines of the algorithm can be processed in parallel for each vertex v𝑖

either on a GPU or on a multithreaded CPU.
On a more theoretical standpoint, the usefulness of the approach, arises from its sepa-

ration between the volumic effects, which are represented by the implicit surfaces and
their interaction, and the surfacic effects, which are computed from the mesh. However,

62

3.5 Discussion

the modelling approach using HRBFs and contact operators limits the kind of effects that
can be represented around the joints. This produces some sort of dynamic effects with
the bulge-in-contact operation on the fingers of Figure 3.6(c), but this is a very limited
use-case. Except for their rigid transformations, the surfaces do not deform and cannot
reproduce dynamic deformations happening in the limbs, in particular, those due to
muscles.
However, because the tracking algorithm does not rely on any assumption on the

underlying scalar field, it is possible to enrich the implicit skin representation in order
to account for dynamic anatomic effects localized in the different parts of the body. Our
contribution, described in the next part, is the definition of such a model to simulate the
dynamics of muscles on the skin, thus increasing the liveliness of the characters animated
with this method.

63

II
Implicit muscle deformers

65

4
Implicit muscle models

We admire the skillful construction of the fibers in each

muscle; how much more then ought we to admire it in

the brain.
—Niels Steensen (1638 – 1686), Discours sur l’anatomie

In this chapter, we present an implicit model which can represent muscle shapes. First,
we examine the physical properties of real-life muscles that the model must take into
account to produce plausible shapes and deformations. Second, we introduce a family of
extrusion surfaces (presented in Section 2.2.3) defined by a scalar field function 𝑓𝑀 whose
iso-surface represents a muscle. We then describe the parameters of this model, how they
are constrained to represent plausible muscle shapes and ensure volume preservation.
This chapter concludes by a discussion on the practical consequences of the choices made
for this model.

4.1 Muscle anatomy

4.1.1 The different types of muscles

The human body has more than 400 muscles divided in two categories. Skeletal muscles,
or voluntary muscles, set the body in motion by contracting or extending, generating a
force that moves the bones of the skeleton. These motions happen either consciously, e.g.
when walking, or unconsciously as reflexes, e.g. when maintaining balance. Involuntary
muscles, on the other hand, are muscles that are only controlled by unconscious processes.
They include the walls of the heart and smooth muscle tissues that surround other organs
(such as the stomach and intestine). These muscles lie deep in the human body and have
no visible effect on the skin. We thus focus our study on skeletal muscles. As an example,

67

Chapter 4 Implicit muscle models

Figure 4.1: A 3D anatomical model of the left arm.

Model by Anatoscope

Figure 4.1 shows all 56 skeletal muscles involved in the motion of the left arm, hand and
fingers.

Skeletal muscles exert force on the skeleton through tendons, located at their extremities.
Tendons are made of stiff tissue and connect the muscular system to the bones. The
attachmentwhich is static during themuscle’s contraction is the origin, while the attachment
which tends to be moved is the insertion. Typically, the origin is proximal (i.e. closer to the
body’s centre of gravity) and the insertion is distal, such as in the biceps and the pectoral
of Figure 4.2.

Muscles come in many shapes in the body and are usually classified according to
their architecture: the arrangement of fibers within the muscle. Muscles driving large
movements generally have fibers running parallel to the muscle axis, yielding the familiar
fusiform shape found in the biceps, triceps or hamstrings. In more complex muscles, the
fibers are arranged diagonally in one, two, or more rows and are known as pennate muscles
(unipennate, bipennate or even multipennate). The architecture of these various types of
muscles produces different physical aspect, as illustrated by Figure 4.3. They nonetheless

68

4.1 Muscle anatomy

origin

insertion

(a) Biceps
or
ig
in

insertion

(b) Pectoral

Figure 4.2: Figure (a): endpoints of the biceps, with its origin on the humerus and its
insertion on the radius. Figure (b): endpoints of the pectoral, its origin on the sternum
and its endpoint on the humerus.

Model by Anatoscope

Figure 4.3: The different types of muscles. A: fusiform, B: unipennate, C: bipennate. (PCS:
physical cross section).

(Picture from [Gra18])

69

Chapter 4 Implicit muscle models

Figure 4.4: Deformation modes of a skeletal muscle. From left to right: muscle in a rest
state, isotonic contraction and isometric deformation.

share common shape attributes: a roughly circular cross-section, a wide belly and tapered
extremities.

The pectoral shown in Figure 4.2(b) belongs to a separate category: convergent muscles.
Muscles in this category are characterized by a wide origin and a relatively smaller inser-
tion point. Their cross-section is flat, and their longitudinal shape is roughly triangular.

4.1.2 Deformations

A key property of muscle deformation is the conservation of volume [Ste64]. When moving,
the shape of the muscle changes, but its volume remains constant. This is, of course, a
property that is not valid for very long timescales as muscles grow with physical exercise
or shrink with inactivity. For the range of motions we consider in animation, however,
this assumption is largely verified.
Muscles have two modes of deformation: isotonic and isometric. Isotonic deformation

happens when the muscle contracts or extends, setting into motion the bones to which
it is attached. For example, the biceps will drive the forearm closer to the arm to bend
it. Because the muscle’s length is shortening, its width will increase, keeping its volume
constant, creating the familiar bulging of the arm. In isometric deformation, the muscle’s
length does not change, but the tension of the muscle increases, for example to counteract
the weight of an heavy object. This phenomenon is known as activation. In that case, the
muscle’s shape changes to increase the force exerted by the muscle but the endpoints
stay static. These two modes are illustrated by Figure 4.4. Except in dedicated physical

70

4.2 Muscle model

exercises, the deformations observed during human motion are often a combination of
these two modes.

4.1.3 A muscle model for skinning

Skeletal muscles aremade of fibers which can contract and expand. In real life, themuscles
exert force on the bones to set them in motion. However, in the case of animation, the
skeleton rig drives the position of the character. Our goal is therefore not to model the
physical behaviour of the muscles as in physics-based animation methods (as described
in Section 1.2), but to define a model which produces shapes similar to the shapes of real
muscles. Our muscles have to be set up on the reference pose of the mesh, typically by
their end points and initial shape, and deform with the animation skeleton according to a
set of rules inspired from real muscles. This model should be able to account for isotonic
deformations caused by the skeletonmotion, but also offer the possibility to be activated to
reflect isometric deformations. As seen above, volume conservation is a crucial constraint
which affects the muscle’s shape and it must be preserved during deformation.

Our muscles should be represented by an implicit surface, as our goal is to integrate
them within the implicit skin representation. We thus seek to define a continuously
differentiable scalar field 𝑓𝑀 which can produce the different shapes of muscles described
above. We define several parameters specifying the shapes of muscles at rest and in the
deformation modes discussed in this section, maintaining volume conservation as the
shape of the muscle deforms over time. Given the roughly circular cross-section of most
muscles, the surfaces we define are sweep surfaces around a central axis representing
the line of action of the muscle. Additionally, we model the elasticity of muscle tissue by
enabling deformations on this central axis.

4.2 Muscle model

A muscle is defined as a 3D scalar field 𝑓𝑀 ∶ ℝ3 → ℝ which represents an extrusion surface,
as defined in Section 2.2.3. The axis curve is a polyline 𝒞, which defines the central axis of
the muscle, and the shape is defined by a profile function 𝑅. A summary of notations is
given in Figure 4.5.
The initial state of the axis is defined by positioning the two end points, origin and

insertion, and attaching them to the animation skeleton. The shape of the muscle is
controlled by the parameters of the profile function 𝑅.

The computation of the value of the scalar field 𝑓𝑀 at any given point q ∈ ℝ3 is broken
down in the following steps:

71

Chapter 4 Implicit muscle models

p𝑖

m0

m1

q

𝒞

⃗⃗⃗⃗⃗⃗n⃗m0

⃗⃗⃗⃗⃗⃗n⃗m1

𝑓𝑀 = 0

𝜃(q)
qcross-sectional view:

⃗⃗⃗⃗⃗⃗n⃗𝑖
𝒞(𝑠(q))

Figure 4.5: Schematic view of muscle primitive with notations.

• construction of the polyline 𝒞,

• projection of q on 𝒞, yielding the projection point h = proj(q) with its curve
coordinate 𝑠,

• evaluation of the normal on the axis at 𝑠 and the angle 𝜃 within the normal plane,

• evaluation of the sweeping profile function 𝑅(𝑠, 𝜃).

The value of the field at q is then given by

𝑓𝑀(q) = ∥⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗qh∥ − 𝑅(𝑠, 𝜃) .

4.2.1 Construction of the central axis

Themuscle is defined by its two endpointsm0 andm1, each attached to an animation bone:
they move kinematically during the animation. The segment [m0m1] is divided into 𝑁𝑀

parts with intermediate control points p𝑖. The resulting polyline 𝒞 is parametrized by
𝑠 ∈ [0, 1], and we note 𝑠(q) the curvilinear parameter of the projection h of q on 𝒞. While
the control points p𝑖 start on the straight line between the end points, they are allowed to
move during the animation, as described in Chapter 5.

In order to define the polar profile along the central axis, the polyline is oriented at each
endpoint by given normal vectors ⃗⃗⃗⃗⃗⃗n⃗m0

and ⃗⃗⃗⃗⃗⃗n⃗m1
. From these two endpoint normals, we

define a normal vector at each point of 𝒞 as follows. We associate to each control point
of the polyline p𝑖 a normal vector ⃗⃗⃗⃗⃗⃗n⃗𝑖. Firstly, we interpolate the end points normal by
spherical linear interpolation at each intermediate point p𝑖. In order to account for the
local deformation of the polyline, these interpolated vectors are projected on the plane
defined by p𝑖−1, p𝑖 and p𝑖+1 when the points are not aligned. If the three points are
aligned, we interpolate the normals of the two closest points for which they are defined.

72

4.2 Muscle model

Figure 4.6: Discontinuities of the orthogonal projection. Left: a muscle profile on an
undeformed axis. Right: Surface discontinuities appear after the deformation of the axis
due to the orthogonal projection.

Secondly, the polyline normal at 𝑠(q) is then computed by spherical linear interpolation
of the control points normals ⃗⃗⃗⃗⃗⃗n⃗𝑖, ⃗⃗⃗⃗⃗⃗n⃗𝑖+1 of the polyline segment it belongs to.

4.2.2 Projection on the axis

In the evaluation of the function, the projection operation is crucial to the continuity of
the implicit surface. Projecting the query point orthogonally on the closest segment yields
discontinuities when the polyline deforms, as is illustrated by Figure 4.6. Discontinuities
appear in the inner part of the dihedral angles of two consecutive segments, where the
discrepancy in distance caused by the variation of the profile’s radius leads to a sudden
jump. This is especially prominent if there is a local twist defined on the segment, as the
orientation of the polar curve, which depends on the normal, will not vary continuously.
On the other hand, the outer part of the dihedral angles always projects to a spherical
wedge, maintaining a continuous surface. This issue, which arises from the angles of the
polyline, is similar to the problem of interpolating a smooth normal on a polygon mesh
[KVS99; Pan+13].
We solve this problem by detecting when the point is in the inside part of an angle,

and reparametrizing the projection in this case. We start by computing the closest point
h𝑖 from q to each segment [p𝑖p𝑖+1]. Standard orthogonal projection would then return
the nearest point on the polyline , i.e. the point which minimizes ∥⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗qhi∥, creating the
discontinuities mentioned above. In our case, we detect cases when the point is in the
inner part of the dihedra between two successive segment by examining if the projected
h𝑖 point lies on the interior of the segment or on its extremities. The re-projection is applied
when the query point’s projection on two consecutive segments is an interior point, as
shown in Figure 4.7.
If the point is indeed in the problematic area, we reparametrize the projection point

using the cotangent of the angles 𝜆𝑖 and 𝜆𝑖+1 formed between the point and the two
segments (as depicted in Figure 4.8). This process is summarized in Algorithm 4.1. The

73

Chapter 4 Implicit muscle models

h0
q

h1

h2

h3

h4

h0

q

h1

h2

h3

h4

Figure 4.7: Projection on a polyline. The query point q is projected on each segment of
the polyline. Each point h𝑖 is the nearest point from q on segment 𝑖. Top figure: When
two consecutive nearest points h1 and h2 belong to the interior of their segment, the query
point is in the inner part of the dihedra (red area). Bottom figure: when the query point
is in the outer part of an angle, at most one of the nearest point will not be an extremity of
its segment.

p𝑖

p𝑖+1

p𝑖+2

h𝑖

h𝑖+1
𝜆𝑖+1𝜆𝑖

q

Figure 4.8: Reparametrization of inner angle. The projection ofq is computed byweighting
the curvilinear coordinate of the projected points on each segment h𝑖 and h𝑖+1 by the
cotangent of the associated angles 𝜆𝑖 and 𝜆𝑖+1.

74

4.2 Muscle model

Algorithm 4.1 Re-parametrization of the polyline projection
input: A polyline 𝒞 defined by its control points p𝑖 and a query point q
output: A projected point h on 𝒞 and the corresponding parameter 𝑠(q)
for all segments [p𝑖,p𝑖+1] of 𝒞 do

compute h𝑖, the nearest point from q to the segment and 𝑠𝑖 its parameter
end for
Let h∗ be the nearest point from q among all h𝑖, and 𝑠∗ its parameter.

// Check if the point projects on the interior of two consecutive segments

if ∃ 𝑖 such as ((h∗ = h𝑖 or h∗ = h𝑖+1) and (none of h𝑖, h𝑖+1 belongs to {p0, …p𝑁𝑀
}))

then
𝑠(q) = 𝑠𝑖 cot𝜆𝑖+𝑠𝑖+1 cot𝜆𝑖+1

cot𝜆𝑖+cot𝜆𝑖+1
else

𝑠(q) = 𝑠∗

end if
return h = 𝒞(𝑠(q))

Orthogonal projection Our projection operator

Figure 4.9: Comparison between standard point-to-segment orthogonal projection, and
ours. Colors are computed from the curvilinear coordinates 𝑠(q). Note the discontinuities
appearing when using standard orthogonal projection are avoided with our operator.

projection algorithm guarantees a smooth transition of the projection instead of a jump
from the area of influence of one segment to the next. The result of this reprojection is
shown in Figure 4.9.

4.2.3 Function evaluation

The extrusion surface is defined by sweeping a polar curve over the central axis 𝒞. To
describe the shape we specify a radial function 𝑅(q) which depends on:

• The curvilinear parameter 𝑠(q),

• The angle 𝜃(q) between the polyline normal at 𝑠(q) and the vector ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗qh.

75

Chapter 4 Implicit muscle models

We specify 𝑅 as a separable function in each parameter:

𝑅(q) = 𝑤Φ(𝑠(q))𝑟(𝜃(q)).

This definition distinguishes between the shape of cross-section of the muscle, defined by
𝑟(𝜃), and the evolution of its width along its axis, specified with Φ(𝑠). The separability is
also useful to simplify the evaluation of the volume of themuscle to ensure its conservation,
as will be shown in the next section.

4.3 Shape parameters and volume preservation

The model presented above is defined by several parameters which control the shape of
the muscle:

• The central polyline 𝒞,

• The width scale factor 𝑤,

• The profile function Φ,

• The cross-section function 𝑟.

These parameters evolve during the animation as the result of the motion of the character
or as prescribed by an animator. We first show how they must be constrained in order to
model volume preservation. We then define functions which respect these constraints
and show how to use them to model the two deformation modes of the muscle.

4.3.1 Evaluation of volume

When 𝒞 is a straight line, we can evaluate the volume of the muscle in cylindrical coordi-
nates (𝜌, 𝜃, 𝑠) as

𝑉 = ∭d𝜌 𝜌d𝜃 𝑙d𝑠 ,

where 𝑙 is the total length of the polyline, and 𝜌 is the radial integration variable (𝜌 ∈
[0, 𝑅(𝑠, 𝜃)]). This can be further developed by integrating successively each variable:

𝑉 = ∫
1

𝑠=0
∫

2𝜋

𝜃=0
∫

𝑅(𝑠,𝜃)

𝜌=0
𝜌d𝜌 d𝜃 𝑙d𝑠 .

Integrating in 𝜌 yields:

𝑉 = 𝑙 ∫
1

𝑠=0
∫

2𝜋

𝜃=0

(𝑅(𝑠, 𝜃))2

2
d𝜃d𝑠 .

76

4.3 Shape parameters and volume preservation

(a) At rest (b) Contracted (c) Contracted and activated

Figure 4.10: Effect of muscle contraction on the muscle shape. Figure (a): rest shape of the
muscle. Figure (b): shape of the contracted muscle. The shortening of the axis caused the
width of the muscle to increase to preserve volume. Figure (c): shape of the contracted
muscle at full activation.

Using the separability of 𝑅:

𝑉 = 𝑤2𝑙 ∫
1

𝑠=0
(Φ(𝑠))2 d𝑠 ∫

2𝜋

𝜃=0

(𝑟(𝜃))2

2
d𝜃 .

We thus require that the profile function Φ and the cross-section function 𝑟 each satisfy:

∫
1

𝑠=0
(Φ(𝑠))2 d𝑠 = constant , (4.1)

∫
2𝜋

𝜃=0

(𝑟(𝜃))2

2
d𝜃 = constant. (4.2)

This constant can be arbitrarily chosen by scaling the functions with a multiplicative factor,
but we set it to 1 to further simplify the calculus.

Under these conditions, the muscle’s volume can be written as

𝑉 = 𝜋𝑤2𝑙 . (4.3)

A detailed derivation is exposed in Appendix A.2. As stated in Section 4.2.1, during the
animation, the muscle endpoints will move with their respective animation bones. This
may cause the axis to shorten or lengthen, 𝑙 will change to a new value 𝑙′. Equation (4.3)
shows that to keep the volume constant, 𝑤 must be changed to a new value 𝑤′ such that

𝑤′ = 𝑤√ 𝑙
𝑙′

.

77

Chapter 4 Implicit muscle models

This rule causes the muscle to inflate when it contracts and shrink when it is stretched
while preserving its volume, thus representing isotonic contraction, as can be seen in
Figure 4.10.

4.3.2 Shape profile and activation

The profile function Φ must be able to represent various tapered shapes to model the
different muscles of the human body. Additionally, it must be capable of interpolating
smoothly between the rest shape and the activated shape of the muscle during isometric
deformations. To this effect, we introduce a definition of Φ inspired by the beta probability
distribution:

Φ(𝑠) = 𝜙(𝛼, 𝛽; 𝑠),

where 𝛼 and 𝛽 are scalar parameters controlling the shape of the profile.
As per Equation (4.1), the conservation of volume is guaranteed only if the integral of

the square of Φ is always constant, regardless of 𝛼 and 𝛽. We thus define 𝜙 as a function
of unit norm in the ℒ2 space of square-integrable functions:

𝜙(𝛼, 𝛽, 𝑠) =
𝜙0(𝛼, 𝛽; 𝑠)

‖𝜙0(𝛼, 𝛽; 𝑠)‖2
,

where 𝜙0 is defined for 𝑠 ∈ [0, 1] as:

𝜙0(𝛼, 𝛽; 𝑠) = 𝑠𝛼−1(1 − 𝑠)𝛽−1.

As such 𝜙(𝛼, 𝛽; 𝑠) can be explicitly written as

𝜙(𝛼, 𝛽; 𝑠) = 𝑠𝛼−1(1 − 𝑠)𝛽−1

√∫1
0 𝑦2(𝛼−1)(1 − 𝑦)2(𝛽−1)d𝑦

. (4.4)

In principle, 𝛼 and 𝛽 can be any positive numbers. For muscle profiles we consider only
integer values for efficiency of evaluation. We additionally impose 𝛼 > 1 and 𝛽 > 1 to yield
a function where 𝜙(0) = 𝜙(1) = 0, and 𝛼 ≤ 9 and 𝛽 ≤ 9. Larger values leading first to very
sharp profiles that do not correspond to realistic muscle shapes, and second, to numerical
precision issues due to the high values of both the numerator and the denominator. The
denominator of Equation (4.4) is in fact independent of 𝑠 and can be pre-computed for all
allowed values of 𝛼 and 𝛽 using the Euler beta function [AR10].

The ratio 𝛼/𝛽 controls the asymmetry of the shape (with the distribution being symmet-
ric for 𝛼 = 𝛽) while the individual values of 𝛼 and 𝛽 control the sharpness of the function’s
rise on each side, as illustrated by Figure 4.11.

78

4.3 Shape parameters and volume preservation

2
1
0

𝛽=2 𝛽=3 𝛽=4 𝛽=5 𝛽=6 𝛽=7 𝛽=8 𝛽=9
𝛼=

2
𝛼=

3
𝛼=

4
𝛼=

6
𝛼=

6
𝛼=

7
𝛼=

8
𝛼=

9

2
1
0
2
1
0
2
1
0
2
1
0
2
1
0
2
1
0
2
1
0

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.51 1 1 1 1 1 1 10 0 0 0 0 0 0 0

Figure 4.11: Profiles of the 𝜙 function for values of 𝛼 and 𝛽.

2

1

0

𝑎=1𝑎=0 𝑎=0.2 𝑎=0.4 𝑎=0.6 𝑎=0.8

0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1

Figure 4.12: Profile function interpolation between 𝛼0 = 𝛽0 = 3 and (𝛼1, 𝛽1) = (4, 7).

To account for isometric deformation, our model must represent the muscle in its
rest shape and its activated shape, and to interpolate smoothly from one to the other.
This is represented by picking two pairs of parameters (𝛼0, 𝛽0) and (𝛼1, 𝛽1) representing
respectively the rest shape and activated shape.

To interpolate between these two shapes while preserving volume, it is necessary to
ensure that all interpolated functions also verify Equation (4.1) by ensuring their square
integrate to 1. It can also be seen as spherical interpolation along the unit sphere of ℒ2.

Let 𝑎 be the interpolation parameter between 𝜙(𝛼0, 𝛽0; 𝑠) and 𝜙(𝛼0, 𝛽0; 𝑠). The rest shape
corresponds to 𝑎 = 0 and full activation to 𝑎 = 1. The interpolated function is defined as

Φ𝑎(𝑠) =
(1 − 𝑎)𝜙(𝛼0, 𝛽0, 𝑠) + 𝑎𝜙(𝛼1, 𝛽1, 𝑠)

√𝐹(𝑎)
,

79

Chapter 4 Implicit muscle models

𝑒 = 0 𝑒 = 0.5 𝑒 = 0.7 𝑒 = 0.9

Figure 4.13: Ellipses of constant area and various eccentricities.

where
𝐹(𝑎) = ∫

1

0
((1 − 𝑎)𝜙(𝛼0, 𝛽0; 𝑠) + 𝑎𝜙(𝛼1, 𝛽1; 𝑠))2 d𝑠

is a normalization term. While the value of 𝐹 might appear to be expensive to compute
for each 𝑎, it can be formulated as

𝐹(𝑎) = (1 − 𝑎)2 + 𝑎2 + 2𝑎(1 − 𝑎) 𝐾(𝛼0, 𝛼1, 𝛽0, 𝛽1) ,

where 𝐾 is a constant term which can be expressed in terms of the Euler beta function 𝐵

𝐾(𝛼0, 𝛼1, 𝛽0, 𝛽1) =
𝐵(𝛼0 + 𝛼1 − 1, 𝛽0 + 𝛽1 − 1)

√𝐵(2𝛼0 − 1, 2𝛽0 − 1)𝐵(2𝛼1 − 1, 2𝛽1 − 1)
,

as shown in Appendix A.3. In practice, 𝐾 can be tabulated prior to the execution, resulting
in fast runtime evaluations. Figure 4.12 shows an example family of functions at various
levels of interpolation 𝑎.

4.3.3 Cross-section

To model the cross section of muscles, we set 𝑟(𝜃) to be an ellipse defined by semi-length
axis 𝑢 and 𝑣:

𝑟(𝜃) = 𝑢𝑣
√𝑢2 cos2 𝜃 + 𝑣2 sin2 𝜃

.

The aspect ratio of the ellipse is defined by one parameter, the eccentricity, denoted 𝑒 ∈ [0, 1[.
Figure 4.13 shows the effect of eccentricity on the shape of the ellipse. An eccentricity of
𝑒 = 0 defines a circle, and eccentricities closer to one define wider and flatter ellipses. The
semi-axis lengths 𝑢 and 𝑣 are computed directly from the eccentricity 𝑒:

𝑢 =
4√(1 − 𝑒2) , 𝑣 = 1

𝑢
.

80

4.3 Shape parameters and volume preservation

(a) Calf muscles (b) Dorsals

Figure 4.14: Figure (a): Calf muscles, one in its rest state (𝛼0 = 3, 𝛽0 = 3) and one
in its activated state. (𝛼1 = 4, 𝛽1 = 8) Figure (b): Dorsals muscles in their rest state
(𝛼0 = 2, 𝛽0 = 3).

Thus, we ensure that 𝑢𝑣 = 1, that is to say, the area of the ellipse is equal to that of a circle
of radius 1. This property guarantees that ∫ 𝑟2d𝜃 stays constant, so that the volume does
not change as 𝑒 varies in time, because it satisfies Equation (4.2).

4.3.4 Summary

The muscle defined in the previous section can be completely described by the following
parameters:

• The shape parameters of the muscle in rest state (𝛼0, 𝛽0) and in activated state
(𝛼1, 𝛽1),

• The initial position of the endpointsm0 andm1 and the animation bone to which
they are attached,

• The normals ⃗⃗⃗⃗⃗⃗n⃗m0
and ⃗⃗⃗⃗⃗⃗n⃗m1

orienting the muscle at each extremity,

• The width scale factor 𝑤,

• The eccentricity of the cross-section 𝑒,

• The activation level 𝑎.

The shape parameters are picked beforehand to model the desired shapes of muscles.
For example, the biceps of Figure 4.10 use 𝛼0 = 𝛽0 = 3; yielding a smooth symmetric

81

Chapter 4 Implicit muscle models

Figure 4.15: Amplification of muscle width. Left : normal biceps curl. Right : muscle
width increased by 30 %.

shape in its rest state and 𝛼1 = 4, 𝛽1 = 7 for a significant bulge in its activated state. The
calf muscles of Figure 4.14(a) uses a slightly sharper activated state (𝛼1 = 4, 𝛽1 = 8). We
also model convergent muscles such as the dorsals or pectorals with highly asymmetrical
shapes, as shown in Figure 4.14(b), also using a high eccentricity 𝑒 = 0.96 to generate flat
muscles.
The endpoints positions and normals are set on the reference shape of the mesh and

move kinematically with the skeleton, their motion being prescribed by the animation.
In contrast, the activation and eccentricity can change freely during the motion, as our
model ensures that the volume of the muscle is preserved regardless of their value. We
found useful to keyframe them with the animation key poses to simulate the activation of
muscles during the animations used in our experiments. It is also possible to override the
volume preservation by setting the width parameter, amplifying the shape of the muscle
bulge, as shown in Figure 4.15.

4.4 Discussions

4.4.1 Alternatives to the beta function

The beta function profile is carefully chosen to satisfy both the need for a variety of shapes
to represent different muscles and efficiency of evaluation. The muscle field function
will be evaluated several times per vertex, as part of the global skin representation used
by the projection algorithm of Implicit Skinning. Using trigonometric or exponential
functions, which are slower than polynomials, can dramatically decrease the Implicit

82

4.4 Discussions

Function Speed

Beta (2,2,4,7) 2522
Beta (8,8,9,9) 1337

Sine 895
Bump 1353
Piecewise cubic 3960

Table 4.1: Average number of evaluations per microsecond of several muscle profile
functions (higher is faster).

Skinning performance. On the other hand, simplistic functions cannot account for the
variety of shapes required for all muscles.

Several other function models were considered, and ultimately discarded for these
reasons. For example, Lee and Ashraf [LA07] uses a sine function profile:

Φsin(𝑠) = sin(𝜋𝑠).

Another similar function is the exponential bump function:

Φbump(𝑠) = exp(−1
4𝑠(1 − 𝑠)

) .

These functions yield a symmetrical shape for the muscle (as Φ(𝑠) = Φ(1 − 𝑠)), however,
to represent activated muscles or asymmetrical muscles, the model needs to be able to
produce skewed shapes, while maintaining constant volume, i.e. ∫ Φ2d𝑠 = 1. When
introducing assymetry in the profile either by piecewise definition or non-uniform scaling
or the parameter space, the conservation of volume becomes either impossible to formulate
in closed-form, or the scaling conditions become rapidly too expensive to evaluate, as
opposed to the polynomial 𝐹(𝑎) in the derivation of the beta function.

Instead of trying to introduce skewness post-hoc, it is better to design a family of
functions with a skewness parameter whose square integral is constant. An example
would be a piecewise cubic spline designed with constraints on the end points (𝑠 = 0 and
𝑠 = 1) and the position of the maximum at 𝑠 = 𝑎, as shown on Figure 4.16:

Φcubic(0) = 0 Φ′
cubic(0) = 0

Φcubic(1) = 0 Φ′
cubic(1) = 0

Φcubic(𝑎) = 1 Φ′
cubic(𝑎) = 0 .

83

Chapter 4 Implicit muscle models

0 1 𝑠

0

1

𝛼

Φ(𝑠)

Figure 4.16: Piecewise cubic muscle profile.

These constraints define a family of piecewise cubic polynomial parametrized by 𝑎. In
addition, the square integral of any such function Φcubic does not depend on 𝑎:

∫
1

0
(Φcubic(𝑠))2 d𝑠 = 13

35
.

The derivation of this property is found in Appendix A.4. As can be seen in Table 4.1,
this function is very fast to evaluate. However this profile function is limited in the types
of shapes that it can represent, with only one degree of freedom to represent both the
extremal shapes (rest shape and activated) and their interpolation.

This led to the choice of the beta function family, as its performance is close to the cubic
profile but offers a much wider shape choice.

4.4.2 Sketching profile

Our criteria for the choice of Φ are dictated by the application in interactive skinning,
hence the need for a trade-off between the variety of shapes and evaluation speed.
Another type of possible input is sketching, which would be artist-friendly and could

enable them to draw muscles fitting a character to the desired artistic effect, in a manner
similar to écorchés in traditional media drawing. In our model, this can be seen as an
optimization problem where one fits a muscle shape to a given sketch, such as the ones
depicted in Figure 4.17, and tries to position it within the existing 3D model. A related
approach is themethod of Turchet et al. [TFS17]which growsmuscles for FEM simulation
from painted patches on the mesh.
Given the closed-formula of the profile function, it is possible to optimize the shape

parameters directly by minimizing the absolute error between the projection of the profile
on the sketching plane and the sketch itself. Our proposed model of radial profile is
differentiable in all its continuous parameters, making it possible to evaluate the gradient

84

4.4 Discussions

Figure 4.17: Example sketches of muscle profile.

Figure 4.18: Fitting the beta function profile on sketches. Left: the optimization finds
a good solution for the muscle endpoints and profile. Right: while the endpoints are
correctly placed, the best fitting profile still fails to capture the sketch faithfully.

of Φ relatively to m0,m1, 𝑤 and 𝑎. The discrete parameters 𝛼 and 𝛽, however, must be
optimized separately.
Our implementation extracts the shape from a 2D sketch (stored in a 100 × 100 pixels

black-and-white image). The inital step is to determine themuscle axis as the first principal
direction in the pixel space, locating the muscle endpoints by intersecting the axis with
the oriented bounding box of the muscles as a starting point. Given that there are only
81 possible pairs of (𝛼, 𝛽) parameters, we run a continuous optimization of all the other
parameters for all possible pairs, and select the best fit at the end of the process.

While the definition of the beta profile in terms of discrete parameters was an advantage
to speed up its evaluation, it is a drawback to fit with a sketch, as it complicates the
optimization process. Moreover, even the optimal profile fails to fit with some input
sketches, as shown on Figure 4.18. To fit this profile, we would need to allow 𝛼 and 𝛽 to
vary continuously, or to let them increase over 9, which in both cases result in numerical
evaluation problems.

85

Chapter 4 Implicit muscle models

Figure 4.19: Sampling values on the sketch. Left: we sample alternatively each side of the
axis to find the width given by the input sketch. Right: the DCT profile obtained with the
samples.

For this use case, better results are obtained by sampling the muscle width along the
axis, taking 𝑁samples values 𝑥𝑘 on each side of the axis, as shown on Figure 4.19. We
then compute the Discrete Sine Transform (DST) as the profile function to create an
interpolating function:

ΦDST(𝑠) =
𝑁samples

∑
𝑖=1

𝑐𝑖 sin (𝑖𝜋𝑠) ,

where the coefficients 𝑐𝑖 are computed from the sample values 𝑥𝑘:

𝑐𝑖 =
𝑁samples

∑
𝑘=0

𝑥𝑘 sin⎛⎜
⎝

𝑘𝑖𝜋
𝑁samples + 1

⎞⎟
⎠

.

As seen on Figure 4.19, the full DCT overfits the sampled data. It can be simplified by
applying a low-pass filter, keeping only the 𝑁𝑐 first values of 𝑐𝑖 and discarding the higher
harmonics, i.e:

ΦDST(𝑠) =
𝑁𝑐

∑
𝑖=1

𝑐𝑖 sin (𝑖𝜋𝑠) ,

with 𝑁𝑐 < 𝑁samples. The result of this process is depicted on Figure 4.20, with 𝑁samples =
200 and 𝑁𝑐 = 10.

While the DST profile function is slower to evaluate than the other profile functions
presented in this section, they are better suited for applications deriving the shape from
user input, such as sketching. They still offer a closed-formula evaluation for their volume,
as:

∫
1

𝑠=0
ΦDST(𝑠)d𝑠 = 1

𝑁2
𝑐

𝑁𝑐

∑
𝑖=1

𝑐2
𝑖 ,

86

4.4 Discussions

Figure 4.20: Muscle profiles of sketches fitted with DST with 10 harmonics, from 200
samples.

biceps
triceps
radialis 1
radialis 2

0

−1

−2

𝑡
relative volume variation in percentage

Figure 4.21: Relative variation (in %) of muscle volume in the biceps curl scene.

defining a unit ℒ2 norm DST profile function with the same approach as with the beta
functions. This illustrates the flexibility of our model which is independent on the choice
of profile function, given that it satisfies Equation (4.1) to maintain constant volume.
The specific profile function can thus be designed to answer the specific criteria of the
application or use case.

4.4.3 Volume conservation and non-fusiform muscles

The derivation of Section 4.3 holds for a straight central axis 𝒞, but when the axis deforms,
the volume might slightly change even if the volume constraints are satisfied. Due to
the discontinuous nature of the polyline and the addition of the reprojection operator, a
closed formula for the volume becomes inaccessible. We nonetheless evaluate the volume
numerically, using the volume of the representative mesh as a proxy for the implicit

87

Chapter 4 Implicit muscle models

Figure 4.22: Pectoral (green) and shoulder (blue) muscles represented by sets of fusiform
fibers. In this case, shoulder muscles collide against each other, while the pectorals are
allowed to overlap to better approximate the desired shape.

surface volume. We record only a minimal variation of the volume, at most 2%, as shown
in Figure 4.21 for the biceps curl scene.

The model presented in this chapter produces fusiform muscles such as biceps and tri-
ceps of the upper limb or quadriceps and calf muscles from the lower limb. Tomodel more
complex muscles such as the pectoral, we follow a method similar to the one proposed
by Scheepers et al. [Sch+97] and Murai et al. [Mur+16]. We represent these muscles by
instancing several fusiform shapes, each integrating a set of muscle fibers. Figure 4.22
shows an example of pectoral and shoulder muscles. Depending on the desired defor-
mation effects, muscle collisions can be ignored (Figure 4.22 between green muscles) or
enabled as explained in Section 5.3 (Figure 4.22 between blue muscles).

While we were able to capture the shape of fusiform muscles in the whole body, the
motion of these complex convergent muscles (such as the pectoral) or multipennate
muscles (e.g. the deltoid) is imperfectly represented with such a model. In particular, it
becomes difficult to predict the type of deformations created by these muscles on the skin
surface. The placement of these muscles and the setup of their parameters requires much
time to achieve the correct looking skin deformations.

Increasing the number of fibers can lead to better results, but also increases the simula-
tion time, and the number of parameters to set, slowing down the rigging process and the
animation frame rate. To help with this setup, we define origin and insertion curves and
sample the parameters of the muscles along the curve for the individual fibers instead of
setting each independently. In addition, to provide a muscle representation that creates
smoother shapes for the whole muscle, it could be possible to use blending operators
(Section 2.3) to assemble the fusoid fibers in a coherent muscle shape before using it as

88

4.4 Discussions

a deformer, but keeping the volume of the resulting shape constant requires dedicated
operators that preserve volume of the resulting surface.

89

5
Dynamic muscle deformations

It’s simple: if it jiggles, it’s fat
— Arnold Schwarzenegger, Pumping Iron

In the previous chapter, we introduced a muscle model which was kinematically driven
by the animation skeleton and deforms at constant volume. We now extend this model to
deform the muscles by reacting dynamically to the animation motion. More specifically,
we let the muscle axis control points p𝑖 be driven by a physical simulation, which we
present in Section 5.1. This physics-based approach enables us to model dynamic effects
such as inertia or jiggling, as described in Section 5.2. We then show how to implement
collision detection within the simulation to resolve collision between the muscle and other
anatomic elements: bones, skin and other muscles (Section 5.3). We finish by a discussion
on the consequences of using such an approximate method, and how some issues can be
mitigated by recent work.

5.1 Position Based Dynamics

The sweep surface presented in the previous chapter is defined in terms of the position of
the control points p𝑖 defining its central polyline 𝒞. While these points could be animated
directly by specifying their trajectory, we rather use a physics simulation to generate
complex motions such as inertial effects and jiggling.
Standard physical simulation is generally force-based and explicitly solve Newton’s

laws of motion by computing the force and integrating twice to update the position of
objects. Force-based methods are physically realistic and simulate a variety of dynamical
systems, but suffer from instability depending on the chosen integration method and
time step. In our case, we seek to compute the position of the control points, modelled as

91

Chapter 5 Dynamic muscle deformations

particles, to simulate the elasticity between the particles of a given muscle axis, and to
avoid collisions between anatomy primitives.

Introduced by Müller et al. [Mül+07], Position Based Dynamics (PBD) is a real-time
approximate method for physical simulation modelling dynamic particles tied by con-
straints. This section describes briefly the concepts underlying a PBD simulation. Further
details can be found in the surveys by Bender et al. [Ben+14; BMM15].

PBD models a physical system by simulating particles with masses. Contrarily to
standard physical simulation methods, the external and internal forces are not modeled
directly, but represented as constraint functions𝐶(p) = 0 (equality constraint) or𝐶(p) ≥ 0
(inequality constraint) depending only on the position of the particles p. Time-integration
updates the position and velocities of the particles by taking into account only inertial
effects, using a semi-implicit Euler scheme. A constraint solver then iteratively attempts
to satisfy all constraints, or at least to minimize the total deviation from the constraints.
Non-linear constraints are linearised by a first-order approximation:

𝐶(p + Δp) ≈ 𝐶(p) + ∇p𝐶(p) ⋅ Δp.

The solver then finds the correction Δp to apply to the positions which minimizes the
constraint in the direction of the constraint gradient ∇p𝐶(p). The proposed solver works
by solving iteratively each constraint using a Gauss-Seidel approach.

This physics simulation method offers many advantages over force-based methods.
It is unconditionally stable, meaning that the energy of the system is never increasing
regardless of the simulation conditions. The constraint functions are generic, their only
requirement being the definition of function 𝐶 and its gradient. This simplifies the imple-
mentation of many phenomena which were otherwise modelled separately within the
same framework, such as rigid bodies [DCB14], fluid simulations [MM13] or deformable
bodies and cloth [Mac+14]. While this method has no ambition to simulate such dynamic
phenomena realistically, it produces a visually plausible approximation.

To imbue the muscles with dynamic behaviour, we use PBD to control the position of
the control points p𝑖 of the central axis 𝒞. We leverage the generality of PBD constraints to
avoid collision between the skin, bones and muscles which are all represented by implicit
surfaces.

92

5.2 Elasticity and inertial effects

5.2 Elasticity and inertial effects

5.2.1 Particles setup

The control points p𝑖 of each muscle axis are represented by particles of a Position Based
Dynamics simulation. They behave as point masses obeying the differential equations of
motion. The first step of the simulation setup is thus to set the mass of each particle.

As discussed in the previous chapter, the endpoints move with their respective skeleton
bones. From the point of view of the physical simulation, these points are set as kinematic

particles with an infinite mass (so that other particles and constraints cannot move it).
Their motion is set at the beginning of each physics step by setting their velocity to follow
their animation bone.

The total mass 𝑚 of the muscle is distributed among the other particles p𝑖 to give each
particle a mass 𝑚𝑖. First, the muscle mass 𝑚 is computed from its total volume 𝑉:

𝑚 = 𝑉𝜌𝑀.

We use an average density of muscle tissue of 𝜌𝑀 = 1.06 g.cm−3 [Urb+01], while the
value of 𝑉 is directly obtained from Equation (4.3). Each intermediate particle p𝑖 is given
a mass 𝑚𝑖 in proportion to the width of the muscle at the initial position of the particle:

𝑚𝑖 =
Φ(𝑠(p𝑖))

∑𝑗 Φ(𝑠(p𝑗))
𝑚 .

To represent the fact that the muscle evolves along soft tissues which restain its move-
ment, we introduce a global damping coefficient 𝜇 on the velocities at each integration
step of PBD. The semi-implicit Euler integration step is thus written, for each particle:

v⃗(𝑡𝑛+1) = 𝜇v⃗(𝑡𝑛) + a⃗(𝑡𝑛)Δ𝑡

p(𝑡𝑛+1) = p(𝑡𝑛) + v⃗(𝑡𝑛+1)Δ𝑡 ,

where v⃗(𝑡𝑛) is the velocity of a particle, p(𝑡𝑛) its position, and a⃗(𝑡𝑛) its acceleration at
the time step 𝑡𝑛. This damping coefficient (set to 𝜇 = 0.9 in our experiments) prevents
the jiggling motions to generate long-term oscillations in the muscles by dissipating their
velocity quickly.

93

Chapter 5 Dynamic muscle deformations

tendon tendon

muscle body

Figure 5.1: Position of tendons in the dynamic muscle model. The tendons particles have
stiffer links, while the muscle body particles have looser distance constraint stiffness but
smaller rest lengths.

5.2.2 Elastic distance constraints

To model the tension and elasticity of the muscle, we introduce elastic distance con-

straints [Jak01; Mül+07] between two successive particles p𝑖 and p𝑖+1:

𝐶(p𝑖,p𝑖+1) = ∥⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗pipi+1∥ − 𝑑0,

where 𝑑0 is the rest distance. This constraint’s strength is controlled by a stiffness parameter 𝑘,
which is a multiplicative factor applied to the computed position update Δp. It is used to
increase the time it takes for the constraint to bring back the particles to their rest length,
simulating a looser tie between the two particles, thus increasing the effect of inertia.
Constraints are set up differently depending on their position in the muscle. On each
extremity of the muscle axis, the first and last 10% of its length is considered as tendon, as
shown in Figure 5.1. Tendons constraints are stiff (𝑘 ≈ 0.9) and have a rest length 𝑑0 equal
to their initial length, to model their tendency to bend rather than stretch. Constraints
belonging to the middle section are assigned a much smaller rest length (approximately 2
% of their starting length) to represent the tension in the muscle fibers. The stiffness of
muscle body controls the strength of the muscle tone and thus the amount of influence
between inertial effects and muscle tension. In our experiments, a small value of 𝑘 (e.g.
𝑘 ≈ 0.1) generates a muscle following its attachment bones with visible inertia, producing
a noticeable jiggle. Conversely, a high value of the stiffness (𝑘 > 0.7) produces a very
tense muscle which reacts quickly to motion changes. Figure 5.2 shows a comparison of
the same animation played with different stiffness values on the muscles.

Similarly to the shape parameters of the previous chapter, the stiffness of the muscle
body constraints can evolve over time. They can be keyframed by an animator to create
different muscle behaviours depending on the action of the character. For example, in the

94

5.3 Collision resolution

Figure 5.2: Comparison between stiff and loose muscles. Top row: stiff muscles (𝑘 = 0.9).
Bottom row: loose muscles (𝑘 = 0.4).

jump scene, we lower the stiffness of the calf muscles during the landing to emphasise
the jiggling created by the contact of the legs with the ground, giving a more noticeable
visual cue to the muscular reaction.

5.3 Collision resolution

In our body, the shape of muscles is constrained by the presence of rigid bones, other
muscles, soft tissues and skin. To generate more plausible muscle deformation, and to
better capture the effect of volume preservation, it helps to resolve collisions among the
individual organs. The use of scalar fields to define the muscles provides an efficient way
to solve the collision in PBD by defining a collision constraint against an implicit surface.

Definition. Let p𝑖 be a particle, 𝑓 a globally-supported 3D signed distance field and 𝐷𝑖

the collision radius of the particle. The implicit surface constraint which maintains the particle
at a distance 𝐷𝑖 outside of the implicit surface defined by 𝑓 (p) = 0 is:

𝐶(p𝑖) = 𝑓 (p𝑖) − 𝐷𝑖 ≥ 0 .

95

Chapter 5 Dynamic muscle deformations

Muscle elasticity Muscle-Bone Muscle-Muscle Muscle-Skin

Figure 5.3: PBD constraints in the dynamic muscle model used to represent muscle
properties and interactions with surrounding elements.

The constraint gradient is immediately derived:

∇p𝑖
𝐶(p𝑖) = ∇𝑓 (p𝑖) .

The collision radius 𝐷𝑖 effectively treats the particle as a sphere for collision with other
elements. It is by default initialized to the average width of the muscle at the position of
the particle:

𝐷𝑖 = 𝑤Φ(𝑠(p𝑖)).

Because this radius evolves with time (for example, due to activation of the muscle, as
described in Section 4.3.2), it must be updated at each frame. With this constraint, we
can resolve collision between muscles and other anatomic elements represented by scalar
fields, such as bones, skin and other muscles (Figure 5.3).

5.3.1 Muscle-bone and muscle-muscle collision

The muscle axis constraint has a tendency to keep the muscle axis straight. When a limb
such as the arm or the leg bends, this draws the end point of the muscle further inside the
skin. This has the effect of burrowing the muscle under the skin, limiting its influence
despite the bulging caused by the contraction. In the body, muscles are prevented to move
away from the skin surface by the rigid bones. We seek to capture this effect by adding
bones to our model.
To represent anatomically correct bones, we capture their shape from an anatomic

model by using distance fields from bone meshes (as can be seen on the model pictured
in Figures 4.10, 4.21 and 5.2). Each anatomic bone is attached to an animation bone, with

96

5.3 Collision resolution

Figure 5.4: Anatomic bones and animation bones. Left: skin and animation skeleton in
rest state. Center: Anatomic bones are added and tied to the animation skeleton. The
humerus (in red) moves with the arm bone, and the radius and ulna (blue) with the
forearm bone. Left: Anatomic bones move with their skeleton bones.

which it moves rigidly, as shown in Figure 5.4. The distance field computation against a
mesh is expensive: to evaluate the distance from a point to a mesh, one must compute
the distance from the query point to each triangle of the mesh [BA02]. To speed up the
computation, we discretize the distance field and store each value in a grid of the same
size as the HRBF grid of the associated animation bone (as defined in Section 3.1.1).
When anatomic bone shapes are not available, we use a cylinder as a proxy shape.

The cylinder, defined by a constant radius 𝑅cyl around the animation bone, is evaluated
analytically:

𝑓bone(p) = 𝑑(p, [b𝑗,b𝑗+1]) − 𝑅cyl ,

where [b𝑗,b𝑗+1] is the segment defined by the animation joints of the current bone and
the next and 𝑑 is the distance function. Given that muscles often collide on the shaft of the
bones which has a roughly cylindrical shape, the results produced with the proxy shapes
are very close to the ones using an anatomical bone model, as shown in Figure 5.5.
We optionally model collision between muscles with the same constraint. In this case,

each particle of a given muscle will collide against the implicit surface of the other muscles.
This is especially useful to model multipennate muscles such as the deltoid, as seen in
Figure 4.22. In ourmodel, this muscle is represented by several fusiform shapes. If they are
not prevented to collide, the complex motion of the shoulder can draw all fibers together

97

Chapter 5 Dynamic muscle deformations

(a)With anatomical bone. (b)With cylinder proxy.

Figure 5.5: Comparison between anatomical bones and proxy. Figure (a): biceps and
triceps colliding against a distance field from an anatomical bone mesh. Figure (b): biceps
and triceps colliding against a cylinder proxy shape.

on one side of the body, yielding unrealistic behaviour. We keep this feature optional
because the computational cost of muscle-muscle collision grows as the square of the
number of muscles in a given limb, which slows down the physics simulation.

5.3.2 Muscle-skin interaction

To represent the effect of the skin containing the muscles, we add a third field-based
constraint to keep the particles inside the surface of the nearest HRBF 𝑓𝑗 (Section 3.1). In
this case, the constraint is meant to keep the particles inside an implicit surface. This can
be achieved by simply reversing the sign of the constraint function 𝐶. In this case, the
collision radius of the particle is 0: this constraint should not prevent the muscle from
pushing the skin outwards, but the axis must remain inside the initial skin shape.
This effect is especially useful for muscles going across complex joints, such as the

pectoral across the shoulder, since the effect of the muscle axis will otherwise tend to form
a straight line and stick out the body. It also prevents inertial effects from dragging the
particles outside the skin in fast motions such as running or jumping.

5.3.3 Friction

We model the friction in a similar manner to rigid body PBD [DCB14], by adding a
tangential friction term to each particle which collides against a bone or a muscle. If Δp𝑖

is the position correction of the 𝑖th particle computed by the constraint solver, then the

98

5.4 Discussion

Δp𝑖

p𝑖

v⃗𝑖

Δp′𝑖v⃗T
𝑖

Figure 5.6: Friction in collision resolution. Particle p𝑖 is colliding against the grey object.
The constraint correction computed by the solver Δp𝑖 is normal to the surface of the
colliding object. Friction adds a correction term which is proportional to the tangential
velocity v⃗T

𝑖 , the projection of the velocity on the tangent plane.

final position variation Δp′𝑖 is given by:

Δp′𝑖 = Δp′ − 𝜂v⃗T
𝑖 ,

where 𝜂 is a friction coefficient and v⃗T
𝑖 is the tangential velocity of the particle, i.e. the

projection of the particle velocity v⃗𝑖 on the tangent plane of the surface. This plane is
normal to ∇𝐶 and Δp, as the initial correction is colinear to the constraint gradient. This
friction is opposed to the tangential velocity of the particle with relation to the contact
surface, simulating the loss of energy when the two objects interact. These notations are
detailed in Figure 5.6.

5.4 Discussion

5.4.1 Anatomic bones

For most animationmodels, anatomic bones are not available. While our method proposes
to use cylinders in the absence of anatomically correct bone shapes, it is also possible to
import a generic anatomic model of the human body to any humanoid character. This
method, presented by Ali-Hamadi et al. [Ali+13] is known as Anatomy Transfer.
In general, animation bones correspond more or less to an anatomic bone or group of

bones, as shown in Figure 5.4. While this model works for swing around a joint (such
as the elbow or the leg bending), a more complex behaviour is required to model twist
properly, especially for group of bones such as the ulna and radius in the forearm. A

99

Chapter 5 Dynamic muscle deformations

study undertaken by Zhu et al. [ZHK15] shows that it is possible to control anatomic
bones with skeleton bones by using skinning weights to map the animation transforms to
realistic bone twist and swing.

5.4.2 Particles collision shape

As stated above, the particles have a spherical collision shape when they collide against
bones or other muscles. Assuming spheres greatly simplifies the constraint evaluation,
and is a valid approximation when the eccentricity of the muscle cross-section is close
to 0. However, it fails to represent the muscle shape when the eccentricity parameter 𝑒
becomes closer to 1. It is possible to represent ellipsoids with the same excentricity instead
of spheres, but this greatly increases the evaluation cost of constraints, as this requires to
compute the local frame of the particle and the angle, for a minimal effect on the visual
result on the skin.

5.4.3 Stiffness in PBD

A major limitation of Position Based Dynamics is the dependency between the constraint
solver time step, the number of solver iterations and the overall behaviour of the simulation.
Despite the stiffness parameter 𝑘, the solver eventually converges towards an infinitely
stiff simulation as the number of iterations increase. This coupling is problematic when
trying to achieve a specific results with muscles of various stiffnesses, as changing the
solver parameters (e.g. reducing iteration count to speed up the simulation) requires to
adjust all the stiffnesses.
This issue was recently solved by Macklin et al. [MMC16], and the implementation

recently published in the Flex GPU physics engine. The integration of this method in
our implementation could improve the predictability of the results, and exhibit a more
meaningful stiffness parameter.

100

6
Integration with Implicit Skinning

Every program is a part of some other program, and

rarely fits.
—Alan J. Perlis, Epigrams on programming

This chapter discusses the integration of the muscle model within the Implicit Skinning
algorithm. In Section 6.1, we show how the muscles influence the result of skinning by
using implicit composition operators to blend the muscles with the implicit skin represen-
tation defined in Section 3.1. Next, we describe the full pipeline of operations necessary to
add dynamic muscle deformations to Implicit Skinning in Section 6.2. Finally, Section 6.3
presents the results obtained with our method and discusses how the performance of
our implementation scales with the complexity of the model and the parameters of the
method.

6.1 Scalar field composition

As detailed in Section 3.1, the shape of each part of the mesh associated with an animation
bone 𝑗 is captured by the scalar field 𝑓𝑗. All partial skin fields 𝑓𝑗 are combined together
to create the implicit skin representation 𝐹. To apply the deformations of the muscle
shapes into the skin, we must integrate the muscle fields 𝑓𝑀 within the composition tree,
so that their motion is reflected in 𝐹 and eventually, in the skin vertices through the surface
tracking process.
Each muscle in our model is set to affect only one part of the skin, by associating

it with one animation bone 𝑗 and the related mesh part. For example, the biceps and
triceps muscles should deform the skin representing the arm bone, while the brachialis and
brachoradialis must be associated with the forearm. It is crucial to integrate the muscles at
the skin part level, and not later in the implicit composition process, in order to benefit

101

Chapter 6 Integration with Implicit Skinning

contact operator

HRBF

𝑓𝑗

(a) Composition without muscles

contact operator

HRBF

detail operator

clean union

𝑓𝑀

𝑓𝑗

(b) Composition with muscles

Figure 6.1: Integration of muscle field in the composition tree. Both figures detail the field
of a single skin part 𝑓𝑗 (greyed out area). Figure (a): without muscles, the skin part field 𝑓𝑗
is only made of the HRBF field. Figure (b): when muscles are enabled, the muscles field
𝑓𝑀 are blended together with a clean union operator, then blended with the HRBF thanks
to the detail operator. The result of this blend is the skin part field 𝑓𝑗.

from the contact surface generated by the contact operator (Section 3.1.2). When body
parts are in contact, the effect of the muscles must be taken into account before the contact
operator is applied.

We are thus led to replace the HRBF-only representation of body part 𝑗 by defining
a new 𝑓𝑗 blending the HRBF and the muscles primitives associated with this part, as
depicted in Figure 6.1. Note that the animation bone 𝑗 with which we associate the muscle
is not necessarily one of the bones associated with the muscles’ attach points (defined in
Section 4.1). For example, the biceps will influence the skin shape of the arm bone, but its
attach points are moving with the shoulder bone and the forearm bone respectively.

The sweep surface 𝑓𝑀 defined in Chapter 4 is a distance field with global support. To
be able to blend it with the HRBF scalar fields, it is necessary to adopt a homogeneous
representation [BWG04]. The first step is thus to convert this field into a compact support
function (see Section 2.2.2). We use the 𝒞2 fall-of filter function 𝐾(𝑑) defined in Equa-
tion (3.1), similarly to how the HRBF fields are converted from global support to compact
support. The compact muscle function is thus defined as 𝐾(𝑓𝑀(p)). The fall-of function’s
radius 𝑅 is chosen to be equal to the maximal width radius of the muscle:

𝑅 = max
𝑠∈[0,1]

(𝑤𝑢Φ(𝑠)).

102

6.1 Scalar field composition

Figure 6.2: Blending muscle and bones with a HRBF. Left: muscle and bones are added to
the skin representation of the arm. Center: using a clean union operator yields an irregular
field, as shown on the level curves. Right: using Canezin et al.’s [CGB13] operator avoids
these problems and creates a regular field. See also the enlargement in Figure 6.3.

We then assemble all muscular fields associated with a given animation bone to form
the anatomic field. We stressed in Section 3.2 the importance, for the skin field 𝐹 to be free
of gradient discontinuities and critical points (i.e. points where ∇𝐹 = 0) near the skin
surface. The standard union operator on field functions is known to produce such gradient
discontinuities. For this reason, we use the clean union operator defined in Section 2.3.1
which does not produce discontinuities.

The next step is to blend the anatomic field with the HRBF partial skin field. Unfortu-
nately, the muscle field’s gradient is by definition null on the muscle axis. Using a union
or a clean union operator will introduce singular points on the resulting field inside the
skin’s surface, as well as gradient pointing in the wrong direction, as shown in Figures 6.2
and 6.3(b).

This problem of implicit modelling, raised by Canezin et al. [CGB13] happens when
adding small details to comparatively larger objects. The solution is to use Canezin et al.’s
[CGB13] detail operator described in Section 2.3.3 and Figure 2.10. This operator blends only
the outside part of the muscle fields without including the central singular points and the
bone-facing gradients, generating a suitable field for surface tracking, as can be seen in
Figure 6.2 (right) and Figure 6.3(c).

During the animation, we want the skin to capture the underlying muscle’s shape when
it bulges out, but also when it contracts. In our approach, muscles are added to the initial
HRBF skin approximation using the blending operator mentioned above. However, since
the shape of the muscles is often apparent in the reference pose mesh, the HRBF captures
the muscle shape with the rest of the skin, as can be seen in Figure 6.4(a). This means that

103

Chapter 6 Integration with Implicit Skinning

(a) Skin and primitives (b) Union operator field (c) Detail operator field

Figure 6.3: Gradient field of blended muscle field: detail of Figure 6.2 displaying the
gradient field over the level curves. Figure (a): setup with skin and muscle primitives.
Figure (b): with the union operator, the gradient field is influenced by themuscle, yielding
gradients with erroneous directions or length (red arrows) and an area with singular
points (dotted line). Figure (c): the detail operator guarantees a regular gradient field
and removes the singular points near the surface.

if the muscle deforms completely inside the HRBF (for example, when it contracts and
becomes thinner), it will not modify the blended surface’s shape, leaving the resulting
surface of the skin skin, represented by 𝑓𝑗 unchanged (Figure 6.4(b)). In order to correctly
deform the skin represented by this field with visible muscle deformations, we reduce
the HRBF surface along muscles, as shown in Figure 6.4(c). This is done by directly
manipulating the control points of the HRBF to push its surface towards the inside of
the skin around the region of influence of the muscle. As a result, the muscle primitive
stands out, and defines the muscular rest surface. After the blending, the muscle primitive
becomes directly responsible for the deformations of the skin shape in this area, letting
the vertices follow the deformation of the muscle (Figure 6.4(d)).

6.2 Integration in the Implicit Skinning pipeline

From an algorithmic perspective, the operations relative to the muscle model update must
be incorporated in the Implicit Skinning pipeline. The implementation of this pipeline is
illustrated in Figure 6.5.

At each new frame, the animation skeleton is transformed to its new position, and the
relative transforms of each bone are computed. The next step updates the data which
is kinematically bound to the animation bones: the individual HRBF fields, the muscle
endpoints and the fields representing the rigid anatomic bones are all updated after the

104

6.2 Integration in the Implicit Skinning pipeline

(a) Rest state with initial HRBF (b) Bent arm with initial HRBF

(c) Rest state with thinned HRBF (d) Bent arm with thinned HRBF

Figure 6.4: HRBFmodification to integrate muscles. Figure (a): The initial HRBF obtained
by sampling the mesh part (in blue), with a muscle representing the triceps. Figure (b):
When the forearm bends, the triceps gets thinner, but the blending of the two surfaces (in
red) does not change, as the HRBF itself did not move. The effect of the muscle extension
cannot be seen on the skin. Figure (c): In this case the HRBF is thinned to leave the muscle
responsible for the skin shape around its area of influence. Figure (d): When the forearm
bends, the triceps gets thinner. This time, the effect on the skin is visible, as the vertices
will track the muscle’s surface (green arrows).

bone transforms. Keyframed per-muscle shapes parameters, such as the eccentricity 𝑒,
activation 𝑎, stiffness 𝑘 or width scale factor 𝑤 are also updated during this phase.

Next, the PBD solver computes the new positions of the muscle central axis particles
p𝑖. The PBD time step is set to a tenth of the animation frame rate. When the particles
position is computed, the muscles update their sampled normals ⃗⃗⃗⃗⃗⃗n⃗𝑖, as described in
Section 4.2.1, and scales its width according to the new length of its axis, according to the
formula derived in Section 4.3.1. At this point, the muscle primitives are updated and the
composite skin field 𝐹 reflects the moving skin parts, the contracting or extending muscles
and the contact areas between body parts. This field is used in the mesh tracking steps
described in Chapter 3 to skin the character mesh vertices.

105

Chapter 6 Integration with Implicit Skinning

Animation

Compute relative
transformations

Mesh update

Transform HRBFs Transform
muscles ends

Update muscles
parameters

PBD

Update primitives

Mesh tracking

Standard animation Implicit Skinning Muscles primitives

Figure 6.5: Breakdown of the Implicit Skinning pipeline with muscles. Steps pictured in
grey are the standard geometric skinning pipeline, steps in bown are the Implicit Skinning
correction algorithm, and steps in salmon are our new anatomic-related workflow. Arrows
represent direct dependencies between steps.

6.3 Skinning with muscles

6.3.1 Results and discussion

To demonstrate the effects of our method, we set up a variety of scenes, ranging from
simple motions, such as an arm shake or a biceps curl, involving only a few muscles,
to more challenging motions, such as jumping or running, with a fully rigged model.

(a) Arm shake (b) Biceps curl (c) Jump (d) Run

Figure 6.6: Test scenes used for our results (see description in Table 6.1).

106

6.3 Skinning with muscles

Scene # vertices # bones # muscles # constraints

Arm shake 2172 3 4 456
Biceps curl 2172 3 4 456
Jump 19296 12 50 4250
Run 19296 12 50 4250

Table 6.1: Summary of the scenes used for our results. The number of PBD constraints is
given for 30 particles per muscle.

(a) Implicit Skinning (b) Implicit Skinning with muscles

Figure 6.7: Detail of the arm during the arm shake scene. Figure (a): Standard Implicit
Skinning solution. Figure (b): Implicit Skinning with muscles.

(a) Implicit Skinning (b) Implicit Skinning with muscles

Figure 6.8: Detail of the arm during the biceps curl scene. Figure (a): Standard Implicit
Skinning solution. Figure (b): Implicit Skinning with muscles.

107

Chapter 6 Integration with Implicit Skinning

(a) Implicit Skinning (b) Implicit Skinning with muscles

Figure 6.9: Detail of the legs during the jump scene. Figure (a): Standard Implicit Skinning
solution. Figure (b): Implicit Skinning with muscles. The scene is captured just before
the impulse when the muscles are the most contracted. Note also the contact handling
between the calves.

(a) Implicit Skinning (b) Implicit Skinning with muscles

Figure 6.10: Detail of the arm during the run scene. Figure (a): Standard Implicit Skinning
solution. Figure (b): Implicit Skinning with muscles, showing the bulged biceps, deltoid
and pectoral.

108

6.3 Skinning with muscles

Table 6.1 and Figure 6.6 summarize the setup of each scene, and side-by-side comparison
are illustrated in Figures 6.7 to 6.10.
The arm shake (Figures 6.6(a) and 6.7) shows a very fast motion of the arm, which

allows to exhibit the inertial effects of our muscle model and the effect of the stiffness of
the muscles, as detailed in Section 5.2. The biceps curl scene (Figures 6.6(b) and 6.8) is
a prime example of the effect of muscle contraction (for the biceps) and extension (for
the triceps), as well as showing the contact handling between the arm and the forearm.
These scenes use skin and bones meshes derived from a commercial anatomic model
(Anatoscope).

The jump and run scenes (Figures 6.6(c), 6.6(d), 6.9 and 6.10) are designed to be stress
tests of our model. The animations show fast-changing motion (the jumping impulsion
and reception, the run contact and up/down poses), which could be challenging for an
inertial system to follow without the bone and skin collision constraints described in
Section 5.3. The model used in these scenes is also a higher resolution mesh and has
been rigged with 50 muscles with all types of constraints (elasticity, muscle-bone, muscle-
muscle and muscle-skin) resulting in 1 500 particles and more than 4 000 constraints.
The model is a regular animation model using cylindrical bone proxies for muscle-bone
collision.

6.3.2 Performance

Our study is both qualitative, to show the effect of the muscles primitive on the skinning
result, and quantitative, to report on the timings of our method and the CPU and memory
overhead it incurs on the default Implicit Skinning implementation. In particular, we
study the average time per frame of our scenes with regard to the complexity of the model,
and study the influence of the parameters of the simulation on the frame rate. These
timings were generated on a 3.6GHz Intel Xeon E5-1650 CPU with 64 GB of memory.
By far, the two more intensive steps of the computation are the PBD simulation step

and the mesh tracking step from Implicit Skinning. A breakdown of the timings can be
found in Table 6.2.

While Implicit Skinning runs at real-time frame rates even in more demanding scenes,
adding more muscles or increasing the number of particles per muscle increases both the
physics simulation time, and the tracking time. The former is caused by the increased
numbers of particles to simulate and of constraints to solve. The latter occurs because
the Implicit Skinning algorithm evaluates the skin field 𝐹 several times per vertex in a
frame. The cost of computing 𝐹 itself depends on the number of primitive fields functions
to evaluate. While the use of compact support function with a BVH tree prunes out many

109

Chapter 6 Integration with Implicit Skinning

Scene Standard IS IS + Muscles

Tracking PBD Total

Arm shake 0.008 0.013 0.055 0.068
Biceps curl 0.005 0.015 0.042 0.057
Jump 0.050 0.462 0.096 0.558
Run 0.051 0.473 0.096 0.569

Table 6.2: Average times in seconds per frame for our different scenes and 30 particles
per muscle. Times are given for standard Implicit Skinning without muscle, and for
Implicit Skinning with muscles detailing the time spent by the IS tracking, and by the
PBD simulation.

Figure 6.11: Interactivemuscle editing session in our animation andmodelling application,
showing the exposed muscle shape parameters and the end points position manipulation.

useless computations, the muscle function evaluation and composition incurs a penalty on
the overall function evaluation for vertices which are affected by one or several muscles. In
particular, the time spent evaluating the muscle function 𝑓𝑀 is proportional to the number
of particles per muscle, because of the projection operator which projects the query point
on every segment (as seen in Section 4.2.2).

In our most complex scene with 50 muscles each including 30 particles, we maintain a
total frame time below the second. It is possible to improve the performance in cases where
more interactive frame rates are required, for examplewhen editing themuscle parameters
(Figure 6.11). In this case, the skinning can be deactivated to reach interactive response
times. The number of particles can be safely decreased for muscles which are only subject
to small deformations, increasing the simulation speed, as shown in Figure 6.12.

110

6.3 Skinning with muscles

Implicit Skinning
PBD Simulation

1.5

1

0.75

0.5

0.25

Arm shake Jump

0 5 10 20 30 60

𝑡

0 5 10 20 30 60

1.5

1

0.75

0.5

0.25

𝑡

particles # particles

Figure 6.12: Average times in seconds for the computation of an animation frame, for
different number of particles per muscle. The brown bars represents the time spent
in computation of mesh tracking, the salmon bars represents the time spent in PBD
simulation.

There is also room for improvement in the evaluation of the field functions, which
quickly becomes the main bottleneck when the number of vertices of the skinned model
increases. Specifically, a smarter spatial data structure (e.g. spatial hashing) or value
caching could improve the function evaluation time. Our current implementation in a
multi-threaded application handles parallelism at the task level, but the costliest steps
(PBD and IS) have to be handled sequentially. Nonetheless, both PBD and IS are heavily
parallelizable. The PBD solver is designed to be order independent so that particles
position can be solved in parallel. Similarly, the Implicit Skinning algorithm steps can be
run simultaneously per-vertex. While our implementation leverages CPUmulti-threading,
better performances could thus be achieved with a GPU implementation of both PBD and
IS.

From a memory standpoint, the overhead to Implicit Skinning is minimal, due to
the compact representation of muscles in memory, as the function and its gradient are
evaluated in closed form from themuscle parameters (position and normals of the polyline
points and shape parameters). Each muscle thus occupies only about one kilobyte of
memory (with 30 particles per muscle), assuming single-precision floats. The look-up
table for the 81 possible beta function values (one for each pair of (𝛼, 𝛽)), which is common
to all muscles, requires an additional 324 bytes. The blending also requires storing the
detail operator in a 2D grid, adding 200 kilobytes. Using anatomical bone shapes, each

111

Chapter 6 Integration with Implicit Skinning

stored as a discretized distance field in a 128 × 128 × 128 3D grid requires approximately 8
megabytes per bone shape. If memory consumption becomes an issue, the resolution of
the 3D grid can be lowered, or the bone distance fields replaced by proxy cylinders, as
detailed in Chapter 5.

6.3.3 Limitations

The main limitations of our method come from the limits of the muscle model itself which
were exposed in Section 4.4.3, in particular, the difficulty to model complex muscles such
as the pectorals, the buttocks, or the deltoids. This issue is aggravated by the high degree
of freedom of the related joints. While the elbow or knee function mostly as mechanical
hinges and rotate only around one axis, the shoulder and hips have several rotational
degrees of freedom, which makes it difficult to predict the muscle’s motion in all cases.

Another limitation is the necessity to manually edit the HRBFs around the muscles to
let the vertices be deformed only by their nearest muscles. While it might be possible
to do this editing automatically, this might be the sign that another skin representation
is necessary to replace the HRBFs with a more flexible representation. Another way of
overcoming this limitation would be to define a local scalar field around the vertices, in
order to let each vertex be deformed by the most relevant anatomic primitives.

Finally, the dynamic behaviour of the muscles, being governed mostly by the scaleless
stiffness parameter 𝑘 sometimes yields counter-intuitive inertial deformations and requires
tuning. In some cases it is necessary to keyframe it to obtain a stiffer or looser behaviour
than expected. For example, during the jump scene, we artificially lowered the stiffness
to exhibit a more visible jiggle at the reception of the jump. While this might be useful
to represent the varying tension force in the muscle depending on its action, there is no
guideline for the setting of this parameter except by trial and error, because it is not tied
to a physical value which could be used as a reference. This issue is tied to the nature of
PBD as an approximation of physics, and could be solved by using a more realistic physics
method for the dynamic simulation, at the expense of an increased computational cost.

6.4 Towards implicit anatomic volumes

We showed that our model can blend the skin contact and elasticity modelling of Implicit
Skinning with deformations generated by muscle primitives. While we focused our study
onmuscles, the integrationwith the Implicit Skinning algorithm is in fact generic and could
take into account primitives representing other volumetric effects from the character’s
anatomy. Using similar models to define other dynamic elements induces different types

112

6.4 Towards implicit anatomic volumes

(a)Model setup. (b) Effect of the fat lump.

Figure 6.13: Implicit fat tissue jiggling. Figure (a): setup of a jiggling belly. The center of
the ellipsoid is a PBD particle (in grey) attached by elastic distance constraints (in red)
to kinematic particles(in white) attached to a skeleton bone. Figure (b): side-by-side
comparison of the model without the fat primitive (left) and with the fat primitive(right),
showing the deformation induced on the skin.

of secondary motion, for example, fat tissues jiggling. We experimented this approach by
using an ellipsoid field 𝑓fat centered on one particle p:

𝑓fat(q) =
(𝑥q − 𝑥p)2

𝑎2 +
(𝑦q − 𝑦p)2

𝑏2 +
(𝑧q − 𝑧p)2

𝑐2 − 1 .

Similarly to the setup of amuscle, this particle is tied to the animation through kinematic
particles and elastic distance constraints, as seen in Figure 6.13(a). We set the mass of the
particle to 𝑚 = 20 kg and set the distance constraints rest length to their initial length, and
their stiffness to a low value (𝑘 = 0.1). This setup creates a high inertia fat lump implicit
primitive which is integrated in the implicit skin model like the muscle primitives, as
described in Section 6.1. The effect of this primitive creates a belly jiggle effect on the skin,
shown in Figure 6.13(b).

The behaviour of fat tissues and their resulting action on the skin’s surface is surely not
completely captured by thismodel, andwould require a dedicated study to the same extent
as our modelling of muscle behaviour in Chapter 4. The ability to integrate fat tissues
shows that our proposed integration of implicit primitives into the Implicit Skinning
pipeline is sufficiently flexible to integrate primitives representing not only muscles but
other anatomic elements.

113

Conclusion
That’s a very nice rendering, Dave. I think you’ve

improved a great deal.
—HAL 9000, 2001: A Space Odyssey

Through this dissertation, my goal was to broaden the scope of the core idea behind
Implicit Skinning: the joint use of meshes and implicit surfaces for character animation.
In particular, the implicit approach to modelling has proven useful to design families of
shapes representing muscles, giving freedom to choose the functional definition adapted
to the use case, while deriving mathematical constraints to ensure the plausibility of
muscle deformations. Moreover, the scalar fields defining the implicit surfaces enable
the seamless integration of these shapes into a physics simulation, elegantly resolving
collisions between muscles and bones. The combination of these two advantages, coupled
to the existing Implicit Skinning algorithm, has enabled me to replace the many disparate
deformers, whose configuration is often burdensome and ad-hoc for the artists, with a
unified representation of the skin, and a way to blend in their dynamic effects. The focus
of this work has been specifically on muscles because of their great role in the appearance
of a character and its actions. The generic principles used in the definition of the muscle
model within the skinning pipeline, however, are generic enough to allow subsequent
research for models of other anatomic elements or other secondary animation effects.
Besides the fat tissue representation discussed in the last chapter, scalar fields can also
be used to generate wrinkles and folds in the skin, or to simplify collision detection, for
example, with a cloth simulation. Of course, this warrants further research, in order to
derive the correct mathematical properties of such applications to be implemented in a
skinning pipeline.

My work brings together concepts from skinning methods, implicit surfaces modelling
and composition, and dynamic simulation, in order to achieve an efficient implementation
of the proposed rigging and animationmethod. To this effect, I implemented these various
systems under a common interface in in my animation engine, with the ability to edit
interactively the parameters of the muscles and to run concurrently each component of the
animation pipeline. This implementation extracts the benefits of each of its components
and provides ways for extensibility by limiting the coupling between them. It also suffers
from the induced drawbacks inherent to each component: the difficulty to model complex

115

Conclusion

muscles and joints with the muscle model, the unintuitive material parameters of Position
Based Dynamics, and the necessity to manually edit the implicit skin representation to
enable all muscle effects. In addition, the performances of the implementation degrade as
the complexity of the model increases, which effectively limits the interactive use-case to
one complex character at most. Many of the functional limitations of the method can be
overcome by replacing the proposed model with more complex approaches, for example,
replacing PBD with a more accurate physics simulation. This would in turn decrease the
performances of the implementation. Conversely, the implementation could be made
faster, settling for a degraded solution by doing without some of the features of the model
or limiting the accuracy of the simulation. In computer graphics, there is often a trade-off
between performance and quality, and the right setup depends on the application and the
time budget an implementation can afford to spend on animation effects.

While the method presented in this thesis makes the case for a wider use of implicit
surfaces in skinning, it remains to be seen whether they will be adopted by animators in
the future, and how they could be used for future research in geometric skinning.

Because of the high learning curve of computer animation (which requires a great deal
of both artistic and technical skill) and the imperatives of production, animators often
prefer to deal with tried-and-tested methods, even if it means handling their shortcomings
manually. Animators are often not familiar with implicit surfaces and the mathematical
background behind them. Thus, if implicit objects are to see more use in future animation
software, it would require to devise controls that animators can use with familiarity and
simplicity. The genericity of methods based on scalar fields, however, is a advantage:
meshes, cages or parametric surfaces can be used as proxies and converted to an implicit
representation internally, exposing only the geometrically meaningful parameters to the
artists. They can also be designed by artist-friendly interfaces such as sketching. The
processes presented in this thesis make no assumption on the nature of the scalar fields but
only on mathematical properties that are simple to enforce. This loose coupling between
the surface representation and the skinning algorithm makes it easier to use the methods
discussed in this dissertation as building blocks for better animation tools. However, a
major limitation of basing an approach on Implicit Skinning is that it works only as the last
skin deformation in the sequence of skinning operations. Our muscle deformers are built
with this requirement in mind. This will be a problem for a practical implementation in
animation software: one cannot expect every skin deformation operation available inMaya
or Blender to be rewritten specifically for Implicit Skinning. Moreover, it is particularly
inefficient to provide an implicit representation of the whole skin when only some areas
are affected by the implicit-based deformers and corrections. An elegant solution to these
two issues would provide a local implicit model and blend smoothly the implicit-based

116

deformations with any other skinning method, paying the computational cost only where
needed and to integrate the deformations caused by implicit surfaces at any point in the
skinning process.

The latest work in high-quality skinning research show a convergence of physics-based
and data-based methods, either by fitting a generic physics template to a specific model, or
by extrapolating a physics simulation from captured data. These progress is due in part to
the recent advances in machine learning and specifically the application of deep learning
methods to computer animation. The applicability of machine learning to geometric
skinning methods is still an ongoing research topic. While neural networks can learn to
reproduce complex non-linear operations such as skinning, their users often need to make
sense of the parameters of models. Besides, learning algorithms benefit from models with
compact representations, which reduces the combinatorial explosions of parameters in
the learning process. Indeed, one of the goals of my work was to define a muscle with
a compact representation and meaningful parameters, which humans – and machine
learning algorithms – find easier to manipulate. Thus, a complexity-reducing model such
as the one presented in this thesis could be a stepping stone towards the next generation
of geometric skinning algorithms.

117

Appendix

119

A
Proofs

A.1 ARAP Jacobi iteration

Recall the expression of the ARAP energy:

𝐸(v0, ...v𝑛) =
𝑛

∑
𝑖=0

𝐸𝑖(v0, ...v𝑛)

=
𝑛

∑
𝑖=0

𝑛

∑
𝑘=0

𝑐𝑖𝑘 ∥(v𝑖 − v𝑘) − R𝑖(vref 𝑖 − vref 𝑘)∥2 ,

assuming the weights 𝑐𝑖𝑘 are the cotangent weights if v𝑖 and v𝑘 are neighbours and 0 if
not.

We can derive the gradient of 𝐸 relatively to a given vertex v𝑢:

∇𝑢𝐸 = ∇𝑢

𝑛

∑
𝑖=0

𝑛

∑
𝑘=0

𝑐𝑖𝑘 ∥(v𝑖 − v𝑘) − R𝑖(vref 𝑖 − vref 𝑘)∥2 .

This yields two family of non-null terms:

∇𝑢𝐸 =
𝑛

∑
𝑘=0

𝑐𝑢𝑘∇𝑢 ∥(v𝑢 − v𝑘) − R𝑢(vref𝑢 − vref 𝑘)∥2

+
𝑛

∑
𝑖=0

𝑐𝑖𝑢∇𝑢 ∥(v𝑖 − v𝑢) − R𝑖(vref 𝑖 − vref𝑢)∥2 .

Now differentiating the norm-squared terms yields:

∇𝑢 ∥v𝑢 − v𝑘 − 𝐶∥2 = 2(v𝑢 − v𝑘 − 𝐶)

∇𝑢 ∥v𝑖 − v𝑢 − 𝐶∥2 = −2(v𝑖 − v𝑢 − 𝐶),

121

Appendix A Proofs

where 𝐶 is a constant term.

This yields a formula for the gradient:

∇𝑢𝐸 = 2 ⎛⎜
⎝

𝑛

∑
𝑘=0

𝑐𝑢𝑘 ((v𝑢 − v𝑘) − R𝑢(vref𝑢 − vref 𝑘)) −
𝑛

∑
𝑖=0

𝑐𝑖𝑢 ((v𝑖 − v𝑢) − R𝑖(vref 𝑖 − vref𝑢))⎞⎟
⎠

.

We rewrite the two sums in one:

∇𝑢𝐸 = 2 ⎛⎜
⎝

𝑛

∑
𝑘=0

𝑐𝑢𝑘 ((v𝑢 − v𝑘) − R𝑢(vref𝑢 − vref 𝑘)) − 𝑐𝑘𝑢 ((v𝑘 − v𝑢) − R𝑘(vref 𝑘 − vref𝑢))⎞⎟
⎠

.

By definition 𝑐𝑢𝑘 = 𝑐𝑘𝑢, thus it yields:

∇𝑢𝐸 = 2
𝑛

∑
𝑘=0

𝑐𝑢𝑘 (2(v𝑢 − v𝑘) − (R𝑢(vref𝑢 − vref 𝑘) − R𝑘(vref 𝑘 − vref𝑢)))

= 2
𝑛

∑
𝑘=0

𝑐𝑢𝑘 (2(v𝑢 − v𝑘) − (R𝑢 + R𝑘) (vref𝑢 − vref 𝑘)) .

We differentiate once more in 𝑣 to get the 3 × 3 block (𝑢, 𝑣) of the Hessian matrix H𝐸:
∇2

𝑢𝑣𝐸 = ∇𝑣∇𝑢𝐸. First, we derive the diagonal blocks (i.e. assuming 𝑢 = 𝑣)

∇2
𝑢𝑢𝐸 = 2

𝑛

∑
𝑘=0

𝑐𝑢𝑘∇𝑢 (2(v𝑢 − v𝑘) − (R𝑢 + R𝑘)) (vref𝑢 − vref 𝑘))

= 4
𝑛

∑
𝑘=0

𝑐𝑢𝑘I3 .

Now the non-diagonal blocks where 𝑢 ≠ 𝑣:

∇2
𝑢𝑣𝐸 = 2

𝑛

∑
𝑘=0

𝑐𝑢𝑘∇𝑣 (2(v𝑢 − v𝑘) − (R𝑢 + R𝑘)) (vref𝑢 − vref 𝑘)) .

leaving only one non-zero term of the sum where 𝑘 = 𝑣:

∇2
𝑢𝑣𝐸 = −4𝑐𝑢𝑣I3 .

Since the cotangent coefficients 𝑐𝑢𝑣 are 0 when v𝑢 and v𝑣 are not neighbours, the resulting
Hessian matrix is very sparse and diagonal-dominant.

We are looking for the positions of vertices (̂v1, ... ̂v𝑛) minimizing 𝐸. Because 𝐸 is
quadratic, the optimal solution can be found in one iteration of Newton’s method. Given
a starting mesh (v(p)

1 , ...,v(p)
𝑛), we define

(v(p)
1 , ...,v(p)

𝑛) + (Δv1, ..., Δv𝑛) = (̂v1, ..., ̂v𝑛) ,

where ΔV = (Δv1, ..., Δv𝑛) is the solution to the linear problem

[H𝐸(V)] ΔV = −∇𝐸(V) .

122

A.2 Volume of extrusion surface

BecauseH𝐸 is diagonal-dominant, the Jacobi method finds an iterative solution. Writing
H𝐸 = D+NwhereD is diagonal (D = diag(4 ∑𝑘 𝑐𝑖𝑘)) andN contains the non-diagonal
elements.

ΔV(k+1) = −D−1(∇𝐸 + NΔV(k)) .

With the previous formula we can write the iterative equation for each vertexv𝑖:

v
(j+1)
𝑖 = 1

4 ∑𝑛
𝑘=0 𝑐𝑖𝑘

⎛⎜
⎝

2 ⎛⎜
⎝

𝑛

∑
𝑘=0

𝑐𝑖𝑘(2(v(j)
𝑖 − v

(j)
𝑘) − (R𝑖 + R𝑘)(vref 𝑖 − vref 𝑘))⎞⎟

⎠
−

𝑛

∑
𝑘=0

4𝑐𝑖𝑘v
(j)
𝑘

⎞⎟
⎠

v
(j+1)
𝑖 = 1

∑𝑛
𝑘=0 𝑐𝑖𝑘

⎛⎜
⎝

1
2

𝑛

∑
𝑘=0

𝑐𝑖𝑘(R𝑖 + R𝑘)(vref 𝑖 − vref 𝑘) +
𝑛

∑
𝑘=0

𝑐𝑖𝑘v
(j)
𝑘

⎞⎟
⎠

.

We now introduce the normalized cotangent weights 𝑐𝑖𝑘 for each vertex v𝑖:

𝑐𝑖𝑘 =
𝑐𝑖𝑘

∑𝑛
𝑢=0 𝑐𝑖𝑢

,

which simplifies the notation:

v
(j+1)
𝑖 = 1

2
⎛⎜
⎝

𝑛

∑
𝑘=0

𝑐𝑖𝑘(R𝑖 + R𝑘)(vref 𝑖 − vref 𝑘) +
𝑛

∑
𝑘=0

𝑐𝑖𝑘v
(j)
𝑘

⎞⎟
⎠

.

Finally, we define

bi = 1
2

𝑛

∑
𝑘=0

𝑐𝑖𝑘(R𝑖 + R𝑘)(vref 𝑖 − vref 𝑘) ,

which yields the update equation proposed in Section 3.3.

A.2 Volume of extrusion surface

The volume enclosed by the muscle’s extrusion surface is given by

𝑉 = 𝜋𝑤2𝑙,

where 𝑤 is the width factor and 𝑙 the length of the axis.

Proof.

𝑉 = ∫
1

𝑠=0
∫

𝜋

𝜃=−𝜋
∫

𝑤Φ(𝑠)𝑟(𝜃)

𝜌=0
𝜌d𝜌 d𝜃 𝑙d𝑠 .

Integrating in 𝜌 yields:

𝑉 = 𝑙 ∫
1

0
∫

𝜋

−𝜋

(𝑤Φ(𝑠)𝑟(𝜃))2

2
d𝜃d𝑠

123

Appendix A Proofs

= 𝑤2𝑙 ∫
1

0
(Φ(𝑠))2 d𝑠 ∫

𝜋

−𝜋

(𝑟(𝜃))2

2
d𝜃 .

The integral in 𝜃 is the area of an ellipse of semi-axis length 𝑢 and 𝑣:

∫
𝜋

𝜃=−𝜋

(𝑟(𝜃))2

2
d𝜃 = 1

2
∫

𝜋

−𝜋
𝑢2𝑣2

𝑢2(cos(𝜃))2 + 𝑣2(sin(𝜃))2d𝜃

= ∫
𝜋
2

−𝜋
2

𝑢2𝑣2

𝑢2(cos(𝜃))2 + 𝑣2(sin(𝜃))2d𝜃,

since the function is 𝜋-periodic.

We compute this integral by noticing that on]−𝜋
2 , 𝜋

2 [,

d
d𝜃

[𝑢𝑣 arctan(𝑣 tan(𝜃)
𝑢

)] = 𝑢𝑣 𝑣
𝑢(cos(𝜃))2

⎛⎜⎜⎜⎜
⎝

1
(𝑣 tan(𝜃)

𝑢)2 + 1

⎞⎟⎟⎟⎟
⎠

= 𝑢𝑣2

𝑢(cos(𝜃))2 (𝑣2

𝑢2 (tan(𝜃))2 + 1)

= 𝑢2𝑣2

𝑢2(cos(𝜃))2 + 𝑣2(sin(𝜃))2 .

The integral in 𝜃 is expressed as a limit:

∫
𝜋

𝜋

(𝑟(𝜃))2

2
d𝜃 = lim

𝑥→ 𝜋
2

−
𝑢𝑣 (arctan(𝑣 tan(𝑥)

𝑢
) − arctan(𝑣 tan(−𝑥)

𝑢
))

= 2𝑢𝑣 lim
𝑥→ 𝜋

2
−
arctan(𝑣 tan(𝑥)

𝑢
)

= 2𝑢𝑣 lim
𝑥→ 𝜋

2
−

𝜋
2

− arctan(𝑢
𝑣 tan(𝑥)

) .

This limit is now determined, because

lim
𝑥→ 𝜋

2
−
arctan(𝑢

𝑣 tan(𝑥)
) = arctan(0)

= 0,

thus,

lim
𝑥→ 𝜋

2
−
arctan(𝑣 tan(𝑥)

𝑢
) = 𝜋

2
.

Finally,

∫
𝜋

−𝜋

(𝑟(𝜃))2

2
d𝜃 = 𝜋𝑢𝑣 .

124

A.3 Interpolation of beta function

We substitute the integral in 𝜃 by the expression above in the computation of 𝑉:

𝑉 = 𝑤2𝑙 ∫
1

0
(Φ(𝑠))2 d𝑠 𝜋𝑢𝑣 .

Since we enforce 𝑢𝑣 = 1, it yields

𝑉 = 𝜋𝑤2𝑙 ∫
1

0
(Φ(𝑠))2 d𝑠 .

We also constrain ∫ Φ2 = 1, thus we have

𝑉 = 𝜋𝑤2𝑙 .

A.3 Interpolation of beta function
The Euler beta function 𝐵 is defined as

𝐵(𝛼, 𝛽) = ∫
1

0
𝑢𝛼−1(1 − 𝑢)𝛽−1d𝑢 .

Let us define

𝐼(𝛼, 𝛽) = ∫
1

0
𝑢2(𝛼−1)(1 − 𝑢)2(𝛽−1)d𝑢 = 𝐵(2𝛼 − 1, 2𝛽 − 1) .

which appears in the denominator of Equation (4.4).
We define the linear interpolation Φ(𝑠) between 𝜙(𝛼0, 𝛽0; 𝑠) and 𝜙(𝛼1, 𝛽1; 𝑠), governed

by the activation parameter 𝑎, such that ∫1
0 (Φ(𝑠))2 d𝑠 = 1, ∀𝑎 ∈ [0, 1] as:

Φ𝑎(𝑠) =
(1 − 𝑎)𝜙(𝛼0, 𝛽0; 𝑠) + 𝑎𝜙(𝛼1, 𝛽1; 𝑠)

√𝐹(𝑎)
,

where √𝐹(𝑎) is the ℒ2-norm of the numerator:

𝐹(𝑎) = ∫
1

0
((1 − 𝑎)𝜙(𝛼0, 𝛽0; 𝑠) + 𝑎𝜙(𝛼1, 𝛽1; 𝑠))2d𝑠 .

We show that 𝐹(𝑎) can be expressed as a second-order polynomial in 𝑎whose coefficients
depend only on the chosen values for 𝛼1, 𝛼2, 𝛽1 and 𝛽2.

Proof.

𝐹(𝑎) = ∫
1

0
((1 − 𝑎)𝜙(𝛼0, 𝛽0; 𝑠) + 𝑎𝜙(𝛼1, 𝛽1; 𝑠))2 d𝑠

=(1 − 𝑎)2 ∫
1

0
(𝜙(𝛼0, 𝛽0; 𝑠))2 d𝑠

+ 𝑎2 ∫
1

0
(𝜙(𝛼1, 𝛽1; 𝑠))2 d𝑠

125

Appendix A Proofs

+ 2𝑎(1 − 𝑎) ∫
1

0
𝜙(𝛼0, 𝛽0; 𝑠)𝜙(𝛼1, 𝛽1; 𝑠)d𝑠

=(1 − 𝑎)2 + 𝑎2 + 2𝑎(1 − 𝑎)𝐾(𝛼0, 𝛼1, 𝛽0, 𝛽1),

where 𝐾(𝛼0, 𝛼1, 𝛽0, 𝛽1) is the constant term equal to:

∫1
0 𝑠𝛼0+𝛼1−2(1 − 𝑠)𝛽0+𝛽1−1d𝑠

√∫1
0 𝑦2(𝛼0−1)(1 − 𝑦)2(𝛽0−1)d𝑦 ∫1

0 𝑦2(𝛼1−1)(1 − 𝑦)2(𝛽1−1)d𝑦
,

which can be expressed in terms of the beta function B as:

𝐾(𝛼0, 𝛼1, 𝛽0, 𝛽1) =
𝐵(𝛼0 + 𝛼1 − 1, 𝛽0 + 𝛽1 − 1)

√𝐵(2𝛼0 − 1, 2𝛽0 − 1)𝐵(2𝛼1 − 1, 2𝛽1 − 1)
.

A.4 Square integral of piecewise cubic profile

Let 𝑎 ∈]0, 1[Recall the definition of Φcubic through Hermite constraints:

Φcubic(0) = 0 Φ′
cubic(0) = 0

Φcubic(1) = 0 Φ′
cubic(1) = 0

Φcubic(𝑎) = 1 Φ′
cubic(𝑎) = 0 .

We can show that there is only one piecewise third-degree polynomial Φcubic fitting
these constraints.

Φcubic(𝑠) =
⎧{{
⎨{{⎩

𝑥0 + 𝑥1𝑠 + 𝑥2𝑠2 + 𝑥3𝑠3 if 𝑠 ∈ [0, 𝑎]

𝑦0 + 𝑦1𝑠 + 𝑦2𝑠2 + 𝑦3𝑠3 if 𝑠 ∈ [𝑎, 1]
.

126

A.4 Square integral of piecewise cubic profile

The constraints above can be written as 8 equations (as the constraints at 𝑎 yield one
equation for each piece), yielding a linear system:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 𝑎 𝑎2 𝑎3 0 0 0 0
0 1 2𝑎 3𝑎2 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 2 3
0 0 0 0 1 𝑎 𝑎2 𝑎3

0 0 0 0 0 1 2𝑎 3𝑎2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥0

𝑥1

𝑥2

𝑥3

𝑦0

𝑦1

𝑦2

𝑦3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
1
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The determinant of the system is 𝑎4(𝑎 − 1)4. This system is therefore invertible for any
𝑎 ∈]0, 1[, yielding the following piecewise polynomial:

Φcubic(𝑠) =
⎧{{
⎨{{⎩

− 2
𝑎3 𝑠3 + 3

𝑎2 𝑠2 if 𝑠 ∈ [0, 𝑎]

− 2
(𝑎−1)3 𝑠3 + 3(𝑎+1)

(𝑎−1)3 𝑠2 − 6𝑎
(𝑎−1)3 𝑠 + 3𝑎−1

(𝑎−1)3 if 𝑠 ∈ [𝑎, 1]
.

We then show that this family of functions also guarantee volume conservation regardless
of 𝑎. More precisely we show that

𝐼 = ∫
1

0
(Φcubic(𝑠))2 d𝑠 = 13

35
.

∫
1

0
(Φcubic(𝑠))2d𝑠 = ∫

𝑎

0
(Φcubic(𝑠))2d𝑡 + ∫

1

𝑎
(Φcubic(𝑠))2d𝑠

= ∫
𝑎

0
(− 2

𝑎3 𝑠3 + 3
𝑎2 𝑠2)

2
d𝑠

+ ∫
1

𝑎
(− 2

(𝑎 − 1)3 𝑠3 + 3(𝑎 + 1)
(𝑎 − 1)3 𝑠2 − 6𝑎

(𝑎 − 1)3 𝑠 + 3𝑎 − 1
(𝑎 − 1)3)

2
d𝑠 .

Integrating the first term is simple:

𝐼1 = ∫
𝑎

0
(− 2

𝑎3 𝑠3 + 3
𝑎2 𝑠2)

2
d𝑠 = ∫

𝑎

0
(4

𝑎6 𝑠6 − 12
𝑎5 𝑠5 + 9

𝑎4 𝑠4)d𝑠

= 4𝑎7

7𝑎6 − 12𝑎6

6𝑎5 + 9𝑎5

5𝑎4

= 13𝑎
35

.

127

Appendix A Proofs

The second term is more complex but still straightforward by expanding the polynomial
in 𝑥, integrating each term and then expanding again the polynomial in 𝑎:

𝐼2 = ∫
1

𝑎
(− 2

(𝑎 − 1)3 𝑠3 + 3(𝑎 + 1)
(𝑎 − 1)3 𝑠2 − 6𝑎

(𝑎 − 1)3 𝑠 + 3𝑎 − 1
(𝑎 − 1)3)

2
d𝑠

= 1
(𝑎 − 1)6 ∫

1

𝑎
4𝑠6 − (12𝑎 + 12)𝑠5 + (9𝑎2 + 42𝑎 + 9)𝑠4 − (36𝑎2 − 48𝑎 − 4)𝑠3

+ (54𝑎2 + 12𝑎 − 6)𝑠2 − (36𝑎2 − 12𝑎)𝑠 + (9𝑎2 − 6𝑎 + 1)

= 1
(𝑎 − 1)6 (4(1 − 𝑎7)

7
+ (−12𝑎 − 12)(1 − 𝑎6)

6

+ (9𝑎2 + 42𝑎 + 9)(1 − 𝑎5)
5

+ (−36𝑎2 − 48𝑎 + 4)(1 − 𝑎4)
4

+ (54𝑎2 + 12𝑎 − 6)(1 − 𝑎3)
3

+ (−36𝑎2 + 12𝑎)(1 − 𝑎2)
2

+ (9𝑎2 − 6𝑎 + 1)(1 − 𝑎))

= 1
(𝑎 − 1)6 (−13

35
𝑎7 + 13

5
𝑎6 − 39

5
𝑎5 + 13𝑎4 − 13𝑎3 + 39

5
𝑎2 − 13

5
𝑎 + 13

35
)

= 13
35

(1 − 𝑎)7

(1 − 𝑎)6

= 13
35

(1 − 𝑎) .

Finally, for the whole integral, 𝑎 vanishes:

𝐼 = 𝐼1 + 𝐼2

= 13
35

(𝑎 + (1 − 𝑎))

= 13
35

.

128

B
Résumé en français

B.1 Introduction

L’animation de personnages est un composant central des médias numériques modernes :
films, jeux vidéos ou réalité virtuelle. Produire des déformations de qualité sur un modèle
de personnage, ce qui est crucial pour rendre celui-ci crédible aux yeux du spectateur,
demeure néanmoins un défi technique. La complexité du corps humain, composé d’os,
de muscles, et de divers tissus organiques est en effet difficile à reproduire sous forme
numérique tout en maintenant des vitesses d’exécution élevées et une simplicité de pa-
ramétrisation. Idéalement, le calcul des déformations du personnage s’exécuterait en
temps réel sur une machine standard, et offrirait à son utilisateur des paramètres intuitifs
permettant un contrôle précis du résultat. Le modèle de base est celui de la déformation
basée sur un squelette articulé ; l’addition de déformations causées par les muscles sur
la peau améliore significativement la plausibilité du résultat. Pour prendre en compte
ces déformations musculaires, de nombreuses techniques ont été développées, allant des
méthodes géométriques rapides en calcul aux simulations physiques détaillées mais coû-
teuses. Les travaux de cette thèse explorent l’adjonction de déformations musculaires aux
méthodes géométrique de skinning par squelette. Parmi ces approches, trois familles ont
chacune étendu le Linear Blend Skinning (LBS) [MLT88] et le Dual Quaternion Skinning
[Kav+07]. La première de ces familles regroupe les méthodes utilisant les poses clefs
[LCF00] sculptées directement avec des logiciels de modélisation. Ces méthodes sont très
générales, mais cette étape de modélisation manuelle est particulièrement fastidieuse. La
deuxième famille utilise des primitives musculaires, positionnées à l’intérieur du corps
du personnages, agissant comme déformeurs sur la peau [WV97]. Ils sont généralement
contrôlables à l’aide de paramètres intuitifs et éditables en temps réels, mais souffrent

129

Annexe B Résumé en français

des limitations inhérentes aux méthodes de skinning sous-jacentes (LBS et DQS), c’est
à dire le manque de prise en compte des contacts de la peau et du volume au niveau
des articulations. La troisième famille utilise des base de données capturées pour inférer
les déformations sur les maillages [MG03 ; WPP07]. Les déformations produites sont
toutefois limités par la taille des données d’apprentissages et la difficulté pour les artistes
de contrôler le résultat.

Nous décrivons une approche qui permet de cumuler les avantages des primitives
musculaires avec une méthode de skinning géométrique produisant des résultat de bonne
qualité, notamment au niveau de sa gestion des contacts : l’Implicit Skinning [Vai+13 ;
Vai+14]. Cette méthode permet de corriger les auto-intersections du maillage et de re-
présenter l’élasticité de la peau. Nous y ajoutons la modélisation des muscles, de leur
interaction avec d’autres éléments anatomiques comme les os, et des effets dynamiques,
crées par la mise en mouvement du squelette d’animation. En particulier, nous présentons
de nouvelles primitives musculaires qui imitent les formes des muscles et reproduisent
leur déformations : flexion, extension et activation, en maintenant leur volume constant, à
l’instar des muscles réels. Ces primitives musculaires sont représentées par des surfaces
de balayage autour d’un axe central. La dynamique des muscles est induite sur lesdits
axes par Position Based Dynamics [Mül+07], une méthode de simulation physique ap-
proximative. L’utilisation de champs scalaires 3D pour nos primitives musculaires nous
permet de l’intégrer dans le cadre de l’Implicit Skinning, et de détecter simplement les
collisions entre muscles ou avec les os. La mise en œuvre de ces primitives permet de
contrôler les formes des muscles virtuels et leur comportement dynamique à l’aide d’un
petit nombre de paramètres intuitifs, évitant ainsi de fastidieuses phases de modélisation
de formes correctives ou de coûteuses simulations physiques.

B.2 Primitive musculaire

Un muscle est défini comme un champ scalaire 𝑓𝑀 ∶ ℝ3 → ℝ construit par balayage d’une
fonction profil 𝑅 le long d’une ligne polygonale 𝒞. Ce champ scalaire continu définit en sa
0-isovaleur une surface implcite représentant la surface du muscle.

L’évaluation de 𝑓𝑀 en un point q consiste en trois étapes : la construction de la ligne
polygonale centrale 𝒞, la projection de q sur celle-ci, ce qui permet de calculer la distance 𝑑
entre le point et la courbe, et l’évaluation du profil de balayage 𝑅(q). La valeur du champ
scalaire en q est alors :

𝑓𝑀(q) = 𝑑 − 𝑅(q) .

130

B.2 Primitive musculaire

Construction de l’axe central Les deux points extrémauxm0 etm1 de la primitive musculaire
sont attachés à un os d’animation, et y sont liés rigidement pendant l’animation. Le
segment [m0m1] est alors divisé en 𝑁𝑀 segments égaux, dont les points intermédiaires
sont notés p𝑖. La ligne polygonale (polyligne) 𝒞 est paramétrée par 𝑠 ∈ [0, 1] et on note
𝑠(q) le paramètre correspondant à la projection d’un point q quelconque sur 𝒞. Afin de
modéliser des profils de coupe elliptiques, la polyligne est orientée à chaque extrémité
par un vecteur normal, respectivement ⃗⃗⃗⃗⃗⃗n⃗m0

et ⃗⃗⃗⃗⃗⃗n⃗m1
. Chaque point de contrôle p𝑖 se voit

associer une normale ⃗⃗⃗⃗⃗⃗n⃗𝑖 de la manière suivante :

1. Interpolation sphérique des normales par rapport aux extrémités

2. projection du vecteur interpolé sur le plan tangent formé par les deux segments
ayant leur extrémité en p𝑖.

La normale en un point quelconque de la polyligne est interpolée sphériquement entre
les normales des points de contrôle du segment sur lequel il se trouve.

Opérateur de projection La projection d’un point q sur 𝒞 est une étape critique de l’évaluation
de la fonction 𝑓𝑀 car elle influe sur les propriétés du champ scalaire final, notamment
la continuité. La projection orthogonale n’est pas satisfaisante car elle génère des dis-
continuités dans les régions intérieures des angles formés par les segments consécutifs
(voir Figure 4.6). Nous proposons une nouvelle paramétrisation de la projection d’un
point q lorsqu’il se projette orthogonalement à l’intérieur d’un angle de deux segments
consécutifs. Le schéma de la Figure 4.8 illustre le procédé : le paramètre curviligne du
point projeté sur 𝒞 est une combinaison linéaire des paramètres du point projeté sur
chacun des segments pondérés par la cotangente de l’angle 𝜆𝑖 formé avec les segments
respectifs.

Surface de balayage La surface est définie en extrudant le profil 𝑅 le long de l’axe 𝒞. Pour
définir la forme desmuscles, la fonction de profil 𝑅 est paramétrée par l’abscisse curviligne
𝑠 et l’angle 𝜃 formé entre le vecteur reliant q et son projeté d’une part et le vecteur normal
en ce point d’autre part. 𝑅 est définie comme étant séparable en chacune des variables,
c’est à dire :

𝑅 = 𝑤𝑟(𝜃)Φ(𝑠) .

La fonction Φ représente la distribution de la masse musculaire le long de l’axe et 𝑟
sa coupe transversale, tandis que 𝑤 est un facteur d’échelle. Cette séparabilité permet
d’établir que le volume du muscle reste constant si et seulement si les fonctions Φ et 𝑟

131

Annexe B Résumé en français

vérifient :

∫
1

𝑠=0
(Φ(𝑠))2 d𝑠 = constante , (B.1)

∫
2𝜋

𝜃=0

(𝑟(𝜃))2

2
d𝜃 = constante . (B.2)

Sous ces conditions, en choisissant les constantes égales à 1, le volume du muscle lorsque
son axe est une ligne droite s’écrit :

𝑉 = 𝜋𝑤2𝑙, ,

où 𝑙 est la longueur de l’axe, comme démontré dans l’Annexe A.2. L’équation précédente
permet de modéliser la contraction et l’extension des muscles. Les points extrémaux étant
liés à des os d’animations différents, la longueur de l’axe varie au fil des mouvements du
personnage. Lorsque celle-ci se raccourcit d’un facteur 𝛾, maintenir le volume constant
nécessite donc de faire grossir la largeur 𝑤 d’un facteur √𝛾, et inversement lorsque l’axe
musculaire s’allonge, reproduisant ainsi les contractions et extensions isotoniques du
muscle.

Fonctions de profil Nous présentons ci-dessous des fonctions vérifiant ces équations et
disposant de paramètres permettant de contrôler efficacement la forme résultante. Premiè-
rement, la fonction de distribution de masse Φ, est inspirée de la loi bêta de probabilités :

Φ(𝑠) = 𝜙(𝛼, 𝛽; 𝑠),

où 𝛼 et 𝛽 sont deux paramètres entiers (> 1) contrôlant la forme du profil. La fonction 𝜙
est définie de sorte à ce que son carré s’intègre à 1, c’est à dire une fonction unitaire au
sens de la norme ℒ2 :

𝜙(𝛼, 𝛽; 𝑠) = 𝑠𝛼−1(1 − 𝑠)𝛽−1

√∫1
0 𝑦2(𝛼−1)(1 − 𝑦)2(𝛽−1)d𝑦

.

Le ratio 𝛼/𝛽 contrôle l’asymétrie de la distribution (les profils symétriques sont pour
𝛼 = 𝛽) et les valeurs individuelles de 𝛼 et 𝛽 déterminent l’aspect de la fonction à chaque
extrémité.
Nous proposons de modéliser l’activation en interpolant entre deux paires de para-

mètres (𝛼0, 𝛽0) et (𝛼1, 𝛽1) selon un paramètre d’interpolation 𝑎 ∈ [0, 1]. Le premier jeu
de paramètres représente la forme du muscle au repos et le second la forme du muscle
au maximum de son activation (contraction isométrique). Pour préserver le volume du

132

B.3 Déformations dynamiques

muscle et respecter les équations, on emploie l’interpolation sphérique-linéaire (au sens
de ℒ2) entre les deux fonctions 𝜙(𝛼0, 𝛽0; 𝑠) et 𝜙(𝛼1, 𝛽1; 𝑠). On montre à l’Annexe A.3 que
la normalisation de la fonction interpolée est équivalente à un polynôme du second degré
en 𝑎, permettant d’évaluer cette fonction à un coût d’évaluation faible.
Le profil de section transversale est une ellipse contrôlée par un seul paramètre d’ex-

centricité 𝑒, les longueurs des demi-axes 𝑢 et 𝑣 de l’ellipse s’en déduisant déduisant par
l’Équation (B.2).

𝑢 =
4√(1 − 𝑒2) 𝑣 = 1/𝑢.

B.3 Déformations dynamiques
Le modèle de muscle décrit précédemment est purement cinématique. Dans cette section
nous présentons l’addition d’effets dynamiques par l’introduction d’une simulation phy-
sique. Les points de contrôle p𝑖 de l’axe central 𝒞 peuvent maintenant se déplacer selon
les résultats d’un moteur physique simplifié : Position based dynamics (PBD) [Mül+07].
Chaque point est représenté dans ce cadre par une particule de masse 𝑚𝑖 représentant
une fraction de la masse du muscle(les extrémités demeurent liées cinématiquement
à leur os d’animation). L’approche PBD prend en compte non pas les forces agissant
sur les particules, mais des fonctions de contraintes, qui sont optimisées par le solveur
Gauss-Seidel de PBD. Ce solveur converge itérativement vers une position des particules
satisfaisant aux contraintes. Notre approche utilisant les champs scalaires est ici un atout,
puisqu’elle permet de définir des contraintes modélisant efficacement les collisions entre
objets.

Contraintes d’élasticité Nous introduisons une contrainte de distance élastique entre les par-
ticules de l’axe musculaire se comportant comme des ressorts, caractérisés par une raideur
𝑘 et une distance de repos 𝑑0, ces paramètres déterminant le comportement dynamique
du muscle : une faible raideur créera beaucoup d’effets inertiels et des secousses visibles,
alors qu’une raideur forte maintient l’axe du muscle quasi immobile relativement à ses
extrémités.

Détection des collisions Les collisions sont évitées en introduisant des contraintes entre une
particule et un champ scalaire, c’est à dire en forçant une particule à demeurer à une
certaine distance de la surface implicite correspondante. Chaque particule se comporte
alors comme une sphère, et les os sont représentés soit par des champs de distance
discrétisés par rapport à un modèle anatomique existant ou comme de simple cylindres.
La prise en compte des os donne des déformations musculaires plus réalistes. De même

133

Annexe B Résumé en français

nous proposons de modéliser la collision entre muscles : chaque particule de l’axe d’un
muscle est repoussée par le champ scalaire correspondant aux autres muscles proches.
Enfin, nous proposons une modélisation de l’interaction entre le muscle et la peau, en
contraignant les particules de muscles à rester à une certaine distance à l’intérieur de la
peau telle que définie dans la position initiale du personnage.

B.4 Intégration à Implicit Skinning
Opérateurs de mélange Les déformations générées par les muscles sont intégrées dans la
représentation implicite de la peau proposée par Implicit Skinning [Vai+13 ; Vai+14].
Chaque champ scalaire musculaire 𝑓𝑀 est un champ de distance à support global. Pour être
intégrés avec les champs scalaires de l’Implicit Skinning, il est tout d’abord nécessaire de
les convertir en fonction à support compact [BWG04]. Nous utilisons pour cela la fonction
compactifiante utilisée par Vaillant et al. [Vai+13]. Les différents muscles appartenant à
une partie du corps distincte associée à un os d’animation sont alors mélangées au champ
scalaire HRBF représentant la surface de la peau, pour produire un nouveau champ
scalaire.
Ces différents champs scalaires, représentant chacun une partie mobile du corps du

personnages, sont ensuite combinés aumoyen de l’opérateur de contact décrit par Vaillant
et al. [Vai+14] pour représenter le personnage entier. Durant l’animation, les sommets du
maillage représentant le personnage suivent cette surface implicite se déformant selon
les mouvements du squelette, ce qui permet à la fois d’éviter les auto-intersections, et de
prendre en compte les effets des muscles.

Toutefois, le mélange entre les muscles et la HRBF requiert une attention particulière. En
utilisant un opérateur d’union, le champ scalaire résultant présente des discontinuités et
des points critiques à proximité de la surface de la peau. Or, les points critiques induisent
l’algorithme de suivi d’Implicit Skinning en erreur, et provoquent des artefacts visuels
qu’il convient d’éviter. Pour cela, nous utilisons l’opérateur de détail décrit par Canezin
et al. [CGB13], qui évite l’apparition de ces points singuliers.

Pour que l’effet du muscle soit visible en extension comme en flexion, les HRBFs repré-
sentant la peau du modèle sont modifiées de sorte à ce que ce soit le muscle qui capture
la forme de la peau et non la HRBF statique. Ainsi lorsque le muscle se dégonfle, la peau
est visiblement creusée.

Intégration à l’algorithme d’animation La mise à jour de l’algorithme Implicit Skinning tenant
compte des muscles est illustrée par la Figure 6.5. À chaque nouvelle trame, le squelette
d’animation est transformé pour atteindre sa pose cible. Les éléments liés cinématiquement

134

B.5 Résultats

au squelette d’animation (HRBF et particules extrémales) sont mis à jour. Les paramètres
de forme du muscle (𝛼, 𝛽, l’excentricité ou l’activation) peuvent être éventuellement
spécifiés sous forme de keyframes et sont calculés à ce moment. Ensuite, le solveur PBD
calcule la nouvelle position des particules, et les champs scalaires représentant les muscles
sont mis à jour. Cela permet d’atteindre la représentation implicite de la peau pour cette
trame, qui sera utilisé pour corriger la position des sommets par l’algorithme Implicit
Skinning.

B.5 Résultats
Pour tester cette méthode d’animation, nous avons utilisé plusieurs scènes allant de
mouvements simples comme une flexion de l’avant-bras ou un mouvement oscillant du
bras, à des mouvements plus complexes comme la course ou le saut. Les résultats obtenus
démontrent la possibilité d’exécuter cette méthode à des vitesses permettant son usage
interactif, allant d’environ 30 images par secondes dans les cas les plus simples à 2 images
par secondes dans les plus complexes. La complexité des scènes dégrade les performances
assez rapidement, mais lors des sessions d’édition, il est possible de favoriser la vitesse au
détriment de la précision en réduisant le nombre de particules par muscles, ou en simulant
uniquement les muscles en cours d’édition. De plus, la mise en œuvre de notre méthode
pourrait également être rendue plus rapide en exécutant les tâches les plus coûteux (la
simulation physique et l’algorithme de suivi d’Implicit Skinning) sur un GPU. En effet,
ces deux calculs sont essentiellement parallélisables, et bénéficieraient grandement d’une
implémentation sur carte graphique.

B.6 Conclusion
Les travaux présentés dans cette thèse mettent donc en évidence qu’il est possible d’amé-
liorer la plausibilité des résultats d’Implicit Skinning par l’adjonction de primitives repré-
sentant l’effet des muscles en conservant des performances suffisantes pour l’interactivité.
La formulation implicite des formes des muscles est un atout pour l’évaluation du volume
en formule fermée et donc pour dériver des règles permettant la déformation des muscles
à volume constant. De plus, cette formulation s’intègre élégamment dans le modèle phy-
sique de Position based dynamics, permettant d’ajouter des effets dynamiques dans le
mouvement des muscles à moindre frais calculatoires. Enfin, ces travaux augurent de l’ap-
plicabilité de méthodes inspirées de l’Implicit Skinning dans un contexte de production
infographique.

135

Bibliography
[ACP02] Brett Allen, Brian Curless, and Zoran Popović. “Articulated Body Deformation

from Range Scan Data”. In: ACM Transactions on Graphics 21.3 (July 2002), pp. 612–619.
[AF15] Nadine Abu Rumman and Marco Fratarcangeli. “Position-Based Skinning for Soft

Articulated Characters”. In: Computer Graphics Forum 34.2 (2015). Proceedings of
Eurographics, pp. 240–250.

[AF16] Nadine Abu Rumman and Marco Fratarcangeli. “State of the Art in Skinning
Techniques for Articulated Deformable Characters”. In: Proceedings of the International
Conference on Computer Graphics Theory and Applications. GRAPP 2016. Rome, Italy, Feb.
2016.

[AHH08] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time rendering. 3rd ed.
Natick, Massachusetts: A K Peters Ltd., 2008.

[Ale02] Marc Alexa. “Linear Combination of Transformations”. In: ACM Transactions on
Graphics 21.3 (July 2002), pp. 380–387.

[Ali+13] Dicko Ali-Hamadi, Tiantian Liu, Benjamin Gilles, Ladislav Kavan, François Faure,
Olivier Palombi, and Marie-Paule Cani. “Anatomy Transfer”. In: ACM Transactions on
Graphics 32.6 (Nov. 2013), 188:1–188:8.

[All+06] Brett Allen, Brian Curless, Zoran Popović, and Aaron Hertzmann. “Learning a
correlatedmodel of identity and pose-dependent body shape variation for real-time
synthesis”. In: Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer
Animation. SCA ’06. Eurographics Association. 2006, pp. 147–156.

[AM00] Marc Alexa and Wolfgang Müller. “Representing Animations by Principal Com-
ponents”. In: Computer Graphics Forum 19.3 (2000), pp. 411–418.

[Ang+05] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim
Rodgers, and James Davis. “SCAPE: Shape Completion and Animation of People”.
In: ACM Transactions on Graphics 24.3 (July 2005), pp. 408–416.

[Ang+17] Baptiste Angles, Marco Tarini, Brian Wyvill, Loıc̈ Barthe, and Andrea Tagliasac-
chi. “Sketch-based Implicit Blending”. In: ACM Transactions on Graphics 36.6 (Nov.
2017), 181:1–181:13.

[AR10] Richard A. Askey and Ranjan Roy. “The Euler Beta Function”. In: NIST Digital Library
of Mathematical Functions. Ed. by Frank W. J. Olver, Adri B. Olde Daalhuis, Daniel
W. Lozier, Barry I. Schneider, Ronald F. Boisvert, Charles W. Clark, Bruce R.
Miller, and Bonita V. Saunders. Release 1.0.18. Cambridge University Press, 2010.
Chap. 5.12.

[BA02] J Andreas Bærentzen and Henrik Aanæs. Generating signed distance fields from triangle
meshes. Tech. rep. 2002-21. DK-2800 Kongens Lyngby - Denmark: Informatics and
Mathematical Modeling, Technical University of Denmark, 2002.

[Bar+03] Loïc Barthe, Neil. A. Dodgson, Malcolm A. Sabin, Brian Wyvill, and Véronique
Gaildrat. “Two-dimensional Potential Fields for Advanced Implicit Modeling
Operators”. In: Computer Graphics Forum 22.1 (2003), pp. 23–33.

[Bar84] Alan H. Barr. “Global and Local Deformations of Solid Primitives”. In: SIGGRAPH
Computer Graphics 18.3 (Jan. 1984), pp. 21–30.

137

Bibliography

[Ben+14] Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles
Macklin. “A Survey on Position-Based SimulationMethods inComputerGraphics”.
In: Computer Graphics Forum 33.6 (2014), pp. 228–251.

[Ber+10] Adrien Bernhardt, Loïc Barthe, Marie-Paule Cani, and Brian Wyvill. “Implicit
blending revisited”. In: Computer Graphics Forum 29.2 (2010), pp. 367–375.

[BGC01] Loïc Barthe, Véronique Gaildrat, and René Caubet. “Extrusion of 1D implicit
profiles: Theory and first application”. In: International Journal of Shape Modeling 7.2
(2001), pp. 179–199.

[Bli82] James F. Blinn. “A Generalization of Algebraic Surface Drawing”. In: ACM Transac-
tions on Graphics 1.3 (July 1982), pp. 235–256.

[Blo97] Jules Bloomenthal, ed. Introduction to implicit surfaces. The Morgan Kaufmann Series
in Computer Graphics. Morgan Kaufmann, 1997.

[BMM15] Jan Bender, Matthias Müller, and Miles Macklin. “Position-Based Simulation
Methods inComputerGraphics”. In: Tutorial Proceedings of Eurographics. Zurich, Switzer-
land, Apr. 2015.

[BN07] Antoine Bouthors and Matthieu Nesme. “Twinned Meshes for Dynamic Triangula-
tion of Implicit Surfaces”. In: Proceedings of Graphics Interface. GI ’07. Montreal, Canada:
ACM, 2007, pp. 3–9.

[Bot+10] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. Polygon
mesh processing. Ed. by A K Peters. 5 Commonwealth Road, Suite 2C, Natick, Mas-
sachusetts.: CRC press, 2010.

[Bri07] Robert Bridson. “Fast Poisson Disk Sampling in Arbitrary Dimensions”. In: ACM
SIGGRAPH 2007 Sketches. SIGGRAPH ’07. San Diego, California: ACM, 2007.

[BWG04] Loïc Barthe, BrianWyvill, and Erwin deGroot. “Controllable binary CSG operator
for ”soft objects””. In: International Journal of Shape Modeling 10.2 (2004), pp. 135–154.

[Can16] Florian Canezin. “Study of the CompositionModels of Field Functions in Computer
Graphics”. PhD thesis. Université de Toulouse, Sept. 2016.

[Cap+02] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. “In-
teractive Skeleton-driven Dynamic Deformations”. In: ACM Transactions on Graphics
21.3 (July 2002), pp. 586–593.

[Cap+05] SteveCapell,MatthewBurkhart, BrianCurless, TomDuchamp, andZoranPopović.
“Physically Based Rigging for Deformable Characters”. In: Proceedings of the ACM
SIGGRAPH / Eurographics Symposium on Computer Animation. SCA ’05. Los Angeles, Cali-
fornia: ACM, 2005, pp. 301–310.

[Cas+16] Dan Casas, Andrew Feng, Oleg Alexander, Graham Fyffe, Paul Debevec, Ryosuke
Ichikari, Hao Li, KyleOlszewski, Evan Suma, andAri Shapiro. “Rapid Photorealistic
Blendshape Modeling from RGB-D Sensors”. In: Proceedings of the 29th International
Conference on Computer Animation and Social Agents. CASA ’16. Geneva, Switzerland: ACM,
2016, pp. 121–129.

[CBS96] Benoît Crespin, Carole Blanc, and Christophe Schlick. “Implicit Sweep Objects”.
In: Computer Graphics Forum 15.3 (1996), pp. 165–174.

[CGB13] Florian Canezin, Gaël Guennebaud, and Loic Barthe. “Adequate inner bound for
geometric modeling with compact field functions”. In: Computers & Graphics 37.6
(2013). Shape Modeling International (SMI) Conference 2013, pp. 565–573.

[CGB16] Florian Canezin, Gael Guennebaud, and Loïc Barthe. “Topology-Aware Neighbor-
hoods for Point-Based Simulation and Reconstruction”. In: Proceedings of the ACM
SIGGRAPH/Eurographics Symposium onComputer Animation. SCA ’16. Zurich, Switzerland,
July 2016.

138

[CHP89] J. E. Chadwick, David. R. Haumann, and Richard. E. Parent. “Layered Construction
for Deformable Animated Characters”. In: SIGGRAPH Computer Graphics 23.3 (July
1989), pp. 243–252.

[CZ92] David T. Chen and David Zeltzer. “Pump It Up: Computer Animation of a Biome-
chanically BasedModel of Muscle Using the Finite ElementMethod”. In: SIGGRAPH
Computer Graphics 26.2 (July 1992), pp. 89–98.

[DC98] Mathieu Desbrun and Marie-Paule Cani. “Active Implicit Surface for Animation”.
In: Proceedings of Graphics Interface. GI 1998. Published under the name Marie-Paule
Cani-Gascuel. The Canadian Human-Computer Communications Society. Vancou-
ver, Canada, June 1998, pp. 143–150.

[DCB14] Crispin Deul, Patrick Charrier, and Jan Bender. “Position-Based Rigid Body Dy-
namics”. In: Computer Animation and Virtual Worlds 27.2 (2014), pp. 103–112.

[Del+07] Scott L. Delp, Franck C. Anderson, Allison S. Arnold, Peter Loan, Ayman Habib,
John T. Chand, Eran Guendelman, and Darryl G. Thelen. “OpenSim: Open-Source
Software to Create and Analyze Dynamic Simulations of Movement”. In: IEEE
Transactions on Biomedical Engineering 54.11 (Nov. 2007), pp. 1940–1950.

[FLP14] Ye Fan, Joshua Litven, and Dinesh K. Pai. “Active Volumetric Musculoskeletal
Systems”. In: ACM Transactions on Graphics 33.4 (July 2014), 152:1–152:9.

[FMM13] Makoto Fujisawa, Yojiro Mandachi, and Kenjiro T. Miura. “Calculation of Velocity
on an Implicit Surface by Curvature Invariance”. In: Journal of Information Processing
21.4 (Oct. 2013), pp. 674–680.

[GH99] Cindy Grimm and John Hughes. “Implicit generalized cylinders using profile
curves”. In: Proceedings of Implicit Surfaces. Bordeaux, France: ACM, Sept. 1999, pp. 33–
41.

[GM85] Michael Girard and Anthony A. Maciejewski. “Computational Modeling for the
Computer Animation of Legged Figures”. In: Proceedings of the 12th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’85. New York, NY, USA: ACM,
1985, pp. 263–270.

[GMS14] Ming Gao, Nathan Mitchell, and Eftychios Sifakis. “Steklov-Poincaré Skinning”.
In: Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation. SCA
’14. Copenhagen, Denmark: Eurographics Association, 2014, pp. 139–148.

[Gol05] Ron Goldman. “Curvature formulas for implicit curves and surfaces”. In: Computer
Aided Geometric Design 22.7 (2005). Geometric Modelling and Differential Geometry,
pp. 632–658.

[Gou+13] Olivier Gourmel, Loïc Barthe, Marie-Paule Cani, Brian Wyvill, Adrien Bernhardt,
Mathias Paulin, and Herbert Grasberger. “A Gradient-based Implicit Blend”. In:
ACM Transactions on Graphics 32.2 (Apr. 2013), 12:1–12:12.

[Gra18] HenryGray.Anatomy of the Human Body. Ed. byWarrenH. Lewis. 20th ed. Philadelphia:
Lea and Febiger, 1918.

[Hah+12] Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian
Coros, and Markus Gross. “Rig-space physics”. In: ACM Transactions on Graphics 31.4
(July 2012), 72:1–72:8.

[Ham44] William Rowan Hamilton. “On quaternions; or on a new system of imaginaries in
algebra”. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
25.163 (1844), pp. 10–13.

[HC32] David Hilbert and Stephan Cohn-Vossen. Anschauliche Geometrie. Ed. by Julius
Springer. Berlin: Heidelberg, 1932.

139

Bibliography

[HH85] Christoph Hoffmann and John Hopcroft. “Automatic surface generation in com-
puter aided design”. In: The Visual Computer 1.2 (1985), pp. 92–100.

[HHP15] Minyeon Han, Jisoo Hong, and F.C. Park. “Musculoskeletal dynamics simulation
using shape-varying muscle mass models”. In:Multibody System Dynamics 33.4 (2015),
pp. 367–388.

[Hir+12] David A. Hirshberg, Matthew Loper, Eric Rachlin, and Michael J. Black. “Coreg-
istration: Simultaneous Alignment and Modeling of Articulated 3D Shape”. In:
Proceedings of the European Conference on Computer Vision. Ed. by Andrew Fitzgibbon, Svet-
lana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid. ECCV 2012 6.
Florence, Italy: Springer Berlin Heidelberg, Oct. 2012, pp. 242–255.

[HSK16] Daniel Holden, Jun Saito, and Taku Komura. “A Deep Learning Framework for
Character Motion Synthesis and Editing”. In: ACM Transactions on Graphics 35.4 (July
2016), 138:1–138:11.

[Hug+13] John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D.
Foley, Steven K. Feiner, and Kurt Akeley. “Implicit Representation of Shape”. In:
Computer Graphics: Principles and Practice. 3rd ed. Boston, MA, USA: Addison-Wesley
Professional, July 2013. Chap. 24, p. 1264.

[IBP15] Alexandru Eugen Ichim, Sofien Bouaziz, and Mark Pauly. “Dynamic 3D Avatar
Creation from Hand-held Video Input”. In: ACM Transactions on Graphics 34.4 (July
2015), 45:1–45:14.

[Jac+11] Alec Jacobson, Ilya Baran, Jovan Popović, andOlga Sorkine. “Bounded Biharmonic
Weights for Real-time Deformation”. In: ACM Transactions on Graphics 30.4 (July 2011),
78:1–78:8.

[Jac+14] Alec Jacobson, Zhigang Deng, Ladislav Kavan, and John P. Lewis. “Skinning: Real-
time Shape Deformation”. In: ACM SIGGRAPH Courses. SIGGRAPH 2014. Vancouver,
Canada, Aug. 2014.

[Jak01] Thomas Jakobsen. Advanced Character Physics. gamastutra.com. Jan. 2001.
[JS11] Alec Jacobson and Olga Sorkine. “Stretchable and Twistable Bones for Skeletal

Shape Deformation”. In: ACM Transactions on Graphics 30.6 (Dec. 2011), 165:1–165:8.
[Kad+16] Petr Kadleček, Alexandru-Eugen Ichim, Tiantian Liu, Jaroslav Křivánek, and

Ladislav Kavan. “Reconstructing Personalized Anatomical Models for Physics-
based Body Animation”. In: ACM Transactions on Graphics 35.6 (Nov. 2016), 213:1–
213:13.

[Kar90] Troels Kardel. “Niels Stensen’s geometrical theory of muscle contraction (1667): A
reappraisal”. In: Journal of Biomechanics 23.10 (1990), pp. 953–965.

[Kav+07] Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. “Skinning with
Dual Quaternions”. In: Proceedings of the Symposium on Interactive 3D Graphics and Games.
I3D ’07. Seattle, Washington: ACM, Apr. 2007, pp. 39–46.

[Kav+08] Ladislav Kavan, Steven Collins, Jiřı ́ Žára, and Carol O’Sullivan. “Geometric
Skinning with Approximate Dual Quaternion Blending”. In: ACM Transactions on
Graphics 27.4 (Nov. 2008), p. 105.

[KCO09] Ladislav Kavan, Steven Collins, and Carol O’Sullivan. “Automatic Linearization
of Nonlinear Skinning”. In: Proceedings of the Symposium on Interactive 3D Graphics and
Games. I3D ’09. Boston, Massachusetts: ACM, 2009, pp. 49–56.

[KH14] YoungBeom Kim and JungHyun Han. “Bulging-free dual quaternion skinning”. In:
Computer Animation and Virtual Worlds 25.3-4 (2014), pp. 321–329.

140

[Kim+17] Meekyoung Kim, Gerard Pons-Moll, Sergi Pujades, Seungbae Bang, Jinwook Kim,
Michael J. Black, and Sung-Hee Lee. “Data-driven Physics for Human Soft Tissue
Animation”. In: ACM Transactions on Graphics 36.4 (July 2017), 54:1–54:12.

[KJP02] Paul G. Kry, Doug L. James, and Dinesh K. Pai. “EigenSkin: Real Time Large De-
formation Character Skinning in Hardware”. In: Proceedings of the ACM SIGGRAPH /
Eurographics Symposium on Computer Animation. SCA ’02. San Antonio, Texas: ACM, July
2002, pp. 153–159.

[KM04] Tsuneya Kurihara and Natsuki Miyata. “Modeling Deformable Human Hands
from Medical Images”. In: Proceedings of the ACM SIGGRAPH / Eurographics Symposium
on Computer Animation. SCA ’04. Grenoble, France: Eurographics Association, 2004,
pp. 355–363.

[KP11] Junggon Kim and Nancy S. Pollard. “Fast Simulation of Skeleton-driven De-
formable Body Characters”. In: ACM Transactions on Graphics 30.5 (Oct. 2011), 121:1–
121:19.

[KS12] Ladislav Kavan and Olga Sorkine. “Elasticity-Inspired Deformers for Character
Articulation”. In: ACM Transactions on Graphics 31.6 (Nov. 2012), 196:1–196:8.

[KVS99] Leif Kobbelt, Jens Vorsatz, and Hans-Peter Seidel. “Multiresolution hierarchies on
unstructured triangle meshes”. In: Computational Geometry 14.1-3 (1999), pp. 5–24.

[KŽ05] Ladislav Kavan and Jiří Žára. “Spherical Blend Skinning: A Real-time Deformation
of Articulated Models”. In: Proceedings of the Symposium on Interactive 3D Graphics and
Games. I3D ’05. Washington, District of Columbia: ACM, Apr. 2005, pp. 9–16.

[LA07] Keng Siang Lee and Golam Ashraf. “Simplified Muscle Dynamics for Appealing
Real-Time Skin Deformation”. In: Proceedings of the International Conference on Computer
Graphics and Virtual Reality. CGVR’07. Las Vegas, Nevada: CSREA Press, June 2007,
pp. 160–168.

[LAG01] Antoine Leclercq, Samir Akkouche, and Éric Galin. “Mixing Triangle Meshes and
Implicit Surfaces in Character Animation”. In: Proceedings of Eurographics Workshop on
Computer Animation and Simulation. 2001, pp. 37–47.

[LC87] William E. Lorensen and Harvey E. Cline. “Marching Cubes: A High Resolution
3D Surface Construction Algorithm”. In: SIGGRAPH Computer Graphics 21.4 (Aug.
1987), pp. 163–169.

[LCF00] John P. Lewis, Matt Cordner, and Nickson Fong. “Pose Space Deformation: A
Unified Approach to Shape Interpolation and Skeleton-driven Deformation”. In:
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’00. New Orleans, USA: ACM Press/Addison-Wesley Publishing Co., July
2000, pp. 165–172.

[Lee+12] Dongwoon Lee, Michael Glueck, Azam Khan, Eugene Fiume, and Ken Jackson.
“Modeling and simulation of skeletal muscle for computer graphics: A survey”. In:
Foundations and Trends in Computer Graphics and Vision 7.4 (Apr. 2012), pp. 229–276.

[Lew+14] John P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang
Deng. “Practice and Theory of Blendshape Facial Models”. In: Eurographics 2014 - State
of the Art Reports. Ed. by Sylvain Lefebvre and Michela Spagnuolo. The Eurographics
Association, 2014.

[LH09] Gene S. Lee and Frank Hanner. “Practical Experiences with Pose Space Deforma-
tion”. In: ACM SIGGRAPH Asia 2009 Sketches. SIGGRAPH Asia ’09. Yokohama, Japan:
ACM, Dec. 2009, 43:1–43:1.

[LH16] Binh Huy Le and Jessica K. Hodgins. “Real-time Skeletal Skinning with Optimized
Centers of Rotation”. In: ACM Transactions on Graphics 35.4 (July 2016), 37:1–37:10.

141

Bibliography

[Li+13] Duo Li, Shinjiro Sueda, Debanga R. Neog, and Dinesh K. Pai. “Thin Skin Elastody-
namics”. In: ACM Transactions on Graphics 32.4 (July 2013), pp. 491–4910.

[Liu+13] Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. “Simulation and Control of
Skeleton-driven Soft Body Characters”. In: ACM Transactions on Graphics 32.6 (Nov.
2013), 215:1–215:8.

[LMB14] Matthew Loper, Naureen Mahmood, and Michael J. Black. “MoSh: Motion and
shape capture from sparse markers”. In: ACM Transactions on Graphics 33.6 (2014),
220:1–220:13.

[Lop+15] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. “SMPL: A Skinned Multi-Person Linear Model”. In: ACM Transac-
tions on Graphics 34.6 (Oct. 2015). Proceedings of SIGGRAPH Asia, 248:1–248:16.

[LST09] Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. “Comprehensive
Biomechanical Modeling and Simulation of the Upper Body”. In: ACM Transactions
on Graphics 28.4 (Sept. 2009), 99:1–99:17.

[Mac+14] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. “Uni-
fied Particle Physics for Real-time Applications”. In: ACM Transactions on Graphics 33.4
(July 2014), 153:1–153:12.

[McA+11] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf,
Joseph Teran, and Eftychios Sifakis. “Efficient Elasticity for Character Skinning
with Contact and Collisions”. In: ACM Transactions on Graphics 30.4 (July 2011), 37:1–
37:12.

[MG03] Alex Mohr and Michael Gleicher. “Building Efficient, Accurate Character Skins
from Examples”. In: ACM Transactions on Graphics 22.3 (July 2003), pp. 562–568.

[MGV11] Ives Macêdo, João Paulo Gois, and Luiz Velho. “Hermite Radial Basis Functions
Implicits”. In: Computer Graphics Forum 30.1 (2011), pp. 27–42.

[Min+00] Kyung-Ha Min, Seung-Min Baek, Gun Lee, Haeock Choi, and Chan-Mo Park.
“Anatomically-based modeling and animation of human upper limbs”. In: Proceed-
ings of the International Conference on Human Modeling and Animation. Jan. 2000.

[MK16] Tomohiko Mukai and Shigeru Kuriyama. “Efficient Dynamic Skinning with Low-
rank Helper Bone Controllers”. In: ACM Transactions on Graphics 35.4 (July 2016),
36:1–36:11.

[MLT88] Nadia Magnenat-Thalmann, Richard Laperrire, and Daniel Thalmann. “Joint-
Dependent Local Deformations for Hand Animation and Object Grasping”. In:
Proceedings of Graphics Interface. GI 1988. Edmonton, Canada, June 1988, pp. 26–33.

[MM13] Miles Macklin and Matthias Müller. “Position Based Fluids”. In: ACM Transactions
on Graphics 32.4 (July 2013), 104:1–104:12.

[MMC16] Miles Macklin, Matthias Müller, and Nuttapong Chentanez. “XPBD: Position-
based Simulation of Compliant Constrained Dynamics”. In: Proceedings of the Interna-
tional Conference on Motion in Games. MIG ’16. Burlingame, California: ACM, Oct. 2016,
pp. 49–54.

[MMG06a] Bruce Merry, Patrick Marais, and James Gain. “Animation Space: A Truly Linear
Framework for Character Animation”. In: ACM Transactions on Graphics 25.4 (Oct.
2006), pp. 1400–1423.

[MMG06b] Bruce Merry, Patrick Marais, and James Gain. “Normal Transformations for Ar-
ticulated Models”. In: ACM SIGGRAPH 2006 Sketches. SIGGRAPH ’06. Boston, Mas-
sachusetts: ACM, Aug. 2006.

[Muk16] Tomohiko Mukai. “Example-Based Skinning Animation”. In: Handbook of Human
Motion. Ed. by BertramMüller, Sebastian I.Wolf, Gert-Peter Brueggemann, Zhigang

142

Deng, Andrew McIntosh, Freeman Miller, and William Scott Selbie. Springer
International Publishing, 2016, pp. 1–21.

[Mül+07] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. “Posi-
tion based dynamics”. In: Journal of Visual Communication and Image Representation 18.2
(2007), pp. 109–118.

[Mur+14] Akihiko Murai, Kazunari Takeichi, Taira Miyatake, and Yoshihiki Nakamura.
“Musculoskeletal modeling and physiological validation”. In: Proceedings of the IEEE
International Workshop on Advanced Robotics and its Social Impacts. ARSO 2014. Chicago,
USA, Sept. 2014, pp. 108–113.

[Mur+16] Akihiko Murai, Q. Youn Hong, Katsu Yamane, and Jessica K. Hodgins. “Dynamic
Skin Deformation Simulation Using Musculoskeletal Model and Soft Tissue Dy-
namics”. In: Pacific Graphics Short Papers. Ed. by Eitan Grinspun, Bernd Bickel, and
Yoshinori Dobashi. The Eurographics Association, 2016.

[Nea+06] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark
Carlson. “Physically Based Deformable Models in Computer Graphics”. In: Com-
puter Graphics Forum 25.4 (2006), pp. 809–836.

[Neu+13] Thomas Neumann, Kiran Varanasi, Nils Hasler, Markus Wacker, Marcus Mag-
nor, and Christian Theobalt. “Capture and Statistical Modeling of Arm-Muscle
Deformations”. In: Computer Graphics Forum 32.2 (May 2013), pp. 285–294.

[Nie04] Gregory M. Nielson. “Dual Marching Cubes”. In: Proceedings of the IEEE Conference on
Visualization. VIS ’04. Austin, USA: IEEE Computer Society, Oct. 2004, pp. 489–496.

[Nis+85] Hitoshi Nishimura, Makoto Hirai, Toshiyuki Kawai, Toru Kawata, Isao Shirakara,
and Koichi Omura. “Object modeling by distribution functions and a Method of
Image Generation”. In: The Transactions of the Institute of Electronics and Communication
Engineers of Japan J68-D.4 (1985). (in Japanese), pp. 718–725.

[NN94] Tomoyuki Nishita and Eihachiro Nakamae. “A Method for Displaying Metaballs
by using Bézier Clipping”. In: Computer Graphics Forum 13.3 (1994), pp. 271–280.

[NS13] Jesús R. Nieto and Antonio Susín. “Cage Based Deformations: A Survey”. In: Defor-
mation Models: Tracking, Animation and Applications. Ed. by Manuel González Hidalgo,
Arnau Mir Torres, and Javier Varona Gómez. Dordrecht: Springer Netherlands,
2013, pp. 75–99.

[NT98] Luciana Porcher Nedel and Daniel Thalmann. “Real time muscle deformations
using mass-spring systems”. In: Proceedings of Computer Graphics International. CGI 98.
Hannover, Germany, June 1998, pp. 156–165.

[Pan+13] Daniele Panozzo, Ilya Baran, Olga Diamanti, and Olga Sorkine-Hornung.
“Weighted averages on surfaces”. In: ACM Transactions on Graphics 32.4 (2013), 60:1–
60:12.

[Pas+95] Alexander Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir Savchenko. “Func-
tion representation in geometric modeling: concepts, implementation and applica-
tions”. In: The Visual Computer 11.8 (1995), pp. 429–446.

[PH06] Sang Il Park and Jessica K. Hodgins. “Capturing and Animating Skin Deformation
in Human Motion”. In: ACM Transactions on Graphics 25.3 (July 2006), pp. 881–889.

[PH08] Sang Il Park and Jessica K. Hodgins. “Data-driven Modeling of Skin and Muscle
Deformation”. In: ACM Transactions on Graphics 27.3 (Aug. 2008), 96:1–96:6.

[Pon+15] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J. Black.
“Dyna: A Model of Dynamic Human Shape in Motion”. In: ACM Transactions on
Graphics 34.4 (July 2015), 120:1–120:14.

143

Bibliography

[PSW05] Dinesh K. Pai, Shinjiro Sueda, and Qi Wei. “Fast Physically Based Musculoskeletal
Simulation”. In: ACM SIGGRAPH 2005 Sketches. SIGGRAPH ’05. Los Angeles, Califor-
nia: ACM, 2005.

[Req80] Aristides A. G. Requicha. “Representations of Rigid Solids: Theory, Methods, and
Systems”. In: ACM Computing Surveys 12 (1980), pp. 437–464.

[Ric73] Antonio Ricci. “A constructive geometry for computer graphics”. In: The Computer
Journal 16.2 (1973), pp. 157–160.

[RL13] Juan Ramos and Caroline Larboulette. “A Muscle Model for Enhanced Character
Skinning”. In: Journal of WSCG 21.2 (2013), pp. 107–116.

[RLN06] Taehyun Rhee, John P. Lewis, and Ulrich Neumann. “Real-Time Weighted Pose-
Space Deformation on the GPU”. In: Computer Graphics Forum 25.3 (2006), pp. 439–
448.

[SA07] Olga Sorkine and Marc Alexa. “As-rigid-as-possible surface modeling”. In: Proceed-
ings of the Symposium on Geometry processing. Vol. 4. SGP 07. Barcelona, Spain, July 2007,
pp. 109–116.

[Sab68] Malcolm A. Sabin. The use of potential surfaces for numerical geometry. Tech. rep.
VTO/MS/153. Weybridge, United Kingdom: British Aerospace Corporation,
1968.

[Sac+15] Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, and Dinesh K.
Pai. “Biomechanical Simulation and Control of Hands and Tendinous Systems”. In:
ACM Transactions on Graphics 34.4 (July 2015), 42:1–42:10.

[Sch+97] Ferdi Scheepers, Richard E. Parent, Wayne E. Carlson, and Stephen F. May.
“Anatomy-based Modeling of the Human Musculature”. In: Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’97. New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1997, pp. 163–172.

[SDN84] Dennis C. Schneider, Terence M. Davidson, and Alan M. Nahum. “In vitro biaxial
stress-strain response of human skin”. In: Archives of Otolaryngology 110.5 (1984),
pp. 329–333.

[SKP08] Shinjiro Sueda, Andrew Kaufman, and Dinesh K. Pai. “Musculotendon Simulation
for Hand Animation”. In: ACM Transactions on Graphics 27.3 (Aug. 2008), pp. 831–838.

[SOP95] Karansher Singh, Jun Ohya, and Richard E. Parent. “Human figure synthesis and
animation for virtual space teleconferencing”. In: Proceedings of the Virtual Reality Annual
International Symposium. VRIS 95. Research Triangle Park, USA, Mar. 1995, pp. 118–126.

[SP86] Thomas W. Sederberg and Scott R. Parry. “Free-form Deformation of Solid Geo-
metric Models”. In: SIGGRAPH Computer Graphics 20.4 (Aug. 1986), pp. 151–160.

[SRC01] Peter-Pike J. Sloan, Charles F. Rose III, and Michael F. Cohen. “Shape by Example”.
In: Proceedings of the Symposium on Interactive 3D Graphics. I3D ’01. Research Triangle Park,
USA: ACM, 2001, pp. 135–143.

[SS11] Jos Stam and Ryan Schmidt. “On the Velocity of an Implicit Surface”. In: ACM
Transactions on Graphics 30.3 (May 2011), 21:1–21:7.

[SSF08] Tamar Shinar, Craig Schroeder, and Ronald Fedkiw. “Two-way Coupling of Rigid
and Deformable Bodies”. In: Proceedings of the ACM SIGGRAPH / Eurographics Symposium
on Computer Animation. SCA ’08. Dublin, Ireland: Eurographics Association, 2008,
pp. 95–103.

[Ste64] Niels Stensen. De musculis et glandulis observationum specimen: cum epistolis duabus anatomicis.
(Published under the name Nicolai Stenonis). Copenhagen: Matthiae Godicchenii,
1664.

144

[Sue+11] Shinjiro Sueda, Garrett L. Jones, David I. W. Levin, and Dinesh K. Pai. “Large-scale
Dynamic Simulation of Highly Constrained Strands”. In: ACM Transactions on Graphics
30.4 (July 2011), 39:1–39:10.

[SZK15] Shunsuke Saito, Zi-Ye Zhou, and Ladislav Kavan. “Computational Bodybuilding:
Anatomically-based Modeling of Human Bodies”. In: ACM Transactions on Graphics
34.4 (2015). Proceedings of SIGGRAPH 2015, 41:1–41:12.

[Ter+03] Joseph Teran, Silvia Blemker, Victor Ng-Thow-Hing, and Ronald Fedkiw. “Finite
VolumeMethods for the Simulation of Skeletal Muscle”. In: Proceedings of the ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation. SCA ’03. San Diego, California:
Eurographics Association, 2003, pp. 68–74.

[Ter+05] Joseph Teran, Eftichios Sifakis, Silvia Blemker, Victor Ng-Thow-Hing, Cynthia Lau,
and Ronald Fedkiw. “Creating and simulating skeletal muscle from the visible
human data set”. In: IEEE Transactions on Visualization and Computer Graphics 11.3 (May
2005), pp. 317–328.

[TFS17] Fabio Turchet, Oleg Fryazinov, and Sarah C. Schvartzman. “Physically-based
Muscles and Fibers Modeling from Superficial Patches”. In: Eurographics Short Papers.
2017.

[TJ95] Frank Thomas and Ollie Johnston. The illusion of life: Disney animation. 3rd ed. New
York: Hyperion, 1995.

[TSC96] Daniel Thalmann, Jianhua Shen, and Eric Chauvineau. “Fast realistic human body
deformations for animation and VR applications”. In: Proceedings of Computer Graphics
International. CGI 96. Pohang. Korea, June 1996, pp. 166–174.

[Urb+01] Melanie G. Urbanchek, Elisa B. Picken, Loree K. Kalliainen, andWilliamM. Kuzon
Jr. “Specific Force Deficit in Skeletal Muscles of Old Rats Is Partially Explained by
the Existence of Denervated Muscle Fibers”. In: The Journals of Gerontology: Series A 56.5
(2001), B191–B197.

[Vai+13] Rodolphe Vaillant, Loïc Barthe, Gaël Guennebaud, Marie-Paule Cani, Damien
Rohmer, Brian Wyvill, Olivier Gourmel, and Mathias Paulin. “Implicit Skinning:
Real-time Skin Deformation with Contact Modeling”. In: ACM Transactions on Graphics
32.4 (July 2013), 125:1–125:12.

[Vai+14] Rodolphe Vaillant, Gaël Guennebaud, Loïc Barthe, BrianWyvill, andMarie-Paule
Cani. “Robust Iso-surface Tracking for Interactive Character Skinning”. In: ACM
Transactions on Graphics 33.6 (Nov. 2014), 189:1–189:11.

[Web+07] Ofir Weber, Olga Sorkine, Yaron Lipman, and Craig Gotsman. “Context-Aware
Skeletal Shape Deformation”. In: Computer Graphics Forum 26.3 (2007).

[WH94] Andrew P. Witkin and Paul S. Heckbert. “Using Particles to Sample and Control
Implicit Surfaces”. In: Proceedings of the 21st Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’94. Orlando, USA: ACM, July 1994, pp. 269–277.

[Wil94] Jane Wilhelms. Modeling Animals with Bones, Muscles, and Skin. Tech. rep. University of
California, Santa Cruz, 1994.

[WMW86] GeoffWyvill, CraigMcPheeters, andBrianWyvill. “Data structure for soft objects”.
In: The Visual Computer 2.4 (Feb. 1986), pp. 227–234.

[WO97] Brian Wyvill and Kees van Overveld. “Warping as a modelling tool for CSG/im-
plicitmodels”. In: Proceedings of the International Conference on ShapeModeling andApplications.
SMI 97. IEEE Computer Society. Aizu. Japan, Mar. 1997, pp. 205–213, 248.

[Woo00] Ryan Woodland. “Filling the Gaps – Advanced Animation Using Stitching and
Skinning”. In: Game Programming Gems. Ed. by Mark De Loura. Vol. 1. Game Pro-
gramming Gems. Charles River Media, 2000. Chap. 4.15, pp. 476–483.

145

Bibliography

[WP02] Xiaohuan Corina Wang and Cary Phillips. “Multi-weight Enveloping: Least-
squares Approximation Techniques for Skin Animation”. In: Proceedings of the ACM
SIGGRAPH / Eurographics Symposium on Computer Animation. SCA ’02. San Antonio, Texas:
ACM, 2002, pp. 129–138.

[WPP07] Robert Y. Wang, Kari Pulli, and Jovan Popović. “Real-time Enveloping with Rota-
tional Regression”. In: ACM Transactions on Graphics 26.3 (July 2007).

[WV97] Jane Wilhelms and Allen Van Gelder. “Anatomically-Based Modeling”. In: Proceed-
ings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’97. NewYork, NY, USA: ACMPress/Addison-Wesley Publishing Co., 1997, pp. 173–
180.

[Wyv15] Brian Wyvill. “Implicit Modeling”. In: Fundamentals of Computer Graphics. Ed. by Steve
Marschner and Peter Shirley. 4th ed. CRC Press, 2015. Chap. 22, pp. 585–612.

[XB16] Hongyi Xu and Jernej Barbič. “Pose-space Subspace Dynamics”. In: ACMTransactions
on Graphics 35.4 (July 2016), 35:1–35:14.

[YT13] Jihun Yu and Greg Turk. “Reconstructing Surfaces of Particle-based Fluids Using
Anisotropic Kernels”. In: ACM Transactions on Graphics 32.1 (Feb. 2013), 5:1–5:12.

[Zaj89] Felix E. Zajac. “Muscle and tendon: properties, models, scaling, and application
to biomechanics and motor control.” In: Critical reviews in biomedical engineering 17 4
(1989), pp. 359–411.

[ZHK15] Lifeng Zhu, Xiaoyan Hu, and Ladislav Kavan. “Adaptable Anatomical Models for
Realistic Bone Motion Reconstruction”. In: Computer Graphics Forum 34.2 (May 2015).
Proceedings of Eurographics, pp. 459–471.

146

Contents

Notations xi

Introduction 1

I Skinning with implicit surfaces 5

1 Character animation and skinning 7
1.1 The skeletal animation pipeline . 7

1.1.1 Models, rigs, and skeletons . 7
1.1.2 Animating a rigged character . 9
1.1.3 Primary and secondary motion . 10

1.2 Physically-based skinning . 12
1.2.1 Force-based muscle models . 12
1.2.2 Simulation of anatomic models . 13
1.2.3 Simulation space reduction . 14
1.2.4 Simulation control and coupling . 15
1.2.5 Discussion . 15

1.3 Data-driven skinning . 16
1.3.1 Pose-space deformation . 16
1.3.2 Pose and shape capture . 17
1.3.3 Statistical shape models . 17
1.3.4 Learning dynamics . 18
1.3.5 Discussion . 18

1.4 Geometric skinning . 19
1.4.1 Linear blend skinning and skinning weights 20
1.4.2 Dual quaternion skinning . 21
1.4.3 Improving geometric skinning . 23
1.4.4 Shape-based muscle deformers . 24
1.4.5 Discussion . 26

147

Contents

2 Introduction to implicit surfaces 29
2.1 Scalar fields and implicit surfaces . 29
2.2 Implicit shape models . 31

2.2.1 Distance fields and global support functions 31
2.2.2 Compact support functions . 33
2.2.3 Extrusion surfaces . 35

2.3 Composition of implicit surfaces . 37
2.3.1 Composition operators . 37
2.3.2 Graphical representation of operators 39
2.3.3 Blending operators . 40
2.3.4 Gradient-based operators . 42

2.4 Transforming implicit surfaces . 45
2.4.1 Spatial transformation of a scalar field 45
2.4.2 Gradient of a deformed field . 46

2.5 Animated implicit surfaces . 47

3 Implicit Skinning 49
3.1 Implicit skin representation . 50

3.1.1 HRBF primitives . 50
3.1.2 Composition operators . 53
3.1.3 Animation of the implicit surface 55

3.2 Surface tracking . 57
3.3 Tangential relaxation and skin elasticity . 58
3.4 Implicit Skinning algorithm . 60

3.4.1 Time-dependency . 62
3.5 Discussion . 62

II Implicit muscle deformers 65

4 Implicit muscle models 67
4.1 Muscle anatomy . 67

4.1.1 The different types of muscles . 67
4.1.2 Deformations . 70
4.1.3 A muscle model for skinning . 71

4.2 Muscle model . 71
4.2.1 Construction of the central axis . 72
4.2.2 Projection on the axis . 73

148

Contents

4.2.3 Function evaluation . 75
4.3 Shape parameters and volume preservation 76

4.3.1 Evaluation of volume . 76
4.3.2 Shape profile and activation . 78
4.3.3 Cross-section . 80
4.3.4 Summary . 81

4.4 Discussions . 82
4.4.1 Alternatives to the beta function . 82
4.4.2 Sketching profile . 84
4.4.3 Volume conservation and non-fusiform muscles 87

5 Dynamic muscle deformations 91
5.1 Position Based Dynamics . 91
5.2 Elasticity and inertial effects . 93

5.2.1 Particles setup . 93
5.2.2 Elastic distance constraints . 94

5.3 Collision resolution . 95
5.3.1 Muscle-bone and muscle-muscle collision 96
5.3.2 Muscle-skin interaction . 98
5.3.3 Friction . 98

5.4 Discussion . 99
5.4.1 Anatomic bones . 99
5.4.2 Particles collision shape . 100
5.4.3 Stiffness in PBD . 100

6 Integration with Implicit Skinning 101
6.1 Scalar field composition . 101
6.2 Integration in the Implicit Skinning pipeline 104
6.3 Skinning with muscles . 106

6.3.1 Results and discussion . 106
6.3.2 Performance . 109
6.3.3 Limitations . 112

6.4 Towards implicit anatomic volumes . 112

Conclusion 115

149

Contents

Appendix 119

A Proofs 121
A.1 ARAP Jacobi iteration . 121
A.2 Volume of extrusion surface . 123
A.3 Interpolation of beta function . 125
A.4 Square integral of piecewise cubic profile 126

B Résumé en français 129
B.1 Introduction . 129
B.2 Primitive musculaire . 130
B.3 Déformations dynamiques . 133
B.4 Intégration à Implicit Skinning . 134
B.5 Résultats . 135
B.6 Conclusion . 135

Bibliography 137

Full table of contents 147

List of Figures 151

150

List of Figures

1.1 A model of a hand with its skeleton rig. 8
1.2 Animation and skinning of a character. 9
1.3 Early mesh-based muscle simulation. 12
1.4 A physics-based anatomic template. 14
1.5 Typical blendshape expressions. 16
1.6 Data-driven soft tissue model. 18
1.7 Geometric skinning methods . 19
1.8 Typical artefacts of geometric skinning methods. 21
1.9 Weight painting in Blender. 22
1.10 Examples of geometric muscle deformers 24
1.11 A dynamic muscle shape model. 25
1.12 Muscles shapes obtained with an axis curve and a thickness curve. 26

2.1 A sample of implicit surfaces. 30
2.2 Skeleton-based surface. 32
2.3 Blinn’s Blobby molecules. 33
2.4 Example of a sweep surface. 36
2.5 Evaluation of an extrusion surface field function. 37
2.6 Clean union of two spheres. 39
2.7 Two implicit spheres with 2D space of values. 39
2.8 Graphical representation of binary operators. 40
2.9 Example of composition operators. 41
2.10 Effect of detail operator. 42
2.11 Common blending artefacts. 43
2.12 Solving the bulging artefact with gradient-based blending. 44
2.13 Contact operator. 44
2.14 Construction of the contact operator. 45
2.15 Warping of an implicit surface. 46
2.16 Tracking points on a translating implicit sphere. 47

3.1 Partition and reconstruction of the mesh. 50

151

List of Figures

3.2 HRBF surface reconstruction. 51
3.3 Effect of extra endpoints on the implicit skin 52
3.4 Effect of the contact operator on skinning. 53
3.5 Controller functions used for Implicit Skinning. 53
3.6 Implicit Skinning on fingers. 54
3.7 Building of the skin composition tree. 55
3.8 Implicit Skinning projection step. 56
3.9 Vertex neighbourhood and cotangent weights. 58
3.10 Projection and tangential relaxation. 59

4.1 A 3D anatomical model of the left arm. 68
4.2 Muscles origins and insertions. 69
4.3 The different types of muscles. 69
4.4 Deformation modes of a skeletal muscle. 70
4.5 Schema of muscle and notations. 72
4.6 Discontinuities of the orthogonal projection. 73
4.7 Projection on a polyline. 74
4.8 Reparametrization of inner angle. 74
4.9 Comparison between standard projection and reprojection. 75
4.10 Effect of muscle contraction. 77
4.11 Profiles of the 𝜙 function for values of 𝛼 and 𝛽. 79
4.12 Profile function interpolation. 79
4.13 Ellipses of various eccentricites. 80
4.14 Shapes of calf muscles and dorsals. 81
4.15 Amplification of muscle width. 82
4.16 Piecewise cubic muscle profile. 84
4.17 Example sketches of muscle profile. 85
4.18 Fitting the beta function profile on sketches. 85
4.19 Sampling values on the sketch. 86
4.20 Fitting sketches with DST. 87
4.21 Relative variation (in %) of muscle volume in the biceps curl scene. 87
4.22 Non-fusiform muscles represented by fibers. 88

5.1 Position of tendons in the dynamic muscle model. 94
5.2 Comparison between stiff and loose muscles. 95
5.3 PBD constraints used in the muscle model. 96
5.4 Anatomic bones and animation bones. 97
5.5 Comparison between anatomical bones and proxy. 98

152

List of Figures

5.6 Friction in collision resolution. 99

6.1 Integration of muscle fields. 102
6.2 Blending muscle and bones with a HRBF. 103
6.3 Gradient field of blended muscle field. 104
6.4 HRBF modification to integrate muscles. 105
6.5 Implicit Skinning pipeline with muscles. 106
6.6 Test scenes. 106
6.7 Detail of the arm during the arm shake scene. 107
6.8 Detail of the arm during the biceps curl scene. 107
6.9 Detail of the legs during the jump scene. 108
6.10 Detail of the arm during the run scene. 108
6.11 Muscle editing session. 110
6.12 Average times per number of particles. 111
6.13 Implicit fat tissue jiggling. 113

153

♠
Colophon

This document is the
defense version of the thesis.

It was typeset with LuaLATEX on June 20, 2018
using the scrbook class from the KOMA-Script package.

Pagella
is the main font used for the text and maths. A font in the style of Palatino,

a humanist serif typeface, designed by Herman Zapf in 1949. This typeface comes
from the TEX Gyre project maintained by the Polish TEX user group GUST. Additional

glyphs from XITS-Math from STIX Fonts were used for the cursive math letters.

Fira Sans
designed by Erik Spiekermann and Carois Type Design for the Mozilla

Foundation in 2013 is used for parts, chapters and section titles.
Fonts are released under open licences (GUST and SIL).

♠
All the material

used in the preparation
of this thesis was produced with free and open source software.

Résumé : En animation de personnages 3D, la déformation de surface, ou skinning, est une étape cruciale.
Son rôle est de déformer la représentation surfacique d’un personnage pour permettre son rendu dans une
succession de poses spécifiées par un animateur. La plausibilité et la qualité visuelle du résultat dépendent
directement de la méthode de skinning choisie. Sa rapidité d’exécution et sa simplicité d’utilisation sont
également à prendre en compte pour rendre possible son usage interactif lors des sessions de production
des artistes 3D.
Les différentes méthodes de skinning actuelles se divisent en trois catégories. Les méthodes géométriques
sont rapides et simples d’utilisation, mais leur résultats manquent de plausibilité. Les approches s’appuyant
sur des exemples produisent des résultats réalistes, elles nécessitent en revanche une base de données
d’exemples volumineuse, et le contrôle de leur résultat est fastidieux. Enfin, les algorithmes de simulation
physique sont capables de modéliser les phénomènes dynamiques les plus complexes au prix d’un temps
de calcul souvent prohibitif pour une utilisation interactive.
Les travaux décrits dans cette thèse s’appuient sur Implicit Skinning, une méthode géométrique corrective
utilisant une représentation implicite des surfaces, qui permet de résoudre de nombreux problèmes rencon-
trés avec les méthodes géométriques classiques, tout en gardant des performances permettant son usage
interactif. La contribution principale de ces travaux est unmodèle d’animation qui prend en compte les effets
des muscles des personnages et de leur interactions avec d’autres éléments anatomiques, tout en bénéficiant
des avantages apportés par Implicit Skinning. Les muscles sont représentés par une surface d’extrusion le long
d’axes centraux. Les axes des muscles sont contrôlés par une méthode de simulation physique simplifiée.
Cette représentation permet de modéliser les collisions des muscles entre eux et avec les os, d’introduire
des effets dynamiques tels que rebonds et secousses, tout en garantissant la conservation du volume, afin
de représenter le comportement réel des muscles.
Ce modèle produit des déformations plus plausibles et dynamiques que les méthodes géométriques de
l’état de l’art, tout en conservant des performances suffisantes pour permettre son usage dans une session
d’édition interactive. Elle offre de plus aux infographistes un contrôle intuitif sur la forme des muscles pour
que les déformations obtenues se conforment à leur vision artistique.
Abstract: Surface deformation, or skinning is a crucial step in 3D character animation. Its role is to deform
the surface representation of a character to be rendered in the succession of poses specified by an animator.
The quality and plausiblity of the displayed results directly depends on the properties of the skinning
method. However, speed and simplicity are also important criteria to enable their use in interactive editing
sessions.
Current skinning methods can be divided in three categories. Geometric methods are fast and simple to
use, but their results lack plausibility. Example-based approaches produce realistic results, yet they require
a large database of examples while remaining tedious to edit. Finally, physical simulations can model the
most complex dynamical phenomena, but at a very high computational cost, making their interactive use
impractical.
The work presented in this thesis are based on, Implicit Skinning a corrective geometric approach using implicit
surfaces to solve many issues of standard geometric skinning methods, while remaining fast enough for
interactive use. The main contribution of this work is an animation model that adds anatomical plausibility
to a character by representing muscle deformations and their interactions with other anatomical features,
while benefiting from the advantages of Implicit Skinning. Muscles are represented by an extrusion surface
along a central axis. These axes are driven by a simplified physics simulation method, introducing dynamic
effects, such as jiggling. The muscle model guarantees volume conservation, a property of real-life muscles.
This model adds plausibility and dynamics lacking in state-of-the-art geometric methods at a moderate
computational cost, which enables its interactive use. In addition, it offers intuitive shape control to
animators, enabling them to match the results with their artistic vision.

