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Résumé

Pour déterminer la vulnérabilité sismique des structures en béton armé, des méthodes de calcul numérique à l'échelle structurelle, efficaces et suffisamment précises, sont nécessaires. Des formulations d'éléments finis bidimensionnels ou tridimensionnels, largement utilisées, fournissent des résultats fiables. Cependant, ces types de méthodes impliquent un grand nombre de degrés de liberté et des lois de comportement robustes 3D pour le béton et l'acier, afin de capturer avec précision les non-linéarités dans les éléments élancés de structure en béton armé. Une autre méthode plus pratique dans le domaine de l'ingénierie des structures est l'utilisation des éléments de poutres multifibres. C'est la méthode adoptée dans ce travail de thèse.

Les éléments poutres multifibres permettent de discrétiser la structure à l'aide d'éléments linéiques qui portent une section discrétisée dans le sens transversal en faisant l'hypothèse de cinématique d'Euler Bernoulli ou Timoshenko. La discrétisation de la section permet d'utiliser simplement des lois de comportement non linéaires et de modéliser des sections composites comme le béton armé. Néanmoins, il existe des limitations à ce genre de modèle. Ainsi, plusieurs recherches ont été menées, ces dernières années pour enrichir les éléments poutres afin de reproduire correctement les effets de cisaillement surtout dans le cas de poutres peu élancées où l'effet de cisaillement est non négligeable. Comme l'approche proposée par [START_REF] Vecchio | Predicting the response of reinforced concrete beams subjected to shear using the modified compression field theory[END_REF] adéquate pour les chargements bidimensionnels mais ne reproduisant pas l'effet de torsion, celle présentée par Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF], mais dont le modèle ne peut pas être appliqué aux éléments en béton armé, et la formulation numérique de Mohr et al. (2010) qui est adaptée aux applications en béton armé mais ne fonctionne qu'en 2D. Plus récemment [START_REF] Capdevielle | A multifiber beam model coupling torsional warping and damage for reinforced concrete structures[END_REF] ; Capdevielle (2016)) et son équipe ont développé une technique adaptée au béton armé, qui prend en compte le gauchissement de la section et permet de calculer un état de déformation dans les fibres de béton sous des sollicitations 3D. Dans les travaux cités plus haut, soit les cadres d'armatures transversales ne sont pas du tout pris en compte, soit ils le sont de manière trop approximative. Cependant, comme le montrent certains essais expérimentaux menés par [START_REF] Cusson | Stress-strain model for confined high-strength concrete[END_REF], la quantité de ferraillage transversal déclenche de manière significative le comportement des éléments structuraux, notamment sous chargement cyclique.

Basé sur les travaux de Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] et [START_REF] Capdevielle | Enrichissement des éléments finis multifibres par prise en compte du gauchissement[END_REF], ce travail de thèse vise à modéliser l'effet des armatures transversales sur le comportement du béton. La démarche proposée est d'enrichir les éléments finis poutres multifibres pour prise en compte de la distorsion de la section. Pour cela, des déplacements transversaux additionnels sont introduits. L'application du principe des puissances virtuelles sur le champ de vitesse virtuel associé permet de projeter les équations d'équilibre de l'élément et ainsi d'obtenir l'équation d'équilibre classique de l'élément mais aussi l'équilibre de la section. Cette dernière permet donc de tenir compte de l'effet des armatures transversales et de calculer correctement les contraintes latérales appliquées à chaque fibre de béton. En outre, afin de pouvoir reproduire l'effet de confinement des fibres de béton par les cadres, une loi de comportement dilatante doit être attribuée au béton.

xvii Natalia Khoder -Université Grenoble Alpes 2018 Dans ce contexte, la loi de comportement du µ modèle a été choisie. Celle-ci est dépourvue du comportement dilatant. Pour cette raison, une méthode d'introduction de la dilatance au niveau du coefficient de Poisson est présentée dans ce mémoire. Les éléments poutres multifibres enrichis 2D et 3D sont formulés en déplacement et sont basés sur le modèle poutre de Caillerie et al. (2015) avec des fonctions de formes d'ordre supérieur. La pertinence de ces deux approches est finalement démontrée en confrontant la réponse du modèle numérique à différents résultats expérimentaux de la littérature.

Abstract

In order to determine the seismic vulnerability of reinforced concrete structures, effective and sufficiently accurate numerical methods are required. Two-dimensional or three-dimensional finite element methods, widely used, provide reliable results. However, these types of methods involve a large number of degrees of freedom and robust 3D behavioral laws for concrete and steel to accurately capture the non-linearities in slender reinforced concrete elements. Another more practical method, in the field of structural engineering, is the use of multifiber beam elements. It's the method that have been chosen in this thesis.

By using multifiber beam elements, the structure can be discretized with linear elements that carry a section discretized in the transversal direction based on the kinematic assumption of Euler Bernoulli or Timoshenko. The discretization of the section makes it possible to simply use nonlinear behavior laws and to model composite sections such as reinforced concrete. Nevertheless, there are limitations to this kind of model. Therefore, several researches have been conducted in the past few years to enhance the kinematics of the beam elements in order to correctly reproduce the shearing effects, especially in the case of short beams where the latter effect is not negligible. Several approaches have been developed in this field, as the one proposed by [START_REF] Vecchio | Predicting the response of reinforced concrete beams subjected to shear using the modified compression field theory[END_REF] adequate for two-dimensional case studies but doesn't reproduce the torsional effect, the approach presented by Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF], but whose model can not be applied to reinforced concrete elements, and the formulation proposed by [START_REF] Mohr | A frame element model for the analysis of reinforced concrete structures under shear and bending[END_REF] which is suitable for reinforced concrete applications but works only in 2D. More recently [START_REF] Capdevielle | A multifiber beam model coupling torsional warping and damage for reinforced concrete structures[END_REF] ; [START_REF] Capdevielle | Enrichissement des éléments finis multifibres par prise en compte du gauchissement[END_REF]) have developed an enhanced multifiber beam model adapted to reinforced concrete elements and takes into account the warping of the section. The combination of this beam element with a concrete behavior model such as the µ model [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]), provides robust results with interesting computational speed. However, as shown by some experimental tests [START_REF] Cusson | Stress-strain model for confined high-strength concrete[END_REF]), the amount of transverse reinforcement triggers significantly the behavior of the beam elements, especially under cyclic loading. In the previous works, these reinforcements are neglected or considered in an approximative manner.

Based on the work of Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] and [START_REF] Capdevielle | Enrichissement des éléments finis multifibres par prise en compte du gauchissement[END_REF], this thesis aims to model the effect of transversal reinforcement. The approach proposed herein is to enhance the multifiber beam elements in order to take into account the distortion of the section. For this purpose, additional transverse displacements are introduced. The application of the principle of virtual powers on the field of associated virtual velocity leads to project the equilibrium equations of the element and thus to obtain the classical equilibrium equation of the element as well as the equilibrium of the section. The latter one allows to take into account the effect of the transverse reinforcements and to correctly calculate the lateral stresses applied to each concrete fiber. Moreover, in order to be able to reproduce the confinement effect due to the presence of stirrups, a dilatant constitutive law has to be attributed to the concrete fibers xix Natalia Khoder -Université Grenoble Alpes 2018 at the section level. In this context, the Mu model has been chosen even though it's not a dilatant model. For this reason, a method of introducing dilatancy at the level of the Poisson's coefficient is presented in this work. The 2D and 3D enhanced multifiber displacement beam models are formulated based on the Caillerie beam element [START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF]) with higher order interpolation functions. The performance of these two approaches is also demonstrated by comparing the numerical model response to different experimental results of the literature.

Chapitre 1

Introduction générale 1.1 Contexte général

Les tremblements de terre font partie des catastrophes naturelles les plus dévastatrices au monde. Du fait de leur caractère imprévisible et de l'étendue des territoires sur lesquels ils ont lieu, ces phénomènes causent régulièrement des pertes humaines et économiques considérables. Afin de diminuer leurs conséquences, les scientifiques géologues, sismologues, physiciens et mécaniciens s'attachent à mieux comprendre les causes de ces phénomènes ainsi que leur impact sur les constructions qui nous entourent. Il est ainsi nécessaire, dans le monde urbanisé dans lequel nous évoluons, d'assurer la sécurité non seulement des personnes mais aussi des constructions, lors de catastrophes naturelles de ce type.

Le choc sismique sur une construction est une action sévère qui dégrade les capacités de résistance des matériaux et des structures. La maîtrise des dommages qui en découlent est un enjeu essentiel vis-à-vis de leur sécurité. Cette maîtrise passe par la modélisation de phénomènes complexes qui agissent à plusieurs niveaux : celui de la structure, du matériau et le caractère aléatoire de l'action.

Au cours des dernières années, des séismes de grande ampleur ont mis en lumière la question de la mise à niveau des structures sous sollicitation sismique. Les règlementations sismiques ont pour but d'assurer le non-effondrement et de limiter les dommages notamment pour les installations ayant une certaine importance pour la sécurité civile (hôpitaux, centrales nucléaires, centrales électriques...). Elles ont introduit de nombreuses recommandations pour la conception des bâtiments. Malgré tous ces efforts, le séisme sous-marin de Honshu (Japon) en 2011, qui a engendré un tsunami dans la région de Sendaï, a souligné l'importance capitale de la protection d'ouvrages à risque spécial pour la sécurité civile. Il est, par conséquent, primordial pour les exploitants de ces structures à risque spécial d'assurer non seulement leur non-effondrement mais aussi leur bon fonctionnement, ou leur remise en marche rapide, lors de catastrophes naturelles.
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Ce projet s'articule autour de 5 volets (Figure 1 Le présent travail de thèse a été financé par le projet Sinaps@ et fait partie du Volet 3, tâche 3.2.1.2.β (sur le développement de modèles linéiques pour le béton armé).

Présentation de la problématique

L'ingénieur de génie civil en calcul parasismique dispose actuellement de plusieurs moyens pour mener à bien un calcul de dimensionnement parasismique mais il est important de réaliser que ces calculs sont lourds car ils font intervenir entre autres des phénomènes cycliques et non linéaires et s'intéressent à des bâtiments de grande dimension dont il faut analyser le comportement dynamique transitoire.

La réduction de la vulnérabilité d'une structure d'un point de vue technique n'est pas simple. La réponse d'une structure à un choc sismique met en jeu des phénomènes extrêmement complexes. Ainsi, pour avancer l'ingénierie doit disposer de modèles adaptés et robustes. Les stratégies de modélisation s'appuient sur l'utilisation de modèles "classiques" éléments finis où la structure est modélisée par des éléments finis massifs 2D et 3D . Néanmoins, à l'échelle d'un bâtiment l'intégration de phénomènes locaux peut s'avérer très coûteuse augmentant ainsi considérablement les temps de calculs et la difficulté du post-traitement des résultats.

Tandis que les modèles classiques sont des outils puissants pour la simulation du comportement non-linéaire des parties complexes de structures (joints, assemblages), leur application à la totalité d'une structure peut s'avérer peu pratique à cause de la mise en donnée et du posttraitement beaucoup plus compliqués dans le cas des éléments finis 3D que sur des modèles à degrés de liberté limités. Des hypothèses cinématiques sont souvent adoptées dans l'analyse de 1.2. Présentation de la problématique 3 structures en génie civil afin de réduire le temps de calcul. Une voie est proposée, s'appuyant sur une discrétisation à base d'éléments poutres multifibres. Elle présente un bon compromis entre temps de calcul et précision des résultats. Ce sont des modèles de type "fibre" ayant un élément de type poutre comme support. Ce type de description possède les avantages d'hypothèses simplificatrices associées à une cinématique de type poutre Euler-Bernoulli ou Timoshenko tout en offrant une solution pratique et efficace pour une analyse non linéaire complexe de structures composites (par exemple en béton armé).

Les éléments finis de type poutre multifibre peuvent être formulés en déplacement, en force ou sous formulation mixte. Des éléments formulés en force ont été proposés par l'équipe de UC Berkeley comme Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] . Ils sont capables de décrire le comportement non linéaire d'une structure poutre-colonne en béton armé sous sollicitations cycliques. Dans ce type d'élément poutre, les forces internes sont exprimées en fonction des forces nodales par le biais des fonctions d'interpolations adéquates. Des formulations mixtes ont été ensuite introduites. Ce cas de formulations se base sur deux champs indépendants ou plus. On peut citer, la formulation mixte de Hellinger-Reissner qui possède deux champs indépendants (le déplacement et la contrainte) [START_REF] Souza | Force-based finite element for large displacement inelastic analysis of frames[END_REF] ; [START_REF] Hjelmstad | Variational basis of nonlinear flexibility methods for structural analysis of frames[END_REF]), la formulation mixte de Hu-Washizu utilise trois champs indépendants (le déplacement, la déformation et la contrainte), [START_REF] Taylor | A mixed finite element method for beam and frame problems[END_REF] ; [START_REF] Saritas | Inelatic axial-flexure-shear coupling in a mixed formulation beam finite element[END_REF]). Une formulation mixte à quatre champs indépendants (les déplacements, les déformations, les contraintes et les déplacements de gauchissement) est adoptée par [START_REF] Addessi | A 3d mixed frame element with multi-axial coupling for thin-walled structures with damage[END_REF]. Ces formulations en force et mixtes ont beaucoup d'avantages. Toutefois, elles s'avèrent être compliquées à formuler. Étant donné que dans le contexte de ce travail de thèse l'idée est d'enrichir la section, un élément formulé en déplacement a été choisi. Dans ce cas, le champ de déplacement est interpolé le long de l'élément par le biais des fonctions de forme en fonction des déplacements nodaux. Le principal avantage de cette formulation est d'assurer la compatibilité cinématique entre les éléments. Récemment, un nouvel élément formulé en déplacement a été présenté par [START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF]. Il s'avère être plus performant que les éléments Timoshenko sous intégrés classiques car il permet d'obtenir la solution exacte en élasticité avec un seul élément et est libre des problèmes de blocage.

De nombreux chercheurs ont tenté également d'enrichir les éléments poutre en introduisant une description cinématique enrichie au niveau de la section afin d'introduire les effets du cisaillement, comme l'approche proposée par [START_REF] Vecchio | Predicting the response of reinforced concrete beams subjected to shear using the modified compression field theory[END_REF], qui repose sur un équilibre des contraintes de cisaillement en formulation forte, adéquate pour les chargements 2D mais ne reproduisant pas l'effet de torsion. Plusieurs formulations enrichies ont été ensuite présentées pour prendre en compte le gauchissement de la section et ainsi reproduire au mieux les effets de torsion. On peut citer dans ce cadre de travaux, la formulation de Le Corvec (2012) mais qui n'a pas été validée pour le béton armé, ainsi que la formulation de Mohr et al. (2010), qui fait une hypothèse de linéarité des contraintes entre deux pas de chargement, ne fonctionne que dans le plan mais reste adaptée au béton armé. Plus récemment, Capdevielle et son équipe [START_REF] Capdevielle | A multifiber beam model coupling torsional warping and damage for reinforced concrete structures[END_REF][START_REF] Capdevielle | Enrichissement des éléments finis multifibres par prise en compte du gauchissement[END_REF]) mais également l'équipe de Di Re (2017a) ont développé une technique adaptée au béton armé pour la prise en compte du gauchissement. Elle est basée sur un équilibre en forme faible de la poutre et de la section. L'association du modèle poutre de Capdevielle (2016) avec un modèle de comportement de béton 3D tel que le Mu Model [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]), permet d'obtenir des résultats robustes avec une rapidité de calcul intéressante. C'est un élément poutre multifibre Timoshenko enrichi formulé en déplacement et qui a servi de base pour le développement de notre nouvel élément présenté dans ce travail de thèse.
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Cependant, comme le montrent certains essais expérimentaux [START_REF] Cusson | Stress-strain model for confined high-strength concrete[END_REF]), la quantité d'armatures transversales pilote d'une manière significative le comportement de ces poutres, particulièrement sous sollicitation cyclique. Hors, dans les travaux cités plus haut, soit les cadres ne sont pas du tout pris en compte, soit ils ne permettent pas d'établir un véritable équilibre global de la section transversale permettant de calculer le confinement du béton [START_REF] Bairan | A non-linear coupled model for the analysis of reinforced concrete sections under bending[END_REF] ; [START_REF] Bairan | Coupled model for the non-linear analysis of anisotropic sections subjected to general 3d loading. part 1 : Theoretical formulation[END_REF] ; [START_REF] Bairan | Multiaxial-coupled analysis of rc cross-sections subjected to combined forces[END_REF]). Ces derniers ont développé un modèle de section multifibre capable de gauchir sous l'effet de sollicitations multiaxiales mais avec mise à jour du gauchissement au fur et à mesure du calcul ce qui constitue une limite d'utilisation du modèle.

Objectifs de la thèse

Le travail présenté dans ce mémoire propose un modèle poutre multifibre enrichi pour la prise en compte de l'effet de confinement du béton par les armatures transversales. Deux formulations 2D et 3D du modèle seront détaillées. Des déplacements transversaux additionnels permettent d'enrichir la cinématique de la section transversale pour y calculer l'équilibre. Ce modèle permet de rendre compte finement de l'évolution des contraintes transversales dans la poutre et de reproduire le comportement du béton confiné par les armatures transversales qui seront implémentées dans la section. Pour prendre en compte l'influence des contraintes en cisaillement, la théorie de Timoshenko a été choisie. De plus, l'approche multifibre est adoptée [START_REF] Guedes | A fibre/timoshenko beam element in castem 2000[END_REF] ; [START_REF] Spacone | Nonlinear analysis of steel-concrete composite structures : State of the art[END_REF]). En effet, la section est divisée en fibres qui peuvent être modélisées par des matériaux différents. Par ailleurs, une nouvelle formulation élément fini, récemment développée [START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF]) a été adoptée. Elle utilise des fonctions de forme d'ordre supérieur : cubiques pour le déplacement transversal et quadratiques pour la rotation. La particularité de cet élément est qu'il possède un noeud interne additionnel. Cela conduit à un élément fini poutre exempt de blocage par cisaillement possédant des fonctions de forme indépendantes des paramètres matériau. L'implémentation de l'élément a été faite dans la bibliothèque ATL S (A Tool and Language for Simplified Structural Solution Strategy) inspirée initialement de la philosophie de la plateforme FEDEASLab [START_REF] Filippou | Fedeaslab getting started guide and simulation examples[END_REF]) et développée sur Matlab à l'INSA de Lyon pour nos recherches internes. La démarche proposée dans ce travail de thèse est d'enrichir les éléments finis poutres multifibres qui sont un excellent compromis entre le temps de calcul et la précision des résultats. L'axe d'étude est orienté sur l'équilibre transverse d'un élément de matière de la poutre qui permettrait de calculer plus précisément l'état de contrainte dans celle-ci comme le propose [START_REF] Mohr | A frame element model for the analysis of reinforced concrete structures under shear and bending[END_REF] et en se basant sur la formulation en force de Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] et la formulation en déplacement récemment présentée par [START_REF] Capdevielle | A multifiber beam model coupling torsional warping and damage for reinforced concrete structures[END_REF] ; [START_REF] Capdevielle | Enrichissement des éléments finis multifibres par prise en compte du gauchissement[END_REF]). L'objet des travaux présentés ici est de développer un nouveau modèle numérique performant capable de prendre en compte le confinement du béton dû à la présence des armatures transversales dans le cas des structures en béton armé.

Plan du manuscrit

Le présent document comporte cinq chapitres.

Après une définition du problème et de l'objectif de ce travail de thèse dans le chapitre 1, le chapitre 2 constitue une analyse bibliographique. Il présente une étude de l'état de l'art 1.4. Plan du manuscrit sur les méthodes numériques de modélisation de structures utilisées dans la littérature et parmi lesquelles l'accent est mis sur les éléments poutres multifibres. Une revue des méthodes numériques existantes pour modéliser les structures en béton (mais ne prenant pas en compte l'effet du confinement) est réalisée. Cette étude, ainsi que la présentation du comportement des principaux modèles de matériaux béton confrontée à des résultats expérimentaux permettra de mettre en évidence l'importance de la prise en compte du confinement du béton par les cadres d'armatures.

Le chapitre 3 décrit l'élément poutre multifibre développé et explique son implémentation dans le code de calcul ATL S. Le modèle est dans un premier temps validé sur des tests simples avec une loi de comportement élastique linéaire pour le matériau composant la section. Ainsi, un essai de traction simple et de flexion sur une poutre encastrée sont effectués et comparés à une modélisation réalisée avec des éléments finis volumiques. La superposition des résultats obtenus par le modèle multifibre et la modélisation volumique nous permet de valider le modèle en élasticité et montre que l'équilibre transversal de la section est atteint pour une section homogène d'un matériau élastique linéaire.

Le chapitre 4 présente une application non-linéaire du nouvel élément multifibre enrichi. Des simulations des essais de compression uniaxiale en monotone et de flexion composée en cyclique sont réalisées. Ainsi, le modèle numérique développé est calibré et validé en se basant sur les travaux de Cusson & Paultre (1995). De plus, une méthode d'introduction de la dilatance est proposée au niveau de la loi d'endommagement du µ modèle de [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF] pour pouvoir prendre en compte l'aspect de la dilatance du béton confiné par les armatures transversales.

Ce mémoire se termine par des conclusions et perspectives.

Ce travail s'inscrit dans le cadre du projet Sinaps@ qui vise à réduire la vulnérabilité des ouvrages aux risques naturels. Il a été financé par l'Agence Nationale de la Recherche (ANR) à la suite de l'appel à projets RSNR 2012 sur les futurs investissements post-Fukoshima [SINAPS @ ANR-11-RSNR-0022].

Chapitre 2

Étude bibliographique 2.1 Introduction

Ce travail de thèse se base sur deux points essentiels. Tout d'abord, le choix du modèle poutre qui servira de base pour la modélisation numérique. Ce modèle doit être robuste et démontrer une rapidité au niveau des calculs. Ensuite, afin de pouvoir caractériser le comportement du béton confiné par les armatures transversales, une loi de comportement adéquate capable de reproduire l'effet de dilatation et de contraction des fibres de béton doit être choisie.

Ainsi, ce chapitre sera décomposé comme suit : dans une première partie, une présentation de l'effet du confinement du béton par les armatures transversales est mise en valeur. Ce confinement qui change le comportement "uniaxial apparent" du béton doit être pris en compte. Ceci revient à pouvoir représenter la distorsion de la section caractérisée par les contractions et dilatations des fibres de béton dû à cet effet de confinement. Ainsi, une étude sur les différentes méthodes numériques existantes est ensuite présentée. Dans ce cadre, les modèles de type poutre multifibre sont choisis étant donné leur efficacité et robustesse de calcul. Des formulations existantes d'enrichissement de gauchissement et de distorsion sont aussi présentées tout en soulignant leur atouts et limitations. Enfin, la dernière partie présente une variété de modèles de comportement du béton parmi lesquels le µ modèle [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]) a été associé à la modélisation numérique élaborée dans ce mémoire.

Effets du confinement

Dans les années 1920, [START_REF] Richart | A study of the failure of concrete under combined compression stresses[END_REF] de l'Université d'Illinois ont étudié les effets du confinement sur le comportement du béton. Des essais ont été effectués sur des cylindres de 102 mm × 204 mm chargés axialement jusqu'à rupture et soumis à des pressions latérales variées. La résistance du béton f c des cylindres était de 25, 2 MPa. Les chercheurs ont trouvé que pour des pressions latérales de 28, 2 MPa, le béton atteint une contrainte maximale d'environ 131 MPa qui correspond à une déformation de 0.05. Cette dernière est 25 fois plus importante que la déformation correspondante à la contrainte maximale atteinte dans le cas de béton non confiné.

La figure 2.1 présente les courbes de contrainte-déformation axiale des cylindres de béton pour une gamme de pressions de fluide latérales. Sur ces courbes, une résistance améliorée est représentée par des augmentations des valeurs de contrainte de compression maximales atteintes alors qu'une performance de ductilité améliorée est représentée par une meilleure Étude bibliographique capacité de support de charge à des valeurs de déformations importantes. Les courbes illustrent clairement que la résistance et la ductilité des cylindres de béton ont augmenté avec des pressions de confinement latérales plus importantes.

Figure 2.1 -Courbes contrainte-déformation des cylindres en béton soumis à des pressions latérales variées [START_REF] Richart | A study of the failure of concrete under combined compression stresses[END_REF]).

En pratique, des barres d'armature en acier sont utilisées pour fournir la pression latérale requise pour confiner le béton. Il convient de noter que la mécanique de confinement fournie par les armatures en acier diffère de celle fournie par la pression latérale du fluide et que l'armature est incapable de développer les valeurs de pression de confinement élevées produites par les fluides dans les essais de Richart et al. (1928).

Mécanique de confinement dans les poteaux en béton armé

Le confinement dans les colonnes en béton armé est souvent assuré par une combinaison de barres longitudinales de renforcement contenues dans une limite de renforcement transversal. Le renfort transversal peut se présenter sous la forme de spirales, armatures circulaires, de cadres, épingles ou étriers comme montrés dans la figure 2.2. L'enjeu de ce travail de thèse est de développer un outil numérique permettant de modéliser tout type de configuration des armatures transversales et reproduire par simple équilibre transversal de la section le phénomène de confinement des fibres en béton.

Les caractéristiques du béton confiné ont fait l'objet de recherches approfondies dès le début du XX siècle. Les premières études remontent aux années 1920. [START_REF] Richart | A study of the failure of concrete under combined compression stresses[END_REF] ; [START_REF] Richart | The failure of plain and spirally reinforced concrete in compresion[END_REF]) ont été parmi les premiers à étudier le confinement du béton à résistance normale. Leurs recherches sur les cylindres en béton, soit confinés par une pression hydrostatique uniforme, soit par des armatures transversales, ont fourni quelques informations de base sur la modélisation du béton confiné. Les recherches réalisées après par [START_REF] Chan | The ultimate strength and deformations of plastic hinges in reinforced concrete frameworks[END_REF], [START_REF] Roy | A model to simulate the response of concrete to multi-axial loading[END_REF], [START_REF] Soliman | Flexural stress-strain relationship of concrete confined by rectangular transverse reinforcement[END_REF], [START_REF] Sargin | Stress-strain relationship for concrete and analysis of structural concrete sections[END_REF], [START_REF] Kent | Flexural members with confined concrete[END_REF][START_REF] Vallenas | Concrete confined by rectangular hoops and subjected to axial load[END_REF] et [START_REF] Park | Ductility of square confined concrete columns[END_REF] ont abouti à des modèles analytiques avec différentes limitations. Les principales variables prises en compte dans ces modèles comprenaient la taille, la résistance, la quantité et l'espacement des armatures latérales.

La mécanique du confinement par les armatures transversales peut être expliquée en examinant le comportement du béton soumis à une charge de compression. En effet, le béton confiné [START_REF] Montgomery | Behavior of spirally reinforced high strength concrete columns under axial loading[END_REF]).

par les armatures transversales développe une pression latérale passive lorsqu'il se dilate sous l'effet de la compression axiale, créant ainsi un état de contraintes multiaxiales. Des essais de compression [START_REF] Carrasquillo | Microcracking and behavior of high strength concrete subjected to short-term loading[END_REF] ; [START_REF] Smodi | Microcracking high and normal strength concrete under short-and long term loading[END_REF]) sur des cylindres en béton non confiné ont révélé que lorsque ces derniers s'approchent de la rupture, le béton développe des microfissures parallèles à la direction de chargement accompagnées de déformations latérales. L'introduction d'une quantité d'aciers transversaux, adéquate pour confiner le béton sous une charge de compression donnée, affecte le comportement de dilatation du béton. Lorsque le béton est chargé axialement, le ferraillage transversal est à peine sollicité jusqu'à la charge à laquelle le béton développe des déformations latérales considérables. À ce stade de déformations, le béton contenu dans la cage des armatures transversales commence à se dilater vers l'extérieur sous une charge axiale continue et appuie contre l'acier transversal. Ce dernier a tendance à résister à la dilatation latérale du béton, créant ainsi une pression de rétention réactive contre le noyau de béton contenu dans la limite des cadres. Ce type de confinement, est souvent appelé confinement passif du béton. Si des spirales ou des anneaux circulaires sont utilisés pour le renforcement transversal dans les poteaux, on suppose généralement que la dilatation latérale du béton exerce une pression uniforme sur le renforcement. Le renfort lui-même exercerait alors une réaction égale et opposée contre le noyau de béton. Par conséquent, la circonférence du noyau de béton délimitée par l'acier latéral est efficacement confinée par une pression de confinement uniforme et continue. La figure 2.3(a) illustre la pression de confinement uniforme sur le noyau de béton supposée être assurée par des spirales ou des anneaux circulaires.

Par contre, lorsque le béton est confiné par des cadres rectangulaires, le renforcement ne fournit pas une pression de confinement uniforme sur le noyau de béton. Sous charge axiale, le béton se dilate latéralement et appuie contre les barres d'acier transversales sans que ces dernières soient capables de fournir une réaction uniforme contre le béton. Les aciers transversaux exercent une réaction de confinement aux coins [START_REF] Saatcioglu | Strength and ductility of confined concrete[END_REF]) mais les longueurs droites entre les coins tendent à fléchir vers l'extérieur. Ce phénomène est observé sur les quatre côtés de la section de béton armé. En raison de cette action de flexion des aciers, certaines zones du béton restent libres et ce dernier est confiné efficacement dans la région centrale du noyau et dans les coins, comme l'illustre la figure 2. 3(b). Cette mauvaise répartition de la pression de confinement est la principale raison pour laquelle les spirales confinent le béton plus efficacement que les cadres rectangulaires tout en considérant la même section d'acier utilisée et le même espacement des aciers transversaux. [START_REF] Razvi | Confinement model for high-strength concrete[END_REF]).

La figure 2.4 illustre des pressions de confinement passives qui se développent dans les sections en béton armé avec différents agencements de renforcement transversal. Le modèle de confinement proposé par [START_REF] Saatcioglu | Strength and ductility of confined concrete[END_REF] repose sur le calcul de la pression uniforme équivalente qui donne le même effet que les pressions de confinement non uniformes, comme le montre la figure 2.4. En conséquence, la résistance du béton confiné peut être écrite comme indiqué ci-dessous, où f le est la pression latérale uniforme équivalente :

(2.1)

f cc = f c0 + k 1 f le (2.2) k 1 = 6.7(f le ) -0.17 (2.3) f le = k 2 f l (2.4) f l = q i=1 (A s f s sin α) i sb c
q représente le nombre de barres d'aciers transversaux qui traversent le côté de la section de béton pour lequel la pression latérale moyenne f l est calculée. La pression uniforme équivalente f le est exprimée en MPa. f c0 étant la résistance à la compression du béton non confiné, f cc celle du béton confiné, A s la section d'une barre d'acier transversal et s représente l'espacement des aciers transversaux. La valeur de f s est prise égale à la limite élastique f yt de l'acier.

Le paramètre de réduction k 2 utilisé pour les bétons à moyenne et haute résistance est donné par l'expression suivante :

(2.5)

k 2 = 0.15 b c s b c s l ≤ 1
s l dénote l'espacement des aciers longitudinaux. L'effet de la disposition des barres transversales s'est avéré significatif chez [START_REF] Sheikh | Strength and ductility of tied concrete columns[END_REF] sur des colonnes testées sous chargement de compression centrée. L'importance de l'agencement des cadres a également été démontrée par [START_REF] Ozcebe | Confinement of concrete columns for seismic loading[END_REF] pour les colonnes sous chargement cyclique. L'influence des armatures transversales sur les poteaux de section carrée a été modélisée pour la première fois par [START_REF] Sheikh | Analytical model for concrete confinement in tied columns[END_REF], en utilisant le concept de zone centrale effectivement confinée . Une étude comparative, menée par [START_REF] Sheikh | Analytical model for concrete confinement in tied columns[END_REF], a montré que les modèles qui n'incluaient pas de disposition d'armatures transversales en tant que paramètre n'étaient pas en mesure de prédire les différences de réponse résultant de l'agencement des cadres.

Comportement du béton à haute résistance confiné par des aciers transversaux

L'utilisation de béton à haute résistance dans la construction des poteaux est largement répandu dans le monde de la construction. La littérature existante montre qu'un degré de confinement considérablement plus élevé est requis dans les poteaux coulés avec du béton à haute résistance que ceux formés par du béton à résistance normale et ceci dans le but d'atteindre une déformabilité satisfaisante [START_REF] Li | Strength and ductility of reinforced concrete members and frames constructed using high strength concrete[END_REF] ; [START_REF] Cusson | High strength concrete columns confined by rectangular ties[END_REF] ; [START_REF] Razvi | Strength and deformability of confined high strength concrete columns[END_REF] ; [START_REF] Pessiki | Axial load behavior of large scale spirally reinforced high strength concrete column[END_REF] Les courbes contrainte-déformation correspondant respectivement au béton non confiné ainsi qu'au béton confiné par les armatures transversales sont données par la figure 2.6. Développé par [START_REF] Legeron | Uniaxial confinement model for normal and high strength concrete columns[END_REF], le modèle représentant le comportement du béton confiné soumis à des chargements de compression simple utilise deux expressions distinctes pour les parties ascendantes et descendantes de la courbe contrainte-déformation. La partie ascendante (OA) est une relation initialement proposée par [START_REF] Popovics | A numerical approach to the complete stress-strain curve of concrete[END_REF] pour le béton :

(2.6)

f c = f cc k( c / cc ) k -1 + ( c / cc ) k c ≤ cc (2.7) k = E c E c -(f cc / cc )
f c et c réfèrent respectivement à la contrainte et déformation du béton non confiné alors que f cc et cc représentent la contrainte maximale du béton confiné et sa déformation correspodante . E c dénote le module d'Young du béton. k contrôle la pente initiale et la courbure de la partie ascendante de la courbe.

La partie descendante (ABC) de la courbe est une modification de l'expression proposée par [START_REF] Fafitis | Lateral reinforcement for high-strength concrete columns[END_REF] pour les bétons à haute résistance et elle est décrite par la relation suivante :

(2.8) Cette hypothèse néglige les déformations de cisaillement dans le cas de flexion et ainsi elle n'est pas valable pour les poutres courtes. La théorie de Timoshenko, en revanche, permet de tenir compte d'une distorsion constante le long de la section car la section plane n'est plus nécessairement perpendiculaire à la ligne moyenne. Le tableau 2.1 et la figure 2.7 montrent les principales différences au niveau de la cinématique définie pour les poutres reposant sur la théorie de Bernoulli qui néglige l'effet de cisaillement et celle relative à la théorie de poutre de Timoshenko qui prend en compte cet effet en supposant que la section plane demeure plane mais sans rester perpendiculaire à la ligne moyenne. Si θ z et U y sont respectivement la rotation et le déplacement transversal d'une section d'abscisse x, alors l'angle de rotation θ z sera différent de dU y dx .

f c = f cc exp k 1 ( c -cc ) k 2 c ≥ cc k 1 et k 2 sont
Il est nécessaire de définir au préalable deux notions importantes qui seront utilisées et analysées dans tout ce qui suit : le gauchissement et la déformation transversale ou distorsion des sections. Définition 1 : on appelle gauchissement d'une section droite, tout déplacement dans le sens longitudinal de la poutre (hors plan de la section), autre que les mouvements de corps rigides (Figure 2.8). Définition 2 : on appelle déformation transversale ou distorsion d'une section droite, tout déplacement de la section dans son plan, autre que les mouvements de corps rigide.

Ainsi, les hypothèses de Bernoulli et Timoshenko qui supposent que les sections planes restent planes après déformation et sont indéformables dans leurs plans impliquent que la poutre ne subira ni gauchissement ni déformation transversale. Cependant, la figure 2.9 montre que lorsqu'une poutre est soumise à des sollicitations de cisaillement ou de torsion, la section transversale subit des déformations de gauchissement et donc ne reste plus plane. 

Coefficient de correction de cisaillement

La cinématique simplifiée de Timoshenko, qui suppose que les sections droites restent planes, implique que les déformations de cisaillement transverse τ xy et τ xz sont constantes à travers la section dans le cas de poutres cisaillées par effort tranchant. Dans ce cas, les contraintes de cisaillement ne peuvent pas être nulles sur la peau extérieure de la poutre. Elles sont constantes et égales à τ xy = T y A . Or, pour une poutre réelle, ces contraintes sont nulles aux extrémités de la section comme montré par la formule de Jourawski et la figure 2.10.

Considérons une poutre droite encastrée à l'un de ses bords, de largeur b, de hauteur h et de section A, soumise à un effort tranchant T y à son bord libre (figure 2.10).

Selon la théorie de Jourawski, la répartition des contraintes de cisaillement est une fonction de la largeur b de la section rectangulaire, du moment statique S, du moment d'inertie I z et de l'effort tranchant appliqué T y :

(2.9) Soit :

τ xy = T y I z S(y) b = T y 2I z h 2 4 -y 2
(2.10)

     τ xy,bord = 0 pour y = ± h 2 τ xy,max = 3 2 T y A pour y = 0
Une méthode de détermination d'un coefficient de correction de cisaillement κ est proposée par Reissner. Elle est basée sur l'énergie interne de cisaillement. Ainsi, l'idée sera de considérer que la contrainte constante de cisaillement τ xy agissant sur une section réduite A * fournit la même énergie de déformation U 2 que l'énergie U 1 fournie par la contrainte exacte attribuée à la section réelle A de la poutre, telles que :

(2.11)

U 1 = A 1 2G τ 2 xy,exact dA et (2.12) U 2 = A * 1 2G T A * 2 dA * Avec κ = A * A , et sous l'hypothèse d'égalité entre U 1 et U 2 , le coefficient de cisaillement s'exprime par : (2.13) κ = T 2 A A τ 2 xy,exact dA
Pour une poutre de section rectangulaire isotrope, de section A, soumise à un effort tranchant T et d'épaisseur h, la contrainte de cisaillement suit une distribution parabolique :

(2.14)

τ xy,exact = 3 2 T A h 2 2 -y 2 h 2 2
Les deux équations (2.13) et (2.14) donnent le coefficient de Reissner κ = 5 6 dans le cas d'une section rectangulaire. Une alternative aux éléments finis volumiques est l'utilisation des éléments poutres avec l'introduction de la notion de fibre. Ce type de modélisation a été largement utilisé et allie les avantages d'une vitesse de calcul élevée avec une précision accrue pour les matériaux non linéaires. Il consiste à ajouter une section bi-dimensionnelle au point de Gauss de l'élément (Figures 2.11 et 2.12). Ensuite une discrétisation de la section transversale en éléments de géométrie quelconque, rectangulaire ou triangulaire par exemple, est adoptée. Elle vise à reproduire la répartition locale des contraintes. À cette fin, les déformations généralisées sont calculées aux points de Gauss de l'élément poutre à partir des déplacements aux noeuds. Avec une hypothèse cinématique basée sur la théorie d'Euler-Bernoulli ou de Timoshenko, ces dernières sont utilisées pour calculer les déformations totales au niveau des fibres de la section transversale. De plus, des lois de comportement non linéaires sont attribuées à chaque fibre de la section permettant la représentation d'éléments hétérogènes. Les relations contraintedéformation conduisent au calcul des contraintes, à chaque point de Gauss de la section. Les forces généralisées sont ensuite calculées par intégration numérique sur la section transversale, pour finalement être interpolées en tant que forces nodales [START_REF] Guedes | A fibre/timoshenko beam element in castem 2000[END_REF] ; [START_REF] Spacone | Nonlinear analysis of steel-concrete composite structures : State of the art[END_REF]).

Éléments finis poutres multifibres

Les éléments multifibres ont été utilisés comme méthode de modélisation numérique pour de nombreux Benchmarks internationaux [START_REF] Grange | Numerical modelling of the seismic behaviour of a 7-story building : Nees benchmark[END_REF] ; [START_REF] Desprez | Seismic vulnerability assessment of a rc structure before and after frp retrofitting[END_REF]). Cette technique a fait ses preuves pour des éléments élancés mais atteint ses limites dans le cas où les sollicitations de cisaillement sont prédominantes dans les éléments structuraux. Dans ce cas, le gauchissement de la section n'est pas négligeable et doit être pris en considération. À cet égard, des hypothèses supplémentaires sont introduites au niveau de la cinématique de l'élément. En effet, [START_REF] Capdevielle | A multifiber beam model coupling torsional warping and damage for reinforced concrete structures[END_REF], [START_REF] Éf Érences Mazars | Using multifiber beams to account for shear and torsion : Applications to concrete structural elements[END_REF], [START_REF] Addessi | A 3d mixed frame element with multi-axial coupling for thin-walled structures with damage[END_REF] ainsi que Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] ont montré la nécessité d'enrichissement des éléments finis multifibres de Timoshenko pour le calcul de poutres sollicitées en torsion. 

Formulation variationnelle des équations d'équilibre

Les équations d'équilibre sont définies dans le domaine Ω de la poutre et sur sa frontière ∂Ω f . En dénotant σ le tenseur des contraintes et f l'effort volumique au sein de la poutre, l'équilibre dans Ω s'écrit :

(2.15) div(σ) + f = 0

Pour obtenir la formulation variationnelle des équations d'équilibre, il suffit de multiplier l'équation (2.15) par un déplacement virtuel -→ u * et intégrer ensuite l'expression sur le domaine Ω :

(2.16)

Ω div(σ) - → u * dΩ + Ω - → f . - → u * dΩ = 0
La première intégrale est modifiée au moyen d'une intégration par parties. Ainsi, les dérivées ne sont plus appliquées sur le champ de contraintes mais sur le champ de déplacement virtuel -→ u * . Cette intégration est basée sur le théorème de divergence (Ostrogradsky) :

(2.17)

Ω div - → wdΩ = ∂Ω - → w. - → n dS
et sur la propriété de divergence suivante :

(

2.18) div(σ t-→ u * ) = div(σ). - → u * + σ : ∇ - → u *

Étude bibliographique

Après intégration sur Ω, on obtient :

(2.19) Ω div(σ t-→ u * )dΩ = Ω div(σ). - → u * dΩ + Ω σ : ∇ - → u * dΩ
De plus, à l'aide du théorème de divergence, (équation 2.17), on a :

(2.20)

Ω div(σ t-→ u * )dΩ = ∂Ω (σ t . - → u * ). - → n dS
Ainsi, en notant -→ n , le vecteur directeur unitaire normal à ∂Ω f , l'équation (2.16) se réécrit comme :

(2.21)

Ω σ : ∇ - → u * dΩ = ∂Ω f (σ t . - → u * ). - → n dS - Ω - → f . - → u * dΩ σ étant symétrique (σ = σ t ), implique que : (2.22) σ : ∇ - → u * = σ : ∇ - → u * + ∇ - → u * t 2 = σ : (u * ) De plus, (2.23) (σ t-→ u * ). - → n = (σ - → u * ). - → n = (σ - → n ). - → u *
Et si on suppose en outre que la surface latérale de la poutre n'est pas chargée, le terme des conditions aux limites devient équivalent à :

(2.24)

∂Ω f u * t (σn)dS = ∂Ω f,ext u * t F ext dS
Où F ext désigne les chargements répartis sur les sections extrêmes, ∂Ω f,ext , de la poutre.

Forces et déformations généralisées

On note σ t = σ xx σ yy σ zz τ xy τ xz τ yz et * t = * xx * yy * zz γ * xy γ * xz γ *
yz les tenseurs de contraintes et de déformations virtuelles, respectivement, en cas de formulation de poutre 3D. Après développement de l'équation (2.21) et utilisation de la symétrie du tenseur des contraintes, l'expression de l'équation (2.21) devient : (2.25) (2.26)

Ω * xx σ xx + * yy σ yy + * zz σ zz + γ * xy τ xy + γ * xz τ xz + γ * yz τ yz dΩ = ∂Ω f,ext u * T F ext dS- Ω u * T f
               * xx = ∂u * x ∂x = dU * x dx -y dθ * z dx + z dθ * y dx γ * xy = ∂u * x ∂y + ∂u * y ∂x = -θ * z + dU * y dx -z dθ * x dx γ * xz = ∂u * x ∂z + ∂u * z ∂x = θ * y + dU * z dx + y dθ * x dx 2.
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Le terme de gauche du principe des travaux virtuels présenté par l'équation (2.25) peut donc s'écrire comme suit :

(2.27)

G * = Ω * xx σ xx + γ * xy τ xy + γ * xz τ xz dΩ = Ω dU * x dx -y dθ * z dx + z dθ * y dx σ xx dΩ + Ω dU * y dx -θ * z -z dθ * x dx τ xy dΩ + Ω dU * z dx + θ * y + y dθ * x dx τ xz dΩ
En intégrant séparément sur la longueur L de la poutre et sur la section transversale S, on obtient :

(2.28)

G * = L dU * x dx S σ xx dS dx + L dθ * z dx S -yσ xx dS dx + L dθ * y dx S zσ xx dS dx + L dU * y dx -θ * z S τ xy dS dx + L dU * z dx + θ * y S τ xz dS dx + L dθ * x dx S yτ xz -zτ xy dS dx U *
x étant le déplacement axial virtuel, U * y le déplacement transversal virtuel et θ * z la rotation virtuelle autour de l'axe z. Avec β y et β z dénotant les angles de distorsion moyens de la section tels que :

(2.29)

β y = dU * y dx -θ * z , β z = dU * z dx + θ * y
En outre, les définitions suivantes sont adoptées pour les forces généralisées :

(2.30)

F x = S σ xx dS (Effort normal) F y = S τ xy dS , F z = S τ xz dS (Efforts tranchants) M x = S (-zτ xy + yτ xz )dS (Moment de torsion) M y = S zσ xx dS , M z = S -yσ xx dS (Moments fléchissants)
En réinjectant ces expressions dans l'équation (2.28), on retrouve le résultat suivant :

(2.31)

G * = L dU * x dx F x dx + L β y F y dx + L β z F z dx + L dθ * x dx M x dx + L dθ * y dx M y dx + L dθ * z dx M z dx
En se basant sur l'équation 2.30, les forces généralisées peuvent s'écrire de la manière développée
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(2.32)

F x = S E dU x dx dS + S Ez dθ y dx dS - S Ey dθ z dx dS = ES x F y = κ y S G dU y dx -θ z dS -κ y S Gz dθ x dx dS F z = κ z S G dU z dx + θ y dS + κ z S Gy dθ x dx dS M x = -κ y S Gz dU y dx -θ z dS + κ z S Gy dU z dx + θ y dS + S G κ z y 2 + κ y z 2 dθ x dx dS M y = S Ez dU x dx dS + S Ez 2 dθ y dx dS - S Eyz dθ z dx dS M z = - S Ey dU x dx dS + S Ey 2 dθ z dx dS - S Eyz dθ y dx dS
Or, comme y et z sont exprimés par rapport au centre élastique et que l'on se place suivant les axes principaux d'inerties, alors :

(2.33)

S ydS = S zdS = S yzdS = 0
Ainsi, si F s et e s dénotent respectivement les vecteurs forces et déformations généralisées, la matrice de rigidité prendra la forme suivante [START_REF] Guedes | A fibre/timoshenko beam element in castem 2000[END_REF]) :

(2.34)

                F x F y F z M x M y M z                 F s =               K s11 0 0 0 K s15 K s16 0 K s22 0 K s24 0 0 0 0 K s33 K s34 0 0 0 K s24 K s34 K s44 0 0 K s15 0 0 0 K s55 K s56 K s16 0 0 0 K s56 K s66               Ks                     dU x (x) dx dU y (x) dx -θ z (x) dU z (x) dx + θ y (x) dθ x (x) dx dθ y (x) dx dθ z (x) dx                     es
Les termes de la matrice de rigidité K s sont donnés par les expressions suivantes :

(2.35)

K s11 = S EdS K s22 = κ y S GdS K s33 = κ z S GdS K s44 = S G(κ z y 2 + κ y z 2 )dS K s55 = S Ez 2 dS K s66 = S Ey 2 dS K s15 = S EzdS K s16 = - S EydS K s24 = -κ y S GzdS K s34 = κ z S GydS K s56 = - S EyzdS
E représente le module d'Young et G le module de cisaillement. κ y et κ z sont les coefficients de correction de cisaillement.

Problème de blocage par cisaillement Définition du problème

Soit une poutre dans le plan, de longueur L et d'épaisseur H, ayant deux noeuds extrêmes i et j (figure 2.13). Chaque noeud possède 3 degrés de liberté. U x dénote le déplacement axial, U y le déplacement transversal et θ z la rotation autour de l'axe z. Ces variables sont indépendantes dans la cinématique de Timoshenko vu que θ z = U y . Une discrétisation des déplacements généralisés (équation 2.36) est proposée en utilisant des fonctions d'interpolations linéaires, tout en adoptant u i , v i et θ i comme inconnues nodales du noeud i de la poutre (de même pour le noeud j). La forme discrétisée du champ de déplacement généralisé est présentée comme suit :

(2.36)

U x = N 1 (x)u i + N 2 (x)u j U y = N 1 (x)v i + N 2 (x)v j θ z = N 1 (x)θ i + N 2 (x)θ j
N 1 et N 2 sont des fonctions de forme linéaires et indépendantes telles que :

(2.37)

   N 1 (x) = 1 -x L N 2 (x) = x L
Ainsi, les déformations généralisées définies par la déformation axiale x , la déformation due au cisaillement transverse β y et la courbure due à la rotation autour de l'axe z, D rot , auront la forme discrétisée suivante :

(2.38)

x = dU x dx = - 1 L u i + 1 L u j β y = dU y dx -θ z = - 1 L v i + 1 L v j -(1 - x L )θ i - x L θ j D rot = dθ z dx = - 1 L θ i + 1 L θ j
Étude bibliographique L'écriture de ces déformations généralisées sous forme matricielle nous donne :

(2.39)

     x β y D rot      =      -1/L 0 0 1/L 0 0 0 -1/L -(1 -x/L) 0 1/L -x/L 0 0 -1/L 0 0 1/L                    u i v i θ i u j v j θ j               =      B axial B vert B rot      U e
U e est un vecteur qui regroupe les déplacements nodaux des noeuds i et j de la poutre.

Par ailleurs, la matrice de rigidité élémentaire correspondante est donnée par [START_REF] Guedes | A fibre/timoshenko beam element in castem 2000[END_REF] :

(2.40)

K e = K axial + K cis + K f lex
Avec :

(2.41)

K axial = L 0 B axial T ESB axial dx K cis = L 0 B vert T kGSB vert dx K f lex = L 0 B rot T EIB rot dx
E dénote le module d'Young, G le module de cisaillement, I le moment d'inertie, S l'aire de la section et κ le coefficient de correction de cisaillement.

En se référant à l'équation (2.38), un point de Gauss est suffisant pour une intégration exacte de K axial et K f lex . Au contraire, due à la présence des termes linéaires dans l'expression de B vert , l'intégration correcte de la matrice de rigidité K cis nécessite 2 points d'intégration pour être intégrée de manière exacte. Or, si on intègre cette raideur de manière exacte, on constate une surestimation des raideurs de la poutre. Ainsi, si on choisit de sous-intégrer la matrice de rigidité K cis (en utilisant un seul point de Gauss au lieu de 2) on n'intègre pas de manière exacte les fonctions de forme issue des rotations qui sont d'un ordre plus élevé que les dérivées des déplacements. Ceci permet de régler le problème de blocage au cisaillement.

Ce problème peut être également mis en évidence par l'intermédiaire des valeurs propres de la matrice de rigidité [START_REF] Bitar | Modélisation de la rupture dans les structures en béton armé par des éléments finis poutres généralisées et multifibres[END_REF]). λ axiale , λ cisaillement et λ f lexion dénotent respectivement les modes axial, de cisaillement et de flexion de la matrice de rigidité élémentaire :

(2.42)

λ axiale = 2ES L λ cisaillement = 5kGS 2L λ f lexion = 2EI L 3 1 α 2.
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(2.43)

α = 1 1 + κSGL 2 12EI = 1 1 + κGL 2 EH 2
D'après l'équation 2.43, le coefficient α dépend du rapport L/H. Ainsi, pour les poutres élancées, α tend vers zéro et la rigidité en flexion est surestimée. Par conséquent, le phénomène de blocage par cisaillement apparait dans les éléments finis poutre où le déplacement transversal U y et la rotation θ z sont indépendamment discrétisés avec des fonctions de forme linéaires [START_REF] Stolarski | Membrane locking and reduced integration for curved elements[END_REF]).

Solutions proposées pour résoudre le problème de blocage

Le blocage par cisaillement est un problème numérique qui a intéressé beaucoup de chercheurs et que l'on rencontre dans plusieurs types d'éléments finis. Différentes solutions ont été proposées pour palier ce problème.

Méthode de sous-intégration Une autre manière d'illustrer le problème de blocage est de considérer le cas où l'épaisseur selon y tend vers zéro (cas des poutres élancées). Ainsi, la théorie de poutre de Timoshenko coïncide avec celle de Bernoulli. Par conséquent :

(2.44)

β y = dU y dx -θ z → 0
L'expression de β y après discrétisation est définie comme suit :

(2.45)

β y = v j -v i L - θ j + θ i 2 + 1 2 (θ i -θ j )ξ ξ = 2 L x - L 2 ∈ [-1, 1]
Les deux conditions ci-dessous doivent être respectées, si l'épaisseur H →0 :

(2.46)

v j -v i L - θ zj + θ zi 2 → 0 (2.47) θ zi -θ zj → 0
Le problème réside dans l'équation (2.47). Cette dernière induit une courbure nulle, ce qui est restrictif [START_REF] Ibrahimbegovic | Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams[END_REF]).

Afin de palier ce problème, [START_REF] Donea | A modified representation of transverse shear in c0 quadrilateral plate elements[END_REF] ont proposé de modifier l'expression de β y afin d'éliminer les termes linéaires :

(2.48)

β y = v j -v i L - θ zi + θ zj 2
Dans le cas de la poutre à 2 noeuds, cela revient à intégrer de manière exacte les termes relatifs à la flexion et de sous-intégrer les termes relatifs au cisaillement avec un seul point d'intégration au milieu (x = L/2) [START_REF] Stolarski | Shear and membrane locking in curved c0 elements[END_REF]). Si cette solution est satisfaisante en élasticité, elle est moins convenable en régime non-linéaire qui nécessite le plus souvent l'utilisation de plusieurs points de Gauss.

Fonctions de forme d'ordre supérieur Afin de s'affranchir du problème de verrouillage, des fonctions d'interpolation d'ordre supérieur peuvent être utilisées. Dans ce cas, les variable U y et θ z ne sont plus discrétisées séparément. A cet égard, [START_REF] Friedman | A frame element model for the analysis of reinforced concrete structures under shear and bending[END_REF] ont proposé une interpolation polynomiale de degré plus élevé pour un élément fini de poutre à deux noeuds moyennant les fonctions d'interpolation suivantes :

(2.49)

N 1 = 1 - x L N 2 = x L N 3 = 1 1 + Φ 2 x L 3 -3 x L 2 -Φ x L + 1 + Φ N 4 = L 1 + Φ x L 3 -2 + Φ 2 x L 2 1 + Φ 2 x L N 5 = - 1 1 + Φ 2 x L 3 -3 x L 2 -Φ x L N 6 = L 1 + Φ x L 3 -1 - Φ 2 x L 2 - Φ 2 x L N 7 = 6 (1 + Φ)L x L 2 - x L N 8 = 1 1 + Φ 3 x L 2 -(4 + Φ) x L + 1 + Φ N 9 = - 6 (1 + Φ)L x L 2 - x L N 10 = 1 1 + Φ 3 x L 2 -(2 -Φ)
x L

Φ représente le rapport entre la rigidité de flexion et celle de cisaillement de l'élément :

(2.50)

Φ = 12 L 2 EI kGS = 24 L 2 I kS (1 + ν)
Ces fonctions sont utilisées pour définir le champ de déplacement généralisé qui sera présenté sous forme matricielle par l'équation 2.51 :

(2.51)

     U x U y θ z      =      N 1 0 0 N 2 0 0 0 N 3 N 4 0 N 5 N 6 0 N 7 N 8 0 N 9 N 10                    u i v i θ i u j v j θ j              
Cependant, ces fonctions de forme dépendent des propriétés des matériaux et ne sont pas mises à jour pendant les calculs non linéaires. Par conséquent, la solution sera exacte en élasticité mais approchée après l'apparition des endommagements.

Elément poutre multifibre avec degrés de liberté internes [START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF]) Récemment, un nouvel élément multifibre avec des degrés de liberté internes a été développé par [START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF] et c'est cet élément qui a servi de base à l'élaboration du modèle d'élément multifibre enrichi présenté dans ce mémoire.

Dans cette section, on présente l'élément Timoshenko avec deux noeuds et des degrés de liberté élémentaires, c'est à dire propres à l'élément. La formulation présentée opte pour une interpolation polynomiale de degré supérieur pour les déplacements transversaux (4 polynômes cubiques indépendants,

H 1 R , H 2 R , L 1 R , L 2 R ) et les rotations (3 polynômes quadratiques indépendants, L 1 R , L 2 R , M 3 R ).
Par ailleurs, cet élément, a des fonctions d'interpolation indépendantes des propriétés matérielles.

L'élément Caillerie est présenté par la figure 2.14. Chaque noeud a trois degrés de liberté (u, v, θ). L'élément a en plus quatre degrés de libertés internes (∆v 1 , ∆θ, ∆v 2 et ∆u). Où ∆u est une translation axiale interne introduite dans la direction x, ∆v 1 et ∆v 2 représentent chacune une translation transversale interne dans la direction y tandis que ∆θ est la rotation interne autour de l'axe z rajouté au noeud K. Tous les degrés de liberté sont stockés dans un vecteur de dimension 10 structuré de la manière suivante :

(2.52)

U e T = u i v i θ i ∆v 1 ∆θ ∆v 2 ∆u u j v j θ j
Les fonctions d'interpolations pour les déplacements axiaux sont telles que :

(2.53)

U x = N 1 (ξ)u i + N 3 (ξ)∆u + N 2 (ξ)u j
Elles sont données par les équations suivantes :

(2.54)

           N 1 = 1 2 ξ(ξ -1) N 3 = 1 -ξ 2 N 2 = 1 2 ξ(ξ + 1)
Les autres fonctions d'interpolations sont données par [START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF] et le champ des déplacements généralisés est discrétisé comme suit : (2.56)

Étude bibliographique    U y = H 1 R v i + H 2 R v j + L 1 R ∆v 1 + L 2 R ∆v 2 θ z = L 1 R θ 1 + L 2 R θ 2 + M 3 R ∆θ avec :                                        H 1 R (ξ) = (ξ -1) 2 (ξ + 2) 4 H 2 R (ξ) = - (ξ -2)(ξ + 1) 2 4 L 1 R (ξ) = (ξ -1) 2 (ξ + 1) 4 L 2 R (ξ) = (ξ -1)(ξ + 1) 2 4 L 1 R (ξ) = (ξ -1)(3ξ + 1) 4 L 2 R (ξ) = (ξ + 1)(3ξ -1) 4 M 3 R (ξ) = 1 -ξ 2 2.3.
U x = N xi N 1 xk N 2 xk N xj         u i ∆u 1 ∆u 2 u j         2.
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(2.57) Le champ de déplacement généralisé prend la forme suivante : 

                         N xi = - 9 2 ξ + 1 2 3 + 9 ξ + 1 2 2 - 11 2 ξ + 1 2 + 1 N xj = 9 2 ξ + 1 2 3 - 9 2 ξ + 1 2 2 + ξ + 1 2 N 1 xk = 27 2 ξ + 1 2 3 - 45 2 ξ + 1 2 2 + 9 ξ + 1 2 N 2 xk = - 27 2 ξ + 1 2 3 + 18 ξ + 1 2 2 + - 9 2 ξ + 1 2 L'élément
                           U x = N xi u i + N 1 xk ∆u 1 + N 2 xk ∆u 2 + N xj u j U y = H 1 R v i + L 1 R ∆v 1 + L 2 R ∆v 2 + H 2 R v j U z = H 1 R w i + L 1 R ∆w 1 + L 2 R ∆w 2 + H 2 R w j θ x = N 1 θ xi + N 2 ∆θ x + N 3 θ xj θ y = L 1 R θ yi + M 3 R ∆θ y + L 2 R θ yj θ z = L 1 R θ zi + M 3 R ∆θ z + L 2 R θ zj

Enrichissement de la cinématique des sections de poutre

La prise en compte du cisaillement a toujours été un point crucial qui intéresse la communauté scientifique et ceci dans le but d'améliorer la modélisation des éléments structuraux en béton armé et surtout ceux qui sont peu élancés et dans lesquels les effets de cisaillement ne sont pas négligeables. Plusieurs formulations ont été développées dans le cadre de ces études.

On peut citer notamment les travaux de Vecchio & Collins (1986). Ces derniers ont construit un modèle de béton équivalent par homogénéisation et ont proposé une théorie pour calculer les effets de cisaillement dans les poutres soumises à des efforts tranchants. Elle repose sur l'équilibre de couches superposées. La formulation fonctionne bien sous chargement monotone mais pas sous chargement cyclique.

Enrichissement cinématique des éléments finis poutres multifibres pour prise en compte du gauchissement de torsion

D'autres auteurs ont choisi d'enrichir les déformations classiques de la section, issues de la théorie des poutres en ajoutant des déformations d'enrichissement afin de reproduire les contraintes de cisaillement, non seulement dans le cas de poutres soumises à un effort tranchant, mais aussi à de la torsion. [START_REF] Casaux | Modélisation tridimensionnelle du comportement sismique d'ouvrages en béton armé : développement de méthodes simplifiées[END_REF] et [START_REF] Éf Érences Mazars | Using multifiber beams to account for shear and torsion : Applications to concrete structural elements[END_REF] ont eu l'idée d'enrichir la cinématique de l'élément multifibre Timoshenko par des déplacements de gauchissement de la section u w sous sollicitations de torsion. La cinématique de l'élément enrichi est donnée par l'équation 2.59 :

(2.59)

u = u p + u w =   U x (x) -yθ z (x) + zθ y (x) U y (x) -zθ x (x) U z (x) + yθ x (x)   +   αφ(y, z) 0 0   où α = dθ x dx
est l'angle unitaire de rotation de torsion qui détermine l'amplitude du gauchissement et varie en fonction des sollicitations. D'autre part, φ(y, z) est définie comme étant la fonction de gauchissement. Le calcul de cette dernière repose sur l'équilibre de la section considérée comme homogène et le problème est formulé comme un problème de diffusion scalaire. La fonction φ est déterminée initialement puis gardée constante au cours des pas de chargement. Une extension est proposée par [START_REF] Casaux | Modélisation tridimensionnelle du comportement sismique d'ouvrages en béton armé : développement de méthodes simplifiées[END_REF] pour une section composée de plusieurs matériaux, en découpant la section en plusieurs parties homogènes. Le champ de déformation total obtenu en sommant la déformation classique de section plane p avec la déformation de gauchissement enrichi w peut alors s'écrire comme suit :

(2.60)

     xx γ xy γ xz      = p + w =         dU x dx -y dθ z dx + z dθ y dx -zα + dU y dx -θ z yα + dU z dx + θ y         +         0 α ∂φ ∂y α ∂φ ∂z        
Cependant, même si la méthode fonctionne en théorie pour une section composite, la discrétisation de la condition à l'interface s'avère lourde à mettre en oeuvre en pratique pour l'utilisateur. (2.61)

u w x (x, y) = i ϕ(y)u w i = ϕ(y)u w
Les déformations de la section sont ainsi données par l'écriture matricielle ci-après :

(2.62)

  xx 2γ xy   =   1 -y 0 0 0 0   as         ∂U x ∂x ∂θ z ∂x ∂U y ∂x -θ z         es +     0 ∂u w x (y) ∂y     w
Ainsi, l'expression de la déformation de section plane p peut être donnée par l'équation (2.63) :

(2.63) p = a s e s = a s B p U e B p regroupe les dérivées des fonctions de forme associées à la discrétisation spatiale longitudinale. Le vecteur contenant les déplacements et rotations élémentaires est noté U e .

On voit clairement que les déformations axiales sont uniquement générées par la rotation de la section (corps rigide provenant de la section droite) vu que la partie de la déformation axiale provenant du gauchissement est nulle ( w xx = 0). Les déformations de cisaillement sont quand à elles complètement données par la cinématique d'enrichissement (γ p xy = 0). Ainsi, les deux champs sont naturellement orthogonaux ( pt w = 0) et il n'est pas nécessaire d'enlever les corps rigides de rotation des fonctions d'interpolations des variables de gauchissement [START_REF] Grange | Modèles multi-échelles et algorithmes pour les simulations dynamiques : application à la vulnérabilité sismique des structures[END_REF]).

Introduction du gauchissement variable suivant x : formulation de type Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] Si par contre on part de l'hypothèse que le champ de gauchissement varie selon x (Le Corvec (2012)) et on considère que le champ de déplacement enrichi u w présente une seule composante selon x, alors celui-ci peut s'exprimer tel que :

(2.64) (2.65)

u w (x, y) = u w x (x, y) 0 0 = c(x)ϕ(y)W e 0 0 L'interpolation
Ω * t σdΩ = t U * F ext

Application du PPV* dans le cas général

En utilisant l'expression discrétisée du champ de déformation de section plane, p (équation (2.63)), le PPV* prend la forme suivante après développement :

(2.66)

t U * L 0 B p T A t a s σ(x, y)dA dx = t U * F ext (2.67) t W * L 0 ∂c(x) ∂x A ϕ t (y)σ xx (x, y)dA dx+ L 0 c(x) A ∂ϕ t (y) ∂y σ xy (x, y)dA dx = t W * F w
U * et W * représente respectivement l'assemblage des degrés de liberté virtuels correspondant au champ de déplacement de la section plane et au champ de déplacement de gauchissement.

Avec les notations suivantes :

(2.68)

                 A x = A t a s σ(x, y)dA A w x = A ϕ t (y)σ xx (x, y)dA A w y = A ∂ϕ t (y) ∂y σ xy (x, y)dA
Le système d'équations non linéaires à résoudre prend la forme ci-après :

(2.69)

L 0 B p T A x dx = F ext (2.70) L 0 ∂c i (x) ∂x A w x dx + L 0 c i (x)A w y dx = F w ∀ section i
En intégrant par partie la deuxième équation d'équilibre de la section et en considérant de plus que la poutre est libre de se gauchir ( F w = 0), on obtient :

(2.71) c i (x) (2.72)

A t ϕ(y)σ xx dA L 0 dx- L 0 c i (x) A t ϕ(y) ∂σ xx ∂x dA dx+ L 0 c i (x)
A t ϕ(y) ∂σ xx ∂x - t ∂ϕ y ∂y σ xy dA = 0 ∀ section i
Cette méthode permet de traiter les problèmes de béton armé mais présente une limitation forte. En effet, pour résoudre l'équation d'équilibre (équation 2.72) qui fait intervenir la dérivée de σ xx dû au fait que w xx est nul, [START_REF] Mohr | A frame element model for the analysis of reinforced concrete structures under shear and bending[END_REF] proposent une méthode qui fonctionne pour un matériau linéaire ou matériau linéaire à chaque pas de résolution. Ainsi, elle fonctionne pour un matériau endommageant. Celle-ci s'obtient en linéarisant la section d'équilibre de la section [START_REF] Mohr | A frame element model for the analysis of reinforced concrete structures under shear and bending[END_REF] ; [START_REF] Grange | Modèles multi-échelles et algorithmes pour les simulations dynamiques : application à la vulnérabilité sismique des structures[END_REF]).

On considère que :

(2.73)

       δσ xx = C 11 (δ x -yδχ z ) δσ xy = C 33 δγ w xy = C 33 ∂ϕ(y) ∂y δW e )
La forme linéarisée de l'équation d'équilibre 2.72 de la section devient :

(2.74)

A t ∂ϕ(y) ∂y C 33 ∂ϕ(y) ∂y dA kww δu w = A t ϕ(y)C 11 1 -y dA Q     ∂δ x ∂x ∂δχ z ∂x     , ∀ section i A noter que C 33 = G et C 11 = E en élasticité.
La résolution nécessite le calcul de :

(2.75)

    ∂δ x ∂x ∂δχ z ∂x    
Les dérivées des efforts de sections sont calculées grâce aux équations classiques valables en élasticité :

(2.76)

         N = ∂N ∂x = ∂ ∂x A C 11 ( x -yχ z ) dA M = ∂M ∂x = ∂ ∂x A -yC 11 ( x -yχ z ) dA (2.77) N M L = C 11 A -C 11 S -C 11 S C 11 I Ω x χ z e
où A représente l'aire de la section, S le moment statique, et I son inertie de flexion. D'autre part :

(2.78)

N M = 0 -V = 0 0 0 0 0 -kGA ξ   x χ z γ xy   e Ainsi, (2.79) L = Ωe = ξe → e = Ω -1 ξe D'où :
(2.80) e = Ω -1 ξe On obtient finalement :

(2.81)

u w = k -1 ww QΩ -1 ξe
Ainsi, la formulation proposée par [START_REF] Mohr | A frame element model for the analysis of reinforced concrete structures under shear and bending[END_REF], bien qu'adaptée au béton armé, ne fonctionne que dans le plan et fait intervenir des hypothèses fortes de linéarité du matériau à chaque pas de calcul.

Résolution de l'équation d'équilibre avec le gauchissement variable selon x : Formulation de type Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] et Di Re (2017a) ont formulé un élément enrichi en gauchissement seul. Ils font le choix d'avoir un enrichissement u w ayant une seule composante selon x mais évoluant suivant x. La cinématique de cette formulation est présentée par l'équation suivante :

(2.82)

u = u p + u w =   U x (x) -yθ z (x) + zθ y (x) U y (x) -zθ x (x) U z (x) + yθ x (x)   +   u w x (y, z) 0 0  
Au niveau de la section transversale, les degrés de liberté de gauchissement sont interpolés par des polynômes de Lagrange et le nombre de points d'intégration utilisés est déterminé de manière à obtenir une bonne précision pour les applications visées (figure 2.16). La formulation proposée par Le Corvec (2012) est robuste quand elle est utilisée avec des lois de matériaux de plasticité, mais n'a pas été utilisée dans sa forme actuelle pour le cas du béton armé avec une discrétisation de la section permettant d'y faire apparaître des fibres de béton. En effet les fonctions d'interpolations utilisées dans cette formulation sont des polynômes de Lagrange d'ordre limité définis sur l'ensemble de la section. Le nombre limité de points de Gauss utilisés pour en faire l'intégration ne permet pas de représenter un ensemble de fibre de béton.

Capdevielle (2016) et collaborateurs ont amélioré le modèle de Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] en adoptant un maillage de la section basée sur des fonctions de formes définies pour chaque fibre de la section et ainsi être capable de mailler une section de béton armé avec un nombre important Le profil de gauchissement a été calculé pour diverses formes de section en torsion pure. Les figures (2.18 et 2.19) illustrent le gauchissement de différentes formes de sections : une section béton armé carrée et une section en L respectivement. D'autre part, la figure 2.17 présente la comparaison du modèle de Capdevielle ( 2016) par rapport aux essais expérimentaux de [START_REF] Chalioris | Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams[END_REF]. Les courbes numériques sont des prédictions pour une poutre en T dont les paramètres de la loi de comportement de béton du µ modèle [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]) ont été calibrés sur des essais de poutre en torsion pure avec des sections en L grâce à un algorithme génétique. Les courbes de la figure 2.17 montrent clairement qu'avec les meilleurs jeux de paramètres dans les deux cas (avec ou sans gauchissement), c'est le modèle avec gauchissement qui permet de prédire au mieux le comportement en torsion pure des autres types de section (dont celle en T).

2.4.2 Enrichissement des éléments poutres multifibres pour prise en compte du gauchissement et de la distorsion de la section dû au confinement du béton [START_REF] Bairan | Coupled model for the non-linear analysis of anisotropic sections subjected to general 3d loading. part 1 : Theoretical formulation[END_REF] et [START_REF] Bairan | Multiaxial-coupled analysis of rc cross-sections subjected to combined forces[END_REF] ont proposé un enrichissement de la cinématique pour prendre en compte non seulement le gauchissement mais aussi les distorsions de la section, c'est-à-dire les déformations hors-plan dans les directions y et z. Ainsi, ils ont abouti à un modèle complet dans lequel toutes les composantes du champ de déplacement sont enrichies par des déplacements additionnels (équation 2.83).

(2.83) Par conséquent, l'idéal sera d'avoir un modèle enrichi avec des déplacements additionnels discrétisés moyennant des fonctions de forme variables selon la direction de la longueur x de la poutre. Ceci permet de pouvoir modéliser l'évolution du gauchissement dans la direction longitudinale, l'interaction entre les sections et pouvoir différencier entre les endroits où le gauchissement ou la distorsion sont restreints et les endroits où ces phénomènes sont libres d'être présents. Par ailleurs, le point le plus important est qu'un enrichissement variable selon la direction x permet également d'avoir une résolution implicite de l'équilibre de la section comme c'est le cas dans Le Corvec (2012) ou [START_REF] Capdevielle | Enrichissement des éléments finis multifibres par prise en compte du gauchissement[END_REF].

u = u p + u w =   U x (x) -yθ z (x) + zθ y (x) U y (x) -zθ x (x) U z (x) + yθ x (x)   +   u w x (y, z) u w y (y, z) u w z (y, z)   Cependant,
Les travaux d'enrichissement de gauchissement et de distorsion pourront alors être couplés et servir de base afin de disposer d'un modèle 3D enrichi qui prend en compte les déformations de cisaillement (gauchissement) ainsi que la distorsion des sections due à la présence des armatures transversales.

Toutefois, même en enrichissant la section de poutre multifibre, il faudra également disposer d'une loi de comportement pour le matériau composant la section capable de bien reproduire les dilatations et contractions transversales sous sollicitations axiales. À cet égard, plusieurs modèles de comportement du béton existants dans la littérature seront détaillés dans le paragraphe suivant.

Étude bibliographique

Les modèles de comportement du béton

Contrairement aux matériaux en acier dont le comportement est ductile, le béton présente un aspect fragile influencé par plusieurs phénomènes et mécanismes internes d'altération qui conduisent à une perte de raideur du matériau. L'une des caractéristiques du béton est un comportement différent en traction/compression. En effet, il est beaucoup plus résistant en compression. En outre, le béton est connu par son caractère unilatéral : lors du passage d'une sollicitation endommageable en traction à une sollicitation en compression, macroscopiquement on observe une restauration de la raideur du matériau. La création et la croissance de microfissures ou microvides et l'effondrement de la structure microporeuse sont généralement appelés endommagement et se traduisent par une perte de rigidité et de résistance du matériau.

Au cours des dernières décennies, de nombreux modèles constitutifs ont été développés pour reproduire le comportement des matériaux endommageables, suivant différentes approches. L'une des premières propositions de modèles d'endommagement remonte aux travaux de [START_REF] Lemaitre | Coupled elasto-plasticity and damage constitutive equations[END_REF] et [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF].

Comportement du béton selon la loi élasto-endommageable

Les modèles de comportement du béton selon la loi élasto-endommageable se basent sur les principes fondamentaux de la mécanique d'endommagement du milieu continu. L'endommagement est caractérisé par la variable d'endommagement D variant de 0 à 1, quand le matériau évolue de l'état sain à l'état totalement endommagé. La notion de contrainte effective est introduite pour tenir compte de la diminution du module d'élasticité E dans les zones de rupture du béton.

Modèle de Mazars [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF])

En 1986, Mazars a introduit un modèle d'endommagement isotrope pouvant ternir compte de la dissymétrie du comportement du béton en compression et en traction. Il est basé sur la définition de deux variables d'endommagement D t et D c , décrivant indépendamment la dégradation du matériau sous des contraintes de traction et de compression. La combinaison de ces deux variables fournit le paramètre d'endommagement total D, utilisé pour décrire la dégradation de la rigidité élastique initiale, et résulte de la définition de deux coefficients de pondération α t et α c liés respectivement aux contraintes de traction et de compression comme suit :

(2.84)

D = α t D t + α c D c
Ce modèle ne convient que pour les simulations de charge monotone et ne tient pas compte des déformations plastiques résiduelles observées expérimentalement dans le béton après décharge.

µ modèle [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF])

De nombreuses améliorations de la formulation originale ont été proposées au cours des années [START_REF] Mazars | Continuum damage theory -application to concrete[END_REF] Douze paramètres de matériaux (deux pour l'élasticité, deux pour l'endommagement, deux pour le glissement interne, un pour l'effet unilatéral et cinq pour la plasticité) doivent être identifiés.

Les principales évolutions du modèle sont (i) un effet unilatéral complet lors du passage de la traction à la compression, (ii) la présence d'un effet hystérétique en traction, et (iii) la possibilité de définir un endommagement induit en compression malgré l'utilisation de la plasticité.

"Smeared cracking approach" [START_REF] Bairan | A non-linear coupled model for the analysis of reinforced concrete sections under bending[END_REF])

Un modèle triaxial non linéaire complet pour le béton a également été développé par [START_REF] Bairan | A non-linear coupled model for the analysis of reinforced concrete sections under bending[END_REF]. Le béton est modélisé comme un matériau orthotrope. Le modèle adopté reproduit l'anisotropie induite par fissure au moyen d'une approche de fissure diffuse (smeared cracking approach). Les premiers modèles orthotropes de fissurations réparties ("smeared cracking approaches") datent de la fin des années 60 [START_REF] Rashid | Analysis of prestressed concrete pressure vessels[END_REF]). Après fissuration, le comportement initialement isotrope est remplacé par une relation orthotrope reliant les contraintes et les déformations dans le repère principal des déformations, considéré comme repère de fissuration. On peut distinguer les modèles où les axes d'orthotropie sont fixés avec le début de la fissuration ("fixed smeared crack models"), de ceux où les axes d'orthotropie sont en rotation et attachés aux vecteurs propres unitaires associés aux valeurs propres du tenseur de déformations ("rotating smeared crack concept").

Dans le modèle proposé par [START_REF] Bairan | A non-linear coupled model for the analysis of reinforced concrete sections under bending[END_REF], après l'apparition de la fissuration, l'orientation et l'espacement des fissures sont supposés fixes. La loi est du type fixed crack approach par opposition aux lois rotating crack approach où les fissures tournent en fonction du chargement. La déformation totale d'un point matériel est supposée être la somme d'une partie mécanique m , qui est directement liée à la contrainte, et d'une autre partie qualifiée de non mécanique nm , car elle n'est pas directement lié à la contrainte.

(2.87)

= m + nm
Tous les types de déformations libres telles que le fluage c , le retrait s ou les déformations thermiques t peuvent être traités comme des déformations non mécaniques en les ajoutant comme indiqué dans l'équation (2.88).

(2.88) nm = c + s + t D'autre part, la partie mécanique m de la déformation totale comporte deux composantes : la déformation élastique e et la déformation plastique p tel que :

(2.89)

m = e + p
Ce modèle présente un comportement plastique en compression alors qu'en traction, le module tangent se dégradera après fissuration du béton avec prise en compte de l'endommagement. La reproduction correcte du comportement du béton sous chargement cyclique est également possible. Lors du chargement en compression, la relation entre contrainte et déformation mécanique suit l'équation non linéaire de Collins & Porasz (1989). Celle-ci permet de reproduire l'influence de la résistance du béton et est ainsi adaptée pour simuler à la fois le comportement d'un béton normal et d'un béton à haute résistance. La surface de rupture de Willam & Warnke (1975) a été choisie dans ces travaux pour ses capacités à reproduire le comportement du béton sous une large gamme de charges à des niveaux de contraintes hydrostatiques faibles et élevés.

Ainsi, les modèles mixtes sont l'objectif à atteindre dans le but de modéliser précisément le comportement réel du béton. Mais leur utilisation pratique est encore délicate compte tenue de leur grand nombre de paramètres et les difficultés qui existent à les implémenter numériquement.

Dans le cas du béton confiné par les armatures transversales, une loi de comportement endommageable de béton capable de reproduire la dilatance du béton dû à la présence des cadres, est indispensable. Or, dans les travaux cités plus haut, soit l'effet de la dilatance n'est pas pris en compte (c'est à dire uniquement l'effet Poisson est considéré), soit ils le prennent en considération, mais un modèle dilatant seul n'est pas suffisant pour reproduire le phénomène de confinement du béton. Dans ce travail, une amélioration du µ modèle [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]) sera proposée afin d'y introduire l'effet de dilatance. Le choix d'utiliser ce modèle provient du fait que le µ modèle est unilatéral et permet donc de traiter des chargements cycliques, dans un contexte d'analyse des structures en sismique, et reste néanmoins robuste et simplement formulé.

Conclusions

Dans ce chapitre, l'effet du confinement dû à la présence des armatures transversales a été mis en valeur. Il a été démontré par plusieurs études que les cadres introduits dans une section en béton armé jouent un rôle essentiel dans la modification du comportement du béton. Ainsi, pour pouvoir prédire correctement le comportement d'une section en béton armé confinée par des armatures transversales, il est indispensable de développer un outil numérique performant qui permettra de modéliser ces cadres et de reproduire l'effet de confinement.

Les éléments poutres multifibres ont été choisis comme base de notre formulation. 

Chapitre 3

Élaboration d'un modèle de poutre multifibre enrichi pour la prise en compte de l'effet de distorsion de la section

Introduction

L'objectif principal de ce chapitre est de présenter les modèles de poutres multifibres enrichis développés en formulations 2D et 3D. Ces modèles sont adaptés pour tous types de section et de matériau et prennent en compte le phénomène de distorsion transversale de la section.

Pour cela, des degrés de liberté supplémentaires au niveau de chaque fibre de la section sont ajoutés. D'un point de vue technique, grâce à la structure du code ATL S, ces degrés de liberté peuvent dans un premier temps être traités au niveau global du code. Ceci permet également une meilleure compréhension de la méthode d'enrichissement. Une condensation de ces degrés de liberté d'enrichissement sur les degrés de liberté classiques de l'élément pourra alors être opérée par la suite à la manière des techniques de type E-FEM. Ce dernier point constitue une perspective de ce travail de thèse.

En premier temps, une formulation 2D de l'élément enrichi sera présentée. L'élément poutre 2D de Caillerie et al. (2015), amélioré par Bitar (2017) pour prise en compte du couplage effort normal -moment fléchissant, a servi de base pour cette formulation en déplacements. Les étapes de discrétisations à l'échelle de l'élément poutre le long de l'axe x ainsi qu'à l'échelle de la section transversale sont détaillées. La section sera discrétisée en éléments triangulaires TRI6 à 6 noeuds avec des fonctions de formes quadratiques. 3.2 Enrichissement de la cinématique des sections de poutre pour la distorsion : Formulation 2D

Soit un élément poutre 2D de longueur L représenté, selon son axe x, par une série de sections transversales ayant les axes y et z coincidant avec leurs axes principaux comme représenté sur la figure 3.1.

Figure 3.1 -Géométrie de l'élément poutre multifibre et de la section discrétisée.

Cinématique de la section et définition des déformations

L'hypothèse principale considérée ici est que le déplacement total de toute fibre dans la section transversale peut être donné par la superposition des déplacements de corps rigides traditionnels de la section plane u p , obtenus à partir de la théorie de poutre de Timoshenko (sections planes restent planes, mais pas nécessairement perpendiculaires à l'axe neutre), plus un nouveau champ de déplacement supplémentaire u w . Cette méthodologie a été inspirée des travaux de Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] et [START_REF] Capdevielle | Enrichissement des éléments finis multifibres par prise en compte du gauchissement[END_REF] qui ont proposé des méthodes d'enrichissement pour prise en compte du gauchissement de la section. Le champ u w décrit la distorsion de la section et présente une seule composante transversale, u w y , qui reproduit le changement de forme de la section dans son plan. Ce ne sera pas le cas dans un élément de poutre multifibre enrichi 3D, qui sera détaillé ultérieurement, et où la distorsion de la section est représentée dans les deux directions y et z au moyen de deux composantes transversales, u w y et u w z respectivement. Elles contribueront aux composantes latérales de déformation de section plane p yy et p zz afin de décrire l'étirement vertical de la section transversale.

La présente formulation 2D du modèle multifibre enrichi est limitée au comportement dans le plan x-y seulement, de sorte que le déplacement total (u) à n'importe quel point matériel de la section transversale est donné par l'équation suivante :

(3.1) u(x, y) = u p + u w = U x (x) -yθ z (x) U y (x) u p + 0 u w y (x, y) u w
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U x et U y sont les translations dans les directions x et y respectivement. Quant à θ z , elle représente la rotation autour de l'axe z.

Après avoir introduit les hypothèses précédentes et en se basant sur l'hypothèse de petits déplacements, la déformation totale en un point donné sera formée par la somme du champ de déformation plane p et de la déformation de distorsion w comme suit :

(3.2) = 1 2 ∇(u) + ∇(u T ) = p (u p ) + w (u w )
En utilisant l'équation (3.1), les composantes de déformation de section plane sont présentées en fonction des déplacements généralisés (U x , U y et θ z ) par les équations suivantes : Les composantes de ce vecteur sont la déformation axiale ( 0 ), la déformation de cisaillement dans la direction y (γ y ) et la courbure autour de l'axe z (κ z ).

(3.3)                p xx = ∂u p x ∂x = dU x dx -

Échelle de l'élément : interpolation dans la direction longitudinale

L'élément poutre classique 2D de Caillerie, précédemment introduit dans le chapitre 2, a servi de base pour l'élaboration de cette formulation. Il est enrichi de deux degrés de liberté internes supplémentaires ∆u 1 et ∆u 2 , ajoutés au noeud interne K, au niveau global de la poutre. Cette amélioration a été proposée par Bitar (2017) pour résoudre le problème de couplage effort normal -moment fléchissant. L'élément poutre de Caillerie amélioré est illustré par la Figure 3.2.

Avec toutes les définitions précédentes, le champ de déformation généralisé, e s , peut être réécrit de façon simple en introduisant la matrice B p qui regroupe les dérivées des fonctions Les composantes du vecteur de déplacement U e sont définies comme suit :

(3.7) U eT = U i eT ∆U eT U j eT Où :
(3.8)

U i eT = u i v i θ zi ∆U eT = ∆v 1 ∆θ ∆v 2 ∆u 1 ∆u 2 U j eT = u j v j θ zj
Le champ de déplacements généralisés aura donc la forme suivante :

(3.9)

U g = N U e (3.10) U gT = U x (x) U y (x) θ z (x)
Sachant que :

(3.11)          U x = N xi u i + N xk 1 ∆u 1 + N xk 2 ∆u 2 + N xj u j U y = H 1 R v i + H 2 R v j + L 1 R ∆v 1 + L 2 R ∆v 2 θ z = L 1 R θ zi + L 2 R θ zj + M 3 R ∆θ
Ainsi, la matrice B p de taille (3 × 11) prend la forme suivante : (3.12)

B p =        dN xi dx 0 0 0 0 0 dN 1 xk dx dN 2 xk dx dN xj dx 0 0 0 dH 1 R dx -L 1 R dL 1 R dx -M 3 R dL 2 R dx 0 0 0 dH 2 R dx -L 2 R 0 0 dL 1 R dx 0 dM 3 R dx 0 0 0 0 0 dL 2 R dx       
En tenant compte que la valeur de ∂ξ ∂x (jacobien de l'élément linéique) qui intervient en facteur des fonctions de forme quand elles sont dérivées vaut 2 L , ces dérivées seront alors données par les équations (3.13) et (3.14) :

(3.13)

dN xi dx = - 27 2L ξ + 1 2 2 + 9 L (ξ + 1) - 11 2L dN xj dx = 27 2L ξ + 1 2 2 - 9 L ξ + 1 2 + 1 L dN 1 xk dx = 81 2L ξ + 1 2 2 - 90 2L ξ + 1 2 + 9 L dN 2 xk dx = - 81 2L ξ + 1 2 2 + 36 L ξ + 1 2 - 9 2L 
et :

(3.14) 

dH 1 R dx = 3 2L ξ 2 -1 dH 2 R dx = 3 2L 1 -ξ 2 dL 1 R dx = 1 L 3 2 ξ 2 -ξ - 1 2 dL 1 R dx = 1 L (3ξ -1) dM 3 R dx = -4ξ L dL 2 R dx = 1 L (3ξ + 1) dL 2 R dx = 1 L 3 2 ξ 2 + ξ - 1 2 Les fonctions d'interpolation cubiques (H 1 R , H 2 R , L 1 R , L 2 R ) et quadratiques (L 1 R , L 2 R , M 3 

Échelle de la section : interpolation dans la direction transversale

Déformations provenant de la cinématique classique de section plane Comme démontré auparavant, l'expression de la déformation de section plane p fait intervenir une matrice de compatibilité a s (y) :

(3.15) p = a s (y)e s Tel que :

(3.16) a s (y) =      1 0 -y 0 0 0 0 1 0     
En effet, l'interpolation des déplacements généralisés moyennant les fonctions de forme d'ordres supérieurs se fait au niveau des points de Gauss des éléments poutre dans la direction longitudinale x. Alors que, la valeur des composantes de la matrice a s (y) sera celle obtenue aux points de Gauss de la section transversale. a s (y) peut être vue comme la matrice des fonctions d'interpolation de la section transversale issue de l'hypothèse de section plane.

y représente la position suivant l'axe transversal y de n'importe quelle fibre de la section. Ainsi, cette formulation est adaptée à des sections hétérogènes formées par la superposition de différents matériaux tel que le béton armé.

Déformations enrichies : prise en compte de la distorsion dans la section La cinématique de l'élément poutre 2D, est enrichie d'un déplacement de distorsion (u w ) ayant une composante transversale (u w y ). Ce champ de déplacement enrichi est donné par l'expression suivante :

(3.17) u w (x, y) = 0 u w y (x, y) = 0 c(x) φ(y)
En effet, la déformation transversale de section plane p yy est nulle. Par conséquent, les effets du renforcement transversal, de la dilatation et de la contraction latérales ne peuvent pas être pris en compte. Les déformations additionnelles de distorsion w jouent un rôle essentiel dans la description de la distorsion de la section et de la représentation du confinement du béton dû aux étriers étant donné que les déformations transversales enrichies w yy sont non nulles. Les composantes des déformations enrichies de distorsion peuvent être écrites sous la forme suivante :

(3.18)      w xx w yy γ w xy      =         ∂u w x ∂x ∂u w y ∂y ∂u w x ∂y + ∂u w y ∂x         =       0 c(x) ∂ φ(y) ∂y dc(x) dx φ(y)       =       0 0 0 ∂ φ ∂y φ 0       aw(y)   dc dx c   BwW e
Comme la matrice a s , la matrice a w peut être vue comme la matrice des fonctions de formes de la section transversale issue de l'enrichissement de la cinématique de section.

W e regroupe les degrés de liberté de distorsion des points situés sur la section i de chaque élément poutre. Ils sont traités comme des degrés de liberté globaux de l'élément. n w étant le nombre des degrés de liberté enrichis par noeud, les composantes du vecteur (1 × 4n w ) W eT sont alors définies comme suit : . . .

(3.19) W eT = W yi e T ∆W yk1 e T ∆W yk2 e T W yj
∆u w ynw(k2)   
La forme discrétisée du champ de déformation enrichi w peut donc être donnée par l'expression suivante :

(3.21) w = a w (y)e w = a w (y, z)B w W e

Choix des fonctions de formes utilisées

Dans le cas d'une poutre soumise à un chargement de compression simple, l'effort axial reste constant au niveau de toutes les fibres et les contraintes transversales σ yy sont nulles tout au long de la poutre. Afin de respecter cette condition en phase non linéaire, les simulations numériques ont montré, que le degré des fonctions de formes utilisées pour l'interpolation du déplacement enrichi u w y , doit être égal au degré des fonctions utilisées pour interpoler la composante transversale de déformation généralisée U y . Soient des fonctions d'ordre cubique.

Dans ce contexte, une poutre de longueur L = 1.3 m est discrétisée en deux éléments poutres Caillerie améliorés. Elle est encastrée d'un côté et libre de l'autre. À son extrémité libre est appliqué un déplacement axial de compression u x de l'ordre de 4 mm. À noter que tous les degrés d'enrichissement sont libres au droit de l'encastrement. Le comportement des fibres de béton de la section transversale a été modélisé avec le µ modèle [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]). Afin de justifier le choix du degré des fonctions de formes utilisées pour l'interpolation le long de la poutre ainsi que le long de la section transversale, trois cas ont été étudiés et sont présentés ci-après.

Fonctions de formes quadratiques

La matrice B w de taille (2n w × 3n w ) recueille les fonctions d'interpolation longitudinale et leurs dérivées : 

(3.22) B w =                          dc 1 dx 0 • • • • • • 0 dc 2 dx 0 • • • • • • 0 dc 3 dx 0 • • • • • • 0 dc 1 dx 0 • • • • • • 0 0 dc 2 dx 0 • • • • • • 0 0 dc 3 dx 0 • • • • • • 0 0 . . . . . . 0 
0 0 • • • 0 dc 1 dx 0 0 • • • 0 dc 2 dx 0 0 • • • 0 dc dx c 1 0 • • • • • • 0 c 2 0 • • • • • • 0 c 3 0 • • • • • • 0 c 1 0 • • • • • • 0 0 c 2 0 • • • • • • 0 0 c 3 0 • • • • • • 0 0 . . . . . . 0 
0 0 • • • 0 c 1 0 0 • • • 0 c 2 0 0 • • • 0 c 3                         
c 1 , c 2 et c 3 sont des fonctions d'interpolation quadratiques définies comme suit :

c 1 = 1 2 ξ(ξ -1) (3.23) c 2 = 1 -ξ 2 (3.24) c 3 = 1 2 ξ(ξ + 1) (3.25)

Fonctions de formes cubiques

La matrice B w de taille (2n w × 7n w ) prend la forme suivante : (3.26)

B w = dH 1 (nw,nw) O (nw,nw) dL 1 (nw,nw) O (nw,nw) dL 2 (nw,nw) dH 2 (nw,nw) O (nw,nw) H 1 (nw,nw) O (nw,nw) L 1 (nw,nw) O (nw,nw) L 2 (nw,nw) H 2 (nw,nw) O (nw,nw)
Étant donné que, O (nw,nw) est une matrice nulle de taille (n w × n w ), les autres matrices H (i=1,2) , L (i=1,2) , dH (i=1,2) et dL (i=1,2) de taille (n w × n w ) sont définies comme suit : (3.27)

H (i=1,2) =             H i R dx 0 • • • • • • 0 0 H i R dx 0 • • • • • • 0 0 0 . . . . . . . . . . . . . . . 0 0 0 • • • 0 H i R dx             dH (i=1,2) =             dH i R dx 0 • • • • • • 0 0 dH i R dx 0 • • • • • • 0 0 0 . . . . . . . . . . . . . . . 0 0 0 • • • 0 dH i R dx            
Et, (3.28) En premier lieu, si on compare les deux figures 3. 

L (i=1,2) =             L i R dx 0 • • • • • • 0 0 L i R dx 0 • • • • • • 0 0 0 . . . . . . . . . . . . . . . 0 0 0 • • • 0 L i R dx             dL (i=1,2) =             dL i R dx 0 • • • • • • 0 0 dL i R dx 0 • • • • • • 0 0 0 . . . . . . . . . . . . . . . 0 0 0 • • • 0 dL i R dx             H 1 R , L 1 R , L 2 R et H 2 R sont

Maillage de la section par éléments triangulaires TRI6

Il faut assez de points de Gauss (de fibres) par élément triangulaire afin d'intégrer correctement les polynômes. Pour cette raison, l'interpolation se fait sur 6 points de Gauss. Ainsi, la matrice B est calculée respectivement aux coordonnées ξ et η de ces 6 points de Gauss. La matrice Jacobienne J, ainsi que les matrices regroupant les dérivées des fonctions de forme B et B diffèrent d'un point de Gauss à un autre.

La section transversale est discrétisée en n s éléments triangulaires (TRI6) à 6 noeuds avec des fonctions de formes quadratiques. À chaque élément réel de la section, défini dans le système de coordonnées (y, z), est associé un élément de référence, défini dans le système de coordonnées (ξ, η) (Figure 3.4).

Représentation de la géométrie

Les fonctions de formes φ permettent d'obtenir la position de tout point de Gauss (y, z) en fonction des positions des noeuds de la section (y i , z i ) :

(3.29) y(ξ, η) = n i=1 φ i (ξ, η)y i (3.30) z(ξ, η) = n i=1 φ i (ξ, η)z i où :
n est le nombre des noeuds de l'élément triangulaire.

ξ et η sont les coordonnées d'un point de l'élément de référence.

y(ξ, η) et z(ξ, η) sont les coordonnées d'un point de l'élément réel.

y i et z i sont les coordonnées du noeud i de l'élément.

φ i (ξ, η) sont les fonctions d'interpolation. 

                           φ 1 (ξ, η) = (1 -ξ -η)(1 -2ξ -2η) φ 2 (ξ, η) = ξ(2ξ -1) φ 3 (ξ, η) = η(2η -1) φ 4 (ξ, η) = 4ξ(1 -ξ -η) φ 5 (ξ, η) = 4ξη φ 6 (ξ, η) = 4η(1 -ξ -η)
Passage de l'élément de référence à l'élément réel La dérivation dans l'élément réel s'écrit : Les composantes de la matrice Jacobienne sont calculées comme suit : Or, les dérivées des fonctions de forme se calculent par :

J(ξ, η) =    ∂y ∂ξ ∂z ∂ξ ∂y ∂η ∂z ∂η    =       6 i=1 ∂φ i ∂ξ y i 6 i=1 ∂φ i ∂ξ z i 6 i=1 ∂φ i ∂η y i 6 i=1 ∂φ i ∂η z i       =    
∂η     B               y 1 z 1 y 2 z 2 y 3 z 3 y 4 z 4 y 5 z 5 y 6 z 6              
(3.38)    ∂ ∂y ∂ ∂z    φ = [J] -1     ∂ ∂ξ ∂ ∂η     φ D'où (3.39) B = 1 detJ DB

Projection des fonctions de formes

Le déplacement de distorsion u w doit être exempt des déplacements de corps rigide. En effet, le champ de déplacement de section plane de Timoshenko u p est généré par la fonction de base (1, y). Par conséquent, dans le cas de la distorsion (enrichissement selon y) il est nécessaire de retrancher la partie constante du champ constant ainsi que la partie linéaire du mouvement de corps rigide de la section qui sera également affectée par la variable d'enrichissement. La méthode proposée ici est basée sur celle définie par Le Corvec (2012) puis adaptée par Capdevielle (2016) pour le calcul des projections des fonctions de formes. Ainsi, les fonctions de formes utilisées pour l'interpolation de la distorsion φ i (i = 1, 2, ..., n w ) sont projetées sur l'espace orthogonal au champ de déplacement de section plane u p . Les fonctions obtenues après projection sont alors données par l'équation suivante : (3.40)

φi = φ i - A φ i 1 a 1 y a 2 dA 1 y
Les constantes a 1 et a 2 sont calculées par une intégration numérique sur la section selon l'équation suivante :

(3.41) a 1 = A 1dA a 2 = A y 2 dA
Les dérivées de ces fonctions de forme projetées sont calculées selon la méthode adoptée par Le Corvec ( 2012) :

(3.42) ∂ φi ∂y = ∂φ i ∂y
Pour valider la projection des fonctions de formes établies, le même cas test de compression simple présenté dans la section 3.2.4 a été simulé pour comparer le comportement des fibres de la section en béton dans les deux cas : avec et sans projection des fonctions de formes. La figure 3.5 valide le fait que la projection est indispensable pour avoir un comportement réaliste des fibres de béton soumises à un chargement de compression simple : les contraintes axiale σ xx sont constantes tout au long de la poutre avec des contraintes transversales σ yy nulles (figures 3.5(b) et 3.5(d)). Ce qui n'est pas le cas pour les figures 3.5(a) et 3.5(c) où la projection n'est pas appliquée.

Équations d'équilibre du modèle

L'équilibre de l'élément poutre est écrit sous sa forme faible par l'équation (3.43). De plus, les déplacements de section plane u p et de distorsion u w supposés orthogonaux, la projection de la forme faible de l'équation d'équilibre sur ces deux sous-espaces conduit à deux équations d'équilibre indépendantes (3.44). La première représente l'équilibre classique de l'élément poutre et la seconde l'équation d'équilibre de la section.

(3.43) 

Ω * T σdΩ = U * T F ext (3.44)        Ω δ pT σ( p , w )dΩ = U * T Pext Ω δ wT σ( p , w )dΩ = W *
n el e=1       Ω e B p T a s T σ( p , w )dΩ e Ω e B w T a w T σ( p , w )dΩ e       Pe =       Pext P w ext      
Les termes à gauche du signe égal dans les deux équations d'équilibre sont les efforts internes tandis que les termes à droite sont les forces externes appliquées aux noeuds de l'élément. 

B p T a s T σ( p , w )dx = le 0 B p T a s T k m ( p + w ) dx = le 0 B p T a s T k m a s B p U e dx + le 0 B p T a s T k m a w B w W e dx (3.51) le 0 B w T a w T σ( p , w )dx = le 0 B w T a w T k m ( p + w ) dx = le 0 B w T a w T k m a s B p U e dx + le 0 B w T a w T k m a w B w W e dx
l e est la longueur de l'élément dans sa configuration initiale. On peut notamment déduire l'expression de la matrice de rigidité élémentaire K e telle que :

(3.52) δP e = K e δU e δW e L'effort résistant interne P e prend la forme suivante :

(3.53) P e =       le 0 B p T A a s T σ(x, y)dAdx le 0 B w T A a w T σ(x, y)dAdx      
D'autre part, l'expression de la matrice de rigidité de l'élément est donnée par :

(3.54) K e =       K pp K pw K wp K ww      
Sachant que :

(3.55)

K pp = le 0 B p T k ss B p dx K pw = le 0 B p T k sw B w dx K wp = le 0 B w T k ws B p dx K ww = le 0 B w T k ww B w dx
Dans la notation précédente, la matrice de rigidité de la section K s est définie comme suit, étant donné que A représente l'aire totale de la section transversale :

(3.56) K s =     k ss = A a s T k m a s dA k sw = A a s T k m a w dA k ws = A a w T k m a s dA k ww = A a w T k m a w dA    
Et l'effort résistant de la section P s sera défini comme suit :

(3.57)

P s =     s s w     =     A a s T σ(x, y)dA A a w T σ(x, y)dA    
Comme le montre la figure 3.6, chaque section est discrétisée en n s éléments triangulaires TRI6. Ainsi, le vecteur des efforts résistants de la section P s et la matrice de rigidité sectionnelle K s sont construits en additionnant la contribution de chaque élément triangulaire. La matrice de rigidité de la section et le vecteur des efforts résistants de la section seront exprimés comme suit :

(3.58)

P s = ns e=1       S e a s T σ( p , w )dS e S e a w T σ( p , w )dS e       =       P sp P sw      
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(3.59)

K s = ns e=1       K spp K spw K swp K sww       Avec :
(3.60)

K spp = S e a s T k m a s dS e K spw = S e a s T k m a w dS e K swp = S e a w T k m a s dS e K sww = S e a w T k m a w dS e
On a 3 sections par élément poutre, dont la contribution doit être additionnée pour calculer les termes du vecteur de force élémentaire P e et de la matrice de rigidité élémentaire K e .

Pour tous les calculs intégraux, la règle de quadrature de Gauss est appliquée.

3.2.8

Calcul numérique des matrices de fonctions de formes de la section a s et a w Dans la détermination des déformations de section plane et celles de distorsion rentrent les matrices a s et a w . Celles-ci sont calculées en chacun des 6 points de Gauss. Dans la matrice a s qui influe sur l'évaluation de la part de déformation de la section due à son déplacement plan, p , il faut utiliser les fonctions de forme quadratiques détaillées dans le paragraphe précédent pour un élément triangulaire TRI6. Connaissant la position de chaque fibre au niveau de la section, tous les termes de la matrice a s peuvent être calculés. En notant y I et z I les coordonnées du point de Gauss dans le repère global et ξ I et η I ses coordonnées dans le repère associé à l'élément triangulaire parent, la matrice a s est donnée par l'équation (3.61) :

(3.61) a s (y I ) =   1 0 -y I 0 0 0 0 1 0   =      1 0 - 6 i=1 φ i (ξ I , η I )y i 0 0 0 0 1 0     
Pour assurer l'orthogonalité des champs de déplacement de section plane et de distorsion, les mouvements de corps rigide doivent être ôtés des possibilités de solution du champ de déplacement de distorsion. Pour cela, les fonctions de forme φ i (y) utilisées pour l'interpolation le long de la section transversale sont projetées sur l'espace orthogonal aux déplacements de corps rigide de la section plane (Le Corvec (2012) ; [START_REF] Capdevielle | A multifiber beam model coupling torsional warping and damage for reinforced concrete structures[END_REF]). Les fonctions de formes obtenues après projection sont notées φ.

Ce sont ces fonctions de forme qui doivent être utilisées pour le calcul de la matrice a w qui entre dans l'évaluation de la part de déformation w due à la distorsion de la section. D'après l'écriture des déformations d'enrichissement (équation (3.18)), la matrice a w de taille (3×2n w ) est donnée par l'équation ((3.62)) : Les indices e i indiquent la position des noeuds du triangle TRI6 dans la section transverale.

(3.62) a w =     0 0 0 d φ dy φy 0     =     O (1,nw) O (1,nw) O (1,nw) d φ dy (1, nw) φy (1, nw) O (1,nw)     Avec, ( 3 
Au moment où toutes les composantes des champs de déformation sont établies sous forme discrétisée, l'utilisateur définit pour chaque fibre de la section transversale un matériau et une loi de comportement non linéaire appropriée, exprimée par l'équation (3.65) :

(3.65) σ = σ( p , w )
Ainsi, ce modèle numérique peut être utilisé pour reproduire le comportement d'éléments hétérogènes tels que les structures en béton armé.

Implémentation des aciers

Dans cette partie, l'implémentation des aciers longitudinaux et transversaux au niveau de la section transversale est détaillée. La section totale sera définie comme étant la superposition de la section A formée par les fibres de béton, la somme des sections des aciers longitudinaux S al et la somme des sections des aciers transversaux S at (Figure 3.7).

Aciers longitudinaux modélisés comme éléments "points de Gauss"

Dans le cas d'éléments en béton armé, la contribution des armatures longitudinales doit être ajoutée à celle provenant des fibres de béton au niveau de la section. La section totale sera ainsi représentée par la somme de la section du béton avec celle des aciers longitudinaux. Un terme supplémentaire sera ajouté au vecteur de force sectionnel P s et à la matrice de rigidité de la section K s , de sorte que leurs nouvelles formes soient les suivantes :

(3.66) 

P s = n sb e=1       S e b a s T σ( p , w )dS e b S e b a w T σ( p , w )dS e b       + n sal e=1       S e
K s =     K spp,b + K spp,al K spw,b + K spw,al K swp,b + K swp,al K sww,b + K sww,al    
À noter qu'une barre longitudinale peut être vue comme ponctuelle et donc mathématiquement comme un point de Gauss supplémentaire de la section ayant un poids de valeur la section d'acier S al . Par conséquent, cet élément comporte un seul noeud sans distorsion ni gauchissement. Il s'ensuit que la matrice correspondante a w est nulle et que les déformations de ces barres longitudinales ne sont composées que par les termes classiques de la section plane donnés par l'hypothèse de poutre de Timoshenko [START_REF] Bairan | Multiaxial-coupled analysis of rc cross-sections subjected to combined forces[END_REF]). D'où :

(3.69) 

P s =       n sb

Aciers transversaux modélisés en tant qu'éléments barres unidimensionnels

Les étriers sont modélisés comme des éléments barres. La même hypothèse a été prise par [START_REF] Bairan | Multiaxial-coupled analysis of rc cross-sections subjected to combined forces[END_REF]. Ces armatures transversales en acier sont divisées en n st sous-éléments de longueur l st . Chaque élément est composé de deux noeuds i et j, comme le montre la figure 3.8. À noter que dans le cas d'une formulation bidimensionnelle, la section transversale est équivalente à une ligne droite suivant la direction y. Dans notre cas, on a choisi de la représenter comme une surface bidimensionnelle, dans les deux directions y et z pour pouvoir ensuite généraliser la formulation en 3D, tout en veillant dans le cas 2D à garder un comportement constant de toutes les fibres dans la direction z.

u w y,i et u w y,j sont les déplacements transversaux de distortion des noeuds i et j respectivement. Avec :

(3.75) La formulation 2D de l'élément poutre multifibre enrichi, formulé en déplacement, a été étendue au cas des sollicitations tridimensionnelles. Dans ce cadre, le même principe d'enrichissement au niveau de la cinématique de l'élément poutre est adopté. Toutefois, en formulation 3D, le champ de déplacement enrichi (u w ) possède deux composantes transversales, u w y et u w z , qui représentent respectivement la distorsion de la section dans les deux directions y et z. Le déplacement total, u, d'une fibre de la section transversale est donné par l'équation suivante : Sous l'hypothèse de petits déplacements, la déformation totale en un point quelconque sera formée par la somme du champ de déformation plane ( p ) et de la déformation de distorsion ( w ). Par conséquent, les 6 composantes du champ de déformation totale sont définies comme suit :

     N 1 = 1 -ξ 2 N 2 = 1 + ξ 2 La
(3.83) u =   U x (x) -yθ z (x) + zθ y (x) U y (x) -zθ x (x) U z (x) + yθ x (x)   u p +   0 u w y (x, y, z) u w z (x, y, z)   u w U x , U y et U z dénotent
(3.84) 

                                       xx = dU x dx
(3.85) p =               1 0 0 0 +z -y 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -z 0 0 0 0 1 y 0 0 0 0 0 0 0 0               as(y,z)                   dU x dx dU y dx -θ z dU z dx + θ y dθ x dx dθ y dx dθ z dx                   es
Comme le montre l'équation (3.84), le déplacement de distorsion (u w ) contribue aux composantes de déformation latérale totale ( yy ) et ( zz ). Par conséquent, ces dernières ne sont pas nulles et les déformations additionnelles ( w ) jouent un rôle important dans la description de l'étirement transversal de la section. Ainsi, l'effet du renforcement transversal décrit par la dilatation et la contraction latérales des fibres de béton peut être pris en compte et le comportement des éléments en béton armé confiné peut être également étudié.

Interpolation longitudinale à l'échelle de l'élément poutre

L'élément poutre de Caillerie et al. (2015) a été étendu dans nos travaux au cas tridimensionnel. Les mêmes fonctions utilisées pour l'interpolation du déplacement transversal U y ont été définies pour U z et l'interpolation des composantes de rotation θ x et θ y se base sur les mêmes fonctions utilisées pour l'interpolation de θ z . Il en résulte que le champ de déplacement généralisé prenne la forme suivante :

                           U x = N xi u i + N 1 xk ∆u 1 + N 2 xk ∆u 2 + N xj u j U y = H 1 R v i + L 1 R ∆v 1 + L 2 R ∆v 2 + H 2 R v j U z = H 1 R w i + L 1 R ∆w 1 + L 2 R ∆w 2 + H 2 R w j θ x = N 1 θ xi + N 2 ∆θ x + N 3 θ xj θ y = L 1 R θ yi + M 3 R ∆θ y + L 2 R θ yj θ z = L 1 R θ zi + M 3 R ∆θ z + L 2 R θ zj
Tous les degrés de liberté sont rassemblés dans un vecteur colonne U e structuré comme suit :

(3.86) U e = U i e ∆U e U j e tels que :

(3.87)

U i e = u i , v i , w i , θ xi , θ yi , θ zi T ∆U e = ∆v 1 , ∆θ z , ∆v 2 , ∆w 1 , ∆θ y , ∆w 2 , ∆ 1 u , ∆ 2 u , ∆θ x T U j e = u j , v j , w j , θ xj , θ yj , θ zj T 3.4.
Passage à la formulation 3D du modèle multifibre enrichi 67 Comme dans le cas de la formulation bidimensionnelle, la déformation de section plane p peut s'écrire en fonction d'une matrice B p qui regroupe toutes les dérivées des fonctions utilisées pour établir l'interpolation longitudinale le long de l'élément poutre, du vecteur U e et de la matrice de compatibilité a s (y, z).

(3.88) p = a s (y, z)B p U e B p est une matrice de taille 6 × 21 tel que :

(3.89) B p = A (6,6) B (6,9) C (6,6)

Avec :

(3.90)

A (6,6) =                  dN xi dx 0 0 0 0 0 0 dH 1 R dx 0 0 0 -L 1 R 0 0 dH 1 R dx 0 L 1 R 0 0 0 0 dL 1 R dx 0 0 0 0 0 0 dL 1 R dx 0 0 0 0 0 0 dL 1 R dx                  (3.91) B (6,9) =                  0 0 0 0 0 0 dN 1 xk dx dN 2 xk dx 0 dL 1 R dx -M 3 R dL 2 R dx 0 0 0 0 0 0 0 0 0 dL 1 R dx M 3 R dL 2 R dx 0 0 0 0 0 0 0 0 0 0 0 dM 3 R dx 0 0 0 0 dM 3 R dx 0 0 0 0 0 dM 3 R dx 0 0 0 0 0 0 0                  (3.92) C (6,6) =                  dN xj dx 0 0 0 0 0 0 dH 2 R dx 0 0 0 -L 2 R 0 0 dH 2 R dx 0 L 2 R 0 0 0 0 dL 2 R dx 0 0 0 0 0 0 dL 2 R dx 0 0 0 0 0 0 dL 2 R dx                 
Toutes les fonctions de formes utilisées pour interpoler le champ de déplacements généralisés sont détaillées dans le chapitre 2 de ce mémoire.

Interpolation du champ de distorsion enrichi

On suppose que le déplacement de distorsion (u w ) possède deux composantes non nulles dans les directions y et z, introduites pour tenir compte de l'étirement transversal de la section dans le domaine tridimensionnel. Ce champ additionnel est défini comme suit :

(3.93) u w (x, y, z) = 0 u w y (x, y, z) u w z (x, y, z)

Avec :

(3.94)

         u w x (x, y, z) = 0 u w y (x, y, z) = c 1 (x) φ1 (y, z) u w z (x, y, z) = c 2 (x) φ2 (y, z)
L'interpolation est effectuée indépendamment le long de l'axe de la poutre avec les fonctions cubiques c 1 (x) et c 2 (x) et sur la section transversale avec les fonctions φ1 (y, z) et φ2 (y, z).

Ces dernières sont les fonctions quadratiques classiques utilisées pour les éléments triangulaires à 6 noeuds (TRI6) et elles sont calculées aux points de Gauss de la section.

Figure 3.9 -Distribution des degrés de liberté de distorsion au niveau des noeuds de la section.

Les composantes des déformations de distorsion peuvent donc être présentées comme suit :

(3.95)                                      w xx = ∂u w x ∂x = 0 w yy = ∂u w y ∂y = c 1 (x) ∂ φ1 ∂y w zz = ∂u w z ∂z = c 2 (x) ∂ φ2 ∂z γ w xy = ∂u w x ∂y + ∂u w y ∂x = dc 1 dx φ1 γ w xz = ∂u w x ∂z + ∂u w z ∂x = dc 2 dx φ2 γ w yz = ∂u w y ∂z + ∂u w z ∂y = c 1 (x) ∂ φ1 ∂z + c 2 (x) ∂ φ2 ∂y
La discrétisation spatiale se traduit pour les déformations d'enrichissement par l'expression suivante :

(3.96) w = a w (y, z)e w = a w (y, z)B w W e

Et en utilisant une notation matricielle, w devient :

(3.97) w =               w xx w yy w zz γ w xy γ w xz γ w yz               =                  0 0 0 0 0 0 ∂ φ1 ∂y 0 0 0 0 ∂ φ2 ∂z φ1 0 0 0 0 φ2 0 0 0 0 ∂ φ1 ∂z ∂ φ2 ∂y                  aw(y,z)           dc 1 dx dc 2 dx c 1 c 2           ew
La matrice B w collecte les fonctions d'interpolation longitudinale et leurs dérivés. Quant au vecteur W e , il regroupe tous les degrés de liberté de distorsion des points situés sur la section i de chaque élément comme illustré par la figure 3.9. Étant donné que (2 × n w ) représente le nombre de degré de liberté d'enrichissement pour les noeuds i et j et (4 × n w ) pour le noeud interne K, on a : (3.99)

W e y(i,j) = u w y1(i,j) . . . u w ynw(i,j) T W e z(i,j) = u w z1(i,j) . . . u w znw(i,j) T ∆W e yk(i=1,2) = ∆u w yk(i)1 . . . ∆u w yk(i)nw T ∆W e zk(i=1,2) = ∆u w zk(i)1 . . . ∆u w zk(i)nw
T n w est le nombre total de noeuds par section transversale.

Procédure de calcul adoptée En résumé, les déplacements généralisés sont calculés aux points de Gauss de l'élément poutre à partir des déplacements aux noeuds. 3 points de Gauss suffisent pour intégrer correctement les polynômes ce qui signifie qu'on a 3 sections transversales par élément poutre. Ensuite, avec une hypothèse cinématique basée sur la théorie de Timoshenko, ces déplacements généralisés sont utilisés pour calculer les déformations totales au niveau des fibres de la section transversale. Une loi de comportement non linéaire adéquate est attribuée à chaque fibre de la section conduisant ainsi au calcul des contraintes, à chaque point de Gauss de la section. Les forces généralisées sont ensuite calculées par intégration numérique sur la section transversale, pour finalement être interpolées en tant que forces nodales (Figure 3.10). 3.4.4 Calcul de B w : influence du choix du degré de liberté des fonctions d'interpolation

Pour cette formulation 3D, des fonctions de formes cubiques ont été choisies pour établir l'interpolation longitudinale au niveau de la matrice B w . Pour valider ce choix, le même cas test de compression simple sur une poutre de longueur 1.3 m, détaillé en section 3.2.4 a été réalisé.

Fonctions quadratiques

Si on utilise des fonctions de formes quadratiques pour l'interpolation suivant x, la matrice B w regroupant ces fonctions de formes ainsi que leurs dérivées, s'écrit de la manière suivante :

(3.100) B w =     dc 1(nw,nw) O (nw,nw) dc 2(nw,nw) O (nw,nw) dc 3(nw,nw) O (nw,nw) O (nw,nw) dc 1(nw,nw) O (nw,nw) dc 2(nw,nw) O (nw,nw) dc 3(nw,nw) c 1(nw,nw) O (nw,nw) c 2(nw,nw) O (nw,nw) c 3(nw,nw) O (nw,nw) O (nw,nw) c 1(nw,nw) O (nw,nw) c 2(nw,nw) O (nw,nw) c 3(nw,nw)    
Étant donné que, O (nw,nw) est une matrice nulle de taille (n w × n w ), les deux autres matrices c (i=1,2,3) et dc (i=1,2,3) de taille (n w × n w ) prennent la forme suivante :

(3.101) dc (i=1,2,3) =            dc i dx 0 • • • • • • 0 0 dc i dx 0 • • • • • • 0 0 0 . . . . . . . . . . . . . . . 0 0 0 • • • 0 dc i dx            Et, (3.102) c (i=1,2,3) =        c i 0 • • • • • • 0 0 c i 0 • • • • • • 0 0 0 . . . . . . . . . . . . . . . 0 0 0 • • • 0 c i       
Les fonctions de forme quadratiques c 1 , c 2 et c 3 sont les mêmes que celles définies pour le cas 2D. Elles sont définies au paragraphe 3.2.4.

Fonctions cubiques

D'autre part, en adoptant les fonctions cubiques, on aura : 

(3.103) B w =     dH 1 O dL 1 dL 2 O O dH 2 O O dH 1 O O dL 1 dL 2 O dH 2 H 1 O L 1 L 2 O O H 2 O O H 1 O O L 1 L 2 O H 2     H 1 , H 2 , L 1 , L 2 , dH 1 , dH 2 ,

Projection des fonctions de formes

Les fonctions de formes φ i (i = 1, 2, ..., n w ) utilisées pour l'interpolation de la distorsion au niveau de la section transversale sont projetées sur l'espace orthogonal au champ de déplacement de section plane u p . Les fonctions obtenues après projection sont alors données par l'équation suivante (Le Corvec (2012), Capdevielle (2016)) :

(3.104) φi = φ i - A φ i 1 a 1 y a 2 z a 3 dA   1 y z  
Les constantes a 1 , a 2 et a 3 sont calculées par une intégration numérique sur la section selon l'équation suivante :

(3.105) a 1 = A 1dA a 2 = A y 2 dA a 3 = A z 2 dA
Les dérivées de ces fonctions de formes projetées sont calculées selon la méthode adoptée par Le Corvec ( 2012) :

(3.106) En réalisant un test de compression simple sur une poutre libre de se distordre, il est évident que la projection des fonctions de formes est indispensable pour arriver à reproduire le bon comportement des fibres de béton (figure 3.12).

∂ φi ∂y = ∂φ i ∂y ∂ φi ∂z = ∂φ i ∂z
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Implémentation des armatures transversales en formulation 3D

Concernant l'implémentation des étriers en formulation 3D, ils sont modélisés, comme dans la formulation 2D, en tant qu'éléments barres auxquels est attribuée une loi de comportement élastique linéaire. Chaque branche des barres transversales est discrétisée en n st sous-éléments de longueur l st , présentant deux noeuds où les composantes transversales des déplacements de distorsion u w y et u w z sont calculées comme présenté par la figure 3.13.

Figure 3.13 -Discrétisation de la section : maillage de la section de béton et des armatures transversales.

Des polynômes linéaires de Lagrange N 1 et N 2 sont utilisés pour interpoler la distorsion entre ces deux noeuds au point d'intégration P de l'élément barre. Toutes les armatures transversales des sous-éléments colinéaires à la direction y appartiennent à (Set 1) ou (Set 2), tandis que celles étalées dans la direction z sont attribuées à (Set 3) et (Set 4) comme indiqué dans la Figure 3.13.

Si un point de Gauss P 1 appartient au (Set 1) ou (Set 2), son déplacement total u w st (P 1 ) a une seule composante de distorsion dans la direction y interpolée comme suit :

(3.107) u w y,st (P 1 ) = N 1 u w y,i + N 2 u w y,j
Toutefois, pour les (Set 3) et (Set 4), une seule composante transversale le long de l'axe z est affectée au champ de déplacement u w st (P 2 ) tel que :

(3.108) u w z,st (P 2 ) = N 1 u w z,i + N 2 u w z,j
Ayant l'expression du déplacement aux points P 1 et P 2 , la déformation transversale enrichie peut être déduite.

D'autre part, la contribution des barres d'armatures transversales peut être vue au niveau de la section, avec des termes supplémentaires ajoutés au vecteur des efforts résistants P s et la matrice de rigidité K s de la section, de la même manière que pour le cas bidimensionnel tels que :

(3.109)

P s =    P sp,b P sw,b + P sw,at    Et (3.110) K s =    K spp,b K spw,b K swp,b K sww,b + K sww,at   
Toutes les composantes du vecteur P s et de la matrice K s avec l'indice b liés aux fibres de béton sont exprimées par les équations ((3.58), (3.59) et (3.60)). Tandis que, P sw,at et K sww,at se rapportant aux aciers transversaux sont définis comme suit :

(3.111)

P sw,at = Nst e=1 Ω e S at × a w,st T × σ st dΩ e K sww,at = Nst e=1 Ω e S at × a w,st T × E s × a w,st dΩ e
S at , N st et E s étant respectivement l'aire des armatures transversales, le nombre total des sous-éléments transversaux en acier et le module de Young correspondant.

3.6 Calculs de validation 3.6.1 Section homogène élastique et linéaire de béton en formulation 2D

Modélisation multifibre 2D

Afin de valider la performance de la stratégie numérique proposée, l'élément poutre Timoshenko 2D multifibre enrichi est utilisé, en premier temps, pour simuler le comportement d'une poutre élastique linéaire dont le matériau répond à la loi de Hooke. C'est une poutre en porte-à-faux, soumise à des essais de flexion et de traction simple. Elle est de longueur L = 1 m, modélisée à l'aide de 12 éléments poutres multifibres Timoshenko enrichis. Chacun comporte 3 points de Gauss. La section transversale de la poutre est considérée comme carrée (0.15 m × 0.15 m) et est maillée en utilisant 32 triangles quadratiques à six noeuds (TRI6). Un déplacement axial u x = 1 mm, est appliqué à l'extrémité libre de la poutre afin de simuler numériquement l'essai de traction, comme le montre la figure (3.14.a.1) D'autre part, pour reproduire le test de flexion, l'extrémité libre de la poutre est soumise à un déplacement transversal u y = 1 mm (figure 3.14.a.2).

La géométrie de la section carrée et les propriétés mécaniques du matériau utilisé pour la formulation de l'élément multifibre sont illustrées à la figure (3.14.a.3). En effet, un élément suffit le long de l'axe des z quand il s'agit d'une formulation en plan 2D. Ceci revient au fait qu'aucune variation ne sera observée dans cette direction.

En outre, il convient de mentionner que tous les degrés de liberté de distorsion ont été bloqués au droit de l'encastrement. Ainsi, dans le cas de la poutre en flexion ou en traction, la solution exacte de distorsion montre un fort gradient de déformations sur les premiers millimètres de poutre proche de l'encastrement. Afin de capter ce fort gradient, le maillage est progressif et ainsi 9 éléments sont répartis sur les premiers 10 cm de poutre tandis que 3 éléments sont positionnés sur les 90 cm restants (voir figure 3.14.a.2). 

Modélisation éléments finis 2D

Afin de valider les résultats fournis par notre nouvel élément, une modélisation en éléments finis 2D de la poutre à l'aide de 1216 éléments triangulaires à 6 noeuds TRI6 a été effectuée. Ceci permettra de comparer la variation des contraintes normales latérales σ yy ainsi que le déplacement transversal u y obtenus avec les deux méthodes de modélisation. Le maillage de ce modèle élément fini 2D (Figure 3.14.b.1) est généré à l'aide du logiciel Cast3M. La table des positions des noeuds ainsi que celle des connectivités des éléments triangulaires sont alors importées dans ATL S pour faire tous les calculs numériques de traction (figure 3.14.b.2) et de flexion (figure 3.14.b.3).

Analyse des résultats obtenus

Le premier objectif du processus de vérification est atteint en traçant la variation des contraintes transversales normales σ yy calculées à chaque point de Gauss de la section par rapport à la longueur de la poutre, comme le montrent les figures (3.15.a) pour le test de traction et (3.16.a) pour le test de flexion. Dans les deux cas, tous les degrés de liberté enrichis sont bloqués au droit de l'encastrement, ce qui explique l'obtention des gradients élevés de σ yy à cet endroit de la poutre. Par contre, loin de l'encastrement, la poutre est libre de se distordre, donc les contraintes σ yy tendent vers zéro.

Une autre méthode adoptée pour valider le modèle numérique proposé consiste à comparer l'évolution des cartes de contraintes σ yy au niveau de la section , comme le montrent les figures (3.15.b, 3.15.c, 3.16.b et 3.16.c). Ces contraintes sont calculées à chaque point de Gauss d'une section située à côté de l'extrémité fixe (figures 3.15.b ; 3.16.b) et d'une section située à côté de l'extrémité libre (figures 3.15.c et 3.16.c). On peut voir que la comparaison entre le modèle multifibre 2D enrichi proposé et le modèle d'éléments finis 2D présente un accord raisonnable.

Les cartes de déplacement transversal sont présentées par la figure (3.17) pour une section située prêt de l'encastrement. Une bonne correspondance entre le déplacement de distorsion transversal calculé avec l'élément multifibre proposé et la solution d'éléments finis peut être observée dans les deux cas. L'erreur locale maximale pour le déplacement transversal est de l'ordre de 0.2 % pour la flexion et la traction en formulation 2D de l'élément. Tous ces résultats prouvent que l'état d'équilibre est atteint et que le modèle enrichi développé en formulation 2D est validé en phase élastique linéaire.

Validation numérique de l'implémentation des aciers transversaux en formulation 2D

Cette section se concentre sur le rôle joué par les armatures transversales intégrées au niveau de la section transversale. Afin de valider l'implémentation des aciers transversaux, un premier cas test élastique linéaire est réalisé sur une poutre cantilever où les degrés de liberté d'enrichissement ne sont plus restreints et où une simple dilatation isotrope des fibres de béton est opérée. Cette dilatation doit donc faire travailler les armatures transversales. Une solution analytique peut même être facilement développée.

Affectation de la répartition des armatures transversales dans un élément poutre par rapport à la section réelle d'armatures

Pour attribuer une valeur réaliste à la section des armatures transversales A st à implémenter, une analogie est faite entre le modèle numérique enrichi et une représentation réaliste d'une poutre en béton armé confinée avec des étriers également répartis selon un espacement noté s. La figure 3.18 présente l'analogie établie entre l'élément de poutre numérique et une poutre en béton armé réaliste. Par conséquent, la valeur numérique de la section des aciers transversaux par mètre, à implémenter dans le modèle numérique, peut être obtenue en appliquant l'analogie suivante : modèle numérique représentation analytique

A num steel l elem = 2 × A num st × n section l elem A anal steel s = 2 × A anal t s = 2 × πd 2 s × 4 (3.113) 2 × A num st × n section l elem = 2 × A anal t s
Ainsi, la section d'acier transversal, A num st , qui devrait être implémentée dans le modèle numérique, est obtenue :

(3.114) S at = A num st = A t × l elem n section × s
n section est la notation utilisée pour désigner le nombre de sections par élément de longueur l elem dans la poutre multifibre discrétisée. La surface totale de l'acier transversal prise par section dans le modèle numérique est égale à 2 × A num st , comme indiqué dans la figure 3.18. En outre, le coefficient 2 apparaît dans le calcul analytique, simulant le cas de deux barres implémentées selon l'axe des y avec une surface correspondante A t égale à πd 2 4 pour chaque barre.

Afin de simuler un vrai problème plan en contraintes planes et à cause de la discrétisation de la section en éléments TRI6, une répartition des barres transversales comme donnée dans la figure 3.19 est nécessaire. En effet, ce type de distribution est exigé car l'enrichissement de distorsion dans cette formulation 2D n'est introduit que dans la direction y par u w y . Par conséquent, des fibres d'acier transversal doivent être ajoutées à tous les noeuds de la section afin de conserver le caractère 2D de l'essai. Ce ne sera pas le cas dans une formulation 3D où l'enrichissement est attribué aux deux directions transversales y et z par u w y et u w z respectivement. Dans le cas présent, un élément triangulaire à 6 noeuds est maillé dans la direction z. Par conséquent, 3 barres d'armatures transversales linéaires sont affectées à la section transversale selon l'axe des y. De plus, la distribution des densités de contraintes aux noeuds doit être respectée afin d'avoir une réponse homogène le long de la section dans la direction z, comme présenté par la figure 3.19. En effet, si sur un élément linéique, avec des fonctions de formes quadratiques et soumis à un chargement uniforme q(x), on vise une répartition homogène des efforts, les efforts imposés aux noeuds dans ce cas valent respectivement 1/6 ql, 2/3 ql et 1/6 ql (Figure 3.20). Ainsi, étant donné que la section totale à répartir d'une manière homogène au niveau des 3 barres d'acier transversales vaut 2S at , les poids à affecter à ces 3 barres pour maintenir cet état plan sont respectivement x 1 = 1/6 × 2S at = 1/3S at , x 2 = 2/3 × 2S at = 4/3S at et x 3 = 1/6 × 2S at = 1/3S at . Ce raisonnement est fait en se basant sur le cas d'un chargement uniforme que l'on voudrait interpoler sur 3 noeuds.

Dans ce cas test, le diamètre d adopté pour les barres transversales est pris égal à 10 mm, et l'espacement s entre les étriers est considéré constant sur toute la longueur de la poutre et égal à 8 cm.

Calcul analytique des contraintes dans la section soumise à une dilatation des fibres de béton En tant que processus de vérification effectué pour la mise en oeuvre de l'acier transversal, l'équilibre des forces dans la section selon l'axe y est écrit. Il est donné par les équations suivantes : 

Analyse paramétrique

Une étude paramétrique est menée afin de mettre en évidence l'influence des armatures transversales sur le comportement des fibres de béton. Pour cette raison, deux types de barres transversales ont été choisis : une section modérée d'une part (cas 1) et une section importante des barres (cas 2) d'autre part. La variation des contraintes transversales au niveau des fibres de béton σ c yy et des fibres d'acier transversal σ s yy est calculée et reportée dans le tableau 3.1. La valeur numérique de ces contraintes, ainsi que les déformations transversales tot yy , obtenues avec le modèle proposé, sont comparées à celles déterminées analytiquement par l'utilisation des équations (3.118) et (3.119). On peut observer un bon accord entre les valeurs numériques et celles obtenues par le calcul analytique. Ce qui valide la méthode d'implémentation des aciers transversaux adoptée en formulation 2D. fin, une poutre en porte-à-faux 3D de longueur L = 1 m a été maillée avec des éléments tétraédriques (Figure 3.21.c). L'élément poutre multifibre 3D discrétisé ainsi que la géométrie de la section utilisée sont illustrés par la Figure 3.21.a et 3.21.b. Les mêmes simulations de tests de traction (u x = 1 mm) et de flexion (u y = 1 mm) sont réalisés avec la formulation 3D de l'élément. Toute l'analyse de calcul pour les deux types de modèles, multifibre et éléments finis volumiques, a été réalisée à l'aide de la bibliothèque ATL S.

La même démarche suivie en formulation 2D a été également adoptée dans cette partie. Pour cela, l'évolution des contraintes normales transversales σ yy le long de la poutre a été étudiée (Figure 3.22) ainsi que les formes des cartes de déplacement transversal (Figure 3.23) ont été analysées et confrontées à celles provenant des simulations de poutre en éléments finis volumiques tétraédriques. Ainsi, en comparant tous ces résultats, on peut observer un bon accord montrant l'efficacité du modèle proposé pour reproduire les déplacements, les déformations et les contraintes dans le cadre élastique linéaire.

3.6.4 Vérification de l'implémentation des aciers transversaux en formulation 3D

Afin de valider l'implémentation des armatures transversales en formulation 3D, une dilatation des fibres de béton est appliquée sur une poutre en porte à faux où les degrés d'enrichissement ne sont pas bloqués à l'encastrement et par suite la poutre est libre de se distordre sur toute sa longueur. La figure 3.24 (a.1) présente le cas d'une section en béton confinée par des armatures transversales. Trois cas distincts ont été étudiés pour montrer l'évolution du comportement de la section en présence ou non des étriers. En premier lieu, la figure 3.24 (a.2) simule le cas de la section de béton dans laquelle les fibres de béton se dilatent librement sous l'effet de la déformation transversale thermique imposée. Aucune armature transversale n'est introduite. Pour cela, la déformation de la section dilatée est homogène dans toutes les directions. Ensuite, l'étape suivante est de confiner la section en béton par un taux intermédiaire des aciers transversaux 3.24 (a.3) d'une part et un taux important des étriers 3.24 (a.4) d'autre part. On voit clairement que la dilatation des fibres de béton n'est plus homogène et qu'elle est gênée par la présence des aciers. Ces derniers viennent confiner la section en béton et au final on retrouve la forme de tonneau qu'on a évoqué dans l'étude bibliographique au chapitre 2 et qui est d'autant plus flagrante que le taux des aciers transversaux est plus grand.

Contrairement au cas 2D où une solution analytique était possible, ici, le champ de déformation de la section est plus complexe. Ainsi, les résultats des figures 3.25 et 3.26 sont comparés à l'aide d'une modélisation éléments finis annexe où une déformation de section est modélisée dans son plan à l'aide d'un maillage faisant intervenir des éléments triangulaires plans classiques à 6 noeuds.

En outre, on peut voir sur les figures (3.25 et 3.26) que la comparaison entre le modèle multifibre 3D proposé et le modèle 3D EF présente un accord raisonnable en termes de cartes de déplacement et de contraintes transversaux pour une section de poutre confinée par une section importante d'armatures transversales et soumise à de la dilatation thermique imposée en phase élastique linéaire. 

Conclusions

Dans ce chapitre un nouveau modèle multifibre enrichi formulé en déplacements a été proposé et ceci dans les deux cas bidimensionnel et tridimensionnel. Ce modèle est capable de prendre en compte la distorsion de la section en se basant sur la méthode d'enrichissement de la cinématique classique de Timoshenko, inspirée par les travaux de Le [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] et [START_REF] Capdevielle | Enrichissement des éléments finis multifibres par prise en compte du gauchissement[END_REF] qui ont introduit l'enrichissement pour prise en compte du gauchissement de la section.

Ces formulations sont basées sur l'élément poutre de Caillerie et al. (2015) avec des fonctions de formes d'ordre supérieur. De plus, l'amélioration introduite par [START_REF] Bitar | Modélisation de la rupture dans les structures en béton armé par des éléments finis poutres généralisées et multifibres[END_REF] pour prise en compte du couplage effort normal -moment fléchissant a été également prise en considération.

Toutes les étapes de la formulation aboutissant aux vecteurs des efforts internes et des matrices de rigidité ont été détaillées. De même que les méthodes d'implémentation des aciers longitudinaux et transversaux.

Ces deux types de formulations ont été validées par des simulations réalisées sur une poutre soumise à des chargements de traction et de flexion simple. Les résultats numériques ont été comparés à ceux obtenus avec des modélisations éléments finis vérifiant le bon comportement du béton en phase élastique linéaire. En outre, une méthode d'introduction de la dilatance au niveau des fibres de béton moyennant une déformation thermique transversale imposée en phase linéaire a été adoptée pour mettre en évidence le rôle joué par les armatures transversales. Par l'intermédiaire de ces cas tests, on démontre la capacité du modèle à reproduire les effets de confinement de la section en béton par les aciers transversaux.

Chapitre 4

Applications structurelles du modèle poutre multifibre enrichi [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF]).
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Applications structurelles du modèle poutre multifibre enrichi Modèle de [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF] Introduite par [START_REF] Kachanov | Time of the rupture process under creep conditions[END_REF] et développée par [START_REF] Lemaitre | Evaluation of dissipation and damage in metals submitted to dynamic loading[END_REF], la notion de variable d'endommagement avec le concept de contrainte effective σ a été utilisée pour développer ce modèle :

(4.1) σ = σ 1 -D σ dénote le tenseur de contraintes original, σ le tenseur de contraintes effectives et D la variable d'endommagement. Ainsi, la loi de comportement régissant le µ modèle est donnée par l'équation (4.2). H 0 étant le tenseur de raideur d'élasticité pour un matériau vierge et D une variable d'endommagement allant de 0 (matériau sain) à 1 (matériau complètement endommagé). C'est une variable scalaire qui simule donc l'endommagement du matériau de manière isotrope. L'équation (4.2) permet de prendre en compte une perte de rigidité (puisque 1 -D est un facteur compris entre 0 et 1). Cependant, dans cette configuration il n'est pas possible de reproduire les déformations permanentes du béton.

L'endommagement est piloté par la déformation équivalente eq . Comme les extensions sont primordiales dans le phénomène de fissuration du béton, la déformation équivalente introduite est définie à partir des valeurs propres positives du tenseur des déformations, soit :

(4.3) eq = 1 2 + + 2 2 + + 3 2 +
Sachant que i est la déformation principale dans la direction i :

(4.4) i + = i (si i ≥ 0)
i + = 0 (si i < 0) D'autre part, la surface de charge, définie en déformation, tient compte de l'écrouissage isotrope κ(D) et est définie telle que : 

(4.5) f = eq -κ(D) = 0 avec κ(D) = D0 si D = 0. D0 étant
D t = 1 - (1 -A t ) D0 eq -A t exp(-B t ( eq -D0 )) D c = 1 - (1 -A c ) D0 eq -A c exp(-B c ( eq -D0 ))
Le tenseur de déformation est défini comme suit :

(4.8) Quant aux deux coefficients de pondération, α t et α c liés respectivement aux contraintes de traction et de compression, ils sont donnés par les expressions suivantes :

t = 1 + ν E σ + - ν E tr σ + c = 1 + ν E σ -- ν E tr σ - σ + et σ -représentent
(4.9)

α t = i H i ti ( ti + ci ) eq 2 α c = i H i ci ( ti + ci ) eq 2 
Avec : i = ti + ci dénotant les déformations principales, (4.10)

H i = 1 si i ≥ 0 H i = 0 si i < 0
Le modèle de Mazars donne de très bons résultats dans le cas des chargements monotones mais ne fonctionne pas sous chargements cycliques car il ne tient pas compte de l'effet de refermeture des fissures. Cependant, de nombreuses améliorations de la formulation originale ont été proposées comme [START_REF] Mazars | Continuum damage theory -application to concrete[END_REF] et [START_REF] Éf Érences Mazars | Using multifiber beams to account for shear and torsion : Applications to concrete structural elements[END_REF], jusqu'à la dernière [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]) maintenant connue sous le nom du µ modèle. Ce dernier est un modèle de comportement 3D endommageable isotrope et surtout unilatéral qui peut être utilisé pour reproduire le comportement de béton sous chargement monotone et cyclique. Sa capacité à prendre en compte les cycles d'ouverture et de refermeture de fissures lui permet de reproduire le comportement d'une structure sollicitée par un signal sismique en dynamique.

Loi d'endommagement isotrope unilatéral : µ modèle [START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF])

Une amélioration du modèle de [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF] a été établie au niveau de la bi-compression et du cisaillement avec prise en compte des effets unilatéraux. Ainsi, le µ modèle a été formulé pour être capable de représenter le comportement tridimensionnel du matériau béton, sous chargement cyclique. Sa robustesse provient du fait que les déformations résiduelles ne sont pas prises en compte et permettent donc un calcul aisé de la matrice de raideur sécante, nécessaire aux solveurs non linéaires employés en calcul de structure.

Dans le µ modèle, deux déformations équivalentes t et c sont définies de la manière suivante : (4.11)

t = I 2(1 -2ν) + √ J 2(1 + ν) c = I 5(1 -2ν) + 6 √ J 5(1 + ν)
I and J sont respectivement le premier et le second invariant de déformation et sont présentés par les expressions suivantes : (4.12) 

   I = tr( ) = 1 + 2 + 3 J = 1 2 tr( d 2 ) = 0.5 ( 1 -2 ) 2 + ( 2 -3 ) 2 + ( 3 -1 ) 2 A partir
   f t = t -Y t f c = c -Y c où (4.14) Y t = max( t0 , max( t )) Y c = max( c0 , max( c ))
Dans lesquels t0 et c0 dénotent les seuils initiaux respectivement de t et c . La loi d'endommagement est par ailleurs définie par : 

(4.15) D = 1 - (1 -A)Y 0 Y -A exp(-B(Y -Y 0 )) Y 0 est
A = A t 2r 2 (1 -2k) -r(1 -4k) + A c (2r 2 -3r + 1)
B = r (r 2 -2r+2) B t + 1 -r (r 2 -2r+2) B c
Avec r le facteur triaxial qui évolue de 0 dans le domaine de compression de contrainte à 1 dans le domaine de traction de contrainte. k est utilisé pour calibrer la valeur de contrainte asymptotique en cas de déplacement important en cisaillement : k = A(r = 0, 5)/A t . Pour toutes les simulations numériques effectuées dans ce mémoire, les valeurs suivantes ont été adoptées : R 0 c R 1 c R 2 a 1 a 2 a 3 a 4 18.5 0.925 0.15 0 55 0 55 Table 4.1 -Paramètres adoptés pour le modèle élasto-plastique [START_REF] Menegotto | Method of anaysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. IABSE Symposium of Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads[END_REF]) avec écrouissage isotrope [START_REF] Filippou | Effects of bond deterioration on hysteretic behavior of reinforced concrete joints[END_REF]).

* = b * + (1 -b) * (1 + * R ) (1/R) Avec (4.20) σ * = σ -σ r σ 0 -σ r et ( 4 
(4.22) R = R 0 - c R 1 ξ c R 2 + ξ
La loi de comportement de Menegoto Pinto a été utilisée uniquement pour les armatures longitudinales alors qu'une loi de comportement linéaire de Hooke a servi pour modéliser le comportement des armatures transversales. Toutefois, un choix d'une loi de comportement non linéaire peut être également envisageable dans notre modèle. En outre, il convient de mentionner que tous les degrés de liberté enrichis sont libres à l'extrémité encastrée de l'élément poutre multifibre. Toutes les sections sont libres de se distordre, et par conséquent, la contrainte normale transversale σ yy tend vers zéro tout au long de la longueur de l'élément poutre et ceci dans le cas où les fibres de béton ne sont pas confinées par les étriers. En revanche, la contrainte σ yy dans le béton ne vaut pas zéro sous l'effet des armatures transversales et ceci suite à l'équilibre établi entre les deux matériaux dans la section. Les étriers sont modélisés en tant que barres linéaires formées de sous-éléments barres reliant chacun, deux noeuds consécutifs de la section. L'historique du chargement latéral réel a été imposé en appliquant des déplacements incrémentaux à la tête du poteau. D'autre part, la charge axiale P = 2900 kN a été appliquée comme charge statique non incrémentale (Figure 4.9). Augmentation artificielle de la résistance des fibres de béton confiné Dans ce paragraphe, les armatures transversales ne sont pas modélisées et le confinement des fibres de béton se situant à l'intérieur des cadres est reproduit en augmentant artificiellement leurs propriétés mécaniques au niveau de la loi de comportement du µ modèle. Par ailleurs, une calibration des paramètres de la loi du µ modèle et de la dilatance a été réalisée.

Table 4.5 -Propriétés du matériau béton de la loi du µ modèle : confiné et non confiné. On cale les paramètres matériaux sur la courbe expérimentale. Ce calage à l'échelle du poteau permet de prendre en compte les effets d'échelles et structurels, que le modèle ne peut pas reproduire. Ainsi, on attribue les paramètres de béton non confiné du tableau 4.5 pour toutes les fibres qui se situent en dehors des cadres et les paramètres de béton confiné (tableau 4.5) pour les fibres de béton se situant à l'intérieur des cadres afin de reproduire les résultats expérimentaux. La figure 4.11 présente la superposition des résultats expérimentaux et des résultats obtenus avec le modèle multifibre enrichi 3D. Les fibres de béton à l'intérieur des cadres possèdent des paramètres matériau plus résistants que celles en dehors des cadres qui seront non confinées (tableau 4.5). On peut alors en conclure que si on avait voulu reproduire les essais expérimentaux avec un autre élément non enrichi, il aurait fallu prendre des paramètres matériaux plus résistants dans la zone de béton confiné [START_REF] Legeron | Damage mechanics modeling of nonlinear seismic behavior of concrete structures[END_REF] ; Grange ( 2015)).

Étude de l'effet de la dilatance et des aciers transversaux L'objectif de cette partie est de reproduire le comportement non linéaire du poteau sous chargement de flexion composée, en attribuant à toutes les fibres de la section transversale des paramètres de béton non confiné. L'effet de confinement dans ce cas sera reproduit naturellement par les armatures transversales qui seront introduites au niveau de la section transversale. Par ailleurs, une calibration de la dilatance a été réalisée tout en attribuant les paramètres de béton non confiné déjà calibrés (tableau 4.5) pour toutes les fibres béton de la section. On cale les paramètres matériaux sur la courbe expérimentale (figure 4.12 (C)). Au moment où on arrive à bien reproduire tous les cycles avec les paramètres calibrés (figure 4.12 (C)), on enlève les armatures tout en gardant l'effet de dilatance (cas B), puis on enlève les armatures transversales ainsi que l'effet de dilatance et ceci pour voir l'effet de ces 2 paramètres sur le comportement du béton. Dans ce cadre, les figures 4.12 (A, B et C) présentent l'évolution de l'effort transversal développé en tête du poteau en fonction du déplacement transversal δ imposé. Le cas A montre l'incapacité du modèle multifibre à reproduire le comportement non linéaire du poteau sans introduction des armatures transversales. Une fois ces armatures introduites dans le modèle numérique, la résistance du béton augmente (la valeur de l'effort ultime augmente) mais ceci n'est pas suffisant pour reproduire le bon comportement de tous les cycles. Pour cette raison, et dans le but de rendre le comportement du béton plus ductile, la dilatance est rajoutée au niveau du coefficient de Poisson selon la méthode détaillée précédemment. En combinant la présence des aciers transversaux avec l'effet de dilatance introduit dans la loi de comportement du béton, on arrive à bien reproduire le comportement non linéaire du béton sous chargement cyclique (cas C).

Influence du maillage de la section

Des calculs se basant sur l'élément enrichi de distorsion, avec armatures transversales et dilatance introduites, sont réalisés ici avec 32 et 50 éléments triangulaires TRI6 correspondant respectivement à 8 et 18 éléments effectifs (hors éléments de l'enrobage) comme montré par la figure 4.13. La première partie de chargement est reproduite avec ces deux configurations de maillage de la section transversale dans le but de justifier le choix du nombre d'éléments triangulaires utilisés pour mailler la section.

La figure 4.14 présente les résultats des simulations pour les différentes configurations de maillage. Les courbes de cette figure sont presque superposées. Ce très faible écart entre les courbes indique qu'il ne serait pas nécessaire de raffiner le maillage de la section utilisé pour ce cas de calcul. Pour cela, on a choisi de partir sur un maillage de 32 éléments TRI6 dans la section, ce qui permet d'optimiser le rapport précision/temps de calcul. Première partie de chargement modélisée avec l'élément poutre multifibre enrichi de distorsion, avec introduction des armatures transversales et de la dilatance.

Prédiction de la réponse d'un poteau soumis à un chargement de compression simple

Le but de cette section est de montrer la capacité du modèle numérique développé à reproduire correctement le comportement non linéaire d'un poteau, testé expérimentalement, soumis à un chargement de compression simple et confiné par différentes dispositions des armatures transversales. Pour cela, deux types de sections ont été choisis. Elles diffèrent par la quantité des armatures transversales utilisées pour confiner la section de béton ainsi que par la disposition des cadres. Ainsi, comme précédemment, le calage des paramètres matériaux sera réalisé sur un des essais pour essayer de prédire l'autre essai avec des armatures transversales différentes.

Description des essais expérimentaux

On vise dans cette partie à reproduire les résultats des essais de compression réalisés à l'Université de Sherbrooke [START_REF] Cusson | Stress-strain model for confined high-strength concrete[END_REF]), sur des poteaux en béton à haute résistance, encastrés d'un côté et libre de l'autre, ayant une longueur L = 0.9 m. La section du poteau considéré est une section carrée de dimensions 235 × 235 mm 2 (Figure 4.15). 

Stratégie numérique adoptée pour modéliser les essais de compression

Un élément poutre multifibre enrichi, présentant 3 sections transversales, est choisi pour modéliser le poteau le long de x. D'autre part, la section transversale est discrétisée en 32 éléments TRI6. Ces choix seront justifiés ultérieurement.

Le béton des 2 configurations 1A et 1B présente la même résistance à la compression, f c = 95.4 MPa. La loi de comportement du µ modèle détaillée précédemment est utilisée pour modéliser le comportement des fibres de béton dans la section transversale. La stratégie de modélisation numérique consiste à caler les paramètres matériau du µ modèle sur la courbe expérimentale du cas 1A. Une fois, ces paramètres matériau calés sur l'essai 1A, les résultats numériques de l'essai 1B sont prédits numériquement sans recalage.

Le calage se fait avec le modèle multifibre enrichi dans le cas où la section est modélisée en introduisant les armatures longitudinales et transversales ainsi que l'effet de dilatance défini au niveau du coefficient de Poisson du µ modèle comme détaillé dans la section précédente. Ce calage des paramètres à l'échelle de la structure du poteau permet de prendre en compte les phénomènes structurels que le modèle poutre n'est pas capable de reproduire, comme les effets d'échelles qui diminuent la résistance à la compression du béton. Les paramètres adoptés sont consignés dans le tableau 4.7. prise en compte de la dilatance dans la loi de comportement du béton. On cherche à voir l'effet du confinement et de la dilatance. Pour cela, deux autres cas sont étudiés. La figure 4.16 (a) présente la superposition des résultats expérimentaux avec les résultats de modélisation numérique pour le cas où la section de béton armé est modélisée sans prise en compte des armatures transversales et sans introduction de l'effet de dilatance au niveau du coefficient de Poisson. Puis, les armatures transversales sont introduites dans le modèle numérique mais sans prise en compte de la dilatance (Figure 4.16(b)). Une fois les paramètres de béton calés pour le cas de configuration 1A, les mêmes paramètres sont adoptés pour le cas 1B pour essayer de prédire le bon comportement du poteau.

f c (MPa) E(GPa) ν A t B t A c B c t0 ( 
On voit clairement que les armatures transversales augmentent la résistance ultime à la compression du béton (Figures 4.16(b) et 4.17(b)) mais ne suffisent pas seules à reproduire la réponse structurelle du poteau et surtout dans le cas 1B où l'effet de confinement est plus important. Si en plus des frettes, on introduit l'effet de dilatance, on s'approche des résultats obtenus expérimentalement et ceci pour les deux cas de configurations 1A et 1B. A noter que la courbe en cloche obtenue expérimentalement, identifiée par les deux pics, n'est pas reproduite par le µ modèle en l'état. En effet, le premier pic des poteaux frettés indique la rupture de l'enrobage [START_REF] Cusson | Stress-strain model for confined high-strength concrete[END_REF]) et le second pic représente le résultat d'une instabilité qui cumule les effets de perte de résistance du béton d'enrobage et aussi d'un début de flambe-ment caractérisé par la mise en tonneau des armatures verticales. Afin de pouvoir représenter ce phénomène, un enrichissement supplémentaire est nécessaire. Pour ces raisons, à priori, un seul pic est représenté par les résultats numériques en utilisant la version actuelle du µ modèle .

La série de poteaux a été choisie dans le but d'avoir à la fois différents taux et différentes distributions des armatures transversales. En comparant la réponse globale dans les deux cas 1A et 1B, il est évident que les poteaux plus confinés ont un comportement post-élastique plus ductile que les échantillons peu confinés.

Comme le but de cette partie est de montrer le rôle des armatures transversales (qui augmentent la résistance du poteau) et l'importance de la dilatance (pour arriver à bien reproduire le comportement du poteau), la reproduction de la partie post-pic des courbes n'a pas été investiguée dans cette étude vu que celle-ci dépend énormément du pilotage de chargement numérique et surtout de la discrétisation du poteau.

Étude paramétrique

Une étude paramétrique est menée afin de montrer l'influence du maillage de la section transversale ainsi que du nombre des éléments poutres le long de l'axe x sur le comportement global du poteau soumis à de la compression simple. Cette étude de sensibilisation a pour but de trouver un compromis entre rapidité de calcul et précision des résultats souhaitée.

Influence du maillage de la section

Trois ensembles de maillage de section sont effectués visant à étudier l'effet du nombre d'éléments triangulaires dans la section.

Afin de respecter la valeur d'enrobage c = 16.05 mm et pouvoir ensuite modéliser les armatures transversales avec des barres linéaires, la taille des éléments triangulaires du bord est différente de celle des éléments triangulaires formant la partie confinée de la section de béton. Ainsi les 3 ensembles de maillages font intervenir 2, 8 et 18 éléments dans la zone confinée. Ce qui représente avec l'enrobage 18, 32 et 50 éléments. (Figure 4.18).

Ceci dit, l'effet de l'enrobage est très faible, et pour des modélisations à l'échelle de la structure, cet enrobage pourrait être négligé ce qui permet une réduction significative du nombre d'éléments dans la section. La figure 4.19 présente la variation de l'effort axial en fonction de la déformation axiale et ceci pour le cas de section 1A, avec prise en compte des armatures transversales et introduction de la dilatance. On constate que même avec très peu d'éléments dans la section (32 ou 50 éléments triangulaires TRI6), on obtient des résultats quasi-superposés. Pour cette raison, le maillage avec 32 éléments TRI6 a été attribué à la section transversale de ce cas test.

Influence du maillage le long de la poutre Des calculs multifibres avec enrichissement sont réalisés en faisant varier le nombre des éléments poutres le long de l'axe x du poteau. Trois séries ont été étudiées en discrétisant le poteau en 1, 2 et 3 éléments poutres multifibres enrichis le long de x (Figure 4.20). Les résultats présentés dans cette partie sont ceux d'un calcul sur poteau du cas 1A en béton armé, non confiné par les armatures transversales et sans introduction de l'effet de dilatance dans la loi de comportement du µ modèle.

On voit clairement sur la figure 4.21 que le comportement non linéaire du poteau dépend fortement de la taille des éléments poutres utilisés. En effet, l'augmentation du nombre des éléments poutres, et par conséquent la réduction de leur taille, entraîne une diminution de l'effort axial ultime atteint et fragilise le comportement post-pic du béton. Cet effet est dû au problème de localisation de l'endommagement dans un des éléments. Pour éviter ce problème, des techniques de régularisation existent mais ne font pas l'objet de nos travaux. Le choix de la longueur d'élément pour reproduire les comportements des poteaux a été fait en se référant à l'apparence des poteaux une fois les essais terminés (Figure 4.22). En effet, on constate que la longueur de la rotule plastique vaut le tiers de la longueur totale du poteau. Comme l'élément poutre enrichi fait intervenir 3 sections, ainsi, la distance entre deux sections est calée sur la taille de la rotule plastique. Donc, un seul élément poutre est choisi sur la longueur du poteau. En outre, dans ce cas test de validation, on ne s'intéresse pas à l'évolution de la distorsion entre les sections le long de x, pour cela, tous les degrés de liberté d'enrichissement sont libres, voire ceux au droit de l'encastrement. 

Conclusions

Dans ce chapitre, on a montré la capacité du modèle multifibre enrichi en formulation 2D à reproduire le comportement non linéaire d'une poutre soumise à un chargement de compression simple. En outre, les capacités de l'élément formulé en 3D ont été montrées au travers de la comparaison avec les résultats expérimentaux de poteaux en compression et flexion composée en cyclique.

Une nouvelle méthode d'introduction de la dilatance au niveau du coefficient de Poisson de la loi de comportement de béton (µ modèle) a été présentée. Plusieurs cas tests ont été simulés pour mettre en valeur l'importance des aciers transversaux et de la dilatance dans la reproduction de l'effet de confinement des fibres de béton situées à l'intérieur des cadres. La prise en compte de ces deux facteurs est indispensable pour reproduire le bon comportement non linéaire des éléments structuraux.

Conclusions et perspectives

Bilan général

Le confinement du béton par les armatures transversales dans les poutres en béton armé peut jouer un rôle prépondérant dans le comportement global de ce type d'éléments surtout sous chargement cyclique. Une méthode simplifiée pour la prise en compte de cet effet consiste à augmenter artificiellement la résistance des fibres de béton positionnées à l'intérieur des cadres pour reproduire l'effet de confinement dans la loi de comportement non linéaire de béton choisie [START_REF] Legeron | Damage mechanics modeling of nonlinear seismic behavior of concrete structures[END_REF]). Ce travail de thèse avait pour enjeu principal de proposer un modèle de poutre multifibre enrichi qui prend en compte l'étirement transversal de la section. Deux formulations du modèle ont été élaborées. La première, adaptée aux problèmes bidimensionnels, est ensuite généralisée au cas tridimensionnel. Pour cela, un enrichissement de la cinématique de la section dans les directions transversales est introduit. Par conséquent, le déplacement total de chaque fibre de la section peut s'écrire en superposant les déplacements de section plane issus de la formulation classique des poutres (dont les sections restent planes) à ceux d'enrichissement. L'écriture de la forme faible de l'équation d'équilibre projetée sur les vitesses virtuelles associées aux degrés de liberté d'enrichissement permet d'établir l'équilibre transversal de la section et reproduit naturellement l'effet de confinement du béton dû à la présence des cadres. L'élément poutre Timoshenko formulé en déplacements et proposé par [START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF] a été retenu comme base pour porter l'enrichissement réalisé au niveau des sections. Cet élément est libre de blocage par cisaillement et introduit un noeud interne auquel sont attribués des dégrés de libertés internes supplémentaires. Dans ce modèle poutre, des fonctions cubiques sont utilisées pour interpoler le champ de déplacement transversal et quadratiques pour le champ de rotation. Une amélioration de l'élément pour prise en compte de l'interaction entre l'effort axial et le moment fléchissant a été introduite par Bitar (2017) et a été adoptée dans nos modèles poutres enrichis. Elle consiste à interpoler le champ de déplacement axial par des fonctions cubiques.

La formulation présentée dans ce mémoire est implicite. Les degrés de liberté d'enrichissement sont traités comme des degrés de liberté additionnels et sont ajoutés au niveau global de l'élément poutre. Ce qui permet de tenir compte de l'influence des conditions aux limites sur l'évolution de la distorsion de la section le long de l'élément poutre mais ne permet pas de faire varier le nombre de noeuds d'une section à une autre dans une même structure.

Le modèle multifibre proposé est adapté pour une section transversale quelconque et un matériau arbitraire. À chaque fibre peut être attribuée une loi de comportement non linéaire adéquate tout en assurant l'obtention d'informations globales et locales sur le comportement des structures en Génie civil. Dans ce travail de thèse, la loi du µ modèle a été utilisée et attribuée aux fibres de béton. Une nouvelle méthode d'introduction de la dilatance au niveau 114 Applications structurelles du modèle poutre multifibre enrichi du coefficient de Poisson du µ modèle a été proposée dans ce travail. D'autre part, la loi de Menegotto Pinto a été choisie pour modéliser le comportement des aciers longitudinaux tandis que les aciers transversaux introduits au sein du modèle enrichi ont été modélisés avec une loi de comportement élastique linéaire. L'efficacité du modèle est testée avec des résultats obtenus à partir de simulations d'essais de traction et de flexion simples en phase élastique linéaire. En outre, des comparaisons avec des résultats expérimentaux de la littérature démontrent, la capacité des éléments multifibres enrichis développés, à reproduire le comportement global non linéaire de poteaux sous chargements de compression simple d'une part et de flexion composée en cyclique d'autre part.

Perspectives

Plusieurs perspectives de ce travail de thèse peuvent être envisagées. La première perspective à court terme est donc d'étudier le comportement d'une structure complète et notamment un portique sous chargement statique (Vecchio & Emara (1992)), cyclique et dynamique.

On peut également envisager de traiter des problèmes de renforcement des éléments par des fibres TFC. En effet cela revient juste à remplacer les paramètres des armatures transversales par les propriétés des fibres TFC. Si le béton dilate proprement alors le calcul du confinement du béton avec cet élément sera immédiat.

Ensuite, afin d'améliorer le modèle et réduire le coût de calcul, une condensation des degrés de liberté d'enrichissement sur les degrés de liberté globaux est recommandée. Ceci permettra de faire varier le nombre des éléments utilisés pour le maillage d'une section transversale à une autre le long de la structure. Aussi, on pourra utiliser différents types d'éléments poutres enrichis au niveau d'une même structure. Ainsi, dans les zones où le cisaillement n'est pas négligeable, l'élément enrichi complet avec prise en compte du gauchissement et de la distorsion est utilisé alors que dans les autres zones, un élément enrichi de distorsion simple est choisi. On aura également la possibilité de mixer des éléments enrichis avec des éléments multifibres classiques. Ceci réduit énormément le nombre des degrés de liberté et par conséquent le coût de calcul.

Dans ce mémoire, l'importance des armatures transversales et de l'effet de dilatance a été mise en valeur dans le cas de poteaux soumis à des essais de compression simple et de flexion composée. Une autre perspective sera de coupler le gauchissement et la distorsion de la section et ceci en enrichissant la cinématique suivant les trois composantes x, y et z. Ainsi une formulation d'élément enrichi complète permettra de reproduire les effet de gauchissement dans le cas de poutres peu élancées où le cisaillement est non négligeable. De plus, des essais expérimentaux de poutres soumises à un chargement de torsion et confinées par des taux et configurations variés de cadres [START_REF] Chalioris | Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams[END_REF]) pourront être simulés.

La matrice de masse peut être également introduite pour tester la performance des modèles enrichis pour des cas de chargement dynamique. En effet grâce aux degrés de liberté d'enrichissement transversaux à la section, la poutre sera capable de prendre en compte l'inertie massique transversale issue d'un choc dynamique. Ceci pourrait être particulièrement intéressant pour des applications en dynamique rapide.

Aussi, une autre perspective sera d'aller plus loin dans le développement d'une loi dilatante 
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  .1) : -Le volet 1 est dédié à l'évaluation de l'aléa sismique sur le territoire métropolitain français à faible sismicité et des méthodes utilisées à cet égard. -Le volet 2 a pour but de prendre en compte les effets de site non-linéaires et les interactions sol-structures afin de mieux quantifier les incertitudes. -Le volet 3 vise à développer des modèles numériques performants capables de caractériser le comportement des structures en béton armé soumises aux sollicitations sismiques. -Le volet 4 a pour objectif de formuler des recommandations vis-à-vis du risque sismique en France et ceci en tenant compte des résultats obtenus par les volets 1 à 3. -Le volet 5 détaille l'entrechoquement entre les bâtiments moyennant les campagnes expérimentales.

Figure 1

 1 Figure 1.1 -Structuration du projet Sinaps@ 2013-2018.

Figure 2

 2 Figure 2.2 -Différentes configurations des armatures transversales[START_REF] Montgomery | Behavior of spirally reinforced high strength concrete columns under axial loading[END_REF]).

Figure 2 . 3 -

 23 Figure 2.3 -Délimitation des zones du béton confiné par les armatures transversales : (a) béton confiné par des anneaux circulaires, (b) béton confiné par des cadres (Park et Paulay (1975)).
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 24 Figure 2.4 -Contrainte de confinement passive : (a) Développement de pression de confinement passive dans le cas de section carrée ; (b) Variation de la pression de confinement en fonction de la configuration des aciers transversaux ; (c) Pression latérale uniforme dans le cas de section circulaire ; (d) Pression uniforme équivalente en cas de section carrée ; (e) Pression de confinement en cas de section rectangulaire[START_REF] Razvi | Confinement model for high-strength concrete[END_REF]).
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 25 Figure 2.5 -Espacement des aciers transversaux le long de la hauteur des poteaux (Park et Paulay (1975)).

  ; Foster & Attard (2001), Sharma et al. (2005c) ; Sharma et al. (2005b) ; Sharma et al. (2005a) ; Sharma (2005)).

Figure 2

 2 Figure 2.6 -Courbe contrainte-déformation pour le béton confiné et non confiné proposée par Legeron et Paultre (2003).
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 27 Figure 2.7 -Elément poutre de longueur L (a.1), Cinématique de Bernoulli (a.2), Cinématique de Timoshenko (a.3).

Figure 2 Figure 2

 22 Figure 2.8 -Dessins originaux de Saint-Venant de barres en torsion : section elliptique, carré et rectangulaire. Crédit photo : Adhémar Barré de Saint-Venant.

Figure 2 .

 2 Figure 2.10 -(a) Cas d'une poutre élastique linéaire encastrée cisaillée par l'effort tranchant T y , (b) Section de largeur b et hauteur h, (c) répartition théorique des contraintes de cisaillement τ xy (selon l'équation de Jourawski).

Figure 2 .

 2 Figure 2.11 -Géométrie d'une poutre multifibre de longueur L discrétisée en plusieurs éléments (a). Une section bi-dimensionnelle discrétisée en éléments triangulaires rajoutée au point de Gauss de chaque élément de la poutre (b).

Figure 2 .

 2 Figure 2.13 -Elément fini poutre 2D à 2 noeuds.

Figure 2 .

 2 Figure 2.14 -Élément de Caillerie[START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF]).

Figure 2 .

 2 Figure 2.15 -Définition des degrés de liberté dans l'élément de Caillerie étendu à la version 3D.

  A w y dx = 0 Résolution de l'équation d'équilibre avec la cinématique proposée par Mohr et al.(2010) indépendante de x L'hypothèse de Mohr et al. (2010) qui suppose que le gauchissement n'évolue pas selon x (c(x) = constante), mène au final à l'équilibre proposé par Mohr et al. (2010) :

Figure 2 .

 2 Figure 2.16 -Répartition des points d'intégration de gauchissement au niveau des sections (Di Re (2017b)).

Figure 2 .

 2 Figure2.17 -Courbe moment-rotation dans le cas d'une section béton en forme de T avec et sans prise de gauchissement. Ces courbes résultent de 5 réalisations différentes de la distribution du module de Young, la ligne continue représente la moyenne tandis que la ligne en pointillée représente +/-l'écart type[START_REF] Capdevielle | Enrichissement des éléments finis multifibres par prise en compte du gauchissement[END_REF]).

Figure 2 .

 2 Figure 2.18 -Cas d'une section carrée en béton armé. (a) Maillage utilisé, (b) Profil de gauchissement (Capdevielle (2016)).

Figure 2 .

 2 Figure 2.19 -Cas d'une section en L en béton armé. (a) Maillage utilisé, (b) Profil de gauchissement (Capdevielle (2016)).

  dans leur formulation, les déplacements enrichis sont indépendants de x. Ceci revient à considérer que le gauchissement et la distorsion sont constants le long de x, direction longitudinale de la poutre. Ainsi la dérivée axiale des contraintes dans l'équation d'équilibre locale sera conservée. Pour résoudre ce système d'équations, des hypothèses supplémentaires et des méthodes de calcul sont proposées par Mohr et al. (2010) comme détaillé précédemment dans le paragraphe 2.4.1 et font alors l'hypothèse d'un comportement linéaire du matériau sur chaque pas de chargement. Ce type d'analyse peut générer des problèmes numériques.

  z + dU y dx De la même manière que dans Le Corvec (2012) et Capdevielle (2016), p peut être exprimée en fonction du vecteur de déformations généralisées e s et d'une matrice de compatibilité a s (y), comme indiqué dans l'équation (3matricielle, le vecteur e s est constitué des déplacements généralisés et de leurs dérivées. Il peut être écrit sous la forme : (3.5) e s T = 0 γ y κ z

Figure 3 . 2 -

 32 Figure 3.2 -Définition des degrés de liberté pour l'élément de Caillerie et al. (2015) "amélioré" en formulation 2D.

  R ) sont définies respectivement pour l'interpolation des déplacements transversaux et de la composante de rotation θ z . Elles sont indépendantes des propriétés du matériau et introduites par Caillerie et al. (2015). D'autre part, N xi , N 1 xk , N 2 xk et N xj sont les fonctions introduites par Bitar (2017). Leurs expressions sont détaillées dans le chapitre 2.

  les fonctions de formes cubiques définies par[START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF] et utilisées précédemment pour l'interpolation de la composante U y du déplacement généralisé. La figure 3.3 présente la variation des contraintes axiales σ xx et transversales σ yy calculées aux niveaux de toutes les fibres de la section transversale tout au long de la poutre. Ces résultats sont pris au dernier pas de chargement non linéaire et ceci dans 3 cas distincts : 1. Les termes des matrices B p et B w sont interpolés avec des fonctions de formes quadratiques (Figure 3.3(a)). 2. Les termes de la matrice B p sont interpolés avec des fonctions de formes cubiques et ceux de la matrice B w le sont avec des fonctions quadratiques (Figures 3.3(b) et 3.3(c)). 3. Les termes des matrices B p et B w sont interpolés avec des fonctions de formes cubiques (Figure 3.3(d)).
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 33 Figure 3.3 -Variation des contraintes σ xx et σ yy calculées au niveau des fibres de la section transversale en fonction de la longueur de la poutre en utilisant des fonctions de forme : (a) quadratiques dans B p et B w , (b,c) cubiques dans B p et quadratiques dans B w , (d) cubiques dans B p et B w .
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 34 Figure 3.4 -Transformation géométrique.

3. 2 .

 2 Enrichissement de la cinématique des sections de poutre pour la distorsion :

  de l'élément réel à l'élément de référence s'obtient par l'intermédiaire du jacobien de la transformation :

54

  Enrichissement de la cinématique des sections de poutre pour la distorsion Et son inverse se calcule aisément par : La matrice B contenant les dérivées des fonctions de forme s'écrit dans le système de coordonnées global comme suit :
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 35 Figure 3.5 -Variation des contraintes σ xx et σ yy calculées au niveau des fibres de la section transversale en fonction de la longueur de la poutre : sans projection des fonctions de forme (a) et (c), avec projection des fonctions de forme (b) et (d).
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 36 Figure 3.6 -Zoom sur un élément de la poutre Timoshenko discrétisée : 3 points de Gauss i.e. 3 sections par élément.

Figure 3 . 7 -

 37 Figure 3.7 -Section transversale formée par la superposition de la section des fibres de béton, celle des aciers longitudinaux et des aciers transversaux.

  Cette partition de l'espace se fait naturellement puisque c'est une propriété de l'intégrale. Elle est réalisée sur la partie béton S b et sur la partie acier S al de la section.



  Les indices b et al se rapportent respectivement aux fibres de béton et d'armatures longitudinales. Par conséquent, les termes de la matrice a s,b , a w,b et σb sont calculés aux points de Gauss des éléments triangulaires de béton alors que a s,al et σal sont évalués au niveau des éléments points représentant les aciers longitudinaux, tels que : e al représentent respectivement l'aire des éléments triangulaires en béton utilisés pour mailler la section transversale et celle des aciers longitudinaux implémentés.

Figure 3 . 8 -

 38 Figure 3.8 -Discrétisation de la section transversale : maillage de la section en béton et des aciers transversaux.

  Le champ de déformation de distorsion au point P n'a qu'une seule composante transversale w y,st . De plus, une hypothèse d'adhérence parfaite entre les fibres de béton et celles d'acier transversal est adoptée. Par conséquent, le vecteur e w est le même que celui présenté par l'équation (3.21) et les composantes de déformation au point P seront exprimées en fonction de ce vecteur e w comme suit : pour a s et a w , on introduit donc une matrice a w,st qui contient les fonctions de formes de la section utilisées par les armatures transversales.Avec e i et e j désignant respectivement les numéros des noeuds i et j dans la section, la matrice a w,st est détaillée par l'équation (3Le vecteur contrainte apporté par les aciers transversaux peut alors s'écrire :(3.79) σ st (P) = 0 σ w y,st (P) 0En adoptant ces dernières formes discrétisées, la contribution des barres transversales peut être vue au niveau de la section, avec des termes supplémentaires rajoutés à P s et K s tels queEn linéarisant ce vecteur P s et en notant E s le module de Young des aciers transversaux, on obtient l'expression de l'opérateur tangent : st T × E s × a w,st dS e at N st étant le nombre total des sous-éléments d'aciers transversaux par section.
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 434 Passage à la formulation 3D du modèle multifibre enrichi 65 Passage à la formulation 3D du modèle multifibre enrichi 3.4.1 Présentation de la cinématique de la section enrichie

  les translations dans les directions x, y et z respectivement. θ x , θ y et θ z , désignent respectivement les trois rotations autour des axes x, y et z pour un élément de poutre 3D standard.

Figure 3 .

 3 Figure 3.10 -Procédure de calcul adoptée.

Figure 3 .

 3 Figure 3.11 -Variation des contraintes σ xx et σ yy calculées au niveau des fibres de la section transversale en fonction de la longueur de la poutre en utilisant des fonctions de forme : (a) quadratiques dans B p et B w , (b,c) cubiques dans B p et quadratiques dans B w , (d) cubiques dans B p et B w .

Figure 3 .

 3 Figure 3.12 -Variation des contraintes σ xx et σ yy calculées au niveau des fibres de la section transversale en fonction de la longueur de la poutre : sans projection des fonctions de forme (a) et (c), avec projection des fonctions de forme (b) et (d).

L

  'hypothèse des contraintes planes est alors utilisée. Ceci conduit à la relation suivante (équation (3.112)) entre les contraintes σ T = σ xx σ yy τ xy et les déformations T = xx yy γ xy . (3.112) σ = E 1 + ν + ν 1 -2ν T r( )I E et ν, représentent respectivement le module d'Young et le coefficient de Poisson du matériau.

Figure 3 .

 3 Figure 3.14 -(a.1) Essai de traction, (a.2) essai de flexion et (a.3) géométrie de la section discrétisée du modèle poutre multifibre enrichi. (b.1) Maillage par éléments finis 2D de l'élément poutre,(b.2) essai de traction et (b.3) de flexion dans le cas de modélisation par EF 2D.

Figure 3 .

 3 Figure 3.15 -Essai de traction : Variation des contraintes normales transversales σ yy en fonction de la longueur de la poutre (a). Cartes de contraintes σ yy obtenues en utilisant la formulation 2D du modèle multifibre (b.1) et la formulation éléments finis 2D standard (b.2) pour une section située près de l'encastrement ainsi que la superposition de ces deux derniers résultats (b.3). Les Figures (c.1), (c.2) et (c.3), représentent les contraintes calculées au niveau d'une section située au droit du bord libre de la poutre.

Figure 3 .

 3 Figure 3.16 -Essai de flexion : Variation des contraintes normales transversales σ yy en fonction de la longueur de la poutre (a). Cartes de contraintes σ yy obtenues en utilisant la formulation 2D du modèle multifibre (b.1) et la formulation éléments finis 2D standard (b.2) pour une section située près de l'encastrement ainsi que la superposition de ces deux derniers résultats (b.3). Les Figures (c.1), (c.2) et (c.3) représentent les contraintes calculées au niveau d'une section située au droit du bord libre de la poutre.

Figure 3 .

 3 Figure 3.17 -Résultats obtenus pour des essais de traction (gauche) et de flexion (droite) : cartes de déplacement transversal obtenues en adoptant le modèle multifibre 2D enrichi (a, b) et le modèle EF 2D (c, d) ainsi que les cartes d'erreur correspondantes (e, f)

Figure 3 .

 3 Figure 3.18 -Analogie établie entre un élément poutre multifibre à 3 sections (a) et une représentation réaliste d'une poutre en béton armé confinée par des étriers également espacés par un espacement s (b).

Figure 3 .

 3 Figure 3.19 -Distribution des aciers transversaux au niveau de la section transversale discrétisée en éléments triangulaires TRI6.

Figure 3 .

 3 Figure 3.20 -Illustration de l'équivalence d'un chargement réparti uniforme sur un élément à fonctions de formes quadratiques.

0 F

 0 yy + e × 1m × σ c yy = acier est la force résultant de la présence des aciers transversaux et F béton étant la force provenant des fibres de béton. En utilisant cette équation d'équilibre, l'expression des contraintes σ s yy au niveau des fibres d'acier transversal peut être déduite en fonction de l'épaisseur e de la poutre, de la surface d'acier A num st et des contraintes σ c yy au niveau des fibres de béton : est développée dans la phase élastique linéaire. Ainsi, afin de souligner le rôle des étriers sur le confinement des fibres de béton, l'effet de dilatation est simulé en imposant une déformation transversale supplémentaire ad,c y au niveau des fibres de béton. Cette dernière est prise égale à 10 -3 . Par conséquent, en définissant tot,c yy comme étant la déformation transversale totale d'une fibre de béton, les contraintes normales transversales σ c yy peuvent être exprimées par l'équation suivante : (3.118) σ c yy = E c ( tot,c yy -ad,c y ) De plus, une hypothèse d'adhésion parfaite entre les fibres de béton et celles d'acier est considérée et des éléments barres unidimensionnels sont introduits pour modéliser les étriers selon une loi de comportement élastique linéaire. Après quelques manipulations des équations, les contraintes au niveau des fibres d'acier sont données par : Le module d'Young E c du béton et E s de l'acier ont été fixés à 25 GPa et 200 GPa respectivement.

  Figure 3.21 -(a) Elément poutre multifibre 3D discrétisée en 12 éléments le long de son axe, (b) géométrie et discrétisation en éléments triangulaires TRI6 de la section carrée choisie (c) Elément poutre 3D maillé, avec le logiciel Cast3M, en éléments tétraédriques.

Figure 3 .

 3 Figure 3.22 -Variation des contraintes normales transversales σ yy le long de la poutre et présentation des cartes de contraintes pour des sections situées près de l'encastrement d'une part et près du bord libre d'autre part. Essai de traction (a), essai de flexion (b)

Figure 3 .

 3 Figure3.24 -Section de béton confinée par les armatures transversales (a.1). États initial et déformé de la section modélisée suivant la formulation 3D, sans armatures transversales (a.2), avec une section modérée (a.3) et importante (a.4) des armatures transversales.

Figure 3 .

 3 Figure 3.25 -Cartes de déplacement transversal obtenues dans le cas d'une section confinée par une section importante d'armatures transversales et soumise à de la dilatation.

Figure 3 .

 3 Figure 3.26 -Cartes de contraintes transversales obtenues dans le cas d'une section confinée par une section importante d'armatures transversales et soumise à de la dilatation.

  (4.2) σ = H 0 (1 -D) :

  respectivement les valeurs propres positives et négatives du tenseur de contraintes principales.
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 41 Figure 4.1 -Chargement en traction-compression pour le µ modèle.

Figure 4 . 2 -

 42 Figure 4.2 -Superpositions des résultats expérimentaux et numériques (Mazars et al. (2013)) pour le µ modèle : (a) Chargement de traction-compression avec σ 2 σ 1 = -0.0052 avec σ 1 < 0 selon Kupfer et al. (1969), (b) Essai de compression bi-axiale avec σ 2 σ 1 = 0.0052 avec σ 1 < 0selon[START_REF] Kupfer | Behavior of concrete under biaxial stresses[END_REF] 
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 43 Figure 4.3 -Loi de comportement pour l'acier[START_REF] Menegotto | Method of anaysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. IABSE Symposium of Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads[END_REF]).

4. 3

 3 Validation en non linéaire de l'élément poutre enrichi en configuration 2D Afin d'étudier l'efficacité du modèle de poutre multifibre enrichi 2D développé dans ce travail de thèse, ainsi que l'effet des étriers sur le comportement non linéaire du béton, un élément poutre multifibre de longueur L = 1 m ayant 3 points de Gauss (3 sections) est utilisé pour modéliser un poteau soumis à un chargement de compression axiale centrée (Figure4.5). 32 éléments TRI6 sont utilisés pour le maillage de la section de taille (0.15×0.15) (Figure4.4). En effet, dans cette partie, on simule de la vraie compression simple sans autres phénomènes, ainsi, ces dimensions n'ont pas d'importance puisque les champs de contrainte et de déformation sont supposés homogènes dans tout l'élément. Comme la modélisation est en 2D, un seul élément triangulaire est utilisé selon la direction z.
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 44 Figure 4.4 -Maillage de la section transversale utilisée dans la formulation du modèle multifibre enrichi 2D.

  Trois cas d'études sont réalisés comme le montre la figure 4.5 : -A : Colonne en béton libre de se déformer dans la direction y. Pas de barres transversales introduites. -B : Colonne en béton confinée avec une section intermédiaire d'étriers, équivalente à des barres d'armatures de diamètre d égal à 6 mm, équidistantes le long de l'axe de la poutre avec un espacement s = 25 cm. Pour le modèle d'éléments finis 2D, afin de représenter les barres transversales, un ressort est introduit. Sa rigidité k est équivalente à celle d'une armature en acier, ayant comme section S at qui sera égale à celle attribuée aux étriers de la section S 3 du modèle multifibre. -C : Colonne en béton fortement confinée par des étriers présentant un diamètre d égal à 20 mm également espacé le long de l'axe de la poutre selon un espacement s = 25 cm. D'autre part, dans le modèle d'éléments finis 2D, tous les déplacements dans la direction y sont restreints. La loi de comportement du µ modèle est choisie pour décrire le comportement non linéaire du béton confiné et non confiné. Les paramètres utilisés pour ces cas d'études sont présentés dans le tableau 4.2.

Figure 4 .

 4 Figure 4.5 -Élément multifibre enrichi 2D (gauche) et élément fini 2D (droite). Modélisation de poteau soumis à un chargement de compression simple : (A) Poteau en section de béton non confiné par des étriers, (B) Poteau en section de béton confiné par une quantité modérée d'armatures transversales (C) Poteau en section de béton confiné par une quantité importante d'armatures transversales.

Figure 4 . 6 -

 46 Figure 4.6 -Courbe de contrainte-déformation axiale. Comparaison entre l'élément poutre multifibre 2D enrichi (section S3) et l'élément fini 2D : (A) Poteau en section de béton non confiné par les étriers, (B) Béton confiné par une section modérée des armatures transversales (C) Béton confiné par une section importante des armatures transversales.
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 4 Démonstration de l'effet des armatures et du confinement au travers de l'essai de flexion composée en cyclique4.4.1 Description du corps d'épreuveUn poteau testé à l'Université de Sherbrooke[START_REF] Cardona Jaramillo | Le logiciel EFiCoS dans un contexte de dimensionnement base sur la performance (DBP)[END_REF] ;[START_REF] Legeron | Comportement en flexion composée de poteaux en béton à haute performance[END_REF]) est soumis à un déplacement latéral δ en plus d'un chargement axial P . La charge horizontale pendant les essais était appliquée par deux vérins de 100 kN de charge maximum.

4. 4 .Table 4 . 3 -

 443 Démonstration de l'effet des armatures et du confinement au travers de l'essai de flexion composée en cyclique 99 Propriétés mécaniques du béton et du chargement axial appliqué.

Figure 4 .

 4 Figure 4.7 -(a) : Section de béton armé confinée par les armatures transversales, (b) :Poteau encastré soumis à un effort axial constant et un déplacement cyclique latéral[START_REF] Legeron | Comportement en flexion composée de poteaux en béton à haute performance[END_REF]).

Figure 4 .

 4 Figure 4.8 -Discrétisation longitudinale du poteau étudié.
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 49 Figure 4.9 -Historique de chargement.

4. 4 .Figure 4 .

 44 Figure 4.10 -Fibres de la section transversale dissociées en fibres confinées et fibres non confinées.

Figure 4 .

 4 Figure 4.11 -Poteau rectangulaire C80B60N40 (essai Sherbrooke).

Figure 4 .

 4 Figure 4.12 -Essai cyclique sur poteau Sherbrooke rectangulaire C80B60N40 : relation entre l'effort en tête et le déplacement transversal δ, A : sans aciers transversaux et sans dilatance, B : avec aciers transversaux mais sans dilatance, C : avec aciers transversaux et avec dilatance.

Figure 4 .Figure 4 .

 44 Figure 4.13 -Types de maillages de la section utilisés pour l'étude de sensibilité du modèle numérique à la discrétisation de la section transversale.

Figure 4 .

 4 Figure 4.15 -Description du poteau choisi et du ferraillage des sections transversales 1A et 1B (Cusson et Paultre (1995)).

  Table4.7 -Paramètres adoptés pour la loi de comportement de béton : µ modèle.

Figure 4 .

 4 Figure 4.16 -Cas test 1A de l'essai de compression simple sur poteau de Sherbrooke (Cusson et Paultre (1995)), (a) : sans aciers transversaux et sans dilatance, (b) : avec aciers transversaux mais sans dilatance, (c) : avec aciers transversaux et avec dilatance.

Figure 4 .

 4 Figure 4.17 -Cas test 1B de l'essai de compression simple sur poteau de Sherbrooke (Cusson et Paultre (1995)), (a) : sans aciers transversaux et sans dilatance, (b) : avec aciers transversaux mais sans dilatance, (c) : avec aciers transversaux et avec dilatance.

4. 5 .Figure 4 .

 54 Figure 4.18 -Types de maillages utilisés pour l'étude de sensibilité du modèle numérique à la discrétisation de la section.

Figure 4 .

 4 Figure 4.19 -Cas 1A, avec aciers transversaux et dilatance : Influence du nombre d'éléments triangulaires TRI6 le long de la section transversale.

Figure 4 .

 4 Figure 4.20 -Types de maillages utilisés pour l'étude de sensibilité du modèle numérique à la discrétisation de l'élément poutre le long de x.

Figure 4 .

 4 Figure 4.21 -Cas 1A, sans aciers transversaux et sans dilatance : Influence du nombre d'éléments le long de la longueur du poteau.

Figure 4 .

 4 Figure 4.22 -Apparence des poteaux à la ruine (Cusson et Paultre (1995)).

  tant ces effets sont primordiaux pour bien représenter le confinement du béton. Pour cela on pourrait envisager le couplage du modèle béton avec un modèle de plasticité dilatant dans les directions de chargement axisymétriques des fibres. Le modèle n'aurait pas besoin d'être complètement 3D pour ne pas alourdir la formulation et nuire à sa robustesse.
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  des constantes contrôlant respectivement la pente et la courbure de la partie descendante de la courbe.Une première approche de la théorie des poutres est celle proposée par Euler-Bernoulli qui suppose que les sections planes restent planes et perpendiculaires à la ligne moyenne.
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  Les déformations transversales de corps rigide* yy et * zz ainsi que γ * yz sont nulles. Après remplacement des déformations axiales virtuelles * xx et de cisaillement γ * xy et γ * xz par leurs expressions données par l'équation (2.26), sous l'hypothèse de la cinématique de Timoshenko :

  poutre bidimensionnelde Caillerie, modifié par Bitar (2017) pour prise en compte du couplage effort normal -moment de flexion, servira comme base pour élaboration du modèle poutre multifibre enrichi 2D détaillé dans le chapitre 3.

2.3.6 Élément poutre de Caillerie

[START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF]

) étendu pour les applications 3D

Les fonctions d'interpolation linéaires brutes posent des problèmes de blocage en cisaillement. Ainsi, pour l'interpolation des déplacements généralisés, on utilise les fonctions d'ordre supérieur de Caillerie. L'élément poutre

de Caillerie et al. (2015) 

développé pour les applications 2D a été étendu dans ce travail de thèse pour être adapté aux sollicitations 3D. La nouvelle formulation de cet élément est présentée par la figure 2.15. Celle-ci prend en considération également la modification proposée par Bitar (2017) pour prise en compte du couplage effort normal-moment de flexion. Ainsi, le champ de déplacement généralisé axial U x est interpolé avec des fonctions de forme cubiques.

Chacun des deux noeuds (i et j) présente 6 degrés de liberté : 3 translations (u, v, w) et 3 rotations (θ x , θ y , θ z ) sur les axes x, y et z respectivement . D'autre part, le noeud interne K, possède 9 degrés de liberté internes (∆v 1 , ∆v 2 , ∆w 1 , ∆w 2 , ∆θ x , ∆θ y , ∆θ z , ∆u 1 et et ∆u 2 ). C'est cet élément qui sera utilisé dans la formulation 3D de notre élément poutre multifibre enrichi.

  D'autres moyens d'enrichissement existent dans la littérature. On peut distinguer entre autres : le cas d'enrichissement constant selon x Mohr et al. (2010) et le cas où l'enrichissement de gauchissement est supposé variable suivant x (Le Corvec (2012) ; Capdevielle (2016) et Addessi & DiRe (2014)). Ces deux types d'enrichissement sont présentés en détail dans les paragraphes suivants.

Introduction du gauchissement constant suivant x : Formulation de Mohr et al.(

2010

)

[START_REF] Mohr | A frame element model for the analysis of reinforced concrete structures under shear and bending[END_REF] 

ont fait le choix d'avoir un enrichissement u w dans le plan, ayant des composantes suivant x et y mais constant selon x. En effet, pour éviter de devoir introduire des fonctions d'interpolations libres de tout corps rigide, ces chercheurs ont choisi un enrichissement de gauchissement qui ne dépend que de y selon l'équation suivante :

  de ce champ d'enrichissement se fait indépendamment selon x avec les fonctions c(x) et selon la direction y de la section avec les fonctions d'interpolations ϕ(y). W e est le vecteur qui regroupe les degrés de liberté d'enrichissement ajoutés. Les deux champs cinématiques u p et u w doivent être pris orthogonaux et indépendants et ceci contrairement à la formulation de Mohr et al. (2010) qui engendrait naturellement cette orthogonalité. Ainsi il sera nécessaire d'établir une projection de ces champs. Ce point sera étudié en détail dans le Chapitre 3.

En effet, cette hypothèse d'orthogonalité traduit le fait que le champ d'enrichissement ne peut pas produire des mouvements de corps rigide. Par conséquence, l'équation d'équilibre (2.65) peut se projeter indépendamment selon les déplacements virtuels de corps rigide et les déplacements virtuels d'enrichissement. Le principe des travaux virtuels s'écrit comme suit :

  ;[START_REF] Éf Érences Mazars | Using multifiber beams to account for shear and torsion : Applications to concrete structural elements[END_REF]), jusqu'à la dernièreMazars et al. un facteur de pondération utilisé pour identifier l'état de traction/compression et il est évalué à partir de la contrainte effective principale. Même dans cette version, le modèle tient compte d'un coefficient de Poisson constant et n'est pas capable de reproduire un comportement dilatant du matériau.2.5.2 Comportement du béton selon la loi de couplage endommagementplasticitéLes lois de comportement mixte (couplage) élasto-plastique-endommageable du béton ont fait récemment l'objet de plusieurs recherches dans le but de trouver une loi globale qui pourrait décrire d'une façon complète tous les aspects comportementaux réels du béton. Un tel modèle devrait ainsi pouvoir reproduire la dissymétrie, la fragilité, l'anisotropie et l'effet unilatéral du béton. De plus, le comportement quasi-fragile du béton devrait être associé à la plasticité dans un modèle de comportement mixte avec deux parties de couplage comprenant un couplage d'état élasto-plastique et un couplage cinématique endommagement-plastique. Dans ce cas, la théorie de la mécanique de l'endommagement est utilisée pour modéliser le processus d'endommagement et la théorie de la plasticité est utilisée pour considérer la déformation résiduelle et la dilatation du volume qui nous intéressera pour notre modèle de poutre.Presque simultanément à[START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF], Lemaître (Lemaitre (1985)) a proposé en 1985 le premier modèle d'endommagement associé à un critère de plasticité de Von Mises pour décrire la déformation plastique du matériau, mais en définissant un seul paramètre d'endommagement pour reproduire la dégradation de la rigidité du matériau. Bien que Lemaître ait souligné le rôle important des déformations plastiques dans la réponse cyclique non linéaire du béton, l'adoption du critère de Von Mises et la définition d'un seul paramètre d'endommagement représentent un inconvénient du modèle étant donné que la description du comportement non symétrique du béton en traction et compression est inexacte. De plus une limitation du critère de Von Mises est qu'il est indépendant de la pression moyenne, ce qui est très limitant pour reproduire le comportement du béton. D'autres théories de plasticité pour la définition des formulations de modèles de couplage endommagement plastique ont été largement étudiées (Chen (2007)). évolution des déformations plastiques p . La relation contrainte-déformation adoptée dans ce modèle est définie selon le principe d'équivalence complémentaire :(2.86)σ = (1 -D) 2 C( -p ) = (1 -D) 2 σEn outre, un modèle élasto-plastique-endommageable a été proposé par[START_REF] Richard | Isotropic continuum damage mechanics for concrete under cyclic loading : stiffness recovery, inelastic strains and frictional sliding[END_REF] puis[START_REF] Richard | Continuum damage mechanics based model for quasi brittle materials subjected to cyclic loadings : Formulation, numerical implementation and applications[END_REF]. Exprimé dans le cadre théorique de la thermodynamique des processus irréversibles en 3D, un couplage approprié permet de représenter de manière assez satisfaisante les effets non linéaires tels que les fissures et les boucles hystérétiques. Ses principales caractéristiques sont l'asymétrie entre la traction et la compression, les déformations permanentes et l'effet unilatéral. Il est basé sur les observations suivantes : en traction, les matériaux quasi fragiles présentent des fissures localisées, alors qu'en compression, ces fissures apparaissent d'une manière diffuse. Par conséquent, l'endommagement isotrope est défini en traction et la plasticité en compression. En effet, l'utilisation de la plasticité en compression est fréquente dans le domaine de la mécanique des sols lorsque les non linéarités, la dilatance et les déformations permanentes peuvent alors être décrites. Dans ce modèle, la compression est pilotée par un mécanisme de plasticité non associé avec un écrouissage isotrope. Les déformations permanentes sont prises en compte non seulement en traction mais également en compression. Le modèle représente un effet unilatéral complet et linéaire lors du passage de la traction à la compression, permettant une récupération complète de la rigidité élastique

	Modèle élasto-plastique-endommageable proposé par Richard et al.(2010) puis Ri-
	chard et Ragueneau (2013)
	Modèle d'endommagement associé à un critère de plasticité de Von Mises (Lemaitre
	(1985))

(2013) 

en 2013, qui permet de reproduire correctement le comportement du béton sous sollicitations cycliques et dynamiques, toujours en négligeant les déformations permanentes. Dans ce cas, une variable d'endommagement D est définie, mais celle-ci est évaluée à partir de la combinaison de deux variables thermodynamiques Y t et Y c : (2.85) Y = rY t + (1 -r)Y c r est Modèle de couplage : Faria et al.(1998) et Grassl Jirasek (2006) Plusieurs modèles de couplage ont déjà été proposés comme ceux de Faria et al. (1998) et Grassl & Jirasek (2006) où le couplage endommagement-plastique peut être représenté sous forme implicite entre les variables internes (variable de plasticité et variable d'endommagement) en utilisant simultanément la surface plastique et la surface d'endommagement. La difficulté de cette méthode est le grand nombre de paramètres à déterminer (jusqu'à 20, comprenant ceux de la partie plastique et ceux de la partie d'endommagement). Modèle 3D endommageable-plastique proposé par Di Re (2017b) Di Re (2017b) ont récemment proposé un modèle 3D endommageable-plastique. La loi plastique de Drucker-Prager avec écrouissage linéaire isotrope et cinématique est adopté pour contrôler l'(non endommagée). Le principal problème lié à l'utilisation de la plasticité en compression est résolu assez simplement grâce à une réouverture progressive de la fissure lors du passage de la compression à la traction. Un endommagement apparent peut être défini en compression car un changement de module de déchargement peut apparaître. L'endommagement induit en compression d est défini comme étant égal à Ẽ E , où Ẽ est le module tangent de la branche de décharge en compression.

  Une étude de l'art des éléments poutres existants a été établie. L'élément poutre récemment développé par[START_REF] Caillerie | A timoshenko finite element straight beam with internal degrees of freedom[END_REF] avec des fonctions de formes quadratiques et cubiques a été choisi dans ce mémoire. Cet élément est libre des problèmes de blocage.Enfin, plusieurs modèles de comportement du béton selon des lois élasto-endommageables et élasto-plastique-endommageables sont détaillés. Dans ce travail, le dernière version du modèle de[START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF] sous le nom de µ modèle est choisie. Toutefois, ce modèle de comportement est un modèle élasto-endommageable et n'est pas capable de reproduire le comportement dilatant du matériau. Pour cette raison, une amélioration du µ modèle[START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]) sera proposée dans le chapitre 4 afin d'y introduire l'effet de dilatance indispensable pour reproduire l'effet de confinement du béton par les armatures transversales.

  Le système des équations d'équilibre de l'élément et de la section est donné et permet d'aboutir aux vecteurs des efforts internes et des matrices de rigidité, sectionnels et élémentaires. Ensuite, les méthodes adoptées pour l'implémentation des aciers longitudinaux et transversaux seront présentées.Enrichissement de la cinématique des sections de poutre pour la distorsion éléments finis 2D et volumique 3D dans le cas du béton homogène sans introduction des aciers. Ensuite, une étude analytique est réalisée pour valider l'implémentation des aciers transversaux et leur impact sur le comportement du béton. Tous ces cas tests sont simulés dans la phase de comportement élastique linéaire du béton.

Cette formulation bidimensionnelle est ensuite généralisée au cas tridimensionnel en se basant sur l'élément de Caillerie amélioré par

[START_REF] Bitar | Modélisation de la rupture dans les structures en béton armé par des éléments finis poutres généralisées et multifibres[END_REF] 

et étendu dans nos travaux de thèse au cas 3D. Pour ces deux types de formulations, des cas tests de validation en traction et flexion simple sont établis. Les résultats numériques obtenus sont confrontés à ceux provenant d'une modélisation 44

  Ce qui valide l'amélioration introduite par[START_REF] Bitar | Modélisation de la rupture dans les structures en béton armé par des éléments finis poutres généralisées et multifibres[END_REF] au niveau de l'élémentde Caillerie et al. (2015). En revanche, la figure3.3(c) montre que même si on choisit les fonctions cubiques pour l'interpolation longitudinale et on garde les fonctions quadratiques pour l'interpolation transversale, les contraintes transversales σ yy ne sont pas nulles, alors que la poutre est libre de se distordre et par suite ces contraintes devraient s'annuler. Ces conditions sont respectées dans le cas où des fonctions cubiques sont choisies pour établir les interpolations dans B p et dans B w . Pour cette raison, on s'est basé sur ce choix dans notre formulation d'élément poutre multifibre enrichi.

3(a) et 3.3(b)

, on voit clairement qu'avec des fonctions de formes quadratiques utilisées au sein de la matrice B p , les contraintes axiales ne sont pas constantes tout au long de la poutre. Alors qu'elles le sont dans le cas où ces fonctions sont remplacées par des fonctions d'ordre cubique.

  Pw ext le vecteur regroupant les efforts provenant de la distorsion restreinte au niveau des noeuds de la poutre. D'autre part, les déformations de section plane et d'enrichissement prennent respectivement les formes matricielles suivantes : dénotent les vecteurs regroupant les degrés de liberté virtuels relatifs respectivement au déplacement de section plane et au déplacement d'enrichissement. Ainsi, en simplifiant par U

	(3.45)			
				non linéaires
	à résoudre est le suivant :		
	(3.47)	U * W * e=1 Ω e n el e=1 Ω e n el B w B p T a w T a s	T σ( n el e=1 e=1 T σ( n el	P e ext P we ext
	U			

T Pw ext Pext désigne les forces externes imposées au noeuds et p = a s B p U e Et (3.46) w = a w B w W e Ayant n el éléments poutres multifibres le long de la poutre, le système d'équations p , w )dΩ e = U * p , w )dΩ e = W * * et W * * et W * , on obtient la relation matricielle suivante : (3.48)

  3.2. Enrichissement de la cinématique des sections de poutre pour la distorsion : Formulation 2D 57 Afin de résoudre le système d'équations non linéaires avec la méthode de Newton-Raphson, une linéarisation des équations d'équilibre est nécessaire. Ceci revient à linéariser le vecteur élémentaire P e afin de déduire la matrice de rigidité élémentaire K e comme proposé par Le[START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] en considérant k m comme matrice de rigidité matérielle, la forme linéarisée du vecteur de contrainte σ(x, y) est donnée par l'expression suivante :

	(3.49)	σ(x, y) = k m = k m ( p + w )
	En remplaçant σ(x, y), p et w par leurs expressions données par les équations (3.49), (3.45)
	et (3.46) respectivement, dans les équations d'équilibre, on obtient un système linéaire	à
	résoudre.	
	(3.50)	

le 0

  dL 1 et dL 2 sont toutes des matrices de taille (n w × n w ) et détaillées au paragraphe 3.2.4. En formulation 3D de l'élément multifibre enrichi, on arrive à la même constatation qu'en formulation 2D. L'amélioration introduite par Bitar (2017) au niveau de l'élément de Caillerie est indispensable pour avoir une répartition constante des contraintes axiales le long de la poutre (figures 3.11 (a) et (b)). Ce qui revient à utiliser des fonctions de formes cubiques pour l'interpolation du déplacement généralisé axial U x dans la matrice B p . De plus, pour avoir des contraintes normales transversales nulles simulant la distorsion libre de toutes les fibres de la poutre (figures 3.11 (c) et (d)), il faut utiliser des fonctions d'interpolation d'ordre cubique au niveau de la matrice B w .

Table 3 .

 3 1 -Comparaison entre les résultats obtenus par calcul analytique et numérique.À noter que le cas 2 du tableau 3.1 où une section importante d'aciers transversaux est modélisée, est équivalent au cas d'une poutre complètement confinée. Par conséquent, une autre procédure de vérification consiste à simuler un modèle de poutre dans lequel une déformation transversale ad,c y est ajoutée aux fibres de béton, aucun étrier n'est introduit, mais tous les degrés de liberté sont restreints tout au long de la poutre. En conséquence, les résultats numériques déduits sont identiques à ceux obtenus dans le cas 2 du tableau 3.1.

	Section des armatures transversales Analytique cas 1 : d = 10mm, s = 8cm Numérique	σ c yy (M P a) σ s yy (M P a) 0.1127 200.9 0.1117 199.1	tot yy 1.0045 × 10 -3 9.9553 × 10 -4
	cas 2 : d = 100mm, s = 8cm	Analytique Numérique	25 24.99	≈ 0 4 × 10 -4	≈ 0 ≈ 0

  La formulation du modèle poutre a été détaillée dans les chapitres précédents et validée dans le domaine linéaire élastique. L'enjeu de ce chapitre sera de : 1. Valider le modèle poutre enrichi dans le domaine non linéaire. Pour cela on commence par introduire les lois de comportement non linéaires choisies pour le matériau béton d'une part et les aciers longitudinaux et transversaux d'autre part. Un cas test de la poutre confinée, modélisée avec le modèle poutre 2D multifibre enrichi et soumise à un chargement de compression simple, sera comparé à la réponse d'un modèle rhéologique non linéaire. Lorsqu'un matériau fragile est soumis à des contraintes, des fissures et des vides peuvent apparaître. Ceux-ci produisent une réduction de la rigidité qui doit être prise en compte dans un modèle numérique. Pour décrire le comportement de matériau fragile, caractérisé par ces mécanismes de dégradation, il existe différentes familles de modèles (voir chapitre bibliographie). Dans le cas de ces études nous utiliserons les modèles issus des théories de l'endommagement isotrope. Plus particulièrement, c'est le modèle de Mazars que nous avons choisi pour effectuer les différentes modélisations grâce à sa simplicité, sa robustesse et également parce qu'il a été éprouvé dans de nombreuses modélisations (Mazars et al. (2014) ; Mazars & Grange (2015) ; Mazars & Grange (2017)). Afin de bien comprendre comment est formulé le µ modèle et ainsi d'en comprendre les limites, nous en proposons ici une description rapide en partant du modèle d'origine de 1986

	4.1 Introduction	
	2. Dans le but d'appliquer le modèle dans le domaine du Génie parasismique, on vise	à
	l'évaluer avec des essais expérimentaux sur poteaux en flexion composée sous chargement
	cyclique.	
	3. Enfin, évaluer la capacité du modèle à reproduire des essais expérimentaux sur un poteau
	en compression simple.	
	4.2 Lois de comportement non linéaires adoptées pour le
	béton et l'acier	
	4.2.1 Béton : µ modèle (Mazars et al.(2013))	

  la déformation seuil initiale d'endommagement. Lorsque la déformation équivalente atteint cette valeur, l'endommagement s'active. est un coefficient qui a été introduit ultérieurement pour améliorer le comportement en cisaillement. Usuellement sa valeur est fixée à 1.06. A t , B t , A c et B c , étant des paramètres 4.2. Lois de comportement non linéaires adoptées pour le béton et l'acier
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	matériau, les expressions des variables d'endommagement sont données par les équations sui-
	vantes :	
	(4.7)	
	Ce modèle d'endommagement isotrope est basé sur la définition de deux variables d'endom-
	magement D t et D c décrivant indépendamment la dégradation du matériau sous contraintes
	de traction et de compression. La combinaison de ces deux variables fournit le paramètre d'en-
	dommagement total D définit par l'équation (4.6), utilisé pour décrire la dégradation de la
	rigidité élastique initiale :	
	(4.6)	D = α β t D t + α β c D c

β

  de ces déformations équivalentes, deux variables thermodynamiques Y t et Y c , définissant les valeurs maximales atteintes lors du chargement sont déduites (équation (4.14) ). Contrairement au modèle initial, où D était la variable thermodynamique, ce sont ces valeurs de Y t et Y c qui ne font que croitre au cours du calcul. Le calcul de D qui sera détaillé plus loin dans l'équation (4.15) permet d'avoir une variable qui peut croitre mais aussi décroitre en fonction du chargement. C'est cet aspect qui permet de reproduire l'ouverture et la refermeture des fissures.

Deux surfaces de chargement f t et f c sont introduites dans ce modèle :

(4.13) 

  le seuil initial de la variable interne Y qui réunit les deux variables thermodynamiques Y t et Y c définies précédemment. r étant le facteur de triaxialité, l'expression de Y est donnée

	comme suit :	
	(4.16)	Y = rY t + (1 -r)Y

c Ce sont les variables A et B qui permettent de reproduire le comportement quasi fragile du béton en traction et le comportement écroui en compression. Pour représenter au mieux les résultats expérimentaux, les lois d'évolution suivantes ont été choisies pour A et B : (4.17)

  Lorsque la charge est inversée en compression et le contact entre les deux surfaces est restauré, une partie ou la totalité de la rigidité perdue, dans la phase de traction, est récupérée. Ainsi, les endommagements créés en traction n'affectent généralement pas le comportement en compression du matériau. Le µ modèle sera utilisé dans les simulations suivantes du fait de sa robustesse. Néanmoins, une autre limite de ce modèle est qu'il n'est pas capable de reproduire la dilatance du matériau. Une approche pour en tenir compte sera proposée sans la section 4.4.Afin de reproduire le comportement des aciers d'armatures longitudinales, c'est le modèle de Menegotto Pinto qui a été choisi. Ce modèle proposé par[START_REF] Menegotto | Method of anaysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. IABSE Symposium of Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads[END_REF] est largement utilisé pour simuler la réponse cyclique des structures en acier et des barres d'acier des structures en béton armé[START_REF] Mazars | Seismic risk : Structural response of constructions[END_REF] ;[START_REF] Grange | Numerical modelling of the seismic behaviour of a 7-story building : Nees benchmark[END_REF] ;[START_REF] Grange | The effects of soil-structure interaction on a reinforced concrete viaduct[END_REF]). La première formulation de ce modèle a été présentée en 1970 par[START_REF] Giuffre | Il comportamento del cemento armato per sollecitazioni cicliche di forte intensita[END_REF] et a ensuite été enrichie par[START_REF] Menegotto | Method of anaysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. IABSE Symposium of Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads[END_REF] pour tenir compte de l'écrouissage cinématique.Le choix de ce modèle pour représenter le comportement cyclique de l'acier est basé sur sa simplicité, son efficacité numérique et son bon accord avec les résultats expérimentaux des essais cycliques sur les barres en acier. La simplicité est bien exprimée par le fait qu'une seule équation est suffisante pour représenter à la fois les courbes contrainte-déformation de charge et de décharge :

	Une comparaison avec des résultats expérimentaux obtenus en traction-compression (Figure
	4.2(a)) et en bi-compression (Figure 4.2(b)) montre les capacités de ce modèle.
	4.2.2 Acier : Menegotto Pinto
	(4.19)	σ

En effet, dans le cas d'un volume d'élément matériel soumis à des contraintes de traction, chaque fois qu'une fissure s'ouvre, l'élément présente une réduction de raideur, car la transmission des contraintes entre les deux surfaces en regard définissant la fissure n'est plus possible.

  Comme illustré sur la figure4.3, l'équation (4.3) définit une famille de courbes de transition entre deux asymptotes avec des pentes E 0 et E h et ayant ( 0 , σ 0 ) comme point commun. ( r , σ r ) sont les coordonnées du point où la dernière inversion de déformation avec contrainte de même signe a eu lieu. D'autre part, le facteur b représente le coefficient d'écrouissage,

	.21)	* =	-r 0 -r

c'est-à-dire le rapport entre la pente d'écrouissage, E h , et la pente initiale E 0 . La courbure de la courbe de transition entre ces deux asymptotes est régie par un paramètre R donné par l'expression suivante :

Table 4 .

 4 2 -Valeurs attribuées aux paramètres du µ modèle.

	E (GPa)	ν	t0 (MPa) c0 (MPa) B c	A c	B t	A t
	24.1	0.35	1.3	0.59	574 1.11 5916 1
	La courbe de comportement contrainte-déformation axiale de la troisième section S3 située
	près de l'extrémité libre est comparée à celle obtenue avec un élément fini 2D discrétisé en
	deux éléments triangulaires et soumis à une compression axiale (figure 4.5).
	À noter que la modélisation en éléments finis 2D peut être aussi simplement simulée à 2 res-
	sorts rhéologiques en parallèle. Le premier reproduit l'effet du béton en 2D et le second simule
	le confinement dû à la présence des armatures transversales par un ressort unidirectionnel. Ce
	ressort sera linéaire.					

La courbe de comportement du poteau modélisé avec la nouvelle formulation 2D de poutre multifibre enrichie, illustrée par la figure 4.6, présente un bon accord avec les résultats de modélisation éléments finis 2D. En outre, on peut voir que la quantité d'étriers déclenche des variations au niveau du comportement non linéaire du béton. En effet, la présence de barres transversales induit des contraintes normales transversales σ yy dans le béton liées aux contraintes axiales σ xx . Par conséquent, la rigidité de la poutre en béton augmente, ainsi que

Table 4 .

 4 4 -Propriétés des armatures longitudinales et transversales. La figure 4.7 présente une description générale du poteau étudié ainsi que les détails de ferraillage de ce dernier. Le tableau 4.3 récapitule l'ensemble des caractéristiques du béton et des conditions de chargement axial. On y trouvera la résistance en compression f c du béton, le module d'Young E ainsi que le rapport de la charge axiale P à la résistance brute de la section de l'échantillon A g × f c . Par ailleurs, le poteau a été soumis à un chargement de compression P de l'ordre de 2900 kN. D'autre part, l'espacement des frettes s, la limite élastique des armatures transversales f yh et longitudinales f y , le diamètre φ des barres d'acier et le module de Young correspondant E s sont donnés par le tableau 4.4.La hauteur du poteau est de 2 m. Afin de simuler une partie rigide à laquelle est généralement connecté le poteau (poutre ou dalle rigide), une embase inférieure de 500 millimètres de haut et de 500 millimètres de large au niveau du poteau a été prévue pendant les essais expérimentaux. Pour cette raison, l'élément enrichi modélisé pour reproduire cet essai a été encastré d'un côté et libre de l'autre. Étant donné qu'aucune technique de régularisation n'a été adoptée dans ce travail, la taille du premier élément poutre, et par suite la distance entre deux sections consécutives, est calée sur la taille de la rotule plastique que l'on peut déterminer expérimentalement et comme calculée par[START_REF] Grange | Modèles multi-échelles et algorithmes pour les simulations dynamiques : application à la vulnérabilité sismique des structures[END_REF] dans le cas d'un élément poutre à 3 sections. Par conséquent, le poteau est discrétisé longitudinalement en 2 éléments poutres enrichis comme présenté par la figure 4.8.

	4.4.2 Stratégies de modélisation numérique

L'un travaillait en compression, pendant que l'autre travaillait en traction. D'autre part, le niveau de charge axiale étudié était celui couramment utilisé dans les structures, c'est-à-dire de 15 à 40 % de la résistance brute, définie comme étant le produit de la surface brute par la résistance en compression du béton (A g × f c ).

  Toutefois, en utilisant la loi de comportement du µ modèle, le coefficient de Poisson ne suffit pas tout seul pour reproduire le comportement dilatant du béton confiné par les armatures transversales. Pour cette raison, une nouvelle méthode est adoptée pour introduire cet effet de dilatance. Ce dernier est rajouté dans le µ modèle au niveau du coefficient de Poisson comme suit :

	(4.23)	ν = ν initial (1 + D)

ν initial présente le coefficient de Poisson du matériau sain. Dans ce cas de calcul, il vaut 0.2. D est défini comme étant le paramètre d'endommagement qui varie de 0 pour un matériau intact, à 1 pour un matériau complètement endommagé. En effet, la création de fissures et donc de vides peut être modélisée par augmentation artificielle du coefficient de Poisson apparent, même si celui ci n'est pas le coefficient de Poisson intrinsèque à la matière.

Ainsi, ce paragraphe vise à souligner le rôle important joué par les armatures transversales d'une part et par la dilatance introduite au niveau du coefficient de Poisson dans la loi du µ modèle d'autre part.

3.6. Calculs de validation
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