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Abstract:  
Since the Industrial Revolution until 1960s, economists were looking of the environment as an 
inexhaustible source of raw materials and energy sources, and were considering that industry had no 
negative impact on the environment. However, it was accompanied by strong needs in energy and 
materials and has led to high waste and high emissions from production activities and energy plants. 
The rate of greenhouse gases emission has increased by 70% (between 1970 and 2004), which has 
caused climate change. 

After many years, Stockholm Conference, held in 1972 under the auspices of the United Nations, was 
the most important international meeting to discuss the environmental risks posed by the industry and 
the impact of industry on the environment. The states have expressed strong concerns over the 
urgency of closing the significant gap between the global effects of the parties’ mitigation 
commitments in terms of annual global greenhouse gas emissions up to2020. The evolution of global 
emissions was aimed compatible with the prospect of containing the increase in the average 
temperature of the planet significantly below 2° c compared to pre-industrial levels and to continue 
the action taken to limit the rise in temperatures at 1.5° c. 

The motivations of companies to place the environment in their policies can be of several types: 
 compliance with regulations, 
 saving money by reducing the consumption of energy and resources, and reducing 

environmental taxes imposed on companies, 
 improving relations with local people (for polluting companies and emission of CO2), 
 enhancing corporate image for the companies’ clients  supported by environmental standards 

or ecolabel marks. 

Over the past 50 years, energy consumption by the industrial sector has more than doubled and the 
industry currently consumes about half of the energy in the world. The energy consumption is a very 
important cost component for manufacturing companies. At the same time, costs for energy have 
increased by almost 70% since the late 1990s. Today manufacturing companies and enterprise face 
the challenge of raising energy environmentally impacts and their CO2 gaze emissions and economic 
energy prices. 

Most of the work on reducing manufacturing energy consumption today focuses on the need to 
improve the efficiency of resources. Companies largely ignore the possibility of system-wide power 
reduction where the operational method can be used as an energy-saving approach. Indeed corporate 
responsibility for this problem could be involved to improve the solutions to this major problem. 

In industrial sector, four methods are used to reduce energy. The first consists in designing more 
efficient machines that consume less energy. The second is eco-design to modify the product and its 
life cycle in order to reduce the whole impact. The third is eco-manufacturing to modify 
manufacturing processes. Finally, the production lines may be adjusted to get better efficiency in job 
shop scheduling problem. The first three methods seem to be strategically interesting, but they 
revealed too expensive, and the impact of such a decision is minimal, especially for small and 
medium-sized industries that can have a limited budget. Finally, it is on the last point that many 
improvements can be done in order to obtain relevant results, responding to the industrial 
expectations.  

Generally, industrial job shop problems minimize criteria such as the makespan, the cost, and other 
objective and satisfying various scheduling constraints. Up to now, a few researchers studied the 
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energy consumption as an important objective functions in job shop scheduling, but they remain to 
reduce energy only by reducing total work time load and reducing idle time. 

From previous research and studies, energy reduction was done indirectly by reducing the time 
required to accomplish the work and the waiting time (idle time). In this thesis, we consider to 
minimize energy directly throw reducing operation (processing) and setup energy. Since all previous 
research and studies has taken into account the time effect on energy reducing, assuming that 
operation power is constant at machine when operating the different jobs. Therefore they have 
considered that only the processing time, with additionally the idle time between operations, impacts 
the needed energy. We agree with them about the great impact of processing and idle time on energy, 
but we also take into account the direct impact of specific process energy itself. Actually, the process 
power to operate the jobs is not static but dynamically depends on the process and the machine 
operating the job. However, in our optimisation methods, we have multi populations, that represent 
processing energy, processing time, setup energy, and setup time, where each operator has different 
energy value, and different setup energy. 

We optimize total energy consumption for optimum job shop scheduling minimizing the following 
criteria: 

a) processing energy and processing time, 
b) setup energy and setup time, 
c) maximum makespan and total non-processing time (idle time). 

Mathematical models are proposed for multi-objective genetics algorithms to solve job shop 
scheduling optimisation problems. For a bi-objective problem, we generate two populations, one to 
minimise the total energy consumption and the other to minimise the total workload time. For a tri-
objective problem, we generate three populations to minimise respectively total electricity 
consumption, total non-processing time (idle time), and total setup time. 

This thesis consists in five chapters as following:- 

1. Chapter one presents a general introduction to environmental management systems, and their 
concepts tools, such as concept of ISO 14000 standard, cleaner production, green manufacturing, Life 
Cycle Assessment, and Sustainable Manufacturing. 
 
2. Chapter two addresses energy problem in manufacturing system, energy efficiency principles 
and methods are discussed. Effect of energy and climate change, energy consumed in various 
enterprise sectors, and energy efficiency techniques are described. 
 
3. In chapter three, we propose a multi objectives genetic algorithm with bi-populations to 
reduce total processing energy consumption with minimized makespan and idle time. To solve multi 
objectives-multi populations we use two types of genetic algorithms: traditional with two 
chromosomes each chromosome representing a population and parallel genetic algorithms with two 
sub-genetic algorithms, each of them representing a population. These genetic algorithms could solves 
small and medium job shop problems with only the effects of processing energy and processing time, 
because we assumed that setup time and energy as parts of processing energy and time to simplify the 
solution. The genetic algorithms are developed using MATLAB GA tools. 
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4. In chapter four; we propose constraint programming and mixed Integer linear programming to 
improve energy job shop scheduling. By way of mixed integer linear programming, we can solve 
larger problems. The problem in chapter three is extended by energy reducing with setup time effects 
and by modifying the traditional job shop constraints with two new constraints: left shift and turn 
off/standby unused machines. For this problem, we propose a nonlinear program, its linearization and 
we illustrate its resolution according to the different parameters with the CPLEX solver. 
 
5. Chapter five; is a case study, where all optimizations methods are tested with different 
scheduling problems (3×3) up to (12×12) problems also at different jobs size (number of operations of 
job). The result of all optimization methods are compared and discussed, to evaluate these methods 
and to test their capability and efficiency to solve different job shop scheduling problems. So we 
determine which method is more appropriated according to problem sizes or job sizes and we can 
conclude and foresee future work. 
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Résumé:  
Depuis la révolution industrielle jusqu'aux années 1960, les économistes considéraient 
l’environnement comme une source inépuisable de matières premières et d'énergie. Pa conséquent, 
cette période a été marquée par un accroissement des besoins en énergie et en matériaux et a conduit à 
une augmentation des déchets et des émissions provenant des activités de production et des centrales 
énergétiques. Le taux d'émission de gaz à effet de serre a augmenté de 70% (entre 1970 et 2004), ce 
qui a provoqué des changements climatiques. 

Après plusieurs années, la Conférence de Stockholm, tenue en 1972 sous les auspices des Nations 
Unies, a été la réunion internationale la plus importante pour discuter des risques environnementaux 
posés par l'industrie et de l'impact des activités humaines sur l'environnement. Les États ont exprimé 
de vives inquiétudes quant à l'urgence de combler l'écart important entre les engagements 
d'atténuation des parties en termes d'émissions annuelles mondiales de gaz à effet de serre jusqu'en 
2020 et les effets attendus sur le changement climatique. L'évolution des émissions globales était 
compatible avec la perspective de contenir l'augmentation de la température moyenne de la planète 
significativement inférieure à 2 ° C par rapport aux niveaux préindustriels et de poursuivre les actions 
menées pour limiter la hausse des températures à 1,5 °C. 

Les motivations des entreprises à placer l'environnement dans leurs politiques peuvent être de 
plusieurs types: 

 conformité à la réglementation. 
 économiser de l'argent en réduisant la consommation d'énergie et de ressources et en 

réduisant les taxes environnementales imposées aux entreprises. 
 améliorer les relations avec les populations locales (pour les entreprises polluantes et les 

émissions de CO2). 
 améliorer l'image de l'entreprise pour les clients des entreprises, soutenue par des normes 

environnementales ou des marques d'écolabel. 

Au cours des 50 dernières années, la consommation d'énergie du secteur industriel a plus que doublé 
et l'industrie consomme actuellement environ la moitié de l'énergie dans le monde. La consommation 
d'énergie est un élément de coût très important pour les entreprises manufacturières. Dans le même 
temps, les coûts de l'énergie ont augmenté de près de 70% depuis la fin des années 1990. Aujourd'hui, 
les entreprises manufacturières et les industries sont confrontées au défi d'augmenter les impacts 
environnementaux énergétiques et leurs émissions de CO2 et les couts  de l'énergie économique. 

De nombreux travaux sur la réduction de la consommation d'énergie dans le secteur manufacturier se 
concentrent aujourd'hui sur la nécessité d'améliorer l'efficacité des ressources. Les entreprises ignorent 
en grande partie la possibilité d'une réduction de la puissance à l'échelle du système en optimisant 
l’ordonnancement instituant ainsi une approche d'économie d'énergie. La responsabilité des 
entreprises sur ce problème pourrait être encouragée pour améliorer leur impact énergétique.  

Dans le secteur industriel, quatre méthodes sont utilisées pour réduire la consommation d'énergie : 

 La première consiste à concevoir des machines plus efficaces et moins gourmandes en 
énergie. 

 La seconde est l'introduction de l'écoconception en modifiant le produit et son cycle de vie 
afin de réduire l'impact global. 

 La troisième est l'éco-fabrication pour modifier les processus de fabrication. 
 Enfin, les lignes de production peuvent être ajustées pour obtenir une meilleure efficacité 

énergétique en agissant sur l'ordonnancement des ateliers. 
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Les trois premières méthodes semblent être stratégiquement intéressantes, mais elles se révèlent trop 
coûteuses, et l'impact d'une telle décision est minime, en particulier pour les petites et moyennes 
industries qui peuvent avoir un budget limité. Finalement, c'est sur le dernier point que de nombreuses 
améliorations peuvent être apportées afin d'obtenir des résultats pertinents, répondant aux attentes de 
l'industrie. 

Généralement, les problèmes de job shop minimisent des critères tels que la durée totale de 
fabrication, le coût et d'autres performances objectives. Jusqu'à maintenant, quelques chercheurs ont 
étudié la consommation d'énergie en tant qu'objectif important dans la planification des ateliers, mais 
ils se contentent de réduire l'énergie en agissant uniquement sur la charge de travail totale et en 
réduisant le temps d'inactivité. 

D'après des recherches et des études antérieures, la réduction de la consommation d'énergie a été 
réalisée indirectement en réduisant le temps requis pour accomplir le travail et le temps d'attente 
(temps d'inactivité). Dans cette thèse, nous proposons de minimiser l'énergie en agissant directement 
sur l’énergie nécessaire à la fabrication et l'énergie requise pour le réglage.  

Toutes les recherches et études antérieures ont pris en compte l'effet du temps sur la réduction 
d'énergie, en supposant que la puissance de fonctionnement de la machine était constante lors de 
l'exécution des différents travaux. Par conséquent, ils ont considéré que seul le temps de 
fonctionnement, et le temps d'inactivité entre les opérations, avaient un impact sur l'énergie 
nécessaire. 

Nous sommes d'accord avec eux sur l'impact considérable de la fabrication et des temps morts sur 
l'énergie, mais nous prenons également en compte l'impact direct de l'énergie spécifique au processus 
sélectionné. En réalité, la puissance du processus pour faire fonctionner les tâches n'est pas statique 
mais dépend dynamiquement du processus et de la machine qui exécute le travail. Par conséquent, 
dans nos méthodes d'optimisation, nous avons plusieurs populations, qui représentent l'énergie et le 
temps de traitement ainsi que l'énergie et la durée de préparation, chaque opération ayant des valeurs 
différentes pour ces quatre paramètres. 

Dans cette thèse, nous développons des méthodes d’optimisation multicritère, en utilisant un 
algorithme génétique multi-population ou la programmation linéaire mixte. Nous évoquerons enfin 
l'introduction de la logique floue pour traiter l'imprécision de l'information sans développer ce point. 

Nous optimisons la consommation d'énergie totale pour une planification optimale des ateliers en 
minimisant les critères suivants: 

a) Energie consommée et durée de fabrication, 

b) énergie consommée et durée de préparation, 

c) durée de fabrication maximale et temps durée totale des opérations non productives 

Des modèles mathématiques d'optimisation multicritère de l'ordonnancement des ateliers sont 
proposés pour modéliser les durées de fabrication et les consommations d’énergie en vue de la 
résolution par des algorithmes génétiques.  

Pour un problème bi-objectif, nous générons deux populations, l'une pour minimiser la consommation 
d'énergie totale et l'autre pour minimiser le poids total. 
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Pour un problème tri-objectif, nous générons trois populations afin de minimiser respectivement la 
consommation totale d'électricité, le temps d'inactivité total et le temps de préparation total. 

Les modèles mathématiques sur ensuite sensiblement modifiés en vue de la résolution par des 
algorithmes de programmation linéaire mixte.  

Cette thèse se compose de cinq chapitres comme suit (comme le montre la figure ci-dessous): - 

1. Le chapitre un présente une introduction générale aux systèmes de gestion environnementale 
et à leurs outils conceptuels, tels que le concept de la norme ISO 14000, la production propre, 
la fabrication écologique, l'analyse du cycle de vie et la fabrication durable. 
 

2. Le chapitre deux aborde le problème de l'énergie dans les systèmes de production, les 
principes et les méthodes d'efficacité énergétique sont discutés. Les effets de l'énergie et du 
changement climatique, l'énergie consommée dans divers secteurs d'entreprises et les 
techniques d'efficacité énergétique sont décrits. 
 

3. Dans le troisième chapitre, nous proposons un algorithme génétique multicritère avec deux 
populations pour réduire la consommation totale d'énergie de fabrication et la durée totale de 
production. Pour résoudre ce problème nous utilisons deux types d'algorithmes génétiques, 
d’une part un algorithme traditionnel avec deux chromosomes chaque chromosome 
représentant une population, d’autre part des algorithmes génétiques parallèles avec deux 
algorithmes sous-génétiques, chacun d'eux représentant une population. Ces algorithmes 
génétiques pourraient résoudre les problèmes de petites et moyennes tailles avec les effets 
seuls critères d'énergie et de temps de production, car nous y avons intégré le temps et 
l'énergie de préparation. Les algorithmes génétiques sont développés à l'aide des outils 
MATLAB GA. 

4. Au chapitre quatre; Nous proposons le recours à un algorithme de programmation linéaire par 
contraintes mixte pour améliorer l'ordonnancement multicritère des ateliers. Grâce à la 
programmation linéaire mixte, nous pouvons résoudre des problèmes plus importants. Le 
modèle du chapitre trois est complété avec réduction de l'énergie et de la durée de 
préparation. Nous pouvons modifier le problème traditionnel d’ordonnancement d’atelier 
avec deux nouvelles possibilité : le décalage à gauche et l’arrêt des machines inactives. Pour 
ce problème, nous proposons un programme non linéaire, sa linéarisation et nous illustrons sa 
résolution en fonction des différents paramètres avec le solveur CPLEX. 
 

5. Le chapitre cinq; est une étude de cas, où toutes les méthodes d'optimisation sont testées avec 
différents problèmes d'ordonnancement de (3 × 3) jusqu'à (12 × 12) et aussi à différentes 
tailles de travaux (nombre d'opérations par travail). Le résultat de toutes les méthodes 
d'optimisation est comparé et discuté, pour évaluer ces méthodes et pour tester leur capacité et 
leur efficacité à résoudre différents problèmes de planification d'atelier. Nous déterminons 
donc quelle méthode est la plus appropriée en fonction de la taille des problèmes ou de la 
taille des travaux et nous pouvons conclure et proposer des pistes pour poursuivre nos 
travaux. 
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1. Environment Management and industry 

1.1 Introduction 

Economic development is fundamental to the functioning of our society as a driving force for 

developments. Since the Industrial Revolution until 1960s (Kniivilä M. 2007) Economists were 

looking to the environment as an inexhaustible source of raw materials and energy sources, and were 

considering that industry had no negative impact of to the environment However, it was accompanied 

by strong needs in energy and materials and leads to a high waste production and high emissions from 

production activities and energy plants. After many years Stockholm Conference, held in 1972 under 

the auspices of the United Nations, was the most important international meeting to discuss the 

environmental risks posed by the industry and the impact of industry on the environment. 

After the report of Portland in 1987, under the name of “Our Common Future“, which was aimed at 

the rational uses of resources, the United Nations Conference on Environment and Development 

(UNCED), at Rio de Janeiro (Brazil) in 1992, has sought to put in place elements of response in a 

program of large-scale national and global actions based on a socio-economic approach. In this 

conference the concept of "Sustainable Development" was expressed. Then, 10 years after the first 

Earth Summit in Rio de Janeiro, followed the World Summit on Sustainable Development, held in 

Johannesburg in 2002. It was convened to discuss sustainable development by the United Nations to 

focus the world's attention and direct action toward meeting difficult challenges, including improving 

people's lives and conserving our natural resources in a world. 

 Following these orientations, many aspects have evolved in society, in particular the demand 

of markets and consumers. Today, a wider range of products can meet technical and 

environmental requirements, with the emergence of eco-labels as a means of certification. 

These developments have led companies to develop their points of view and adopt eco-

strategies to address different issues: 

 Green manufacturing  

 Management of energy consumption / energy efficiency 

 Use of renewable energies, 

 More appropriate end-of-life scenarios, less impacting 

 Sustainable development, 

 Services durable goods market 

 Clean production techniques 

Consideration of the environment in everyday life is established as a fact but everyone takes a 

different view on the preservation of the environment (Brundtland G.H. 1989) according to his 

training, his mission or his profession (Friend G. 2009). 

https://en.wikipedia.org/wiki/Earth_Summit
https://en.wikipedia.org/wiki/Sustainable_development
https://en.wikipedia.org/wiki/United_Nations
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Because of damage caused by industrial activities, governments and organizations, committed to 

environmental issues, introduce measures in various forms: Constraints, Standards, Limits, 

Legislation, Recommendations and Rules. Those measures are aimed at controlling the negative 

effects of industries, in particular at manufacturing and production levels (Mathieux, F. 2008).  

Thus, companies adopt different objectives and strategies according to the priorities of the 

management or the organization (Janin M., 2000). The areas related to standards vary between 

“management, quality, product, system, process, measurement, or testing standards”. Many 

approaches now allow socio-economic actors to face the environmental reality without, however, 

endangering their economic potential. At the same time, research centres propose technical means and 

solutions to improve environmental integration in industrial and commercial activities (Haoues N., 

2006). They are beginning to develop methods and tools capable of adapting environmental standards 

and constraints in the product development process via the Eco-Design, (Alhomsi H., 2009) 

1.2 ISO 14000  

ISO 14000 is an internationally recognized standard that sets the requirements for an environmental 

management system (ISO 2015). It helps organizations improve their environmental performance 

through more efficient use of resources and waste reduction. Governments and organizations 

committed to environmental issues introduce measures in various forms: Constraints, Standards, 

Limits, Legislation, Recommendations, Rules, etc. (Nishitani K., 2009). ISO 14000 represent a 

consensus on good practice and state of the art (Finkbeiner M., 2013). Several Standards are proposed 

to integrate environmental requirements into industrial activities. An environmental management 

system (EMS) (Kollman K., 2002) is explained in figure 1-1. It is a systematic approach to managing 

the environmental aspects of an organization. The EMS is a “tool” that allows any type of 

organization, whatever its size (Souza Campos L. M., 2012), to control the impact of its activities, 

products or services on the environment. EMS helps to situate company operational aspects that have 

a significant impact on the environment. Set targets of objectives and the goals to mitigate this impact, 

and develop programs to achieve targets and implement effective, other operational control measures 

to ensure the implementation of the established environmental policy. The activities of ISO system 

can be summarized in table 1-1 
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Figure 1-1 Model and relationship of ISO System (ISO, 2002). 

Table 1-1 ISO system types and objectives (ISO, 2002-2010). 
Plan   Do  Check Act  

Environmental 

management system 

implementation 

Conduct life cycle 

assessment and manage 

environmental aspects 

Conduct audits and 

evaluate environmental 

performance 

Communicate and use 

environmental 

declarations and claims 

ISO 14050:2009 

Environmental 

management 

Vocabulary ISO 

14040:2006 

Environmental 

management Life cycle 

assessment Principles and 

framework 

ISO 14015:2001 

Environmental 

management 

Environmental 

assessment of sites and 

organizations (EASO) 

ISO 14020:2000 

Environmental labels and 

declarations General 

principles 

ISO 14001:2004 

Environmental 

management systems 

Requirements with 

guidance for use  

ISO 14044:2006 

Environmental 

management Life cycle 

assessment Requirements 

and guidelines 

ISO 14031:1999 

Environmental 

management 

Environmental 

performance evaluation 

Guidelines 

ISO  14021:1999 

Environmental labels and 

declarations Self-declared 

environmental claims 

(Type II environmental 

labelling) 
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plan  Do  Check Act 
ISO 14004:2004 

Environmental 

management systems 

General guidelines on 

principles, systems and 

support techniques  

ISO/TR 14047:2003 

Environmental 

management Life cycle 

impact assessment 

Examples of application 

of ISO 

14042 ISO 19011:2002 

Guidelines for quality 

and/or environmental 

management systems 

auditing ISO 

14024:1999 

Environmental labels and 

declarations Type I 

environmental labelling 

Principles and procedures 

ISO/DIS 14005 

Environmental 

management systems 

Guidelines for the phased 

implementation of an 

environmental 

management system, 

including the use of 

environmental 

performance evaluation  

ISO/TS 14048:2002 

Environmental 

management Life cycle 

assessment Data 

documentation format 

 ISO 14025:2006 

Environmental labels and 

declarations Type III 

environmental 

declarations Principles 

and procedures 

   ISO/AWI 14033 

Environmental management 

Quantitative environmental 

information Guidelines and 

examples 

Address environmental aspects in products and 
product standards 

Evaluate greenhouse gas performance 

plan  Do  Check Act 
ISO Guide 64:2008 
Guide for addressing 
environmental issues in 
product standards  

ISO/TR 14049:2000 
Environmental 
management Life cycle 
assessment Examples of 
application of ISO 14041 
to goal and scope 
definition and inventory 
analysis 

ISO 14064-3:2006 
Greenhouse gases Part 3 : 
Specification with 
guidance for the 
validation and 
verification of 
greenhouse gas assertions 

ISO 14063:2006 
Environmental 
management 
Environmental 
communication 
Guidelines and examples 

ISO/CD 14006 
Environmental 
management systems 
Guidelines on eco-design  

ISO/CD 14051 
Environmental 
management Material 
flow cost accounting 
General principles and 
framework 

ISO 14065:2007 
Greenhouse gases 
Requirements for 
greenhouse gas validation 
and verification bodies 
for use in accreditation or 
other forms of 
recognition 

 

 ISO/WD 14045 Eco-
efficiency assessment 
Principles and 
requirements 
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Manage greenhouse gases 
plan  Do  Check Act 
ISO/TR 14062:2002 
Environmental 
management 
Integrating 
environmental aspects 
into product design and 
development  

ISO 14064-1:2006 
Greenhouse gases Part 1: 
Specification with 
guidance at the 
organization level for 
quantification and 
reporting of greenhouse 
gas emissions  

ISO/CD 14066 Greenhouse 
gases Competency requirements 
for greenhouse gas validators 
and verifiers document 

 

 ISO 14064-2:2006 
Greenhouse gases Part 2 : 
Specification with 
guidance at the project 
level for quantification, 
monitoring and reporting 
of greenhouse gas 
emission reductions or 
removal enhancements  

  

 ISO/WD 14067-1 Carbon 

footprint of products Part 

1: Quantification ISO/WD 

14067-2 Carbon footprint 

of products Part 2: 

Communication 

  

 ISO/AWI 14069 GHG 

Quantification and 

reporting of GHG 

emissions for 

organizations (Carbon 

footprint of organization) 

Guidance for the 

application of ISO 14064-

1 

  

 

1.3 Cleaner production 

Cleaner production is a preventive and specific initiative to protect the environment (ASIE/2006/122-

578, 2008). It aims to minimize waste and emissions and to maximize production. The manufacturing 

process is designed to minimize the impact on the environment, reducing energy and raw materials 

consumption as well as waste and polluting emissions (Saez-Martínez F. J., 2016). By analysing the 

flow of materials and energy within a company, options are identified for minimizing waste and 
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polluting emissions from the industrial process. Since source reduction strategies are more effective 

than pollution prevention, cleaner production focuses on environmental management by reducing 

sources rather than pollution control methods (Gavrilescu M., 2004)  as in figure 1-2.  

 

 

Figure1-2 Framework of Clean Production  

Cleaner production is the continuous application of an integrated preventive environmental strategy 

applied to processes, products, and services to increase eco-efficiency and reduce risks for humans 

and the environment. It applies to:  

 Production process: raw material and energy, eliminating toxic raw material (Mikulcic H., 

2016) and reduction of all emission west (Maiti S., 2018).  

 Products: reduction of negative impacts during products life cycle (Abel E., 2005) from firstly 

raw material to final product and recycling to raw material. 

 Services: incorporating environmental concerns into designing and delivering services. 

Making organisational improvements. Improving environmental performance by the 

implementation of no-cost and low-cost measures. 

In short, clean production is the correct use of industrial processes, raw materials and products to 

prevent air, water and soil pollution, to reduce waste, to avoid environmental and human health 

hazards as well as making efficient use of raw materials, water and energy. 
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1.4 Green Manufacturing  

Now the focus is on green manufacturing (Sarkis J., 2011). A diminished source of energy and raw 

materials and recent volatility in the price of fossil fuels and global awareness about limited resources 

creates a need for a more sustainable way of how to produce and use (Diabata A., 2011). Green 

industry is not new as in figure 1-3  

 

 

Figure 1-3 History of Green Manufacturing (Sarkis J., 2011) 

The concept around for a couple of decades, but has not received much attention from manufacturers 

with the exception of participating in seminars and scored well in opinion polls, surveys and studies. 

But recent trends show that with the increased focus on climate change a transformation of mind-set is 

happening and so positive action is now finally imminent. There are many interpretations of green 

manufacturing and all convey similar meaning. The centre for Green Manufacturing University of 

Alabama defines the goal of green manufacturing as “To prevent pollution and save energy through 

the discovery and development of new know edge that reduces and/or eliminates the use or generation 

of hazardous substances in the design, manufacture, and application of chemical products or 

processes.” (Lele S., 2009) (Figure 1-4). According to (Melnyk S.A., 1996), it is a system that 

integrates product and process design with issues of manufacturing, planning and control in such a 

manner as to identify, quantify, assess, and manage the flow of environmental waste with the goal of 

reducing and ultimately minimizing environmental impact while also trying to maximize resource 

efficiency ( Seow Y., 2016). 
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Figure 1-4 Green Manufacturing Activities (Seow Y., 2016) 

The scope of green operations (GO) spans from product development to management of the entire 

product life cycle involving such environmental practices as eco-design, clean production, recycling, 

and reuse with a focus on minimizing the expenses associated with manufacturing, distribution, use, 

and disposal of products (Lai K., 2012) Green manufacturing is an important part of business. 

1.5 Life cycle assessment  

The life cycle assessment (LCA) analyses the effects of a product on the environment during its entire 

existence, from production to its period of use and its end-of-life recycling (figure 1-5). It is a 

quantitative evaluation of ecological aspects such as the emission of greenhouse gases (including 

carbon dioxide CO2), energy consumption, acidification or summer smog. According to ISO 14040 

standards, LCA is a technique to assess the environmental aspects and potential impacts associated 

with a product, process, or service, by:  

•Compiling an inventory of relevant energy and material inputs and environmental releases;  

•Evaluating the potential environmental impacts associated with identified inputs and releases; 

•Interpreting the results to help make a more informed decision about the human health and 

environmental impacts of products, processes, and activities. 
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Figure 1-5 Product life cycle 

There are four main phases of the LCA process: 

1. Goals and Scoping: The scoping step determines which processes will be included, which 

environmental concerns will be included, what economic or social good is provided by the goods or 

services in question, resolves any technical issues and defines the audience for the LCA. 

2. Life Cycle Inventory (LCI): The inventory provides information about all environmental inputs and 

outputs from all parts of the product system involved in the life cycle assessment.  

3. Life Cycle Impact Assessment: The assessment takes inventory data and converts it to indicators 

for each impact category. A typical list of impact indicators includes: 

 Global Climate Change. 

 Stratospheric Ozone Depletion. 

 Acidification. 

 Eutrophication. 

 Decrease in Natural Resources (habitat, water, fossil fuels, minerals, biological resources). 

 Human Toxicity. 

 Eco toxicity  

4. Interpretation The last step is an analysis of the impact data, which leads to the conclusion whether 

the ambitions from the goal and scope can be met. 
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The life cycle of a product consists of: 

 Raw material: This phase includes the extraction of materials and their rifling and processes 

manufacturing to the semi-finished product (such as steel plates) or final products. 

 Production: to produce a product, it needs raw material resources and energy, as well as the 

manufacturing and assembly; both at suppliers and in production. 

 Transport (Distribution): This phase covers the whole supply chain, suppliers to end-users and 

takes into account the means of transport (ships, trains, planes, trucks, vans, cars, etc.). The 

transport includes all activities of transports of raw marital, parts, semi products and final 

product; where at this a phase generally includes packaging activities. 

 Use: This phase takes into account all the elements related to the use of the product in order to 

ensure its function for example car need diesel and battery as energy water and oil to work 

properly. The phase of use also includes installation and maintenance activities to repair and 

replace parts. 

The main interest is on the CO2 emissions that are strongly related with the energy consumed during 

the production of the part. The most cost-effective way to reduce CO2 emissions is to reduce the 

energy use. The recent developments in manufacturing production technologies has however gone in 

the opposite direction with higher performance and higher energy using machines and processes, in 

order to increase productivity and reliability of the process. At present, LCA is by far the most 

common method for evaluating environmental footprint and has been found to be useful in assessing 

the environmental performance of machine tools. It is also not tied to production perspectives and 

does not measure economic value. However, there are inherent problems associated with LCA, which 

reduce its preciseness and limit its value for companies. The problem regarding LCA is that it 

provides static assessment results under the specific application assumptions (use of lumped 

parameters and site-independent models) and cannot show the dynamic association (the models used 

are static) between environmental impact and operation conditions of machine tools and the whole 

production line. Additionally, the focus is mainly on environmental considerations, not economic or 

social aspects disregarding in this way two out of the three main pillars of sustainable manufacturing. 

Consequently, the decision makers may make an unreliable decision for eco-design of machine tools 

and low carbon manufacturing based on the results. However, it is a very helpful tool that if used 

correctly can severely enhance the decision making towards a more sustainable management. 

1.6 Sustainable Manufacturing  

The concept of sustainability emerged from a series of meetings and reports in the 1970s and 1980s, 

and was largely motivated by environmental incidents and disasters as well as fears about chemical 

contamination and resource depletion. As pointed out in the 1987 Brundtland Report, the phrase 
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Environmental 

(Planet) 

Economic 

(Profit) 

Social 

(People) 

sustainable manufacturing is sometimes used to describe the actions related to characterizing and 

reducing the environmental impacts of manufacturing. 

Sustainable manufacturing is frequently defined, according to US department of commerce 

(Moldavska A.2017), as “The creation of manufactured products that use processes that minimize 

negative environmental impacts, conserve energy and natural resources, are safe for employees, 

communities, and consumers and are economically sound” (see figure 1-6). 

 

Figure 1-6 Sustainable Manufacturing 

System might be thought of as unsustainable when society consumes resources and produces wastes 

at a rate that exceeds nature’s ability to transform industry and society wastes into environmental 

nutrients and resources. “Sustainability, however, implies a great deal more than the simple act of 

analysing and modifying the environmental performance of manufacturing processes and system” 

(Paul I., 2014). Sustainable manufacturing is a philosophy that cannot be considered independent of 

broader environmental and socioeconomic systems (Dornfeld D., 2013). Sustainable Manufacturing 

Fundamentals Manufacturing is a business function, and, as such, engineers are well-versed in 

establishing the economic value of engineering solutions for manufacturing. Measuring environmental 

and social performance presents a more challenging engineering and business task. Sustainability-

related impacts result from operations and activities that manufacturing processes and systems employ 

to convert input materials and energy into marketable products. Material and energy are necessary 

inputs of manufacturing processes and systems; wastes and emissions, which are generally classified 

as outputs, are, in turn, inputs to other industrial and natural systems, where their impact is felt 

socially, environmentally, and economically (Dornfeld D. A., 2013) figure 1-7. 

 

Equitable  Durable  

Viable  

Sustainabl

e  
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Figure 1-7 Sustainable system (Dornfeld D. A., 2013). 

Sustainable Green operations Sustainable green operations as an innovative environmental 

management approach, GO serves to ensure the quality and environmental compliance of electronics 

manufacturers’ inputs (electronics components and metals) and outputs  

 

1.7 Structure of thesis  

This thesis consists of five chapters as shown in figure (1-8) as flown:  

Structure of thesis  
1. Chapter One represent general introduction to management environment system, and their 

concepts tools. 

2. Chapter Two problem energy and manufacturing system principles and energy efficiency 

methods are discussed  

3. Chapters Three and Four Energy Efficiency production scheduling  
 Firstly a multi objectives genetic algorithm (chapter three) with multi populations to 

reduce total energy consumption with minimized makespan and idle time by reduce 
processing energy and time. To solve multi objectives-multi populations we use two types 
of genetic algorithms traditional and parallel genetic algorithms  

 In chapter four two mixed Integer linear programming are used to improve energy job 
shop scheduling, grace of mixed Integer linear programming we can solve problem larger 
to the problem in chapter three, and energy reducing with setup time effects. 

4. Chapter five a case study and general discussing to all optimization method with conclusion 
and future work. 
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Figure 1-8 Theses constriction 
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2 Energy consumption in manufacturing systems 

2.1. Introduction 

Energy is very important part of life in the 21st Century. Its  utilisation, demand and availability will 

become increasingly important as global climate (DOE/EIA 2009) change and the world population 

rise. In 2030, energy demand is expected to continue to increase over the coming decades, with 

demand estimated at more than 55% when compared to today’s levels (IEA, 2017a) figure 2-1.  

  

Figure 2-1 Growing gap between energy supply and demand. (IEA, 2017a)  

The consumption of energy is one of the main contributors to greenhouse gas emission in the climate 

(figure 2-2). The term “low-carbon manufacturing” (Seow Y., 2011) has been invented to reflect an 

overall effort to reduce CO2 emissions from energy consumed directly by manufacturing activities 

(e.g. specific process energy consumed per kilo of material processed, or per product manufactured), 

and the CO2 produced through indirect energy consumption (e.g. general facility energy overheads 

such as heating and lighting). 

 

Figure 2-2 Energy environment impacts. (IEA, 2017b)  

Future manufacturing enterprises will have to adapt energy concept based on the most efficient 

processes in their production facilities. It is said that, despite the expected growth in renewable energy 

technologies, short and medium term of manufacturing activities will continue to rely heavily on 

fossil fuel-generated electricity (figure 2-3). 
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Figure 2-3 Total energy production (sources EC/PBL 2017) 

For example, the introduction of renewable energy in Europe in 2016, require European electricity 

suppliers to source 20% of their capacity from renewable technologies by 2020 (EEA, 2016) (figure 

2-4). For instance, French renewable energy production up over 23% in 2015 (MTES 2017).  

 

Figure 2-4 Total energy development (sources EIA 2017) 

The remaining energy will clearly have to be produced through nuclear and fossil fuel power. The 

achievement of increasing energy efficiency has become vital in light of rising energy demand, 

coupled with deficit expectations. Using energy more efficiently is often a cost effective way of 

cutting carbon dioxide emissions which also improves productivity and contributes to the security of 

our future energy supply. 
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2.2. Energy and Climate Change 

The climate change has been of interest within both the scientific community and public. The average 

global air and Ocean temperatures have risen increasingly among politicians over the last 100 years, 

and the last decade has been the warmest since records began 0.7°C higher since 1990 (IPCC, 

2014).There is empirical evidence of increases in air and ocean temperatures, widespread melting of 

snow and ice and rising sea levels 

2.2.1 Energy sector and CO2 emissions  

Many governments around the world have agreed on the need to take action to significantly reduce 

greenhouse gas (GHG) emissions over the coming decades in order to adapt to the effects of climate 

change. Energy represents about two-thirds of total Greenhouse-gas emissions and CO2 emissions 

(Ritchie, H., 2018, United States Environmental Protection Agency USEPA 2017) from the sector 

have risen over the past century to ever higher levels. Effective action in the energy sector is therefore 

necessary to address the problem of climate change. An important change in the energy sector from 

2014 to 2015 has been the rapid drop in world oil prices and, to a lesser extent, natural gas and coal 

prices. After a prolonged period of high and relatively stable prices, oil dropped from over $100 per 

barrel in mid-2014 to below $50 in early 2015 (Husain A. M., 2015). Natural gas prices also declined, 

but the pace and extent depended on prevailing gas pricing mechanisms and other regional factors 

(Dudley B., 2017).  

Fossil fuels continue to meet more than 80% of total primary energy demand and over 90% of energy-

related emissions (International energy and climate change, 2015) are CO2 from fossil-fuel 

combustion as shown in table 2-1 and Figure 2-5. Since 2000, the share of coal has increased from 

38% to 44% of energy-related CO2 (DOE//EIA 2016) emissions, the share of natural gas stayed flat at 

20% and that of oil declined from 42% to 35% in 2014. While the second “and less long-lasting in the 

atmosphere, though with higher global warming potential”’, methane (CH4) and nitrous oxide (N2O), 

which are other powerful greenhouse gases emitted by the energy sector. Methane accounts for 

around 10% of energy sector emissions and originates mainly from oil and gas extraction, 

transformation and distribution. 
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 Table 2-1 Greenhouse gas emissions (sources World Energy Outlook OECD/IEA, 2015) 

 2015 2020 2025 2030 

Energy related 

Carbon dioxide(CO2) 

Methane (CH4) 

Nitrous oxide (N2O) 

 

32.3 

3.0 

0.3 

 

33.9 

3.1 

0.3 

 

34.3 

3.1 

0.4 

 

34.8 

3.1 

0.4 

Process related 

Carbon dioxide(CO2) 

 

2.0 

 

2.2 

 

2.2 

 

2.3 

Total  37.6 39.5 40.0 40.6 

 

In the INDC Scenario, annual global energy- and process-related GHG emissions grow from 37.5 Gt 

CO2-eq1 in 2013 to 40.6 Gt CO2-eq by 2030. If stronger action were not forthcoming after 2030, the 

emissions path in the INDC Scenario would be: 

 

Figure 2-5 Greenhouse gas emissions (sources IEA and EC/PBL 2014) 

Nuclear power is the second largest source of low-carbon electricity generation in the world after 

hydroelectricity, where government owned entities build, own and operate the plants. The process of 

nuclear fission does not produce any CO2 or other GHGs, and thus nuclear power plants do not emit 

any GHGs directly during operation. However, some indirect emissions can be attributed to nuclear 

energy, mainly because of the use of fossil energy sources in the various stages of the nuclear fuel 

cycle. (For example, during uranium mining). Figure 2-6 compares the GHG emissions per unit of 

electricity generated from the different full life cycle electricity generation chains averaged across 

several European countries. It shows that lignite and coal have the highest GHG emissions, with 

natural gas having the lowest emissions among fossil systems. 

                                                           
1
 Gigatonnes of carbon-dioxide equivalent 
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Figure 2-6 GHG emissions per unit of electricity generated from the different full life cycle electricity 

generation (IPCC, 2014) 

For the nuclear fuel cycle, most GHG emissions of air pollutants increased upstream of the production 

table 2-2. Most of these upstream emissions are from non-nuclear power plants needed to power 

centrifuge technology for uranium enrichment, including particulate matter, SO2, N2O and volatile 

organic compounds. (Nuclear Energy agency, 2015). However, these emissions are attributable to the 

structure of the electricity system and will decrease with the lower use of fossil fuels. Table 2-3 shows 

the total energy impact on the environment. 

Table 2-2 Greenhouse gas emissions of energy sectors M ton (Nuclear Energy agency, 2015) 

 Coal Natural Gas Bioenergy Nuclear 

Hard coal Lignite Combined cycle Steam turbine 

S02 530-7680 425-27250 1-324 0-5830 40-490 11-157 

N2o 540-4230 790-2130 100-1400 340-1020 290-820 9-240 

PM 17-9780 113-947 18-133 - 29-79 0-7 
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Table 2-3 Global environmental impact of energy (IEA 2015) 

Energy 
Source 

Force of 
Origin 

Energy production Usage Environmental Impact 

Oil, 
Petroleum 

Electromagnetic 
forces in atomic 
bonds 

Non renewable 38% of world's consumption 
in 2000.  
Easily transported.  
Large portion in 
transportation industry 

Refining and consuming produce 
air, water, and solid waste 
pollutants 

Natural Gas Electromagnetic 
forces in atomic 
bonds 

Non renewable 20% of world's consumption 
in 2000. 
Flexible for use in industries, 
transportation, power 
generation 

Produces fewer pollutants than 
oil and coal, and less CO2 

Coal Electromagnetic 
forces in atomic 
bonds 

Non renewable Primary resource for 
electricity 

Produces CO2 and other air, 
water and solid waste pollutants 

Biomass: 
Wood and 
organic waste 
including 
societal waste 

Electromagnetic 
forces in atomic 
bonds 

Renewable. In terms of timber, 
it is easily harvested and 
abundant in certain areas; but it 
takes a long time to grow a tree. 

Low energy potential relative 
to other resources 

Burning emits CO2 and other 
pollutants. Possible toxic by-
products from societal waste. 
Loss of habitat when trees 
harvested, unless sustainable tree 
farms 

Hydro electric Gravitational force 
of water 

Renewable. Clean resource with 
high efficiency. Influenced by 
climate and geography 

Low economic cost, though 
high start-up costs 

Destruction of farmlands, 
dislocation of people, loss of 
habitat, alteration of stream 
flows 

Solar Power 
(photo voltaic) 

Electromagnetic 
energy from the sun 

Renewable. High economic cost 
particularly in terms of start-up. 
Dependent on climate and 
geographical location. Need a 
storage system for the energy to 
ensure reliability. Not advanced 
enough for global use 

Technology is already in use 
for remote applications and 
non-centralized uses where it 
is economically competitive 
with alternatives. Unlimited 
resource that is clean, 
efficient, safe, and renewable 

Large land use 

Solar Power 
(solar 
thermal) 

Electromagnetic 
energy from the sun 

Renewable. Central thermal 
systems to convert solar energy 
directly to heat. More 
competitive economically than 
photovoltaics Dependent on 
climate and geographical 
location 

· Solar energy technology not 
advanced enough for global 
use. Many industrial plants 
use solar 

 

Geo-thermal Gravitational 
pressure and 
nuclear reactions in 
the Earth's core 

Extracts heat from underground 
masses of hot rock. Technology 
is still undeveloped. Can be 
geographically dependent 

Consumption is localized 
efficient 

Disrupts natural geyser activity 

Wind Power Gravitational & 
electromagnetic 
energy from the sun 

Renewable unlimited resource 
that is a very clean process, no 
pollutants 

Economic cost comparable to 
current technologies system 
must be designed to operate 
reliably at variable rotor 
speeds. Technology not 
advanced enough for global 
societal us 

Aesthetic issues. Needs lots of 
land. Possible impacts on birds 
and their migration patterns. 
Some noise pollution 

Nuclear 
Fission 

Strong nuclear 
forces in nuclear 
bonds 

Non-renewable resource U-235 
(uranium). Highly technological 
infrastructure necessary for safe 
operation. Production of nuclear 
energy has a high cost due in 
part to regulations High water 
usage for cooling 

Currently accounts for 10-
12% of the world's electricity 

By-product is highly radioactive 
and highly toxic. Produces 
radioactive wastes that have a 
long lifetime. Disposal solution 
complex technically and 
politically. 
Safety issues in terms of 
operating a facility with the 
potential to release radiation to 
the atmosphere. Public 
perception problem in terms of 
radiation, etc. 

Nuclear 
Fusion 

Weak nuclear force Technology is not yet viable and 
requires research investment. 
Technology still not developed 
enough to make this a viable 
source 

 Possibility high for water 
pollution because of radioactive 
tritium 
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2.3 Energy in manufacturing systems 

Electricity consumption (energy) has increased in modern manufacturing. (Seow Y., 2011) it’s a need 

for analysing the machining system and energy flow which is presented before in a three-level 

structure, enterprise level, shop floor level and process level (figure 2-7).  

Enterprise level receives the total energy input and distributes among different departments, design, 

production, services and management department. Energy here used in the lighting, heating, 

ventilation, air conditioning and other services. The energy consumed in the sector sometimes 

represents a remarkable percentage, 40-60% of total energy consumption in industrial enterprises 

(Thiede S., 2011). 

Shop floor level, energy consumption can be analysed in the production departments. The mostly 

methods to reduce energy in shop floor level are production planning and process scheduling, which 

were developed by (Mouzon G., 2007), and line balancing in the production line in order to save more 

energy is another approach recommended.  

 

Figure 2-7 Energy consumption at different enterprise levels (Peng T., 2014) 
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Suppose that a workshop needs to produce several products that must be manufactured by a few 

production lines. In each line, the different types of machine tools cooperate with each other, as well 

as with supporting devices. Energy consumption in the infrastructures, the challenges lie in optimal 

process scheduling between multiple products and multiple production lines, dynamically scheduled 

operational states, ( e.g. idle, work, and stop), could minimize the non-productive time.  

The bottom level is a process level in which it is shown that energy is distributed among four parts: 

(a) machine tools, (b) auxiliary equipment, (c) tools and (d) material supply. Further detailed analysis 

may be needed due to diverse capabilities of machine tools, functionalities of auxiliary equipment, 

tools and variety of materials. They all have different effect on the energy consumption at this level 

(Peng T., 2014). More specific analysis is involved because different capability of machine tools, 

functionality of auxiliary equipment, various tools, and materials all have an impact on the energy 

consumption at this level. Research has been intensively conducted on the key part machine tools. 

Meanwhile, attention is being placed on the whole energy consumption at this level, due to the fast 

emerging digital factories. The ways to achieve energy savings at this level include, but not limited to, 

online parameter optimization, energy-efficient component employment, and real-time condition 

monitoring.  

At each of these levels there are a number of specific improvements or enhancements to be 

considered. For example, at the machine construction level, engineer requests minimum energy, 

materials, and resources per unit of performance (positioning accuracy, speed, thermal stability, etc. in 

machine tool frame and components). At the machine operating level, manager requests minimum 

energy (hydraulics, spindles, tables/axes, idle, energy recovery), and alternate energy sources for 

operation (fuel cell, solar, etc.) and energy storage/recovery capability. In addition, the working 

envelope can be optimized with minimized environmental requirements and footprint. One can also 

consider design for re-use/remanufacturing component upgrade. 

In machining systems, shop floor and process level are discussed more frequently. Research carried 

out previously place an emphasis on typical energy consuming components, spindles, motors, or 

cutting mechanism. Saidu R. (2010) presented a review of energy consumption of machine tool 

motors. Abele E. (2011) chose machine tool spindle as the representative unit to identify the potential 

improvement of energy efficiency. However, indicated that limited understanding of energy 

consumption focused on process level will be a problem. The researchers point out not only the 

material removal process itself, but also associated processes that should be considered in parallel to 

provide a complete collection of energy usage. (Dahmus J., 2004; Gutowski G., 2006) presented a 

systematic environmental analysis of machining process. 

http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Jeffrey+B.+Dahmus&q=Jeffrey+B.+Dahmus
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2.4 Electrical Energy Demand of Machine Tools 

Each product generated undergoes different phases of life. The basic approach considers that three of 

them count for production (design and manufacture of the product), Operation and recycling or end of 

life. 

During manufacturing processes, reducing of energy, is the most important objectives of environment 

management system MES. Raw materials are transformed into final product through a sequence of 

technological processes, in production systems. These processes are carried out by machines tools, 

which represent a distinct class of metalworking machinery. They can define as stationary operating 

assembled systems, fitted with a drive system other than directly applied human effort (Schischke K., 

2011). Machine tools are the most important elements to consume energy during the manufacturing 

process. Machine tool passes through different states to get an operational readiness, the energy 

consumed by the whole machine tool (e.g. control systems, cooling and lubrications units, drive 

systems, spindle motor, manufacturing process, etc.) (Figure 2-8).  

 

Figure 2-8 Consuming energy at different machine parts 

Machine tools play a major role in manufacturing. The European Commission has cited machine tool 

as being in a top three priority for inclusion into the product categories regulated through the eco-

design directive. Energy consumption model is based on existing research work on environmental 

analysis of machining. The Cooperative Effort in Process Emission proposed a UN fiend taxonomy 

and methodology, so that in manufacturing, energy data collection can be standardized and presented 

in a globally compatible approach. Machine tool states are classified into two categories: ‘‘Basic 

state” and “Cutting State”. The states are based on operational characteristics of the processes. In the 

‘‘Basic state”, electrical energy is needed to activate required machine components. In the ‘Cutting 

State’ the energy is demanded at the tool tip to remove work piece material as well as for modes of 

energy loss e.g. through machine noise or friction. 

While sets the framework, it does not clarify the existence of a transitional state between the Start-up’ 

and ‘Cutting State.’ We define a third and fourth and intermediate state called the ‘Start up’ and run 

7,30% 
11,50% 

12,80% 
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time. These additional states are required to clarify the process that takes place after the machine is 

started. theses stages of the process requires more energy for the drives and spindle movement to 

bring the tool and work piece to the correct, about to cut position and to run time the necessary cutting 

velocity (figure 2-9). 

 

 

Figure 2-9 Classification energy types in machine tools  

Energy consumption model is based on existing research work on environmental analysis of 

machining. A simplified power input model for each operation (Weinert N., 2011; Luo, H., 2013) at 

machine when it is working on operation has been developed as shown in (Fig.2-10). 
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Figure 2-10 Energy consumption models during operation (zooming in of an operation at a machine)  

That model assumes that each machine Mm has six levels of power consumption: during standby, 

during idle time, when switched into set-up mode, to carrying out the actual operation; operations as 

cutting operation and at machine starting and shut down. Figure 2-11 represents the relationship 

among cretin energy. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11 Energy consumption during operation states 

 Turn on Energy consumption for start-up: the total energy consumption during the start-up period. 
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 Ramp up power: maximum instantaneous power requirement during change machine states idle 

and standby states to setup or from standby state to basic state, which is relevant to the additional 

energy cost due to power peaks. 

 Ramp dawn-power: maximum instantaneous power requirement during change machine state, 

from setup state to basic or standby states idle state to standby. 

 Setup power : power needed to change tools or machine to be ready to process the operations  

 Operation power : power demand to distinctively operate components 

 Constant power: as defined before, it can be used to estimate energy consumption of remaining 

machine availability during idle state. 

 Turn off power: 

o Time for machine power-off: duration from machine switch-off until every 

component is inactivated.   

o Energy consumption for power-off: the total energy to shut down the machine or the 

total energy consumption during the power-off period. 

2.5 Energy Efficiency 

Energy efficiency is defined as the ratio of “useful” outputs to energy consumed by a system (Herring 

H, 2009). It can be measured by different ratios of physical or thermal indicators (tonne of steel per 

kWh (kilowatt hour) spent or the tonne of steel per tonne of coal consumed). The relevant data should 

be carefully chosen to measure, on a common scale, the energy equivalent on the one hand the useful 

outputs, on the other hand the elements consumed. At company level (paragraph 2-3), energy 

efficiency can also be defined as the production compared to the energy use at the firm level for that 

production (thermal capacity of a cooling system, in BTU/h (British Thermal Unit per hour = 

0,293W), per watt absorbed; output product amount per kWh spent). 

For conventional processes (Neugebauer, R., 2012) such as forming or material or removal processes, 

energy efficiency is measured as the volume of material removed per kWh consumed in the machine 

by the displacement of the axes and the losses in the machine structure and actuators (Grigor'eva S., 

2014). For unconventional processes such as laser machining (Kellens K., 2014), it is necessary to add 

the energy consumed by the tool, such as the laser beam. 

For this reason, the raw energy efficiency is not appropriate for the comparison of two production 

lines, since the energy is proportional to the size of the product, the number of parts in the product and 

the types of processes used for the production. A fortiori, the raw energy efficiency cannot be 

considered appropriate for the comparison of two factory configurations. Energy efficiency remains 

an important objective for industrial companies for ecological, political and economic reasons. The 

control of energy efficiency is essential for the implementation of energy efficient production 

strategies and therefore globally more efficient plants. Many studies aimed to optimize the energy 
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Factory level 

oduction line level 

Machine  

Processes   

Factory level 

efficiency of conventional manufacturing processes and, to a lesser extent, of unconventional 

processes such as laser machining (Fysikopoulos A., 2014). 

The main consideration of this approach is the division of energy efficiency analysis into four levels 

(figure 2-12):  

 Factory level: at this level different production lines and production methods that may interact 

and include devices, required the mean objective at this level is line balance to reduce total 

energy in enterprise (Krones M., 2014; Peng T., 2014). 

 Production line level: at this different machines and any other equipment devices that may be 

required for manufacturing the products at production line. It is a fact that a very significant 

amount of energy is spent on the idle consumption of machines. The production schedule, 

which determines the idle times, one of the most objective of energy efficiency to reduce idle 

time between operations(Behrendt T., 2012; Peng T., 2011) 

 Machine level: This includes machine that ensure proper machining conditions.(Neugebauer, 

R., 2011). In some cases, the machine level can be identical with a machine tool; however, 

special care has to be taken when some peripheral devices are shared among different 

machines. At the machine level, any energy losses due to machine peripherals or machine 

inefficiencies have to be taken into account. for example the  processes are under study, are 

removing processes. The possible differences between the process-level “result” and the 

machine-level “result” have to be taken into account, at the same time. 

 Process level: that related to physical mechanisms of the process itself, select process type, 

processes parameters (feed rate cutting speed etc.) and technology. For example in milling the 

energy in process level is the energy required to remove material, but in laser machining, it is 

the energy of laser beam (electricity currant). (Fysikopoulos A., 2013; Gutowski G., 2010; 

Weinert N., 2011).  

 

 

 

 

 

 

 

Figure 2-12 Energy efficiency levels in industrial plants (Fysikopoulos A., 2013) 
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2.5.1 Energy Efficiency process planning 

Process planning is defined as the link between design processes and manufacturing processes to 

determine operations sequence that needed to produce a designed part. Process planning translates 

part and assembly design to physical products. Process planning is performed before actual 

manufacturing take place (Givehchi, M. 2017; Thao-Le V., 2017). Usually it takes a significant 

amount of time and requires sufficient information to make the decision (figure 2-13). In energy-

efficient process planning, energy consumption is taken into consider, where it adds a newer 

dimension to traditional processes planning problem. (Trstenjak M., 2017; Abele E et al 2017) 

 The first studies were deal with energy consumption, production rate, mass flow of waste 

streams and quality parameters need to be analysed at the planning state (Newman,S., 2012; 

Duflou J. R., 2012). 

 The second studies used to obtain process energy, machining time, mass of waste streams and 

quality parameters by using feature based two-phase planning scheme (Behrendt T.,2012, 

Mori M., 2011) 

Figure 2-13 An example of process planning systems (Peng T., 2014) 

2.5.2  Energy Efficiency production scheduling  

Energy consuming during processing of jobs represented a small amount of total energy that 

consumed in production lines. In another field, Yin J. (2017) considers that rather than 40% of the 

total energy is consumed in system idle and losses. This dissertation is aimed to study an optimum 

energy consuming in job shop problem. We use: 

 Firstly a multi objectives genetic algorithm (chapter three) with multi populations to reduce 

total energy consumption with minimized makespan and idle time by reduce processing 

energy and time. To solve multi objectives-multi populations we use two types of genetic 

algorithms traditional and parallel genetic algorithms  
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 In chapter four two mixed Integer linear programming are used to improve energy job shop 

scheduling, grace of mixed Integer linear programming we can solve problem larger to the 

problem in chapter three, and energy reducing with setup time effects. 
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3. A Genetic Algorithm Energy Optimization 

3.1 Introduction 

Nowadays, besides facing complex and diverse economic trends of shorter product life cycles, rapidly 

changing science and technology, increased diversity in customer demand, and the globalization of 

production activities, manufacturing enterprises also face enormous environmental challenges 

(Mouzon G., 2008a). These include global climate change (e.g. greenhouse effect. rapid exhaustion of 

various non-renewable resources (e.g. gas, oil, coal), and decreasing biodiversity. In Germany, 

statistical data shows that industrial sector is responsible for approximately 47% of total national 

electricity consumption. The corresponding amount of CO2 emissions generated by this electricity 

was 18–20% (EIA, 2017. Annual Energy Review 2011, DOE/EIA-0384, 2017). Over the past 50 

years, energy consumption by the industrial sector has more than doubled and the industry currently 

consumes about half of the energy in the world (Mouzon G., 2008b). The energy consumption is a 

very important cost component for manufacturing companies, at the same time; costs for energy have 

increased by almost 70% since the late 1990s as in (EIA, 2012. Annual Energy Review, 2011, 

DOE/EIA-0384, 2011). Manufacturing companies today face the challenge of raising energy prices 

and the requirements to reduce their emissions. Most of the work on reducing manufacturing energy 

consumption today focuses on the need to improve the efficiency of resources (machines). Largely 

ignores the possibility of system-wide power reduction where the operational method can be used as 

an energy-saving approach (Al-Qaseer F.2015). Corporate responsibility for this problem could be 

limited. Indeed, to improve the solutions to this major problem. 

Four methods could be taken and are presented. The first is development of more efficient machines 

that consume less energy. The second is eco-design by modifying the product to reduce energy 

spending along its life cycle. Third is eco-manufacturing to modify manufacturing processes using 

less energy wasting techniques. Finally, the production lines must be adjusted to get better efficiency. 

The first three methods seem to be strategically interesting but too expensive, and sustained that the 

impact of such a decision is minimal especially for a small and medium-sized industry that can have a 

limited budget. Finally, it is on the last point that many improvements can be done without cost in 

order to obtain relevant results, responding to the industrial expectations. Generally, industrial job 

shop problems minimize such as the makespan or the cost but other objective and constraint can be 

addressed. Up to now, a few researchers studied the energy consumption as an important objective 

functions in scheduling. 
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3.2 Background and motivation  

A considerable of the researches has been conducted in the area of sustainable machining.(Duflou N., 

2012; Fysikopoulos A., 2013) provided the state-of-the-art reviews in energy and resource efficiency 

increasing methods and techniques in the area of discrete part manufacturing. A detailed process 

model that can be used to determine the environmental impacts resulting from the machining of a 

particular part have been presented by (Munoz A., 1995) based on experiments on an automated 

milling machine. 

In the literature, industrial problems such as minimizing the total treatment time (makespan), the cost, 

and other objective functions have been widely studied. Until recently, only a few works addressed 

the energy consumption as an important constraint in scheduling. However, several papers have 

spread on this subject concerning the “Green and Sustainable Manufacturing” this past years and a 

non-exhaustive review is proposed in this section. 

Gutowski T., (2005) conducted a study on almost fifty interlocutors, such as enterprises or laboratory 

in Japan, Europe and USA. They noticed that enterprises are well implicated in their environmental 

impact, partly linked with government’s tax system. 

Mouzon G., (2007) proposed a turn-on/turn-off scheduling framework. This strategy is based on the 

finding who observe that non-bottleneck machines consume a considerable amount of energy when 

left idle; consequently, scheduling methods are conducted to determine when non-bottleneck 

underutilized machines must be turned off when they remain idle for a certain amount of time.  

Mouzon G. (2007) proposed a Greedy Randomized Adaptive Search Procedure (GRASP) which 

objective is to find a solution minimizing both the total energy used and the total tardiness 

Mouzon G.,(2008a) used turn off/on and Process Route Selection (PRS) to reduce both total  

Processing Energy (PE) and total Non-Processing Energy (NPE) for parallel machine environment. 

The limitation is that the PRS is only effective in the systems which have alternative routes with 

different energy characteristics for the same job. PRS not apply to the workshops without alternative 

routes, or having the same alternative routes for jobs, for instance, job shop environment. 

Mouzon G., Yildirim M., (2008b) proposed a framework to solve a multi objective optimization 

problem that minimizes total energy consumption and total tardiness. Since total tardiness problem 

with release dates is NP-hard, they developed a new greedy randomized multi-objective adaptive 

search metaheuristic to obtain an approximate set of non-dominated solutions. 

Diaz N., (2009) concluded that high-speed cutting would reduce the energy consumption per volume 

of material processed for machine tool switch demands high constant power. 

Fang, K., (2011) approach advantage was the possibility to link the Energy Aware Scheduling (EAS) 

with an existing Advanced Planning and Scheduling (APS) without requiring a solution doing both at 

the same time.  
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Haît A., (2011) proposed a hybrid heuristic based on a two- step constraint /mathematical 

programming approach that improves significantly the computation time, compared to the full MILP 

model 

He Y., (2012a) used event graph methodology based on the task-oriented energy consumption 

characteristics to model the energy consumption caused by the tasks in the production processes of the 

machining manufacturing system. This method is solved in the Simulink simulation environment, and 

applied to select flexible task processes to optimize power consumption. 

He Y., (2012b) proposed a method that gives a quick way to assess the potential energy consumption 

of machining processes. They used a process route selection (PRS) method to decrease both total (PE) 

and total (NPE) for a flexible job shop environment. The typical Electricity Saving Method (ESMs) 

on the system level include: Sequencing, Turn Off/Turn On and Process Route Selection (PRS). As 

previously indicated, the limitation for PRS is that it is only effective in systems which have 

alternative routes with different energy characteristics for the same job. PRS is not applicable to 

workshops without alternative routes, or having identical alternative routes for jobs, for instance, the 

job shop. 

Duflou J. R., (2012) proposed a state of the art of good practices concerning the production systems 

with energetic constraints. They underlined the difficulty to get data concerning energy consumption. 

They also plot the fact it is difficult to optimize recently built manufactures because they are 

energetically well designed; however, even a smooth optimization in old manufactures could lead to a 

strong amelioration. 

Bruzzone A.G., (2012) used a time-indexed formulation for optimizing the timing of a schedule 

produced by an Advanced Planning and Scheduling (APS) system in order to minimize the peak 

consumption, while accepting the trade-off of a possible increase in the total tardiness in a flow shop 

system. They proposed a solution that consists in avoiding consumption peaks on a production 

system, modelled as a Flexible Flow Shop. They use an Energy Aware Scheduling (EAS) on the 

existing schedule obtained with an APS (Advanced Planning and Scheduling). 

Fang, K., (2013) proposed a mathematical model for minimizing the carbon footprint, the makespan 

and the consumption peaks in a Flow-shop. The market tool they used did not permit to find 

convenient results in a calculation day. According to them, it is better in an industry context to first 

find a solution respecting one constraint and then modify the solution in order to take into account the 

others. They also noted the lack of models implying flexible machines. 

Dai M., (2013) proposed a Genetic Algorithm associated to a Simulated Annealing. They took into 

consideration the power used by the machines in function of the state on it. They propose to turn 

on/off the machines according to the need of the production system and respecting given conditions. 

Thus, a machine would not be turned off if the next operation to be scheduled starts earlier than the 

duration of the turn off/on process. Their results are given in a Pareto graphic. However, they note 

that their model does not handle the possible breakdown and their data are not from industry. 
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Taking into account this last point, Fang, K., (2013) considered a flow shop scheduling problem with 

a restriction on peak power consumption, in addition to the traditional time based objectives. They 

investigate both mathematical programming and combinatorial approaches includes  flexible systems 

that contain several machines and resources which are able to process the available jobs by consuming 

different levels of energy and time.  

Luo H., (2013) take into account the variable prices of electricity during a day, including Time-Of-

Use (TOU) rates in a Flexible Flow-shop. They noticed that it is current to find old and recent 

machines at the same production stage of a production system, and observed that it is better to have in 

parallel a fast and energy expensive machine with a low and economic one rather than two medium 

machines. They addressed hybrid flow shop scheduling problem with the consideration of energy 

consumption point of view; they propose a new ant colony optimization meta-heuristic considering 

not only production efficiency but also electric power cost with the presence of time-of-use electricity 

prices. 

Salido M. A., (2013) showed that a more energy efficient system is more robust and thus less 

sensitive to breakdowns. They worked on the correlation between makespan, energy and robustness. 

By inclusion of variable speeds in the operation processes, a machine which is processing a task 

quickly will consume more energy but the treatment time will be reduced. Thus if a breakdown occur, 

the lost time could be caught up by increasing processing speed. Their work is one of the first 

including robustness in the optimization of production systems under energy constraints. 

Moon J., (2013) dealt with the production and energy efficiency of the unrelated parallel machine 

scheduling problem. They presented a mixed-integer linear programming formulation for the problem 

to minimize the weighted sum of two criteria: makespan and the time-dependent electricity costs. 

Since the problem is NP-hard, they suggest a hybrid genetic algorithm to solve it. 

Liu Y., (2014) observed that a few work have been done concerning the Job-shop with energy 

constraints and thus they proposed a Job-shop where both the total energy consumption and the total 

tardiness are minimized. Their review show that most of the studies are input-oriented and quite 

recent, and they point out the relative absence of output-oriented or mixed methods. The literature 

shows a lack of study concerning the Job-shop problem under energy constraints.  

Zhang H., (2014) proposed a time indexed linear program which objective is to minimize the energy 

spending and the carbon footprint under a TOU pricing in a height level Flow-Shop. The energy 

expenses can be lowered by moving operations from on-peak hours to mid- or off-peak hours. 

However, they noticed that this kind of improvements could have a bad impact on carbon footprint in 

regions where gas combustion is used during on-peak hours whereas coal combustion is used during 

mid- and off-peak hours. 

O’Rielly K., (2014) showed that a lot of improvements in energy efficiency could be made in Canada 

enterprises but they pointed out industrial mind-set for whom energy optimization is considered time-

consuming and too expensive is still a major barrier.  
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Furthermore the recent state of the art proposed by (Trentesaux D., Prabhu V., 2016) stresses the lack 

of decision tools relative to energy efficiency of production systems. 

Shrouf F., (2014) used a similar approach by taking into account TOU and the transitions between 

machine states in a single machine process. They point out that the genetic algorithm they 

implemented could be used in extension of an MRPII (Manufacturing Resource Planning). However 

their models do not modify the sequence given in input in order to find a better makespan. 

Artigues C.,(2015) addresses a scheduling problem with continuous resources and energy constraints, 

they referred to as the Energy-Constrained Scheduling Problem with Continuous Resources.  

Shrouf F., (2015) proposed a mathematical model to minimize energy consumption costs for single 

machine production scheduling during production processes. To obtain near optimal solutions, they 

utilize a genetic algorithm approach. 

Further researchers study the case of manufacturing systems in which the turn-on/turn-off strategy is 

not applicable since it may cause the consumption of a considerable amount of additional energy or 

damage the machines. The alternative framework proposed for this kind of systems is based on the 

machine speed scaling control (controllable processing times). Machines are allowed to work at 

different speed levels when processing different jobs; if a machine works at a higher speed, the 

processing time is shortened but the consumption of energy increases. The problem is to determine 

the speed of the machines and the sequence of jobs on them so that the cost function, which includes 

the total energy cost, is minimized.  

Masmoudi O., (2015) presented a capacitated lot-sizing problem in flow-shop system with energy 

consideration. A mixed integer linear programming is formulated; each period is characterized by 

demand, duration, electricity cost and maximum peak power. (Masmoudi O., 2016) used both non-

linear and linear mixed integer programing. Masmoudi O., (2017) used fix-and-relax and genetic 

algorithms, which are presented for solving a capacitated flow-shop problem with minimizing total 

energy costs.  

Zhang R., (2016) addressed the job shop scheduling problem with the objective of minimizing energy 

consumption based on a machine speed scaling framework. To solve this kind of optimization 

problem, they propose a multi-objective genetic algorithm. 

Nattaf M.,(2016) addressed a scheduling problem with a continuously divisible, cumulative and 

renewable resource with limited capacity, by presenting two new mixed-integer linear programs 

MILP. 

The last research stream includes flexible systems that contain several machines and resources that are 

able to process the available jobs by consuming different levels of energy and time.  

Jian-Ya D., (2016) considered a permutation flow shop (PFS) scheduling problem with the objectives 

of minimizing the total carbon emissions and the makespan .To solve this multi- objective 

optimization problem, they first investigate the structural properties of non-dominated solution. 
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Chao L., (2017) studied formulates a mathematical model with the objectives of minimizing both the 

makespan and the total additional resource consumption. They propose a new Multi-Objective 

Discrete Virus Optimization Algorithm (MODVOA) with a three-part representation, by including 

NSGA-II and SPEA2.  

Mokhtari H. and Hasani A (2017) designed an energy-efficient scheduling in a shop floor industrial 

environment, i.e., Flexible Job-shop Scheduling Problem (FJSP). To this end, a multi-objective 

optimization model is developed with three objective functions: minimizing total completion time, 

maximizing the total availability of the system, and minimizing total energy cost of both production 

and maintenance operations in the FJSP. 

Lvjiang Y., (2017) proposed a new low-carbon mathematical scheduling model, where were proposed 

for the flexible job-shop environment that optimizes productivity, energy efficiency and noise 

reduction. In their model, the machining spindle speed which affects production time, power and 

noise is flexible and is treated as an independent decision-making variable. 

Yuxin Z., (2017) proposed a dynamic scheduling approach to minimize the electricity cost of a flow 

shop with a grid-integrated wind turbine. Time series models are used to provide updated wind speed 

and electricity prices as actual data becomes available. The production schedule and energy supply 

decisions are adjusted based on the new formation. 

Zhang L., (2017) has obtained the lower bound of energy-efficient flexible job shops with machine 

selection, job sequencing, and machine on-off decision making. He used a new mathematical model to 

find more energy-efficient rules with easy implementation in real practice via an efficient Gene 

Expression Programming (eGEP) algorithm.  

3.3 Job Shop scheduling 

The Job-shop Scheduling Problem (JSP) is concerned with allocating limited resources to operations 

over time (Pezzella F., 2008) satisfying precedence constraints between the operations for a job. 

Scheduling, as decision-making process plays an important role in most manufacturing and 

production systems as well as in most information processing environments (O’Rielly K., 2014). The 

Flexible Job-shop Scheduling Problem (FJSP) is expanded from the traditional Job-shop Scheduling 

Problem, by a wider availability of machines for all the operations. The FJSP is as follows: j jobs are 

to be scheduled on m machines. Each job j contains l ordered n operations (Yuan, Y., 2013a, Yuan, 

Y., 2013b , Al-Qaseer F., 2015).  

The execution of each operation requires one machine, and will occupy that machine until the 

operation is completed. The FJSP problem aims to assign operations on machines and to schedule 

operations assigned on each machine, subject to the specifications (Salido M. 2014): 

1. The operation sequence for each job is prescribed. 

2. Each machine can process only one operation at a time. 
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Firstly, we consider minimizing the following three objectives: 

1. (𝐶𝑚𝑎𝑥),   the makespan, i.e. the completion time on all machines in job shop scheduling.  

2. (𝑇𝑊𝑡), the total working time over all machines. 

3.  (𝑇𝑇𝑖𝑑) , the total non-productive time  for the job shop scheduling.  

Notations: 

ℳ: a finite set of 𝑀machines ;ℳ = {𝑀𝑚}𝑚=1𝑀  

ℐ: a finite set of job J jobs, ℐ = {𝐽𝑗}𝑗=1
𝐽  

𝒪𝑗: a finite set of 𝑁𝑗ordered operation of Jj, 𝒪𝑗 = {𝑂𝑗,𝑛}𝑛=1
𝑁𝑗 ;  

 𝑂𝑚,𝑗,𝑛 : n
th operation of job 𝐽𝑗 on machine 𝑀𝑚 

𝒮: a finite set of all feasible scheduling plans; 𝒮 = {𝑠} 

𝑡𝑠𝑚: start up time of machine 𝑀𝑚. 

𝑡 𝑜𝑓𝑓 𝑚: turn off time of machine 𝑀𝑚. 

𝑡𝑝𝑚,𝑗,𝑛: processing time of operation Om,j,n on machine 𝑀𝑚 

𝑡𝑖𝑑 𝑚,𝑗,𝑛: idle time between Om,j′,n′ and Om,j,𝑛 on machine 𝑀𝑚. 

𝑡𝑠𝑝
𝑚,𝑗′𝑗,𝑛′𝑛

: setup time of 𝑂𝑚,𝑗,𝑛 on 𝑀𝑚 depends on machine and precedes job  

𝑆𝑚,𝑗,𝑛: starting time of 𝑂𝑚,𝑗,𝑛 on 𝑀𝑚 

𝐶𝑡𝑚,𝑗,𝑛 : completion time of 𝑂𝑚,𝑗,𝑛 on machine 𝑀𝑚 

• Decision variables 

 𝑥𝑚,𝑗,𝑛 = {
1 if the 𝑛 − 𝑡h operation of 𝐽𝑗 is performed on 𝑀𝑚 

0              otherwise 
  

 𝛽𝑚,𝑗′𝑗,𝑛′𝑛 = {
1 if 𝑂𝑚,𝑗′,𝑛′  precedes 𝑂𝑚,𝑗,𝑛 on 𝑀𝑚 

0              otherwise 
  

Job shop objective function computation 

𝐶𝑡𝑚,𝑗,𝑛 = 𝑆𝑚,𝑗,𝑛 + 𝑡𝑜𝑚,𝑗,𝑛  (3-1) 

(𝐶𝑚), the completion time on the machine 𝑀𝑚  

𝐶𝑚 = 𝑚𝑎𝑥𝑗,𝑛{𝐶𝑡𝑚,𝑗,𝑛} (3-2) 

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑚,𝑗,𝑛 {𝐶𝑡𝑚,𝑗,𝑛} (3-3) 

𝑡𝑜𝑚,𝑗,𝑛 = 𝑡𝑝𝑚𝑗,𝑛,𝑥𝑚,𝑗,𝑛+ 𝑡𝑠𝑝𝑚,𝑗′𝑗,𝑛′𝑛 𝛽𝑚,𝑗′𝑗,𝑛′𝑛     n>1 (3-4) 
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(𝑊𝑡𝑚), the total working time spent at machines 𝑀𝑚. 

𝑊𝑡𝑚 = ∑ ∑ 𝑡𝑜𝑚,𝑗,𝑛  𝑥𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1

𝐽
𝑗=1  (3-5) 

𝑇𝑊𝑡 = ∑ 𝑊𝑡𝑚
𝑀
𝑚=1  (3-6) 

(𝑇𝑖𝑑𝑚), the non-productive time, i.e idle time, for machine 𝑀𝑚 

𝑇𝑡𝑖𝑑 𝑚 = 𝐶𝑚 −𝑊𝑡𝑚 (3-7) 

𝑇𝑇𝑡𝑖𝑑 𝑡 = ∑ 𝑇𝑡𝑖𝑑 𝑚
𝑀
𝑚=1  (3-8) 

The method to calculate 𝐶𝑚  , 𝑇𝑊𝑡and 𝑇𝑖𝑑𝑚 as explain in figure 3-1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Illustration of computation of Cm and Wt 

Job shop Constraints  

 A machine cannot process more than one operation at a time: 

∑ 𝑥𝑚,𝑗,𝑛 ∈ 
𝐽
𝑗=1 {0,1} ∀ 𝑚, 𝑛 (3-9) 

 A job can process more than on one machine at the same time. 

∑ 𝑥𝑚,𝑗,𝑛 ∈ 
𝑀
𝑚=1 {0,1} ∀, 𝑗, 𝑛 (3-10) 

 𝐴n operation 𝑂𝑚,j,n is immediately started in machine 𝑀𝑚 when the previous operation of the job 

𝑂𝑚′,𝑗,𝑛−1 has been completed and that the previous operation on the machine 𝑂𝑚,𝑗′,𝑛′ has been 

completed (figure 3-2): 

𝑡𝑝𝑚′,𝑗′′′,4 𝑡𝑝𝑚′,𝑗′′,3  𝑡𝑝𝑚′,𝑗,1 

Om’,j,1(5) Om’,j’,2(4) Om’,j’’,3(3.5) Om’,j’’’,4(4) 

𝐶𝑚′=19.5 

𝑡𝑝𝑚′,𝑗′,2  

𝑡𝑝𝑚,𝑗′′′,4  𝑡𝑝𝑚,𝑗′′,3  𝑡𝑝𝑚,𝑗,1  

Om,j,1(5) Om,j’,2(7) Om,j’’,3(4.5) Om,j’’’,4(4) 

𝐶𝑚𝑎𝑥 = 𝐶𝑚 = 20.5𝑚𝑖𝑛 

𝑡𝑝𝑚,𝑗′,2 

𝑊𝑡𝑚 = 20.5𝑚𝑖𝑛 

𝐼𝑑𝑙𝑒 𝑡𝑖𝑚𝑒  

(3) 

𝑊𝑡𝑚′ = 16.5𝑚𝑖𝑛 

𝑇𝑊𝑡 = 37𝑚𝑖𝑛 
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𝑆𝑚,𝑗,𝑛 = {
𝑚𝑎𝑥𝑚′,𝑗′,𝑛′ {𝐶𝑡𝑚,𝑗′,𝑛′ .𝛽𝑚,𝑗′𝑗,𝑛′𝑛, 𝐶𝑡𝑚′,𝑗,𝑛−1. 𝑥𝑚′,𝑗,𝑛−1}  𝑖𝑓  𝑛 > 1 

𝑚𝑎𝑥𝑚′,𝑗′,𝑛′ {𝐶𝑡𝑚,𝑗′,𝑛′ .𝛽𝑚,𝑗′𝑗,𝑛′𝑛}               𝑖𝑓 𝑛 = 1 
if  𝑥𝑚,𝑗,𝑛 = 1 (3-11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 Example of constraints between two jobs 
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3.4 Energy consumption model 

Energy consumption model is based on existing research work on environmental analysis of 

machining. Machine energy model is simplified as flowing (Weinert N., 2011and Luo H., 2013) 

firstly machine Mm is starting, operation, and turning off after finished all operations as shown in 

(Fig.3-3).  

 

Figure 3-3 Energy model of job shop 

This model assumes that machine Mm has five levels of power consumption: (a) during starting time 

(black line) to switch on the machine, and become capable to processes the jobs, (b) basic mode (idle 

time) (blue lines), (c) setup time (green lines) to prepare the machine (tools change, change machine 

programming etc.) to processes the jobs. (d) Operations time (red lines) as cutting operation, this time 

is actual processing time to process operation 𝑂𝑚,𝑗,𝑛 in machine 𝑀𝑚. (e) After, machine finished all 

operations of jobs to turn off the machine, it also consume energy during this process, and this process 

called turn off mod (orange line).  

Energy parameters  

𝑃𝑠𝑚 : starting power in machine 𝑀𝑚 

𝑃𝑝𝑚,𝑗,𝑛 : processing power of operation 𝑂𝑚,𝑗,𝑛 of jth job in mth machine. 

𝑃𝑏𝑚: power Basic of machine 𝑀𝑚.  

𝑃𝑠𝑝𝑚,𝑗′𝑗,𝑛′𝑛 : setup power of operation 𝑂𝑚,𝑗,𝑛 of job j in machine 𝑀𝑚 (change machine setting from 

𝑂𝑚,𝑗′,𝑛′   to 𝑂𝑚,𝑗,𝑛). 

𝑃𝑜𝑓𝑓𝑚 : power off to shutdown of machine 𝑀𝑚. 

Energy objectives  

Minimizing total energy consumption in all machines and non-operation energy at idle time .  

Min 𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑇𝑇𝐸 = ∑ 𝐸𝑚
𝑀
𝑚=1                                               (3-12) 
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Min Total non-operative energy 𝑇𝑇𝐸𝑖𝑑 = ∑ 𝑇𝐸𝑖𝑑 𝑚
𝑀
𝑚=1                                       (3-13) 

Total energy consumed during production schedule, TTE, consists of flowing energy according our 

energy model for each machine. 

 𝐸𝑠𝑚: starting energy of machine 𝑀𝑚. 

 𝐸𝑜𝑓𝑓𝑚: turn off energy of machine 𝑀𝑚. 

 𝐸𝑠𝑏𝑚: standby energy of machine 𝑀𝑚. 

 𝐸𝑝𝑚,𝑗,𝑛: processing energy of operation 𝑂𝑚,𝑗,𝑛 of 𝐽𝑗 in machine 𝑀𝑚. 

 𝐸𝑜𝑚,𝑗,𝑛: energy consumed during operation 𝑂𝑚,𝑗,𝑛 of 𝐽𝑗 in machine 𝑀𝑚. 

 𝐸𝑖𝑑𝑚,𝑗,𝑛: idle time Energy between two jobs 𝐽𝑗′𝑎𝑛𝑑 𝐽𝑗 in machine 𝑀𝑚. 

 𝐸𝑠𝑝𝑚,𝑗′𝑗,𝑛′𝑛: setup Energy of 𝑂𝑚,𝑗,𝑛 in machine 𝑀𝑚. 

(machine setting change from 𝑂𝑚,𝑗′,𝑛′   to 𝑂𝑚,𝑗,𝑛). 

 𝐸𝑏𝑚,𝑗,𝑛: basic non-productive energy of machine 𝑀𝑚 during operation 𝑂𝑚,𝑗,𝑛. 

 𝑇𝐸𝑖𝑑 𝑚  : total idle-time energy consumed machine 𝑀𝑚. 

 𝑇𝑇𝐸𝑖𝑑  : total Idle-time energy consumed by all machine 𝑀𝑀 in job shop problem.  

 𝑇𝐸𝑠𝑝 𝑚: total set-up energy consumed by machine 𝑀𝑚. 

 𝑇𝑇𝐸𝑠𝑝: total set-up energy consumed by all machine 𝑀𝑚. 

 𝑇𝐸𝑝 𝑚: total process energy consumed by machine 𝑀𝑚. 

 𝑇𝐸𝑜 𝑚: total processing energy consumed by machine 𝑀𝑚. 

 𝑇𝑇𝐸𝑝: total processing energy consumed by all machine 𝑀𝑚. 

 𝑇𝐸𝑚: total energy consumed by machine  𝑀𝑚. 

 𝑇𝑇𝐸: total energy consumed by the workshop 

Mathematical models  

Energy consumption models consider three dynamic energy, setup energy, processes energy and 

idle energy (non-productive energy), and two static energy, turn on energy and turn off energy. 

In classical energy models, processing power on a machine, 𝑃𝑝 𝑚, is fixed independently of 

operation, and setup energy is constant. 

𝐸𝑚 = 𝐸𝑠𝑚 + 𝑇𝐸𝑖𝑑 𝑚 + 𝑇𝐸𝑝 𝑚 + 𝐸𝑝𝑠𝑝 + 𝐸𝑜𝑓𝑓𝑚 .              (3-14) 

𝐸𝑠𝑚 = 𝑃𝑠 𝑚𝑡𝑠 𝑚.                                                                                                                  (3-15) 

𝑇𝐸𝑝 𝑚 = ∑ ∑ 𝐸𝑝 𝑚,𝑗,𝑛𝑥𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1

𝐽
𝑗=1  .            𝐸𝑝 𝑚,𝑗,𝑛 = 𝑃𝑝 𝑚𝑡𝑝 𝑚,𝑗,𝑛  .              (3-16) 

Idle energy is calculated as the product of basic power and idle time (Equ. 3-7) for the machine 

(figure 3-4): 
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𝑇𝐸𝑖𝑑 𝑚 = 𝑃𝑏 𝑚𝑇𝑡𝑖𝑑 𝑚                                                                                    (3-17) 

𝑇𝐸𝑖𝑑 𝑚 = 𝑃𝑏 𝑚(𝐶𝑚 −𝑊𝑡𝑚)                                                                                                     (3-18) 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 Idle time during machine operation 

 𝐸𝑜 𝑚,𝑗,𝑛, the energy consumed during the operation 𝑂 𝑚,𝑗,𝑛, consists of processing energy 𝐸𝑝𝑚,𝑗,𝑛, 

and basic machine energy 𝐸𝑏𝑚,𝑗,𝑛, consumed during operation, as shown in (figure 3-5) : 

𝐸𝑜 𝑚,𝑗,𝑛 = (𝑃𝑝𝑚,𝑗,𝑛 + 𝑃𝑏𝑚)𝑡𝑝 𝑚,𝑗,𝑛                              (3-19) 

  

 

 

 

    

Figure 3-5 Sampled energy consumption models 

In our model, processing energy depends on processing time and processing power, which varies with 

job operations 𝑂𝑗,𝑛 and selected machine 𝑀𝑚. Setup energy depends on operations sequence. 

𝑇𝐸𝑠𝑝𝑚 = ∑ ∑ ∑ ∑ (𝑃𝑠𝑝
𝑚,𝑗′𝑗 ,𝑛′𝑛

+ 𝑃𝑏𝑚)𝑡𝑠𝑝  𝑚,𝑗′𝑗,𝑛′𝑛
𝑁𝑗
𝑛=1

𝑁
𝑗′

𝑛′=1
𝐽
𝑗=1  𝛽𝑚,𝑗′𝑗,𝑛′𝑛

𝐽
𝑗′=1                        (3-20) 

𝑇𝐸𝑜 𝑚 = ∑ ∑  𝐸𝑜 𝑚,𝑗,𝑛𝑥𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1

𝐽
𝑗=1 = ∑ ∑ (𝑃𝑝𝑚,𝑗,𝑛 + 𝑃𝑏𝑚)𝑡𝑝 𝑚,𝑗,𝑛 𝑥𝑚,𝑗,𝑛

𝑁𝑗
𝑛=1

𝐽
𝑗=1                    (3-21)  

𝐸𝑜𝑓𝑓 𝑚 = 𝑃𝑜𝑓𝑓𝑚 𝑡𝑜𝑓𝑓𝑚                                                                                                (3-22) 

Time 

 

Consumed energy  
Basic energy  

Process energy 

Power  

Pp 

 

Pbasic  

   tsp                                   tp                                    tsp    ts-p                                   tp                                     tsp 

Time 

𝑡𝑖𝑑   𝑡𝑝𝑚,𝑗′′′,4  𝑡𝑝𝑚,𝑗′′,3  𝑡𝑝𝑚,𝑗,1  

Om,j,1 j’,2 Om,j’’,3 Om,j’’’,4 

𝐶𝑚 

𝑡𝑝𝑚,𝑗′,2  

𝑡𝑝𝑚,𝑗′′′,4  𝑡𝑝𝑚,𝑗′′,3  𝑡𝑝𝑚,𝑗,1  

Om,j,1 Om,j’,2 Om,j’’,3 Om,j’’’,4 

𝐶𝑚 

𝑡𝑝𝑚,𝑗′,2  

𝑊𝑡𝑚 
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Our first objective consists in minimizing total energy consumption, the sum of energy consumed on 

each machine: 

𝑇𝑇𝐸 = ∑ 𝑇𝐸𝑚
𝑀
𝑚=1                 (3-12) 

For each machine, the total sums start-up energy, total setup energy, total operating energy, total idle 

energy and shutdown energy: 

𝑇𝐸𝑚 = 𝑃𝑠 𝑚𝑡𝑠 𝑚 + 𝑇𝐸𝑠𝑝𝑚 +  𝑇𝐸𝑜 𝑚 + 𝑇𝐸𝑖𝑑 𝑚 + 𝑃𝑜𝑓𝑓 𝑚𝑡𝑜𝑓𝑓 𝑚          (3-23) 

Finally the objective function is: 

𝑇𝑇𝐸 = ∑ 𝑃𝑠 𝑚𝑡𝑠 𝑚
𝑀
𝑚=1 + ∑ ∑ ∑ ∑ ∑ (𝑃𝑠𝑝

𝑚,𝑗′𝑗,𝑛′𝑛 
+ 𝑃𝑏𝑚

𝑁𝑗
𝑛=1

𝑁
𝑗′

𝑛′=1
𝐽
𝑗=1

𝐽
𝑗′=1

𝑀
𝑚=1 )𝑡𝑠𝑝

𝑚,𝑗′𝑗,𝑛′𝑛
𝛽𝑚,𝑗′𝑗,𝑛′𝑛 +

∑ ∑ ∑ (𝑃𝑝  𝑚,𝑗,𝑛 + 𝑃𝑏 𝑚)𝑡𝑝 𝑚,𝑗,𝑛 
𝑁𝑗
𝑛=1

𝐽
𝑗=1

𝑀
𝑚=1 𝑥𝑚,𝑗,𝑛 + ∑ 𝑃𝑏 𝑚(𝐶𝑚 −𝑊𝑡𝑚)

𝑀
𝑚=1 + ∑ 𝑃𝑜𝑓𝑓 𝑚

𝑀
𝑚=1 𝑡𝑜𝑓𝑓 𝑚  

                (3-24) 

According to the above definitions, the energy can be classified in following categories: 

 Turn on Energy consumption for starting: the total energy consumption during the starting of 

machine. 

 Setup power for preparing machine form one operation to another one including ramp down, 

tool changing, machine adjusting, ramp up, summarized by 𝑃𝑠𝑝𝑚,𝑗′𝑗,𝑛′𝑛. 

 Operation power : power demand to distinctively operate components 

 Constant power: energy consumption of remaining machine availability during idle state. 

 Turn off power: Time for machine power-off: duration from machine switch-off until every 

component is inactivated. Energy consumption for power-off: the total energy to shut down 

the machine or the total energy consumption during the power-off period. 

Therefore, from that we conclude the processing energy consumption, 𝑇𝐸𝑚, required for all 

operations processed on a machine Mm is not constant which will be affected by different scheduling 

plans. 

From lean manufacturing angle, the objective consists in reducing the non-productive energy 

consumption, i.e. the total idle time energy 𝑇𝑇𝐸𝑖𝑑   and total setup energy 𝑇𝑇𝐸𝑠𝑝. To achieve that aim, 

the objective function can also be set as the sum of all the non-productive energy consumed (only 

during idle-time in our model) by all the machines in a job shop to carry out a given job schedule. 
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3.5 Single population multi objective Genetic algorithm energy job shop 
scheduling  

Genetic algorithms represent traditional methods, used in previous research and studies, to minimize 

energy in job shop scheduling problems. The objective of this GA. It reduces energy by minimising 

total work load and so total non-productive electricity consumption. In those genetic algorithms, 

chromosomes are selected according to processing time only. Operation energy has not effect to select 

the chromosome, so energy is indirectly reduced by minimizing workloads and idle time. 

3.6 Multi population multi objective Genetic algorithm energy job shop 
scheduling MPGE1 

This work (Al-Qaseer F., 2015) considers minimizing energy directly throw reducing operation 

energy. We agree with previous research and studies, taking into account the effect of time to reduce 

energy and about the great impact of non-productive time (idle) and its impact on energy. But we also 

take into account the direct impact of processes energy itself, because the power is not static but 

dynamically depends on the job operation 𝑂𝑗,𝑛  and the machine 𝑀𝑚 to operate the job 𝐽𝑗. Therefore 

we have a new population representation including operations (processing) energy, where each job 

operation 𝑂𝑗,𝑛 has different energy values according to selected machine 𝑀𝑚. 

In this genetic algorithm, we have two chromosomes, the first chromosome is represent energy is 

drown from energy population. This chromosome represents energy effect to the job shop scheduling. 

The second chromosome is drown from time population where it also carries the indirectly effect of 

energy in job shop scheduling. Our objectives are  

Energy objectives; 

1. Min Total energy consumption   𝑇𝑇𝐸 

2. Min Total non-productive energy consumption 𝑇𝑇𝐸𝑖𝑑  

Job shop objectives; 

1. (𝐶𝑚𝑎𝑥), the makespan, i.e. the completion time on all machines in job shop scheduling  

2. (𝑇𝑊𝑡), the total working time over all machines. 

3.  (𝑇𝑇𝑖𝑑) , the total non-productive time  for the job shop scheduling  

These objectives depend on following main variables: 

1. Processing time 𝑡𝑝𝑚,𝑗,𝑛. 
2. Processing power 𝑃𝑝𝑚,𝑗,𝑛 
3. Setup time 𝑡𝑠𝑝

𝑚,𝑗′,𝑛′𝑛
 

4. Setup power 𝑃𝑠𝑝
𝑚,𝑗′𝑗,𝑛′𝑛

 
5. Idle times between the operations  

The relationships between these objectives are very complex. As in most multi-objective optimization 

problems, energy objectives are compatible with the job shop objectives. Energy objectives depend on 
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all criteria, and job shop objectives are only depend on processing time 𝑡𝑝𝑚,𝑗𝑛,  , setup time 𝑡𝑠𝑝
𝑚,𝑗′𝑗,𝑛′𝑛 

, 

and idle time between the operations. 

This means that if the genetic algorithm works to reduce total energy without considering the directly 

energy effects (time population only), it may satisfy the job shop objectives without energy 

objectives. For example an operation of job 𝑂𝑗,𝑛 can be processed with two machines 𝑀𝑚 , 𝑀𝑚′ the 

first machine 𝑀𝑚 has processing time 𝑡𝑝𝑚,𝑗,𝑛 = 5 𝑚𝑖𝑛 and processing power 𝑃𝑝𝑚,𝑗,𝑛=20 kw, the 

second machine 𝑀𝑚′has processing time 𝑡𝑝
𝑚′,𝑗,𝑛
= 5 𝑚𝑖𝑛 and processing power 𝑃𝑝

𝑚′,𝑗,𝑛
=15 kw. In 

this problem, optimization of energy objectives depends on chance, or needs large number of 

iterations. 

3.6.1 MPGE1 

The general frame of MPGE1 is as follow: 

Each chromosome represents a solution for the problem. 

1. Initial population: The initial chromosomes are obtained by a mix of two assignment procedures 

(global minimum energy and global minimum time), here each chromosome represents the two 

populations. The chromosome that represents the energy population is selected by use global 

minimum energy and the other chromosome which presents the time population is selected by use 

global minimum time. This population (initial population, or new generations after crossover and 

mutation) must be evaluated to satisfy job shop scheduling constraints.  

2. Fitness evaluation: The makespan and total energy consumption are computed for each 

chromosome in the current generation. 

3. Selection: At iteration, the best chromosomes are chosen for reproduction by one among three 

different methods, i.e., binary tournament, n-size tournament and linear ranking. 

4. Offspring generation: The new generation is obtained by changing the assignment of the operations 

to the machines (assignment crossover, assignment mutation, intelligent mutation) and by changing 

the sequencing of operations (crossover and mutation). These rules preserve feasibility of new 

individual’s chromosomes. New individuals are generated until a fixed maximum number of 

individuals are reached. In our approach, only the new individuals form the mating pool for the next 

generation, at each algorithm step. 

5. Stop criterion: Fixed number of generations is reached. If the stop criterion is satisfied, the 

algorithm ends and the best chromosome, together with the corresponding schedule, is given as 

output. Otherwise, the algorithm iterates again steps 3–5.  
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3.6.2 Initial Population 

In order to deal with both time and energy optimization we select two initial population for time and 
energy. We use two ways to select initial population  

• Assignment 1: search for the global minimum in the processing time. 

• Assignment 2: search for the global minimum in the processing energy; 

 That mean the chromosomes are selected in two populations, where one chromosome is selected by 

searching the global minimum time, this chromosome represents time population, another one is 

selected by searching the global minimum processing energy as in the table 3-1, this chromosome 

represents energy population (figure 3-6).  

 

 

 

Figure 3-6 Initial population of the chromosomes 

Table 3-1: Global minimum time assignment selection 

Time 

𝑡𝑝𝑚,𝑗,𝑛 

M1 M2 M3 Assig1 M1 M2 M3 

J1 

 

O11 8 11 12 J1 

 

O11 1 0 0 

O12 11 16 10 O12 0 0 1 

O13 11 13 12 O13 0 0 1 

 

J2 

 

O21 12 8 8  

J2 

 

O21 0 0 1 

O22 9 11 17 O22 1 0 0 

O23 17 8 10 O23 0 1 0 

 

J3 

 

O31 16 11 11  

J3 

 

O31 0 1 0 

O32 12 12 16 O32 0 1 0 

O33 9 12 14 O33 1 0 0 

Energy 

𝐸𝑜𝑚,𝑗,𝑛 

M1 M2 M3 Assig2 M1 M2 M3 

J1 

 

O11 33 40 36 J1 

 

O11 1 0 0 

O12 40 60 55 O12 1 0 0 

O13 55 35 40 O13 0 1 0 

 

J2 

 

O21 60 55 40  

J2 

 

O21 0 0 1 

O22 45 40 50 O22 0 1 0 

O23 36 30 40 O23 0 1 1 

 

J3 

 

O31 55 40 30  

J3 

 

O31 0 1 0 

O32 55 30 55 O32 0 0 1 

O33 40 30 55 O33 1 0 0 

 

 

Time population   

Chromosome 2   

211    123   441 

Energy population  

Chromosome 1 

111    321   231 
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Chromosome assignments are applied with  

1. Vertically research, machines search to the operations with minimum processing time and 
minimum processing energy. 

2. And then, horizontally research; operations search the machines with minimum processing 
time and minimum processing energy 

From global minimum operation time, we compare processing time to the first operations of all jobs, 
then the second operations of all jobs, until reaching to final operations of the jobs. 
In our example of problem 3×3, each job consisted of three operations 
(𝑂1,1 , 𝑂2,1, 𝑂3,1;  𝑂1,2 , 𝑂2,2, 𝑂3,2; 𝑂1,3 , 𝑂2,3, 𝑂3,3), these operations can be process in the set 
machine {𝑀1,𝑀2,𝑀3}.  

Processing time and processing energy of the first operation 𝑂𝑗,1 of the job 𝐽𝑗 in machine 𝑀𝑚→𝑀 can 
be denoted by the set processing time and processing energy 𝑡𝑝𝑚,𝑗,1 , 𝐸𝑝𝑚,𝑗,𝑛 of operation 𝑂𝑚,𝑗,1 as 
shown below: 

The first 𝑂𝑗,1 of the job 𝐽𝑗 in machine 𝑀𝑚→𝑀 

{𝑡𝑝1,1,1 , 𝑡𝑝2,1,1 , 𝑡𝑝3,1,1; 𝑡𝑝1,2,1 , 𝑡𝑝2,2,1 , 𝑡𝑝3,2,1; 𝑡𝑝1,3,1 , 𝑡𝑝2,3,1 , 𝑡𝑝3,3,1},  

{𝐸𝑝1,1,1 , 𝐸𝑝2,1,1 , 𝐸𝑝3,1,1; 𝐸𝑝1,2,1 , 𝐸𝑝2,2,1 , 𝐸𝑝3,2,1; 𝐸𝑝1,3,1 , 𝐸𝑝2,3,1 , 𝐸𝑝3,3,1}  

The second 𝑂𝑗,2 of the job 𝐽𝑗 in machine 𝑀𝑚→𝑀 

{𝑡𝑝1,1,2 , 𝑡𝑝2,1,2 , 𝑡𝑝3,1,2; 𝑡𝑝1,2,2 , 𝑡𝑝2,2,2 , 𝑡𝑝3,2,2; 𝑡𝑝1,3,2 , 𝑡𝑝2,3,2 , 𝑡𝑝3,3,2},  

{𝐸𝑝1,1,2 , 𝐸𝑝2,1,2 , 𝐸𝑝3,1,2; 𝐸𝑝1,2,2 , 𝐸𝑝2,2,2 , 𝐸𝑝3,2,2; 𝐸𝑝1,3,2 , 𝐸𝑝2,3,2 , 𝐸𝑝3,3,2},  

The third 𝑂𝑗,2 of the job 𝐽𝑗 in machine 𝑀𝑚→𝑀 

{𝑡𝑝1,1,3 , 𝑡𝑝2,1,3 , 𝑡𝑝3,1,3; 𝑡𝑝1,2,3 , 𝑡𝑝2,2,3 , 𝑡𝑝3,2,3; 𝑡𝑝1,3,3 , 𝑡𝑝2,3,3 , 𝑡𝑝3,3,3}   

{𝐸𝑝1,1,3 , 𝐸𝑝2,1,3 , 𝐸𝑝3,1,3; 𝐸𝑝1,2,3 , 𝐸𝑝2,2,3 , 𝐸𝑝3,2,3; 𝐸𝑝1,3,3 , 𝐸𝑝2,3,3 , 𝐸𝑝3,3,3}  

Until reaching to final operations 𝑂𝑗,𝑁𝑗 of the jobs in machine 𝑀𝑚→𝑀 

{𝑡𝑝1,1,𝑁1 , 𝑡𝑝2,1,𝑁1 , … , 𝑡𝑝3,1,𝑁1
; 𝑡𝑝1,2,𝑁2 , 𝑡𝑝2,2,𝑁2 , … , 𝑡𝑝𝑀,2𝑁2 ; 𝑡𝑝1,3,𝑁3 , 𝑡𝑝2,3,𝑁3

, … , 𝑡𝑝𝑀,3,𝑁3}   

{𝐸𝑝1,1,𝑁1 , 𝐸𝑝2,1,𝑁1 , … , 𝐸𝑝𝑀,1,𝑁1 ; 𝐸𝑝1,2,𝑁2 , 𝐸𝑝2,2,𝑁2
, … , 𝐸𝑝𝑀,2,𝑁2 ; 𝐸𝑝1,3,𝑁3 , 𝐸𝑝2,3,𝑁3 , … , 𝐸𝑝𝑀,3,𝑁3}  

Or generally from the first jobs operations  

{𝑡𝑝1,1,1 , 𝑡𝑝2,1,1 , . . , 𝑡𝑝𝑀,1,1; 𝑡𝑝1,2,1 , 𝑡𝑝2,2,1 , … , 𝑡𝑝𝑀,2,1; … ; 𝑡𝑝1,𝐽,1 , 𝑡𝑝2,𝐽,1 , … , 𝑡𝑝𝑀,𝐽,1},  

{𝐸𝑝1,1,1 , 𝐸𝑝2,1,1 , … , 𝐸𝑝𝑀,1,1; 𝐸𝑝1,2,1 , 𝐸𝑝2,2,1 , … , 𝐸𝑝𝑀,2,1; … ; 𝐸𝑝1,𝐽,1 , 𝐸𝑝2,𝐽,1 , … , 𝐸𝑝𝑀,𝐽,1}  

Up to final operations of the jobs. 



 

63 
 

{𝑡𝑝1,1,𝑁1
, 𝑡𝑝2,1,𝑁1

, … , 𝑡𝑝3,1,𝑁1
; 𝑡𝑝1,2,𝑁2

, 𝑡𝑝2,2,𝑁2
, … , 𝑡𝑝𝑀,2𝑁2

; … ; 𝑡𝑝1,𝐽,𝑁𝐽
, 𝑡𝑝2,𝐽,𝑁𝐽

, … , 𝑡𝑝𝑀,𝐽,𝑁𝐽
}  

{𝐸𝑝1,1,𝑁1
, 𝐸𝑝2,1,𝑁1

, … , 𝐸𝑝𝑀,1,𝑁1
; 𝐸𝑝1,2,𝑁2

, 𝐸𝑝2,2,𝑁2
, … , 𝐸𝑝𝑀,2,𝑁2

; … ; 𝐸𝑝1,𝐽,𝑁𝐽
, 𝐸𝑝2,𝐽,𝑁𝐽

, … , 𝐸𝑝𝑀,𝐽𝑁𝐽
}  

The processing time according operations set of all jobs explain in table 3-2, and the processing 
energy according operations set of all jobs explain in table 3-3 

Table 3-2 Processing time (operations set)  

First operations of all 
jobs  

M1 M2 M3 

O11 8 11 12 

O21 12 8 8 

O31 16 11 11 

Second operations   

O12 11 16 10 

O22 9 11 17 

O32 12 12 16 

Third operations    

O13 11 13 12 

O23 17 8 10 

O33 9 12 14 

 

According to global minimum processing time of the example above, we cannot select machine 𝑀1 to 
process operation 𝑂1,3 because the 𝑂3,3 has the smaller processing time if it process in 𝑀1 comparing 
with the processing time of the operation 𝑂1,3 if it process in machine 𝑀1.  

Table 3-3 Processing energy (operation set)  

First operations of all 
jobs  

M1 M2 M3 

O11 33 40 36 

O21 60 55 40 

O31 55 40 30 

Second operations   

O12 40 60 55 

O22 45 40 50 

O32 55 30 55 

Third operations    

O13 55 35 40 

O23 36 30 40 

O33 40 30 55 

 

According to minimum processing energy, machine 𝑀2 firstly select to process the operation O3,1 but 
machine 𝑀3 has the smaller processing energy if the operation 𝑂3,1 is processed in this machine M3, 
from that 𝑀3 is selected to process the operation 𝑂3,1  to accord the constraint (one machine selected 
to process only one operation at the same time), and to accord the constraint (one operation process in 
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only one machine at the same time) machine 𝑀2 is selected to process 𝑂2,1, and 𝑀2 cannot selected to 
process the operation 𝑂3,3 because it is processed in machine 𝑀2 with smallest processing energy 
comparing with the other machines(as explain in tables 3-4, 3-5).  

Table 3-4 Global processing time assignment 
First operations of all 
jobs  

M1 M2 M3 

O11 1 0 0 

O21 0 1 0 

O31 0 0 1 

Second operations   

O12 0 0 1 

O22 1 0 0 

O32 0 1 0 

Third operations    

O13 0 0 1 

O23 0 1 0 

O33 1 0 0 

 

Table 3-5 Global processing energy assignment 

First operations of all 
jobs  

M1 M2 M3 

O11 1 0 0 

O21 0 1 0 

O31 0 0 1 

Second operations   

O12 1 0 0 

O22 0 0 1 

O32 0 1 0 

Third operations    

O13 0 0 1 

O23 1 0 0 

O33 0 1 0 

 

The first initial population represents the global minimum energy and time for the jobs, the parents 

chromosomes coded as shown in (Figure 3-7), according the assignments in table 3-4 and 3-5. 

Chromosome represents time population P1 
1,1,1 2,2,1 3,3,1 3,1,2 1,2,2 2,3,2 3,1,3 2,2,3 1,3,3 

Chromosome represents energy population P2 
1,1,1 2,2,1 3,3,1 1,1,2 3,2,2 2,3,2 3,1,3 1,2,3 2,3,3 

Fig. 3-7 First generation parents. 

The chromosomes are divided into segments (as shown in figure 3-7), each segment represents the 

operations of jobs, number of elements in segment depends on number of machines and number of 

segments depends on number of operations in each jobs      
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These chromosomes are selected in the first generation from initial population are not the final or 

optimum solution, because they modify after each generation in the next iteration, by selection 

another values with new global minimum processing time and processing energy , by thesis method 

we can modify the genes of chromosome, and to ensure to test all better probability to find the best 

solution, selection of the initial population  correctly which helps to ensure the best solution is correct 

with a few of  iterations. 

3.6.3 Chromosomes Crossover   
The operation-based order crossover (OOX). The advantage of OOX is that it can avoid producing 

illegal chromosome in offspring. Given parent 1-P1 and parent 2-P2, OOX generates child 1-C1 and 

child 2-C2 by the following procedure (Fig. 3-8): 

1. Randomly, choose the same operations from both of the parents P1 and P2. The local of the 

selected operations are preserved. 

2. Copy the operations chosen at step 1 from P1to C1, P2 to C2, the position of them are preserved in 

the offspring C1 and C2. 

3. Copy the operations, which are not copied at step 2 , from P2 to C1, P1 to C2 , the order of them 

are preserved in the offspring. For example, in a 3×3 job shop.  

P1 

 

 
3,1,1 2,2,1 1,3,1 2,2,2 1,3,2 3,1,2 2,3,3 3,2,3 1,1,3 

C1, C2 

 

 

Fig.3-8 Crossover Processing 

3.6.4 Mutation operator 

The swap mutation operator is employed in this research which means two difference arbitrary genes 

of the parent chromosome are chosen and swap the values following 

The above example, C’1 is the final child chromosome of P1 after applying mutation on C1 (Fig.3-9). 

C1 

 

 

  

 

Fig.3-9 Mutation Processing 

1,1,1 2,3,1 3,2,1 1,2,2 2,1,2 3,3,2 3,1,3 2,2,3 3,3,3 

3,1,1 2,2,1 3,2,1 1,2,2 1,3,2 3,1,2 3,1,3 2,2,3 1,1,3 

1,1,1 2,3,1 3,2,1 1,2,2 2,1,2 3,3,2 3,1,3 2,2,3 3,3,,3 

3,1,1 2,2,1 3,2,1 1,2,2 1,3,2 3,1,2 3,1,3 2,2,3 1,1,3 

3,1,1 3,2,1 2,2,1 1,2,2 1,3,2 3,1,2 3,1,3 2,2,3 1,1,3 

P2 

C’1 
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3.6.5 Fitness Function  

In this genetic we have two decision make factions, minimum energy and minimum time, therefore 

we fine a relationship between energy and time, as following (Fig.3-10).  

Assuming that the two parents are selected by the global minimum energy and time for the jobs, Total 

workload (WT) of P1 represent WT0and WT𝑙 represent the total workload of each feasible child 

chromosomes in l generation; 𝑟𝑡𝑙Reduction of total workload in iteration l. 

Then for each l generation or iteration (crossover and mutation, etc.) we recalculate 

𝑇𝑊𝑡𝑙  , 𝐶𝑚𝑎𝑥𝑙 , 𝑇𝑇𝐸𝑙  𝑎𝑛𝑑  𝑇𝐸𝑖𝑑 𝑙 

𝑟𝑇𝑊𝑡𝑙 : Reduction percentage of total workload in l iteration. 

𝑟𝑇𝑊𝑡𝑙 =
𝑇𝑊𝑡𝑙

𝑇𝑊𝑡0
×%                                                                                                   (3-25) 

𝑟𝑇𝑇𝐸𝑙   : Reduction percentage of total energy in l iteration 

𝑟𝑇𝑇𝐸𝑙 =
𝑇𝑇𝐸𝑙

𝑇𝑇𝐸0
×%                                                                                                           (3-26) 

𝑟𝐶𝑚𝑎𝑥𝑙 =
𝐶𝑚𝑎𝑥𝑙
𝐶𝑚𝑎𝑥0
×%                                                                                                     (3-27) 

𝑟𝐶𝑚𝑎𝑥𝑙: Reduction percentage of makespan in l iteration 

𝑟𝑇𝐸𝑖𝑑 𝑙 =
𝑇𝐸𝑖𝑑 𝑙

𝑇𝐸𝑖𝑑 0
× %                                                                                                     (3-28) 

𝑟𝑇𝐸𝑖𝑑 𝑙 : Reduction percentage of non-productive energy inr l iteration 

The average reduction AvRl 

𝐴𝑣𝑅𝑙 =
𝑟𝑇𝑊𝑡𝑙+𝑟𝑇𝑇𝐸𝑙+𝑟𝐶𝑚𝑎𝑥𝑙+𝑟𝑇𝐸𝑖𝑑 𝑙

4
                                                                              (3-29) 

𝐴𝑣𝑅𝑙   : Average of total reduction  

𝐴𝑣𝑅𝑙 Represent the fitness faction to select the best sequence S with minimum energy and time. 

Where l: iteration number l = 1...L; L is total number of iteration  



 

67 
 

 

Fig.3-10 MPGE1 Genetic algorithm energy job shop 

The general objective of job shop scheduling is to find the optimum time for the workshop. In this 

paper we aim to optimize both energy and time. MPGA1 tested with problems (2×2 →10×10) with 

operations (2→16) the figures (3-11, 3-12, 3-.13and 3-14) shown the values rtl,rEl and AvRl 

respectively. And table 3-6 shows the results of the examination the GEJ of several problems of 

scheduling problems where the results are compare with single GA. 
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Fig. 3-11 Work load Reduction (job shop problem 4×4)  

 

Fig. 3-12 Total Energy reduction (job shop problem 4×4)  

  

Fig. 3-13 Makespan reduction (job shop problem 4×4)  

 

Fig. 3-14  𝐴𝑣𝑅l Reduction (job shop problem 4×4) 
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Table 3-6 Results of the examination the MGEJ1 of several problems of scheduling problems 

  6×6 -6 6×6-12 10×10-6 10×10-12 12×12-6 12×12-12 

SPGA 

Cmax   (min) 128 266 129 268 129 268 

TWt (min) 798 1744 1346 2910 1696 3374 
TIdt  (min) 8 35 11 46 14 56 
Tsp(min) 124 340 210 457 262 542 
TE   (KWh) 2618.42 5342.28 4292.45 8684.6 5051.22 10233 
CPU   (min) 22.12 31.45 22.35 32.18 22.55 32.18 

MPGA1 

Cmax   (min) 124 266 128 268 132 270 

TWt (min) 788 1640 1248 2812 1498 3280 
TIdt  (min) 6 22 8 51 14 58 
Tsp(min) 118 335 206 448 255 530 
TE   (KWh) 2288.54 4832.2 3664.21 7960.17 4426.29 9596 

Er% 12.6% 9.5% 13.9% 8.3% 12% 6.2% 

CPU   (min) 22.18 24.18 22.18 24.18 24.55 30.18 
 
 
 

3.7 Multi population multi objective Genetic algorithm energy job shop 
scheduling MPGE2 

Genetic algorithm generally consists of one single population; MPGE1 used two chromosomes to 

represents two population but with complex populations that have diverges between their parameters 

or that have large population size this type of genetic is still work with limitations because of one 

chromosome is not enough to clearly represents these types of populations. However, better results 

can be achieved by introducing multiple populations in parallel. We use a genetic algorithm consist to 

two parallel subs genetic for each population, where each sub genetic population has individual route 

(selection, crossover, and mutation) but we added two operations after mutation operation, which are 

threshold operation and elite strategy as illustrate in figure (3-15). 
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Figure 3-15 MPGA2 flow charts 

3.7.1 Initial Population  
The chromosomes are selected in two populations, where two chromosomes are selected by search the 

global minimum time these select to time sub genetic(as explain in table 3-7), this chromosome 

represent time population, another is selected. chromosome selection process consists in selecting two 

chromosomes which are selected by search the global minimum time for sub genetic1 or sub genetic 

of time, hover  these  chromosome represent time population, another are selected by search the 

global minimum processing energy, which  represent energy population for sub GA2 or GA energy. 
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Table3-7: Global minimum time and energy assignments selection 

Time M1 M2 M3 Assig1 M1 M2 M3 

J1 

 

O11 8 11 12 J1 

 

O11 1 2 0 

O12 11 16 10 O12 0 1 2 

O13 11 13 12 O13 1 0 2 

 

J2 

 

O21 12 8 8  

J2 

 

O21 0 1 2 

O22 9 11 17 O22 1 2 0 

O23 17 8 10 O23 0 1 2 

 

J3 

 

O31 16 14 11  

J3 

 

O31 0 0 1 

O32 12 13 16 O32 0 2 0 

O33 9 12 14 O33 1 2 0 

Energy M1 M2 M3 Assig2 M1 M2 M3 

J1 

 

O11 33 40 36 J1 

 

O11 2 0 0 

O12 40 60 55 O12 1 0 0 

O13 55 35 40 O13 0 2 0 

 

J2 

 

O21 60 55 40  

J2 

 

O21 0 0 1 

O22 45 40 50 O22 2 1 0 

O23 36 30 40 O23 2 1 0 

 

J3 

 

O31 55 40 30  

J3 

 

O31 0 2 1 

O32 55 30 55 O32 0 1; 2 0 

O33 40 30 55 O33 2 1 0 

 

Where the shaded numbers with green colour in the table 3-7 represent the two first chromosomes for 
each genetic, and the shaded number with yellow colure represent the two second chromosomes for 
each genetic, and figure 3-16 illustrate the first initial chromosomes for the two genetic algorithms. 

1,3,1 2,1,1 3,3,1 2,2,2 1,2,2 1,3,2 2,3,2 3,2,2 3,3,2 
3,3,1 2,2,1 1,1,1 2,2,2 1,2,4 3,2,3 2,3,3 1,3,2 3,3,1 

Chromosome represents energy population P1 
1,1,1 2,1,3 3,1,3 2,2,1 1,2,4 3,2,4 2,3,2 1,3,1 3,3,1 
1,1,2 2,1,2 3,1,4 2,2,2 1,2,3 3,2,2 2,3,3 1,3,3 3,3,2 

Chromosome represents time population P2 

Figure 3-16 First initial chromosomes 

3.7.2 Crossover Strategy 

The crossover strategy is the same to that used in the MPGE1, also used operation-based order 
crossover (OOX).but here we have four chromosomes that mean we have two separated crossover for 
each genetic algorithms as in figure 3-17. 
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P1 GA1 
3,1,3 2,1,1 1,1,4 2,2,2 1,2,1 1,3,4 2,3,2 3,2,2 3,3,2 

P2 GA1 
3,1,2 2,1,3 1,1,1 2,2,1 1,2,4 3,2,3 2,3,3 1,3,2 3,3,1 

C1 GA1 
3,1,3 2,1,1 1,1,4 2,2,1 1,2,4 3,2,3 2,3,2 3,2,2 3,3,1 

C2 GA1 
3,1,3 2,1,1 1,1,1 2,2,1 1,2,4 3,2,3 2,3,3 3,2,2 3,3,2 

P1 GA2 
1,1,1 2,1,3 3,1,3 2,2,1 1,2,4 3,2,4 2,3,2 1,3,1 3,3,1 

P1 GA2 
1,1,2 2,1,2 3,1,4 2,2,2 1,2,3 3,2,2 2,3,3 1,3,3 3,3,2 

C1 GA2 
1,1,1 2,1,3 3,1,4 2,2,2 1,2,3 3,2,2 2,3,2 1,3,1 3,3,1 

C1 GA2 
1,1,1 2,1,2 3,1,4 2,2,2 1,2,3 3,2,4 2,3,2 1,3,1 3,3,2 

Figure 3-17 Crossover operation 

3.7.3 Mutation operator 
The swap mutation operator is employed in this research which means two difference arbitrary genes 

of the parent chromosome are chosen and swap the values. Following The above example, C’1 is the 

final child chromosome of P1 after applying mutation on C1 (Fig.3-18). 

C1 GA1 
3,1,3 2,1,1 1,1,4 2,2,1 1,2,4 3,2,3 2,3,2 3,2,2 3,3,1 

C’1 GA1 
3,1,3 2,1,1 1,1,4 2,2,1 1,2,4 3,2,3 2,2,2 3,3,2 3,3,1 

C2 GA1 
3,1,3 2,1,1 1,1,1 2,2,1 1,2,4 3,2,3 2,3,3 3,2,2 3,3,2 

C’2 GA1 
3,1,3 2,1,1 1,1,1 2,2,1 1,2,4 3,2,3 2,3,3 3,3,2 3,2,2 

 
C1 GA2 

1,1,1 2,1,3 3,1,4 2,2,2 1,2,3 3,2,2 2,3,2 1,3,1 3,3,1 
C’1 GA2 

1,1,2 2,1,2 3,1,4 3,2,2 1,2,3 2,2,2 2,3,3 1,3,3 3,3,2 
C2 GA2 

1,1,1 2,1,2 3,1,4 2,2,2 1,2,3 3,2,4 2,3,2 1,3,1 3,3,2 
C’2 GA2 

1,1,1 2,1,2 3,1,4 2,2,2 1,2,3 3,2,4 3,3,2 1,3,1 2,3,2 

Figure 3-18 Mutation operation 

3.7.4 Threshold operation 
It is also known that each sub GA has a specific objective, the first to reduce the energy required to 

schedule the jobs, while the second is in a traditional GA and their objective is to reduce the time 

required for job scheduling. Taking into consideration of the two GA stricture and objective. Kemmoé 

S., (2015) proposed energy consumption threshold must not be exceeded to get optimum scheduling. 

In the MPEGA2, first s-GA, which relied on the selection of chromosomes on the basis of minimum 

operating energy? Consequently, the energy is more accurate and high quality result, through it, this 

algorithm works as energy threshold thoE for the second algorithm. To improve energy objective in 

second GA, assume that 

𝑡ℎ𝑜𝐸𝑙 =  𝑚𝑎𝑥{𝑇𝑇𝐸𝑙𝐶1𝐺1 , 𝑇𝑇𝐸𝑙𝐶2𝐺1}                        (3-30) 

𝑡ℎ𝑜𝐸𝑙 : Energy threshold value in l iteration  
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𝑇𝑇𝐸𝑙𝐶1𝐺1 : Total energy in machine according the feasible scheduling plans s of the first child in first 
sub-GA1 in l iteration  
𝑇𝑇𝐸𝑙𝐶2𝐺1 : Total energy in machine according the feasible scheduling plans s of the second child in 
first sub-GA1 in l iteration 
Otherwise for the second s-GA2 because it select by select global minimum operation time, therefore 
it has high job time scheduling quality result. This algorithm works as time threshold thot the first 
sub-GA1 algorithm. To improve scheduling time objective in the first sub-GA1, assume that 
𝑡ℎ𝑜𝑡𝑙 = max{𝑇𝑊𝑡𝑙𝐶1𝐺2 , 𝑇𝑊𝑡𝑙𝐶2𝐺2  }                 (3-31) 

𝑡ℎ𝑜𝑡𝑙 : Time threshold value in l iteration. 

𝑇𝑊𝑡𝑙𝐶1𝐺2 : Total work load in machine according the feasible scheduling plans s of the first child in 
second sub-GA2 in l iteration 
𝑇𝑊𝑡𝑙𝐶2𝐺2 : Total work load in machine according the feasible scheduling plans s of the second child 
in second sub-GA2 in l iteration 
This method improves both GA objectives, to achieve the objective (reduction total energy, non-

productive energy, and total work time load, and makespan, total idle time). In this method all 

chromosomes are evaluated and modified the up normal gene has maximum operation time or it may 

be has maximum operation energy and adapting these genes, (as see in figure 3-19 and 3-20) by local 

crossovers-mutation between them to modify their values of these gens (processing time and 

processing energy), this modification must be take into account and ensure the job shop constraints. 

 

 

Figure 3-19 Threshold operation 
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Figure 3-20 Adaptation of a solution by using Threshold operation 

 

3.7.5 Elitism strategy 
Operators such as selection, crossover and mutation are applied to generate the individuals of the next 

generation. Elitism involves copying a small proportion of the fittest candidates,(Shengxiang Y.,2008) 

unchanged, into the next generation (Shengxiang Y.,2007). This can sometimes have a dramatic 

impact on performance by ensuring that the EA does not waste time re-discovering previously 

discarded partial solutions (Renato T., 2007.) Reduces the diversity of the population. Candidate 

solutions that are preserved unchanged through elitism remain eligible for selection as parents when 

breeding the remainder of the next generation. If the chromosomes children not succeed in the 

threshold operations, we have four chromosomes children must be elite (figure 3-21) to select two 

new chromosomes that represent the parents for the next generation.  

 

 

 

 

 

Figure 3-21 Elitism strategy 
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The first stricture of the MPGA not consisted to Threshold operation and elitism strategy figure 3-22 

explains the effect of the Threshold operation and elitism strategy in problem job shop 10× 10. 

 

Figure 3-22 Threshold operation and elitism strategy effect to reduce total energy in MPGE2 

Threshold operation reduces the error of solution, where the threshold reduces the deviation from the 

target objectives of the genetic algorithm, generally each sub GA has different objectives, and the 

threshold works to have been converge these objectives. But it increases the time required for each 

iteration loop because it acts as an internal cycle within the iteration loop. The elitism strategy reduces 

the time of iteration to get the solution and reach to objectives with little number of internal threshold 

cycles. Because it reduces the number of population probability at in for example in our MPG2 we 

have firstly four chromosomes two for each sub genetic but elitism strategy elected the best two from 

four copy insert them in the two sub genetics in the next internal threshold cycle. However, reducing 

population probability also reduces solution quality, and this is one of disadvantage of the elitism 

strategy. The MPGA2 result is explained in table 3-8. 
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Table 3-8 Result of MPGE2 

  6×6 -6 6×6-12 10×10-6 10×10-12 12×12-6 12×12-12 

SPGA 

Cmax   (min) 128 266 129 268 129 268 

TWt (min) 798 1744 1346 2910 1696 3374 
TIdt  (min) 8 35 11 46 14 56 
Tsp(min) 124 340 210 457 262 542 
TE   (KWh) 2618.42 5342.28 4292.45 8684.6 5051.22 10233 
CPU   (min) 22.12 31.45 22.35 32.18 22.55 32.18 

MPGA1 

Cmax   (min) 124 266 128 268 132 270 

TWt (min) 788 1640 1248 2812 1498 3280 
TIdt  (min) 6 22 8 51 14 58 
Tsp(min) 118 335 206 448 255 530 
TE   (KWh) 2288.54 4832.2 3664.21 7960.17 4426.29 9596 

Er% 12.6% 9.5% 13.9% 8.3% 12% 6.2% 

CPU   (min) 22.18 24.18 22.18 24.18 24.55 30.18 

MPGA2  

Cmax   (min) 122 262 126 264 129 268 

TWt (min) 776 1560 1246 2684 1494 3172 
TIdt  (min) 6 18 6 40 12 46 
Tsp(min) 114 332 206 438 242 524 
TE   (KWh) 2198.85 4726.28 3632.85 7888 4319.34 9328.2 

Er% 16% 11.5% 14.5% 11.4% 14.4% 8% 

CPU   (min) 24.25 30.25 24.25 32.55 25.58 35.45 
 

3.8 Case study and conclusion  

In this chapter, we used three type genetic algorithms: 

1. Classical genetic algorithm with single population (SGA). 

2. Classical with parent select from two different populations one with operation energy 

criterion and the other with operation time criterion (MPGE1.) 

3. Parallel genetic algorithm MPGE2 with two population, with three strategies: classical 

parallel, parallel with threshold operation, and parallel with threshold operation and elitism 

strategy, as discussed above (3.5.4 and 3,5.5), 

However after exclusion classical SGA we have two GA. all these genetics are multi objective GA, 

hover the different between these GA the first GA reduce total energy by reducing total work load and 

idle time only, these GA were tested with different fixable job shop scheduling problem to test their 

performance their ability to find solution. The database is developed 10×10 with 5 operations in each 

job. This database is based on the Fisher and Thompson instance (F&T ). To satisfy the requirements 
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of this research. The job shop problem given in table 3-9, where the numbers are the operation time 

for each operation of each job.  

Table 3-9 Processing time 𝑡𝑝𝑚,𝑗,𝑛  of 𝑂𝑚,𝑗,𝑛(number of operations of jobs =5) 

𝒕𝒑𝒎,𝒋,𝒏𝒎in M1  M2 M3 M4 M5  
J1 (29) (36) (29) 

(28) (39)  
(23) (20) (25) 
(21) (29) 

(21) (25) (39) 
(24) (20) 

(21) (25) (21) 
(29) (19) 

(14) (26) (22) 
(21) (26) 

J2 (25) (24) (28) 
(18) (52)  

(26) (37) (61) 
(13) (32) 

(31) (26) (26) 
(14) (22) 

(26) (29) (26) 
(14) (25) 

(25) (13) (21) 
(17) (24) 

J3 (22) (28) (19) 
(26) (19) 

(23) (29) (20) 
(25) (15)  

(21) (25) (39) 
(17) (30) 

(21) (25) (31) 
(19) (19) 

(14) (16) (22) 
(21) (26) 

J4  (19) (18) (14) 
(22) (22) 

(13) (32) (16) 
(17) (21)  

(31) (26) (26) 
(24) (22) 

(26) (29) (26) 
(21) (25) 

(25) (13) (21) 
(17) (24) 

J5 (29) (28) (19) 
(26) (29) 

(23) (30) (21) 
(19) (25)  

(21) (15) (19) 
(24) (19) 

(21) (25) (21) 
(29) (19) 

(14) (26) (22) 
(22) (26) 

J6 (24) (22) (22) 
(25) (28) 

(26) (27) (21) 
(23) (22) 

(31) (26) (26) 
(24) (32) 

(26) (29) (26) 
(21) (25) 

(25) (23) (26) 
(17) (24) 

J7 (29) (28) (19) 
(26) (19) 

(43) (20) (25) 
(21) (29) 

(21) (25) (29) 
(24) (20) 

(21) (25) (19) 
(19) (19) 

(24) (16) (22) 
(21) (26) 

J8  (19) (18) (14) 
(22) (22) 

(13) (32) (16) 
(17) (21)  

 (19) (28) (24) 
(22) (22) 

(13) (32) (16) 
(17) (21)  

(31) (26) (26) 
(24) (22) 

J9 (29) (28) (21) 
(36) (29) 

(23) (20) (275) 
(21) (29) 

(22) (85) (39) 
(24) (20) 

(21) (95) (71) 
(29) (9) 

(14) (26) (22) 
(21) (26) 

J10  (19) (18) (14) 
(22) (22) 

(13) (32) (16) 
(17) (21)  

(13) (32) (16) 
(17) (21)  

 (19) (28) (24) 
(22) (22) 

(23) (32) (16) 
(17) (21)  

J11 (21) (15) (19) 
(24) (19) 

(21) (25) (21) 
(29) (19) 

(14) (26) (22) 
(22) (26) 

(26) (27) (21) 
(23) (22) 

(24) (26) (22) 
(21) (26) 

𝒕𝒑𝒎,𝒋,𝒏min M6   M7 M8 M9 M10  
J1 (21) (22) (26) 

(24) (21) 
(28) (36) (26) 
(22) (30) 

(10) (12) (29) 
(25) (23) 

(22) (25) (18) 
(22) (33) 

(19) (21) (19) 
(22) (23) 

J2 (22) (27) (25) 
(26) (25) 

(21) (32) (19) 
(30) (25) 

(18) (19) (18) 
(26) (19) 

(11) (26) (18) 
(22) (24) 

(26) (27) (22) 
(20) (25) 

J3 (14) (20) (26) 
(24) (21) 

(29) (18) (21) 
(26) (19) 

(23) (30) (25) 
(31) (19) 

(22) (25) (18) 
(22) (23) 

(19) (21) (19) 
(22) (23) 

J4 (22) (27) (25) 
(26) (25) 

(21) (32) (19) 
(30) (25) 

(18) (19) (18) 
(36) (19) 

(17) (20) (26) 
(26) (34) 

(26) (17) (22) 
(20) (25) 

J5 (15) (22) (26) 
(24) (21) 

 (26) (26) (28)  
(22) (30) 

(29) (18) (24) 
(26) (29) 

(22) (20) (19) 
(25) (23) 

(29) (21) (29) 
(32) (23) 

J6 (22) (37) (25) 
(26) (25) 

(21) (32) (19) 
(30) (55) 

(18) (19) (28) 
(36) (19) 

(16) (45) (25) 
(26) (24) 

(26) (27) (22) 
(20) (25) 

J7 (21) (22) (26) 
(24) (21) 

(19) (28) (21) 
(36) (19) 

(23) (30) (25) 
(31) (19) 

(22) (15) (18) 
(22) (23) 

(29) (21) (29) 
(22) (23) 

J8 (22) (27) (25) 
(26) (25) 

(21) (32) (29) 
(30) (55) 

(28) (19) (28) 
(36) (29) 

(18) (30) (29) 
(26) (24) 

(26) (27) (22) 
(20) (25) 

J9 (29) (28) (21) 
(36) (29) 

(23) (20) (25) 
(21) (29) 

(20) (17) (29) 
(25) (33) 

(22) (25) (28) 
(22) (23) 

(29) (21) (29) 
(22) (23) 

J10 (22) (37) (25) 
(26) (25) 

(24) (36) (29) 
(35) (23) 

(28) (19) (28) 
(36) (29) 

(15) (24) (19) 
(36) (30) 

(36) (27) (32) 
(20) (35) 

J11 (15) (32) (26) 
(24) (24) 

(20) (26) (26) 
(22) (30) 

(20) (22) (19) 
(25) (33) 

(22) (25) (28) 
(22) (23) 

(19) (31) (29) 
(22) (33) 

 

And energy parameters given in table 3-10, 3-11-A and 3-11-B. 
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Table 3-10 Machine electricity characteristics 
 
 

Pbasic 
W 

Staring (Term on ) Shutdown( Term off ) 

Ps  W ts  min Es ws Poff toff  min Eoff ws 
M1 2400 1700 4.3 438600 1300 1.2 93600 
M2 3360 1800 5.7 615600 1600 1.6 153600 
M3 2000 1400 4.0 336000 1200 0.8 57600 
M4 2300 1200 5.8 417600 1000 1.2 72000 
M5 3600 1500 4.6 414000 1100 1.5 99000 
M6 6300 2300 3.5 483000 1700 1.8 183600 
M7 4700 1700 2.2 224400 1100 1.3 85800 
M8 6200 2100 4.6 579600 1500 1.2 108000 
M9 5700 1600 5.3 508800 1300 1.7 132600 
M10 3800 2000 2.8 336000 1200 1.3 93600 

  

Table (3-11-A) Operation power 𝑝𝑝𝑚,𝑗,𝑛  of 𝑂𝑚,𝑗,𝑛 (number of operations of jobs =5) 

𝑷𝒑𝒎,𝒋,𝒏
W 

M1  M2 M3 M4 M5  

J1 (2450) (5730) 
(3000) (2700) 
(4300) 

(3900) (3300) 
(3550) (6080) 
(3250) 

(5700) (2550) 
(3600) (4900) 
(5700) 

(4350) (4760) 
(3970) (3170) 
(3780) 

(4620) (3520) 
(5600) (7800) 
(2980) 

J2 (5050) (4750) 
(9700) (3050) 
(4300) 

(6000) (2800) 
(3540) (5100) 
(3970) 

(4670) (3600) 
(4200) (6500) 
(4760) 

(3870) (5500) 
(2560) (6500) 
(3250) 

(5100) (2980) 
(3500) (4890) 
(3970) 

J3 2450) (5730) 
(5000) (2700) 
(4300) 

(3900) (3300) 
(5550) (3080) 
(3250) 

(5700) (2550) 
(3600) (4900) 
(5700) 

(4350) (4760) 
(3970) (3170) 
(3780) 

(4620) (3520) 
(5600) (2800) 
(2980) 

J4 (5050) (4750) 
(7700) (3050) 
(4300) 

(6000) (2800) 
(3540) (5100) 
(3970) 

(4670) (3600) 
(4200) (3000) 
(4760) 

(3870) (5500) 
(2560) (5500) 
(3250) 

(5100) (2980) 
(3500) (4890) 
(3970) 

J5 (2450) (5000) 
(2700) (5730) 
(4300) 

(3900) (3300) 
(5550) (9080) 
(3250) 

(5700) (2550) 
(3600) (4900) 
(5700) 

(4350) (4760) 
(3970) (3170) 
(3780) 

(4620) (3520) 
(5600) (4800) 
(2980) 

J6 (5700) (5050) 
(4750) (3050) 
(4300) 

(6000) (2800) 
(3540) (5100) 
(3970) 

(4670) (3600) 
(4200) (3000) 
(4760) 

(3870) (5500) 
(2560) (3500) 
(3250) 

(5100) (2980) 
(3500) (4890) 
(3970) 

J7 2450) (5730) 
(4000) (2700) 
(4300) 

(3900) (3300) 
(6550) (4080) 
(3250) 

(5700) (2550) 
(3600) (4900) 
(5700) 

(4350) (4760) 
(3970) (3170) 
(3780) 

(4620) (3520) 
(5600) (2800) 
(2980) 

J8 (5050) (4750) 
(4700) (3050) 
(4300) 

(6000) (2800) 
(3540) (5100) 
(3970) 

(4670) (3600) 
(4200) (3000) 
(4760) 

(3870) (5500) 
(2560) (3500) 
(3250) 

(5100) (2980) 
(3600) (4890) 
(3970) 

J9 2450) (5730) 
(5600) (2700) 
(4300) 

(3900) (3300) 
(4550) (7080) 
(3250) 

(5700) (2550) 
(3600) (4900) 
(5700) 

(4350) (4760) 
(3970) (3170) 
(3780) 

(4620) (3520) 
(5600) (2900) 
(2980) 

J10 (5050) (4750) 
(7000) (3050) 
(4300) 

(6000) (2800) 
(3540) (5100) 
(3970) 

(4670) (3600) 
(4200) (3000) 
(4760) 

(3870) (5500) 
(2560) (5400) 
(3250) 

(5100) (2980) 
(3500) (4890) 
(3970) 

J11 2450) (5730) 
(5000) (2700) 
(4300) 

(3900) (3300) 
(8550) (3080) 
(2560) 

(5700) (2550) 
(3600) (4900) 
(5700) 

(4350) (4760) 
(3970) (3170) 
(3780) 

(4620) (3520) 
(5600) (8050) 
(2980) 
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Table (3-11-B) Operation power 𝑝𝑝𝑚,𝑗,𝑛  of 𝑂𝑚,𝑗,𝑛 (number of operations of jobs =5) 

𝑷𝒑𝒎,𝒋,𝒏
𝑾 M6  M7 M8 M9 M10  

J1 (6200) (4900) 
(2670) (5130) 
(10000) 

(5800) (4900) 
(8100) (3600) 
(5000) 

(4800) (3300) 
(4280) (4700) 
(3370) 

(5290) (3960) 
(2750) (4000) 
(4500) 

(5210) (4780) 
(3250) (3800) 
(5000) 

J2 (7080) (2420) 
(4480) (3520) 
(2720) 

(9000) (8030) 
(3390) (3500) 
(5500) 

(5100) (5690) 
(4000) (2900) 
(3520) 

(5060) (3450) 
(2520) (4200) 
(4260) 

(3700) (5000) 
(3400) (5210) 
(3500 

J3 (9200) (4900) 
(2670) (5130) 
(5000) 

(8100) (3600) 
(5000) (5800) 
(4900)  

(7900) (2300) 
(4280) (2700) 
(3370) 

(5290) (2960) 
(2750) (3000) 
(3500) 

(5210) (4780) 
(3250) (4800) 
(5000) 

J4 (9080) 7420) 
(4480) (3520) 
(7720) 

(9000) (6030) 
(3390) (3500) 
(5500) 

 (8000) (2900) 
(3520) (5100) 
(5690) 

(4360) (3450) 
(2520) (4300) 
(4260) 

(2700) (5000) 
(3400) (5210) 
(3500 

J5 (9200) (2670) 
(5130) (4900) 
(5000) 

(5800) (4900) 
(7100) (3600) 
(5000) 

(7100) (2300) 
(4280) (2700) 
(3370) 

(5290) (2960) 
(2750) (4000) 
(8500) 

(5210) (4780) 
(3250) (3800) 
(5000) 

J6 (8080) (2420) 
(4480) (3520) 
(2720) 

(8000) (9030) 
(3390) (3500) 
(5500) 

(5100) (5690) 
(5700) (2900) 
(3520) 

(4760) (3450) 
(2520) (4500) 
(4260) 

(3700) (3000) 
(3400) (5210) 
(3500) 

J7 (5200) (4900) 
(2670) (5130) 
(6000) 

(5800) (4900) 
(3100) (3600) 
(5000) 
(3000) (2030) 
(3390) (3500) 
(5500) 

(3900) (2300) 
(4280) (2700) 
(3370) 
(5100) (5690) 
(5000) (2900) 
(3520) 

(5290) (2960) 
(2750) (3000) 
(4500) 
(10060) (3450) 
(2520) (4000) 
(4260) 

(5210) (4780) 
(3250) (6800) 
(5000) 
(3700) (4000) 
(3400) (5210) 
(3500 

J8 (4080) (2420) 
(4480) (3520) 
(2720) 

J9 (11200) (4900) 
(2670) (5130) 
(3000) 

(5800) (4900) 
(5100) (3600) 
(5000) 

(4900) (2300) 
(4280) (2700) 
(3370) 

(5290) (2960) 
(2750) (3000) 
(2500) 

(5210) (4780) 
(3250) (5800) 
(5000) 

J10 (2080) (2420) 
(4480) (3520) 
(2720) 

(3000) (2030) 
(3390) (3500) 
(5500) 

(5100) (5690) 
(4000) (2900) 
(3520) 

(2060) (3450) 
(2520) (4000) 
(4260) 

(2700) (3000) 
(3400) (5210) 
(3500 

J11 (3200) (4900) 
(2670) (5130) 
(3000) 

(5800) (4900) 
(2100) (3600) 
(5000) 

(2900) (2300) 
(4280) (2700) 
(3370) 

(5290) (2960) 
(2750) (3000) 
(2500) 

(5210) (4780) 
(3250) (3800) 
(5000) 

 

Performance measurement is done by measuring the percentage of total energy reduction and the 

makespan reduction of each algorithm.  

We use the same fitness function as fallowing:   

𝑟𝑇𝑊𝑡𝑙 : Reduction percentage of total workload in l iteration. 

𝑟𝑇𝑊𝑡𝑙 =
𝑇𝑊𝑡𝑙

𝑇𝑊𝑡0
×%                                                                                                                (3-25) 

𝑟𝑇𝑇𝐸𝑙   : Reduction percentage of total energy in l iteration 

𝑟𝑇𝑇𝐸𝑙 =
𝑇𝑇𝐸𝑙

𝑇𝑇𝐸0
×%                                                                                                                 (3-26) 

𝑟𝐶𝑚𝑎𝑥𝑙 =
𝐶𝑚𝑎𝑥𝑙
𝐶𝑚𝑎𝑥0
×%                                                                                                             (3-27) 

𝑟𝐶𝑚𝑎𝑥𝑙: Reduction percentage of makespan in l iteration 
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𝑟𝑇𝐸𝑖𝑑 𝑙 =
𝑇𝐸𝑖𝑑 𝑙

𝑇𝐸𝑖𝑑 0
× %                                                                                                             (3-28) 

𝑟𝑇𝐸𝑖𝑑 𝑙 : Reduction percentage of non-productive energy in l iteration 

The average reduction AvRl 

𝐴𝑣𝑅𝑙 =
𝑟𝑇𝑊𝑡𝑙+𝑟𝑇𝑇𝐸𝑙+𝑟𝐶𝑚𝑎𝑥𝑙+𝑟𝑇𝐸𝑖𝑑 𝑙

4
                                                                                      (3-29) 

Where l: iteration number l = 1... L total number of iteration  

TE0 is the average of total energy at first five iterations and TEl is the total energy of l iteration, as the 

same method was applied to test makespan reduction; here C0 is the average of makespan at the first 

five iterations and Cl where l is number of iteration l = 1,..., L , L is total number of iteration.  

The four algorithms were checked for the same job shop problem (3× 3) up to (12× 12). Figure 3-23 

illustrate the makespan reduction and figure 3-24 the total energy reduction. From the figure 3-23 

single population SPGA is faster to reduce total work load and makespan by comparing it with multi 

populations GA. SPGA design to reduce total energy by reduction makespan and total idle time to 

reduce non-productive energy that mean the reduction of energy is secondary objective, but MPGA 

have the best results for energy reduction. But when it work with multi objective the other genetic 

best reduce both energy and total work load  

 

Figure 3-23 Total work load % reduction 
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Figure 3-24 Total energy % reduction 

As showmen in the figure 3-24 the maximum energy reduction in MPGA2 only with threshold 

operation but this genetic algorithm needs a long time to finish here iteration accuse to the internal 

threshold cycle, we can reduce this time by used elitism strategy but this strategy also reduce energy 

and makespan reduction. 

Comparison of the four algorithms is illustrated by the figure 3-25. Table 3-12 explain the general 

results of these genetic algorithms 

  

Figure 3-25 Total energy and makespan of Job shop problem 6×6 n=6 
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Table 3-12 Summaries of all genetic algorithms 

Method  Objectives  Indicators Number of 

populations 

Limitation  

1 SPGA  Total 

energy  

Makespan  

Reduction of total energy by reduction 

total machine work load and idle time. 

Only time 

population  

Operation energy 

not effect  

MPGA1 Total 

energy  

Makespan 

Directly reduction operation energy 

reduction indirectly by reduction total 

machine work load and idle time. 

Processing 

energy and 

processing 

time  

Small and medium 

JS up to 6×6  

MPGA2 

tho  

Total 

energy  

Makespan 

Directly reduction operation energy 

reduction indirectly by reduction total 

machine work load and idle time. 

Processing 

energy and 

processing 

time  

Genetic processing 

time CPU very 

long  

MPGA2 

 tho &E 

Total 

energy  

Makespan 

Directly reduction operation energy 

reduction indirectly by reduction total 

machine work load and idle time. 

Processing 

energy and 

processing 

time  

Results have less 

accurate and 

processing time 

than CPU of 

MPGA2 tho 
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4 Mixed Integer and Linear constraint programming Job Shop 

Energy Optimization MILCE 

4.1 Introduction  

Mixed Integer Programming (MIP) is often the default approach for solving scheduling problems. 

Mixed Integer Programming (MIP) has been widely applied to scheduling problems and it is often the 

initial approach to attack a new scheduling problem. For example, of the 60 research papers published 

in the 18 Journal, use MIP, more than any other technology. Given this popularity, together with the 

improvements in commercial MIP technology (Hojae L., 2017, Kooli A., 2014; Wang T., 2015, 

Karimi S., 2017 ), it is valuable to understand how various MIP model can be used for scheduling 

optimization. In this chapter we developed, a mixed integer linear programming (MILP) and 

constraint programming (CP) job shop scheduling, to minimize total energy consumption, as well as 

total weighted tardiness and idle times of the machines. A case study based on a modified 12×12 job 

shop is presented to show the effectiveness and to prove the feasibility of the model. 

In the implementation phase, we will present the development environment, the software used, 

and then we present our implementation approach. 

4.2 Development environment 

4.2.1 Constraint Programming 

Constraint programming (CP) is a programming paradigm in computing (Altinakar S.,2016,Hinder 

O., 2017, Rossi R., 2015), where relationships between variables are expressed in terms of constraints 

(equations) (Olarte C., 2015). In computer science, constraint programming is a programming model 

where relationships between variables are mentioned in the form of constitutions (Goel V., 2015). 

Constraint programming methods are different from usual programming languages in that they do not 

specify a step or series of steps to implement them, but the properties of the looked-for solution. It is 

currently used as a software technology for the description and resolution of particularly difficult 

combinatorial problems, especially in the areas of planning and scheduling tasks (Shen L., 2018). 

4.2.2 Linear Programming 

Linear programming (LP) is a basic and important method that helps decision-makers to make correct 

decisions in a scientific way (Kemmoé S., 2015). Linear programming is part of mathematical 

programming (Yamanaka N., 2014), including linear and nonlinear programming; mathematical 

programming is in turn part of a more comprehensive subject, called operations research (Tanaka 

S.,2012), all of which concern management, transportation, agriculture, industry. Here, we seek to 

minimize linear multi-objective function placed into linear mathematical constraints as well. Our 

linear optimization problem requires minimizing a linear function on a convex polyhedron. The 
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function that is minimized as well as the constraints are described by linear expressions, hence the 

name given to these problems. Linear Optimization (LO) is the discipline that studies these problems. 

It is also called linear programming, a term introduced by George Dantzig around 1947(George 

B.D.1978), but this name tends to be abandoned because of possible confusion with the notion of 

computer programming. As shown in figure 4-1 it must have the following basics: 

1. The existence of an objective or goal to be reached such as achieving greater profit or 

achieving a minimal cost or economy in time or effort and more. This is expressed as a linear 

mathematical dimension that we call the goal or profit continuum in the case of maximization, 

or the consequent loss in case of minimization. 

2. The presence of a large number of variables or unknowns that must determine their values to 

reach the following end required, and these are called variables decision. 

3. There are linear correlations between these variables and these relationships are called 

constraints. 

The general formal of LP   min or max 𝑧 = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 +⋯𝑐𝑛𝑥𝑛) 

Subject to 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 +⋯+ 𝑎1𝑛𝑥𝑛(≤,=,≥)𝑏1 

 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 +⋯+ 𝑎2𝑛𝑥𝑛(≤,=,≥)𝑏2  

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + 𝑎𝑚3𝑥3 +⋯+ 𝑎𝑚𝑛𝑥𝑛(≤,=,≥)𝑏𝑚  

 Z is the objective function.  

 x1, x2,…, xn are the decision variables.  

 The expression (≤, =, ≥) means that each constraint may take any one of the three signs. 

 cj (j = 1,…, n) represents the per unit cost or profit to the jth variable.  

 bi (i = 1,…, m) is the requirement or availability of the ith constraint. 

 x1 , x2 ,…, xn ≥ 0 is the subset of non-negative restriction on the LP.  

 

 

 

 

 

 

Figure 4-1 Linear programming 

Problem area  

Subjective   

        Problem area  

Subjects  
Optimum  

Objective  Fun 
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In real life problems, negative decision variables have no valid meaning. In this module we shall only 

discuss cases in which the constraints are strictly inequalities (either have a ≤ or ≥). 

4.2.3 Mixed Integer Programming (MIP) 

A mixed integer programming (MIP) issue is one where a portion of the choice factors are compelled 

to be whole number esteems (Pochet Y., Laurence A. W., 2006) “entire numbers, for example, -1, 

0,1,2, and so forth at the ideal arrangement”. The utilization of whole number factors extraordinarily 

extends the extent of valuable streamlining issues that can characterize and comprehend (Schultz R., 

2003). An extraordinary case is a choice variable X1 that must be either 0 or 1 at the arrangement. 

Such factors are called 0-1 or paired whole number factors and can be utilized to display yes/no 

choices, for example, selecting  or not machine m to carry operation n of job j. Indeed, even with 

exceedingly complex calculations and present day supercomputers, there are models with only a 

couple of hundred number factors that have never been understood to optimality. This is on the 

grounds that numerous mixes of particular whole number esteems for the factors must be tried, and 

every blend requires the arrangement of a "typical" straight or nonlinear improvement issue. The 

quantity of blends can rise exponentially with the extent of the issue. 

4.2.4 Mixed Integer and Constraint Programming  

Since MIP and CP issues are non-raised, they should be understood by some sort of deliberate and 

conceivably comprehensive hunt. The "work of art" (Schultz R., 2003) technique for tackling these 

issues is called Branch and Bound. This strategy starts by finding the ideal answer for the 

"unwinding" of the issue without the whole number limitations “through standard straight or 

nonlinear enhancement techniques” (Ghimire D., Lee J ,2011). On the off chance that in this 

arrangement, the choice factors with number imperatives have whole number esteems, at that point no 

further work is required(James C., 2018). 

Forefront Systems streamlining agents understand blended whole number and limitation programming 

issues utilizing these strategies: 

 Branch and Bound  

 Branch and cut  

 Strong Branching  

For a clarification of these sorts of issues, please observe Mixed-Integer and Constraint Programming.  

4.2.4.1 Branch and Bound  

Branch and Bound technique to tackle MIP issues. Its speed constraints make it appropriate just for 

issues with a modest number (maybe 50 to 100) (Pochet Y., Laurence A. W., 2006) whole number 
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factors. The Branch and Bound method tries to explore intelligently all admissible solutions by 

eliminating the search space subsets of solutions that cannot provide an optimal solution. Stidsen T., 

(2014) developed branch and bound method for solving a subclass of bi-objective mixed integer 

programming problems to find the full subset of non-dominated points, lower bounds correspond to 

solutions of a single-objective scalarized version of the original bi-objective problem.. The Premium 

Solver and Premium Solver Platform utilize an expanded branch and bound technique that backings 

the all different imperative as a local sort, and in addition diminished cost settling for whole number 

factors. Introduced a general-purpose branch-and-bound algorithm for bi-objective mixed integer 

linear programming, and the continuous variables may appear in both objective functions. Research 

can be represented by the decomposition of a set of solutions (figure 4-2). It is this representation that 

comes with the name "tree search method".  

 Each sub-problem created during exploration symbolizes a node from a tree. The root node 

represents the initial problem.  

 The branches of the tree symbolize the separation process. They represent the relationship 

between nodes. 

 When separated, the "Father" node creates a set of "child" nodes, this method represents sub 

solution rout or solution level. 

 The nodes refer to solution method, where it branching between the upper and lower bounds  

 

 

 

 

 

 

 

 

 

 

       

Figure 4-2 Branch-bound method 

The shaded node represents the optimum possible solution with different solution levels until Reach 

the goal. 

4.2.4.2 Branch and cutting  

The branch and cutting is a way to improve the synthesis of linear programming to solve the right 

problems. Lower bound can be defined as a polynomially solvable multi-objective problem 

Starting nod  

Father level I sub solution nod I 

Child level or Father level II sub solution nod II 

Child level or Father level n sub solution nod n 
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(Jozefowiez N., 2012), they developed the lower and upper bounds by defining the lower and upper 

bounds as sets of points in the objective spaces as opposed to single values. Effectively calculate the 

lower limit, can be express it as the solution of a pseudo-polynomially solvable multi-objective 

problem. "Cuts," is a method to reduce the span of the attainable locale for the advancement sub 

problems that must be illuminated, without killing any potential number arrangements (Letchford A., 

Lodi A., 2003). The branch-and-cut procedure manages a search tree consisting of nodes (Toussaint 

H., (2013) the branch and cut is a branch and bound with dynamic generation of constraints. 

4.2.4.3 Strong Branching  

Strong Branching is a technique used to assess the effect of stretching on every number variable on 

the goal work “its pseudo cost”, (Jozefowiez N., 2012). by playing out a couple of emphases of the 

Dual Simplex strategy.( Danna E., 2007) Such pseudo costs are utilized to manage the decision of the 

following sub problem to investigate, and the following number variable to branch upon, all through 

the Branch and Bound process.  

4.2.5 ILOG CPLEX 

ILOG CPLEX (more commonly known as "CPLEX") is an IT optimization tool. Its name refers to the 

C language and the simplex algorithm. It consists of an executable called "interactive CPLEX" and a 

function library that can interface with different programming languages C, C ++, C # and Java. 

ILOG is a French company; publisher of management software, this computer company bought in 

1997 the activity of CPLEX optimization. Our construction processes are: 

 Pre-processing; first to read a text file that represents the instance to solve, this file represent the 

parameters and variables of power and time. In the coding phase we used C ++. This software 

started in 1983; it was an improvement of the C language. C ++ is a programming language that 

allows programming under multiple paradigms, procedural programming, object-oriented 

programming and generic programming, it is widely used. Nobody has the C++ language, it is 

free. Programming in C++ has the phases:  

 Edit the program with a text editor. 

 Compile the program with (g++).The main advantages of C++ are: large number of features, 

performances of C, ease of use of object languages, portability of the source files, ease of 

conversion of C programs into C++, and, in particular, ability to use all the features of C language, 

and increased error control. The characteristics of C++ make it an ideal language for certain types 

of projects. It is essential in the realization of major programs. The current compiler 

optimizations also make it a favourite’s language for those looking for performance. Finally, this 

language is, with the C, ideal for those who must ensure the portability of their programs at the 

source files (not executables).  
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 Node and variable selection: And then create by C programming a new text file containing the 

same data of first instance with the addition of new data such as, number of machines, number of 

jobs, and number of operations to each job, the energy matrixes (operation energy, Start up Time 

of each machine, deduced from each job, the operation time matrix and the sting time matrix. At 

the first part (C program) we create total possible rote to solve scheduling problem with different 

probability solutions for each job and machine, where the nodes represent machines and arrows 

possibility to operate the job in the machines figure 4-3  

 

 

 

 

 

 

 

Figure 4-3 Total possible solution 

Once the instance is ready, a second file will be created containing the complete model to solve by 

CPLEX, where searches step by step the optimum sequences of each job with minimum intersection 

with other jobs to ensure the reduction idle time. This method similar to travelling in the roads, but we 

have two differences objectives there are total energy and total workload time with minimized 

makespan of total machines. 

4.3 Mathematical model, constraints and objectives  

4.3.1 Job shop 

Firstly, we consider minimizing the following six objectives: 

1. (𝐶𝑚𝑎𝑥), the makespan, i.e. the completion time on all machines in job shop scheduling  

2. (𝑇𝑊𝑡), the total working time over all machines. 

3. (TTid) , the total non-productive time  for the job shop scheduling  

 Notations: 

ℳ: a finite set of 𝑀 machines ;ℳ = {𝑀𝑚}𝑚=1𝑀  

ℐ: a finite set of job J jobs, ℐ = {𝐽𝑗}𝑗=1
𝐽  

𝒪𝑗: a finite set of 𝑁𝑗ordered operation of Jj, 𝒪𝑗 = {𝑂𝑗,𝑛}𝑛=1
𝑁𝑗 ;  

J1J

1 

J2 

J2 
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 𝑂𝑚,𝑗,𝑛 : n-th operation of job 𝐽𝑗 on machine 𝑀𝑚 

𝒮: a finite set of all feasible scheduling plans; 𝒮 = {𝑠} 

𝑡𝑠𝑚: start up time of machine 𝑀𝑚. 

𝑡 𝑜𝑓𝑓 𝑚: turn off time of machine 𝑀𝑚. 

𝑡𝑝𝑚,𝑗,𝑛: processing time of operation Om,j,n on machine 𝑀𝑚 

𝑡𝑖𝑑 𝑚,𝑗,𝑛: idle time between Om,j′,n′ and Om,j,𝑛 on machine 𝑀𝑚. 

𝑡𝑠𝑝
𝑚,𝑗′𝑗,𝑛′𝑛

: setup time of 𝑂𝑚,𝑗,𝑛 on 𝑀𝑚 depends on machine and precedes job  

𝑆𝑚,𝑗,𝑛: starting time of 𝑂𝑚,𝑗,𝑛 on 𝑀𝑚 

𝐶𝑡𝑚,𝑗,𝑛 : completion time of 𝑂𝑚,𝑗,𝑛 on machine 𝑀𝑚 

• Decision variables 

𝑥𝑚,𝑗,𝑛 = {
1 if the 𝑛 − 𝑡h operation of 𝐽𝑗 is performed on 𝑀𝑚 

0              otherwise 
 

𝛽𝑚,𝑗′𝑗,𝑛′𝑛 = {
1 if 𝑂𝑚,𝑗′,𝑛′  precedes 𝑂𝑚,𝑗,𝑛 on 𝑀𝑚 

0              otherwise 
 

 Job shop objective function computation 

𝐶𝑡𝑚,𝑗,𝑛 = 𝑆𝑚,𝑗,𝑛 + 𝑡𝑜𝑚,𝑗,𝑛                                                                                                                              (3-1) 

(𝐶𝑚), the completion time on the machine 𝑀𝑚  

𝐶𝑚 = 𝑚𝑎𝑥𝑗,𝑛{𝐶𝑡𝑚,𝑗,𝑛}                                                                                                                                  (3-2) 

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑚,𝑗,𝑛 {𝐶𝑡𝑚,𝑗,𝑛}                                                                                                                          (3-3) 

𝑡𝑜𝑚,𝑗,𝑛 = 𝑡𝑝𝑚𝑗,𝑛,𝑥𝑚,𝑗,𝑛+ 𝑡𝑠𝑝𝑚,𝑗′𝑗,𝑛′𝑛 𝛽𝑚,𝑗′𝑗,𝑛′𝑛     n>1                                                                       (3-4) 

(𝑊𝑡𝑚), the total working time spent at machines 𝑀𝑚. 

𝑊𝑡𝑚 = ∑ ∑ 𝑡𝑜𝑚,𝑗,𝑛  𝑥𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1

𝐽
𝑗=1                                                                                                                 (3-5) 

𝑇𝑊𝑡 = ∑ 𝑊𝑡𝑚
𝑀
𝑚=1                                                                                                                                        (3-6) 

(𝑇𝑖𝑑𝑚), the non-productive time, i.e. idle time, for machine 𝑀𝑚 

𝑇𝑡𝑖𝑑 𝑚 = 𝐶𝑚 −𝑊𝑡𝑚                                                                                                                                    (3-7) 

𝑇𝑇𝑡𝑖𝑑 𝑡 = ∑ 𝑇𝑡𝑖𝑑 𝑚
𝑀
𝑚=1                                                                                                                                  (3-8) 
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 Job shop Constraints  

 A machine cannot process more than one operation at a time: 

∑ 𝑥𝑚,𝑗,𝑛 ∈ 
𝐽
𝑗=1 {0,1}∀ 𝑚, 𝑛                                                                                                                          (3-9) 

 A job can process more than on one machine at the same time. 

∑ 𝑥𝑚,𝑗,𝑛 ∈ 
𝑀
𝑚=1 {0,1} ∀, 𝑗, 𝑛                                                                                                                       (3-10) 

 𝐴n operation 𝑂𝑚,j,n is immediately started in machine 𝑀𝑚 when the previous operation of the job 

𝑂𝑚′,𝑗,𝑛−1 has been completed and that the previous operation on the machine 𝑂𝑚,𝑗′,𝑛′ has been 

completed: 

𝑆𝑚,𝑗,𝑛 = {
𝑚𝑎𝑥𝑚′,𝑗′,𝑛′ {𝐶𝑡𝑚,𝑗′,𝑛′ .𝛽𝑚,𝑗′𝑗,𝑛′𝑛, 𝐶𝑡𝑚′,𝑗,𝑛−1. 𝑥𝑚′,𝑗,𝑛−1}  𝑖𝑓  𝑛 > 1 

𝑚𝑎𝑥𝑚′,𝑗′,𝑛′ {𝐶𝑡𝑚,𝑗′,𝑛′ .𝛽𝑚,𝑗′𝑗,𝑛′𝑛}               𝑖𝑓 𝑛 = 1 
if 𝑥𝑚,𝑗,𝑛 = 1        (3-11) 

4.3.2 Energy Consumption  

 Energy parameters  

𝑃𝑠𝑚: starting power in machine 𝑀𝑚 

𝑃𝑝𝑚,𝑗,𝑛: processing power of operation 𝑂𝑚,𝑗,𝑛 of job j in machine m. 

𝑃𝑏𝑚: power Basic of machine 𝑀𝑚.  

𝑃𝑠𝑝𝑚,𝑗′𝑗,𝑛′𝑛: setup power of operation 𝑂𝑚,𝑗,𝑛 of job j in machine 𝑀𝑚 (change machine setting from 

𝑂𝑚,𝑗′,𝑛′   to 𝑂𝑚,𝑗,𝑛). 

𝑃𝑜𝑓𝑓𝑚: power off to shutdown of machine 𝑀𝑚. 

 Energy objectives  

Minimizing total energy consumption in all machines and non-operation energy at idle time. 

Min 𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑇𝑇𝐸 = ∑ 𝐸𝑚
𝑀
𝑚=1                                                                 (3-12) 

Min Total non-operative energy 𝑇𝑇𝐸𝑖𝑑 = ∑ 𝑇𝐸𝑖𝑑 𝑚
𝑀
𝑚=1                                                      (3-13) 

Total energy consumed during production schedule, TTE, consists of flowing energy according our 

energy model for each machine. 

 𝐸𝑠𝑚: starting energy of machine 𝑀𝑚. 

 𝐸𝑜𝑓𝑓𝑚: turn off energy of machine 𝑀𝑚. 

 𝐸𝑠𝑏𝑚: standby energy of machine 𝑀𝑚. 

 𝐸𝑝𝑚,𝑗,𝑛: processing energy of operation 𝑂𝑚,𝑗,𝑛 of 𝐽𝑗 in machine 𝑀𝑚. 
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 𝐸𝑜𝑚,𝑗,𝑛: energy consumed during operation 𝑂𝑚,𝑗,𝑛 of 𝐽𝑗 in machine 𝑀𝑚. 

 𝐸𝑖𝑑𝑚,𝑗,𝑛: idle time Energy between two jobs 𝐽𝑗′𝑎𝑛𝑑 𝐽𝑗 in machine 𝑀𝑚. 

 𝐸𝑠𝑝𝑚,𝑗′𝑗,𝑛′𝑛: setup Energy of 𝑂𝑚,𝑗,𝑛 in machine 𝑀𝑚. 

(machine setting change from 𝑂𝑚,𝑗′,𝑛′   to 𝑂𝑚,𝑗,𝑛). 

 𝐸𝑏𝑚,𝑗,𝑛: basic non-productive energy of machine 𝑀𝑚 during operation 𝑂𝑚,𝑗,𝑛. 

 𝑇𝐸𝑖𝑑 𝑚  : total idle-time energy consumed machine 𝑀𝑚. 

 𝑇𝑇𝐸𝑖𝑑  : total Idle-time energy consumed by all machine 𝑀𝑀.in job shop problem.  

 𝑇𝐸𝑠𝑝 𝑚: total set-up energy consumed by machine 𝑀𝑚. 

 𝑇𝑇𝐸𝑠𝑝: total set-up energy consumed by all machine 𝑀𝑚. 

 𝑇𝐸𝑝 𝑚: total process energy consumed by machine 𝑀𝑚. 

 𝑇𝐸𝑜 𝑚: total processing energy consumed by machine 𝑀𝑚. 

 𝑇𝑇𝐸𝑝: total processing energy consumed by all machine 𝑀𝑚. 

 𝑇𝐸𝑚: total energy consumed by machine  𝑀𝑚. 

 𝑇𝑇𝐸: total energy consumed by the workshop 

 Mathematical models  

Energy consumption models consider three dynamic energy, setup energy, processes energy and 

idle energy (non-productive energy), and two static energy, turn on energy and turn off energy. 

In classical energy models, processing power on a machine, 𝑃𝑝 𝑚, is fixed independently of 

operation, and setup energy is constant. 

𝐸𝑚 = 𝐸𝑠𝑚 + 𝑇𝐸𝑖𝑑 𝑚 + 𝑇𝐸𝑝 𝑚 + 𝐸𝑝𝑠𝑝 + 𝐸𝑜𝑓𝑓𝑚 .                              (3-14) 

𝐸𝑠𝑚 = 𝑃𝑠 𝑚𝑡𝑠 𝑚.                                                                                                                             (3-15) 

𝑇𝐸𝑝 𝑚 = ∑ ∑ 𝐸𝑝 𝑚,𝑗,𝑛𝑥𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1

𝐽
𝑗=1  .            𝐸𝑝 𝑚,𝑗,𝑛 = 𝑃𝑝 𝑚𝑡𝑝 𝑚,𝑗,𝑛  .                                           (3-16) 

Idle energy is calculated as the product of basic power and idle time (Equ. 3-7) for the machine: 

𝑇𝐸𝑖𝑑 𝑚 = 𝑃𝑏 𝑚𝑇𝑡𝑖𝑑 𝑚                                                                                                                     (3-17) 

𝑇𝐸𝑖𝑑 𝑚 = 𝑃𝑏 𝑚(𝐶𝑚 −𝑊𝑡𝑚)                                                                                                          (3-18) 

𝐸𝑜𝑚,𝑗,𝑛 = (𝑃𝑝𝑚,𝑗,𝑛 + 𝑃𝑏𝑚)𝑡𝑝 𝑚,𝑗,𝑛                     (3-19) 

𝑇𝐸𝑠𝑝𝑚 = ∑ ∑ ∑ ∑ (𝑃𝑠𝑝
𝑚,𝑗′𝑗 ,𝑛′𝑛

+ 𝑃𝑏𝑚)𝑡𝑠𝑝  𝑚,𝑗′𝑗,𝑛′𝑛
𝑁𝑗
𝑛=1

𝑁
𝑗′

𝑛′=1
𝐽
𝑗=1  𝛽𝑚,𝑗′𝑗,𝑛′𝑛

𝐽
𝑗′=1                              (3-20) 

𝑇𝐸𝑜 𝑚 = ∑ ∑  𝐸𝑜 𝑚,𝑗,𝑛𝑥𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1

𝐽
𝑗=1 = ∑ ∑ (𝑃𝑝𝑚,𝑗,𝑛 + 𝑃𝑏𝑚)𝑡𝑝 𝑚,𝑗,𝑛 𝑥𝑚,𝑗,𝑛

𝑁𝑗
𝑛=1

𝐽
𝑗=1                            (3-21)  

𝐸𝑜𝑓𝑓 𝑚 = 𝑃𝑜𝑓𝑓𝑚 𝑡𝑜𝑓𝑓𝑚                                                                                                                     (3-22) 
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𝑇𝑇𝐸 = ∑ 𝑇𝐸𝑚
𝑀
𝑚=1                  (3-12) 

𝑇𝐸𝑚 = 𝑃𝑠 𝑚𝑡𝑠 𝑚 + 𝑇𝐸𝑠𝑝𝑚 +  𝑇𝐸𝑜 𝑚 + 𝑇𝐸𝑖𝑑 𝑚 + 𝑃𝑜𝑓𝑓 𝑚𝑡𝑜𝑓𝑓 𝑚            (3-23) 

𝑇𝐸 = ∑ 𝑃𝑠 𝑚𝑡𝑠 𝑚
𝑀
𝑚=1 + ∑ ∑ ∑ ∑ ∑ (𝑃𝑠𝑝

𝑚,𝑗′𝑗,𝑛′𝑛 
+ 𝑃𝑏𝑚

𝑁𝑗
𝑛=1

𝑁
𝑗′

𝑛′=1
𝐽
𝑗=1

𝐽
𝑗′=1

𝑀
𝑚=1 )𝑡𝑠𝑝

𝑚,𝑗′𝑗,𝑛′𝑛
𝛽𝑚,𝑗′𝑗,𝑛′𝑛 +

∑ ∑ ∑ (𝑃𝑝  𝑚,𝑗,𝑛 + 𝑃𝑏 𝑚)𝑡𝑝 𝑚,𝑗,𝑛 
𝑁𝑗
𝑛=1

𝐽
𝑗=1

𝑀
𝑚=1 𝑥𝑚,𝑗,𝑛 + ∑ 𝑃𝑏 𝑚(𝐶𝑚 −𝑊𝑡𝑚)

𝑀
𝑚=1 + ∑ 𝑃𝑜𝑓𝑓 𝑚

𝑀
𝑚=1 𝑡𝑜𝑓𝑓 𝑚           

                                                                                                                                                     (3-24) 

4.4 Minimize Energy Constrain Programming ECP 

The problem can be formulated entirely using constraint programming (CP). However, these models 

are difficult to resolve.(Al-Qaseer F. 2016). We firstly consider to the objectives of the problem (eq. 

3-12) or final formula (eq3-24) refers to minimizing total energy consumption all machine, which is 

depended on dynamic and static energy consumed in each machine. Assuming that, statics energise 

are  𝐸𝑠 𝑚 ,and 𝐸𝑜𝑓𝑓𝑚 , which are constant in each machine, the dynamic energies are the consumed 

energy to be minimized.  

Dynamic energy is the sum of processing energy 𝐸𝑝𝑚,𝑗𝑛, setup energy 𝐸𝑠𝑝
𝑚,𝑗′𝑗,𝑛′𝑛

, and non-productive 

energy during idle time TEidm.  

1. Processing energy 𝐸𝑝𝑚,𝑗𝑛 is the energy consumed during processing the operation 𝑂𝑚,𝑗,𝑛 of 

job 𝐽𝑗 in machine 𝑀𝑚, processing energy constraint with min processing power 𝑃𝑝𝑚,𝑗,𝑛 and 

min processing time 𝑡𝑝𝑚,𝑗,𝑛. 

2. Setup energy 𝐸𝑠𝑝
𝑚,𝑗′𝑗,𝑛′𝑛

is the energy consumed to prepare the operation 𝑂𝑚,𝑗,𝑛 of job 𝐽𝑗 in 

machine 𝑀𝑚 dependent on setup power 𝑃𝑠𝑝
𝑚,𝑗′𝑗,𝑛′𝑛

 and setup time 𝑡𝑠𝑝
𝑚,𝑗′𝑗,𝑛′𝑛

, that are 

constrained by the sequence of jobs in machine (𝑂𝑚,𝑗′,𝑛′  precedes 𝑂𝑚,𝑗,𝑛 on 𝑀𝑚). 

3. Non-productive energy is the energy consumed during idle time 𝑇𝐸𝑖𝑑𝑚. The summation of 

energy during idle time represents the second energy objective (eq. 3-13) that depends on 

basic machine power 𝑃𝑏𝑚 , which is constant for each machine and total idle time of machine 

Ttidm,( eq 3-7).  

4. Total idle time of machine and total workload in machine 𝑊𝑡𝑚 (eq 3-5) constrain the 

completion time on the machine 𝑀𝑚 (𝐶𝑚) (eq 3-2). 

5.  Completion time 𝐶𝑚, on the machine 𝑀𝑚, is constrained by choosing minimum operating 

time𝑡𝑜𝑚,𝑗,𝑛, sum of processing time 𝑡𝑝𝑚,𝑗,𝑛 and setup time 𝑡𝑠𝑝
𝑚,𝑗′𝑗,𝑛′𝑛

. Setup time and 𝑆𝑚,𝑗,𝑛 

depends on the selection of sequence of jobs in machine (𝑂𝑚,𝑗′,𝑛′  ≺  𝑂𝑚,𝑗,𝑛 on 𝑀𝑚). 
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On the other hand job shop objectives are Cmax , TWt, and TTtid (eq 3-3,3-6 and 3-8). 𝐶𝑚𝑎𝑥 relies 

on 𝐶𝑚 , 𝑇𝑊𝑡 relies on 𝑊𝑡𝑚 and 𝑇𝑇𝑡𝑖𝑑 relies on 𝑇𝑡𝑖𝑑𝑚. 

By these constraints (with accord to general job shop constraints (3-9,3-10,and 3-11) job search to 

machine with minimum processing energy and time as see in figure (4-4), with route solution figure 

(4-5). 
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Figure 4-4 Time and energy objectives and constraint (objectives and constraint’s map) 

 

 

 

𝑇𝐸 →  𝑇𝐸𝑚

𝑀

𝑚=1

 

𝑠𝑡𝑎𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦  
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Figure 4-5 Route solutions 

The first level node refers to job and the second level refers to the machines operating the first 

operation and so on for third and fourth levels and final product in last level  

4.5 A Mixed Integer Linear Programming Minimized Energy MILPE 

MILPE methods use constraint programming and linear programming. In this method, in order to 

understand the relationship between the jobs and machine, we use two branch and bound levels as see 

in (fig 4-6).  

At the fist branching operation of job searches to machine with minimum processing energy and 

processing time. 

In the second branching machine searches to job, which can be process with minimum processing 

energy and minimum processing time. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Job  

 

Machines for O1 

Machines for O2 

Machines for O3 

 

Final Product  
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Figure 4-6 MILP and CP flow chart  

4.5.1 Classification trees  

In genetic algorithm, we start the optimization process choosing candidate solutions, but in constraint 
programing (CP) and mixed Integer linear programming (MILP), we first design a classification tree 
to understand the relationship between the machines and the jobs. Two types of trees are using; Jobs-
Operations-Machines (J-O-M), and Machines-Operations-Job (M-O-J). 

 

Level I Jobs Operations  

Energy Branching  Time Branching  

Machine operation Re-Branching   

Candidates’ selection   

Selection & Sorting constraints   Selection & Sorting constraints   

Operations Energy tree Operations Time tree 

Start 

Energy & Time parameters  

Determine Obj. Fun.   

Level II  
        Branching 
Machine Operation  
 
 

 
Dynamic Programming 
& CPLEX   

Re-formula Obj. Fun. 

Job scheduling 

contraints 

Energy Constraints 

 

Dynamic Energy  
Ep & Esp 

Static Energy  
Eb& Cm 

Optimum Scheduling 
Min Cm,Cmax & Idle time  

Optimum Energy 

Min Ep & Esp 

Total Energy, Makespan & Total Work Load   
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4.5.1.1  Jobs-Operations-Machines trees (J-O-M) 

In this method, the Jobs search for machines from minimum to maximum processing time and 
processing energy. It is similar to horizontal research in genetic algorithm. It is called job-operation-
machine (J-0-M). Here the jobs represent the routes, the operations represent the levels and machines 
represent the nodes as shown in figure 4-7. This method gives us a clear vision to understand the 
effect of machines to process an operation of job and the relationship between these machines to 
process an operation of job. 

Figure 4-7 Jobs-operations-Machines relationship (roots-levels-nods) 

 Notation  
𝑢𝑗,𝑛: subset of machine 𝑀𝑚 to process the operation 𝑂𝑗,𝑛 of the job 𝐽𝑗, 𝑢𝑗,𝑛 ⊆ℳ.(as see in 
figure 4-7) 
𝑀′ : Total number of machines in subset 𝑢𝑗,𝑛 
ℎ1𝐸𝑚,𝑗,𝑛: classification factor of machine 𝑀𝑚 according to processing energy to process 𝑂𝑗,𝑛; 
ℎ1𝑡𝑚,𝑗,𝑛 : classification factor of machine 𝑀𝑚 according to processing time to process 𝑂𝑗,𝑛  
𝐷1𝑚𝑗,𝑛: The mean of classification factors of machine 𝑀𝑚 according to processing energy 
and processing time to process 𝑂𝑗,𝑛 of job  𝐽𝑗 in machine  𝑀𝑚, ( 𝑂𝑚,𝑗,𝑛). 
α : Energy weight  

α = {
0.5 <α ≤0.6      𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑎𝑐𝑐𝑜𝑟𝑑 𝑤𝑖𝑡ℎ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠    
0.4 ≤  α ≤ 0.5    𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑎𝑐𝑐𝑜𝑟𝑑 𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠         

       (4-1) 

To work closely with the energy objectives, energy weight α is greater than 0.5, and to work closely 
with the job shop objectives energy weight α must be less than 0.5. 

In this method, there are two sub trees. 

ℐ Set of jobs 

Machine (nods) 

Machines (nods) 

Machine (nods) 

M1 M2 
M3 

M2 M3 

M1 M2 M3 

ℐ 

M1 M3 L1 

L2 

L3 

L1: level 1 (1st operations of the jobs)  
L2: level 2 (2ed operations of the jobs)  
L3: level 3 (3th operations of the jobs) 

 

J1  
J2  

 

 

j1 
j2 

𝑢1,1 

𝑢1,3 

𝒖𝟏,𝟐 

𝑢2,1 

𝒖𝟐,𝟐 

𝒖𝟐,𝟑 
M3 

M1 M2 M3 

M1 

Roots  
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a) Processing Energy-Jobs-Operations-Machines (E-J-O-M) tree: in this method jobs and 
operations search to machine with minimum processing energy, the machines, in subset of 
machines 𝑢𝑗,𝑛, which process job operations are sorted from the minimum to the maximum 
according to their processing energy. This method is done for each job, operation by 
operation, until to final operation  𝑁𝑗 of job. For example 𝑂𝑗,𝑛 operation of job 𝐽𝑗 search to 
machine 𝑀𝑚 to process this operation with minimum processing energy, and machines in the 
subset 𝑢𝑗,𝑛 that are capable to process this operation are sorted from minimum to maximum 
according their processing energy. 

b) Processing Time-Jobs-Operations-Machines (T-J-O-M ) tree: in this method jobs operations 
search machine with minimum processing time, the subset of machines 𝑢𝑗,𝑛 that process job 
operations are sorted from the minimum to the maximum according to their processing time. 
This method is done with the job, operation by operation, until it reaches final operation 𝑁𝑗 of 
job. 

𝑠𝑜𝑟𝑡 {𝑢𝑗,𝑛 → 𝐸𝑝𝑚→𝑀,𝑗,𝑛}                           (4-2) 

∀𝑛 ∈  𝑁𝑗; ∀𝑗 ∈ 𝐽; 𝑀𝑚 ,𝑀𝑚′ ∈ 𝑢𝑗,𝑛; 𝑢𝑗,𝑛 ⊆ℳ  

𝑠𝑜𝑟𝑡 {𝑢𝑗,𝑛 → 𝑡𝑝𝑚,𝑗,𝑛}                             (4-3) 

∀𝑛 ∈  𝑁𝑗; ∀𝑗 ∈ 𝐽 ;𝑀𝑚,𝑀𝑚′ ∈ 𝑢𝑗,𝑛; 𝑢𝑗,𝑛 ⊆ℳ  

Number of machines in subset 𝑢𝑗,𝑛 is sometime equal to the total number of machines in the 
scheduling problem. However, if a machine does not process an operation 𝑂𝑗,𝑛 of a job, the subset of 
available machines that process the nth operation does not contain this machine. In our example 
(figure 4-8), machine 𝑀1 does not process the second operation of job J1, then the subset of machine 
is 𝑢1,2 = {𝑀3,𝑀2} does not contain this machine. 

 

Figure 4-8 Explain the machine subset 𝑢𝑗,𝑛 

To explain this method we use the same example, which is used in chapter three (initial population) as 
shown table 4-1 and 4-2  

 

 

 

 

J1  
O1,1 
 
 
O1,2 
 
 
O1,3 
 
 
 
 

M3 M1 

M2 

M1 M2 

M2Om, 𝑢1,1 = {𝑀3,𝑀2,𝑀1} 

𝑢1,2 = {𝑀3, 𝑀2} 

𝑢1,1 = {𝑀2,𝑀1,𝑀3} M3 

M3 
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Table 4-1 Processing energy of problem (3*3) 

𝐸𝑝𝑚,𝑗,𝑛 M1 M2 M3 

J1 O1,1 
33 40 36 

O1,2 
40 60 55 

O1,3 
55 35 40 

   

J2 O2,1 
60 55 40 

O2,2 
45 40 50 

O2,3 
36 30 40 

   

J3 O3,1 
55 40 30 

O3,2 
55 30 55 

O3,3 
40 30 55 

 
Table 4-2 Processing time of problem (3*3) 

𝑡𝑝𝑚,𝑗,𝑛 M1 M2 M3 

J1 O1,1 
8 11 12 

O1,2 
11 16 10 

O1,3 
11 13 12 

   

J2 O2,1 
12 8 8 

O2,2 
9 11 17 

O2,3 
17 8 10 

   

J3 O3,1 
16 11 11 

O3,2 
12 12 16 

O3,3 
9 12 14 

 

a) Processing energy jobs-operations–machines (E-J-O-M) tree 

 

 Applying the equation (4-2) the machines are sorted according to their processing 
energy as explain in table 4-3  
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Table 4-3 Sorting the machine according processing energy 
𝐸𝑝𝑚,𝑗,𝑛 

J1 O1,1 

 

Machine Sorting  M1 M3  M 2 

𝐸𝑝𝑚,1,1  
33 36 40 

O1,2 Machine Sorting M1 M3 M2 

𝐸𝑝𝑚,1,2  
40 55 60 

O1,3 Machine Sorting M2 M3 M1 

𝐸𝑝𝑚,1,3 35 40 55 

J2 O2,1 

 

Machine Sorting M3 M2 M1 

𝐸𝑝𝑚,2,1 40 55 60 

O2,2 

 

Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,2,2 40 45 50 

O2,3 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,2,3 30 34 40 

J3 O3,1 Machine Sorting M3 M2 M1 

𝐸𝑝𝑚,3,1 30 40 55 

O3,2 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,3,2 30 55 55 

O3,3 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,3,3 30 40 55 

 

 After sorting the machine in subset  𝑢𝑗,𝑛 of machines according to processing 
energy 𝐸𝑝𝑚,𝑗,𝑛 , (𝑢𝑗,𝑛 → 𝐸𝑝𝑚→𝑀,𝑗,𝑛), we can assign the operation with m

th machine jth 
job nth operation as explain in table 4-4 
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Table 4-4 Assigning the operation according to m machine, j job, and n operation 
𝐸𝑝𝑚,𝑗,𝑛 

J1 O1,1 Machine Sorting M1 M3  M 2 

𝐸𝑝𝑚,1,1  
33 36 40 

𝑂𝑚,1,1 𝑂1,1,1 𝑂3,1,1 𝑂2,1,1 

O1,2 Machine Sorting M1 M3 M2 

𝐸𝑝𝑚,1,2  
40 55 60 

𝑂𝑚,1,2 𝑂1,1,2 𝑂3,1,2 𝑂2,1,2 

O1,3 Machine Sorting M2 M3 M1 

𝐸𝑝𝑚,1,3 35 40 55 

𝑂𝑚,1,3 𝑂2,1,3 𝑂3,1,3 𝑂1,1,3 

J2 O2,1 

 
Machine Sorting M3 M2 M1 

𝐸𝑝𝑚,2,1 40 55 60 

𝑂𝑚,2,1 𝑂3,2,1 𝑂2,2,1 𝑂1,2,1 

O2,2 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,2,2 40 45 50 

𝑂𝑚,2,2 𝑂2,2,2 𝑂1,2,2 𝑂3,2,2 

O2,3 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,2,3 30 34 40 

𝑂𝑚,2,3 𝑂2,2,3 𝑂1,2,3 𝑂3,2,3 

J3 O3,1 Machine Sorting M3 M2 M1 

𝐸𝑝𝑚,3,1 30 40 55 

𝑂𝑚,3,1 𝑂3,3,1 𝑂2,3,1 𝑂1,3,1 

O3,2 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,3,2 30 55 55 

𝑂𝑚,3,2 𝑂2,3,2 𝑂1,3,2 𝑂3,3,2 

ℎ1𝐸𝑚,3,2 1 2 2 

O3,3 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,3,3 30 40 55 

𝑂𝑚,3,3 𝑂2,3,3 𝑂1,3,3 𝑂𝑚3,3,3 

 

 We can determine the decision factor  ℎ1𝐸𝑚,𝑗,𝑛  to O𝑗,𝑛 of 𝐽𝑗 in machine 𝑀𝑚 as in 
table 4-5, the first has ℎ1𝐸𝑚,𝑗,𝑛 = 1, and the last has maximum number, if two or 
more machines have the same processing energy, they have the same decision factors. 
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Table 4-5 Determine the decision factor 𝐡𝟏𝐄𝐦,𝐣,𝐧 to the operation of jobs 
jobs  

J1 O1,1 Machine Sorting M1 M3  M 2 

𝐸𝑝𝑚,1,1  
33 36 40 

𝑂𝑚,1,1 𝑂1,1,1 𝑂3,1,1 𝑂2,1,1 

ℎ1𝑡𝑚,1,1 1 2 3 

O1,2 Machine Sorting M1 M3 M2 

𝐸𝑝𝑚,1,2  
40 55 60 

𝑂𝑚,1,2 𝑂1,1,2 𝑂3,1,2 𝑂2,1,2 

ℎ1𝐸𝑚,1,2 1 2 3 

O1,3 Machine Sorting M2 M3 M1 

𝐸𝑝𝑚,1,3 35 40 55 

𝑂𝑚,1,3 𝑂2,1,3 𝑂3,1,3 𝑂1,1,3 

ℎ1𝐸𝑚,1,3 1 2 3 

J2 O2,1 

 
Machine Sorting M3 M2 M1 

𝐸𝑝𝑚,2,1 40 55 60 

𝑂𝑚,2,1 𝑂3,2,1 𝑂2,2,1 𝑂1,2,1 

ℎ1𝐸𝑚,2,1 1 2 3 

O2,2 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,2,2 40 45 50 

𝑂𝑚,2,2 𝑂2,2,2 𝑂1,2,2 𝑂3,2,2 

ℎ1𝐸𝑚,2,2 1 2 3 

O2,3 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,2,3 30 34 40 

𝑂𝑚,2,3 𝑂2,2,3 𝑂1,2,3 𝑂3,2,3 

ℎ1𝐸𝑚,2,3 1 2 3 

J3 O3,1 Machine Sorting M3 M2 M1 

𝐸𝑝𝑚,3,1 30 40 55 

𝑂𝑚,3,1 𝑂3,3,1 𝑂2,3,1 𝑂1,3,1 

ℎ1𝑡𝑚,3,1 1 2 3 

O3,2 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,3,2 30 55 55 

𝑂𝑚,3,2 𝑂2,3,2 𝑂1,3,2 𝑂3,3,2 

ℎ1𝐸𝑚,3,2 1 2 2 

O3,3 Machine Sorting M2 M1 M3 

𝐸𝑝𝑚,3,3 30 40 55 

𝑂𝑚,3,3 𝑂2,3,3 𝑂1,3,3 𝑂𝑚3,3,3 

ℎ1𝐸𝑚,3,3 1 2 3 

 

b) Processing time jobs-operations–machines (T-J-O-M) tree 

 With same method, but by applying equation 4-3, the machines in subset 𝑢𝑗,𝑛 of 
machines are sorting according to processing time, as explain in table 4-6 
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Table 4-6 Sorting machines according processing time 
jobs  

J1 O1,1 Machine Sorting M1 M2 M3 

𝑡𝑝𝑚,1,1  
8 11 12 

O1,2 Machine Sorting M3 M1 M2 

𝑡𝑝𝑚,1,2  
10 11 16 

O1,3 Machine Sorting M1 M3 M2 

𝑡𝑝𝑚,1,3 11 12 13 

J2 O2,1 Machine Sorting M2  M3  M1  

𝑡𝑝𝑚,2,1 8 8 12 

O2,2 Machine Sorting M1 M2 M3 

𝑡𝑝𝑚,2,2 9 11 17 

O2,3 Machine Sorting M2 M3 M1 

𝑡𝑝𝑚,2,3 8 10 17 

J3 O3,1 Machine Sorting M2 M3 M1 

𝑡𝑝𝑚,3,1 11 11 16 

O3,2 Machine Sorting M1 M2 M3 

𝑡𝑝𝑚,3,2 12 12 16 

O3,3 Sorting machine  M1 M2 M3 

𝑡𝑝𝑚,3,3 9 12 14 

 

After sorting the machine in subset  𝑢𝑗,𝑛 of machines according to processing energy 𝐸𝑝𝑚,𝑗,𝑛 , (𝑢𝑗,𝑛 →
𝐸𝑝𝑚→𝑀,𝑗,𝑛), we can assign the operation with mth machine jth job nth operation 

 After sorting the machine in subset  𝑢𝑗,𝑛 of machines according to processing 
time 𝑡𝑝𝑚,𝑗,𝑛, (𝑢𝑗,𝑛 → 𝑡𝑝𝑚→𝑀,𝑗,𝑛), we can assign the operation with mth machine jth job 
n

th operation and determine the decision factor  ℎ1𝑡𝑚,𝑗,𝑛  to O𝑗,𝑛 of 𝐽𝑗 in machine 𝑀𝑚 
as in table 4-7. 
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Table 4-7 Assigning the operation according to m machine, j job, and n operation, and determine 
decision factor 𝒉𝟏𝒕𝒎,𝒋,𝒏 to the operation 𝑶𝒋,𝒏 of jobs 𝑱𝒋 

jobs  

J1 O1,1 Machine Sorting M1 M2 M3 

𝑡𝑝𝑚,1,1  
8 11 12 

𝑂𝑚,1,1 𝑂1,1,1 𝑂2,1,1 𝑂3,1,1 

ℎ1𝑡𝑚,1,1 1 2 3 

O1,2 Machine Sorting M3 M1 M2 

𝑡𝑝𝑚,1,2  
10 11 16 

𝑂𝑚,1,2 𝑂3,1,2 𝑂1,1,2 𝑂2,1,2 

ℎ1𝑡𝑚,1,2 1 2 3 

O1,3 Machine Sorting M1 M3 M2 

𝑡𝑝𝑚,1,3 11 12 13 

𝑂𝑚,1,3 𝑂1,1,3 𝑂3,1,3 𝑂2,1,3 

ℎ1𝑡𝑚,1,3 1 2 3 

J2 O2,1 Machine Sorting M2  M3  M1  

𝑡𝑝𝑚,2,1 8 8 12 

𝑂𝑚,2,1 𝑂2,2,1 𝑂3,2,1 𝑂1,2,1 

ℎ1𝑡𝑚,2,1 1 1 2 

O2,2 Machine Sorting M1 M2 M3 

𝑡𝑝𝑚,2,2 9 11 17 

𝑂𝑚,2,2 𝑂1,2,2 𝑂2,2,2 𝑂3,2,2 

ℎ1𝑡𝑚,2,2 1 2 3 

O2,3 Machine Sorting M2 M3 M1 

𝑡𝑝𝑚,2,3 8 10 17 

𝑂𝑚,2,3 𝑂2,2,3 𝑂3,2,3 𝑂1,2,3 

ℎ1𝑡𝑚,2,3 1 2 3 

J3 O3,1 Machine Sorting M2 M3 M1 

𝑡𝑝𝑚,3,1 11 11 16 

𝑂𝑚,3,1 𝑂2,3,1 𝑂3,3,1 𝑂1,3,1 

ℎ1𝑡𝑚,3,1 1 1 2 

O3,2 Machine Sorting M1 M2 M3 

𝑡𝑝𝑚,3,2 12 12 16 

𝑂𝑚,3,2 𝑂1,3,2 𝑂2,3,2 𝑂3,3,2 

ℎ1𝑡𝑚,3,2 1 2 3 

O3,3 Machine Sorting M1 M2 M3 

𝑡𝑝𝑚,3,3 9 12 14 

𝑂𝑚,3,3 𝑂1,3,3 𝑂2,3,3 𝑂3,3,3 

ℎ1𝑡𝑚,3,3 1 2 3 

 

In some cases, if two or more machines have the same processing energy or processing time to 
operate an operation, these machines take the same decision factor, (in our example, ℎ1𝐸1,3,2 =
ℎ1𝐸3,3,2 because 𝐸𝑝1,3,2 = 𝐸𝑝3,3,2, and ℎ1𝑡2,2,1 = ℎ1𝑡3,2,1becouse 𝑡𝑝2,2,1 = 𝑡𝑝3,2,1) 
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After completion of the sorting process, each operation has two decision factors for processing energy 
ℎ1𝐸𝑚,𝑗,𝑛and for processing time ℎ1𝑡𝑚,𝑗,𝑛. 

 𝐷1𝑚,𝑗,𝑛: The mean of classification factor (ℎ1𝐸𝑚,𝑗,𝑛, ℎ1𝑡𝑚,𝑗,𝑛) of jth job at nth operation in mth 
machine according to processing energy and processing time to process 𝑂𝑗,𝑛 of job  𝐽𝑗 in machine 
 𝑀𝑚, ( 𝑂𝑚,𝑗,𝑛)in J-O-M trees. 

𝐷1𝑚,𝑗,𝑛 = 𝛼ℎ1𝐸𝑚,𝑗,𝑛 + (1 − 𝛼)ℎ1𝑡𝑚,𝑗,𝑛                     (4-4) 

The better machine has the smaller decision factor, When we have to work closely with the energy 
objectives, energy weight α must be greater than 0.5, and we have to work closely with the job shop 
objectives, energy weight α must be less than 0.5. Figure 4-9 and 4-10 shows the final sorting results  

 

Figure 4-9 Processing energy jobs-operations-machines classification tree (E-J-O-M) 
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Figure 4-10 Processing time jobs-operations-machines classification tree (T-J-O-M) 

4.5.1.2 Machines-Operations –Jobs trees (M-O-J) 

In this method, machine search for job operation from minimum to maximum processing energy and 
processing time. It’s called machines-operations–jobs. Machines represent the roots, operations 
represent the levels and jobs represent the nods (as shown in figure 4-11). 
 

 

Figure 4-11 Machines-operations-jobs relationship (roots-levels-nods) 
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 Notation  

𝑣𝑚,𝑛 : Subset of jobs at nth operation process in mth machine(𝑀𝑚); 𝑣𝑚,𝑛 ⊆ ℐ (as explained figure 4-12) 

𝐽′ : Total number of jobs in subset 𝑣𝑚,𝑛 

ℎ2𝐸𝑚,𝑗,𝑛 : classification energy factor of jth job at nth operation in mth machine according to processing 
energy. 

ℎ2𝑡𝑚,𝑗,𝑛 : classification energy factor of jth job at nth operation in mth machine according to processing 
time. 

𝐷2𝑚,𝑗,𝑛: The mean of classifications factors (ℎ2𝐸𝑚,𝑗,𝑛, ℎ2𝑡𝑚,𝑗,𝑛) for j
th job at n

th operation in m
th 

machine according to processing energy and processing time to process 𝑂𝑗,𝑛 of job  𝐽𝑗 in machine 
 𝑀𝑚, ( 𝑂𝑚,𝑗,𝑛). 

𝐷𝑟𝑚,𝑗,𝑛: Classification factor for j
th job at n

th operation in m
th machine according to 𝐷1𝑚,𝑗,𝑛.and 

𝐷2𝑚,𝑗,𝑛 

𝜑   : decision weight, φ = {0.4 − 0.6}  

𝜑 = {
0.5 < 𝜑 ≤ 0.6       the slution strongly accord to J − O −M trees  
0.4 ≤  𝜑 ≤ 0.5    the slution strongly accord to M − O − J trees      

        (4-5) 

 

Figure 4-12 Explain of subset of jobs 𝑣𝑚,𝑛 

Number of jobs in each job subset 𝑣𝑚,𝑛 is sometime equal to the total number of jobs in the 
scheduling problem, but as explain in the example above (figure 4-12). 

 If the a machine does not process nth operation of jth job, the job subset 𝑣𝑚,𝑛 does not 
contain this job (for example in figure 4-12, the subset of jobs of machine 𝑀1, 𝑣1,2 
does not contain job 𝑗1 ; 𝑣1,2 = {𝐽3, 𝐽2}). 
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 On other hand if the jobs have not the same number of operation, the smaller jth job is 
not consisted in the latest job subset that operate in the machines (example the job 
𝑗3,has only two operations, but other jobs( 𝑗1 and 𝑗2) have three operations), 

Let 𝐽𝑗", 𝐽𝑗′ , 𝐽𝑗 are three jobs  

𝑁𝑗" < 𝑁𝑗 , = 𝑁𝑗  

The subsets jobs 𝑣𝑚,𝑁𝑗′  or 𝑣𝑚,𝑁𝑗 for any machine does not contain the job 𝐽𝑗", in our example job 𝐽3 
has only two operations, but the jobs 𝐽1𝑎𝑛𝑑 𝐽2have three operations, these job subsets at third level 
does not contain job 𝐽3, they contains only 𝐽1𝑎𝑛𝑑 𝐽2; 𝑣1,3 = {𝐽2, 𝐽1} 𝑜𝑟 𝑣2,3 = {𝐽1, 𝐽2}  

This method has two sub trees. 

a) Processing energy machine-operations–jobs(E-M-O-J) tree searches for operations jobs with 
minimum processing energy. This method processes the jobs, operation after operation. The 
operations are grouped by operation according to operation index nth

 (from the group of the first 
operations n=1 of each job, until to the group of the final operations 𝑛 = 𝑁𝑗 of each job).  
Subset of jobs 𝑣𝑚,𝑛 are sorted from the minimum to the maximum according to their processing 
energy. 
This method is done to each machine operation after operation (level by level).  
For example mth machine search to 𝑂𝑗,𝑛 operation of jth job, and it process this operation with 
minimum processing energy, jobs subset being sorted from minimum to maximum according 
their processing energy. 

b) Processing time machine-operations–jobs (T-M-O-J) tree searches to operations jobs with 
minimum processing time. This method processes the jobs, operation after operation. The 
operations are grouped by operation according to operation index n

th 
 (from the group the first 

operations n=1of subset job 𝑣𝑚,𝑛, until the group of the final operations 𝑛 = 𝑁𝑗 of each jobs). 
The jobs in the same operations group are sorted from the minimum to the maximum according 
to their processing time 

From that, the 𝑂𝑗,𝑛 of jth job has the smallest processing energy 𝐸𝑝𝑚,𝑗,𝑛  (minimum processing energy) 
in machine 𝑀𝑚, it has ℎ2𝐸𝑚,𝑗,𝑛 = 1, and the 𝑂𝑗′,𝑛 of job 𝐽𝑗′  has highest processing energy  𝐸𝑝𝑚,𝑗′,𝑛 
(maximum processing energy) in machine 𝑀𝑚, it has  ℎ2𝐸

𝑚,𝑗′,𝑛
= 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒   

𝑠𝑜𝑟𝑡 {𝑣𝑚,𝑛 → 𝐸𝑝𝑚,𝑗,𝑛}                              (4-6) 
∀𝑛 ∈  𝑁𝑗; ∀𝑚 ∈ 𝑀 ; 𝑗, 𝑗

′ ≤ 𝐽; 𝐽𝑗, 𝐽𝑗′ ∈ 𝑣𝑚,𝑛 ; 𝑣𝑚,𝑛 ⊆ ℐ 

𝑠𝑜𝑟𝑡 {𝑣𝑚,𝑛 → 𝑡𝑝𝑚,𝑗,𝑛}                                       (4-7) 
∀𝑛 ∈  𝑁𝑗; ∀𝑚 ∈ 𝑀 ; 𝑗, 𝑗

′ ≤ 𝐽; 𝐽𝑗, 𝐽𝑗′ ∈ 𝑣𝑚,𝑛; 𝑣𝑚,𝑛 ⊆ ℐ  
𝐷2𝑚,𝑗,𝑛 = 𝛼ℎ2𝐸𝑚,𝑗,𝑛 + (1 − 𝛼)ℎ2𝑡𝑚,𝑗,𝑛                           (4-8) 

𝐷𝑟𝑚,𝑗,𝑛 = 𝜑𝐷2𝑚,𝑗,𝑛 + (1 − 𝜑)𝐷1𝑚,𝑗,𝑛                 (4-9) 

If two or more jobs have the same processing energy and or processing time at the nth operation in mth 
machine, they have the same classification factors. 

If we work closely with the energy objectives, the energy weight 𝛼 must be great than 0.5, and if we 
work closely with the job shop objectives energy weight 𝛼 must be less than 0.5 
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a) Processing energy machine-operations–jobs (E-M-O-J) tree. 
 Sorting the jobs in subset 𝑣𝑚,𝑛 according to processing energy by suing equation (4-

6) as explain in table 4-8  

Table 4-8 Sorting the job in subset according to processing energy 

𝐸𝑝𝑚,𝑗,𝑛 
M1 O1,j,1 𝐸𝑝1,𝑗,1 33 55 60 

𝐽𝑗 J1 J3 J2 

O1,j,2 𝐸𝑝1,𝑗,2 40 55 55 
𝐽𝑗 J1 J2 J3 

O1,j,3 

 

𝐸𝑝1,𝑗,3 36 40 55 
𝐽𝑗 J2 J3 J1 

M2 O2,j,1 

 

𝐸𝑝2,𝑗,1 40 40 55 
𝐽𝑗 J1 J3 J2 

O2,j,2 

 

𝐸𝑝2,𝑗,2 30 40 60 
 J3 J2 J1 

O2,j,3 

 
𝐸𝑝2,𝑗,3 30 30 35 
𝐽𝑗 J3 J2 J1 

M3 
 
 
 

O3,j,1 

 

𝐸𝑝3,𝑗,1 30 36 40 
 J3 J1 J2 

O3,j,2 

 

𝐸𝑝3,𝑗,2 50 55 55 
𝐽𝑗 J2 J1 J3 

O3,j,3 

 

𝐸𝑝3,𝑗,3 40 40 55 
𝐽𝑗 J1 J2 J3 

 

 After sort the jobs in subset 𝑣𝑚,𝑛 we can assign the operation with mth machine jth job 
n

th operation as explain in table 4-9 
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Table 4-9 assigning the operation according to m machine, j job, and n operation 

𝐸𝑝𝑚,𝑗,𝑛 
M1 O1,j,1 𝐸𝑝1,𝑗,1 33 55 60 

𝐽𝑗 J1 J3 J2 

O1,1.1 O1,3,1 O1,2,1 

O1,j,2 𝐸𝑝1,𝑗,2 40 55 55 
𝐽𝑗 J1 J2 J3 

 O1,1,2 O1,2,2 O1,3,2 

O1,j,3 

 
𝐸𝑝1,𝑗,3 36 40 55 
𝐽𝑗 J2 J3 J1 

O1,2,3 O1,3,3 O1,1,3 

 
 
M2 

O2,j,1 

 
 

𝐸𝑝2,𝑗,1 40 40 55 
𝐽𝑗 

 
J1 J3 J2 

O2,1,1 O2,3,1 O2,2,1 
O2,j,2 𝐸𝑝2,𝑗,2 30 40 60 

𝐽𝑗 J3 J2 J1 

 O2,3,2 O2,2,2 O2,1,2 
O2,j,3 𝐸𝑝2,𝑗,3 30 30 35 

𝐽𝑗 J3 J2 J1 

 O2,3,3 O2,2,3 O2,1,3 
M3 
 
 
 

O3,j,1 𝐸𝑝3,𝑗,1 30 36 40 
𝐽𝑗 J3 J1 J2 

O3,3,1 O3,1,1 O3,2,1 
O3,j,2 𝐸𝑝3,𝑗,2 50 55 55 

𝐽𝑗 J2 J1 J3 

𝐻2𝐸3,𝑗,2 O3,2,2 O3,1,2 O3,3,2 
O3,j,3 𝐸𝑝3,𝑗,3 40 40 55 

𝐽𝑗 J1 J2 J3 

 O3,1,3 O3,2,3 O3,3,3 
 

 In this step we determine the values of energy classification factor ℎ2𝐸𝑚,𝑗,𝑛 to each 
operation as in table 4-10. 
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Table 4-10 Determine 𝒉𝟐𝑬𝟏,𝒋,𝟏 of each operation 

𝐸𝑝𝑚,𝑗,𝑛 
M1 O1,j,1 𝐸𝑝1,𝑗,1 33 55 60 

𝐽𝑗 J1 J3 J2 

O1,1.1 O1,3,1 O1,2,1 

ℎ2𝐸1,𝑗,1 1 2 3 

O1,j,2 𝐸𝑝1,𝑗,2 40 55 55 
𝐽𝑗 J1 J2 J3 

O1,1,2 O1,2,2 O1,3,2 

ℎ2𝐸1,𝑗,2 1 2 2 

O1,j,3 

 
𝐸𝑝1,𝑗,3 36 40 55 
𝐽𝑗 J2 J3 J1 

O1,2,3 O1,3,3 O1,1,3 

ℎ2𝐸1,𝑗,3 1 2 3 

 
 
M2 

O2,j,1 

 
 

𝐸𝑝2,𝑗,1 40 40 55 
𝐽𝑗 

 
J1 J3 J2 

O2,1,1 O2,3,1 O2,2,1 
ℎ2𝐸2,𝑗,1 1 1 2 

O2,j,2 𝐸𝑝2,𝑗,2 30 40 60 
𝐽𝑗 J3 J2 J1 

O2,3,2 O2,2,2 O2,1,2 
ℎ2𝐸2,𝑗,2 1 2 3 

O2,j,3 𝐸𝑝2,𝑗,3 30 30 35 
𝐽𝑗 J3 J2 J1 

O2,3,3 O2,2,3 O2,1,3 
ℎ2𝐸2,𝑗,3 1 1 2 

M3 
 
 
 

O3,j,1 𝐸𝑝3,𝑗,1 30 36 40 
𝐽𝑗 J3 J1 J2 

O3,3,1 O3,1,1 O3,2,1 
ℎ2𝐸𝑝3,𝑗,1 1 2 3 

O3,j,2 𝐸𝑝3,𝑗,2 50 55 55 
𝐽𝑗 J2 J1 J3 

O3,2,2 O3,1,2 O3,3,2 
ℎ2𝐸3,𝑗,2 1 2 3 

O3,j,3 𝐸𝑝3,𝑗,3 40 40 55 
𝐽𝑗 J1 J2 J3 

O3,1,3 O3,2,3 O3,3,3 
ℎ2𝐸3,𝑗,3 1 1 2 

 

b) Processing time machine-operations–jobs (T-M-O-J) tree. 
 We apply the same steps that are used in (E-M-O-J) tree, but here we use equation 4-7 

to sort the jobs according to processing time as explain in table 4-11 
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Table 4-11 Sorting the job according to their processing time 

𝑡𝑝𝑚,𝑗,𝑛 
M1 O1,j,1 𝑡𝑝1,𝑗,1 8 12 16 

𝐽𝑗 J1 J2 J3 

O1,j,2 𝑡𝑝1,𝑗,2 9 11 12 
𝐽𝑗 J2 J1 J3 

O1,j,3 

 

𝑡𝑝1,𝑗,3 9 11 17 
𝐽𝑗 J3 J1 J2 

 
 
M2 

O2,j,1 

 

𝑡𝑝2,𝑗,1 8 11 11 
𝐽𝑗 J2 J1 J3 

O2,j,2 

 

𝑡𝑝2,𝑗,2 11 12 16 
 J2 J3 J1 

O2,j,3 

 
𝑡𝑝2,𝑗,3 8 12 13 
𝐽𝑗 J2 J3 J1 

M3 
 
 
 

O3,j,1 

 

𝑡𝑝3,𝑗,1 8 11 12 
 J2 J3 J1 

O3,j,2 

 

𝑡𝑝3,𝑗,2 10 16 17 
𝐽𝑗 J1 J3 J2 

O3,j,3 

 

𝑡𝑝3,𝑗,3 10 12 14 
𝐽𝑗 J2 J1 J3 

 

 After sorting the jobs in subset 𝑣𝑚,𝑛 we can assign the operation with mth machine jth 
job n

th operation, and determine the values of processing time classification factor 
ℎ2𝑡𝑚,𝑗,𝑛 to each operation. as explain in table 4-12. 
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Table 4-12 Assigning the operation according to mth machine, jth job, and nth operation, and processing time decision factor 
𝒉𝟐𝒕𝒎,𝒋,𝒏 to each operation 

𝑡𝑝𝑚,𝑗,𝑛 
M1 O1,j,1 𝑡𝑝1,𝑗,1 8 12 16 

𝐽𝑗 J1 J2 J3 

O1,1,1 O1,2,1 O1,31 

ℎ2𝑡1,𝑗,1 1 2 3 

O1,j,2 𝑡𝑝1,𝑗,2 9 11 12 
𝐽𝑗 J2 J1 J3 

O1,2,2 O1,1,2 O1,3,2 

ℎ2𝑝𝐸1,𝑗,2 1 2 3 

O1,j,3 

 

𝑡𝑝1,𝑗,3 9 11 17 
𝐽𝑗 J3 J1 J2 

O1,3,3 O1,1,3 O12,3 

ℎ2𝑡1,𝑗,3 1 2 3 

 
 
M2 

O2,j,1 

 

𝑡𝑝2,𝑗,1 8 11 11 
𝐽𝑗 J2 J1 J3 

O2,2,1 O2,1,1 O2,3,1 

ℎ2𝑡𝑝2,𝑗,1 1 2 2 

O2,j,2 

 

𝑡𝑝2,𝑗,2 11 12 16 
 J2 J3 J1 

O2,2,2 O2,3,2 O2,1,2 

ℎ2𝑡2,𝑗,2 1 2 3 

O2,j,3 

 
𝑡𝑝2,𝑗,3 8 12 13 
𝐽𝑗 J2 J3 J1 

O2,23 O2,3,3 O2,1,3 

ℎ2𝑡2,𝑗,3 1 2 3 

M3 
 
 
 

O3,j,1 

 

𝑡𝑝3,𝑗,1 8 11 12 
 J2 J3 J1 

O3,2,1 O3,3,1 O3,1,1 

ℎ2𝑡3,𝑗,1 1 2 3 

O3,j,2 

 

𝑡𝑝3,𝑗,2 10 16 17 
𝐽𝑗 J1 J3 J2 

O3,12 O3,3,2 O3,2,2 

ℎ2𝑡3,𝑗,2 1 2 3 

O3,j,3 

 

𝑡𝑝3,𝑗,3 10 12 14 
𝐽𝑗 J2 J1 J3 

O3,2,3 O3,1,3 O3,3,3 

ℎ2𝑡3,𝑗,3 1 2 3 
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The figure 4-13 and 4-14 explain the final result of classification trees  

 

Figure 4-13 Processing energy machines-operations-jobs tree (E-M-O-J) 

 

Figure 4-14 Processing time machines-operations-jobs tree (T-M-O-J) 
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With two tree methods, the solution is more correct, because it is built according to the relationship 

with all possibility between jobs and machines as shown in figure 4-15 and table 4-13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-15 An example of different trees methods  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐷21,1,1 = 0.4 ∗ 1 + 0.6 ∗ 1 

=1 

𝐷11,1,1 = 0.4 ∗ 1 + 0.6 ∗ 1 

=1 

𝑂1,1 

𝑀1 𝑀2 𝑀3 

𝑀1 

𝑂1,1 𝑂2,1 𝑂3,1 

J-O-M tree  M-O-J tree 
Energy sorting  

𝑂1,1 

𝑀1 𝑀2 𝑀3 

𝑀1 

𝑂1,1 𝑂2,1 𝑂3,1 

Time sorting  

𝐷𝑟1,1,1 = 0.6 ∗ 1 + 0.4 ∗ 1 

ℎ1𝑡1,1,1 = 1 

ℎ1𝐸1,1,1 = 1 
ℎ2𝐸1,1,1 = 1 

ℎ2𝑡1,1,1 = 1 
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Table 4-13 Values of 𝒉𝟏𝑬𝒎,𝒋,𝒏 , 𝒉𝟏𝒕𝒎,𝒋,𝒏 , 𝒉𝟐𝑬𝒎,𝒋,𝒏, 𝒉𝟐𝒕𝒎,𝒋,𝒏 ,𝑫𝟏𝒎,𝒋,𝒏, 𝑫𝟐𝒎,𝒋,𝒏and 𝑫𝒓𝒎,𝒋,𝒏𝜶 = 𝟎. 𝟓, 𝝋 = 𝟎. 𝟓  
 ℎ1𝐸𝑚,𝑗,𝑛 ℎ1𝑡𝑚,𝑗,𝑛 𝐷1𝑚,𝑗,𝑛 ℎ2𝐸𝑚,𝑗,𝑛 ℎ2𝑡𝑚,𝑗,𝑛 𝐷2𝑚,𝑗,𝑛 𝐷𝑟𝑚,𝑗,𝑛 

J1 O1,1,1 
1 1 1 1 1 1 1 

O2,1,1 3 2 2,5 1 2 1,5 2 
O3,1,1 2 3 2,5 2 3 2,5 2,5 
O1,1,2 

1 2 1,5 1 2 1,5 1,5 
O2,1,2 

3 3 3 3 3 3 3 
O3,1,2 

2 1 1,5 2 1 1,5 1,5 
O1,1,3 

3 1 2 3 2 2,5 2,25 
O2,1,3 1 3 2 2 3 2,5 2,25 
O3,1,3 2 2 2 1 2 1,5 1,75 

J2 O1,2,1 
3 2 2,5 3 2 2,5 2,5 

O2,2,1 2 1 1,5 2 1 1,5 1,5 
O3,2,1 1 1 1 3 1 2 1,5 
O1,2,2 

2 1 1,5 2 1 1,5 1,5 
O2,2,2 1 2 1,5 2 1 1,5 1,5 
O3,2,2 3 3 3 1 3 2 2,5 
O1,2,3 

2 3 2,5 1 3 2 2,25 
O2,2,3 1 1 1 1 1 1 1 
O3,2,3 3 2 2,5 1 1 1 1,75 

J3 O1,3,1 
3 2 2,5 2 3 2,5 2,5 

O2,3,1 2 1 1,5 1 2 1,5 1,5 
O3,3,1 1 1 1 1 2 1,5 1,25 
O1,3,2 

2 1 1,5 2 3 2,5 2 
O2,3,2 1 2 1,5 1 2 1,5 1,5 
O3,3,2 2 3 2,5 3 2 2,5 2,5 
O1,3,3 

2 1 1,5 2 1 1,5 1,5 
O2,3,3 1 2 1,5 1 2 1,5 1,5 
O3,3,3 3 3 3 2 3 2,5 2,75 

4.5.2 Lower and Upper bound limits  

To determine the lower and upper bounds. 

We calculate two lower bounds one for time objective and other for energy objective. These bounds 

are (𝑊𝑡𝑚), total working time spent at machines 𝑀𝑚 and (𝑇𝐸𝑚), total energy consumed in 

machine 𝑀𝑚. 

We calculate three upper bounds, (𝑊𝑡𝑚), the total working time spent at machines 𝑀𝑚 and (𝑇𝐸m) 

total energy consumed in machine 𝑀𝑚 and makespan 𝐶𝑚𝑎𝑥 . 
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Notation: 

𝐿𝑏𝐸   : lower bound energy objectives 

𝐿𝑏𝑡  : lower bound job shop objectives  

𝑈𝑏𝐸   : upper bound energy objectives 

𝑈𝑏1t  : first upper bound job shop objectives  

𝑈𝑏2t  : second upper  bound job shop objectives  

𝐿𝑏𝐸 = min{𝑇𝐸𝑚}                                (4-10) 

𝐿𝑏𝑡 = min{𝑊𝑡𝑚}                                (4-11) 

In lower bound operations are assigned according to minimum values of average classification 
decision index 𝐷𝑟𝑚,𝑗,𝑛  

𝑈𝑏𝐸 = max {𝑇𝐸𝑚}                         (4-12) 

𝑈𝑏1𝑡 = max {𝑊𝑡𝑚}                        (4-13) 

𝑈𝑏2𝑡 = 𝐶𝑚𝑎𝑥                                   (4-14) 

In upper bound operations are assigned according to maximum values of average classification 
decision index 𝐷𝑟𝑚,𝑗,𝑛  

4.5.3 Local lower and Upper bound limits  

Each job has local lower and upper bound according to classification factors ℎ1𝐸𝑚,𝑗,𝑛, and 
h1tm,j,nvalues. If the operations of jobs are selected according to minimum decisions factors, then the 
solution represents the local lower bound, and if the operations of jobs are selected with maximum 
classification factors, then the solution represents the local upper bound, 

Local lower bounds; two local lower bound  
 

𝐿𝐿𝑏𝐸𝑗   : Local lower bound processing energy, 𝐿𝐿𝑏𝐸𝑗  is minimum total energy consumed to process 

all operations of jth job, these operations are selected according to their classification energy factor 

ℎ1𝐸𝑚,𝑗,𝑛 =1. 

For example (in table 4-13) the operations {O1,1,1, O1,1,2, O2,1,3} of job 𝐽1have ℎ1𝐸𝑚,𝑗,𝑛 =1, that means if 

this job process this machine sequence {𝑀1 → 𝑀1 → 𝑀2}, that job at this sequence consume 

minimum energy. 

𝐿𝐿𝑏𝐸𝑗 = ∑ ∑ 𝐸𝑝𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1  𝑥𝑚,𝑗,𝑛 = 1

𝑀
𝑚=1 𝑖𝑓 ℎ1𝐸𝑚,𝑗,𝑛 = 1               (4-15) 

𝐿𝐿𝑏𝑡𝑗   : local lower bound processing time, 𝐿𝐿𝑏𝑡𝑗  is the minimum total processing time to process all 

operations of j
th job, if these operations are selected according to their classification time factor 

ℎ1𝑡𝑚,𝑗,𝑛 =1, that job at this sequence has smallest total processing time. 
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For example, the operations { O1,1,1, O3,1,2, O1,1,3} of job 𝐽1have ℎ1𝑡𝑚,𝑗,𝑛 =1, that means if this job 

processed in machines sequence {𝑀1 → 𝑀3 → 𝑀1}, at this sequence, the job (J1)  has minimum 

processing time . 

𝐿𝐿𝑏𝑡𝑗 = ∑ ∑ 𝑡𝑝𝑚,𝑗,𝑛   𝑥𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1 = 1𝑀

𝑚=1 𝑖𝑓 ℎ1𝑡𝑚,𝑗,𝑛 = 1                  (4-16) 

Local upper bounds; two local upper bound  

𝐿𝑈𝑏𝐸𝑗   : Local upper bound processing energy 𝐿𝑈𝑏𝐸𝑗  is maximum total energy consumed to process 

all operations of j
th job, if these operations are selected according to their maximum energy 

classification factor ℎ1𝐸𝑚,𝑗,𝑛. 

𝐿𝑈𝑏𝐸𝑗 = ∑ ∑ 𝐸𝑝𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1

𝑀
𝑚=1  𝑥𝑚,𝑗,𝑛 = 1𝑖𝑓 ℎ1𝐸𝑚,𝑗,𝑛 = max𝑣𝑎𝑙𝑢𝑒          (4-17) 

For example (in table 4-13) the operations { O2,1,1, O2,1,2,O1,1,3} of job 𝐽1have ℎ1𝐸𝑚,𝑗,𝑛= maximum 

values (in our example ℎ1𝐸2,1,1 = 3, ℎ1𝐸2,1,2 = 3, 𝑎𝑛𝑑 ℎ1𝐸1,1,3 = 3), that means if this job processes in  

machines sequence {𝑀2 → 𝑀2 → 𝑀1}, this job at this sequence consume maximum processing 

energy. 

𝐿𝑈𝑏𝑡𝑗   : local upper bound processing time, 𝐿𝑈𝑏𝑡𝑗  is minimum total processing time to process all 

operations of jth job, if these operations are selected according to their maximum classification time 

factor ℎ1𝑡𝑚,𝑗,𝑛= maximum value, the result is local upper bound . 

𝐿𝑈𝑏𝑡𝑗 = ∑ ∑ 𝑡𝑝𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1  𝑥𝑚,𝑗,𝑛 = 1

𝑀
𝑚=1 𝑖𝑓 ℎ1𝑡𝑚,𝑗,𝑛 = max  𝑣𝑎𝑙𝑢𝑒            (4-18) 

For example, the operations {O3,1,1, O2,1,2, O2,1,3} of job 𝐽1have ℎ1𝑡𝑚,𝑗,𝑛 = maximum value (in our 

example ℎ1𝑡3,1,1 = 3, ℎ1𝑡2,1,2 = 3, 𝑎𝑛𝑑 ℎ1𝑡2,1,3 = 3), that means if this job processes in this machines 

sequence {𝑀3 → 𝑀2 → 𝑀2}, the job (J1) has maximum processing time . 

To determine these local bound, the lower bounds establish how we can improve an objective. For 

example, if the solution is below  𝐿𝐿𝑏𝐸𝑗 , the energy objectives are improved. As same, if it is below  

 𝐿𝐿𝑏𝑡𝑗 the time objective is improved (Figure 4-16). 
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Figure 4-16 Local boundary limits 

4.5.4 Branching 

According to classification decision 𝐷𝑟𝑚,𝑗,𝑛 (as explain in table 4-13) operation assignment in the 
machines are shown in figure 4-17. Any machine works as local constraint to other machines to attain 
minimum total workload time and min total energy as showed in figure 4-18. 

Machine selects the operations with minimum decision 𝐷𝑟𝑚,𝑗,𝑛. We consider the job shop constraints 
and the same constraints that are used in (Minimize Energy Constrain Programming ECP), with 
modification of solution with lower bound and local lower bound, and stay away from upper bound 
and local upper bounds. 

 

 

Figure 4-17 Branching method of a machine 
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Figure 4-18 MILP and CP concerned with B&B machine operation energy 
 

The jobs are scheduled in the machines process after process. All machines load the jobs process by 
process until finish all jobs operations as see in figure 4-19. 
 
 
 
 
 
 
 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-19 Solving scheduling problem by MILEP  

With this method, jobs are scheduled clearly and accurately. Also processes are selected clearly with 
small setup time, because setup time depends on the previous operation on machine and the machine 
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itself. Since the previous process is known, the next process can be select with a small setup and 
processing time. 

4.5.5   Left shift  

Consider in schedule 𝒮, in machine scheduling sm of mth machine, two operations 𝑂𝑚,𝑗′,𝑛′ ≺ 𝑂𝑚,𝑗,𝑛 

process in mth machine figure 4-20. If  the two operation are independent, and 𝑂𝑚,𝑗′,𝑛′ ; is processed to 

𝑂𝑚,𝑗,𝑛(𝑂𝑚,𝑗′,𝑛′ ≺ 𝑂𝑚,𝑗,𝑛) and mth machine has an idle period longer than processing time of 𝑂𝑚,𝑗,𝑛 

then the operation 𝑂𝑚,𝑗,𝑛 is reassigned to be processed before processing 𝑂𝑚,𝑗′,𝑛′ (figure 4-21). Such 

reassignment is called (Yamada T., 2003) “a permissible left shift and a schedule with no more 

permissible left shifts are called an active schedule”.  

 

 

 

 

 

 

 

 

 

 

Figure 4-20 Job shop scheduling S before left shit of operation 

Let the two operations O3,2,2 and O3,6,3 process in machine 3 , and O3,2,2 process before O3,6,3 according 

to left shift possibility machine M3 reassignment, where the O3,6,3 processing before O3,2,2 and also 

O3,6,4 left moving to improve machine 4 scheduling s4 (figure 4-21): 

  

 

 

 

 

 

 

 

Figure 4-21 Job shop scheduling after left shit of operation 
 

if 𝑂𝑚,𝑗′,𝑛′  ≺  𝑂𝑚,𝑗,𝑛 on 𝑀𝑚  and 𝑂𝑚,𝑗",𝑛"  ≺  𝑂𝑚,𝑗′,𝑛′  on 𝑀𝑚  
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𝑠𝑚 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑜𝑓𝑚
𝑡ℎ  𝑚𝑎𝑐ℎ𝑖𝑛𝑒 , 𝑠𝑚  ⊂ 𝒮 

𝑠𝑚 = {𝑂𝑚,𝑗",𝑛" ≺ 𝑂𝑚,𝑗′,𝑛′ ≺ 𝑂𝑚,𝑗,𝑛}                                                                      (4.19) 

𝑗 ≠ 𝑗′  ≠ 𝑗"     𝑗, 𝑗′, 𝑗" ≤ 𝐽 

𝑆𝑚,𝑗′,𝑛′ > 𝐶𝑡𝑚,𝑗",𝑛"                                                                          (4-20) 

𝑡𝑖𝑑 j" j',n"n' = 𝑆𝑚,𝑗′,𝑛′ − 𝐶𝑡𝑚,𝑗",𝑛"                                                                            (4-21) 

𝑡𝑖𝑑 j" j',n"n' ≥  𝑡𝑝 m, j,n                                                                                                      (4.22) 

Modify    𝑠𝑚 → 𝑠′𝑚   

𝑠′𝑚 = {…𝑂𝑚,𝑗",𝑛" ≺ 𝑂𝑚,j,n ≺ 𝑂𝑚,𝑗′,𝑛′ , … }                                                   (4.23) 

4 5.6.Turn on/off or standby to reduce total energy  

In several cases optimum scheduling plant has an idle time, (idle energy). Left shift is used to reduce 

idle time problem. But, this method isn’t applicable in many cases; for example, inoperability to move 

an operation and change scheduling job sequence.  

Turn off/on (turn off entirely the machine tool) was used by (Mouzon, et al. 2007,) as shown in figure 

(4-22), but, they not proposed machine state such as standby state (energy saving mode) to reduce 

total energy during idle time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-22 Turn on – off or standby operation 

 

Standby power is less than basic power, it also called semi-active state, in this state the general 

machines and equipment’s devises are turn off, and during standby state, machine consume 20-40 % 

of basic power as illustrate as see  in figure 4-23. 
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𝑂𝑚,𝑗,𝑛 

𝑂𝑚′,𝑗′,𝑛 𝑂𝑚′,𝑗,𝑛+1 Standby  

𝑂𝑚,𝑗,𝑛 

𝑂𝑚′,𝑗′,𝑛 𝑂𝑚′,𝑗,𝑛+1 Idle time 
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Figure 4-23 Power consumed relationship during machine operation cycle 

To make the decision to turn the machine into standby or shutdown depends on a lot of parameters 

such as time saving, energy consumption during idle  

 Notation  

𝑡𝑠𝑙𝑒𝑒𝑝 𝑚 : sleep time in machine 𝑀𝑚. Time needed to change machine state from basic state to standby 

state  

𝑡𝑤𝑎𝑘𝑒𝑚 : wake-up time in machine 𝑀𝑚. Time needed to change machine state from standby state to 

basic state 

𝑃𝑠𝑡𝑑 𝑚 : standby power in machine 𝑀𝑚. 

             Pstd 𝑚 = (0.4) Pb 𝑚                                                    (4-34) 

𝑃𝑠𝑙𝑒𝑒𝑝𝑚 : sleep power in machine 𝑀𝑚. To change machine state from basic state to standby state  

𝑃𝑤𝑎𝑘𝑒 𝑚 : wake-up power in machine 𝑀𝑚. To change machine state from standby state to basic state 

 𝐸𝑠𝑡𝑑𝑚 : standby energy in machine 𝑀𝑚. 

𝐸𝑠𝑙𝑒𝑒𝑝𝑚 : sleep energy in machine 𝑀𝑚. Energy consumed to change machine state from basic state to 

standby state  

𝐸𝑤𝑎𝑘𝑒 𝑚 : wake-up energy in machine 𝑀𝑚. Energy consumed to change machine state from standby 

state to basic state 

1. Turn on energy: energy needed to starting or restarting machine and be going to basic state 

this process need period 𝑡𝑠𝑚. 

𝐸𝑠𝑚 = 𝑃𝑠 𝑚𝑡𝑠 𝑚.                                                                                                                  (3-15) 
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2.  Idle time energy  

𝑇𝐸𝑖𝑑 𝑚 = 𝑃𝑏 𝑚𝑇𝑡𝑖𝑑 𝑚                                                                                  (3-17) 

3. Standby energy Estd𝑚 during idle time tid𝑚 

Pstd 𝑚 = 0.4 Pb 𝑚                                                                                           (4-35) 

            𝐸𝑠𝑡𝑑𝑚 = 𝑃𝑠𝑡𝑑 𝑚𝑡𝑖𝑑𝑚                                                                                         (4-36) 

4. Turn off energy: energy consumed by machine to safety shutdown with period 𝑡𝑜𝑓𝑓𝑚 

𝐸𝑜𝑓𝑓 𝑚 = 𝑃𝑜𝑓𝑓𝑚 𝑡𝑜𝑓𝑓𝑚                                                                                              (3-22) 

5. sleep energy 𝐸𝑠𝑙𝑒𝑒𝑝𝑚 : To change the device to standby, it takes the time 𝑡𝑠𝑙𝑒𝑒𝑝𝑚 and need to 
power 𝑃𝑠𝑙𝑒𝑒𝑝𝑚 

𝐸𝑠𝑙𝑒𝑒𝑝 𝑚 = 𝑃𝑠𝑙𝑒𝑒𝑝 𝑚  𝑡𝑠𝑙𝑒𝑒𝑝 𝑚                                                                                       (4-37) 

6. wake-up energy 𝐸𝑤𝑎𝑘𝑒𝑚 : energy consume to reactive of the machine, which takes the time 

𝑡𝑤𝑎𝑘𝑒𝑚and  power 𝑃𝑤𝑎𝑘𝑒 𝑚 

𝐸𝑤𝑎𝑘𝑒 𝑚 = 𝑃𝑤𝑎𝑘𝑒 𝑚  𝑡𝑤𝑎𝑘𝑒 𝑚                                                                      (4-38) 

7. power saving constraints  

𝑃𝑠𝑙𝑒𝑒𝑝 𝑚 < 𝑃off 𝑚   

𝑃𝑤𝑎𝑘𝑒  𝑚 < 𝑃on 𝑚   

𝑝𝑖𝑑𝑚 > 𝑝𝑜𝑓𝑓𝑚 + 𝑝𝑜𝑛𝑚  

8.  time constraints  

𝑡𝑠𝑙𝑒𝑒𝑝 𝑚 < 𝑡off 𝑚   

𝑡𝑤𝑎𝑘𝑒  𝑚 < 𝑡on 𝑚   

𝑡𝑖𝑑𝑚 > 𝑡𝑜𝑓𝑓𝑚 + 𝑡𝑜𝑛𝑚   

𝑧𝑚 : Integer decision variable  𝑧𝑚 ∈ {1,2,3}  

𝑧𝑚 = {

1     𝑖𝑓 𝐸𝑖𝑑𝑚 > 𝐸𝑜𝑓𝑓𝑚 + 𝐸𝑜𝑛𝑚  𝑒𝑙𝑠𝑒                        

2      𝑖𝑓 𝐸𝑖𝑑𝑚 > 𝐸𝑤𝑎𝑘𝑒𝑚 + 𝐸𝑠𝑙𝑒𝑒𝑝𝑚 + 𝐸𝑠𝑡𝑑  𝑒𝑙𝑠𝑒 

3                               otherwise                                

}  

 Machine be turn off if  

𝐸𝑖𝑑𝑚 > 𝐸𝑜𝑓𝑓𝑚 + 𝐸𝑜𝑛𝑚                                                                                          (4-39) 

𝑧𝑚 = 1  

 Machine change to standby state (Std) if  

𝐸𝑜𝑓𝑓𝑚 + 𝐸𝑜𝑛𝑚 ≥ 𝐸𝑖𝑑𝑚 > 𝐸𝑤𝑎𝑘𝑒𝑚 + 𝐸𝑠𝑙𝑒𝑒𝑝𝑚 + 𝐸𝑠𝑡𝑑                                           (4-40) 

𝑧𝑚 = 2  

 Machine remain in idle state (idle) if  

𝐸𝑤𝑎𝑘𝑒𝑚 + 𝐸𝑠𝑙𝑒𝑒𝑝𝑚+𝐸𝑠𝑡𝑑 ≥ 𝐸𝑖𝑑𝑚                                                                          (4-41) 

𝑧𝑚 = 3   
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4.6 Case study and Conclusions 

In this chapter, we used two types of solutions  

(i.) Minimize Energy Constrain Programming ECP, and (ii.) A Mixed Integer Linear Programming 

Minimized Energy MILPE. The database size is 10×10 with 12 operations in each job, to satisfy the 

requirements of this research.  

Performance measurement is done by measuring the percentage of total energy reduction and the 

makespan reduction of each algorithm. Where it is done through following: 

𝑟𝑇𝑊𝑡𝑙 : Reduction percentage of total workload in l iteration. 

𝑟𝑇𝑊𝑡𝑙 =
𝑇𝑊𝑡𝑙

𝑇𝑊𝑡0
×%                                                                                                         (3.25) 

𝑟𝑇𝑇𝐸𝑙   : Reduction percentage of total energy in l iteration 

𝑟𝑇𝑇𝐸𝑙 =
𝑇𝑇𝐸𝑙

𝑇𝑇𝐸0
×%                                                                                                         (3-26) 

𝑟𝐶𝑚𝑎𝑥𝑙 =
𝐶𝑚𝑎𝑥𝑙
𝐶𝑚𝑎𝑥0
×%                                                                                                       (3-27) 

𝑟𝐶𝑚𝑎𝑥𝑙: Reduction percentage of makespan in l iteration 

𝑟𝑇𝐸𝑖𝑑 𝑙 =
𝑇𝐸𝑖𝑑 𝑙

𝑇𝐸𝑖𝑑 0
× %                                                                                                       (3-28) 

𝑟𝑇𝐸𝑖𝑑 𝑙 : Reduction percentage of non-productive energy in l iteration 

The average reduction AvRl 

𝐴𝑣𝑅𝑙 =
𝑟𝑇𝑊𝑡𝑙+𝑟𝑇𝑇𝐸𝑙+𝑟𝐶𝑚𝑎𝑥𝑙+𝑟𝑇𝐸𝑖𝑑 𝑙

4
                                                                               (3-29) 

Where l: iteration number l = 1... L;  

L: total number of iteration, 𝐿 = 𝑛!. 

 𝑇𝑊𝑡0, 𝑇𝑇𝐸0, 𝐶𝑚𝑎𝑥0 , 𝑎𝑛𝑑 𝑇𝐸𝑖𝑑 0 are the average of their values in the first five iterations and 

 𝑇𝑊𝑡𝑙 , 𝑇𝑇𝐸𝑙 , 𝐶𝑚𝑎𝑥𝑙 , 𝑎𝑛𝑑 𝑇𝐸𝑖𝑑𝑙 are output at l iteration, as the same method was applied to test 

makespan reduction; here C0 is the average of makespan at the first five iterations and Cl  

General objective of job shop scheduling is to find the optimum time for the workshop. We aim to 

optimize both energy and time. These methods are tested with problems (2×2 →12×12) with 

operations (2 → 10) the. Reducing electricity consumption as well as maintaining good time 

performances in the objectives of FJSP is a difficult problem that can take a long time to solve 

optimally. The model is formulated entirely of constraint programming (ECP) or mixed integer/linear 



 

127 
 

programming problem (MILPE) problem. Figure 4-24 shows the comparing between using ECP and 

MILPE results. Here we find that MILPE gives the best solution compare with the result of ECP. 

Figure 4-24 shows the result of problem 6x6 with six operations of each job that means this 

problem is more complex that the problems used to test genetic algorithms (chapter three). In chapter 

six, we will be discuses with detail explanation the advantages and disadvantage of all optimization 

methods. 

 

 

Figure 4-24 Scheduling problems 6x6 (number of operations n=6) 
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5 Case study, conclusion and future work 

5.1 Summary of the research 
In this thesis two types of optimization methods are used, which are genetic algorithms and linear 
programming. In genetic algorithm, two types of genetic algorithms are used classical and parallel, as 
explained in chapter three. In constraint programming, mixed integer programming and linear 
programming are used, as explained in chapter four. 

In this thesis we developed traditional job shop scheduling method to reduce and optimise energy 
consumed by machines in workstation, by: 

1. Mathematical model for the energy consumption for machine tools and workstation has been 
formalized, this model combines energy objectives and job shop objectives  

2. New multi-population multi-objective optimization models considering reducing electricity 
consumption and its related 

3. Initial populations for multi-population genetics algorithms are selected by global minimum 
processing energy and processing time  

4. To reduce the divergence between the objectives of the two sub-genetics in multi 
populations genetic algorithm MPMOGA2, threshold operation and elite works are used  

5. New constraint programming method to reduce total energy, and then a Mixed Integer 
Linear Programming Minimized Energy MILPE algorithm to reduce both energy and time 
objectives      

6. In Mixed Integer Linear Programming Minimized Energy MILPE, we developed a method 
(Classification Trees). This method is a good way to minimize energy and time objectives   

7. And we developed a new lower and upper bonds limits for each job, these called local lower 
and upper limits  

  5.1.1. Works Environment Development  

The work in this thesis passes in three development steps figure (5-1). 

  

Figure 5-1 Development steps 
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 Genetic algorithms 

As presented in chapter three the genetic algorithms were used with initial population selected using 
global minimum processing energy and global minimum processing time criteria. 

We used two types of genetic algorithm,  

 In the first genetic algorithm MPGA1 (figure 5-2) , this genetic is classical genetic algorithm, 
with two populations, one chromosome, selected from energy (processing energy) population, 
represents the energy population, and another chromosome, selected from time (processing 
time), represents the time population. From that each population is represented by only one 
chromosome. This genetic is still limited to solve large scheduling problems, because 
representing a population with one chromosome is not enough to give clear solution with 
complex and large job shop scheduling problems populations 

 

Figure 5-2 MPGA1 general structure 

 The second genetic algorithms MPGA2 (figure 5-3), this genetic has the same initial 
population selection method, but it consists of two parallel sub-genetic. However, in each 
sub-genetic two chromosome are selected to represent energy initial population selected 
according to global minimum processing energy for energy sub-genetic, other two 
chromosomes are selected to represent time initial population selected according to global 
minimum processing time for time sub-genetic. From that in this genetic algorithm MPGA2, 
each population represented by two chromosomes, that gives a greater ability to solve more 
complex and large job shop scheduling problems scheduling problems comparing with the 
first genetic algorithm MPGA1 
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Figure 5-3 MPGA2 general structure 

 Constraint Programming ECP and Mixed Integer Linear Programming MILPE 

In mixed integer programming (figure 5-4) method classifications trees are developed to 
determine the candidate solutions and understand the relationship between the jobs and 
machines. 
 

 

Figure 5-4 MILP general structure 

In mixed Integer programming optimization method, the first candidate solution represents the 
suggesting solution in first step, and then candidates are selected according to constraint variables 
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(classification factors). These classification factors works to constrain the machines in machine subset 
𝑢𝑗,𝑛 or to constrain the jobs in jobs subset  𝑣𝑚,𝑛 , and also works as decision variables, to determine 
local lower and upper limits, for example;  

𝐿𝐿𝑏𝐸𝑗 = ∑ ∑ 𝐸𝑝𝑚,𝑗,𝑛
𝑁𝑗
𝑛=1             𝑥𝑚,𝑗,𝑛 = 1

𝑀
𝑚=1 𝑖𝑓 ℎ1𝐸𝑚,𝑗,𝑛 = 1               (4-15) 

5.1.2. Job shop problem type  

Generally, in this thesis all optimizations methods are tested with job shop problems that have number 
of machine equal to number of jobs. However, these methods are also capable to solve problem that 
have number of machines not equal to number of jobs. These cases are divided into: 

 Number of machines less than number of jobs  

In these cases, jobs have small flexibility to search to machine, and that reduces the chances of 
selecting a machine, because of the lower probability of solution with smaller number of machines. 

In these cases machines may process two or more operations with same operation index at the same 
time for example machine 𝑀3 process 𝑂2,1and 𝑂4,1 and the constraint ∑ 𝑥𝑚,𝑗,𝑛 ∈ 

𝐽
𝑗=1 {0,1} ∀ 𝑚, 𝑛 is 

disabled. In these cases machines process one operation of first job and the other operation of second 
job stays waiting until the operation of the first job finish. To select which be the first and which be 
second operation we adapt the job shop constraints with queuing theory as flow: 

1.  First come first served: in this case the job that arrives first is processed first in machine. 
2. Shortest processing time: if two jobs wait for a machine, that machine process firstly the 

job that has the shortest processing time. 

By queuing theory constraint, we can solve scheduling problem with genetic algorithm GA and mixed 
Integer programming. 

 Number of machines greater than number of jobs 

In these cases, jobs have larger flexibility to select the machine, because of largest machine 
availability. But not all machine charge, this leads to the possibility of an idle time, because a machine 
𝑀𝑚not process an operation 𝑂𝑗,𝑛. These cases can be improved by; 

1. Left shifting and left moving as explained in chapter four (4.5.4 Left shifting) to improve 
job scheduling sequences and reduce idle time between the operations. 

2. If the left shifting cannot apply or does not give good result, idle time energy can be 
reduced by applying turn on/off or standby strategy to reduce total energy, as 
explained in chapter four (Turn on/off or standby to reduce total energy). 

5.2 Results and Conclusion 
Job shop scheduling problem size refers to number of machines; number of jobs and jobs size 
(number of operations in job). All optimisations methods (except single population genetic algorithm) 
have well and near results with small medium job shop problem, as shown in figure 5-5 (6 job x 6 
machine problem with 6 operations per job). 
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Figure 5-5 Comparison of algorithm results for 6x6x6 job shop problem 

As shown in figure (5-5) constraint programming (CP) works well to reduce energy, but does not give 
a good result for job scheduling objectives, because it is designed to strongly reduce energy. 
However, with mixed integer linear programming (MILP) by developing classification trees and 
branching methods, we can obtain the best results. Multi populations genetic MPGA2 (parallel 
genetics) and MPGA1 (classical genetics), gives quite good results. 

 

Figure 5-6 Comparison of algorithm results for 6x6x12 job shop problem 

MPGE2 is more capable to solve bigger problems for example increasing the number of operations 
from 6 to 12 operations as shown in figure 5-6. For this reason, MILP and MPGA2 are developed by 
adding left shift and turn off-on/ standby constraints to improve their results.  

 When increasing the number of operations that mean increasing number of segments in the 
chromosomes. One chromosome is not sufficient to represent well complex variables, from that we 
found the result of MPGE1 less correct comparing with MILP or MPGE2. 

When increasing number of machines and number of jobs to 12 machines and 12 jobs, we found that 
MILP is more efficient to reduce all objectives (ENERGY and JOB shop objectives) as shown in 
figures (5-7,5-8 and 5-9), because increasing number of machines and jobs increases population’s 
size. However, increasing the number of machines also increases the CPU processing time to find best 
solution in MILP method, because any machine works as a branching tree. Increasing the number of 
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machines increases number of branching trees of machines, and number of operations increases 
number of levels and branching length, but not reduce the accuracy of result because in MILP, 
machines are scheduling step by step operation after operation until finish last operation in scheduling 
problem. 

 

Figure 5-7 Total work load and total energy (12x12x12 job shop problem) 

 
Figure 5-8 Cmax and total energy (12x12x12 job shop problem) 

 

Figure 5-9 Total idle time and total idle energy (12x12x12 job shop problem) 

These optimization methods are tested with different problems size up problem 12×12 with 12 
operations. The table 5-1 shows the best results all optimization methods. 
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Table 5-1Comparing between all optimization methods 

 6×6 -6 6×6 -12 10×10 -6 10×10- 12 12×12 -6 12×12 -12 

SPGA 

Cmax   (min) 128 266 129 268 129 268 

TWt (min) 798 1744 1346 2910 1696 3374 
TIdt  (min) 8 35 11 46 14 56 
Tsp(min) 124 340 210 457 262 542 
TE   (KWh) 2618.42 5342.28 4292.45 8684.6 5051.22 10233 
CPU   (min) 22.12 31.45 22.35 32.18 22.55 32.18 

MPGA1 

Cmax   (min) 124 266 128 268 132 270 

TWt (min) 788 1640 1248 2812 1498 3280 
TIdt  (min) 6 22 8 51 14 58 
Tsp(min) 118 335 206 448 255 530 
TE   (KWh) 2288.54 4832.2 3664.21 7960.17 4426.29 9596 

Er% 12.6% 9.5% 13.9% 8.3% 12% 6.2% 

CPU   (min) 22.18 24.18 22.18 24.18 24.55 30.18 

MPGA2 
+ 

Cmax   (min) 122 262 126 264 129 268 

TWt (min) 776 1560 1246 2684 1494 3172 
TIdt  (min) 6 18 6 40 12 46 
Tsp(min) 114 332 206 438 242 524 
TE   (KWh) 2198.85 4726.28 3632.85 7888 4319.34 9328.2 

Er% 16% 11.5% 14.5% 11.4% 14.4% 8% 

CPU   (min) 24.25 30.25 24.25 32.55 25.58 35.45 

CP 

Cmax   (min) 126 264 128 270 131 274 
TWt (min) 794 1630 1290 2768 1498 3380 
TIdt  (min) 8 28 12 42 16 48 
Tsp(min) 112 328 200 410 242 518 
TE   (KWh) 2265.42 4798.43 3735.25 8036 4399.78 9568 

Er% 13.4% 10% 13% 7.4% 12.8% 6.4% 

CPU   (min) 25.28 35.52 28.20 38.24 30.45 40.55 

MILP+ 

Cmax   (min) 122 258 124 260 129 262 

TWt (min) 752 1526 1252 2520 1494 3027 
TIdt  (min) 6 22 8 38 10 44 
Tsp(min) 112 326 200 408 220 504 
TE   (KWh) 2178.85 4499.45 3588.25 7471 4280 8909 

Er% 16.7% 15.7% 16.3% 13.9% 14.6% 12% 

CPU   (min) 22.18 22.18 38.48 62.42 40.18 65.20 
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From the figures and table above all method reduce total energy and non-productive energy. We can 
conclude that: 

1. All methods are capable to solve different job shop scheduling problems.   
2. Selecting an initial population minimising both processing energy and time is a good method 

to ensure reducing both energy and time objectives.  
3. Developing parallel genetic algorithm by adding threshold operation and elite strategy 

increases their efficiency to optimize energy and time. 
4. Classification trees works to constrain both energy and time variable. Constraint variables are 

working to restrain the machine to operate the intended job operations, and works as decision 
variable to calculate lower and upper limits.  

5. Local lower and upper limits are used to improve the results, where lower limits represent the 
goals to improve the solution, and upper limits are point of avoidance to ensure the correction 
of solutions. 

6. By left shifting the scheduling is more feasible to improve and reduce total energy and 
makespan. 

7. Also turn off is a good method to reduce non-productive energy without changing scheduling 
planning. Change to standby state is also very effective to maintain machine reliability and 
rise their life cycle. 

But there are several limits for any optimisation method, we can note: 

1. Classical genetic algorithm MPGA1 can be used with small and medium scheduling 
problems, because one chromosome is not enough to represent large population clearly. We 
solve this problem by using parallel genetic MPGA2 with two sub-genetics. 

2. The two genetics MPGA1and MPGA2 are very limited with problems that have a large 
operation number because the chromosome is divided into segments for each job. With large 
number of job operations, these segments will be very large and it will be difficult to select 
the initial population. 

3. The number of machines impacts mixed Integer MILP because MILP works to branch each 
machine as a solution tree, operation by operation, handling all machines at the same time. 
That increases the number of branching tree that needs large processing CPU time. 
Nevertheless the results are remaining the best comparing with other methods.   

5.3 Future Works 

For future works, we suggest to deal with those flawing points: 

For multi-objectives energy job shop scheduling (MOEJSS) problems it is quite necessary to consider 

the trade-off between all conflictive objectives (for example energy and Cmax ). Consequently it leads 

to difficulties for solving, because any objective is depending on special population. Then, initial 

population selection is very important in genetic algorithm as well as selecting solution candidates in 

mixed Integer programming. If population is not chosen clearly and intelligently, it becomes very 

difficult to find the correct solution to solve the problem.  

When developing initial population for genetic algorithm or initial candidates for MILPE, we propose 

to use fuzzy multi-criterion to generate an equivalent fuzzy set to represent processing energy, 

processing time, setup time and setup energy. This population is more appropriate to select 
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chromosomes. In multi objective (time, energy) job shop problems, these objectives generally depend 

on processing energy, processing time, setup energy, and setup time. Assuming that setup time 

contains setup time and transportation time between two machines and, assuming that transport 

capacity is fixed, each parameter takes its values from specific population. Generally we have two 

type of populations (energy and time), and each type of population consist of two sub-populations for 

processing and setup (considering that setup contains actual setup and transportation). Finally in this 

problem (OPEJSS) we have four populations, all job operation have four parameters related to four 

populations (see in figure 5-10). The problem is how to select a machine to process a job operation 

with minimum of these parameters from their populations? 

 

 

       

 

 

 

 

 

 

 

Figure 5-10 Multi populations related with one job operation 

By using fuzzy logic we can also solve the problem of uncertainty with operations that have 
fluctuating processing time or power levels (for instance tool wear over time). 

Of course job shop is very important class of system in manufacturing environments, but there are 
other structure types such as cellular manufacturing or open shop. From that, we suggest to apply 
these optimization methods to another manufacturing organisation, to reduce total energy during 
manufacturing processes.  

Generally reducing energy leads to reduce energy cost. But energy cost system is very complex. For 
example, electricity tariff depends on period (time of use) and number of KWh units consumed during 
this period. Developing these methods, leads to optimize energy cost according to job periods and 
how many KWh are consumed during these periods. 

 Changing to standby is a good method to ensure machine reliability, but no research deals with the 
impact of number of cycle turn on/off to reduce total machine reliability, and their effect on machine 
life cycle. For future works the cycle of turn on/off must be studied regarding failure or wear caused 
by this cycle. 

Developing optimization methods to reduce energy consumption in a dynamic job shop should be 
studied in the future for improving the productivity for job shops. In addition, it would be relevant to 
consider methods to reduce energy consumption in other plant design such as cellular manufacturing 
systems. 

 

   Esp 

 

Ep 

Energy Population  

 
       tsp 

 

tp 

 

Time Population  

𝑂𝑚,𝑗,𝑛 

Ep, Esp , Eh,  tp,tsp,th 

 th 

 

 Eh 

 



 

138 
 

References  

Chapter one  

Kniivilä M., 2007. Industrial development and economic growth: Implications for poverty reduction 

and income inequality, https://books.google.fr/books?isbn=9211045649 United Nations. Department 
of Economic and Social Affairs 

Brundtland, H., 1987. Report: Our Common Future, "Closing Ceremony of the Eighth and Final 
Meeting of the World Commission on Environment and Development", World Commission on 
Environment and Development: Tokyo, Japan 

Brundtland, G.H., 1989. Rapport Brundtland : Notre Avenir à Tous, in Report of the World 
Commission on Environment and Development: Our Common Future, UN Documents: Montréal 

Friend G,2009. The truth about green business. https://books.google.fr/books?isbn=0768694205 

Mathieux, F., Froelich D., and Moszkowicz P., 2008. ReSICLED, 2008. a new recovery-conscious 

design method for complex products based on a multicriteria assessment of the recoverability, Journal 
of Cleaner Production, 16(3): p. 277- 298. 

Janin, M., 2000. Démarche d'éco-conception en entreprise. Un enjeu : construire la cohérence entre 

outils et processus, in (ENSAM. Ecole nationale supérieure d'arts et métiers. France), Arts et Métiers 
ParisTech: Paris 

Haoues, N., 2006. Contribution à l'intégration des contraintes de désassemblage et de recyclage dès 

les premières phases de conception des produits, in Sciences de l'économie, de la gestion et de la 

société, 2006, Arts et Métiers ParisTech. 

Alhomsi, H. and Zwolinski P., 2009. Utilisation de règles DFE en conception préliminaire, in 11ème 

Colloque National AIP PRIMECA, La Plagne-France. 

Nishitani, K., 2009, An empirical study of the initial adoption of ISO 14001 in Japanese 

manufacturing firms, Ecological Economics 68 pp. 669-679 

ISO 2015. Une introduction à la norme ISO 14001, Organisation internationale de normalisation 
Secrétariat central de l’ISO, 8 Chemin de Blandonnet, Case Postale 401 CH – 1214 Vernier, Genève, 
Suisse. https://www.iso.org/iso/fr/introduction_to_iso_14001_fr_ld.pdf 

Finkbeiner M., 2013. From the 40s to the 70s—the future of LCA in the ISO 14000 family, Int J Life 
Cycle Assess 18:1–4 DOI 10.1007/s11367-012-0492- 

Kollman K. And Aseem Prakash A., 2002. EMS-based Environmental Regimes as Club Goods: 

Examining Variations in Firm-level Adoption of ISO 14001 and EMAS in U.K., U.S. and Germany, 
Policy Sciences 35: pp.43-67, Kluwer Academic Publishers, Netherlands. 

Souza Campos L. M., 2012. Environmental management systems (EMS) for small companies: a study 

in Southern Brazil, Journal of Cleaner Production 32 pp. 141-148.  

ASIE/2006/122-578, 2008. Improving the living and working conditions of people in and around 

industrial clusters and zones, Cleaner Production Manual pp 9-12 

https://www.google.fr/search?rlz=1C1CAFB_enFR654FR654&tbm=bks&q=inauthor:%22United+Nations.+Department+of+Economic+and+Social+Affairs%22&sa=X&ved=0ahUKEwicq-Wp3tvYAhWM_KQKHcyJDzMQ9AgIVTAL
https://www.google.fr/search?rlz=1C1CAFB_enFR654FR654&tbm=bks&q=inauthor:%22United+Nations.+Department+of+Economic+and+Social+Affairs%22&sa=X&ved=0ahUKEwicq-Wp3tvYAhWM_KQKHcyJDzMQ9AgIVTAL
https://books.google.fr/books?isbn=0768694205
https://www.iso.org/iso/fr/introduction_to_iso_14001_fr_ld.pdf


 

139 
 

Saez-Martínez F. J., Lefebvre G., Hernandez J. J. and Clark J. H., 2016. Drivers of sustainable 

cleaner production and sustainable energy options, Journal of Cleaner Production 138, pp.1-7. 

Gavrilescu M., 2004. Cleaner production as a tool for sustainable development, Environmental 
Engineering and Management Journal, March 2004, Vol.3, No.1,pp. 45-70. 

Mikulcic H., Jaromir J., Kleme J. J., Vujanovic M., Urbaniec K., 2016. Reducing greenhouse gasses 

emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner 

cement manufacturing process, Journal of Cleaner Production 136 pp. 119-132. 

Maiti S., Gallastegui G., Suresh G., Sarma S. J., Brara S. K., Drogui P., LeBihan Y., Buelna G., 
Verma M., Carlos Ricardo Soccol C. R., 2018. Hydrolytic pre-treatment methods for enhanced 

biobutanol production from agro-industrial wastes, Bioresource Technology 249, pp. 673-683. 

Eberhard Abele E., Reiner Anderl R., Herbert Birkhofer H., 2005. Environmentally-Friendly Product 

Development: Methods and Tools, Springer-Verlag, London. 

Sarkis J., Zhu Q., Lai K.-H., 2011. An organizational theoretic review of green supply chain 

management literature, Int. J. Production Economics 130, pp. 1-15.  

Diabata A., Govindan K., An analysis of the drivers affecting the implementation of green supply 

chain management, Resources, Conservation and Recycling 55 (2011) pp.659-667. 

Lele S., 2009. Getting serious about green manufacturing, Frost & Sullivan, Singapore. 
www.frost.com/prod/servlet/cio/168777968 

Melnyk S. A., Smith R. T., 1996. Green manufacturing, Dearborn, Michigan USA : Computer 
Automated Systems of the Society of Manufacturing Engineers. 

Seow Y., Goffin N., Rahimifard S., Elliot Woolley E., 2016. A “Design for Energy Minimization” 

approach to reduce energy consumption during the manufacturing phase, Energy 109, pp. 894-905 

Lai K., Wong C. W. Y., 2012. Green logistics management and performance: Some empirical 

evidence from Chinese manufacturing exporters, Omega 40, pp. 267-282. 

GAO 2001. Federal Enterprise Architecture, United States Government Accountability Office 

Moldavska A., Welo T., 2017. The concept of sustainable manufacturing and its definitions: A 

content-analysis based literature review, Journal of Cleaner Production, Volume 166, pp. 744-755. 
 
Paul I.D., Bholeb G.P., ChaudharinJ.R., 2014. A review on Green Manufacturing: It’s important, 

Methodology and its Application, 3rd International Conference on Materials Processing and 
Characterisation (ICMPC 2014) Procedia Materials Science 6, pp. 1644-1649 
 
Dornfeld D. A., Yuan C., Diaz N., Zhang T., Vijayaraghavan A., 2013. Introduction to Green 

Manufacturing, Green Manufacturing, Fundamentals and Applications, Editor David A. Dornfeld, 
Laboratory for Manufacturing and Sustainability (LMAS) University of California, Berkeley 
Berkeley, California, USA, Springer Science+Business Media New York, pp 1-24. 

 

file:///C:/Users/gien/Desktop/Firas/22%20janvier%202018/www.frost.com/prod/servlet/cio/168777968


 

140 
 

Chapter 2 
 
DOE/EIA, 2017, International Energy Outlook 2017, U.S. Energy Information Administration, 
https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf 

International Energy Agency (IEA), 2017a, World Energy Outlook 2017, 
http://www.iea.org/media/weowebsite/2017/Chap1_WEO2017.pdf  

International Energy Agency (IEA), 2017b, CO2 Emissions from Fuel Combustion (OECD 

countries), Preliminary edition, OECD/IEA, Paris. 
https://www.iea.org/statistics/relateddatabases/co2emissionsfromfuelcombustion 

European Environment Agency (EEA), 2016, Renewable energy in Europe 2016 - Recent growth and 

knock-on effects, Publications Office of the European Union, Luxembourg 2016. 

Ministère de La Transition Écologique et Solidaire (MTES) 2017. Les énergies renouvelables en 

France en 2016 - Suivi de la directive 2009/28/CE relative à la promotion de l'utilisation des énergies  

renouvelables,http://www.statistiques.developpement-durable.gouv.fr/fileadmin/documents/Produits_
editoriaux/Publications/Datalab_essentiel/2017/datalabessentiel-118-energies-renouvelables-
septembre2017-b.pdf 

Intergovernmental Panel on Climate Change (IPCC) 2014 
http://www.ipcc.ch/ipccreports/tar/wg1/index.php?idp 

Ritchie H., Roser M., 2018. CO2 and other Greenhouse Gas Emissions, 
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions 

Husain A. M., Arezki R., Breuer P., Haksar V., Helbling T., Medas P., Sommer M., (2015). Global 

Implications of Lower Oil Prices, International Monetary Fund, 
https://www.imf.org/external/pubs/ft/sdn/2015/sdn1515.pdf 

Dudley B.,2017. BP Statistical Review of World Energy, 
https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-
statistical-review-of-world-energy-2017-full-report.pdf 

DOE/EIA, 2016, International Energy Outlook 2016, U.S. Energy Information Administration, 
https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf 

International Energy Agency (IEA) 2015. Energy Climate and Change World Energy Outlook, 
https://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandC
limateChange.pdf 

Seow Y., 2011. A Framework for Modelling Embodied Product Energy to Support Energy Efficient 

Manufacturing, Doctoral Thesis PhD, Loughborough University. 

Thiede S., 2011. Energy Efficiency in Manufacturing Systems, chapter two, Theoretical Background, 
Energy Consumption in Manufacturing, pp. 16-21. 

Mouzon, G., Yildirim, M.B., Twomey, J., 2007, Operational methods for minimization of energy 

consumption of manufacturing equipment, International Journal of Production Research, 45(18-19), 
pp. 4247-4271. 

https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
http://www.iea.org/media/weowebsite/2017/Chap1_WEO2017.pdf
https://www.iea.org/statistics/relateddatabases/co2emissionsfromfuelcombustion
https://www.iea.org/statistics/relateddatabases/co2emissionsfromfuelcombustion
http://www.statistiques.developpement-durable.gouv.fr/fileadmin/documents/Produits_editoriaux/Publications/Datalab_essentiel/2017/datalabessentiel-118-energies-renouvelables-septembre2017-b.pdf
http://www.statistiques.developpement-durable.gouv.fr/fileadmin/documents/Produits_editoriaux/Publications/Datalab_essentiel/2017/datalabessentiel-118-energies-renouvelables-septembre2017-b.pdf
http://www.statistiques.developpement-durable.gouv.fr/fileadmin/documents/Produits_editoriaux/Publications/Datalab_essentiel/2017/datalabessentiel-118-energies-renouvelables-septembre2017-b.pdf
http://www.ipcc.ch/ipccreports/tar/wg1/index.php?idp=5
http://www.ipcc.ch/ipccreports/tar/wg1/index.php?idp
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
https://www.imf.org/external/pubs/ft/sdn/2015/sdn1515.pdf
https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf
https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf
https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
https://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandClimateChange.pdf
https://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandClimateChange.pdf


 

141 
 

Peng T., Xun X., 2014. Energy-efficient machining systems: a critical review Int. J. Adv. Manuf. 
Technol., 72, pp. 1389-1406. 

Saidu R., 2010. A review on electrical motors energy use and energy savings, Renewable and 
Sustainable Energy Reviews pp. 877-898. 

Abele E., Sielaff T., Schiffler A., Rothenbücher S., (2011). Analysing energy consumption of machine 

tool spindle units and identification of potential for improvements of efficiency, Proceedings of the 
18th CIRP international conference on life cycle engineering globalized solutions for sustainability in 
manufacturing. Springer, Berlin, pp. 280-285. 

Dahmus J., Gutowski G., 2004. An Environmental Analysis of Machining ASME 2004 International 

Mechanical Engineering Congress and Exposition Manufacturing Engineering and Materials 

Handling Engineering Anaheim, California, USA, November 13-19. 

Gutowski G., Dahmus J., Thiriez A., 2006, Electrical Energy Requirements for Manufacturing 

Processes Electrical Energy Requirements for Manufacturing Processes, 13th CIRP International 
Conference of Life Cycle Engineering, Lueven, May 31 -2 June  

Weinert, N., Chiotellis S., Seliger G., 2011, Methodology for planning and operating energy efficient 
production systems CIRP Annals - Manufacturing Technology 60 (2011) pp. 41-44. 

Luo H., Du B., Huang G.Q., Chen H., Li X., 2013. Hybrid flow shop scheduling considering machine 

electricity consumption cost, International Journal of Production Economics, 146, pp. 423-439. 

Herring, H., 2009. Energy efficiency and sustainable consummation, Springer, pp. 1-19 

Neugebauer R., Drossel W., Wertheim R., Hochmuth C., Dix M., 2012. Resource and Energy 

Efficiency in Machining Using High Performance and Hybrid Processes, Procedia CIRP 1;pp 3–16 

Grigor’eva S., Kuznetsova A., Volosovaa M., Koriathb H.,2014. Classification of MetalCutting 

Machines by Energy Efficiency, Russian Engineering Research, 2014, 34, (3), pp. 136-141. 

Schischke K, Hohwieler E, Feitscher R, König J, Kreuschner S, Nissen NF, 
Wilpert P, 2011, Energy using product group analysis. Lot 5: Machine tools 
and related machinery. Executive Summary Version2. 
http://www.ecomachinetools.eu/typo/reports.html?file=tl_ 
files/pdf/EuP_LOT5_ExecutiveSummary_v05_280211.pdf. 
 

Kellens K.,Rodrigues G., Dewulf W., Duflou J., 2014. Energy and Resource Efficiency of Laser 

Cutting Processes, Physics Procedia 56, pp. 854-864. 

Fysikopoulos A. Pastras G. Alexopoulos T Chryssolouris G. 2014. On a generalized approach to 

manufacturing energy efficiency, Int. J. Adv. Manuf. Technol. 73, pp. 1437-1452 

Fysikopoulos A., Anagnostakis D., Salonitis K., Chryssolouris G., 2012. An Empirical Study of the 

Energy Consumption in Automotive Assembly, 45th CIRP Conference on Manufacturing Systems. 

Krones M., Müller E., 2014. An Approach for Reducing Energy Consumption in Factories by 

Providing Suitable Energy Efficiency Measures, Procedia CIRP 17, pp. 505-510. 

http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Jeffrey+B.+Dahmus&q=Jeffrey+B.+Dahmus
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Timothy+G.+Gutowski&q=Timothy+G.+Gutowski
http://www.ecomachinetools.eu/typo/reports.html?file=tl_


 

142 
 

Behrendt T, Zein A, Min S., 2012. Development of an energy consumption monitoring procedure for 

machine tool,  CIRP Annals Manufacturing Technology 61, pp. 43-46. 

Peng T., Xun X., 2011. A framework of an energy-informed machining system, Proceedings of the 7th 
International Conference on Digital Enterprise Technology, Athens, Greece, pp. 160-169. 

Neugebauer, R., Wabner M., Rentzsch H., Ihlenfeld S., 2011. Structure principles of energy efficient 

machine tools,    CIRP Journal of Manufacturing Science and Technology, 4, pp.136-147. 

Fysikopoulos A., Alexios P., Georgios P. Panagiotis S., George C., 2013. Energy Efficiency of 

Manufacturing Processes: A Critical Review, Procedia CIRP 7, pp. 628-633. 

Gutowski G., 2010. The Efficiency and Eco-efficiency of Manufacturing, International Journal of 

Nanomanufacturing, 6(1–4), pp. 38-45. 

Givehchi M., Aghighi A., Wang L., 2017, Cloud-DPP for distributed process planning of mill-turn 

machining operations,    Robotics and Computer–Integrated Manufacturing, 47, pp. 76-84. 

Thao-Le V., Paris H., Mandil G., 2017. Process planning for combined additive and subtractive 

manufacturing technologies in a remanufacturing context, Journal of Manufacturing Systems, 44, 
pp.243-254. 

Trstenjak M., Cosic P., 2017. Process planning in Industry 4.0 environment, Procedia Manufacturing, 
11, pp. 1744-1750. 

Abele E., Flum D., Strobel N., 2017. A systematic approach for designing learning environments for 

energy efficiency in industrial production, Procedia  Manufacturing, 9, pp. 9-16 

Newman S., Nassehi A, Imani-Asrai R., Dhokia V.,2012. Energy efficient process planning for CNC 

machining, CIRP Journal of Manufacturing Science and Technology, 5, pp. 127-136. 

Duflou J.R., Sutherland J.W, Dornfeld D, Herrmann C., Jeswiet J.,Kara S., Hauschild M., Kellens K., 
2012. Towards energy and resource efficient manufacturing: A processes and systems approach, 
CIRP Annals-Manufacturing Technology, 61, pp. 587-609. 

Mori M., Fujishima M., Inamasu Y., Oda Y., 2011. A study on energy efficiency improvement for 

machine tools, CIRP Annals Manufacturing Technology, 60 (1), pp. 145-148. 

Yin J., Yang Y., Tang Y., Gao Z., Ran B. 2017. Dynamic passenger demand oriented metro train 

scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming 

approaches, Transportation Research, Part B, 97, pp. 182-213. 

  



 

143 
 

Chapter 3  

Mouzon G., 2008a, Operational methods and models for minimization of energy consumption in a 

manufacturing environment, Wichita State University. No. p 157 

International Energy Agency, 2017, World Energy Outlook 2017, available at: 

http://www.worldenergyoutlook.org 

Mouzon G. Yildirim M.B., 2008b, A framework to minimize total energy consumption and total 

tardiness on a single machine, In Proceedings of 4th Annual GRASP Symposium. Wichita State 

University, pp. 105-116. 

U.S. International Energy Agency September(IEA) 27, 2012, AnnualEnergyReview2011, 
https://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf  

Duflou J.R., Sutherland J.W., Dornfeld D., Herrmann C., Jeswiet J., Kara S., Hauschild M., Kellens 
K., 2012, Towards energy and resource efficient manufacturing: a processes and systems approach, 
CIRP Annals-Manufacturing Technology 61,pp. 587-609. 

Fysikopoulos A., Alexios P., Georgios P., Panagiotis S., George C., 2013, Energy Efficiency of 

Manufacturing Processes: A Critical Review, Procedia CIRP 7,pp. 628-633 

Munoz A., Sheng P., 1995, An analytical approach for determining the environmental impact of 

machining processes. Journal of Materials Processing Technology 53,pp.736-758. 

Gutowski T., Murphy C., Allen D., Bauer D., Bras B., Piwonka T., Sheng P., Thurston D., Wolff E., 

2005, Environmentally benign manufacturing: Observations from Japan, Europe and the United 

States, Journal of Cleaner Production, 13, pp.1-17. 

Diaz N., Helu M., Jarvis A., Tönissen S., Dornfeld D., Schlosser R., 2009. Strategies for Minimum 

Energy Operation for Precision Machining, Proceedings of MTTRF annual meeting. No. p 6. 

Fang K., Uhan N., Zhao F., Sutherland. J.W., 2011, A New Shop Scheduling Approach in Support of 

Sustainable Manufacturing, In J. Hesselbach & C. Herrmann, eds. Glocalized Solutions for 

Sustainability in Manufacturing. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 305-310. 

Haît A., Artigues C., 2011, An hybrid CP/MILP method for scheduling with energy costs. Eu-ropean 

Journal of Industrial Engineering, 5 (4), pp.471-489 

He Y., Liu F., Wu T., Zhong F.P., Peng B., 2012a, Analysis and estimation of energy consumption for 

numerical control machining, Journal of Engineering Manufacture, 226(2), pp255-266 

He, Y, Liu, B., Zhang, X., Gao, H., Liu X., 2012b. A modelling method of task oriented energy 

consumption for machining manufacturing system, Journal of Cleaner Production, 23(1), pp167-174 

Fang K., Uhan N.A, Zhao F., Sutherl J.W. 2013. Flow shop scheduling with peak power consumption 

constraints, Annals of Operations Research, 206(1):pp.115-145,  

http://www.worldenergyoutlook.org/
https://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf


 

144 
 

Bruzzone A.G., Anghinolfi D., Paolucci M., Tonelli F., 2012. Energy-aware scheduling for improving 

manufacturing process sustainability: A mathematical model for flexible flow shops, CIRP Annals – 

Manufacturing Technology, 61,pp. 459-462. 

Dai M., Tang D., Giret A., Salido M.A., Li W.D. 2011, Energy-efficient scheduling for a flexible flow 

shop using an improved genetic-simulated annealing algorithm, Robotics and Computer-Integrated 

Manufacturing, 29,pp. 418-429.  

Luo H., Du B., Huang G.Q., Chen H., Li X., 2013, Hybrid flow shop scheduling considering machine 

electricity consumption cost. International Journal of Production Economics, 146,pp. 423-439. 

Salido M.A., Escamilla J., Barber F., Giret A., Tang D., Dai M., 2013, Energy-aware Parameters in 

Job-Shop Scheduling Problems, GREEN-COPLAS 2013; IJCAI 2013 Workshop on Constraint 

Reasoning, Planning and Scheduling Problems for a Sustainable Future, Beijing, China, pp.. 44-53 

Moon J., Park J., 2013, Smart production scheduling with time-dependent and machine-dependent 

electricity cost by considering distributed energy resources and energy storage, International Journal 

of Production Research, vol. 52, no. 13, pp.3922-3939. 

Liu Y., Dong H., Lohse N., Petrovic S., Gind, N. 2014, An investigation into minimising total energy 

consumption and total weighted tardiness in job shops, Journal of Cleaner Production, 65,pp. 87-96. 

Zhang H., Zhao, F., Fang K., Sutherland J.W. 2014, Energy-conscious flow shop scheduling under 

time of use electricity tariffs, CIRP Annals – Manufacturing Technology. 63 pp. 37-40  

O’Rielly K., Jeswiet J. 2014, Strategies to improve industrial energy efficiency, 21st CIRP 

Conference on Life Cycle Engineering, Procedia CIRP, 15,pp. 325-330. 

AL-QASEER F., A GIEN D., 2015, Multi-objective genetic method minimizing tardiness and energy 

consumption during idle times, IFAC-PapersOnLine 48-3, pp. 1216-1223 

Trentesaux D., Prabhu V., 2016, Sustainability in Manufacturing Operations Scheduling: Stakes, 

Approaches and Trends HAL Id: hal-01387853 https://hal.inria.fr/hal-01387853 Submitted on 26 Oct 

2016 No. p 9 

Shrouf F., Ordieres-Meré J., García-Sánchez A., OrtegaMier M., 2014, Optimizing the production 

scheduling of a single machine to minimize total energy consumption costs, Journal of Cleaner 

Production, 67, pp.197-207.  

Artigues C., Lopez P., 2015, Energetic reasoning for energy-constrained scheduling with a 

continuous resource. J Sched (2015) 18:pp 225-241  

Shrouf F., Miragliotta G., 2015, Energy management based on Internet of Things: practices and 

framework for adoption in production management, Journal of Cleaner Production 100 pp.235-246. 



 

145 
 

Masmoudi O., Yalaoui A., Ouazene Y., Chehade H.,  2015,  Lot-sizing in flow-shop with energy 

consideration for sustainable manufacturing systems IFAC-PapersOnLine 48-3 pp 727-732 

Masmoudi O., Yalaoui A., Ouazene Y., Chehade H., 2016, Lot-sizing in a multi-stage flow line 

production system with energy consideration, International Journal of Production Research, No. ps 25  

Masmoudi O., Yalaoui A., Ouazene Y., Chehade H., 2017, Solving a capacitated flow-shop problem 

with minimizing total energy costs, Int J Adv Manuf Technol 90: pp2655-2667 

Zhang R., Chiong R., 2016, Solving the energy-efficient job shop scheduling problem: a multi 

objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness 

and total energy consumption, Journal of Cleaner Production 112 pp. 3361-3375. 

Nattaf M., Artigues C., Lopez P., Rivreau D., 2016 Energetic reasoning and mixed-integer linear 

programming for scheduling with a continuous resource and linear efficiency functions OR Spectrum  

38: pp 459-492 

Jian-Ya D., Shiji S., Cheng W., 2016, Carbon-efficient scheduling of flow shops by multi-objective 

optimization. European Journal of Operational Research 248 pp. 758-771. 

Chao L., Liang G., Xinyu L., Quanke P., Wang Q., 2017, Energy-efficient permutation flow shop 

scheduling problem using a hybrid multi-objective backtracking search algorithm, Journal of Cleaner 

Production 144 pp. 228-238. 

Mokhtari H., Hasani A., 2017, An energy-efficient multi-objective optimization for flexible job-shop 

scheduling problem, Computers and Chemical Engineering 104 pp. 339-352. 

Lvjiang Y., Liang G., Xinyu L., Hao X. 2017, An Improved Genetic  Algorithm with Rolling Window 

Technology for Dynamic Integrated Process Planning and Scheduling Problem, Proceedings of the 

2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design. 

Yuxin Z., Konstantin B., Fu Zhao., John W., 2017, Dynamic scheduling of a flow shop with on-site 

wind generation for energy cost reduction under real time electricity pricing, CIRP Annals - 

Manufacturing Technology 66 pp.41-44. 

Zhang L., Tang Q., Wu Z., Wang F., 2017, Mathematical modelling and evolutionary generation of 

rule sets for energy-efficient flexible job shops, J Energy 138 pp. 210-227. 

Pezzella F., Morganti G., Ciaschetti G. 2008, A genetic algorithm for the Flexible Job-shop 

Scheduling Problem, Computers & Operations Research 35 pp. 3202-3212 

Yuan Y., Hua X., Yang J., 2013a, A hybrid harmony search algorithm for the flexible job shop 

scheduling problem, Applied Soft Computing 13 pp. 3259-3272.  
 
Yuan Y., Hua X., 2013b, Flexible job shop scheduling using hybrid differential evolution algorithms, 

Computers & Industrial Engineering 65 pp. 246-260  

https://www.researchgate.net/publication/281548786_Lot-sizing_in_flow-shop_with_energy_consideration_for_sustainable_manufacturing_systems?_sg=IXNamPKz1cIheSQRAme_SEeivMA7FRU4DuK1fM69Ey-C7bdny0aD4wujzpzvSSGR9gMh6ZTKfJIe5sfXmxrAcuwCCAl3KbJQCjG7QOlU.A7TIjvh4x7jO5zCAGpqaNdzWpvdGDoI98Chik-w-xF4lWLjrvmkIbGQgXSTMw0x_OUZkfTZ7yYkwKc_GZvoKvw
https://www.researchgate.net/publication/281548786_Lot-sizing_in_flow-shop_with_energy_consideration_for_sustainable_manufacturing_systems?_sg=IXNamPKz1cIheSQRAme_SEeivMA7FRU4DuK1fM69Ey-C7bdny0aD4wujzpzvSSGR9gMh6ZTKfJIe5sfXmxrAcuwCCAl3KbJQCjG7QOlU.A7TIjvh4x7jO5zCAGpqaNdzWpvdGDoI98Chik-w-xF4lWLjrvmkIbGQgXSTMw0x_OUZkfTZ7yYkwKc_GZvoKvw


 

146 
 

Kemmoé S., Lamy D., Tchernev N., 2015, A Job-shop with an Energy Threshold Issue Considering 

Operations with Consumption Peaks. IFAC-PapersOnLine 48-3 pp. 788-793 

Shengxiang Y., Xin Y., 2008, Genetic Algorithms with Memory- and Elitism Based Immigrants in 

Dynamic Environments Massachusetts, Institute of Technology Evolutionary Computation 16(3) 

pp.385-41.  

Shengxiang Y., 2008, Genetic Algorithms with Elitism-Based Immigrants for Changing Optimization 

Problems, Department of Computer Science, University of Leicester University Road, Leicester LE1 

7RH, United Kingdom No.p 10. 

Renato T., Shengxiang Y., 2007, A Self-Organizing Random Immigrants Genetic Algorithm for 

Dynamic Optimization Problems, Genetic Programming and Evolvable Machines, 8(3) pp. 255-286. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

147 
 

Chapter 4 
 

Hojae L., Christos T. M., 2017, Discrete-time mixed-integer programming models for short-term 

scheduling in multipurpose environments, Computers and Chemical Engineering 107 p 171-183  

Kooli A., Serairi M., 2014, A mixed integer programming approach for the single machine problem 

with unequal release dates, Computers & Operations Research 51 p 323–330 

Wang T., Meskens N., Duvivier D., 2015, Scheduling operating theatres: Mixed integer programming 

vs. constraint programming, European Journal of Operational Research 247 p 401-413 

Karimi S, Zaniar A, B. Naderi B, Mohammadi M., 2017, Scheduling flexible job-shops with 

transportation times: Mathematical models and a hybrid imperialist competitive algorithm, Applied 

Mathematical Modelling 41 p 667-682 

Altinakar S., Caporossi G., Hertz A., 2016, A comparison of integer and constraint programming 

models for the deficiency problem, Computers & Operations Research Volume 68, April, p 89-96. 

Hinder O., Mason A. J., 2017, A novel integer programing formulation for scheduling with family 

setup times on a single machine to minimize maximum lateness, European Journal of Operational 

Research 262 p 411-42  

Rossi R., Kilic O., Armagan S., 2015, Piecewise linear approximations for the static–dynamic 

uncertainty strategy in stochastic lot-sizing, Omega 50 p 126-140 

Olarte C., Pimentel E. 2015, Proving Concurrent Constraint Programming Correct, Revisited. 

Electronic Notes in Theoretical Computer Science 312 p 179-195 

Goel V., Slusky M., Furmand K., Shao Y., 2015, Constraint programming for LNG ship scheduling 

and inventory management, European Journal of Operational Research 241 p662-673 

Shen L., Dauzère-Pérès S., Neufeld J. S., 2018, Solving the flexible job shop scheduling problem with 

sequence-dependent setup times, European Journal of Operational Research 265 p 503-516 

Kemmoé S., Lamy D., Tchernev N., 2015, A Job-shop with an Energy Threshold Issue Considering 

Operations with Consumption Peaks, IFAC-PapersOnLine 48-3 p 788-793 

Yamanaka N., Satob T., Kubot T., 2014, Linear programming analysis of the R-parity violation 

within EDM-constraints, Journal of High Energy Physics ISSN, p 1029-8479. 

Tanaka S., Fujikuma S., 2012. A dynamic-programming-based exact algorithm for a machine idle 

time. Journal of Scheduling 15(3) p347-361. 

George B. D. May 1987, Origins of the simplex method Repot sol 87-5 Systems Optimization 

Laboratory Department of Operation Research Stanford University Stanford California 94305-4022 

No. p 17. 

http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548/68/supp/C


 

148 
 

Pochet Y., Laurence A. W., 2006, Production Planning by Mixed Integer Programming With 77 

Illustrations, Springer Science Business Media, Inc 

Schultz R., 2003, Mixed-Integer Value Functions in Stochastic Programming,Combinatorial 

Optimization (Edmonds Festschrift), LNCS 2570, pp. 171-184. 

Ghimire D., Lee J ,2011, Nonlinear Transfer Function-Based Image Detail Preserving Dynamic 

Range Compression for Color Image Enhancement, PSIVT 2011, Part I, LNCS 7087, Springer-Verlag 
Berlin Heidelberg p 1-12. 

James C., 2018, Mixed-integer programming model and branch-and-price-and-cut algorithm for 

urban bus network design and timetabling. Transportation Research Part B 108 p 188-216 

Stidsen T., Andersen K. A., Dammann. B., 2014, A branch and bound algorithm for a class of 

biobjective mixed integer programs, MANAGEMENT SCIENCE 60(4) p.1009-1032. 

 Jozefowiez N., Laporte G., Semet F., 2012 A Generic Branch-and-Cut Algorithm for Multi objective 

Optimization Problems: Application to the Multilabel Traveling Salesman Problem NFORMS Journal 

on Computing4,p554-564. 

Letchford A., Lodi A.,2003 An Augment-and-Branch-and-Cut Framework for Mixed 0-1 

Programming, Combinatorial Optimization (Edmonds Festschrift), LNCS 2570, p 119-133 

Toussaint H ,2013 Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint 

Integer Programs), Rapport de recherche LIMOS/RR-13-07. 2013. 

Danna E., Fenelon M., G., Wunderling R., 2007, Generating Multiple Solutions for Mixed Integer 
Programming Problems Integer Programming and Combinatorial Optimization p 280-294 

Yamada, T., 2003, Studies on metaheuristics for job shop and flow shop scheduling problems. Kyoto 
University thesis of doctor of informatics No.ps 133.  

 

 

 

 

 

 

 

 

 

 

https://pubsonline.informs.org/action/doSearch?text1=Jozefowiez%2C+Nicolas&field1=Contrib
https://pubsonline.informs.org/action/doSearch?text1=Laporte%2C+Gilbert&field1=Contrib
https://pubsonline.informs.org/action/doSearch?text1=Semet%2C+Fr%C3%A9d%C3%A9ric&field1=Contrib
https://link-springer-com.sicd.clermont-universite.fr/book/10.1007/978-3-540-72792-7


 

149 
 

Abstract:  
We present the challenges of environmental management and underline the importance of an 

energy saving policy for companies. We propose a model to determine the energy balance of 

manufacturing by integrating the different productive and non-productive phases. We define two 

purposes for minimizing production time and energy consumption. We apply this model to the 

scheduling of flexible job-shop workshops. To determine the optimal solution we use two types of 

methods: 

 The first is genetic algorithms. We propose different types of algorithms to solve this multi-

criteria problem. For example, we propose to develop two populations to minimize the energy 

consumed and the production time, and to cross them to achieve the overall objective. 

 The second is constraint programming. We propose to find the optimal solution by developing a 

double tree to evaluate the energy consumed and the production time. We build our algorithm 

starting from the tasks to be performed on the machines or from the machines that will 

perform the tasks. We discuss the construction of the Pareto front to get the best solution. 

We finish by comparing the different approaches and discussing their relevance to deal with 

problems of different sizes. We also offer several improvements and some leads for future research. 

Keywords: Environment Management, Sustainable manufacturing, Job shop scheduling, Energy 

efficient, Multi-objective optimization, Genetic Algorithms, Mixed Integer Linear Programing    

Résumé: 
Nous présentons les enjeux du management environnemental et soulignons l’importance d’une 

politique d’économie d’énergie pour les entreprises. Nous proposons un modèle pour déterminer le 

bilan énergétique de la fabrication en intégrant les différentes phases productives et non-

productives. Nous définissons un double objectif pour la minimisation de la durée de production et 

de la consommation d’énergie. Nous appliquons ce modèle à l’ordonnancement d’ateliers job-shop 

flexibles. Pour déterminer la solution optimale nous utilisons deux classes de méthodes : 

 La première relève des algorithmes génétiques. Nous proposons différents types d’algorithmes 

pour résoudre ce problème multicritère. Nous proposons par exemple de faire évoluer deux 

populations pour minimiser respectivement l’énergie consommée et la durée de production et 

de les croiser pour atteindre l’objectif global. 

 La seconde relève de la programmation sous contrainte. Nous proposons de rechercher la 

solution optimale en développant une double arborescence pour évaluer l’énergie consommée 

et la durée de production. Nous construisons notre algorithme en partant des tâches à réaliser 

sur les machines ou en partant des machines qui réaliseront les tâches.  Nous discutons de la 

construction du front de Pareto pour l’obtention de la meilleure solution. 

Nous terminons en comparant les différentes approches et en discutant leur pertinence pour traiter 

des problèmes de différentes tailles. Nous proposons également plusieurs améliorations et quelques 

pistes pour de futures recherches. 

Mots-Clés : Environnement Management, Production durable, Job Shop Planification, 

efficacité énergétique, Optimisation multi-objectifs, Algorithmes génétiques, 

Programmation   Mixte Linéaire Intègre. 


