
HAL Id: tel-02058937
https://theses.hal.science/tel-02058937

Submitted on 6 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending higher-order logic with predicate subtyping :
application to PVS

Frédéric Gilbert

To cite this version:
Frédéric Gilbert. Extending higher-order logic with predicate subtyping : application to PVS. Logic
in Computer Science [cs.LO]. Université Sorbonne Paris Cité, 2018. English. �NNT : 2018USPCC009�.
�tel-02058937�

https://theses.hal.science/tel-02058937
https://hal.archives-ouvertes.fr


     
 

 
 

 

 

 

Thèse de doctorat 

de l’Université Sorbonne Paris Cité 

Préparée à l’Université Paris Diderot 

École doctorale de Sciences Mathématiques de Paris Centre (ED386) 

Deducteam (INRIA) et LSL (CEA LIST) 

Extending higher-order logic                   
with predicate subtyping 

Application to PVS 

Par Frédéric Gilbert 

Thèse de doctorat de mathématiques  
(logique et fondements de l’informatique) 

Dirigée par Gilles Dowek et Florent Kirchner 
 

Présentée et soutenue publiquement à Paris le 10 avril 2018 

 

   Présidente du jury         Delia Kesner      Professeure, Université Paris Diderot 

   Rapporteurs          Herman Geuvers                      Professor, Radboud University Nijmegen 

        Shankar Natarajan       Distinguished Scientist, SRI International 

   Examinateurs          César A. Muñoz       Research Computer Scientist, NASA 

           Jean-Pierre Jouannaud     Professeur émérite, Université Paris-Sud 

   Directeurs de thèse         Gilles Dowek       Directeur de recherche, INRIA 

        Florent Kirchner       Chef de laboratoire, CEA LIST





Abstract

The type system of higher-order logic allows to exclude some unexpected expressions such
as the application of a predicate to itself. However, it is not sufficient to verify more
complex criteria such as the absence of divisions by zero. This thesis is dedicated to the
study of an extension of higher-order logic, named predicate subtyping, whose purpose is
to make the assignment of types as expressive as the assignment of predicates. Starting
from a type A and a predicate P (x) of domain A, predicate subtyping allows to build
a subtype of A, denoted {x : A | P (x)}, whose elements are the terms t of type A such
that P (t) is provable. Predicate subtyping is at the heart of the proof system PVS.

This work presents the formalization of a minimal system expressing predicate sub-
typing, named PVS-Core, as well as a system of verifiable certificates for PVS-Core.
This second system, named PVS-Cert, is based on the introduction of proof terms and
explicit coercions. PVS-Core and PVS-Cert are equipped with a notion of conversion
corresponding respectively to equality modulo β and to equality modulo β and the era-
sure of coercions, chosen to establish a simple correspondence between the two systems.

The construction of PVS-Cert is similar to that of PTSs (Pure Type Systems) with
dependent pairs and PVS-Cert can be equipped with the notion of βσ-reduction used
at the core of these systems. One of the main theorems proved in this work is the
strong normalization of both the reduction underlying the conversion and βσ-reduction.
This theorem allows, on the one hand, to build a type-checking (and proof-checking)
algorithm for PVS-Cert and, on the other hand, to prove a cut elimination result, used
in turn to prove important properties of the two studied systems. Furthermore, it is
also proved that PVS-Cert is a conservative extension of the PTS λ-HOL and that, as a
consequence, PVS-Core is a conservative extension of higher-order logic.

A second part presents the prototype of an instrumentation of PVS to generate proof
certificates. A third and final part is dedicated to the study of links between classical
and constructive logic, with the definition of a minimal double-negation translation as
well as the presentation of an automated proof constructivization algorithm.

Keywords: higher-order logic, predicate subtyping, PVS, type theory, proof theory

3





Résumé

Le système de types de la logique d’ordre supérieur permet d’exclure certaines expressions
indésirables telles que l’application d’un prédicat à lui-même. Cependant, il ne suffit pas
pour vérifier des critères plus complexes comme l’absence de divisions par zéro. Cette
thèse est consacrée à l’étude d’une extension de la logique d’ordre supérieur appelée
sous-typage par prédicats (predicate subtyping), dont l’objet est de rendre l’attribution
de types aussi expressive que l’attribution de prédicats. A partir d’un type A et d’un
prédicat P (x) de domaine A, le sous-typage par prédicats permet de construire un sous-
type de A, noté {x : A | P (x)}, dont les éléments sont les termes t de type A tels que
P (t) est démontrable. Le sous-typage par prédicats est au cœur du système PVS.

Ce travail présente la formalisation d’un système minimal incluant le sous-typage
par prédicats, appelé PVS-Core, ainsi qu’un système de certificats vérifiables pour PVS-
Core. Ce deuxième système, appelé PVS-Cert, repose sur l’introduction de termes de
preuves et de coercions explicites. PVS-Core et PVS-Cert sont munis d’une notion de
conversion correspondant respectivement à l’égalité modulo β et à l’égalité modulo β et
effacement des coercions, choisi pour établir une correspondance simple entre les deux
systèmes.

La construction de PVS-Cert est semblable à celle des PTS (Pure Type Systems)
avec paires dépendantes et PVS-Cert peut être muni de la notion de βσ-réduction utilisée
au coeur de ces systèmes. L’un des principaux théorèmes démontré dans ce travail est
la normalisation forte de la réduction sous-jacente à la conversion et de la βσ-réduction.
Ce théorème permet d’une part de construire un algorithme de vérification du typage
(et des preuves) pour PVS-Cert et d’autre part de démontrer un résultat d’élimination
des coupures, utilisé à son tour pour prouver plusieurs propriétés importantes des deux
systèmes étudiés. Par ailleurs, il est également démontré que PVS-Cert est une exten-
sion conservative du PTS λ-HOL, et qu’en conséquence PVS-Core est une extension
conservative de la logique d’ordre supérieur.

Une deuxième partie présente le prototype d’une instrumentation de PVS pour pro-
duire des certificats de preuve. Une troisième et dernière partie est consacrée à l’étude
de liens entre logique classique et constructive avec la définition d’une traduction par
double négation minimale ainsi que la présentation d’un algorithme de constructivisation
automatique des preuves.

Mots-clés : logique d’ordre supérieur, sous-typage par prédicats, PVS, théorie des
types, théorie de la démonstration

5





Acknowledgments

First of all, I would like to thank Gilles Dowek and Florent Kirchner, who gave me the
chance to discover the foundations of mathematics. Having two full-time advisors was
a true privilege. I’m very grateful to Gilles for helping me face the numerous choices
of research orientation and formalization, for providing me hindsight and perspectives,
but also for encouraging me to choose trial and error over dithering and hesitation. I
also want to express my sincere thanks to Florent for his insightful advice when I was
stuck either with theoretical questionings or technical difficulties, as he taught me in
both cases how to decompose hard problems into sequences of easier ones.

I warmly thank César Muñoz, who introduced me to PVS and invited me to spend
two summers working with him and his team. I learned a lot in each of these visits.

I’m deeply indebted to my reviewers Herman Geuvers and Shankar Natarajan for
their careful reading of my dissertation. Their respective works were both great sources
of inspiration to me. I’m also much obliged to Delia Kesner and Jean-Pierre Jouannaud
for accepting to be part jury, and I’m very honoured by their interest in this work.

I enjoyed a lot working in Deducteam and I’m grateful to all its members for the
excellent atmosphere as well as the stimulating discussions we had. Special thanks to Ali
Assaf, Raphaël Cauderlier, Simon Cruanes, Pierre Halmagrand, Bruno Bernardo, Simon
Martiel, and François Thiré, with whom I’ve been glad to spend most of my time, and
to Olivier Hermant for guiding me when I took my very first steps in logic.

My time at LSL was quantitatively shorter but equally fulfilling. I would like to
thank in particular Adel, Michael, and Quentin, it was a great pleasure to share my
office with them.

I’ll never be able to thank enough the NIA/NASA team for their welcome and their
hospitality during my two visits in Hampton. I want to express my deepest gratitude
to Andrew, Mariano, Azul, Bernardo, Laura, Marco, Carolyn, and Jennifer for their
friendliness and for making my visits so pleasant.

I’d like to thank the institutions without which my PhD work wouldn’t have seen
the light of day: Inria, ENS Cachan, CEA LIST, École des Ponts, NASA, and NIA.

7



ACKNOWLEDGMENTS

Preparing a PhD thesis requires less patience and perseverance from the candidates
than it does from their relatives. My particular thanks go to my friends for putting
up with me all these years, to my family for their encouragements and their help, and
especially to Alexia for her constant support in the achievement of this project.

8



Contents

1 Introduction 13

1.1 Types and predicates in higher-order logic . . . . . . . . . . . . . . . . . . 14

1.2 Enriching types with predicate subtyping . . . . . . . . . . . . . . . . . . 15

1.3 The practice of predicate subtyping in PVS . . . . . . . . . . . . . . . . . 16

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 First part: theoretical analysis of predicate subtyping . . . . . . . 17

1.4.2 Second part: extracting proof certificates from PVS . . . . . . . . 19

1.4.3 Third part: expressing classical first-order logic in constructive
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Theoretical analysis of predicate subtyping 23

2 Predicate subtyping in PVS 25

2.1 Presentation of a subset of the specification language . . . . . . . . . . . . 25

2.1.1 General structure of PVS specifications . . . . . . . . . . . . . . . 26

2.1.2 Higher-order logic types and expressions . . . . . . . . . . . . . . . 27

2.1.3 Addition of predicate subtyping . . . . . . . . . . . . . . . . . . . . 29

2.2 Idealization of typing and provability in PVS . . . . . . . . . . . . . . . . 30

2.2.1 Idealization of typing and well-formedness . . . . . . . . . . . . . . 31

2.2.2 Simplification of the PVS sequent calculus with natural deduction 36

3 PVS-Core: the formalization of predicate subtyping 39

3.1 Terms and judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Rules and derivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Summary of PVS-Core’s main characteristics . . . . . . . . . . . . . . . . 44

3.3.1 An extension of higher-order logic . . . . . . . . . . . . . . . . . . 45

3.3.2 Predicate subtyping and conversion . . . . . . . . . . . . . . . . . 45

4 PVS-Cert: verifiable certificates for PVS-Core 47

4.1 Formal presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Terms and judgements . . . . . . . . . . . . . . . . . . . . . . . . . 48

9



CONTENTS

4.1.2 Typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 The choice of PVS-Cert . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 An extension of λ-HOL . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 The expression of predicate subtyping . . . . . . . . . . . . . . . . 51

5 Properties of PVS-Cert 53

5.1 Tools for the analysis of derivations . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Thinning and substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 The Church-Rosser property . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Stratification in PVS-Cert . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 A type preserving reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Uniqueness of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Additional observations on PVS-Cert . . . . . . . . . . . . . . . . . . . . . 72

5.7.1 PVS-Cert extends PVS-Cert− . . . . . . . . . . . . . . . . . . . . . 73

5.7.2 Defining conversion on contexts . . . . . . . . . . . . . . . . . . . . 73

6 Strong normalization in PVS-Cert 77

6.1 Saturated sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Closure properties of SN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Properties of saturated sets . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Set interpretation of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Proof of strong normalization . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.7 Defining and using cut elimination in PVS-Cert . . . . . . . . . . . . . . . 105

7 Type-checking in PVS-Cert 109

7.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 A conservative extension of higher-order logic 121

8.1 The choice of the translation . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2 The translation of expressions and stratified contexts . . . . . . . . . . . . 127

8.3 Properties of λ-HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.1 Subderivations, renaming, thinning, substitution . . . . . . . . . . 131

8.3.2 Technical properties in λ-HOL . . . . . . . . . . . . . . . . . . . . 132

8.3.3 Specific properties of λ-HOL . . . . . . . . . . . . . . . . . . . . . 133

8.4 Soundness of the translation . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.5 Conservativity of the translation . . . . . . . . . . . . . . . . . . . . . . . 141

10



CONTENTS

9 Expressing PVS-Core in PVS-Cert 155

9.1 From PVS-Cert to PVS-Core . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.2 Expressing PVS-Core derivations as PVS-Cert judgement . . . . . . . . . 162

9.3 Soundness of the synthesis of certificates . . . . . . . . . . . . . . . . . . . 167

10 Transposing PVS-Cert results in PVS-Core 177

10.1 Using PVS-Cert as a system of verifiable certificates for PVS-Core . . . . 177

10.2 Transposing PVS-Cert properties in PVS-Core . . . . . . . . . . . . . . . 178

10.2.1 A provable proposition is well-typed . . . . . . . . . . . . . . . . . 178

10.2.2 Type preservation in PVS-Core . . . . . . . . . . . . . . . . . . . . 178

10.2.3 Strong normalization in PVS-Core . . . . . . . . . . . . . . . . . . 181

10.2.4 PVS-Core is a conservative extension of higher-order logic . . . . . 182

10.3 Using cut elimination in PVS-Cert to study PVS-Core logical properties . 184

11 Conclusion 187

11.1 Summary of the main contributions . . . . . . . . . . . . . . . . . . . . . 187

11.2 Perspectives for PVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.2.1 Extending PVS-Cert and PVS-Cert . . . . . . . . . . . . . . . . . 188

11.2.2 The problem of extracting certificates from PVS . . . . . . . . . . 190

11.3 Other perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

II Proof certificates in PVS 193

12 Proof certificates in PVS 195

12.1 Certificates as refinements of the PVS proof traces . . . . . . . . . . . . . 196

12.2 Proofs certificates in PVS . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

12.2.1 Expressions and conversion . . . . . . . . . . . . . . . . . . . . . . 197

12.2.2 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

12.2.3 Proof objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

12.3 Checking PVS proofs using Dedukti and Metitarski . . . . . . . . . . . . . 202

12.3.1 Translating proofs to Dedukti . . . . . . . . . . . . . . . . . . . . . 202

12.3.2 Checking assumptions with MetiTarski . . . . . . . . . . . . . . . . 203

12.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

III Expressing classical first-order logic in constructive systems 207

13 A lightweight double-negation translation 211

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

13.2 Syntax-directed double-negation translations . . . . . . . . . . . . . . . . 213

13.3 Partial orders among double-negation translations . . . . . . . . . . . . . 215

13.4 The minimal translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

11



Contents

13.5 Correctness of the minimal translation . . . . . . . . . . . . . . . . . . . . 220
13.6 Minimality of the translation . . . . . . . . . . . . . . . . . . . . . . . . . 223
13.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

14 Automated constructivization of proofs 227
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
14.2 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
14.3 State of the art: two constructive fragments of predicate logic . . . . . . . 231
14.4 The weakening normalization . . . . . . . . . . . . . . . . . . . . . . . . . 232
14.5 A new constructive fragment . . . . . . . . . . . . . . . . . . . . . . . . . 235
14.6 The full constructivization algorithm . . . . . . . . . . . . . . . . . . . . . 237
14.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
14.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

12



Chapter 1

Introduction

In spite of its relatively short lifetime, the history of the formalization of mathematics
from Frege’s Begriffsschrift [30] to modern proof systems experienced several significant
disruptions. Besides the radical changes brought with striking and sometimes unex-
pected theorems of inconsistency [65], incompleteness [42], or undecidability [15, 77], a
slower yet equally profound revolution arose with the emergence and the enhancement
of computers.

Before the development of these essential tools for the manipulation of formal lan-
guages, significant progresses were made to define universal languages for mathematics.
The culmination of this programme was reached with Hilbert’s and Ackermann’s formal-
ization of first-order logic [46]. They defined, once and for all, a universal language for
mathematics, and reduced in this way any further formalization of mathematics to an
exercise of axiomatization in this language. A similar situation was reached one decade
later in the field of computability theory, where not one but several provably equivalent
universal formalisms emerged at the same time [77, 16, 44].

Offering the possibility to use formal languages in the practice of proving and com-
puting, the development of computers called this situation into question. Instead of the
single criterion of universality, the expressivity of formal languages became considered as
their ability to convey intuitions in the most concise and practical way. This shift shed
a new light on logical systems admitting much simpler presentations when formalized
as alternatives to first-order logic than when formalized as particular first-order logic
theories. In particular, the idea of assigning types to mathematical expressions, which
had been pioneered by Russell and Whitehead [80], was renewed.

Among the wide family of typed languages used in the contemporary proof systems,
one of the most concise system – and also one of the oldest – is Church’s simple type
theory [17], also referred to as higher-order logic. This language is at the core of several
proof systems used today, such as Isabelle/HOL [58], HOL Light [45], or HOL4 [69],
in which Church’s original language is revived with a surprisingly limited amount of

13



CHAPTER 1. INTRODUCTION

modifications and extensions. A more involved extension of higher-order logic is the
language of the proof system PVS [60], which includes one major additional feature:
predicate subtyping. This feature, which is at the core of the presented work, alleviates
one of the main peculiarities of higher-order logic: the gap between types and predicates
as two different kinds of attributes for mathematical expressions.

1.1 Types and predicates in higher-order logic

The formalism of higher-order logic is characterized by the coexistence of typing judge-
ments and proof judgements and, through this distinction, by the assignment of two
radically different kinds of attributes to mathematical expressions: types and predicates.
For instance, the mathematical expression 1+1 can be assigned a type nat expressing
that it is a natural number, or a predicate Even expressing that it is divisible by two.
The first assignment corresponds to a typing judgement, whose validity is based on typ-
ing rules, while the second corresponds to a proof judgement, whose validity is based on
deduction rules.

Types and predicates have very different roles in higher-order logic. On the one hand,
typing is used as an a priori condition to reasoning: a valid proof judgement contains
only well-typed expressions. For instance, if TRUE is an expression of type bool, then
the ill-typed expression 1+TRUE cannot occur in any valid proof judgement.

In higher-order logic, the use of types to restrict the domain of reasoning goes to-
gether with the rich reasoning capabilities resulting from the formalization of predicates
as first-class objects, on which quantification is permitted. In particular, a large amount
of set theoretic mathematics can be formulated in higher-order logic through the expres-
sion of sets as predicates. For instance, sets of natural numbers (such as the set of even
numbers) can be formulated as predicates of domain nat (such as the predicate Even).
The types of higher-order logic ensure that the formulation of Russell’s paradox through
this sets-as-predicates correspondence is ill-typed, and hence excluded from reasoning.
Indeed, following the previous analogy, the belonging of a set to itself is expressed as the
application of a predicate to itself: as the type and the domain of a predicate are never
equal in higher-order logic, the application of a predicate to itself, including the formula-
tion of Russell’s paradox or simpler examples such as Even(Even), cannot be well-typed.

As advocated in [26], this distinction between types and predicates is a conceptual
difficulty as both express attributes of mathematical expressions. This difficulty is am-
plified by the considerable difference of expressivity between the two. Contrary to the
assignment of predicates in proof judgements, the assignment of types in typing judge-
ments remains very simple: in particular, well-typedness is decidable. In return, most
attributes of mathematical expressions formulated as predicates cannot be formulated
as types in higher-order logic. For instance, being a natural number different from 0 is
expressible as a predicate, but not as a type. Such a type would be useful to exclude

14



CHAPTER 1. INTRODUCTION

expressions such as 1/(1-1) from reasoning in the same way as done for 1+TRUE or
Russell’s paradox, but it does not exist natively in higher-order logic.

1.2 Enriching types with predicate subtyping

The main idea of predicate subtyping is to recover a symmetrical situation between the
expressivity of types and predicates as assignment of mathematical expressions. Predi-
cate subtyping is defined as the addition of new types, referred to as predicate subtypes.
Given a predicate P defined on a domain A (e.g. Even defined on the domain nat), the
predicate subtype {x : A | P(x)} is defined. An expression t can be assigned this
type if and only if it can be assigned the type A and P(t) is provable. For instance, if
Nonzero is a predicate of domain nat expressing the difference of a natural number from
0, then the numerical expression 1 can be assigned the type {x : nat | Nonzero(x)}
as it can be assigned the type nat and Nonzero(1) is provable.

In the same way as the type {x : nat | Nonzero(x)} is defined from the predi-
cate Nonzero of domain nat, it becomes possible to define a new type {x : A | P(x)}
from any predicate P of domain A, and both express the same underlying attribute on
mathematical expressions. This augmented expressivity of type assignments permits to
exclude many unwanted expressions from reasoning. For instance, defining the denomi-
nators domain of Euclidean division as {x : nat | Nonzero(x)}, all divisions where
the denominator is not provably different from zero become ill-typed. In this setting,
the expression 1/(1-1) becomes excluded from reasoning in the same way as 0 + TRUE

or the expression of Russell’s paradox.

As expressions may have several types, predicate subtyping induces a form of sub-
typing: for instance, as any expression of type {x : nat | Nonzero(x)} also admits
the type nat, the former can be considered as a subtype of the latter.

The main counterpart of this extension of higher-order logic is the fact that typ-
ing and provability become entangled. For instance, proving the equality (1 / 1) =

1 requires that 1 can be assigned the type {x : nat | Nonzero(x)}, which, in turn,
requires that Nonzero(1) is provable. In particular, contrary to the case of higher-order
logic, typing is not decidable in the presence of predicate subtyping.

A definition of well-formed type becomes necessary as well to exclude ill-formed types.
The well-formedness of types is also entangled with the well-typedness of expressions and
the provability of formulas. For instance, the well-formedness of {x : nat | (x/1) =

1} requires, as in the previous example, that 1 can be assigned the type {x : nat |

Nonzero(x)}, which requires in turn that Nonzero(1) is provable. On the other hand,
{x : nat | (x/0) = 1} is an example of ill-formed type.

15



CHAPTER 1. INTRODUCTION

1.3 The practice of predicate subtyping in PVS

Predicate subtyping is not widely used among proof systems, with the notable exception
of PVS. PVS (Prototype Verification System) [60] is an integrated environment for the
development and the analysis of formal specifications. Its specification language is based
on the extension of higher-order logic with predicate subtyping as well as many other
features, such as recursion and induction. On top of its specification language, PVS is
composed of two main tools.

• A type-checker, whose purpose is to recognize well-formed specifications, i.e. spec-
ifications composed of well-formed types and well-typed expressions.

• An interactive prover.

The presence of predicate subtyping is at the core of the main specificity of the PVS
type-checker: the emission of TCCs (type-correctness conditions). Because of predicate
subtyping, the well-formedness of types and the well-typedness of expressions may re-
quire complex proofs beyond the capabilities of the PVS type-checker: in such situations,
the PVS type-checker outputs these requirements as specific formulas, the TCCs. After
the execution of the type-checker, all TCCs have to be proved to consider the specifica-
tion as well-formed.

The specificity of predicate subtyping and the emission of TCCs distinguishes PVS
from other proof systems based on higher-order logic such as the systems of the HOL
family (such as HOL Light [45] and HOL4 [69] for example), in which the well-formedness
of a specification can be ensured once and for all before starting any proof. In this re-
gard, PVS is comparable to more complex extensions of higher-order logic such as Coq
[5] as, in both systems, the well-typedness of some expressions may depend on proofs –
in Coq, this situation follows from the fact that proofs are expressions.

However, this dependency of well-typedness to proofs is formalized in a very different
way in Coq. Contrary to PVS – and to the systems of the HOL family –, the specification
language of Coq includes explicit proof terms, which are typed by their corresponding
formulas, following the Curry-Howard isomorphism. In this setting, proof judgements
are based on explicit proofs terms and become special cases of typing judgements: in
particular, proof checking becomes a special case of type checking. This approach is not
restricted to extensions of higher-order logic: it is also the core of alternative founda-
tions of mathematics, such as Martin-Löf’s intuitionistic type theory [56], and alternative
proof systems, such as Agda [14]. In these latter systems, proof judgements and typing
judgements become merged entirely.

The comparison between PVS and the Curry-Howard approach with explicit proof
terms can be illustrated in the attempt to formalize Euclidean division. On the one hand,
following the previous illustrations, Euclidean division can be formalized in PVS with
two arguments, a numerator and a denominator, in such a way that the well-formedness

16



CHAPTER 1. INTRODUCTION

of a division n/m requires to prove that m is different from 0. On the other hand, Eu-
clidean division can be formalized in Coq or Agda with three arguments: a numerator
n, a denominator m, and a proof term witnessing the fact that m is different from 0.

As a consequence, the situation of PVS is intermediate between systems of the HOL
family and Coq. In PVS, as well as in the systems of the HOL family, proofs are not
formalized inside specifications: they are recorded as scripts outside specifications and
cannot be recognized by the type-checker. However, in PVS, as in Coq, the type system
is sufficiently expressive to make the well-typedness of some expressions depend on the
proof of some formulas.

1.4 Contributions

This work is composed of three parts. The first one, which is also the most important
one, is dedicated to the theoretical analysis of predicate subtyping.

1.4.1 First part: theoretical analysis of predicate subtyping

Higher-order logic, as well as its extension with predicate subtyping, can be defined in
various ways. The first contribution of this work is the formalization, in Chapter 3,
of a minimal system for predicate subtyping, denoted PVS-Core. This formalization is
obtained starting from the practice of predicate subtyping in PVS, described in Chapter
2. Besides its minimality, the main design choice for this system is the introduction of
a definitional equality, referred to as conversion, corresponding to syntactical equality
modulo computation. Following Church’s original presentation of higher-order logic, the
simple theory of types [17], PVS as well as PVS-Core are based on λ-calculus. In this
setting, computation is defined with a rewriting relation, β-reduction.

Starting from PVS-Core, the second contribution of this work is the formalization,
in Chapter 4, of a language of verifiable proofs for PVS-Core. This new language, de-
noted PVS-Cert, is designed from PVS-Core with the addition of explicit proof terms,
formalized as λ-terms, as well as the addition, at the level of expressions, of explicit
coercions based on these proof terms. The addition of explicit proof terms follows the
Curry-Howard isomorphism in the sense that PVS-Cert proofs terms are typed by their
corresponding formulas. On the other hand, the addition of explicit coercions ensures
the decidability of type-checking. We present, in Chapter 7, a terminating, sound and
complete type-checking algorithm for PVS-Cert.

In order to maintain a simple correspondence between PVS-Core and PVS-Cert,
conversion in PVS-Cert is not defined from β-reduction only but uses a more distinc-
tive notion: syntactical equality modulo β-reduction and coercion erasure (Definition
4.1.3). The extension of β-reduction with coercion erasure is denoted →β∗, and the
corresponding conversion relation is denoted ≡β∗. We present in Chapter 9 a translation

17



CHAPTER 1. INTRODUCTION

from PVS-Cert to PVS-Core and, at the level of derivation trees, a translation from
PVS-Core to PVS-Cert. These translations are used in Chapter 10 together with the
type-checking algorithm of PVS-Cert to define how to use PVS-Cert as a language of
verifiable proofs for PVS-Core (Definition 10.1.1).

Remark 1.4.1. The order in which the main contributions are presented in this section
is chosen to provide an overview of Part I. As a consequence, it does not follow the
precise order between the chapter composing this part. The ordering between chapters
are chosen, on the one hand, to respect proof dependencies, and, on the other hand,
to separate the work related to PVS-Core (Chapters 2 and 3) from the work related to
PVS-Cert (Chapters 4 to 8) and the work related to the relations between the two systems
(Chapters 9 and 10).

PVS-Cert is very similar to the formalism of Pure Type Systems (PTSs) – see for
instance [4] –, and more precisely to the formalism of PTSs extended with dependent
pairs – see for instance the system ECC in [53]. The only characteristic of PVS-Cert
distinguishing it from such systems lies in its conversion relation ≡β∗. Instead of this
specific conversion relation, PTSs with dependent pairs are equipped with a more stan-
dard but less flexible conversion relation (≡βσ, described in Definition 4.2.2), based itself
on a more standard definition of reduction (→βσ). Instead of the case of the reduction
→βσ in PTSs with dependent pairs,→β∗ is not a type preserving reduction in PVS-Cert.
We prove however, among the main properties of PVS-Cert presented in Chapter 5, that
→βσ is a type preserving reduction in PVS-Cert (Theorem 5.5.2). As a consequence, it
defines, when applied to proof terms, a notion of cut elimination.

The strong normalization of the reductions →β∗ and →βσ is proved in Chapter 6
(Theorem 6.5.2) using a notion of saturated sets [73] which is adapted to both reductions.
One of the main characteristics of this proof relies on the fact that the interpretation of
terms as sets is not only defined on well-typed terms, but also on their iterated reducts
under the relation →β∗. In a more general setting, this proof opens the way to cut
elimination theorems in PTS-like systems in which conversion and cut elimination are
based on distinct notions of reduction.

While the termination of the reduction →β∗ is at the core of the termination of the
type-checking algorithm defined for PVS-Cert, the termination of the reduction →βσ

provides a cut elimination theorem (Theorem 6.5.3), which is a useful tool to analyze
specific properties of PVS-Cert and PVS-Core – and thus predicate subtyping –, from
consistency (Theorems 6.7.1 and 10.3.1) to more complex theorems such as the analysis
of Leibniz’s equality (Theorems 6.7.2 and 10.3.2).

Last, we present in Chapter 8 a translation (Definition 8.2.5) from PVS-Cert to its
restriction to higher-order logic with explicit proofs, which corresponds precisely to the
PTS λ-HOL defined in [4]. Using this translation and the fact that any PVS-Cert formula
in which predicate subtyping is not explicitly used is translated as itself through this

18



CHAPTER 1. INTRODUCTION

translation, we conclude that PVS-Cert is a conservative extension of λ-HOL (Theorem
8.5.2), and as a consequence that PVS-Core is a conservative extension of higher-order
logic (Theorem 10.2.4). These theorems allow to reduce the question of the provability
of any proposition using predicate subtyping to the question of the provability of a
proposition formulated in pure higher-order logic. Hence, they provide useful tools
to study the properties of predicate subtyping, in complement of the cut elimination
theorem. As detailed at the end of this introductive chapter, the conservativity of PVS-
Cert over λ-HOL also opens perspectives related to the conjecture of conservativity of
ECC [53] over higher-order logic.

1.4.2 Second part: extracting proof certificates from PVS

Although the extension of PVS-Cert to a system of proof certificates for the whole
PVS proof system is left to future work, we present in Part II a first prototype for the
extraction of proofs from PVS that can be verified externally. Following the dichotomy
between the type-checker and the prover in PVS, this prototype is only suited to verify
the reasoning steps performed in the prover, and does not contain any typing information
at this stage. This proof extraction mechanism is built by instrumenting the PVS proof
system itself. More precisely, the PVS prover is modified to record detailed proofs step by
step during the proof search process. Proofs can be built for any PVS theory. However,
some reasoning steps rely on unverified assumptions. For a restricted fragment of PVS,
the proofs are exported to the universal proof checker Dedukti [66], and the unverified
assumptions are proved externally using the automated theorem prover MetiTarski [1].
This work is published in [39]. A shared perspective from Part I and Part II is to
turn this prototype into a complete system of certificates expressed in some extension
of PVS-Cert, as discussed in Section 11.2.2.

1.4.3 Third part: expressing classical first-order logic in constructive
systems

In the last part, we present two works from a very different research topic: the investi-
gation of the relationship between classical and constructive logic in the framework of
first-order logic. The first one is the definition of a lightweight double-negation trans-
lation from classical logic to constructive logic. It is published in [37]. The study of
double-negation translation also lead to a contribution in a collaborative work [2] in-
vestigating how to express various theories in the proof checker Dedukti [11] – in which
the contribution of the author is restricted to the definition of an encoding of classical
predicate logic in Dedukti.

The second work of this final part is the definition of a constructivization algorithm,
taking as input the classical proof of some formula and generating as output, when-
ever possible, a constructive proof of the same formula. It is published in [38]. The
experiments performed in this work are based on the instrumentation of the first-order
classical theorem prover Zenon [12] to output constructive proofs in the Dedukti [11]

19



CHAPTER 1. INTRODUCTION

format. This instrumentation is adapted from a preceding collaboration [22] dedicated
to the extension of Zenon to the formalism of deduction modulo – in which the contribu-
tion of the author was restricted to the implementation of an output of this new system
in the Dedukti format.

1.5 Related works

The introduction of predicate subtyping can be traced back to the first-order language
OBJ2 [32] and its sort constraints, allowing to restrict some typing relations to the satis-
faction of a predicate. This idea was later refined and combined with higher-order logic
in the proof system PVS, which is the most important system based on predicate sub-
typing. Overviews of the PVS specification language and its use of predicate subtyping
are given in particular in [60] and [64]. In the presented work, Chapter 2 presents a
minimal subset of PVS restricted to predicate subtyping which relies explicitly on these
works.

On the theoretical point of view, one of the most important works carried out on
predicate subtyping is the presentation of formal semantics for PVS in [61]. This works
defines, for some fragment of the PVS language including predicate subtyping but also
other features such as parametric theories, set-theoretical interpretations of types and
expressions. These interpretations are limited to standard interpretations: the interpre-
tation of a function type is the set of all functions from the interpretation of the domain
to the interpretation of the co-domain, and the interpretation of the type of propositions
is a set containing exactly two elements, distinguishing true propositions from false ones.
As a minimal extension of higher-order logic with predicate subtyping, the system PVS-
Core is smaller than the fragment of PVS presented in [61]. As a consequence, it would
seem possible to restrict the work presented in [61] to obtain a notion of standard model
for PVS-Core. Such an analysis wouldn’t be redundant with the present contribution
but, on the contrary, complementary:

• Standard models provide very simple definitions of true and false propositions.
They also reveal a very simple and natural way to interpret the extension of higher-
order logic with predicate subtyping in set-theoretical terms. In particular, they
offer a simple interpretation of predicate subtyping as a particular case of restricted
comprehension, which has not been explored in the presented work. In compari-
son, the only set-theoretical interpretation of predicate subtyping presented in this
work, which is the interpretation (Definition 6.4.4) used at the core of the proof
of strong normalization and cut elimination in PVS-Cert, relies on a much more
complex way of interpreting predicate subtyping in set-theoretical terms.

• On the other hand, a large part of the presented work is dedicated to the con-
struction of tools to discriminate between provable and unprovable propositions,
including a cut elimination theorem and a conservativity theorem over higher-order
logic. In the case of predicate subtyping as well as in pure higher-order logic, the

20



CHAPTER 1. INTRODUCTION

simplicity of standard models admits a counterpart, which is incompleteness: some
propositions that are true in all standard models may remain unprovable. As a re-
sult, the use of standard models is very limited whenever one wants to discriminate
provable from unprovable propositions, which is the central question of this work.
Although they may be sufficient to answer some simple questions of provability,
such as the question of the consistency of predicate subtyping, they cannot be used
for more complex questions, such as the analysis of Leibniz’s equality developed in
Theorem 10.3.2.

Another important related work is [10], in which two systems are presented: ICCΣ, a
type system with implicit type constructions, and AICCΣ, a system obtained from ICCΣ

by adding explicit coercions. ICCΣ contains several advanced features, including a gener-
alization of predicate subtypes named subset types. The construction of PVS-Cert from
PVS-Core follows the same idea as the construction of AICCΣ from ICCΣ in [10]: adding
the missing information explicitly in the terms of the language to recover the decidability
of type-checking. The main difference between the two approaches lies in the complexity
of the respective languages. ICCΣ is a very rich and complex language, making its anal-
ysis difficult – in particular, strong normalization in ICCΣ is kept as a conjecture, on
which the decidability of type-checking itself relies. Conversely, PVS-Core is designed
as a minimal language including predicate subtyping, making its analysis much simpler.

A variant of predicate subtyping was also formalized as an extension of the calculus
of constructions in [70]. In the same way as in the present work, this presentation con-
tains two systems connected with each other. On the one hand, it includes one system,
named Russell, which is comparable to a weakened version of PVS-Core in which a term
t of type A admits the type {x : A | P} even when P [t/x] is not provable. In this
variant of predicate subtyping named subset equivalence, type-checking is decidable. On
the other hand, this work includes a system with explicit coercions which is comparable
to PVS-Cert. Contrary to PVS-Core, Russell derivations are not intended to contain all
information necessary to build complete terms with explicit coercions: instead, a transla-
tion producing incomplete terms in the system with explicit coercions is presented. This
system allows to write programs and specifications together in Russell, and to prove their
correctness in a second step by filling all proof holes produced through the translation,
in a way which is similar to what can be done using PVS and its TCCs.

Contrary to the case of PVS-Core and Russell, PVS-Cert and the counterpart of
Russell with explicit coercions have similar characteristics. The theoretical properties
of this latter system are not formalized, but it is presented as a simple extension of the
proof-irrelevant type theory presented in [79]. There exists indeed a tight connection
between proof irrelevance and the explicit version of predicate subtyping formalized as
PVS-Cert: if one considers for instance the usual predicate Even on natural numbers
expressing divisibility by two, the predicate subtype even = {x : nat | Even(x)}, and
two expression with explicit coercions 〈2, p〉even and 〈2, q〉even of this type with p and
q two proofs of Even(2), then the hypothesis of proof irrelevance, which ensures that

21



CHAPTER 1. INTRODUCTION

p and q are convertible, also ensures that the expressions 〈2, p〉even and 〈2, p〉even are
convertible, which is the main requirement expected from explicit coercions to reflect
predicate subtyping faithfully.

This relation between proof irrelevance and predicate subtyping is explored further
in [79]. Besides the fact that this work is based on the calculus of constructions and
besides some technical differences in the precise definition of conversion between the sys-
tem presented in this paper and PVS-Cert, analyzing the strong relation between these
two systems appears as a very interesting future work. In particular, it would provide a
natural strategy for attempting to prove the strong normalization conjecture presented
in the paper.

PVS-Cert is an adaptation of the formalism of Pure Type Systems (PTSs) – some-
times also referred to as Generalized Type Systems (GTSs) –, presented for instance
in [4]. The definition of PTSs is itself the result of several successive works, including
notably [7, 74, 75, 76, 36, 3]. More specifically, PVS-Cert is derived from the notion of
PTSs with dependent pairs, which has its roots in the system ECC, presented in [53].
A subsystem of PVS-Cert, named PVS-Cert− and presented in Chapter 4 (Definition
4.2.3), even appears as a fragment of ECC. As the conjecture of conservativity of ECC
over higher-order logic remains an open problem, an interesting extension of the pre-
sented work would be to investigate to which extent the proof of conservativity presented
for PVS-Cert can be expanded to some larger fragment of ECC than simply PVS-Cert−.

22



Part I

Theoretical analysis of predicate
subtyping





Chapter 2

Predicate subtyping in PVS

In this chapter, we present a minimal fragment of the PVS specification language con-
taining both higher-order logic and predicate subtyping, which will be the starting point
of the formalization of the system PVS-Core presented in Chapter 3. We also present,
in an idealized way, how typing and deduction can be defined on this subset of the
specification language. This idealization is the result of several layers of abstraction and
simplifications, starting from the reality of the PVS type-checker and the PVS interac-
tive prover.

The purpose of this introductory chapter is twofold. On the one hand, it provides
a brief overview of the system PVS, which can be considered as the most important
implementation of predicate subtyping in a proof system. On the other hand, it provides
some justifications and perspectives for the system PVS-Core presented in Chapter 3.
More precisely, it shows how the formalism of PVS-Core may emerge from a drastic
simplification and idealization of PVS. However, the definitions given in this chapter are
presented in an informal way, and all assertions occurring in it are kept at the at the
state of conjectures: the actual contributions of the presented work begin at Chapter 3,
with the presentation of PVS-Core.

2.1 Presentation of a subset of the specification language

This section is dedicated to the presentation of a minimal subset of the PVS specification
language containing higher-order logic and predicate subtyping. After the presentation
of the structure of PVS specifications on top of types and expressions, we detail this
language in two successive layers: first, a minimal subset of PVS containing higher-
order logic, and then, a minimal additional layer containing predicate subtyping. In the
following of this chapter, we use verbatim notations to refer to the PVS specification
language, and italic notations to refer to definitions of the PVS documentation [62].

25



CHAPTER 2. PREDICATE SUBTYPING IN PVS

2.1.1 General structure of PVS specifications

A PVS specification is a collection of theories. In this selection of the language, we
will considered here only specifications composed of one single theory. This restriction
excludes several features of PVS, such as the possibility of importing theories, as well
as the mechanism of abstraction through formal parameters associated with it – this
feature includes in particular a mechanism of abstraction at the level of types, widely
used in practice, which is discussed as a possible extension of the present work in Sec-
tion 11.2.1. The present restriction also excludes the accessibility to the PVS standard
library, which is referred to as the prelude. The mechanism of name resolution, which is
particularly useful in the development of specifications involving several theories, is also
abstracted.

In this simplified setting, a theory consists, in turn, of a list of declarations. Hence,
in the following of this chapter, the notion of specification, theory, and list of declarations
will be considered equivalent. Declarations are themselves composed of types and expres-
sions. We will first present a fragment of the language of declarations, before detailing a
fragment of the language of types and a fragment of the language of expressions. In each
case, we select only the minimal subset of the language including predicate subtyping.

In a minimal presentation of higher-order logic with predicate subtyping, we select
only the three following kinds of declarations.

• Uninterpreted type declarations allow to declare new types. The uninterpreted
declaration of a new type X is written X : TYPE in PVS.

• Uninterpreted constant declarations allow to declare new expressions. The unin-
terpreted declaration of a new constant x in a type A is written x : A in PVS.

• Formula declarations allow to declare new axioms or new theorems. The declara-
tion of an axiom P of name h is written h : AXIOM P in PVS. The declaration
of a theorem P of name h can be written in many equivalent ways in PVS, among
which h : THEOREM P.

On the theoretical point of view, the most important part of PVS excluded from this
restriction is its set of features based on induction: datatypes (which can be defined in
PVS either as a alternatives to a theories or as declarations), inductive definitions of
predicates, and recursive definitions.

However, this restriction also excludes other kinds of declarations which do not have
a large impact on the theoretical standpoint, but are very useful in practice: interpreted
declarations, which allow to define types or constants with existing types or expressions,
variable declarations, which express universal quantification for all formula declarations
in a concise way, judgements, which allow to factor the emission of TCCs by the type-
checker, macros, which consist in automatically unfolded definitions, conversions, which

26



CHAPTER 2. PREDICATE SUBTYPING IN PVS

are the core of a system of implicit casts, or auto-rewrite declarations, which are com-
mands used by the prover to guide proof-search automatically. Last, this restriction
excludes alternative type declarations, which also do not have a large impact on the the-
oretical standpoint but are very useful in practice, such as subtype declarations, nonempty
type declarations, or type declarations with containing clauses.

2.1.2 Higher-order logic types and expressions

The languages of types and expressions in PVS is rich: we present here only a minimal
selection of them allowing to express higher-order logic. We present first the following
type constructions, which defines the language of simple types.

• Base types. We distinguish the type of formulas, written bool (or boolean) in
PVS, from all other base types, which are the types declared in uninterpreted type
declarations.

The name bool highlights the fact that formulas can be used as booleans in PVS.
Indeed, as it will be presented in the following, bool admits two provably different
constants TRUE and FALSE, and combining classical reasoning with propositional
extensionality – as both are permitted by the PVS prover –, the following elim-
ination principle is provable: FORALL (P : bool) : P = TRUE OR P = FALSE.
More details on these two proving capabilities will be provided in the presentation
of an idealized definition of provability for the selected subset of PVS (Section
2.2.2).

• Function types. Given two types A and B, the function type [A -> B] represents
functions from A to B. In the special case where B is bool, such functions corre-
spond to predicates on A. This type construction is at the core of higher-order
logic. However, in the presence of predicate subtyping presented in the following
section, it will be eventually replaced by a more general construction in PVS, the
construction of dependent function types.

This selection excludes other type constructions exceeding a minimal presentation
of higher-order logic: tuple types, which correspond to Cartesian products, and record
types, which correspond to tuple types in which the components are referred to by names
instead of indexes. The corresponding expressions (tuple expressions, projection expres-
sions, record expressions, and record accessors) are also excluded.

We present the following selection of expression constructions.

• Formulas based on connectives. Formulas can be based on the constant connectives
TRUE and FALSE, the unary connective NOT, and the binary connectives AND, OR,
IMPLIES, WHEN, and IFF. Contrary to all other connectives, WHEN is defined: in
PVS, the expression P WHEN Q is a notation for Q IMPLIES P. As a consequence,
we first exclude it from the presentation of a minimal presentation of higher-order

27



CHAPTER 2. PREDICATE SUBTYPING IN PVS

logic.

In higher-order logic, and especially classical higher-order logic, there are many
different ways to factor connectives further. At first glance, it seems that any such
factorization could be applied in the case of PVS, at its interactive prover extends
classical higher-order logic. However, as it will appear in the idealized presentation
of an idealized definition of typing (Section 2.2.1), the usual equivalences between
connectives do not always hold in presence of predicate subtyping. We present
here the following factorization, allowing to keep IMPLIES as a the only primitive
connective, and hence to exclude all other connectives from a minimal presentation
of higher-order logic extended with predicate subtyping.

– FALSE is defined as FORALL (P : bool) : P.
It uses universal quantification, which will be defined after connectives.

– TRUE is defined as FALSE IMPLIES FALSE.

– NOT P is defined as P IMPLIES FALSE.

– P AND Q is defined as NOT (P IMPLIES NOT Q).

– P OR Q is defined as (NOT P) IMPLIES Q.

– P IFF Q is defined as (P IMPLIES Q) AND (Q IMPLIES P).

The compatibility of these definitions with the usual deduction rules of classical
higher-order logic corresponding to connectives is standard. On the other hand,
their compatibility with the typing rules of predicate subtyping will be justified
together with the presentation of typing rules in Section 2.2.1.

• Quantified expressions. There are two kinds of quantified expressions in PVS:
universal quantification, written FORALL (x : A) : P, and existential quantifi-
cation, written EXISTS (x : A) : P. In the following, we exclude the existential
quantification EXISTS (x : A) : P, as, in classical reasoning, it can be expressed
as NOT FORALL (x : A) : NOT P.

We also exclude in this selection quantified expressions with several bindings, such
as FORALL (x : A, y : B) : t.

• Constants and variables. Constants are the names declared in constant declara-
tion, while variables are introduced in binding expressions, such as the quantified
expressions. These two notions will be considered as equivalent in the following.

• λ-expressions. These expressions are the constructors of function types. A λ-
expression is written LAMBDA (x : A) : t.

• Applications. These expressions are the eliminators of function types. An applica-
tion is written f(t).

28



CHAPTER 2. PREDICATE SUBTYPING IN PVS

This selection excludes equalities. An equality between two terms t and u is denoted
t = u. However, once type-checked, it is equipped internally with a type A, which is
such that both t and u can be assigned the type A. In this setting, the internal recording
of such an equality matches Leibniz’s definition of equality FORALL (P : [A -> bool])

: P(t) IMPLIES P(u), and hence can be eliminated from a minimal presentation of
higher-order logic. We also exclude disequalities, which, although primitive in PVS, are
equivalent to negations of equalities.

More importantly, this selection also excludes conditional expressions, which have a
central place in the practice of PVS and admit several forms: if-then-else expressions,
denoted IF P THEN t ELSE u ENDIF, but also more involved conditional expressions
such as COND expressions, TABLE expressions, or override expressions (written with the
keyword WITH).

Last, numeric expressions are also excluded from this selection, as they rely in the
largest part on the theories described in the PVS prelude, which was itself excluded
from this presentation. In a similar way, coercion expressions, which consist in explicit
type annotations, are excluded as well as they rely on the mechanism of name resolution
which was itself excluded from this presentation.

Remark 2.1.1. As presented in [61], the addition of equalities together with if-then-else
expressions permits to define all connectives, in a way that is consistent with the specific
type-checking rules of connectives in the presence of predicate subtyping. Hence, it leads
to a system which is comparable to the minimal subset of PVS presented in this work,
in the sense that it can be presented in a very economic way. However, beyond the fact
that the subset presented in this work contains less expression constructions, its choice
is mainly due to the fact that it is much simpler to define a language of formal proofs
equipped with a cut elimination theorem in this language.

2.1.3 Addition of predicate subtyping

We present the extension of the previous language to a minimal definition of predicate
subtyping simply with the addition of the following type constructions.

• Predicate subtypes. A predicate subtype is written {x : A | P}, where A is a
type and P is an expression.

• Dependent function types. A dependent function type is written [x : A -> B],
where A and B are types. It replaces the construction of function types defines in
the previous section, as a function type [A -> B] can be written as the dependent
function type [x : A -> B].

These two types are binders: in the type {x : A | P} (resp. in the type [x : A

-> B]), the expression variable x may occur in P (resp. in B).

29



CHAPTER 2. PREDICATE SUBTYPING IN PVS

The replacement of function types with dependent function types is kept in this min-
imal presentation as, in the presence of predicate subtyping, it does not really extend
the system: on the contrary, it simplifies the definition of well-typed expressions. More
details will be given on this question with the presentation of an idealized definition of
typing in Section 2.2.1.

Before detailing idealized definitions of typing and deduction for this selection of the
PVS specification language, we can summarize their main distinctive characteristics, due
to predicate subtyping, in the following principle: an expression t also admits the type
{x : A | P} if and only if t admits the type A and P[t/x] is provable (where P[t/x]

denotes the substitution of x by t in P). This principle will be declined in two typing
rules, and one deduction rule:

• Whenever an expression t admits the type A and P[t/x] is provable, t also admits
the type {x : A | P}.

• Whenever an expression t admits the type {x : A | P}, t admits the type A.

• Whenever an expression t admits the type {x : A | P}, P[t/x] is provable.

As it will be detailed in Section 2.2.1, additional typing rules should be added to
capture the complexity of typing in PVS. Yet, these three rules will be kept in the
following as the core of the formalization of predicate subtyping.

2.2 Idealization of typing and provability in PVS

This section presents a first step towards the idealization of the notions of typing and
provability in the subset PVS presented in the previous section (Section 2.1). In this
setting, typing rules (and well-formedness rules) will be presented only in an informal
way, as an introduction of the formal system PVS-Core defined in the following chapter
(Chapter 3).

As mentioned in the introduction (Chapter 1), the most important characteristic of
predicate subtyping is the fact typing and provability become entangled. In PVS, where
the type-checker is in charge of typing verifications while the interactive prover is in
charge of proof verifications, this entanglement is the main reason of the fact that the
type-checker’s output is not binary: whenever a typing condition requires some specific
proof, a new formula declaration, named TCCs or proof obligation, is generated. A TCC
is printed h : OBLIGATION P, where h is the name of the TCC and P the correspond-
ing formula. In such situations, a specification is considered well-formed only when all
corresponding TCCs have been proved.

Although TCCs are not printed explicitly inside theories, they are part of PVS spec-
ifications: internally, they are recorded together with other declarations. More precisely,

30



CHAPTER 2. PREDICATE SUBTYPING IN PVS

each TCC is generated during the type-checking of some specific declaration, and is
placed immediately above.

2.2.1 Idealization of typing and well-formedness

As the PVS type-checker emits TCCs, the idealization of typing and well-formedness
presented in this section does not correspond to a idealized description of the type-
checker, but to a idealized description of well-typed expressions, well-formed types and
well-formed specifications a posteriori, i.e. once all TCCs have been generated and
inserted in specifications. As a consequence, the data of the typing rules presented
here is not sufficient to present an idealized version of the type-checker, as it does not
describe how TCCs are generated. For instance, the rules presented here do not predict
the generation of TCCs ensuring that constants are declared only in types that are
provably non-empty, as it can be the case in the specification composed of the following
declarations:

• X : TYPE

• x : X

However, as presented in the introduction (Chapter 1), typing depends on provability
in the presence of predicate subtyping. As a consequence, some typing rules presented in
this idealization depend on proofs, and in such cases, their correspondence to the reality
of PVS appears only through the way subtype TCCs (i.e. TTCs related to predicate
subtyping) are generated in PVS.

Type-checking some specification consists in the verification that every type appear-
ing in it is well-formed, and that every expression appearing in it is well-typed. These
two notions are not absolute: some expression may be well-typed in some context, but
not in another. In the PVS type-checker, this notion of context is complex: it relies
on the data of several global variables, which are updated all along the type-checking
process. The most important part of the idealization of PVS presented in this work is
the idealization of type-checking contexts as list of declarations: in this setting, contexts
and specifications are identified as they are both defined as lists of declarations. This
identification will be the cornerstone of the formalization of PVS-Core presented in the
next chapter (Chapter 3).

Using this notion of context, we define the well-formedness of a specification, which
is an absolute notion, as the well-formedness of each declaration composing it relatively
the context formed by all declarations appearing strictly above it. In particular, in this
idealized definition of well-formedness, all TCCs that have been generated during the
inspection of some declaration by the PVS type-checker appear as formula declarations
in the context associated to this declaration.

31



CHAPTER 2. PREDICATE SUBTYPING IN PVS

In turn, the well-formedness of declarations is idealized with the following rules.
They use the notion of typed expressions and well-formed types, which will be presented
after.

• A type declaration X : TYPE is well-formed in some context if the type name X

was not previously declared in this context.

• A constant declaration x : A is well-formed in some context if the constant name
x was not previously declared in this context and A is well-formed in this context.

• A formula declaration h : AXIOM P, h : THEOREM P, or h : OBLIGATION P is
well-formed in some context if the constant name h was not previously declared in
this context and P admits the type bool in this context.

The well-formedness of types is defined as follows.

• The base type bool is well-formed in any well-formed context.

• Any base type X is well-formed in some context whenever this context is well-formed
and contains the declaration X : TYPE.

• A predicate subtype {x : A | P} is well-formed in some context if A is well-
formed in this context and P admits the type bool in this context augmented by
the constant declaration x : A.

• A dependent function type [x : A -> B] is well-formed in some context if A is
well-formed in this context and B is well-formed in this context augmented by the
constant declaration x : A.

The rule corresponding to predicate subtypes reveals that, as underlined in the in-
troduction (Section 1), the definition of the well-formedness of types depends on the
definition of typability of expressions.

Finally, the typability of expressions is defined, on the one hand, by rules that are
associated with the different expression constructions, and, on the other hand, by the
rules that are specific predicate subtyping. We first present the rules associated to the
different expressions constructions. As done in the previous sections, we use the notation
t[u/x] for substitution.

• Formulas based on connectives. An expression P IMPLIES Q admits the type bool

in some context if P admits the type bool in this context and Q admits the type
bool in this context augmented by a formula declaration of P.

This rule is more flexible than the usual higher-order logic rule in which the typing
context of Q is not augmented by a formula declaration of P. For instance, in a
formalization of arithmetic in PVS in which division by zero is excluded using pred-
icate subtyping (as presented in Section 1.2), the expression FORALL (n : nat)

32



CHAPTER 2. PREDICATE SUBTYPING IN PVS

: n > 0 IMPLIES n/n = 1 is well-typed because of this added flexibility.

In order to justify the compatibility with predicate subtyping of the factorization
of PVS connectives presented in Section 2.1.2, we also present the idealized rules
corresponding to the type-checking of the other primitive connectives in PVS.

– TRUE and FALSE admit the type bool in any well-formed context, NOT P ad-
mits the type bool in some context P does, and P IFF Q admits the type bool
in some context whenever P and Q do.

– P AND Q admits the type bool in some context whenever P admits the type
bool in this context and Q admits the type bool in this context augmented
by a formula declaration of P.

– P OR Q admits the type bool in some context whenever P admits the type
bool in this context and Q admits the type bool in this context augmented
by a formula declaration of NOT P.

The rules corresponding to conjunction and disjunction recall, in another setting,
the variants and then and or else of boolean programming, in which the execution
of the second expression is conditioned by the result of the execution of the first. In
the same way as in the case of implication, they introduce some flexibility in typing.
For instance, these rules ensure the well-typedness of the expressions FORALL (n :

nat) : n > 0 AND n/n = 1 and FORALL (n : nat) : n = 0 OR n/n = 1.

The definitions of connectives presented in Section 2.1.2 are indeed compatible
with these rules:

– In the cases TRUE, FALSE, NOT P, and P IFF Q, there is no compatibility con-
straint related to these rules.

– In the case P AND Q, one must verify that P is accessible when type-checking
Q, which is the case in the definition NOT (P IMPLIES NOT Q).

– In the case P OR Q, one must verify that NOT P is accessible when type-
checking Q, which is the case in the definition (NOT P) IMPLIES Q.

• A quantified expression FORALL (x : A) : P admits the type bool in some con-
text whenever P does in this context augmented by the constant declaration x :

A.

• A constant or variable (these notions being equivalent in this idealization) x admits
the type A in some context whenever this context is well-formed and contains the
declaration x : A.

• A λ-expression LAMBDA (x : A) : t admits the type [x : A -> B] in some
context whenever t admits the type B in this context augmented by the constant
declaration x : A.

33



CHAPTER 2. PREDICATE SUBTYPING IN PVS

• An application f(t) admits a type defined as a substitution B[t/x] in some context
whenever f admits a type of the form [x : A -> B] and t admits the type A in
this context.

Through this idealized presentation of typing, it appears, as claimed in Section 2.1.3,
that the replacement of function types by dependent function types does not really ex-
tend the system, but on the contrary simplifies the definition of well-typed expressions.
Indeed, without this generalization, the typing rule corresponding to λ-expressions would
be more complex: a λ-expression LAMBDA (x : A) : t would admit the type [A ->

B] in some context not only whenever t admits the type B in this context augmented by
the constant declaration x : A, but also when B is well-formed in this context (and, as
a consequence, does not contain any free occurrence of x).

The presentation of the typing rules corresponding to the expression constructions
being established, the formalization of typing is completed with the presentation of
additional rules corresponding to predicate subtyping. We begin with the two typing
rules stated in the general presentation of predicate subtyping (Section 2.1.3), formulated
relatively to typing contexts.

• An expression t admits the type {x : A | P} in some context whenever t admits
the type A in this context and P[t/x] is provable in this context.

• An expression t admits the type A in some context it admits some type of the form
{x : A | P} in this context.

These rules are not sufficient to capture the complexity of typing in PVS, even in
the presented restriction of the specification language. We conjecture that the addition
of two extra rules is sufficient to fill the most part of this gap. These extra rules require
a formal definition of the subtype relations, which can be done from the typing relations
as follows: in a given context, a type A is a subtype of B if, given a new constant x, x
admits the type B in the context augmented by the constant declaration x : A. Using
this notion of subtype relation, these two additional rules are the following.

• An expression t admits the type [x : A -> B] in some context whenever it
admits a type of the form [x : A -> C] in this context, and C is a subtype of B
in this context augmented by the constant declaration x : A.

• An expression t admits the type [x : A -> B] in some context whenever it
admits a type of the form [x : C -> B] in this context, A is a subtype of C in
this context, and C is a subtype of A in this context.

We present two examples where these rules are useful, in the context formed by the
following declarations:

• nat : TYPE

• Even : [x : nat -> bool]

34



CHAPTER 2. PREDICATE SUBTYPING IN PVS

• Odd : [x : nat -> bool]

• axiom: AXIOM FORALL (x : nat) : Even(x) IFF NOT Odd(x)

• double : [x : nat -> {y : nat | Even(y)}]

• half : [x : {y : nat | Even(y)} -> nat]

Using the axiom and the two rules, we can conclude the following statements.

• double admits the type [x : nat -> {y : nat | NOT Odd(y)}]

• double admits the type [x : nat -> nat]

• half admits the type [x : {y : nat | NOT Odd(y)} -> nat]

As illustrated in these examples, the first of these two rules can be interpreted as the co-
variance of the subtype relation in the ranges of dependent function types, while the sec-
ond rule can be interpreted as the equivariance of the subtype relation in the domains of
dependent function types. This equivariance is more restrictive than a simple contravari-
ant criterion. For instance, one can not conclude in this context that double admits the
type [x : {y : nat | Even(y)} -> {y : nat | Even(y)}]. This corresponds to
the fact that, in PVS as in set theory, the domain corresponding to the expression of a
function is unique – more precisely, in PVS, it is unique modulo the equivalence induced
from the subtype relation.

However, in the following of this work, these two rules will be excluded from the
formalization of predicate subtyping, for two reasons. On the one hand, they make the
formal analysis of predicate subtyping much more complex, particularly in the perspec-
tive of defining a language of formal proofs equipped with a cut elimination theorem. On
the other hand, we conjecture that their use can be avoided by replacing some expres-
sions by appropriate η-expansions. For instance, in the previous context, the following
statements hold without using these two rules.

• LAMBDA (x : nat) : double(x) admits the type
[x : nat -> {y : nat | NOT Odd(y)}]

• LAMBDA (x : nat) : double(x) admits the type
[x : nat -> nat]

• LAMBDA (x : {y : nat | NOT Odd(y)}) : half(x) admits the type
[x : {y : nat | NOT Odd(y)} -> nat]

Yet, we will keep a much weaker form of conversion in this idealization of predicate
subtyping: conversion modulo β-equivalence. This rule is defined as follows: an expres-
sion t admits some type B in some context whenever B is well-formed in this context and

35



CHAPTER 2. PREDICATE SUBTYPING IN PVS

t is admits some type A β-equivalent to B in this context.

Using the former context, this allows to conclude that double admits the type [x :

nat -> {y : nat | (LAMBDA (z : NAT) : Even(z)) (x)}]. Unlike the two previ-
ous conversion rules, keeping this weak form of conversion won’t burden the formaliza-
tion of proof certificates and the definition cut elimination. On the contrary, it allows to
consider expressions and types modulo β-equivalence, which will be an important char-
acteristic of the two formal systems PVS-Core and PVS-Cert presented in this work.

2.2.2 Simplification of the PVS sequent calculus with natural deduc-
tion

In the restriction of PVS to higher-order logic presented in Section 2.1.2, the prov-
ing capabilities of PVS match classical higher-order logic, including both propositional
extensionality and functional extensionality. Before presenting an idealized version of
deduction in the presence of predicate subtyping, we first describe how proofs are per-
formed in PVS.

The PVS interactive prover is based on a sequent calculus. The details of its usage
are described in the PVS prover guide [68]. Sequents are at the core of the interaction
between the prover and its user. Sequents are printed as a pair of lists of formulas: a
list of antecedents and a list of succedents. However, internally, a sequent corresponds
to a single list of formulas containing the succedents and all negations of antecedents.
For instance, a sequent appearing as

[-1] NOT P1

[-2] P2

|-------

[1] Q

is recorded internally as some permutation of the list NOT NOT P1, NOT P2, Q. Al-
though recorded as lists, sequents are manipulated as multisets: the ordering between
formulas has no influence on the deduction rules that can be applied to them. Sequent
calculus has many advantages in the practice of PVS, as it is well-suited both in the
setting of interactive and automated proving. Moreover, it allows to perform classical
reasoning without adding any corresponding axiom.

However, the formalization of deduction rules is complex in the setting of sequent
calculus, as such deductions would involve both sequents and contexts – the first one
being a multiset of formulas and the latter a list of declarations. Moreover, the final
purpose of this work is to present a formal language of proofs equipped with a notion of
proof cut. Such definitions for sequent calculus, such as Curien and Herbelin’s system
[21], are much more complex than there counterpart in natural deduction. In particular,
the definition of proof cut defined for classical sequent calculus is not confluent.

36



CHAPTER 2. PREDICATE SUBTYPING IN PVS

As a consequence, we will consider an idealization of PVS definition provability with
deduction rules based on natural deduction instead of sequent calculus, and in which a
proof judgement is simply the data of a single formula together with a context. We con-
jecture that, as it is the case in higher-order logic, provability in sequent calculus matches
provability in natural deduction in the presence of predicate subtyping, at the condition
of augmenting all contexts with an axiom permitting classical reasoning. We suggest for
instance the following double negation elimination law in the case of PVS: FORALL (P :

bool) : (NOT NOT P) IMPLIES P. However, as we seek to present a minimal system
allowing the expression of predicate subtyping, this axiom won’t be added by default.

As the previous definitions given for the connectives AND and OR as well as the def-
inition of existential quantification only hold in classical reasoning, they are ensured to
apply only if the previous axiom is added to the considered the context. However, it is
possible to define alternative definitions which also hold in a constructive setting, taking
the usual impredicative definitions:

• P1 AND P2 is defined as FORALL (Q : bool) : (P1 IMPLIES (P2 IMPLIES Q))

IMPLIES Q.

• P1 OR P2 is defined as FORALL (Q : bool) : (P1 IMPLIES Q) IMPLIES ((P2

IMPLIES Q) IMPLIES Q).

• EXISTS (x : A) : P is defined as FORALL (Q : bool) : (FORALL (x : A)

: P IMPLIES Q) IMPLIES Q.

However, the second definition is not compatible with PVS typing rules, which are
intrinsically linked to classical reasoning. Indeed, in this definition, the type-checking
context of P2 does not contain the formula declaration of NOT P1, but only the formula
declaration of P1 IMPLIES Q.

Two other proof capabilities in PVS will be excluded from the presentation of a
minimal system for predicate subtyping as, both in the setting of sequent calculus and
in the setting of natural deduction, they can be expressed as axioms, and hence do not
need to be present by default. The first one is propositional extensionality, and the
second one is functional extensionality. These principles can be expressed respectively
by adding axioms of the following schemes.

• (P IFF Q) IMPLIES P = Q

• (FORALL (x : A) : f(x) = g(x)) IMPLIES f = g

The deduction rules selected in the minimal formalization of higher-order logic ex-
tended with predicate subtyping can be presented informally as follows.

• An axiom rule allows to prove a formula P in a given context as long as this context
is well-formed and contains P.

37



CHAPTER 2. PREDICATE SUBTYPING IN PVS

• The usual introduction rules and eliminations rules corresponding to the implica-
tion connective are defined.

– A formula P IMPLIES Q is provable in some context if Q is provable in this
context augmented by the addition of P as an axiom.

– A formula Q is provable in some context if two formulas of the form P and P

IMPLIES Q are provable in this context.

• The usual introduction rules and eliminations rules corresponding to universal
quantification are defined.

– A formula FORALL (x : A) : P is provable in some context if P is provable
in this context augmented by the addition of the constant declaration x :

A.

– Using the notation for substitution presented previously, a formula of the
form P[t/x] is provable in some if a formula of the form FORALL (x : A)

: P is provable and the term t admits the type A in this context.

• The rule corresponding to β-reduction is presented in the following way. A formula
P is provable in some context if it is well-typed in this context, and if P is β-
equivalent to some formula Q which is provable in this context.

Finally, we add one deduction rule which is specific to predicate subtyping, and corre-
sponds to the third principle given in the presentation of predicate subtyping in Section
2.1.3: using again the notation for substitution presented previously, a formula of the
form P[t/x] is provable in some context if t admits some type of the form {x : A |

P} in this context.

38



Chapter 3

PVS-Core: the formalization of
predicate subtyping

This chapter is dedicated to the first contribution of this work: the formalization of a
minimal system for predicate subtyping. This system, denoted PVS-Core, is designed
following the idealization of PVS described in Chapter 2. Besides its correspondence
to the fragment of PVS described in this previous chapter, the main design choice for
PVS-Core is the introduction of a definitional equality, referred to as conversion, corre-
sponding to syntactical equality modulo β-reduction.

3.1 Terms and judgements

We first define PVS-Core variables and terms.

Definition 3.1.1 (Variables and terms). We define the set of variables V as the disjoint
union of two infinite countable sets of symbols Vexpressions and Vtypes. We introduce the
generic notation v or w to refer to a variable in general, as well as the following specific
notations:

• The notation X or Y refers to variables in Vtypes.

• The notation x or y refers to variables in Vexpressions.

Then, we define a set of terms as the disjoint union of the three following sets. The
last two are defined together recursively.

• The first set contains a unique symbol: Type.

• The second set is the set of types. It is given with the following grammar:
A,B := X | Prop | Πx : A.B | {x : A | P}

• The last set is the set of expressions. It is given with the following grammar:
t, u, P,Q := x | ∀x : A.P | P ⇒ Q | λx : A.t | tu

39



CHAPTER 3. PVS-CORE: THE FORMALIZATION OF PREDICATE SUBTYPING

There is no formal distinction between the expressions denoted t or u and the ex-
pressions denoted P or Q, as all of them refer to expressions in general. Yet, in the
following, the notations P and Q will be often used to refer to expressions admitting the
type Prop, also referred to as formulas or propositions.

These definitions of variables and terms represent the PVS syntax in the following
way:

• Vtypes represents non-propositional base types.

• Vexpressions represents constant expressions.

• Type represents TYPE.

• Prop represents bool. As presented in Chapter 2, classical reasoning and proposi-
tional extensionality are only considered as optional axioms in the presented ideal-
ization of predicate subtyping: in this setting, the notation bool is not convenient
for the types of formulas in PVS-Core. We choose instead the usual alternative
Prop, as formulas are also referred to as propositions.

• Πx : A.B represents a dependent function type [x : A -> B].

• {x : A | P} represents a predicate subtype {x : A | P}].

• ∀x : A.P represents a universal quantification FORALL (x : A) : P.

• P ⇒ Q represents an implication P IMPLIES Q.

• λx : A.t represents a λ-expressions LAMBDA (x : A) : t.

• tu represents an application t(u).

In a second step, we define declarations, contexts, and judgements.

Definition 3.1.2. We define successively declarations, contexts, and judgements as fol-
lows.

• We define three kinds of declarations:
X : Type | x : A | P

• We define contexts, denoted Γ, as lists of declarations:
Γ := ∅ | Γ, X : Type | Γ, x : A | Γ, P

• We define four kinds of judgements:
Γ `WF | Γ ` A : Type | Γ ` t : A | Γ ` P

These definitions correspond to the following notions in PVS and its idealized pre-
sentation in Chapter 2:

40



CHAPTER 3. PVS-CORE: THE FORMALIZATION OF PREDICATE SUBTYPING

• A declaration X : Type represents a PVS uninterpreted type declaration
X : TYPE.

• A declaration x : A represents a PVS uninterpreted constant declaration
x : A.

• A declaration P represents a PVS formula declaration
h : AXIOM P, but also h : THEOREM P or h : OBLIGATION P.

• A context represent both a PVS specifications, a typing context, and a proof con-
text, as these two notions were considered equivalent in the idealized presentation
of PVS.

• A judgement Γ `WF represents the well-formedness of a PVS specification.

• A judgement Γ ` A : Type represents the well-formedness of a type relatively to a
context.

• A judgement Γ ` t : A represents typability of an expression by a type relatively
to a context.

• A judgement Γ ` P represents the provability of a formula relatively to a context.

The following definitions and notations will be useful in the analysis of PVS-Core
terms and judgements.

Definition 3.1.3 (Binders, α-conversion). The terms of the form λx : A.t, Πx : A.B,
∀x : A.P , and {x : A | P} are binders, in which x is bound in t (resp. B, P ) only.
α-conversion is defined from this notion of binding, with the restriction that a bound
variable X ∈ Vtypes (resp. x ∈ Vexpressions) can be substituted only by a variable Y ∈
Vtypes (resp. y ∈ Vexpressions). In the following, denote α-conversion by = and we use it
implicitly instead of syntactic equality.

Definition 3.1.4 (Free variables, declared variables, substitution). The set of free vari-
ables of a term is defined as usual from the definition of binders, and we denote it FV (·).
It is extended to contexts as follows.

• FV (∅) = ∅

• FV (Γ, X : Type) = FV (Γ) ∪ {X}

• FV (Γ, x : A) = FV (Γ) ∪ {x} ∪ FV (A)

• FV (Γ, P ) = FV (Γ) ∪ FV (P )

The set of declared variables of a context DV (Γ) is defined as follows.

• DV (∅) = ∅

41



CHAPTER 3. PVS-CORE: THE FORMALIZATION OF PREDICATE SUBTYPING

• DV (Γ, X : Type) = DV (Γ) ∪ {X}

• DV (Γ, x : A) = DV (Γ) ∪ {x}

• DV (Γ, P ) = DV (Γ)

Substitution on terms and contexts is defined as usual. The substitution of v by N in M
is denoted as M [N/v].

Last, we define the following notations for β-reduction and β-equivalence in PVS-
Core as follows.

Definition 3.1.5 (Reduction). We define the relation .β on terms as usual with (λx :
A.t)u .β t[u/x]. Then, we define

• →β the congruence closure of .β

• �β the reflexive transitive closure of →β

• ≡β the symmetric closure of �β

3.2 Rules and derivability

We define the following rules in PVS-Core, following the idealization of typing and de-
duction presented in Chapter 2. PVS-Core rules are organized as follows.

Well-formed contexts

• Empty∅ `WF

• Γ `WF TypeDecl X ∈ Vtypes\DV (Γ)
Γ, X : Type `WF

• Γ ` A : Type
EltDecl x ∈ Vexpressions\DV (Γ)

Γ, x : A `WF

• Γ ` P : Prop
Assumption

Γ, P `WF

Well-formed types

• Γ `WF TypeVar (X : Type) ∈ Γ
Γ ` X : Type

• Γ `WF
Prop

Γ ` Prop : Type

• Γ, x : A ` B : Type
Pi

Γ ` Πx : A.B : Type

42



CHAPTER 3. PVS-CORE: THE FORMALIZATION OF PREDICATE SUBTYPING

• Γ, x : A ` P : Prop
Subtype

Γ ` {x : A | P} : Type

Well-typed expressions

• Γ `WF EltVar (x : A) ∈ Γ
Γ ` x : A

• Γ, x : A ` P : Prop
Forall

Γ ` ∀x : A.P : Prop

• Γ, P ` Q : Prop
Imply

Γ ` P ⇒ Q : Prop

• Γ, x : A ` t : B
Lam

Γ ` λx : A.t : Πx : A.B

• Γ ` t : Πx : A.B Γ ` u : A
App

Γ ` tu : B[u/x]

• Γ ` t : A Γ ` P [t/x] Γ ` {x : A | P} : Type
SubtypeIntro

Γ ` t : {x : A | P}

• Γ ` t : {x : A | P}
SubtypeElim1

Γ ` t : A

• Γ ` t : A Γ ` B : Type
TypeConversion A ≡β B

Γ ` t : B

Deductions

• Γ `WF
Axiom P ∈ Γ

Γ ` P

• Γ, P ` Q
ImplyIntro

Γ ` P ⇒ Q

• Γ ` P ⇒ Q Γ ` P
ImplyElim

Γ ` Q

• Γ, x : A ` P
ForallIntro

Γ ` ∀x : A.P

• Γ ` ∀x : A.P Γ ` t : A
ForallElim

Γ ` P [t/x]

• Γ ` t : {x : A | P}
SubtypeElim2

Γ ` P [t/x]

• Γ ` P Γ ` Q : Prop
PropConversion P ≡β Q

Γ ` Q

Each rule defines a family of rule instances in the following way.

43



CHAPTER 3. PVS-CORE: THE FORMALIZATION OF PREDICATE SUBTYPING

Definition 3.2.1 (Rule instance). The description of each rule is done with a set of
parameters: for instance, the parameters describing the rule ForallElim are Γ, P ,
t, x, and A.

A set of parameters is well-suited for a rule if it satisfies all side conditions provided
with this rule. A rule instance is defined as the data of a rule together with a set of
well-suited parameters.

In turn, rule instances are used to define inference steps and derivations as fol-
lows.

Definition 3.2.2 (Derivation, inference step). A derivation is a tree labeled by judge-
ments in which every junction, referred to as a an inference step, matches some rule
instance.

Following the relation between PVS-Core judgements and PVS, the derivability of a
PVS-Core expresses the following properties in PVS.

• The derivability of a judgement Γ ` WF asserts the well-formedness of a PVS
specification represented by Γ.

• The derivability of a judgement Γ ` A : Type asserts the well-formedness of a the
PVS type represented by A relatively to the context represented by Γ.

• The derivability of a judgement Γ ` t : A asserts the typability of the an expression
represented by t by a type represented by A relatively to a context represented by
Γ.

• The derivability of a judgement Γ ` P asserts the provability of a formula repre-
sented by P relatively to a context represented by Γ.

Finally, we define the notions of well-formed context, well-typed expression, and
inhabited type as follows.

Definition 3.2.3 (Well-formed context, well-typed expression, inhabited type). We
define well-formed contexts, well-typed expression, and inhabited type as follows:

• A context Γ is well-formed if Γ `WF is derivable.

• An expression t is well-typed in a context Γ if Γ ` t : A is derivable for some type
A. An expression is well-typed if it is well-typed in some context Γ.

• A type A is inhabited in a context Γ if Γ ` t : A is derivable for some expression
t. A type is inhabited if it is inhabited in some context Γ.

3.3 Summary of PVS-Core’s main characteristics

We end this chapter with a brief overview of the main characteristics of PVS-Core. This
section summarize the principles detailed and motivated in Chapter 2.

44



CHAPTER 3. PVS-CORE: THE FORMALIZATION OF PREDICATE SUBTYPING

3.3.1 An extension of higher-order logic

As PVS, PVS-Core is an extension of higher-order logic. More precisely, a formalization
of higher-order logic can be defined as the following restriction of PVS-Core.

Definition 3.3.1 (Underlying formalization of higher-order-logic). The underlying for-
malization of higher-order-logic in PVS-Core is defined by the following restrictions:

• A HOL term (resp. context, judgement) is a PVS-Core term (resp. context, judge-
ment) in which no subterm has the form {x : A | P}.

• A HOL derivation is a PVS-Core derivation in which no rule Subtype, Sub-
typeIntro, SubtypeElim1, SubtypeElim2, nor TypeConversion is used.

In this fragment of PVS-Core derivable judgements, types belong to the grammar,
A,B := X | Prop | Πx : A.B, which correspond to simple types. Indeed, for any type
Πx : A.B in this grammar, the expression variable x cannot occur free in B, hence this
type construction corresponds to a non-dependent type, denoted [A -> B] in PVS.

3.3.2 Predicate subtyping and conversion

Starting from the previous formalization of higher-order logic as fragment of PVS-Core,
the full system is obtained by adding, on the one hand, the predicate subtype construc-
tion {x : A | P}, and, on the other hand, the five rules Subtype, SubtypeIntro,
SubtypeElim1, SubtypeElim2, and TypeConversion. The four first rules are the
essence of predicate subtyping:

• Subtype is the formation rule of predicate subtypes.

• SubtypeIntro describes how predicate subtypes can be inhabited.

• SubtypeElim1 and SubtypeElim2 shows how the inhabitants of predicate sub-
types can be used.

On the other hand, the fifth rule TypeConversion, is the counterpart, at the
level of typing, of the deduction rule PropConversion. Together, these rules allow
to consider types and expressions modulo β, and pave the way for the formalization
of proofs modulo β, which is on of the main characteristics of the system PVS-Cert
presented in the following chapter, and intended to be a system of verifiable certificates
for PVS-Core.

45





Chapter 4

PVS-Cert: verifiable certificates
for PVS-Core

As presented in the introduction (Chapter 1), the main purpose of this work is to de-
fine a language of verifiable certificates for predicate subtyping – more specifically, for
the minimal formalization of predicate subtyping PVS-Core, presented in the previous
chapter. The present chapter is dedicated to the presentation of such a system, which
will be referred to as PVS-Cert.

What is meant as here as a language of verifiable certificates is a language of proofs
equipped with a decision algorithm discriminating, for any formula P and any context
Γ, the correct proofs of P in Γ. In the case of PVS-Cert, this question is a special case
of the more general question of type-checking, solved in Chapter 7 with the definition of
a sound, complete and terminating type-checking algorithm.

At first glance, there is no need to introduce any new system to define PVS-Core
proofs formally: the language of PVS-Core derivations itself is a language of verifiable
proofs for PVS-Core. However, this language is heavy as many parts of PVS-Core deriva-
tions contain unnecessary or redundant information. For instance, in the higher-order
logic fragment of PVS-Core, only the deduction rules need to be recorded as typing is
decidable in simply-typed λ-calculus. Moreover, defining a notion of cut elimination
would be also heavy: as a cut would correspond to the stacking of several rules in a
derivation, the definition of a single cut would involve distinct several judgements, based
on possibly distinct contexts.

The main idea in the definition of PVS-Cert as a language of certificates for predi-
cate subtyping is to formalize proofs as new kinds of terms, in addition to the types and
expressions which are already present in PVS-Core. In PVS-Cert, a complete certifi-
cate is simply the typing judgement of some proof term with its corresponding theorem.
As PVS-Cert is designed as a system in which type-checking is decidable, PVS-Cert
derivations do not need to be recorded. Hence, this system of certificates is much lighter

47



CHAPTER 4. PVS-CERT: VERIFIABLE CERTIFICATES FOR PVS-CORE

than the language of PVS-Cert derivations as only one single judgement needs to be
recorded. Moreover, it will be equipped (in Section 6) with a much lighter definition of
cut elimination: in PVS-Cert, a cut is simply a computation rule for a proof terms, and
its definition doesn’t involve any judgement, nor any context.

We first present the formal definition of PVS-Cert, before providing more details on
its underlying design choices.

4.1 Formal presentation

4.1.1 Terms and judgements

As detailed further in Section 4.2.1, the definition of PVS-Cert is comparable to the
formalism of PTSs, presented for instance in [4]. The terms of PVS-Cert are defined as
follows.

• Sorts S = {Prop, Type,Kind}
We use the notation s to refer to a sort.

• Axioms A = {(Prop, Type), (Type,Kind)}

• Rules R = {(Prop, Prop, Prop), (Type, Type, Type), (Type, Prop, Prop)}

• Variables The set of variables V is the disjoint union of three infinite countable
sets of symbols Vproofs, Vexpressions, and Vtypes. The sets Vexpressions and Vtypes
refer to their respective definitions in PVS-Core, while the set Vproofs is new. We
use the notation v to refer to a variable and s(v) to refer to the unique sort such
that v ∈ Vs.

• Terms T is given by the following grammar:
M,N, T, U := s | v | λv : T.M | MN | Πv : T.U | {v : T | U} | 〈M,N〉T | π1(M) |
π2(M)

The contexts and judgements of PVS-Cert are defined as follows.

• Contexts Γ := ∅ | Γ, v : T

• Judgements Γ `WF | Γ `M : T

Definition 4.1.1 (Binders, α-conversion). The terms λv : T.U , Πv : T.U , and {v :
T | U} are binders, in which v is bound in U only. α-conversion is defined from this
notion of binding, with the restriction that a bound variable v can be substituted only by
a variable v′ ∈ Vs(v). In the following, denote α-conversion by = and we use it implicitly
instead of equality.

Definition 4.1.2 (Free variables, declared variables, substitution). The set of free vari-
ables of a term is defined as usual from the definition of binders, and we denote it

48



CHAPTER 4. PVS-CERT: VERIFIABLE CERTIFICATES FOR PVS-CORE

FV (·). It is extended to contexts with FV (v1 : T1, ..., vn : Tn) = {v1, ..., vn} ∪ FV (T1) ∪
... ∪ FV (Tn). The set of declared variables of a context is defined as DV (v1 : T1, ..., vn :
Tn) = {v1, ..., vn} ⊆ FV (v1 : T1, ..., vn : Tn). Substitution on terms and contexts is
defined as usual. The substitution of v by N in M is denoted as M [N/v].

Definition 4.1.3 (Reduction). We define the following relations.

• (λv : T.M)N .β M [N/v]

• 〈M1,M2〉T .∗M1

• π1(M) .∗M

We define .β∗ as the union of .β and .∗. Given some relation .− among .∗, .β, and
.β∗, we define

• →− the congruence closure of .−

• �− the reflexive transitive closure of →−

• ≡− the symmetric closure of �−

The specificity of these definitions is the reduction relation .∗, which can be inter-
preted as a the elimination of a coercion at the head of a term, and allows the expression
of predicate subtyping in PVS-Cert. More detailed motivations and justifications for
this definition are given in Section 4.2.2.

4.1.2 Typing rules

The typing rules of PVS-Cert are defined as follows:

• Empty∅ `WF

• Γ ` T : s Decl v ∈ Vs\DV (Γ)
Γ, v : T `WF

• Γ `WF Sort (s1, s2) ∈ A
Γ ` s1 : s2

• Γ `WF Var (v : T ) ∈ Γ
Γ ` v : T

• Γ ` T : s1 Γ, v : T ` U : s2 Prod (s1, s2, s3) ∈ R
Γ ` Πv : T.U : s3

• Γ, v : T `M : U Γ ` Πv : T.U : s
Lam

Γ ` λv : T.M : Πv : T.U

• Γ `M : Πv : T.U Γ ` N : T
App

Γ `MN : U [N/v]

• Γ ` T : Type Γ, v : T ` U : Prop
Subtype

Γ ` {v : T | U} : Type

49



CHAPTER 4. PVS-CERT: VERIFIABLE CERTIFICATES FOR PVS-CORE

• Γ `M : T Γ ` N : U [M/v] Γ ` {v : T | U} : Type
Pair

Γ ` 〈M,N〉{v:T |U} : {v : T | U}

• Γ `M : {v : T | U}
Proj1

Γ ` π1(M) : T

• Γ `M : {v : T | U}
Proj2

Γ ` π2(M) : U [π1(M)/v]

• Γ `M : T Γ ` U : s Conversion T ≡β∗ U
Γ `M : U

The specificity of this system lies in the use of the relation ≡β∗ in the Conversion
rule, which is at the core of the expression of predicate subtyping in PVS-Cert. More
detailed motivations for such a definition are given in Section 4.2.2.

Like PVS-Core, PVS-Cert is equipped with formal definitions of rule instance, in-
ference step, and derivation. These notions are formalized in the same way as done
in PVS-Core (Definitions 3.2.1 and 3.2.2).

Finally, we define the notions of well-formed context, well-typed term, and inhabited
term as follows.

Definition 4.1.4 (Well-formed context, well-typed term, inhabited term). We define
well-formed contexts, well-typed terms, and inhabited terms as follows:

• A context Γ is well-formed if Γ `WF is derivable.

• A term M is well-typed in a context Γ if Γ `M : T is derivable for some term T .
A term is well-typed if it is well-typed in some context Γ.

• A term T is inhabited in a context Γ if Γ ` M : T is derivable for some term M .
A term is inhabited if it is well-typed in some context Γ.

4.2 The choice of PVS-Cert

4.2.1 An extension of λ-HOL

PVS-Cert is an extension of the PTS λ-HOL presented for instance in [4]. In order to
highlight the relations between the two systems, we present the following definition of
λ-HOL as a subsystem of PVS-Cert:

Definition 4.2.1 (λ-HOL). λ-HOL is defined from PVS-Cert defined by the following
restrictions:

• A λ-HOL term (resp. context, judgement) is a PVS-Cert term (resp. context,
judgement) in which no subterm has the form {v : T | U}, πi(M), or 〈M,N〉T .

50



CHAPTER 4. PVS-CERT: VERIFIABLE CERTIFICATES FOR PVS-CORE

• A λ-HOL derivation is a PVS-Cert derivation in which no rule Subtype, Pair,
Proj1, or Proj2 is used, and where conversion corresponds to ≡β instead of ≡β∗.

The system λ-HOL is an instance of the family of Pure Type Systems (PTSs), also
presented in [4]. PTSs, sometimes also referred to as Generalized Type Systems (GTSs),
correspond to λ-HOL-like systems where the sets of sorts, axioms, and rules can be cho-
sen freely. The notion of PTS is the result of several successive works, including notably
[7, 74, 75, 76, 36, 3].

PTS-like systems are well-suited to describe reasoning modulo β: all steps of β-
reduction or β-expansion in reasoning are kept implicit, which allows to keep proofs
compact. Different logics can be expressed in different PTSs using variations of the
Curry-Howard correspondence. The simplest PTS expressing higher-order logic is λ-
HOL. Well-typed terms in λ-HOL are organized with a stratification, composed of sepa-
rate classes of well-typed terms. One class corresponds to the simple types of higher-order
logic, another corresponds to the terms of higher-order logic (propositions, etc.), and a
third class corresponds to verifiable proofs of higher-order logic. In λ-HOL, a theorem
becomes the type of its proofs, and such proofs can be verified using a type-checking
algorithm.

PVS-Cert is designed to extend λ-HOL in the same way as PVS-Core extends higher-
order logic. As in λ-HOL, well-typed terms are organized with a corresponding stratifi-
cation, presented in Section 5.4, which includes a class of types, a class of expressions,
and a class of proofs. This stratification allows to establish a simple correspondence with
PVS-Core, described in Chapter 9.

4.2.2 The expression of predicate subtyping

The addition of proof terms is not the only difference between PVS-Core and PVS-Cert:
in order to ensure the decidability of type-checking, PVS-Cert terms are inherently
equipped with explicit coercions. These coercions contain explicitly the proofs which
are required to change the types of terms. For instance, in a context Γ, using the nota-
tions of stratified terms which will be detailed in Definition 5.4.3: if B = {x : A | P} is a
type, t is an expression of type A, and p is a proof of type P [t/x], then 〈t, p〉B is a coer-
cion of t from A to B. These explicit coercions ensure the decidability of type-checking
(proved in Chapter 7). Another difference between PVS-Core and PVS-Cert due to the
presence of these coercions is the uniqueness of types in PVS-Cert, proved in Theorem
5.6.1.

The formalism used in PVS-Cert to define this system of coercions is very similar to
the formalism of dependent pairs, used for instance in the type system ECC [53]. More
precisely, the terms {v : T | U} are comparable with types of dependent pairs (usually
denoted Σv : T.U), the terms 〈M,N〉T are comparable with dependent pairs, and the
terms πi(M) are comparable with projections. The only difference between PVS-Cert

51



CHAPTER 4. PVS-CERT: VERIFIABLE CERTIFICATES FOR PVS-CORE

and the formalism of dependent pairs lies in the choice of conversion ≡β∗: in the case of
a system with dependent pairs, ≡β∗ is replaced by the more standard conversion ≡βσ,
defined as follows.

Definition 4.2.2. The relation .σ is defined with πi〈M1,M2〉T .σ Mi, and the relation
.βσ is defined as the union of .β and .σ. As presented in Definition 4.1.3, for any
relation .− (for instance .σ or .βσ), we consider

• →− the congruence closure of .−

• �− the reflexive transitive closure of →−

• ≡− the symmetric closure of �−

Among all PTSs with dependent pairs, one particular system is even more closely
related to PVS-Cert. It will be referred to as PVS-Cert−, and defined as follows.

Definition 4.2.3 (PVS-Cert−). The system PVS-Cert− is defined as PVS-Cert where
the conversion ≡β∗ is replaced by ≡βσ. It corresponds to a PTS extended with dependent
pairs, where {v : T | U} corresponds to the type of dependent pairs usually denoted
Σv : T.U . More precisely, PVS-Cert− corresponds to the PTS with dependent pairs
obtained from λ-HOL by adding the single dependent pair rule (Type, Prop, Type). It is
included in the type system ECC presented in [53].

Although this may not be directly visible from the definitions, PVS-Cert is in fact
an extension PVS-Cert−: as proved in Theorem 5.7.1, any judgement which is derivable
in the PTS with dependent pairs PVS-Cert− is also derivable in PVS-Cert.

Using the more flexible conversion ≡β∗ allows to establish a direct connection be-
tween PVS-Core and PVS-Cert. The link from PVS-Cert to PVS-Core (Chapter 9) is
defined through the erasure of coercions, i.e. through normalization with respect to→∗.
Using the conversion ≡β∗, two PVS-Cert types (resp. expressions) are convertible as
long as the corresponding types (resp. expressions) in PVS-Core are also convertible,
which allows to define a very simple translation from PVS-Core derivations to PVS-Cert
derivable judgements (Definition 9.2.2 and Theorem 9.3.1).

The reduction �β∗ does not preserve typing: if Γ `M : T is derivable and M �β∗ N ,
Γ ` N : T is not necessarily derivable. For instance, the judgement x : Prop, h : x `
〈x, h〉T : T with T = {y : Prop | y} is derivable, but the judgement x : Prop, h : x ` x : T
is not. Instead, the reduction �βσ is type preserving, and will be used both in the type-
checking algorithm (Chapter 7) and as a definition of cut elimination for PVS-Cert proofs
(Chapter 6).

52



Chapter 5

Properties of PVS-Cert

This chapter is dedicated to the presentation of important properties of PVS-Cert. These
properties, together with the strong normalization (and cut elimination) theorem pre-
sented in Chapter 6, will be used to define a type-checking algorithm (Chapter 7) for
PVS-Cert, to prove that it is a conservative extension of higher-order logic (Chapter
8), and to formalize the correspondence between PVS-Core and PVS-Cert (Chapter 9).
The two most important of these properties are the stratification theorem, which allows
to discriminate types, expressions, and proofs among well-typed terms, and the type
preservation theorem, which allows to define a sound notion of computation and cut
elimination – whose termination will be proved in the strong normalization theorem in
Chapter 6.

We begin this section with the definition of tools for the analysis of PVS-Cert deriva-
tions.

5.1 Tools for the analysis of derivations

We present three theorems easing the analysis of PVS-Cert derivations, which will be
referred to as the subderivations theorem, the free variable theorem, and the renaming
theorem respectively. The two first theorems are established directly, while the last one
requires several lemmas. These definitions correspond to standard properties expected
from most types systems. In particular, similar tools could be defined for arbitrary
PTSs, arbitrary PTSs extended with dependent pairs, but also for PVS-Core.

Theorem 5.1.1 (Subderivations). For any derivation of a judgement Γ ` WF or Γ `
M : U , the following properties hold:

• For any prefix Γ′ of Γ, there exists a subderivation of Γ′ `WF .

• For any prefix (Γ′, v : T ) of Γ, there exists a subderivation of Γ′ ` T : s(v).

• In the case of a judgement of the form Γ ` M : U , there exists a subderivation

53



CHAPTER 5. PROPERTIES OF PVS-CERT

of conclusion of the form Γ ` M : T where T ≡β∗ U and the last inference step
matches some instance of the rule determined by M (App for an application, etc.).

Proof. The proof is done straightforwardly by induction on the derivation.

Theorem 5.1.2 (Free variables). If Γ ` M : U or Γ ` WF is derivable, with Γ = v1 :
T1, ..., vn : Tn, the following statements hold.

• In the first case, FV (M) ∪ FV (N) ⊆ {v1, ..., vn}.

• For all i FV (Ti) ⊆ {v1, ..., vi−1}.

• The vi are pairwise distinct.

Proof. The two first statements are proved together by induction on the derivation. The
third is proved alone by induction on the derivation.

The last useful tool for the analysis of derivations is the renaming theorem. It pro-
vides some flexibility in the choice of the parameter v occurring in several rule instances,
when matching the last inference step of some derivation. In some cases as Proj1, the
same inference step can be matched with different choices of v. In other cases as Lam,
we need to change the derivation to match different choices of v, but this can be done
in a height-preserving way. The theorem is the following:

Theorem 5.1.3 (Renaming). For any derivation of height n and conclusion Γ `M : N
where the last inference step matches some instance of a rule R, the following holds:

1. If R is among App, Pair, Proj1, and Proj2 and v is its variable parameter,
for any v ∈ Vs(v)\DV (Γ), the last inference step matches some instance of R of
variable parameter v.

2. If R is among Prod, Lam, and Subtype and v is its variable parameter, for any
v ∈ Vs(v)\DV (Γ), there exists a derivation of height n and conclusion Γ ` M : N
such that the last inference step matches some instance of R of variable parameter
v.

Although this theorem is a natural and basic result, its proof involves several distinct
steps, which will be presented in the rest of this section. As mentioned in the beginning
of this section, the proof this result is not specific to PVS-Cert: similar proofs could be
done for PTSs or PTSs extended with dependent pairs.

We will use the following properties of substitution.

Lemma 5.1.1. The following properties hold.

• For all terms T , M , and N , for any variables v and v′ ∈ Vs(v)\FV (M),
M [v′/v][N/v′] = M [N/v].

54



CHAPTER 5. PROPERTIES OF PVS-CERT

• For all terms M , N , and N ′, any variables v 6∈ FV (N ′) and v′ 6= v,
M [N/v][N ′/v′] = M [N ′/v′][N [N ′/v′]/v].

Proof. The first statement is proved by induction on M . Substitution being stable by
α-conversion, we can suppose without loss of generality that the bound variables in M
are neither equal to v or v′ nor free in N , which makes the proof straightforward.

The second statement is proved by induction on M . Substitution being stable by
α-conversion, we can suppose without loss of generality that the bound variables in M
are neither equal to v or v′, nor free in N , N ′, or N [N ′/v′], which makes the proof
straightforward as well.

The next step is the proof of the first part of the renaming theorem.

Lemma 5.1.2. The first statement of the renaming theorem holds: for any derivation
of conclusion Γ ` M : N , if the last inference step matches some instance of a rule R
among App, Pair, Proj1, and Proj2 and if v refers to its variable parameters, the
following holds: for any v′ ∈ Vs(v)\DV (Γ), the last inference step matches some instance
of R of variable parameter v′.

Proof. All cases are similar. We present the example of an instance of Pair:

Γ `M : T Γ ` N : U [M/v] Γ ` {v : T | U} : Type
Pair

Γ ` 〈M,N〉{v:T |U} : {v : T | U}
We consider v′ ∈ Vs(v)\DV (Γ). To prove the expected result, we prove that the

instance of Pair defined by the parameters Γ, M , N , v′, T and U [v′/v] matches the
same inference step. For this, we need to prove {v : T | U} = {v′ : T | U [v′/v]} and
U [M/v] = U [v′/v][M/v′], which both hold, by definition of α-conversion and by Lemma
5.1.1 respectively, as long as v′ ∈ Vs(v)\FV (U). By the free variable theorem, this is the
case.

The following statement will be used to establish the second part of the renaming
theorem.

Lemma 5.1.3. Given

• a derivation of some judgement of the form Γ, v : T,∆ `M : U
(resp. Γ, v : T,∆ `WF ),

• a variable w ∈ Vs(v)\DV (Γ,∆),

the judgement Γ, w : T,∆[w/v] ` M [w/v] : U [w/v] (resp. Γ, w : T,∆[w/v] ` WF )
admits a derivation of the same length as the previous one

Proof. This property is proved by induction on the height of derivations.

• The case Empty cannot occur.

55



CHAPTER 5. PROPERTIES OF PVS-CERT

• The case Decl splits into two subcases, depending on whether ∆ is empty or not.
Both cases are established straightforwardly using the fact that w ∈ Vs(v)\DV (Γ,∆).
The induction hypothesis is used in the second subcase.

• The case Var splits into three subcases. With the notation Γ, v : T,∆ ` v′ : T ′

for the conclusion, using the free variable theorem, (v′ : T ) appears exactly once
in the context, either in Γ, in {(v : T )}, or in ∆. In every case we conclude the
expected result from the induction hypothesis, using the free variable theorem to
ensure that (v′[w/v] : T ′[w/v]) = (v′ : T ′) in the first case and that T [w/v] = T in
the second case.

• The case Conversion is done by induction hypothesis, using the stability of ≡β∗
by substitution.

• The rules App, Pair, Proj1, and Proj2 are similar, and use Lemma 5.1.2. We
present the case Pair as an example. By Lemma 5.1.2, the last inference step
matches some rule instance

Γ′ `M ′ : T ′ Γ′ ` N ′ : U ′[M ′/v′] Γ′ ` {v′ : T ′ | U ′} : Type
Pair

Γ′ ` 〈M ′, N ′〉{v′:T ′|U ′} : {v′ : T ′ | U ′}

in which Γ′ = Γ, v : T,∆ and v′ 6∈ DV (Γ′) ∪ {w}.
First, we apply the induction hypothesis on premises. In order to apply a Pair
instance on the new judgements, we have to check two conditions: {v′ : T ′ |
U ′}[w/v] = {v′ : T ′[w/v] | U ′[w/v]} and U ′[M ′/v′][w/v] = U ′[w/v][M ′[w/v]/v′].
By definition of substitution and by Lemma 5.1.1 respectively, both are ensured
as long as the two inequalities v′ 6= v and v′ 6= w hold, which is the case given the
requirement on v′.

Last, we check that the conclusion 〈M ′[w/v], N ′[w/v]〉{v′:T ′[w/v]|U ′[w/v]} : {v′ :
T ′[w/v] | U ′[w/v]} is the expected one, which straightforward using {v′ : T ′ |
U ′}[w/v] = {v′ : T ′[w/v] | U ′[w/v]}.

• The rules Prod, Lam, and Subtype are similar. We present the case Lam as an
example. The last inference step matches some instance

Γ′, v′ : T ′ `M ′ : U ′ Γ′ ` Πv′ : T ′.U ′ : s′
Lam

Γ′ ` λv′ : T ′.M ′ : Πv′ : T ′.U ′

in which Γ′ = Γ, v : T,∆. First, we consider some variable w′ belonging to
Vs(v′)\(DV (Γ′) ∪ {v′, w}). We first apply the induction hypothesis on the first
premise to get a derivation of Γ′, w′ : T ′ `M ′[w′/v′] : U ′[w′/v′]. Then, as the length
of derivations is preserved and w′ 6= w, we apply the induction hypothesis again to
get a derivation of Γ, w : T,∆[w/v], w′ : T ′[w/v] `M ′[w′/v′][w/v] : U ′[w′/v′][w/v].

56



CHAPTER 5. PROPERTIES OF PVS-CERT

On the other hand, by the free variable theorem, w′ 6∈ FV (U ′), hence the second
premise is equal to Γ′ ` Πw′ : T ′.U ′[w′/v′] : s′. Applying the induction hypothesis,
we get a derivation of Γ, w : T,∆[w/v] ` (Πw′ : T ′.U ′[w′/v′])[w/v] : s′. By hypoth-
esis, w′ 6= w and w′ 6= v, hence this judgement is equal to Γ, w : T,∆[w/v] ` Πw′ :
T ′[w/v].U ′[w′/v′][w/v] : s′.

Applying the Lam rule, we obtain a derivation of Γ, w : T,∆[w/v] ` λw′ :
T ′[w/v].M ′[w′/v′][w/v] : Πw′ : T ′[w/v].U ′[w′/v′][w/v]. We need to prove that this
conclusion is the expected one, (λv′ : T ′.M ′)[w/v] = λw′ : T ′[w/v].M ′[w′/v′][w/v]
and similarly with Πv′ : T ′.U ′. The second equality was proved in the previ-
ous paragraph. The first one is proved in the same way, using the fact that
w′ 6∈ FV (M ′), as ensured by the free variable theorem.

We conclude the proof of the renaming theorem as follows.

Proof. [Renaming] The first part of the theorem is Lemma 5.1.2. In the second part,
the three cases are similar. We present the example of an instance of Lam. In this case,
the last inference step matches some instance

Γ, v : T `M : U Γ ` Πv : T.U : s
Lam

Γ ` λv : T.M : Πv : T.U

We consider w ∈ Vs(v)\DV (Γ). By Lemma 5.1.3, there exists a derivation of Γ, w :
T ` M [w/v] : U [w/v] of same height as the first subderivation. Moreover, by the
free variable theorem, w ∈ Vs(v)\FV (U), thus the second premise is equal to Γ ` Πw :
T.U [w/v] : s. We combine both derivations to derive Γ ` λw : T.M [w/v] : Πw : T.U [w/v]
using the rule instance

Γ, w : T `M [w/v] : U [w/v] Γ ` Πw : T.U [w/v] : s
Lam

Γ ` λw : T.M [w/v] : Πw : T.U [w/v]

By the free variable theorem, w ∈ Vs(v)\FV (M) and w ∈ Vs(v)\FV (U), hence this
conclusion is α-convertible to the original one.

5.2 Thinning and substitution

The theorems presented here express the admissibility of two usual rules in deduction
systems: thinning and substitution. These two operations on derivable judgements will
be at the core of a more advanced analysis, in particular the type preservation of the
reduction �βσ presented in Section 5.5.

These properties are expected for any PTS, or even for any PTS extended with
dependent pairs, such as the system PVS-Cert− presented in Definition 4.2.3. The

57



CHAPTER 5. PROPERTIES OF PVS-CERT

choice of conversion doesn’t play a strong role in these proofs, which correspond to what
could be done for PTSs as well as PTSs extended with dependent pairs.

Theorem 5.2.1 (Thinning). If Γ ` M : N and ∆ ` WF are derivable with Γ ⊆ ∆,
then ∆ `M : N is derivable.

Proof. The proof is done by induction on the height of the derivation. The only difficult
cases are Prod, Lam and Subtype, in which some premise admits an extended context.
We present here the example of Lam, the two other cases are established similarly us-
ing the renaming theorem. Discarding the notations of the original statement and using
the renaming theorem, we can suppose that the last inference rule matches some instance

Γ, v : T `M : U Γ ` Πv : T.U : s
Lam

Γ ` λv : T.M : Πv : T.U

with v 6∈ DV (∆), as the original derivation can be transformed into a derivation of
same height and conclusion matching this requirement. By the subderivations theorem,
the first premise contains a subderivation of Γ ` T : s(v). By strong induction hypoth-
esis, ∆ ` T : s(v) is derivable, and, as v 6∈ DV (∆), ∆, v : T ` WF is derivable too.
Thus, we can use the induction hypothesis on the first premise to obtain a derivation of
∆, v : T ` M : U . On the other hand, we apply the induction hypothesis to the second
premise. Then, applying Lam, we obtain a derivation of ∆ ` Πv : T.M : Πv : T.U .

The thinning theorem is the main lemma in the proof of the following substitution
theorem.

Theorem 5.2.2 (Substitution). If

• Γ, v : T,∆ `M : U (resp. Γ, v : T,∆ `WF ) is derivable,

• Γ ` N : T is derivable,

then Γ,∆[N/v] `M [N/v] : U [N/v] (resp. Γ,∆[N/v] `WF ) is derivable too.

Proof. The proof is similar although simpler than the proof of Lemma 5.1.3. It is done
by induction on the height of the first derivation:

• The case Empty cannot occur.

• The case Decl splits into two subcases, depending on whether ∆ is empty or not.
Both cases are established straightforwardly, using the subderivations theorem in
the first subcase and the induction hypothesis in the second subcase.

• The case Sort is straightforward by induction hypothesis.

• The case Var splits into three subcases. With the notation v′ : T ′ for the conclu-
sion, using the free variable theorem, (v′ : T ′) appears exactly once in the context,
either in Γ, in {(v : T )}, or in ∆. In the first case we conclude by induction hypothe-
sis, using the free variable theorem to ensure that (v′[N/v] : T ′[N/v]) = (v′ : T ′). In

58



CHAPTER 5. PROPERTIES OF PVS-CERT

the second case we use the induction hypothesis to derive Γ, v : T,∆[N/v] ` WF ,
and the thinning theorem with this derivation together with the derivation of
Γ ` N : T to derive Γ, v : T,∆[N/v] ` N : T . This conclusion is the expect one as,
by the free variable theorem, (v[N/v] : T [N/v]) = (N : T ). In the third case, we
conclude directly by induction hypothesis.

• The case Conversion is done by induction hypothesis, using the stability of ≡β∗
by substitution.

• The cases of rules App, Pair, Proj1, and Proj2 are similar. We present the case
Pair as an example. By the renaming theorem, the last inference step matches
some instance of Pair

Γ′ `M ′ : T ′ Γ′ ` N ′ : U ′[M ′/v′] Γ′ ` {v′ : T ′ | U ′} : Type
Pair

Γ′ ` 〈M ′, N ′〉{v′:T ′|U ′} : {v′ : T ′ | U ′}

in which Γ′ = Γ, v : T,∆ and v′ 6∈ DV (Γ′). First, we apply the induction hy-
pothesis on premises. In order to apply a Pair instance on the new judgements,
we have to check two conditions: {v′ : T ′ | U ′}[N/v] = {v′ : T ′[N/v] | U ′[N/v]}
and U ′[M ′/v′][N/v] = U ′[N/v][M ′[N/v]/v′]. By definition of substitution and by
Lemma 5.1.1 respectively, both are ensured as long as v′ 6= v and v′ 6∈ FV (N)
which are provable from the requirement on v′ and free variable theorem. Last,
we have to check that the conclusion 〈M ′[w/v], N ′[w/v]〉{v′:T ′[w/v]|U ′[w/v]} : {v′ :
T ′[w/v] | U ′[w/v]} is the expected one, which straightforward using the equality
{v′ : T ′ | U ′}[N/v] = {v′ : T ′[N/v] | U ′[N/v]}.

• The rules Prod, Lam, and Subtype are similar. We present the case Lam as an
example. The last inference step matches some instance of Lam

Γ′, v′ : T ′ `M ′ : U ′ Γ′ ` Πv′ : T ′.U ′ : s′
Lam

Γ′ ` λv′ : T ′.M ′ : Πv′ : T ′.U ′

in which Γ′ = Γ, v : T,∆.
First, we apply the induction hypothesis on premises. In order to apply a Lam
instance on the new judgements, we have to check that (λv′ : T ′.M ′)[N/v] =
λv′ : T ′[N/v].M ′[N/v] and (Πv′ : T ′.U ′)[N/v] = Πv′ : T ′[N/v].U ′[N/v]. Both
are ensured by v′ 6= v and v′ 6∈ FV (N), which are provable from the require-
ment on v′ and free variable theorem. Last, we have to check that the conclusion
is the expected one, which is straightforward using (λv′ : T ′.M ′)[N/v] = λv′ :
T ′[N/v].M ′[N/v] and (Πv′ : T ′.U ′)[N/v] = Πv′ : T ′[N/v].U ′[N/v] once again.

We end this section with the following corollary of the substitution theorem.

Theorem 5.2.3. If Γ ` M : T is derivable and T 6= Kind, there exists a sort s such
that Γ ` T : s.

59



CHAPTER 5. PROPERTIES OF PVS-CERT

Proof. The proof is done by induction on the derivation:

• The cases Empty and Decl cannot occur.

• The cases Sort, Prod, Lam, Subtype, Pair, and Conversion are straightfor-
ward.

• In the case Var, we replace the notation Γ ` M : T of the original statement by
Γ, v : T,∆ ` v : T . The premise is Γ, v : T,∆ `WF , and, from the subderivations
theorem, Γ ` T : s(v) is also derivable. Hence, by the thinning theorem, Γ, v :
T,∆ ` T : s(v) is derivable.

• The case App is proved in the following way. Discarding the notations of the orig-
inal statement and using the renaming theorem, the last inference step matches
some instance of App

Γ `M1 : Πv : T.U Γ `M2 : T
App

Γ `M1M2 : U [M2/v]

where v 6∈ FV (Γ). We know by induction hypothesis that Γ ` Πv : T.U : s
is derivable for some sort s. Hence, by the subderivations theorem followed by
the renaming theorem, Γ, v : T ` U : s′ is derivable for some sort s′. From the
substitution theorem, we conclude that Γ ` U [M2/v] : s′ is derivable.

• The case Proj1 is proved in the following way. Discarding the notations of the
original statement and using the renaming theorem, the last inference step matches
some instance of Proj1

Γ `M : {v : T | U}
Proj1

Γ ` π1(M) : T

where v 6∈ FV (Γ). We know by induction hypothesis that Γ ` {v : T | U} : s
is derivable for some s. Hence, using the subderivations theorem followed by the
renaming theorem, Γ, v : T ` U : Prop is derivable. From the subderivations
theorem, we conclude that Γ ` T : s(v) is derivable .

• The case Proj2 is proved in the following way. Discarding the notations of the
original statement and using the renaming theorem, the last inference step matches
some instance of Proj2

Γ `M : {v : T | U}
Proj2

Γ ` π2(M) : U [π1(M)/v]

where v 6∈ FV (Γ). We know by induction hypothesis that Γ ` {v : T | U} : s
is derivable for some s. Hence, using the subderivations theorem followed by the
renaming theorem, Γ, v : T ` U : Prop is derivable. On the other hand, we derive

60



CHAPTER 5. PROPERTIES OF PVS-CERT

directly from the premise Γ ` π1(M) : T using Proj1. Hence, by the substitution
theorem, we conclude that Γ ` π2(M) : U [π1(M)/v] is derivable.

5.3 The Church-Rosser property

The standard properties presented in the previous sections do not depend very strongly
on the choice of conversion. In the following, the conversion ≡β∗ and the reduction �β∗
will play a more important role. In particular, we will prove and use the Church-Rosser
property for→β∗. In the case of a PTS, an important consequence of the Church-Rosser
property of →β is the type preservation of �β. In the case of PVS-Cert, the first im-
portant consequence of the Church-Rosser property of→β∗ is the stratification theorem.
In a second step, the Church-Rosser property of →β∗ will be used again together with
the stratification theorem to establish the type preservation of an alternative reduction,
�βσ.

Theorem 5.3.1 (Church-Rosser for →β∗). Whenever M1 ≡β∗ M2, there exists N such
that M1 �β∗ N and M2 �β∗ N .

Proof. T equipped with→β∗ is an orthogonal combinatory reduction system (as defined
in [48]), as rules are left-linear and non-overlapping. As proved in [48], such a system
admits the Church-Rosser property.

The following corollary of the Church-Rosser theorem will be useful in the proof of
several results, such as the type preservation of the reduction �βσ presented in Section
5.5.

Theorem 5.3.2. For all terms M1 ≡β∗ M2 such that for all i ∈ {1, 2}, Mi has one of
the forms s, v, Πv : T.U , or {v : T |M}, one of the following holds.

• There exists a sort s such that M1 = M2 = s.

• There exists a variable v such that M1 = M2 = v.

• M1 has the form Πv : T1.U1 and M2 has the form Πv : T2.U2

where T1 ≡β∗ T2 and U1 ≡β∗ U2.

• M1 has the form {v : T1 | U1} and M2 has the form {v : T2 | U2}
where T1 ≡β∗ T2 and U1 ≡β∗ U2.

Proof. We first prove that for any terms M1 and M2 such that M1 �β∗ M2 and M1, the
following statements hold:

• If M1 is a sort, M1 = M2.

• If M1 is a variable, M1 = M2.

61



CHAPTER 5. PROPERTIES OF PVS-CERT

• If M1 has the form Πv : T1.U1, then M2 has the form Πv : T2.U2

where T1 ≡β∗ T2 and U1 ≡β∗ U2.

• If M1 has the form {v : T1 | U1}, then M2 has the form {v : T2 | U2}
where T1 ≡β∗ T2 and U1 ≡β∗ U2.

The proof is straightforward by induction on the length of the reduction M1 �β∗ M2.
In a second step, the expected result is proved as follows. If two terms M1 ≡β∗ M2 are
such that for all i ∈ {1, 2}, Mi has one of the forms s, v, Πv : T.U , or {v : T |M}, by the
Church-Rosser theorem, there exists a term N such that M1 �β∗ N and M2 �β∗ N .
We conclude the expected result by splitting the 16 different cases for (M1,M2). All of
them are straightforward.

5.4 Stratification in PVS-Cert

The stratification of terms in PVS-Cert reveals a strong link between PVS-Cert and
PVS-Core (defined and used in Chapter 9), in the same way as the stratification of
terms in λ-HOL reveals its link with higher-order logic. The property of stratification
holds for several other systems, such as the injective GTSs presented in [36] – in this
paper, this result is referred to as classification.

The main lemma used to establish such a result is the fact that, whenever the rule of
conversion is used some derivation, the two convertible terms belong to the same class
of terms. The simplest way to prove this result is to choose classes of terms that are
stable under reduction and to conclude using the Church-Rosser theorem. In the case
of injective GTSs, these classes only contain well-typed terms, and the stability under
reduction follows from the subject reduction property.

However, as mentioned in Section 4.2.2, type preservation does not hold for �β∗ in
PVS-Cert. For this reason, we will choose a relaxed definition of stratified terms, where
the different classes are not restricted to well-typed terms. Using this relaxed definition,
it will be possible to prove, in the absence of type preservation for �β∗, that most classes
of stratified terms are stable by reduction with �β∗.

We will first present three classes of terms defined inductively: the classes of types,
expressions, and proofs. The expected property of stability by reduction will only be
proved for types and expressions, which is not problematic as the conversion ≡β∗ is never
directly applied to a proof in any derivation.

These classes of terms will play a significant role in the proof of type preservation
of the reduction �βσ presented in Section 5.5, in the strong normalization theorem
presented in Chapter 6, as well as in the construction of the type-checking algorithm
presented in Chapter 7. These classes will be presented with the following notations for
variables.

62



CHAPTER 5. PROPERTIES OF PVS-CERT

Definition 5.4.1 (Variables classification). We use the following notations:

• X,Y, Z for variables in Vtypes

• x, y, z for variables in Vexpressions

• h for variables in Vproofs

Stratified terms are defined as follows.

Definition 5.4.2 (Stratified terms). We define stratified terms among terms as follows.

• Types A,B := X | Prop | Πx : A.B | {x : A | P}

• Expressions t, u, P,Q := x | Πx : A.P | Πh : P.Q | λx : A.t | t u | 〈t,M〉A | π1(t)

• Proofs p, q := h | λh : P.p | λx : A.p | p q | p t | π2(t)

In the same way as mentioned in the case of PVS-Core (Definition 3.1.1), there is
no formal distinction between the notations t, u, P , and Q, although we will prefer, in
the following, the notations of expressions P,Q for expressions of type Prop, and the
notations t, u in other cases.

The most important remark on the definition of stratified terms is the fact that any
pair 〈t,M〉A (where t is an expression and A is a type) is accepted as a correct ex-
pression: the term M used in it can be arbitrary, and in particular it is not required
to be a proof. This choice is due to the fact that proofs are not stable by →β∗: for
instance, (λh : x.h)y is a proof, but y is not. Hence, compared to the alternative of
restricting pairs to terms of the form 〈t, p〉A, the present relaxed definition is neces-
sary to ensure the stability of types and expressions under →β∗, proved in Proposition
5.4.2 and used as an important step towards the proof of the stratification theorem 5.4.1.

It would be possible, although more cumbersome, to prove another version of the
stratification theorem 5.4.1 with this more restrictive alternative definition. However,
beyond the proof of the stratification theorem itself, the stability of types and expres-
sions under→β∗ will be useful in the following of the study of PVS-Cert. In particular, it
eases the proof of the strong normalization theorem presented in Chapter 6. This proof
is based on the interpretations of expressions and types (as well as Type and Kind) as
sets of terms, presented in Definition 6.4.4. The fact that this interpretation is stable
under ≡β∗, proved in Lemma 6.4.2, is necessary to prove the strong normalization theo-
rem, and the stability of expressions and types under→β∗ plays a key role in this lemma.

We complete the definition of stratified terms with a definition of stratified contexts
and stratified judgements.

Definition 5.4.3 (Stratified contexts, stratified judgements). We define successively
stratified contexts and stratified judgements as follows.

63



CHAPTER 5. PROPERTIES OF PVS-CERT

• A stratified context is a context in which all declarations have the form X : Type,
x : A (for some type A), or h : P (for some expression P ).

• A stratified judgement is a judgement of one of the following form, in which Γ
is a stratified context:

– Γ `WF

– Γ ` Type : Kind

– Γ ` A : Type

– Γ ` t : A

– Γ ` p : P

Before showing that terms and expressions are stable under →β∗, we first show that
they are stable under some specific substitutions.

Proposition 5.4.1. For any term M , the following hold.

• For any expression t and any expression variable x, if M is a type (resp. an
expression), so is M [t/x].

• For any term N and any proof variable h, if M is a type (resp. an expression), so
is M [N/h].

Proof. The proofs are straightforward by induction on types and expressions.

We establish the stability of terms and expressions under →β∗ as follows.

Proposition 5.4.2. For any term M , the following hold.

• If M →β∗ N and M is a type (resp. an expression), so is N .

• If M �β∗ N and M is a type (resp. an expression), so is N .

Proof. The proof of the first statement is done by induction on M (as a type or an
expression), using Proposition 5.4.1. We conclude the second one by induction on the
length of the reduction.

We conclude the following proposition, which is the main lemma of the stratification
theorem.

Proposition 5.4.3. If M1 ≡β∗ M2 and, for all i ∈ {1, 2}, Mi is either a type, an
expression, Type, or Kind, then the Mi are either both Kind, both Type, both types or
both expressions.

Proof. We prove that all other situations lead to a contradiction. The most difficult
case appears when one term is a type and the other an expression. In this case, by the
Church-Rosser theorem, there exists a term M such that M1 �β∗ M and M2 �β∗ M .
Using Proposition 5.4.2, M is both a type and a expression. We prove that such a situ-
ation is impossible by straightforward induction on terms.

All other cases are straightforward using the Church-Rosser theorem.

64



CHAPTER 5. PROPERTIES OF PVS-CERT

Using this result, we prove the stratification theorem as follows.

Theorem 5.4.1 (Stratification). Any derivable judgement is a stratified judgement: if
some judgement Γ ` M : T or Γ ` WF is derivable with Γ = v1 : T1, ..., vn : Tn, the
following statements hold.

• In the first case, M : T has one of the following forms:
p : P , t : A, A : Type, or Type : Kind.

• For all i, vi : Ti has one of the following forms:
h : P , x : A, or X : Type

Proof. The proof is done by induction the derivation.

• The cases Empty, Decl, Sort, Var, Subtype, Pair, and Proj1 are straight-
forward by induction hypothesis.

• The case Proj2 is proved straightforwardly using the induction hypothesis and
Proposition 5.4.1.

• In the case Prod, we separate the three possibilities for (s1, s2, s3). Each subcase
is straightforward.

• The cases Lam and App are similar. Using the notations given in these rules, we
apply the induction hypotheses and separate the three possibilities for Πv : T.U .
In the case Lam, each subcase is straightforward using the induction hypotheses.
In the case App, each subcase is straightforward using the induction hypotheses
and Proposition 5.4.1.

• The case Conversion follows from Proposition 5.4.3.

5.5 A type preserving reduction

In the case of PTSs (resp. PTSs with dependent pairs), the property of subject reduc-
tion, i.e. the type preservation of �β (resp. �βσ), always holds. However, because of
its conversion rule based on the relation ≡β∗, PVS-Cert is not a PTS with dependent
pairs and, as mentioned in Section 4.2, the relation �β∗ is not a type preserving reduc-
tion in PVS-Cert. However, we will prove that the reduction �βσ is type preserving.
This reduction will be used both in the type-checking algorithm (Chapter 7) and as a
definition of cut elimination for PVS-Cert proofs (Chapter 6), which will be itself at the
core of the study of the logical properties of this system.

The specificity of this proof of type preservation compared to similar results for PTSs
lies in the fact that M �βσ N does not imply M ≡β∗ N in general. However, we will
prove that it is the case if M is either a type or an expression. This theorem will be used

65



CHAPTER 5. PROPERTIES OF PVS-CERT

as the most important lemma of the type preservation theorem for �βσ. It is presented
together with the stability of types and expressions under M �βσ N .

Theorem 5.5.1. For any term M , the following hold:

• If M →βσ N and M is a type (resp. an expression), so is N , and M ≡β∗ N .

• If M �βσ N and M is a type (resp. an expression), so is N , and M ≡β∗ N .

Proof. The proof of the first statement is done by induction on M (as a type or an
expression), using Proposition 5.4.1. We conclude the second one by induction on the
length of the reduction.

We will also use the following lemma, which simplifies the proof of type preservation.

Lemma 5.5.1. If

• Γ, v : T,∆ `M : N (resp. Γ, v : T,∆ `WF ) is derivable,

• Γ ` U : s with T ≡β∗ U is derivable, then

Γ, v : U,∆ `M : N (resp. Γ, v : U,∆ `WF ) is derivable

Proof. The proof is done by induction on the first derivation.

• The case Empty cannot occur.

• The case Decl splits into two subcases, depending on whether ∆ is empty or not.
If ∆ is empty, we use the stratification theorem and Proposition 5.4.3 to establish
s = s(v). Then, we conclude applying Decl to the second derivation. If ∆ is not
empty, we conclude directly by induction hypothesis.

• The case Var splits into two subcases. With the notation v′ : T ′ for the conclusion,
using the free variable theorem, (v′ : T ′) appears exactly once in the context,
either in Γ,∆ or in {(v : T )}. In the first case we conclude directly by induction
hypothesis. In the second case we first use the induction hypothesis to derive
Γ, v : U,∆ ` WF . From the subderivations theorem, Γ ` T : s′ is derivable for
some s′, hence we conclude from the thinning theorem that Γ, v : U,∆ ` T : s′

if derivable. On the other hand, Γ, v : U,∆ ` v : U is derivable using Var. As
T ≡β∗ U , we conclude using Conversion.

• All other cases are straightforward by induction hypothesis.

The main lemma of the type preservation for �βσ is the following.

Proposition 5.5.1. Given a derivable judgement Γ `M : T , and N such that M →βσ

N , the judgement Γ ` N : T is derivable.

66



CHAPTER 5. PROPERTIES OF PVS-CERT

Proof. The proof is done by induction on the derivation. We first consider all cases
where M 6 .βσN .

• The cases Empty, Decl, Sort, and Var cannot occur.

• The cases Proj1 and Conversion are straightforward by induction hypothesis.

• The cases Prod and Subtype are similar. We present the proof for the case
Prod. Discarding the notations of the original statement, the last inference step
matches some rule instance

Γ ` T : s1 Γ, v : T ` U : s2 Prod (s1, s2, s3) ∈ R
Γ ` Πv : T.U : s3

If the reduction occurs in U , we conclude directly by induction hypothesis. If the
reduction hypothesis occurs in T , we write T →βσ T

′. By induction hypothesis,
Γ ` T ′ : s1 is derivable. By the stratification theorem and Theorem 5.5.1, T ≡β∗ T ′.
Hence, using Lemma 5.5.1, we conclude from the second premise that Γ, v : T ′ `
U : s2 is derivable. Finally, using Prod, Γ ` Πv : T ′.U : s3 is derivable.

• The case Lam is proved in the following way. Discarding the notations of the
original statement, the last inference step matches some instance

Γ, v : T `M : U Γ ` Πv : T.U : s
Lam

Γ ` λv : T.M : Πv : T.U

If the reduction occurs in M , we conclude directly by induction hypothesis. If
the reduction hypothesis occurs in T , we write λv : T.M →βσ λv : T ′.M . By
induction hypothesis, Γ ` Πv : T ′.U : s is derivable. By the stratification theorem
and Theorem 5.5.1, T ≡β∗ T ′. On the other hand, by the subderivations theorem,
Γ ` T ′ : s′ is derivable for some sort s′. Hence, using Lemma 5.5.1, we conclude
from the first premise that Γ, v : T ′ ` M : U is derivable. Finally, using Lam,
λv : T ′.M : Πv : T ′.U is derivable.

• The case App is proved in the following way. Discarding the notations of the orig-
inal statement and using the renaming theorem, the last inference step matches
some instance of App

Γ `M1 : Πv : T.U Γ `M2 : T
App

Γ `M1M2 : U [M2/v]

with v 6∈ DV (Γ). If the reduction occurs in M1, we conclude directly by in-
duction hypothesis. Else, we write M1M2 →βσ M1N2. By induction hypothesis
followed by App, Γ ` M1N2 : U [N2/v] is derivable. By the stratification theo-
rem, U [M2/v] 6= Kind, hence, by Theorem 5.2.3, Γ ` U [M2/v] : s is derivable for
some sort s. On the other hand, as M2 →βσ N2, U [M2/v] �βσ U [N2/v]. Hence,

67



CHAPTER 5. PROPERTIES OF PVS-CERT

by the stratification theorem followed by Theorem 5.5.1, U [M2/v] ≡β∗ U [N2/v].
Therefore, applying conversion, Γ `M1N2 : U [M2/v] is derivable.

• The case Pair is proved in the following way. Discarding the notations of the orig-
inal statement and using the renaming theorem, the last inference step matches
some instance of Pair

Γ `M1 : T Γ `M2 : U [M1/v] Γ ` {v : T | U} : Type
Pair

Γ ` 〈M1,M2〉{v:T |U} : {v : T | U}

with v 6∈ DV (Γ). There are four cases:

– If the reduction occurs in M1, we write M1 →βσ N1. By induction hypothesis,
Γ ` N1 : T is derivable. On the other hand, using the subderivation theorem
on the third premise followed by the renaming theorem, Γ, v : T ` U : Prop
is derivable. Hence, by the substitution theorem, Γ ` U [N1/v] : Prop is
derivable. By the stratification theorem followed by Theorem 5.5.1, M1 ≡β∗
N1, hence U [M1/v] ≡β∗ U [N1/v]. Therefore, applying conversion, Γ ` M2 :
U [N1/v] is derivable, and we conclude the expected result applying Pair.

– If the reduction occurs in M2, we conclude directly by induction hypothesis.

– If the reduction occurs in T , we write T →βσ T
′. By induction hypothesis,

Γ ` {v : T ′ | U} : Type is derivable. By the subderivations theorem, Γ `
T ′ : Type is derivable too. Hence, by the stratification theorem followed by
Theorem 5.5.1, T ≡β∗ T ′. Therefore, applying conversion, Γ ` M1 : T ′ is
derivable, and we conclude the expected result applying Pair.

– Else, the reduction occurs in U . We write U →βσ U
′. By induction hypoth-

esis, Γ ` {v : T | U ′} : Type is derivable. By the subderivation theorem,
Γ, v : T ` U : Prop and Γ, v : T ` U ′ : Prop are derivable. Hence, by the sub-
stitution theorem, Γ, v : T ` U [M1/v] : Prop and Γ, v : T ` U ′[M1/v] : Prop
are derivable. By the stratification theorem followed by Theorem 5.5.1,
U ≡β∗ U ′, hence U [M1/v] ≡β∗ U ′[M1/v]. Therefore, applying conversion,
Γ `M2 : U ′[N1/v] is derivable, and we conclude the expected result applying
Pair.

• The case Proj2 is proved in the following way. Discarding the notations of the
original statement and using the renaming theorem, the last inference step matches
some instance of Proj2

Γ `M : {v : T | U}
Proj2

Γ ` π2(M) : U [π1(M)/v]

with v 6∈ DV (Γ). As the reduction occurs in M , we write π2(M) →βσ π2(N).
By induction hypothesis followed by Proj2, Γ ` π2(N) : U [π1(N)/v] is derivable.
By the stratification theorem, U [π1(M)/v] 6= Kind, hence, by Theorem 5.2.3,

68



CHAPTER 5. PROPERTIES OF PVS-CERT

Γ ` U [π1(M)/v] : s is derivable for some sort s. By the stratification theorem
and Theorem 5.5.1, U [π1(M)/v] ≡β∗ U [π1(N)/v]. Therefore, applying conversion,
Γ ` π2(N) : U [π1(M)/v] is derivable.

Last, we consider all cases where M .βσ N .

• The cases Empty, Decl, Sort, Var, Prod, Lam, Subtype, and Pair cannot
occur.

• The case Conversion is straightforward by induction hypothesis.

• The case App is proved in the following way. As M is an application, we replace
the notations of the original statement by (λv : T.M)N .βσ M [N/v]. Matching
a rule instance is stable by α-conversion, as well as →βσ, hence we can suppose
v 6∈ DV (Γ) without loss of generality. Using the renaming theorem, the last infer-
ence step matches some instance of App

Γ ` λv : T.M : Πv : T ′.U ′ Γ ` N : T ′
App

Γ ` (λv : T.M)N : U ′[N/v]

Using the subderivations theorem on the first premise, the hypothesis v 6∈ DV (Γ),
and the renaming theorem, we conclude that there exists some term Πv : T.U ≡β∗
Πv : T ′.U ′ such that Γ ` λv : T.M : Πv : T.U admits a derivation ending with an
inference step matched by some rule instance

Γ, v : T `M : U Γ ` Πv : T.U : s
Lam

Γ ` λv : T.M : Πv : T.U

By the substitution theorem, we conclude that Γ `M [N/v] : U ′[N/v] is derivable
from the second App premise Γ ` N : T ′ as long as Γ, v : T ′ ` M : U ′ is also
derivable. To prove this, we first use Theorem 5.3.2 to establish T ≡β∗ T ′ and
U ≡β∗ U ′ from Πv : T.U ≡β∗ Πv : T ′.U ′, and we use these two equations to derive
Γ, v : T ′ `M : U ′ from Γ, v : T `M : U in the two following steps.
First, we first prove Γ, v : T ′ `M : U using Lemma 5.5.1. This requires T ≡β∗ T ′,
which is already established, and that Γ ` T ′ : s′ is derivable for some sort s′, which
is the case from Theorem 5.2.3 applied to the second App premise Γ ` N : T ′ (using
the fact that, by the stratification theorem, T ′ 6= Kind).
Last, we conclude using conversion. This requires U ≡β∗ U ′, which is already
established, and that Γ, v : T ′ ` U ′ : s′ is derivable for some s′. To prove this
latter requirement, we use Theorem 5.2.3 on the first App premise Γ ` λv : T.M :
Πv : T ′.U ′ to derive Γ ` Πv : T ′.U ′ : s′′ for some sort s′′, and we conclude that
Γ, v : T ′ ` U ′ : s′ is derivable for some sort s′ from the subderivations theorem
followed by the renaming theorem, using the fact that v 6∈ DV (Γ).

• The case Proj1 is proved in the following way. As M is a first projection, we
replace the notations of the original statement by π1〈M,N〉T .βσ M . Using the

69



CHAPTER 5. PROPERTIES OF PVS-CERT

renaming theorem, the last inference step matches some instance of Proj1

Γ ` 〈M,N〉T : {v : T ′ | U ′}
Proj1

Γ ` π1〈M,N〉T : T ′

with v 6∈ DV (Γ). Using the subderivations theorem followed by the renaming the-
orem, T has the form {v : T ′′ | U ′′} where {v : T ′ | U ′} ≡β∗ {v : T ′′ | U ′′} and
Γ ` 〈M,N〉T : {v : T ′′ | U ′′} admits a derivation ending with an inference step
matched by some rule instance

Γ `M : T ′′ Γ ` N : U ′′[M/v] Γ ` {v : T ′′ | U ′′} : Type
Pair

Γ ` 〈M,N〉T : {v : T ′′ | U ′′}

We derive the expected judgement Γ `M : T ′ from the first premise of this latter
derivation using conversion. For this, we need to prove T ′′ ≡β∗ T ′ and to derive
Γ ` T ′ : s for some s. These two requirement are proved as follows. On the one
hand, we establish T ′′ ≡β∗ T ′ from {v : T ′′ | U ′′} ≡β∗ {v : T ′ | U ′} using Theorem
5.3.2. On the other hand, by the stratification theorem, T ′ 6= Kind, hence we
can use Theorem 5.2.3 on the original conclusion to establish that Γ ` T ′ : s is
derivable from some sort s.

• The case Proj2 is proved in the following way. As M is a second projection, we
replace the notations of the original statement by π2〈M,N〉T .βσ N . Using the
renaming theorem, the last inference step matches some instance of Proj2

Γ ` 〈M,N〉T : {v : T ′ | U ′}
Proj2

Γ ` π2〈M,N〉T : U ′[π1〈M,N〉T /v]

with v 6∈ DV (Γ). Using the subderivations theorem followed by the renaming the-
orem, T has the form {v : T ′′ | U ′′} where {v : T ′ | U ′} ≡β∗ {v : T ′′ | U ′′} and
Γ ` 〈M,N〉T : {v : T ′′ | U ′′} admits a derivation ending with an inference step
matched by some rule instance

Γ `M : T ′′ Γ ` N : U ′′[M/v] Γ ` {v : T ′′ | U ′′} : Type
Pair

Γ ` 〈M,N〉T : {v : T ′′ | U ′′}

We derive the expected judgement Γ ` N : U ′[π1〈M,N〉T /v] from the second
premise of this latter derivation using conversion. For this, we need to prove
U ′′[M/v] ≡β∗ U ′[π1〈M,N〉T /v] and to derive Γ ` U ′[π1〈M,N〉T /v] : s for some
sort s. These two requirement are proved as follows. On the one hand, we establish
U ′ ≡β∗ U ′′ from {v : T ′′ | U ′′} ≡β∗ {v : T ′ | U ′} using Theorem 5.3.2, and, as
M ≡β∗ π1〈M,N〉T , we conclude U ′′[M/v] ≡β∗ U ′[π1〈M,N〉T /v]. On the other
hand, by the stratification theorem, U ′[π1〈M,N〉T /v] 6= Kind, hence we can use
Theorem 5.2.3 on the original conclusion to establish that Γ ` U ′[π1〈M,N〉T /v] : s
is derivable from some sort s.

70



CHAPTER 5. PROPERTIES OF PVS-CERT

The type preservation property for �βσ is presented in the following theorem. More
precisely, type preservation corresponds to the first statement, and the second statement
is a direct consequence of this property.

Theorem 5.5.2 (Type preservation for �βσ). Given any derivable judgement Γ `M : T
the following statements hold.

• If M �βσ N , then Γ ` N : T is derivable.

• If T �βσ U , then Γ `M : U is derivable.

Proof. The first statement is obtained directly by induction on the length of the reduction
M �βσ N , using Proposition 5.5.1.

The second statement is proved as follows. If T = U , the result is straightforward.
Else, the length of the reduction T �βσ U is strictly positive, hence T 6= Kind. By the
Theorem 5.2.3, Γ ` T : s is derivable for some sort s. Hence, using the first statement,
Γ ` U : s is derivable. On the other hand, by the stratification theorem and the fact
that the length of the reduction T �βσ U is strictly positive, T is either a type or
an expression. Hence, using Theorem 5.5.1, T ≡β∗ U . Therefore, we can apply the
conversion rule to obtain a derivation of Γ `M : U as expected.

The type preservation theorem shows that �βσ transforms the proof of a given
theorem into another one. Hence, it defines one step of cut elimination for the proofs of
PVS-Cert. In the Chapter 6, we prove that both→βσ and→β∗ terminates on well-typed
terms. This will lead to establish several properties of the certificate system, including
the decidability of typechecking (proved in Chapter 7).

5.6 Uniqueness of types

The addition of coercions is PVS-Cert was made to ensure the decidability of type-
checking, which will be proved in Chapter 7. Besides the type preservation theorem
proved in the previous section, one of the most important properties of PVS-Cert used in
this proof and its underlying type-checking algorithm is the uniqueness of types (modulo
conversion). This property also underlines that, even though PVS-Cert is designed to
reflect predicate subtyping, it doesn’t admit any subtyping itself.

Theorem 5.6.1 (Uniqueness of types). If two judgements Γ ` M : T0 and Γ ` M : T1

are derivable, then T0 ≡β∗ T1.

Proof. The proof is done by induction on the sum of the height of the two derivations.
The possible cases are the following:

• There exists i ∈ {0, 1} such that the derivation of Γ ` M : Ti matches some rule
instance

71



CHAPTER 5. PROPERTIES OF PVS-CERT

Γ `M : T ′i Γ ` Ti : s
Conversion T ′i ≡β∗ TiΓ `M : Ti

By induction hypothesis, T ′i ≡β∗ T1−i, hence T0 ≡β∗ T1.

• For all i ∈ {0, 1}, the derivation of Γ `M : Ti matches some rule instance of Sort:
this case is straightforward, using the fact that an axiom (s, s′) ∈ A is determined
by s.

• For all i ∈ {0, 1}, the derivation of Γ ` M : Ti matches some rule instance of
Prod: this case is straightforward by induction hypothesis, using the fact that a
rule (s, s′, s′′) ∈ R is determined by (s, s′).

• For all i ∈ {0, 1}, the derivation of Γ `M : Ti matches some rule instance of Var,
Subtype, or Pair: these three cases are straightforward, as Ti is determined by
Γ and M .

• For all i ∈ {0, 1}, the derivation of Γ `M : Ti matches some rule instance of Lam,
App, Proj1, or Proj2: these four cases are straightforward by induction hypoth-
esis. We present the case Lam as an example. In this case, the two derivations
match, respectively, some rules

Γ, v : U ` N : Ui Γ ` Πv : U.Ui : si
Lam

Γ ` λv : U.N : Πv : U.Ui

By induction hypothesis, U0 ≡β∗ U1, hence T0 = Πv : U.U0 ≡β∗ Πv : U.U1 = T1 as
expected.

We end this section with the following corollary of Theorem 5.6.1, which will be
useful to prove the completeness of the type-checking algorithm for PVS-Cert presented
in Chapter 7.

Corollary 5.6.1. If two judgements Γ `M : s and Γ `M : T are derivable, T = s.

Proof. By Theorem 5.6.1, T ≡β∗ s. By the stratification theorem, T is either a type,
Type, or Kind. In all cases, Theorem 5.3.2 applies, hence T = s.

5.7 Additional observations on PVS-Cert

This chapter is ended with the presentation of two additional observations in PVS-Cert:
the fact that it is an extension of the system PVS-Cert− defined in Definition 4.2.3, and
the possibility to equip it with admissible rules of context conversion.

72



CHAPTER 5. PROPERTIES OF PVS-CERT

5.7.1 PVS-Cert extends PVS-Cert−

We consider the PTS with dependent pairs PVS-Cert− defined in Definition 4.2.3. As
mentioned in Section 4.2, PVS-Cert− can be considered as a more standard system:
it is a PTS extended with dependent pairs, and a subsystem of the type system ECC
[53]. We will prove here that PVS-Cert is an extension of PVS-Cert−: any judgement
derivable in PVS-Cert− is derivable in PVS-Cert.

We begin with the following lemma.

Lemma 5.7.1. If two terms M0 and M1 are either types, expressions, Type, or Kind,
and if M0 ≡βσ M1, then M0 ≡β∗ M1.

Proof. T equipped with→βσ is an orthogonal combinatory reduction system (as defined
in [48]), as rules are left-linear and non-overlapping. As proved in the same paper, such
a system admits the Church-Rosser property. Hence, there exists a term N such that
Mi �βσ N for all i ∈ {0, 1}. If M0 and M1 are either types or expressions, we conclude
M0 ≡β∗ M1 by Theorem 5.5.1. If there exists i ∈ {0, 1} such that Mi is Type (resp.
Kind), then N = Type (resp. N = Kind). As M1−i is either a type, an expression,
Type, or Kind, we conclude M1−i = Type (resp. M1−i = Kind), hence M0 ≡β∗ M1.

We conclude that PVS-Cert is an extension of PVS-Cert− as follows.

Theorem 5.7.1. PVS-Cert is an extension of PVS-Cert−: for any judgement Γ `M : T
derivable in PVS-Cert−, the same judgement is derivable in PVS-Cert.

Proof. The proof is done by induction on the derivation. The only problematic case is
conversion, in which we can conclude using the stratification theorem followed by Lemma
5.7.1.

5.7.2 Defining conversion on contexts

We present a notion of conversion for contexts, and prove the admissibility of some rules
of conversion for context. The conversion of contexts is defined as follows.

Definition 5.7.1. Two contexts Γ and ∆, we define Γ ≡β∗ ∆ as the existence of variables
v1, ..., vn and terms T1 ≡β∗ U1, ..., Tn ≡β∗ Un such that Γ = v1 : T1, ..., vn : Tn and
∆ = v1 : U1, ..., vn : Un.

The conversion of contexts is admissible in PVS-Cert in the following ways.

Proposition 5.7.1. The two following statements hold.

• For any derivable PVS-Cert judgements Γ ` M : T and ∆ ` WF such that
Γ ≡β∗ ∆, the judgement ∆ `M : T is derivable in PVS-Cert.

• For any derivable PVS-Cert judgement Γ ` M : T and ∆ ` U : s such that
Γ ≡β∗ ∆ and T ≡β∗ U , the judgement ∆ `M : U is derivable in PVS-Cert.

73



CHAPTER 5. PROPERTIES OF PVS-CERT

Proof. The first statement is proved by strong induction on the height of the PVS-Cert
derivation of Γ `M : T . The possible cases are the following.

• The cases Empty and Decl cannot occur.

• The case Sort is straightforward, applying the corresponding Sort rule instance
to the derivation of ∆ `WF .

• The case Var is proved as follows. The last inference step matches some instance
of the following form.

Γ `WF Var (v : T ) ∈ Γ
Γ ` v : T

As (v : T ) ∈ Γ, there exists some declaration (v : U) ∈ ∆ such that T ≡β∗ U . We
write Γ = Γ1, v : T,Γ2 and ∆ = ∆1, v : U,∆2 with Γ1 ≡β∗ Γ2 and ∆1 ≡β∗ ∆2.
By the subderivations theorem, there exists some subderivation of the derivation
of Γ ` WF with conclusion Γ1 ` T : s(v). By the subderivations theorem again,
∆1 ` WF is also derivable. Hence, by induction hypothesis, ∆1 ` T : s(v) is
derivable. Thus, by the thinning theorem, ∆ ` T : s(v) is derivable as well.
On the other hand, applying the rule Var, ∆ ` v : U is derivable in PVS-Cert.
Therefore, applying conversion, ∆ ` v : T is derivable in PVS-Cert.

• The case Prod is proved as follows. The last inference step matches some instance
of the following form.

Γ ` T : s1 Γ, v : T ` U : s2 Prod (s1, s2, s3) ∈ R
Γ ` Πv : T.U : s3

By the subderivations theorem, there exists some subderivation of the derivation
of the second premise with conclusion Γ ` T : s(v). Hence, by the stratification
theorem, as Γ ` T : s1 is derivable as well, s(v) = s1. Moreover, by induction
hypothesis, ∆ ` T : s(v) is derivable. By the free variable theorem, v 6∈ DV (Γ).
As Γ ≡β∗ ∆, v 6∈ DV (∆) = DV (Γ). Therefore, the rule Decl can be applied to
conclude that ∆, v : T ` WF is derivable. By induction hypothesis on the second
premise, we conclude that ∆, v : T ` U : s2 is derivable. Applying the rule Prod,
we conclude that ∆ ` Πv : T.U : s3 is derivable in PVS-Cert.

• The case Lam is proved as follows. The last inference step matches some instance
of the following form.

Γ, v : T `M : U Γ ` Πv : T.U : s
Lam

Γ ` λv : T.M : Πv : T.U

By induction hypothesis, ∆ ` Πv : T.U : s is derivable. On the other hand, by
the subderivations theorem, there exists some subderivation of the derivation of

74



CHAPTER 5. PROPERTIES OF PVS-CERT

the first premise with conclusion Γ ` T : s(v). Hence, by induction hypothesis,
∆ ` T : s(v) is derivable. By the free variable theorem, v 6∈ DV (Γ). As Γ ≡β∗ ∆,
v 6∈ DV (∆) = DV (Γ). Therefore, the rule Decl can be applied to conclude that
∆, v : T ` WF is derivable. In this setting, by induction hypothesis on the first
premise, ∆, v : T ` M : U is derivable. Applying the rule Lam, we conclude that
∆ ` λv : T.M : Πv : T.U is derivable in PVS-Cert.

• The case App is straightforward by induction hypothesis.

• The case Subtype is proved as follows. The last inference step matches some
instance of the following form.

Γ ` T : Type Γ, v : T ` U : Prop
Subtype

Γ ` {v : T | U} : Type

By the subderivations theorem, there exists some subderivation of the derivation
of the second premise with conclusion Γ ` T : s(v). Hence, by the stratification
theorem, as Γ ` T : s1 is derivable as well, s(v) = Type. Moreover, by induction
hypothesis, ∆ ` T : s(v) is derivable. By the free variable theorem, v 6∈ DV (Γ).
As Γ ≡β∗ ∆, v 6∈ DV (∆) = DV (Γ). Therefore, the rule Decl can be applied to
conclude that ∆, v : T ` WF is derivable. By induction hypothesis on the second
premise, we conclude that ∆, v : T ` U : Prop is derivable. Applying the rule
Subtype, we conclude that ∆ ` {v : T | U} : Type is derivable in PVS-Cert.

• The cases Pair, Proj1, Proj2, and Conversion are straightforward by induc-
tion hypothesis.

The second statement is proved as followed, using the first statement. We consider
two PVS-Cert judgements Γ ` M : T and ∆ ` U : s such that Γ ≡β∗ ∆ and T ≡β∗ U .
By the subderivations theorem, ∆ ` WF is derivable, hence, using the first statement,
∆ ` M : T is derivable. Hence, applying conversion, ∆ ` M : U is derivable in PVS-
Cert.

75





Chapter 6

Strong normalization in PVS-Cert

In this chapter, we prove that any reduction from a well-typed term using →βσ (resp.
→β∗) terminates. These two reductions will be used separately in Chapter 7 to define
a type-checking algorithm for PVS-Cert: more precisely, the reduction →β∗ is used to
decide whether two well-typed terms are convertible with ≡β∗, while the reduction →βσ

will be used in the type-checking of applications. Moreover, the strong normalization
of →βσ combined with the type preservation theorem defines a cut elimination for the
system PVS-Cert, which is a powerful tool to delineate the provable propositions from
the unprovable ones, as illustrated in a proof of consistency of PVS-Cert presented in
Theorem 6.7.1 and a characterization of Leibniz’s equality presented in Theorem 6.7.2.

A direct approach to prove the strong normalization of both →βσ and →β∗ for well-
typed terms would be to prove the strong normalization for well-typed terms of their
union, referred to as →βσ∗. Unfortunately, this reduction is not strongly terminating on
well-typed terms, as shown in the following proposition.

Proposition 6.0.1. There exists a well-typed term admitting an infinite reduction using
→βσ∗.

Proof. We find a well-typed term admitting an infinite reduction using →βσ∗ in the
following way. As PVS-Cert is an extension of System F [40], it is possible to define
two well-typed terms M and N such that MN admits an infinite reduction. We con-
sider two such terms together with some other terms M ′ and N ′ such that the application
M π2〈〈M ′, N〉T , N ′〉U is well-typed. AsM π2〈〈M ′, N〉T , N ′〉U →βσ∗ M π2〈M ′, N〉T →βσ∗
MN , it admits an infinite reduction.

More precisely, a well-typed term admitting an infinite reduction is built as follows.

• We define 1 = ΠP : Prop.Πh : P.P together with M = λh : 1.h 1 h
and N = λh′ : 1.λh : 1.h 1 h

• `M : (Πh : 1.1) and ` N : (Πh′ : 1.Πh : 1.1) are derivable.

77



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• MN →βσ∗ (λh′ : 1.λh : 1.h 1 h) 1 (λh′ : 1.λh : 1.h 1 h) →βσ∗ MN , hence MN
admits an infinite reduction

• We define M ′ = 1, N ′ = λP : Prop.λh : P.h,
T = {x : Prop | Πh′ : 1.Πh : 1.1}, and U = {y : T | 1}.

• ` 〈〈M ′, N〉T , N ′〉U : U is derivable,
hence `M π2〈〈M ′, N〉T , N ′〉U : 1 is derivable.

• M π2〈〈M ′, N〉T , N ′〉U �βσ∗ MN , hence it admits an infinite reduction.

As a consequence, the reductions→βσ and→β∗ have to be kept separated. A second
approach could be to prove strong normalization under →βσ first – as this reduction is
standard and used in several other type systems which strongly normalize – and to try
to conclude the case →β∗ from the strong normalization of →β and →∗. Some results
allowing to prove the strong normalization of the union of two strongly normalizing re-
ductions are investigated e.g. in [23] with the notion of jump and in [25] with the notion
of stable classes of terms. Unfortunately, these notions do not apply to the current case.
In the first approach, neither the →β jumps over →∗ nor →∗ jumps over →β. In the
second approach, neither well-typed terms nor stratified terms are stable, hence there
is no straightforward way to apply the corresponding theorem. As a consequence, our
selected approach is to prove strong normalization under→βσ and→β∗ together instead
of one after the other.

Proofs of strong normalization can be performed either directly, or through an encod-
ing into some well-known reduction system such as the syntax of pure lambda calculus,
as done e.g. in [19] in the case of the calculus of constructions. In this work, we prove
strong normalization directly on terms. This avoids to split the two cases→βσ and→β∗
with two separate encodings, and allows to factor the most important part of the proof.
In this setting, we introduce the set of strongly normalizing terms SN as follows.

Definition 6.0.1 (SN).

• We define SN ⊆ T the set of terms which are both strongly normalizing under →βσ

and strongly normalizing under →β∗.

• We refer to a term M ∈ SN as a strongly normalizing term.

A naive strategy to prove strong normalization would be to attempt to prove by
induction on derivations of the form Γ ` M : T that M ∈ SN. However, as illustrated
in Proposition 6.0.1, M ∈ SN is too weak as an induction hypothesis to conclude in the
case of an application. For this reason, the induction hypothesis will be strengthened in
several ways. On the one hand, its definition will be based on a family of subsets of SN,
allowing to consider more specific properties than simply belonging to SN. On the other
hand, the induction hypothesis will be parametrized. The parameters, referred to as

78



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

valuations, will be presented in Definitions 6.4.3 and 6.5.1. In the following section, we
focus first on the presentation of a family of subsets of SN. Several well-known families
of subsets of SN can be used in such proofs, e.g. reducibility candidates as defined in
[40] or saturated sets as defined in [73]. The current work is based on saturated sets.

Several ideas and notations are inspired from [35], which presents, among other
things, a proof of strong normalization of an extension of the calculus of constructions
to dependent pairs. However, the presence of the reduction →β∗ leads to the following
additions and changes:

• As justified before the definition of SN, we use sets of terms directly instead of
encoding of terms into the syntax of pure lambda calculus as in [35].

• The proof of the expected properties of saturated sets are adapted with the new
reduction →β∗.

• The interpretation of terms as saturated sets are expected to be stable under→β∗,
hence they cannot be defined on well-typed terms only, as well-typed terms are
not stable under →β∗. In this setting, we extend the interpretations to types and
expressions, which are stable under →β∗, and we prove that they are well-defined
not only on well-typed terms, but also on their reducts under →β∗.

6.1 Saturated sets

We first give the definition of saturated sets together with some operations on them
before providing some motivations for these definitions. The usual definition of saturated
sets is based on the notions of base terms and key redexes. In the current work, we
suggest a factorization of these notions through the following definition.

Definition 6.1.1 (Elimination contexts).
We define the set of elimination contexts E with the grammar e := • | πi(e) | e M .
For any term N we define the instantiation e[N ] by

• •[N ] = N

• πi(e)[N ] = πi(e[N ])

• (eM)[N ] = (e[N ])M

In the following, the usual notion of base term will be replaced by term of the form
e[v] and the usual notion of key redex will be replaced by term of the form either e[(λv :
T.M)N ] or e[πi〈M,N〉T ]. The definition of saturated sets is the following.

Definition 6.1.2 (Saturated sets).
We define SAT ⊆ P(T ) in the following way. S ∈ SAT if and only if the following hold.

1. S ⊆ SN

79



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

2. e[v] ∈ S whenever e[v] ∈ SN

3. e[(λv : T.M)N ] ∈ S whenever e[(λv : T.M)N ] ∈ SN and e[M [N/v]] ∈ S

4. e[πi〈M1,M2〉T ] ∈ S whenever e[πi〈M1,M2〉T ] ∈ SN and e[Mi] ∈ S

Finally, we define the following operations on sets of terms, under which saturated
sets will be proved to be stable.

Definition 6.1.3 (Operations). For S1, S2 ⊆ T , we define

• S1 →̃ S2 = {M ∈ T | ∀N ∈ S1, (MN) ∈ S2}

• S1 ×̃ S2 = {M ∈ T | π1(M) ∈ S1 ∧ π2(M) ∈ S2}

The motivations for these definitions will be given informally, as their precise use
depends on the definition of valuations, which will be presented later in Definitions 6.4.3
and 6.5.1. For every derivable judgement Γ ` M : T , the term T will be interpreted as
a saturated sets, allowing to replace the naive induction hypothesis M ∈ SN – which is
too weak in the case of an application – by a stronger induction hypothesis, which is
the fact that M belongs to this saturated set. In this setting, the purpose of →̃ (resp.
×̃) is to define the saturated sets associated with terms of the form Πv : T.U (resp.
{v : T | U}) from the saturated sets associated with T and U . The definitions of →̃ and
×̃ are designed to make the induction hypothesis sufficiently strong in the case of appli-
cations and projections. On the other hand, the conditions 2, 3, and 4 of the definition
of saturated sets, using e = •, allow to conclude in all other cases. They are generalized
from the case e = • to the case of an arbitrary elimination context e in order to ensure
the stability of saturated sets under →̃ and ×̃.

In the following section, several closure properties of SN will be established. They
will be useful in the proof of stability of saturated sets under →̃ and ×̃ stated in Theorem
6.3.1, but also in the main proof of strong normalization.

6.2 Closure properties of SN

In this section, we show three closure properties of SN, presented in Proposition 6.2.1,
Proposition 6.2.2, and Proposition 6.2.3 respectively. These three properties are standard
for the set terms which are strongly normalizing under→βσ. However, as SN is defined as
the set of terms which are both strongly normalizing under→βσ and strongly normalizing
under →β∗, the proofs of these properties are distinctive in the presence of the unusual
reduction →β∗. The three closure properties are based on the following lemma.

Lemma 6.2.1. If e[M ] →− N where →− is either →β, →σ, or →∗, then one of the
following holds:

• N has the form e′[M ], where for any term M ′, e[M ′]→− e′[M ′]

80



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• N has the form e[M ′] where M →− M ′

• →− is →β, M has the form λv : T.M1, e has the form e′[•M2], and N has the
form e′[M1[M2/v]]

• →− is →σ, M has the form 〈M1,M2〉T , e has the form e′[πi(•)], and N has the
form e′[Mi] for some i ∈ {1, 2}

Proof. The proof is straightforward by induction on e.

Proposition 6.2.1. The following statements hold.

• If e[v] and N belong to SN, so does e[v]N

• If e[v] belongs to SN, so does πi(e[v]) for all i ∈ {1, 2}

Proof. The proofs of the two statements are similar. We present the first one as an
example. We prove that e[v]N is strongly normalizing under →βσ and →β∗ separately.
Again, the two cases being similar, we present the first one as an example.

We prove that e[v]N is strongly normalizing under →βσ by strong induction on the
sum of the maximum length of reduction from the terms e[v] and N respectively. We
suppose that the property holds for whenever this number is strictly below n, and we
prove it for n by proving that any one-step reduction of e[v]N is strongly normalizing
under →βσ. Using Lemma 6.2.1, such a reduct has the form e′[v], where for any term
M , e[M ] →βσ e′[M ]. In this setting, e[v] →βσ e′[v], and we conclude by induction
hypothesis.

Proposition 6.2.2. If T , M2, and e[M1[M2/v]] belong to SN, so does e[(λv : T.M1)M2]

Proof. We first prove that if e[M1[M2/v]] ∈ SN, then M1 ∈ SN in the following way.
As M1 →βσ M ′1 implies M1[M2/v] →βσ M ′1[M2/v], is also implies e[M1[M2/v]] →βσ

e[M ′1[M2/v]]. Hence, whenever e[M1[M2/v]] is strongly normalizing under →βσ, so is
M1. We conclude the same property with →β∗ in the same way. Hence, M1 ∈ SN
whenever e[M1[M2/v]] ∈ SN.

Using this result, it is sufficient to prove that if T , M1, M2, and e[M1[M2/v]] belong
to SN, so does e[(λv : T.M1)M2], i.e. e[(λv : T.M1)M2] is strongly normalizing under
→βσ and →β∗. The two cases being similar, we present the second one as an example.

We prove that e[(λv : T.M1)M2] is strongly normalizing under →β∗ by strong in-
duction the sum of the maximum length of reduction from the terms T , M1, M2, and
e[M1[M2/v]] respectively.

We suppose that the property holds for whenever this number is strictly below n, and
we prove it for n by proving that any one-step reduction of e[(λv : T.M1)M2] is strongly
normalizing under →β∗. Using Lemma 6.2.1, the possible cases are the following.

81



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• This reduct has the form e[N ] where (λv : T.M1)M2 →β∗ N . We split this case
into the following subcases.

– e[N ] = e[(λv : T ′.M1)M2] where T →β∗ T
′. In this subcase, we conclude by

induction hypothesis on T ′, M1, M2, and e[M1[M2/v]].

– e[N ] = e[(λv : T.M ′1)M2] where M1 →β∗ M
′
1. We have M1[M2/v] →β∗

M ′1[M2/v], hence e[M1[M2/v]] →β∗ e[M
′
1[M2/v]], and we can conclude by

induction hypothesis on T , M ′1, M2, and e[M ′1[M2/v]].

– e[N ] = e[(λv : T.M1)M ′2] where M2 →β∗ M
′
2. We have M1[M2/v] �β∗

M1[M ′2/v], hence e[M1[M2/v]] �β∗ e[M1[M ′2/v]], and we can conclude by
induction hypothesis on T , M1, M ′2, and e[M ′1[M2/v]].

– e[N ] = e[M1[M2/v]], we conclude by hypothesis on e[M1[M2/v]].

• This reduct has the form e′[(λv : T.M1)M2] where for all M ′, e[M ′]→β∗ e
′[M ′]. As

e[M1[M2/v]] →β∗ e
′[M1[M2/v]], we conclude by induction hypothesis on T , M1,

M2, and e′[M1[M2/v]].

The last closure property, which is presented in Proposition 6.2.3, is the most complex
one. Contrary to the two previous propositions, the analysis of strong normalization
under →βσ and →β∗ rely on different arguments. In the second case, the following
lemma will be used.

Lemma 6.2.2. The following statements hold.

• If e[M1], M2, and T are strongly normalizing under →β∗, so is e[〈M1,M2〉T ].

• If e[M1] is strongly normalizing under →β∗, so is e[π1(M1)].

• If e[M1] and M2 are strongly normalizing under →β∗, so is e[π2(M2)].

Proof. The proof is done by induction on the sum of the maximum length of reduction
from e[M1], M2, and T in the first case, by induction on the maximum length of re-
duction from e[M1] in the second case, and by induction on the sum of the maximum
length of reduction from e[M1] and M2 in the third case. The three proofs are similar.
We present the first one as an example.

We suppose that the property holds for whenever the sum of the maximum length
of reduction from e[M1], M2, and T is strictly below n, and we prove it when it equals
n by proving that any one-step reduction of e[〈M1,M2〉T ] is strongly normalizing under
→β∗. Using Lemma 6.2.1, the possible cases are the following.

• This reduct has the form e[N ] where 〈M1,M2〉T →β∗ N . We split this case into
the following subcases.

82



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

– e[N ] = e[〈M ′1,M2〉T ] where M1 →β∗ M
′
1. As e[M1] →β∗ e[M

′
1], we conclude

by induction hypothesis with e[M ′1], M2, and T .

– e[N ] = e[〈M1,M
′
2〉T ] where M2 →β∗ M

′
2. We conclude by induction hypoth-

esis with e[M1], M ′2, and T .

– e[N ] = e[〈M1,M2〉T ′ ] where T →β∗ T
′. We conclude by induction hypothesis

with e[M1], M2, and T ′.

– e[N ] = e[M1]. We conclude by hypothesis on e[M1].

• This reduct has the form e′[〈M1,M2〉T ] where for all M ′1, e[M ′1] →β∗ e
′[M ′1]. As

e[M1]→β∗ e
′[M1], we conclude by induction hypothesis with e′[M1], M2 and T .

We state and prove the last important closure property of SN as follows.

Proposition 6.2.3. If M1, M2, T , and e[Mi] belong to SN, so does e[πi〈M1,M2〉T ].

Proof. For M1, M2, T , and e[Mi] belong to SN, we prove e[πi〈M1,M2〉T ] ∈ SN by prov-
ing that e[πi〈M1,M2〉T ] is strongly normalizing under →βσ and →β∗ separately.

On the one hand, we prove that e[πi〈M1,M2〉T ] is strongly normalizing under →βσ

by strong induction the sum of the maximum length of reduction from the terms M1,
M2, T , and e[Mi] respectively.

We suppose that the property holds for whenever this number is strictly below n, and
we prove it when it equals n by proving that any one-step reduction of e[πi〈M1,M2〉T ]
is strongly normalizing under →βσ. Using Lemma 6.2.1, the possible cases are the
following.

• This reduct has the form e[N ] where πi〈M1,M2〉T →βσ N . We split this case into
the following subcases.

– e[N ] = e[πi〈M ′1,M ′2〉T ] where Mj →βσ M
′
j and M2−j = M ′2−j for some j ∈

{1, 2}. As either e[Mi]→βσ e[M
′
i ] or e[Mi] = e[M ′i ], we conclude in both cases

by induction hypothesis on M ′1, M ′2, T , and e[M ′i ].

– e[N ] = e[πi〈M1,M2〉T ′ ] where T →βσ T
′. We conclude by induction hypoth-

esis on M1, M2, T ′, and e[Mi].

– e[N ] = e[Mi]. We conclude by hypothesis on e[Mi].

• This reduct has the form e′[πi〈M1,M2〉T ] where for all M ′, e[M ′]→βσ e
′[M ′]. As

e[Mi]→βσ e
′[Mi], we conclude by induction hypothesis on M1, M2, T , and e′[Mi].

On the other hand, we prove that e[πi〈M1,M2〉T ] is strongly normalizing under →β∗ by
strong induction the sum of the maximum length of reduction from the terms M1, M2,
T , and e[Mi] respectively.

83



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

We suppose that the property holds for whenever this number is strictly below n, and
we prove it when it equals n by proving that any one-step reduction of e[πi〈M1,M2〉T ] is
strongly normalizing under→β∗. Using Lemma 6.2.1, the possible cases are the following.

• This reduct has the form e[N ] where πi〈M1,M2〉T →β∗ N . We split this case into
the following subcases.

– e[N ] = e[πi〈M ′1,M ′2〉T ] where Mj →β∗ M
′
j and M2−j = M ′2−j for some j ∈

{1, 2}. As either e[Mi]→β∗ e[M
′
i ] or e[Mi] = e[M ′i ], we conclude in both cases

by induction hypothesis on M ′1, M ′2, T , and e[M ′i ].

– e[N ] = e[πi〈M1,M2〉T ′ ] where T →βσ T
′. We conclude by induction hypoth-

esis on M1, M2, T ′, and e[Mi].

– i = 1 and e[N ] = e[〈M1,M2〉T ]. As e[M1], M2, and T are strongly normalizing
under →β∗, we conclude by Lemma 6.2.2.

– i = 1 and e[N ] = e[π1(M1)]. As e[M1] is strongly normalizing under →β∗, we
conclude by Lemma 6.2.2.

– i = 2 and e[N ] = e[π2(M1)]. As e[M2] and M1 are both strongly normalizing
under →β∗, we conclude by Lemma 6.2.2.

• This reduct has the form e′[πi〈M1,M2〉T ] where for all M ′, e[M ′] →β∗ e
′[M ′].

As e[Mi] →β∗ e
′[Mi], we conclude by induction hypothesis with M1, M2, T , and

e′[Mi].

The following section is dedicated to the proof of the main properties expected from
saturated sets, presented in Theorem 6.3.1.

6.3 Properties of saturated sets

Theorem 6.3.1. The following properties hold:

• SN ∈ SAT

• S1 →̃ S2 ∈ SAT whenever S1 ∈ SAT and S2 ∈ SAT

• S1 ×̃ S2 ∈ SAT whenever S1 ∈ SAT and S2 ∈ SAT

•
⋂
X ∈ SAT whenever X ⊆ SAT and X 6= ∅

Proof. The four statements are proved separately.

• SN ∈ SAT is straightforward

• Given S1 ∈ SAT and S2 ∈ SAT, we prove S1 →̃ S2 ∈ SAT by proving all require-
ments separately.

84



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

1. If M ∈ S1 →̃ S2, we consider v an arbitrary variable. Using the second prop-
erty of saturated sets, v ∈ S1, hence Mv ∈ S2 ⊆ SN, from which we conclude
M ∈ SN.

2. In order to prove e[v] ∈ S1 →̃ S2 whenever e[v] ∈ SN, we consider N ∈ S1

and we prove e[v]N ∈ S2 in the following way: by definition of saturated sets,
it is sufficient to prove e[v]N ∈ SN, which holds by Proposition 6.2.1.

3. In order to prove e[(λv : T.M1)M2] ∈ S1 →̃ S2 whenever e[(λv : T.M1)M2] ∈
SN and e[M1[M2/v]] ∈ S1 →̃ S2, we consider N ∈ S1 and we prove e[(λv :
T.M1)M2]N ∈ S2 in the following way. By definition of saturated sets, it
is sufficient to prove e[M1[M2/v]]N ∈ S2 and e[(λv : T.M1)M2]N ∈ SN.
The first requirement holds by hypothesis. On the other hand, as e[(λv :
T.M1)M2] ∈ SN, T,M1,M2 ∈ SN. As e[M1[M2/v]]N ∈ S2 ⊆ SN, we
can apply Proposition 6.2.2 with the elimination context eN to conclude
e[(λv : T.M1)M2]N ∈ SN as expected.

4. In order to prove e[πi〈M1,M2〉T ] ∈ S1 →̃ S2 whenever e[πi〈M1,M2〉T ] ∈ SN
and e[Mi] ∈ S1 →̃ S2, we consider N ∈ S1 and we prove e[πi〈M1,M2〉T ]N ∈
S2 in the following way. By definition of saturated sets, it is sufficient to
prove e[Mi]N ∈ S2 and e[πi〈M1,M2〉T ]N ∈ SN. The first requirement holds
by hypothesis. On the other hand, as e[πi〈M1,M2〉T ] ∈ SN, M1,M2, T ∈ SN.
As e[Mi]N ∈ S2 ⊆ SN, we can apply Proposition 6.2.3 with the elimination
context eN to conclude e[πi〈M1,M2〉T ]N ∈ SN as expected.

• Given S1 ∈ SAT and S2 ∈ SAT, we prove S1 ×̃ S2 ∈ SAT by proving all require-
ments separately.

1. If M ∈ S1 ×̃ S2, π1(M) ∈ S1, hence π1(M) ∈ SN, and M ∈ SN.

2. In order to prove e[v] ∈ S1 ×̃ S2 whenever e[v] ∈ SN, we prove πi(e[v]) ∈ S2

for all i ∈ {1, 2} in the following way: by definition of saturated sets, it is
sufficient to prove πi(e[v]) ∈ SN, which holds by Proposition 6.2.1.

3. In order to prove e[(λv : T.M1)M2] ∈ S1 ×̃ S2 whenever e[(λv : T.M1)M2] ∈
SN and e[M1[M2/v]] ∈ S1 ×̃ S2, we prove πi(e[(λv : T.M1)M2]) ∈ Si for all
i ∈ {1, 2} in the following way. By definition of saturated sets, it is suffi-
cient to prove πi(e[M1[M2/v]]) ∈ Si and πi(e[(λv : T.M1)M2]) ∈ SN for all
i ∈ {1, 2}. The first requirement holds for all i ∈ {1, 2} by hypothesis. On the
other hand, as e[(λv : T.M1)M2] ∈ SN, T,M1,M2 ∈ SN. For all i ∈ {1, 2}, as
πi(e[M1[M2/v]]) ∈ Si ⊆ SN, we can apply Proposition 6.2.2 with the elimi-

85



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

nation context πi(e) to conclude πi(e[(λv : T.M1)M2]) ∈ SN as expected.

4. In order to prove e[πi〈M1,M2〉T ] ∈ S1 ×̃ S2 whenever e[πi〈M1,M2〉T ] ∈ SN
and e[Mi] ∈ S1 ×̃ S2, we prove πj(e[πi〈M1,M2〉T ]) ∈ Sj for all j ∈ {1, 2}
in the following way. By definition of saturated sets, it is sufficient to prove
πj(e[Mi]) ∈ Sj and πj(e[πi〈M1,M2〉T ]) ∈ SN for all j ∈ {1, 2}. The first
requirement holds for all j ∈ {1, 2} by hypothesis. On the other hand, as
e[πi〈M1,M2〉T ] ∈ SN, M1,M2, T ∈ SN. For all j ∈ {1, 2}, as πj(e[Mi]) ∈
Sj ⊆ SN, we can apply Proposition 6.2.3 with the elimination context πj(e)
to conclude πj(e[πi〈M1,M2〉T ]) ∈ SN as expected.

• Given X ⊆ SAT such that X 6= ∅,
⋂
X ∈ SAT is straightforward using the fact

that a term is in
⋂
X if and only if it is in S for any S ∈ X.

6.4 Set interpretation of terms

The next step is to interpret every inhabited term T as a saturated set – more precisely,
as a family of saturated sets, because of the presence of additional parameters presented
in Definitions 6.4.3 and 6.5.1, referred to valuations. These set interpretations will be
defined recursively on T . Such a recursive definition leads to define set interpretations on
some terms which are not inhabited. For instance, as x : Prop, h : x ` h : (λy : Prop.y)x
is derivable, the term (λy : Prop.y)x is inhabited, while the term λy : Prop.y is not, and
we will need to define set interpretations for λy : Prop.y in order to define set interpre-
tations for (λy : Prop.y)x.

This issue is shared by all extensions of System Fω [40]. A possible solution, presented
first in [40], is to define set interpretations as elements of a hierarchy of function spaces
built on top of the set of saturated sets SAT. For instance, in the previous example, the
set interpretations of λy : Prop.y will be expected to be functions from SAT to SAT, in
order to define the set interpretations of (λy : Prop.y)x as applications of these functions
to the set interpretations of x. This hierarchy of function spaces is defined as follows.

Definition 6.4.1. We define the set hierarchy Ui inductively with

• U0 = {SAT}

• Ui+1 is the union of Ui with the set of all sets of functions from u1 to u2 for
u1, u2 ∈ Ui

We define U =
⋃
{Ui | i ∈ N}. U contains SAT, the set of functions from SAT to SAT,

etc.

86



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

Whenever a term is typed by either Kind, Type, or a type, we will ensure that its
set interpretations belong to a unique element of U defined as follows.

Definition 6.4.2 (Domains). We define the domain [·] from Kind, Type and types to
U as follows:

• [Kind] = SAT

• [Type] = SAT

• [X] = SAT

• [Prop] = SAT

• [Πx : A.B] is the set of functions from [A] to [B]

• [{x : A | P}] = [A]

Remark 6.4.1. This definition is stable under α-conversion.

Remark 6.4.2. By Theorem 5.2.3, all inhabited terms except Kind admit some sort s
as a type. In this case, as [s] = SAT, the associated set interpretations will be saturated
sets, as expected.

The family of set interpretations corresponding to some term is parametrized by
set-valuations, which are defined as follows.

Definition 6.4.3 (Set-valuations). A set-valuation is a function from a finite set of ex-
pression variables x1, ..., xn to

⋃
U . If ξ is a set-valuation, we use the notation ξ, x = a

for the set-valuation taking the value a on x and defined as ξ otherwise.

For any stratified context Γ, we define set-valuations adapted to Γ as follows: a set-
valuation ξ is adapted to Γ if for any declaration of the form (x : A) in Γ, ξ is defined
at x and ξ(x) ∈ [A].

As any well-formed context is stratified (by the stratification theorem), set-valuations
adapted to well-formed contexts are special cases of this more general definition.

Remark 6.4.3. Being adapted to a stratified context Γ is stable under the α-conversion
of Γ.

The next step is the definition of set interpretations themselves. Contrary to the
usual definitions of set interpretations for systems without dependent pairs (e.g. the
definitions of [4] for system Fω), the set interpretations of a type A will be functions of
domain [A] and codomain SAT, i.e. families of saturated sets indexed by [A]. This idea
is directly adapted from [35]. Informal justifications will be given after the definition of
set interpretations.

87



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

Definition 6.4.4 (Set interpretations). For ξ a set-valuation and M either a type,
an expression, Type, or Kind, we define partially the set interpretation JMKξ ∈

⋃
U

recursively on M :

• JKindKξ = SN

• JTypeKξ = SN

• The possible cases for types are the following:

– JXKξ is the function mapping a ∈ [X] to SN

– JPropKξ is the function mapping a ∈ [Prop] to SN

– JΠx : A.BKξ is the function mapping f ∈ [Πx : A.B] to⋂
{JAKξ(a) →̃ JBKξ,x=a(f(a)) | a ∈ [A]} whenever for all a ∈ [A]

and f ∈ [Πx : A.B], JAKξ(a) ∈ SAT and JBKξ,x=a(f(a)) ∈ SAT.
Else, JΠx : A.BKξ is ill-defined

– J{x : A | P}Kξ is the function mapping a ∈ [{x : A | P}] to JAKξ(a) ×̃ JP Kξ,x=a

whenever for all a ∈ [{x : A | P}], JAKξ(a) ∈ SAT and JP Kξ,x=a ∈ SAT.
Else, J{x : A | P}Kξ is ill-defined

• The possible cases for expressions are the following:

– JxKξ = ξ(x)
whenever ξ is defined at x

– JΠh : P.QKξ = JP Kξ →̃ JQKξ
whenever JP Kξ ∈ SAT and JQKξ ∈ SAT

– JΠx : A.P Kξ =
⋂
{JAKξ(a) →̃ JP Kξ,x=a | a ∈ [A]}

whenever for all a ∈ [A], JAKξ(a) ∈ SAT and JP Kξ,x=a ∈ SAT

– Jλx : A.tKξ is the function mapping a ∈ [A] to JtKξ,x=a

whenever there exists u ∈ U such that for any a ∈ [A], JtKξ,x=a ∈ u
– Jt uKξ = JtKξ(JuKξ)

whenever JtKξ is a function defined at JuKξ
– J〈t,M〉AKξ = JtKξ
– Jπ1(t)Kξ = JtKξ

Remark 6.4.4. The definition of set interpretations are partial, hence the proof of some
proposition JMKξ ∈ S or JMKξ(a) ∈ S must contain the proof that JMKξ is well-defined.

Remark 6.4.5. For any set-valuation ξ, J·Kξ is stable under α-conversion.

As mentioned before, the most important technical specificity in this definition is the
fact that the interpretation of a type A is not a saturated set but a function mapping the
elements of [A] to saturated sets, i.e. a family of saturated sets indexed by [A]. This par-
ticularity distinguishes the case of types from the cases of Kind, Type, and expressions,

88



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

which are interpreted in a more usual way. It makes the overall definition more complex
than the definitions which can be found in more usual proofs of strong normalization
(such as the proofs presented in [4]). This choice is due to the presence of dependent
pairs in PVS-Cert: if types were interpreted directly as saturated sets, it would have been
possible to define JΠx : A.BKξ directly as the set of terms JAKξ →̃

⋂
{JBKξ,x=a | a ∈ [A]},

but there would have been no simple definition for J{x : A | P}Kξ. This problem is
identified and solved in the case of an extension of the calculus of constructions with
dependent pairs in [35], introducing this idea of defining the interpretation of a type A
as a family of saturated sets indexed by [A]. The present definition follows the same
workaround, adapted to PVS-Cert.

This difficulty related to the presence of dependent pairs can be explained informally
as follows. In most proofs of strong normalization based on the interpretation of in-
habited terms as sets of strongly normalizing terms such as saturated sets, the main
step – Theorem 6.5.1 in the present work – is the proof of the fact that the inhabitant
of some term always belongs to its interpretation. In order to prove this property by
induction on derivations, the interpretation of Πx : A.B (resp. {x : A | P}) as a sat-
urated set has to be sufficiently small to conclude by induction hypothesis in the case
of an application (resp. a projection), and sufficiently large to conclude by induction
hypothesis in the case of a λ-abstraction (resp. a dependent pair). In the case of a
type Πx : A.B, there is some flexibility between these two constraints in the sense that
we need a set larger than or equal to JAKξ →̃

⋂
{JBKξ,x=a | a ∈ [A]} to conclude in

the case of an abstraction, but yet a set smaller than or equal to JAKξ →̃ JBKξ,x=a

for some appropriate a ∈ [A] in the case of an application. Hence, we can use the
definition JΠx : A.BKξ = JAKξ →̃

⋂
{JBKξ,x=a | a ∈ [A]} to satisfy these two con-

straints. However, in the case of a dependent pair, this flexibility is lost in the sense that
there is no simple way to obtain a saturated set satisfying these two constraints start-
ing from the saturated set JAKξ and the family of saturated sets JP Kξ,x=a for a ∈ [A]
and applying simple operators such as ×̃. In particular, the set J{x : A | P}Kξ =
JAKξ ×̃

⋂
{JP Kξ,x=a | a ∈ [A]} is too small to conclude in the case of a pair, and the set

J{x : A | P}Kξ = JAKξ ×̃
⋃
{JP Kξ,x=a | a ∈ [A]} is too large in the case of an projection.

The set {M ∈ T | π1(M) ∈ JAKξ ∧ Jπ1(M)Kξ is well-defined ∧ π2(M) ∈ JP Kξ,x=Jπ1(M)Kξ}
would appear as better suited to satisfy these two constraints, but as this complex set
operator involves the definition of the interpretation J·K itself, using it instead of the sim-
ple operator ×̃ would lead to severe complications. Instead, the current definition allows
to use the much simpler definition JAKξ(a) ×̃ JP Kξ,x=a by adding the extra parameter
a ∈ [A] as an index.

The most basic property expected from set interpretations is to be well-defined on
well-typed terms and to belong to some appropriate domain. It is presented and proved
in Theorem 6.4.1. Its proof uses the following lemma.

Lemma 6.4.1.

• For any type A, any expression variable x, and any expression t, [A[t/x]] = [A]

89



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• For any types A ≡β∗ B, [A] = [B].

Proof. The first proof is straightforward by induction on A. The second proof is straight-
forward by induction on A, using Theorem 5.3.2.

We will also need the existence of default values in all sets [A]. Such default values
can be defined as follows.

Definition 6.4.5 (Default values). We define default values in [A] recursively:

• For [Kind], [Type], [X], and [Prop], the default value is SN

• For [Πx : A.B], the default value is the constant function mapping any a ∈ [A] to
the default value of [B]

• For [{x : A | P}], the default value is the default value of [A]

We state and prove the following basic property expected for set interpretations.

Theorem 6.4.1. For any derivable judgement Γ ` M : T , for any set-valuation ξ
adapted to Γ, the following statements hold.

• If T is either Kind or a type, JMKξ ∈ [T ].

• If T is Type, JMKξ is a function from [M ] to [Type].

Proof. The proof is done by induction on the derivation.

• The cases Empty and Decl cannot occur.

• The case Sort is straightforward for both axioms.

• The case Var is proved in the following way. Discarding the notations in the
original statement, and using the stratification theorem, a proof is needed only
when the last inference step matches one of the following instances:

– Γ `WF Var (x : A) ∈ Γ
Γ ` x : A

– Γ `WF Var (X : Type) ∈ Γ
Γ ` X : Type

The first case follows by definition of an adapted set-valuation, and the second one
is straightforward.

• The case Prod is proved as follows. Discarding the notations in the original
statement, we can suppose that the last inference step matches one of the following
instances:

90



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

–
Γ ` P : Prop Γ, h : P ` Q : Prop

Prod
Γ ` Πh : P.Q : Prop

By induction hypothesis, JP Kξ ∈ [Prop] = SAT and, as ξ is also adapted
to Γ, h : P , JQKξ ∈ [Prop] = SAT. Hence JΠh : P.QKξ is well-defined and
belongs to SAT = [Prop].

–
Γ ` A : Type Γ, x : A ` P : Prop

Prod
Γ ` Πx : A.P : Prop

Let a ∈ [A]. By induction hypothesis, JAKξ(a) ∈ [Type] = SAT. By the
free variable theorem, ξ, x = a is adapted to Γ, x : A. Therefore, by induc-
tion hypothesis, JP Kξ,x=a ∈ [Prop] = SAT. [A] is not empty as it admits a
default value, hence JΠx : A.P Kξ is well-defined and belongs to SAT = [Prop].

–
Γ ` A : Type Γ, x : A ` B : Type

Prod
Γ ` Πx : A.B : Type

Let f ∈ [Πx : A.B] and a ∈ [A]. f is a function from [A] to [B]. By induction
hypothesis, JAKξ(a) ∈ [Type] = SAT. By the free variable theorem, ξ, x = a
is adapted to Γ, x : A. Therefore, by induction hypothesis, JBKξ,x=a(f(a)) ∈
[Type] = SAT. [A] is not empty as it admits a default value, hence JΠx :
A.BKξ is well-defined and belongs to the set of functions from [Πx : A.B] to
SAT = [Type].

• The case Lam is proved in the following way. Discarding the notations in the orig-
inal statement, and using the stratification theorem, a proof is needed only when
the last inference step matches an instance of the form

Γ, x : A ` t : B Γ ` Πx : A.B : Type
Lam

Γ ` λx : A.t : Πx : A.B

Let a ∈ [A]. By the free variable theorem, ξ, x = a is adapted to Γ, x : A.
Therefore, by induction hypothesis, JtKξ,x=a ∈ [B]. Hence, Jλx : A.tKξ is well-
defined and belongs to [Πx : A.B].

• The case App is proved in the following way. Discarding the notations in the orig-
inal statement, and using the stratification theorem, a proof is needed only when
the last inference step matches an instance of the form

Γ ` t : Πx : A.B Γ ` u : A
App

Γ ` tu : B[u/x]

By induction hypothesis, JtKξ is a function from [A] to [B] and JuKξ ∈ [A], hence
Jt uKξ ∈ [B] is well-defined and belongs to [B]. By Lemma 6.4.1, hence Jt uKξ ∈
[B[u/x]].

91



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• The case Subtype is proved in the following way. Discarding the notations in
the original statement, and using the stratification theorem, the last inference step
matches some instance

Γ ` A : Type Γ, x : A ` P : Prop
Subtype

Γ ` {x : A | P} : Type

Let a ∈ [A]. By induction hypothesis, JAKξ(a) ∈ [Type] = SAT. By the free vari-
able theorem, ξ, x = a is adapted to Γ, x : A. Therefore, by induction hypothesis,
JP Kξ,x=a ∈ [Prop] = SAT. Hence J{x : A | P}Kξ is well-defined and belongs to the
set of functions from [A] to SAT = [Type].

• The case Pair is proved in the following way. Discarding the notations in the
original statement, and using the stratification theorem, the last inference step
matches some instance

Γ ` t : A Γ `M : P [t/x] Γ ` {x : A | P} : Type
Pair

Γ ` 〈t,M〉{x:A|P} : {x : A | P}

By induction hypothesis, JtKξ ∈ [A] = [{x : A | P}], hence J〈t,M〉{x:A|P}Kξ is
well-defined and belongs to [{x : A | P}].

• The case Proj1 is proved in the following way. Discarding the notations in the
original statement, and using the stratification theorem, the last inference step
matches some instance

Γ ` t : {x : A | P}
Proj1

Γ ` π1(t) : A

By induction hypothesis, JtKξ ∈ [{x : A | P}] = [A], hence Jπ1(t)Kξ is well-defined
and belongs to [A].

• In the case Proj2 by the stratification theorem, there is nothing to prove.

• The case Conversion is straightforward by induction hypothesis using the strat-
ification theorem and Lemma 6.4.1.

We end the current section with the following lemmas on set interpretations.

Lemma 6.4.2. The following statements hold.

• If JuKξ and JMKξ,x=JuKξ are well-defined, so is JM [u/x]Kξ, and JM [u/x]Kξ = JMKξ,x=JuKξ .

• If JMKξ is well-defined, so is JM [N/h]Kξ for any term N and any proof variable h,
and JM [N/h]Kξ = JMKξ.

92



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• If M1 ≡β∗ M2 and JMiKξ is well-defined for all i ∈ {1, 2}, JM1Kξ = JM2Kξ.

Proof. The proof of the first statement is done as follows. We can suppose that M is
either Kind, Type, a type, or an expression, as set interpretations are not defined for
other terms. The cases Kind and Type are straightforward. We prove the two last cases
together by induction on M . As the set interpretations and substitution are both stable
under α-conversion, we can suppose without loss of generality that no bound variable in
M is free in u nor equal to x. The cases are the following:

• The cases X and Prop are straightforward.

• The cases Πy : A.B, {y : A | P}, Πh : P.Q, Πy : A.P , and λy : A.t are similar. We
present the case Πy : A.P as an example.

Let a ∈ [A]. As JΠy : A.P Kξ,x=JuKξ is well-defined, JAKξ,x=JuKξ and JP Kξ,x=JuKξ,y=a

are well-defined as well. As y 6= x by hypothesis, JP Kξ,x=JuKξ,y=a = JP Kξ,y=a,x=JuKξ .
By induction hypothesis, JA[u/x]Kξ and JP [u/x]Kξ,y=a are well-defined and equal
to JAKξ,x=JuKξ and JP Kξ,x=JuKξ,y=a respectively. By Lemma 6.4.1, [A] = [A[u/x]],
hence a ∈ [A] if and only if a ∈ [A[u/x]]. Therefore, J(Πy : A.P )[u/x]Kξ is well-
defined and equal to JMKξ,x=JuKξ as expected.

• In the case x, Jt[u/x]Kξ = JuKξ is well-defined and equal to JxKξ,x=JuKξ .

• In the case y 6= x, as JyKξ,x=JuKξ is well-defined and JyKξ,x=JuKξ = ξ(y), hence
Jt[u/x]Kξ = JyKξ is well-defined too equal to JyKξ,x=JuKξ .

• The other cases (t1 t2), 〈t,M ′〉T , and π1(t) are straightforward by induction hy-
pothesis.

The second statement is proved in a similar way. All cases are straightforward.

The last statement is proved as follows. We first prove that if M1 →β∗ M2 and JM1Kξ
is well-defined, then so is JM2Kξ, and JM1Kξ = JM2Kξ. As M1 is reducible and JM1Kξ
is well-defined, M1 is either a type or an expression. We prove the expected for these
two cases together by induction on M1. All cases except the case of an application are
straightforward by induction hypothesis and Lemma 6.4.1. If M1 is an application, we
split the subcases M1 6 .β∗M2 and M1 .β∗M2. The subcase M1 6 .β∗M2 is straightforward
by induction hypothesis. If M1 .β∗ M2, then M1 has the form (λx : A.t)u and M2 =
t[u/x]. As J(λx : A.t)uKξ is well-defined, J(λx : A.t)uKξ = Jλx : A.tKξ(JuKξ) = JtKξ,x=JuKξ ,
hence we can conclude using the first statement.

Then, we prove by induction on the length of reductions that if M1 �β∗ M2 and
JM1Kξ, then so is JM2Kξ, and JM1Kξ = JM2Kξ. Finally, we conclude the expected result
by the Church-Rosser theorem.

Lemma 6.4.3. If JMKξ is well-defined and x is not free in M , then for any a ∈
⋃
U ,

JMKξ,x=a is well-defined and JMKξ,x=a = JMKξ.

Proof. The proof is straightforward by induction on M .

93



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

6.5 Proof of strong normalization

The induction hypothesis used in the main proof of strong normalization is based
parametrized not only by set-valuations, but also by term-valuations, which are defined
as follows.

Definition 6.5.1 (Term-valuations). A term-valuation is a function from a finite set
of variables to T . For ρ a term-valuation, we use the notation ρ, v = M for the set-
valuation taking the value M on v and defined as ρ otherwise. We define FV (ρ) as the
set of free variables appearing in the range of ρ.

For any stratified context Γ and any set-valuation ξ, we define term-valuations adapted
to Γ and ξ as follows: a term-valuation ρ is adapted to Γ and ξ if

• ξ is adapted to Γ

• for any (x : A) ∈ Γ, ρ is defined at x and ρ(x) ∈ JAKξ(ξ(x))

• for any (h : P ) ∈ Γ, ρ is defined at h and ρ(h) ∈ JP Kξ

As any well-formed context is stratified (by the stratification theorem), term-valuations
adapted to well-formed contexts and set-valuations are special cases of this more general
definition.

The following lemma about adapted term-valuations will be useful.

Lemma 6.5.1. For any well-formed context Γ, for any term-valuation ρ is adapted to
Γ and to some set-valuation ξ, the following statement holds.

• For any well-formed extension of the form Γ, h : P , if JP Kξ ∈ SAT and M ∈ JP Kξ,
then ρ, h = M is adapted to Γ, h : P and ξ.

• For any well-formed extension of the form Γ, x : A, any a ∈ [A], if JAKξ(a) ∈ SAT
and M ∈ JAKξ(a), then ρ, x = M is adapted to Γ, x : A and ξ, x = a.

Proof. The two cases are similar. We present the second one as an example.
We consider Γ, ξ, ρ, x, A, a, and M as defined in the second statement. The proof is
done as follows.

• By the free variable theorem, ξ, x = a is adapted to Γ, x : A.

• For any (h : P ) ∈ Γ, (ρ, x = M)(h) = ρ(h) ∈ JP Kξ. By the free variable theorem
and Lemma 6.4.3, JP Kξ,x=a = JP Kξ, hence (ρ, x = M)(h) ∈ JP Kξ,x=a.

• For any (y : B) ∈ Γ, by the free variable theorem, y 6= x, hence (ρ, x = M)(y) =
ρ(y) ∈ JBKξ(ξ(y)). By the free variable theorem and Lemma 6.4.3, JBKξ,x=a = JBKξ
and ξ(y) = (ξ, x = a)(y), hence (ρ, x = M)(y) ∈ JBKξ,x=a((ξ, x = a)(y)).

94



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• By hypothesis, (ρ, x = M)(x) = M ∈ JAKξ(a). Hence, by the free variable theorem
and Lemma 6.4.3, (ρ, x = M)(x) ∈ JAKξ,x=a((ξ, x = a)(x)).

The previous definitions of term-valuations is used to define a notion of term interpre-
tations, presented in the following definition. In the main proof of strong normalization,
the induction hypothesis will be formalized as the belonging of some term interpretations
in some set interpretations.

Definition 6.5.2 (Term interpretations). For ρ a term-valuation and M , we define the
term interpretation LMMρ ∈ T . We define it recursively on M . If necessary, we first
α-rename M into a term in which no bound variable is in FV (ρ).

• LsMρ = s

• LXMρ = X

• LvMρ = ρ(v) if v 6∈ Vtypes

• Lλv : T.MMρ = λv : LT Mρ.LMMρ,v=v if v 6∈ FV (ρ)

• LMNMρ = LMMρLNMρ

• LΠv : T.UMρ = Πv : LT Mρ.LUMρ,v=v if v 6∈ FV (ρ)

• L{v : T |M}Mρ = {v : LT Mρ | LMMρ,v=v} if v 6∈ FV (ρ)

• L〈M,N〉T Mρ = 〈LMMρ, LNMρ〉LT Mρ

• Lπi(M)Mρ = πi(LMMρ) for i ∈ {1, 2}

Remark 6.5.1. For any term-valuation ρ, L·Mρ is stable under α-conversion. Hence, the
precise choice of α-renaming used in its definition won’t be relevant in the following.

The last lemma used in the main proof is the following one.

Lemma 6.5.2. Whenever v 6∈ Vtypes, LMMρ[N/v] = LMMρ,v=N

Proof. The proof is straightforward by induction on M .

Theorem 6.5.1 (Main theorem). For any derivable judgement Γ ` M : T , any set-
valuation ξ and any term-valuation ρ such that ρ is adapted to Γ and ξ,

• if T is a type, LMMρ ∈ JT Kξ(JMKξ)

• else, LMMρ ∈ JT Kξ

Proof. We prove the expected result by strong induction on the height of the derivation.

• The cases Empty and Decl cannot occur.

95



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• The case Sort is straightforward for both axioms.

• The case Var is proved in the following way. Discarding the notations in the
original statement and using the stratification theorem, we can suppose that the
last inference step matches one of the following instances:

– Γ `WF Var (h : P ) ∈ Γ
Γ ` h : P

In this case, LhMρ = ρ(h) ∈ JP Kξ by definition of an adapted term-valuation

– Γ `WF Var (x : A) ∈ Γ
Γ ` x : A

In this case, LxMρ = ρ(x) ∈ JAKξ(ξ(x)) = JAKξ(JxKξ) by definition of an
adapted term-valuation

– Γ `WF Var (X : Type) ∈ Γ
Γ ` X : Type

In this case, LXMρ = X ∈ SN = JTypeKξ as expected

• The case Prod is proved as follows. Discarding the notations in the original
statement, using the stratification theorem and the renaming theorem, we can
suppose that the last inference step matches one of the following instances:

–
Γ ` P : Prop Γ, h : P ` Q : Prop

Prod
Γ ` Πh : P.Q : Prop

with h 6∈ FV (ρ), as the original proof can be transformed to meet this require-
ment without changing its height. Hence, LΠh : P.QMρ = Πh : LP Mρ.LQMρ,h=h.
By Theorem 6.4.1, JΠh : P.QKξ ∈ [Prop]. In order to prove that Πh :
LP Mρ.LQMρ,h=h ∈ JPropKξ(JΠh : P.QKξ) = SN as expected, it is sufficient
to prove that LP Mρ ∈ SN and LQMρ,h=h ∈ SN. By induction hypothesis, the
first condition holds: LP Mρ ∈ JPropKξ(JP Kξ) = SN. On the other hand, we
can conclude LQMρ,h=h ∈ JPropKξ(JP Kξ) = SN by induction hypothesis if we
prove that ρ, h = h is adapted to ξ and Γ, h : P .

By Lemma 6.5.1, it is sufficient to prove JP Kξ ∈ SAT and h ∈ JP Kξ. By
Theorem 6.4.1, JP Kξ ∈ [Prop] = SAT, hence, using the second property of
saturated sets, h ∈ JP Kξ.

–
Γ ` A : Type Γ, x : A ` P : Prop

Prod
Γ ` Πx : A.P : Prop

with x 6∈ FV (ρ), as the original proof can be transformed to meet this require-
ment without changing its height. Hence, LΠx : A.P Mρ = Πx : LAMρ.LP Mρ,x=x.

96



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

By Theorem 6.4.1, JΠx : A.P Kξ ∈ [Prop]. In order to prove Πx : LAMρ.LP Mρ,x=x ∈
JPropKξ(JΠx : A.P Kξ) = SN as expected, it is sufficient to prove that LAMρ ∈
SN and LP Mρ,x=x ∈ SN. By induction hypothesis, the first condition holds:
LAMρ ∈ JTypeKξ = SN. Taking a the default value of [A], we can conclude
LP Mρ,x=x ∈ JPropKξ,x=a(JP Kξ=a) = SN by induction hypothesis if we prove
that ρ, x = x is adapted to ξ, x = a and Γ, x : A.

By Lemma 6.5.1, it is sufficient to prove JAKξ(a) ∈ SAT and x ∈ JAKξ(a). By
Theorem 6.4.1, JAKξ(a) ∈ [Type] = SAT, hence, using the second property of
saturated sets, x ∈ JAKξ(a).

–
Γ ` A : Type Γ, x : A ` B : Type

Prod
Γ ` Πx : A.B : Type

with x 6∈ FV (ρ), as the original proof can be transformed to meet this require-
ment without changing its height. Hence, LΠx : A.BMρ = Πx : LAMρ.LBMρ,x=x.
We consider f the default value of [Πx : A.B]. In order to prove Πx :
LAMρ.LBMρ,x=x ∈ JTypeKξ = SN as expected, it is sufficient to prove that
LAMρ ∈ SN and LBMρ,x=x ∈ SN. By induction hypothesis, the first condition
holds: LAMρ ∈ JTypeKξ = SN. Taking a the default value of [A], we can con-
clude LBMρ,x=x ∈ JTypeKξ,x=a = SN by induction hypothesis if we prove that
ρ, x = x is adapted to ξ, x = a and Γ, x : A.

By Lemma 6.5.1, it is sufficient to prove JAKξ(a) ∈ SAT and x ∈ JAKξ(a). By
Theorem 6.4.1, JAKξ(a) ∈ [Type] = SAT, hence, using the second property of
saturated sets, x ∈ JAKξ(a).

• The case Subtype is proved as follows. Discarding the notations in the original
statement, using the stratification theorem and the renaming theorem, we can sup-
pose that the last inference step matches some instance

Γ ` A : Type Γ, x : A ` P : Prop
Subtype

Γ ` {x : A | P} : Type

with x 6∈ FV (ρ), as the original proof can be transformed to meet this requirement
without changing its height. Hence, L{x : A | P}Mρ = {x : LAMρ | LP Mρ,x=x}. In
order to prove {x : LAMρ | LP Mρ,x=x} ∈ JTypeKξ = SN as expected, it is sufficient
to prove that LAMρ ∈ SN and LP Mρ,x=x ∈ SN. By induction hypothesis, the first
condition holds: LAMρ ∈ JTypeKξ = SN. Taking a the default value of [A], we
can conclude LP Mρ,x=x ∈ JPropKξ,x=a(JP Kξ=a) = SN by induction hypothesis if we
prove that ρ, x = x is adapted to ξ, x = a and Γ, x : A.

By Lemma 6.5.1, it is sufficient to prove JAKξ(a) ∈ SAT and x ∈ JAKξ(a). By

97



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

Theorem 6.4.1, JAKξ(a) ∈ [Type] = SAT, hence, using the second property of sat-
urated sets, x ∈ JAKξ(a).

• The case Lam is proved in the following way. Discarding the notations in the
original statement, using the renaming theorem and the stratification theorem, we
can suppose that the last inference step matches one of the following instances:

–
Γ, x : A ` t : B Γ ` Πx : A.B : Type

Lam
Γ ` λx : A.t : Πx : A.B

with x 6∈ FV (ρ), as the original proof can be transformed to meet this require-
ment without changing its height. Hence, Lλx : A.tMρ = λx : LAMρ.LtMρ,x=x.
By Theorem 6.4.1 applied to the conclusion and to the second premise, JΠx :
A.BKξ(Jλx : A.tKξ) ∈ [Type] = SAT. In particular, JΠx : A.BKξ(Jλx : A.tKξ)
is well-defined: therefore, for all a ∈ [A], JAKξ(a) ∈ SAT and JBKξ,x=a(Jλx :
A.tKξ(a)) ∈ SAT. In order to prove λx : LAMρ.LtMρ,x=x ∈ JΠx : A.BKξ(Jλx :
A.tKξ) as expected, we consider a ∈ [A] and N ∈ JAKξ(a), and we prove
(λx : LAMρ.LtMρ,x=x)N ∈ JBKξ,x=a(Jλx : A.tKξ(a)) in the following way.

By Lemma 6.5.1, ρ, x = N is adapted to Γ, x : A and ξ, x = a. Hence, by
induction hypothesis and Lemma 6.5.2, LtMρ,x=x[N/x] ∈ JBKξ,x=a(JtKξ,x=a).
As Jλx : A.tKξ(a) = JtKξ,x=a, we can conclude the expected result using the
third property of saturated sets if we prove (λx : LAMρ.LtMρ,x=x)N ∈ SN. This
is done as follows.

By Proposition 6.2.2, it is sufficient to prove that LAMρ, LtMρ,x=x[N/x], and
N belong to SN. The two last requirements hold as LtMρ,x=x[N/x] and N
belong to saturated sets. On the other hand, by the subderivations theorem,
as s(x) = Type, the second premise admits a subderivation of conclusion
Γ ` A : Type. Hence, by strong induction hypothesis, LAMρ ∈ JTypeKξ = SN
as expected.

–
Γ, x : A `M : P Γ ` Πx : A.P : Prop

Lam
Γ ` λx : A.M : Πx : A.P

with x 6∈ FV (ρ), as the original proof can be transformed to meet this require-
ment without changing its height. Hence, Lλx : A.MMρ = λx : LAMρ.LMMρ,x=x.
By Theorem 6.4.1 applied to the second premise, JΠx : A.P Kξ ∈ [Prop] =
SAT. In particular, JΠx : A.P Kξ is well-defined: therefore, for all a ∈ [A],
JAKξ(a) ∈ SAT and JP Kξ,x=a ∈ SAT. In order to prove λx : LAMρ.LMMρ,x=x ∈
JΠx : A.P Kξ as expected, we consider a ∈ [A] and N ∈ JAKξ(a), and we prove
(λx : LAMρ.LMMρ,x=x)N ∈ JP Kξ,x=a in the following way.

98



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

By Lemma 6.5.1, ρ, x = N is adapted to Γ, x : A and ξ, x = a. Hence, by
induction hypothesis and Lemma 6.5.2, LMMρ,x=x[N/x] ∈ JP Kξ,x=a. We can
conclude the expected result using the third property of saturated sets if we
prove (λx : LAMρ.LMMρ,x=x)N ∈ SN. This is done as follows.

By Proposition 6.2.2, it is sufficient to prove that LAMρ, LMMρ,x=x[N/x], and
N belong to SN. The two last requirements hold as LMMρ,x=x[N/x] and N
belong to saturated sets. On the other hand, by the subderivations theorem,
as s(x) = Type, the second premise admits a subderivation of conclusion
Γ ` A : Type. Hence, by strong induction hypothesis, LAMρ ∈ JTypeKξ = SN.

–
Γ, h : P `M : Q Γ ` Πh : P.Q : Prop

Lam
Γ ` λh : P.M : Πh : P.Q

with h 6∈ FV (ρ), as the original proof can be transformed to meet this require-
ment without changing its height. Hence, Lλh : P.MMρ = λh : LP Mρ.LMMρ,h=h.
By Theorem 6.4.1 applied to the second premise, JΠh : P.QKξ ∈ [Prop] =
SAT. In particular, JΠh : P.QKξ is well-defined: therefore, JP Kξ ∈ SAT and
JQKξ ∈ SAT. In order to prove λh : LP Mρ.LMMρ,h=h ∈ JΠh : P.QKξ as expected,
we consider N ∈ JP Kξ, and we prove (λh : LP Mρ.LMMρ,h=h)N ∈ JQKξ in the
following way.

By Lemma 6.5.1, ρ, h = N is adapted to Γ, h : P and ξ. Hence, by induc-
tion hypothesis and Lemma 6.5.2, LMMρ,h=h[N/h] ∈ JQKξ. We can conclude
the expected result using the third property of saturated sets if we prove
(λh : LP Mρ.LMMρ,h=h)N ∈ SN. This is done as follows.

By Proposition 6.2.2, it is sufficient to prove that LP Mρ, LMMρ,h=h[N/h], and
N belong to SN. The two last requirements hold as LMMρ,h=h[N/h] and N be-
long to saturated sets. On the other hand, by the subderivations theorem, as
s(h) = Prop, the second premise admits a subderivation of conclusion Γ ` P :
Prop. Hence, by strong induction hypothesis, LP Mρ ∈ JPropKξ(LP Mξ) = SN.

• The case App is proved in the following way. Discarding the notations in the
original statement and using the stratification theorem, we can suppose that the
last inference step matches one of the following instances.

–
Γ ` t : Πx : A.B Γ ` u : A

App
Γ ` tu : B[u/x]

By induction hypothesis, LtMρ ∈ JΠx : A.BKξ(JtKξ) and by Theorem 6.4.1,
JuKξ ∈ [A]. Hence, LtMρ ∈ JAKξ(JuKξ) →̃ JBKξ,x=JuKξ(JtKξ(JuKξ)). By induction
hypothesis, LuMρ ∈ JAKξ(JuKξ). Therefore, LtMρLuMρ ∈ JBKξ,x=JuKξ(JtKξ(JuKξ)),

99



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

which rewrites to LtuMρ ∈ JBKξ,x=JuKξ(JtuKξ). Thus, by Lemma 6.4.2, LtuMρ ∈
JB[u/x]Kξ(JtuKξ) as expected.

–
Γ `M : Πx : A.P Γ ` t : A

App
Γ `Mt : P [t/x]

By induction hypothesis, LMMρ ∈ JΠx : A.P Kξ and by Theorem 6.4.1, JtKξ ∈
[A]. Hence, LMMρ ∈ JAKξ(JtKξ) →̃ JP Kξ,x=JtKξ . By induction hypothesis,
LtMρ ∈ JAKξ(JtKξ). Therefore, LMtMρ = LMMρLtMρ ∈ JP Kξ,x=JtKξ . Thus, by
Lemma 6.4.2, LMtMρ ∈ JP [t/x]Kξ as expected.

–
Γ `M : Πh : P.Q Γ ` N : P

App
Γ `MN : Q[N/h]

By induction hypothesis, LMMρ ∈ JΠh : P.QKξ = JP Kξ →̃ JQKξ and LNMρ ∈
JP Kξ. Hence, LMNMρ = LMMρLNMρ ∈ JQKξ. Thus, by Lemma 6.4.2, LMNMρ ∈
JQ[N/h]Kξ as expected.

• The case Pair is proved in the following way. Discarding the notations in the
original statement and using the stratification theorem, we can suppose that the
last inference step matches the instance

Γ ` t : A Γ `M : P [t/x] Γ ` {x : A | P} : Type
Pair

Γ ` 〈t,M〉{x:A|P} : {x : A | P}

We define B = {x : A | P}. By Theorem 6.4.1 applied to the conclusion and to the
second premise, J〈t,M〉BKξ ∈ [{x : A | P}] = [A] and J{x : A | P}Kξ(J〈t,M〉BKξ) ∈
[Type] = SAT. In particular, J{x : A | P}Kξ(J〈t,M〉BKξ) is well-defined: therefore,
JAKξ(J〈t,M〉BKξ) = JAKξ(JtKξ) and JP Kξ,x=J〈t,M〉BKξ = JP Kξ,x=JtKξ are well-defined
and belong to SAT. In order to prove 〈LtMρ, LMMρ〉LBMρ ∈ J{x : A | P}Kξ(J〈t,M〉BKξ)
as expected, we prove π1〈LtMρ, LMMρ〉LBMρ ∈ JAKξ(JtKξ) and π2〈LtMρ, LMMρ〉LBMρ ∈
JP Kξ,x=JtKξ in the following way.

By induction hypothesis and Lemma 6.4.2, LtMρ ∈ JAKξ(JtKξ) and LMMρ ∈ JP Kξ,x=JtKξ .
Hence, we can conclude the two expected results using the fourth property of sat-
urated sets if we prove πi〈LtMρ, LMMρ〉LBMρ ∈ SN for all i ∈ {1, 2}. This is done as
follows.

By Proposition 6.2.3, πi〈LtMρ, LMMρ〉LBMρ ∈ SN is ensured for all i ∈ {1, 2} if LtMρ,
LMMρ, and LBMρ belong to SN. This is the case for LtMρ and LMMρ as these terms
belong to saturated sets. This is also the case for LBMρ as, by induction hypothesis,
LBMρ ∈ JTypeKξ = SN.

100



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• The case Proj1 is proved in the following way. Discarding the notations in the
original statement and using the stratification theorem, we can suppose that the
last inference step matches the instance

Γ ` t : {x : A | P}
Proj1

Γ ` π1(t) : A

By induction hypothesis, LtMρ ∈ J{x : A | P}Kξ(JtKξ) = JAKξ(JtKξ) ×̃ JP Kξ,x=JtKξ .
Therefore, Lπ1(t)Mρ = π1(LtMρ) ∈ JAKξ(JtKξ) as expected.

• The case Proj2 is proved in the following way. Discarding the notations in the
original statement and using the stratification theorem, we can suppose that the
last inference step matches the instance

Γ ` t : {x : A | P}
Proj2

Γ ` π2(t) : P [π1(t)/x]

By induction hypothesis, LtMρ ∈ J{x : A | P}Kξ(JtKξ) = JAKξ(JtKξ) ×̃ JP Kξ,x=JtKξ .
Therefore, π2(LtMρ) ∈ JP Kξ,x=JtKξ , which rewrites to π2(LtMρ) ∈ JP Kξ,x=Jπ1(t)Kξ . Thus,
by Lemma 6.4.2, π2(LtMρ) ∈ JP [π1(t)/x]Kξ as expected.

• The case Conversion is straightforward, applying the induction hypothesis on
the first premise, Theorem 6.4.1 on the second one, and Lemma 6.4.2 to conclude.

Theorem 6.5.2 (Strong normalization). For any derivable judgement Γ ` M : T , the
two terms M and T belong to SN.

Proof. We first prove that for any derivable judgement Γ `M : T , M belongs to SN as
follows. We consider ξ any set-valuation such that for all (x : A) ∈ Γ, ξ(x) is the default
value of [A]. In this setting, ξ is adapted to Γ. Then, we consider ρ a term-valuation
mapping any variable v ∈ DV (Γ) to itself. We prove that ρ is adapted to Γ and ξ in the
following way.

• For any decomposition Γ = Γ1, x : A,Γ2, by the subderivations theorem, Γ1 ` A :
Type is derivable. As ξ is adapted to Γ1, using Theorem 6.4.1, JAKξ is a function
from [A] to [Type] = SAT, hence JAKξ(ξ(x)) ∈ SAT. Thus, ρ(x) = x ∈ JAKξ(ξ(x)).

• For any decomposition Γ = Γ1, h : P,Γ2, by the subderivations theorem, Γ1 ` P :
Prop is derivable. As ξ is adapted to Γ1, using Theorem 6.4.1, JP Kξ ∈ [Prop] =
SAT. Thus, ρ(h) = h ∈ JP Kξ.

Therefore, we can apply the main theorem to conclude that one of the following holds:

• T is a type and M = LMMρ ∈ JT Kξ(JMKξ). As JT Kξ(JMKξ) ∈
⋃
U and M ∈

JT Kξ(JMKξ), JT Kξ(JMKξ) ∈ SAT. Hence, M ∈ JT Kξ(JMKξ) ⊆ SN.

101



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• T is not a type and M = LMMρ ∈ JT Kξ. As JT Kξ ∈
⋃
U and M ∈ JT Kξ, JT Kξ ∈ SAT.

Hence, M ∈ JT Kξ ⊆ SN.

In order to conclude the expected result, we have to prove that for any derivable judge-
ment Γ ` M : T , T belongs to SN. If T = Kind, we have directly T ∈ SN. Else, by
Theorem 5.2.3, Γ ` T : s is derivable for some sort s. Hence, using the first result,
T ∈ SN.

We conclude this section with the following corollary of the strong normalization
theorem: the cut elimination theorem.

Theorem 6.5.3. Whenever some PVS-Cert judgement of the form Γ ` p : P is derivable
for some proposition P and some proof p, p can be reduced using the reduction →βσ to
a normal form q such that the judgement Γ ` q : P is derivable.

Proof. By the strong normalization theorem, p belongs to SN. Hence, p can be reduced
to a normal form q using the reduction→βσ. By the type preservation theorem (Theorem
5.5.2), the judgement Γ ` q : P is derivable.

6.6 Normal forms

As mentioned in the introduction of this chapter, the strong normalization of →βσ will
be used in the definition of a type-checking algorithm in Chapter 7. More precisely, we
will use the restriction of→βσ to weak head reduction, which will be denoted→wh

βσ . This
reduction is defined as follows.

Definition 6.6.1. For any reduction .− (e.g. .βσ or .βσ), we define the associated
weak head reduction →wh

− as its congruence closure restricted to elimination contexts:
M →wh

− N if and only if there exists some elimination context e such that M has the
form e[M ′], N ′ has the form e[N ′], and M ′ .− N

′.

In this section, we analyze the structure of well-typed terms in normal form with
respect to →wh

βσ . This analysis is also useful to study well-typed terms in normal form
with respect to →βσ: given such a term M , all subterms of M admit the structure of
well-typed terms in normal form with respect to →wh

βσ .

We prove the expected characterization of well-typed terms in normal form with
respect to →wh

βσ as follows.

Proposition 6.6.1. If Γ ` M : T is derivable, then M in normal form with respect
to →wh

βσ if and only if it has one of the following forms: s, e[v], λv : T.N , Πv : T.U ,
{v : T | U}, or 〈M1,M2〉T .

Proof. We first suppose that M has one of the following forms: s, e[v], λv : T.N ,
Πv : T.U , {v : T | U}, or 〈M1,M2〉T . We prove that M in normal form with respect
to →wh

βσ by splitting the different cases. All of them are straightforward. On the other

102



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

hand, we suppose that M is in normal form with respect to →wh
βσ and we prove that M

has one of the expected forms by induction on M . Discarding the notations M and T ,
the possible cases are the following.

• The cases s, v, λv : T.M , Πv : T.U , {v : T | U}, and 〈M,N〉T are straightforward.

• Case MN : by the subderivations theorem, there exists some term Πv : T.U (α-
renamed to ensure v 6∈ DV (Γ)) such that Γ `M : Πv : T.U is derivable. Moreover,
as MN is in normal form with respect to →wh

βσ , this is also the case for M . Hence,
we can conclude the expected result by induction hypothesis if we prove that M
doesn’t have the form s, λv′ : T ′.M ′, Πv′ : T ′.U ′, {v′ : T ′ | U ′}, or 〈M ′, N ′〉T ′ .
On the one hand, M cannot have the form λv′ : T ′.M ′ because MN wouldn’t be
in normal form with respect to →wh

βσ if it was the case. On the other hand, if M
has the form Πv′ : T ′.U ′ (resp. {v′ : T ′ | U ′}, 〈M ′, N ′〉T ′), by the subderivations
theorem and the renaming theorem, Πv : T.U ≡β∗ s for some sort s (resp. Πv :
T.U ≡β∗ Type, Πv : T.U ≡β∗ {v : T ′′ | U ′′} for some terms T ′′ and U ′′), which
is impossible by Theorem 5.3.2. Finally, M cannot be a sort by the stratification
theorem.

• Case πi(M): by the subderivations theorem, there exists some term {v : T | U}
such that Γ `M : {v : T | U} is derivable, where we choose v 6∈ DV (Γ). Moreover,
as πi(M) is in normal form with respect to→wh

βσ , this is also the case for M . Hence,
we can conclude the expected result by induction hypothesis if we prove that M
cannot have the form s, λv′ : T ′.M ′, Πv′ : T ′.U ′, {v′ : T ′ | U ′}, or 〈M ′, N ′〉T ′ .
On the one hand, M cannot have the form 〈M ′, N ′〉T ′ because πi(M) wouldn’t be
in normal form with respect to →wh

βσ if it was the case. On the other hand, if M
has the form λv′ : T ′.M ′ (resp. Πv′ : T ′.U ′, {v′ : T ′ | U ′}), by the subderivations
theorem and the renaming theorem, {v : T | U} ≡β∗ Πv : T ′′.U ′′ for some terms
T ′′ and U ′′ (resp. {v : T | U} ≡β∗ s for some sort s, {v : T | U} ≡β∗ Type), which
is impossible by Theorem 5.3.2. Finally, M cannot be a sort by the stratification
theorem.

The following corollary will be useful for inhabited terms.

Corollary 6.6.1. If Γ `M : T is derivable, then T in normal form with respect to →wh
βσ

if and only if it has one of the following forms: s, e[v], Πv : T1.T2, {v : T1 | T2}.

Proof. We first suppose that T has one of the following forms: s, e[v], Πv : T1.T2,
{v : T1 | T2}. We prove that T in normal form with respect to →wh

βσ by splitting the
different cases. All of them are straightforward. On the other hand, if T is in normal
form with respect to→wh

βσ , we prove that it has one of the expected forms as follows. By
Theorem 5.2.3, either T = Kind, in which case the result is straightforward, or Γ ` T : s
is derivable for some sort s. In this case, we can conclude by Proposition 6.6.1 if we prove
that T doesn’t have the form λv′ : T ′.M ′ or 〈M ′, N ′〉T ′ . On the one hand, if T has the

103



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

form λv′ : T ′.M ′, we choose v′ 6∈ DV (Γ), and conclude by the subderivations theorem
and the renaming theorem that s ≡β∗ Πv′ : T ′.U ′ for some term U ′, which is impossible
by Theorem 5.3.2. On the other hand, if T has the form 〈M ′, N ′〉T ′ we conclude by
the subderivations theorem that s ≡β∗ {v′ : T ′1.T

′
2} for some term {v′ : T ′1.T

′
2}, which is

impossible by Theorem 5.3.2.

The possible forms for normal forms presented in Corollary 6.6.1 are subject to the
following extension of Theorem 5.3.2.

Proposition 6.6.2. For all terms M1 ≡β∗ M2 such that for all i ∈ {1, 2}, Mi has one
of the forms s, e[v], Πv : T.U , or {v : T |M}, one of the following holds.

• There exists a sort s such that M1 = M2 = s.

• M1 has the form e1[v] and M2 has the form e2[v] for some variable v and some
elimination contexts e1 and e2.

• M1 has the form Πv : T1.U1 and M2 has the form Πv : T2.U2

where T1 ≡β∗ T2 and U1 ≡β∗ U2.

• M1 has the form {v : T1 | U1} and M2 has the form {v : T2 | U2}
where T1 ≡β∗ T2 and U1 ≡β∗ U2.

Proof. We first prove that for any terms M1 and M2 such that M1 �β∗ M2, the following
statements hold:

• If M1 is a sort, M1 = M2.

• If M1 has the form e1[v], then M2 has the form e2[v].

• If M1 has the form Πv : T1.U1, then M2 has the form Πv : T2.U2

where T1 ≡β∗ T2 and U1 ≡β∗ U2

• If M1 has the form {v : T1 | U1}, then M2 has the form {v : T2 | U2}
where T1 ≡β∗ T2 and U1 ≡β∗ U2

The proof is done by induction on the length of the reduction M1 �β∗ M2. In the second
case, we use the fact that whenever e1[v]→β∗ N , N has the form e2[v], which is a direct
consequence of Lemma 6.2.1. The other cases are straightforward.

In a second step, the expected result is proved as follows. If two terms M1 ≡β∗ M2 are
such that for all i ∈ {1, 2}, Mi has one of the forms s, e[v], Πv : T.U , or {v : T |M}, by
the Church-Rosser theorem, there exists a term N such that M1 �β∗ N and M2 �β∗ N .
We conclude the expected result by splitting the 16 different cases for (M1,M2). All
cases are straightforward.

104



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

6.7 Defining and using cut elimination in PVS-Cert

We conclude this chapter showing how the cut elimination theorem (Theorem 6.5.3) can
be used together with the characterizations of terms in normal form with respect to→β∗
to investigate whether some PVS-Cert propositions are provable or not in some given
context. The simplest question of this kind is the question of consistency.

Theorem 6.7.1. PVS-Cert is consistent: there exists no proof p such that the judgement
` p : Πx : Prop.x is derivable.

Proof. We suppose that there exists a proof p such that the judgement ` p : Πx : Prop.x
admits some derivation, and find a contradiction in the following way. Using the thin-
ning theorem, x : Prop ` p : Πx : Prop.x is also derivable. Hence, applying the rule
Lam followed by the rule App, ` λx : Prop.(px) : Πx : Prop.x is derivable.

By the cut elimination theorem 6.5.3, λx : Prop.(px) admits a normal form p′ with
respect to �βσ which is such that the judgement ` p′ : Πx : Prop.x is derivable. By
straightforward induction on the length of the reduction leading to this normal form, p′

has the form λx : Prop.q for some proof q. Hence, by the type preservation theorem
5.5.2, ` λx : Prop.q : Πx : Prop.x is derivable.

By the subderivations theorem together with the renaming theorem and the strati-
fication theorem, there exists a derivable judgement x : Prop ` q : t for some expression
t ≡β∗ x. Hence, as the judgement x : Prop ` x : Prop is derivable, the conversion rule
can be applied to conclude that x : Prop ` q : x is also derivable.

Using Proposition 6.6.1 and the fact that q is a proof, q has one of the following
forms: λv : T.M or e[v]. We discard the first possibility as follows. If q = λv : T.M ,
by the subderivations theorem and the stratification theorem, there exists some term of
the form Πv′ : T ′.U ′ such that Πv′ : T ′.U ′ ≡β∗ x. This is not possible by Theorem 5.3.2.
As a consequence, q has the form e[v] for some elimination context e and some variable v.

By straightforward induction on e, some judgement of the form x : Prop ` v : T
is derivable. Hence, by the subderivations theorem and Theorem 5.3.2, v = x. As q
is a proof, e[x] 6= x. In this setting, by straightforward induction on e, there exists a
derivable judgement of the form x : Prop ` π1(x) : T , of the form x : Prop ` π2(x) : T ,
or of the form x : Prop ` xt′ : T . By the subderivations theorem again and Theorem
5.6.1, this implies that there exists a term U of the form Πv′ : T ′.U ′ or {v′ : T ′ | U ′}
such that U ≡β∗ Prop. This is not possible by Theorem 5.3.2. As a consequence, there
exists no proof term p such that the judgement ` p : Πx : Prop.x is derivable.

Although the question of consistency is a simple illustration of the way the cut elim-
ination theorem can be applied, it is not a question for which using the cut elimination

105



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

is necessary. One alternative proof is to use the conservativity of PVS-Core over higher-
order logic, which will be establish in Chapter 8, to prove the consistency of PVS-Core
from the consistency of higher-order logic – assuming that this latter property was al-
ready established. Another alternative is to use a much simpler set-theoretical model
than the one defined to establish the strong normalization theorem of PVS-Cert: a no-
tion of standard set-theoretical interpretation of predicate subtyping, where the type
Prop is interpreted as a set exactly two elements, distinguishing true propositions from
false ones. As presented in Section 1.5 of the introductory chapter, this approach has
been formalized in [61] for some subset of PVS which is larger that PVS-Core.

However, the set of provable propositions in higher-order logic is strictly included
in the set of propositions that are true in all standard models and, as PVS-Core is a
conservative extension of higher-order logic, this statement also holds for PVS-Core. As
a consequence, the study of such interpretations is not sufficient to delineate the set
of provable propositions of PVS-Core. The same situation holds whenever one aims at
delineating the set of provable propositions using the conservativity of PVS-Cert over
higher-order logic established in Chapter 8 and its underlying translation from PVS-Cert
to the PTS λ-HOL, which will be denoted J·KλHOL in the remaining of this chapter. More
precisely, proving that the image of some PVS-Cert judgement through the translation
J·KλHOL is derivable in λ-HOL is not sufficient to conclude that the original statement is
derivable in PVS-Cert. The following theorem illustrates a situation where neither the
standard set-theoretical interpretation nor the conservativity theorem over higher-order
logic can be applied to conclude the expected result: in this situation, using the cut
elimination theorem becomes necessary.

Theorem 6.7.2. In PVS-Cert, Leibniz’s definition of equality matches conversion:
whenever some judgement of the form ` p : Πx : (Πy : A.Prop).Πh : xt.xu is deriv-
able, then t ≡β∗ u.

Before proving this result, we illustrate briefly why neither a standard set-theoretical
interpretation nor the conservativity of PVS-Cert over higher-order logic can be applied
to conclude the expected result. We consider the case A = Prop, t = Πz : {y : Prop |
y}.π1(z) and u = Πz : Prop.Πh : z.z. We denote P = Πx : (Πy : A.Prop).Πh : xt.xu.
Using Theorem 5.3.2, we first prove that {y : Prop | y} and Prop are not convertible.
Hence, using Theorem 5.3.2 again, we conclude that t and u are not convertible either. As
a consequence, by Theorem 6.7.2, P admits no proof in the empty context. We show that
this result cannot be obtained neither using a standard set-theoretical interpretation nor
using the conservativity theorem over λ-HOL and its underlying translation to λ-HOL:

• Under the standard set-theoretical interpretation, we first notice that two propo-
sitions t and u are both true, by analyzing the two only possible interpretations
for a proposition. As a consequence, using a simple case analysis, the proposition
P is true as well. Thus, the set-theoretical interpretation is not sufficient to prove
that the proposition P is not provable.

106



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

• Under the translation from PVS-Cert to PVS-Core, JtKλHOL = JuKλHOL = u. As
a consequence, JP KλHOL = Πx : (Πy : Prop.Prop).Πh : xu.xu. We consider the
proof p = λx : (Πy : Prop.Prop).λh : (xu).h. The judgement ` p : JP KλHOL
is derivable in λ-HOL. Hence, the translation from PVS-Cert to λ-HOL used in
the conservativity theorem is not sufficient to prove that the proposition P is not
provable.

Theorem 6.7.2 is proved as follows using the cut elimination theorem.

Proof. We suppose that the judgement ` p : Πx : (Πy : A.Prop).Πh : xt.xu ad-
mits some derivation. By Theorem 5.2.3 and the stratification theorem, the judge-
ment ` Πx : (Πy : A.Prop).Πh : xt.xu : Prop is derivable. Hence, applying the
subderivations theorem together with the renaming theorem iteratively, the judgement
x : (Πy : A.Prop), h : xt ` WF is derivable. As a consequence, applying the thinning
theorem followed by the application of the rules Lam and App iteratively, the judgement
` λx : (Πy : A.Prop).λh : xt.(pxh) : Πx : (Πy : A.Prop).Πh : xt.xu is derivable.

By the strong normalization theorem 6.5.2, λx : (Πy : A.Prop).λh : xt.(pxh) admits
a normal form with respect to �βσ. By straightforward induction on the length of the
reduction leading to this normal form, it has the form λx : (Πy : A.Prop).λh : xt.q for
some proof q. Hence, by the type preservation theorem 5.5.2, ` λx : (Πy : A.Prop).λh :
xt.q : Πx : (Πy : A.Prop).Πh : xt.xu is derivable.

By the subderivations theorem together with the renaming theorem and the strat-
ification theorem, there exists a derivable judgement x : (Πy : A.Prop) ` λh : xt.q :
P for some expression P ≡β∗ Πh : xt.xu. On the other hand, as the judgement
` Πx : (Πy : A.Prop).Πh : xt.xu : Prop is derivable, the subderivations theorem
can be used together with the stratification theorem to conclude that the judgement
x : (Πy : A.Prop) ` Πh : xt.xu : Prop is also derivable. In this setting, using the
conversion rule, the judgement x : (Πy : A.Prop) ` λh : xt.q : Πh : xt.xu is derivable.

By the subderivations theorem together with the renaming theorem and the strati-
fication theorem, there exists a derivable judgement x : (Πy : A.Prop), h : xt ` q : Q for
some expression Q ≡β∗ xu. On the other hand, as the judgement x : (Πy : A.Prop) `
Πh : xt.xu : Prop is derivable, the subderivations theorem can be used together with
the stratification theorem to conclude that the judgement x : (Πy : A.Prop), h : xt `
xu : Prop is also derivable. In this setting, using the conversion rule, the judgement
x : (Πy : A.Prop), h : xt ` q : xu is derivable.

Using Proposition 6.6.1 and the fact that q is a proof, q has one of the following
forms: λv : T.M or e[v]. We discard the first possibility as follows. If q = λv : T.M , by
the subderivations theorem and the stratification theorem, there exists some term of the
form Πv′ : T ′.U ′ such that Πv′ : T ′.U ′ ≡β∗ xu. This is not possible by Theorem 6.6.2.

107



CHAPTER 6. STRONG NORMALIZATION IN PVS-CERT

As a consequence, q has the form e[v].

By straightforward induction on e, some judgement of the form x : (Πy : A.Prop), h :
xt ` v : T is derivable. Hence, by the subderivations theorem and Theorem 5.3.2, either
v = x or v = h. We discard the case e 6= • as follows. If e 6= •, by straightforward
induction on e, there exists a derivable judgement of the form x : (Πy : A.Prop), h : xt `
π1(v) : T , x : (Πy : A.Prop), h : xt ` π2(v) : T , or x : (Πy : A.Prop), h : xt ` vt′ : T .
By the subderivations theorem again and Theorem 5.6.1, this implies that there exists
a term U of the form Πv′ : T ′.U ′ or {v′ : T ′ | U ′} such that either U ≡β∗ Prop in the
case v = x or U ≡β∗ xt in the case v = h. This is not possible by Theorem 6.6.2. As a
consequence, e 6= •. As a consequence, q = v, and, as q is a proof term, this implies that
q = h. Thus, the judgement x : (Πy : A.Prop), h : xt ` h : xu is derivable.

On the other hand, as the judgement x : (Πy : A.Prop), h : xt `WF is derivable, the
rule Var can be applied to conclude that the judgement x : (Πy : A.Prop), h : xt ` h : xt
is derivable as well. Hence, by Theorem 5.6.1, xt ≡β∗ xu. By straightforward induction
on the length of reductions, any term M such that xt �β∗ M (resp. xu �β∗ M) has
the form xN with N ≡β∗ t (resp. N ≡β∗ u). Hence, using the Church-Rosser theorem,
t ≡β∗ u.

108



Chapter 7

Type-checking in PVS-Cert

The purpose of this chapter is to present a type-checking algorithm for PVS-Cert. In
spite of being a relatively simple consequence of the strong normalization theorem 6.5.2
established in the previous chapter, this result is one of the most important result ex-
pected for PVS-Cert. In particular, it will be used in Chapter 10 together with the
translation from PVS-Core derivations to PVS-Cert established in Chapter 9 to show
that PVS-Cert can be used as verifiable certificates for PVS-Core (Definition 10.1.1).

The type-checking algorithm presented for PVS-Cert is comparable to the algorithm
given in [53] for the type system ECC, as both extend the type system PVS-Cert−

presented in Definition 4.2.3. In both cases, type checking is based on type inference,
and most cases are handled in a similar way. There are two main differences between
the two algorithms.

• In PVS-Cert, type checking and type inference use the two reductions �β∗ and
�wh
βσ , while only �βσ is used in ECC. More precisely, �β∗ is used to define type

checking from type inference, while �wh
βσ is used in type inference in the case of

applications, to reduce a type to some expected form Πv : T.U .

• The second important difference affects Lam rule:

Γ, v : T `M : U Γ ` Πv : T.U : s
Lam

Γ ` λv : T.M : Πv : T.U

The specific set of PTS rules used in ECC makes the second premise of the Lam
rule unnecessary, which is not the case in PVS-Cert− and PVS-Cert. For instance,
the judgement x : Prop ` Prop : Type is derivable PVS-Cert, while the judgement
` λx : Prop.Prop : Πx : Prop.Type is not. However, applying a recursive call
on this second premise would be problematic. On the one hand, it would make
the algorithm slower. On the other hand, it would break the simplicity of the
proof of termination, based on the fact that recursive calls of type inference are
done on subterms exclusively. This problem is shared by several type systems.

109



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

In the case of injective PTSs, one of the simplest solution for this problem is
presented in [6], using some classification of terms to avoid this unwanted recursive
call. The solution presented for PVS-Cert in this chapter is similar, based on the
stratification theorem. However, it is simpler than the classification presented in
[6] for several reasons. On the one hand, it is suited for a specific system instead of
a wide family of type systems. On the other hand, the choice of presentation of the
type system with one domain of variables per sort – which follows the presentation
of PTSs given in [36] – makes classification easier than in the presentation given
in [6], where there is only one single set of variables.

We present the type-checking algorithm together with two other algorithms: a type
inference algorithm, and a well-formedness checking algorithm. The type-checking al-
gorithm takes as input a context Γ, a term M , and a term T , and decides whether
Γ `M : T is derivable. The type inference algorithm takes as inputs a context Γ and a
term M , decides whether there exists a term T such that Γ ` M : T is derivable, and
outputs such a term in case of success. The well-formedness algorithm takes as input a
context Γ and decides whether Γ `WF is derivable.

We first present the three algorithms as partial algorithms. Then, we prove that they
are sound, i.e. that, in case of success, the associated judgement is derivable. We use
this proof of soundness to prove that these algorithms terminate. Finally, we prove that
they are complete, i.e. that in case of failure, the associated judgements are not derivable.

These proofs will be based on several results of the previous chapters. They will use
in particular the uniqueness of types theorem 5.6.1, the type preservation theorem 5.5.2
for �βσ and the strong normalization theorem 6.5.2 for both →βσ and →β∗.

7.1 Definitions

We first define the following algorithm to distinguish types, expressions, Type, and Kind.
As mentioned in the beginning of this chapter, this algorithm will be used to avoid an
unwanted recursive call on the second premise of the Lam rule.

Definition 7.1.1. We define the algorithm Level(·) by recursion on its argument. The
possible cases are the following.

• Level(h) = 0, Level(x) = 1, Level(X) = 2

• Level(Prop) = 2, Level(Type) = 3, Level(Kind) = 4

• Level(λv : T.M) = 1, Level(MN) = 1

• Level(〈M,N〉T ) = 1, Level(π1(M)) = 1, Level(π2(M)) = 0

• Level(Πv : T.U) = Level(U), Level({v : T | U}) = 2

110



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

The following proposition will be the only property needed for Level(M). More pre-
cisely, only the two first statements will be used. The two last statements are presented
to give a clearer view of the algorithm.

Proposition 7.1.1. Whenever M is either an expression, a type, Type, or Kind, the
following statements hold:

• M is an expression if and only if Level(M) = 1

• M is a type if and only if Level(M) = 2

• M = Type if and only if Level(M) = 3

• M = Kind if and only if Level(M) = 4

Proof. The proof is straightforward by induction on M , using the fact that M is either
an expression, a type, Type, or Kind.

The algorithms of type-checking, type inference, and well-formedness checking rely
on the two following auxiliary algorithms, which are variants of the type-checking and
inference algorithms where the context given as input will be supposed to be well-formed.
These auxiliary algorithms contain the core of the main algorithms.

Definition 7.1.2. We define the two auxiliary algorithms Infer-type-aux(Γ |M) and
Check-type-aux(Γ |M | T ). The first algorithm is a partial type inference algorithm,
which is only ensured to be sound when Γ ` WF is derivable. The second algorithm is
a partial type-checking algorithm, which is only ensured to be sound when Γ ` T : s is
derivable for some sort s.

Infer-type-aux(Γ |M) is defined according to M :

• Case M = s: if there exists a unique axiom (s, s′) ∈ A, return s′, else fail.

• Case M = v: if v belongs to some unique declaration (v : T ) ∈ Γ, return T , else
fail.

• Case M = λv : T.N : if necessary, α-rename M to ensure v 6∈ DV (Γ). If
Infer-type-aux(Γ | T ) return the sort s(v) successfully, continue as follows:
if Infer-type-aux(Γ, v : T | N) returns some term U successfully and if one of
the following conditions holds, return Πv : T.U .

– s(v) = Prop and Level(U) = 1,

– s(v) = Type and Level(U) = 1,

– s(v) = Type and Level(U) = 2.

In all other cases, fail.

111



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

• Case M = M1M2 : if Infer-type-aux(Γ |M1) returns some term T successfully,
reduce T to a normal form using the reduction →wh

βσ . If the term obtained has the
form Πv : T1.T2 and Check-type-aux(Γ | M2 | T1) succeeds, return T2[M2/v].
In all other cases, fail.

• Case M = Πv : T.U : if necessary, α-rename M to ensure v 6∈ DV (Γ). If
Infer-type-aux(Γ | T ) return the sort s(v) successfully, continue as follows: if
Infer-type-aux(Γ, v : T | U) returns some sort s successfully and if there exists
some unique sort s′ such that (s(v), s, s′) ∈ R, return s3. Else, fail.

• Case M = {v : T | U}: if necessary, α-rename M to ensure v 6∈ DV (Γ). If
Infer-type-aux(Γ | T ) return the sort s(v) successfully and s(v) = Type, con-
tinue as follows: if Infer-type-aux(Γ, v : T | U) returns Prop, return Type, else
fail.

• Case M = 〈M1,M2〉T : if T has the form {v : T1 | T2} and if Infer-type-aux(Γ |
T ) returns Type, continue as follows. If Check-type-aux(Γ |M1 | T1) succeeds,
continue as follows: if Check-type-aux(Γ | M2 | T2[M1/v]) succeeds, return T .
In all other cases, fail.

• Case M = π1(N): if Infer-type-aux(Γ | N) returns some term of the form
{v : T | U} successfully, return T , else fail.

• Case M = π2(N): if Infer-type-aux(Γ | N) returns some term of the form
{v : T | U} successfully, return U [π1(N)/v], else fail.

Check-type-aux(Γ | M | T ) is defined as follows: if Infer-type-aux(Γ | M)
returns some term U , reduce T and U using the reduction →β∗ until they reach normal
forms, and succeed if the two normal forms are α-convertible. In all other cases, fail.

The algorithms of type checking, type inference, and well-formedness are defined as
follows.

Definition 7.1.3. We define the algorithms of well-formedness checking, type inference,
and type checking using the two auxiliary algorithms of Definition 13.5.2. They are de-
noted, respectively, Check-wf(Γ), Infer-type(Γ | M), and Check-type(Γ | M | T ),
where Γ is a context, and M and T are terms.

Check-wf(Γ) is defined as follows: if Γ = ∅, terminate successfully. Else, Γ has
the form Γ′, v : T . If v 6∈ DV (Γ′) and Check-wf(Γ′) succeeds, continue as follows: if
Infer-type-aux(Γ′ | T ) returns s(v) successfully, terminate successfully. In all other
cases, fail.

Infer-type(Γ |M) is defined as follows: if Check-wf(Γ) succeeds, return
Infer-type-aux(Γ |M), else fail.

112



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

Check-type(Γ | M | T ) is defined as follows: if Check-wf(Γ) succeeds, continue
as follows. If T = Kind and Infer-type-aux(Γ |M) returns Kind, terminate success-
fully. If T 6= Kind and Infer-type-aux(Γ | T ) returns some sort s successfully, return
Check-type-aux(Γ |M | T ).

The main theorem of this chapter is the correspondence between the three algorithms
presented Definition 7.1.3 and their expected specifications. It is expressed as follows.

Theorem 7.1.1. The algorithms Check-wf, Infer-type, and Check-type always
terminate, and admit the following properties:

• Check-wf(Γ) succeeds if and only if Γ `WF is derivable

• Infer-type(Γ | M) succeeds if only if there exists a term T such that Γ ` M : T
is derivable, in which case it outputs such a term

• Check-type(Γ |M | T ) succeeds if only if Γ `M : T is derivable

Proof. The theorem is the direct consequence of the Propositions 7.2.1, 7.3.1, and 7.4.1
proved in the following of this chapter.

Remark 7.1.1. Using the property of uniqueness of types proved in Theorem 5.6.1,
whenever some judgement Γ ` M : T is derivable, the algorithm Infer-type(Γ | M)
outputs some term U such that Γ `M : U is derivable and T ≡β∗ U .

7.2 Soundness

The expected properties of soundness are the following.

Proposition 7.2.1. The following statements hold:

• Whenever Check-wf(Γ) succeeds, Γ `WF is derivable

• Whenever Infer-type(Γ | M) outputs some term T successfully, Γ ` M : T is
derivable

• Whenever Check-type(Γ |M | T ) succeeds, Γ `M : T is derivable

The proof relies on the following lemma, which will use the type preservation theorem
5.5.2 for �βσ.

Lemma 7.2.1. The following statements hold:

• Whenever Γ ` WF is derivable and Infer-type-aux(Γ | M) outputs some term
T successfully, Γ `M : T is derivable

• Whenever Γ ` T : s is derivable and Check-type-aux(Γ | M | T ) succeeds,
Γ `M : T is derivable

113



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

Proof. We prove the two statements together by induction on M . We suppose that the
two statements hold for any strict subterm of M . We prove the first statement for M
as follows.

• Case M = s: we conclude applying the rule Sort to the derivation of Γ `WF .

• Case M = v: we conclude applying the rule Var to the derivation of Γ `WF .

• Case M = λv : T.N (α-renamed to ensure v 6∈ DV (Γ)): by induction hypoth-
esis, Γ ` T : s(v) is derivable, hence Γ, v : T ` WF is derivable. By induc-
tion hypothesis again, Γ, v : T ` N : U is derivable, where U is the output of
Infer-type-aux(Γ, v : T | N). By the stratification theorem, U is either an
expression, a type, Type, or Kind. We conclude as follows:

– If s(v) = Prop and Level(U) = 1, then U is an expression by Proposition
7.1.1. By Theorem 5.2.3 followed by the stratification theorem, Γ, v : T ` U :
Prop, from which we conclude that Γ ` Πv : T.U : Prop and Γ ` λv : T.N :
Πv : T.U are derivable

– If s(v) = Type and Level(U) = 1, then U is an expression by Proposition
7.1.1. By Theorem 5.2.3 followed by the stratification theorem, Γ, v : T ` U :
Prop, from which we conclude that Γ ` Πv : T.U : Prop and Γ ` λv : T.N :
Πv : T.U are derivable

– If s(v) = Type and Level(U) = 2, then U is a type by Proposition 7.1.1.
By Theorem 5.2.3 followed by the stratification theorem, Γ, v : T ` U : Type,
from which we conclude that Γ ` Πv : T.U : Type and Γ ` λv : T.N : Πv : T.U
are derivable

• Case M = M1M2 : by induction hypothesis, Γ ` M1 : T is derivable, where T
is the output of Infer-type-aux(Γ | M1). We consider Πv : T1.T2 the normal
form obtained from T using →wh

βσ . By the type preservation theorem 5.5.2 for
�βσ, Γ ` M1 : Πv : T1.T2 is derivable. On the other hand, by the stratification
theorem, T1 6= Kind, hence, by Theorem 5.2.3, Γ ` T1 : s is derivable for some
sort s. Therefore, by induction hypothesis, Γ ` M2 : T1 is derivable too. Hence,
Γ `M1M2 : T2[M2/v] is derivable.

• Case M = Πv : T.U (α-renamed to ensure v 6∈ DV (Γ)): by induction hypothesis,
Γ ` T : s(v) is derivable, hence Γ, v : T `WF is derivable. By induction hypothesis
again, Γ, v : T ` U : s is derivable, where s is the output of Infer-type-aux(Γ, v :
T | U). We conclude applying the rule Prod.

• Case M = {v : T | U} (α-renamed to ensure v 6∈ DV (Γ)): by induction hypothesis,
Γ ` T : Type and s(v) = Type, hence Γ, v : T ` WF is derivable. By induction
hypothesis again, Γ, v : T ` U : Prop is derivable. We conclude applying the rule
Subtype.

114



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

• Case M = 〈M1,M2〉T : T has the form {v : T1 | T2} (α-renamed to ensure v 6∈
DV (Γ)). By induction hypothesis, Γ ` {v : T1 | T2} : Type is derivable. Hence,
by the subderivations theorem and the renaming theorem, Γ ` T1 : Type and
Γ, v : T1 ` T2 : Prop are derivable. Therefore, by induction hypothesis, Γ `M1 : T1

is derivable. By the substitution theorem, Γ ` T2[M1/v] : Prop is derivable. Hence,
by induction hypothesis, Γ ` M2 : T2[M1/v] is derivable. We conclude applying
the rule Pair.

• Case M = π1(N) (resp. M = π2(N)): by induction hypothesis, Γ ` N : {v : T | U}
is derivable, where {v : T | U} is the output of Infer-type-aux(Γ | N). We
conclude applying the rule Proj1 (resp. Proj2).

We prove the second statement as follows. As Γ ` T : s is derivable for some sort s,
the judgement Γ ` WF is derivable by the subderivations theorem. Applying the first
statement already proved for M , the judgement Γ `M : U is derivable, where U is the
output of Infer-type-aux(Γ | M). As T and U share a common normal form using
→β∗, T ≡β∗ U . Therefore, applying the conversion rule, Γ `M : T is derivable.

We conclude the proof of Proposition 7.2.1 as follows.

Proof. [Proposition 7.2.1] The first statement is proved by induction on Γ. If Γ = ∅,
we conclude using the rule Empty. On the other hand, we prove that the statement
holds for a context Γ′, v : T whenever it holds for Γ′ as follows. By induction hypothesis,
Γ′ ` WF is derivable. Hence, by Lemma 7.2.1, Γ′ ` T : s(v) is derivable. Therefore, as
v 6∈ DV (Γ′), Γ′, v : T `WF is derivable as expected.

The second statement is proved as follows: using the first statement, Γ ` WF is
derivable. Hence, by Lemma 7.2.1, Γ ` M : T is derivable, where T is the output of
Infer-type-aux(Γ |M).

The third statement is proved as follows: using the first statement, Γ ` WF is
derivable. If T = Kind, by Lemma 7.2.1, Γ ` M : T is derivable as expected. Else,
by Lemma 7.2.1, Γ ` T : s is derivable for some sort s. Hence, by Lemma 7.2.1 again,
Γ `M : T is derivable.

7.3 Termination

The expected properties of termination are the following.

Proposition 7.3.1. The algorithms Check-wf, Infer-type, and Check-type always
terminate.

The proof relies on the following lemma, which will use the strong normalization
theorem 6.5.2 for →βσ and →β∗, as well as Lemma 7.2.1 proved in the previous section.

Lemma 7.3.1. The following statements hold:

115



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

• Whenever Γ `WF is derivable, Infer-type-aux(Γ |M) terminates

• Whenever Γ ` T : s is derivable, Check-type-aux(Γ |M | T ) terminates

Proof. We prove the two statements together by induction on M . We suppose that the
two statements hold for any strict subterm of M . We prove the first statement for M
as follows.

• The cases M = s and M = v are straightforward.

• Cases M = λv : T.N , M = Πv : T.U , M = {v : T | U}, M = 〈M1,M2〉T ,
M = π1(N), and M = π2(N): following the proof of Lemma 7.2.1, every call of
the form Infer-type-aux(Γ′ | M ′) (resp. Check-type-aux(Γ′ | M ′ | T ′)) is
done when M ′ is a strict subterm of M and Γ′ `WF is derivable (resp. Γ′ ` T ′ : s
is derivable for some sort s). Hence, we can conclude termination by induction
hypothesis.

• Case M = M1M2 : on the one hand, following the proof of Lemma 7.2.1, every call
of the form Infer-type-aux(Γ′ | M ′) (resp. Check-type-aux(Γ′ | M ′ | T ′)) is
done when M ′ is a strict subterm of M and Γ′ `WF is derivable (resp. Γ′ ` T ′ : s
is derivable for some sort s). Hence, these call terminate by induction hypothesis.
On the other hand, we have to check that whenever Infer-type-aux(Γ | M1)
returns some term T successfully, the reduction of T with →wh

βσ terminates. By
Lemma 7.2.1, Γ `M1 : T is derivable. Hence, by the strong normalization theorem
6.5.2, the reduction of T with →wh

βσ terminates.

We prove the second statement as follows. Applying the first statement already
proved for M , Infer-type-aux(Γ | M) terminates. We also have to prove that, if a
term U is returned, the reduction of T and U with →β∗ terminates. On the one hand,
by hypothesis, Γ ` T : s is derivable for some sort s, hence, by the strong normalization
theorem 6.5.2, the reduction of T with →β∗ terminates. On the other hand, by Lemma
7.2.1, Γ ` M : U is derivable. Hence, by the strong normalization theorem 6.5.2, the
reduction of U with →β∗ terminates.

We conclude the proof of Proposition 7.3.1 as follows.

Proof. [Proposition 7.3.1] The termination of Check-wf(Γ) is proved by induction on
Γ, and the termination of Infer-type(Γ | M) and Check-type(Γ | M | T ) is proved
subsequently. In each case, following the proof of Proposition 7.2.1, we show that every
call of the form Infer-type-aux(Γ′ | M ′) (resp. Check-type-aux(Γ′ | M ′ | T ′)) is
done when Γ′ ` WF is derivable (resp. Γ′ ` T ′ : s is derivable for some sort s), which
allows to conclude using Lemma 7.3.1.

7.4 Completeness

The expected properties of completeness are the following.

116



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

Proposition 7.4.1. The following statements hold:

• Whenever Γ `WF is derivable, Check-wf(Γ) succeeds

• Whenever Γ `M : T is derivable, Infer-type(Γ |M) outputs some term U

• Whenever Γ `M : T , Check-type(Γ |M | T ) succeeds

The proof relies on the following lemma, which uses the theorem of uniqueness of
types and its corollary 5.6.1.

Lemma 7.4.1. The following statements hold:

• Whenever Γ ` M : T is derivable, Infer-type-aux(Γ | M) outputs some term
successfully

• Whenever Γ ` M : T and Γ ` T : s are derivable, Check-type-aux(Γ | M | T )
succeeds

Proof. We prove the two statements together by induction on M . We suppose that the
two statements hold for any strict subterm of M . We prove the first statement for M
as follows.

• Cases M = s and M = v: by the subderivations theorem and Theorem 5.3.2, there
exists some axiom of the form (s, s′) in A. Given the content of A, it is unique.

• Cases M = v: by the subderivations theorem and the free variable theorem, there
exists a unique declaration (v : T ′) ∈ Γ.

• Case M = λv : T ′.N (α-renamed to ensure v 6∈ DV (Γ)): by the subderivations
theorem and the renaming theorem, there exists some term Πv : T ′.U and some
sort s such that Γ, v : T ′ ` N : U and Γ ` Πv : T ′.U : s are derivable. By the
subderivations theorem and the renaming theorem again, Γ ` T ′ : s(v) is derivable
and there exists some sort s′ such that Γ, v : T ′ ` U : s′ is derivable. By induction
hypothesis, Infer-type-aux(Γ | T ′) returns some term T ′′. By Lemma 7.2.1 and
Corollary 5.6.1, T ′′ = s(v). By induction hypothesis, Infer-type-aux(Γ, v : T ′ |
N) returns some term U ′, and, by Lemma 7.2.1, Γ, v : T ′ ` N : U ′ is derivable. We
conclude the expected properties relating s(v) and Level(U ′) by the stratification
theorem and Proposition 7.1.1.

• Case M = M1M2 : by the subderivations theorem, there exists some term Πv :
T1.T2 (α-renamed to ensure v 6∈ DV (Γ)) such that both Γ ` M1 : Πv : T1.T2

and Γ ` M2 : T1 are derivable. By induction hypothesis and Lemma 7.2.1,
Infer-type-aux(Γ | M1) returns some term T ′ such that Γ ` M1 : T ′ is deriv-
able. Following the proof of Lemma 7.3.1, the reduction of T ′ with→wh

βσ terminates,
yielding a term T ′′. By the type preservation theorem 5.5.2 for �βσ, Γ `M1 : T ′′

is derivable. Hence, by Theorem 5.6.1, Πv : T1.T2 ≡β∗ T ′′. Hence, by Corollary
6.6.1 and Proposition 6.6.2, T ′′ has the form Πv : T ′′1 .T

′′
2 with T ′′1 ≡β∗ T1 and

117



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

T ′′2 ≡β∗ T2. By Theorem 5.2.3, Γ ` Πv : T ′′1 .T
′′
2 : s is derivable for some sort s.

Hence, by the subderivations theorem, Γ ` T ′′1 : s′ is derivable for some sort s′.
Using the conversion rule, we conclude that Γ ` M2 : T ′′1 is derivable. Hence,
applying induction hypothesis, Check-type-aux(Γ |M2 | T ′′1 ) succeeds.

• Case M = Πv : U1.U2 (α-renamed to ensure v 6∈ DV (Γ)): by the subderivations
theorem and the renaming theorem, there exists some rule (s1, s2, s3) ∈ R such
that Γ ` U1 : s1, Γ, v : U1 ` U2 : s2, and Γ ` Πv : U1.U2 : s3 are derivable. By the
subderivations theorem again, Γ ` U1 : s(v) is derivable. Hence, by Corollary 5.6.1,
s1 = s(v). By induction hypothesis, Infer-type-aux(Γ | U1) returns some term
T ′. By Lemma 7.2.1 and Corollary 5.6.1, T ′ = s(v). By induction hypothesis,
Infer-type-aux(Γ, v : U1 | U2) returns some term T ′′. By Lemma 7.2.1 and
Corollary 5.6.1, T ′′ = s2, as expected. Finally, given the content of R, s2 is the
unique sort such that (s(v), s1, s2) ∈ R.

• The case M = {v : U1 | U2} is similar to M = Πv : U1.U2.

• Case M = 〈M1,M2〉U : by the subderivations theorem and the renaming theorem,
U has the form {v : U1 | U2} (α-renamed to ensure v 6∈ DV (Γ)), and the three
derivations Γ ` M1 : U1, Γ ` M2 : U2[M1/v], and Γ ` U : Type are derivable.
By induction hypothesis, Infer-type-aux(Γ | U) returns some term T ′. By
Lemma 7.2.1 and Corollary 5.6.1, T ′ = Type. By the stratification theorem,
U1 6= Kind and U2[M1/v] 6= Kind, hence, by Theorem 5.2.3, Γ ` U1 : s and
Γ ` U2[M1/v] : s′ are derivable for some sorts s and s′. Therefore, applying the
induction hypothesis, Check-type-aux(Γ | M1 | U1) and Check-type-aux(Γ |
M2 | U2[M1/v]) succeed, as expected.

• Case M = πi(N) (i ∈ {1, 2}): by the subderivations theorem, there exists some
term {v : T1 | T2} such that Γ ` N : {v : T1 | T2} is derivable. Hence,
Infer-type-aux(Γ | N) succeeds, as expected.

The second statement is proved as follows. Applying the first statement for M ,
Infer-type-aux(Γ | M) returns some term U . By Lemma 7.2.1 and Theorem 5.6.1,
T ≡β∗ U . Following the proof of Lemma 7.3.1, the reduction of T and U with →β∗
terminates, yielding two normal forms T ′ and U ′ respectively. By the Church-Rosser
theorem, T ′ and U ′ are α-convertible, as expected.

We conclude the proof of Proposition 7.4.1 as follows.

Proof. [Proposition 7.4.1] The first statement is proved by induction on Γ. The case
Γ = ∅ is straightforward. The case Γ = Γ′, v : T is proved as follows. By the subderiva-
tions theorem, Γ′ ` WF is derivable. Hence, by induction hypothesis, Check-wf(Γ′)
succeeds. By the subderivations again, Γ′ ` T : s(v) is derivable. Hence, by Lemma
7.4.1, Infer-type-aux(Γ′ | T ) returns some term U . By Lemma 7.2.1 and Corollary
5.6.1, U = s(v), as expected.

118



CHAPTER 7. TYPE-CHECKING IN PVS-CERT

The second statement is proved as follows. On the one hand, applying the first state-
ment, Check-wf(Γ) succeeds. On the other hand, by Lemma 7.4.1, Infer-type-aux(Γ
|M) returns some term successfully.

The third statement is proved as follows. Applying the first statement, Check-wf(Γ)
succeeds. We first conclude for the case T = Kind as follows. By Lemma 7.4.1,
Infer-type-aux(Γ | M) returns some term U . By Lemma 7.2.1 and Corollary 5.6.1,
U = Kind, as expected. On the other hand, we conclude for the case T 6= Kind as
follows. By Theorem 5.2.3, Γ ` T : s is derivable for some sort s. By Lemma 7.4.1,
Infer-type-aux(Γ | T ) returns some term U . By Lemma 7.2.1 and Corollary 5.6.1,
U = s, as expected. By Lemma 7.4.1 again, Check-type-aux(Γ |M | T ) succeeds.

119





Chapter 8

A conservative extension of
higher-order logic

The purpose of this chapter is to prove that PVS-Cert is a conservative extension of
λ-HOL: whenever Γ ` P : Prop is derivable in λ-HOL, the fact that P is inhabited in
Γ holds in PVS-Cert if and only if it holds in λ-HOL. Together with the strong normal-
ization theorem 6.5.2, this theorem is one of the major contributions of this work on the
theoretical point of view.

This theorem can be used as a tool to study the inhabitance of propositions in PVS-
Cert contexts. Given any λ-HOL theory composed of a finite number of axioms, it allows
to deduce the consistency of this theory in PVS-Cert from its consistency in λ-HOL. In
particular, it shows that the addition of the most important logical principles used in
the proof assistant PVS, such as the law of excluded middle or extensionality properties
(mentioned in Section 2.2.2), can be safely added to PVS-Cert as they can be safely
added to λ-HOL.

This theorem is comparable to the following result, proved in [54]: the extension
CC+ of λ-HOL with the rule (Prop, Type, Type) – which corresponds equivalently to
the extension of the calculus of constructions [19] equipped with a sort Kind and the
axiom (Type,Kind) – is conservative.

Remark 8.0.1. Because of the presence of the rule (Prop, Type, Type), there exists
another natural way to express higher-order logic in CC+ (as well as in the plain calculus
of constructions): instead of expressing types as types, it is also possible to express all
non propositional types as terms typed by Prop. In this alternative setting, conservativity
does not hold, as proved in [9] and [34].

In both cases, the core of the problem is, starting from a judgement Γ ` P : Prop
derivable in λ-HOL and a judgement Γ ` p : P derivable in PVS-Cert (resp. CC+),
to find a proof q such that Γ ` q : P is derivable is λ-HOL. A first natural approach
would be to use strong normalization with the type preserving reduction →βσ (resp.

121



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

→β), but this approach fails in both cases for similar reasons, as shown by the following
counter-examples.

Example 8.0.1. We consider for both PVS-Cert and CC+ the λ-HOL expression P =
Πx : Prop.Πh : (Πy : Prop.x).x. In higher-order logic notations, P corresponds to
∀x : Prop.(∀y : Prop.x) ⇒ x, i.e. to the impredicative expression of the existence of
some proposition y. In λ-HOL, ` P : Prop is derivable.

We consider the following propositions QPV S−Cert and QCC+ which will be used to
prove P in PVS-Cert and CC+ respectively, and include specific features of PVS-Cert
and CC+ respectively.

• QPV S−Cert = Πx : {y : Prop | y}.π1(x)

• QCC+ = Πx : Prop.Πy : (Πh : x.Prop).x

Using these propositions, we consider the following proofs pPV S−Cert and pCC+.

• pPV S−Cert = λx : Prop.λh : (Πy : Prop.x).hQPV S−Cert

• pCC+ = λx : Prop.λh : (Πy : Prop.x).hQCC+

These proofs are counter-examples as the following propositions hold

• ` pPV S−Cert : P is derivable in PVS-Cert and
` pCC+ : P is derivable in CC+

• pPV S−Cert is in normal form with respect to →βσ and
pCC+ in normal form with respect to →β

• Neither ` pPV S−Cert : P nor ` pCC+ : P are derivable in λ-HOL
as neither ` QPV S−Cert : Prop nor ` QCC+ : Prop are derivable in λ-HOL

Another natural approach would be to use some erasure function from PVS-Cert
(resp. CC+) to λ-HOL removing all parts of the syntax that are not defined (or cannot
be well-typed) in λ-HOL. In the case of CC+, this approach is successfully used in [54] to
prove the expected conservativity result. The erasure function corresponds to a natural
extension of the erasure function for the calculus of constructions, defined in [8] and [63].
In PVS-Cert, a similar erasure function can be defined, at least at the levels of types,
propositions, and stratified contexts.

Definition 8.0.1. We define an erasing function [·] from PVS-Cert types, expressions,
and contexts to λ-HOL types, expressions, and stratified contexts. This function erases
all predicate subtypes {x : ·|P} and coercions 〈·, p〉A and π1(·). More precisely, the
translation of types is defined as follows.

• [X] = X

• [Prop] = Prop

122



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

• [Πx : A.B] = Πx : [A].[B]

• [{x : A | P}] = [A]

The translation of expressions is defined as follows.

• [x] = x

• [Πx : A.P ] = Πx : [A].[P ]

• [Πh : P.Q] = Πh : [P ].[Q]

• [λx : A.t] = λx : [A].[t]

• [t u] = [t][u]

• [〈t,M〉A] = [t]

• [π1(t)] = [t]

The translation of stratified contexts is defined as follows.

• [∅] = ∅

• [Γ, h : P ] = [Γ], h : [P ]

• [Γ, x : A] = [Γ], x : [A]

• [Γ, X : Type] = [Γ], X : Type

In the same way as the erasure function defined in [54], this function preserves any
type or expression that is well-typed in λ-HOL, and any context that is well-formed in
λ-HOL. However, unlike the case of CC+, [·] cannot be easily extended to proofs, as
there is no natural definition of erasure for proofs of the form π2(t). Worse, there exists
an expression P inhabited in a well-formed context Γ in PVS-Cert such that [P ] is empty
in [Γ] in λ-HOL, which shows that this erasure function [·] cannot be used directly to
prove the expected conservativity result. This situation is illustrated in the following
example.

Example 8.0.2. We present a judgement Γ ` p : P derivable in PVS-Cert such that
[P ] is empty in [Γ] in λ-HOL.

We consider Γ = x : {y : Prop | y}, P = π1(x), and p = π2(x). The judgement
x : {y : Prop | y} ` p : P is derivable in PVS-Cert. The erasures of P and Γ are [P ] = x
and [Γ] = x : Prop respectively. As a direct consequence of the consistency of λ-HOL,
there exists no λ-HOL proof q such that x : Prop ` q : x is derivable in λ-HOL: [P ] is
empty in [Γ] in λ-HOL.

123



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

Because of the existence of such counter-examples, the erasure function from PVS-
Cert types and expressions is not adapted to prove the conservativity of PVS-Cert over
λ-HOL. We will present an alternative translation to fit this purpose. More precisely,
the erasure function [·] will be kept to translate PVS-Cert types, but we will define
a new translation J·K to translate PVS-Cert expressions and stratified contexts. The
expected result of conservativity will follow directly from the following properties of this
new translation J·K.

• In the same way as the erasure function [·], any λ-HOL expression or any stratified
context in λ-HOL will be translated by itself through the translation J·K.

• Unlike the erasure function [·], whenever, in PVS-Cert, an expression P is inhabited
in a context Γ, then, in λ-HOL, JP K is inhabited in the context JΓK.

In the following, the second property will be referred to as the conservativity of J·K. It
will be proved in Theorem 8.5.1. This proof is constructive: in particular, it is possible,
starting from this proof, to extend the translation J·K to proofs, and to reformulate
conservativity as follows: whenever some judgement Γ ` p : P is derivable in PVS-
Cert (where p is a proof and P an expression), JΓK ` JpK : JP K is derivable in λ-HOL.
However, the explicit formalization of the underlying translation of proofs would be is
much heavier than the presented translation of expressions.

8.1 The choice of the translation

This section is dedicated to informal justifications for the choice of the translation J·K,
which will be entirely formalized in Definition 8.2.5. This translation is obtained by
modifying the erasure function [·] as little as possible to ensure the expected conserva-
tivity property (whenever a PVS-Cert expression P is inhabited in a context Γ, JP K is
inhabited in the context JΓK in λ-HOL).

The erasure function [·] is not conservative because it erases crucial information
about expression variables. Example 8.0.2 illustrates this situation: in the judgement
x : {y : Prop | y} ` π2(x) : π1(x), the erasure x : Prop of the original declaration
x : {y : Prop | y} doesn’t contain the required information of provability about x. The
core idea of the definition of the translation J·K is to compensate this erasure of informa-
tion through the addition of corresponding axioms: in the previous example, the context
x : {y : Prop | y} is translated as a context of the form x : Prop, h : x, where h is a fresh
proof variable. Using this new axiom h, the translation of the whole judgement is the
judgement x : Prop, h : x ` h : x, which is derivable in λ-HOL.

This erasure of information impacts all expression variables. In a well-formed judge-
ment, an expression variable x is not necessarily introduced through a declaration of
the form x : A (as in the previous example): it can be also introduced in a universal
quantification of the form Πx : A.P or in a λ-abstraction of the form λx : A.t.

124



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

• The case of universal quantifications can be handled exactly in the same way as
the case of declarations. As an example, the derivable PVS-Cert judgement ` (λx :
{y : Prop | y}.π2(x)) : (Πx : {y : Prop | y}.π1(x)) can be handled following the
same strategy as in Example 8.0.2, by translating the universal quantification Πx :
{y : Prop | y}.π1(x) as a universal quantification followed by an implication Πx :
Prop.Πh : x.x – which would be written ∀x : Prop.x⇒ x in more usual notations
of higher-order logic. Using this new local axiom h : x introduced through this
form of bounded quantification, the translation of the whole judgement can be
defined as the judgement ` (λx : Prop.λh : x.h) : (Πx : Prop.Πh : x.x), which is
derivable in λ-HOL.

• In the case of λ-abstractions, the information erased through the translation doesn’t
require the addition of any axiom. This is due to the fact that, in a more
general way, the information required from functions (here, λ-abstractions) to
their arguments can always be erased. For instance, the PVS-Cert judgement
x : Prop, h : x ` (λz : {y : Prop | y}.π1(z))〈x, h〉{y:Prop|y} : Prop is translated as
x : Prop, h : x ` (λz : Prop.z)x : Prop, in which the erasure of the predicate sub-
type information in {y : Prop | y} is compensated by the erasure of the coercion
〈x, h〉{y:Prop|y}.

In this setting, the following of this analysis will be focused on the translation of
declarations of the form x : A, as universal quantifications can be handled accordingly
and λ-abstractions can be translated straightforwardly.

• The most simple generalization of Example 8.0.2 is the case of a declaration of
the form x : {y : A | P}, where A is a λ-HOL type. In this situation, the erased
information is compensated through the introduction of an axiom (h : JP K[x/y]) –
applying the translation function recursively on P is necessary here as P does not
necessarily belong to λ-HOL.
Whenever x : {y : A | P} is well-formed, this allows for instance to translate
the derivable judgement x : {y : A | P} ` π2(x) : P [π1(x)/y] as the judgement
x : A, h : JP K[x/y] ` h : JP K[x/y], which is derivable in λ-HOL.

• A more advanced example is the case of a declaration x : {y : {z : A | Q} | P},
where A is a λ-HOL type. In this situation, the erased information is compensated
through the introduction of two axioms, h1 : JP K[x/y] and h2 : JQK[x/z].
In this setting, whenever x : {y : {z : A | Q} | P} is well-formed, the following
examples illustrate how these axioms can be used.

– The derivable judgement x : {y : {z : A | Q} | P} ` π2(x) : P [π1(x)/y] is
translated as x : A, h1 : JP K[x/y], h2 : JQK[x/z] ` h1 : JP K[x/y], which is
derivable in λ-HOL.

– The derivable judgement x : {y : {z : A | Q} | P} ` π2(π1(x)) : Q[π1(π1(x))/z]
is translated as x : A, h1 : JP K[x/y], h2 : JQK[x/z] ` h2 : JQK[x/z], which is
derivable in λ-HOL.

125



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

• Another interesting example is the case of a declaration x : Πy : A.{z : B | P},
where both A and B are λ-HOL types. In this situation, the erased information is
compensated through the introduction of one axiom (h : Πy : A.JP K[xy/z]): in this
situation, the main idea is to handle the occurrence of the predicate subtype in
the range of a function type through the introduction of a corresponding universal
quantification in the emitted axiom.
Whenever x : Πy : A.{z : B | P} is a well-formed context in which some term
t admits the type A, this allows for instance to translate the PVS-Cert derivable
judgement x : Πy : A.{z : B | P} ` π2(xt) : P [t/y][π1(xt)/z] as the derivable
λ-HOL judgement x : Πy : A.B, h : Πy : A.JP K[xy/z] ` hJtK : JP K[JtK/y][xJtK/z].

• A last interesting example is the case of a declaration x : Πy : {z : A | P}.B, where
both A and B are λ-HOL types. This situation corresponds to the case where
the occurrence of the predicate subtype is in the domain of a function type. In
this situation, as in the case of λ-abstractions, no axiom is required: as mentioned
previously, the information required from functions (here, x) to their arguments
can always be erased.
For instance, whenever x : Πy : {z : A | P}.B is a well-formed context in which
some term t admits the type A and some proof p proves P [t/z], the derivable
judgement x : Πy : {z : A | P}.B ` x〈t, p〉{z:A|P} : B is translated as the judgement
x : Πy : A.B ` xJtK : B, in which the erasure of the predicate subtype information
in the declaration of x is compensated by the erasure of the coercion 〈t, p〉{z:A|P}.

As a generalization of these examples, the translation of an arbitrary declaration
x : A involves the addition of one axiom per strictly positive occurrence of a predicate
subtype inside A: indeed, all predicate subtypes appearing inside a negative occurrence
of A can be erased, as illustrated in the last example. For this reason, the notion of
strictly positive occurrence will be crucial in the following. We formalize it as follows.

Definition 8.1.1. A strictly positive occurrence in some type A is defined recursively
from the following statements.

• If A = X or A = Prop, the root of A is its only strictly positive occurrence.

• If A = Πx : A1.A2, the strictly positive occurrences of A are its root and the strictly
positive occurrences of A2

• If A = {x : B | P}, the strictly positive occurrences of A are its root and the strictly
positive occurrences of B

Although the translation of a declaration x : A contains only one axiom per strictly
positive occurrence of a predicate subtype in A, the other occurrences of predicate sub-
type may also affect the translation of x : A, as they may affect the content of these
axioms. The following example illustrates this situation.

Example 8.1.1. We consider a declaration x : Πy : {z : A | P}.{z : B | Q} where
both A and B are λ-HOL types. In this setting, {z : B | Q} is the only strictly positive

126



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

occurrence of a predicate subtype in Πy : {z : A | P}.{z : B | Q}.

Yet, the translation of this declaration is affected by the two predicates subtypes, as
the emitted axiom will correspond to h1 : JΠy : {z : A | P}.QK[xy/z], which is equal to
h1 : Πy : A.Πh2 : JP K[y/z].JQK[xy/z].

We summarize this whole informal analysis as the following core ideas leading to the
definition of the translation J·K:

• Every declaration of the form x : A is translated as x : [A], h1 : P1, ..., hn : Pn,
where each axiom Pi corresponds to some strictly positive occurrence of a predicate
subtype in A.

• In a similar way, every expression of the form Πx : A.Q is translated as Πx :
[A].Πh1 : P1...Πhn : Pn.JQK, where each axiom Pi corresponds to some strictly
positive occurrence of a predicate subtype in A.

• In all other cases, the translation J·K acts like the erasure function. In particular,
J〈t, p〉AK = Jπ1(t)K = JtK.

8.2 The translation of expressions and stratified contexts

As presented in the previous section, the definition of the translation J·K depends cru-
cially on the computation of strictly positive occurrences in a type. These occurrences
will be ordered from the root of a type toward its leafs. The following algorithm
Occurrence(A, i) computes, whenever it exists, the subterm corresponding to the i-th
strictly positive occurrence of a type A. In order to define an algorithm that is stable
under α-renaming, we record all bound variables admitting this subterm in their scope,
using the binder λ.

Definition 8.2.1. Given some PVS-Cert type A and some index i, we define the partial
algorithm Occurrence(A, i) by recursion on i. The result, whenever it exists, has the
form λx1 : A1...λxn : An.B. The possible cases are the following.

• Occurrence(A, 0) = A

• Occurrence(Prop, i+ 1) fails

• Occurrence(X, i+ 1) fails

• Occurrence(Πx : A.B, i + 1) is defined as follows. If Occurrence(B, i) re-
turns some term of the form λx1 : A1...λxn : An.B

′ successfully, return λx :
A.Occurrence(B, i). Else, fail.

• Occurrence({x : A | P}, i + 1) is defined as follows. If Occurrence(A, i)
returns some term of the form λx1 : A1...λxn : An.A successfully, return it. Else,
fail.

127



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

Remark 8.2.1. The decomposition of the result as a term of the form λx1 : A1...λxn :
An.B is not ambiguous: as B refers to a type, its root cannot be the binder λ.

The first basic property needed to use this definition is to determine, for every type
A, the domain on which the algorithm Occurrence(A, ·) succeeds. For this purpose,
we define a well-suited notion of size of a type as follows. We emphasize that this specific
notion of size does not correspond to the usual notions of height or length.

Definition 8.2.2. For any PVS-Cert type A, we define Size(A) recursively:

• Size(X) = 0

• Size(Prop) = 0

• Size({x : A | P}) = Size(A) + 1

• Size(Πx : A.B) = Size(B) + 1

Using this algorithm, the domain of the algorithm Occurrence(A, ·) is character-
ized in the following way.

Proposition 8.2.1. Occurrence(A, i) succeeds if and only if i ≤ Size(A).

Proof. The proof is straightforward by induction on A.

The translation J·K also relies on the definition of new proof variables corresponding
to the axioms and hypotheses added through the translation. This definition will be
based on the following notion of injective indexing.

Definition 8.2.3. An injective indexing h(x, i) is an injective function mapping any
expression variable x and any index i to some proof variable.

We also present the following notation, which eases the presentation of the transla-
tion.

Definition 8.2.4. Given any context Γ of the form v1 : T1, ..., vn : Tn, we denote any
term of the form Πv1 : T1...Πvn : Tn.M (resp. λv1 : T1...λvn : Tn.M) as Π(Γ).M (resp.
λ(Γ).M).

For instance, the expression Πx : A.Πy : B.P can be denoted Π(x : A, y : B).P

Using these definitions and notations, the translation of expressions is defined as
follows.

Definition 8.2.5. Given any injective indexing h(·, ·), we define three partial algorithms:

• Axioms(x : A), which translates a PVS-Cert declaration of the form x : A into a
λ-HOL context of the form h1 : P1, ..., hn : Pn

128



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

• JtK, which translates a PVS-Cert expression into a λ-HOL expression

• JΓK, which translates a PVS-Cert stratified context into a λ-HOL context

The dependence to the injective indexing h(·, ·) is left implicit in order to avoid burdening
the notations. The two first algorithms are defined by mutual recursion.

Axioms(x : A) is defined as follows. We first consider I the set of all indexes
i ∈ {0, ...,Size(A)} such that Occurrence(A, i) outputs some term of the form λx1

i :
A1
i ...λx

ni
i : Anii .{yi : Bi | Pi}. In this setting, Axioms(x : A) is the context containing,

for all i ∈ I, in increasing order, the declarations h(x, i) : (Πx1
i : [A1

i ].Π(Axioms(x1
i :

A1
i ))...Πx

ni
i : [Anii ].Π(Axioms(xnii : Anii )).JPiK[xx1

i ..., x
ni
i /yi]).

The algorithm JtK is defined as follows.

• JxK = x

• JΠx : A.P K = Πx : [A].Π(Axioms(x : A)).JP K.

• JΠh : P.QK = Πh : JP K.JQK

• Jλx : A.tK = λx : [A].JtK

• JtuK = JtKJuK

• J〈t,M〉AK = JtK

• Jπ1(t)K = JtK

The algorithm JΓK is defined recursively, using the stratification theorem. The possible
cases are the following.

• J∅K = ∅

• JΓ, X : TypeK = JΓK, X : Type

• JΓ, x : AK = JΓK, x : [A],Axioms(x : A)

• JΓ, h : P K = JΓK, h : JP K

In the following, we will use without justification the fact that, given any injective
indexing h(·, ·), the associated algorithms Axioms(x : A), JtK, and JΓK are stable under
α-renaming. This property is a direct consequence of the fact that λ-HOL types and
expressions do not contain any free proof variable, which will be presented in Proposition
8.3.3.

Using the definition of the translation of contexts, the propositions of the form
Πx1

i : [A1
i ].Π(Axioms(x1

i : A1
i ))...Πx

ni
i : [Anii ].Π(Axioms(xnii : Anii )).JPiK[xx1

i ..., x
ni
i /yi]

appearing in the definition of Axioms will be often designated using the lighter notation

129



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

ΠJx1
i : A1

i , ..., x
ni
i : Anii K.JPiK[xx1

i ..., x
ni
i /yi].

The first property we shall prove is the termination of this translation algorithm.

Proposition 8.2.2. Given any injective indexing h(·, ·), the three associated algorithms
Axioms(x : A), JtK, and JΓK terminate.

Proof. We first prove that for all n, Axioms(x : A) and JtK terminate as long as the
height of A (resp. t) is less or equal to n by induction on n. The only difficult case is the
termination of Axioms(x : A), in which we conclude by noticing that every recursive
call of the form Axioms(xji : Aji ) or JPiK occurring in this definition is such that Aji
(resp. Pi) is a strict subterm of A. We conclude the termination of the third algorithm
JΓK by induction on the length of contexts.

We can already prove that this translation leaves λ-HOL expressions and λ-HOL
stratified contexts unchanged, which is the first result expected from this translation.

Proposition 8.2.3. The following statements hold.

• For every λ-HOL declaration of the form (x : A), Axioms(x : A) = ∅

• For every λ-HOL expression t, JtK = t

• For every λ-HOL stratified context Γ, JΓK = Γ

Proof. The first property is straightforward as a λ-HOL type does not contain any
subterm of the form {y : B | Q}. The other properties follow by induction on their
respective arguments.

Before showing the expected conservativity property of J·K, which will lead to the
conservativity of PVS-Cert over λ-HOL, we will first prove that this translation is sound
in the sense that, whenever some judgement of the form Γ ` t : A is derivable in PVS-
Cert, JΓK ` JtK : [A] is derivable in λ-HOL. This soundness property will be proved in
Proposition 8.4.4. This property, as well as the conservativity property itself, relies on
several properties of λ-HOL, presented in the next section. The expected soundness
property will be shown after, followed by the expected conservativity results.

8.3 Properties of λ-HOL

The PTS λ-HOL is defined as a subsystem of PVS-Cert in Definition 4.2.1. In this
setting, some properties, such as the free variable theorem or the stratification theorem,
hold by definition on λ-HOL derivations.

The soundness and the conservativity of the translation J·K are based on several
properties of λ-HOL. We first present properties that also hold in PVS-Cert, and that
have been already presented for this system.

130



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

8.3.1 Subderivations, renaming, thinning, substitution

The following theorem is the adaptation of the subderivations theorem to λ-HOL.

Theorem 8.3.1. For any derivation of a judgement Γ `WF or Γ `M : U in λ-HOL,
the following properties hold:

• For any prefix Γ′ of Γ, there exists a subderivation of Γ′ `WF

• For any prefix Γ′, v : T of Γ, there exists a subderivation of Γ′ ` T : s(v)

• In the case Γ `M : U , there exists a subderivation of conclusion Γ `M : T where
T ≡β U and the last inference step matches some instance of the rule determined
by M (App for an application, etc.).

Proof. The proof is similar to the proof given for PVS-Cert.

The following theorem is the adaptation of the renaming theorem to λ-HOL.

Theorem 8.3.2. For any λ-HOL derivation of height n and conclusion Γ ` M : N
where the last inference step matches some instance of a rule R, the following holds:

1. If R = App and v is its variable parameter, for any v ∈ Vs(v)\DV (Γ), the last
inference step matches some instance of R of variable parameter v.

2. If R = Prod or R = Lam and if v is its variable parameter, for any v ∈
Vs(v)\DV (Γ), there exists a λ-HOL derivation of height n and conclusion Γ `
M : N such that the last inference step matches some instance of R of variable
parameter v.

Proof. The proof is similar to the proof given for PVS-Cert.

The following theorem is the adaptation of the thinning theorem to λ-HOL.

Theorem 8.3.3. If Γ `M : N and ∆ `WF are derivable in λ-HOL with Γ ⊆ ∆, then
∆ `M : N is derivable in λ-HOL.

Proof. The proof is similar to the proof given for PVS-Cert.

The following theorem is the adaptation of the substitution theorem to λ-HOL.

Theorem 8.3.4. If

• Γ, v : T,∆ `M : U (resp. Γ, v : T,∆ `WF ) is derivable in λ-HOL

• Γ ` N : T is derivable in λ-HOL

then Γ,∆[N/v] `M [N/v] : U [N/v] (resp. Γ,∆[N/v] `WF ) is derivable in λ-HOL too.

Proof. The proof is similar to the proof given for PVS-Cert.

131



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

8.3.2 Technical properties in λ-HOL

The following technical properties will be useful in the proof of soundness of the trans-
lation function J·K. They are not specific to λ-HOL. In particular, they could be proved
in PVS-Cert as well.

Proposition 8.3.1. For every judgement of the form Γ, v1 : T1, ..., vn : Tn ` P : Prop
such that v1, ..., vn ∈ Vproofs ∪ Vexpressions, the two following statements are equivalent.

• Γ, v1 : T1, ..., vn : Tn ` P : Prop is derivable in λ-HOL.

• The variables vi are pairwise distinct, they do not appear in DV (Γ), and
Γ ` Π(v1 : T1, ..., vn : Tn).P : Prop is derivable in λ-HOL.

Proof. The proof is done by induction on n. The case n = 0 is straightforward. When-
ever the statement holds for some n, we prove it for n+ 1 in the following way.

If Γ, v1 : T1, ..., vn+1 : Tn+1 ` P : Prop, then, by the free variable theorem, the
variables vi are pairwise distinct and do not appear in DV (Γ). We define P ′ = Π(v2 :
T2, ..., vn+1 : Tn+1).P . By induction hypothesis with the variables v2, ..., vn+1, the judge-
ment Γ, v1 : T1 ` P ′ : Prop is derivable in λ-HOL. Using the stratification theorem, one
of the following statements holds.

• v1 : T1 has the form x : A with x an expression variable and A a type. In this case,
by the λ-HOL subderivations theorem 8.3.1, Γ ` A : Type is derivable in λ-HOL.
Hence, applying the rule Prod, Γ ` Πx : A.P ′ : Prop is derivable in λ-HOL, as
expected.

• v1 : T1 has the form h : Q with h an proof variable and Q an expression. In this
case, we conclude in a similar way.

On the other hand, if the variables vi are pairwise distinct, do not appear in DV (Γ),
and if Γ ` Π(v1 : T1, ..., vn+1 : Tn+1).P : Prop is derivable in λ-HOL, we first apply
the induction hypothesis on v1, ..., vn to conclude that Γ, v1 : T1, ..., vn : Tn ` Πvn+1 :
Tn+1.P : Prop is derivable in λ-HOL. Then, we conclude the expected result by the
λ-HOL subderivations theorem 8.3.1 and the λ-HOL renaming theorem 8.3.2.

Proposition 8.3.2. For every judgement of the form Γ, v1 : T1, ..., vn : Tn ` p : P such
that v1, ..., vn ∈ Vproofs ∪ Vexpressions, the two following statements are equivalent.

• Γ, v1 : T1, ..., vn : Tn ` p : P is derivable in λ-HOL

• The variables vi are pairwise distinct, do not appear in DV (Γ), and Γ ` λ(v1 :
T1, ..., vn : Tn).p : Π(v1 : T1, ..., vn : Tn).P is derivable in λ-HOL

Proof. The proof is done by induction on n, and similar to the proof of Proposition 8.3.1.
The case n = 0 is straightforward. Whenever the statement holds for some n, we prove

132



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

it for n+ 1 in the following way.

If Γ, v1 : T1, ..., vn+1 : Tn+1 ` p : P , then, by the free variable theorem, the variables
vi are pairwise distinct and do not appear in DV (Γ). We define p′ = λ(v2 : T2, ..., vn+1 :
Tn+1).p and P ′ = Π(v2 : T2, ..., vn+1 : Tn+1).P . By induction hypothesis with the
variables v2, ..., vn+1, the judgement Γ, v1 : T1 ` p′ : P ′ is derivable in λ-HOL. Using the
stratification theorem, one of the following statements holds.

• v1 : T1 has the form x : A with x an expression variable and A a type. In this case,
by the λ-HOL subderivations theorem 8.3.1, Γ ` A : Type is derivable in λ-HOL.
On the other hand, by Theorem 5.2.3 and the stratification theorem, ΓP ′ : Prop
is derivable in λ-HOL. Hence, applying the rule Prod, Γ ` Πx : A.P ′ : Prop
is derivable in λ-HOL and applying the rule Lam, Γ ` λx : A.p′ : Πx : A.P ′ is
derivable in λ-HOL, as expected.

• v1 : T1 has the form h : Q with h an proof variable and Q an expression. In this
case, we conclude in a similar way.

On the other hand, if the variables vi are pairwise distinct, do not appear in DV (Γ),
and if Γ ` λ(v1 : T1, ..., vn+1 : Tn+1).p : Π(v1 : T1, ..., vn+1 : Tn+1).P is derivable in
λ-HOL, we first apply the induction hypothesis on v1, ..., vn to conclude that Γ, v1 :
T1, ..., vn : Tn ` λvn+1 : Tn+1.p : Πvn+1 : Tn+1.P is derivable in λ-HOL. Then, we
conclude the expected result by the λ-HOL subderivations theorem 8.3.1 and the λ-
HOL renaming theorem 8.3.2.

8.3.3 Specific properties of λ-HOL

The list of useful properties of λ-HOL is ended in this section with properties that are
specific to λ-HOL and do not hold in PVS-Cert. The main property which is specific to
λ-HOL is the fact that proofs never appear free in λ-HOL types and expressions.

Proposition 8.3.3. The two following statements hold.

• Whenever a type A belongs to the syntax of λ-HOL, it contains no free variable of
Vproofs nor Vexpressions.

• Whenever an expression t belongs to the syntax of λ-HOL, it contains no free
variable of Vproofs.

Proof. The first statement is straightforward by induction on types, using the fact there
is no type of the form {x : A | P} in λ-HOL.

The second statement is straightforward by induction on expressions, using the first
statement and the fact that there is no expression of the form 〈t,M〉A in λ-HOL.

The following proposition is a direct consequence of Proposition 8.3.3.

133



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

Proposition 8.3.4. We consider any context Γ, any expressions t, u1, ..., un and any
types B,A1, ..., An such that the following judgements are derivable in λ-HOL.

• Γ ` t : Π(x1 : A1, ..., xn : An).B

• Γ ` ui : Ai for all i ∈ {1, ..., n}

Then Γ ` tu1...un : B is derivable in λ-HOL.

Proof. The proof is done by induction on n, and similar to the proof of Proposition 8.3.1.
The case n = 0 is straightforward. Whenever the statement holds for some n, we prove
it for n+ 1 in the following way. We consider judgements of the following form.

• Γ ` t : Πx1 : A1...Πxn+1 : An+1.B

• Γ ` ui : Ai for all i ∈ {1, ..., n+ 1}

By induction hypothesis, Γ ` tu1...un : Πxn+1 : An+1.B is derivable in λ-HOL. By
Proposition 8.3.3, B[un+1/xn+1] = B. Hence, applying the rule App, Γ ` tu1...unun+1 :
B is derivable, as expected.

This section is ended with the following strengthening property, which follows from
Proposition 8.3.3.

Proposition 8.3.5. For every contexts ∆ ⊆ Γ such that Γ can be obtained from ∆ by
adding only declarations of the form (h : P ), the following statements hold.

• Whenever Γ `WF is derivable in λ-HOL, so is ∆ `WF

• Whenever Γ ` Type : Kind is derivable in λ-HOL, so is ∆ ` Type : Kind

• Whenever some judgement of the form Γ ` A : Type is derivable in λ-HOL, so is
∆ ` A : Type

• Whenever some judgement of the form Γ ` t : A is derivable in λ-HOL, so is
∆ ` t : A

Proof. The four statements are proved together by induction on the corresponding λ-
HOL derivation. The possible cases are the following.

• The case Empty is straightforward.

• The case Decl is proved in the following way. Discarding the notations in the
original statement and using the stratification theorem, we can suppose that the
last inference step matches one of the following instances:

–
Γ ` A : Type

Decl x ∈ Vexpressions\DV (Γ)
Γ, x : A `WF

134



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

–
Γ ` Type : Kind

Decl X ∈ Vtypes\DV (Γ)
Γ, X : Type `WF

–
Γ ` P : Prop

Decl h ∈ Vproofs\DV (Γ)
Γ, h : P `WF

The two first cases are straightforward by induction hypothesis. The last case splits
into two subcases, depending on whether the declaration (h : P ) belongs to ∆. If
(h : P ) ∈ ∆, we conclude directly by induction hypothesis. Else, we first prove by
induction hypothesis that ∆ ` P : Prop is derivable in λ-HOL, and conclude the
expected result by the λ-HOL subderivations theorem 8.3.1.

• The case Sort is straightforward for the two axioms by induction hypothesis.

• The case Var is proved in the following way. Discarding the notations in the
original statement and using the stratification theorem, we can suppose that the
last inference step matches one of the following instances:

– Γ `WF Var (x : A) ∈ Γ
Γ ` x : A

– Γ `WF Var (X : Type) ∈ Γ
Γ ` X : Type

In both cases, the corresponding declaration belongs to ∆, hence we can conclude
directly by induction hypothesis.

• The cases Prod, Lam, App, and Conversion are straightforward by induction
hypothesis.

8.4 Soundness of the translation

This section is dedicated to the proof of the soundness of the translation J·K, presented
in Theorem 8.4.4. This theorem expresses, among others, the fact that whenever some
judgement Γ ` t : A is derivable in PVS-Cert, JΓK ` JtK : [A] is derivable in λ-HOL.

The following proposition on the erasing function [·] will be used in the proof of
soundness to handle in particular the case of applications and conversions.

Proposition 8.4.1. The following statements hold.

• For all type A, any expression variable x, and any expression t, [A[t/x]] = [A]

• For all type A, any expression variable x, and any expression t, [A][t/x] = [A]

• For all types A and B, A ≡β∗ B implies [A] = [B].

135



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

Proof. The two first statements are proved straightforwardly by induction on A. The
last statement is also proved by induction on A, using Theorem 5.3.2.

The proof of Proposition 8.4.4 also uses two technical properties of the algorithm
Occurrence. The first one is the following.

Proposition 8.4.2. For any type A and any index i, whenever Occurrence(A, i)
outputs some term of the form λ(x1 : A1, ..., xn : An).B, then [A] = Π(x1 : [A1], ..., xn :
[An]).[B].

Proof. The proof is straightforward by induction on A.

The second technical property of the algorithm Occurrence used in the proof of
Proposition 8.4.4 is the following.

Proposition 8.4.3. For any derivation of some judgement of the form Γ ` A : Type
and any index i such that Occurrence(A, i) outputs some term of the form λ(x1 :
A1, ..., xn : An).B where the bound variables xi are α-renamed to be pairwise distinct and
different from the variables of DV (Γ), the judgement Γ, x1 : A1, ..., xn : An ` B : Type
admits some derivation whose height is smaller than or equal to the height of the original
derivation.

Proof. The proof is done by induction on A. Discarding the notation A, the possible
cases are the following.

• The cases X and Prop are straightforward.

• The case Πx : A.B is proved as follows. If i = 0, the result is straightforward. If
i > 0, Occurrence(B, i) outputs a term of the form λ(x1 : A1, ..., xn : An).B′,
and Occurrence(Πx : A.B, i) = λ(x : A, x1 : A1, ..., xn : An).B′. If the variables
x, x1, ..., xn are chosen to be pairwise distinct and different from the variables in
DV (Γ), then, by the subderivations theorem and the renaming theorem, Γ, x : A `
B : Type is derivable with some derivation of smaller height than the derivation
of Γ ` Πx : A.B : Type. Hence, we can conclude the expected result directly by
induction hypothesis.

• The case {x : A | P} is proved as follows. If i = 0, the result is straightforward.
If i > 0, Occurrence(A, i) outputs a term of the form λ(x1 : A1, ..., xn : An).B′,
and Occurrence({x : A | P}, i) = Occurrence(A, i). By the subderivations
theorem, Γ ` A : Type is derivable with some derivation of smaller height than the
derivation of Γ ` {x : A | P} : Type. Hence, if the variables x1, ..., xn are chosen
to be pairwise distinct and different from the variables in DV (Γ), we can conclude
the expected result directly by induction hypothesis.

The following technical definition will be useful both in the proof of Proposition 8.4.4
and in the proof of the conservativity of J·K presented in Theorem 8.5.1.

136



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

Definition 8.4.1. For any number k, we define the following notations.

• Axioms(x : A)<k is the restriction of Axioms(x : A) to declarations corresponding
to i ∈ I ∩ {0, ..., k − 1}.

• Axioms(x : A)≥k is the restriction of Axioms(x : A) to declarations corresponding
to i ∈ I\{0, ..., k − 1}.

The soundness of the translation J·K is expressed and proved as follows.

Proposition 8.4.4. For any context Γ and any injective indexing h(·, ·) such that DV (Γ)
and the image of h(·, ·) are disjoint, the following statements hold.

• If Γ `WF is derivable, JΓK `WF is derivable in λ-HOL

• If Γ ` Type : Kind is derivable, JΓK ` Type : Kind is derivable in λ-HOL

• If Γ ` A : Type is derivable, JΓK ` [A] : Type is derivable in λ-HOL

• If Γ ` t : A is derivable, JΓK ` JtK : [A] is derivable in λ-HOL

Proof. These four statements are proved together by induction on the height of the
corresponding derivation. The possible cases are the following:

• The case Empty is straightforward

• The case Decl is proved in the following way. Discarding the notations in the
original statement and using the stratification theorem, we can suppose that the
last inference step matches one of the following instances:

–
Γ ` A : Type

Decl x ∈ Vexpressions\DV (Γ)
Γ, x : A `WF

This case is the most complex one. In order to prove that the judgement
JΓK, x : [A],Axioms(x : A) ` WF is derivable in λ-HOL, we prove that for
all k, JΓK, x : [A],Axioms(x : A)<k `WF is derivable in λ-HOL by induction
on k and conclude choosing k = Size(A) + 1.

On the one hand, by induction hypothesis, JΓK ` [A] : Type is derivable in λ-
HOL. Moreover, as DV (Γ) and DV (JΓK) share the same expression variables,
x 6∈ DV (JΓK). Hence, JΓK, x : [A] ` WF is derivable in λ-HOL. As a con-
sequence JΓK, x : [A],Axioms(x : A)<k `WF is derivable in λ-HOL for k = 0.

On the other hand, supposing that JΓK, x : [A],Axioms(x : A)<k ` WF
is derivable in λ-HOL for some k, we prove that JΓK, x : [A],Axioms(x :
A)<k+1 `WF is derivable in λ-HOL in the following way. We consider I the
set of all indexes i ∈ {0, ...,Size(A)}, such that Occurrence(A, i) outputs
some term of the form λ(x1 : A1, ..., xn : An).{y : B | P}. If k 6∈ I, the result

137



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

is straightforward as Axioms(x : A)<k+1 = Axioms(x : A)<k.

If k ∈ I, Occurrence(A, i) outputs some term of the form λ(x1 : A1, ..., xn :
An).{y : B | P}. In the following, we use the notation ∆ = JΓK, x :
[A],Axioms(x : A)<k. As mentioned in Remark ??, Axioms(x : A) is sta-
ble under α-renaming, hence we can choose the variables x1, ..., xn, y to be
to be pairwise distinct and different from any variable in ∆. The expected
result is the derivability of ∆, h(x, k) : Πx1 : [A1].Π(Axioms(x1 : A1))...Πxn :
[An].Π(Axioms(xn : An)).JP K[xx1...xn/y] ` WF in λ-HOL. Using the def-
inition of the translation on contexts, this judgement will be expressed as
∆, h(x, k) : ΠJx1 : A1, ..., xn : AnK.JP K[xx1...xn/y] `WF .

We first verify that h(x, k) 6∈ DV (∆). As presented in the case k = 0,
x 6∈ DV (JΓK). The set DV (JΓK) only contains variables of DV (Γ) and vari-
ables that can be written h(z, j) with z ∈ DV (Γ). By hypothesis, h(x, k) 6∈
DV (Γ). Moreover, h(x, k) cannot be equal to some h(z, j) with z ∈ DV (Γ)
as x 6∈ DV (Γ) and h(·, ·) in injective. Hence, h(x, k) 6∈ DV (JΓK). On
the other hand, h(x, k) is different from x as it is not an expression vari-
able, and it is different any variable h(x, j) with j < k by injectivity of
h(·, ·). Therefore, h(x, k) 6∈ DV (∆). Thus, the expected judgement is deriv-
able in λ-HOL as long as the following judgement is derivable in λ-HOL:
∆ ` ΠJx1 : A1, ..., xn : AnK.JP K[xx1...xn/y] : Prop is derivable in λ-HOL.
This latter condition is proved in the following way.

As mentioned earlier, the variables x1, ..., xn are chosen to be pairwise distinct
and different from any variable in ∆. Moreover, using the injectivity of h(·, ·),
the proof variables declared in the contexts Axioms(xi : Ai) are pairwise dis-
tinct, and, following the same reasoning as done in the previous paragraph
for h(x, k), they do not belong to DV (∆). Hence, by Proposition 8.3.1, it
is sufficient to prove that ∆, Jx1 : A1, ..., xn : AnK ` JP K[xx1...xn/y] : Prop
is derivable in λ-HOL. By the λ-HOL substitution theorem 8.3.4, this can
be done by proving that ∆, Jx1 : A1, ..., xn : AnK, y : [B] ` JP K : Prop and
∆, Jx1 : A1, ..., xn : AnK ` xx1...xn : [B] are derivable in λ-HOL. These two
conditions are proved successively.

On the one hand, we prove that ∆, Jx1 : A1, ..., xn : AnK, y : [B] ` JP K : Prop
is derivable in λ-HOL in the following way. As mentioned earlier, the vari-
ables x1, ..., xn, y are pairwise distinct and different from any variable in ∆,
hence they are also different from any variable in Γ. Therefore, by Propo-
sition 8.4.3 followed by the subderivations theorem and the renaming the-
orem, Γ, x1 : A1, ..., xn : An, y : B ` P : Prop admits some derivation
of equal or smaller height than the derivation of Γ ` A : Type. Hence,
applying the induction hypothesis followed by Proposition 8.3.5, the judge-

138



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

ment JΓ, x1 : A1, ..., xn : AnK, y : [B] ` JP K : Prop is derivable in λ-HOL.
We conclude the expected result by the following combination of the λ-
HOL substitution theorem 8.3.3 and Proposition 8.3.1. By Proposition 8.3.1,
JΓK ` ΠJx1 : A1, ..., xn : AnK.Πy : [B].JP K : Prop is derivable in λ-HOL. By
induction hypothesis, ∆ ` WF is derivable in λ-HOL: hence, by the λ-HOL
substitution theorem 8.3.3, ∆ ` ΠJx1 : A1, ..., xn : AnK.Πy : [B].JP K : Prop
is derivable in λ-HOL. As the variables x1, ..., xn, y are different from any
variable in ∆, we can apply Proposition 8.3.1 in the opposite direction to
conclude that ∆, Jx1 : A1, ..., xn : AnK, y : [B] ` JP K : Prop is derivable in
λ-HOL.

On the other hand, we prove that ∆, Jx1 : A1, ..., xn : AnK ` xx1...xn : [B]
is derivable in λ-HOL in the following way. As proved in the previous para-
graph, the judgement ∆, Jx1 : A1, ..., xn : AnK, y : [B] ` JP K : Prop is deriv-
able in λ-HOL. Hence, by the subderivations theorem, the judgement ∆, Jx1 :
A1, ..., xn : AnK `WF is derivable in λ-HOL. Applying the rule Var and us-
ing Proposition 8.4.2, ∆, Jx1 : A1, ..., xn : AnK ` x : Πx1 : [A1]...Πxn : [An].[B]
is derivable in λ-HOL, as well as all judgements ∆, Jx1 : A1, ..., xn : AnK ` xi :
[Ai]. Hence, by Proposition 8.3.4, ∆, Jx1 : A1, ..., xn : AnK ` xx1...xn : [B] is
derivable in λ-HOL.

–
Γ ` Type : Kind

Decl X ∈ Vtypes\DV (Γ)
Γ, X : Type `WF

As the set of variablesDV (JΓK) only contains variables ofDV (Γ) and variables
that can be written h(y, i) for y ∈ DV (Γ), X 6∈ DV (JΓK), which allows to
conclude the expected result by induction hypothesis.

–
Γ ` P : Prop

Decl h ∈ Vproofs\DV (Γ)
Γ, h : P `WF

The set of variables DV (JΓK) only contains variables of DV (Γ) and variables
that can be written h(y, i). By hypothesis on h(·, ·), h is not equal to any
variable h(y, i), hence h 6∈ DV (JΓK). This allows to conclude the expected
result by induction hypothesis.

• The case Sort is straightforward for the two axioms by induction hypothesis.

• The case Var is proved in the following way. Discarding the notations in the
original statement and using the stratification theorem, we can suppose that the
last inference step matches one of the following instances:

– Γ `WF Var (x : A) ∈ Γ
Γ ` x : A

– Γ `WF Var (X : Type) ∈ Γ
Γ ` X : Type

139



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

Both cases are straightforward by induction hypothesis.

• The case Prod is proved as follows. Discarding the notations in the original state-
ment, using the stratification theorem, we can suppose that the last inference step
matches one of the following instances.

–
Γ ` P : Prop Γ, h : P ` Q : Prop

Prod
Γ ` Πh : P.Q : Prop

In this case, by the renaming theorem, we can suppose without loss of general-
ity that h does not belong to the image of h(·, ·) as the original derivation can
be transformed to a derivation of the same height and conclusion matching
this requirement. Using this hypothesis, we conclude directly by induction
hypothesis.

–
Γ ` A : Type Γ, x : A ` P : Prop

Prod
Γ ` Πx : A.P : Prop

In this case, by induction hypothesis, JΓK, x : [A],Axioms(x : A) ` JP K :
Prop is derivable in λ-HOL. We define the notation h1 : P1, ..., hn : Pn for
Axioms(x : A). As the context x : [A], h1 : P1, ..., hn : Pn contains no declara-
tion of the form (X : Type), the Proposition 8.3.1 can be applied to conclude
that JΓK ` Πx : [A].Πh1 : P1...Πhn : Pn.JP K : Prop is derivable, as expected.

–
Γ ` A : Type Γ, x : A ` B : Type

Prod
Γ ` Πx : A.B : Type

In this case, by induction hypothesis, JΓK ` [A] : Type and JΓK, x : [A],Axioms(x :
A) ` [B] : Type are both derivable in λ-HOL. By Proposition 8.3.5, JΓK, x :
[A] ` [B] : Type is derivable in λ-HOL, which allows to conclude the expected
result applying the rule Prod.

• The case Subtype is straightforward by induction hypothesis and the stratifica-
tion theorem.

• The case Lam is proved in the following way. Discarding the notations in the orig-
inal statement, using the stratification theorem, the last inference step matches
some instance of the form

Γ, x : A ` t : B Γ ` Πx : A.B : Type
Lam

Γ ` λx : A.t : Πx : A.B

140



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

By induction hypothesis, JΓK, x : [A],Axioms(x : A) ` JtK : [B] and JΓK ` Πx :
[A].[B] : Type are derivable. By Proposition 8.3.5, JΓK, x : [A] ` JtK : [B] is deriv-
able in λ-HOL, which allows to conclude the expected result applying the rule Lam.

• The case App is proved in the following way. Discarding the notations in the orig-
inal statement and using the stratification theorem, we can suppose that the last
inference step matches some instance of the form

Γ ` t : Πx : A.B Γ ` u : A
App

Γ ` tu : B[u/x]

By induction hypothesis and the application of the rule App, the judgement
JΓK ` JtuK : [B][JuK/x] is derivable in λ-HOL. We conclude the expected result
by Proposition 8.4.1, as [B[u/x]] = [B] = [B][JuK/x]].

• The cases Pair and Proj1 are straightforward by induction hypothesis and the
stratification theorem.

• The case Proj2 doesn’t occur by the stratification theorem.

• The case Conversion is proved in the following way. Discarding the notations in
the original statement and using the stratification theorem, the last inference step
matches some rule instance of the form

Γ ` t : A Γ ` B : Type
Conversion A ≡β∗ B

Γ ` t : B

By induction hypothesis, JΓK ` JtK : [A] and JΓK ` [B] : Type are derivable in
λ-HOL. By Proposition 8.4.1, [A] ≡β [B]. Hence, applying the λ-HOL conversion
rule, JΓK ` JtK : [B] is derivable in λ-HOL.

8.5 Conservativity of the translation

The main proof of conservativity uses two properties of the translation J·K, to handle in
particular the case of conversions and applications. The first proposition on the trans-
lation JtK is the following.

Proposition 8.5.1. For any expression variable x and any expression u, the two fol-
lowing statements hold.

• For any expression t, Jt[u/x]K = JtK[JuK/x].

141



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

• For any type A and any expression variable y 6= x, Axioms(y : A[u/y]) =
Axioms(y : A)[JuK/x]

This proposition relies on the following technical property of Occurrence, which
will be also useful in the proof of conservativity.

Lemma 8.5.1. For any type A, any expression t, any expression variable x, and any
index i, Occurrence(A, i) outputs some term of the form λ(x1 : A1, ..., xn : An).B if
and only if Occurrence(A[t/x], i) outputs some term of the form λ(x1 : A′1, ..., xn :
A′n).B′. Moreover, in this case, choosing the bound variables x1, ..., xn to be different
from x and outside FV (t), B′ = B[t/x] and A′i = Ai[t/x] for all i ∈ {1, ..., n}.

Proof. The proof is straightforward by induction on A.

Using this lemma, Proposition 8.5.1 is proved as follows.

Proof. [Proposition 8.5.1] The two statements are proved together by induction on the
height of t in the first statement, and A in the second statement.

In the first statement, the only difficult case is t = Πy : A.P : all other cases are
straightforward by induction hypothesis and Proposition 8.4.1. The case t = Πy : A.P
is proved as follows. We choose y to ensure that x 6= y and y 6∈ FV (JuK). More-
over, as the variables declared in Axioms(y : A) are only proof variables, they are
distinct form x and, by Proposition 8.3.3, they cannot occur free in the λ-HOL expres-
sions appearing Axioms(y : A). Hence, JtK[JuK/x] = Πy : [A][JuK/x].Π(Axioms(y :
A)[JuK/x]).JP K[JuK/x], and we conclude the expected result by Proposition 8.4.1 and by
induction hypothesis.

The case corresponding to the second statement is proved as follows. By straightfor-
ward induction on A, Size(A[u/x]) = Size(A). We consider I (resp. I ′) the set of all in-
dexes i ∈ {1, ...,Size(A)} such that Occurrence(A, i) (resp. Occurrence(A[u/x], i))
outputs some term of the form λ(x1 : A1, ..., xn : An).{y : B | P}. Using Lemma 8.5.1,
we first prove that I = I ′. We can conclude the expected result as long as we prove that,
for all i ∈ I, defining h : P (resp. h : P ′) the corresponding declaration in Axioms(y : A)
(resp. Axioms(y : A[u/x])), P ′ = [JuK/x]. This is done as follows.

We consider i ∈ I. Occurrence(A, i) has the form λ(x1 : A1, ..., xn : An).{z :
B | P}. We choose x1, ..., xn, z different from x and outside FV (JuK). By Lemma
8.5.1 again, the expected result becomes the equality between ΠJx1 : A1[u/x], ..., xn :
An[u/x]K.JP [u/x]K[yx1..., xn/z] and (ΠJx1 : A1, ..., xn : AnK.JP K[yx1..., xn/z])[JuK/x]. On
the one hand, the variables x1, ..., xn are different from x and outside FV (JuK). On
the other hand, so are the proof variables declared in Jx1 : A1, ..., xn : AnK by Propo-
sition 8.3.3. Hence, writing Jx1 : A1, ..., xn : AnK as x1 : [A1],Axioms(x1 : A1), ..., xn :
[An],Axioms(xn : An), applying Proposition 8.4.1 and the induction hypothesis on the
types A1, ..., An (which are strict subterms of A), we can conclude the expected equality

142



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

as long as we prove JP [u/x]K[yx1..., xn/z] = JP K[yx1..., xn/z][JuK/x]. This is done as
follows.

As z 6∈ FV (JuK) and z 6= x, using Lemma 5.1.1 the expressions JP K[yx1..., xn/z][JuK/x]
and JP K[JuK/x][(yx1..., xn)[JuK/x]/z] are equal. Moreover, the x1, ..., xn are distinct from
x, and, by hypothesis, so is y. Hence, JP K[yx1..., xn/z][JuK/x] = JP K[JuK/x][yx1..., xn/z],
and we conclude the expected result by induction hypothesis on the expression P , which
is a strict subterm of A.

The second proposition on the translation JtK is the following.

Proposition 8.5.2. The two following statements hold.

• For any expression t and t′ such that t ≡β∗ t′, JtK ≡β Jt′K

• For any expression variable x, for any types A and A′ such that A ≡β∗ A′, one can
write Axioms(x : A) = h1 : P1, ..., hn : Pn and Axioms(x : A′) = h1 : P ′1, ..., hn :
P ′n with, for all i ∈ {1, ..., n}, Pi ≡β P ′i

The proof of this proposition relies first on the following technical property of the
algorithm Occurrence.

Lemma 8.5.2. For any types A and A′ such that A →β∗ A
′, and any index i, the

algorithm Occurrence(A, i) outputs some term of the form λ(x1 : A1, ..., xn : An).B if
and only if Occurrence(A′, i) outputs some term of the form λ(x1 : A′1, ..., xn : A′n).B′.
Moreover, in this case, either B′ = B or B →β∗ B

′, and, for all i ∈ {1, ..., n}, either
A′i = Ai or A′i →β∗ Ai .

Proof. The proof is straightforward by induction on A.

The proof of Proposition 8.5.2 also relies on the following lemma.

Lemma 8.5.3. The two following statements hold.

• For any expression t and t′ such that t→β∗ t
′, JtK ≡β Jt′K

• For any expression variable x, for any types A and A′ such that A→β∗ A
′, one can

write Axioms(x : A) = h1 : P1, ..., hn : Pn and Axioms(x : A′) = h1 : P ′1, ..., hn :
P ′n with, for all i ∈ {1, ..., n}, Pi ≡β P ′i

Proof. The two statements are proved together by induction on the height of t in the
first statement, and A in the second statement. In the first statement, all cases are
straightforward by induction hypothesis and Proposition 8.4.1. The case corresponding
to the second statement is proved as follows.

By straightforward induction on A, Size(A) = Size(A′). We consider I (resp. I ′)
the set of all indexes i ∈ {1, ...,Size(A)} such that Occurrence(A, i) (resp. such that
Occurrence(A′, i)) outputs some term of the form λ(x1 : A1, ..., xn : An).{y : B | P}.

143



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

Using Lemma 8.5.2, we first prove that I = I ′. We can conclude the expected result
as long as we prove that, for all i ∈ I, defining h : P (resp. h : P ′) the corresponding
declaration in Axioms(y : A) (resp. Axioms(y : A′)), P ≡β P ′. This is done as follows.

We consider i ∈ I. Occurrence(A, i) has the form λ(x1 : A1, ..., xn : An).{z :
B | P}. Using Lemma 8.5.2 again, Occurrence(A′, i) has the form λ(x1 : A′1, ..., xn :
A′n).{z : B′ | P ′} with either P ′ = P or B →β∗ B

′, and, for all i ∈ {1, ..., n}, either A′i =
Ai or A′i →β∗ Ai. In this setting, the expected result becomes the equivalence between
ΠJx1 : A1, ..., xn : AnK.JP K[yx1..., xn/z] and ΠJx1 : A′1, ..., xn : A′nK.JP ′K[yx1..., xn/z]
using the conversion ≡β. Writing Jx1 : A1, ..., xn : AnK as x1 : [A1],Axioms(x1 :
A1), ..., xn : [An],Axioms(xn : An), we conclude the expected result applying Propo-
sition 8.4.1 and the induction hypothesis on the types A1, ..., An and the expression P
(which are all strict subterms of A).

Using this lemma, Proposition 8.5.2 is proved as follows.

Proof. [Proposition 8.5.2] The first statement is proved as follows. By Proposition 5.4.2
followed by Lemma 8.5.3, we first prove that whenever an expression t is such that
t→β∗ M for some term M , then M is an expression and JtK ≡β JMK. We conclude that
whenever an expression t is such that t�β∗ M for some term M , then M is an expres-
sion and JtK ≡β JMK by induction on the length of the reduction t �β∗ M . Finally, we
conclude the expected result by the Church-Rosser theorem.

The second statement is proved as follows. By Proposition 5.4.2 followed by Lemma
8.5.3, we first prove that whenever a type A is such that A →β∗ M for some term
M , then M is a type and one can write Axioms(x : A) = h1 : P1, ..., hn : Pn and
Axioms(x : M) = h1 : P ′1, ..., hn : P ′n with, for all i ∈ {1, ..., n}, Pi ≡β P ′i . We conclude
that whenever a type A is such that A�β∗ M for some term M , then M is a type and
the previous property holds for Axioms(x : A) and Axioms(x : M) by induction on
the length of the reduction A �β∗ M . Finally, we conclude the expected result by the
Church-Rosser theorem.

We will also use the following consequence of Lemma 8.5.2 in the proof of conserva-
tivity.

Lemma 8.5.4. For any types A and A′ such that A ≡β∗ A′, and any index i, the
algorithm Occurrence(A, i) outputs some term of the form λ(x1 : A1, ..., xn : An).B if
and only if Occurrence(A′, i) outputs some term of the form λ(x1 : A′1, ..., xn : A′n).B′.
Moreover, in this case, B ≡β∗ B′, and, for all i ∈ {1, ..., n}, A′i ≡β∗ Ai .

Proof. By Proposition 5.4.2 followed by Lemma 8.5.3, we first prove that whenever a
type A is such that A →β∗ M for some term M , then M is a type and the expected
statement holds for A and M .

144



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

We conclude that whenever a type A is such that A�β∗ M for some term M , then
M is a type and the expected statement holds for A and M by induction on the length
of the reduction t �β∗ M . Finally, we conclude the expected result in the general case
A ≡β∗ A′ by the Church-Rosser theorem.

Proposition 8.5.3. For any context Γ and any injective indexing h(·, ·) such that DV (Γ)
and the image of h(·, ·) are disjoint, the following statement hold. Whenever Γ ` t : A
is derivable and Occurrence(A, i) has the form λ(x1 : A1, ..., xn : An).{y : B | P}
for some index i, using the notations of the translations of contexts, the judgement
JΓK ` ΠJx1 : A1, ..., xn : AnK.JP K[JtKx1...xn/y] : Prop is derivable in λ-HOL.

Proof. We choose the variables x1, ..., xn, y pairwise distinct and outside DV (JΓK). By
Proposition 8.3.1, it is sufficient to prove that JΓ, x1 : A1, ..., xn : AnK ` JP K[JtKx1...xn/y] :
Prop is derivable in λ-HOL. By the λ-HOL substitution theorem 8.3.4, this can be done
by proving that JΓ, x1 : A1, ..., xn : AnK, y : [B] ` JP K : Prop and JΓ, x1 : A1, ..., xn :
AnK ` JtKx1...xn : [B] are derivable in λ-HOL. These two conditions are proved succes-
sively.

On the one hand, we prove that JΓ, x1 : A1, ..., xn : AnK, y : [B] ` JP K : Prop is deriv-
able in λ-HOL in the following way. By Theorem 5.2.3 and the stratification theorem,
Γ ` A : Type is derivable in PVS-Cert. As mentioned earlier, the variables x1, ..., xn, y
are pairwise distinct and different from any variable in DV (JΓK), hence they are also dif-
ferent from any variable in DV (Γ). Therefore, by Proposition 8.4.3 followed by the sub-
derivations theorem and the renaming theorem, Γ, x1 : A1, ..., xn : An, y : B ` P : Prop
is derivable in PVS-Cert. As a consequence, by the soundness proposition 8.4.4 followed
by Proposition 8.3.5, the judgement JΓ, x1 : A1, ..., xn : AnK, y : [B] ` JP K : Prop is
derivable in λ-HOL, as expected.

On the other hand, we prove that JΓ, x1 : A1, ..., xn : AnK ` JtKx1...xn : [B] is
derivable in λ-HOL in the following way. As proved in the previous paragraph, the
judgement JΓ, x1 : A1, ..., xn : AnK, y : [B] ` JP K : Prop is derivable in λ-HOL. Hence, by
the subderivations theorem, the judgement JΓ, x1 : A1, ..., xn : AnK ` WF is derivable
in λ-HOL. By the soundness proposition 8.4.4 and Proposition 8.4.2, JΓK ` JtK : Πx1 :
[A1]...Πxn : [An].[B] is derivable in λ-HOL. Hence, by the λ-HOL substitution theorem
8.3.3, JΓ, x1 : A1, ..., xn : AnK ` JtK : Πx1 : [A1]...Πxn : [An].[B] is derivable in λ-HOL. On
the other hand, using the rule Var, all judgements JΓ, x1 : A1, ..., xn : AnK ` xi : [Ai] are
derivable in λ-HOL. Hence, by Proposition 8.3.4, JΓ, x1 : A1, ..., xn : AnK ` JtKx1...xn :
[B] is derivable in λ-HOL.

The conservativity property of the translation J·K is expressed and proved as follows.

Theorem 8.5.1. For any context Γ and any injective indexing h(·, ·) such that DV (Γ)
and the image of h(·, ·) are disjoint, the following statements hold.

145



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

• If Γ ` p : P is derivable, there exists a proof term q such that JΓK ` q : JP K is
derivable in λ-HOL

• If Γ ` t : A is derivable and Occurrence(A, i) has the form λx1 : A1...λxn :
An.{y : B | P} for some index i, there exists a proof term p such that the judgement
JΓK ` p : ΠJx1 : A1, ..., xn : AnK.JP K[JtKx1...xn/y] is derivable in λ-HOL.

Proof. These two statements are proved together by induction on the height of the
corresponding derivation. Discarding the notations p and P , the possible cases are the
following.

• The cases Empty and Decl cannot occur by hypothesis.

• The case Sort cannot occur by the stratification theorem.

• The case Var is proved in the following way. By the stratification theorem, the
last inference step matches one of the following instances.

– Γ `WF Var (h : P ) ∈ Γ
Γ ` h : P

As (h : P ) ∈ Γ, (h : JP K) ∈ JΓK. By Proposition 8.4.4, JΓK ` WF is derivable
in λ-HOL, hence JΓK ` h : JP K is derivable in λ-HOL.

– Γ `WF Var (x : A) ∈ Γ
Γ ` x : A

We consider some index i such that Occurrence(A, i) has the form λx1 :
A1...λxn : An.{y : B | P}. We find the expected proof in the following way.

By Proposition 8.2.1, i ≤ Size(A). In this setting, as (x : A) ∈ Γ, h(x, i) :
ΠJx1 : A1, ...,Πxn : AnK.JP K[xx1...xn/y] ∈ JΓK. By Proposition 8.4.4, JΓK `
WF is derivable in λ-HOL. Hence, using the Var rule, JΓK ` h(x, i) : ΠJx1 :
A1, ...,Πxn : AnK.JP K[xx1...xn/y] is derivable in λ-HOL.

• The case Prod is proved in the following way. Using the stratification theorem,
we can suppose that the last inference step matches one of the following instances.

–
Γ ` P : Prop Γ, h : P ` Q : Prop

Prod
Γ ` Πh : P.Q : Prop

Occurrence(Prop, i) is well-defined only if i = 0 and, in this case, its value
is Prop. In this setting, the expected result is straightforward.

–
Γ ` A : Type Γ, x : A ` P : Prop

Prod
Γ ` Πx : A.P : Prop

146



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

Occurrence(Prop, i) is well-defined only if i = 0 and, in this case, its value
is Prop. In this setting, the expected result is straightforward.

• The case Lam is proved in the following way. Using the stratification theorem, we
can suppose that the last inference step matches one of the following instances.

–
Γ, h : P ` q : Q Γ ` Πh : P.Q : Prop

Lam
Γ ` λh : P.q : Πh : P.Q

By the renaming theorem, we can suppose without loss of generality that
h does not belong to the image of h(·, ·) as the original derivation can be
transformed to a derivation of the same height and conclusion matching this
requirement. In this setting, we can conclude the expected result directly
applying the induction hypothesis on the first premise and Proposition 8.4.4
on the second one.

–
Γ, x : A ` p : P Γ ` Πx : A.P : Prop

Lam
Γ ` λx : A.p : Πx : A.P

In this case, by induction hypothesis, there exists some proof q such that
JΓK, x : [A],Axioms(x : A) ` q : JP K is derivable in λ-HOL. Hence, by Propo-
sition 8.3.2, there exists a proof q′ such that JΓK ` q′ : JΠx : A.P K is derivable
in λ-HOL.

–
Γ, x : A ` t : B Γ ` Πx : A.B : Type

Lam
Γ ` λx : A.t : Πx : A.B

We consider some index i such that Occurrence(Πx : A.B, i) has the form
λx1 : A1...λxn : An.{y : B′ | P}: in this case, i > 0, and Occurrence(Πx :
A.B, i) = λx : A.Occurrence(B, i − 1). Hence, A1 = A and, choosing
x1 = x, Occurrence(B, i − 1) = λx2 : A2...λxn : An.{y : B′ | P}. We find
the expected proof in the following way.

By induction hypothesis, there exists a proof p such that JΓK, x : [A],Axioms(x :
A) ` p : ΠJx2 : A2, ..., xn : AnK.JP K[JtKx2...xn/y] is derivable in λ-HOL. Hence,
by Proposition 8.3.2, there exists a proof q such that JΓK ` q : ΠJx : A, x2 :
A2, ..., xn : AnK.JP K[JtKx2...xn/y] is derivable in λ-HOL.

We notice that JtKx2...xn ≡β∗ Jλx : A.tKxx2...xn. Hence, we can conclude the
expected result by conversion as long as we prove that JΓK ` ΠJx : A, x2 :
A2, ..., xn : AnK.JP K[Jλx : A.tKxx2...xn/y] : Prop is derivable in λ-HOL, which
is the case by Proposition 8.5.3.

• The case App is the most complex one. It is proved in the following way. Using
the stratification theorem, we can suppose that the last inference step matches one

147



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

of the following instances.

–
Γ ` p : Πh : P.Q Γ ` q : P

App
Γ ` pq : Q[q/h]

In this case, we conclude directly by induction hypothesis and Proposition
8.5.1.

–
Γ ` p : Πx : A.P Γ ` t : A

App
Γ ` pt : P [t/x]

By the renaming theorem, we can suppose without loss of generality that
x 6∈ DV (Γ). By induction hypothesis, there exists a proof q such that
JΓK ` q : Πx : [A].Π(Axioms(x : A)).JP K is derivable in λ-HOL. By Propo-
sition 8.4.4, JΓK ` JtK : [A] is derivable in λ-HOL. Hence, JΓK ` qJtK :
(Π(Axioms(x : A)).JP K)[JtK/x] is derivable in λ-HOL.

Starting from this result, we prove by induction that for all k, there exists a
proof qk such that JΓK ` qk : (Π(Axioms(x : A)≥k).JP K)[JtK/x] is derivable in
λ-HOL. The case k = 0 corresponds to the previous derivation with q0 = qJtK.

Supposing that JΓK ` qk : (Π(Axioms(x : A)≥k).JP K)[JtK/x] is derivable in λ-
HOL for some k, we find a proof qk+1 in the following way. We consider I the
set of all indexes i ∈ {0, ...,Size(A)} such that Occurrence(A, i) outputs
some term of the form λx1 : A1...λxn : An.{y : B | Q}. If k 6∈ I, the expected
result is straightforward, taking qk+1 = qk.

If k ∈ I, Occurrence(A, k) outputs some term of the form λx1 : A1...λxn :
An.{y : B | Q}. We choose x1, ..., xn, y pairwise distinct, different from x, and
outside DV (Γ). In the following, we use the notation P ′ = (Π(Axioms(x :
A)≥k+1).JP K)[JtK/x]. The proof variable h(x, k) is distinct from the expres-
sion variable x, and cannot occur free in JtK by Proposition 8.3.3. Hence,
the expression (Π(Axioms(x : A)≥k).JP K)[JtK/x] corresponds to the following
one: Πh(x, k) : (ΠJx1 : A1, ..., xn : AnK.JQK[xx1...xn/y])[JtK/x].P ′.

As the variables x1, ..., xn, y are pairwise distinct and outside DV (Γ), we
can use successively Theorem 5.2.3, Proposition 8.4.3, the subderivations
theorem, and the renaming theorem to conclude that Γ, x1 : A1, ..., xn :
An, y : B ` Q : Prop is derivable in PVS-Cert. Hence, by Proposition 8.4.4,
JΓ, x1 : A1, ..., xn : An, y : BK ` JQK : Prop is derivable in λ-HOL. As x is
an expression variable outside DV (Γ, x1 : A1, ..., xn : An, y : B), it is outside
DV (JΓ, x1 : A1, ..., xn : An, y : BK). Hence, by the free variable theorem,
x 6∈ FV (JΓ, x1 : A1, ..., xn : An, y : BK) and x 6∈ FV (JQK).

148



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

As a consequence of the first of these two statements, (ΠJx1 : A1, ..., xn :
AnK.JQK[xx1...xn/y])[JtK/x] = ΠJx1 : A1, ..., xn : AnK.JQK[xx1...xn/y][JtK/x].
By Proposition 8.4.4, JΓK ` JtK : [A] is derivable in λ-HOL. As y is an expres-
sion variable outsideDV (Γ), it is outsideDV (JΓK). Hence, by the free variable
theorem, y 6∈ FV (JtK). Moreover, the variables x1, ..., xn, y are different from
x, and we proved x 6∈ FV (JQK), hence we conclude using Lemma 5.1.1 that
JQK[xx1...xn/y][JtK/x] = JQK[JtK/x][JtKx1...xn/y] = JQK[JtKx1...xn/y].

In this setting, the judgement typing qk can be written JΓK ` qk : Πh(x, k) :
(ΠJx1 : A1, ..., xn : AnK.JQK[JtKx1...xn/y]).P ′. By induction hypothesis on the
second premise of the original derivation, there exists a proof q′ such that
JΓK ` q′ : ΠJx1 : A1, ..., xn : AnK.JQK[JtKx1...xn/y]. Hence, applying the App
rule, and using the fact that no proof variable appears free in a λ-HOL ex-
pression by Proposition 8.3.3, we conclude that JΓK ` qk+1 : P ′ is derivable in
λ-HOL with qk+1 = qkq

′.

This concludes the proof of the fact that for all k, there exists a proof qk
such that JΓK ` qk : (Π(Axioms(x : A)≥k).JP K)[JtK/x] is derivable in λ-HOL.
Taking k = Size(A) + 1 and using Proposition 8.5.1, we conclude that the
derivation JΓK ` qk : JP [t/x]K is derivable in λ-HOL.

–
Γ ` t : Πx : A.B Γ ` u : A

App
Γ ` tu : B[u/x]

This case is the most complex one in this proof. By the renaming theorem,
we suppose without loss of generality x 6∈ DV (Γ). We consider some index i
such that Occurrence(B[u/x], i) has the form λx1 : B1...λxn : Bn.{y : B′ |
P}. By Lemma 8.5.1, Occurrence(B, i) has this form as well. We define
Occurrence(B, i) = λx1 : B1...λxn : Bn.{y : B′ | P}, choosing the variables
x1, ..., xn, y pairwise distinct, different from x, and outside DV (Γ). By the
free variable theorem, these variables are also outside FV (u). Hence, ap-
plying Lemma 8.5.1 again, Occurrence(B[u/x], i) = λx1 : B1[u/x]...λxn :
Bn[u/x].{y : B′[u/x] | P [u/x]}. In this setting, we find the expected proof in
the following way.

By definition, Occurrence(Πx : A.B, i + 1) = λx : A.Occurrence(B, i).
By induction hypothesis, there exists a proof p such that JΓK ` p : ΠJx :
A, x1 : B1, ..., xn : BnK.JP K[JtKxx1...xn/y] is derivable in λ-HOL. We define
Q = ΠJx1 : B1, ..., xn : BnK.JP K[JtKxx1...xn/y]: in this setting, the previ-
ous judgement can be written JΓK ` p : Πx : [A].Π(Axioms(x : A)).Q. By
Proposition 8.4.4, JΓK ` JuK : [A] is derivable in λ-HOL. Hence, JΓK ` pJuK :
(Π(Axioms(x : A)).Q)[JuK/x] is derivable in λ-HOL.

Starting from this result, we prove by induction that for all k, there exists a

149



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

proof pk such that JΓK ` pk : (Π(Axioms(x : A)≥k).Q)[JuK/x] is derivable in
λ-HOL. The case k = 0 corresponds to the previous derivation with p0 = pJuK.

Supposing that JΓK ` pk : (Π(Axioms(x : A)≥k).Q)[JuK/x] is derivable in λ-
HOL for some k, we find a proof pk+1 in the following way. We consider I the
set of all indexes j ∈ {0, ...,Size(A)} such that Occurrence(A, j) outputs
some term of the form λx′1 : A′1...λx

′
n′ : A′n′ .{y′ : A′ | P ′}. If k 6∈ I, the

expected result is straightforward, taking pk+1 = pk.

If k ∈ I, Occurrence(A, k) outputs some term of the form λx′1 : A′1...λx
′
n′ :

A′n′ .{y′ : A′ | P ′}. We choose x′1, ..., x
′
n′ , y′ pairwise distinct, different from x,

and outsideDV (Γ). In the following, we use the notationQ′ = (Π(Axioms(x :
A)≥k+1).Q)[JuK/x]. The proof variable h(x, k) is distinct from the expression
variable x, and cannot occur free in JuK by Proposition 8.3.3. Hence, the
expression (Π(Axioms(x : A)≥k).Q)[JuK/x] corresponds to the following one:
Πh(x, k) : (ΠJx′1 : A′1, ..., x

′
n′ : A′n′K.JP ′K[xx′1...x

′
n′/y′])[JuK/x].Q′.

As the variables x′1, ..., x
′
n′ , y′ are pairwise distinct and outside DV (Γ), we

can use successively Theorem 5.2.3, Proposition 8.4.3, the subderivations
theorem, and the renaming theorem to conclude that Γ, x′1 : A′1, ..., x

′
n′ :

A′n′ , y′ : A′ ` P ′ : Prop is derivable in PVS-Cert. Hence, by Proposition
8.4.4, JΓ, x′1 : A′1, ..., x

′
n′ : A′n′ , y′ : A′K ` JP ′K : Prop is derivable in λ-HOL.

As x is an expression variable outside DV (Γ, x′1 : A′1, ..., x
′
n′ : A′n′ , y′ : A′), it

is outside DV (JΓ, x′1 : A′1, ..., x
′
n′ : A′n′ , y′ : A′K). Hence, by the free variable

theorem, x 6∈ FV (JΓ, x′1 : A′1, ..., x
′
n′ : A′n′ , y′ : A′K) and x 6∈ FV (JP ′K).

As a consequence of the first of these two statements, the term (ΠJx′1 :
A′1, ..., x

′
n′ : A′n′K.JP ′K[xx′1...x

′
n′/y′])[JuK/x] is equal to ΠJx′1 : A′1, ..., x

′
n′ :

A′n′K.JP ′K[xx′1...x
′
n′/y′][JuK/x]. By Proposition 8.4.4, JΓK ` JuK : [A] is deriv-

able in λ-HOL. As y′ is an expression variable outside DV (Γ), it is out-
side DV (JΓK). Hence, by the free variable theorem, y′ 6∈ FV (JuK). More-
over, the variables x′1, ..., x

′
n′ , y′ are different from x, and we proved x 6∈

FV (JP ′K), hence we conclude using Lemma 5.1.1 JP ′K[xx′1...x
′
n′/y′][JuK/x] =

JP ′K[JuK/x][JuKx′1...x
′
n′/y′] = JP ′K[JuKx′1...x

′
n′/y′].

In this setting, the judgement typing pk can be written JΓK ` pk : Πh(x, k) :
(ΠJx′1 : A′1, ..., x

′
n′ : A′n′K.JP ′K[JuKx′1...x

′
n′/y′]).Q′. By induction hypothesis on

the second premise of the original derivation, there exists a proof q such that
JΓK ` q : ΠJx′1 : A′1, ..., x

′
n′ : A′n′K.JP ′K[JuKx′1...x

′
n/y
′]. Hence, applying the

App rule, and using the fact that no proof variable appears free in a λ-HOL
expression by Proposition 8.3.3, we conclude that JΓK ` pk+1 : (Π(Axioms(x :
A)≥k+1).Q)[JuK/x] is derivable in λ-HOL with pk+1 = pkq.

150



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

This concludes the proof of the fact that for all k, there exists a proof pk such
that JΓK ` pk : (Π(Axioms(x : A)≥k+1).Q)[JuK/x] is derivable in λ-HOL.
Taking k = Size(A) + 1, we conclude that there exists a proof q such that
JΓK ` q : (ΠJx1 : B1, ..., xn : BnK.JP K[JtKxx1...xn/y])[JuK/x] is derivable in
λ-HOL.

As x1, ..., xn, y are expression variables outsideDV (Γ), they are outsideDV (JΓK).
Hence, by the free variable theorem, they are outside FV (JuK). They are
also distinct from x. On the other hand, any proof variable is distinct
from x and cannot occur free in JuK by Proposition 8.3.3. In this setting,
expanding Jx1 : B1, ..., xn : BnK to x1 : [B1],Axioms(x1 : B1), ..., xn :
[Bn],Axioms(xn : Bn), applying Lemma 8.5.1 and Proposition 8.4.1, the
term (ΠJx1 : B1, ..., xn : BnK.JP K[JtKxx1...xn/y])[JuK/x] can be written as
ΠJx1 : B1[u/x], ..., xn : Bn[u/x]K.JP K[JtKxx1...xn/y][JuK/x].

As we proved y 6∈ FV (JuK) in the previous paragraph and as the variables
x1, ..., xn, y are different from x, by Lemma 5.1.1 and Lemma 8.5.1, the two
expressions JP K[JtKxx1...xn/y][JuK/x] and JP [u/x]K[Jt[u/x]KJuKx1...xn/y] are
equal. By the free variable theorem, x 6∈ FV (t), hence this term is also equal
to JP [u/x]K[JtKJuKx1...xn/y]. Hence the judgement typing q can be written
JΓK ` q : ΠJx1 : B1[u/x], ..., xn : Bn[u/x]K.JP [u/x]K[JtuKx1...xn/y], which
is the expected result as Occurrence(B[u/x], i) = λx1 : B1[u/x]...λxn :
Bn[u/x].{y : B′[u/x] | P [u/x]}.

• The case Subtype cannot occur by the stratification theorem

• The case Pair is proved in the following way. Using the stratification theorem,
we can suppose that the last inference step matches some instance of the following
form.

Γ ` t : A Γ ` p : P [t/x] Γ ` {x : A | P} : Type
Pair

Γ ` 〈t, p〉{x:A|P} : {x : A | P}

We consider some index i such that Occurrence({x : A | P}, i) has the form
λx1 : A1...λxn : An.{y : B | P ′}. We split the two cases i = 0 and i > 0.

For i = 0, Occurrence({x : A | P}, i) = {x : A | P}. By induction hypothesis
applied on the second premise, there exists a proof q such that JΓK ` q : JP [t/x]K
is derivable in λ-HOL, which is the expected result as, by Proposition 8.5.1,
JP [t/x]K = JP K[JtK/x].

For i > 0, by definition, Occurrence({x : A | P}, i) = Occurrence(A, i − 1).

151



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

As, moreover, JtK = J〈t, p〉{x:A|P}K, we can conclude the expected result directly by
induction hypothesis on the first premise.

• The case Proj1 is proved in the following way. Using the stratification theorem,
we can suppose that the last inference step matches some instance of the following
form.

Γ ` t : {x : A | P}
Proj1

Γ ` π1(t) : A

We consider some index i such that Occurrence({x : A | P}, i) has the form λx1 :
A1...λxn : An.{y : B | P ′}. By definition, Occurrence(A, i) = Occurrence({x :
A | P}, i + 1). As, moreover, JtK = Jπ1(t)K, we can conclude the expected result
directly by induction hypothesis.

• The case Proj2 is proved in the following way. Using the stratification theorem,
the last inference step matches some rule instance of the following form.

Γ ` t : {y : A | P}
Proj2

Γ ` π2(t) : P [π1(t)/y]

By induction hypothesis, there exists a proof q such that JΓK ` q : JP K[JtK/y] is
derivable in λ-HOL. This corresponds to the expected result as, by Proposition
8.5.1, JP K[JtK/y] = JP K[Jπ1(t)K/y] = JP [π1(t)/y]K.

• The case Conversion is proved in the following way. Using the stratification
theorem, the last inference step matches one of the following instances

–
Γ ` p : P Γ ` Q : Prop

Conversion P ≡β∗ Q
Γ ` p : Q

By induction hypothesis, there exists some proof q such that JΓK ` q : JP K
is derivable in λ-HOL. Moreover, by Proposition 8.4.4, JΓK ` JQK : Prop is
derivable in λ-HOL. By Proposition 8.5.2, JP K ≡β JQK. Hence, applying the
λ-HOL conversion rule, JΓK ` q : JQK is derivable in λ-HOL.

–
Γ ` t : A Γ ` B : Type

Conversion A ≡β∗ B
Γ ` t : B

We consider some index i such that Occurrence(B, i) has the form λx1 :
B1...λxn : Bn.{y : B′ | Q}. By Lemma 8.5.4, Occurrence(A, i) has
the form λx1 : A1...λxn : An.{y : A′ | P} with P ≡β∗ Q and, for all
i ∈ {1, ..., n}, Ai ≡β∗ Bi. By induction hypothesis, there exists a proof
p such that JΓK ` p : ΠJx1 : A1, ..., xn : AnK.JP K[JtKx1...xn/y] is derivable

152



CHAPTER 8. A CONSERVATIVE EXTENSION OF HIGHER-ORDER LOGIC

in λ-HOL. By Proposition 8.4.1 and Proposition 8.5.2, ΠJx1 : A1, ..., xn :
AnK.JP K[JtKx1...xn/y] ≡β ΠJx1 : B1, ..., xn : BnK.JQK[JtKx1...xn/y]. Hence,
we can conclude the expected result by conversion as long as we prove that
JΓK ` ΠJx1 : B1, ..., xn : BnK.JQK[JtKx1...xn/y] : Prop is derivable in λ-HOL,
which is the case by Proposition 8.5.3.

We conclude the conservativity of PVS-Cert over λ-HOL from the conservativity of
the translation J·K and Proposition 8.2.3 in the following way.

Theorem 8.5.2. PVS-Cert is a conservative extension of λ-HOL: for every judgement
of the form Γ ` P : Prop derivable in λ-HOL, P is inhabited in Γ in PVS-Cert if and
only if it is inhabited in Γ in λ-HOL.

Proof. As λ-HOL is a subsystem of PVS-Cert, the existence of a λ-HOL term p such
that Γ ` p : P is derivable in λ-HOL implies that Γ ` p : P is derivable in PVS-Cert.

Conversely, we suppose that there exists a PVS-Cert term p such that Γ ` p : P is
derivable in PVS-Cert. We consider an injective indexing h(·, ·) such that DV (Γ) and
the image of h(·, ·) are disjoint. By Theorem 8.5.1, there exists a proof q such that
JΓK ` q : JP K is derivable in λ-HOL. Hence, by Proposition 8.2.3, Γ ` q : P is derivable
in λ-HOL.

153





Chapter 9

Expressing PVS-Core in
PVS-Cert

The final purpose of PVS-Cert is to encode PVS-Core derivations as proof terms, and
to use the type-checking algorithm presented in Chapter 7 to use these proof terms as
verifiable certificates. In this perspective, we define a correspondence between PVS-Core
and PVS-Cert. This correspondence reflects the fact that, even though these two systems
are very different at the level of terms and judgements, they are almost identical at the
level of derivations. We begin the description of this correspondence with a translation
from PVS-Cert to PVS-Core, which will be referred to as erasing in the following of this
chapter.

9.1 From PVS-Cert to PVS-Core

We define the following translation from the stratified part of the PVS-Cert syntax to
PVS-Core. This translation is referred to as erasing as it mainly consists in the deletion
of PVS-Cert explicit coercions 〈·,M〉A and π1(·).

Definition 9.1.1. We define an erasure function J·K from PVS-Cert expressions, types,
and Type to PVS-Core terms recursively as follows. In the case of variables, this defini-
tion relies on the fact that the sets of expression variables and type variables Vexpressions
and Vtypes are shared in PVS-Cert and PVS-Core, as mentioned in the definition of
PVS-Cert.

• JTypeK = Type

• JXK = X

• JPropK = Prop

• JΠx : A.BK = Πx : JAK.JBK

• J{x : A | P}K = {x : JAK | JP K}

155



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

• JxK = x

• JΠh : P.QK = JP K⇒ JQK

• JΠx : A.P K = ∀x : JAK.JP K

• Jλx : A.tK = λx : JAK.JtK

• Jt uK = JtKJuK

• J〈t,M〉AK = JtK

• Jπ1(t)K = JtK

Then, we extend this J·K from PVS-Cert stratified contexts to PVS-Core contexts.
Again, this definition relies on the fact that the sets of expression variables and type
variables Vexpressions and Vtypes are shared in PVS-Cert and PVS-Core.

• J∅K = ∅

• JΓ, X : TypeK = JΓK, X : Type

• JΓ, x : AK = JΓK, x : JAK

• JΓ, h : P K = JΓK, JP K

Last, we extend J·K from all PVS-Cert stratified judgements except those of the form
Γ ` Type : Kind to PVS-Core judgements as follows.

• JΓ `WF K = JΓK `WF

• JΓ ` A : TypeK = JΓK ` JAK : Type

• JΓ ` t : AK = JΓK ` JtK : JAK

• JΓ ` p : P K = JΓK ` JP K

By the stratification theorem in PVS-Cert, all PVS-Cert derivable judgements are
stratified judgements. Hence, unless they have the form Γ ` Type : Kind, their erasure
in PVS-Core is well-defined. We will prove in Theorem 9.1.1 that all PVS-Core judge-
ments obtained by erasing derivable PVS-Cert judgements are themselves derivable.
This theorem relies in particular on the fact that conversion in PVS-Cert and PVS-Core
are related through the erasure function J·K, which will be established in Proposition
9.1.2. In this purpose, we first prove the following property.

Proposition 9.1.1. For any PVS-Cert term M which is either an expression, a type,
or Type, the following statements hold.

• For any PVS-Cert term N and any PVS-Cert proof variable h, JM [N/h]K = JMK.

156



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

• For any PVS-Cert term N which is either an expression, a type, or Type, and any
PVS-Cert expression variable x, JM [N/x]K = JMK[JNK/x].

Proof. The two statements are proved by induction on M . As the erasure function and
substitution are stable by α-conversion, we can suppose without loss of generality that
no bound variable in M is free in N nor equal to x. Using this hypothesis, all cases are
straightforward.

We conclude the following proposition relating conversion in PVS-Cert and PVS-
Core.

Proposition 9.1.2. For all terms M and N which are either expressions, types, or
Type, whenever M ≡β∗ N , then JMK ≡β JNK.

Proof. We first prove that for any term M which is either an expression or a type, when-
ever there exists a term N such that M →β∗ N , then N is either an expression or a
type, and JMK ≡β JNK. The fact that N is either an expression or a type follows directly
from Proposition 5.4.2. The fact that JMK ≡β JNK is proved by induction on M . All
cases except the case of an application are straightforward by induction hypothesis. If
M is an application, we split the subcases M 6 .β∗N and M .β∗ N . The first subcase is
straightforward by induction hypothesis. In the second case, M has the form (λx : A.t)u
and N has the form t[u/x], hence we can conclude using Proposition 9.1.1.

In a second step, we prove that for any term M which is either an expression, a type,
or Type, whenever there exists a term N such that M �β∗ N , then JMK ≡β JNK. This is
done as follows. The case M = Type is straightforward as, in this case, M = N = Type.
The cases where M is either an expression or a type are proved together by induction
on the length of the reduction, using the first result.

Last, we conclude the expected result as follows. We consider two terms M and N
which are either expressions, types, or Type, and such that M ≡β∗ N . By the Church-
Rosser theorem, there exists a term M ′ such that M �β∗ M

′ and N �β∗ M
′. Hence,

using the previous result, JMK ≡β JM ′K ≡β JNK.

Using Proposition 9.1.2 and the stratification theorem in PVS-Cert, we conclude the
following theorem, which allows to map PVS-Cert derivations to PVS-Core derivations,
which will be referred to as their erasures.

Theorem 9.1.1. Every derivable PVS-Cert judgement either has the form Γ ` Type :
Kind or admits an image through J·K. In the latter case, this image is derivable in
PVS-Core.

Proof. The first part of the proof is a direct consequence of the stratification theorem.
The second part is done by strong induction on the height of PVS-Cert derivations.
Most cases are straightforward. The most complex ones correspond to the PVS-Cert
rules App and Conversion, and are proved using Proposition 9.1.1 and Proposition

157



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

9.1.2 respectively. However, the proof is given in details in order to show explicitly how
PVS-Cert rules and PVS-Core rules are related. The possible cases are the following.

• The case Empty is straightforward using the PVS-Core rule Empty.

• In the case Decl, by the stratification theorem, the last inference step matches
one of the following instances:

–
Γ ` Type : Kind

Decl X ∈ Vtypes\DV (Γ)
Γ, X : Type `WF

By the subderivations theorem, Γ ` WF is a strict subderivation of the
original one. Hence, by induction hypothesis, JΓK `WF is derivable in PVS-
Core. As X 6∈ Γ, X 6∈ JΓK, hence we can conclude applying the PVS-Core
rule TypeDecl that JΓK, X : Type `WF is derivable.

–
Γ ` A : Type

Decl x ∈ Vexpressions\DV (Γ)
Γ, x : A `WF

By induction hypothesis, JΓK ` JAK : Type is derivable in PVS-Core. As
x 6∈ Γ, x 6∈ JΓK, hence we can conclude applying the PVS-Core rule EltDecl
that JΓK, x : JAK `WF is derivable.

–
Γ ` P : Prop

Decl h ∈ Vproofs\DV (Γ)
Γ, h : P `WF

By induction hypothesis, JΓK ` JP K : Prop is derivable in PVS-Core. Hence,
we can conclude applying the PVS-Core rule Assumption that JΓK, JP K `
WF is derivable.

• In the case Sort, the last inference step matches one of the following PVS-Cert
instances.

– Γ `WF
Sort

Γ ` Type : Kind

No proof is expected in this case.

– Γ `WF
Sort

Γ ` Prop : Type

The expected result follows by induction hypothesis, applying the PVS-Core
rule Prop.

• In the case Var, by the stratification theorem, the last inference step matches one
of the following instances:

158



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

– Γ `WF Var (h : P ) ∈ Γ
Γ ` h : P

By induction hypothesis, JΓK `WF is derivable in PVS-Core. As (h : P ) ∈ Γ,
JP K ∈ JΓK, hence we can conclude applying the PVS-Core rule Axiom that
JΓK ` JP K is derivable.

– Γ `WF Var (x : A) ∈ Γ
Γ ` x : A

By induction hypothesis, JΓK `WF is derivable in PVS-Core. As (x : A) ∈ Γ,
(x : JAK) ∈ JΓK, hence we can conclude applying the PVS-Core rule EltVar
that JΓK ` x : JAK is derivable.

– Γ `WF Var (X : Type) ∈ Γ
Γ ` X : Type

By induction hypothesis, JΓK ` WF is derivable in PVS-Core. As (X :
Type) ∈ Γ, (X : Type) ∈ JΓK, hence we can conclude applying the PVS-Core
rule TypeVar that JΓK ` X : Type is derivable.

• In the case Prod, by the stratification theorem, the last inference step matches
one of the following instances:

–
Γ ` P : Prop Γ, h : P ` Q : Prop

Prod
Γ ` Πh : P.Q : Prop

The expected result follows by induction hypothesis on the second premise,
applying the PVS-Core rule Imply.

–
Γ ` A : Type Γ, x : A ` P : Prop

Prod
Γ ` Πx : A.P : Prop

The expected result follows by induction hypothesis on the second premise,
applying the PVS-Core rule Forall.

–
Γ ` A : Type Γ, x : A ` B : Type

Prod
Γ ` Πx : A.B : Type

The expected result follows by induction hypothesis on the second premise,
applying the PVS-Core rule Pi.

• In the case Subtype, by the stratification theorem, the last inference step matches
some instance of the form

159



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

Γ ` A : Type Γ, x : A ` P : Prop
Subtype

Γ ` {x : A | P} : Type

In this setting, the expected result follows by induction hypothesis on the second
premise, applying the PVS-Core rule Subtype.

• In the case Lam, by the stratification theorem, the last inference step matches one
of the following instances:

–
Γ, x : A ` t : B Γ ` Πx : A.B : Type

Lam
Γ ` λx : A.t : Πx : A.B

The expected result follows by induction hypothesis on the first premise, ap-
plying the PVS-Core rule Lam.

–
Γ, x : A `M : P Γ ` Πx : A.P : Prop

Lam
Γ ` λx : A.M : Πx : A.P

The expected result follows by induction hypothesis on the first premise, ap-
plying the PVS-Core rule ForallIntro.

–
Γ, h : P `M : Q Γ ` Πh : P.Q : Prop

Lam
Γ ` λh : P.M : Πh : P.Q

The expected result follows by induction hypothesis on the first premise, ap-
plying the PVS-Core rule ImplyIntro.

• In the case App, by the stratification theorem, the last inference step matches one
of the following instances:

–
Γ ` t : Πx : A.B Γ ` u : A

App
Γ ` tu : B[u/x]

By induction hypothesis, applying the PVS-Core rule App, JΓK ` JtKJuK :
JBK[JuK/x] is derivable in PVS-Core. By Proposition 9.1.1, this corresponds
the expected result as JBK[JuK/x] = JB[u/x]K.

–
Γ `M : Πx : A.P Γ ` t : A

App
Γ `Mt : P [t/x]

By induction hypothesis, applying the PVS-Core rule ForallElim, JΓK `
JP K[JtK/x] is derivable in PVS-Core. By Proposition 9.1.1, this corresponds
the expected result as JP K[JtK/x] = JP [t/x]K.

–
Γ ` p : Πh : P.Q Γ ` q : P

App
Γ ` pq : Q[q/h]

160



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

By induction hypothesis, applying the PVS-Core rule ImplyElim, JΓK ` JQK
is derivable in PVS-Core. By Proposition 9.1.1, this corresponds the expected
result as JQK = JQ[q/h]K.

• In the case Pair, by the stratification theorem, the last inference step matches
some instance of the form

Γ ` t : A Γ `M : P [t/x] Γ ` {x : A | P} : Type
Pair

Γ ` 〈t,M〉{x:A|P} : {x : A | P}

By induction hypothesis, the judgement JΓK ` JtK : JAK, the judgement JΓK `
JP [t/x]K, and the judgement JΓK ` {x : JAK | JP K} : Type are derivable in PVS-
Core. By Proposition 9.1.1, the second one corresponds to JΓK ` JP K[JtK/x] as
JP [t/x]K = JP K[JtK/x]. Hence, we can conclude the expected result applying the
PVS-Core rule SubtypeIntro.

• In the case Proj1, by the stratification theorem, the last inference step matches
some instance of the form

Γ ` t : {x : A | P}
Proj1

Γ ` π1(t) : A

The expected result follows by induction hypothesis, applying the PVS-Core rule
SubtypeElim1.

• In the case Proj2, by the stratification theorem, the last inference step matches
some instance of the form

Γ ` t : {x : A | P}
Proj2

Γ ` π2(t) : P [π1(t)/x]

By induction hypothesis, applying the PVS-Core rule SubtypeElim2, JΓK `
JP K[JtK/x] is derivable in PVS-Core. By Proposition 9.1.1, this corresponds the
expected result as JP K[JtK/x] = JP K[Jπ1(t)K/x] = JP [π1(t)/x]K.

• In the case Conversion, by the stratification theorem, the last inference step
matches one of the following instances:

–
Γ ` A : Type Γ ` Type : Kind

Conversion Type ≡β∗ Type
Γ ` A : Type

161



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

The expected result is straightforward by induction hypothesis on the first
premise.

–
Γ ` t : A Γ ` B : Type

Conversion A ≡β∗ B
Γ ` t : B

By Proposition 9.1.2, JAK ≡β JBK. In this setting, the expected result follows
by induction hypothesis, applying the PVS-Core rule TypeConversion.

–
Γ ` p : P Γ ` Q : Prop

Conversion P ≡β∗ Q
Γ ` p : Q

By Proposition 9.1.2, JP K ≡β JQK. In this setting, the expected result follows
by induction hypothesis, applying the PVS-Core rule PropConversion.

9.2 Expressing PVS-Core derivations as PVS-Cert judge-
ment

Theorem 9.1.1 shows that a PVS-Cert derivable judgement can testify to the PVS-
Core derivability of another judgement, its erasure. In this section, we show conversely
that, given any PVS-Core derivation, we can build such a PVS-Cert judgement. For
this purpose, we first present an algorithm Certificate, which translates a PVS-Core
derivation into a PVS-Cert judgement. In a second step, we will prove that such PVS-
Cert judgements are always derivable in PVS-Cert.

The following definition will be useful to define the algorithm Certificate.

Definition 9.2.1. We define some injective function h(·) mapping natural numbers
to PVS-Cert proof variables, and referred to as an injective indexing (as in Definition
8.2.3).

The definition of the algorithm Certificate also relies on some properties of the
erasure function J·K. More precisely, we will need to infer, in some specific cases, the
form of PVS-Cert pre-images through J·K from the form of their PVS-Core images.
We split these properties in two propositions. The first, Proposition 9.2.1, contains
straightforward properties, and will be used implicitly in the following. The second,
Proposition 9.2.2, contains more complex properties, and will be mentioned explicitly in
the following.

Proposition 9.2.1. The erasure function J·K respects the following specifications.

• Whenever a PVS-Cert term M is either an expression, a type, or Type, it is an
expression (resp. a type, Type) if and only if JMK is an expression (resp. a type,
Type).

162



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

• The erasure of a PVS-Cert stratified context Γ is a context of same length. More-
over, for every index n, the n-th declaration of Γ has the form (h : P ) (resp.
(x : A), (X : Type)) if and only if the n-th declaration of JΓK has the form P ′

(resp. (x : A′), (X : Type)).

• For every PVS-Cert stratified judgement which doesn’t have the form Γ ` Type :
Kind, this judgement has the form Γ ` WF (resp. Γ ` p : P , Γ ` t : A,
Γ ` A : Type) if and only if its erasure has the form Γ ` WF (resp. Γ ` p : P ,
Γ ` t : A, Γ ` A : Type).

Proof. The proof is straightforward by case analysis.

More complex properties of the translation J·K are presented in the following propo-
sition.

Proposition 9.2.2. For any PVS-Cert type A, the following statements hold.

• Whenever JAK = Prop, A = Prop

• Whenever JAK has the form Πx : B1.B2, A has the form Πx : B′1.B
′
2

• Whenever JAK has the form {x : B | P}, A has the form {x : B′ | P ′}

For any PVS-Cert expression t, the following statements hold.

• Whenever JtK has the form P ⇒ Q, t admits a normal form with respect to .∗,
which has the form Πh : P ′.Q′

• Whenever JtK has the form ∀x : A.P , t admits a normal form with respect to .∗,
which has the form Πx : A′.P ′

Proof. The statements dealing with types are straightforward by case analysis on the
possible forms of a type. The two statements dealing with expressions are proved inde-
pendently by straightforward induction on expressions.

The expression of PVS-Core derivations as PVS-Cert judgements is defined as follows.

Definition 9.2.2. For any PVS-Core derivation D, we define recursively the PVS-Cert
stratified judgement Certificate(D) such that JCertificate(D)K corresponds to the
conclusion of D. In the following, we provide a proof of the fact that JCertificate(D)K
corresponds to the conclusion of D only when it is not straightforward by induction
hypothesis, i.e. in the cases corresponding to the rules App, ImplyElim, and Foral-
lElim. The possible cases are the following.

• Empty∅ `WF

We define Certificate(D) = ∅ `WF .

163



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

• Γ `WF TypeDecl X ∈ Vtypes\DV (Γ)
Γ, X : Type `WF

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 `WF . We define Certificate(D) = Γ1, X : Type `WF .

• Γ ` A : Type
EltDecl x ∈ Vexpressions\DV (Γ)

Γ, x : A `WF

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` A1 : Type. We define Certificate(D) = Γ1, x : A1 `WF .

• Γ ` P : Prop
Assumption

Γ, P `WF

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` P1 : Prop by Proposition 9.2.2. We consider n the number of declarations of
the form (h : Q) in Γ1, and we define Certificate(D) = Γ1, h(n) : P1 `WF .

• Γ `WF TypeVar (X : Type) ∈ Γ
Γ ` X : Type

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 `WF . We define Certificate(D) = Γ1 ` X : Type.

• Γ `WF
Prop

Γ ` Prop : Type

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 `WF . We define Certificate(D) = Γ1 ` Prop : Type.

• Γ, x : A ` B : Type
Pi

Γ ` Πx : A.B : Type

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, x : A1 ` B1 : Type. We define Certificate(D) = Γ1 ` Πx : A1.B1 : Type.

• Γ, x : A ` P : Prop
Subtype

Γ ` {x : A | P} : Type

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, x : A1 ` P1 : Prop by Proposition 9.2.2. We define Certificate(D) = Γ1 `
{x : A1 : P1} : Type.

• Γ `WF EltVar (x : A) ∈ Γ
Γ ` x : A

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` WF , and there exists at least one declaration of the form (x : A1) ∈ Γ1

164



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

such that JA1K = A. We consider the first declaration (x : A1) ∈ Γ1 having this
property, and define Certificate(D) = Γ1 ` x : A1.

• Γ, x : A ` P : Prop
Forall

Γ ` ∀x : A.P : Prop

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, x : A1 ` P1 : Prop by Proposition 9.2.2. We define Certificate(D) = Γ1 `
Πx : A1.P1 : Prop.

• Γ, P ` Q : Prop
Imply

Γ ` P ⇒ Q : Prop

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, h1 : P1 ` Q1 : Prop by Proposition 9.2.2. We define Certificate(D) = Γ1 `
Πh1 : P1.Q1 : Prop.

• Γ, x : A ` t : B
Lam

Γ ` λx : A.t : Πx : A.B

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, x : A1 ` t1 : B1. We define Certificate(D) = Γ1 ` λx : A1.t1 : Πx : A1.B1.

• Γ ` t : Πx : A.B Γ ` u : A
App

Γ ` tu : B[u/x]

We consider D1 and D2 the direct subderivations of D. Certificate(D2) has
the form Γ2 ` u2 : A2 and, by Proposition 9.2.2, Certificate(D1) has the form
Γ1 ` t1 : Πx : A1.B1. We define Certificate(D) = Γ1 ` t1u2 : B1[u2/x]. By
induction hypothesis and Proposition 9.1.1, JB1[u2/x]K = JB1K[Ju2K/x] = B[u/x],
hence the erasure of this judgements is Γ ` tu : B[u/x], as expected.

• Γ ` t : A Γ ` P [t/x] Γ ` {x : A | P} : Type
SubtypeIntro

Γ ` t : {x : A | P}

We consider D1, D2, and D3 the direct subderivations of D. Certificate(D1)
has the form Γ1 ` t1 : A1, Certificate(D2) has the form Γ2 ` p2 : P ′2, and, by
Proposition 9.2.2, Certificate(D3) has the form Γ3 ` {x : A3 | P3} : Type. We
define Certificate(D) = Γ1 ` 〈t1, p2〉{x:A3|P3} : {x : A3 | P3}.

• Γ ` t : {x : A | P}
SubtypeElim1

Γ ` t : A

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` t1 : {x : A1 | P1} by Proposition 9.2.2. We define Certificate(D) = Γ1 `
π1(t1) : A1.

165



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

• Γ ` t : A Γ ` B : Type
TypeConversion A ≡β B

Γ ` t : B

We consider D1 and D2 the direct subderivations of D. Certificate(D1) has the
form Γ1 ` t1 : A1 and Certificate(D1) has the form Γ2 ` B2 : Type. We define
Certificate(D) = Γ1 ` t1 : B2.

• Γ `WF
Axiom P ∈ Γ

Γ ` P

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` WF . As JΓ1K = Γ, there exists some declaration of the form (h1 : P1) ∈ Γ1

such that JP1K = P . We consider (h1 : P1) ∈ Γ1 the first declaration satisfying this
property and define Certificate(D) = Γ1 ` h1 : P1.

• Γ, P ` Q
ImplyIntro

Γ ` P ⇒ Q

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, h1 : P1 ` q1 : Q1. We define Certificate(D) = Γ1 ` λh1 : P1.q1 : Πh1 :
P1.Q1.

• Γ ` P ⇒ Q Γ ` P
ImplyElim

Γ ` Q

We consider D1 and D2 the direct subderivations of D. Certificate(D2) has
the form Γ2 ` p2 : P2 and, by Proposition 9.2.2, Certificate(D1) has the form
Γ1 ` p1 : Q′1 where Q′1 admits a normal form with respect to .∗ which has the form
Πh : P1.Q1. We define Certificate(D) = Γ1 ` p1p2 : Q1[p2/h]. By induction
hypothesis and Proposition 9.1.1, JQ1[p2/h]K = JQ1K = Q, hence the erasure of this
judgement is Γ ` Q, as expected.

• Γ, x : A ` P
ForallIntro

Γ ` ∀x : A.P

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, x : A1 ` p1 : P1. We define Certificate(D) = Γ1 ` λx : A1.p1 : Πx : A1.P1.

• Γ ` ∀x : A.P Γ ` t : A
ForallElim

Γ ` P [t/x]

We consider D1 and D2 the direct subderivations of D. Certificate(D2) has
the form Γ2 ` t2 : A2 and, by Proposition 9.2.2, Certificate(D1) has the form
Γ1 ` p1 : P ′1 where P ′1 admits a normal form with respect to .∗ which has the form
Πx : A1.P1. We define Certificate(D) = Γ1 ` p1t2 : P1[t2/x]. By induction
hypothesis and Proposition 9.1.1, JP1[t2/x]K = JP1K[Jt2K/x] = P [t/x], hence the
erasure of this judgement is Γ ` P [t/x], as expected.

166



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

• Γ ` t : {x : A | P}
SubtypeElim2

Γ ` P [t/x]

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` t1 : {x : A1 | P1} by Proposition 9.2.2. We define Certificate(D) = Γ1 `
π2(t1) : P1[π1(t1)/x].

• Γ ` P Γ ` Q : Prop
PropConversion P ≡β Q

Γ ` Q

We consider D1 and D2 the direct subderivations of D. Certificate(D1) has
the form Γ1 ` p1 : P1 and, by Proposition 9.2.2, Certificate(D1) has the form
Γ2 ` Q2 : Prop. We define Certificate(D) = Γ1 ` p1 : Q2.

9.3 Soundness of the synthesis of certificates

This section is dedicated to the proof of soundness of the algorithm Certificate: for
any PVS-Cert derivation D, Certificate(D) is derivable in PVS-Cert. This soundness
property follows from several propositions. The first important one is Proposition 9.3.2,
which expresses in particular that for any terms M and N which are either expressions,
types, or Type, whenever JMK = JNK, then M ≡∗ N . This statement is presented to-
gether with a similar property dealing with contexts instead of terms. This latter case
is more complex in the general case, as the equality of the erasures of two stratified con-
texts does not imply that they are related through ≡∗. Nevertheless, we prove that it is
sufficient whenever these two contexts belong respectively to some PVS-Cert judgement
in the range of Certificate.

We first present and prove the following property of contexts of PVS-Cert judgements
in the range of Certificate, which is the main lemma of Proposition 9.3.2.

Proposition 9.3.1. For any PVS-Core derivation D, we consider Γ the context of
Certificate(D) and h1 : P1, ..., hn : Pn the context obtained from Γ by selecting only
declarations of the form (h : P ) for some proof variable h. In this setting, h1 = h(1), h2 =
h(2), ..., hn = h(n).

Proof. The proof is straightforward by induction on the derivation D.

We conclude the expected proposition 9.3.2 as follows.

Proposition 9.3.2. The two following statements hold.

• For all terms M and N which are either expressions, types, or Type, whenever
JMK = JNK, then M ≡∗ N .

• For all PVS-Core derivations D1 and D2, we consider Γ1 and Γ2 the respective
contexts of Certificate(D1) and Certificate(D2). Whenever JΓ1K = JΓ2K, then
Γ1 ≡∗ Γ2.

167



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

Proof. The first statement is straightforward by induction on M and N . The second
statement is proved by induction on Γ1, using the first statement together with Propo-
sition 9.3.1.

The next important proposition needed in the proof of soundness of Certificate is
Proposition 9.3.4, which is the converse of Proposition 9.1.2: for any terms M and N
which are either expressions, types, or Type, whenever JMK ≡β JNK, then M ≡β∗ N .

This proposition will be established from Proposition 9.3.2 as well as the definition
of a new function from PVS-Core terms to PVS-Cert terms, [·], which will be proved to
be a right inverse for J·K. the definition of this new function is the following.

Definition 9.3.1. We define the following function [·] from PVS-Core terms to PVS-
Cert expressions, types, or Type recursively. As in the definition of J·K, this new defini-
tion relies on the fact that the sets of expression variables and type variables Vexpressions
and Vtypes are shared in PVS-Cert and PVS-Core.

• [Type] = Type

• [X] = X

• [Prop] = Prop

• [Πx : A.B] = Πx : [A].[B]

• [{x : A | P}] = {x : [A] | [P ]}

• [x] = x

• [P ⇒ Q] = Πh : [P ].[Q]

• [∀x : A.P ] = Πx : [A].[P ]

• [λx : A.t] = λx : [A].[t]

• [t u] = [t][u]

Proposition 9.3.3. The translation [·] is a right inverse of J·K: for any PVS-Core term
M , J[M ]K = M .

Proof. The proof is straightforward by induction on M .

The following property of [·] will be the main lemma used in the proof of .

Lemma 9.3.1. The following statements hold.

• For any PVS-Core expressions t and u and any expression variable x, [t[u/x]] =
[t][[u]/x].

• For any PVS-Core terms M and N , whenever M →β N , then [M ]→β [N ].

168



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

• For any PVS-Core terms M and N , whenever M ≡β N , then [M ] ≡β [N ].

Proof. The first statement is proved by induction on t. As [·] and substitution are stable
by α-conversion, we can suppose without loss of generality that no bound variable in t
is free in u nor equal to x. In this setting, all cases are straightforward.

The second statement is proved by induction on M . The only difficult case corre-
sponds to the case of an application, when M .β N . In this setting, M has the form
(λx : A.t)u and N = t[u/x], and we can conclude using the first statement.

The last statement is straightforward by induction on the length of the conversion.

We finally conclude the expected converse of Proposition 9.1.2 as follows.

Proposition 9.3.4. For all terms M and N which are either expressions, types, or
Type, whenever JMK ≡β JNK, then M ≡β∗ N .

Proof. By Proposition 9.3.3 followed by Proposition 9.3.2, [JMK] ≡∗ M and [JNK] ≡∗
N . Hence, it is sufficient to prove [JMK] ≡β [JNK]. This last requirement holds by
Proposition 9.3.1, as JMK ≡β JNK.

The last proposition needed to prove the soundness of Certificate is the following.
It shows that, in specific situations, the operation of normalization through .∗ (which
erases the coercions π1(·) and 〈·,M〉T the head of terms exclusively) is type preserving.

Proposition 9.3.5. For any derivable PVS-Cert judgement of the form Γ ` P : Prop,
if P admits a normal form with respect to .∗ which has the form Πv : M.T , then
Γ ` Πv : M.T : Prop is derivable.

Proof. This result is a direct consequence of the following stronger statement: for any
derivable PVS-Cert judgement of the form Γ ` t : {xn...{x1 : Prop | Q1}... | Qn},
if P admits a normal form with respect to .∗ which has the form Πv : M.T , then
Γ ` Πv : M.T : Prop is derivable. The proof is done by induction on t. As t admits a
normal form with respect to .∗ which has the form Πv : M.T , the only possible cases
are the following.

• t has the form π1(u). In this case, by the subderivations theorem, there exists
some derivable judgement of the form Γ ` u : {xn+1 : A | Qn+1}, where A ≡β∗
{xn...{x1 : Prop | Q1}... | Qn}. By the stratification theorem, A is a type. By
straightforward induction on n, using Theorem 5.3.2 and the fact that A is a type,
A has the form {x′n...{x′1 : Prop | Q′1}... | Q′n}. Hence, we can conclude the
expected result by induction hypothesis.

• t has the form 〈u, p〉A. In this case, by the subderivations theorem, A has the
form {x : B | Q} with {x : B | Q} ≡β∗ {xn...{x1 : Prop | Q1}... | Qn} and
Γ ` u : B is derivable. By Theorem 5.3.2, n ≥ 1, and B ≡β∗ {xn−1...{x1 : Prop |

169



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

Q1}... | Qn−1}. By the stratification theorem, B is a type. By straightforward
induction on n, using Theorem 5.3.2 and the fact that B is a type, B has the form
{x′n−1...{x′1 : Prop | Q′1}... | Q′n−1}. Hence, we can conclude the expected result
by induction hypothesis.

• t = Πv : M.T . In this case, by the subderivations theorem and the stratification
theorem, Prop ≡β∗ {xn...{x1 : Prop | Q1}... | Qn}. Hence, by Theorem 5.3.2,
n = O. In this setting, by hypothesis, Γ ` Πv : M.T : Prop is derivable.

The following theorem is the expected soundness property for Certificate. Most
of the proof is straightforward. The most complex parts of this proof correspond, on the
one hand, to PVS-Core with more than one premise. In those cases, we use the notion
of conversion of contexts defined in Definition 5.7.1 and the admissibility of rules for
context conversions presented in Proposition 5.7.1. On the other hand, the cases Im-
plyElim and ForallElim involve, by definition of Certificate, some normalization
with respect to .∗. The specific difficulties related to this normalization are handled
using Proposition will be used.

As in the definition of the Certificate, Proposition 9.2.1 will be used implicitly in
this proof.

Theorem 9.3.1. For any PVS-Core derivation D, Certificate(D) is derivable in
PVS-Cert.

Proof. The proof is done by induction on D. The possible cases for the rule instances
matching the last inference step of D are the following.

• Empty∅ `WF

This case is straightforward using the PVS-Cert rule Empty.

• Γ `WF TypeDecl X ∈ Vtypes\DV (Γ)
Γ, X : Type `WF

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` WF . In this setting, Certificate(D) = Γ1, X : Type ` WF . By induction
hypothesis followed by the rule Sort, Γ1 ` Type : Kind is derivable in PVS-
Cert. Moreover, as X 6∈ DV (Γ), X 6∈ DV (Γ1). Hence, applying the rule Decl,
Γ1, X : Type `WF is derivable in PVS-Cert.

• Γ ` A : Type
EltDecl x ∈ Vexpressions\DV (Γ)

Γ, x : A `WF

170



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` A1 : Type. In this setting, Certificate(D) = Γ1, x : A1 ` WF . By
induction hypothesis, Γ1 ` A1 : Type is derivable in PVS-Cert. Moreover, as
x 6∈ DV (Γ), x 6∈ DV (Γ1). Hence, applying the rule Decl, Γ1, x : A1 ` WF is
derivable in PVS-Cert.

• Γ ` P : Prop
Assumption

Γ, P `WF

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` P1 : Prop by Proposition 9.2.2. We consider n the number of declarations of
the form (h : Q) in Γ1. In this setting, Certificate(D) = Γ1, h(n) : P ` WF .
By induction hypothesis, Γ1 ` P1 : Prop is derivable in PVS-Cert. Moreover, by
Proposition 9.3.1, h(n) 6∈ DV (Γ1). Hence, applying the rule Decl, Γ1, h(n) : P1 `
WF is derivable in PVS-Cert.

• Γ `WF TypeVar (X : Type) ∈ Γ
Γ ` X : Type

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` WF , and there exists at least one declaration (X : Type) ∈ Γ. In this
setting, Certificate(D) = Γ1 ` X : Type. By induction hypothesis, Γ1 ` WF
is derivable in PVS-Cert. Hence, applying the rule Var, Γ1 ` X : Type is derivable.

• Γ `WF
Prop

Γ ` Prop : Type

The expected result follows by induction hypothesis, applying the PVS-Cert rule
Sort.

• Γ, x : A ` B : Type
Pi

Γ ` Πx : A.B : Type

We consider D1 the second direct subderivation of D. Certificate(D1) has
the form Γ1, x : A1 ` B1 : Type. In this setting, Certificate(D) = Γ1 `
Πx : A1.B1 : Type. By induction hypothesis, Γ1, x : A1 ` B1 : Type is deriv-
able in PVS-Cert. Hence, by the subderivations theorem and the stratification
theorem, Γ1 ` A1 : Type is also derivable. Thus, applying the rule Prod,
Γ1 ` Πx : A1.B1 : Type is derivable in PVS-Cert.

• Γ, x : A ` P : Prop
Subtype

Γ ` {x : A | P} : Type

171



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

We consider D1 the second direct subderivation of D. By Proposition 9.2.2,
Certificate(D1) has the form Γ1, x : A1 ` P1 : Prop. Hence, Certificate(D) =
Γ1 ` {x : A1 : P1} : Type. By induction hypothesis, Γ1, x : A1 ` P1 : Prop is
derivable in PVS-Cert. Hence, by the subderivations theorem and the stratifica-
tion theorem, Γ1 ` A1 : Type is also derivable. Thus, applying the rule Subtype,
Γ1 ` {x : A1 : P1} : Type is derivable in PVS-Cert.

• Γ `WF EltVar (x : A) ∈ Γ
Γ ` x : A

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 `WF , and there exists at least one declaration of the form (x : A1) ∈ Γ1 such
that JA1K = A. We consider the first declaration (x : A1) ∈ Γ1 having this prop-
erty. In this setting, Certificate(D) = Γ1 ` x : A1. By induction hypothesis,
Γ1 ` WF is derivable in PVS-Cert. Hence, applying the rule Var, Γ1 ` X : Type
is derivable.

• Γ, x : A ` P : Prop
Forall

Γ ` ∀x : A.P : Prop

We consider D1 the second direct subderivation of D. By Proposition 9.2.2,
Certificate(D1) has the form Γ1, x : A1 ` P1 : Prop. Hence, Certificate(D) =
Γ1 ` Πx : A1.P2 : Prop. By induction hypothesis, Γ1, x : A1 ` P1 : Prop is
derivable in PVS-Cert. Hence, by the subderivations theorem and the stratifica-
tion theorem, Γ1 ` A1 : Type is also derivable. Thus, applying the rule Prod,
Γ1 ` Πx : A1.P1 : Prop is derivable in PVS-Cert.

• Γ, P ` Q : Prop
Imply

Γ ` P ⇒ Q : Prop

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, h1 : P1 ` Q2 : Prop by Proposition 9.2.2. In this setting, Certificate(D) =
Γ1 ` Πh1 : P1.Q1 : Prop. By induction hypothesis, Γ1, h1 : P1 ` Q1 : Prop is
derivable in PVS-Cert. Hence, by the subderivations theorem and the stratifica-
tion theorem, Γ1 ` P1 : Prop is also derivable. Thus, applying the rule Prod,
Γ1 ` Πh1 : P1.Q1 : Prop is derivable in PVS-Cert.

• Γ, x : A ` t : B
Lam

Γ ` λx : A.t : Πx : A.B

We consider D1 the first direct subderivation of D. Certificate(D1) has the
form Γ1, x : A1 ` t1 : B1. In this setting, Certificate(D) = Γ1 ` λx : A1.t1 :
Πx : A1.B1. By induction hypothesis, Γ1, x : A1 ` t1 : B1 is derivable in PVS-
Cert. Hence, by the subderivations theorem, Theorem 5.2.3, and the stratification

172



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

theorem, Γ1 ` A1 : Type and Γ1, x : A1 ` B1 : Type are derivable in PVS-Cert.
Thus, applying the rule Prod and the rule Lam, Γ1 ` λx : A1.t1 : Πx : A1.B1 is
derivable in PVS-Cert.

• Γ ` t : Πx : A.B Γ ` u : A
App

Γ ` tu : B[u/x]

We consider D1 and D2 the direct subderivations of D. Certificate(D2) has
the form Γ2 ` u2 : A2 and, by Proposition 9.2.2, Certificate(D1) has the form
Γ1 ` t1 : Πx : A1.B1. In this setting, Certificate(D) = Γ1 ` t1u2 : B1[u2/x].
By induction hypothesis, Γ1 ` t1 : Πx : A1.B1 and Γ2 ` u2 : A2 are derivable
in PVS-Cert. By Theorem 5.2.3 followed by the subderivations theorem and the
stratification theorem, Γ1 ` A1 : Type is derivable. Therefore, by Proposition
9.3.2 followed by Proposition 5.7.1, Γ1 ` u2 : A1 is derivable in PVS-Cert. Hence,
applying the rule App, Γ1 ` t1u2 : B1[u2/x] is derivable as expected.

• Γ ` t : A Γ ` P [t/x] Γ ` {x : A | P} : Type
SubtypeIntro

Γ ` t : {x : A | P}

We consider D1, D2, and D3 the direct subderivations of D. Certificate(D1)
has the form Γ1 ` t1 : A1, Certificate(D2) has the form Γ2 ` p2 : P ′2, and, by
Proposition 9.2.2, Certificate(D3) has the form Γ3 ` {x : A3 | P3} : Type. In
this setting, Certificate(D) = Γ1 ` 〈t1, p2〉{x:A3|P3} : {x : A3 | P3}. By induction
hypothesis, Γ1 ` t1 : A1, Γ2 ` p2 : P ′2, and Γ3 ` {x : A3 | P3} : Type are derivable
in PVS-Cert. We first prove that Γ1 ` P3[t1/x] : Prop is derivable in the following
way.

By the subderivations theorem, Γ1 ` WF is derivable. Therefore, by Proposition
9.3.2 followed by Proposition 5.7.1, Γ1 ` {x : A3 | P3} : Type is derivable in PVS-
Cert. As a consequence, by the subderivations theorem, Γ1, x : A3 ` P3 : Prop is
derivable. By the subderivations theorem again, Γ1 ` A3 : Type is also derivable.
Hence, by Proposition 9.3.2, we can apply conversion to the first premise to ob-
tain a derivation of Γ1 ` t1 : A3. We conclude by the substitution theorem that
Γ1 ` P3[t1/x] : Prop is derivable.

On the other hand, by Proposition 9.1.1, JP3[t1/x]K = JP3K[Jt1K/x] = P [t/x] =
JP2K. Therefore, by Proposition 9.3.2 followed by Proposition 5.7.1, Γ1 ` p2 :
P3[t1/x] is derivable in PVS-Cert. Finally, applying the rule Pair, the judgement
Γ1 ` 〈t1, p2〉{x:A3|P3} : {x : A3 | P3} is derivable as expected.

• Γ ` t : {x : A | P}
SubtypeElim1

Γ ` t : A

173



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

The expected result follows by induction hypothesis, applying the PVS-Cert rule
Proj1.

• Γ ` t : A Γ ` B : Type
TypeConversion A ≡β B

Γ ` t : B

We consider D1 and D2 the direct subderivations of D. Certificate(D1) has the
form Γ1 ` t1 : A1 and Certificate(D1) has the form Γ2 ` B2 : Type. In this
setting, Certificate(D) = Γ1 ` t1 : B2. By induction hypothesis, Γ1 ` t1 : A1

and Γ2 ` B2 : Type are derivable.

By the subderivations theorem, Γ1 ` WF is derivable. Hence, by Proposition
9.3.2 followed by Proposition 5.7.1, Γ1 ` B2 : Type is derivable in PVS-Cert. On
the other hand, by Proposition 9.3.4, A1 ≡β∗ B2. Hence, applying conversion,
Γ1 ` t1 : B2 is derivable.

• Γ `WF
Axiom P ∈ Γ

Γ ` P

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1 ` WF , and there exists at least one declaration of the form (h1 : P1) ∈ Γ1

such that JP1K = P . We consider (h1 : P1) ∈ Γ1 the first declaration satisfying
this property. In this setting, Certificate(D) = Γ1 ` h1 : P1. By induction
hypothesis, Γ1 ` WF is derivable in PVS-Cert. As (h1 : P1) ∈ Γ1, we conclude
the expected result applying the rule Var.

• Γ, P ` Q
ImplyIntro

Γ ` P ⇒ Q

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, h1 : P1 ` q1 : Q1. In this setting, Certificate(D) = Γ1 ` λh1 : P1.q1 : Πh1 :
P1.Q1. By induction hypothesis, Γ1, h1 : P1 ` q1 : Q1 is derivable in PVS-Cert.
Hence, by the subderivations theorem, Theorem 5.2.3, and the stratification the-
orem, Γ1 ` P1 : Prop and Γ1, h1 : P1 ` Q1 : Prop are derivable in PVS-Cert.
Thus, applying the rule Prod and the rule Lam, Γ1 ` λh1 : P1.q1 : Πh1 : P1.Q1 is
derivable in PVS-Cert.

• Γ ` P ⇒ Q Γ ` P
ImplyElim

Γ ` Q

We consider D1 and D2 the direct subderivations of D. Certificate(D2) has
the form Γ2 ` p2 : P2 and, by Proposition 9.2.2, Certificate(D1) has the form
Γ1 ` p1 : Q′1 where Q′1 admits a normal form with respect to .∗ which has the

174



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

form Πh : P1.Q1. In this setting, Certificate(D) = Γ1 ` p1p2 : Q1[p2/h]. By
induction hypothesis, Γ1 ` p1 : Q′1 and Γ2 ` p2 : P2 are derivable in PVS-Cert.
By Proposition 5.2.3 and the stratification theorem, Γ1 ` Q′1 : Prop is derivable
in PVS-Cert. Hence, by Proposition 9.3, Γ1 ` Πh : P1.Q1 : Prop is derivable as
well. As Q′1 ≡β∗ Πh : P1.Q1, we conclude by conversion that Γ1 ` p1 : Πh : P1.Q1

is derivable.

By Theorem 5.2.3 followed by the subderivations theorem and the stratification
theorem, Γ1 ` P1 : Prop is derivable. Therefore, by Proposition 9.3.2 followed by
Proposition 5.7.1, Γ1 ` p2 : P1 is derivable in PVS-Cert. Hence, applying the rule
App, Γ1 ` p1p2 : Q1[p2/h] is derivable as expected.

• Γ, x : A ` P
ForallIntro

Γ ` ∀x : A.P

We consider D1 the direct subderivation of D. Certificate(D1) has the form
Γ1, x : A1 ` p1 : P1. In this setting, Certificate(D) = Γ1 ` λx : A1.p1 : Πx :
A1.P1. By induction hypothesis, Γ1, x : A1 ` p1 : P1 is derivable in PVS-Cert.
Hence, by the subderivations theorem, Theorem 5.2.3, and the stratification the-
orem, Γ1 ` A1 : Type and Γ1, x1 : A1 ` P1 : Prop are derivable in PVS-Cert.
Thus, applying the rule Prod and the rule Lam, Γ1 ` λx1 : A1.p1 : Πx1 : A1.P1 is
derivable in PVS-Cert.

• Γ ` ∀x : A.P Γ ` t : A
ForallElim

Γ ` P [t/x]

We consider D1 and D2 the direct subderivations of D. Certificate(D2) has
the form Γ2 ` t2 : A2 and, by Proposition 9.2.2, Certificate(D1) has the form
Γ1 ` p1 : P ′1 where P ′1 admits a normal form with respect to .∗ which has the form
Πx : A1.P1. In this setting, Certificate(D) = Γ1 ` p1t2 : P1[t2/x]. By induction
hypothesis, Γ1 ` p1 : P ′1 and Γ2 ` t2 : A2 are derivable in PVS-Cert. By Proposi-
tion 5.2.3 and the stratification theorem, Γ1 ` P ′1 : Prop is derivable. Hence, by
Proposition 9.3, Γ1 ` Πx : A1.P1 : Prop is derivable as well. As P ′1 ≡β∗ Πx : A1.P1,
we conclude by conversion that Γ1 ` p1 : Πx : A1.P1 is derivable.

By Theorem 5.2.3 followed by the subderivations theorem and the stratification
theorem, Γ1 ` A1 : Type is derivable. Therefore, by Proposition 9.3.2 followed by
Proposition 5.7.1, Γ1 ` t2 : A1 is derivable in PVS-Cert. Hence, applying the rule
App, Γ1 ` p1t2 : P1[t2/x] is derivable as expected.

• Γ ` t : {x : A | P}
SubtypeElim2

Γ ` P [t/x]

175



CHAPTER 9. EXPRESSING PVS-CORE IN PVS-CERT

The expected result follows by induction hypothesis, applying the PVS-Cert rule
Proj2.

• Γ ` P Γ ` Q : Prop
PropConversion P ≡β Q

Γ ` Q

We consider D1 and D2 the direct subderivations of D. Certificate(D1) has
the form Γ1 ` p1 : P1 and, by Proposition 9.2.2, Certificate(D1) has the form
Γ2 ` Q2 : Prop. In this setting, Certificate(D) = Γ1 ` p1 : Q2. By induction
hypothesis, Γ1 ` p1 : P1 and Γ2 ` Q2 : Prop are derivable.

By the subderivations theorem, Γ1 ` WF is derivable. Hence, by Proposition
9.3.2 followed by Proposition 5.7.1, Γ1 ` Q2 : Prop is derivable in PVS-Cert. On
the other hand, by Proposition 9.3.4, P1 ≡β∗ Q2. Hence, applying conversion,
Γ1 ` t1 : B2 is derivable.

176



Chapter 10

Transposing PVS-Cert results in
PVS-Core

We end the first part of this work showing the consequences, in PVS-Core, of the different
results obtained for PVS-Cert, such as the theorem of decidability of type-checking in
PVS-Cert (7.1.1), the type preservation theorem 5.5.2, the conservativity theorem 8.5.2
over higher-order logic, but also the cut elimination theorem 6.5.3 and its corollaries.
This analysis is done through the correspondence established in the previous chapter
between PVS-Core and PVS-Cert.

This overview begins with an answer to the first question addressed in the current
work: defining a system of verifiable certificates for PVS-Core.

10.1 Using PVS-Cert as a system of verifiable certificates
for PVS-Core

The type-checking algorithm for PVS-Cert presented in Chapter 7 can be combined in
the following way with the encoding of PVS-Core derivations into PVS-Cert presented
in Chapter 9 to use PVS-Cert proof judgements as proof certificates for PVS-Core.

Definition 10.1.1 (PVS-Cert proof judgements as PVS-Core certificates). A PVS-Cert
judgement Γ ` p : P can be used as a certificate for its PVS-Core erasure JΓK ` JP K (de-
fined in Definition 9.1.1), to be checked using the type-checking algorithm Check-type(Γ |
p | P ) (defined in Definition 7.1.3).

On the one hand, this way of using PVS-Cert judgements as certificates is sound:
whenever Check-type(Γ | p | P ) succeeds, then, by Proposition 7.2.1, the judgement
Γ ` p : P is derivable, and, by Theorem 9.1.1, JΓK ` JP K is derivable in PVS-Core.

On the other hand, valid certificates can be generated for arbitrary PVS-Core theo-
rems in the following way. Given some PVS-Core judgement ∆ ` Q derivable through

177



CHAPTER 10. TRANSPOSING PVS-CERT RESULTS IN PVS-CORE

some derivation D, we can use the PVS-Cert judgement Certificate(D) as a certifi-
cate of ∆ ` Q: indeed, using the notations Γ ` p : P for Certificate(D), the following
statements hold.

• By definition of Certificate, JΓK = ∆ and JP K = Q, hence this judgement is a
certificate for ∆ ` Q.

• By Theorem 9.3.1, Γ ` p : P is derivable in PVS-Cert. Hence, by Proposition
7.4.1, Check-type(Γ | p | P ) succeeds: this certificate is valid.

10.2 Transposing PVS-Cert properties in PVS-Core

Several properties proved for PVS-Cert can be transposed directly for PVS-Core through
the correspondence described in Chapter 9. We present four examples of such transpo-
sitions, corresponding, respectively, to Theorem 5.2.3, to the type preservation theorem
5.5.2, to the strong normalization theorem 6.5.2, and to the conservativity theorem 8.5.2
over higher-order logic.

10.2.1 A provable proposition is well-typed

The adaptation of Theorem 5.2.3 in PVS-Core has two forms: on the one hand, a proved
proposition is well-typed by Prop, and, on the other hand, the type of a well-typed
expression is well-formed. More precisely, we formalize this adaptation as follows.

Theorem 10.2.1. The two following statements hold.

• For any derivable PVS-Core judgement Γ ` P , the judgement Γ ` P : Prop is
derivable too.

• For any derivable PVS-Core judgement Γ ` t : A, the judgement Γ ` A : Type is
derivable too.

Proof. The two cases are similar. We present the first one as an illustration. We define
Γ′ ` p : P ′ the image of some derivation of Γ ` P through the algorithm Certificate.
By definition, JΓ′K = Γ and JP ′K = P . By Theorem 9.3.1, Γ′ ` p : P ′ is derivable in
PVS-Cert. Hence, by Theorem 5.2.3 and the stratification theorem, Γ′ ` P ′ : Prop is
derivable as well in PVS-Cert. As a consequence, by Theorem 9.1.1, Γ ` P : Prop is
derivable in PVS-Core.

10.2.2 Type preservation in PVS-Core

We present the following transposition to PVS-Core of the PVS-Cert type preservation
theorem (5.5.2).

Theorem 10.2.2 (Type preservation for �β). Given any derivable PVS-Core judge-
ment Γ ` P (resp. Γ ` t : A, Γ ` A : Type), the following statements hold.

178



CHAPTER 10. TRANSPOSING PVS-CERT RESULTS IN PVS-CORE

• For any derivable PVS-Core judgement Γ ` P , whenever P �β Q, Γ ` Q is
derivable.

• For any derivable PVS-Core judgement Γ ` t : A, whenever t �β u and A �β B,
Γ ` u : B is derivable

• For any derivable PVS-Core judgement Γ ` A : Type, whenever A�β B, Γ ` B :
Type is derivable.

The proof of this adaptation of the PVS-Cert type preservation theorem requires the
following lemma.

Lemma 10.2.1. The following statements hold.

• For any PVS-Core types A→β B, whenever there exists some PVS-Cert derivable
judgement Γ ` A′ : Type with JA′K = A, then there exists some PVS-Cert type B′

such that A′ �βσ B
′ and JB′K = B.

• For any PVS-Core expressions t →β u, whenever there exists some PVS-Cert
derivable judgement Γ ` t′ : A′ with Jt′K = t, then there exists some PVS-Cert
expression u′ such that t′ �βσ u

′ and Ju′K = u.

The hypotheses of derivability of Γ ` A′ : Type in the first statement and Γ ` t′ : A′
in the second statement are the most important requirements to make these state-
ments hold. Indeed, a straightforward counter-example without this constraint would
be to take some PVS-Core expression of the form π1(λx : A.x)y: on the one hand,
Jπ1(λx : A.x)yK = (λx : A.x)y →β y, but π1(λx : A.x)y is in normal form with respect
to the reduction →σβ.

The proof of the lemma uses these derivability constraints as follows.

Proof. The two statements are proved together by induction on the type A in the first
statement and the expression t in the second statement.

In the first statement, the possible cases for A are the following.

• The cases Prop and X cannot occur.

• In the case Πx : A1.A2, one of the following holds.

– B = Πx : B1.A2, where A1 →β B1. By Proposition 9.2.2, A′ has the form Πx :
A′1.A

′
2 with JA′1K = A1 and JA′2K = A2. By the subderivations theorem and

the stratification theorem, Γ ` A′1 : Type is derivable. Hence, by induction
hypothesis, there exists some PVS-Cert type B′1 such that Πx : A′1.A

′
2 �βσ

Πx : B′1.A
′
2 and JB′1K = B1.

179



CHAPTER 10. TRANSPOSING PVS-CERT RESULTS IN PVS-CORE

– B = Πx : A1.B2, where A2 →β B2. By Proposition 9.2.2, A′ has the form
Πx : A′1.A

′
2 with JA′1K = A1 and JA′2K = A2. By the subderivations theorem

and the stratification theorem, Γ, x : A′1 ` A′2 : Type is derivable. Hence,
by induction hypothesis, there exists some PVS-Cert type B′2 such that Πx :
A′1.A

′
2 �βσ Πx : A′1.B

′
2 and JB′2K = B2.

In the second statement, we first reduce the general case to the case where t′ does not
begin with the constructions 〈·,M〉T nor π1(·) as follows. We consider t′′ the subterm
of t′ obtained by removing iteratively all possible constructions 〈·,M〉T nor π1(·) at the
head of t′: in this setting, t′′ doesn’t begin with one of these constructions. By straight-
forward induction on the depth of the occurrence of t′′ in t′, there exists a derivable
PVS-Cert judgement of the form Γ ` t′′ : A′′ for some type A′′. In the restricted case,
we suppose that the expected result holds: there exists a term u′′ such that t′′ →βσ u

′′

and Ju′′K = u. In this setting, we consider the term u′ obtained from t′ by replacing the
subterm t′′ by u′′. On the one hand, t′ �βσ u

′. On the other hand, Ju′K = Ju′′K = u.

It remains to be proved that the expected result holds in this restricted case, which
is done by case analysis on t.

• The case x cannot occur.

• In the cases Πx : A.P (resp. Πx : P.Q or λx : A.t1), we first use the fact that the
head t′ does not correspond to the constructions 〈·,M〉T nor π1(·) to conclude that
t′ must have the form Πx : A′.P ′ (resp. Πx : P ′.Q′ or λx : A′.t′1). Using this fact,
the remaining of the proof follows exactly what was done in the case Πx : A1.A2

in the analysis of the first statement.

• The case t1t2 is proved in the same way if t 6 .βu.

• The case t1t2 is proved in the following way if t .β u. In this case, t1 has the
form λx : B0.t0 and u = t0[t2/x]. If necessary, we first α-rename t1 to ensure
x 6∈ DV (Γ). As Jt′K = t and as t′ doesn’t have the form 〈t′0,M〉T nor π1(t′0), the
only possible form of t′ is an application t′1t

′
2, where Jt′1K = λx : B.t0 and Jt′2K = t2.

By the subderivations theorem, there exists two derivable judgements of the form
Γ ` t′1 : Πx : B′.B′′ (as x 6∈ DV (Γ), the free variable theorem ensures that the
variable x can be used as a bound variable in Πx : B′.B′′) and Γ ` t′2 : B′.

We consider t′′1 the normal form of t′1 with respect to the reduction �σ, which
exists by the strong normalization theorem. By the type preservation theorem,
as the judgement Γ ` t′1 : Πx : B′.B′′ is derivable, so is the judgement Γ ` t′′1 :
Πx : B′.B′′. We consider the unique way to write t′′1 = e[t′′′1 ] where the elimina-
tion context e (referring to Definition 6.1.1) contains only the projections π1(·)
and where the head of t′′′1 is not π1(·). We consider the possible forms for t′′′1 . As
Jt′′′1 K = Jt′′1K = Jt′1K = λx : B0.t0, t′′′1 can only have the form λx : B′0.t

′
0 or 〈t′0, p〉B′

0
.

180



CHAPTER 10. TRANSPOSING PVS-CERT RESULTS IN PVS-CORE

We first prove that the second case is impossible. In this second case, as t′′1 is in
normal form with respect to �σ, the elimination context e cannot contain any
projection π1(·): hence, t′′1 = t′′′1 = 〈t′0, p〉B′

0
, hence Γ ` 〈t′0, p〉B′

0
: Πx : B′.B′′ is

derivable. By the subderivations theorem, B′0 has the form {y : B′′0 | P ′} and
{y : B′′0 | P ′} ≡β∗ Πx : B′.B′′, which is impossible by Theorem 5.3.2.

As a consequence, t′′′1 has the form λx : B′0.t
′
0 and, as Jt′′′1 K = λx : B0.t0, JB′0K = B0

and Jt′0K = t0. Using these facts, we prove that the elimination context e contains
no projection π1(·) as follows. We suppose that e does contain at least one pro-
jection π1(·). In this case, π1(λx : B′0.t

′
0) is a subterm of t′′1: by straightforward

induction on the depth of e, some judgement of the form Γ ` π1(λx : B′0.t
′
0) : B′1

is derivable for some type B′1. Hence, by the subderivations theorem, some judge-
ment of the form Γ ` λx : B′0.t

′
0 : {y : B′′0 | P ′} is derivable. This is impossible

by the subderivations theorem followed by Theorem 5.3.2. As a consequence, e
contains no projection π1(·), hence t′′1 = t′′′1 = λx : B′0.t

′
0.

In this setting, t′1 �σ λx : B′0.t
′
0, and t′ = t′1t

′
2 �βσ t

′
0[t′2/x]. We consider the term

u′ = t′0[t′2/x]. On the one hand, t′ �βσ u
′. On the other hand, by Theorem 9.1.1,

Ju′K = Jt′0K[Jt
′
2K/x] = t0[t2/x] = u.

Using this lemma, the proof of Theorem 10.2.2 is the following.

Proof. [Theorem 10.2.2] All cases are similar. We present the second one as an illus-
tration. We define Γ′ ` t′ : A′ the image of some derivation of Γ ` t : A through the
algorithm Certificate. By definition of Certificate, JΓ′K = Γ, Jt′K = t, and JA′K = A.
By Theorem 9.3.1, Γ′ ` t′ : A′ is derivable in PVS-Cert. By straightforward induction,
using Lemma 10.2.1, there exists some expression u′ such that t′ � u′ and Ju′K = u.
On the other hand, by Theorem 5.2.3 and the stratification theorem, Γ′ ` A′ : Type is
derivable: as previously, by straightforward induction, using Lemma 10.2.1, there exists
some type B′ such that A′ � B′ and JB′K = B.

By the PVS-Cert type preservation theorem 5.5.2 applied twice, Γ′ ` u′ : B′ is
derivable in PVS-Cert. Hence, by Theorem 9.1.1, Γ ` u : B is derivable in PVS-Core.

10.2.3 Strong normalization in PVS-Core

We present the following transposition to PVS-Core of the PVS-Cert strong normaliza-
tion theorem 6.5.2.

Theorem 10.2.3 (Strong normalization for �β). The types and expressions appearing
in the conclusion of a derivable PVS-Core judgement are strongly normalizing under
→β:

181



CHAPTER 10. TRANSPOSING PVS-CERT RESULTS IN PVS-CORE

• For any derivable PVS-Core judgement Γ ` P , the expression P is strongly nor-
malizing under →β.

• For any derivable PVS-Core judgement Γ ` t : A, the expression t and the type A
are strongly normalizing under →β.

• For any derivable PVS-Core judgement Γ ` A : Type, the type A is strongly
normalizing under →β.

Proof. All cases are similar. We present the second one as an illustration. We define
Γ′ ` t′ : A′ the image of some derivation of Γ ` t : A through the algorithm Certificate.
By definition of Certificate, JΓ′K = Γ, Jt′K = t, and JA′K = A. By Theorem 9.3.1, Γ′ `
t′ : A′ is derivable in PVS-Cert. By the strong normalization theorem 6.5.2, the terms
t′ and A′ are strongly normalizing under →β∗. We consider the translation [·] presented
in Definition 9.3.1. By straightforward induction on types and expressions, t′ �∗ [t] and
A′ �∗ [A], hence [t] and [A] are strongly normalizing under→β∗. In particular, they are
strongly normalizing under →β. By Lemma 9.3.1 and by straightforward induction on
the length of reductions, for any reduction of the form M1 →β M2 →β ...→β Mn in PVS-
Core, there exists a corresponding reduction of the form [M1]→β [M2]→β ...→β [Mn]
in PVS-Cert. Hence, t and A are strongly normalizing under →β.

10.2.4 PVS-Core is a conservative extension of higher-order logic

We present a transposition to PVS-Core of the PVS-Cert conservativity theorem 8.5.2
over higher-order logic. In the same way as PVS-Cert is a conservative extension of
λ-HOL, presented in Definition 4.2.1 as a subsystem of PVS-Cert, PVS-Core is a con-
servative extension of higher-order logic, presented in Definition 3.3.1 as a subsystem of
PVS-Core.

In this transposition, we will use the fact that the erasure function J·K from PVS-
Cert to PVS-Core can be restricted to translate λ-HOL judgements to higher-order logic.
This is formalized and proved as follows.

Proposition 10.2.1. Every derivable λ-HOL judgement either has the form Γ ` Type :
Kind or admits an image through J·K which belongs to higher-order logic. In this latter
case, this judgement is derivable in higher-order logic.

Proof. The proof is analogous to the proof of Theorem 9.1.1. The first part of the
theorem is a consequence of the stratification theorem and the fact that, by straightfor-
ward induction on PVS-Cert types and expressions, the image of a type or expression
belonging to the syntax of λ-HOL through J·K belongs to the syntax of higher-order logic.

The second part is done by strong induction on the height of λ-HOL derivations. All
cases are treated as in the proof Theorem 9.1.1. The only required adaptation is the
modification of the induction hypotheses and the conclusions, replacing derivability in
PVS-Core by derivability in higher-order logic.

182



CHAPTER 10. TRANSPOSING PVS-CERT RESULTS IN PVS-CORE

In a second step, we prove the following proposition relating the erasure function J·K
from PVS-Cert to PVS-Core and the translation from PVS-Cert to λ-HOL presented
in Definition 8.2.5. This latter translation was referred to as J·K in Chapter 8 where it
is presented and used, but it will be denoted J·KλHOL in the following of this section to
disambiguate it from the erasure function J·K from PVS-Cert to PVS-Core.

Proposition 10.2.2. The following statements hold.

• For every PVS-Cert type A such that JAK is a higher-order logic type,
JJAKλHOLK = JAK.

• For every PVS-Cert expression t such that JtK is a higher-order logic expression,
JJtKλHOLK = JtK.

• For every PVS-Cert stratified context of the form Γ such that JΓK is a higher-order
logic context, JJΓKλHOLK = JΓK.

This proposition is a useful property for PVS-Cert terms that are not λ-HOL terms,
but that have a higher-order logic erasure: Proposition 10.2.2 shows that, although the
image of such a term through the translation J·KλHOL is not identical to the original
term, the two have the same PVS-Core erasures. This proposition is proved as follows.

Proof. The two first statements are proved together by induction on PVS-Cert types
and expressions. In the first statement, the possible cases are the following.

• The case X, Prop are straightforward

• The case Πx : A.B is straightforward by induction hypothesis

• The case {x : A | P} cannot occur as JAK is a higher-order logic type.

In the second statement, the possible cases are the following.

• The cases x is straightforward

• The cases Πx : A.P , Πh : P.Q, λx : A.t, and t u are straightforward by induction
hypothesis

• In the case 〈t,M〉A, by induction hypothesis, JJtKλHOLK = JtK, hence
JJ〈t,M〉AKλHOLK = JJtKλHOLK = JtK = J〈t,M〉AK.

• In the case 〈π1(t), by induction hypothesis, JJtKλHOLK = JtK, hence
JJπ1(t)KλHOLK = JJtKλHOLK = JtK = Jπ1(t)K.

Using the two first statements, the third one is proved straightforwardly by induction
on the length of the context Γ.

Finally, we present the following transposition from PVS-Cert to PVS-Core of the
conservativity theorem proved in Theorem 8.5.2.

183



CHAPTER 10. TRANSPOSING PVS-CERT RESULTS IN PVS-CORE

Theorem 10.2.4. PVS-Core is a conservative extension of higher-order logic: for every
judgement of the form Γ ` P : Prop derivable in higher-order logic, P is provable in Γ
in PVS-Core if and only if P is provable in Γ in higher-order logic.

Proof. As higher-order logic is a subsystem of PVS-Core, the derivability of Γ ` P in
higher-order logic implies its derivability in PVS-Core.

Conversely, we suppose that the judgement Γ ` P admits some PVS-Core deriva-
tion D. We define Γ′ ` p : P ′ = Certificate(D). By Theorem 9.3.1, Γ′ ` p : P ′

is derivable in PVS-Cert. Hence, by Theorem 8.5.1, there exists a proof q such that
JΓ′KλHOL ` q : JP ′KλHOL is derivable in λ-HOL. As a consequence, by Proposition
10.2.1, JJΓ′KλHOLK ` JJP ′KλHOLK is derivable in higher-order logic. In this setting, we
can conclude the expected result by proving that JJΓ′KλHOLK = Γ and JJP ′KλHOLK = P .
This is done as follows.

By definition of the function Certificate, JΓ′K = Γ, which is a higher-order logic
context, and JP ′K = P , which is a higher-order logic expression. Hence, by Proposition
10.2.2, JJΓ′KλHOLK = Γ, which is a higher-order logic context, and JJP ′KλHOLK = P .
Hence, Γ ` P is derivable in higher-order logic, as expected.

10.3 Using cut elimination in PVS-Cert to study PVS-
Core logical properties

The logical properties established for PVS-Cert through cut elimination can be trans-
posed to PVS-Core. The simplest of these properties is the consistency of PVS-Core.

Theorem 10.3.1. The system PVS-Core is consistent: the judgement ` ∀x : Prop.x is
not derivable.

Proof. If the judgement ` ∀x : Prop.x admits a PVS-Core derivation D, we define
` p : P = Certificate(D). By definition, JP K = ∀x : Prop.x = JΠx : Prop.xK. Hence,
by proposition 9.3.4, P ≡β∗ Πx : Prop.x. As ` Πx : Prop.x : Prop is derivable in PVS-
Cert, we can apply the conversion rule to conclude that ` p : Πx : Prop.x is derivable
in PVS-Cert, which is impossible by Theorem 6.7.1.

The more complex example of the analysis of Leibniz’s definition of equality was
presented in Theorem 6.7.2 as another corollary of cut elimination in PVS-Cert cut
elimination. It is transposed to PVS-Core in the following way.

Theorem 10.3.2. In PVS-Core, Leibniz’s definition of equality matches conversion:
whenever some judgement of the form ` ∀x : (Πy : A.Prop).xt ⇒ xu is derivable, then
t ≡β u.

This theorem is more difficult to transpose to PVS-Core as the proposition ∀x : (Πy :
A.Prop).xt⇒ xu is not necessarily a higher-order logic expression. Given a derivation D

184



CHAPTER 10. TRANSPOSING PVS-CERT RESULTS IN PVS-CORE

proving this proposition, the strategy in its proof is to analyze the PVS-Cert proposition
proved in Certificate(D) from its head towards its deeper subterms to conclude that
it can be converted to some PVS-Cert proposition on which Theorem 6.7.2 is applicable.
More precisely, the proof is the following.

Proof. If the judgement ` ∀x : (Πy : A.Prop).xt⇒ xu admits a PVS-Core derivation D,
we define ` p : P = Certificate(D): by definition, JP K = ∀x : (Πy : A.Prop).xt⇒ xu.
Hence, by Proposition 9.2.2, P admits a normal form with respect to .∗ which has
the form Πx : B.P ′. By straightforward induction on the corresponding reduction,
JBK = Πy : A.Prop and JP ′K = xt⇒ xu.

By Theorem 9.3.1, ` p : P is derivable in PVS-Cert. Hence, by Theorem 5.2.3 fol-
lowed by Proposition 9.3, ` Πx : B.P ′ : Prop is derivable as well. As a consequence, by
the subderivations theorem and the renaming theorem, the judgement x : B ` P ′ : Prop
is derivable. By Proposition 9.2.2, P ′ admits a normal form with respect to .∗ which
has the form Πh : P1.Q1. By straightforward induction on the corresponding reduc-
tion, JP1K = xt and JQ1K = xu. Applying Proposition 9.3 again, we conclude that
the judgement x : B ` Πh : P1.Q1 : Prop is derivable. Thus, by the subderiva-
tions theorem, the renaming theorem, and the stratification theorem, the judgement
x : B, h : P1 ` Q1 : Prop and the judgement x : B ` P1 : Prop are derivable.

By the strong normalization theorem 6.5.2, P1 and Q1 admits two respective normal
forms P2 and Q2 with respect to �σ. By straightforward induction on the length of
these respective reductions, JP2K = xt and JQ2K = xu. By the type preservation theorem
5.5.2, the judgement x : B ` P2 : Prop and the judgement x : B, h : P1 ` Q2 : Prop are
derivable.

We consider the unique way to write P2 = e[t0] where e contains only the projections
π1(·) and where the head of t0 doesn’t have the form π1(·). We first show that t0 in an
application by discarding all other possibilities, as follows. As Jt0K = JP2K = xt, the only
other possibility is t0 = 〈t′1, p1〉A1 . In this case, as P2 is in normal form with respect to
→σ, e does not contain any projection π1(·): thus, P2 = t0. Hence, by the subderivations
theorem, A1 has the form {y : Q | A2}, and {y : Q | A2} ≡β∗ Prop. This is not possible
by Theorem 5.3.2.

As a consequence, t0 is an application. We write t0 = t1t2: in this setting, Jt1K = x
and Jt2K = t. Iterating the subderivations theorem from the derivation of x : B ` P2 :
Prop and applying the stratification theorem, we first notice that there exists some
derivable judgement of the form x : B ` t1 : Πxt1 : At1 .Bt1 . Using this fact, we first
show that t1 = x in the following way. We consider the unique way to write t1 = e′[t′1]
where e′ contains only the projections π1(·) and where the head of t′1 doesn’t have the
form π1(·). We first show that t′1 = x by discarding all other possibilities, as follows.
As Jt′1K = Jt1K = x, the only other possible form for t′1 is 〈t′′1, p1〉A1 . In this case, as P2

is in normal form with respect to →σ, e′ does not contain any projection π1(·): thus,

185



CHAPTER 10. TRANSPOSING PVS-CERT RESULTS IN PVS-CORE

t1 = t′1. Hence, by the subderivations theorem, A1 has the form {y : Q | A2}, and
{y : Q | A2} ≡β∗ Πxt1 : At1 .Bt1 . This is not possible by Theorem 5.3.2.

As a consequence, t′1 = x. We show that t1 = t′1 = x in the following way. If
this is not the case, then e′ contains at least one projection π1(·): iterating the sub-
derivations theorem from the derivation of x : B ` t1 : Πxt1 : At1 .Bt1 , we conclude
that there exists some derivable judgement of the form x : B ` x : {y : Q | B′}. As,
by the thinning theorem followed by the application of the rule Var, the judgement
x : B ` x : B is derivable as well, by Theorem 5.6.1, B ≡β∗ {y : Q | B′}. On the other
hand, as JBK = Πy : A.Prop, by Proposition 9.2.2, B has the form Πx : A′.P rop, where
JA′K = A. Hence, the equation B ≡β∗ {y : Q | B′} cannot hold by Theorem 5.3.2. As a
consequence, t1 = t′1 = x.

Using this fact, we show that P2 = t0 = xt2 in the following way. If this is not
the case, then e contains at least one projection π1(·): iterating the subderivations
theorem from the derivation of x : B ` P2 : Prop, we first conclude that there ex-
ists some derivable judgement of the form x : B ` xt2 : {y : Q | B′}. Applying
the subderivations theorem again, there exists some derivable judgement of the form
x : B ` x : Πz : B′′.B′′′ is derivable, where B′′′[t2/z] ≡β∗ {y : Q | B′}. By
Theorem 5.6.1, Πx : A′.P rop ≡β∗ Πz : B′′.B′′′. Hence, by Theorem 5.3.2, hence
Prop ≡β∗ B′′′. By Theorem 5.3.2 again, this implies that B′′′ = Prop, from which
we conclude Prop ≡β∗ {y : Q | B′}. Applying Theorem 5.3.2 again, this situation can-
not occur.

As a consequence, P2 = xt2. In the same way as the data of a derivation of judge-
ment x : B ` P2 : Prop was used to prove that P2 has the form xt2 with Jt2K = t, the
derivation of the judgement x : B, h : P1 ` Q2 : Prop is used to prove that Q2 has the
form xu2 with Ju2K = u.

Using the rule Decl, the judgement x : B, h : xt2 ` WF is derivable. On the other
hand, by Theorem 5.5.1, P1 ≡β∗ P2 = xt2. Hence, using the notion of context conver-
sion defined in Definition 5.7.1 and Proposition 5.7.1, we conclude that the judgement
x : B, h : xt2 ` xu2 : Prop is derivable. As the judgement x : B ` xt2 : Prop is
also derivable, we conclude applying the rule Prod that the judgement x : B ` Πh :
xt2.xu2 : Prop is derivable. On the other hand, by the subderivations theorem and the
stratification theorem, the judgement ` B : Type is derivable. Hence, applying the rule
Prod, the judgement ` Πx : B.Πh : xt2.xu2 : Prop is derivable.

As JΠx : B.Πh : xt2.xu2 : PropK = ∀x : (Πy : A.Prop).xt ⇒ xu = JP K, by Theorem
9.3.4, Πx : B.Πh : xt2.xu2 : Prop ≡β∗ P . As a consequence, the conversion rule can
be applied to conclude that the judgement ` p : Πx : B.Πh : xt2.xu2 is derivable. As
B = Πx : A′.P rop, Theorem 6.7.2 can be applied to conclude that t2 ≡β∗ u2. Hence,
applying Proposition 9.1.2, t ≡β u.

186



Chapter 11

Conclusion

11.1 Summary of the main contributions

The first contribution of this work is the definition of PVS-Core (Chapter 3), a minimal
system expressing the extension of higher-order logic with predicate subtyping, obtained
from the practice of predicate subtyping in PVS (Chapter 2). Besides its minimality, the
main design choice for this system is the introduction of a definitional equality, referred
to as conversion, corresponding to syntactical equality modulo β-equivalence.

The second contribution of this work is the definition of PVS-Cert (Chapter 4), a
language of verifiable certificates for PVS-Core, designed as the addition of explicit proof
terms to PVS-Core as well as the addition, at the level of expressions, of explicit co-
ercions based on these proof terms. The addition of explicit proof terms follows the
Curry-Howard correspondence in the sense that PVS-Cert proofs terms are typed by
their corresponding formulas. On the other hand, the addition of explicit coercions
ensures the decidability of type-checking. A terminating, sound and complete type-
checking algorithm for PVS-Cert is presented in Chapter 7.

In order to maintain a simple correspondence between PVS-Core and PVS-Cert, con-
version in PVS-Cert is not defined as in PVS-Core but through a more distinctive notion,
≡β∗ (Definition 4.1.3), corresponding to syntactical equality modulo β-equivalence and
coercion erasure. We present a translation from PVS-Cert to PVS-Core and, at the level
of derivation trees, a translation from PVS-Core to PVS-Cert (Chapter 9). These trans-
lations are used in Chapter 10 together with the type-checking algorithm of PVS-Cert to
define how to use PVS-Cert as a language of a verifiable proofs for PVS-Core (Definition
10.1.1).

PVS-Cert is very similar to the formalism of PTSs extended with dependent pairs.
Nevertheless, instead of the case of the reduction →βσ (Definition 4.2.2) in PTSs with
dependent pairs, →β∗ is not a type preserving reduction in PVS-Cert. We prove that
→βσ is a type preserving reduction in PVS-Cert (Theorem 5.5.2). As a consequence, it

187



CHAPTER 11. CONCLUSION

defines, when applied to proof terms, a notion of cut elimination.

The strong normalization of the reductions →β∗ and →βσ is proved in Chapter 6
(Theorem 6.5.2). While the termination of the reduction →β∗ is at the core of the ter-
mination of the type-checking algorithm defined for PVS-Cert, the termination of the
reduction →βσ provides a cut elimination theorem (Theorem 6.5.3), which is a useful
tool to analyze specific properties of PVS-Cert and PVS-Core – and thus predicate sub-
typing itself –, from consistency (Theorems 6.7.1 and 10.3.1) to more complex theorems
such as the analysis of Leibniz’s equality (Theorems 6.7.2 and 10.3.2).

Last, we have presented in Chapter 8 a translation (Definition 8.2.5) from PVS-Cert
to its restriction to the PTS λ-HOL. Using this translation and the fact that any PVS-
Cert formula in which predicate subtyping is not explicitly used is translated as itself
through this translation, we have proved that PVS-Cert is a conservative extension of λ-
HOL (Theorem 8.5.2), and as a consequence that PVS-Core is a conservative extension
of higher-order logic (Theorem 10.2.4). These theorems allow to reduce the question
of the provability of any proposition using predicate subtyping to the question of the
provability of a proposition formulated in pure higher-order logic. Hence, they provide
useful tools to study the properties of predicate subtyping, in complement of the cut
elimination theorem.

11.2 Perspectives for PVS

One of the most interesting perspectives from this work is the definition of a kernel for
PVS, in the sense of a back-end language in which the whole PVS language – or at least
a large part of it – could be expressed. As detailed in Section 11.2.1, this kernel could be
defined as a well-suited extension of PVS-Core. Moreover, PVS-Cert could be extended
accordingly to define a system of verifiable certificates for this kernel, and thus for PVS
itself.

11.2.1 Extending PVS-Cert and PVS-Cert

A kernel language wouldn’t require to include all features of PVS: most of them could be
either axiomatized or encoded into this language. For instance, following two examples
mentioned in Chapter 2, propositional extensionality wouldn’t be required as it can be
added as an axiom (as suggested in Section 2.2.2), and the connective FALSE wouldn’t be
required as it could be encoded as FORALL (P : bool) : P (as suggested in Section
2.1.2).

In theory, most features of PVS could be removed from such a kernel language
through axiomatizations and encodings. We can conjecture that, whenever the use of
arbitrarily complex encodings was allowed, PVS-Core itself would be used as a kernel for
PVS. Proceeding further, PVS-Core wouldn’t be a minimal kernel for PVS, as PVS-Core

188



CHAPTER 11. CONCLUSION

can be expressed in turn into higher-order logic using the encoding described in Chapter
8 (Definition 8.2.5).

However, in practice, using heavy encodings can be prohibitive to scale up to large
theories, or simply to recognize a PVS theory from its expression in the kernel. For these
reasons, we consider on the contrary that PVS-Core, which is a minimal system for the
expression of predicate subtyping, should be extended in several directions to obtain a
system which could be used as a kernel for PVS. In this setting, PVS-Cert should be
extended accordingly to obtain a system of verifiable certificates for this kernel, and thus
for PVS.

We consider that the first extensions to be added to PVS-Core and PVS-Cert to define
respectively a kernel and a system of verifiable certificates for PVS are the following.

• Some form of polymorphism at the level of types should be added to both systems
to express the abstract and modular formalizations which can be performed in
PVS. Such a mechanism is indeed indispensable when using PVS for the formal-
ization of mathematics or for the definition and the verification of algorithms. For
instance, it is used in PVS to define a theory of groups or a theory of lists using an
abstract parameter for the underlying type of elements, allowing to use these theo-
ries anywhere else through some instantiation with a concrete type. These abstract
parameters are referred to as formal parameters (mentioned in Section 2.1.1), while
their concrete instantiations are referred to as actual parameters. When using a
theory with abstract types, all abstract parameters must be fully instantiated, ei-
ther by the user or through the name resolution mechanism (mentioned as well in
Section 2.1.1). This constraint, which can be thought as a restriction to prenex
polymorphism, ensures in particular the impossibility to express Girard’s paradox
[40] in PVS. We conjecture that PVS-Cert could be extended with the same form
of polymorphism by following the formalization referred to as predicative polymor-
phism in [18], and that PVS-Core could be extended accordingly.

• Some mechanisms dedicated to induction and recursion should be added as well to
both systems. They could be used to express several useful advanced features of
PVS such as datatypes, inductive definitions, and recursive definitions (mentioned
in Section 2.1.1), but also more basic features such as tuple types, records (men-
tioned in Section 2.1.2), including their dependent versions. The formalization of
numeric expressions (mentioned in Section 2.1.2 as well) could be also eased using
such mechanisms. Among the many formalizations of induction and recursion in
type theory, it seems possible, for instance, to adapt the definitions given in [20]
or in [78], which are based on the calculus of constructions, to PVS-Cert and then
to PVS-Core.

We conjecture that the result of strong normalization proved in Chapter 6 can be
extended with these additional features. We also conjecture that the conservativity
theorem presented in Chapter 8 (and adapted to PVS-Core in Theorem 10.2.4) can be

189



CHAPTER 11. CONCLUSION

extended as well in the sense that these extensions of PVS-Cert (resp. PVS-Core) are
conservative over corresponding extensions of λ-HOL (resp. higher-order logic).

A last extension suggested for PVS-Core and PVS-Cert to define respectively a kernel
and a system of verifiable certificates for PVS is the addition of a mechanism of constant
definitions. More precisely, this system would alter PVS-Core and PVS-Cert by adding
the equivalent of PVS’s interpreted declarations (mentioned in Section 2.1.1), and by
extending the conversion relation to allow reasoning modulo the unfolding of constant
definitions. This mechanism wouldn’t be useful only because PVS theories usually use
several layers of definitions, but also because many features of PVS could be expressed in
a kernel language through constant definitions. The previous example of the expression
of the constant connective FALSE as FORALL (P : bool) : P is such a case. Without
a mechanism of constant definitions, one would either have to keep all of these defini-
tions unfolded, which would lead to a significant increase of the size of expressions, or to
add corresponding equality axioms – for instance, FALSE = FORALL (P : bool) : P

–, which would lead to a significant increase of the size of proofs, as these equality axioms
would be used intensively. On the contrary, using a mechanism of constant definitions,
the constant connective FALSE as well as several other features of PVS could be removed
from the kernel without affecting neither the expressions nor the proofs. One possible
way to formalize a mechanism of constant definitions for PVS-Core and PVS-Cert is to
adapt the notion of PTS with definitions presented in [67].

As the obtained extensions of PVS-Core and PVS-Cert would remain much smaller
than PVS, several layers of axiomatization and encodings should be defined to express
PVS in it. One first step in this direction would be to explore further the sugges-
tions presented in Chapter 2: for instance, expressing extra connectives and quantifiers
through simple definitions (as investigated in Section 2.1.2), expressing the more flexi-
ble typing rules of predicate subtyping in PVS through η-expansions (as investigated in
Section 2.2.1), or adding extra reasoning capabilities through the addition of axioms (as
investigated in Section 2.2.2).

11.2.2 The problem of extracting certificates from PVS

Before using such an extension of PVS-Cert as a system of verifiable certificates for
PVS, one preliminary work is to have, in practice, the possibility to extract externally
exploitable data from PVS. As mentioned in Chapter 1, PVS is based on two separate
tools, the type-checker and the prover : in order to build such certificates, data from both
tools have to be gathered. However, extracting information from these tools is difficult:
the type-checker outputs no information during typechecking other than the TCCs, and
the only pieces of information emitted by the prover are proof scripts, which are well-
suited to rerun proofs internally, but not to be usable outside PVS in practice. For this
reason, it appears that both the type-checker and the prover should be instrumented
to extract a sufficient amount of information to build externally verifiable certificates
written in some well-suited extension of PVS-Cert.

190



CHAPTER 11. CONCLUSION

In Part II, a first prototype is presented for the extraction from PVS of proof certifi-
cates that can be verified externally. As a prototype, this work admits some restrictions
and consequently some important differences with PVS-Cert:

• This prototype is restricted to the extraction of information from the prover only.
For this reason, the emitted certificates contain no typing information, and hence
the language in which they are written does not correspond to some extension
of PVS-Cert nor to any other typed language. As a consequence, at this stage,
these certificates can only be used to monitor the reasoning steps performed in the
prover, without fully ensuring the soundness of the results.

• In this prototype, proofs are kept in the formalism of sequent calculus, which is the
formalism used internally in PVS. As discussed in Section 2.2.2, the addition of
typing information to the formalism of sequent calculus is not as simple as in the
case of natural deduction. As a consequence, it could be preferable in practice to
translate these certificates into the formalism of natural deduction before adding
typing information. Following this strategy, the obtained language of certificates
draw near some extension of PVS-Cert.

• This prototype does not include the implementation of a kernel in which the whole
PVS language would be encoded. Instead, it is focused on some selection of the
most widely used features of PVS, without expressing them in a minimal system.
In particular, all logical connectives are kept primitive in this prototype.

Yet, as in PVS-Cert and PVS-Core, this prototype uses a form of conversion. This
notion of conversion includes β-equivalence, but also the mechanism of constant defi-
nitions suggested in Section 11.2.1 as an extension of PVS-Cert and PVS-Core. These
mechanisms turn out to be indispensable to keep certificates sufficiently compact in
practice. A shared perspective from Part I and Part II is to turn this prototype into
a complete system of certificates expressed in some extension of PVS-Cert. This goal
requires several important additional works, including in particular the instrumentation
of the PVS type-checker to add typing information to certificates.

11.3 Other perspectives

As mentioned in the presentation of related works (Section 1.5), the presented results
have been developed in relation with several other works (such as [61], [70], [79], and
[53]), and exploring further these relations could also lead to new perspectives.

One of the most interesting extension of this work to complete this analysis of predi-
cate subtyping would be the definition of formal semantics for PVS-Cert and PVS-Core.
On the one hand, the standards set theoretical semantics defined for PVS in [61] could be
adapted to define standard set theoretical semantics for PVS-Core and possibly PVS-
Cert. On the other hand, another interesting approach would be to define complete

191



CHAPTER 11. CONCLUSION

families of models for PVS-Core and PVS-Cert, in the sense that one proposition in
PVS-Core (respectively PVS-Cert) is provable if and only if it is true in all models of
these respective families. We conjecture that complete families of set theoretical models
can be defined by relaxing the definition of standard set theoretical models to accept al-
ternative models where the interpretation of a function type does not necessarily contain
all functions from the interpretation of the domain to the interpretation of the co-domain
and the interpretation of the type of propositions does not necessarily contain only two
elements.

Another perspective is the extension of the presented conservativity theorem of pred-
icate subtyping over higher-order logic (Theorem 8.5.2) to more complex systems. More
precisely, the conservativity of PVS-Cert over λ-HOL implies the conservativity of its
subsystem PVS-Cert− (Definition 4.2.3) over λ-HOL. PVS-Cert− is a fragment of the
system ECC presented in [53], for which the conservativity over higher-order logic re-
mains an open problem. Hence, an interesting extension of the presented work would be
to investigate to which extent the proof of conservativity presented for PVS-Cert can be
extended to some larger fragment of ECC than simply PVS-Cert−.

192



Part II

Proof certificates in PVS





Chapter 12

Proof certificates in PVS

Given the complexity of proof assistants such as PVS, external verifications become nec-
essary to reach the highest levels of trust in their results. The simplest way to perform
such verifications is to require from these proof systems to export certificates that can be
checked using third-party tools. This approach is followed for instance in the OpenThe-
ory project [47], in which the higher order logic theorem provers HOL Light, HOL4, and
ProofPower are instrumented to export verifiable certificates in a shared format.

The type system PVS-Cert presented in the first part of this work would be well-
suited as a language of verifiable certificates for the system PVS-Core. The precise way to
use PVS-Cert judgements as PVS-Core certificates is detailed in Definition 10.1.1. How-
ever, as detailed in Chapter 2, PVS is a much more complex system than PVS-Core,
as this latter system was designed as a minimal fragment of PVS containing predicate
subtyping.

As a consequence, the extension of PVS-Cert to a complete language of certificates
for PVS is left as future work. Instead, we present in this second part a first prototype to
build externally verifiable certificates from PVS, in which certificates do not contain any
typing information. For this reason, it is a much simpler system than PVS-Cert from
the point of view of type theory. Although the certificates generated with this prototype
cannot be considered as comprehensive proofs because of this lacking information, this
mechanism is a first step towards the generation of externally verifiable proofs from PVS.
Following the dichotomy between the type-checker and the prover in PVS presented in
Section 1.3, this prototype is suited for the verification of the reasoning steps performed
in the prover only.

This proof generation mechanism is built by instrumenting the PVS proof system
itself. More precisely, the PVS prover is modified to record detailed proofs step by step
during the proof search process. In the systems HOL Light, HOL4, and ProofPower, all
reasoning steps are built from a small number of simple logical rules, and these logical
rules are used in turn as starting points in the generation of OpenTheory certificates.

195



CHAPTER 12. PROOF CERTIFICATES IN PVS

For this reason, the instrumentation of these systems is economical in the sense that it
is sufficient to instrument these logical rules to generate OpenTheory certificates. How-
ever, as detailed in the following, PVS is not based on a layer of simple logical rules: in
PVS, the primitive reasoning steps may be much more complex. For this reason, the
instrumentation of PVS to generate certificates is much less economical, as almost the
whole prover would need to be instrumented to generate complete certificates.

At the current stage of this work, the instrumentation of the PVS prover is not
complete. Whenever some reasoning step is performed through some part of the prover
that has not been instrumented, an unverified assumption is generated to complete the
proof, making this certificate generation mechanism usable for any PVS theory. For
a restricted fragment of PVS, the proof certificates are exported to the universal proof
checker Dedukti [66], and the unverified assumptions are exported and proved externally
using the automated theorem prover MetiTarski [1].

The following of this chapter is directly adapted from the work published in [39]
presented by the author, with the addition of some comparisons and references to the
first part of this work – in particular, to Chapter 2 and Chapter 3.

12.1 Certificates as refinements of the PVS proof traces

This section is an overview of the proving process in PVS. A more general overview of
PVS can be found in the PVS documentation [60] as well as in Chapter 2. In partic-
ular, a more abstract view of proving in PVS can be found in Section 2.2.2, which is
complementary to the more technical description provided in the following of this section.

In PVS [60], the proof process is decomposed into a succession of proof steps. These
proof steps are recorded into a proof trace format, the .prf files. Proof traces can be
used internally to rerun and verify proofs, but cannot be used to check proofs externally
without reimplementing PVS proof search mechanisms almost entirely.

The purpose of the certificate language presented in this work is to check PVS results
externally using small systems. To this end, we present a decomposition of PVS proof
steps into a small number of atomic rules, which are easier to encode into a third-party
system than the PVS proof steps themselves. The proof certificates are built on these
atomic rules, and can be checked without having to reimplement PVS proof steps.

These atomic rules are defined as a refinements of an intermediate decomposition
of proof steps which is already present in PVS. This intermediate decomposition is
based on a specific subset of proof steps, the primitive rules. In PVS, every proof step,
including defined rules and strategies, can be decomposed as a sequence of primitive
rules. As any primitive step is a proof step, this intermediate level of decomposition
can be formalized in the original format of .prf proof traces. In fact, such a decom-

196



CHAPTER 12. PROOF CERTIFICATES IN PVS

position can be performed using the PVS package Manip [24], in which the instruction
expand-strategy-steps allows one to decompose every proof step into a succession of
primitive rules.

However, this intermediate decomposition is not sufficient to make proof traces veri-
fiable externally using small systems. Indeed, the complexity of PVS proof mechanisms
lies for the largest part in the primitive rules themselves. In particular, the implemen-
tation of primitive rules is one order of magnitude larger than the implementation of
strategies. For instance, the primitive rule simplify hides advanced reasoning tech-
niques including simplifications, rewritings, and Shostak’s decision procedures.

In order to export a refinement of the primitive rule decomposition, PVS is modified
directly to record reasoning at a higher level of precision. The main part of this modifi-
cation is done in the source code of the primitive rules themselves. This instrumentation
doesn’t affect the reasoning in any way besides some slowdown due to the recording of
proofs. In particular, it doesn’t affect the generation of .prf proof traces, which con-
tinue to be used internally to rerun proofs as in the original system.

In the next section, we present the formalization of the certificate language chosen
for PVS. Then, we present a first attempt to export these proofs to the universal proof
checker Dedukti [66], and to export their unverified assumptions to the theorem prover
MetiTarski [1].

12.2 Proofs certificates in PVS

The language of proof certificates is presented in three parts. The layer of expressions in
the certificate language is presented first, equipped with a notion of conversion. Then,
an abstract presentation of the layer of deduction rules is defined above the layer of
expressions. Last, a concrete formalization of these abstract rules is presented, defining
the language of proof certificates.

12.2.1 Expressions and conversion

Proof are added as a new layer of abstract syntax, on top of the existing layers of PVS
expressions and PVS sequents. Besides the precise definition of expressions in the PVS
documentation itself [62, 68], an overview of the language of PVS expressions can be
found Section 2.1.2 and a brief presentation of PVS sequents is provided in Section 2.2.2.

However, the precise expressions and sequents used in this language are the syntax
trees corresponding to their internal representations in PVS. For readability, these trees
will be denoted as they are printed in PVS. We stress the fact that this denotation is
not faithful: internal representations contain additional information such as types and
name resolutions, generated through complex PVS mechanisms, but erased through the

197



CHAPTER 12. PROOF CERTIFICATES IN PVS

PVS printing.

In the proof format presented in this chapter, PVS expressions are equipped with
a new notion of conversion inspired from the work on PTSs with definitions presented
in [67]: conversion modulo β-reduction and δ-reduction, this latter kind of reduction
corresponding to the unfolding of constant definitions. This conversion relation will be
denoted ≡βδ. Using such a notion of conversion, it is not necessary to record the un-
folding of a definition or the reduction of a β-redex in proof certificates, making these
certificates particularly compact.

Although PVS is not based on reasoning modulo δ-reduction, i.e. modulo the un-
folding of constant definitions, its specification admits a system of constant definitions,
used here to give a precise meaning to δ-reduction. These definitions, briefly mentioned
in the overview of PVS provided in Chapter 2, are referred to as interpreted constant
declarations. The interpreted constant declaration of a new constant x of type A defined
as the expression t is written x : A = t in PVS. More details about this constant
definition mechanism can be found in the PVS documentation [62]. At this stage, more
complex kinds of definitions such as recursive definitions are kept out of the conversion
relation: in the current certificate format, the unfolding of recursive definitions are kept
as explicit reasoning steps.

Besides the main difference between the current certificate language and the system
PVS-Cert defined in Chapter 3, which is the fact that certificates do not include any
type information, the presence of δ-reduction in the definition of certificates is a second
important difference. In the present context of a practical certificate format for PVS,
this feature is key to keep certificates as compact as possible and to scale up the certifi-
cate generation mechanism to large and complex PVS proofs.

On the theoretical point of view, the addition of δ-reduction in systems with β-
reduction was studied in [67] in the case of PTSs, with the main conclusion that it doesn’t
affect the most important properties of these systems, such as strong normalization –
whenever this property was established for the original system. As discussed in Section
11.2, we leave as a future work the extension of PVS-Cert with this mechanism, which
would narrow the gap between the work done in Part I and the present chapter.

12.2.2 Reasoning

In the same way as the internal representation of expressions is used to define the layer
of expressions in this certificate language, the internal representation of sequents will be
used to define a new layer on top of the layer of expressions. As specified in Section
2.2.2, in PVS, a sequent is recorded internally in a single list containing the succedents
and all negations of antecedents. For instance, a sequent appearing as

198



CHAPTER 12. PROOF CERTIFICATES IN PVS

[-1] NOT P1

[-2] P2

|-------

[1] Q

is recorded internally as some permutation of the list NOT NOT P1, NOT P2, Q. De-
noting Γ the union of this list together with the list of hidden formulas, the corresponding
sequent will be denoted ` Γ.

As also specified in Section 2.2.2, the PVS sequents are recorded as lists but manip-
ulated as multisets: the ordering between formulas has no influence on the deduction
rules that can be applied to them. Following this idea, we equip the sequents composing
the certificate language with the relation of identification modulo permutation. In the
same way as the conversion ≡βδ allows to keep some reasoning steps implicit in proof
certificates, the identification of sequents modulo permutation avoids the recording of
exchange rules in proof certificates, making them as compact as possible.

The following atomic rules are defined on top of this layer of sequents. All of them are
presented modulo the conversion ≡βδ on expressions and the identification of sequents
modulo permutation.

Structural rules

` Γ, P, NOT P
` Γ, P ` Γ, NOT P

` Γ
` Γ
` Γ, P

` Γ, P, P

` Γ, P

Propositional rules

` Γ, TRUE
` Γ, NOT TRUE

` Γ

` Γ, FALSE

` Γ ` Γ, NOT FALSE

` Γ, P ` Γ, Q

` Γ, P AND Q

` Γ, NOT P, NOT Q

` Γ, NOT (P AND Q)

` Γ, P, Q

` Γ, P OR Q

` Γ, NOT P ` Γ, NOT Q

` Γ, NOT (P OR Q)

` Γ, NOT P, Q

` Γ, P IMPLIES Q

` Γ, NOT Q ` Γ, P

` Γ, NOT (P IMPLIES Q)

` Γ, P

` Γ, NOT NOT P

` Γ, P IMPLIES Q ` Γ, Q IMPLIES P

` Γ, P IFF Q

` Γ, NOT (P IMPLIES Q), NOT (Q IMPLIES P)

` Γ, NOT (P IFF Q)

199



CHAPTER 12. PROOF CERTIFICATES IN PVS

` Γ, P IMPLIES Q1 ` Γ, NOT P IMPLIES Q2

` Γ, IF(P, Q1, Q2)

` Γ, NOT (P AND Q1) ` Γ, NOT (NOT P AND Q2)

` Γ, NOT IF(P, Q1, Q2)

Quantification rules

` Γ, P

` Γ, FORALL (x : T) : P

` Γ, NOT P[t/x]

` Γ, NOT FORALL (x : T) : P

` Γ, P[t/x]

` Γ, EXISTS (x : T) : P

` Γ, NOT P

` Γ, NOT EXISTS (x : T) : P

Equality rules

` Γ, t = t
` Γ, t1 = t2 ` Γ, t2 = t3

` Γ, t1 = t3

` Γ, P[t/x] ` Γ, t = u

` Γ, P[u/x]

` Γ, u1 = u2

` Γ, t[u1/x] = t[u2/x]

` Γ, NOT P, t1 = t2

` Γ, IF(P, t1, u) = IF(P, t2, u)

` Γ, P, u1 = u2

` Γ, IF(P, t, u1) = IF(P, t, u2)

Extensionality rules

` Γ, P IFF Q

` Γ, P = Q

` Γ, t = u

` Γ, LAMBDA (x : T) : t = LAMBDA (x : T) : u

` Γ, t = u

` Γ, FORALL (x : T) : t = FORALL (x : T) : u

` Γ, t = u

` Γ, EXISTS (x : T) : t = EXISTS (x : T) : u

Extra rules

` Γ,∆ ` Γ,∆1 · · · ` Γ,∆n
TCC` Γ,∆

` Γ,∆1 · · · ` Γ,∆n
Assumption` Γ,∆

Only the two last rules, TCC and Assumption, are specific to this system.

• The rule TCC is due to the appearance of type-checking conditions during proof

200



CHAPTER 12. PROOF CERTIFICATES IN PVS

runs, for instance after giving an instantiation for an existential proposition. In the
rule TCC, these type-checking conditions correspond to the additional premises
` Γ,∆i, while the continuation of the main proof corresponds to the premise
` Γ,∆. As the current format of certificates does not include typing information,
this rule could be skipped, replacing any proof tree ending with this rule by its
first subtree. However, this rule allows to record in a single proof tree all reasoning
steps performed in the PVS prover during proof runs, including the reasoning steps
ensuring typing constraints.

• The second rule, Assumption, is theoretically equivalent to the addition of a
trusted assumption, but more practical to handle in the instrumentation of PVS.
Such a rule is generated by default whenever some uninstrumented reasoning step
is invoked during proof runs. In practice, the use of the rule Assumption doesn’t
imply that the corresponding reasoning gap could not be described using the other
rules. For instance, the primitive rule bddsimp, which calls a function outside the
PVS kernel, is not instrumented, and its use triggers the generation of an As-
sumption rule. Yet, the corresponding reasoning steps could be justified using
structural and propositional rules only. On the other hand, the strategy prop,
which has the same role, doesn’t generate any Assumption rule, as the underly-
ing primitive rules flatten and split are both instrumented.

Contrary to the system PVS-Cert, this system is not designed to be minimal but to be
faithful to the way reasoning is performed in PVS, in order to make the instrumentation
of PVS as simple and transparent as possible for the generation of certificates during
proof runs. As a consequence, contrary to the work presented in Section 2.1.2 defining
a minimal set of connectives and quantifiers for PVS-Cert, the different connectives
and quantifiers are not factored in any way in this language of certificates. For the
same reason, the set of deduction rules is not minimal, some deduction rules being
redundant. For instance, the six equality rules could be reduced to two: the reflexivity
introduction rule and the elimination rule corresponding Leibniz’s characterization of
equality. However, keeping all these rules available eases the instrumentation of PVS to
generate certificates. In these two cases, some post-processing factorization performed
outside the instrumentation of the prover could be defined to yield a more compact
certificate language, but, at this stage, the implementation of such a mechanism is left
for future work.

12.2.3 Proof objects

In order to record lightweight proofs, we record only the rules used in the proofs, pro-
vided with a sufficient amount of rule parameters.

For instance, the proof

201



CHAPTER 12. PROOF CERTIFICATES IN PVS

` NOT P, NOT Q, P

` NOT P, NOT Q, NOT NOT P

` NOT (P AND Q), NOT NOT P

` (P AND Q) IMPLIES NOT NOT P

is recorded as follows:

RImplies(P AND Q, NOT NOT P,

RNotAnd(P, Q,

RNotNot(P,

RAxiom(P))))

where RImplies, RNotAnd, RNotNot, and RAxiom denote the rules used in the proof,
and accept as argument a list of parameters followed by a (possibly empty) list of sub-
proofs.

12.3 Checking PVS proofs using Dedukti and Metitarski

This part of the work is only at the stage of a first prototype. The universal proof
checker Dedukti is used to verify the proof certificates. As these certificates contain
unverified assumptions, the automated theorem prover MetiTarski is used to prove them
externally.

12.3.1 Translating proofs to Dedukti

The proof checker Dedukti was chosen to verify PVS certificates because of its very
flexible definition of conversion. In Dedukti, conversion is based on the extension of β-
reduction with any set of rewrite rules defined by the user. In particular, δ-reductions can
be defined as particular cases of rewriting rules in Dedukti, allowing this proof checker
to accept natively proofs based on reasoning modulo ≡βσ without having to construct
the steps of β-reduction or δ-reduction kept implicit in such proofs. As a consequence,
the translation of PVS certificates to Dedukti is kept much more compact than what
could be done using a proof checker with no conversion mechanism.

Dedukti is a dependently typed language. However, as certificates contain reasoning
steps without any typing information, PVS types are kept out of the translation of PVS
certificates to Dedukti. In this purpose, we declare one single Dedukti type type for all
PVS expressions. In order to translate applications, we introduce a new Dedukti con-
stant apply of type type -> type -> type. Conversely, in order to translate lambda
expressions, we introduce a new Dedukti constant lambda of type (type -> type) ->

type. A similar technique is used to translate the connectives TRUE, FALSE, NOT, AND,
OR, IMPLIES, IFF, IF as well as the quantifiers FORALL and EXISTS and equality, yielding
a translation from the subset of PVS based on these constructions to Dedukti. In the

202



CHAPTER 12. PROOF CERTIFICATES IN PVS

following, we denote this translation of a PVS expression t as [t].

The translation from PVS certificates to Dedukti is a translation from sequent cal-
culus to natural deduction. The use of Dedukti being based on the Curry-Howard
isomorphism, a proof of a proposition P is expected as a term of type [P]. The main
translation function takes as inputs a proof of a sequent ` P1, ..., Pn and a list of proof
variables h1, ..., hn, and outputs a Dedukti term p which has the type [FALSE] in the
context h1 : [NOT P1], ..., hn : [NOT Pn]. It is defined straightforwardly with the intro-
duction of one new Dedukti constant per deduction rule, each constant being declared
with an appropriate Dedukti type. For instance, the constant declared for the introduc-
tion rule of the constant connective TRUE is declared with the type of functions from
[NOT TRUE] to [FALSE].

Using this main translation function, for any proposition P proved in PVS, and
for any proof variable h, we build a Dedukti proof p of type [FALSE] in the context
h : [NOT P]. Then, using a rule of negation introduction together with a rule of double
negation elimination, we get a Dedukti proof term p′ of type [P] in the empty context,
as expected.

12.3.2 Checking assumptions with MetiTarski

Every rule except Assumption is valid in classical higher-order logic. In order to check
the assumption rules as well, we use an automated theorem prover. As the certificate
generation mechanism has been mostly tested with the arithmetic theories (ints) of
the NASA Library nasalib, a large part of the generated assumptions correspond to
formulas mixing uninterpreted symbols with arithmetic. For this reason, the first-order
theorem prover MetiTarski was chosen to prove these assumptions externally, as it is
well adapted for these kinds of problems.

Using conjunctions, disjunctions and implications, every Assumption rule is trans-
lated into a single proposition, which in turn is translated to the TPTP [72] format,
which is the input format of MetiTarski. The main issue in this translation is the pres-
ence of higher-order expressions, such as λ-expressions or if-then-else expressions for
instance. These terms are translated as constant symbols: the obtained expressions are
syntactically correct TPTP formulas, and their validity in first-order logic ensures the
validity of the corresponding original expression in higher-order logic.

12.4 Results

The instrumentation of PVS to build proof certificates is not restricted to any fragment
of PVS, contrary to the translation of these certificates to Dedukti. The generation of
certificates has been tested using the arithmetic theories (ints) of the NASA Library
nasalib. The generation of all certificates for the whole (ints) library (32 files, 268

203



CHAPTER 12. PROOF CERTIFICATES IN PVS

proofs) was performed in one hour.

On the other hand, the exportation of certificates and trusted assumptions to Dedukti
and MetiTarski respectively has been tested only tested on simpler examples written for
this purpose, including the following one:

induction : THEORY

BEGIN

f : [nat -> nat]

nat sum : LEMMA

(f(0) = 0 AND (FORALL (n:nat): f(n+1) = f(n) + n + 1))

IMPLIES FORALL (n:nat): 2 * f(n) = n * (n + 1)

END induction

This theorem was proved in two steps: flatten, and induct-and-simplify. The
Dedukti file generated has been successfully checked by Dedukti. It contained 19 unver-
ified assumptions. All of them have been successfully proved using MetiTarski.

12.5 Conclusion

In this part, we presented a first prototype to build externally verifiable certificates from
PVS. This prototype is based on the instrumentation of the PVS prover to extract rea-
soning steps at a sufficient level of detail. As it does not include any instrumentation of
the PVS type-checker yet, the emitted certificates contain no typing information. As a
consequence, at this stage, these certificates can only be used to monitor the reasoning
steps performed in the prover, without fully ensuring the soundness of the claimed the-
orems.

Although the PVS prover itself is not fully instrumented, this prototype is pro-
grammed to generate an assumption automatically whenever some uninstrumented part
of the prover is used, making the certificate generation mechanism usable for any PVS
theory. For a restricted fragment of PVS, the proof certificates are exported to the
universal proof checker Dedukti [66], and the unverified assumptions are exported and
proved externally using the automated theorem prover MetiTarski [1].

Several further perspectives can be studied from this work. First, one interesting
direction would be to enrich the instrumentation of the PVS prover as well as the trans-
lations to Dedukti and Metitarski in order to extend to more and more theories the result
presented in Section 12.4, in which a Dedukti certificate is generated and all generated
assumptions are proved by MetiTarski. The arithmetic theories (ints) of the NASA
Library nasalib would be interesting candidates to be used in this purpose.

Another interesting perspective from this work, which is shared with the work pre-

204



CHAPTER 12. PROOF CERTIFICATES IN PVS

sented in Part I, is to turn this prototype into a system of certificates expressed in some
well-suited extension of the system PVS-Cert, as discussed in Section 11.2. As devel-
oped in Section 11.2, this goal requires several important additional works, including the
instrumentation of the PVS type-checker to add typing information to certificates.

205





Part III

Expressing classical first-order
logic in constructive systems





The final part of this work is dedicated to the investigation of the expression of
classical proofs in constructive systems. This question is interesting in the perspective
of expressing the results of classical theorem provers in a constructive system without
having to extend this latter system with the law of excluded middle or any other clas-
sical axiom. This situation can be instantiated with many concrete systems as most
first-order theorem provers are classical systems and several proof assistants as well as
several systems based on type theory – with the notable exception of PVS – are construc-
tive systems. In this work, all experiments have been performed using the first-order
classical theorem prover Zenon [12] and the constructive proof checker Dedukti [11].

The oldest and most intensively studied translations from classical systems to con-
structive ones are the double-negation translations, such as Kolmogorov’s [49], Gödel-
Gentzen’s [33, 43] and Kuroda’s [51]. However, the emergence of classical theorem
provers and the even more recent emergence of theorem provers which are able to gen-
erate proof trees sheds a new light on this topic.

On the one hand, the size of automatically generated proofs increases with the im-
provement of proof search capabilities, and, as a consequence, the question of the impact
of such translations on the size of proofs becomes significant. The first chapter of this
part (Chapter 13) is dedicated to this question. In this chapter, a lightweight double-
negation translation is defined from classical logic to constructive logic, limiting the
growth of formulas through translations. This translation is proved minimal among a
large class of double-negation translations.

On the other hand, the large libraries of classical proofs generated from these new
proof systems become an opportunity for designing new approaches to tackle the prob-
lem of constructivization, i.e. the problem of finding whether some classical theorem
also holds constructively. The last chapter of this part (Chapter 14) is dedicated to this
question. In comparison with Chapter 13, the translation is not required to be total
anymore, but the translation of a classical proof is required to be a constructive proof
of the same theorem. A new constructivization algorithm is presented in this chapter.
Besides the presentation of the statistics of success corresponding to this approach, this
new algorithm is also studied on a theoretical standpoint, yielding three large fragments
of first-order logic statements for which this algorithm is provably complete – and for
which, as a consequence, classical provability matches constructive provability.

Chapter 13 and Chapter 14 are independent from the rest of this work presented
in Part I and Part II and, besides this shared motivation of investigating the different
expressions of classical proofs in constructive systems, the respective contents of these
two chapter are independent from each other. As a consequence, these two chapters
are rendered as in the publications [37] and [38] in which they have been respectively
presented by the author, at the exception of Section 14.8 in the last chapter.

209





Chapter 13

A lightweight double-negation
translation

Deciding whether a classical theorem can be proved constructively is a well-known unde-
cidable problem. As a consequence, any computable double-negation translation inserts
some unnecessary double negations. It is shown in this chapter that most of these unnec-
essary insertions can be avoided without any use of constructive proof search techniques.
For this purpose, we restrict the analysis to syntax-directed double-negation translations,
which translate a proposition through a single traversal – and include most of the usual
translations such as Kolmogorov’s [49], Gödel-Gentzen’s [33, 43], and Kuroda’s [51]. A
partial order among translations are presented to select translations avoiding as many
double negations as possible. This order admits a unique minimal syntax-directed trans-
lation with noticeable properties.

13.1 Introduction

The status of the law of excluded middle in a proof system has significant implications:
classical systems admit faster proof search algorithms, while constructive systems have
more straightforward proofs-as-programs interpretations. As more and more systems
implementing classical and constructive logic are developed, the question of translat-
ing theorems or proofs from one to the other becomes relevant. Translating constructive
logic into classical logic is easy, as constructive theorems and proofs are a fortiori classical
ones, but all distinctive properties of constructive proofs, such as the witness property,
are lost in such translations. Thus, it seems more interesting to go in the other direc-
tion. However, as not all classical theorems are provable constructively – this question is
even undecidable – classical logic can be embedded only through a correct translation,
i.e. a function mapping classical theorems to constructive ones. In first-order logic, a
usual way to translate a classical theorem is to insert double negations in it. Based on
this idea, many correct double-negation translations have been developed; Kolmogorov’s
[49], Gödel-Gentzen’s [33, 43], and Kuroda’s [51] can be mentioned among them – the
associated proofs translations are thoroughly studied in [57].

211



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

In order to push interoperability between classical and constructive systems as far
as possible, we want to transpose from classical to constructive logic not only absolute
provability but also provability relative to a given context. For this purpose, a transla-
tion f will be given by a pair of functions (f+, f−), with f+ mapping propositions to
propositions and f− mapping contexts to contexts, defining f(Γ ` C) as f−(Γ) ` f+(C).
This definition based on sequents instead of propositions is more expressive at the cost
of some extra restrictions. Using a definition restricted to propositions, i.e. to abso-
lute provability, all unprovable propositions are considered the same: for instance, any
atomic proposition can be mapped to ⊥. Using this definition based on sequents, such
translations are not allowed anymore. Many double-negation translations presented as
translations of propositions can fit the sequents-based definition, using the same function
to translate propositions and contexts – Kolmogorov’s, Gödel-Gentzen’s, and Kuroda’s
can be mentioned among them. Other translations as in [27] are designed to transpose
absolute provability only and cannot be transposed to correct sequent-based translations
in such a way.

The intention in this work is to present sequent-based translations that are not only
correct but also as faithful as possible: indeed, the most convenient way to reuse a clas-
sical proof in a constructive context is to translate it to a constructive judgment chosen
as compliant as possible to the original one. For instance, a translation mapping all
provable propositions to > wouldn’t be very useful when trying to reuse classical theo-
rems or proofs in a constructive context. As double-negation translations alter sequents
in a more limited way, they are better suited to fit these restrictions. For this reason,
we choose to focus in this work on double-negations translations only.

Given a sequent S, two characteristics of S will be used as a bases for compliance com-
parisons: its syntax, and the set of judgments that derive from it constructively. Given a
double-negation translation S′ of S, the first standpoint suggests that S′ should contain
as few inserted double negations as possible, while the second suggests that as many se-
quents as possible should be either derivable from both S and S′ or from none of them.
In the following, the effect of a double negation translation from the first standpoint will
be denoted as the syntax alteration, while its effect from the second standpoint will be
denoted as the strength alteration. For instance, among all translations of ` ¬¬P ⇒ P ,
the syntax alteration is better in ` ¬¬P ⇒ ¬¬P than in ` ¬¬(¬¬P ⇒ ¬¬P ), but, as
both translations are constructively equivalent, the strength alteration is the same.

These compliance requirements are not sufficient to ensure a genuine interoperability
between classical and constructive logic. In particular, we do not consider as a tool of
interoperability an algorithm from classical proofs to constructive ones that discard its
argument and builds its image from scratch using constructive proof search algorithms
– even if this kind of translation would be potentially good with respect to compliance
requirements. For this reason, we will select translations avoiding any use of constructive

212



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

proof search techniques.

The purpose of this work is to determine to what extent the images of double-negation
translations can be faithful to the original ones without using constructive theorem
proving techniques. First, a set of double-negation translations fitting this restriction is
presented. It is denoted as the set of syntax-directed translations, and contains several
usual translations such as Kolmogorov’s, Gödel-Gentzen’s, and Kuroda’s. Then, we will
show that translations avoiding as many double-negations as possible can be considered
to alter less the strength of sequents as well as their syntax. This observation allows to
define two partial orders of double negation translations, the second being an extension
of the first. The extended partial order leads to a unique minimal translation among
correct syntax-directed translations, which avoids many unnecessary double negation
insertions compared to the usual ones.

13.2 Syntax-directed double-negation translations

This work is about classical and constructive first-order predicate logic, presented in the
sequent calculi LK and LJ . The connectives and quantifier are the usual: ∧, ∨, ⇒,
¬, ∀, ∃, ⊥, >. In the current context, it is important to refrain from applying classical
equivalences to eliminate one of them, for instance defining A⇒ B as B ∨ ¬A: keeping
the distinction between both is crucial to be able to translate them in different ways in
constructive logic.

The purpose of this section is to discard double-negation translations that might be
based on constructive theorem proving techniques: as mentioned earlier, the benefit of
translating classical proofs to constructive ones would be lost if constructive proofs were
built from constructive theorem proving techniques, without using the data of the origi-
nal classical proofs. We want to exclude translations such as, for instance, uncomputable
ones mapping any constructively provable sequent to itself.

In sequent calculus without cuts, the subformula property holds: the proof of a
sequent is built from proofs of sequents involving subformulas of the original sequent
exclusively. On the one hand, the leafs of the proof are built from the identification of
disjoint subformulas. On the other hand, the inner nodes are built recursively, from deep
to shallow subformulas. Therefore, an effective way to avoid any constructive theorem
proving computation is to decide the number of double negation inserted in front of a
given subformula regardless of the content of any disjoint subformulas on the one hand,
and regardless of any strictly included subformulas on the other hand. Furthermore,
following the same idea, the translation of a proposition in a context Γ must be done re-
gardless of the presence of other propositions in Γ: f−(C1, ..., Cn) = f−(C1), ..., f−(Cn).

In a given sequent, the remaining information available to decide the number of dou-
ble negations inserted at a given occurrence is contained in the path going from the root

213



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

of the sequent to this occurrence. Therefore, such translations can be computed in a
single traversal of the sequent beginning at its root – a necessary and sufficient condition
is that any node is discovered before its children. For this reason, these translations will
be denoted as syntax-directed translations.

The path going from the root of a sequent to one of its occurrences contains the fol-
lowing information: the place of the proposition containing the occurrence in the sequent
(antecedent or succedent), the labels of the nodes going from the root of this proposition
to the occurrence (connectives, quantifiers, or predicate symbols), and, for every binary
connective crossed above the occurrence, which direct child contains the occurrence (left
one or right one). We formalize this notion of path in the following way, using the usual
notations of regular expressions:

Definition 13.2.1. • The place of a proposition in a sequent is noted (−) for an-
tecedents and (+) for succedents.

• The set of predicate symbols is noted S. We define the set of labels L as the
following: (∧ | ∨ |⇒| ¬ | ∀ | ∃ | ⊥ | > | S).

• The indication of a direct child of a proposition beginning with a binary connective
is noted l for the left one and r for the right one. We define the language E of
directed edges: (∧l | ∧r | ∨l | ∨r |⇒ l |⇒ r | ¬ | ∀ | ∃).

• The language of P paths is the following: (− | +)E∗L

For instance, the path corresponding to an atomic proposition P in the sequent
A ∧ (¬P ∨ C) ` D is (− ∧ r ∨ l¬P ).

A syntax-directed translation inserts double-negations at a given occurrence accord-
ing to the path leading to it. Therefore, it can be given by a multiset of paths: for each
path, the number of double negations inserted at the occurrence corresponding to this
path is its multiplicity in the multiset. Formally, the link between a multiset of paths
and its corresponding syntax-directed translation is the following:

Definition 13.2.2. Let X be a multiset of paths. Let w ∈ (− | +)E∗. Let A be a
proposition. We define the proposition FX(w,A) recursively as follows.

Let lA be the label at the root of A. Let n(w,A,X) be the multiplicity of wlA in X.

• If lA ∈ (⊥ | > | S), FX(w,A) = (¬¬)n(w,A,X)A.

• If lA ∈ (¬ | ∀ | ∃), FX(w,A) = (¬¬)n(w,A,X)lA(FX(wlA, Ac)),
where A = lA(Ac).

• If lA ∈ (∧ | ∨ |⇒), FX(w,A) = (¬¬)n(w,A,X)lA(FX(wlAl, Al), FX(wlAr, Ar)),
where A = lA(Al, Ar).

214



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

For any multiset of paths X, we define f−X , f+
X , and fX as follows:

• f+
X (A) = FX(+, A) and f−X (A) = FX(−, A)

• f−X (A1, ..., An) = f−X (A1), ..., f−X (An)

• f(Γ ` C) = f−(Γ) ` f+(C)

fX is referred as the syntax-directed translation associated with X.

Example 13.2.1. Kolmogorov’s, Gödel-Gentzen’s, and Kuroda’s double negation trans-
lations are all syntax-directed translations.

• Kolmogorov double-negation translation consists in the insertion of double nega-
tions at all occurrences: the corresponding multiset is the set of all paths XKo = P .

• Gödel-Gentzen double-negation translation consists in the insertion of double nega-
tions in front of all occurrences of labels among (∨ | ∃ | S): the corresponding
multiset is the set of paths XGG = (− | +)E∗(∨ | ∃ | S).

• Kuroda double-negation translation consists the insertion of in double negation at
the root and after all occurrences of labels ∀: the corresponding multiset is the set
of paths XKu = (− | +)(E∗∀)?L.

13.3 Partial orders among double-negation translations

The main issue in the comparison of double-negations translations is the fact that the
insertion of double negation does not always alter the strength of judgments in the same
way. Some of them weaken judgments, while other strengthen them, and the insertion of
a given double negation might partially compensate the insertion of an other. A simple
example of this phenomenon can be found using the judgment ` (∀xP (x)) ⇒ Q. This
judgment can be translated both to ` (∀xP (x)) ⇒ ¬¬Q – this can be done using the
translation presented in the following – and to ` (∀x¬¬P (x))⇒ ¬¬Q, which is stronger.
The double negation on the right of the implication weakens the statement, while that
on the left strengthens it. Indeed:

• (∀xP (x))⇒ ¬¬Q 0 (∀xP (x))⇒ Q

• (∀xP (x))⇒ ¬¬Q ` (∀xP (x))⇒ ¬¬Q

• (∀xP (x))⇒ ¬¬Q 0 (∀x¬¬P (x))⇒ ¬¬Q

This shows that the second translation, which adds more double negations, allows
nevertheless to compensate part of the weakening effect of the first translation.

This example shows that one crucial question when inserting a double negation at a
given occurrence is to predict if this double negation weakens or strengthens the original

215



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

judgment. Fortunately, it is possible to split the set of occurrences and the set of
paths into the set of positive ones, at which the insertion of a double negation weakens
the sequent, and the set of negative ones, at which the insertion of a double negation
strengthens the sequent. This notion of polarity can be formalized in the language of
paths as follows:

Definition 13.3.1. The set of directed edges E can be split into the set of negative ones
E− and the set of positive ones E+:

E− = (⇒ l | ¬), and E+ = (∧l | ∧r | ∨l | ∨r |⇒ r | ∀ | ∃)
Considering furthermore the antecedent position (−) as negative and the succedent

position (+) as positive, the polarity of an occurrence is given by its path:

• The set of positive paths is P+ = (−E∗+E− | +)(E∗+E−)2∗E∗+L.

• The set of negative paths is P− = (− | +E∗+E−)(E∗+E−)2∗E∗+L

All double negations at negative occurrences, which strengthen sequents, have no use
concerning the correctness of translations: if the image of a sequent by a given trans-
lation has a constructive proof, then, a fortiori, the sequent obtained from the same
translation limited to positive double negations has also a constructive proof.

Therefore, it is possible to limit translations to positive occurrences, leaving the
choice of negative ones to the user: from a classical proof of Γ ` (∀xP (x)) ⇒ Q, the
user might choose between computing the first translation, or, if a stronger conclusion
is needed, to compute first a classical proof of Γ ` (∀x¬¬P (x)) ⇒ Q from the original
one before translating it, which leads to the second translation.

As a consequence, only the double negations at positive occurrences should be taken
into consideration when comparing the strength alteration of different translations, and
furthermore, translations inserting less double negations at negative occurrences can be
considered better. This leads to consider that both the syntax and the strength of a
sequent S are less altered by a translation f(S) than by a translation g(S) if the set of
occurrences of S where f inserts double negations is included in the set of occurrences
in sequents where g does, which leads to the following partial order:

Definition 13.3.2. The relation ≤ is defined as follow: for two double-negation trans-
lations f and g, f ≤ g if for any sequent S, f only inserts double negations in S where g
does. Let fX and fX′ be two syntax-directed translations. f ≤ g if and only if X ⊆ X ′.

This partial order being based on an inclusion relation, many translations are in-
comparable. However, at the syntax level, there is no universal way to compare double
negations inserted at different positions. For instance, if a proposition A ∧ B can be
translated to ¬¬A ∧ ¬¬B or to ¬¬(A ∧ B) one user could prefer the first one, which
translated a conjunction to a conjunction, while another could prefer the second one,
which inserts less double negations.

216



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

We suggest conversely to consider such choices as equivalent when the strength of
the translation stays unchanged. Double negation commutes with connectives and quan-
tifiers in the following cases:

Proposition 13.3.1. • ¬¬(A ∧B) is constructively equivalent to ¬¬A ∧ ¬¬B

• ¬¬(A⇒ B) is constructively equivalent to A⇒ ¬¬B

• ¬¬(¬A) is constructively equivalent – and identical – to ¬(¬¬A)

The proof is based on short and straightforward constructive proofs. Proposition
13.3.1 leads to the definition of the following elementary transformations, which map
correct translations to correct translations:

• If at least one double negation is inserted at the head of a subformula A ∧B, one
of them is replaced by an extra double negations at the head of A and an extra
double negation at the head of B.

• If at least one double negation is inserted at the head of a subformula A⇒ B, one
of them is replaced by an extra double negation at the head of B.

• If at least one double negation is inserted at the head of a subformula ¬A, one of
them is replaced by an extra double negation at the head of A.

We use the notation f↓ to refer to the normal form of a double-negation translation f
under these transformations. From this definition, an extended partial order ≤↓ between
double-negation translations can be defined as follow:

Definition 13.3.3. The relation ≤↓ is defined as follow: for two double-negation trans-
lations f and g, f ≤↓ g if f↓ < g↓ or if f = g.

It is straightforward to see that this definition corresponds also to a partial order – it
is reflexive, antisymmetric and transitive. But one can also notice that if f ≤ g implies
f↓ ≤ g↓: therefore, ≤↓ is an extension of ≤.

This extended partial order can be compared with the translations simplifications
presented in [29] – which is defined in a broader context, including translations that are
not strictly based on the insertion of double-negations, such as [50] – allowing to show
minimal properties of some translations such as Kuroda’s for instance. The extended
partial order ≤↓ leads to even lighter translations. In particular, it leads to a unique
minimal syntax-directed translation, which is presented in the following section.

13.4 The minimal translation

The idea leading to the minimal syntax-directed translation is to mix the respective
advantages of Kuroda’s and Gödel-Gentzen’s translations, limiting them to positive oc-
currences only.

217



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

As in Kuroda’s translation, we begin restricting double negations to the following
set:

(− | +)(E∗∀)?L

Restricting it to double negations at positive occurrences, this leads to:

+L | (−E∗+E− | +)(E∗+E−)2∗E∗+∀L

Finally, inspired from Gödel-Gentzen’s translation, we suggest to push double nega-
tions into subformulas until they reach a label among the set G = (∨ | ∃ | S). To be
more precise, double negations can be pushed to both children for the ∧ connective, and
only to the right child for ⇒; they can be pushed through ∀ quantifiers; they can be
eliminated when they reach ⊥, ¬, or > connectives. Using the set H = (∧l | ∧r |⇒ r)
of directed edges, this leads to the following set:

M = +H∗G | (−E∗+E− | +)(E∗+E−)2∗E∗+∀H∗G

It will be shown in the following sections that this set defines a correct syntax-directed
translation, which can be proved minimal.

One can notice that the only information used from the path to decide if a double
negation must be inserted is the polarity of the occurrence and, in the positive case, the
presence of a root or a quantifier ∀ separated from the end only by directed edges of H.
If we split the set of words w ∈ (+ | −)E∗ according to the parity of negative elements
in it, and, in the case of an even number, is in one of these three cases, according to the
presence of a root or a quantifier ∀ separated from the end only by directed edges of H,
the three subsets of (+ | −)E∗ can be easily defined by mutual recursion. Following the
same idea, the function fM can be defined by mutually recursion, using the following
functions ϕ, χ and ψ:

ϕ(A ∧B) = ϕ(A) ∧ ϕ(B)

ϕ(A ∨B) = ¬¬(ψ(A) ∨ ψ(B))

ϕ(A⇒ B) = χ(A)⇒ ϕ(B)

ϕ(¬A) = ¬χ(A)

ϕ(∀xA) = ∀xϕ(A)

ϕ(∃xA) = ¬¬∃xψ(A)

ϕ(⊥) = ⊥
ϕ(>) = >
ϕ(P ) = ¬¬P, Patomic

χ(A ∧B) = χ(A) ∧ χ(B)

χ(A ∨B) = χ(A) ∨ χ(B)

χ(A⇒ B) = ψ(A)⇒ χ(B)

χ(¬A) = ¬ψ(A)

χ(∀xA) = ∀xχ(A)

χ(∃xA) = ∃xχ(A)

χ(⊥) = ⊥
χ(>) = >
χ(P ) = P, Patomic

ψ(A ∧B) = ψ(A) ∧ ψ(B)

ψ(A ∨B) = ψ(A) ∨ ψ(B)

ψ(A⇒ B) = χ(A)⇒ ψ(B)

ψ(¬A) = ¬χ(A)

ψ(∀xA) = ∀xϕ(A)

ψ(∃xA) = ∃xψ(A)

ψ(⊥) = ⊥
ψ(>) = >
ψ(P ) = P, Patomic

The relation between fM and these three functions is simply the following:

Proposition 13.4.1. fM is given by (f−M , f
+
M ) = (χ, ϕ).

218



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

Proof. This proposition follows from this stronger proposition, which can be proved
directly by induction: let w ∈ (− | +)E∗, let A a proposition,

• FX(w,A) = ϕ(A) if w ∈ +H∗ | (−E∗+E− | +)(E∗+E−)2∗E∗+∀H∗,
i.e. w if is the longest strict prefix of some path p ∈M

• FX(w,A) = χ(A) if w ∈ (−E∗+E− | +)(E∗+E−)2∗E∗+,
i.e. w if is the longest strict prefix of some path p ∈ P−

• FX(w,A) = ψ(A) else,
i.e. w if is the longest strict prefix of some path p ∈ P+\M .

Then, for any proposition A, f−M (A) = FM (−, A) = χ(A) and f+
M (A) = FM (+, A) =

ϕ(A).

This translation is light compared to Gödel-Gentzen’s and Kuroda’s. We will give
two examples to illustrate the differences between these translation.

First, using the classical theorem ` ∀z((∃xP (x, z)) ∨ ∀x¬P (x, z)):

• Gödel-Gentzen: ` ∀z¬¬((¬¬∃x¬¬P (x, z)) ∨ ∀x¬¬¬P (x, z))

• Kuroda: ` ¬¬∀z¬¬((∃xP (x, z)) ∨ ∀x¬¬¬P (x, z))

• fM : ` ∀z¬¬((∃xP (x, z)) ∨ ∀x¬P (x, z))

In this case, no unnecessary double negation was inserted by fM .

Second, using the constructive theorem ` ∀z¬¬((∃xP (x, z)) ∨ ∀x¬P (x, z)):

• Gödel-Gentzen: ` ∀z¬¬¬¬((¬¬∃x¬¬P (x, z)) ∨ ∀x¬¬¬P (x, z))

• Kuroda: ` ¬¬∀z¬¬¬¬((∃xP (x, z)) ∨ ∀x¬¬¬P (x, z))

• fM : ` ∀z¬¬((∃xP (x, z)) ∨ ∀x¬P (x, z))

In this case, no double negation at all was inserted by fM .

The latter example is also an illustration of the fact that fM is a projection: the
set of sequents invariant by fM is exactly its image. The images of contexts is even
lighter than the images of succedents: several finite theories as Presburger arithmetic or
Robinson arithmetic are translated by themselves using this translation.

In the following section, we show that fM is correct.

219



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

13.5 Correctness of the minimal translation

In this section, for any function or connective f mapping propositions to propositions
and for any multiset of propositions Γ = A1, ..., An, we will use the notation f(Γ) =
f(A1), ..., f(An).

Theorem 13.5.1. fM = (χ, ϕ) is a translation from classical to constructive logic: for
any proposition C and context Γ,

• Γ ` C admits a classical proof if and only if χ(Γ) ` ϕ(C) admits a constructive
one

• Γ ` admits a classical proof if and only if χ(Γ) ` admits a constructive one.

Furthermore, if the original sequents admit classical proofs, the constructive proofs of
the images can be computed from the original ones.

The proof is based on three lemmas.

Lemma 13.5.1. From any double-negation translation inserting double negations only
at positive occurrences, one can compute a proof of the image of a sequent S from any
proof of S.

The idea of the proof is the following: in the original proof, positive subformulas
of the original sequent cannot occur at the root of an antecedent – they appear only
inside propositions or at the root of succedents. Therefore, in order to build a proof of
the image of the sequent, one can insert the rules ¬r and ¬l in the original proof to
adapt the proof to the additional double negations as soon as they appear at the root
of succedents.

Lemma 13.5.2. For any context Γ and for any proposition C, if Γ,¬ϕ(C) ` admits a
constructive proof, then Γ ` ϕ(C) admits a constructive proof that can be computed from
the original one.

Proof. This is done by structural induction on C. Let Π be the proof of Γ,¬ϕ(C) `:

• The cases of ⊥ and > are straightforward.

• If C is an atom, ϕ(C) is ¬¬C. Then the proof can be obtained eliminating cuts in

axiom ¬C ` ¬C¬r ¬C,¬¬C `¬r ¬C ` ¬¬¬C
Π

Γ,¬¬¬C `
cut

Γ,¬C `¬r
Γ ` ¬¬C

• If C begins with the ¬ connective, the ∨ connective, or the ∃ quantifier, ϕ(C)
begins with a negation, which allows to use the same technique as the atomic case.

220



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

• If C = A⇒ B, we consider the proof Π′ obtained eliminating cuts in:

axiom
χ(A) ` χ(A)

axiom
χ(A)ϕ(B) ` ϕ(B)⇒l

χ(A), χ(A)⇒ ϕ(B) ` ϕ(B)¬l
χ(A),¬ϕ(B), χ(A)⇒ ϕ(B) `¬r
χ(A),¬ϕ(B) ` ¬ϕ(A⇒ B)

Π
Γ,¬ϕ(A⇒ B) `

cut
Γ, χ(A),¬ϕ(B) `

We can apply the induction hypothesis to Π′ to get a constructive proof Π′′ of
Γ, χ(A) ` ϕ(B). Then, we can build the proof

Π′′

Γ, χ(A) ` ϕ(B)⇒r
Γ ` ϕ(A⇒ B)

• Else, C begins with the ∧ connective or the ∀ quantifier, and techniques similar to
the case of the ⇒ connective can be applied, introducing and eliminating cuts to
get proofs for which the induction hypothesis can be applied. In the case of the ∧
connective, proofs corresponding to both children will be needed.

Lemma 13.5.3. For all multisets of propositions Γ and ∆, if Γ ` ∆ admits a classical
proof, then χ(Γ),¬ψ(∆) ` admits a constructive proof, which can be computed from the
original one.

Proof. This is done by structural induction on the classical proof of Γ ` ∆. In the
following, we will restrict to a representative subset of cases. For readability, we only
show in sequents the propositions that are active in the last rule of the classical proof –
the general case follows adding χ(Γ′),¬ψ(∆′) to all contexts, Γ′ and ∆′ being the multiset
of inactive propositions one the left-hand side and on the right-hand side respectively.

• Weakening, contractions, ⊥l and >r are translated in a straightforward way.

• The axiom rule:

axiom
A ` A

Using Lemma 13.5.1, the axiom proof of A ` A can be weakened to a proof Π of
χ(A) ` ψ(A), which allows to build

Π
χ(A) ` ψ(A)¬l
χ(A),¬ψ(A) `

221



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

• The ∧l rule:

A,B `∧l
A ∧B `

Getting a proof Π of χ(A), χ(B) ` from induction hypothesis, and using that
χ(A ∧B) = χ(A) ∧ χ(B), we get the proof

Π
χ(A), χ(B) `∧l
χ(A ∧B) `

• The other left rules – ∨l, ⇒l, ∃l, ¬l, and ∀l –, are translated exactly in the same
way as ∧l.

• The ∧r rule:

` A ` B∧r ` A ∧B

Getting by induction hypothesis a proof ΠA of ¬ψ(A) ` and a proof ΠB of ¬ψ(B) `,
we get the result by cut elimination of the following proof:

axiom
ψ(A), ψ(B) ` ψ(A)

axiom
ψ(A), ψ(B) ` ψ(B)

∧r
ψ(A), ψ(B) ` ψ(A) ∧ ψ(B)¬l
¬(ψ(A) ∧ ψ(B)), ψ(A), ψ(B) `¬r
¬(ψ(A) ∧ ψ(B)), ψ(A) ` ¬ψ(B)

ΠB

¬ψ(B) `
cut

¬(ψ(A) ∧ ψ(B)), ψ(A) `¬r
¬(ψ(A) ∧ ψ(B)) ` ¬ψ(A)

ΠA

¬ψ(A) `
cut

¬(ψ(A ∧B)) `

• All other right rules except ∀r – i.e. ∨r, ⇒r, ∃r, and ¬r, are translated in the
same way as ∧r: inserting the induction hypotheses with cuts, what remains is
proved straightforwardly, and cuts can be eliminated afterwards.

• The ∀r rule, introducing a fresh variable x:

` A(x)
∀r ` ∀xA(x)

We look for a proof of ¬ψ(∀xA(x)) `, i.e. ¬∀xϕ(A(x)) `. We get by induction
a proof of ¬ψ(A(x)) ` that can be weakened by Lemma 13.5.1 to a proof Π of
¬ϕ(A(x)) `.

From Π, we could try the technique used for the other right rules, but the proof will
be stuck at the remaining sequent ¬∀xϕ(A(x)) ` ¬ϕ(A(x)), which is not provable

222



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

– even classically. The main reason of this failure is that the technique we apply
for right rules, through cut eliminations, consists in postponing the application of
the rule to a deeper place in the proof. However, ∃l and ∀r cannot be postponed in
general: they introduce fresh variables that might be necessary for the application
of deeper rules – ∃r and ∀l in particular.

Therefore, as done in the case of left rules, the ∀r has to be applied as soon as
possible. This case is slightly more difficult because this ∀r is a right rule. It is
done applying lemma 13.5.2 to Π: this produces a proof Π′ of ` ϕ(A(x)) which, in
turn, is used to build the following proof:

Π′

` ϕ(A(x))
∀r ` ∀xϕ(A(x))¬l ¬∀xϕ(A(x)) `

Using these three lemmas, we prove Theorem 13.5.1 as follows:

Theorem 13.5.1. • If Γ ` C admits a classical proof, then we can compute from
Lemma 13.5.3 a constructive proof of χ(Γ),¬ψ(C) `. From Lemma 13.5.1, we
deduce from it a constructive proof of χ(Γ),¬ϕ(C) `, and, from Lemma 13.5.2, we
finally compute a constructive proof of χ(Γ) ` ϕ(C)

• If Γ ` admits a classical proof, then we can compute from Lemma 13.5.3 a con-
structive proof of χ(Γ) ` admits a constructive one.

Conversely, if such constructive proofs exist, they can be considered as classical
proofs, and as any proposition is classically equivalent to its double negation, the original
sequent also admits a classical proof.

The only source of complexity in fM comes from the use of cut eliminations. How-
ever, one can notice that the complexity is much smaller using focused proofs.

In the following section, we show the proof of minimality of fM according to ≤↓. The
set of translations that are minimal according to ≤ – containing fM – is also identified.

13.6 Minimality of the translation

The identification of minimal translations according to the partial orders ≤ and ≤↓
derives from the following theorem:

Theorem 13.6.1. Let X be a multiset of paths. fX correct if and only if the following
holds: Any path p ∈M can be mapped to a subpath pX of p such that pX ∈ X and such
that the directed edges completing pX to p are all members of H = (∧l | ∧r |⇒ r).

223



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

Before showing the details of the proof, we will focus first on its consequences:

Theorem 13.6.2. The following propositions hold:

• Let X be a multiset of paths. fX is a minimal translation among correct syntax-
directed translations according the partial order ≤ if and only if the following holds:

– Any path p ∈ M can be mapped to a subpath pX of p such that pX ∈ X and
such that the directed edges completing pX to p are all members of H.

– X is the set union of all paths pX .

• According to the extended partial order ≤↓, fM is the unique minimal translation
among correct syntax-directed translations.

Proof. The first proposition can be proved as follows. Let fX be a correct syntax-directed
translation. From Theorem 13.6.1, any path p ∈M can be mapped to a subpath pX of p
such that pX ∈ X and such that the directed edges completing pX to p are all members
of H. Let X ′ be the set union of all paths pX . From Theorem 13.6.1, fX′ is also correct,
and for any strict subset X ′′ of X ′, fX′′ is cannot be correct. Therefore, as X ′ ⊆ X, fX
is minimal according to ≤ if and only if X ′ = X.

The second proposition can be proved as follows. As fM doesn’t put any double
negation in front of a ⇒, a ∧, or a ¬ connective, f↓M = fM . Let fX be a correct syntax-
directed translation. From Theorem 13.6.1, any path p ∈M can be mapped to a subpath
pX of p such that pX ∈ X and such that the directed edges completing pX to p are all
members of H. Therefore, f↓X inserts double negations at any path p ∈M , and, in case

pX 6= p, f↓X inserts strictly more double negations than fM . Then, either fM < f↓X ,

either fM = f↓X = fx. As a consequence, fM is minimal among correct syntax-directed
translations according to the extended partial order ≤↓.

The proof of Theorem 13.6.1 is based on the existence of sequents that ensure the
existence of some paths in a multiset X when fX is correct. In this purpose, we introduce
the following notion of set of critical paths:

Definition 13.6.1. Let S be a sequent. A set CS of paths in S is denoted as the set
of critical paths of S if the following holds: any double negation translation of S is
constructively provable if and only if it adds at least one double negation at one path of
CS – if such a set exists, it is unique.

Using this definition, the following lemma holds.

Lemma 13.6.1. For all path p ∈M , there exists a sequent S admitting as critical paths
all subpaths p′ of p such that the directed edges completing p′ to p are all members of H.

Proof. The proof is done step by step from particular to general cases. The first step
begins with the paths in M1 = +(∀)?G: using for instance Kripke semantics, the lemma
can be proved for each one of them:

224



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

• +P is the only critical path of ¬¬P ` P ,

• +∨ is the only critical path of ` P ∨ ¬P ,

• +∃ is the only critical path of ` ∃x(∃yP (y)⇒ P (x)),

• +∀P is the only critical path of ∀z¬¬P (z) ` ∀zP (z),

• +∀∨ is the only critical path of ` ∀z(P (z) ∨ ¬P (z)),

• +∀∃ is the only critical path of ` ∀z(∃x(∃yP (y, z)⇒ P (x, z))).

The second step generalizes the first one to M2 = +(¬2∗∀)?G, i.e. to add the paths
+¬2+∀G. Each paths p of this set can be generated inserting double negations from a
path q ∈ +∀G ⊆M1. From the result of the previous step, there exists a sequent Γ ` C
admitting q as its single critical path. Inserting in it the number n of double negations
that transform q to p, the produced sequent Γ ` ¬2nC can be proved to admit p as its
single critical path.

The third step generalizes the second one to M3 = +G | (+ | −¬)¬2∗∀G, i.e.to
add the paths −¬¬2∗∀G. Each path p of this set can be generated from a path
q ∈ +¬2∗∀G ⊆ M2. From the result of the previous step, there exists a sequent Γ ` C
such that q is its single critical path. This allows to prove that Γ,¬C ` admits p as its
single critical path.

The fourth step generalizes the third one to M4 = +G | (+ | −E−)E2∗
− ∀G. Each

path p of M4 can be generated from a path q ∈M3, changing some directed edges ¬ to
⇒ l in q. Let S be a sequent admitting q as its single path. Mapping some subformulas
¬A to A ⇒ ⊥ according to the transformation of q to p, the produced sequent S′ can
be proved to admit p as its single critical path.

The last step generalizes the fourth to M . Each path p ∈M can be generated from
a path q ∈ M4, adding positive directed edges to q. Let S be a sequent admitting q as
its single path. Mapping some subformulas A to A ∧ >, > ∧ A, > ⇒ A, A ∨ ⊥, ⊥ ∨ A,
∀xA, or ∃xA according to the transformation of q to p, the produced sequent S′ can
be proved to admit as critical paths all subpaths p′ of p such that the directed edges
completing p′ to p are all members of H.

Theorem 13.6.1 follows from this lemma with the following proof:

Theorem 13.6.1. Let X be a multiset of paths such that fX is correct. Let p ∈M . From
Lemma 13.6.1, there exists a sequent S admitting as a critical paths all subpaths p′ of p
such that the directed edges completing p′ to p are all members of H. As fX is correct,
it necessarily inserts at least one double negation at one critical path: then, there exists
a subpath pX of p such that pX ∈ X and such that the directed edges completing pX to

225



CHAPTER 13. A LIGHTWEIGHT DOUBLE-NEGATION TRANSLATION

p are all members of H.

Conversely, let X be a multiset such that any path p ∈ M can be mapped to a
subpath pX of p such that pX ∈ X and such that the directed edges completing pX to
p are all members of H. Let S be a sequent with a classical proof. From Proposition
13.3.1, the image of S fX is weaker of equivalent to the image S by fM : therefore, as
fM is correct, fX is also correct.

13.7 Conclusion

This work shows that simple syntax observations are enough to get rid of many of the
unnecessary double negations inserted by double-negation translations. According to
a comparison of translations based on the alteration of the syntax and the strength of
sequents, the problem of finding the best correct syntax-directed translation is solved,
leading to the unique minimal translation fM .

Similar techniques can be used to search the minimal translations among correct
syntax-directed translations using techniques different from double-negations, such as
Friedman A-translation [31]. Another possible further path is to use extra tools to elim-
inate the double negations left by the minimal translation fM . As mentioned earlier,
constructive proof search techniques must stay avoided in the context of proof interop-
erability, but other ways can be followed. One of them is to analyze classical proofs in
order to check, for instance, if only one subformula of a disjunction was used in its proof,
or if an existential quantification was instantiated by only one term. Another possibil-
ity, when working in well-known theories, is to benefit from some of their properties.
An interesting case is arithmetic: for instance, as equality is constructively decidable
in this theory, decidability proofs can be used to eliminate double negations in front
of all equalities. More ambitious translations from classical to constructive proofs in
arithmetic could try to eliminate a larger amount of double negations, combining the
presented translation with Π0

2-conservative translations [31, 52].

226



Chapter 14

Automated constructivization of
proofs

No computable function can output a constructive proof from a classical one whenever
its associated theorem also holds constructively. We show in this chapter that it is
however possible, in practice, to turn a large amount of classical proofs into constructive
ones. We describe for this purpose a linear-time constructivization algorithm which is
provably complete on large fragments of predicate logic.

14.1 Introduction

Classical and constructive provability match on several specific sets of propositions. In
propositional logic, as a consequence of Glivenko’s theorem [41], a formula ¬A is a clas-
sical theorem if and only if it is a constructive one. In arithmetic, a Π0

2 proposition is a
theorem in Peano arithmetic if and only if it is a theorem in Heyting arithmetic [31].

We present in this work an efficient constructivization algorithm Construct for
predicate logic in general, from cut-free classical sequent calculus LK to constructive
sequent calculus LJ. Unlike the two previous examples, constructivization in predicate
logic is as hard as constructive theorem proving. Therefore, as we expect Construct to
terminate, Construct is incomplete in the sense that it may terminate with a failure
output.

Construct consists of three linear-time steps:

1. An algorithm Normalize, designed to push occurrences of the right weakening
rule towards the root in LK proofs. Its purpose is to limit the number of propo-
sitions appearing at the right-hand side of sequents in LK proofs.

2. A partial translation from cut-free LK to a new constructive system LI. This
algorithm is referred to as Annotate as the LI system is designed as LK equipped

227



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

with specific annotations – making it a constructive system. Annotate is the only
step which may fail.

3. A complete translation Interpret from LI to LJ.

The Normalize step taken alone leads to a simple yet efficient constructivization
algorithm Weak construct, which is defined to succeed whenever the result of Nor-
malize happens to be directly interpretable in LJ, i.e. to have at most one proposition
on the right-hand side of sequents in its proof.

The main property of Construct is to be provably complete on large fragments
of predicate logic, in the sense that for any proposition A in one of these fragments,
Construct is ensured to terminate successfully on any cut-free LK proof of A. Such
fragments for which classical and constructive provability match will be referred to as
constructive fragments. For instance, as a consequence of Glivenko’s theorem [41],
the set of negated propositions is a constructive fragment of propositional logic. The
completeness properties of Construct lead to the following results:

• The identification of a new constructive fragment F , the fragment of assertions
containing no negative occurrence of the connective ∨ and no positive occurrence
of the connective⇒. Both Weak construct and Construct are provably com-
plete on F .

• The completeness of Construct on two already known constructive fragments.
The first one, referred to as FKu, appears as the set of fix points of a polarized
version of Kuroda’s double-negation translation [51, 13]. The second one, referred
to as FMa, appears as a set of assertions for which any cut-free LK proof can be
directly interpreted as a proof in Maehara’s multi-succedent calculus [55]. Hence,
the completeness of Construct on these two fragments yields a uniform proof of
two results coming from very different works.

After the introduction of basic notations and definitions, the two already known con-
structive fragments FKu and FMa are presented. Then, the Normalize step is presented
along with the simple constructivization algorithm Weak construct. In the following
section, the new constructive fragment F is defined, and Weak construct is proved
complete on F . Then, the full constructivization algorithm Construct is introduced
together with the proof of its completeness on F , FKu and FMa. In the last part, ex-
perimental results of constructivization using Weak construct and Construct are
presented. These experiments are based the classical theorem prover Zenon [12] and
the constructive proof checker Dedukti [11].

14.2 Notations and definitions

In the following, we only consider as primitive the connectives and quantifiers ∀, ∃, ∧,
∨, ⇒ and ⊥. ¬A is defined as A ⇒ ⊥. >, which doesn’t appear in this work, could be

228



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

defined as ⊥ ⇒ ⊥.

We use a definition of sequents based on multisets. The size of a multiset Γ will be
referred to as |Γ|. We will use the notation (A) to refer to a multiset containing either
zero or one element. Given a multiset Γ = A1, · · · , An, we will use the notations ¬Γ
and Γ ⇒ B as shorthands for ¬A1, · · · ,¬An, and A1 ⇒ B, · · · , An ⇒ B respectively.
Finally, we use the notation

∨
to refer to an arbitrary encoding of the n-ary disjunction

from the binary one – using ⊥ for the nullary case.

Definition 14.2.1. We define the cut-free classical sequent calculus LK with the fol-
lowing rules:

⊥L⊥ ` axiom
A ` A

Γ ` ∆ weakL
Γ,Γ′ ` ∆

Γ ` ∆ weakR
Γ ` ∆,∆′

Γ, A,A ` ∆
contrL

Γ, A ` ∆

Γ ` A,A,∆
contrR

Γ ` A,∆

Γ, A,B ` ∆ ∧L
Γ, A ∧B ` ∆

Γ ` A,∆ Γ ` B,∆ ∧R
Γ ` A ∧B,∆

Γ, A ` ∆ Γ, B ` ∆ ∨L
Γ, A ∨B ` ∆

Γ ` A,B,∆ ∨R
Γ ` A ∨B,∆

Γ ` A,∆ Γ, B ` ∆ ⇒L
Γ, A⇒ B ` ∆

Γ, A ` B,∆ ⇒R
Γ ` A⇒ B,∆

Γ, A[t/x] ` ∆
∀LΓ, ∀xA ` ∆

Γ ` A,∆ ∀RΓ ` ∀xA,∆

Γ, A ` ∆ ∃LΓ, ∃xA ` ∆

Γ ` A[t/x],∆
∃RΓ ` ∃xA,∆

with the standard freshness constraints for the variables introduced in the rules ∀R
and ∃L.

Definition 14.2.2. We define the constructive sequent calculus LJ from LK, applying
the following changes:

• All rules except contrR, ∨R, ⇒L are restricted to sequents with at most one propo-
sition on the right-hand side of sequents.

229



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

For instance, ∧R becomes Γ ` A Γ ` B ∧R
Γ ` A ∧B

• There is no contrR rule

• The ∨R rule is split into two rules
Γ ` Ai ∨R

Γ ` A0 ∨A1

• The ⇒L rule becomes
Γ ` A Γ, B ` (C) ⇒L

Γ, A⇒ B ` (C)

• We add a cut rule
Γ ` A Γ, A ` (B)

cut
Γ ` (B)

Remark 14.2.1. In these presentations of LK and LJ,

• weakenings are applied to multisets instead of propositions

• ⊥L and axiom are not relaxed to ⊥LΓ,⊥ ` ∆ and axiom
Γ, A ` A,∆

These specific conventions are chosen to ease the definition of the algorithm Normalize
in Section 14.5, which requires pushing weakenings towards the root of the proof.

Definition 14.2.3. We introduce the following notations in LK, along with their con-
structive analogs in LJ:

• axiom∗
Γ, A ` A,∆ for

axiom
A ` A weakLΓ, A ` A

weakRΓ, A ` A,∆

• ⊥∗LΓ,⊥ ` ∆ for

⊥L⊥ ` weakLΓ,⊥ `
weakRΓ,⊥ ` ∆

• Γ ` A,∆ ¬L
Γ,¬A ` ∆

for Γ ` A,∆
⊥∗LΓ,⊥ ` ∆ ⇒L

Γ,¬A ` ∆

• Γ, A ` ∆ ¬R
Γ ` ¬A,∆

for
Γ, A ` ∆

weakRΓ, A ` ⊥,∆ ⇒R
Γ ` ¬A,∆

230



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

14.3 State of the art: two constructive fragments of pred-
icate logic

Constructive sequent calculus – as well as constructive natural deduction – extends the
notion of constructive provability from propositions to sequents of the shape Γ ` (G),
which will be referred to as mono-succedent sequents. As a consequence, we will de-
fine constructive fragments of predicate logic as sets of mono-succedent sequents instead
of sets of simple propositions.

The definitions of these fragments will be based on the usual notion of polarity of
occurrences of connectives, quantifiers and atoms in a sequent: given a sequent Γ ` ∆,

• the root of a proposition in Γ is negative, the root of a proposition in ∆ is positive

• polarity only changes between an occurrence of A ⇒ B and the occurrence of its
direct subformula A (in particular, as ¬A is defined as A⇒ ⊥, it changes between
¬A and its direct subformula A)

Definition 14.3.1. We define the following fragments of predicate logic:

• FKu, the fragment of sequents of the shape Γ ` containing no positive occurrence
of ∀.

• FMa, the fragment of mono-succedent sequents containing no positive occurrence
of ∀ and no positive occurrence of ⇒.

Theorem 14.3.1. FKu is a constructive fragment of predicate logic: for any sequent
Γ ` in FKu, Γ ` is classically provable if and only if it is constructively provable.

The key arguments to prove this theorem as an adaptation of Kuroda’s double nega-
tion translation [51] are the following:

1. Kuroda’s double negation translation [51] is based on a double negation translation
| · |Ku inserting double-negations after any occurrence of ∀. The original theorem is
that a proposition A is classically provable if and only if ¬¬|A|Ku is constructively
provable.

2. It can adapted in two ways. First, |·|Ku can be lightened to insert double negations
only after positive occurrences of ∀ as shown in [13], and extended from propo-
sitions to contexts. Second, the main statement can be turned to the following
one: a classical sequent Γ ` ∆ is classically provable if and only if |Γ,¬∆|Ku ` is
constructively provable

3. By definition of FKu, a sequent Γ ` in FKu admits the property Γ = |Γ|Ku, hence
Γ ` is classically provable if and only if it is constructively provable.

We do not provide more details on this proof as the completeness of Construct on
FKu shown in Section 14.6 will yield a new proof of this result.

231



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

Remark 14.3.1. One could expect similar constructive fragments to be found using
other double negation translations, such as Gödel-Gentzen’s [43, 33] or Kolmogorov’s
[49]. Unfortunately, these two translations always insert double-negations in front of
atoms, hence they cannot be easily modified to leave a large fragment of propositions
unchanged.

Theorem 14.3.2. FMa is a constructive fragment of predicate logic: for any sequent
Γ ` (G) in FMa, Γ ` (G) is classically provable if and only if it is constructively provable.

It lies on a key idea: polarity restrictions have a direct influence on the shape of
cut-free proofs. It can be presented in the following way:

Lemma 14.3.1. For any connective or quantifier X and any cut-free LK proof Π of a
sequent Γ ` ∆:

• If Γ ` ∆ contains no positive occurrence of X, then Π doesn’t contain the rule XR.

• If Γ ` ∆ contains no negative occurrence of X, then Π doesn’t contain the rule
XL.

This lemma can be proved directly by induction on cut-free LK proofs. Using this
lemma, the key arguments to prove Theorem 14.3.2 are the following:

1. All LK rules except⇒R and ∀R rules belong in Maehara’s multi-succedent calculus
[55], a constructive multi-succedent sequent calculus.

2. By lemma 14.3.1, FMa sequents are proved by cut-free LK proofs without the⇒R

and ∀R rules.

3. Hence, a sequent Γ ` (G) in FMa is classically provable if and only if it is con-
structively provable.

Again, we do not provide more details on this proof as the completeness of Con-
struct on FMa shown in Section 14.6 will yield a new proof of this result.

Remark 14.3.2. The same fragment FMa can be found using similar multi-succedent
constructive systems, such as Dragalin’s calculus GHPC [28].

14.4 The weakening normalization

A naive constructivization algorithm can be defined by selecting LK proofs which can
be directly interpreted in LJ.

In this direct interpretation, premises of the classical rules ∨R and⇒L may be multi-
succedent only when they are introduced by a weakR whose premise is a mono-succedent
sequent. For instance, the classical derivation

232



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

Γ ` A weakRΓ ` A,B ∨R
Γ ` A ∨B

can be interpreted as Γ ` A ∨R
Γ ` A ∨B .

However, in practice, the weakR rule doesn’t appear as low as possible – in presen-
tations using multi-succedents axiom rules, they may not appear at all. Such situations
are problematic for constructive interpretations: for instance, a classical proof such as

axiom
A ` A weakRA ` A,B ⇒R` A⇒ A,B ∨R` (A⇒ A) ∨B

cannot be interpreted in LJ directly because the weakR rule doesn’t occur immediately
above the ∨R rule.

The Normalize algorithm is designed to address this issue, pushing the application
of weakR as low as possible in proofs. In its definition, we need to consider all possible
configuration of weakR appearing above a LK rule. In order to factor this definition,
we partition all such configurations into three classes A, B, and C.

These definitions will be based on the following notation of LK proofs:

Definition 14.4.1. We write any cut-free LK rule X as

Γ, L1 ` R1,∆ · · · Γ, Ln ` Rn,∆
X

Γ, L ` R,∆

where L1, · · · , Ln, R1, · · · , Rn, L and R are the (possibly empty) multisets of
propositions containing the active propositions of the rule X.

For instance, in the rule
Γ, A ` B,∆ ⇒R

Γ ` A⇒ B,∆
,

L1 = {A}, R1 = {B}, L = ∅, and R = {A⇒ B}.

The classes A, B, and C are defined as follows:

Definition 14.4.2. We consider all configurations where weakR appears above a LK
rule X, in its i-th premise:

· · ·
Γ, Li ` ∆i

weakRΓ, Li ` Ri,∆ · · ·
X

Γ, L ` R,∆

This weakening can be done on propositions in Ri, in ∆ or both: in the general case,
we only know ∆i ⊆ (Ri,∆). We define the following partition of all cases:

233



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

• A: Ri ⊆ ∆i

• B: Ri 6⊆ ∆i and ∆i ⊆ ∆

• C: Ri 6⊆ ∆i and ∆i 6⊆ ∆. This only happens when |Ri| = 2, when exactly one
proposition of Ri is in ∆i.

Definition 14.4.3. Normalize is a linear-time algorithm associating any cut-free LK
proof of a sequent Γ ` ∆ to a proof of a sequent Γ ` ∆′, where ∆′ ⊆ ∆. It is defined re-
cursively. Using the conventions of Definition 14.4.1, we describe the original proof Π as

Π1

Γ, L1 ` R1,∆ · · ·
Πn

Γ, Ln ` Rn,∆
X

Γ, L ` R,∆

The definition of Normalize(Π) is based on the analysis of the proof

Normalize(Π1)

Γ, L1 ` ∆1
weakRΓ, L1 ` R1,∆ · · ·

Normalize(Πn)

Γ, Ln ` ∆n
weakRΓ, Ln ` Rn,∆
X

Γ, L ` R,∆

The different cases are the following:

• Case 1: for all index i, A holds, i.e. Ri ⊆ ∆i.

If X is weakR, we define Normalize(Π) as Normalize(Π1).

Else, writing ∆i = Ri,∆
′
i, we define Normalize(Π) as

Normalize(Π1)

Γ, L1 ` R1,∆
′
1 weakR

Γ, L1 ` R1,∆
′ · · ·

Normalize(Πn)

Γ, Ln ` Rn,∆′n weakR
Γ, Ln ` Rn,∆′

X
Γ, L ` R,∆′

where ∆′ is the smallest multiset containing all multisets ∆′i

• Case 2: there exists a smallest premise i for which B holds, i.e. Ri 6⊆ ∆i and
∆i ⊆ ∆. As Ri 6= ∅, ether X is ⇒R or Li = ∅.

234



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

If X is ⇒R, we define Normalize(Π) as

Normalize(Π1)

Γ, A ` ∆1
weakRΓ, A ` B,∆1 ⇒R

Γ ` A⇒ B,∆1

Else, Li = ∅ and we define Normalize(Π) as
Normalize(Πi)

Γ ` ∆i weakLΓ, L ` ∆i

• Case 3: there exists a smallest premise i for which the case C applies, i.e. Ri 6⊆ ∆i

and ∆i 6⊆ ∆. This only happens when |Ri| = 2, when exactly one proposition of
Ri is in ∆i. In this case, X is either contrR or ∨R.

If X is contrR, we can write R1 = A,A, and ∆1 = (A,∆′1) with ∆′1 ⊆ ∆. We
define Normalize(Π) as Normalize(Π1).

If X is ∨R, we can write R1 = A0, A1, and ∆1 = (Ak,∆
′
1) with ∆′1 ⊆ ∆.

We define Normalize(Π) as

Normalize(Π1)

Γ ` Ak,∆′1 weakR
Γ ` A0, A1,∆

′
1 ∨R

Γ ` A0 ∨A1,∆
′
1

Remark 14.4.1. The nullary rules axiom and ⊥L having no premise, they match the
first case.

Definition 14.4.4. We define a first constructivization algorithm Weak construct,
which

• takes as input a cut-free LK proof
Π

Γ ` (G)
,

• computes the proof
Normalize(Π)

weakR
Γ ` (G)

,

• outputs its LJ interpretation if it exists and fails otherwise

14.5 A new constructive fragment

Definition 14.5.1. We define F as the fragment of mono-succedent sequents containing
no negative occurrence of ∨ and no positive occurrence of ⇒.

Theorem 14.5.1. Weak construct is complete on F : if Π is a cut-free LK proof of
a sequent Γ ` (G) ∈ F , then Weak construct(Π) succeeds.

235



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

Proof. By Lemma 14.3.1, F sequents are proved by cut-free LK proofs containing no
∨L or ⇒R rule. We prove that for any such proof Π, Normalize(Π) proves a mono-
succedent sequent interpretable in LJ. This proof is done by induction on cut-free LK
proofs containing no ∨L or ⇒R rule, following the partition of cases and the notations
introduced in the definition of Normalize:

• Case 1: we split this case according to the rule X.

– nullary rules: axiom and ⊥L are interpretable in LJ.

– weakR: The result follows directly by induction hypothesis.

– other unary rules: In these cases ∆′ = ∆′1, hence Normalize(Π) is

Normalize(Π1)

Γ, L1 ` R1,∆
′
1 weakR

Γ, L1 ` R1,∆
′
1
X

Γ, L ` R,∆′1

By induction hypothesis, Normalize(Π1) is interpretable in LJ. Hence, |R1| ≤
1, which ensures that X is neither contrR nor ∨R. All other unary rules lead
to a proof interpretable in LJ, therefore the result is interpretable in LJ.

– ∨L: This case doesn’t occur by hypothesis

– ⇒L: By induction hypothesis, Normalize(Π1) and Normalize(Π2) are in-
terpretable in LJ, hence |R1,∆

′
1| ≤ 1. As |R1| = 1, ∆′1 = ∅, and ∆′ = ∆′2.

As
Γ ` A weakR

Γ ` A,∆′2
Γ, B ` ∆′2 weakR
Γ, B ` ∆′2 ⇒L

Γ, A⇒ B ` ∆′2

is interpretable as
Γ ` A Γ, B ` ∆′2 ⇒L

Γ, A⇒ B ` ∆′2
in LJ, the result follows.

– ∧R: By induction hypothesis, Normalize(Π1) and Normalize(Π2) are in-
terpretable in LJ, hence |R1,∆

′
1| ≤ 1 and |R2,∆

′
2| ≤ 1. As |R1| = |R2| = 1,

∆′1 = ∆′2 = ∅. Therefore ∆′ = ∅, from which the result follows.

• Case 2: By hypothesis, X is not ⇒R, hence Normalize(Π) is defined as

236



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

Normalize(Πi)

Γ ` ∆i weakLΓ, L ` ∆i

The result follows by induction hypothesis.

• Case 3: If X is contrR, the result follows directly by induction hypothesis. Else,
X is ∨R. By induction hypothesis, Normalize(Π1) is interpretable in LJ, thus
|Ak,∆′1| ≤ 1, and ∆′1 = ∅.

As
Γ ` Ak weakRΓ ` A0, A1 ∨R

Γ ` A0 ∨A1

is interpretable as
Γ ` Ak ∨R

Γ ` A0 ∨A1
in LJ,

the result follows.

Corollary 14.5.1. The fragment F is a constructive fragment of predicate logic: a
sequent Γ ` (G) is classically provable if and only if it is constructively provable.

14.6 The full constructivization algorithm

The previous algorithm Weak construct was based on the reject of multi-succedent
sequents. The idea leading to our main algorithm Construct is to try to interpret
multi-succedent sequents constructively as well. This interpretation is based on a new
multi-succedent constructive system, which will be referred to as LI in the following. As
mentioned in the introduction, the constructivization algorithm Construct comprises
three steps: first the algorithm Normalize, then a partial translation Annotate from
LK proofs to LI proofs, and finally a complete translation Interpret from LI proof
to LJ proofs.

There are several ways to interpret multi-succedent sequents constructively. For
instance, Γ `

∨
∆ and Γ,¬∆ ` are two possible interpretations of a multi-succedent

sequent Γ ` ∆. These interpretation are equivalent classically but not constructively:
for instance, the classical sequent ` A,¬A is not provable constructively under the first
interpretation, but it is provable constructively under the second one. As a consequence,
some classical rules may be constructively valid or not according to the chosen interpre-
tation of classical sequents.

The new system LI is built to benefit from the freedom left in the constructive inter-
pretation of classical sequents. LI is designed as a sequent calculus based on annotated
sequents, where the annotation will refer to the choice of constructive interpretation of
the underlying classical sequent. We formalize first the notion of annotated sequents.

237



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

Definition 14.6.1. We define the set of annotated sequents as sequents of the shape
Γ ` ∆1; ∆2.

We define the following interpretation Interpret on annotated sequents:
Interpret(Γ ` ∆1; ∆2) = Γ,¬∆2 `

∨
∆1.

In the following, this function will be extended from LI proofs to LJ proofs.

We define the following erasure function Erase on annotated sequents:
Erase(Γ ` ∆1; ∆2) = Γ ` ∆1,∆2.

In the following, this function will be extended from LI proofs to LK proofs.

Then, we define the system LI in the following way:

Definition 14.6.2. LI is based on the following rules:

⊥L⊥ `; axiom1
A ` A; axiom2

A `;A

Γ ` ∆1; ∆2
weakL

Γ,Γ′ ` ∆1; ∆2

Γ ` ∆1; ∆2
weakR

Γ ` ∆1,∆
′
1; ∆2,∆

′
2

Γ, A,A ` ∆1; ∆2 contrL
Γ, A ` ∆1; ∆2

Γ ` A,A,∆1; ∆2
contr1

RΓ ` A,∆1; ∆2

Γ ` ∆1;A,A,∆2
contr2

RΓ ` ∆1;A,∆2

Γ, A,B ` ∆1; ∆2 ∧L
Γ, A ∧B ` ∆1; ∆2

Γ ` A,∆1; ∆2 Γ ` B,∆1; ∆2 ∧1
RΓ ` A ∧B,∆1; ∆2

Γ `;A,∆2 Γ `;B,∆2 ∧2
RΓ `;A ∧B,∆2

Γ ` A,∆1; ∆2 Γ ` B,∆1; ∆2 ∧3
R, |∆1| ≥ 1

Γ ` ∆1;A ∧B,∆2

Γ, A ` ∆1; ∆2 Γ, B ` ∆1; ∆2 ∨L
Γ, A ∨B ` ∆1; ∆2

Γ ` A,B,∆1; ∆2 ∨1
RΓ ` A ∨B,∆1; ∆2

Γ ` ∆1;A,B,∆2 ∨2
RΓ ` ∆1;A ∨B,∆2

Γ `;A,∆2 Γ, B `; ∆2 ⇒1
LΓ, A⇒ B `; ∆2

Γ ` A,∆1; ∆2 Γ, B ` ∆1; ∆2 ⇒2
L, |∆1| ≥ 1

Γ, A⇒ B ` ∆1; ∆2

Γ, A ` B; ∆2 ⇒1
RΓ ` A⇒ B; ∆2

Γ, A `;B,∆2 ⇒2
RΓ `;A⇒ B,∆2

Γ, A[t/x] ` ∆1; ∆2 ∀LΓ,∀xA ` ∆1; ∆2

Γ ` A; ∆2 ∀1
RΓ ` ∀xA; ∆2

Γ ` A; ∆2 ∀2
RΓ `; ∀xA,∆2

Γ, A ` ∆1; ∆2 ∃LΓ, ∃xA ` ∆1; ∆2

Γ ` A[t/x],∆1; ∆2 ∃1
RΓ ` ∃xA,∆1; ∆2

Γ ` ∆1;A[t/x],∆2 ∃2
RΓ ` ∆1;∃xA,∆2

with the standard freshness constraints for the variables introduced in the rules ∀iR
and ∃L.

238



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

All LI rules correspond to a LK rule through the erasure of the premises and the
conclusions. Hence, we can extend the Erase function from LI rules to LK rules, and
consequently from LI proofs to LK proofs.

In the same way, we would like to extend the Interpret function from LI proofs
to LJ proofs. This can done associating each LI rule to a partial LJ proof deriving the
interpretation of its conclusion from the interpretation of its premises. However, such an
approach would be heavy: as the disjunction in LJ is binary,

∨
is a based on a nesting of

binary disjunctions, and a proposition in Γ ` ∆1; ∆2 can occur deep in Γ,¬∆2 `
∨

∆1.
As Interpret will be part of the constructivization algorithm Construct, we need to
find another method to define it as a linear-time algorithm.

For this reason, we will define the interpretation of rules using the property that
Γ `

∨
∆ is constructively provable if and only if Γ,∆ ⇒ G ` G is provable for any

proposition G.

Definition 14.6.3. We define the function Interpret′(· | G) on annotated sequents
as Interpret′(Γ ` ∆1; ∆2 | G) = (Γ,∆1 ⇒ G,¬∆2 ` G).

We extend Interpret′ from LI rules to partial LJ derivations in the following way:

From a LI rule
Γ1 ` ∆1

1; ∆1
2 · · · Γn ` ∆n

1 ; ∆n
2
R

Γ ` ∆1; ∆2

and a proposition G, we define a partial LJ derivation Interpret′(R | G) as a
partial derivation of the form

Interpret′(Γ1 ` ∆1
1; ∆1

2 | G1) · · · Interpret′(Γn ` ∆n
1 ; ∆n

2 | Gn)

...
Interpret′(Γ ` ∆1; ∆2 | G)

The LI system is designed to ensure that such definitions rely on simple constructive
tautologies.As an illustration, we present here the case of the rule

Γ ` A,∆1; ∆2 Γ, B ` ∆1; ∆2 ⇒3
LΓ, A⇒ B ` ∆1; ∆2

From a proposition G, defining Σ = Γ,∆1 ⇒ G,¬∆2, we derive

axiom∗
Σ, A ` A

Σ, B ` G
weakLΣ, B,A ` G ⇒L

Σ, A⇒ B,A ` G ⇒R
Σ, A⇒ B ` A⇒ G

Σ, A⇒ G ` G
weakLΣ, A⇒ B,A⇒ G ` G
cut

Σ, A⇒ B ` G

239



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

where the two open premises correspond to Interpret′(Γ, B ` ∆1; ∆2 | G) and
Interpret′(Γ ` A,∆1; ∆2 | G) respectively.

Remark 14.6.1. In this case, we chose G1 = G2 = G. Other choices for Gi appear in
the cases ∧2

R, ⇒1
L, ⇒2

R, and ∀2
R.

In a second step, we extend Interpret′(· | G) from LI proofs to LJ proofs recur-
sively. Finally, we extend Interpret(·) from LI proofs of sequents of the shape Γ ` (G);
to LJ proofs:

• for Π a LI proof of a sequent Γ `;, we define Interpret(Π) as

⊥∗LΓ,⊥ `
Interpret′(Π | ⊥)

Γ ` ⊥
cut

Γ `

• for Π a LI proof of a sequent Γ ` G;, we define Interpret(Π) as

Interpret′(Π | G)

Γ, G⇒ G ` G

axiom∗
Γ, G ` G ⇒R

Γ ` G⇒ G
cut

Γ ` G

Definition 14.6.4. We define the linear-time partial algorithm Annotate(· | ·) with,
as inputs, a LI sequent S and a cut-free LK proof Π of Erase(S) and, as output, either
a LI proof of S or a failure. This annotation is done from the root to the leaves: at each
step, the first argument S prescribe how the current conclusion must be annotated. The
definition is recursive on the second argument.

Describing S as Γ ` ∆1; ∆2 and Π as
Π1

Γ1 ` ∆1 · · ·
Πn

Γn ` ∆n
R

Γ ` ∆1,∆2

,

• If there exists a LI rule

Γ1 ` ∆1
1; ∆1

2 · · · Γn ` ∆n
1 ; ∆n

2
R′

Γ ` ∆1; ∆2

such that for all i, ∆i
1,∆

i
2 = ∆i, then the output is

Annotate(Γ1 ` ∆1
1; ∆1

2 | Π1)

Γ1 ` ∆1
1; ∆1

2 · · ·
Annotate(Γn ` ∆n

1 ; ∆n
2 | Πn)

Γn ` ∆n
1 ; ∆n

2
R′

Γ ` ∆1; ∆2

• Else, Annotate(·, ·) fails.

240



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

Remark 14.6.2. The only failing cases appear when the rule R is either ⇒R or ∀R,
and exclusively for sequents Γ ` ∆1; ∆2 such that |∆1,∆2| > 1.

Definition 14.6.5. We define the linear-time constructivization algorithm Construct,
which

• takes as input a cut-free LK proof Π of a sequent Γ ` (G),

• computes the proof Π′ =
Normalize(Π)

weakR
Γ ` (G)

,

• outputs Interpret(Annotate(Γ ` (G); | Π′)) if it exists and fails otherwise.

Example 14.6.1. We consider the law of excluded middle A ∨ ¬A given with the

following LK proof:

axiom
A ` A ⇒R` A,¬A ∨R` A ∨ ¬A

. This proof is unchanged by Normalize.

The Annotate step fails as follows:
Failure
` A,¬A; ∨1

R` A ∨ ¬A;

Example 14.6.2. We consider a variant of the non contradiction of law of excluded

middle, (¬(A ∨ ¬A))⇒ B, given with the proof:

axiom∗
A ` A,B ⇒R` A,¬A,B ∨R` A ∨ ¬A,B

⊥∗L⊥ ` B ⇒L
¬(A ∨ ¬A) ` B ⇒R

` (¬(A ∨ ¬A))⇒ B

The result of Normalize is

axiom
A ` A ⇒R` A,¬A ∨R` A ∨ ¬A ⊥L⊥ ` ⇒L
¬(A ∨ ¬A) `

weakR¬(A ∨ ¬A) ` B ⇒R
` (¬(A ∨ ¬A))⇒ B

Then, the result of Annotate is

axiom2
A `;A ⇒2

R`;A,¬A ∨2
R`;A ∨ ¬A ⊥L⊥ `; ⇒1

L¬(A ∨ ¬A) `;
weakR¬(A ∨ ¬A) ` B;
⇒1
R` (¬(A ∨ ¬A))⇒ B;

As Annotate is the only step which may fail, Construct succeeds on this example.
We see on the example that the application of Normalize was crucial for Annotate
to succeed.

241



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

Theorem 14.6.1. Construct is complete on F , FKu, and FMa: for any proof Π of a
sequent S in one of these fragments, Construct(Π) succeeds.

Proof. We consider F , FKu, and FMa separately:

• For F : we consider a cut-free LK proof Π of a sequent Γ ` (G) ∈ F .

By Theorem 14.5.1, Π′ =
Normalize(Π)

weakR
Γ ` (G)

is interpretable in LJ.

As a consequence, the only multi-succedent sequents in Π′ are conclusions of weak-
enings. As all failing cases (cf. Remark 14.6.2) involve sequents Γ ` ∆1; ∆2 such
that |∆1,∆2| > 1 which are conclusions of ⇒R or ∀R rules, Annotate succeeds.
Hence, Construct succeeds.

• For FKu: the result follows directly from a stronger assertion: for any cut-free LK
proof Π of a sequent Γ ` ∆ containing no ∀R rule, Annotate(Γ `; ∆ | Π) suc-
ceeds. This assertion is proved by induction on such sequents and proofs, noticing
that all induction hypotheses refer to sequents of the shape Γ′ `; ∆′.

• For FMa: we consider a cut-free LK proof Π of a sequent in FMa. As mentioned
in Remark 14.6.2 the only failing cases involve the ⇒R or ∀R rules, which do not
occur in a proof of a sequent in FMa. Hence, Construct succeeds.

14.7 Experimental results

In order to measure the success of Construct in practice, experiments were made on
the basis of TPTP [71] first-order problems. The classical theorem prover Zenon [12]
was used to prove such problems. Zenon builds cut-free LK proofs internally. It was
instrumented to use these internal proofs as inputs for an implementation of Weak
construct and Construct. The LJ proofs obtained as outputs were expressed and
checked in the constructive logical framework Dedukti [11].

A set of 724 TPTP problems was selected for the experimentations, corresponding
to all TPTP problems in the category FOF which could be proved in less than 1 second
using the uninstrumented version of Zenon. The results are the following:

• Weak construct led to constructive proofs in 51% of tested cases.

• Construct led to constructive proofs in 85% of tested cases (including all Weak
construct successes).

242



CHAPTER 14. AUTOMATED CONSTRUCTIVIZATION OF PROOFS

All constructive proofs generated were successfully checked using Dedukti. Among
all cases where Construct failed, 35% are proved to be invalid constructively using the
constructive theorem prover ileanCoP [59].

14.8 Conclusion

In this work, we presented a linear-time constructivization algorithm Construct from
cut-free classical sequent calculus LK to constructive sequent calculus LJ, which is
provably complete on three large fragments of predicate logic:

• FKu, the fragment of sequents of the shape Γ ` containing no positive occurrence
of ∀.

• FMa, the fragment of mono-succedent sequents containing no positive occurrence
of ∀ and no positive occurrence of ⇒.

• F , the fragment of mono-succedent sequents containing no negative occurrence of
∨ and no positive occurrence of ⇒.

The two first fragments of predicate logic were already known as fragments on which
classical provability matches constructive provability, as a direct consequence of Kuroda’s
double-negation translation and Maehara’s definition of multi-succedent sequent calcu-
lus respectively. Yet, the completeness of the constructivization algorithm on the third
fragment yields a first proof of the fact that classical provability matches constructive
provability on this fragment.

Several further perspectives can be studied from this work. For instance, the linear-
time constraint could be relaxed to investigate more advances algorithms, implying for
instance the permutation between some rules in order to improve the performances of
constructivization. For instance, applying firstly all LK rules which are both construc-
tively valid and invertible could be one interesting approach.

Another perspective, which remains compatible with a linear-time constraint, would
be to specialize this algorithm to arithmetic, or more generally to theories in which
atomic predicates are logically decidable: for instance, this additional hypothesis could
lead to the definition of some additional LI rule of the following form, to be applied as
much as possible to improve the performances of the constructivization algorithm:

Γ ` ∆1;P,∆2
P atomic

Γ ` P,∆1; ∆2

243





Bibliography

[1] Behzad Akbarpour and Lawrence Charles Paulson. Metitarski: An automatic the-
orem prover for real-valued special functions. Journal of Automated Reasoning,
44(3):175–205, 2010.

[2] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek,
Catherine Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ro-
nan Saillard. Dedukti: a logical framework based on the lambda-picalculus modulo
theory, 2016.

[3] Henk Barendregt. Introduction to generalized type systems. Journal of functional
programming, 1(2):125–154, 1991.

[4] Henk Barendregt. Lambda calculi with types, handbook of logic in computer science
vol. ii, 1992.

[5] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe
Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan
Murthy, et al. The Coq proof assistant reference manual: Version 6.1. PhD thesis,
Inria, 1997.

[6] Gilles Barthe. Type-checking injective pure type systems. Journal of Functional
Programming, 9(06):675–698, 1999.

[7] Stefano Berardi. Towards a mathematical analysis of the coquand-huet calculus
of constructions and the other systems in barendregt’s cube. Technica1 report,
Carnegie-Me11on University (USA) and Universita di Torino (Ita1y), 1988.

[8] Stefano Berardi. Type dependence and constructive mathematics. PhD thesis, PhD
thesis, Dipartimento di Informatica, Torino, Italy, 1990.

[9] Stephano Berardi. Non-conservativity of coquand’s calculus with respect to higher-
order intuitionistic logic. In Talk given in the 3rd Jumelage meeting on Typed
Lambda Calculi, Edinburgh, 1989.

[10] Bruno Bernardo. An implicit Calculus of Constructions with dependent sums and
decidable type inference. Phd thesis, École polytechnique, October 2015.

245



BIBLIOGRAPHY BIBLIOGRAPHY

[11] Mathieu Boespflug, Quentin Carbonneaux, and Olivier Hermant. The λΠ-calculus
modulo as a universal proof language. In David Pichardie and Tjark Weber, editors,
PxTP, 2012.

[12] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An extensible
automated theorem prover producing checkable proofs. In Logic for Programming,
Artificial Intelligence, and Reasoning, 14th International Conference, LPAR 2007,
Yerevan, Armenia, October 15-19, 2007, Proceedings, pages 151–165, 2007.

[13] Mélanie Boudard and Olivier Hermant. Polarizing double-negation translations.
In Ken McMillan, Aart Middeldorp, and Andrëı Voronkov, editors, LPAR, volume
8312 of LNCS ARCoSS, pages 182–197. Springer, 2013.

[14] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda–a functional
language with dependent types. In International Conference on Theorem Proving
in Higher Order Logics, pages 73–78. Springer, 2009.

[15] Alonzo Church. A note on the entscheidungsproblem. The journal of symbolic logic,
1(1):40–41, 1936.

[16] Alonzo Church. An unsolvable problem of elementary number theory. American
journal of mathematics, 58(2):345–363, 1936.

[17] Alonzo Church. A formulation of the simple theory of types. The journal of symbolic
logic, 5(2):56–68, 1940.

[18] Thierry Coquand. An analysis of Girard’s paradox. PhD thesis, INRIA, 1986.

[19] Thierry Coquand and Gérard Huet. The calculus of constructions. Information and
computation, 76(2-3):95–120, 1988.

[20] Thierry Coquand and Christine Paulin. Inductively defined types. In COLOG-88,
pages 50–66. Springer, 1990.

[21] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ACM
sigplan notices, volume 35, pages 233–243. ACM, 2000.

[22] David Delahaye, Damien Doligez, Frédéric Gilbert, Pierre Halmagrand, and Olivier
Hermant. Zenon modulo: When achilles outruns the tortoise using deduction mod-
ulo. In International Conference on Logic for Programming Artificial Intelligence
and Reasoning, pages 274–290. Springer, 2013.

[23] Nachum Dershowitz. Jumping and escaping: Modular termination and the abstract
path ordering. Theoretical Computer Science, 464:35–47, 2012.

[24] Ben L Di Vito. Manip user’s guide, version 1.3. 2011.

[25] Daniel J Dougherty. Adding algebraic rewriting to the untyped lambda calculus.
Information and Computation, 101(2):251–267, 1992.

246



BIBLIOGRAPHY BIBLIOGRAPHY

[26] Gilles Dowek. Collections, sets and types. Mathematical Structures in Computer
Science, 9(1):109–123, 1999.

[27] Gilles Dowek. On the definition of the classical connectives and quantifiers. 2013.

[28] Albert Grigorevich Dragalin and Elliott Mendelson. Mathematical intuitionism.
introduction to proof theory. 1990.

[29] Gilda Ferreira and Paulo Oliva. On various negative translations. arXiv preprint
arXiv:1101.5442, 2011.

[30] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens. L. Nebert, 1879.

[31] Harvey Friedman. Classically and intuitionistically provably recursive functions. In
Higher set theory, pages 21–27. Springer, 1978.

[32] Kokichi Futatsugi, Joseph A Goguen, Jean-Pierre Jouannaud, and José Meseguer.
Principles of obj2. In Proceedings of the 12th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 52–66. ACM, 1985.

[33] Gerhard Gentzen. Über das verhältnis zwischen intuitionistischer und klassischer
arithmetik. Archive for Mathematical Logic, 16(3):119–132, 1974.

[34] Herman Geuvers. Talk given at the jumelage meeting on typed lambda calculus’.
Edinburgh, September, 1989.

[35] Herman Geuvers. A short and flexible proof of strong normalization for the calculus
of constructions. In International Workshop on Types for Proofs and Programs,
pages 14–38. Springer, 1994.

[36] Herman Geuvers and Mark-Jan Nederhof. Modular proof of strong normalization
for the calculus of constructions. Journal of Functional Programming, 1(02):155–
189, 1991.

[37] Frédéric Gilbert. A lightweight double-negation translation. In LPAR-20. 20th
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, 2015.

[38] Frédéric Gilbert. Automated constructivization of proofs. In International
Conference on Foundations of Software Science and Computation Structures, pages
480–495. Springer, 2017.

[39] Frédéric Gilbert. Proof certificates in pvs. In International Conference on Interactive
Theorem Proving, pages 262–268. Springer, 2017.

[40] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, PhD thesis, Université Paris VII,
1972.

247



BIBLIOGRAPHY BIBLIOGRAPHY

[41] Valery Glivenko. Sur quelques points de la logique de m. brouwer. Bulletins de la
classe des sciences, 15(5):183–188, 1929.

[42] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und
verwandter systeme i. Monatshefte für mathematik und physik, 38(1):173–198,
1931.

[43] Kurt Gödel. Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse eines
mathematischen Kolloquiums, 4(1933):34–38, 1933.

[44] Kurt Gödel, Stephen Cole Kleene, and John Barkley Rosser. On undecidable propo-
sitions of formal mathematical systems. 1934.

[45] John Harrison. Hol light: An overview. In TPHOLs, volume 5674, pages 60–66.
Springer, 2009.

[46] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen logik. 1938.

[47] Joe Hurd. The opentheory standard theory library. NASA Formal Methods, pages
177–191, 2011.

[48] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Combina-
tory reduction systems: introduction and survey. Theoretical Computer Science,
121(1):279 – 308, 1993.

[49] Andrei Nikolaevich Kolmogorov. On the principle of excluded middle. Mat. Sb,
32(646-667):24, 1925.

[50] Jean-Louis Krivine. Opérateurs de mise en mémoire et traduction de gödel. Archive
for Mathematical Logic, 30(4):241–267, 1990.

[51] Sigekatu Kuroda et al. Intuitionistische untersuchungen der formalistischen logik.
Nagoya Mathematical Journal, 2:35–47, 1951.

[52] Daniel Leivant. Syntactic translations and provably recursive functions. The Journal
of Symbolic Logic, 50(03):682–688, 1985.

[53] Zhaohui Luo. Ecc, an extended calculus of constructions. In Logic in Computer
Science, 1989. LICS’89, Proceedings., Fourth Annual Symposium on, pages 386–
395. IEEE, 1989.

[54] Zhaohui Luo. A problem of adequacy: conservativity of calculus of constructions
over higher-order logic. Laboratory for Foundations of Computer Science, Depart-
ment of Computer Science, Univ., 1990.

[55] Shôji Maehara et al. Eine darstellung der intuitionistischen logik in der klassischen.
Nagoya mathematical journal, 7:45–64, 1954.

248



BIBLIOGRAPHY BIBLIOGRAPHY

[56] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9. Bib-
liopolis Napoli, 1984.

[57] Chetan R Murthy. Extracting constructive content from classical proofs. Technical
report, Cornell University, 1990.

[58] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/hol: A proof
assistant for higher-order logic (lecture notes in computer science), 2002.

[59] Jens Otten. leancop 2.0and ileancop 1.2: High performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In Automated Reasoning,
4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15,
2008, Proceedings, pages 283–291, 2008.

[60] Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype verifica-
tion system. In International Conference on Automated Deduction, pages 748–752.
Springer, 1992.

[61] Sam Owre and Natarajan Shankar. The formal semantics of pvs. 1999.

[62] Sam Owre, Natarajan Shankar, John M Rushby, and David WJ Stringer-Calvert.
Pvs language reference. Computer Science Laboratory, SRI International, Menlo
Park, CA, 1(2):21, 1999.

[63] Christine Paulin-Mohring. Extracting ω’s programs from proofs in the calculus of
constructions. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 89–104. ACM, 1989.

[64] John Rushby, Sam Owre, and Natarajan Shankar. Subtypes for specifications:
Predicate subtyping in pvs. IEEE Transactions on Software Engineering, 24(9):709–
720, 1998.

[65] Bertrand Russell. Letter to frege. From Frege to Gödel, pages 124–125, 1902.

[66] Ronan Saillard. Dedukti: a universal proof checker. In Foundation of Mathematics
for Computer-Aided Formalization Workshop, 2013.

[67] Paula Severi and Erik Poll. Pure type systems with definitions. Logical Foundations
of Computer Science, pages 316–328, 1994.

[68] Natarajan Shankar, Sam Owre, John M Rushby, and Dave WJ Stringer-Calvert.
Pvs prover guide. Computer Science Laboratory, SRI International, Menlo Park,
CA, 1:11–12, 2001.

[69] Konrad Slind and Michael Norrish. A brief overview of hol4. Theorem Proving in
Higher Order Logics, pages 28–32, 2008.

[70] Matthieu Sozeau. Subset coercions in coq. In International Workshop on Types for
Proofs and Programs, pages 237–252. Springer, 2006.

249



BIBLIOGRAPHY BIBLIOGRAPHY

[71] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The
FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

[72] Geoff Sutcliffe. The tptp problem library and associated infrastructure. Journal of
Automated Reasoning, 43(4):337, 2009.

[73] William W Tait. A realizability interpretation of the theory of species. In Logic
Colloquium, pages 240–251. Springer, 1975.

[74] Jan Terlouw. Een nadere bewijstheoretische analyse van gstt’s. Manuscript (in
Dutch), 1989.

[75] Jan Terlouw. Sterke normaliszatie in c a la tait. In Notes of atalk held at the
Intercity Seminar on Typed Lambda Calculus, Nijmegen, Netherlands, 1989.

[76] Jan Terlouw. Strong normalization in type systems: A model theoretical approach.
Annals of Pure and Applied Logic, 73(1):53–78, 1995.

[77] Alan Mathison Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London mathematical society, 2(1):230–265,
1937.

[78] Benjamin Werner. Une théorie des constructions inductives. PhD thesis, Université
Paris-Diderot-Paris VII, 1994.

[79] Benjamin Werner. On the strength of proof-irrelevant type theories. In IJCAR,
volume 4130, pages 604–618. Springer, 2006.

[80] Alfred North Whitehead and Bertrand Russell. Principia mathematica, volume 2.
University Press, 1912.

250


