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Abstract

Ce travail de thèse a été réalisé dans le cadre d’une thèse en co-tutelle entre l’INSA,
Toulouse, et l’Université des Andes, Colombie, avec un financement de Colciencias. Ce
travail est motivé par la nécessité pour l’industrie de détecter des situations anormales
pendant les phases de démarrage et d’arrêt des installations. La sécurité des installations
industrielles implique une gestion intégrée de tous les facteurs et événements pouvant
causer des accidents. La gestion des alarmes peut être formulée comme un problème de
reconnaissance de motifs événementiels dans lequel des modèles temporels sont utilisés
pour caractériser différentes situations typiques, en particulier pendant les phases de
démarrage et d’arrêt. Dans cette thèse une nouvelle approche de gestion des alarmes
basée sur un processus de diagnostic est proposée. En supposant que les alarmes et les
actions du mode opératoire standard sont des événements discrets, l’étape de diagnostic
repose sur la reconnaissance de situation pour fournir aux opérateurs des informations
pertinentes sur les défaillances induisant le flux d’alarmes.

La reconnaissance de situation est basée sur des chroniques qui caractérisent les
situations d’interdit et qui sont apprises de manière automatique. Les chroniques sont
apprises à partir de séquences d’événements représentatives obtenues par simulation et
constituant l’entrée d’une version étendue de l’Algorithme de Découverte de Chroniques
Heuristique Modifié (HCDAM). HCDAM a été étendu dans cette thèse pour prendre
en compte des connaissances expertes sous la forme de restrictions temporelles spéci-
fiques. Un modèles hybride causal du procédé est utilisé pour vérifier les séquences
d’entrée et pour expliquer et donner du sens aux chroniques apprises.

La méthodologie de gestion des alarmes basée sur des chroniques CBAM (comme
Chronicle Based Alarm Management ) proposée dans cette thèse fusionne différentes
techniques pour tenir compte de l’aspect hybride et des procédures opérationnelles
standard des processus concernés. Comparée aux autres approches de gestion d’alarmes,
cette approche se caractérise par l’utilisation de l’information sur les actions procé-
durales liées au comportement des variables continues dans un processus formel de
diagnostic. Des informations spécifiques sont obtenues à chaque étape de la méthodolo-
gie CBAM qui se résume en trois étapes :
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1. Étape 1 : Identification du type d’événement
à partir des procédures d’exploitation standard et de l’évolution des variables
continues, cette étape détermine l’ensemble des types d’événements pendant les
phases de démarrage et d’arrêt.

2. Étape 2 : Génération de séquence d’événements
à partir de l’expertise et d’une procédure d’abstraction événementielle, cette étape
détermine la date d’apparition de chaque type d’événement pour la construc-
tion des séquences d’événements représentatives. Une séquence d’événements
représentatifs est l’ensemble des types d’événements avec leurs dates d’occurrence
qui peuvent être associées à un scénario spécifique du processus. Cette étape se
conclut avec la vérification des séquences d’événements représentatives à l’aide
du modèle causal hybride.

3. Étape 3 : Construction de la base de chroniques
à partir des séquences d’événements représentatives et des restrictions temporelles
dans chaque scénario, cette étape détermine la base de chroniques à l’aide de
l’algorithme HCDAM .

La methode proposée pour la gestion des alarmes est illustrée par deux cas d’etude
representatifs du domaine pétrochimique.



Abstract

This thesis work was carried out in the framework of a co-tutelle between INSA,
Toulouse, and the University of the Andes, Colombia, with financial support of Col-
ciencias. This work is motivated by the need of the industry to detect abnormal
situations in the plant startup and shutdown stages. Industrial plants involve inte-
grated management of all the events that may cause accidents and translate into alarms.
Process alarm management can be formulated as an event-based pattern recognition
problem in which temporal patterns are used to characterize different typical situations,
particularly at startup and shutdown stages. In this thesis, a new approach for alarm
management based on a diagnosis process is proposed. Considering the alarms and the
actions of the standard operating procedure as discrete events, the diagnosis step relies
on situation recognition to provide the operators with relevant information about the
failures inducing the alarm flow. The situation recognition is based on chronicles that
characterize the situations of interest and are learned automatically. The chronicles
are learned from representative event sequences obtained by simulation and given as
input to an extended version of the Heuristic Chronicle Discovery Algorithm Modified
(HCDAM). HCDAM has been extended in this thesis to account for expert knowledge
in the form of specific temporal restrictions. A hybrid causal model of the process is
used to verify the input event sequences and to explain and provide semantics to the
learned chronicles.

The Chronicle Based Alarm Management (CBAM) methodology proposed in this
thesis involves different techniques to take the hybrid aspect and the standard op-
erational procedures of the concerned processes into account. Compared to other
approaches of alarm management, this approach uses information about the procedural
actions related to the continuous variables behavior in a formal diagnosis process.
Specific information is obtained in each step of the CBAM methodology, and it is
summarized in three steps:

1. Step 1: Event type identification
From the standard operating procedures and from the evolution of the continuous
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variables, this step determines the set of event types in startup and shutdown
stages.

2. Step 2: Event sequence generation
From the expertise and an event abstraction procedure this step determines the
date of occurrence of each event type for constructing the representative event
sequences. A representative event sequence is the set of event types with their
dates of occurrence that can be associated to a specific scenario of the process.
This step concludes verifying the representative event sequences using the hybrid
causal graph.

3. Step 3: Chronicle database construction
From the representative event sequences and temporal restrictions of each sce-
nario, this step determines the chronicle database using the extended HCDAM

algorithm.

The proposed framework for alarm management is illustrated with two case studies
representative of the petrochemical field.
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Chapter 1

Introduction

1.1 Global overview and motivation

The increasing automation of industrial production processes has resulted also in an
increase of the complexity of the control systems. Such systems are based on digital
technologies that required increase their monitoring capacity in terms of the number
of variables that can be treated with its processing speed and communication capacity
[10], [11]. This complexity makes extremely difficult the diagnosis of failures that may
occur. Currently, on highly automated systems fault diagnosis performed automatically
with automatic reconfiguration on embedded control system is an usual requirement
[55], [70],[78]. The ultimate goal is to optimize the availability, reliability and safety of
production processes [69].

The operation of many industrial processes, especially in the petrochemical sector,
involves inherent risks due to the presence of dangerous materials like gases and
chemicals; which in some conditions can cause emergencies. In these types of industrial
processes, safety is supplied by layers of protection, which begin with a safe design
(Process design level) and an effective process control (Process Control level), followed
by the manual (Operator interventions level) and automatic (Safety Instrumented
System level) prevention layers, and concluded with layers to mitigate the consequences
of a critical event (Active protection level, Passive protection level, Plant emergency
response level and Community emergency response level) as shown Figure. 1.1. The
petrochemical industrie’s losses have been estimated at 20 billion dollars in the U.S.
alone each year, and the AEM (Abnormal Events Management) has been classified as
a critical problem [95], [122], [111]. An integrated management of the critical factors in
the process, ensures an optimum reliability level in the industrial plants [50]. Factors
such as the control of the process variables, procedures and steps followed in transitional
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stages try to keep the plants within the operating established "limits" [46]. While, on
starting or shutdown procedures, the quantity of signals increases, the plant safety
needs to involve an integrated management of those factors analyzing the causes of the
accidents.

In other words, these factors must be managed together, and not separately, because
if any of them is left outside, unattended or decreased, the security would be threatened
[1]. The critical factors of the process work that must be managed together are:

• Facilities safely,

• Control of process variables,

• Safe behaviors,

• Valid procedures.

This raises the need not only of a diagnosis system that helps to maintain safe the
process increasing the availability of the installation, but also of new alarm management
methodologies [108]. Industrial plant safety involves an integrated management of all
the factors that may cause accidents. Hence alarm management is one aspect of great
interest in the safety planning for different plants.

In process state transitions such as startup and shutdown stages, the alarm flood
increases and it generates critical conditions in which the operator does not respond
efficiently; moreover, it is commonly reported that 70% of plant incidents occur at
startup or shutdown stages [6]. Due to this alarm flood, dynamic alarm management
is required. Currently, many fault detection and diagnosis techniques for multimode
processes have been proposed; however, these techniques cannot indicate fundamental
faults in the basic alarm system [125]. On the other hand, the technical report ”Advance
Alarm System Requirements” EPRI (The Electric Power Research Institute) suggests
both cause - consequence and event-based processing. Today, it is very easy to set
alarms on modern electronic control systems, and operators are inundated with "alarms"
that actually hinder the performance of their tasks [93]. In industrial environments, it
is common for plant operators to perform their duties silencing process alarms. This
situation arises because these alarms become noise rather than an indicator of abnormal
situations. Nonetheless, the plant alarms should be administered according to: 1) a
philosophy that includes the purpose of the alarm system; 2) procedures associated
with the alarm system and other plant procedures; 3) methods for prioritization; 4)
alarm classes; 5) roles and operator responsibilities with respect to alarms; 6) principles
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Figure 1.1: Safety layers of protection

of the alarms; 7) documentation required for each alarm; 8) training; 9) rates of key
system performance; 10) change management, and 11) preservation of history of alarms
(ISA 18.2).

In this thesis we propose to address the problem of alarm management by developing
reliable tools that support the analysis of event streams to recognize activities that
can generate normal or abnormal situations in complex flows. The challenge is then to
fit the formal recognition of behaviors in the context of Complex Event Processing.
The dynamics of a process can be represented by an approach that depicts the process
behavior using the events that occur during the process evolutions. In this context, the
chronicle approach [31] has been applied in many applications of situation recognition
and often with a diagnosis objective. Chronicles are temporal pattern supported by
a set of observable events and a set of temporal constraints between pairs of events.
One of the main difficulties of situation recognition based on chronicles is to obtain
automatically a base of chronicles that represents each situation of interest. Our
proposal is then to use a chronicle recognition approach to analyse the behavior of the
process and to use learning techniques for the chronicles design. Diagnosis by situation
recognition (chronicle based diagnosis) in startup and shutdown stages of chemical
/petrochemical processes as a support to human operators is the principal goal of this
thesis and resumed in Fig. 1.2.
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Figure 1.2: Motivation: Diagnosis by situation recognition

A formal methodology called Chronicle Based Alarm Management (CBAM)
to generate offline the chronicle database using the alarm flood, procedural actions
and expert knowledge is proposed. As the efficiency of alarm management approaches
depends on the operator expertise and process knowledge, our final objective is to
develop a diagnosis approach as a decision tool for operators. For this, we propose to
enhance the chronicle learning stage by incorporating expert knowledge. In this thesis
the chronicle learning algorithm proposed in [96] has been extended to incorporate
expert knowledge in the form of temporal restrictions, as well as additional information
that allows us to limit the conservatism of chronicles.

The global approach CBAM provides a dynamic alarm management system for
the transition stages of chemical processes. To consider both continuous and discrete
features of chemical plants, CBAM is fed by the hybrid system framework. The
Chronicle Based Alarm Management approach is then at the boarder between the
alarm management area, the fault diagnosis research field and hybrid models field (see
Fig. 1.3). In this approach the simultaneous occurrence of events is not considered.

1.2 Alarm management

Alarm management is an important aspect in the safety of the industrial processes. In
years past (60’s, 70’s) the integration of a new alarm on the systems had a high cost
and required a careful study and analysis before deploying. Each alarm had to be wired
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Figure 1.3: Chronicle Based Alarm Management CBAM

given the limited space on the panels of the control room. Today, advances in hardware
and software have made possible the implementation of alarms at a minimum cost,
without limits of space and with less review. Therefore, in many cases unnecessary
alarms arise. Due this, an important advance has been the appearance of alarm systems,
in which alarms are installed and configured considering the amount of existing signals
(analog and discrete) and the rate of alarms that an operator can respond efficiently.
Alarm systems can induce many alarms that cannot be evaluated by the operator
which is a serious threat to the safety of the process. Therefore, now, the question
is: Which alarms can be ignored without compromising the integrity of the process?
This at the extreme can lead to sub-alarm systems, which is as bad as having a system
over-alarmed [76]. Alarm management systems must deal with two main difficulties:

• A very high rate of alarms,

• A lack of criteria for assigning the priority of an alarm.

Alarm rate indicates the load that produces the alarm system to the operator. If the
operator is supposed to respond to all alarms, the system must not produce more
alarms that the operator can respond effectively. The most important factors that
affect the rate of alarms are:

• The number of alarms settled,
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• The deadband analog alarms (pressure, temperature, flow, level, etc.),

• The analog alarm limits,

• Alarms packages equipment (compressors, furnaces, etc.).

The alarm priority determines the order in which the operator must respond to the
alarm, i.e. it determines the relative importance of alarms. Frequently it can be found
that all alarms have the same priority, or there are a large percentage for one priority
and a few for other priorities. It is important that alarms are prioritized correctly
because in a scenario in which the operator receives a sequence of alarms in a short
period, the priority is the only factor that the operator owns to determine to which
alarm he has to respond in priority [95].

Alarm management is a process by which the alarms are designed, monitored and
managed to ensure more reliable and secure operations. The first mistake is to assume
that the alarm management has to do with reducing alarms. The aim of an alarm
management system is to improve the quality process acting on the rate of alarms
during normal operation, on the rate of alarms during abnormal situations, on the
priority of alarms and on problems related to maintenance and Operation / Control.
The motivation of alarm management is based on improving the work environment of
the operator (ergonomics) preventing overload of the same, to avoid unexpected stops,
make operation safer thereby achieving improved plant reliability.

On the other hand, many failings by operators have been recorded as incidents that
have been the major contributing cause of major accidents. For controlling and mitigate
these events, it is necessary to provide clear, concise and accurate operating procedures.
Operating procedures must declare the instructions for the correct operation of the
process plant regarding aspects such as the Control of Substances Hazardous to Health
(COSHH), manual handling, Personal Protective Equipment (PPE) regulations, quality,
the Hazard and Operability study (Hazop), and the Safety Health and Environment
(SHE) requirements. A Standard Operating Procedure (SOP), is a set of instructions
step-by-step structured to help the operators carry out routine operations, and each
company or organization defines theirs SOP as they believe that is more convenient. The
principal objective of the SOPs is to achieve efficiency, quality output and uniformity of
performance, reducing delays and failures. Therefore, the standard operating procedures
should depict a definition of the best practice that can do to at any momment.

Summarizing, the fundamental purpose of an alarm is to alert the operator of
deviations in the process variables from normal operating conditions, i.e. abnormal
operating situations. ISA-18.2 defines an alarm as "An audible and/or visible means
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of indicating to the operator an equipment malfunction, process deviation, or abnormal
condition requiring a response". This means that an alarm is more than a message or
an event; an alarm indicates a condition requiring the operator’s attention towards
plant conditions requiring timely assessment or action. In addition, alarm management
corresponds to determining, documenting, designing, operating, monitoring, and main-
taining alarm systems and it has recently focused the attention of many researchers in
themes such as:

• Alarm history visualization and analysis,

• Process data-based alarm system analysis and rationalization,

• Plant connectivity and process variable causality analysis (causal methods).

The proposal in this thesis seeks to exploit the causal relationships between process
variables and procedure actions issued of Standard Operating Procedures. Additionally
our objective is to take the temporal dimension of the alarm management into account.
More precisely we want to exploit the temporal information of the alarm sequences (i.e
the time between alarms occurrence). In this context the choice we have made of a
chronicle based approach for situation recognition is well suited as time is an intrinsic
feature of chronicles.

1.3 Fault diagnosis techniques

The knowledge that we can acquire about the behavior of a physical system is based
primarily on the acquisition and valuation of two types of information: Quantitative,
which is acquired through various measuring instruments variables that characterize the
system operation. Qualitative, which is acquired by humans through the sensory organs
and processed by the brain, usually provided in the form of linguistic information
[91],[111]. In fault detection process we cannot neglect any kind of information because
both are essential for the generation of fault indicators. We present next a summary of
fault detection techniques based on two types of approach: Data - driven techniques
and Model - based techniques.

1.3.1 Data - driven techniques

In diagnosis theory, there exist promising methods of fault diagnosis in technical systems
described by linear and nonlinear models; methods noted as “model-free” or “data-
driven” methods [8], [29]. This type of techniques consider continuous measurements,
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and a set of measurements of the process using sensors is represented as a pattern
[92],[124]. A list of some data-driven techniques is presented below.

(a) Quantitative techniques

i. Statistical: These methods use analysis as the Principal Component
Analysis (PCA) which is a statistical procedure that convert a set of
observations of possibly correlated variables into a set of values of lin-
early uncorrelated variables called principal components (or sometimes
principal modes of variation) [75],[115].

ii. Neuronal networks (Multivariable models built from a set of in-
put/output data), Neural networks are a computational model based on
a large set of simple neuronal units (artificial neurons), approximately
similar to the behavior observed in axons of neurons in biological brains
[112].

(b) Qualitative techniques

i. Expert systems (Rule-based feature extraction): These systems rep-
resent the knowledge of the experts through determining rules and
patterns which can be implemented with Neuronal networks -Pattern
classification approaches [84], Fuzzy logic [46],[26], Genetic algorithm
[103] etc.

ii. Qualitative trend analysis (QTA) (Abstraction of trend information):
These type of techniques are an useful tool for process data analysis,
process monitoring, fault diagnosis, and data mining. Techniques which
can analyze the data applying triangulation [20], finite difference method
[54], syntactic pattern recognition approach [83], Gaussian filter [123],
etc.

1.3.2 Model - based techniques

Different approaches for fault detection use mathematical and graph models. The
mission corresponds to the detection of faults in the process, faults in the actuators
and sensors by using the dependencies between different measurable signals. These
dependencies are expressed by mathematical process models. The basic structure of
a model-based fault detection is based on measured input signals and output signals.
The detection methods generate residuals, parameter estimates or state estimates,
which are called features. By comparison with the normal features, changes of features



1.3 Fault diagnosis techniques 9

are detected, leading to analytical symptoms. A list of the most popular model-based
techniques is presented below.

(a) Quantitative techniques

i. Residual generation methods: These methods include the generation
of residual signals analyzing measurements of input/output elements.
These methods use analytical redundancy [4],[21],[45], residuals and
parameterization of residual generators [44], Fault detection filter (Ob-
server) [18], etc.

ii. Another method based on quantitative techniques is the Kalman filter
[119] which uses data from the process predicting the next values in the
variables to detect failures.

(b) Qualitative techniques

i. Causal models: These models represent a description of the process.
In a graphical form, the following techniques can indicate the relation-
ships between components, variables and procedural actions: Diagraph
(Graph with directed arcs between the nodes) [67], Bond graphs [87],
SDG - Signed direct graph [121], ESDG - Extended SDG [63]. Other
techniques can involve information from a risk analysis, time and the
date of occurrences of the events: PCEG - Possible cause and effect
graph models [117],[118], HDG - HAZOP-digraph models [107], Causal
Graphs [17], Chronicles [31],[96],[110], Fault trees [102].

ii. Qualitative physics: These techniques can predict and explain the
behavior of mechanisms in qualitative terms. For example, we can
obtain the qualitative behavior from the ordinary differential equations
(ODEs) [86] [57] or simulate a process in a qualitative form (Qualitative
simulation -QSIM) [57].

iii. Abstraction hierarchies: The complex processes can be divided hier-
archically for its analysis. This division may be structural [82], from
multilevel flow Models (MFM) [62], from functional areas [40], etc.

In this thesis as said previously, we consider a chronicle based diagnosis approach.
This diagnosis approach is a data driven approach as the chronicles are designed
through data (in our case event sequences) by a learning technique. It can also be
considered as a qualitative model based approach as chronicles can be viewed as
observable abstractions of the process behaviors.
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1.4 Hybrid models and causal graph

The Chronicle Based Alarm Management (CBAM) methodology proposed in
this thesis uses a formal framework based on hybrid systems to formally model the
chemical/petrochemical processes that have both continuous dynamics and discrete
dynamics. In addition, to capture the causal relationship between the continuous
variables the hybrid modeling of the process integrates causal graphs. This hybrid
framework will be described in details in the chapter 3.

1.5 Objectives of the thesis

The general objective of the thesis is to design and to develop a new methodology for
alarm management in startup and shutdown stages.

More precisely we aim to:

• design an alarm management method based on a diagnosis process during startup
and shutdown stages

• structure the diagnosis based on situation recognition

• include normal and abnormal situations captured by chronicles

• generate the chronicle database automatically using a learning approach

• apply the methodology in the petrochemical sector

1.6 Contributions

The principal contribution of the thesis is a new proposal for alarm management based
on a diagnosis process. An analysis of alarm management in startups and shutdowns
for oil refining processes was presented in an international conference [108], and the
Chronicle Based Alarm Management methodology has been exposed in international
workshops and conferences [109],[110]. This methodology includes the generation of
event sequences used for learning chronicles in a formal framework. Additionally, to
limit the conservatism and restrictiveness in the chronicles the expertise knowledge
in form of temporal restrictions has been included extending the Heuristic Chronicle
Discovery Algorithm Modified (HCDAM) (see Fig. 1.4). These results gave rise to
the following publications:
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Figure 1.4: Chronicle learning proposal - Contributions

• Vásquez, J., Subias, A., Travé-Massuyès, L.,and Jimenez F. (2017). Alarm
management via pattern recognition. Engineering Applications of Artificial
Intelligence, Volume 65, October 2017, Pages 506-516.

• Vásquez, J., Travé-Massuyès, L., Subias, A., Jimenez, F. (2017). Enhanced
chronicle learning for process supervision. IFAC 2017 World Congress, Toulouse
France, pp. 5191 to 5196.

• Vásquez, J., Travé-Massuyès, L., Subias, A., Jimenez, F., and Agudelo, C. (2016).
Alarm management based on diagnosis. 4th IFAC International Conference on
Intelligent Control and Automation Sciences (ICONS 2016), Reims, France.

• Vasquez, J., Travé-Massuyès, L., Subias, A., Jimenez, F., and Agudelo, C. (2015).
Chronicle based alarm management in startup and shutdown stages. International
Workshop on Principles of Diagnosis (DX-2015), Paris, France.

1.7 Thesis structure

The thesis manuscript is organized in eight chapters with the following contents:
Chapter 1
It is dedicated to the presentation of the motivations and objectives of the thesis.

Aspects such as safety layers of protection and the proposal of diagnosis by situation
recognition are presented in this chapter. Moreover, it presents a global overview
positioning our work at the border between alarm management, hybrid modeling and
diagnosis techniques.
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Chapter 2
In this chapter an analysis of fault diagnosis in industrial processes is presented.

The concept of SUPER ALARM and the new layer of protection on process safety
are explained. In addition, the following aspects are described: Reliability & Risk
management, hazard analysis and finally control & safety systems (SIS).

Chapter 3
This chapter considers hybrid models and causal graphs which are used in the

proposed methodology as tool that help human operators understand the behavior of
the physical components of the process and to verify the representative event sequences
that are generated in the CBAM methodology. This chapter gives the principles of
causal modeling and the generation of causal graphs including an example with an
illustrative application applying the five steps for the generation of a causal graph.

Chapter 4
In chapter 4 theoretical aspects on chronicles are given. The chronicle and temporal

restriction definitions are provided. The concepts of chronicle recognition and diagnosis
based on chronicles are introduced. This chapter concludes with a small example that
shows how a chronicle represents a temporal pattern of an industrial process.

Chapter 5
This chapter exposes the chronicle learning process and the Heuristic Chronicle Dis-

covery Algorithm Modified HCDAM [96]. Interactive chronicle discovery is presented
with related work, in particular, Dousson & Vudoung [34] and Cram [25] algorithms.
The organization and the three phases of HCDAM are presented. The chapter con-
cludes with an example in which the algorithm HCDAM is applied to an industrial
process. The same example uses also the extended version of HCDAM .

Chapter 6
The new methodology "Chronicle Based Alarm Management" (CBAM) is presented

in this chapter. The Hybrid Causal Model and the Qualitative abstraction of continuous
behavior are described. Additionally the three steps of CBAM are described: "event
type identification", "event sequences generation" and "construction of the chronicle
data base".

Chapter 7
The Cartagena Refinery is described and two case studies related to the petro-

chemical sector are considered in this chapter: a Hydrostatic Tank Gauging System
and a Vacuum Oven system. Each step of the Chronicle Based Alarm Management
methodology is illustrated on these real cases of application.

Chapter 8
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The contributions of this thesis are presented and future work directions are pointed
out in relation with the thesis.





Chapter 2

Diagnosis in industrial processes

2.1 Introduction

Diagnosis in industrial processes corresponds to the procedures, activities, and tools
that help operators to recognize the real plant situation, especially at transitional
stages in which increases the risk of accidents. In Figure 2.1 is presented the process
safety relationships. The layers of protection (Loop, Alarm, and Trip) involve the
components of supervision scheme in which the first level includes the instrumentation
and actuators of the system, also the Safety Instrumented System (SIS). The next level
contains the acquisition and control equipment followed by the supervision stage, in
which the tools of diagnosis are implemented. To determine the events and signals of a
procedure it is necessary to analyze and consider the initial conditions of the process
and to identify possible failure modes. Hence, a complex system requires a division
into subsystems for a reliable analysis. The goal of the technology used maintains the
process variables on their limits of operation.

In terms of process safety, the principal characteristics of a good protective barrier
are specificity, independence, reliability, and audit. Specificity: Barrier capable of
detecting and preventing or mitigating consequences of a potentially dangerous specific
event (e.g. explosion). Independence: A barrier is independent of all other layers
which are associated with the potentially dangerous event, when there is no potential
for common cause failures and the protection layer is independent of the initiating
event. Reliability: The protection provided by the barrier reduces the risk identified
by a specific and known quantity determined by its probability of failure. Audit: A
barrier must be designed to allow inspections and periodic and regular testing of the
protection function.
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Figure 2.1: Process safety relationships

This thesis proposes an extension of protection barrier "Alarm", see Figure 2.2.
The extension in this layer comes from a diagnosis process and the concept of SUPER
ALARM corresponds to a new alert to the operators resulted from a diagnosis procedure
representing a "Superior" alarm.

Consequently, in automatic control systems, the supervision functions serve to
indicate undesirable or not permitted processes states and take appropriate actions
that maintain performance and avoid damage or harm states. From supervision we
can discriminate the following functions:

• Monitoring: The measurable variables are checked respect their tolerances and
alarms are generated to alert the operators.

• Supervision: Supervision with fault diagnosis this action is developed from the
analysis of the measurable variables detecting the symptoms of a possible failure
[2], [60].

• Automatic protection: Actions for counteract the possible damages. A system
is said to be diagnosable if whatever the behavior of the system, we will be able
to determine without ambiguity a unique diagnosis.

The diagnosability of a system is generally computed from its model [5], and in
industrial applications using model-based diagnosis, such a model is generally present
and does not need to be built from scratch. The fault diagnosis in general consists
in the following three important aspects: Fault detection: it consists in discovering
the existence of faults in the most useful units in the process, Fault isolation: it is
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Figure 2.2: SUPER ALARM layer of protection

Figure 2.3: Reduction of alerts to the operators
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referred to localize (classified) the different faults, and Fault analysis or identification:
it consists in determining the type, degree and origin of the fault [28].

Safety requirements and the increasing efficiency in monitoring, control, and manage-
ment of complex systems motivates great interest and efforts devoted to the development
of fault detection and isolation techniques. Many popular approaches are available for
identifying faults. Among them, methods based on signals are widely used and try to
extract useful information from the analysis of specific signals through a comprehensive
and rigorous analysis of the main statistical methods used to detect changes [64]. The
model-based methods, like parity or space-based approaches observers [77], used a
mathematical model of the plant to explore the implicit analytical redundancy relations
model to monitor inconsistencies between the model and data measured. However,
these methods suggest a big demanding of computational load. Other popular methods
as those based on fault trees [113] or causal graphs and propagation [120] based on
a qualitative model of the plant. Other approaches have been developed by expert
systems based on artificial intelligence techniques [89]. On the other hand, hierarchical
clustering methods were used to carry out pattern matching correlation [19] in which
some frequent patterns of multiple alarm correlation may be discovered to have the
ability to reflect the sequence of normal operation. Any change in the pattern may
indicate abnormal alterations sensor degradation or malfunction. Meanwhile, the
Professor Ali Zolghadri expresses that currently there is a valley of the death between
the diagnosis theory and the industrial process applications, the work [126] presented
several examples of model and signal based fault detection in aircraft Electrical Flight
Control System (EFCS).

Expert systems have also been widely used in industrial monitoring systems for
the diagnosis of impairment, in particular, by IFP (Institut Francaise du Petrole) in
ALEXIP software [15] and by France Telecom for monitoring TRANSPAC network
[104]. These systems set alarm linked directly to a typical situation which must be
identified in the form of rules. Once of these rules are acquired in the knowledge
base, the task is to analyze the flow of alarms and perform validation rules. In these
fields, there are recent works of the Colombian Petroleum Institute (intelligent alarm
management) [46] and the French Institute of Petroleum presents a diagnostic module
developed and tested offline in a pilot plant [17], works which integrate techniques such
as causal graphs and fuzzy logic for performing the fault diagnosis. Another case [90]
used the techniques of fuzzy clustering and neuronal networks in the identification and
estimation of functional states for a power transmission line and in the monitoring of
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a boiler system. Moreover, [106] used expert knowledge-guided feature selection for
data-based industrial process monitoring.

Hybrid intelligent systems are an important future direction to develop in diagnosis
systems. The disadvantage of diagnosis systems based on a single method is not to
be versatile enough to control systems on a large scale, so these systems need to
integrate various techniques to make an efficient diagnosis. The integration of diagnosis
methods combines many types of techniques of fault detection; in particular, the
complementary combination of quantitative and qualitative models can greatly reduce
the false alarm rate [67]. All these methods have their advantages and their specific
fields of application, which can be implemented efficiently on a general approach for
fault detection in compliance with the following characteristics:

• The modularity and flexibility: The model must describe any element of the
process and environmental assessment. This model should be implemented in a
library for use it in the construction of diagnosis algorithm.

• Hierarchical design: According to a top-down approach the model of fault
detection could be created from diagnosis procedures for different extraction
levels.

• Data fusion: The diagnosis system should be able to extract information from
many different sources: local signal analysis, intelligent instrumentation, empirical
knowledge, logical conditions.

• Temporal Analysis: The diagnosis system can provide useful information to
complete the diagnosis analyzing the dynamic events detection in abnormal
behavior of the system.

• Compatibility with industry standards: The failure mode effects (FMEA) is a
method for determining the possible failure occurrences in the industry. Then, the
diagnosis system for the industry must apply this method in the determination
of the failures to detect.

Concluding, the goal to obtain an efficient and reliable methodology in a safe
process must include the following two aspects: Reliability & risk management and
Control & safety systems. Consequently, the Chronicle Based Alarm Management
methodology (CBAM) can integrate these aspects as follows:

• Reliability & risk management: CBAM can use analysis such as HAZOP, fault
tree among others, for the determination of the most important scenarios and
events in the process.
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• Control & safety systems: The algorithm and tool for evaluating the event
sequences must be integrated into the control system of the process and in some
cases must interact with the safety system. For example, to check that the safety
system had been activated when there is a failure.

2.2 Reliability and risk management

Reliability may be assumed as the ability of a system or component to perform its
required functions under stated conditions for a specified time; meanwhile, safety is the
state of being "safe". In other words, it is the condition of being protected from harm
or other non-desirable outcomes. Consequently, if a system is reliable, supposedly it is
safe also. For example, a new pistol is reliable, but it is safe? so if exist a risk of hurt
or damage, the use of a pistol needs strict conditions for its management. Likewise,
happen in the industrial processes, if there exists the risk of that something wrong
occurs, this situation or risk needs a management. It is common confuse safety with
security; security is the degree of resistance to, or protection from, harm. It applies
to any vulnerable and/or valuable asset, such as a person, dwelling, community, item,
nation, or organization. In short, safety is the minimization of the risk of occurrence
of accidents and serious incidents in the system, equipment (prevention). Security, on
the other hand, is responsible for the control of incidents of infrastructure, property,
and persons against acts of unlawful interference (protection).

The relationship between safety and reliability had been enhanced since the Indus-
trial Revolution. The use of new sources of power, using water or steam, nuclear plants,
and petrochemical industry not only gave great potential for the rapid development of
manufacturing technology, likewise provided a terrible potential for death and injury
when processes went wrong. Due to the demand for new machinery and the use of
chemical elements such as oil and gas, the number of fatal accidents has increased. Al-
though design new machines make possible the growing scientific knowledge, designers
still lean strongly on past experience [24]. In addition, based on this experience, some
risks can be accepted.

Risk management is a technique widely applied in organizations to increase its safety
and reliability minimizing losses. This technique involves the identification, evaluation,
and control of risks; moreover, risk evaluation includes the measurement and assessment
of the risk. The risk is the potential of gaining or losing something important and
valuable. Things such as physical health, social status, emotional well-being or financial
wealth. In an ideal world, a good evaluation and assessment of the risks permits an
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effective error reduction. In practice, decisions on the acceptability of risk depend
upon many factors; these include social, economic, political and legislative concerns.
Referencing strategies, risk control strategies may be classified into four main areas:

1. Risk avoidance: Risk avoidance involves a conscious decision on the part of the
organization to avoid a particular risk by discontinuing the operation that is
producing the risk.

2. Risk retention: Risk retention may occur with or without knowledge:

• With knowledge: It is a deliberate decision made to retain the risk, maybe
by self-financing.

• Without knowledge: Occurs when risks have not been identified

3. Risk transfer: Risk transfer is the conscious transfer of risk to another organization,
usually via insurance.

4. Risk reduction: Risk reduction is the management of systems to reduce risks.

The engineers and technologists who design complex and high-risk systems, are
those who develop the management procedures and, above all, those who manage and
control the human factors. Concluding, a complete and effective diagnostic tool can
help to reduce the risk of accident occurrences.

In Fig. 2.4 is represented a framework of the risk assessment process, which contains
three levels of activities: Risk analysis, Risk assessment, and Risk management. Risk
analysis is a technical process that initiates defining the system continuing with
the hazard identification, frequency analysis, consequence modeling, and concluding
with the risk calculation. The risk assessment level presents the actions of risk
acceptability, risk reduction decisions, and cost-benefit judgments. Risk management
consists in the action to monitor, test, and control risk levels, and it is part of the
safety management plan of the organization. Quantitative Risk Assessment (QRA)
is the most sophisticated technology to calculate the risks of incidents, estimate the
uncertainties of the calculated risk levels, and provide metrics for cost-effective risk
minimization. Moreover, to quantifying the effects of data uncertainty, QRA uses
models to estimate conditional probabilities of failure for components or layers of
protection that are not mutually independent. For risk assessment related to reactive
chemicals, statistical data from incidents are often insufficient and are related to specific
circumstances. Consequently, it is important to develop an effective implementation
of QRA methods, such as statistical inference, requiring of significant cost, time,
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Figure 2.4: Flow diagram for a risk assessment process.

and experience. Hence, less costly qualitative and semi-quantitative risk assessment
techniques can be used effectively to identify where a more quantitative analysis of the
most critical components of a chemical system may be needed [97],[116].

2.2.1 Intrinsic safety

There are two types of processes, the processes intrinsically safe, and those for which
the safety has to be adapted. An intrinsically safe process is one in which safe actions
are involved in the nature of the process; a process which causes no danger, or negligible
danger, under all foreseeable circumstances. The term inherently safe is often preferred
to intrinsically safe, to avoid confusion with the use of this term "intrinsically safe"
or "explosion proof" as is applied to electrical equipment. “Explosion proof“ is the
classification for a sensor/transmitter and means that the housing has been engineered
and constructed to contain a flash or explosion. These housings are usually made
of cast aluminum or stainless steel and are of sufficient mass and strength to safely
contain an explosion when flammable gases or vapors penetrate the housing and
the internal electronics or wiring cause an ignition. This design must prevent any
surface temperatures that could exceed the ignition temperature of the gases or vapors
covered by its Group rating. If the sensing element is a high-temperature device (e.g.
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Catalytic bead or “pellistor”), it may be protected by a flame arrestor to prevent the
propagation of high-temperature gases to the ambient atmosphere. On the other hand,
an “intrinsically safe” classification and design mean that an electronic circuit and
its wiring will not cause any sparking or arcing and cannot store sufficient energy
to ignite a flammable gas or vapor, and cannot produce a surface temperature high
enough to cause ignition. If an element is not explosion proof, nor does it need to
be. For permanent installations, such an installation may include “intrinsically safe
barriers” that are located outside the hazardous location and limit the amount of
energy available to the device located in the hazardous area.

Plainly, the designer should always select a process that is inherently safe whenever
it is practical, and economic, to do so. Nonetheless, most chemical manufacturing
processes are a greater or lesser extent, inherently unsafe, and many times dangerous
situations can develop if the process conditions deviate from the design values. The
safe operation of such processes depends on the design and provision of engineered
safety devices, and on good operating practices, to prevent a dangerous situation
developing and to minimize the consequences of any incident that arises from the
failure of these safeguards. The term “engineered safety” covers the provision in the
design of control systems, alarms, trips, pressure-relief devices, automatic shut-down
systems, duplication of key equipment services; and fire-fighting equipment, sprinkler
systems and blast walls, to contain any fire or explosion. Consequently, to have a lot
of alarms configured in the process not ensures to increase the reliability, especially in
the startup and shutdown stages. In this moment is when a diagnosis methodology
or a fault diagnostic approach can increase the reliability of the processes. But now,
how guarantee that the diagnostic methodology works efficiently? For example, an
operator can respond correctly when less than 10 alarms occur in 10 minutes. But, a
new supervisory tool can reduce the number of alarms to maximum 2 in 10 minutes;
increasing the reliability of the alarm system.

Note that there is an issue if the supervision tool can not determine if the alarm a

has occurred two times and the alarm b has occurred one time or on the contrary, the
alarm b occurred two times and the alarm a occurred one time, and also neither detect
if both occurred at the same time. It is a problem that needs to be solved to guarantee
the reliability of the alarm system. The premise in a safe process is: if something can
fail, it will fail!
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2.2.2 Hazard analysis

A hazard analysis is a systematic method for identifying, evaluating and controlling
the hazards of a system. It is part of risk management, which consists of five phases:

1. Definition

2. Hazard identification

3. Hazard and risk assessment

4. Proposed hazard resolution

5. Follow-up to proposed activities

The analysis of hazards corresponds to the first two phases of this process; however,
from the information obtained in these phases, we obtain the necessary information to
carry out its evaluation and its proposal of resolution to an acceptable level. A brief
description of each of the steps is given below. The first phase begins with the definition
of analysis criteria, knowledge about the functional and physical characteristics of the
evaluated system, the teams involved, and knowledge of the process. It should be
noted that many engineers fail in this first phase since they assume that they fully
know the operation of the process and do not take the necessary time for its definition.
This phase should include not only the definition of how the system works, but also
include aspects of operation and external variables that affect it as in the case of other
processes, plant personnel, and technologies that make the system operational. Once
the system is defined, an identification of hazards and root causes must be made. We
must go step by step postulating possible sources of danger for the system evaluated
under normal (and abnormal) operating conditions. It should be noted that this phase
must be performed in all stages of the life cycle, as there may be very particular hazards
in any of its stages. The third step is to assess the hazards identified and their effects.
The majority of methodologies in this phase, implement a severity classification to
evaluate the possible consequences of each the dangers identified in order to carry out
a process of comparison and prioritization. However, for this phase, it is not enough
to consider the scenario with the worst consequences, but one must understand the
probability or the possibility that the dangerous event actually occurs. Hazard analysis
methodologies employ qualitative probability classification systems, which together
with the severity of the accident can be assumed as a risk. From this classification,
it is determined which risks are acceptable or not, for the purpose of implementing
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or proposing corrective measures, elimination or control of hazards. To carry out the
fourth phase there are several approaches; for example, one of the most used is the
model proposed by NASA (National Aeronautics and Space Administration, 1993)
from a hierarchical reduction of danger. This methodology is applicable to all types of
industry and part of an out-of-danger design. For instance, three elements (flammable
liquids/gases) must be present for a fire to occur: a fuel, an oxidizer (e.g. oxygen) and
a source of ignition. An out-of-danger design would be to eliminate possible sources of
ignition close to the fuel and oxidant mixture, thus avoiding the danger of a fire. When
is not possibly develop a design out of danger either because it is very expensive or
because it is intrinsic to the process, you should consider the use of safety equipment.
An example is a control valve of an open-failure cooling service in an equipment with a
highly exothermic reaction. This valve prevents a dangerous increase in temperature
that could cause even an explosion of the equipment. Another clear example is the
relief valves in a pressurized vessel, which are used in order to avoid a dangerous
increase in pressure. If a design can not be developed out of danger or sufficiently
controlled, the next step is to warn operators of imminent danger. Examples of these
elements of caution and warning are the smoke detectors. Upon reaching a certain level
an alarm is activated and the area must be evacuated immediately. Finally, phase five
corresponds to the follow-up to the proposed activities. It is important to monitor the
effectiveness of hazard controls and review those that are unexpected or new. A periodic
review must be performed whether hazards remain adequately identified and whether
control mechanisms continue to function. This phase is fundamental in processes that
undergo modifications, expansions, or a reconfiguration of their operating conditions [3].
Hazard assessment techniques can be classified as scenario-based or non-scenario-based.
Among the first are procedures such as Hazop, What if?, FMA, fault tree analysis,
event tree analysis and cause-consequence analysis (or bowtie). For the second, there
are procedures such as Preliminary Hazard Analysis (PHA), safety review, relative
ranking, and checklists. Some of these analyses are briefly explained below.

Hazop provides a systematic way of identifying hazards using a number of guide
works as an aid. Just how the words are interpreted depends on the circumstances,
but for example ‘None of’ could lead to a consideration of the possibility of no liquid
flow in one case or no electrical current or no pressure in others. Other guide words
and some applications are presented in Table 2.1.

In each case, the guide word is used to concentrate attention on to one particular
fault (no liquid flow, for example). Possible causes of lack of flow are then examined and
the effects of it are enumerated. The complete set of guide words is applied in this way
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Guide words Description
More of Liquid flow too high, temperature, pressure or electrical current too high.
Less of Liquid flow too low, temperature, pressure or electrical current too low.
Part of Chemical component missing, composition wrong.
More than Impurities present, extra phase present (gas in liquid, for example).

Table 2.1: Hazop table

to each component or process in turn. The design can then be modified to avoid the
associated hazards and consequent operational problems. This technique is commonly
used in the chemical industry and is particularly effective if applied by a mixed team
providing expertise in design, instrumentation, commissioning and operation. The
zonal analysis is a method used to examine possible cascade and common mode failures
in aircraft. In this case, the aircraft is sub-divided into zones and for each zone, all
actuators and other items of equipment within the zone are itemized. The mutual
interactions within the zone are then examined as are the interactions with similar
devices outside the zone. The interactions may be anything from electrical interference
to leakage of hydraulic fluids or water, or undesirable mechanical interactions. Both
normal and fault conditions are considered. As in the case of Hazop, the zonal analysis
provides a systematic framework for the investigation of a particular type of failure.

The checklist is another tool which is used to check compliance with standard
industrial procedures. Its main objective is to identify simple hazards and to ensure
compliance with regulations / operational standards. Their evaluation is of qualitative
type from the implementation of a checklist, which can be applied in all stages of
production. DOW / MOND indexes consist of the identification and classification of
risks through the use of performance indexes and the state of the internal processes of the
plant or physical characteristic. These indexes are relative and are assigned subjectively
in the form of bonus or penalty. For the first case, it includes the characteristics
that allow mitigating the occurrence of an accident, whereas the penalties correspond
with situations that can lead to the occurrence of an accident. The results obtained
are of semi-quantitative type since they allow a classification and realize a subjective
assignment of values for its calculation [88].

In Preliminary Hazard Analysis (PHA), the main objective is to identify hazards in
the initial stages of industrial plant design. This analysis is directed to the management
of hazardous substances associated with the raw material, finished product, and
intermediate products. As a result, a list of possible hazards is obtained with their
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respective recommendations to prevent/mitigate them. It is a qualitative analysis that
strengthens the design of a process plant to make an inherently secure system [88].

Analysis What if? is an analysis that focuses on the identification of unwanted
consequences caused by a possible initiating event; analysis performed by a group of
experts. It is a non-formal method but has shown to be useful in the definition of
potential scenarios, identifying sequences of events leading to the occurrence of the fault.
It can be used to examine possible deviations from the design, construction, operation,
or modifications made to the plant. The result is of qualitative type, corresponds
with a list of possible scenarios and the strategy to reduce its possible consequences
[88]. Similarly, the "What if?"/Checklist is a technique whose purpose is to identify
hazards by considering general types of incidents that may occur in a process or activity,
qualitatively assessing the effects of the same, and determining when safeguards against
of this potential hazard seem appropriate [16].

Fault Mode Analysis (FMA) is a methodology aimed at industrial equipment. This
analysis consists in the evaluation of possible fault mechanisms of each equipment,
defining possible fault scenarios and their respective consequences. Its result is qualita-
tive in that it classifies each of the situations obtained according to their consequences
[88].

Fault tree analysis (FTA) is a deductive technique that focuses on a particular
incident or major cause of failure, and provides a method for determining the causes of
such an event. The purpose of the FTA is to identify the combination of operational
type failures, design material or process disturbances that could result in the incident.
The strength of this analysis is to identify qualitatively the combinations of basic faults
that could lead to the incident. What serves for the hazard analyst to take preventive
measures in basic causes to reduce the probability of occurrence of the event ( an event
in a safe process is referred to an accident).

Event Tree Analysis (ETA) is an event tree that shows graphically the possible
outcomes following the success or failure of a protection system, given the occurrence
of a specific initial cause. It is used to study the possible events that can happen in
case there is a lost event. After these sequences of events are identified, the specific
combinations of faults that lead to the incident are obtained [16].

Cause-consequence analysis / Bowel analysis: A cause-and-effect analysis is a
mixture of fault and event tree, where its purpose is to identify the root causes and
consequences of potential incidents. A particular case of this type of analysis is the one
of Bowel, which correlates the existing security barriers, and evaluates their suitability.
Subsequently, additional protection and recommendations are determined if necessary.
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Causal events are presented to the left of the diagram and consequences to the right.
An attribute of the Boundary method is that it is a visual form that clearly represents
a risk.

The selection of the technique to be implemented for the evaluation of hazards
follows a process that takes into account the type of information available, the response
time of the analysis, the different stages of the life of the process facilities, among others.
To carry out the above, there are methodologies that suggest the most appropriate
technique to implement as reported by CCPS (Center for Chemical Process Safety)
[16].

2.3 Control and safety systems

Process control systems had been developed to monitor data and control the variables
and equipment on the industrial plant. Slight installations may use electric, hydraulic
or pneumatic control systems; however, larger plants with up to 50,000 signals to and
from the process require a dedicated distributed control system. The purpose of this
system is to read values from a large number of sensors, run programs to monitor the
process and control valves, motors, switches etc. to maintain under control the process.
Values, alarms, reports and other information are also presented to the operator and
command inputs accepted. Nowadays, a modern Process control system basically
includes the following components [27]:

• Field instrumentation: sensors and switches that sense process conditions such
as temperature, pressure or flow. These are connected over single and multiple
pair electrical cables (hardwired) or communication bus systems called Fieldbus,
Modbus, Profibus.

• Control devices, such as actuators for valves, electrical switchgear and drives or
indicators can be also hardwired or connected to an industrial net of communica-
tions.

• Controllers that execute the control algorithms so that the desired actions can
be taken. The controllers will also generate events and alarms based on changes
of state and alarm conditions and prepare data for operators and information
systems.

• Servers that perform the data processing are required for data presentation,
historical archiving, alarm processing and engineering changes.
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• Clients such as operator stations and engineering stations are provided for human
interfaces. Which means customers can communicate to a human being.

• The communication can be exhibited in many different configurations, often
including connections to remote facilities, remote operations support and similar.

The principal activity of the control system is to ensure a safe production, maintaining
the components and element working efficiently within design constraints and alarm
limits in the different variables. The control system is commonly determined in
programs as a mix of logic and control elements such as AND, OR, NOT, PID, FUZZY.

From a Central Control Room (CCR), the system is operated with a combination
of graphical process displays, alarm lists, reports and historical data curves. In this
platform, new models of fault diagnosis can be implemented, the problem is to validate
and to confirm the reliability of these theoretical models of diagnosis. Otherwise, with
modern systems, the information in the desk screens is available to remote locations
such as an onshore corporate operations support center. Field devices in most process
areas must be protected to prevent them becoming ignition sources for potential
hydrocarbon leaks. These equipment are explosive hazard classified e.g. as safe by
pressurization (Ex.p), safe by explosive proof encapsulation (Ex.d) or intrinsically safe
(Ex.i). All areas are mapped into explosive hazard zones from Zone 0 (inside vessels
and pipes), Zone 1 (risk of hydrocarbons), Zone 2 (low risk of hydrocarbons) and Safe
Area. Beyond the basic functionality, the control system can be used for more advanced
control and optimization functions. Some examples of applications in a central control
room are presented below [27]:

• Well control may include automatic startup and shutdown of a well and/or a set
of wells. Applications can include optimization and stabilization of artificial lift
such as pump off control and gas lift optimization.

• Flow assurance ensures the flow from wells, in pipelines and risers is stable and
maximized under varying pressure, flow and temperatures. Unstable flow can
result in slug formation, hydrates etc.

• Optimization of various processes to increase capacity or reduce energy costs.

• Pipeline management modeling, leak detection, and pig tracking.

• Support for remote operations, in which facility data is available to specialists
located at a central support center.
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• Support for remote operations where the entire facility is unmanned or without
local operators full or part time, and is operated from a remote location.

Based on a study of the process in a cause and effect chart the Emergency shutdown
actions are defined. The Hazop study may establish potential failures and how they
should be handled. Consequently, we could execute possible shutdown actions when
there are possible emergency scenarios. For instance, at an oil and gas facility, the
primary response is to isolate and depressurize. The typical action would be to close
the inlet and outlet sectioning valves and open the blowdown valve. This will isolate
the malfunctioning unit and reduce pressure by flaring of the gas.

These actions are handled by the Emergency Shutdown system (ESD) and Process
Shut Down system (PSD). System requirements are set by official laws and regulations
and industry standards such as IEC 61508/61511 which set certification requirements
for process safety systems and set criteria for the safety integrity level (SIL) of each
loop. Events are classified on a scale, e.g. 1 to 5, followed by an Abandon Platform
(APS) level. On this scale, APS as the highest level means a complete shutdown and
evacuation of the facility. The next levels (ESD1, ESD2) define emergency complete
shutdown. The lower levels (i.e. PSD 3, PSD 4, and PSD 5), represent single equipment
or process section shutdowns. A split between APS/ESD and PSD is done in large
installations because most signals are PSD and could be handled with less strict
requirements. The main requirements concern availability and diagnosis both on the
system itself and connected equipment. The prime requirement is an on-demand failure,
or the system’s ability to react with minimum probability to an undesirable event
within a certain time. The second criterion is not to cause actions due to a false alarm
or malfunction. Smaller ESD systems, e.g. on wellhead platforms, can be hydraulic or
hardware (non-programmable) [27].

2.3.1 Safety instrumented systems SIS

A Safety Instrumented System (SIS) is a new term used in the standards that also
has been known by the majority as Emergency stop system (ESD), System of safety
stop, the system of interlocks, emergency firing system, security systems, etc. It
could also be defined as the ultimate preventive security layer if the control system
and operator performance are insufficient. In this case, it must exist a system that
automatically takes the appropriate actions (partial or total stops of equipment and
plants) in order to avoid the risk. These safety instrumented systems are normally
separate and independent from control systems, including logic, sensors, and valves
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on the field. Unlike control systems, which are active and dynamic, SIS are basically
passive and "sleepy", so they usually require a high degree of safety and fault diagnosis,
as well as to prevent inadvertent changes and manipulations and good maintenance
[37]. Therefore, to involve fault diagnosis methodologies is one important aspect of
process safety that needs to be developed continuously.

When an accident occurs, it is usually due to a number of causes or their combina-
tions that produce a dangerous event. In the industry are implemented the Emergency
Stop Systems (ESD) for the protection of humans, the environment, and equipment.
Therefore, is not a new concept, the novelty is the way to treat it. In other words,
emergency shutdown systems will have a life cycle, which we will call Security Life
Cycle. This cycle will begin in its definition phase and will end in the dismantling.

The variety of names assigned to Emergency Stop Systems seems unlimited: In-
terlocking System (IS), Instrumented Security System (SIS), Emergency Stop System
(ESD), etc. Within the Process Industry, the debate continues on the meaning of
each one of them. Even in the ISA SP84 Committee, there were ongoing discussions
of the terminology, definition, and meaning of each of these terms. Nonetheless, the
confusion in the industry goes beyond its own meaning, it affects the own design,
installation, commissioning, maintenance, modifications, etc. There are many examples
and questions that do not are easy to answer or the answer is not the same, depending
on the standard or the person who gives it. Some typical doubts are set out as an
example:

• Selection of the technology to use

– What technology should be used: relays, solid state, a microprocessor
(PLC)?

– Does that selection depend on the application?

– Relays are still used in small applications but would you design a system
500 relay inputs/outputs?

– Is it economical to design a system with 20 inputs/outputs with redundant
PLCs?
Some prefer not to use software-based systems in security applications. Is it
a good recommendation?

• Selection of redundancy

– How redundant should an instrumented security system be designed?
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– Does it depend on the technology or the level of risk?

– If most relay-based systems are simple, why are programmable triple redun-
dancy systems so popular today?

• Field elements

– Should the initiating elements be transmitter type or switch type?

– If we use transmitters. Which type, analog or digital?

– Redundancy or not in the field elements?

– Can the same field elements be used for interlocks and for control?

– Which is the best frequency of proof of these elements?

Industrial accidents rarely occur because of a single cause. Typically, they are a
consequence of a combination of unusual events that are thought to be independent and
should not happen at the same time. Taking; for example, the worst chemical accident
so far in Bhopal (India) in a pesticide plant. Some 3,000 people died immediately and
at least 12,500 died in the weeks afterward from inhaling gas and drinking contaminated
water. Since then an estimated 25,000 people have been killed in the aftermath and
some 150,000 are affected in some way. It happened as follows: The material that
escaped in this plant was methyl isethionate (MIC). This leak (in the order of 40 tons)
occurred in a storage tank containing more than the company’s safety procedures (one
of the causes). The operating procedure indicated the use of a refrigeration system
to maintain the temperature in the product of said tank at 5◦C with an alarm when
the temperature rises from 11◦C. The cooling system was switched off, and the MIC
had been stored at a temperature close to 20◦C and the alarm had been reset to
20◦C. One worker was commissioned to flush pipes with water and the filters that
were clogged. The water passed to the storage tank of the MIC through the leak of
a valve producing a violent reaction with greater gas production. The tank pressure
and temperature gauges that indicated the situation abnormal were not taken into
account when thinking that they were imprecise. The flushing gas separator/washer
that could have neutralized the leak was out of service because the MIC production
was suspended and thought that it was not therefore necessary. Also, the own torch
that could have burned part of these gases was out of service for maintenance. Finally,
there were a series of events and errors in the emergency plans that completed the
fatal scenario of that accident. As explained above, it is clear that accidents are the
combination of rare events that are usually assumed to be independent and difficult
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to match over time. One of the methods of protecting against them is to implement
multiple independent layers of protection that make it more difficult for such events
to lead to dangerous conditions. It is therefore fundamental that from the beginning
of a project and in its stage of operation and maintenance are available such layers
of protection perfectly structured, subject to procedures and maintained with a very
simple idea: "Do not put all the eggs in the same basket"

As it can be seen, the Safety Instrumented Systems constitute the last layer
of preventive security and there lies its great importance and necessity within the
industrial safety of the process industries. Nonetheless, it is important to clarify
the difference between what is required by law and what is a good design and work
practice in specifications, standards, and norms. Moreover, to claim that what may be
mandatory in one country (example: US) may not be to others or vice versa. Regarding
Safety Instrumented Systems (SIS), there is no directive to enforce compliance. But
there are European standards, such as EN-746-2, which obliges a certain SIL (Safety
Instrumented Layer) in some security ties, establishing also the test interval and the
architecture to be implemented. There are standards and norms whose fulfillment is
considered advisable and with a future vision should be put into practice in projects
and modifications since, as in other fields, the directive will finally appear, obliging its
fulfillment. Before that a SIS will be activated, a fault diagnosis technique needs to be
implemented to help the operators of taking early decisions that carrying the process
to a safe state. Concluding, diagnosis in industrial processes involves many aspects as
was presented. The importance of the reliability, Hazard analysis and control & safety
systems in a new methodology were indicated.

2.4 Conclusion

In this chapter, we presented an analysis of the diagnosis in industrial processes and
the extension of the protection layer "Alarm" (SUPER ALARM) was explained. It was
also explained how the expert and hybrid intelligent systems are an important direction
to develop future research in the field of supervision of systems and safe processes. The
implementation of a methodology in the safe process requires involving aspects such
as: reliability and risk management including the intrinsic safety and the identification
of the hazards. In addition, the control and safety systems with the description of the
Safety Instrumented Systems SIS was considered.





Chapter 3

Hybrid models and Causal graphs

3.1 Introduction

The methodology proposed in this thesis uses hybrid models and causal graphs as tools
that help human operators to understand the behavior of the physical components of
the process and to verify the representative event sequences that are generated in step
2 of the CBAM methodology. These models can also be used to explain and provide
semantics to the chronicles that will be learned from the event sequences.

Complex systems involve continuous and discrete variables that need be gathered
in a hybrid model. A hybrid model represents a combination of continuous evolution
with discrete dynamics whose changes are triggered by process supervisory actions or
internal changes. A hybrid system develops its behavior in a continuous manner, but
the continuous dynamics change when the system mode changes.

On the other hand, causal models are appropriate to explicit the influences among
variables. This is why, in the alarm management methodology proposed in this thesis,
a Hybrid Causal Model as proposed in [79] is used to represent and to identify the
variables and the relationships between the modes of operation, procedural actions
and the alarms of the system. In addition to explanatory purposes already mentioned,
this model can also be used as a fault injection tool that can be used to generate event
sequences for the scenarios to be learned.

3.1.1 Hybrid Causal Model

This section presents the representation that supports the understanding of the analyzed
processes in the Chronicle Based Alarm Management (CBAM). It is based on a hybrid
causal model and a qualitative abstraction process of the continuous behavior.
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As it was explained before, industrial processes can be represented by a hybrid
model which expresses in a formal framework the continuous and discrete dynamics
involved in the system. The role of the Hybrid Causal Model is to represent and to
identify the variables and the relationships between the modes of operation, procedural
actions and the alarms of the system. The hybrid system is represented by an extended
transition system, whose discrete states represent the different modes of operation for
which the continuous dynamics are characterized by a qualitative domain. Formally, a
hybrid causal system is defined like in [79] as a tuple:

Γ = (ϑ,D,Tr,E,CSD,Init,COMP,DMC) (3.1)

where

• ϑ = {vi} is a set of continuous process variables which are function of time t.

• D is a set of discrete variables D = Q ∪ K ∪ VQ.

– Q is a set of states qi of the transition system which represent the system
operation modes.

– The set of auxiliary discrete variables K = {Ki, i = 1, ...nc} represents the
system configuration in each mode qi, where Ki indicates the discrete state
of the active components.

– VQ is a set of qualitative variables whose values are obtained from the
behavior of each continuous variable vi.

• E = Σ∪Σc is a finite set of events1 noted σ, where:

– Σ is the set of events associated to the procedure actions in a startup or
shutdown stages.

– Σc is the set of events associated to the behavior of the continuous process
variables.

Note: The set of observable (unobservable) events is denoted by Σo(Σuo)

• Tr : Q× Σ → Q is the transition function. The transition from mode qi to mode
qj with associated event σ is noted (qi,σ,qj).

1To be rigorous, we should refer to "event types", however this term is not used in the hybrid
systems formalisms because event dates are not necesary.
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Figure 3.1: Dynamic Continuous Model DMC

• CSD ⊇ ⋃
i CSDi is the Causal System Description or the causal model used

to represent the constraints underlying the continuous dynamics of the hybrid
system.

Every CSDi associated to a mode qi, is given by a graph (Gc = ϑ ∪ K,In). In is
the set of influences where there is an edge ed(vi,vj) ∈ In from vi ∈ ϑ to vj ∈ ϑ

if the variable vi influences variable vj . A dynamic continuous model DMCInK

is associated to every influence InK ∈ In, see Fig. 3.1. The model of the active
component corresponds to a transfer function of first order with delay.

• Init is the initial condition of the hybrid system.

• COMP is the set of components.

3.2 Causal graphs

In social sciences, visual representations of causal models had been used many times
and in the 60s the first contributions in the form of path diagrams appeared for linear
structural equation models [9] [35]. Graphical causal models can be thought as directed
acyclic graphs (DAGs). Various closely related (but not identical) bridges between
DAGs and causation exist [36] [85]. A directed acyclic graph (DAG) is a finite directed
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Figure 3.2: DAG example

graph with no cycles. A DAG has vertices (nodes) and edges (arcs), and each edge is
directed from one vertex to another, such that there is no way to start at any vertex
V and follow a consistently-directed sequence of edges that eventually loops back to
V again. Therefore, a DAG is a directed graph that has a topological ordering. It
has a sequence of the vertices such that every edge is directed from earlier to later in
the sequence. Fig. 3.2 presents an example of a DAG in which the causal influence
between the variables V 1: Seasons, V 2: Rain, V 3: Sprinkler, V 4: Wet pavement,
and V 5: Slippery is showed. A causal model can capture the influences between the
variables of a process and supports qualitative and quantitative knowledge that may be
interpreted by a diagnosis module. Particularly, each influence is marked in terms of
physical component(s) of the process, which establishes a link between the knowledge
of the process behavior and the process hardware [99].

3.2.1 Principles of causal modeling

The basic structure of a causal model is a directed graph, named the causal graph.
The causal graph is composed of a set of nodes V and a set of arcs I. Nodes depict
variables and arcs represent influences among the variables. In [73], the graphs are a
mighty mathematical tool and have been used to depict physical system properties.
State-space representations of linear structured systems can be easily transformed into
a graph. Now, [30] expresses in graph theoretic terms the classical system properties
useful for control such as controllability, finite and infinite zero structure. In these
control approaches, the state-space representation of the system is given, and the graph
is generated easily: nodes correspond to state variables and edges are associated to the
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non zero parameters in the state and input matrices. The proposals [56] and [66] used
qualitative digraphs for fault detection in which the arcs contain knowledge about the
signs of the influences. Influences from which propagation of faults is deduced by higher
or lower values of the variables. These approaches can be extended to batch processes
and in this situation, the model is dynamic and quantitative. Constructing a causal
graph of a specific industrial process requires many types of knowledge sources. One is
the empirical knowledge of operators and experts of the process behavior, which can be
difficult to extract [51],[61]. Although some authors qualify this type of knowledge as
subjective and sketchy, in other works this knowledge is important to the construction
of tools for diagnosis [74], [101]. Another type of process knowledge is related to the
description of the process by a set of differential-algebraic equations that define its
behavior. Using these equations, the causal graph can be generated automatically
[100], [98], but obtaining this kind of knowledge involves all the difficulties of physical
modeling and needs further processing to generate the causal graph.

3.2.2 Generation of Causal Graphs

Several techniques can be adopted for the generation of causal graphs. For example, we
can mention the causal ordering framework of [53], the graph theoretic framework of
[81] or the framework for multiple mode systems in [100]. This last approach has a great
advantage of operating from the equations structure, hence only requiring a structural
relation model (SRM) as initial knowledge. In the causal graph, a set of influences
from variables vi, ...,vn to the variable ρ means that a relationship r(vi, ...,vn,ρ) exists
between these variables and that this relationship is expressed in such a way that ρ is
computed from vi, ...,vn values [17]. In a causal model, it is possible to find qualitative
and quantitative information. Moreover, there are approaches in which each influence
is labeled with the physical components that underlie the relationship. The label is
called the "influence/relation support" and provides the "causal model structure" [22].
The three following properties are commonly accepted to characterize causality:

• Necessity (effects have unique causes)

• Locality (the effect is structurally close from the cause)

• Temporality (the cause precedes the effect)

Causality appears naturally in differential or difference equations in canonical form
[98], i.e.:
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dxn+1
dt

= f(x1, ....xn) or xn+1
t+1 = g(x1

t , ...xn
t ) (3.2)

The left-side variable is causally dependent on the right side variables. This choice
is not arbitrary; it is due to physical considerations. The same reasoning can be made
for relations containing delays. If a variable A influences a variable B with a delay d,
then A is causally dependent on B. Let’s consider a set of equations Ec, and a set of
variables V ar. A exogenous variable is to a system Γ if it cannot be described with
the help of the other variables of Γ. A variable is denominated endogenous (set Ven) if
its behavior is described within the system model. On the other hand, a variable is
denominated exogenous (set Vex) if its behavior do not depend of the system model.
The following equations constitute the Structural Relation Model (SRM).

Ec = {e1 : e1(V1,V2,V3), e2 : e2(V4,V5,V1), e3 : e3(V1,V2)} (3.3)

V ar = {V1,V2,V3,V4,V5} (3.4)

Ven = {V1,V2,V3,V4} (3.5)

Vex = {V5} (3.6)

Five steps are necessary to produce the Causal Model Structure CMS from the
previously obtained structural relation model (SRM) [17]. The first step consists in
generating a preliminary bipartite graph. A bipartite graph is an undirected graph
in which nodes can be divided into two sets such that no edge connects nodes within
the same set. In this example, the two sets are the set of equations Ec and the set
of variables V ar. The bipartite graph G = (V ar∪Ec,A) is hence defined, in which a
non-directed edge A(Vi, ej) between Vi and ej exists if, and only if, the variable Vi is
involved in equation ej : Vi ∈ V ar(ej) as shown in Fig. 3.3.

The objective is to determine for each equation ej which variable is causally
dependent on the other variables involved in ej . This means that for instance an
equation such that ej(V1,V2,V3) is rearranged as :

V2 = g(V1,V3) (3.7)

In this case, the variables on the right side V1 and V3 are the direct causes of the
variable on the left side V2, which can also be interpreted as: the values of V2 that
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Figure 3.3: Bipartite graph

can be computed from the values of V1 and V3. A system of n algebraic equations is
selfcontained if any suitable subset of k(k≤ n) involves at least k variables. This notion
can be compared to the definition of a just determined system that was introduced in
[14]. Therefore, causal ordering requires first of all to specify the exogenous variables
of the SRM. Additionally causal ordering also requires the SRM to be non degenerated,
i.e. nEc = nV ar (equal number of variables and equations) and selfcontained. This
restriction expresses the number of endogenous variables that can be computed with
the model, which means that some variables need to be considered as exogenous even if
they are not so in reality. These variables are referred to as pseudo-exogenous variables
in the following. They constitute the set Vpseudo.exo. This is an important point for
a practical application. More than one causal graph can be built for the same SRM
depending on the choice of the pseudo-exogenous variables. If the system is not self
contained, the model has to be modified. The proposal of [105] gives a structural
method to get a workable model from a set of Differential Algebraic Equation (DAE).

For each exogenous or pseudo-exogenous variable in Vex and Vpseudo.exo, Ec must
be increased with a so-called exogenous equation which affects a constant value to
the variable, meaning that this variable is controlled by the system’s environment. In
the example, (nV ar = 5) ̸= (nEc = 3). For real applications, practical considerations
guide the choice of pseudo-exogenous variables. In the example, Ec is increased by
2 exogenous equations relative to variables V1 and V5 to obtain a just-determined
bipartite graph Gj , see Fig. 3.4.

Causal ordering is the result of determining a perfect matching in Gj . Therefore, the
perfect matching in a bipartite graph is a set of edges such that each edge is connected
to only one node of each set of the bipartite graph and each node is connected to
only one edge. In the just determined bipartite graph (Fig. 3.4), some edges obviously
belong to the perfect matching. For instance when an equation involves only one
variable (this is the case for instance of the pseudo-exogenous equations) and when a
variable is involved in only one equation (case of variables V4 and V5) (Fig. 3.5). This
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Figure 3.4: Just-determined bipartite graph

Figure 3.5: Edges belonging to the perfect matching in solid line

is also the case of dynamic relations, since their causal interpretation is predefined, as
mentioned above. If the equation set Ec does not contain any algebraic loop, then the
perfect matching is unique. On the contrary, several perfect matching exist, which
will result in the different causal interpretations around the loops. In the previous
example, considering V5 as exogenous variable, thus e2 matches V4 or V1. In this case,
two solutions are available. If e2 is matched to V4 then IdV 1 is matched to V1. But,
if e2 is matched to V1, then IdV 1 is matched to V4 then no perfect matching can be
found. In Fig. 3.6 is presented an example of perfect matching. We can mention that
in the 50s, Ford and Fulkerson proposed an algorithm that can be used to determine
the perfect matching [43].

Figure 3.6: Perfect-matching
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Figure 3.7: Directed graph G′

A directed graph G′ is derived from the perfect matching in G. The edges belonging
to the perfect matching are directed from Ec to V ar. The other edges are directed from
V ar to Ec (Fig. 3.7). The causal graph Gca = (V ar,I) is derived from the directed
graph G′ by aggregating the matched nodes.

3.3 Example

The Cartagena Refinery (Colombia) is composed of several units and processes. In this
example, we analyze the water injection process. This process is a HTG (Hydrostatic
Tank Gauging) system composed by: one tank (TK), two valves (V 1 and V 2), one
pump (Pu), a level sensor (LT ), a pressure sensor (PT ) and a flow sensor (FT ) as
shown in Fig. 3.8.

3.3.1 Identification of causal relationships

The level in the tank (e1:L) is related to the weight of the liquid inside (m), his density
(ρ) and the tank area (A). The density (e2:ρ) is the relationship of the pressures
(Pmed,Pinf ) in separated points (h). Based on the global material balance, we define
that the input flow is equal to the output flow (e3). Then, the variation of the weight
(dm(t)/dt) in the tank (e4) is proportional to the difference of the inflow (qi) an outflow
(qo(TK)) in there. The differential pressure in the pump and in V 2 (∆PP u, ∆PV 2)
are specified in e5 and e6. In e7, the outlet pressure in the pump (Po) is related with
the outlet flow tank (qo(TK)), the revolutions per minute in the pump (RPMP u),
his capacity (C) and the radio (r) of the outlet pipe. The outflow (e8: qo(V 2)) and
inflow (e11: qi) control are related with the percentage aperture of the valves V 1 (e9:
LV 1) and V 2 (e10: LV 2) and differential pressures (∆PV 1,∆PV 2). The equations that
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Figure 3.8: Process diagram

describe the behavior of the system are described below.

e1 : L = m/(ρ∗A) (3.8)
e2 : ρ = (Pinf −Pmed)/h (3.9)

e3 : qo(TK) = qo(V 2) (3.10)
e4 : dm(t)/dt = qi− qo(TK) (3.11)

e5 : ∆PP u = Pinf −Po (3.12)
e6 : ∆PV 2 = Po−PV 2o (3.13)

e7 : Po = qo(TK)
RPMP u∗C(in3/rev)/2r(in) ∗K (3.14)

e8 : qo(V 2) = f1(LV 2)∗
√

∆PV 2 (3.15)
e9 : LV 1 = f2(SPL−L) (3.16)

e10 : LV 2 = f3(SPqo− qo(V 2)) (3.17)
e11 : RPMP u = f4(SPPo−Po) (3.18)

e12 : qi = f5 ∗LV 1∗
√

∆PV 1 (3.19)

f1 : non linear function influence to qo(V 2)
f2 : transfer function control level
f3 : transfer function control flow qo(V 2)
f4 : non linear function influence of Po

f5 : non linear function influence of qi
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K : Factor (constant) units conversion.
The process conditions are:

• Area tank: 4 m2

• h tank: 2 m

• Volume: 8 m3

• Capacity max: 7000 kg

• qi: 1.66 l/s±10%; 1,41 kg/s

• qo: 1.66 l/s; 1,41 kg/s

• Level: 1 m (50%)

• Po: 20 psi

The generation of the causal graph is arranged into five steps as recommended by
[17].

3.3.2 Step 1

In this example, let’s consider a set of equations Ec, and a set of variables V ar. The
following equations constitute the Structural Relation Model (SRM) of the HTG
system.

Ec =

{e1 : e1(L,m,ρ,A),
e2 : e2(ρ,Pinf ,Pmed,h),
e3 : e3(qo(TK), qo(V 2)),
e4 : e4(m,qi, qo(TK)),
e5 : e5(∆PP u,Pinf ,Po),
e6 : e6(∆PV 2,Po,PV 2o),
e7 : e7(qo(TK),RPMP u,C),
e8 : e8(qo(V 2),LV 2,∆PV 2),
e9 : e9(LV 1,SPL,L),
e10 : e10(LV 2,SPqo , qo(V 2)),
e11 : e11(RPMP u,SPPo ,Po),
e12 : e12(qi,LV 1,∆PV 1)}

(3.20)
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Figure 3.9: Bipartite graph of the HTG system

V ar = {L,m,Pinf ,Pmed,ρ,qo(TK), qo(V 2), qi,∆PP u,∆PV 1,∆PV 2,Po,PV 2o ,LV1,LV2,

SPPo ,SPL,SPqo ,RPMP u}
(3.21)

Ven = {L,m,Pinf ,Pmed,ρ,qo(TK), qo(V 2), qi,∆PP u,∆PV 1,∆PV 2,Po,PV 2o ,LV1,

LV2,RPMP u}
(3.22)

Vex = {SPPo ,SPL,SPqo} (3.23)

The bipartite graph G=(V ar∪Ec,A) is such that a non directed edge A(Vi, ej)
between Vi and ej exists if, and only if, the variable is involved in equation ej :
Vi ∈ V ar(ej). The objective is to determine for each equation ej which variable is
causally dependent on the other variables involved in ej . For example the equation
e1(L,m,Pmed) it can be rearranged as L = f(m,Pmed). The variables on the right hand
side are the direct causes of the variable on the left hand side, see Fig. 3.9.

3.3.3 Step 2

Causal ordering requires that the number of equations nEc involves at least the same
number of variables nV ar . As the number of variables is less than equations we need
to associate an exogenous or influence equations (Id) for each exogenous variable. In
practice some variables can be considered as exogenous variables even though they are
not so in reality. They are referred as pseudo exogenous. The choice can be based
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Figure 3.10: Just-determined bipartite graph of the HTG system

Figure 3.11: Edges belonging to the perfect matching of the HTG system

on different time scale dynamics. In our example, the variables Pinf ,Pmed, ∆PV 1 and
PV 2o are considered pseudo exogenous and an influence equation is associated for each
exogenous variable SPPo ,SPL,SPqo . This is illustrated in Fig. 3.10.

3.3.4 Step 3

The perfect matching in a bipartite graph indicates the unique relationship between a
unique node with an unique edge. In this step we need to identify which equations
involve just one variable and when a variable is involved in only one equation (See
Fig. 3.11).

3.3.5 Step 4

We need to identify the perfect matching. For example the equation e1(L,m,ρ) can
be rearranged as e1 : L = f(m,ρ). Then there exists a match between e1 and L (see
Fig. 3.12).
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Figure 3.12: Perfect matching of the HTG system

Figure 3.13: Directed graph of the HTG system

3.3.6 Step 5

The directed graph is derived from the perfect links by orienting the links depending
on whether they have been chosen in the perfect matching or not (see Fig. 3.13).

3.4.6.1 Generating the causal graph

The directed graph allows one to construct the causal graph. The nodes of the equations
are eliminated and the nodes of the variables are reorganized as shown in Fig. 3.14.

3.4.6.2 Suppression of unmeasured variables

To quantify each influence of the causal graph is often impossible. In such cases, the
only solution is to resort to identification methods to determine the differential or
difference relationship, which is only possible if data are available for the variables. But
the causal model structure contains known variables (measured variables, controller
set-points, etc.) as well as unknown variables. This is why a reduction operation may
be used and the procedure consists in eliminating unknown variables, keeping the
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Figure 3.14: Causal graph of the HTG system

influence of physical components. Therefore, it provides the reduced causal model [80]
and this procedure is similar to variable elimination theory [94] (see Fig. 3.15).

3.4 Conclusion

In this chapter, hybrid models and causal graphs are presented as tools to help the
operators understand the behavior of physical processes and to verify the representative
event sequences that are generated in the step 2 of the CBAM. These can also be used
to verify the learned chronicles in the step 3 of CBAM. This chapter also explains how
complex systems can be represented by hybrid causal models and describes a method
that generates the causal graph associated to a set of algebro-differential equations.
This chapter concludes with an example of generation of causal graph for a Hydrostatic
Tank Gauging system.
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Figure 3.15: Reduced directed graph of the HTG system



Chapter 4

Chronicles

4.1 Introduction

In many fields, including aerospace, medical, financial or nuclear, very large amounts of
data are produced by systems that can be real or simulated. For handling these huge
masses of data, analysis support tools are necessary. Moreover, given the increasing task
automation, the systems in question are increasingly critical and increasingly complex.
These systems put to interact persons with machines and environments increasing risk
of hazards. By analyzing the events that occurred on the process, it is possible to
detect and to recognize dangerous situations. In this context the problem is to fit the
formal recognition of behaviors in the context of Complex Event Processing (CEP).
This corresponds to develop reliable tools that support the analysis of event streams
to recognize activities associated to normal or abnormal behaviors of the process.
For this, the dynamic of a process can be represented by a model that depicts the
abstracted process behavior in terms of events occurring during the process evolutions.
Chronicles [31] are an efficient tool for such a modeling. A chronicle is a formal model
that includes the events of the systems and the time restrictions between the event
occurrence dates. The design of the chronicles can be extremely complicated. There
exists several approaches notably those based on learning approaches as explained in
Chapter 5. The chronicle approach has been widely applied in diagnosis applications;
We can cite for instance applications such as diagnosis of network telecommunication
[23], cardiac arrhythmia detection [13] and intrusion detection systems [72]. Another
application of the chronicles is the recognition in the setting of unmanned aircraft
systems and unmanned aerial vehicles operating over road and traffic networks [52].

One of the main difficulties of chronicle design is to guarantee robustness to
variations. The inclusion of expertise knowledge in the chronicles is a way to increase
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robustness as it permits to include a wide range of situations into the model. In this
thesis the expert knowledge is expressed as temporal restrictions, which represent at a
discrete level the behavior of a specific situation expressed as time points with time
constraints.

In the remainder, the basic principles related to chronicles are exposed.

4.2 Chronicle and chronicle recognition

The concept of chronicle was developed by Christophe Dousson in his thesis
[31],[32],[34],[33]. A chronicle is a set of events linked by relationships or temporal
constraints and the occurrence of which will be subject to a certain context. Chronicles
can also be expressed as constraint graphs where events are represented by nodes,
and the time constraints are the labels of arcs. For the time, C. Dousson considers
a discrete totally ordered set T , whose granularity is fine enough compared to the
observed dynamics of the environment and to the precision allowed by the means of
observation.

Figure 4.1 gives a chronicle example: an event a followed by an event b between 1
and 5 time units, and by an event c between 2 and 6 time units.

Figure 4.1: A chronicle example

A chronicle description is made through a specific description language based on
predicates. A chronicle model is then composed of three parts [34]:

1. A set of predicates

2. A set of temporal constraints concerning these predicates

3. An optional set of actions to launch when the chronicle is recognized e.g a
maintenance operation.

Predicates are used to define the events that are necessary for the chronicle recog-
nition and those which are forbidden. To be recognized, a chronicle must meet all of
the predicates it contains.
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1. The predicate event: this predicate corresponds to a change of the value of an
attribute or an instance of a certain message.

Syntax: event (A:(a1, a2), t), event(M , t)

The first predicate event corresponds to a change of the value of attribute A from
a1 to a2 at time t. The second is an instance of the message M at time t.

2. The predicate noEvent: this predicate reflects the forbidden event. It can be
used both for attributes and messages.

Syntax: noEvent (A:(a1, a2), (t1, t2)), noEvent (M , (t1, t2))

The first predicate prohibits the change of the attribute (A) value from a1 to a2

in the time interval [t1, t2]. The second prohibits the occurrence of a message M

in the time interval [t1, t2].

3. The predicate OCCURS: this predicate is a counting predicate.

Syntax: OCCURS ((n, m) a, (t1, t2))

It represents n to m occurrences of an event a, between t1 and t2.

4.2.1 Chronicle recognition

After her thesis, C. Dousson developed a chronicle recognition system called Chronicle
Recognition System (CRS) which was introduced in [32]. Then later, out comes an
extension in [34].

The events which are observed by the chronicle recognition system are assumed
instantaneous and a chronicle is a description of a time relation between these events as
explained previously. Given an event input stream handled on-the-fly, the recognition
algorithm identifies all the observed event sets (called chronicle instances) that match
the chronicle event patterns in respect with the time constraints. For this, CRS creates
what is called the partial instances. A partial instance corresponds to a partial subset of
the chronicle event patterns. It is only when this subset is complete that the chronicle
is recognized. If a time constraint of a partial instance is violated then the instance
is discarded. Figure 4.2 illustrates this notion of partial instances for the chronicle of
Figure 4.1 and an input event sequence: a(at t=2),a(at t=4),b(at t=7), c(at t=9),c(at
t=10) and a(at t=12). The chronicle recognition system manages the set of partial
instances of chronicle as a set of time windows (one for each forthcoming event) that
is gradually constrained by each new matched event: this system is predictive in the
sense that it predicts forthcoming events that are relevant to instances of chronicles
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Figure 4.2: Partial and complete instances of a chronicle

Figure 4.3: Chronicle example

currently under development; it focuses on them and it maintains their time window.
The figure 4.3 presents another chronicle example which contains three event types
(a,b and c) linked by three time constraints. Let us suppose that the event flow that
feeds CRS is constituted by an event a at t=2, a second event a at t=4 an event b at
t=3 and an event c at t=4. In this input flow, the chronicle is matched one time: the
chronicle instance is: {a(t = 2), b(t = 3), c(t = 4)}. Figure 4.4 shows the management
of the time windows associated to the different events. In grey the possible dates for
the remaining expected events once the occurence of an event at a specific date noted
by a black box.

Figure 4.4: Partial instance evolution. The time windows of a partial instance {(a, 2)}
(left hand) and the effect of the time constraint propagation due to the integration of
(b, 3) (right hand).
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When one use chronicle for diagnosis purposes and develop a chronicle based
diagnosis approach there are two main ways to consider the problem. Chronicles
can model the normal behavior of the system to diagnose. The diagnosis problem is
then tackled as a consistency problem between the observations and the model of the
system. In this case, the chronicle recognition allows to detect any discrepancy between
the normal behavior of the system and the real behavior given through the observations
(that are supposed safe). Another possibility is to consider chronicles of faulty behaviors.
The efficiency of such an approach relies on the direct link between the symptom of a
fault and the fault itself. Nevertheless, diagnosis based on chronicle recognition differs
from classical abductive diagnosis systems as time aspects are dominant. We will
see in the chapter 6 that in the Chronicle Based Alarm Management (CBAM)
methodology proposed in this thesis, the objective is to design both chronicles describing
normal behaviors and chronicles associated to faulty behaviors of the process. In this
way we aim to detect any faults anticipated or not.

4.3 Chronicles: a formal framework

In this section we present the formal framework we consider to deal with chronicles.

4.3.1 Event, event type and sequences

The concept of event type expresses a change in the value of a given domain feature
or set of features. E expresses the set of all types of event. Let us consider time as a
linearly ordered discrete set of instants.

Definition 1: An event is defined as a pair (ei, ti), where ei ∈ E is an event type
and ti is a variable of integer type called the event date. Several events can have the
same type of event, but do not necessarily have the same date, for instance (a,3) and
(a,6) are two events carrying the same type of event a.

Without loss of generality, in this thesis is assumed that two events cannot occur
at the same instant, i.e. simultaneously. In the following, it may refer to an event type
as an event for short.

A flow of activity generated by a system is represented by a temporal sequence.
A temporal sequence (or sequence for short) consists of several events in an orderly
manner, which leads us to the following definition:
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Definition 2: A sequence on E is denoted as an ordered set of events S = ⟨(ei, ti)j⟩
with j ∈ Nl, where l = |S| is the size of the temporal sequence, i.e. the number of
events in S, and Nl = {1, ...l} ⊂ N∗.

An example of sequence representing an activity may be given by S1 =
⟨(a,2)1,(b,4)2,(c,5)3,(a,8)4,(b,9)5,(a,10)6⟩ with l = 6.

4.3.2 Chronicles and temporal restrictions

Finally, a chronicle is a set of event types associated with time variables and a set of
temporal constraints between these variables.

Definition 3: A chronicle is defined as a triplet C = (ξ,T ,G) [96] such that:

• ξ ⊆ E. Where ξ is called the typology of the chronicle,

• T is the set of temporal constraints of the chronicle,

• G = (V ,A) is a directed graph where:

– V is a set of indexed event types, i.e. a finite indexed family defined by
v : K→ E, where K ⊂ N,

– A is a set of edges between indexed event types; there is an edge (eiα , ejβ
)∈A

where α and β are integers such that α ∈ [1,v−1(ei)] and β ∈ [1,v−1(ej)], if
and only if there is a time constraint between eiα and ejβ

.

Given a set of event types E, the space of possible chronicles can be structured by
a generality relation.

Definition 4 (Generality relation among chronicles): A chronicle C =
(E ,T ,G) is more general than a chronicle C′ = (E ′,T ′,G′), denoted C ⊑ C′, if E ⊆ E ′ or
∀τij ∈ T , τij ⊇ τ ′

ij . Equivalently, C′ is said stricter than C.
If the event e1 occurs t time units after e2, then it exists a directed link A

from e1 to e2 associated with a time constraint. Considering the two events
(ei, ti) and (ej , tj), we define the time interval as the pair τij = [t−, t+] ∈ T , where
t−, t+ ∈ Z correspond to the lower and upper bounds on the temporal distance
between the two event dates ti and tj . For instance, the constraint ei[−3,1]ej al-
lows ei to preceed ej by 1 time unit while it also allows ei to follow ej up to 3 time units.

Definition 5 (Chronicle instance): A chronicle C = (ξ,T ,G) is recognized in
a temporal sequence S involving event types ξ′, such that ξ ⊆ ξ′ when all temporal
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Figure 4.5: Example of chronicle instances

constraints T are satisfied. Then Cinst = (ξ,Tv) where Tv is a valuation of T . If the
sequence S has finished, and at least, one event that occurs violates some temporal
constraint, this chronicle is not recognized.

Fig. 4.5 illustrates the above definition: the chronicle on the left is recognized in
the first and second sequences. Nevertheless, it is not recognized in the third sequence
because the only set of constraints relating a,b,c, and d in this sequence is
Tv = {a[5,5]b,a[3,3]c,c[2,2]b,b[2,2]d} and Tv is not a valuation of
T = {a[3,4]b,a[1,2]c,c[1,2]b,b[1,2]d}.

Definition 6 (Frequency of a chronicle): The frequency of a chronicle C in a
temporal sequence S, noted f(C|S), is the number of instances of C in S.

For example, let us consider a chronicle C defined by the event types a and b with a
time restriction of [-10,10] between them. If we said that the frequency in this chronicle
is 2, then in the temporal sequences that lead to its recognition, the event type a can
occur one time and the event type b must occur two times. Or on the contrary, the
event type a occurs two times and the event type b occurs only one time. In both
cases, the frequency of occurrence for the pair of event types is the same fab = 2. In
another scenario for the same example, if the frequency of this pair is six (fab = 6), the
quantity of repetitions of the events can vary in many forms.

We will see in chapter 5 how these notions of chronicle frequency and event type
frequency can be considered to guide the chronicle discovery (i.e learning) and hence
to reduce the set of recognized chronicles in an input event sequence.

As explained in chapter 1, our objective is to capture the expertise of the operator
when he knows something about the behavior of the process and to integrate this
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knowledge in the diagnosis step. For this purpose, we allow the user to specify temporal
restrictions for event type pairs. This knowledge will then be integrated into the
chronicles during the learning stage of the chronicles (see chapter 5). A temporal
restriction expresses a known time constraint between two event type dates.

Definition 7 (Temporal restriction): A temporal restriction for a pair of event
types (ei, ej) is a given temporal constraint between their event dates TRij = ei[t−, t+]ej .

4.4 Example

In the following example is presented a chronicle that describes the possible behavior
of an oven system shown on Figure 4.6. The oven is charged with two products (a and
b) before that the heaters are turned on initializing the startup procedure.

Figure 4.6: Oven charge system

To describe the oven behavior we consider four event types:

• The event type a indicates that the product "a" has passed.

• The event type b indicates that the product "b" has passed.

• The event type c expresses that the heaters of the oven are "ON".

• The event type d expresses that the temperature into the oven has arrived to its
high limit.

The chronicle C represents the temporal pattern of a normal startup for this
process (see Fig. 4.7). This chronicle has the following event types ξ = {a,b,c,d} and
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the following time constraints T = {τab : [−2,−1], τac : [5,6], τad : [8,9], τbc : [3,5], τbd :
[7,8], τdc : [2,6]}. For instance, the event type a only can occurs between 1 and 2 time
units after that the event type b has occurred. This chronicle is assumed with a frequency
of 1. The directed graph (G) is given Figure 4.7. This process has also a temporal
restriction that represents the expertise of the human operator: TRab = a[−2,2]b.

Figure 4.7: Directed graph G of the chronicle C

4.5 Conclusion

This chapter gives a brief overview of the chronicle framework that supports our
proposal. Definitions of event type, event, event sequences, chronicle and temporal

restrictions were described. A background on chronicle recognition was presented to
better understand the basic priniciple of a chronicle based diagnosis approach. Finally
an illustrative example of a chronicle modeling the normal startup of an oven charge
system was given.





Chapter 5

Chronicle learning

5.1 Introduction

In numerous areas, finding temporal patterns hidden in a sequence of events has
important implications for the analysis of processes. [25] presented an approach for the
discovery of chronicles hidden in a sequence of events that represents a specific scenario.
Chronicles are a special type of temporal pattern, in which the temporal order of
events are quantified with numerical bounds. Our idea is to associate one chronicle to
each situation to be recognized (normal or faulty) and obtain a well-designed chronicle
data base after analysis of the different chronicles [7]. During the operation of the
system, several sensors are used to retrieve information about the system‘s status over
time. This record is transformed into a sequence of discrete events. We then apply a
chronicle recognition algorithm to this trace and look for the chronicles of the data
base that are recognized. We deduce in which situation the system is accordingly.

One of the major problems associated with chronicle-based diagnosis is to obtain
chronicles characterizing the situations. Chronicle discovery is the problem of exhibiting
the strictest chronicles present in a trace. One wants to obtain the strictest chronicles,
which are therefore the most likely to correctly characterize the situation (and therefore
the traces) that we want to detect. In practice, these are often built ”by hand” by
experts. How to acquire and update automatically chronicles is an issue. Model based
chronicle generation approaches have been developed in the last decades. For instance,
in 2008, [59] proposed a global model of a set of alarm sequences that are generated by
a knowledge based system monitoring a dynamic process. A work aiming at showing a
method to discover signatures (or models of chronicles) from a discrete event sequence
(alarms) generated by a monitoring cognitive agent (MCA) [58] was also proposed in
2004. In another work [47], the authors propose an algorithm inspired of Petri net
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unfolding to build all the temporal runs of the system. Then, the projection of these
runs on the observable part allows to define the chronicles. Other approaches have been
investigated from learning theory for unearthing patterns from input data. One can
consider for instance learning techniques based on Inductive Logic Programming (ILP)
([68],[12]), case-based chronicle learning ([42],[41]) that is a characteristic supervised
method by reinforcement learning but also ([48],[114][33],[49]) that adapt a clustering
method to learn chronicles in an unsupervised way by projecting chronicle instances
into a normative space. Finally, chronicles are also acquired from approaches that
analyze logs and extract the significant patterns by temporal data mining techniques
([71]).

Among these methods, the frequency criteria is widely used ([34],[25],[65]). In
[39],[38], the chronicle learning problem is motivated by discovering the most frequent
alarm patterns in telecommunication alarm logs and their correlations. The tool, called
FACE (Frequency Analyzer for Chronicle Extraction), extracts the frequent patterns
by carrying out a frequency-based analysis on sublogs, defined on time windows of
fixed duration. The learning algorithm integrated in this thesis is also based on a
frequency criteria ([96],[110]) and can be related to [34] and [25]. The proposal in [34]
makes it possible to discover, given a trace S and a threshold frequency ft, chronicles of
frequency f ≥ ft in S. The algorithm proposed by [34] limits the search and it does not
generate all the frequent chronicles. The algorithm of [25] solves the non-completeness
problem by adding more possibilities for temporal constraints attached to pairs of
event types. The idea is also to build the chronicles little by little from a base of
constraint graphs. For each pair of E (pair of event types present in the trace S used
for learning) a constraint graph is constructed, that is to say a set of intervals ordered
by the relation ⊆. The objective is then to build chronicles by adding event types as
in the algorithm of [34] or by further constraining one of the constraints guided by the
constraint graph.

The algorithm proposed by [25], named HCDA, is interesting because it provides
the complete set of chronicles but it is designed to accept only a unique event sequence
representing a specific situation as input. The chronicle exploration process discovers
all the chronicles whose instances occur in the input temporal sequence of event
types . In many cases however, the same situation does not imply perfectly identical
event sequences. This is why HCDA was extended in [96] to account for a set of
input event sequences representing possible variants for one situation. The proposed
HCDAM algorithm learns the chronicles, whose instances occur in all event sequences
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Figure 5.1: HCDAM organization

representing the same situation. In the following subsections, HCDAM is described
with its different phases.

5.2 Heuristic Chronicle Discovery Algorithm Mod-
ified

The HCDAM algorithm [96] aims at discovering frequent chronicles common to
multiple sequences representing variations of a unique situation. Given a set of
sequences S and a minimum frequency threshold, HCDAM finds all minimal frequent
chronicles presented in all temporal sequences. The fact that the event sequences
arising from the same situation generally present variants that must be accounted for
is the principal interest of this algorithm.

The principles of HCDAM are briefly reminded in this section and the reader is
referred to [96] for a detailed presentation.

HCDAM is organized in three phases supported by three algorithms as presented
in Fig. 5.1.

The three phases are the following:

1. Filtering the event types that are not present in all sequences of S,
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2. Building a constraint database from the temporal sequences where the temporal
constraints for each pair of event types are stored in a constraint graph structure.
In this graph, time constraints are nodes of an acyclic oriented graph whose arcs
represent the relationship between constraints.

3. Generating a set of candidate chronicles initialized with a set of chronicles that
were proved to be frequent from the constraint database to explore the chronicle
space.

The following sequences are used in the following to illustrate the three phases of
the HCDAM algorithm described below:

S1 = ⟨(b,1),(a,3),(b,4),(b,5)⟩ (5.1)

S2 = ⟨(a,1),(b,2),(b,3),(a,6)⟩ (5.2)

S3 = ⟨(a,1),(b,2),(b,4),(c,5),(b,7)⟩ (5.3)

5.2.1 Phase 1

The filtering operation is a preliminary process on sequences and it can be summarized
by two possible actions:

• Filtering the event types that are not present in all input sequences S: if ∃Sk ∈ S
such that ∃ei ̸∈ Sk, then ei will be removed of all other sequences in S.

• Filtering on a given set of event types Ψ = {e1, e2, ..er} if we are interested only
in those event types during processing.

After, filtering the sequences, the set of occurrences O = {Ok
ij} that contain all the

instances of a pair of event types (ei,ej) is determined. Back to the example, the set of
occurrences for the pair (a,b) in the sequences S1, S2 and S3 are:

O1
ab = {⟨(a,3),(b,1)⟩,⟨(a,3),(b,4)⟩,⟨(a,3),(b,5)⟩} (5.4)

O2
ab = {⟨(a,1),(b,2)⟩,⟨(a,1),(b,3)⟩,⟨(a,6),(b,2)⟩,⟨(a,6),(b,3)⟩} (5.5)

O3
ab = {⟨(a,1),(b,2)⟩,⟨(a,1),(b,4)⟩,⟨(a,1),(b,7)⟩} (5.6)
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In addition, the set of durations Du = {Dk
ij} is computed. Du contains the time

intervals between the occurrence dates for each pair of event types. This interval is
calculated as follows:

Dk
ij = {dk

ij = (tj− ti) |< (ei, ti),(ej , tj) >∈Ok
ij} (5.7)

The sets of durations for the pair (a,b) in the sequences S1, S2 and S3 are: D1
ab =

{−2,1,2}, D2
ab = {1,2,−4,−3} and D3

ab = {1,2,6}.
The frequency fk

ij of each pair (ei, ej) in the sequence Sk corresponds to the
maximum number of occurrences of the pair in the sequence Sk. The maximum
frequency fmax of each pair (ei, ej) is the maximum number of occurrences of the pair
common to all sequences Sk ∈ S. The example of frequency fk

ij and fmax for the pair
(a,b) in the sequences S1, S2 and S3 is: f1

ab=3, f2
ab=4, f3

ab=3 and fmax=3.
Algorithm 1 determines the sets of event type occurrences O, durations Du and

the maximal frequency fmax from the event sequences.

5.2.2 Phase 2

In a second phase, HCDAM builds the so-called constraint data− base D that stores
every temporal constraint τij = ei[t−, t+]ej that is frequent in all the sequences of
S. D is organized as a set of trees T α

ij for each pair of event types (ei, ej) with
i, j = 1... | E |, i≤ j and α = 1, ...nij . In the trees, time constraints are nodes and arcs
represent the relationship is parent of defined as below:

Definition 10 (is parent of relation). The node ei[t−, t+]ej is parent of

ei[t′−, t′+]ej if, and only if [t′−, t′+] ⊂ [t−, t+] and there does not exist ei[t′′−, t′′+]ej

such that this [t′−, t′+]⊂ [t′′−, t′′+]⊂ [t−, t+].
The root of a tree T α

ij is a temporal constraint ei[t−, t+]ej such that the number
of occurrences of the pair (ei, ej) is maximal in all sequences of S. It represents the
2-length chronicle with topology Υ = {ei, ej} that is the most general for all temporal
sequences of S and the child nodes are stricter 2-length chronicles with the same
typology.

The reader can refer to [96] for the details of the method used in HCDAM for
determining the trees for each pair and in particular their roots. Considering the case
of the three sequences S1, S2, and S3 of the running example, the pair (a,b) and the
pair (b,b) each give rise to one tree. These are represented in Fig. 5.2, with the mention
of the frequency associated to the constraints of each level of the trees. The tree for
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Algorithm 1: Sets definition
1 Input: l, S
2 Output: O, Du, fmax

3 for k=1 to n; Sk ∈ S do
4 i← 0;
5 j← 0;
6 while i < lk do
7 ϵ← (e)i;
8 ϵ′← (e)j ;
9 if ϵ≤ ϵ′ then

10 Ok
ϵϵ′ ← (ϵ, ti)(ϵ′, tj);

11 Duk
ϵϵ′ ← (ti− tj);

12 fk
ϵϵ′+=1;

13 else
14 Ok

ϵ′ϵ← (ϵ′, ti)(ϵ, tj);
15 Duk

ϵ′ϵ← (ti− tj);
16 fk

ϵ′ϵ+=1;
17 end
18 j+=1;
19 if j > lk then
20 i+=1;
21 j← i+1;
22 end
23 fmax = min(fk

ϵϵ′); k=1 to n
24 O = {Oij}; Du = {Duij}; fmax = {f(σiσj)}
25 return: O, Du, fmax
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Figure 5.2: Constraint trees for the pairs (a,b) and (b,b)

(a,b) has three levels for frequency 3 to 1 from top to bottom and the tree for the pair
(b,b) has only one level for frequency 1.

The Algorithm 2 determines the tree roots RCij , the minimal supports I
¯ij

(minimal temporal interval for the pair (ei, ej) to appear with a given frequency in
all sequences) and the maximal supports Īij (maximal temporal interval for the pair
(ei, ej) to appear with a given frequency in all sequences) from fmax, O, Du and S.

Algorithm 2: Tree roots
1 Input: fmax,O,Du, S
2 Output: Tree roots RC, minimal supports I

¯ij , maximal supports Īij

3 for all Oij ∈Ok
ij, k=1 to n do

4 I
¯

k
ij :{I¯

k
ij = [t

¯
−, t

¯
+] | fk

ij = fmax and ∀[t−, t+]⊆ [t
¯

−, t
¯

+]fk
ij < fmax};

5 Īk
ij :{Īk

ij = [t̄−, t̄+] | fk
ij = fmax and ∀[t−, t+]⊇ [t̄−, t̄+]fk

ij > fmax};
6 for k=1 to n do
7 I

¯
comb
ij :{I

¯
comb
ij = [I

¯
1, ..., I

¯
n] | I

¯
k
ij ∈ I

¯
comb
ij };

8 Īcomb
ij :{Īcomb

ij = [Ī1, ..., Īn] | Īk
ij ∈ Īcomb

ij };
9 for α=1 to card(I

¯
comb
ij ) do

10 RCij :{rα
ij = ⋃

k I
¯

k
ij , I¯

k
ij ∈ I

¯
k
ij};

11 for β=1 to card(Īcomb
ij ) do

12 MCIij :{MCIβ
ij = ⋂

k Īk
ij , Ī

k
ij ∈ Īk

ij};

13 if rα
ij ⊆MCIβ

ij then
14 RCij is valid with f=fmax(ij);

15 return: RC
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5.2.3 Phase 3

The generation of a set of candidate chronicles initializes with a set of chronicles that
were proved to be frequent and it uses the constraint database to explore the chronicle
space.

• The set of candidates initiates with the set of tree roots

• The operator "add ε" is used. This operator, checks at the constraint graphs in
order to find the constraints of the event type ε with all elements of E.

• The minimal number of occurrences of the candidate in S is counted.

Now that the constraint trees are generated, the next step is to extract the chronicles.
The chronicles are extracted according to two thresholds: fmin (or f=1 when not
defined) and fmax. The search starts from a pair of maximum frequency. i.e root of
the tree, which is the initial chronicle. This chronicle is then completed according to
the frequency specification by the use of an operator for adding the event type ε. The
operator searches the constraint graph for all the constraints between ε and all the
event types of the chronicles under construction in accordance with the frequency. To
avoid the counting phase, the structure of the tree can be changed to no longer depend
on couples of events but on the frequency of the time constraints between pairs of
events.

Algorithm 3 determines the frequent chronicles from S, fmin,fmax. Therefore,
this algorithm allows us to build chronicles complying with the thresholds fmin and
fmax.

Line 3 initializes the chronicle list.
Line 6 to line 10 of the algorithm tries in the space of couples of event types the

constraints respecting the frequency f .
Line 10 allows to build every possible chronicle from the lists of constraints.
On Line 13 to line 16, the operator verifies if the other pairs have constraints with

the event types.
Line 17 allows to insert the event types to find the chronicles.

5.2.4 Example

The following example illustrates the chronicle learning algorithm HCDAM with the
oven charge process system of Fig. 5.3. For this system, the different event types are
the following:
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Algorithm 3: Chronicle frequents
1 Input: S,fmin,fmax

2 Output: Frequents chronicles
3 for f ∈ [fmin,fmax] do
4 ChronicleList← ∅;
5 ListOfListOfConstraints← ∅;
6 for (ϵ, ϵ′) ∈ E×E do
7 TemporalList←GetConstraintsFromStruct(S,f, ϵ, ϵ′);
8 ListOfListOfConstraints.append(
9 TemporalList);

10 ListOfListOfConstraints←
11 CartesianProduct(
12 ListOfListOfConstraints)
13 for ListOfConstraints ∈ ListOfListOfConstraints do
14 ChronilceList.append(
15 BuiltChronicleList(
16 ChronicleList))
17 Frequents.put(f ,ChronicleList)
18 return: Frequents

• The event type a indicates that the product "a" has passed.

• The event type b indicates that the product "b" has passed.

• The event type c expresses that the heaters of the oven are ON.

• The event type d expresses that the temperature in the oven has reached its high
limit.

Therefore, this system has the following event types E = {a,b,c,d}
For a normal startup stage, this process has the following three event sequences:

S1 = ⟨(a,2),(b,4),(a,5),(c,7),(d,11)⟩ (5.8)

S2 = ⟨(a,2),(b,3),(a,4),(c,7),(d,10)⟩ (5.9)

S3 = ⟨((a,2),(b,3),(a,5),(c,8),(d,11)⟩ (5.10)
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Figure 5.3: Oven charge system

The inputs to the HCDAM algorithm as well the results retruned by the three
algorithms Algorithm 1, Algorithm 2, and Algorithm 3 are given below.

Input :
S = {S1,S2,S3}
I = {I1, I2, I3}
The sequences of input are :
S1 = ⟨(a,2); (b,4); (a,5); (c,7); (d,11)⟩; l1 = 5
S2 = ⟨(a,2); (b,3); (a,4); (c,7); (d,10)⟩; l2 = 5
S3 = ⟨(a,2); (b,3); (a,5); (c,8); (d,11)⟩; l3 = 5
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Return Algorithm 1 :
fmax(ab) = 2
fmax(ac) = 2
fmax(ad) = 2
fmax(aa) = 1
fmax(cd) = 1
fmax(cb) = 1
fmax(bd) = 1
O1

ab = {⟨(a,2)(b,4)⟩;⟨(a,5)(b,4)⟩}
O2

ab = {⟨(a,2)(b,3)⟩;⟨(a,4)(b,3)⟩}
O3

ab = {⟨(a,2)(b,3)⟩;⟨(a,5)(b,3)⟩}
O1

aa = {(a,2)(a,5)}
O2

aa = {(a,2)(a,4)}
O3

aa = {(a,2)(a,5)}
Du1

ab = {2,−1}
Du2

ab = {1,−1}
Du3

ab = {1,−2}
Du1

aa = {3}
Du2

aa = {2}
Du3

aa = {3}
O1

ac = {⟨(a,2)(c,7)⟩;⟨(a,5)(c,7)⟩}
O2

ac = {⟨(a,2)(c,8)⟩;⟨(a,4)(c,8)⟩}
O3

ac = {⟨(a,2)(c,7)⟩;⟨(a,5)(c,7)⟩}
O1

ad = {⟨(a,2)(d,11)⟩;⟨(a,5)(d,11)⟩}
O2

ad = {⟨(a,2)(d,10)⟩;⟨(a,4)(d,10)⟩}
O3

ad = {⟨(a,2)(d,11)⟩;⟨(a,5)(d,11)⟩}
Du1

ac = {5,2}
Du2

ac = {6,4}
Du3

ac = {5,2}
Du1

ad = {9,6}
Du2

ad = {8,6}
Du3

ad = {9,6}

O1
cd = {(c,7)(d,11)}

O2
cd = {(c,8)(d,10)}

O3
cd = {(c,7)(d,11)}

O1
cb = {(c,7)(b,4)}

O2
cb = {(c,8)(b,5)}

O3
cb = {[(c,7)(b,4)}

Du1
cd = {−4}

Du2
cd = {−2}

Du3
cd = {−4}

Du1
cb = {−3}

Du2
cb = {−3}

Du3
cb = {−3}
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Figure 5.4: Tree roots

Table 5.1 presents the frequent chronicles obtained from the three input event
sequences.

Frec=1 Frec=2
a[6 ,6]d a[-2 ,2]b
a[-2,-1]b a[2,6]c
a[8,9]d a[6,9]d
a[1,2]b —
a[5,6]c —
a[2,3]c —
b[3,5]c —
b[7,8]d —
c[3,4]d —

Table 5.1: Frequent chronicles

The tree roots provided by Algorithm 2 are given in Fig. 5.4. Fig. 5.5 and Fig. 5.6
represent the frequent chronicles with frequency 1. Fig. 5.7 represents the frequent
chronicle with frequency 2.

5.3 Extending HCDAM

5.3.1 Integration of expert knowledge in chronicle learning

Expert knowledge is important and represents specific information which can be
integrated into the algorithm HCDAM . Our objective is to capture the expertise of
the operator when he knows some time restriction about the behavior of the process.
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Figure 5.5: Chronicles C1 to C4 with frequency 1

Figure 5.6: Chronicles C5 to C8 with frequency 1
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Figure 5.7: Chronicle C9 with frequency 2

For this purpose, we allow the user to specify these temporal restrictions for event type
pairs. This knowledge is incorporated in HCDAM as additional input information
to the algorithm. In the following, an extension of HCDAM is presented where the
expertise knowledge is included. In addition, a way for reduce the quantity of possible
event sequences to be recognized by a chronicle is also proposed as a contribution to
the chronicle learning theory.

5.4.1.1 Integration of process knowledge

As was mentioned before, expert knowledge can be represented by temporal restrictions
that express a known time constraint between two event type dates. These temporal
restrictions are gathered in an expert data base De.

Let us remind that a temporal restriction for a pair of event types (ei, ej) is a given
temporal constraint between their event dates TRij = ei[t−; t+]ej .

To integrate this knowledge, Phase 2 of HCDAM is modified. One first checks in
De the existence of a temporal restriction TRij for each pair of event types (ei, ej). If
found, the temporal restriction then replaces the tree root for this pair of event types.
The integration of these temporal restrictions aims at focusing the learning process
and produce less chronicles; it means that the number of chronicles that are learned
for a specific situation is reduced using the expertise knowledge.

Algorithm 4, that represents Algorithm 2 extended with expert knowledge
determines the tree roots RCij , the minimal supports I

¯ij and the maximal supports
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Figure 5.8: HCDAM extended

Īij from the fmax, S and the temporal restrictions TRij that represent the expertise
knowledge. Line 10 of this algorithm expresses the action of checking the existence of
a temporal restriction TRij for a pair of event types (ei, ej).

The HCDAM algorithm extended is organized in three algorithms as represented in
Fig. 5.8. The extension of HCDAM is included in Algorithm 2 where new elements
(Temporal restrictions) are involved.

5.4.1.2 Integration of event information

Another type of expert knowledge that is often available is the occurrence frequency
f(ei) of a single event type ei. This information is not taken into account in HCDAM .
Nevertheless it can be very useful to reduce the number of learned chronicles.

Definition 8 (Initial event): We define the event type Φ as the initial event type
in all the event sequences of S such that the occurrence frequency fei for each event
type ei in the sequence Sk is determined from Φ as the frequency of the pair (Φ, ei).

The virtual initial event Φ allows us, without modifying the HCDAM algorithm, to
identify the frequency of each event type whereas the original HCDAM only identifies
the frequency of event type pairs. Fig. 5.9 illustrates the role of the event type Φ.

5.3.2 Example

For the example of the oven charge system, Algorithm 1 remains the same as in the
non extended version of HCDAM (cf.section 5.3.4).
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Algorithm 4: Tree roots
1 Input: l, fmax, S, Temporal restrictions TRij

2 Output: Tree roots RCij , minimal supports I
¯ij , maximal supports Īij

3 for Sk ∈ S do
4 i← 0;
5 j← 0;
6 while i < lk do
7 ei← (Event.type)i;
8 ej ← (Event.type)j ;
9 j+=1

10 if for the pair (ei, ej) ̸ ∃TRij then
11 I

¯
k
ij :{I¯

k
ij = [t

¯
−, t

¯
+] | fk

ij = fmax and ∀[t−, t+]⊆ [t
¯

−, t
¯

+]fk
ij < fmax};

12 Īk
ij :{Īk

ij = [t̄−, t̄+] | fk
ij = fmax and ∀[t−, t+]⊇ [t̄−, t̄+]fk

ij > fmax};
13 I

¯
comb
ij :{I

¯
comb
ij = [I

¯
1, ..., I

¯
n] | I

¯
k
ij ∈ I

¯
comb
ij };

14 Īcomb
ij :{Īcomb

ij = [Ī1, ..., Īn] | Īk
ij ∈ Īcomb

ij };
15 for α=1 to card(I

¯
comb
ij ) do

16 RCij :{rα
ij = ⋃

k I
¯

k
ij , I¯

k
ij ∈ I

¯
k
ij};

17 for β=1 to card(Īcomb
ij ) do

18 MCIij :{MCIβ
ij = ⋂

k Īk
ij , Ī

k
ij ∈ Īk

ij};

19 if rα
ij ⊆MCIβ

ij then
20 RCij is valid with f=fmax(ij);
21 else
22 RCij = TRij with f=fmax(ij);
23 if j > l then
24 i+=1;
25 j← i+1;
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Figure 5.9: Event Φ

Nevertheless Algorithm 4 is now run instead of Algorithm 2.
Table 5.2 presents the results of frequent chronicles obtained from the event

sequences and the temporal restrictions.

Frec=1 Frec=2
a[6 ,6]d a[-2 ,2]b
c[2,6]d a[2,6]c
a[8,9]d a[6,9]d
a[5,6]c —
a[2,3]c —
b[3,5]c —
b[7,8]d —

Table 5.2: Frequent chronicles, Algorithm 4

The tree roots are given in Fig. 5.10 and Fig. 5.11 represents the frequent chronicles
with frequency 1. Let us notice that with the integration of the temporal restrictions
coming from the expert, only four chronicles with frequency 1 are obtained instead of
the 8 previously obtained. Fig. 5.12 represents the frequent chronicle with frequency 2.
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Figure 5.10: Tree roots of the oven charge system using the extended HCDAM

Figure 5.11: Chronicles C1 to C4 with frequency 1 using the extended HCDAM
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Figure 5.12: Chronicle C5 with frequency 2 using the extended HCDAM

Let us now introduce event information by adding the virtual initial event type Φ.
Rerunning the chronicle learning algorithm now leads to a unique chronicle, as shown
in Fig. 5.13, therefore reducing the number of chronicles by 90%.

5.4 Conclusion

This chapter first presented a state of the art of the chronicle learning theory and
motivated the choice of the HCDAM (Heuristic Chronicle Discovery Algorithm Modi-
fied) algorithm from [96]. This algorithm was presented, exhibiting three algorithmic
phases that were illustrated with an oven charge process. The second part of the
chapter proposed two improvements of HCDAM related to the integration of expert
knowledge. The first improvement relies on temporal restrictions that may be known
by the expert and can therefore avoid to build the corresponding tree root. The second
improvement proposes a way to control the frequency of every single event by the
introduction of a virtual initial event. Interestingly, this does not require any change
in the HCDAM algorithm.

It is important to notice that the impact of the two improvements is quite significant
on the number of learned chronicles that is drastically reduced as well as on the
conservatism of the learned chronicles. They hence improve the algorithm complexity,
they ease the interpretation of the results and make the use of the learned chronicles
simpler in practice.
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Figure 5.13: Unique chronicle of the oven charge system



Chapter 6

A chronicle based approach for
Alarm Management

6.1 Overview of the Chronicle Based Alarm Man-
agement

As explained in the previous sections, alarm floods are an important aspect of safety
for industrial plants. Therefore, the operators need a tool that help them recognize the
plant situation, specially in the transitional stages such as startup and shutdown. In
this thesis we propose to use chronicles to represent the plant situations under interest
and to integrate a diagnosis step based on chronicle recognition in the global schema of
alarm management (see Chapter 1). The chronicle design is a tricky step and we have
proposed in Chapter 5 to use a learning technique and more precisely the HCDAM

algorithm to generate the different chronicles that capture the process evolutions. This
approach of alarm management constitutes what we have called the Chronicle Based
Alarm Management (CBAM). The principle of CBAM is to consider several process
situations (normal or abnormal) during startup and shutdown stages and to model each
of these situations through a learned chronicle. For this, given a situation one want
to model, the HCDAM algorithm is fed by a set of event sequences issued from the
process and associated to the situation. The global objective of CBAM is to generate
a chronicle database on which a diagnosis process based on chronicle recognition is then
performed. In this approach the simultaneous occurrence of events is not considered.

The Chronicle Based Alarm Management (CBAM) relies then on three main steps
resumed as below:



82 A chronicle based approach for Alarm Management

1. STEP 1: Event type identification: The aim is to determine the event types that
define the chronicles. For this step, information from the standard operating
procedures and from the evolution of the continuous variables are exploited.

2. STEP 2: Event sequence generation: From the expertise and an event abstraction
procedure this step determines the date of occurrence of each event type for
constructing the representative event sequences used by the learning algorithm
HCDAM . A representative event sequence is the set of event types with their
dates of occurrence that can be associated to a specific scenario of the process.
The representative event sequences are then verified using the hybrid modeling
of the system and the hybrid causal graphs.

3. STEP 3: Chronicle database construction: For each scenario, the representative
event sequences and temporal restrictions given by expert are considered to learn
chronicles using the extended algorithm HCDAM. The set of chronicles learned
for each scenario and each process element constitutes the chronicle database.

The methodology proposed in this thesis merges different techniques to take the
hybrid features of the system into account. Notably, the information about the
procedural actions and the continuous variables behavior are considered to extract the
representative event sequences. Another important aspect of this work is the dynamic
alarm management. Indeed, most of the time the alarm is assumed to be a static
indicator (see chapter 2). In this proposal an alarm is an event with an occurrence
date and the alarm flow is formally modeled by a chronicle [109],[110].

The different steps of CBAM are described more deeply in the next sections.

6.1.1 Step 1: Event type identification

There are several types of events that occur during the transitional stages in an
industrial process. The goal of this step is to identify the most important event types
that represent all the highly significant evolutions of the process. The event type
identification is a crucial step to have a good characterization of the situations that
will be then captured by chronicles.

The set of event types E considered in the chronicles is defined by E = Σ∪Σc

where:

• Σ is the set of event types associated to the procedure actions in a startup or
shutdown stages. Procedure actions such as Open valve, close valve, turn on the
pump and turn off the pump are some actions that can be taken as event types.
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• Σc is the set of event types associated to the behavior of the continuous process
variables. These event types related to the behavior of the continuous variables
are the signals obtained when the variable has passed its limits (alarms) of high
or low. They are defined through a qualitative abstraction of the continuous
behavior of the system.

Qualitative abstraction of continuous behavior

As presented in Chapter 3 the process is modeled by an hybrid causal model. In each
mode of operation, variables evolve according to the corresponding dynamics. This
evolution is represented with qualitative values. The domain Do(Vi) of a qualitative
variable Vi ∈ VQ is obtained through the function fqual : Do(vi) →Do(Vi) that maps
the continuous values of variable vi to ranges defined by limit values (High Hi and Low
Li), alarm values determined by experts in the alarm system.

f(vi)qual =


V H

i if vi ≥Hi

V M
i if Li < vi < Hi

V L
i if vi ≤ Li

(6.1)

The behavior of these qualitative variables is represented by the automaton GVi
=

(VQ,Σc,γ) in Fig. 6.1 where VQ is the set of the possible qualitative states (V L
i : Low,

V M
i : Medium, V H

i : High) of the continuous variable vi, Σc is the finite set of the
events associated to the transitions and γ : VQ×Σc→ VQ is the transition function.
The corresponding event generator is defined by the abstraction function fVQ→σ

fVQ→σ : VQ×γ(VQ,Σc)→ Σc

∀Vi ∈ VQ,(V n
i ,V m

i )→



L(vi) if V L
i → V M

i

l(vi) if V M
i → V L

i

H(vi) if V M
i → V H

i

h(vi) if V H
i → V M

i

V n
i ,V m

i ∈ {V L
i ,V M

i ,V H
i }

(6.2)

Σc = ⋃
vi∈ϑ{L(vi), l(vi),H(vi),h(vi)} (6.3)
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Figure 6.1: Behavior of the qualitative variables

Let us come back to the oven charge system example (see Fig. 6.2). The system is
composed of two components. One passive component: the Oven (OV), and one active
component: the heater (R). The continuous variables are the intensity or current (Int)
that passes for the heater and the temperature inside the oven (T ). In this example,
the unique variable from which we obtain event types is the temperature T . The event
types related with the procedural actions are Σ = {a,b,c,o}. The procedural actions to
charge the oven are represented when the operators introduce the products "a" and "b"
into the oven. The other procedural actions are related to the activation of the heater.

• The event type a indicates that the product "a" has passed

• The event type b indicates that the product "b" has passed.

• The event type c expresses that the heaters of the oven be ON.

• The event type o expresses that the heaters of the oven be OFF.

Σc = {d} is related to the behavior of the continuous variable of temperature.

• The event type d expresses that the temperature into the oven has arrived to its
high limit.This limit is specified by the expertise and represents a high limit of
temperature into the oven around 100ºC.

6.1.2 Step 2: Event sequence generation

The event sequences are obtained by simulation based on the knowledge of the proce-
dural actions. Although the event types related with the procedural actions are the
first events that occur, sometimes another event types can take place before.
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Figure 6.2: Oven charge system

Figure 6.3: Startup stage of the oven charge system: underlying DES and Causal
System Description

Let us consider again the charge oven system. This system has two modes of
operation: q0 when the heater of the oven is OFF and q1 when the heater is ON. Figure
. 6.3) gives the underlying DES associated to the charge oven system (on the left)
and the causal graphs of each mode of operation according to the configuration of the
heater active component R (on the right). Before the heater in the oven is turned
on, three pieces must be charged. First, one type of product a, followed by b and
finish with another a. This order is defined by expertise. And the evolution of the
temperature is determined by simulation of its transfer function.

In Fig. 6.4 are expressed the three representative event sequences for a normal
startup of the charge oven system. The event type evolution is represented on a
time line for each event sequence; notice that the three initial event type occurrences
correspond to the pass of the products a and b. After that, when the event type c occurs,
the system passes to the mode q1 finishing with the occurrence of d. Furthermore,
the variable of temperature depends on the heater activation, so the occurrence of d

depends of that c had occurred before.
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Figure 6.4: Representative event sequences of the oven charge system

Figure 6.5: Temporal restrictions of the charge oven system

Once generated by simulation, the representative event sequences are verified using
the hybrid causal model to check the relevance of the performed simulations. For
example, the sequence S1 initiates with the event types a, b and a according to the
standard procedure. After that, the event type c occurs and the system passes from
the operation mode q0 to the mode of operation q1. When the system is in the mode
q1, the causal relationship between Int (current) and T (temperature) is activated (see
Fig. 6.3). An event type d is then expected as the mode q1 is activated. When the
event type d occurs, this event sequence is verified. For the other sequences, the same
procedure is applied.

The expertise knowledge plays an important role in the determination of these
representative event sequences. This knowledge also can be exposed as the identification
of the most dangerous situations in the process; for example, using HAZOP, fault tree
or bow tie analysis which were explained in the Section 2. For the charge oven example
the expertise knowledge is represented by temporal restrictions, which are shown in
Fig. 6.5
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6.1.3 Step 3: Chronicle database construction

From the representative event sequences and the partial temporal restrictions in each
scenario, the chronicle database is constructed using the extended algorithm HCDAM .

6.2.3.1 Construction of the chronicle database

A complex process Pr is composed of n ∈ N different units or areas Pr =
{Ar1,Ar2, ...Arn} where each area Arm, m = {1,2, ...n} has K ∈N operational modes
(e.g. startup, shutdown) noted Oi, i = {1,2, ...K}. The process behavior in each
operating mode can be either normal or faulty. We define the set of failure labels
∆f = f1,f2, ....,fr and the complete set of possible labels is ∆ = f0∪∆f , where f0 is
the faultless behavior. To monitor the process and to recognize the different situations
(normal or faulty) of the operational modes, we propose to build a chronicle base for
each area. The set of chronicles {Cm

ij } for each area Arm is presented in the matrix
below, where the rows represent the operating modes (i.e. O1 : Startup, O2 : Shutdown,
etc) and the columns the normal and abnormal situations. For a given area m, a
learned chronicle Cm

ij is associated to each couple (Oi, lj) where lj ∈∆: When lj=f0,
the chronicle is a model of the normal behavior of the considered system, otherwise
(lj = fi) the chronicle is a model of the behavior of the system under the occurrence of
the fault fi.

CArm =
O1

O2

. . .

Ok

f0 f1 f2 . . .fr
Cm

10 Cm
11 Cm

12 . . .Cm
1r

Cm
20 Cm

21 Cm
22 . . .Cm

2r

. . . . . . . . . . . . . . . . . . . . . .

Cm
k0 Cm

k1 Cm
k2 . . .Cm

kr


(6.4)

This chronicle database, is to be submitted to a chronicle recognition system that
identifies in an observable flow of events all the possible matching with the set of
chronicles from which the situation (normal or faulty) can be assessed.

6.2 Conclusion

In this chapter our proposal of a Chronicle Based Alarm Management (CBAM) was
presented. This methodology aims to integrate in the alarm management process a
diagnosis process based on chronicle recognition. For this CBAM relies on three main
steps allowing at the end the construction of a chronicle database. The first step is
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the event type identification, the second is the event sequences generation and the last
step is the chronicle database construction using the Heuristic Chronicle Discovery
Algorithm Modified. CBAM is based on an hybrid modeling of the system to integrate
information issued from procedural actions and information issued from the continuous
variable behaviors, and to capture at a discrete level the process evolutions in terms of
chronicles.



Chapter 7

Case Studies

7.1 Introduction

The Cartagena Refinery is located in the Industrial Zone of Mamonal, one of the
most important in Colombia and Latin America. This is a core of companies mostly
chemical, petrochemical and services, which were installed in the area after the refinery,
visualizing its enormous potential. The industrial area of Mamonal, located half an
hour from Cartagena, today has more than 60 plants, several of which belong to
Companies listed among the 100 largest in the country: GRC, Exxon Mobil, Texaco,
Colombian Petrochemical and Propilco. Currently, the refinery is composed of six
units or principal areas, which are described below:

• Storage of Raw Materials and Products: This unit is responsible for re-
ceiving crude oil through the Coveñas - Cartagena Pipeline, supplying the charge
to the Combined Distillation Unit, and handling the product flows from the
different units. The purpose of the unit is to store them within specifications and
to ensure the necessary inventory to the normal fuel supply in the northern part
of the country.

• Unit of Crude: The first step in petroleum refinement is the separation of the
oil into several fractions or "cuts" using the atmospheric distillation towers, the
vacuum tower, and the vacuum oven. The fractions or cuts obtained during this
process are obtained thanks to the different ranges of boiling. The ranges can
be classified based on a decrease in volatility of gases: light distillates, medium
distillates, liquid gases, and waste.

The Crude Unit has a design capacity of 78 kB/d (Kilo barrels per day) of crude
oil through a combined distillation process. In the first stage (the atmospheric



90 Case Studies

distillation) the crude is subjected to be heated in furnaces. Subsequently, it is
divided in the hot tower, where the atmospheric gas oil and ACPM are obtained.
The gases from above pass to the atmospheric tower to continue the distillation
and obtain kerosene, turbocharged fuel, gasoline, and gas. The bottoms of the
hot tower are called reduced crude.

The second stage of the process is vacuum distillation. At this stage, the reduced
oil passes through some kilns where they are heated and then fractioned in the
vacuum tower. After that, this is combined with the oil from the atmospheric hot
tower on the vacuum oven. In this way, the light and heavy gas oils are recovered.
The product of funds or heavy residue is sent as a load to the Visor Rearing Unit
for further use. The gas oils produced with crude serve as raw material in the
Catalytic Cracking Unit.

• Viscous-reducer Unit: The unit has the capacity to process 25 KB/d of
empty bottoms from the crude plant. The viscous reduction is the process by
which a heavy charge composed of heavy chain heavy hydrocarbons is partially
decomposed into other hydrocarbon chains of lower and higher molecular weight
(condensation) relative to the original charge. This is achieved by a thermal
cracking reaction with secondary condensation reactions. This process receives
its energy from the viscous breaking furnace. Its result is the conversion levels
that determine the passage of the charge to fractions of naphtha, kerosene, and
gas oil (distillates).

• Cracking unit: Cracking is a refining process whereby several gas oils are
cracked into simpler hydro carbon compounds through the use of extreme heat,
pressure, and exposure to catalytic chemicals. Essentially, this process changes
the long chains of the hydrocarbon molecules (less value) into smaller chains
which increase in value to produce high octane types of gasoline, light fuel oils,
and olefins rich gases.

• Industrial Services Unit: This unit produces the services that the refinery
requires for process units such as water, steam, electricity, air, and fuel gas. In
the first four, the district is self-sufficient and in the latter, it is complemented
by the purchase of natural gas. This area includes the following systems: Water
(HTG Hydrostatic Tank Gauging System), Steam, Electricity, Air, and Fuel Gas.
Respect to the HTG System, raw water with chemicals is treated to produce
water suitable for different uses, such as cooling, steam generation, and human
consumption.
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Figure 7.1: General Diagram of the Cartagena Refinery

• Product and Wastewater Treatment Unit: The Product and Wastewater
Treatment Unit is necessary to remove contaminants from the products and the
water used in the processes. Therefore, this area includes Product Treatment and
Sewage Treatment. The General Diagram of the Cartagena Refinery is presented
in Fig. 7.1.

The project: Modernization of the Refinería Cartagena consists of the expansion of
the refinery to increase its capacity to 80 KB/d. The modernization will include 14
new units, including crude distillation, hydrostatic tank gauging System, Vacuum oven
system, vacuum distillation, coking, hydrocracking, saturated gas, water treatment,
power generation and late cooking, all with the aim of improving the value of the
product and the system of production. In addition, residual fuel not is produced.
Reficar (Refinery of Cartagena S.A) is in charge of the initiative. The company is
formed by Ecopetrol and Andean Chemical, a subsidiary of Ecopetrol.

According to the Ecopetrol experts, ones of the most critical process areas are the
Vacuum Oven and the HTG system because when the cooling system fails, the Vacuum
Oven suffers critical damages. For this reason, we develop the methodology CBAM in
these two cases of study, the Hydrostatic Tank Gauging system and the Vacuum Oven.
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The standard operating procedure of the refinery is very constrained and specifies
the standard procedural actions the operators must execute during the start-up and
shutdown stages. The correct execution of the whole operating procedure supposes
that the operators execute the procedural actions planned for a normal evolution of the
procedure. Therefore, in the case of an abnormal situation, the process evolution due to
the procedural actions executed by operators and so the continuous variable evolutions
are no more consistent with the standard operating procedure. This section shows how
abnormal situations can be captured into chronicles built according to the proposed
Chronicle Based Alarm Management (CBAM) method. The so built chronicle base
could be then considered by a recognition system to recognize the normal or faulty
situations when they occur. The (CBAM) method relies on several steps (see section 6)
leading to the construction of a chronicle base. Next sections, detail each of these steps
in each case study. Including also a validation of the chronicle for abnormal startup in
each case study.

7.2 Hydrostatic Tank Gauging System

The Cartagena Refinery in Colombia has been recently enriched with news units
and elements, units such as the system of Hydrostatic Tank Gauging (HTG), the
atmospheric hot tower, the vacuum tower and the vacuum oven between other elements.
Our proposal aims to help the operator to recognize dangerous conditions during the
start-up stage of the refinery with modified equipment. The first unit that we analyze
the startup and shutdown stages is the unit of water injection, see Fig. 7.2. We can
see that the measured continuous variables are the level of the tank L, the pressure Po

in the pump and the outlet flow Qo(V 2) in the valve V2. For the startup stage in this
process, the initial conditions are that the tank (TK) is empty, the valves V1 and V2
are closed and the pump Pu is off. In this situation, the alarms for low levels in all
the continuous variables (L, Po and Qo(V 2)) are active. For the shutdown stage in
this process, the initial conditions could be different each one of the others, depending
on the situation in that the system is. For example, one condition is that the outlet
pressure (Po) has passed its high limit activating the alarm PAH (Pressure Alarm
High), but the outlet flow (Qo(V 2)) does not increase over its low limit after that a
specific quantity of time units has passed.
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Figure 7.2: Hydrostatic Tank Gauging

7.2.1 Hybrid features of the HTG system

This process is a HTG (Hydrostatic Tank Gauging) system composed by the following
components:

• Passive component: one tank (TK),

• Active components: two normally closed valves (V1 and V2), one pump (Pu),

• Sensors: level sensor (LT), pressure sensor (PT), inflow sensor (FT1) and outflow
sensor (FT2).

Since there are three active components, the HTG system obviously involves hybrid
behavior. Modeling the behavior of this hybrid system involves a set of continuous
variables and of a set of discrete variables. The continuous variables are level L,
pressure Po, and outflow Qo(V 2). On the other hand, the discrete variables are:

• the states of the transition system representing the system operating modes. The
HTG has thus 23 = 8 configurations and operating modes denoted q0 to q7 due to
the two valves (V1 and V2) each with two possible modes (opened and closed);
and the pump (Pu) with two possible modes (ON and OFF).

• VQ the set of qualitative variables values obtained from the behavior of contin-
uous variables as explained Section 6. In this case study, continuous variable
domain partitioning has been chosen according to expert knowledge and to
limit values specified in standard operating procedures. VQ = {LL,LM ,LH}∪
{PoL,PoM ,PoH}∪{Qo(V 2)L,Qo(V 2)M ,Qo(V 2)H}



94 Case Studies

• the set of auxiliary discrete variables indicating the state of active components
is given by: K = {Ki, i = 0, ...7}) i.e the system configuration associated to an
operation mode. The configuration is defined by the state (opened or closed) of
the two valves and the state of the pump. For a normal startup the HTG evolves
through the modes q0, q1, q4, q5 and q7. In the mode q0 the two valves are closed
and the pump is OFF, then K0 = 0. When the valve V1 is opened, the system
passes to the mode q1 and K1 = 1. The system can evolve to q4 if the valve V1
is opened, then K4 = 4, or it can evolve to q5 if the pump Pu is turned ON, then
K5 = 5. Finally, for q7 both valves are opened and the pump turned ON, then
K7 = 7.

7.2.2 Event type identification

In the system HTG of the case of study, the set of event types Σ that represent the
procedure actions is:

Σ = {V 1,V 2,PuO,v1,v2,PuF,M2A} (7.1)

where V 1 (resp. V 2) is for the action that switches the valve V1 (resp. V2) from closed
to opened. v1 (v2) for the action that switches the valve V1 (resp. V2) from opened
to closed and PuO (resp. PuF ) for the action that turns on (resp. off) the pump. The
event M2A corresponds to the transition from manual to automatic operation, closing
the control loops. In the reminder we assume that this event is the only unobservable
event of the system i.e. M2A ∈ Σuo.

The underlying DES (Discrete Event System) of the HTG system represents the
sequence of observable procedure actions for a start-up stage (indicated by the red or
green arrows on Fig. 7.3) corresponding to the evolution of the operation modes (i.e
q0, q1, q4, q5 and q7). To each operation mode qi is associated a causal system description
to identify the influences between the variables L,Po and Qo(V 2) see Fig. 7.3. These
influences allow determining the event types Σc occurrence.

Σc = {L(L), l(L),H(L),h(L),L(P o), l(P o),H(P o),h(P o),

L(Qo(V 2)), l(Qo(V 2)),H(Qo(V 2)),h(Qo(V 2))}
(7.2)
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Figure 7.3: Start-up stage of the HTG System: underlying DES and Causal System
Description

7.2.3 Event sequence generation

From simulations, the behavior of the variables is obtained and the learning event
sequences are generated according to the evolution of the system in each scenario. In
this manuscript are analyzed three scenarios: Normal startup, Abnormal start-up, and
Normal shutdown.

7.2.3.1 Scenario 1, Normal startup

According to the standard procedural actions, the first event type that must occur
is V 1 (Open V1). After this event type occurrence, the system is in the mode of
operation q1 where the variable L increases and the event type L(L) must occur after
that the valve V1 is opened, indicating that the level of the liquid into the tank TK
has passed the limit of low level. After L(L), the liquid into the tank must arrive
to the high limit of the level and the event type H(L) must occur. At this time
point, the ordered sequence of event types that has occurred is V 1,L(L),H(L). The
high limit of the level into the tank is the condition for continuing the procedure
actions Open V2 and turn on Pu (V 2 and PuO). If the operator opens the valve V2
first, the system passes to the mode of operation q4, but if the pump Pu is turned
on first, then the system passes to q5. The duration between the occurrences of
event types V 2 and PuO must be of 1 time unit, leaving the system in the mode of
operation q4 or q5. At this time point, the ordered sequence of event types that has oc-
curred must be V 1,L(L),H(L),PuO,V 2 or V 1,L(L),H(L),V 2,PuO. In the scenario1a:



96 Case Studies

(V 1,L(L),H(L),PuO,V 2), the outlet pressure (Po) of the pump Pu increases first of
that the outlet flow (Qo(V 2)). Then, after of V 2, the pressure Po has passed its limit
of low pressure and the event type L(P o) must occur. Passing the high limit of pressure
(H(P o)) occurs after of L(P o). In the scenario1b: (V 1,L(L),H(L),V 2,PuO), the event
type L(P o) occurs after of PuO. Now, after of L(P o), L(Qo(V 2)) must occur. After of
this the event type H(P o) must occurs. At this time point, the ordered sequence of
event types that has occurred must be V 1,L(L),H(L),PuO,V 2,L(P o),H(P o),L(Qo(V 2))
or V 1,L(L),H(L),V 2,PuO,L(P o),L(Qo(V 2)),H(P o). In this situation, the unobserv-
able event type M2A occurs and the control loops are closed, carrying the sys-
tem to a steady state. We assume that the control loops are closed whereas
L(Qo(V 2)) occurs in the scenario1a or H(P o) in the scenario1b. Then, the event
type h(P o) indicates that outlet pressure decreases after that the control loops are
closed. In the same way, the level of liquid in the tank TK decreases from the
high limit of level h(L) after that h(P o) occurs. When this event type h(L) oc-
curs, we assume that the startup stage finished correctly and the ordered sequences
of event types must be V 1,L(L),H(L),PuO,V 2,L(P o),H(P o),L(Qo(V 2)),h(P o),h(L) or
V 1,L(L),H(L),V 2,PuO,L(P o),L(Qo(V 2)),H(P o),h(P o),h(L). For this scenario, we chose
the representative event sequences (S1, S2 and S3) that represent the extreme behaviors
with all the possible sequence order of event types.

S1 = ⟨(V 1,1),(L(L),20),(H(L),48),(PuO,50),(V 2,51),(L(P o),58),(H(P o),71),
(L(Qo(V 2)),80),(h(P o),106),(h(L,180)⟩

S2 = ⟨(V 1,1),(L(L),25),(H(L),55),(V 2,56),(PuO,57),L(P o),69),(L(Qo(V 2)),83),
(H(P o),91),(h(P o),115),(h(L,188)⟩

S3 = ⟨(V 1,1),(L(L),31),(H(L),60),(PuO,61),(V 2,62),(L(P o),71),(H(P o),85),
(L(Qo(V 2)),91),(h(P o),112),(h(L,182)⟩

The simulation of a normal startup is presented in Fig. 7.4 where we can see the
evolution of the variables L, Po and Qo(V 2). This simulation represents only one
possible situation in this scenario related with the sequence S1. The values of the
variables on the graph are specified as follows:

• For the variable of level (L) the value of 0 corresponds to 0 meters, each increase
of 0.5 (vertical axis) corresponds to 0.5 meters.

• For the variable of pressure (Po) the value of 0 corresponds to 0 PSI, each increase
of 0.5 (vertical axis) corresponds to 10 PSI.

• For the variable of outlet flow (Qo(V 2)) the division of 0 corresponds to 0 lts/s
(Liters per second), each increase of 0.5 (vertical axis) corresponds to 1 lts/s.
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Figure 7.4: Simulation of a normal startup in the HTG system

• The time (horizontal axis) in the graph is expressed in seconds.

At this point, the representative event sequences must be verified using the hybrid
causal model. For example, the sequence S1 initiates with the event type V 1. Then,
the system passes to the operation mode q1 and the relationship between QiT K and L

is activated, see Fig. 7.3. We wait for the occurrence of two event types, first of the
event type L(L) and second H(L). After that, the standard procedure actions PuO

and V 2 must occur passing the system from the mode of operation q1, in this case
first to the mode of operation q5 and after to q7. When the system is in the mode q5,
the relationship of the continuous variables L and Po is activated and we wait for the
occurrence of the two event types: first, L(P o) and second H(P o) in this order. And,
when the system is in the mode q7 the relationship of the continuous variables Po and
Q(o(V 2)) is activated. After that, the event type L(Qo(V 2)) and the no observable event
M2A is activated and the control loops are closed. Concluding this event sequence
with the event types h(P o) and h(L) in this order. For the other sequences, the same
procedure is applied.

7.2.3.2 Scenario 2, Abnormal start-up

This abnormal situation is related to a failure in the valve V2. In this scenario the
sequences of event types are similar that the event sequences of a normal startup,
until that is detected that the outlet flow in the system does not increase. When the
level of liquid in the tank TK arrived to its high limit, the ordered sequence of event
types that has occurred must be V 1,L(L),H(L),PuO,V 2 or V 1,L(L),H(L),V 2,PuO.
In scenario2a : (V 1,L(L),H(L),PuO,V 2) the event type LP occurs after V 2. In
scenario2b : (V 1,L(L),H(L),V 2,PuO) the event type L(P o) occurs after PuO. The
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Figure 7.5: Simulation of a startup with a failure in V2 in the HTG system

event type H(P o) occurs after L(P o). So the ordered sequences of event types must be:
V 1,L(L),H(L),PuO,V 2,L(P o),H(P o) or V 1,L(L),H(L),V 2,PuO,L(P o),H(P o). For this
scenario, we chose the representative event sequences (S4, S5 and S6) that show the
extreme behaviors with all the possible sequence order of event types.

S4 = ⟨(V 1,1),(L(L),21),(H(L),48),(PuO,50),(V 2,51),(L(P o),60),(H(P o),75)⟩
S5 = ⟨(V 1,1),(L(L),25),(H(L),55)(V 2,56),(PuO,57),(L(P o),63),(H(P o),78)⟩
S6 = ⟨(V 1,1),(L(L),28),(H(L),60),(PuO,61),(V 2,62),(L(P o),71),(H(P o),85)⟩
The simulation of this abnormal startup is presented in Fig. 7.5 where we can see

the evolution of the variables L and Po. The variable Qo(V 2) does not appear because
the valve V2 had failed. The values of the variables on the graph are specified as
follows:

• For the variable of the level (L) the value of 0 corresponds to 0 meters, each
increase of 2 (vertical axis) corresponds to 2 meters.

• For the variable of pressure (Po) the value of 0 corresponds to 0 PSI, each increase
of 2 (vertical axis) corresponds to 40 PSI.

• For the variable of outlet flow (Qo(V 2)) the division of 0 corresponds to 0 lts/s
(Liters per second), each increase of 2 (vertical axis) corresponds to 4 lts/s.

• The time (horizontal axis) in the graph is expressed in seconds.

This simulation represents only one possible situation in this scenario related with the
pattern sequence S4.

At this point, the representative event sequences must be verified using the hybrid
causal model. For example, similar that in a normal startup, the sequence S4 initiates
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with the event type V 1. After that, the system passes to the operation mode q1 and the
relationship between QiT K and L is activated, see Fig. 7.3. Therefore, the occurrence
of two event types happen, first of the event type L(L) and second H(L). Then, the
standard procedure actions PuO and V 2 must occur passing the system from the mode
of operation q1, in this case first to the mode of operation q5 and after to q7. When
the system is in the mode q5, the relationship of the continuous variables L and Po is
activated and we wait for the occurrence of the two event types: first, L(P o) and second
H(P o) in this order. Now, when the system is in the mode q7 the relationship of the
continuous variables Po and Q(o(V 2)) is activated. After that, the event type L(Qo(V 2))
and the no observable event M2A is activated and the control loops are closed. In
this case, the event types L(Qo(V 2)), h(P o) and h(L) are not activated. This situation is
assumed as a failure in the valve V 2. For the other sequences, the same procedure is
applied.

7.2.3.3 Scenario 3, Normal shutdown

After of that, an abnormal start-up situation is detected, a shutdown procedure must
be executed. Taking the above situation (Scenario 2), it is assumed that later of the
abnormal startup confirmed, the standard procedure actions v1, v2, and PuF must be
developed. For this scenario, we chose the representative event sequences (S7, S8 and
S9) that represent the extreme behaviors with all the possible sequence order of event
types.

S7 = ⟨(V 1,1),(L(L),20),(H(L),48),(PuO,50),(V 2,51),(L(P o),60),(H(P o),75),(PuF,77),
(v1,78),(v2,79),(h(L),190),(h(P o),195),(l(P o),240)⟩

S8 = ⟨(V 1,1),(L(L),20),(H(L),48)(V 2,51),(PuO,52),(L(P o),63),(H(P o),78),(PuF,79),
(v2,81),(v1,82),((h(P o),188),(h(L),200)(l(P o),250)⟩

S9 = ⟨(V 1,1),(L(L),28),(H(L),59),(PuO,61),(V 2,63),(L(P o),70),(H(P o),84),(PuF,85),
(v1,86),(v2,87),((h(P o),193),(h(L),198)((l(P o),231)⟩

The simulation of this normal shutdown is presented in Fig. 7.6 where we can
see the evolution of the variables L, Po and Qo(V 2). The values of the variables are
specified as follows:

• For the variable of the level (L) the value of 0 corresponds to 0 meters, each
increase of 1 (vertical axis) corresponds to 1 meters.

• For the variable of pressure (Po) the value of 0 corresponds to 0 PSI, each increase
of 1 (vertical axis) corresponds to 20 PSI.
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Figure 7.6: Normal shutdown in the HTG system

• For the variable of outlet flow (Qo(V 2)) the division of 0 corresponds to 0 lts/s
(Liters per second), each increase of 1 (vertical axis) corresponds to 2 lts/s.

• The time (horizontal axis) in the graph is expressed in seconds.

This simulation represents only one possible situation in this scenario related with the
representative sequence S7. The procedure evaluation of this event sequences is similar
that the procedure developed in the other scenarios. In this scenario, the event types
v1, v2 and PuF are involved in the shutdown procedure.

7.2.4 Chronicle database construction

This chronicle database is to be submitted to a chronicle recognition system that
identifies in an observable flow of events all the possible matching with the set of
chronicles from which the situation (normal or faulty) can be assessed. In the following
subsection are presented three chronicles (C1

10, C1
11 and C1

20) of the set of chronicles of
the HTG (Hydrostatic Tank Gauging) system i.e Area Ar1 of the whole system. C1

10
is a chronicle describing the normal start-up stage of the HTG, C1

11 is associated with
failure behavior of type f1 during a startup stage and C1

20 corresponds to a normal
shutdown.

7.2.4.1 Scenario 1, Normal start-up

For this scenario, we have the following temporal restrictions that represent the expert
knowledge which is used in the extended version of the HCDAM .
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Figure 7.7: Directed graph (G) of the chronicle C1
01

TRLL,V 2=LL[30,32]V 2, this temporal restriction expresses that the valve V2 is
opened between 30 and 32-time units after the low limit level (LL) into the tank
happens.

TRP uO,V 2=PuO[−2,2]V 2, this temporal restriction indicates that the valve V2(V 2)
can be opened in between 2 time units before the pump Pu (PuO) is turned on or
after PuO occurs.

TRHL,V 2=HL[1,5]V 2, this temporal restriction expresses that the valve V2 is
opened between 1 and 5-time units after the high limit level (HL) into the tank
happens.

The directed graph of chronicle C1
10 that resulted using the algorithm HCDAM is

presented in Fig. 7.7. The learning event sequences used are S1, S2 and S3 generated
in subsection 7.2.3.



102 Case Studies

Figure 7.8: Directed graph (G) of the chronicle C1
11

7.2.4.2 Scenario 2, Abnormal start-up

For this scenario we have the following temporal restrictions that represent the expert
knowledge which is used in the extended version of the HCDAM .

TRP uO,V 2=PuO[−2,2]V 2, this temporal restriction indicates that the valve V2(V 2)
can be opened in between 2 time units before the pump Pu (PuO) is turned ON, or
after PuO occurs.

TRHL,P uO=HL[1,4]PuO, this temporal restriction expresses that the pump Pu
(PuO) is turned ON between 1 and 4-time units after the high limit level (HL) into
the tank happens.

The directed graph of the chronicle C1
11 that resulted using the algorithm HCDAM

is presented in Fig. 7.8. The learning event sequences used are S4, S5 and S6 generated
in subsection 7.2.3.

7.2.4.3 Scenario 3, Normal shutdown

For this scenario we have the following temporal restrictions that represent the expert
knowledge which is used in the extended version of the HCDAM .

TRP uO,V 2=PuO[−3,4]V 2, this temporal restriction indicates that the valve V2(V 2)
can be opened from 3 time units before that the pump Pu (PuO) is turned ON to 4
time units after PuO occurs.
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TRHP,P uF =HP [2,6]PuF , this temporal restriction expresses that the pump Pu
(PuF ) is turned OFF between 2 and 6-time units after the high limit (HP ) of the
pressure Po happens. The directed graph of chronicle C1

20 that resulted using the
algorithm HCDAM is presented in Fig. 7.9. The learning event sequences used are
S7, S8 and S9 generated in subsection 7.2.3.

7.2.5 Validation

This section presents the evaluation of the chronicle C1
11 that represents the temporal

pattern for an abnormal startup in the HTG system. The sequence of evaluation is
presented below:

Seval = ⟨(V 1,1),(L(L),26),(H(L),58),(PuO,60),(V 2,62),(L(P o),70),(H(P o),85)⟩.
Fig. 7.10 to Fig. 7.16 present the recognition process of the chronicle, and the

generation of one SUPER ALARM.
The new concept of SUPER ALARM is proposed in this thesis, a concept which

corresponds to one "superior alarm" giving relevant information to the operators after
a diagnosis process, increasing the reliability of this protective layer, (see Chapter 2).

7.3 Vacuum oven system

Vacuum is a condition to protect the steel parts and heated metals from the negative
influence of the air atmosphere. A vacuum oven is usually an oven in which vacuum is
maintained during the process. The charge of this oven is a mixture of the reduced oil
coming from the section of the hot atmospheric tower and a recycle produced in the
section of the vacuum tower. This furnace has flue gas temperature indicators at the
outlet of the radiation section, as well as at the outlet of the flue. The reduced oil flow
through the two main coils passes through temperature sensors T2, T3, respectively,
and then each coil is divided into two coils. The operator controls these flow with the
valves V1, V2. Now, the control of temperature inside the oven initiates when the
fuel gas system valve V3 is opened. The inside temperature of the oven is monitored
with T1 and the outside temperature of the oil is monitored with T4. The flows in
the system are monitored by F1, F2, F3.

7.3.1 Hybrid features of the vacuum oven

The vacuum oven process is composed of passive components, active components,
and sensors. Passive components are components whose operational state cannot be
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Figure 7.9: Directed graph (G) of the chronicle C1
02
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Figure 7.10: Activation of V 1 at 1

Figure 7.11: Activation of LL at 26
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Figure 7.12: Activation of HL at 58

Figure 7.13: Activation of PuO at 60
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Figure 7.14: Activation of V 2 at 62

Figure 7.15: Activation of LP at 70
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Figure 7.16: Activation of HP at 85, SUPER ALARM: Recognition of the abnormal
situation
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Figure 7.17: Vacuum oven

modified via an external action (e.g. the oven structure (Ov)) unlike active components
whose states can be changed a procedural action (e.g. the three valves V1, V2, and
V3) that can be switched from opened to closed and closed to opened. The sensors,
correspond to the instrumentation that measures the continuous variables, e.g. flow
sensor (F1, F2, and F3) and the temperature sensors (T1, T2, T3 and T4), see
Fig. 7.17. Since there are three active components, the vacuum oven system obviously
involves hybrid behavior. Modeling the behavior of this hybrid system involves a set of
continuous variables and of a set of discrete variables. The continuous variables are
the temperature (T1,T2,T3 and T4) and the flows (F1,F2, and F3). On the other
hand, the discrete variables are:

• the states of the transition system representing the system operating modes. The
vacuum oven has thus 23 = 8 configurations and operating modes denoted q0

to q7 due to the three valves (V1, V2 and V3) each with two possible modes
(opened and closed).

• VQ the set of qualitative variables values are obtained from the behavior
of continuous variables as explained Section 6. In this case study, continu-
ous variable domain partitioning has been chosen according to expert knowl-
edge and to limit values specified in standard operating procedures. VQ =
{⋃3

i=1{FiL,F iM ,F iH}}∪{⋃4
i=1{TiL,T iM ,T iH}}
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Figure 7.18: Startup stage of the vacuum oven: underlying DES and Causal System
Description

• the set of auxiliary discrete variables indicating the state of active components
is given by: K = {Ki, i = 0, ...7}) i.e the system configuration associated to an
operation mode. The configuration is defined by the state (opened or closed)
of the three valves. For a normal startup the vacuum oven evolves through the
modes q0, q3, q5, q6 and q7. In the mode q0 the three valves are closed and then
K0 = 0. When the two first valves are closed and the valve V3 is opened, the
system passes to the mode q3 and K3 = 3. In q5, V3 and V1 are opened and V2
is closed, then K5 = 5. For q7 all the valves are opened and K7 = 7.

The discrete part of the model is given by the underlying DES (Discrete Event
System) (see Fig. 7.18 on the left). This model is obtained from the operating
specifications described in the standard operating procedures. To each operation mode,
qi is associated a Causal System Description (CSDi) to identify the influences between
the continuous variables F1,F2,F3,T1,T2,T3 and T4. For the vacuum oven, the
underlying DES is shown Fig. 7.18 on the left. Green arrows indicate the system
evolutions during a start-up stage. The CSDs associated to the operating modes
(i.e. q0, q3, q5, q6 and q7) involved in a start-up stage are shown Fig. 7.18 on the right.
In each CSD, the edges are labeled by the influences between the variables. These
influences are defined by the configuration of the valves. For instance the influence
between F3 and T1 depends on the configuration of the valve V3 noted K(V3). A
bold edge indicates that the influence is active.
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In the next subsections, the three steps of the methodology CBAM are detailed.
Recalling, the first step is the Event type identification, the second step is the Event
sequences generation and the third step corresponds to the Chronicle data base
construction.

7.3.2 Event type identification

The set of event types E considered into the chronicles is defined by E = Σ∪Σc and
corresponds to the set of event types of the vacuum oven hybrid system. The set of
event types associated to procedural actions concern mainly the valves of the oven:

Σ = {V 1,V 2,V 3,v1,v2,v3,M2A} (7.3)

where V 1 (resp. V 2,V 3) is for the action that switches the valve V1 (resp. V2,V3)
from closed to opened. v1 (resp. v2,v3) for the action that switches the valve V1 (resp.
V2,V3) from to opened to closed. The event M2A corresponds to the transition from
manual to automatic operation, closing the control loops. In the reminder we assume
that this event is the only unobservable: M2A ∈ Σuo and Σo = {V 1,V 2,V 3,v1,v2,v3}

The set of event types associated with the behavior of the continuous variables is
defined by the abstraction function (see Section 6). These influences allow determining
the event types Σc occurrence.

Σc =

{L(F 1), l(F 1),H(F 1),h(F 1),

L(F 2), l(F 2),H(F 2),h(F 2),

L(F 3), l(F 3),H(F 3),h(F 3),

L(T 1), l(T 1),H(T 1),h(T 1),

L(T 2), l(T 2),H(T 2),h(T 2),

L(T 3), l(T 3),H(T 3),h(T 3),

L(T 4), l(T 4),H(T 4),h(T 4)}

(7.4)

The occurrence of the event types Σc depends on the influence of the continuous
variables. These influences are captured in each causal system description associated
with each operation mode (See Fig. 7.18 on the right).

7.3.3 Event sequence generation

Equal that in the other case study, from simulations the behavior of the variables is
obtained and the learning event sequences are generated according to the evolution of
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the system in each scenario. In this manuscript are analyzed three scenarios: Normal
startup, Abnormal start-up, and Normal shutdown.

7.3.3.1 Scenario 1, Normal startup

For the start-up stage, the initial conditions are that the oven is empty and the valves
V1, V2 and V3 are closed. In this situation, the values for all the continuous variables
are below its low limits (F1, F2, F3, T1, T2, T3, T4 ). According to the standard
procedural actions, the first event type that must occur is V 3 (Open V3). After of this
event type occurrence, the system is in the mode of operation q3 where the variable
T1 increases and the event type L(T 1) must occur after that the valve V3 is opened,
indicating that the internal oven temperature has passed the limit of low. After L(T 1),
the flow of the fuel gas must arrive to its low limit and the event type L(F 3) must
occur. At this time point, the ordered sequence of event types that has occurred is
V 3,L(T 1),L(F 3). Passing the low limit of the F3 is the condition for continuing the
procedural action Open V1 (V 1) after L(F 3). When the operator opens the valve V1,
the system passes to the mode of operation q5 and the internal flow in the vacuum
oven begins. In this situation, the flow F1 and the outflow temperature T4 increases.
Then, after of V 1, the event type L(T 4) must occur followed by the event type L(F 1).
The next event type that occurs is H(F 1) indicating that the flow F1 has passed its
high level after L(F 1). At this time point, the ordered sequence of event types that
has occurred must be V 3,L(T 1),L(F 3),V 1,L(T 4),L(F 1),H(F 1). Continuing with the
evolution of the process, after of H(F 1) the following procedural action is close the
valve V1 (v1) and after of v1 the valve V2 is opened (V 2). Now, after of V 2 the high
limit of the temperature T1 must occurs and the event type H(T 1) happens. The flow
F1 decreases from its high limit and h(F 1) occurs after of H(T 1). Now, after of h(F 1),
the event type L(F 2) occurs because the flow in the valve V2 begins to increase. The
high limit in the temperature T4 (H(T 4)) occurs after of L(F 2). Carry on with the
procedure, the high limit of flow in F2 happens and the event type H(F 2) occurs after
of H(T 4). At this time point, the ordered sequence of event types that has occurred is
V 3,L(T 1),L(F 3),V 1, L(T 4),L(F 1),H(F 1),v1,V 2,H(T 1),h(F 1),L(F 2),H(T 4),H(F 2). In this
situation, the unobservable event type M2A occurs and the control loops are closed,
carrying the system to a steady state. We assume that the control loops are closed
immediately after that H(F 2) occurs. Now, the system must advance to its steady
state and its variables decreases. Then, after of H(F 2) the flow F1 decreases and
l(F 1) occurs; after that h(T 1) occurs, and the temperature T4 decreases and the event
type h(T 4) occurs after of h(T 1). The event type h(F 2) occurs after of h(T 4). The final
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procedural action is open the valve V1 for second time, and the event type V 1 occurs
after of h(F 2). The last event type that occurs in a normal startup for this case of
study is the second occurrence of L(F 1), that happens after of V 1. The final ordered
sequence that must occurs in this scenario is V 3,L(T 1),L(F 3),V 1,L(T 4),L(F 1),H(F 1),v1,
V 2,H(T 1),h(F 1),L(F 2),H(T 4),H(F 2), l(F 1),h(T 1),h(F 2),V 1,L(F 1)

For this scenario, we chose the learning event sequences (S1, S2 and S3) that
represent the extreme behaviors with all the possible sequence order of event types.

S1:
⟨(V3,1), (L(T 1), 3), (L(F 3), 5), (V 1, 6), (L(T 4), 7), (L(F 1), 8),

(H(F 1), 12), (v1, 13), (V 2, 14), (H(T 1), 15), (h(F 1),16), (L(F 2),17),
(H(T 4),19), (H(F 2), 22), (l(F 1), 24), (h(T 1), 25), (h(T 4), 26), (h(F 2), 27),
(V 1, 42), (L(F 1), 45) ⟩

S2:
⟨(V3,1), (L(T 1), 7), (L(F 3), 13), (V 1, 18), (L(T 4), 21), (L(F 1), 24),

(H(F 1), 32), (v1, 35), (V 2, 37), (H(T 1), 40), (h(F 1), 45), (L(F 2), 48),
(H(T 4), 54), (H(F 2), 61), (l(F 1), 65), (h(T 1), 68), (h(T 4), 72), (h(F 2), 76),
(V 1, 96), (L(F 1), 101) ⟩

S3:
⟨(V3,2), (L(T 1), 6), (L(F 3), 9), (V 1, 12), (L(T 4), 14), (L(F 1), 16),

(H(F 1), 22), (v1, 24), (V 2, 25), (H(T 1), 27), (h(F 1), 30), (L(F 2), 32),
(H(T 4), 36), (H(F 2), 41), (l(F 1), 43), (h(T 1), 45), (h(T 4), 48), (h(F 2), 50),
(V 1, 68), (L(F 1), 71) ⟩

The simulation of a normal start−up is presented in Fig. 7.19 where we can see
the evolution of the process variables. This simulation represents only one possible
situation in this scenario and it is related to the representative sequence S1. The values
of the variables on the graph are specified as follows:

• For the variables of flow (F1 and F2) each increase in the vertical axis corresponds
to 20 BPM. In this graph, the value of 25 correspond to 0 BPM.

• For the variable of flow (F3) each increase in the vertical axis corresponds to 2
m3/min. In this graph, the value of 25 corresponds to 0 m3/min (cubic meters
per minute).

• For the variables of temperature (T1,T2,T3,T4) each division corresponds to
25°C.

• The time (horizontal axis) in the graph is expressed in seconds.
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Figure 7.19: Simulation of a normal startup in the vacuum oven

At this point, the representative event sequences must be verified using the hybrid
causal model. For example, the sequence S1 initiates with the event type V 3. Then,
the system passes to the operation mode q3 and the relationship between F3 and T1
is activated, see Fig. 7.18. We wait for the occurrence of two event types, first of the
event type L(T 1) and second L(F 3). After that, the standard procedure actions V 1
must occur passing the system from the mode of operation q3 to the mode of operation
q5. When the system is in the mode q5, the relationship of the continuous variables T1
and T4 is activated and we wait for the occurrence of the three event types: first L(T 4),
second L(F 1) and third H(F 1) in this order. Now the procedural actions v1 and V 2 are
activated and the system first return from q5 to q3 and after that, it passes to q6 where
is activated the relationship between T4 and F2. In this time point, the following
five event types are activated: H(T 1), h(F 1), L(F 2), H(T 4), H(F 2). Now, temperature
and flow in T1, T4, F1 and F2 decrease and the event types l(F 1), h(T 1), h(T 4) and
h(F 2) occur in this order. Finally, the procedural action V 1 is executed by the second
time and the event type L(F 1) also occurs for the second time, concluding this event
sequence. For the other sequences, the same procedure is applied.

7.3.3.2 Scenario 2, Abnormal startup

This abnormal situation is related to a failure in the control valve of F3. In this
scenario, the sequences of event types are similar that the event sequences of a normal
startup until it is detected that the flow in F3 increase without control (H(F 3)) and
the temperature of the oven do not decrease after that the control loops are closed.
For this scenario, we chose the representative event sequences (S4, S5 and S6) that
show the extreme behaviors with all the possible sequence order of event types.
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Figure 7.20: Simulation of an abnormal startup in the vacuum oven

S4:
⟨(V3,1), (L(T 1), 3), (L(F 3), 5), (V 1, 6), (L(T 4), 7), (L(F 1), 8),

(H(F 1), 12), (v1, 13), (V 2, 14), (H(T 1), 15), (h(F 1), 16), (L(F 2), 17),
(H(T 4),19), (H(F 2), 22), (l(F 1), 24), (H(F 3), 26), (h(F 2), 27), (V 1, 42),

(L(F 1), 45) ⟩
S5:
⟨(V3,1), (L(T 1), 7), (L(F 3), 13), (V 1, 18), (L(T 4), 21), (L(F 1), 24),

(H(F 1), 32), (v1, 35), (V 2, 37), (H(T 1), 40), (h(F 1), 45), (L(F 2), 48),
(H(T 4), 54), (H(F 2), 61), (l(F 1), 65), (H(F 3), 70), (h(F 2), 76), (V 1, 96),

(L(F 1), 101) ⟩
S6:
⟨(V3,2), (L(T 1), 6), (L(F 3), 9), (V 1, 12), (L(T 4), 14), (L(F 1), 16),

(H(F 1), 22), (v1, 24), (V 2, 25), (H(T 1), 27), (h(F 1), 30), (L(F 2), 32),
(H(T 4), 36), (H(F 2), 41), (l(F 1), 43), H(F 3), 44), (h(F 2), 50), (V 1, 68),
(L(F 1), 71) ⟩

The simulation of this abnormal startup is presented in Fig. 7.20 where we can see
the evolution of the process variables. This simulation represents only one possible
situation in this scenario related with the representative sequence Sp4. The values of
the variables on the graph are specified as follows:

• For the variables of flow (F1 and F2) each increase in the vertical axis corresponds
to 20 BPM. In this graph, the value of 25 correspond to 0 BPM.

• For the variable of flow (F3) each increase in the vertical axis corresponds to 2
m3/min. In this graph, the value of 25 corresponds to 0 m3/min (cubic meters
per minute).
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• For the variables of temperature (T1,T2,T3,T4) each division corresponds to
25°C.

• The time (horizontal axis) in the graph is expressed in seconds.

For this abnormal start-up, the representative event sequences must be verified
using the hybrid causal model. For example, similar that in the normal startup, the
sequence S4 initiates with the event type V 3. Then, the system passes to the operation
mode q3 and the relationship between F3 and T1 is activated, see Fig. 7.18. We wait
for the occurrence of two event types, first of the event type L(T 1) and second L(F 3).
Similar to the other scenario, the standard procedure actions V 1 must occur passing the
system from the mode of operation q3 to the mode of operation q5. When the system
is in the mode q5, the relationship of the continuous variables T1 and T4 is activated
and we wait for the occurrence of the three event types: first L(T 4), second L(F 1) and
third H(F 1) in this order. At this time point, equal that in the previous scenario, the
procedural actions v1 and V 2 are activated and the system first returns from q5 to q3

and after that, it passes to q6 where is activated the relationship between T4 and F2.
At this time point, the following five event types are activated: H(T 1), h(F 1), L(F 2),
H(T 4), H(F 2). In this moment, the temperature in T4 and T1 must decrease, but on
the contrary the flow in the F3 increase. The unique three event types detected are:
l(F 1), H(F 3), and h(F 2) in this order. Finally, the procedural action V 1 is executed by
the second time and the event type L(F 1) also occurs in a second time, concluding this
event sequence detecting an abnormal behavior. For the other sequences, the same
procedure is applied.

7.3.3.3 Scenario 3, Normal shutdown

After of that, an abnormal start-up situation is detected, a shutdown procedure must
be executed. Taking the above situation (scenario 2), it is assumed that after of the
abnormal startup confirmed the standard procedure actions v1, v2, and v3 must be
developed. For this scenario, we chose the representative event sequences (S7, S8 and
S9) that represent the extreme behaviors with all the possible sequence order of event
types.

S7:
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Figure 7.21: Simulation of a normal shutdown in the vacuum oven

⟨(V3,1), (L(T 1), 3), (L(F 3), 5), (V 1, 6), (L(T 4), 7), (L(F 1), 8),
(H(F 1), 12), (v1, 13), (V 2, 14), (H(T 1), 15), (h(F 1), 16), (L(F 2), 17),
(H(T 4), 19), (H(F 2), 22), (l(F 1), 24), (H(F 3), 26), (h(F 2), 27), (V 1, 42),
(L(F 1), 45), (v3, 52), (v1, 53), (v2, 54), (h(T 4), 88), (h(F 3), 121),

(h(T 1), 142) ⟩
S8:
⟨(V3,1), (L(T 1),7), (L(F 3),13), (V 1,18), (L(T 4),21), (L(F 1),24),

(H(F 1),32), (v1,35), (V 2,37), (H(T 1),40), (h(F 1),45), (L(F 2),48),
(H(T 4),54), (H(F 2),61), (l(F 1),65), (H(F 3),70), (h(F 2),76), (V 1,96),
(L(F 1),101), (v3,77), (v2,78), (v1,80), (h(F 3),158), (h(T 1),151),
(h(T 4),182) ⟩

S9:
⟨(V3,2), (L(T 1), 6), (L(F 3), 9), (V 1, 12), (L(T 4), 14), (L(F 1), 16),

(H(F 1), 22), (v1, 24), (V 2, 25), (H(T 1), 27), (h(F 1), 30), (L(F 2), 32),
(H(T 4), 36), (H(F 2), 41), (l(F 1), 43), H(F 3), 44), (h(F 2), 50), (V 1, 68),
(L(F 1), 71), (v3, 63), (v1, 65), (v2, 67), (h(T 4), 98), (h(F 3), 123),

(h(T 1), 152) ⟩
The simulation of a normal shutdown is presented in Fig. 7.21 where we can see

the evolution of the process variables. This simulation represents only one possible
situation in this scenario related with the representative sequence S7. The procedure
evaluation of this event sequences is similar that the procedure developed in the other
scenarios. In this scenario, the event types v1, v2 and v3 are involved in the shutdown
procedure. The values of the variables on the graph are specified as follows:

• For the variables of flow (F1 and F2) each increase in the vertical axis corresponds
to 20 BPM. In this graph, the value of 25 correspond to 0 BPM.
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• For the variable of flow (F3) each increase in the vertical axis corresponds to 2
m3/min. In this graph, the value of 25 corresponds to 0 m3/min (cubic meters
per minute).

• For the variables of temperature (T1,T2,T3,T4) each division corresponds to
25°C.

• The time (horizontal axis) in the graph is expressed in seconds.

7.3.4 Chronicle database construction

In this case study, the chronicle learning algorithm used was the HCDAM extended
which includes temporal runs as a new input to the algorithm. This chronicle database
is to be submitted to a chronicle recognition system that identifies in an observable
flow of events all the possible matching with the set of chronicles from which the
situation (normal or faulty) can be assessed. For example, for the Refinery, we denote
the system HTG (Hydrostatic Tank Gauging) as the area Ar1 and the vacuum oven
as the area Ar2. In this subsection are presented the Chronicles C2

10,C2
11,C2

20 from
the set of chronicles of the vacuum oven system (Area Ar2 of the whole system). C2

10
is a chronicle that describes the normal startup stage of the Vacuum Oven, C2

11 is
associated with the failure behavior of type f1 during a startup stage, C2

20 describes a
normal shutdown.

7.3.4.1 Scenario 1, Normal startup:

For this scenario we have the following temporal restrictions that represent the expert
knowledge which is used in the extended version of the HCDAM .

TRV 3,LF 3=V 3[6,8]LF 3, this temporal restriction expresses that the lower limit of
the flow in F3 arrives between 6 and 8-time units after that the valve V3 is opened.

TRV 1,LF 1=V 1[−76,82]LF 1, this temporal restriction indicates that the lower limit
of the flow in F1 can occur 76-time units before that the valve V1 is opened to 82-time
units after that.

TRLF 2,V 2=LF 2[2,8]V 2, this temporal restriction indicates that the valve V2 is
opened between 2 and 8-time units after that the lower limit of the flow in F2 happen.

The directed graph of chronicle C2
01 was obtained using the algorithm HCDAM

and its directed graph is presented in Fig. 7.22. The representative event sequences
used were S1, S2 and S3 which were generated in subsection 7.3.3.
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Figure 7.22: Directed graph (G) of the chronicle C2
01

Applying the concept of the event ϕ, the frequency of occurrence of the event types
V 1 and L(F 1) are f(V 1)=2, f(LF 1)=2 and for the others event types it is 1.

7.3.4.2 Scenario 2, Abnormal start-up:

In this case the following temporal restrictions represent the expert knowledge which
is used in the extended version of the HCDAM .

TRij : { TR(V 1,LF 1)=V 1[-25,32]L(F 1), TR(HT 1,LT 1)=HT1[-40,12]L(T 1) }
The directed graph of chronicle C2

11 that resulted using the algorithm HCDAM

is presented in Fig. 7.23. The representative event sequences used are S4, S5 and S6

generated in subsection 7.3.3.
Applying the concept of the event ϕ, the frequency of occurrence of the event types

V 1 and L(F 1) are fV 1=2, fLF 1=2 and for the others event types it is 1.

7.3.4.3 Scenario 3, normal shutdown:

In this case the following temporal restrictions represent the expert knowledge which
is used in the extended version of the HCDAM .

TRij : { TR(V 1,LF 1)=V 1[-20,18]L(F 1), TR(HT 1,LT 1)=HT1[-51,5]L(T 1) }
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Figure 7.23: Directed graph (G) of the chronicle C2
11

The directed graph of chronicle C2
02 that resulted using the algorithm HCDAM

is presented in Fig. 7.24. The representative event sequences used are S7, S8 and S9

generated in subsection 7.3.3.
Applying the concept of the event ϕ, the frequency of occurrence of the event types

V 1 and L(F 1) are fV 1=2, fLF 1=2 and for the others event types it is 1.

7.3.5 Validation

This section presents the evaluation of the chronicle C2
11. It represents the temporal

pattern for an abnormal startup in the HTG system. The sequence of evaluation is
presented below:

Seval:
⟨(V3,3), (L(T 1), 9), (L(F 3), 15), (V 1, 19), (L(T 4), 21), (L(F 1), 24),

(H(F 1), 31), (v1, 33), (V 2, 34), (H(T 1), 35), (h(F 1), 39), (L(F 2), 40),
(H(T 4),44), (H(F 2), 48), (l(F 1), 52), (H(F 3), 55), (h(F 2), 59), (V 1, 78),

(L(F 1), 83) ⟩
Fig. 7.25 to Fig. 7.43 present the recognition process of the chronicle, and the

generation of one SUPER ALARM.



7.3 Vacuum oven system 121

Figure 7.24: Directed graph (G) of the chronicle C2
02

Figure 7.25: Activation of V 3 at 3
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Figure 7.26: Activation of LT1 at 9

Figure 7.27: Activation of LF3 at 15
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Figure 7.28: Activation for first time of V 1 (f(V 1) = 1) at 19

Figure 7.29: Activation of LT4 at 21
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Figure 7.30: Activation for first time of LF1 (f(LF 1) = 1) at 24

Figure 7.31: Activation of HF1 at 31
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Figure 7.32: Activation of v1 at 33

Figure 7.33: Activation of V 2 at 34
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Figure 7.34: Activation of HT1 at 35

Figure 7.35: Activation of hF1 at 39
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Figure 7.36: Activation of LF2 at 40

Figure 7.37: Activation of HT4 at 44
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Figure 7.38: Activation of HF2 at 48

Figure 7.39: Activation of lF1 at 52
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Figure 7.40: Activation of HF3 at 55

Figure 7.41: Activation of hF2 at 59
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Figure 7.42: Activation for second time of V 1 (f(V 1)=2) at 78

Figure 7.43: Activation for second time LF1 (f(LF 1)=2) at 83, SUPER ALARM:
Recognition of the abnormal situation
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The new concept of SUPER ALARM is proposed in this thesis, a concept which
corresponds to one "superior alarm" giving relevant information to the operators after
a diagnosis process, increasing the reliability of this protective layer, (see Chapter 2).

7.4 Discussion: How to implement CBAM

The new methodology Chronicle Based Alarm Management (CBAM) proposed in
this thesis can be implemented in any industrial process, and its principal steps are
enumerated below:

1. Event type identification

2. Learning event sequences identification

3. Construction of the chronicle database

For to implement this methodology, each step needs to involve all the specialties
of the process such as chemistry, electrical and mechanical to ensure the maximum
possible scenarios and to obtain a complete database of the normal and abnormal
behavior. Before carrying out this methodology, an important action is to divide the
complex process into different functional units hierarchically. As we saw in the case
studies, the refinery was divided into separate units as the HTG system and vacuum
oven system. In addition, each unit was conformed by active components such as
valves, motors and pumps; and passive components such as tanks, oven structures, and
pipes.

7.4.1 Event type identification

Once the complex process is divided, different tools like fault tree, the tree of events,
Hazop and FMA can be used in determining the most important event types. In this
methodology, an "event type" refers to a discrete event that represents a procedural
action or a condition in the continuous or discrete process variables. There is a
meaningful difference between an "event type" and the concept of "event" in safe
processes. An "event" in safe processes corresponds to a failure or abnormal situation
including an explosion, leak, burst or blow up. Therefore, an "event" can correspond to
a scenario that is produced by a specific "event types" sequence. To avoid confusions
with these terms, the concept of "event" in safe processes is replaced by the concept of
"scenario" or "operational situation".
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Although this methodology is for alarms, the alarms "fire detection" or "smoke
detection" are not involved in this analysis. These types of signals are included in the
fire protection systems. However, a diagnosis approach based on chronicles can be
constructed to detect the correct progression of the fire protection system. Additionally,
all the event types selected in this step must be observable and registered in the
supervisory system HMI (Human machine interface). For example, the alarm limits for
temperature, pressure or flow are observable events. Another example is a normally
closed electric valve that does not indicate that it was opened, but we can read the
voltage consumption there. Then, when the voltage is more than 100 Vac, it shows
that the valve was opened.

Obtaining a complete list of event types allows for the construction of an efficient
pattern model. Event types related to the behavior of the continuous variables are event
types like low and high limit alarms. Discrete variables include a detector of elements,
pressure switches and limit switches that can be involved in the temporal patterns.
The events related to the standard operational actions are steps that change the mode
of operation in the component. Turning on a pump, opening a valve, energizing a
motor and connecting a heater, for instance, are events that represent a procedural
action.

7.4.2 Event sequence generation

The hazard analysis can give us the scenarios or operational situations that we want
to detect early, and the learning event sequences are the sequences of event types
that are followed in each scenario. A hazard analysis expresses abnormal situation to
avoid, yet normal situations also are required to detect. In other words, both normal
and abnormal scenarios are necessary to construct a complete diagnosis model. The
definition of the types and of the quantity of scenarios depends on an extensive study
of the most important failures and abnormal situations to detect. The common failures
and abnormal situations can be summarized in the following types:

• Failure in an actuator

– Failure in the electrical connections and elements

– Failure in the mechanical elements

– Blockage

• Failure in a sensor
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– Primary element problem ( electrical connections, element position)

– Failure in the transmitter

– Uncalibrated sensor

• Failure in the control equipment

– Failure in the electrical connectors (I/O)

– Failure in the communication network

– Non-tuned control parameters

• Failure of the safety element

• Errors in the procedural actions

– Missing procedural action

– Untimely procedural action

– Wrong procedural action

• Problems in the process conditions

– Leaks

– Lack or excess of electric energy

– Lack or excess of industrial air

– Lack or excess of steam

– Lack or excess of industrial water

The learning event sequences normally initiate with a standard operational action
and the process evolves generating the event sequences. Sometimes, an event type
different from a procedural action can occur first in a learning event sequence. As we
saw in the example "oven charge system" (Section 6), the event types a and b occur
before the first operational action c is executed. On the other hand, in the HTG
and vacuum oven systems (Section 7), the learning event sequences initiated with a
standard procedural action.

The Hybrid causal model gives us a complete representation of the system, including
its analog and discrete variables. In each mode of operation, the continuous and discrete
variables progress and change according to the procedural actions. Depending on the
causal relationships between the variables, the event type occurrence can be predicted.
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For example, when an inlet valve is opened, the level of the liquid inside the tank
increases and the alarm of low limit is activated. If the input flow increases, the level
of the tank will increase faster than expected. Therefore, in many cases, abnormal
situations can be detected by the analysis of the incidences between variables identifying
which is the cause of the failure. Using the event type abstraction from the behavior
of the continuous variables, the different event types with its date of occurrences are
obtained. The continuous behavior of the variables can be obtained by simulation; in
which each continuous variable is depicted by a transfer function of simple order with
delay.

Expertise knowledge is largely used to complete the learning event sequences.
In many situations, for a specific scenario, the operators know which are the most
restrictive sequences of events and the most extended sequence in the time line. In the
extension of the HCDAM , the temporal restrictions were used as the expert knowledge
that represents some situations in the process. Although using temporal restrictions
is not common to represent the expert knowledge in petrochemical processes, the
operators normally are acquainted with the sequence order of the event types in a
specific scenario.

7.4.3 Chronicle database construction

To construct the chronicles, the extended algorithm HCDAM was used in this method-
ology. The procedure consists in to compile the totals of scenarios with their learning
event sequences for each one, and also are required the temporal restrictions that define
the expert knowledge in each scenario. Once, these sequences and temporal restrictions
are defined, the algorithm generates automatically the chronicles. This algorithm works
without problems for chronicles obtained from sequences with less of 15 occurrences
of events. But when the sequences contain more than 15 event occurrences and there
are repetitions of event types there, the algorithm works with limitations due to the
complexity of the Cartesian product on the HCDAM .

To implement the chronicle database on the DCS system requires the conversion of
the chronicles to a set of predicates. Chronicle recognition system corresponds to these
sets of predicates; therefore, it is necessary a conversion of the parameters used in the
predicates to a standard language like Ladder, Grafcet, Visual Basic or C++ that are
commonly used in the HMI supervisory systems. However, it is necessary a license to
work with a CRS - Chronicle Recognition System; moreover, this tool has never been
applied in safety tools of the petrochemical sector.
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Carry out a new element in safety systems requires guaranteeing its reliability,
efficiency, and trust because the safety that is at stake not only is in the process but
also in many people. In improving the reliability of industrial systems, the key point
lies in human-machine interaction; nevertheless, it is obvious that it is much more
complicated to normalize the behavior of the man than the behavior of a machine. This
is a difficulty that has given rise to many lines of multidisciplinary research, especially
in those industrial sectors in which the impact of possible human errors is high: nuclear
plants, aviation, and the chemical industry.

7.5 Conclusion

This chapter presented two practical examples of the proposal "Chronicle Based
Alarm management". In the first example, the Hydrostatic Tank Gauging system
was described and the three steps of the methodology CBAM were applied. For the
Chronicle database construction, the version extended of the HCDAM was used,
furthermore we described the chronicles in three scenarios. The evaluation of the
chronicle C1

11 tested this temporal pattern using a sequence of evaluation, which at the
end generates a SUPER ALARM. In the second example, the vacuum oven system
was described. This example contains expertise information that was included using
the extended version of the HCDAM . The scenarios of normal startup, abnormal
start-up, and normal shutdown were explained and temporal patterns represented as
chronicles were exposed. In the process of evaluation of the chronicle C2

11, we indicated
how the occurrence frequency of each event type is included in the recognition of
the chronicle. For instance, in this scenario, the event types V 1 and LF1 occurred
two times. With this methodology relevant information (SUPER ALARMS) can be
given to the operators reducing a large number of alarms, increasing the reliability in
the execution of the startup and shutdown procedures. This chapter ends with the
discussion of how to implement the Chronicle Based Alarm Management methodology,
expressing the principal requirements in each step.





Conclusions and future work

A new methodology for alarm management of complex processes has been proposed.
This methodology proposes a diagnosis process as a support to the operators during
startup and shutdown stages based on situation recognition. Situations to recognize
correspond to normal and/or anormal process behaviors modeled by temporal patterns
called chronicles.

The Chronicle Based Alarm Management relies on an hybrid modeling of the process
under study. This hybrid causal model captures the hybrid features of the process and
also the causal relations between the continuous variables according to the procedural
actions performed by the process operators. To design the chronicles we propose to use
learning techniques. The Heuristic Chronicle Discovery Algorithm Modified HCDAM

learns chronicles from a set of event sequences obtained by simulation representing
particular process behaviors. The event types of the representative sequences are issued
from the hybrid causal modeling by an abstraction of the continuous variables evolution
relatively to alarms limits.

The Chronicle Based Alarm Management is structured in three main steps: Event
types determination, Learning event sequences generation and Chronicle database
learning. The whole approach has been illustrated on two real case studies from the
Cartagena Refinery: an Hydrostatic Tank Gauging system and a vacuum oven system.

Extensions of the original HCDAM have been proposed. The first extension
aims to integrate expert knowledge during the learning process through temporal
restrictions. The second extension consists in considering the frequency of each event
type in the representative sequences. These two extensions allow to reduce the number
of learned chronicles and then the number of chronicle instances completely recognized
in an input event flow, i.e the conservatism of learned chronicles.

Future work
The work presented in this thesis opens several promising directions for future researches.
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In a first time, it would be interesting to test and validate the chronicle database by
taking into account the operator feedbacks, so that to evaluate the acceptability of the
proposal. This validation can be developed on the pilot plants of the ICP (Instituto
Colombiano del petroleo) and on the laboratories of the Andes University.

A new model of chronicles will be proposed including the simultaneous occurrence of
events, repetition of the events and to analyze the variability of the materials included
into the process.

Currently the approach has been applied on two case studies that constitute two
parts of the Cartagena Refinery but it has to be extended to the whole process by
integrating the different areas of the system. For this and in the objective to transpose
the approach to large scale systems, CBAM would benefit from a decentralized or
distributed approach in which the notion of sub-chronicles would be exploited. This
induces a new definition of the chronicles to introduce communication aspects through
for instance the notion of shared events. This can also state a problem of communication
delays in the information exchange between chronicles.

From a chronicle learning point of view several extensions could be addressed.
One interesting problem is to extend the chronicle learning algorithm by integrating
notably negative examples that could reduce the conservatism of the learned chronicles.
Forgetting capabilities would also be an interesting feature to integrate into the learning
algorithm HCDAM .

This is important to take the structural evolutions of the process (e.g change
of components, degradation or aging of a component, ...) into account without a
complete reconstruction that is to say a new learning of the chronicle database. Finally
the problem of integrating into the chronicles forbidden events could be considered.
Indeed, a forbidden event corresponding to the no-event predicate in the chronicle
language description allows to design exclusive chronicles that is to say chronicles
that cannot be recognized by the same input flow. This property of exclusiveness
is challenging for diagnosis purposes as it can permit to conclude with certainty on
a fault occurrence associated to a recognized chronicle. Another issue concerns the
training event sequences. It would be interesting to consider Hazard and Operability
studies or Event Tree Analysis for the determination of the scenarios and the event
types identification.

Finally, another perpective is the exploitation of the chronicle recognition as a
super-alarm (see Fig. 7.44) generator providing to the operators relevant information
about the process situation. A new extension of the layer of protection corresponding
to a diagnosis step based on chronicle recognition should have to be integrated in the
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Figure 7.44: SUPER ALARM layer of protection

global safety structure increasing the reliability of the layer of protection related to the
operator intervention.
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