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General introduction

Polymer nanocomposites have drawn a lot of attention both from the academic and in-
dustrial research in the last decades, thanks to their remarkable mechanical and rheological
properties as compared to pure polymers. Both the fillers and the polymer matrix can be of
various types and the possibility of the compounds is theoretically infinite. This opens the
way to new materials having tailored properties for specific industrial applications. For in-
stance, polymer nanocomposites are very attractive for tire applications [1, 2]. The presence
of the fillers, such as carbon black or silica nanoparticles, in a polymer or rubber matrix can
boost the dissipative properties of the formed polymer nanocomposites system and leads
to mechanical reinforcement [3]. Furthermore, the polymer nanocomposites system display
better shock resistance and wear resistance than the pure polymer matrix. The "Green X"
tires from MICHELIN are also specially designed to reduce the fuel consumption.

Among the various kinds of fillers, aggregates have been used in the industrial applica-
tions for decades. They can lead to large levels of mechanical reinforcement. Apart from
reinforcement, filled polymer composites exhibit nonlinear response, which is generally char-
acterized by a significant drop of the storage modulus. This is referred to as the Payne effect.
The Mullins effect, which refers to stress softening in repeated cycles, is another important
nonlinear effect observed in filled polymer composites.

In spite of decades of research, the relation between nanocomposites structure and rhe-
ology is far from being understood. Macroscopic approaches such as Einstein’s law for
suspensions or Guth’s law in the context of filled elastomers generally fail for the volume
fraction typical of applications. The lack of complete understanding so far may come from
the various competing mechanisms and factors occurring in polymer nanocomposites and
which contribute to reinforcement. First, the state of dispersion of the nanoparticles plays a
pivotal role in the reinforcement of polymer nanocomposites [4]. Poorly dispersed nanopar-
ticles could build small aggregates or agglomerates or even mesoscopic clusters, which can
enhance the effects of both the filler-filler and polymer-filler interactions. Similarly, fractal-
like aggregates are known to display outstanding viscoelastic properties even with relatively
low volume fraction [5, 6, 7]. These observations are generally interpreted as a result of the
formation of a gel, mediated by filler-filler interactions [8]. The polymer chains near filler
may have hindered mobility. The existence of a glassy layer [9, 10] is, however, still in debate
since the relaxation dynamics of polymer chains near particles surface is found to be not
different from the chain dynamics far away from particles [11], as evidenced experimentally
[12, 13].

Simulation approaches, such as Molecular Dynamics, can give a detailed view of the
interplay between polymers chains and fillers at an atomistic local scale. This is currently
the focus of many studies [14]. However, it is much more difficult to address the properties
emerging at a mesoscopic scale. To simulate a large number of aggregates, each at least
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100 nm in diameter in an entangled polymeric matrix is presently out of reach.
In this work, we propose a mesoscopic model to simulate polymer nanocomposites and

measure the contribution of fillers to the rheological reinforcement. The first ingredient of
the model is an explicit description of fillers. Their size and structure can thus be chosen at
will. For the sake of comparison, we will consider individual nanoparticles, flexible or rigid
aggregates. The second ingredient of the model is an implicit description of the polymeric
matrix: it is represented by an effective viscoelastic medium, through a memory kernel which
depends on the history of the filler velocity. Again for comparison, we will compare two
limiting cases of matrix: a simple fluid and an entangled melt, that are relevant respectively
to colloidal suspension and polymer nanocomposites.

In chapter 1, we introduce the general background about the rheology of a polymer
nanocomposites. We illustrate some key experimental results and briefly introduce the
various theoretical and simulations approaches, as well as the physical mechanisms put
forward.

In chapter 2, we explain our modelling of nanocomposites. We describe the aggregates
and explain the simulation technique used to represent the viscoelastic matrix.

Chapter 3 is devoted to linear rheology. We use simulation at equilibrium and a Green-
Kubo approach. We probe the influence of the key parameters, such as the filler type
and the filler volume fraction, etc. We investigate the cause of reinforcement in the stress
relaxation modulus G(t) by looking at the motion of aggregates and the dynamic structure
factor.

Finally, chapter 4 addresses non-linear rheology. Our simple model of nanocomposite
exhibits the Payne effect, which we study in detail. We also try to relate the microscopic
structure of aggregates to the macroscopic behavior of the material.
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4 CHAPTER 1. BACKGROUND

In this chapter, we present a rapid overview of nanocomposites. We first describe what
fillers are and how they may be dispersed. Next, some typical experimental results are
summarized, both the linear and non-linear regimes. Modelling approaches ranging from
atomistic simulations to hydrodynamic theory have been used for polymers, they are briefly
presented. Finally, we explain the various mechanisms that have been put forward to
rationalize the rheology of nanocomposites.

1.1 Polymer nanocomposites (PNCs)
Composites are materials which consist of two or more components and the combination

has better properties than any single component considered alone. For instance, polymer
composites consist of filler particles within a polymer matrix and the hybrid system provides
improved properties compared with the pure polymer matrix. The polymer matrix can be
a polymer melt or a rubber-like material. The former material is polymer liquid above its
glass and/or crystallization temperature and the latter can be natural rubber, without any
extraction process, or an elastomer, which has rubber-like elasticity due to the cross-links
between polymer chains. Polymer composites can undergo a large deformation and display
a good energy dissipation owing to the enhanced elasticity.

Contrary to traditional polymer composites, in which the filler has much larger size than
nanoscale particles, polymer nanocomposites contain nanoparticles as filler, that leads to an
increased polymer-filler interaction surface. For instance, the nano-scale filler can provide
a small mean particle-particle distance and increase the interfacial area as compared to
macro-scale filler. Thus the macroscopic properties can be enhanced [15, 16].

1.1.1 Applications of PNCs
Owing to their outstanding mechanical properties, the polymer nanocomposites have

been developed since the 1940s with a specific focus on rubber tires. In the following
decades, new fillers have been developed, such as carbon nanotube, graphite or C60, and
a great number of polymer nanocomposites combinations has been discovered. Hence the
polymer nanocomposites have been employed in a wide range of domains owing to their var-
ious properties. First, the tire industries continue developing new generation of productions
based on the exceptional mechanical properties of polymer nanocomposites. For instance,
the MICHELIN "Green X" tires offer an excellent performance with high wear resistance,
outstanding grip on wet roads and reduced fuel consumption. The polymer nanocomposites
can also be useful for electronics and automobile applications, such as the electrical insu-
lation and capacitors, for their unique combination with dielectric properties. Moreover,
polymer nanocomposites may be used as products with low flammability owing to their
flame retardancy and limited gas permeation [17, 18, 19].

1.1.2 Filler type
The filler in polymer nanocomposites can be of various types, for instance, carbon black,

silica, C60, clay, carbon nanotubes, graphite, nanorods or organic nanofillers. The fillers can
have different shapes, such as spherical, rods, plate or group of primary particles, such as
agglomerate or aggregate [19, 16]. The interface between the nanoparticles and the polymer
matrix may play a critical role in the dispersion state, chain dynamics and many resulting
properties of polymer nanocomposites. The controllable polymerization methods, such as
atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain
transfer (RAFT), have been employed to attach polymers to nanoparticle surface. Some
specific interfaces can also be created by the grafting-to and grafting-from approaches within
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a range of graft density. Hence, the resulting properties of polymer nanocomposites can be
tailored for certain functions. A schematic of functional applications based on filler type in
a polymer nanocomposites is shown in Fig 1.1, where the compounds are in the inner cycle,
the graft methods are in the outer cycle while the corresponding applications are beyond
the outer circle [19].

Figure 1.1: Schematic illustration of the usual types of nanoparticles used in polymer
nanocomposites. The applications correspond to the materials in the inner cycle [19].

Table 1.1: Shape, size and aspect ratio of fillers [16, 20].

Fillers Approximate shape Dimension(nm) Aspect ratio
Traditional Fillers
Carbon black agglomerate of spheres 10∼100 1∼5
Silica agglomerate of spheres 20∼200 1∼5
Carbon fiber rods 5000∼20000 10∼50
Mineral: CaCO3 sphere platelet 600∼4000 1∼30
Mineral: silica agglomerate of spheres 8000∼30000 5∼10
Mineral: talc, china clay platelet 5000∼20000 5∼10
New Fillers
Carbon graphite plate 250∼500 15∼50
Carbon nanofiber rod 50∼100 50∼200
Carbon SWNT rod 0.6∼1.8 100∼10000
Carbon MWNT rod 5∼50 100∼10000

A summary of the size, shape and aspect ratio of some common nanofillers is shown in
Table 1.1. The traditional fillers, such as carbon black and silica, have a large range of size
and a small aspect ratio contrary to new nanofillers, like the carbon graphite, nanofiber or
nanotube [16]. A general comparison of the sizes of the different elements which constitute
polymer nanocomposites is shown in Fig 1.2. The monomer unit here is the isoprene which
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is the main component of natural rubber. It has a size comparable to graphite basic unit.
The polymer coil has a diameter around 50 nm, which is comparable with the size of a
primary particle, such as nanoparticles of carbon black or silica, and much smaller than
the filler aggregates, with a size ranging from 100 to 200 nm. The filler agglomerate is
much bigger with size reaching 10 μm [3]. The length scales of the different components in a
polymer nanocomposites are extremely diverse, ranging from several angstrom (monomer)
to micrometer (agglomerate).

Figure 1.2: Schematic of the length scales of the different components of polymer
nanocomposites [3].

1.1.3 Aggregates
The aggregates consist of primary filler particles which are linked via chemical or physical

interactions, and they are usually recognized to be unbreakable under deformation [21].
They display a porous and fractal-like structure [22]. If aggregates are fractal with fractal
dimension df , they obey the following relation,

Vp ∼ Np ∼ ddf , (1.1)

where Np is the number of primary particles in an aggregate, Vp the volume they occupy
and d is the aggregate size, which is usually given by the aggregate radius of gyration. The
volume fraction of particle φp within an aggregate is then [3],

φp = Vp

(π/6) d3 ∼ ddf −3. (1.2)
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A typical carbon black aggregate contains from 2 to 100 primary particles, and has
a typical radius near 200 to 300 nm [23, 3]. Transmission electron microscopical pictures
of carbon black aggregates are shown in Fig 1.3. The left picture (Fig 1.3a) illustrates
an aggregate composing from spherical carbon black nanoparticles with a distribution of
radii from 10 to 30 nm. The sample is deposited without solvent [23]. The right figure (Fig
1.3b) shows a TEM (transmission electron micrographs) of the furnace black within S-SBR1

composites after removing the unbound polymer. The aggregates here are composed of 50
to 200 carbon black particles [3].

(a) (b)

Figure 1.3: TEM pictures of carbon black aggregates [23, 3].

A microscopic view of a nanocomposite is given in Fig 1.4: the polymer nanocomposites
consist of silica and SBR, with filler volume fractions 8.4% and 21.1%, where dark grey levels
represent the silica particles and the light grey is for SBR polymer matrix. The compounds
(a) shows dense aggregates with a diameter near 150 nm and the pure polymer fraction is
around 41% in the surface of analysis. In the case of dense silica volume fraction, a large
filler structure has been seen and the polymer fraction in the surface of analysis is only
about 20% [7].

Figure 1.4: TEM pictures of silica-filled SBR nanocomposites, (a) Φsi = 8.4% vol.
and (b) Φsi = 21.1% vol. [7].

The spatial structure of the aggregates may be characterized by small angle X-ray
scattering (SAXS) [24]. A SAXS study of silica-filled SBR nanocomposites with a series
of silica volume fraction Φsi is shown in Fig 1.5, including the nanocomposites systems
represented in Fig 1.4. The scattered intensity I(q) of the monodisperse and spherical silica

1SBR is the styrene-butadiene rubber from families of synthetic rubbers and S-SBR is the SBR
polymerized from solution.
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particles can be written as follows:

I(q) = ΦsiΔρ2VsiS(q)P (q), (1.3)

where q = π/R is the norm of the wave vector, Φsi is the silica volume fraction, Δρ is the
density contrast between silica and polymer matrix, S(q) is the total bead-bead structure
factor and P (q) is the normalized form factor of the beads. The rupture in slope seen
in Fig 1.5 indicates a structure change and is associated to the typical size of particle or
structure. The reduced intensity I(q)/Φsi emphasizes the structure factor S(q) of distinct
filler structure, at a fixed P (q). In the left figure, the primary particles can be found at
position qsi = π/Rsi and the typical sizes of large structures, aggregates and agglomerate
(or branch) can be seen at qagg = π/Ragg and qbranch = π/Rbranch, respectively. In the right
figure at intermediate q and high q regions, the scattered intensity decreases with increasing
silica volume fraction at intermediate q and the break in slope related to the aggregate
size moves to high q, which indicates a small aggregate with a dense filler concentration.
Moreover, the aggregates considered here are polydisperse in size and they have a log-normal
distribution on the aggregate size, the number of primary particles in a single aggregate.
The typical sizes of aggregates or the agglomerates measured here are the average value of
system and the mean silica bead-bead distance is reported as 〈Rsi〉 = 8.9 nm [7].

Figure 1.5: SAXS data for silica structure of SBR nanocomposites. (a) Reduced
scattered intensity I(q)/Φsi as a function of silica volume fraction. The dotted line
is the form factor of silica beads. (b) Zoom of the figure for intermediate q wave
vectors [7].

Compared to bare or grafted single nanoparticles, the aggregates provide a wider struc-
ture with an amount of void volume, which leads to a fractal and porous structure, which
can trap polymer chains. Owing to their unique capacity for enhancing the mechanical
polymer properties, the aggregates are interesting for various industrial applications, such
as tires, shoes and reinforced plastics, etc [15].

1.1.4 Miscibility of filler
Miscibility is associated to the dispersion state of nanoparticles in a polymer matrix,

which may crucially influence the properties of the composites system. Bare nanoparticles
can have a good miscibility if the polymer chain are big enough. However, it is hard to
obtain a uniform dispersion of nanoparticles in a polymer matrix [18, 25].

Usually the nanoparticles, except carbon-based fillers, are non-organic while the poly-
mers are organic, thus their different chemical natures can raise an issue of miscibility. A
common technique is to graft the polymer chains at the surface of fillers with a chemical
nature similar to that of matrix chains [23, 3, 18]. The influence of grafted chains to the
miscibility of nanoparticles into a polymer matrix is dependent on the grafted chain density
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and the size ratio between grafted chain and chain in matrix. As shown in Fig 1.6, a hy-
brid system can display four possible structures namely, strings (chains), sheets, amorphous
aggregates and dispersed particles [19]. A good dispersion state occurs when the grafted
chains are smaller than the chains of the matrix. The large grafted chains length may lead
to the anisotropic string and sheet like conformation [26]. If in addition grafted density is
low, the amorphous aggregates can also be observed [26, 27].

Figure 1.6: Miscibility of nanoparticles in terms of the grafting chain density np and
the ratio of radius of gyration between grafted chains and matrix chain. The letters
A, H, C and D represent the amorphous aggregates, sheets, chains and dispersed
nanoparticles, respectively [19, 26].

In the industrial productions, as explained in ref [23], the first step is to breakdown the
fillers agglomerate in order to separate the nanoparticles and aggregates from the agglom-
erate and to disperse the fillers into the polymer matrix. The second step is the breakdown
of polymer chains at high temperature and under large extensions, which depends strongly
on the chemical nature of the polymer chains and the functional part can be inserted by a
specific chemical process. The last step relies on active agents to anchor on the surface of
fillers polymer chains formed during the previous step.

1.2 Rheological properties of PNCs

Polymer nanocomposites exhibit different behaviors from the pure polymer matrix both
in the linear and the nonlinear regimes. They are addressed in turn below.



10 CHAPTER 1. BACKGROUND

1.2.1 Linear rheology
In this regime, the system manifests a linear response, which occurs when the deforma-

tion is small, for instance, a small strain amplitude (less than 1%) in an oscillatory shear.
The basic quantities are the storage and loss dynamic moduli:

G′(ω) = ω

∫ ∞

0
G(t′) sin(ωt′)dt′, (1.4)

G′′(ω) = ω

∫ ∞

0
G(t′) cos(ωt′)dt′, (1.5)

where ω is the frequency and G(t) is the stress relaxation modulus (see section 1.6 for
details).

Liquid/solid transition

In the linear regime, the response is characterized by the dynamic modulus, the storage
modulus G′ and the loss modulus G′′, which represent the elastic and viscous response
of a viscoelastic material. Some background materials on these quantities can be found in
section 1.6. When the storage modulus is larger than the loss modulus, the material exhibits
a solid-like behavior. Similarly, when the storage modulus is smaller than the loss modulus,
the behavior is liquid-like. The intermediate point, where the two dynamic moduli have a
close value G′ � G′′, is called the gel point.

As shown in Fig 1.7, in the linear region, both the storage and loss modulus of grafted-
silica-filled PS matrix nanocomposites exhibit a frequency dependence. Besides, the filler
volume fraction apparently affects the behavior of polymer nanocomposites, especially with
a high filler density and large polymer chains. The pure polymer matrix displays a liquid-like
behavior even at high shear frequency while the nanocomposites with a weak silica volume
fraction, φsi = 0.5% to 5%, is dominated by the polymer matrix and manifests a liquid-
like behavior in a wide range of frequency. Nonetheless, the dense filled nanocomposites,
here with a silica volume fraction φsi = 15%, displays a solid-to-liquid transition with
increasing frequency. The nanocomposites exhibit a solid-like behavior at low frequency
while the polymer matrix is dominant at high frequency and a liquid phase can be seen.
Even though the polymer chain length may play a relatively minor role as compared to the
filler-filler interactions or the polymer-filler interactions, we can observe reinforcement on
the magnitude of both dynamic modulus and the gel point moves towards low frequency
with long polymer chains.

Reinforcement

The storage and the loss moduli of a pure polymer exhibit the power laws behavior
in the low frequency limit: G′(ω → 0) ∼ ω2 and G′′(ω → 0) ∼ ω1. Some dilute filled
polymer nanocomposites can display similar behavior, which indicates the dominant role of
the polymer matrix.

The reinforcement factor R is defined from the ratio between the storage modulus and
that of the unfilled system

R = G′(φ)
G′(φ = 0) − 1, (1.6)

where φ is the volume fraction of filler. In the dilute regime, the filled polymer matrix
carries a weak filler volume or mass fraction, which leads to polymer matrix dominant
liquid-like behaviors and may be described by hydrodynamic regime. The reinforcement for
such a dilute hybrid system manifests a linear dependence on the filler volume fraction, as
expressed by the Einstein-Smallwood equation [29]:

R = 2.5φ, (1.7)
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Figure 1.7: Storage (G′, solid symbols) and loss (G′′, hollow symbols) modulus of
PS grafted-silica filled PS (a) 44 kg/mol and (b) 150 kg/mol for different volume
fractions of filler and the TEM images of samples [28].

Regarding the complicated interaction between elements in a polymer nanocomposites, some
additional components should be taken into account, for instance, the filler-filler interaction
and the polymer-filler interface, this will be discussed in section 1.4.

Figure 1.8: Dynamical modulus G′ (hollow symbols) and G′′ (solid symbols) of silica
filled SBR systems as a function of angular frequency ω (a) with a series of silica
volume fraction (0%, 8.4% and 12.7%) at a given temperature (50◦C) and (b) with
a various temperature at a given filler volume fraction 21.1% [7].

The pure and filled SBR polymer nanocomposites at a given temperature manifest a
solid-like behavior in a large range of frequency while the filled SBR polymer nanocomposites
with a high silica volume fraction presents a clear temperature dependence on the loss
modulus, whose magnitude decreases versus increasing temperature, as shown in Fig 1.8(a)
and (b). The corresponding reinforcement factors obeys the Einstein-Smallwood equation
(Eq 1.7) below the critical volume fraction, after which a percolating structure may be built
up and the reinforcement is no longer described by the Einstein-Smallwood power law [7],
as shown in Fig 1.9.
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Figure 1.9: Reinforcement factor G′/G′
0 (G/G0 in the figure) of nanocomposites

with filler volume fraction from 8.4% to 21.1%, where G′ is the storage modulus
at frequency ω = 150 Hz and G′

0 corresponds to that of the polymer matrix. The
dashed line represents the Einstein law given by Eq 1.7 [7].

1.2.2 LAOS: large amplitude oscillatory shear
A schematic of the dynamic modulus versus the strain amplitude in an oscillatory shear

with a given frequency is illustrated in Fig 1.10. At small strain amplitudes, both the
dynamic moduli are independent of the strain amplitude and the shear stress exhibits a
sinusoidal form, corresponding to the applied shear deformation. The system is in the
linear regime or undergoing SAOS (small amplitude oscillatory shear), as already discussed
in previous section 1.2.1. The nonlinear behavior occurs at large strain amplitudes and the
shear stress is distorted because of the high order harmonic terms in the stress, then the
system is in the nonlinear region or undergoing LAOS (large amplitude oscillatory shear)
[30].

The nonlinear behavior of dynamic modulus for different complex fluids can be classified
into four classes: strain thinning, strain hardening, weak and strong strain overshoot, as
shown in Fig 1.11 [31]. The strain thinning and hardening correspond to a monotonous
dependence on strain amplitude, where the dynamic moduli decrease and increase with an
increasing strain amplitude, respectively. Most polymer solutions and melts are classified
into the strain thinning while PVA/Borax solution can be associated to the strain hardening.
The weak strain overshoot corresponds to an overshoot on the loss modulus, for instance,
Xanthan gem solution, PEO/PBO diblock copolymer solution, fumed silica suspensions and
5% silica dispersion in mineral oil belong to this class. The last category is the strong strain
overshoot where the overshoots occur on both dynamic modulus. Typical examples for this
class are the colloidal aggregate gel and 10% silica suspension in PPG [31].

1.2.3 Payne effect
The Payne effect is a well-known nonlinear phenomenon of polymer nanocomposites and

it is named after the British rubber scientist A. R. Payne who made extensive studies of the
phenomenon. Payne’s original paper [32] investigates the nonlinear relationship between the
storage modulus and the strain amplitude for a carbon black filler rubber system. As shown
in Fig 1.12, the Young’s modulus of a MAS carbon filler rubber system exhibits a nonlinear
dependence on the strain amplitude while the pure rubber displays a linear behavior over
the whole range of deformation. The nonlinearity appears for strain amplitude 1.% and the
Young’s modulus drops by almost one order of magnitude for high volume fraction. That is
the Payne effect, which describes a dependence of the viscoelastic storage modulus on the
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Figure 1.10: Schematic illustration of the strain sweep test at a fixed frequency in
order to determine the linear and nonlinear viscoelastic regions [30].

Figure 1.11: Four archetypes of LAOS behavior: (a) strain thinning, (b) strain
hardening, (c) weak strain overshoot and (d) strong strain overshoot [31].

imposed strain amplitude.
In the following decades, a large number of studies were devoted to the Payne effect [33,
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Figure 1.12: Variation of Young’s modulus E∗ versus the dynamic strain amplitude
for a natural rubber vulcanizates containing distinct proportions of MAF black [32].
The numbers along the curves are the volume fractions of filler.

34, 35, 36, 37]. The Payne effect affects not only the storage modulus G′ but also the
loss modulus G′′, as shown in Fig 1.13, where both the dynamic modulus of a carbon black
filled S-SBR compounds show a reinforcement increasing with the filler loading. The storage
modulus G′ shows a monotonous decrease with increasing strain amplitude while the loss
modulus G′′ presents clearly an overshoot when the filler loading is important. This is
associated to the type III (weak strain overshoot) of Fig 1.11.

(a) Storage modulus (b) Loss modulus

Figure 1.13: Storage (a) and loss (b) modulus as a function of strain amplitude for
carbon black filled SSBR compounds with different filler loadings [38].

1.2.4 Mullins effect
Stress softening is also an important nonlinear effect for both filled and unfilled rubbery

systems, which is usually referred to as the Mullins effect [39, 3]. The stress softening occurs
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with a cyclic shear at a given strain amplitude, where the shear stress follows distinct stress-
strain curves in the stationary state and in the transient state. Whenever the stress-strain
cycle exhibits an apparently reduced hysteresis and a stress amplitude at stationary state
reduced to that at transient state, this is referred to as stress softening or the Mullins effect.
As shown in Fig 1.14, a carbon black filled SBR system has been undergoing a uniaxial
deformation and a uniaxial cyclic deformation (5 cycles at each fixed strain amplitude)
versus an increasing strain amplitude. At a given strain amplitude, the stress-strain cycles
shrink apart from the very first cycle, which can be called the stress softening. Even by
increasing the strain amplitude, the stress can no longer reach the same magnitude from the
initial state at a given strain, which indicates an irreversible structure change has happened
during the cyclic shear.

Figure 1.14: Stress-strain response for a carbon black filled SBR submitted to a
simple uniaxial tension (dashed lines) and to a cyclic uniaxial tension (solid lines)
with increasing strain amplitude, 5 cycles at each fixed strain amplitude [39].

1.2.5 Start up steady deformation
The time evolution of the shear stress in a start-up steady shear is shown in Fig 1.15,

where the system are silica filled polymer matrix with a series of mass fraction from 0%
(unfilled) to 15% and two polymer matrix already given in the legend. The start-up steady
shear occurs at a given shear rate 0.1 s−1. The stress exhibits an overshoot even with a
small filler loading and it is generally considered to be related to the breakdown of the filler
cluster, formed by aggregates or agglomeration of filler particles, and the morphology change
when the system is forced to explore new stationary conformations by shear deformation
[28].

1.3 Modeling methods
As shown in Fig 1.16, to model the properties of materials, one needs to distinguish the

macro-, meso- and micro-scale structure. Modeling methods are developed corresponding
to different length scales, from continuum mechanics to discrete molecular dynamics or
quantum mechanics, with decreasing time scale [25]. Multi-scale modeling is essentially
difficult because the physical hypothesis in modeling strategies within distinct length/time
scale are rarely identical. For instance, it is impossible to simulate a macroscale material
or estimate its relative macroscopic properties via a microscale discrete modeling method.
Furthermore, the gap between the continuum and the discrete modeling methods requires
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(a) (b)

Figure 1.15: Shear stress response during the start-up of steady shear for (a) 44
kg/mol and (b) 150 kg/mol PS composites with 0 (black), 0.5 (red), 1 (green), 5
(blue), and 15 (cyan) in mass fraction with a fixed steady shear rate. The left axis
only corresponds to a loading of 15% mass fraction silica while others are plotted
on the right hand axis [28].

some physical bridging laws to connect these two kinds of methods, for the sake of completing
the "top to bottom" or "bottom to up" algorithm.

1.3.1 Micro-scale modeling

Molecular dynamics

The molecular dynamics is a computation method to simulate and study the classical
movement of atoms or molecules. As a recent example is given in the study by Davris
[40], where the filler size effect and the filler surface effect have investigated via both the
experimental and numerical results. Two models have been issued, the first is a particulate
model in which the nanoparticles are surrounded by polymer chains, as shown in Fig 1.17a,
and the second one is a simplified model which can reduce the computational resource and
in which the polymer chains between nanoparticles are considered as polymer chains layer
between two walls, representing filler surfaces, as shown in Fig 1.17b, in which three different
values of the film thickness were used in the simulations, which are denoted (from left to
right) in this paper as thick, thin, and ultrathin film. The reinforcement by a high filler
volume fraction can be exhibited via both methods cited above.

In the molecular dynamics, all phenomenon are taken into account at the microscopic
scale and this can provide detailed information of the evolution of the system [41, 42].
However, this induces a problem of scale when system of interest is composed of various
elements with different size scale, for instance, a polymer nanocomposites, in which the size
of elements varies from microscopic scale to mesoscopic scale. By the conventional molecular
dynamics, the simulations are limited to systems with small number of nanoparticles [43, 44].

PRISM

The polymer reference interaction site model (PRISM) is the polymer integral equation
theory based on the reference interaction site model and it has been developed to deal
with the structure, thermodynamics and phase behavior of polymer nanocomposites melts
[45, 46]. Within a polymer nanocomposites system, the PRISM takes into account the
polymer-polymer, polymer-nanoparticles and nanoparticles-nanoparticles correlations. The
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Figure 1.16: Schematic of a nanocomposite structure. (a) A part of airplane rep-
resents a large artificial multi-scale composite structure. (b) The top-to-bottom
methodology within the continuum mechanics has been employed for engineering
the functionality of material. While the gap between the continuum mechanics and
discrete mechanics requires physics-based bridging laws to establish the up-bottom
and the bottom-up methodology. (c) Relevant polymer relaxation processes as a
function of time and temperature [25].

PRISM theory can predict correlation over all length scale within a compressible fluid
framework thus it is not a mean field theory. Nonetheless, the PRISM theory can only be
employed for spatially homogeneous states.

DFT

The classical density functional theory (DFT) is based on expressing the free energy of
a system in terms of single particle density fields [47]. It can predict the density profile of
spatially inhomogeneous system, such as fluids near surfaces, and phase transitions between
homogeneous and inhomogeneous phases and polymer nanocomposites can be described
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(a) Particulate model.

(b) Film model.

Figure 1.17: Two molecular dynamics simulations for the polymer nanocomposites.
(a) Particulate model is a precise method to simulate the exact motion of polymer
chains and nanoparticles. The filler beads are shown in red and the polymer chains
in green. For clarity, only a fraction of the polymer chains are shown. Four nanopar-
ticles of average diameter about 10 times the diameter of the monomer beads are
shown. (b) Film model is a simplified simulation method for dense filled systems
[40].

by DFT at one and two particle level. However, the influence of nanoparticles on the
bulk polymer-polymer intermolecular correlation, collective scattering structure factors, and
phase separation can not be addressed via DFT [46].

Self-consistent mean field theory

The self-consistent mean field theory is a classic approach in polymer physics [48]. It
is a powerful tool to simulate block polymer with micro-phase separated on a mesoscopic
length scale [46]. However, the intermolecular pair correlation functions are not addressed.

1.3.2 Meso-scale modeling

Slip link model

The slip link model is a powerful model to represent entangled polymers, which inherits
the tube model by conserving the topological constraints onto chain motion [49]. The
polymer chains are generally described as Rouse chains, in which the Brownian particles
are connected by Hookean springs. The entanglements of polymer chains are artificially
modeled by slip links [50]. The slip link model is an efficient approach to study the non-
equilibrium dynamics of the entanglement of polymer chains and a number of applications
of slip link models has been reported in the works [51, 52, 53, 54].

The Likhtman slip link model can reduce a significant computational cost by an or-
der of magnitude compared to molecular dynamics [54]. In Likhtman’s model [54], the
polymer chains are described as non-interacting Rouse chains which are constrained by ad-
ditional springs, which represent the topological constraints, known as slip links, as shown
in Fig 1.18, where xj is the location of the ring of one slip link and the fixed anchoring
points �aj are distributed around the segment position �Sj with a Boltzmann weight. The
ring of the slip links can move along the chain following a straight lines between monomers.

As long as the ring of slip links is not destroyed, the corresponding anchoring points are
fixed in space. Thus, the total potential of a single chain can be decomposed into 2 parts,
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corresponding to Rouse chain UROUSE and the slip links USL:
U = UROUSE + USL, (1.8)

UROUSE(�ri) = 3kBT

2b2

Nm∑
i=1

(�ri − �ri−1)2 , (1.9)

USL(�sj) = 3kBT

2Nsb2

Z∑
j=1

(�aj − �sj)2 , (1.10)

where Nm is the total number of segments of a polymer chain, b the bond length and Z is
the number of slip links per polymer chain.

Figure 1.18: Schematic of a Rouse chain with slip links [49].

Figure 1.19: Stress relaxation modulus in terms of distinct chain length Nm [49].

In ref [49], the stress relaxation modulus of a slip link polymer model has been computed,
as shown in Fig 1.19, where the longer chain length leads to a rubber plateau, which is not
observed for short chains. In ref [50], the slip link model has been developed to simulate a
filled entangled polymer melt in order to study the reinforcement induced by the effect of
the fillers on the entangled network. The polymer chains are described as in [49] while the
filler particles are immobile spherical object with or without grafted chains. The grafted
chains on the fillers surface are represented by "additional" slip links in the vicinity of fillers.
The effect of the grafted chain density on the viscosity of a filled entangled polymer system
is shown in Fig 1.20. The bare (non-grafted) fillers follow the Einstein law, as shown in Fig
1.20a, whereas the grafted fillers exhibit a distinct dependence on filler volume fraction from
the Einstein law and a reinforcement associated to the number of grafted chains ("additional"
slip links), as shown in Fig 1.20b to Fig 1.20d.

Dissipative particle dynamics

The dissipative particle dynamics, developed by Hoogerbrugge and Koelman [55], is
a mesoscopic particle-based method and combines features from molecular dynamics and
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(a) Viscosity for bare filler particles. (b) Viscosity for grafted particles with
50 additional slip links.

(c) Viscosity for grafted particles with
100 additional slip links.

(d) Viscosity for grafted particles with
200 additional slip links.

Figure 1.20: Viscosity as a function of the filler volume fraction for bare (a) and
grafted (b) (c) (d) fillers distributed on a cubic lattice (red), randomly dispersed
(black) and for clusters of three bare particles randomly dispersed (blue). The
dashed lines represent the prediction of Einstein law. [50]

lattice-gas automata. In DPD, the forces felt by the particles include three parts:

Fi(t) =
∑
j �=i

(
F C

ij + F D
ij + F R

ij

)
, (1.11)

where Fi is the total force felt by particle i, the first term in the right F C
ij (rij) is the

conservative force between a pair of particles i and j and only depends on the corresponding
distance rij , while the second term F D

ij and the third term F R
ij are the dissipative force and

the random force, respectively [56].
Nowadays, dissipative particle dynamics (DPD) has been developed into a robust meso-

scopic simulation method to study soft matter systems, including polymer solutions, poly-
mer melts and polymer composites. The first unique feature of DPD is to respect the
conservation of momentum, along the mass centers of particles/monomers, which is under-
going a potential such as the Lennard-Jones potential [57]. DPD has been developed and
employed to study various features of polymers, for instance, the morphology of polymer
nanocomposites [57]. As an illustration, the morphologies of filled polymer systems with
a high filler volume fraction φ = 20% − 30% are shown in Fig 1.21 by equilibrium and
non-equilibrium DPD simulations.
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Figure 1.21: Fully dispersed (a) and fully aggregated (b) morphologies of filler par-
ticles as investigated in the DPD simulations. The polymer matrix is pictured in
green. The particles are pictured in red and blue, corresponding to different types
of filler atoms [58, 57].

DPD leads to a reduction of computational cost and increases the simulation perfor-
mance. Indeed, the time step can be significantly larger than that used in traditional
molecular dynamics [57]. Nonetheless, the usual DPD model does not describe a realis-
tic polymer chain behaviors, on the contrary, the chains exhibit as "phantom" chains and
they can pass through each other. Thus, quantitative predictions respecting the reptation
dynamics can hardly be achieved, notably in a dense entanglement system.

1.3.3 Macroscale modeling

Macroscale approximation

The reinforcement factor can be defined in the following equations, corresponding to
the dilute regime where the volume fraction is low,

R =

⎧⎪⎪⎨
⎪⎪⎩

2.5φf , (Einstein − Smallwood)
2.5φf + 14.1φf

2, (Guth)
[1 + 1.25φf /(1 − 1.35φf )]2 − 1. (Eilers)

(1.12)

The Einstein-Smallwood formula is suitable to materials with a low volume fraction of
filler, so-called "dilute regime", where the reinforcement shows a linear superposition of
the individual particles contributions [59]. The Guth’s expression takes into account the
contribution from the interaction among neighboring particles [60]. The Eilers equation
considers the large increase in reinforcement, detected in glassy beads and non-vulcanized
filled SBR [40].

However, these relationships only take into account the filler volume fraction of filler, and
ignore the other influencing factors, such as the filler surface or the polymer-filler interaction.
Therefore, the equation above does not describe a filled SBR rubber system where both the
polymer-polymer and the polymer-filler interactions are significantly strong and can not
be neglected. The comparison between glass-beads filled PVA (poly(vinyl alcohol)) and
nonvulcanized filled SBR (styrene-butadiene rubber) is shown in Fig 1.22. Moreover, the
filler volume fraction may not be the only crucial parameter in reinforcement, the filler
particles’ size and shape may play a role in the composite rheology.

1.4 Physical mechanisms
A general schematic of nanoparticles filled polymer matrix systems is shown in Fig 1.23,

where we can distinguish the polymer bulky phase, the filler phase and the interfacial phase.
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Figure 1.22: Reinforcement versus volume fraction for (a) the model system (PVA
filled with glass beads of three different average radii rNP ) and (b) the nonvulcanized
filled rubber (SBR filled with nanoparticles of precipitated silica), obtained from
rheological experiments. The solid, dotted, and dashed lines correspond to the
predictions of Einstein-Smallwood, Eilers, and Guth models, respectively [40].

Figure 1.23: Schematic of the “two phase” model for nanoparticles filled polymer
composites. The “filler phase” consists of nanoparticles together with their nearby
bound segments and interfacial layer with restrained chain mobilities, while the
“polymer bulky phase” consists of mobile segments away from the particles [61].

The polymer bulky phase contains the polymer chains far from the fillers and the filler phase
is mostly related to aggregates or agglomerates of filler particles, while the interfacial phase
is an intermediate region near filler surface where polymer chains are sticked or attached on
the filler surface via polymer-filler interactions.

1.4.1 Contribution of the polymer
The chain dynamics can be induced by filler particles near their surface [62, 63, 64], and

the nanoparticles can increase or decrease the entanglement density and the disentangle
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relaxation time, depending on the nature of their surface (attractive or repulsive interaction).
The glass transition temperature may be affected [65]. The polymer matrix is generally
thought to play a minor role in reinforcement when compared to the filler or the interface
effect.

1.4.2 Polymer chain structure near surface of filler

As illustrated in Fig 1.23, the polymer chains are strongly absorbed on the filler surface
and this leads to an inhomogeneous configuration of polymer chain. The chains near filler
surface can be classified into 3 kinds: dangling tail (D), absorbed segments/trains (T) and
loops (L), where the letters correspond to the chains shown in Fig 1.24a [66]. The dangling
tails are the free segments anchored by on side on particles’ surface. The absorbed segments
are totally running in the interfacial shell of particle. The loops are chains starting and
ending in the same particle. As well as the three chains noted, the polymer chain can also
connect different particles, a configuration called ”bridge”. With a high filler concentration,
a polymer mediated network can occur owing to the chain absorption and bridging [67].
Furthermore, small fillers can boost the polymer-filler interaction surface rather than large
filler particles, at a given filler concentration, and this leads to an enhanced bridging [68]
[66], as shown in Fig 1.24b.

(a) Distinct polymer
chains near particles’
surface.

(b) Bridge polymer chains
connecting particles.

Figure 1.24: Schematic for (a) the polymer chain structure near the surface of filler
[69] and (b) the bridge inter-particles [68].

The bound layer is defined as the tense chain conformation surrounding particles surface,
which consists of tails, trains and loops. Whether this layer is glassy is still a matter of
debate. It has been proposed in [9, 10], but this hypothesis does not always hold: the
relaxation time and dynamics can be similar to that of chains far away from particles
[11] and the anchored surface layer has been observed to be highly mobile rather than
glassy [12, 13]. Thus, the bound layer can be characterized into different fractions and
each fraction can exhibit a distinct dynamics from the others. For instance, the immobile
interfacial fraction of chains comprising a great part of "trains" and "loops" exhibits a very
slow dynamics and diffuse with particles [70]. While the segments in the middle fraction are
strongly perturbed by chain-particle interaction, such as absorption. In the outer fraction,
the segments/chains can diffuse with a dynamics almost similar to free chains [66].
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1.4.3 Filler structure
The filler structure in polymer matrix can influence the rheology of the whole system.

With a high filler concentration, the filler and their bound layer combining the bridge
chains can participate in the formation of a percolation network, which induces the solid-
like behavior of system [18, 71] and exhibits significant reinforcement.

The size of the agglomerate of filler particles can be reduced by imposing strain, as shown
in Fig 1.25. This leads to release the trapped polymer chains (or rubber noted in the figure)
and increase the polymer-particles interaction surface. Thus, it is generally considered
that the breakdown of filler structure, for instance, the agglomerate or the aggregation of
particles, under a strain is responsible of the nonlinear behavior of polymer nanocomposites.

Figure 1.25: (a) TEM images of silica/SBR vulcanizate, TEM digital binary images
of the vulcanizate at (b) zero and (c) 50% strains, and (d) schematic representation
of the breakdown of agglomerates upon straining (Scheme 1: non stretched, Scheme
2: stretched) [72].

The breakdown of filler network is widely recognized to be the major cause of the
Payne effect [3], as shown in Fig 1.26. In a polymer nanocomposite, the filler can form a
global structure by the bridging, polymer-filler or filler-filler interaction, for instance, the
aggregation and the agglomerate of filler. In the linear region, the filler network generally can
provide a large contribution in the storage modulus. The nonlinear region, the breakdown of
filler cluster can occur and it leads to the reduction on the storage modulus which indicates
the weakening elasticity of the hybrid system.

1.4.4 Interface: percolation network
The polymer-filler interaction is considered a major cause of reinforcement of a polymer

nanocomposites [73] and for enhanced hydrodynamic effect [74, 75]. As aforementioned, the
nanoparticles can induce local entanglement and create an interphase zone where both the
polymer chain mobility and the polymer chain structure are significantly altered [71]. This
leads to a percolation network. Furthermore, the grafted chain can be treated as effective
slip links around nanoparticles and consequently, the highly packed chain conformation in
the vicinity of nanoparticles can be responsible for the enhanced viscosity versus increasing
volume fraction of filler [76].

The Mullins effect is often ascribed to non-reversible changes of polymer-filler interface.
They are the bond rupture, the molecules slipping, the filler rupture and the disentanglement
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Figure 1.26: Schematic of the different contributions of the Payne effect of a polymer
nanocomposites [3].

Figure 1.27: Schematic of physical explanations of the Mullins effect [25].

of chains, as shown in Fig 1.27. The bond rupture leads to break liaisons between polymer
chains and the filler surface, and it decreases the polymer-filler interaction surface. The
molecules slipping may change the anchoring point of a polymer chain on a filler surface
and like the chain disentanglements, it may reduce the polymer-filler interactions and the
local dynamics of polymer chains. The filler rupture represents the breakdown of the large
filler structure which is the same in the Payne effect.

1.5 Motivations and objectives of the present work

Polymer nanocomposites systems have been studied in the past decades owing to their
remarkable mechanical properties, including reinforcement and dissipation, which makes
them valuable as compared to pure polymer matrix. Their phenomenology is rich, and
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as regards their mechanical properties, they are characterized by reinforcement for mod-
erate volume fractions, and non linear effets-including Payne and Mullins effets, for small
deformation levels. Despite decades of investigation, the microscopic origin of these effets
remains unclear, and several mechanisms are still highly debated in the literature. Yet, it is
clear from the experimental side that the existence and the mescoscopic structure of filler
aggregates have a strong effect on the rheological response of the composite systems. Un-
fortunately, describing these mesoscopic length scales using an atomistic simulation seems
completely out of reach, given the disparity of length scales ranging from the polymer Kuhn
length to the aggregate or aglomerate size.

The objective of this work is therefore to build a mesoscopic model to simulate and
analyze the rheological response of polymer nanocomposite. In experiment, the filler mor-
phology, including the existence of aggregates, or the agglomerates of filler are considered to
be the major cause of reinforcement and the Payne effect. Here, we intend to build a model
apt to simulate a polymer nanocomposite containing filler aggregates. To reach this goal,
we build a coarse-grained description, were we concentrate on the filler degrees of freedom,
and we "average out" the polymer chains dynamics through the consideration of a velocity
kernel in a generalized Langevin equation. This latter kernel is constructed so as to account
for the viscoelasticity of the polymer melt surrounding the fillers (this will be explained in
chapter 2).

The model here permits to tackle mesoscopic length scales, and describe the dynamics
of an assembly of small non-compact aggregates, surrounded by either unentangled or an
entangled polymer matrix. With this model, we have systematically measured the rheolog-
ical response of the model composites, in the linear and non-linear regime of deformation.
One of the advantage of this coarse-grained model is to relate systematically the state and
configuration of the aggregate to the global stress response of the composite.

1.6 Appendix: Rheology and viscoelasticity

Stress and strain
The stress σ is defined as the ratio between the force F and the cross-sectional area A

σ = F

A
. (1.13)

The unit of stress is N m−2 or Pa, same as pressure. As shown in Fig 1.28a, the shear strain
is associated to the deformation of the top plate Δx relative to the thickness of the sample
h,

γ = Δx

h
. (1.14)

The stress relaxation modulus G(t) can be written as follows:

G = σ

γ
, (1.15)

where γ is the applied strain [77, 78].
A step strain is deformation applied instantaneously and maintained constant afterwards

γ(t) = γΘ(t), (1.16)

where Θ is a Heaviside step function, where Θ(t > 0) = 1 and Θ(t ≤ 0) = 0. If a step
strain with a magnitude γ is imposed on an elastic and solid material, the stress σ follow
the Hooke’s law,

σ = Eγ, (1.17)
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where E is the elastic modulus.
A steady shear constantly deform the material with a fixed shear rate, as shown in

Fig 1.28b, where the material is set between two plates, the top plate moves towards x
direction while the bottom plate is immobile. If the material is purely viscous, the shear
stress undergo the Newton’s law:

σ = ηγ̇, (1.18)

where η is the viscosity and γ̇ is the shear rate. Moreover, the material will exhibit a velocity
profile in the shear direction (x direction) and proportional to the amplitude (y direction)
and the shear rate (γ̇).

(a) (b)

Figure 1.28: (a) Step strain. (b) Steady shear strain.

Maxwell model

Figure 1.29: Maxwell model of viscoelastic material.

The Maxwell model is a simple illustration of viscoelastic material, which is constituted
by a elastic part and a viscous part, as shown in Fig 1.29, such as the polymers. The total
shear strain γ accumulates the contributions from both the elastic and the viscous parts,

γ = γe + γv, (1.19)

where γe and γv are the shear strains in the elastic part and the viscous part, respectively.
The shear stress σ should be equal at each part

σ = GM γe = ηM γ̇v, (1.20)

where GM is the effective modulus and the ηM is the effective viscosity.

Step strain If a viscoelastic material is submitted a step strain, the shear stress σ(t)
can be time-dependent. Taking into account Eq 1.19 and Eq 1.20, the shear train can be
written as

τM
dγv(t)

dt
= γ − γv(t), (1.21)



28 CHAPTER 1. BACKGROUND

where τM = ηM /GM is the Maxwell relaxation time. Hence, the shear strain in the elastic
part can be written as

γe(t) = γ − γv(t) = γ · exp (−t/τM ) . (1.22)

This indicates that the Maxwell relaxation time τM is the critical time scale to separate two
behavior regimes: elastic regime (t < τM ), corresponding to a solid behavior, and viscous
regime (t > τM ), corresponding to a liquid behavior. Furthermore, the shear stress can be
related to γe(t) as follows:

σ(t) = GM γe(t) = GM γ · exp (−t/τM ) . (1.23)

Thence, the stress relaxation modulus G(t) decreases exponentially in time

G(t) = σ(t)
γ

= GM · exp (−t/τM ) . (1.24)

Rheology and strain
Generally, if the applied strain is small enough, the material, including Maxwell mate-

rial, should be in the linear response regime, where the stress relaxation modulus G(t) is
independent of the strain γ and the Boltzmann superposition principle is valid [77]. Then
the shear stress σ(t) at time t can be history-dependent as a linear combination of the stress
of each individual shear step δγi at time ti,

σ(t) =
∑

i

G(t − ti)δγi, (ti < t), (1.25)

where the applied strain δγi at time ti is independent from the other applied strains apart
from time ti. In the continuum limit, the sum in the shear stress can be replaced by the
integration

σ(t) =
∫ t

−∞
G(t − t′)γ̇(t′)dt′. (1.26)

Steady shear strain

If a viscoelastic material is subject to a steady shear strain with a constant shear rate
γ̇, as shown in Fig 1.28b, the shear stress should be

σ(t) = γ̇

∫ t

−∞
G(t − t′)dt′ = γ̇

∫ ∞

0
G(t′)dt′. (1.27)

Thence, the shear viscosity η can be expressed as follows

η = σ

γ̇
=
∫ ∞

0
G(t′)dt′. (1.28)

In particular, for the Maxwell model,

η = GM

∫ ∞

0
exp (−t/τM ) dt′ = GM τM = ηM . (1.29)

The effective viscosity ηM is just the shear viscosity η in this case.
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Oscillatory shear strain

An oscillatory shear strain follows a sinusoidal signal with a given strain amplitude as
γ(t) = γ0 sin(ωt) with the angular frequency ω. If the material is purely elastic, the shear
stress is

σ(t) = Eγ0 sin(ωt). (1.30)
If the material is purely viscous, the shear stress is

σ(t) = ηγ0ω cos(ωt) = ηγ0ω sin(ωt + π/2). (1.31)

In the material is viscoelastic, for instance, a Maxwell material, and the strain is small
enough to keep the material in the linear region, the shear stress should be proportional to
the magnitude σ0 and a phase angle ωt + δ as follows:

σ(t) = σ0 sin(ωt + δ). (1.32)

where δ is the phase shift. Therefore, the shear stress can be decomposed into two orthogonal
terms with the same frequency [78],

σ(t) = γ0 (G′(ω) sin(ωt) + G′′(ω) cos(ωt)) , (1.33)

where G′(ω) and G′′(ω) are the storage modulus and the loss modulus, respectively. Taking
into account Eq 1.32 and Eq 1.33, the storage and the loss moduli can be written as

G′(ω) = σ0
γ0

cos δ, (1.34)

G′′(ω) = σ0
γ0

sin δ. (1.35)

In the linear response region, the shear stress can be written in continuum formula with
shear rate γ̇ = ωγ0 cos(ωt),

σ(t) =
∫ t

−∞
G(t − t′)ωγ0 cos(ωt′)dt′,

= ωγ0 · Re
[∫ t

−∞
G(t − t′) exp(iωt′)dt′

]
,

= ωγ0 · Re
[
exp(iωt)

∫ t

−∞
G(t − t′) exp (−iω(t − t′)) dt′

]
,

= ωγ0 · Re
[
exp(iωt)

∫ ∞

0
G(t′) exp (−iωt′) dt′

]
,

= ωγ0 · Re
[
(cos(ωt) + i sin(ωt)) ·

∫ ∞

0
(G(t′) cos(ωt′) − iG(t′) sin(ωt′)) dt′

]

= ωγ0 ·
[
sin(ωt)

∫ ∞

0
G(t′) sin(ωt′)dt′ + cos(ωt)

∫ ∞

0
G(t′) cos(ωt′)dt′

]
.

(1.36)

Therefore, the storage modulus G′(ω) and the loss modulus G′′(ω) can be related to the
stress relaxation modulus G(t),

G′(ω) = ω

∫ ∞

0
G(t′) sin(ωt′)dt′, (1.37)

G′′(ω) = ω

∫ ∞

0
G(t′) cos(ωt′)dt′. (1.38)

The two dynamic modulus can be combined into a complex modulus G∗(ω),

G∗(ω) = G′(ω) + iG′′(ω) = iω
∫ ∞

0
G(t) exp(−iωt)dt. (1.39)

Furthermore, the shear stress can be also written in terms of the complex modulus G∗(ω)

σ(t) = γ0Re [exp(iωt)G∗(ω)/i] . (1.40)
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CHAPTER 2

Mesoscopic modeling of PNCs
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Introduction
The modeling of polymer nanocomposites leads to great challenges because it is a mul-

tiscale problem [79, 57]. There is a gap between the size of a monomer and the size of an
aggregate. Moreover, a faithful representation of nanocomposites also requires that many
aggregates be included, so that structures appearing at a scale larger than a single aggre-
gate, such as a network, can also be described. An explicit, molecular simulation of chains
and aggregate is therefore impossible. When the medium surrounding particles is a simple
liquid, a traditional approach is to rely on an implicit description of the solvent. Its effect is
taken into account with a viscous friction and a noise term, as done in Brownian dynamics.
In this chapter, we explain how this approach can be extended to particles in a viscoelastic
medium. We rely on a method developed recently in a different context [80].

In contrast with the surrounding medium, the fillers are represented explicitly in our
simulation. We are thus free to chose their size, shape and rigidity. We first present the three
types of filler that will be considered: the individual nanoparticles, the flexible aggregates
and the rigid aggregates. The last type is the most relevant to polymer nanocomposites
whereas the two other types provide useful comparison point to interpret the results.

31



32 CHAPTER 2. MESOSCOPIC MODELING OF PNCS

2.1 Filler types

2.1.1 Individual nanoparticles
The individual nanoparticles are supposed to be spherical and solid, and they are not

allowed to aggregate between each other by introducing a repulsive interaction potential
between nanoparticles. They are referred to the well-dispersed nanoparticles in colloidal
suspension. A simple illustration and a snapshot in a corresponding simulation are shown
in Fig 2.1.

(a)

(b)

Figure 2.1: (a) 2D schematic of a polymer nanocomposites filled by the individual
nanoparticles and (b) a snapshot in a simulation for the model composites filled
with the individual nanoparticles.

2.1.2 Aggregates
In our modeling, an aggregate is a group of Nagg primary nanoparticles connected by

a spring network that ensures the aggregates integrity. In the following, we will consider
two kinds of aggregates: flexible and rigid aggregates. The former maintains only the
connectivity between neighboring particles and is reminiscent of a star polymer, while the
latter is supposed to model undeformable object. Considering these two types of aggregates
permit to assess the role of aggregates rigidity in the rheology of the model composites
system.

Flexible aggregates

In the flexible aggregates, only the nearest neighbors particles are linked with springs,
as shown in Fig 2.2a (which particles are nearest neighbours depends on the structure of the
aggregate and will be explained below). The springs used here are linear, with a potential
k(l − l0)2/2, where k is the stiffness coefficient, l are the spring length, l0 is the equilibrium
length. We see the primary particle as spheres of diameter d touching each other, and want
to keep constant the distance between neighboring particles. For this reason, the equilibrium
length of the spring is chosen so that the short-range interaction force is balanced by spring
force. For instance, if the spring stiffness is fixed to k = 100 force/length unit, and the short-
range repulsive interaction is described by a truncated-shifted Lennard-Jones potential with
ε = 1 energy unit, one finds that the free length should be set to 0.76 length unit.

Rigid aggregates

In the rigid aggregates, the connectivity network is supplemented with virtual springs,
as shown in Fig 2.3a, that are intended to preserve the aggregate geometrical structure.



2.1. FILLER TYPES 33

(a)

(b)

Figure 2.2: (a) 2D schematic of a flexible aggregate. The black lines correspond
to the springs and the grey spheres are the primary particles of aggregate. (b) A
snapshot in a simulation with monodisperse flexible aggregates.

In our model, each primary particle is linked to three non-neighboring primary particles
belonging to the same aggregate, which are chosen at random. The virtual springs have
stiffness k and their equilibrium length is the distance between particles for the original
structure of the aggregates 1.

Generation of aggregates

As discussed in section 1.1.3, the aggregates generally have a branching, disordered
structure. While others choice could have been possible, we have chosen to consider aggre-
gates generated by the diffusion-limited aggregation (DLA) algorithm [81]. A schematic of
this algorithm is shown in Fig 2.4. One nanoparticle is released randomly on the appearance
sphere with a radius Rp larger than the minimum bounding sphere of radius Rb, which is
the actual size of aggregate. The nanoparticle performs a Brownian motion and may attach
the aggregate, which occurs if the distance between the diffusing particle and at least one
nanoparticle of the aggregate is smaller than a critical distance taken to be equal to the
particle diameter d. The process ends if the particle contacts the aggregate or the particle

1Very often, the distance between particles linked by a virtual spring is larger than the cut-off
in the repulsive interaction. We neglect the small changes in structure that may happen when this
is not the case.
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(a)

(b)

Figure 2.3: (a) 2D schematic of the rigid aggregate. The black lines are the real
springs and the dotted red lines are the virtual springs, the grey spheres are the pri-
mary particles. (b) A snapshot in a simulation with monodisperse rigid aggregates.

reached the external boundary sphere of radius Re. Once a particle has joined the aggre-
gate, the aggregate size of radius Rb and the related parameters, such as the appearance
sphere of radius Rp and the external boundary sphere of radius Re, are updated for the
next particle. The process ends when the aggregate reaches the desired size.

Figure 2.4: 2D schematic of the DLA algorithm.
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Size distribution of aggregates

In this work, we have considered either monodisperse or polydisperse aggregates. Monodis-
perse aggregates are characterized by a unique aggregate size, equal to the number of pri-
mary particles Nagg contained in an aggregates. Polydisperse aggregates exhibit a distri-
bution of aggregate size P (Nagg), which follows typically a log-normal distribution. For
instance, the aggregate size measured for a silica filled SBR polymer nanocomposites fol-
lows a log-normal distribution with silica volume fraction φsi = 8.4%, as shown in Fig 2.5a,
where the most aggregates have a small aggregation number Nagg = 15 and a relatively
large average aggregates size 〈Nagg〉 = 51 with the standard deviation ΔNagg = 53, due to
a few big aggregates [7].

In practice, we have used the following (gamma) distribution to generate the aggregate
size distribution,

P (Nagg) = ANagg
a exp

(
−Nagg

b

)
, (2.1)

where A = 1/
(
a!ba+1) is a normalization factor, a and b are the free parameters. Then the

most frequent aggregate size is Nagg,c = ab and the mean aggregate size is 〈Nagg〉 = (a+1)b.
For example, an aggregates size distribution calculated from Eq 2.1 is shown in Fig 2.5b,
with parameters a = 2 and b = 10, for which the mean aggregate size is 〈Nagg〉 = 30 and the
most probable aggregate size is Nagg, max = 20. The aggregates sizes range from Nagg = 1
to 100, which yields an aggregate size polydispersity σ � 30%. For the sake of simplicity of
the model, the polydisperse aggregates in this work will be following the size distribution
defined from the empirical formula in Eq 2.1.

(a)
(b)

Figure 2.5: (a) Aggregate size distribution derived from the log-normal distribution
of radius of aggregates [7]. Nagg is the number of primary silica particles in an
aggregate and G[Ragg(Nagg)] is the corresponding normalized probability. (b) Ag-
gregate size distribution deduced from the empirical formula in Eq 2.1 with a = 2
and b = 10.

Morphology of aggregates

The spatial extent of an aggregate can be characterized by the radius of gyration Rg,

R2
g = 1

Nagg

Nagg∑
k=1

(rk − rc.m.)2 = 1
2Nagg

2

Nagg∑
i,j=1

(ri − rj)2 ,
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where rk is the position vector of particle k and rc.m. is that of the center of mass [82].
The radius of gyration as a function of aggregate size Nagg are shown in Fig 2.6a, where
each point is the average value from 500 aggregates generated via the DLA algorithm. The
normalized distribution of the radius of gyration Rg from these 500 aggregates is shown
in Fig 2.6b, where it is seen that most of the aggregates share a size close to the mean
value. The fractal nature of DLA aggregates can only be seen for large aggregates. In our
model, the aggregates are relatively small (Nagg ≤ 100). They are not compact but are not
sufficiently large to be called fractal.

(a) (b)

Figure 2.6: (a) Radius of gyration of aggregates generated via DLA. (b) Normalized
distribution of radius of gyration from the same aggregates.

The complex structure of aggregates may not be accurately described solely by the radius
of gyration. More detailed morphological information can be unveiled by the gyration tensor
S, defined as follows:

S = 1
Nagg

N∑
i=1

rirT
i = 1

Nagg

⎡
⎣
∑

x2
i

∑
xiyi

∑
xizi∑

xiyi
∑

y2
i

∑
yizi∑

xizi
∑

yizi
∑

z2
i

⎤
⎦ , (2.2)

where ri = [xi, yi, zi] is the position vector of particle i and rT
i is its transpose. The

eigenvectors and the eigenvalues of the gyration tensor can provide more information of the
morphology of the aggregate than the conventional method, this will be discuss in detail in
section 4.4.1.

2.2 Simulation method

2.2.1 Interparticle potential

To represent the repulsive interaction between fillers, the Lennard-Jones potential (LJ
potential) has been used as a standard choice, which includes a short-range repulsion and
a long-distance attraction, and it is defined as follows:

ULJ(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]

, (2.3)

where ε is the depth of the potential, σ is the distance at which the potential is zero and r
is the distance between the particles.
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Figure 2.7: The black curve is the original Lennard-Jones potential, Eq. 2.3, and the
red one is the shifted-truncated Lennard-Jones potential, in Eq. 2.4, and it turns to
zero once the distance passes the minimum potential point rm = 21/6σ.

In practice, the LJ potential has been modified and truncated to keep only the repulsive
part of the potential. This truncation is done to avoid filler agglomeration as may be
observed at low temperature. The truncated potential can be written as follows:

UR(r) =
{

ULJ(r) − ULJ(rm), if r ≤ rm

0, otherwise
(2.4)

where rm = 21/6σ is the distance at which the LJ potential reaches its minimum value. As
a result, the interaction force between two fillers is

FR(r) = −dUint(r)
dr

=

⎧⎨
⎩24ε

[
2
(

σ
r

)12 − (
σ
r

)6] r
r2 , if ‖r‖ ≤ rm,

0, otherwise.
(2.5)

2.2.2 Brownian dynamics
We use Brownian dynamics to simulate nanoparticles in a simple viscous fluid. This is

a limit case reached in the limit of very short matrix chains. In the Langevin dynamics, the
motion equation for a particle can be written as follows:

M
dV(t)

dt
= Fc(t) + Fd(t) + Fr(t), (2.6)

where M is the mass, V(t) is the velocity, Fc(t), Fd(t) and Fr(t) are the conservative force,
the drag force and the random force. The drag force is an instantaneous force which includes
the effect of solvent on fillers. The random force is delta-correlated and is related to the
temperature of system. In a simple viscous liquid, the drag force is proportional to the
velocity and viscosity η. For a spherical particle of radius a,

Fd(t) = −ζV(t), (2.7)

where ζ = 3πdη is the drag coefficient given by the Stokes-Einstein relation.
To model the rheology of filler particles in a simple fluid, we will consider that the

nanoparticles obey overdamped Langevin dynamics. Indeed, for small particles, inertial
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effects are negligible. For such Brownian dynamics, the equation of motion for particle n
can be written as:

dRn

dt
= 1

ζ
Fn,c + gn, (n = 1, 2...N), (2.8)

where ζ = 3πdη is the friction coefficient, Fn,c is the conservative force for the particle n
applied from the other particles, respectively, and gn is a random force which follows the
Gaussian distribution with 〈gn〉 = 0 and 〈gm,α(t)gn,β(t′)〉 = 2Dδmnδαβδ(t − t′), with the
diffusion coefficient D = kBT/ζ. In practice, Eq. 2.8 is discretized as follows:

Rn,α (t + Δt) − Rn,α (t) = Fn,α
Δt

ζ
+

√
2DΔt × fG, (α = x, y, z) (2.9)

where Rn,α (t) is the position of particle n in α direction at time t, Fn,α is the component of
total interaction force for particle n in α direction,

√
2DΔt×fG is the Brownian displacement

from the random force in one time step, and fG is a normally distributed random variable
with zero mean and a unit standard deviation, i.e. whose probability distribution is the
Gaussian

P (fG) = 1√
2π

e− fG
2

2 . (2.10)

2.2.3 Generalized Langevin dynamics (GLE)
The generalized Langevin equation (GLE) is an extension of the Langevin equation

to simulate the motion of massive fillers in a viscoelastic medium, such as an entangled
polymer matrix. The viscoelasticity of the medium surrounding the nanoparticle is taken
into account through the consideration of a memory kernel which represents physically a
drag force which is non-local in time and a random force with non-trivial correlations. The
equation of motion can be written as follows:

M
dV (t)

dt
= Fc (x(t)) −

∫ t

0
Γ(t − s)V (s)ds + Fr(t), (2.11)

where M is an effective mass of the nanoparticle, V (t) and x(t) are the velocity and the
position of the nanoparticle at time t, respectively. The first term Fc in the right-head of
equation is the conservative force, as described before. The second term

∫ t
0 Γ(t − s)V (s)ds

is the drag force. It does not only depends on the instantaneous velocity. Instead, it is
non-local in time, as it involves all velocities in the past, through the memory kernel Γ(t).
The last term Fr is the random force, and is now time-correlated. Specifically, the time
correlation function is related with the kernel Γ(t) by the fluctuation-dissipation theorem,

〈Fr,i(t + s)Fr,j(t)〉 = kBTΓ(s)δij , ∀s ≥ 0, (2.12)

where δij is the Kronecker delta, i, j denote the particle indices, and kB is Boltzmann’s
constant. The influence of the matrix is encoded in memory kernel Γ(t), which can be seen
as a generalized drag coefficient:

Γ(t) = 3πdGp(t), (2.13)

where Gp(t) is the stress relaxation modulus of the polymer matrix [80, 83, 84]. The
particular case of a simple viscous medium is recovered if we make the memory kernel
instantaneous in time Γ(t) = 3πdηδ(t).

Baczewski and Bond method

The time convolution in the drag force requires to know not only the instantaneous
velocity but also all values in the past. If the simulated system involves many particles,
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storing all velocity history would demand enormous memory resources. Baczewski and Bond
propose a method to circumvent this issue [80]. One develops the memory kernel Γ(t) and
the stress relaxation of the entangled polymer matrix Gp(t) via a Prony series:

Gp(t) =
NP∑
k=1

Gp,k exp
(

− t

τk

)
, (2.14)

Γ(t) =
NP∑
k=1

ck

τk
exp

(
− t

τk

)
= 3πd

NP∑
k=1

Gp,k exp
(

− t

τk

)
, (2.15)

where ck, τk and Gp,k are the coefficients of the Prony series (with ck/τk = 3πdGp,k), which
can be determined through nonlinear fitting the reference Gp describing the matrix with
Eq 2.14, and NP is the number of modes in a Prony series. They define the intermediate
variables Zk, Fr,k and Sk related to the Prony component k:

Zk(t) = −
∫ t

0

ck

τk
exp

(
− t − s

τk

)
V (s)ds, (2.16)

Fr(t) =
NP∑
k=1

Fr,k(t), (2.17)

Sk(t) = Zk(t) + Fr,k(t), (2.18)

where Fr,k is the component of random force on mode k. Rather than integrating Eq 2.17
and Eq 2.18, they write the total differential of Zk and Fr,k in order to generate equations
of motion having a similar form of a simple stochastic differential equation,

dZk(t) = − 1
τk

Zk(t)dt − ck

τk
V (t)dt, (2.19)

dFr,k(t) = − 1
τk

Fr,k(t)dt + 1
τk

√
2kBTckdWk(t), (2.20)

where Wk(t) represents a standard Wiener process. Thus, all the parameters here are
instantaneous in time and the equations no longer involve time convolutions [80]:

M
dV (t)

dt
= Fc (x(t)) +

∑
k

Sk(t), (2.21)

dSk(t) = − 1
τk

Sk(t)dt − ck

τk
V (t)dt + 1

τk

√
2kBTckdWk(t). (2.22)

Simulation in practice

Original method Baczewski and Bond consider a system in simulation which is un-
dergoing the GLE as given by Eqs 2.21 and 2.22 and show an example of how to integrate
from step n to step n + 1 by the rectangle method.
1. Advance V by a half step

V n+1/2 = V n + Δt

2M
Fc(xn) + Δt

2M

NP∑
k=1

Sn
k . (2.23)

2. Advance x by a full step
xn+1 = xn + V n+1/2Δt. (2.24)

3. Advance Sk by a full step

Sn+1
k = θkSn

k − (1 − θk)ckV n+1/2 + αk

√
2kBTckBk. (2.25)
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4. Advance V by another half step

V n+1 = V n+1/2 + Δt

2M
Fc(xn+1) + Δt

2M

NP∑
k=1

Sn+1
k . (2.26)

Here, Bk is drawn from an independent Gaussian distribution with mean zero and variance
unity. The real-valued θk and αk should satisfy the consistency conditions in Eq 2.22. Three
methods may be considered for different choices of θk and αk.
Method 1:

θk = 1 − Δt

τk
, αk =

√
Δt

τk
. (2.27)

Method 2:

θk = exp (−Δt/τk) , αk =
√

(1 − θ2
k)

2τk
. (2.28)

Method 3:

θk = exp (−Δt/τk) , αk =

√
(1 − θk)2

Δt
. (2.29)

All the three methods satisfy the consistency conditions, θk = 1 − Δt/τk + O(Δt2) and
αk =

√
Δt/τk + O(Δt). In addition, the third one provides the good stability when τk is

small and it is favorable to choose a relatively large time step Δt in the simulation [80].
This is the method chosen for the following simulations.

Figure 2.8: The mid-point method in practice.

Alternative method The original mid-point method cited requires to calculate the
velocity value at integer moment n + 1, in which it requires two half step integrations via
the calculation of the force Fc and the intermediate variable Sk at moment n and n + 1,
which could double the computation time. If we focus on the mid-point velocity at a half
time step, V n+1/2 at time t = n + 1/2, which is integrated with a full time step from the
previous mid-time-point velocity V n−1/2 via the force Fc and the intermediate variable Sk

at the integer moment n. Meanwhile, the integration of the position x, the force Fc and
the intermediate variable Sk from moment n to the moment n + 1 are calculated from the
velocity at the related half time step V n+1/2, as shown in Fig. 2.8. Therefore, we propose
the alternative mid-point method in the following:
1. If t = 0 (n = 0), advance V by a half step

V 1/2 = V 0 + Δt

2M
Fc(x0) + Δt

2M

NP∑
k=1

S0
k , (2.30)
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where the initial velocity is V 0 = 0 in the simulations.
If t > 0 (n > 0), advance V by a full step

V n+1/2 = V n−1/2 + Δt

M
Fc(xn) + Δt

M

NP∑
k=1

Sn
k . (2.31)

2. Advance x by a full step
xn+1 = xn + V n+1/2Δt. (2.32)

3. Advance Sk by a full step

Sn+1
k = θkSn

k − (1 − θk)ckV n+1/2 + αk

√
2kBTckBk. (2.33)

This alternative simulation method will produce the result identical to that from the original
method and the computation time is divided by a factor two.

2.2.4 Application of the GLE to entangled polymer dynam-
ics

In the original paper [80], the GLE methodology was rather general and did not describe
the dynamics of entangled polymer melts. We discuss here the relevance of this approach
to represent the polymer melt surrounding fillers. First, we should say that the reptation
model predicts that the G(t) of an entangled polymer melt may be written as a Prony
series :

Gp(t) =
NP∑
k=1

Gp,k exp
(

− t

τk

)
(2.34)

where the longest relaxation times max τp,k identifies with the terminal time, and the cor-
responding amplitude Gp,k is the plateau modulus, on the order 0.5 − 1 Mpa for common
polymer melts. Several strategies may be considered then in order to set the values of the
coefficients Gp,k and τp,k appearing in the Prony series. One possibility is to use values pre-
dicted by an analytical model, for instance the reptation model. Another possibility is to
extract the coefficients after fitting the G(t) of a specific polymer melt, obtained for instance
by rheometry. A third possibility would consist in bridging the scales and compute the Gp(t)
using simulations where the polymer chains are represented explicitly. Candidates include
molecular dynamics, dissipative particle dynamics or slip links simulations. The connec-
tion between the velocity kernel to be used in the GLE dynamics and the simulations with
explicit polymer chains may be found in the fluctuation dissipation theorem, which relates
the correlation of the random force Fr(t) felt by the filler to the stress relaxation modulus
Gp(t), as described in eq. 2.12. Therefore, computing 〈Fr(t + s)Fr(t)〉 in an explicit simu-
lation and fitting the result with a Prony series can feed the GLE with the associated Gp(t)
is clearly a bottom-up approach, for which local polymer dynamics information may pass
to mesoscopic length scales.

In this manuscript, we will not build such a connection, but we leave this multiscale
strategy for future work. We just wanted to emphasize that averaged polymer degrees of
freedom may be described in a coarse grained manner within the GLE framework. Finally,
we should give some practical considerations regarding the implementation of the Prony
series in our GLE code. We did some tests so as to conclude how many modes k are necessary
to represent the rheology of a polymer melt, and we saw that working with a single mode
or using multiple modes yields no significant difference regarding the G(t) of the model
composites, for times t longer than the terminal time. Therefore, unless explicitly specified,
we will work in the so-called single mode representation in the following, and describe the
rheology of the polymer melt surrounding the nanofillers with a single exponential. The
considerations discussed so far concern the representation of entangled polymer dynamics.
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2.2.5 System units
In what follows, the energy unit is defined as kBT , where kB is the Boltzmann con-

stant and T is the temperature. In the Brownian dynamics, the time unit τ0 is associated
to the viscosity of polymers, which is included in the friction of particles. In the gener-
alized Langevin dynamics, the time unit τ0 is related to the terminal relaxation time of
the entangled polymer matrix. In both dynamics above, the unit of length is fixed by the
nanoparticles diameter d.

It is important as this point to stress that the mass m is introduced in the generalized
Langevin equation for mathematical convenience and thus does not represent necessarily
the physical mass of nanoparticles. If it were to represent the physical mass of nanopar-
ticles, the resulting time scale d/

√
kBT/m would be very short, as the case in molecular

dynamics. Here, we are primarily interested in the viscoelastic properties of the model
polymer nanocomposites at low frequency, where inertia does not play a role. Therefore, in
the following we will not discuss the effect of the mass and consider that its value in the
simulation serves only to set the value of the time step, from which the measured observables
in simulations are independent.

To make the correspondence between our units and real system, let’s take a typical
example where the (longest) relaxation time of the polymer matrix is τp,ref = 1 ms and the
plateau stress relaxation modulus is Gp,ref = 0.5 MPa. With the units chosen above, the
unit pressure (or stress) is G0 = kBT/d3. For d = 2.02 nm, this corresponds to Gp,ref = G0.
For d = 9.39 nm, this corresponds to Gp,ref = 100G0. Conversely, a given simulation can be
interpreted as corresponding to several real systems, as long as they have the same value of
the unit stress kBT/d3. The choice of units, and some typical parameters, are summarized
in Table 2.1.

Quantity Symbol Simulation value Realistic value
Energy kBT 1 4.1 × 10−21 J
Length d 1 2.02 − 9.39 nm
Time τp,ref 1 1 ms
Stress Gp,ref 1 − 100 0.5 MPa

Table 2.1: Correspondence between the values of the parameters in the simulations
and for a real polymer nanocomposite. Note that the temperature is always the
room temperature.

In this work, the volume fraction φ of filler is defined as the ratio between the volume
of filler Vfil and the volume of the whole system Vsys,

φ = Vfil

Vsys
, (2.35)

where Vfil is the total volume occupied by filler particles and Vsys is the volume of simulation
box. The number of individual nanoparticles or aggregates is noted as N , the aggregate
size is represented by the number of primary particles contained in an aggregate, noted as
Nagg, and the total number of aggregates is denoted as Na.

2.2.6 Initial configurations
Now that we have explained how aggregates interact, we can come back to the process

used to generate the initial configuration with a given volume fraction. We used two meth-
ods: the insertion method and the compression method. The insertion method consists in
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placing the fillers in the simulation box one after another at a random position. As shown
in Fig 2.9, the filler will be removed and replaced if superposition between two aggregates
occurs. The compression method will stochastically place each fillers in a separated isolated
box to avoid any contact between them at the very beginning of the process, as shown in
Fig 2.10a. Then, all the unit boxes will be merged to form a unique large box which will
start to progressively decrease its size in order to compress the fillers and produce a config-
uration with a given filler volume fraction, as shown in Fig 2.10b. During the compression
process, the fillers are treated as solid objects, undergoing the rigid motion characterized
by translation of the center of mass and rotation around the center of mass. Hence, the
springs in the aggregate are not taken in account during the compression process. For the
preparation step, we used the Brownian dynamic combining the inertial terms which may
not have a realistic physical meaning. The torque of the aggregate, containing the mass, is
an instantaneous terms which is related to the rotation of the aggregate through its center
of mass in one time step. All the forces felt by the primary particles of an aggregate are
summarized through its center of mass and this corresponds to the translation motion of
an aggregate. One compression step occurs when the current system does not have the
superposition of particles. Hence, the system is not fully relaxed in each compression step
for sake of speeding up the generating process of the initial configuration of system. Once
the system reached the defined volume fraction of fillers, a relaxation process will occur
with the Brownian dynamics discussed above.

After the initialization process, a relaxation process will occur during which the fillers
obey overdamped Brownian dynamics. The relaxation stops when both the global energy
and the pressure of the system converge towards constant values. This indicates that the
system is well relaxed. When convergence is observed, and if the subsequent dynamics
is supposed to be the generalized Langevin dynamics, we need to impose initial random
velocities. This is done by adding a random velocity V = ±√kBT/m in all directions (see
[80] for details).

Figure 2.9: Schematic of the insertion method. The black aggregates are already
placed while the red one is the newly inserted aggregate.

The individual nanoparticles and the flexible aggregates can easily move away from
each other, even at high volume fraction. Hence, the insertion method has been used to
generate the initial configurations in these cases. For the rigid aggregates (either mono-
or polydisperse), we used a compression method. One advantage is that that it avoids
non-physical situations, such as the superposition of fillers, that could occur with insertion
method. This method has often proved capable to generate an initial configuration of
monodisperse rigid aggregates but less satisfactory for polydisperse rigid aggregates. In
particular, the compression method runs into difficulties at high filler volume fraction, which
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(a)

(b)

Figure 2.10: Schematic of the compression method. (a) Initial box with unit box of
aggregate and (b) final box after compression.

may be due to the fractal morphology of rigid aggregates. Hence, regardless of the possible
entanglement between rigid aggregates, the configuration for polydisperse aggregates at
high volume fraction (near φagg = 18%) were reached with the insertion method, in which
the rigid aggregates are placed in order of aggregate size, the large aggregates are inserted
before the small one.

The available initial configurations of rigid aggregates are shown in Fig 2.11. The
monodisperse rigid aggregates can reach a relatively high filler volume fraction φ = 17% with
a small unique aggregates size Nagg = 20 by the compression method, as shown in Fig 2.11a.
Nonetheless, the accessible filler volume fractions decrease dramatically when increasing
aggregate size. For instance, with a large aggregate size Nagg = 50, the highest achievable
filler volume fraction in a small box containing N = 30 aggregates, is φ = 12%. The situation
is much harsher for the polydisperse rigid aggregates, which is not displayed here. Hence,
the insertion method has been employed to form the initial configuration of poly-disperse
rigid aggregates and the feasible filler volume fractions are shown in Fig 2.11b, where the
aggregate size distribution follows the log-normal law deduced from the empirical formula
(Eq 2.1) with parameters a = 2 and b = 10. The highest accessible filler volume fraction
can attain 18% with maximum 200 aggregates in box. Despite of the potential artificial
entanglement between aggregates, the insertion method appears convenient to generate
initial configurations, the poly-disperse rigid aggregates system can reach a relatively high
filler volume fraction φ = 15% with a large box containing 1000 aggregates.

Conclusion

We have presented the basis of a mesocopic model aimed at describing the dynamics
and the rheology of polymer composites containing small non-compact aggregates. The de-
scription of the relevant mesoscale structures is computationnally expensive using standard
atomistic simulations, such as molecular dynamics. Therefore, we followed an alternative
strategy and coarse-grained the composite at the scale of the nanofillers. The polymer
degrees of freedom have been averaged out, and represented by a velocity kernel which ac-
counts for the viscoelasticity of the entangled polymer. Note that the polymer matrix is
represented in the present model by using its rheological data from relevant experiment or
simulation, for which the polymeric degrees of freedom are explicitly represented. These
parameters entering the velocity kernel can be characterized by using the data from relevant
experiment or simulation of a polymer matrix, and one can target then a specific model
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(a) Monodisperse (b) Polydisperse

Figure 2.11: Volume fractions of available configurations for (a) mono-disperse and
(b) poly-disperse rigid aggregates, in terms of aggregates size Nagg and number
of aggregates Na, by (a) the compression method and (b) the insertion method,
respectively. The hollow and solid symbols are the impossible and the available
filler volume fractions, respectively.

composite.
With this model in hand, we expect to quantitatively measure the influences of the filler

type, the filler volume fraction and the filler size on the rheology of the model composite, and
also the morphology of fillers in simulations, especially under shear deformation. However,
the effect of the polymer chain bridging is not included in the present model yet. Therefore,
the possibility of the polymer chains to transmit stress between neighboring fillers is not
taken into account. An additional interaction force between fillers or a semi-empirical
potential may be considered to account for the contribution of the polymer-filler interface.
This extension is left for future work.
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CHAPTER 3

Linear rheology: simulations and results
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Introduction
When the deformation is small enough, the system exhibits a linear response. In this

chapter, we probe the linear regime using a Green-Kubo approach [85]. No deformation is
imposed on the system. Rather, the stress relaxation modulus is calculated from the time
correlation of the stress in the system at equilibrium. The storage and the loss moduli can
subsequently be obtained from the stress relaxation modulus by Fourier transform.

47
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We investigate in a systematic manner how the linear rheology depends on the aggregates
properties: the type and volume fraction of filler, the aggregate size and their mono- or poly-
dispersity. We use the two methods presented in the Chapter 2: the Brownian dynamics
to describe a simple viscous fluid, which is considered here a unentangled polymers matrix,
and the generalized Langevin dynamics (GLD) to model a viscoelastic entangled polymers
matrix. For simplicity, the memory kernel is characterized by a single plateau modulus
and a single relaxation time. The goal of this exhaustive exploration is to identify the key
parameters affecting the linear rheology of the model composites. While we essentially focus
on the stress relaxation modulus, we also consider the dynamics of individual aggregate and
the dynamic structure factors.

3.1 Stress relaxation modulus

3.1.1 Microscopic view of stress tensor

Figure 3.1: Microscopic view of stress [86].

We first explain how we compute the stress tensor in simulations [86]. The starting
point is Eq 1.13, where the stress is defined as the ratio between the applied force and the
cross-sectional area,

σαz = 〈Fα〉
Az

, (α = x, y, z). (3.1)

Here σαβ is the component αβ of the stress, Az is the area perpendicular to the z direction
and 〈Fα〉 is the average interaction force along direction α. 〈. . .〉 denotes an average over the
canonical ensemble. More explicitly, for a dynamical quantity A(t), the canonical ensemble
average can be written as an integral over phase space [85],

〈A(t)〉 =
∫

drN dpN exp
(−H(rN , pN )/kBT

)
A(t; rN , pN )∫

drN dpN exp (−H(rN , pN )/kBT ) , (3.2)

where rN and pN denote the positions and momenta of the N particles and H the Hamil-
tonian of the system.

In a system of pairwise interacting particles, the interaction force on a the cross-section
at height h includes the contributions from all pairs having one particle on each side:

Fα =
∑
m,n

Fmn,αΘ(h − Rmz)Θ(Rnz − h). (3.3)

Here, Rmz is the z coordinate of particle m, Fmn,α is the α component of the interaction
force applied on particle n by particle m. Θ is the Heaviside function: Θ(x) = 0 if x < 0,
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Θ(x) = 1 if x > 0. In a homogeneous fluid, the average interaction force 〈Fα〉 is independent
from the height h of the cross section, thus it can be written as follows:

〈Fα〉 = 1
L

∫ L

0

〈∑
m,n

Fmn,αΘ(h − Rmz)Θ(Rnz − h)
〉

dh, (3.4)

where L is the thickness of system. Introducing Rmn,z = Rmz − Rnz as the relative distance
from particle m to n in the z direction, and using Fmn,α = −Fnm,α, the average interaction
force is

〈Fα〉 = − 1
L

〈∑
m<n

Fmn,αRmn,z

〉
. (3.5)

Hence, the stress of system in the αz direction can be finally written as a function of the
relative force and relative distance between the pairs,

σαz = − 1
V

∑
m<n

〈Fmn,αRmn,z〉 , (3.6)

where V = AL is the volume of the system.

3.1.2 Green-Kubo approach
In the linear regime, the stress relaxation modulus G(t) can be obtained from the time

correlation of the shear stress, via the linear response theory [85, 49, 87],

G(t) = V

kBT

1
3

〈 3∑
α=1

3∑
β>α

σαβ(t)σαβ(0)
〉

, (3.7)

where V is the volume of system, kB is the Boltzmann constant, T is the system temperature,
σαβ is the non-diagonal stress element and 〈. . .〉 denotes an ensemble average. Since the
stress tensor is symmetric, σαβ = σβα, the stress relaxation modulus can be considered as
the mean value of its three non-diagonal components, Gxy, Gxz and Gyz, which are related
to the time correlation of shear stress along the corresponding direction.

The complex modulus G∗(ω) = G′(ω) + iG′′(ω), where G′(ω) is the storage modulus
and G′′(ω) is the loss modulus, can be calculated from the stress relaxation modulus G(t)
by the Fourier transform expressed in Eq 1.39,

G∗(ω) = G′(ω) + iG′′(ω) = iω
∫ ∞

0
G(t) exp (−iωt) dt.

Then the storage and the loss moduli can be separately calculated as the real and the
imaginary parts of the complex modulus G∗ expressed in Eq 1.37 and 1.38,

G′(ω) = ω

∫ ∞

0
G(t′) sin(ωt′)dt′,

G′′(ω) = ω

∫ ∞

0
G(t′) cos(ωt′)dt′.

3.1.3 Diagonal and cross contributions to the stress
Here we examine the various contributions to the stress tensor. As expressed in Eq

3.6, the stress involves the product of the interaction force and the relative distance be-
tween a pair of particles. Hence, the stress includes the different contributions from the
various interaction forces. For individual nanoparticles, there is only one contribution to
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the stress, which is coming from the Lennard-Jones interaction. In flexible aggregates, con-
nective springs add a new term σCS , while in rigid aggregate, virtual springs yields another
contribution σV S . In short,

σIndNano = σLJ , (3.8)
σF lexAgg = σLJ + σCS , (3.9)
σRigAgg = σLJ + σCS + σV S . (3.10)

The stress relaxation modulus G(t) can be calculated via the auto-correlation of the
shear stress, as expressed in Eq 3.27. The individual nanoparticles are the simplest case
since there is only one component in the shear stress, as shown in Eq 3.8. The aggregates
contains multiple components in the stress, thereupon the relevant stress relaxation modulus
contains cross-terms, which are the time correlation between different components of the
stress. For instance, the stress relaxation modulus G(t) of the flexible aggregates can be
written as follows:

GF lexAgg(t) = V

kBT
〈σF lexAgg(t)σF lexAgg(0)〉

= V

kBT
〈σLJ(t)σLJ(0) + σCS(t)σCS(0)〉 + V

kBT
〈σLJ(t)σCS(0) + σCS(t)σLJ(0)〉 ,

where the terms in the second bracket on the right hand are the cross-terms between the
components of the stress from the LJ potential and the connective springs. Similarly, for
the rigid aggregates,

GRigAgg(t) = V

kBT
〈σRigAgg(t)σRigAgg(0)〉

= V

kBT
〈σLJ(t)σLJ(0) + σCS(t)σCS(0) + σV S(t)σV S(0)〉

+ V

kBT
〈σLJ(t)σCS(0) + σLJ(t)σCS(0) + σCS(t)σV S(0) + . . .〉 , (3.11)

where the last term in the right-hand side is obtained by interversion of indices in the second
bracket.

The cross correlation of the stress are generally negative, hence the total correlation of
stress is smaller than the sum of the non-cross terms [87]. The effect of the cross-terms is
shown in Fig 3.2. Obviously, the total G(t) is smaller than the sum from the components
apart from the cross-terms, which indicates that the cross-terms are negative as expected
[87]. In the flexible aggregates, we observe that both diagonal term σLJ and σCS display a
slow dynamics along the whole time range considered here. This is also true for the rigid
aggregates, for which the stress relaxation modulus includes the third diagonal term σV S . In
this case, we see also that the contribution of virtual springs is dominated by the other two
diagonal terms. The long relaxation time, evidenced here for all the diagonal contributions
to G(t), points to the existence of the slow degree of freedom in the system of aggregates,
which will discussed in section 3.3.

3.1.4 Harmonic zone
As shown in Fig 3.3b, the short time rheological response of the aggregates may dis-

play an oscillatory response. In this section, we discuss the origin and significance of this
”harmonic zone”.

We first observe that this oscillatory behavior appears only in the simulations of entan-
gled polymer matrix, i.e. with the generalized Langevin equation that includes the inertial
term and the polymer matrix is described as viscoelastic. Oscillations are absent, as the
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(a) (b)

Figure 3.2: Comparison between the components of the stress relaxation modulus
G(t) for (a) flexible aggregates and (b) rigid aggregates with entangled polymer
matrix (Gp = Gp,ref and τp = τp,ref ). Both the flexible and the rigid aggregates have
the unique aggregate size Nagg = 20 and the same volume fraction φ = 10%.

Brownian dynamics neglects inertia and the polymer matrix is considered to be purely vis-
cous. This suggests that oscillations result from an interplay between the effective elasticity,
from both the springs (real or virtual) and the polymer matrix, and inertia. The typical
period of oscillation is not simple and related to all the three elements noted above. Among
them, the period of oscillation from the springs is related to the spring stiffness k and the
mass m of the nanoparticles through τharm = 2π

√
k/m � 0.628 time unit, if k = 100

force/distance unit and m = 1 mass unit. Note that the elasticity of the polymer matrix
appears to give rise to oscillation in the stress relaxation modulus G(t) by the interplay with
the springs, and display a typical period of oscillation different from that of the springs,
but the effect appears to be relatively small, as can be readily proven by comparing the
harmonic zones in the individual nanoparticles system (without springs) and the aggregates
system (containing spring network). Thus, the main origin of the oscillations in the short
time stress response comes from the spring network.

The oscillatory behavior of G(t) at short times occurs in a frequency range where the in-
ertia of the nanoparticles is not negligible, corresponding to ω � 2π/τharm � 6.28 frequency
unit with the harmonic period τharm � 1 time unit. However, we are primarily interested in
studying reinforcement as occuring in frequency range where the nanoparticle dynamics is
overdamped, that is to say ω � 2π/τharm. Therefore, we believe the oscillations do not pro-
vide really useful information on the stress relaxation modulus G(t) and it may only affect
the corresponding storage and the loss moduli at high frequency ω ∼ 2π/τharm  τ−1

p,ref ,
which is not of interest throughout this work. For these reasons, the harmonic zone will be
masked in the future figures and only be indicated by a box with dashed lines. This only
serves to put the emphasis on the really significant part of the data.

3.2 Influence of filler and matrix parameters
In this section, we will examine how the linear rheology is influenced by the filler and

matrix parameters. We first briefly describe our reference system and how the results were
obtained.

Representing the viscoelastic kernel of a realistic polymer matrix usually involves mul-
tiple modes in the Prony series. This approach, would allow us to examine a specific
nanocomposite. Here, our goal is to understand, generically, the role of the polymer ma-
trix/viscoelasticy and the interplay with filler characteristics. We thus start with a much
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simpler situation: the matrix kernel is assumed mono-mode, that is with a single plateau
Gp,0 and a single relaxation time τp,0,

Gp(t) = Gp,0 exp
(

− t

τp,0

)
. (3.12)

This is the default case, unless otherwise mentioned. The typical physical values are taken
to be Gp,0 = 0.5 MPa and τp,0 = 1 ms. These values correspond to a polybutadiene matrix
having a molecular weight MW = 40 K [67]. As discussed in the previous section, Gp,0 and
τp,0 set the unit of stress and time, respectively.

Two others remarks apply to all the data shown below. i) The stress relaxation modulus
G(t) and other computed quantities all results from an average over at least 10 independent
simulations. This serves to improve the statistics of the parameters of interest, especially
for the behavior of the observables at long times. ii) In all curves, including the stress
relaxation modulus or the dynamic moduli, only the contribution of the filler is shown.
Unless otherwise stated, the contribution of the polymer matrix is not taken into account.

3.2.1 Effect of filler type
The reinforcement on the stress relaxation modulus G(t) from three different types of

fillers has been studied in both a simple viscous fluid and an entangled polymer matrix, as
shown in Fig 3.3. All the systems share the same filler volume fraction φ = 10% and the
aggregates are monodisperse with a uniform size Nagg = 50.

For the individual nanoparticles system, the stress relaxation modulus G(t) decreases
within a very short time period and it vanishes at long times both for a simple viscous
fluid and an entangled polymer matrix. Both the flexible and the rigid aggregates exhibit
a reinforcement near one and two order of magnitude on G(t) at short times and they
exhibit a slow-down dynamics at long times, regardless of the nature of the polymer matrix.
The rigidity of the aggregates has a significant influence on the reinforcement, the rigid
aggregates exhibit a G(t) at short times which is one order of magnitude higher than the
flexible aggregates.

Long relaxation times have been observed experimentally in the stress relaxation mod-
ulus of filled polybutadienes, see Fig. 2 of [67]. Our simulations show that long relaxation
times appear only for aggregates systems, whether flexible or rigid. Therefore, we interpret
the long time relaxation of G(t) as seen in experiments, as an evidence of the existence
of partial aggregation. Clearly also, long relaxation is not necessarily associated with the
existence of polymer bridging between nanoparticles.

As mentioned before, the storage modulus G′(ω) and the loss modulus G′′(ω) can be
obtained from the stress relaxation modulus G(t) via Fourier transform1. The results for the
system of Fig 3.3b is shown in Fig 3.4, where the different filler types lead to reinforcement
on both the storage and the loss moduli. Knowledge of the dynamic moduli (G′ and G′′)
in the linear regime may help in the choice of the shear frequency in the studies of the
nonlinear shear phenomenon, such as the Payne effect, that we will analyze in the next
chapter.

For the individual nanoparticles system, the storage modulus G′ and the loss modulus
G′′ in both a simple viscous fluid and an entangled polymer matrix exhibit power law
dependence with frequency ω2 and ω1 at low frequency, respectively, as predicted for a
Maxwell model in Eq 1.37 and 1.38. This may indicate that the individual nanoparticles
does not play a major role in the rheological reinforcement of a filled polymer matrix in spite
of their good dispersion, which may be due to the lack of attractive interaction between the
nanoparticles. Hence, they may display a rheological behavior similar to those characterizing

1 Both the storage modulus G′ and the loss modulus G′′ are in unit of Gp,ref and the frequency
ω is in unit of τp,ref .
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Figure 3.3: Effect of the filler type on the stress relaxation modulus G(t) with (a)
a simple viscous fluid and (b) an entangled polymers matrix, with a fixed volume
fraction φ = 10% and the unique aggregate size Nagg = 50.

a polymer melt, for which, the stress relaxation modulus G(t) decreases exponentially and
the storage and the loss moduli display the same frequency behavior: G′ ∼ ω2 and G′′ ∼ ω
at low frequency.

In contrast, for the flexible aggregates system, the storage modulus G′ approaches the
power law G′ ∼ ω2 only at very low frequency and the rigid aggregates do not exhibit
the same tendency on the storage modulus G′. This indicates that the morphology of
the aggregates, even for the flexible aggregates, and the rigidity of the aggregates are both
important factors in the reinforcement of filled polymer matrix system, which can be seen in
the slow dynamics observed at long times in the stress relaxation modulus G(t). Nonetheless,
the loss modulus G′′ of both the flexible and the rigid aggregates obeys the power law ω1

over a large range of frequency, which may be due to the weak volume fraction of the
aggregates, φ = 10% here. Note also that the existence of the harmonic zone is clearly
shown at high frequency, but our discussion concerns primarily the rheological behavior at
lower frequencies where inertia plays no role.

All three types of filled polymers systems exhibit liquid-like behavior at low frequency
and solid-like behavior at high frequency. For the individual nanoparticle system, one can
identify a clear single gel point, where G′ ≈ G′′ in both a simple viscous fluid and an
entangled polymers matrix. For the aggregates systems, there can be one or two gel points.
The flexible aggregates systems display a gel state, where G′ � G′′, in the intermediate
frequency regime and there are more than two gel points along the whole range of frequency.

The individual nanoparticles will not be considered in the following owing to their low
rheological response, as quantified by the stress relaxation modulus G(t) (Fig. 3.3), and the
dynamic moduli (Fig 3.4). From now on, the aggregates, including both the flexible and
the rigid aggregates, will be the essential systems considered to characterize the effect of a
series of parameters describing the fillers, such as the volume fraction and the aggregates
size, on the rheology of the model nanocomposites.

3.2.2 Effect of filler volume fraction

The filler volume fraction is generally considered to have a major effect on the mechanical
and rheological properties of polymer nanocomposites [76, 19, 7]. Furthermore, at the
high volume fraction of filler, the mechanism which induces reinforcement may change as
illustrated in Fig 1.9.
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Figure 3.4: Effect of filler types on the storage modulus G′(ω) (solid lines) and the
loss modulus G′′(ω) (dashed lines) for the systems shown in Fig 3.3.

Simple viscous fluid In the case with a simple viscous fluid, both the flexible and the
rigid aggregates exhibit a reinforcement level which increases with the volume fraction of
aggregates, as shown in Fig 3.5. In this latter figure, a series of volume fraction from 10% to
40% with a fixed aggregate size Nagg = 50 is presented and for the rigid aggregates system,
we present volume fractions ranging from 10% to 17% with a fixed aggregate size Nagg = 20.
The stress relaxation modulus G(t) of the rigid aggregates is enhanced by more than one
order of magnitude compared to the flexible aggregates at short times, even though the rigid
aggregates have a small size. This can be related to the effect of filler rigidity discussed
before. Furthermore, the flexible aggregates system exhibits a linear relationship between
the reinforcement and the volume fraction of aggregates, at moderate volume fractions
φ ≤ 30% as can be appreciated if we rescale the G(t) curves by the volume fraction, as one
can see via the effective viscosity in section 3.2.7. This may indicate that the reinforcement
mechanism in flexible systems remains the same as that in a dilute system, probably due to
the repulsive nature of the interaction between nanoparticles. For all the volume fractions
analyzed, the flexible aggregates system undergoes the same relaxation dynamics, and from
this perspective the flexible aggregates system can be considered similar to a big soft colloid
or to a star polymer. For rigid aggregates, the range of volume fraction can not be varied
beyond 17% for the small aggregate size Nagg = 20 due to the difficulty in generating high
volume fraction configurations, as mentioned in the previous section 2.2.6. Obviously, the
volume fraction 17% is not enough to change significantly the relaxation dynamics.
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Figure 3.5: Effect of volume fraction for (a) flexible aggregates (Nagg = 50) and (b)
rigid aggregates (Nagg = 20) in a simple viscous fluid.
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Entangled polymer Both the flexible and rigid aggregates, with a fixed aggregate
size Nagg = 20, exhibit reinforcement increasing with the volume fraction of aggregates, as
shown in Fig 3.6, in which the volume fraction of aggregates varies from 10% to 40% for
the flexible aggregates systems and from 10% to 17% for the rigid aggregates systems. At
short times, the stress relaxation of rigid aggregates is 1 order of magnitude higher than
that of flexible aggregates, at a common value of the volume fraction φ = 10%. Again, both
the flexible and the rigid aggregates exhibit a similar relaxation mechanism for the range of
volume fractions analyzed, even with entangled polymer matrix, since the stress relaxation
modulus G(t) shows a quasi-linear relationship with the volume fraction of aggregates Φ, as
can be appreciated if the G(t) curves are scaled by Φ. Such linearity stems probably from
the repulsive nature of contacts between aggregates.

(a) (b)

Figure 3.6: Effect of volume fraction of (a) flexible aggregates and (b) rigid aggre-
gates in an entangled polymers matrix with a unique aggregate size Nagg = 20.

3.2.3 Effect of aggregate size
The aggregates size is fully characterized by the number of primary particles in an

aggregate, Nagg. As shown in Fig 2.6, the radius of gyration of aggregate varies as a
function of aggregate size Nagg and the distribution of aggregates size broadens when the
aggregates are big. Here, we study how the aggregate size affects the reinforcement and the
rheological properties of the model composites.

Simple viscous fluid In the case with a simple viscous fluid, the flexible aggregates
exhibit a reinforcement on the stress relaxation modulus G(t) increasing with the aggregate
size only at long times, as shown in Fig 3.7a. In this latter figure, the aggregates sizes has
been varied from Nagg = 20 to 50 with a fixed volume fraction φ = 10%. The effect also
occurs for the rigid aggregates and can be described as a reinforcement along the whole
range of time, as shown in Fig 3.7b, where the aggregate sizes varies from Nagg = 20 to 50
with a constant volume fraction φ = 10%. The rigid aggregates size is limited to Nagg = 50
owing to the difficulties to generate large rigid aggregates Nagg > 50. As expected, the
large aggregates can lead to the slowing down of the dynamics when compared to small
aggregates. However, for the flexible aggregates system, no change occurs in the relaxation
dynamics at short times, which may be related to the soft nature of the aggregates, while
the rigid aggregates exhibit the reinforcement effect in the whole range of time, which may
be owing to their solid spatial structure.

Entangled polymer The flexible aggregates exhibit a similar size effect like that high-
ligted previously with a simple viscous fluid. This is shown in Fig 3.8a, where the volume
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Figure 3.7: Effect of aggregate size Nagg of (a) flexible aggregates and (b) rigid
aggregates in a simple viscous fluid, with a fixed volume fraction φ = 10%.

fraction of aggregates is fixed to 10% and the aggregate sizes Nagg vary from 20 to 50. For
the rigid aggregates, reinforcement occurs on the stress relaxation modulus G(t) along the
whole range of time, as shown in Fig 3.8b, where the volume fraction and the polymer
matrix are the same as these for the flexible aggregates. The reinforcement for the rigid
aggregates can be described as an increasing plateau of the stress relaxation modulus G(t)
at short times and the slow dynamics at long times, which is more pronounced than for the
flexible aggregates. The reinforcement is affected by the aggregate size Nagg but the effect
may not be strong enough to change the reinforcement mechanism, at least within the limit
of Nagg � 50 and with volume fraction 10%.

(a) (b)

Figure 3.8: Effect of the aggregate size Nagg of (a) flexible aggregates and (b) rigid
aggregates in an entangled polymer matrix (Gp = Gp,ref and τp = τp,ref ), with a
fixed volume fraction φ = 10%.

3.2.4 Effect of primary particle size
As mentioned in the section 2.2.5, the value of the primary particle size d enters the

stress units in simulations. This results from the fact that the unit of pressure in the
simulation is related to the particle diameter d, which sets also the unit of length, and can
be written as kBT/d3. In practice, this amounts to change the value of the plateau modulus
Gp,0 appearing in the relaxation modulus of the polymer matrix, see Eq 3.12. Obviously,
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Gp,0 corresponds physically to a fixed value 0.5 MPa, specific to our choice of the polymer
matrix. In the simulation, however, the reduced plateau modulus Gp,0 is expressed in units
of kBT/d3, and consequently may be different from 1. Hence, to change the value of d, we
change the reduced value of Gp,0.

To illustrate this, consider the conversion between the pressure unit in simulations and
in experiments as follows:

Gp,0 = 1 kBT/d3 ∼ Gp,ref = 0.5 MPa. (3.13)

Here, kB is the Boltzmann constant and the temperature is fixed to the room temperature
T = 300 K, the reference unit of stress of the polymer matrix can be 0.5 MPa, which is
typical value for polybutadiene matrix. It is readily to show that the effective particle
diameter in simulations d corresponds then to 2.02 nm in experiments. If we redefine this
conversion relationship between:

Gp,0 = 1000 kBT/d∗3 ∼ Gp,ref = 0.5 MPa. (3.14)

Hence, when all the other parameters are fixed, the pressure unit should be 1000 times
smaller than before to maintain the conversion, which leads to a 10 times larger particle
diameter d∗ = 10d ∼ 20.2 nm.

We have used this strategy to evidence the effect of the primary particle size for the rigid
aggregates in an entangled polymer matrix, as shown in Fig 3.9a. The plateau value Gp,0
varies from Gp,0 = Gp,ref to Gp,0 = 100G0 = Gp,ref , where G0 = kBT/d3 is the pressure
unit in simulations. This leads to the various particle diameters ranging from 2.02 nm,
4.36 nm to 9.39 nm. When the particle diameter increases, there is a clear decrease of the
stress relaxation modulus G(t) at short times and a slight shortening of the slow relaxation
at long times. We can include that reinforcement increases for small particles, which may
originate from the fact that the large particles diameter may reduce the interface between
the polymer and the filler. The same trend has been observed in the ref [40], where the
reinforcement decreases with increasing particle diameter.

(a) (b)

Figure 3.9: Effect of (a) particle size d and of (b) the relaxation time τp for rigid
aggregates in entangled polymer matrix, with aggregate size Nagg = 20 and a volume
fraction 10%.

3.2.5 Effect of polymer matrix relaxation time
Since the polymer matrix has a viscoelastic kernel which is mono-mode in the present

model (see Eq 3.12), the polymer matrix can influence the rheology of the composites
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through two parameters, namely the plateau modulus Gp,0 and the terminal relaxation
time τp,0.

We have studied the effect of the polymer matrix relaxation time τp on the stress relax-
ation modulus G(t) of rigid aggregates systems in entangled polymer matrix, as shown in
Fig 3.9b. The relaxation time τp varies from τp,0 = τp,ref to τp,0 = 10τp,ref and the plateau
modulus Gp,0 is a constant, for rigid aggregates system with aggregate size Nagg = 20 and
volume fraction 10%. τp,ref is the reference relaxation time of the polymer matrix, which is
considered to be 1 ms in a real system. We conclude that the polymer relaxation time τp

show influence on the stress relaxation modulus G(t) at intermediate and long times via the
slow relaxation dynamics. Therefore, reinforcement in these systems should also depend on
the terminal relaxation time of the polymer matrix.

3.2.6 Effect of aggregates polydispersity
Finally, we discuss here the effect of the aggregates polydispersity on the rheological

properties of the model composites. Note that, as shown in Fig 2.11, the highest attainable
volume fraction of monodisperse rigid aggregates is 17% with small aggregates Nagg = 20
and for polydisperse rigid aggregates, one can reach 18% with small aggregates number in
system containing Na = 100 and 200 aggregates.

As mentioned before, the distribution of size of polydisperse aggregates can be generated
via the empirical formula, expressed in Eq 2.1, here, we have fixed the parameters as a = 2
and b = 10. Then, the corresponding mean aggregate size and the most frequent aggregate
size should be 〈Nagg〉 = 30 and Nagg,max = 20, respectively. This corresponds to a size
polydispersity around 30%.

The comparison of the stress relaxation modulus G(t) of the monodisperse and the
polydisperse rigid aggregates with entangled polymer matrix, Gp,0 = 100G0 = Gp,ref cor-
responding to particle diameter d = 9.39 nm and Gp,0 = G0 = Gp,ref corresponding to
particle diameter d = 2.02 nm, both with τp,0 = τp,ref , is shown in Fig 3.10, where all
the systems share a constant volume fraction of aggregates φ = 10% and the monodisperse
systems have an aggregate size Nagg = 20 and 30, which corresponds respectively to the
mean aggregate size and the most probable aggregate size in the polydisperse system. We
can see that the G(t) of the polydisperse system is slightly higher than both G(t) charac-
terizing the monodisperse systems having respectively the aggregate size 20 and 30. Thus,
reinforcement in the polydisperse system should be higher as compared to the monodisperse
systems having either the mean aggregate size or the most probable size of the polydisperse
system. This may be caused by a few large aggregates (Nagg > 30) in the polydisperse
system, which can enhance the G(t) at intermediate times and slow-down the dynamics at
long times, thus contributing to increase the reinforcement.

3.2.7 Summary: Reinforcement

Stress relaxation modulus

As shown in Fig 3.9, the fillers in entangled polymer matrix exhibit reinforcement evi-
denced here by the stress relaxation modulus G(t), especially at long times, when compared
to the implemented polymer matrix here. This is mostly due to the slow relaxation dynamics
at long times for rigid aggregates.

Effective viscosity

The reinforcement on the stress relaxation modulus G(t) depends on the nature of fillers,
the volume fraction of filler and the aggregate size has been investigated in the previous
sections. As well as the stress relaxation modulus, the viscosity of system can also disclose
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(a) (b)

Figure 3.10: Comparison between the monodisperse and the polydisperse rigid ag-
gregates systems with entangled polymers (a) d = 2.02 nm and (b) d = 9.39 nm at
a fixed volume fraction φ = 10%.

the reinforcement effect on the rheological properties. As defined in Eq 1.29, the shear
viscosity η of filled polymer matrix can be written as the integration of the stress relaxation
modulus G(t) over time,

η =
∫ ∞

0
G(t)dt. (3.15)

In practice, the relaxation function G(t) has been integrated over the whole range of time,
except the harmonic zone. We have, however, discarded the noise part at long times and
the harmonic zone at short times.

As shown in Fig 3.11a, the viscosity of aggregates-filled polymer matrix systems increases
with the volume fraction of aggregates. Strikingly, the viscosity of the systems are orders
of magnitude larger than predictions of the Einstein-Smallwood law in Eq 1.12. Both the
flexible and the rigid aggregates in either a simple viscous fluid or an entangled polymers
display a higher reinforcement factor. Furthermore, the rigid aggregates exhibit a more
pronounced effect of reinforcement than flexible aggregates.

As well as the volume fraction of aggregates, we have investigated the viscosity of the
composites as a function of the aggregate size Nagg, as shown in Fig 3.11b. The viscosity
of composites exhibits a linear relationship on the aggregates size for the case of flexible
aggregates with both an entangled polymers matrix and a simple viscous fluid, which is
probably due to their soft nature, akin to star polymers. For rigid aggregates, we clearly
see a change in the reinforcement regime when the aggregates increase their size, for instance,
the viscosity increases substantially when Nagg > 40 with a simple viscous fluid and enhances
slightly when Nagg > 20 with an entangled polymer matrix. These results, confirm again
the huge increase in reinforcement for aggregates having large size. Also, it is clear that
rigid aggregates display higher levels of reinforcement than flexible aggregates.

3.3 Slow dynamics
In the previous section 3.2.1, the effect of filler type on the stress relaxation modulus

G(t) has been examined for the individual nanoparticles and for both the flexible and the
rigid aggregates in entangled polymers, as shown in Fig 3.3b. All three types of fillers share
the same volume fraction φ = 10% and both the flexible and the rigid aggregates have the
same aggregate size Nagg = 50. Both types of aggregates exhibit reinforcement on the stress
relaxation modulus at long times, and we have evidenced a slow dynamics, as compared to
individual nanoparticles.
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Figure 3.11: Viscosity of aggregates-filled polymer matrix as a function of (a) the
volume fraction of aggregates φ (with a constant aggregate size Nagg = 20) and
(b) the aggregate size Nagg (with a constant volume fraction φ = 10%), in both a
simple viscous fluid and an entangled polymer matrix. The dashed line represents
the Einstein-Smallwood law Eq 1.7.

In this section, the slow filler dynamics has been investigated via several physical ob-
servables, including the mean-square displacement, the dynamic structure factor and the
orientation autocorrelation function, which are intended to understand the link between the
microscopic motion at the scale of the nanoparticles and macroscopic mechanical reinforce-
ment. For the sake of focusing on the motion of the aggregates, small aggregates have been
studied here which may reduce the influence of the aggregate size. As shown in Fig 3.12a,
both the flexible and the rigid aggregates display reinforcement on the stress relaxation
modulus G(t) when compared to the individual nanoparticles, and the aggregate size here
is unique Nagg = 20 and the volume fraction of fillers is fixed as φ = 10% with an entangled
polymer matrix. We remark that the long time relaxation dynamics is almost the same for
the two types of aggregates. The rigidity of the aggregates does not play an important role
here probably because the aggregates are small, Nagg = 20.

3.3.1 Diffusion coefficient
The mean-square displacement (MSD) is a useful quantity to characterize the motion

of the particles and is defined as follows:

MSD(t) =
〈
(R(t) − R(0))2

〉
= 1

N

N∑
n=1

(Rn(t) − Rn(0))2 , (3.16)

where N is the total number of particles and Rn(t) is the position vector of particle n at
time t. The diffusion coefficient D in 3D is related to the mean-square displacement as
follows [86],

lim
t→∞ MSD(t) = 6Dt. (3.17)

We have quantified the long time dynamics through the diffusion coefficient for all three
types of fillers, as shown in Fig 3.12b. The slopes of curves represent the diffusion coefficient
of particles and the data have been collected from the same simulations shown in Fig 3.12a.
It is important to notice that the mean-square displacement of the aggregates here are not
that of the mass center of aggregates but the average value of all the nanoparticles in an
aggregate. Owing to the presence of the harmonic zone and the transition state at short
and intermediate times, the diffusion coefficient should only be computed from long times,



3.3. SLOW DYNAMICS 61

t > 1000 in Fig 3.12b. The diffusion coefficient for the individual nanoparticles at long times
(t > 1000τp,ref ) is near 0.0909 and these for the flexible and the rigid aggregates are 0.00324
and 0.00266 (in units of d2/τp,ref ), respectively. Obviously, the individual nanoparticles
have a much larger diffusion coefficient when compared to both types of aggregates, which
is a sign of the emergence of slow dynamics for the two types of aggregates considered.

(a) (b)

Figure 3.12: (a) Stress relaxation modulus G(t) of aggregates compared to individual
nanoparticles. All the systems have the same volume fraction of filler, φ = 10%, and
the aggregates have the unique size Nagg = 20. (b) The mean-square displacement
(MSD) calculated for the systems shown in the left figure.

3.3.2 Orientation of aggregates
The orientation of the aggregates may disclose the slow dynamics at long times since

the aggregates consist of primary particles and their motions may be decomposed in the
diffusion of the center of mass, rotation around the center of mass and deformation, the
latter one being relevant only for the flexible aggregates system. In the linear regime that
we have discussed up to now, simulations occur at equilibrium. Hence, the evolution of the
orientation of aggregates may be measured by the time correlation of the orientation vector
of the aggregates. The orientation vector of an aggregate i can be defined in a simple way,
as a vector joining the center of mass (position Ri,c.m.) to the furthest particle from the
mass center (position Ri,fur )

ui(t) = Ri,fur(t) − Ri,c.m.(t). (3.18)

Then the evolution of the orientation of the aggregates can be written as follows:

Ci,or(t) = 〈ui(t) · ui(0)〉 , (3.19)

where Ci,or(t) is the time correlation of the orientation vector of aggregate i at time t.
As shown in Fig 3.13a, the time correlations of the orientation vector of both the flexible

and the rigid aggregates display a slow relaxation regime. More precisely, we can define a
final relaxation times τrelax for the flexible and the rigid aggregates, when the autocorrelation
function has reached 1/e of its initial value. These times are found to be around τrelax = 150
and 580 τp,ref , respectively, which are the average value over all the aggregates in simulation.
The data have been collected from the same simulations shown in Fig 3.12a. The long
relaxation time of the orientation of the aggregates is comparable with the relaxation time
corresponding to the long time decay of the stress relaxation modulus G(t) shown before.
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(a) (b)

(c) (d)

Figure 3.13: (a) Normalized time correlation of orientation vector, (b) Dynamic
structure factor, (c) self dynamic structure factor and (d) intra-aggregates dynamic
structure factor of both the flexible and the rigid aggregates with a series of wave
vectors q = 2π/d, 2π/Rg and 2π/2Rg, where Rg is the radius of gyration of the
aggregates. The volume fraction is φ = 10% and the aggregate size is Nagg = 20.

3.3.3 Dynamic structure factor
Dynamic structure factor The dynamic structure factor is an other observable that
characterizes the microscopic dynamics of the nanoparticles. The dynamic structure factor
is based on the density field of the whole system ρ(q, t) =

∑N
m=1 exp(−iq · rm), where N

is the total number of particles, q and rm is the wave vector and the position vector of
particle m, respectively, then it can be written as follows:

Sdsf (q, t) = 1
N

〈ρ(q, t)ρ∗(q, 0)〉 . (3.20)

Fig 3.13b shows that the dynamic structure factor of both the flexible and the rigid aggre-
gates calculated for a series of wave vectors |q| = 2π/d, 2π/Rg and 2π/2Rg. It is obvious
that the dynamic structure factor has a much smaller relaxation time than that of the
stress relaxation modulus G(t), in Fig 3.12a, or that of the orientation of aggregates, in Fig
3.13a. Since the dynamic structure factor is associated to the global density field, this rapid
relaxation process may indicate that the global configuration of particles does not change
slowly and the local dynamics of particles may be relatively faster than the rotation of the
aggregates.
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Self dynamic structure factor To subtract the contribution of collective particle
motion in the dynamic structure factor, the self dynamic structure factor is intended to
characterize the self motion of the nanoparticle. It can be defined as the time correlation
of the local density as below,

Ssdsf (q, t) = 1
N

〈
N∑

m=1
ρm(q, t)ρm

∗(q, 0)
〉

, (3.21)

where ρm(q, t) = exp (−iq · rm(t)) is the local density of particle m at time t. Being
different from the dynamic structure factor, the self dynamic structure factor represents
the relaxation of the local density. As shown in Fig 3.13c, both the flexible and the rigid
aggregates exhibit a rapid relaxation process for the series of wave vectors q.

Intra-aggregate dynamic structure factor Since the orientation of the aggregates
displays a slow relaxation, the intra-aggregates dynamic structure factor may unveil the
relationship between the local density field and the motion of the aggregates. The intra-
aggregates dynamic structure factor is defined by the density field of single aggregate ρm,

Siadsf (q, t) = 1
Na

〈
Na∑

m=1
ρm(q, t)ρm

∗(q, 0)
〉

, (3.22)

where Na is the total number of aggregates and ρm(q, t) =
∑Nagg,m

n=1 exp (−iq · rn(t)) is the
local density of aggregate m at time t, Nagg,m is the total number of particles contained
in an aggregate m. This observable should indicate the change in the dynamics of the
aggregates due to the interaction between the aggregates or the interaction/inneraction
within an aggregate. As shown in Fig 3.13d, the intra-aggregates dynamic structure factor
displays a rapid relaxation process even with a series of wave vectors, with relaxation times
comparable to those computed from the other structure factors.

To conclude this section, the slow dynamics evidenced in the stress relaxation modulus
for both the flexible and the rigid aggregates can be related to the slow rotation of the
aggregates as probed in simulations at equilibrium. Moreover, we have seen that the global
density field, the local particle density field and the local aggregate density field relax all
relatively fast as compared to the aggregate rotation, as inferred from the three dynamic
structure factors calculated. This indicates that the slow dynamics evidenced in the stress
relaxation modulus G(t), which can induce reinforcement at long times, for aggregates may
occur when the local dynamics of the particles or aggregates are relaxing relatively fast.

Conclusion
We have characterized the rheological properties of polymer matrix filled by small fillers.

The effect of the key parameters, including the filler volume fraction, the filler size and mor-
phology and the rheology of the polymer matrix has been systematically analyzed. Both the
flexible and the rigid aggregates exhibit a remarkable reinforcement in the stress relaxation
modulus G(t) as compared to the individual nanoparticles. This effect is evidenced for
both simple viscous fluid and entangled polymer matrix. The same effect of filler type also
appears on the dynamic moduli, the storage modulus G′(ω) and the loss modulus G′′(ω).
The volume fraction of fillers has been proven to be a key parameter in enhancement of the
mechanical properties of filled hybrid system. The corresponding effect is displayed as a
reinforcement linear proportional to the weak volume fractions of aggregates, this linearity
may be caused by the weak volume fraction of filler and the repulsive interaction between
fillers. When the volume fraction of aggregates is large, the aggregates system exhibits
a change of reinforcement regime, this effect is more pronounced for the rigid aggregates
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(φ > 15%) than the flexible aggregates (φ > 30%), as shown in Fig 3.11a. The aggregate
size can exhibit different reinforcement levels according to the nature of the aggregates.
The effect on the stress relaxation modulus G(t) occurs only at long times for the flexible
aggregates and in the whole range of time for the rigid aggregates.

The rheology of the polymer matrix has two main parameters: the plateau modulus
and the relaxation time. Large nanoparticles may reduce the reinforcement, which may
decrease the effective effect of the polymer chains around the nanoparticles. This can be
related to the phenomennon observed in ref [40], which is attributed to the reduction of
the interface between the polymer and the interface for big nanoparticles. Meanwhile, the
effect of relaxation time, related to the effect of the mass of polymer chain Mw, also play
an important role in the reinforcement at long times.

In order to understand the reinforcement mechanisms on the stress relaxation modulus
G(t), displayed by the aggregates systems, the slow dynamics of aggregates at long times
has been investigated. We have seen that the diffusion coefficient of the nanoparticles in
both types of aggregates decreases significantly as compared to the diffusion coefficient
of the individual nanoparticles. From a microscopic point of view, the aggregates in the
simulations do not rotate rapidly, instead, the correlation of the orientation of the aggregates
displays a slow relaxation process. Nonetheless, the local and collective dynamics of either
the nanoparticles or the aggregates are orders of magnitude faster than rotational motion
of the aggregates, as one can be inferred from the different structure factors studied here.
This indicates that the global configuration of all aggregates may evolve slowly, specifically
the translation and the rotation of aggregates.

The distribution of the aggregate size can have a relatively important effect in the
mechanical reinforcement of filled polymer system. Polydisperse rigid aggregates systems
exhibit reinforcement levels comparable to the reinforcement displayed by the monodisperse
systems having the mean aggregate size and the most frequent aggregate size of the polydis-
perse systems. The comparable levels of reinforcement may be due to the relatively small
volume fraction, and large nanoparticle diameter considered here. However, generating
mono and polydisperse rigid aggregates with relatively high volume fraction is challenging.

We discuss finally briefly the experimental relevance of our simulation results. The
existence of long relaxation times in the stress relaxation modulus of filled polybutadiene
has been evidenced experimentally in [67]. We interpret the long times appearing in G(t) as
the existence of aggregates in the filled samples studied in [67]. Also, Figure 7 in [67] shows
that for intermediate frequencies, reinforcement is almost independent on the molecular
mass Mw of the polymer matrix. The mechanisms of reinforcement that we discuss here
should be relevant to this regime. Conversely, at lower frequencies, reinforcement becomes
dependent on Mw. We anticipate that in this latter regime, polymer bridging should control
the rheological response of the system, leading to another relaxation mode with a Mw

dependence. The possibility of the polymer chains to do some bridges between nanofillers
should be considered in future extensions of the model.

Appendix: Computing the stress autocorrelation
function in practice

The stress relaxation modulus G(t) is defined as the time correlation of the shear stress,
as presented in Eq 3.7. Here we discuss the different ways to calculate the time correlation
functions in the simulations.

Basic method This method is based on the definition of the stress relaxation modulus
by the Green-Kubo approach, in Eq 3.7. The simplest method is to keep in memory all
the stress components at all times during the simulations. This requires an enormous
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memory space for the storage, which may require enormous computation costs and slow-
down computational performance.

FFT method The time correlation of an observable can be also called the auto-correlation,
which can be calculated by Fourier transform, in practice, the fast Fourier transform (FFT)
is a useful technique. For instance, the auto-correlation S(t) of the function f(t) can be
defined as below,

S(t) = 〈f(t + s)f(s)〉 , (3.23)
where 〈. . .〉 is the ensemble average. The auto-correlation can be written in a simple formula
in Fourier space,

FFT [S(t)] = FFT [〈f(t + s)g(s)〉] = F̃ (ω)F̃ ∗(ω), (3.24)

where F̃ (ω) = FFT [f(t)] is the Fourier transform of f(t). Then it is readily to calculate
the auto-correlation by the inverse Fourier transform (IFFT ) of its corresponding value in
Fourier space,

S(t) = IFFT
[
F̃ (ω)F̃ ∗(ω)

]
. (3.25)

Compared to the basic method, the FFT method is fast and there is almost no differences
between the basic method and the FFT method [88]. However, the FFT method still requires
to record the stress along the whole simulation, which may lead to some storage problems.
This will be resolved in the following method.

Order-n algorithm The Order-n algorithm is intended to measure the correlations
over different time scales [88]. In practice, there are several parameters: the block scale Nscl

is the time scale to calculate an average value which is the new element at the following high
level, Nlv is the maximum number of levels and Nelem is the maximum number of elements
at one level.

At the base level 0, there are the original instantaneous data, for instance, the stress
σ(t) at time t. The j-th element σ

(i)
j at level i (i > 0) represents the average value with

time scale Δt(i) = N i
sclΔt calculated from the j-th block of elements at level i − 1, and so

on, as shown in the equations below:

σ
(i)
j = 1

Nscl

j+Nscl∑
k=j

σ
(i−1)
k = 1

N i
scl

jN i
scl+j∑

k=(j−1)N i
scl

+j

σ0
k, (j = 1,2,...,Nelem − Nscl) (3.26)

where σ
(i)
j is the j-th element in level i and σ0

k is the (k − (j − 1)N i
scl)-th element at base

level 0. A schematic illustration is shown in Fig 3.14, in which the new element at high level
is the mean value of the newest Nscl elements at low level, such as the element σ(1)(n) at
level 1 is the mean value of the elements from σ ((j − 1)n + 1) to σ(jn), where n here is the
block scale Nscl and jn represents the time. At each level, the elements will be transferred
towards the left side if there is a new stress element generated and deployed from the right
side. Once the new elements number reaches the block scale Nscl, a new element at the
next higher level should be calculated.

The stress relaxation modulus G(t) can be constructed in a similar table as the stress
table, as shown in Fig 3.15, in which the elements at each level are no longer the average
value from the elements at lower level. The j-th element G

(i)
j at level i, which represents the

G(t) at time scale jΔt(i), can be calculated directly from the correlation of the corresponding
stress elements at the same level, as shown in the equation below,

G
(i)
j = V

kBT
×
〈

Nelem−j∑
k=1

σ
(i)
k+jσ

(i)
k

〉
, (3.27)
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Figure 3.14: The stress table for the Order-n method.

Figure 3.15: G(t) table for the Order-n method.

where σ
(i)
k is the k-th element in the same level i and 〈. . .〉 is the average symbol over the

number of stress correlations.
The Order-n algorithm is a fast and accurate technique to compute the auto-correlation

and involves calculation time around NNscl/(Nscl −1), while the FFT method and the basic
method may require a computation time near N log(N) and O(n2), respectively. Obviously,
the advantage of the Order-n method is a technique to calculate the auto-correlation on-
the-fly with reasonable memory ressources [88].

Therefore, the Order-n method has been the principal technique to calculate the stress
relaxation modulus G(t). Due to the nature of the Order-n algorithm, the resulting data of
the stress relaxation modulus G(t) are not separated by the unique time delay between the
elements at different levels. Thus, it requires to complete the data of G(t) with a unique time
scale in order to calculate the dynamic moduli G′(ω) and G′′(ω), via the Fourier transform.
To do so, we used linear interpolation in log-log scale.
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Nonlinear rheology: simulations and results
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Introduction
A system submitted to a large deformation will often exhibit a non-linear response.

In this chapter, we study the non-linear rheology of our model composites. We use large
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amplitude oscillatory shear (LAOS), where a sinusoidal deformation of fixed amplitude is
imposed. We saw in section 1.2.3 that nonlinear behaviors can be classified into four types.
We show below that our model composites pertain to the first type, where the dynamic
moduli are constant in the linear regime and start decreasing monotonously with the shear
deformation amplitude. We also study the history dependence of rheology by performing
multiple cycles in which the shear amplitude is first increased step by step and then reduced
back to its initial value. Both the storage and the loss modulus exhibit similar responses
to these cycles, and we discuss how this behavior relates to the orientation of aggregates.
Finally, we also present some preliminary results with attraction between aggregates, and
show that they open interesting perspectives.

4.1 Rheology in nonlinear regime

4.1.1 Method in practice

Lees-Edwards boundary conditions

The Lees-Edwards boundary conditions are a widely used technique to generate the
shear flow in molecular dynamics simulations [89, 88]. As shown in Fig 4.1, the simulation
box is the grey middle one and is surrounded by its images via the periodic boundary
conditions. The goal is to simulate a steady shear, in which the deformation amplitude
varies with a constant shear rate and to generate a linear profile of velocity. The upper
layer (box B, C, D) and the bottom layer (box F, G, H) displace towards opposite directions
while the middle layer remains static.

This method can simulate the non-equilibrium process when implementing shear de-
formation, which requires a propagation time to establish the desirable velocity profile
proportional to the shear rate and let the system reach a stationary state. However, this
propagation time may cause problem in simulations under oscillatory shear, in which the
shear deformation varies constantly and periodically, so does the velocity profile. This con-
straints also the maximal frequency ω to be considered in oscillatory shear, as it should
be less than 2π/Ts where Ts = L/2cs is the time taken by sound waves to travel from
the boundaries to the center of the simulation box of size L. We have done a number of
tests with oscillatory shear using Lees-Edwards boundary conditions and found that none of
them yield satisfactory results. Apparently, the sound velocity is too small to establish the
instantaneous velocity profile at each time. As a result, we consider that the Lees-Edwards
boundary conditions are not the proper algorithm to compute the shear deformation in the
present model.

SLLOD algorithm We have implemented the SLLOD algorithm, which is useful to
simulate homogeneous shear flow [90], in which the transient process to establish the linear
velocity profile is considered to occur only on a very short time scale. This algorithm
contains the periodic boundary conditions and the instantaneous velocity profile, as shown
in Fig 4.2. An additional velocity, uext, is implemented directly upon particle according to
the shear velocity profile that we want to establish. The additional velocity is uext(y) = γ̇y
in case of a steady shear with a given shear rate γ̇. The equation of motion in the SLLOD
algorithm can be written as follows:

q̇ = p
m

+ q · ∇uext, (4.1)

ṗ = F − p · ∇uext, (4.2)

where q is the position, q̇ and F are the total velocity and the total force felt by the particle,
p and ṗ are the intrinsic momentum and the intrinsic force, and uext is the external velocity
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Figure 4.1: Schematic of the Lees-Edwards boundary conditions [88].

Figure 4.2: Schematic of the SLLOD algorithm.

applied on the particle [90, 91]. The external terms correspond to the external velocity
which is added directly onto particle according to the instantaneous velocity profile. On the
contrary, the intrinsic terms do not contain any part from the external velocity.

Thus, there are two contributions to the particle velocity, the intrinsic velocity and the
external velocity. As shown in Fig 4.3, the total velocity in the x direction Vx consists of
the intrinsic term Vintr,x and the external term uext. Now, as we discuss in chapter 2, the
motion of particles in an entangled polymer matrix is described by the generalized Langevin
dynamics. The compatibility between the SLLOD algorithm and the generalized Langevin
dynamics should therefore be discussed. The equation of motion of the generalized Langevin
dynamics is expressed in Eq 2.11,

M
dV (t)

dt
= Fc (x(t)) −

∫ t

0
Γ(t − s)V (s)ds + Fr(t),

where the velocity term V (s) is the relative velocity between the particle and the polymer
matrix. The relative velocity here is considered to be the intrinsic velocity expressed in the
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Figure 4.3: Intrinsic and external terms of velocity.

SLLOD algorithm. We consider that the polymer matrix has locally the same velocity than
that of the nanoparticles. Hence, the SLLOD algorithm is compatible with the generalized
Langevin dynamics, which will be applied to all the following simulations under shear.

4.1.2 Storage and loss modulus
The storage modulus G′ and the loss modulus G′′ in the nonlinear regime are no longer

Fourier transformed from the stress relaxation modulus G(t) since the Green-Kubo approach
is not valid under a large shear. The alternative solution is to calculate them from the shear
stress, as expressed in Eq 1.33, 1.34 and 1.35.

In an oscillatory shear, the deformation is sinusoidal with a fixed amplitude γ0, which
induces the shear stress to be sinusoidal with a phase difference, as follows:

γ(t) = γ0 sin (ωt) , (4.3)

σ(t) =
∑

n odd

σn,0 sin (nωt + δn) , (4.4)

where γ(t) and γ0 are the shear deformation and the amplitude of shear deformation, σ(t)
and σn,0 are the shear stress and the amplitude of shear stress at n order, ω is the shear
frequency and δn is the phase difference at n order. Note that the order number can only be
odd because the stress response is assumed to be of odd symmetry [92, 93, 94]. In the linear
regime, the high order harmonic terms (n > 1) are negligible, while they are not negligible
and may influence the total shear stress when the system reaches stationary state in the
nonlinear regime. The amplitudes and the phase differences in the shear stress, Eq 4.4, can
be computed by the nonlinear fitting using higher order harmonic terms. The storage and
the loss modulus of order n can be calculated as follows:

G′
n(ω) = σn,0

γ0
cos δn, (4.5)

G′′
n(ω) = σn,0

γ0
sin δn, (4.6)
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where G′
n and G′′

n are the storage modulus and the loss modulus at order n. In the results
shown below, all shear stresses are computed using three terms in Eq 4.4, that is n = 1, 3
and 5.

The loss factor is another parameter to quantitatively determine the system responses
under deformation, it is defined as the ratio between the loss modulus and the storage
modulus, which is the tangent of the phase difference,

tan (δn) = G′′
n

G′
n

. (4.7)

The loss factor compares the elastic and the viscous responses of the system, for instance,
the system is more viscous than elastic if the loss factor is larger than 1, otherwise, the
system is mostly viscous. The dependence of the loss factor on the shear amplitude can
disclose the tendency of system evolution towards viscous behavior (with a positive slope)
or to elastic behavior (with a negative phase), in most cases, the slope is constant in the
linear regime.

4.2 Influence of aggregates properties
In this section, we describe how the nanocomposite non-linear rheology depends on the

aggregates properties: filler type, volume fraction and the aggregate size. The system we
consider is a nanocomposite whose matrix is always the same. It is an entangled polymer
matrix whose stress relaxation modulus Gpolymer(t) can be developed in a mono-mode Prony
series, as done in the previous chapter, with parameters Gp = 100 G0 = Gp,ref and τp =
τp,ref . They correspond respectively to Gp = 0.5 Mpa and τp = 1 ms. The primary particle
diameter is set to 9.39 nm. Finally, we fix the frequency of oscillations to ω = τ−1

p,ref , which
is considered in the range of low frequency.

Note also that in the curves presented below, only the contribution from the filler is
shown, the contribution from the polymer matrix is not displayed. The corresponding
storage and loss moduli of the polymer matrix are readily calculated from Eq 1.39, giving
G′

p = 0.5 Gp,ref and G′′
p = 0.5 Gp,ref at the frequency ω.

4.2.1 Effect of filler type
The reinforcement effect on the dynamic moduli G′ and G′′ depends on the type of

filler, shown in Fig 4.4a. First, we note that the results from the simulations undergoing
oscillatory shear are consistent in the linear regime (γ0 < 0.1) 1 with those calculated via
the Fourier transform from the stress relaxation modulus G(t) in equilibrium simulations
(see chapter 3). Second, all fillers exhibit the Payne effect, where the storage and the
loss moduli decrease when the shear deformation amplitude increases. For the individual
nanoparticles, the reduction factor is around 2, and it appears that the storage and the
loss modulus decrease simultaneously in all range of the shear deformation amplitude. This
causes the corresponding loss factor to be constant with the shear deformation amplitude,
as shown in Fig 4.4b. The flexible and the rigid aggregates exhibit a reduction factor around
2 and 3 on both dynamic moduli, respectively. Moreover, the loss factors of the aggregates
systems present monotonous decreasing tendency with the shear deformation amplitude γ0,
as shown in Fig 4.4b. No overshoot was seen.

Compared to the dynamic moduli of the pure polymer matrix, G′
p = G′′

p = 0.5 Gp,ref ,
only those from the rigid aggregates present comparable values. Besides, the flexible and
the rigid aggregates display substantial reinforcement on both the storage and the loss

1Note that the loss factor of individual nanoparticles at γ0 = 0.1 has been excluded owing to
perturbation of noise occurring on the dynamic moduli.
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modulus compared to the individual nanoparticles, which correspond to 1 order and 2
order of amplitude, respectively. The relatively low reinforcement factor may be due to the
weak volume fraction of filler, φ = 10% here, and the reinforcement effect should be more
substantial when the volume fraction attains a relatively high value, typically Φ > 20%.
Because they represent the most interesting and realistic case, we will focus on the rigid
aggregates and consider them to be the primary filler in the all following sections.

(a) (b)

Figure 4.4: Effect of the filler types, the individual nanoparticles, the flexible and
the rigid aggregates, on the stress relaxation modulus G(t) with (a) d a simple fluid
and (b) an entangled polymers matrix, with a fixed volume fraction φ = 10% and
the unique aggregate size Nagg = 50.

4.2.2 Effect of filler volume fraction
Monodisperse rigid aggregates As shown in Fig 4.5a, the high volume fraction of
monodisperse rigid aggregates (with unique aggregate size Nagg = 20) enhances reinforce-
ment of both the storage and the loss modulus along the shear deformation amplitude γ0.
Again, there is a good /perfect consistency between the dynamic moduli measured from the
simulation at equilibrium and those from the simulations undergoing oscillatory shear.

The Payne effect occurs at all volume fractions investigated. As expected, both the
storage and the loss modulus are constant in the linear regime (γ0 < 0.2) and decrease in
the nonlinear regime (γ0 ≥ 0.2). As before, there is not any overshoot even with a relatively
high volume fraction φ = 15%. Finally, the corresponding loss factors are shown in Fig 4.5b,
where all three systems display the same master curve which is monotonously decreasing
along the shear deformation amplitude γ0 despite of the statistical noise at small shear
deformation amplitude (γ0 < 0.03). This suggests that in the range of volume fraction, the
dynamics of the aggregates remains qualitatively the same.

Polydisperse rigid aggregates Here we consider the polydisperse rigid aggregates
systems considered before, with the mean aggregate size 〈Nagg〉 = 30 and the most frequent
aggregate size Nagg,max = 20, corresponding to a size polydispersity σ ∼ 30%. The effect of
filler volume fraction is seen from φ = 10% to 17%, as shown in Fig 4.6a. Both the storage
and the loss modulus have been enhanced with increasing volume fraction of aggregates and
it seems that the reinforcement ratio is proportional to the volume fraction of aggregates.
This has been confirmed by the loss factor, as shown in Fig 4.6b. All three systems display
the same master curve of the loss factor, which is monotonously decreasing along increasing
shear deformation amplitude γ0. Again, this indicates that the polydisperse rigid aggregates
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(a) (b)

Figure 4.5: (a) Storage and loss modulus for monodisperse rigid aggregates with
unique aggregate size Nagg = 20 in entangled polymer matrix. The volume fractions
of aggregates varies from 10% to 15%. The dashed lines represent the dynamic
moduli measured from the simulation at equilibrium in the previous chapter 3. (b)
Corresponding loss factors.

systems exhibit the same dynamic regime under oscillatory shear, even with increasing
volume fractions.

(a) (b)

Figure 4.6: (a) Storage and loss modulus for polydisperse rigid aggregates as func-
tion of volume fractions from 10% to 17%, with entangled polymer matrix. (b)
Corresponding loss factors.

4.2.3 Effect of aggregate size
The effect of aggregate size has been investigated for the monodisperse rigid aggregates

with a fixed volume fraction φ = 10% and the aggregate size varies from Nagg = 20 to 50,
as shown in Fig 4.7a. The systems display reinforcement on both the storage and the loss
modulus along the shear deformation amplitude. Again, the values of the dynamic modulus
measured in simulation undergoing oscillatory shear display a good consistency to those
measured from simulations at equilibrium.

Both the storage and the loss modulus exhibit nonlinear response in the nonlinear
regime, decreasing with the shear deformation amplitude, which is referred to as the Payne
effect. The values of the dynamic modulus for large deformation are nearly 2 times smaller
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than those in the linear regime. Even with a relatively large aggregate size, the overshoot
in G′′ does not appear.

The corresponding loss factors of the two systems is shown in Fig 4.7b, where all of them
decreases monotonously with increasing shear deformation amplitude γ0. This indicates that
the dynamic regime for the polydisperse rigid aggregates systems slightly changes with the
aggregate size. Small aggregates (Nagg = 20) presents a relatively higher value on the loss
factor than that of the large aggregates system (Nagg = 50). This may indicate that the
relative viscous dissipation, as measured by the loss factor, is enhanced by small aggregates.

(a) (b)

Figure 4.7: (a) Storage and loss modulus for monodisperse rigid aggregates with a
unique volume fraction φ = 10% and for different aggregate sizes from Nagg = 20 to
50. (b) Corresponding loss factors.

Due to the challenge in generating configurations of rigid aggregates, especially for the
monodisperse system, we can only compare the aggregate size at relatively low volume frac-
tion of aggregates. The monodisperse systems with large rigid aggregates suffer either from
finite box size effect , where the measuring results could depend on the system size (number
of aggregates), or the difficulty inherent to the generation method. Other comparison test
for the effect of aggregate size has been done for the volume fraction φ = 12% with aggregate
size Nagg = 20 and 30. The corresponding figures, including the dynamic modulus and the
loss factor as a function of shear deformation amplitude γ0, are similar to those presented
before but with a slight reinforcement owing to the larger value of the volume fraction, as
shown in Fig 4.8

4.2.4 Effect of polydispersity
The effect of the polydispersity of the rigid aggregates with a fixed volume fraction is

shown in Fig 4.9. For comparison, we also plot the result for monodisperse aggregate with
sizes Nagg = 20 and 30, which are the most frequent aggregate size and the mean size of the
polydisperse system. The polydisperse system display reinforcement on both the dynamic
moduli in the linear and the nonlinear regimes when compared to the monodisperse system
with Nagg = 20. When the monodisperse rigid aggregates system has the mean size of
the polydisperse system Nagg = 30, it seems that the reinforcement occurs only on the
storage modulus in the linear regime and both the two systems exhibit similar behavior
on the storage modulus in the nonlinear regime. Moreover, the polydispersity does not
influence strongly the loss modulus in the linear regime and the monodisperse system shows
a relatively high value on the loss modulus in the nonlinear regime when compared to those
of the polydisperse system.
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(a) (b)

Figure 4.8: (a) Storage and loss modulus for monodisperse rigid aggregates with a
unique volume fraction φ = 12% and for different aggregate sizes from Nagg = 20 to
30. (b) Corresponding loss factors.

Figure 4.9: Comparison between the polydisperse and the monodisperse rigid ag-
gregates with a fixed volume fraction φ = 10%.

4.3 High order harmonics

4.3.1 Dynamic moduli

As mentioned before, the dynamic moduli can be calculated from the shear stress at
different harmonic orders and those at the first order are generally much larger than those
at high order, as shown in Fig 4.10a. The ratios between the terms at high harmonic order
(n > 1) and the primary term (n = 1) are shown in Fig 4.10b, it is readily seen that the
dynamic modulus at high harmonic order are negligible in the linear regime (γ0 < 0.2) and
that they are essentially negative in the nonlinear regime (γ0 ≥ 0.2). Thus the storage and
the loss moduli at the first harmonic order are considered as the principal modulus and are
presented in all the figures in this chapter, if not otherwise mentionned.
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(a) (b)

Figure 4.10: (a) Storage and loss modulus for harmonic order n = 1, 3, 5 and (b) the
ratio of high order terms (n > 1) to the primary term (n = 1) for a monodisperse
rigid aggregates system with unique aggregate size Nagg = 20 and volume fraction
φ = 10%. n corresponds to the harmonic order number.

4.3.2 Shear stress

The shear stress is distorted by the high order harmonic terms. This effect can be
seen via the Lissajous analysis, which displays the shear stress as a function of the shear
deformation. For instance, the stress-strain Lissajous figures should be perfectly elliptical
in the linear regime and be perturbed by the terms at high order in the nonlinear regime.
As shown in Fig 4.11b, the stress-strain Lissajous varies as a function of shear deformation
amplitudes γ0, for the dynamic moduli expressed in Fig 4.11a, where the nonlinear regime
occurs when γ0 ≥ 0.1. The Lissajous figure of the shear stress is elliptical in the linear
regime (γ0 = 0.05), while it is perturbed for large deformation (γ0 ≥ 0.1).

(a) (b)

Figure 4.11: (a) Storage and loss moduli as a function of the shear deformation
amplitude γ0 for monodisperse rigid aggregates with unique aggregate size Nagg = 20
and volume fraction φ = 10%. (b) Stress-strain Lissajous figures for a series of shear
deformation amplitudes in both the linear regime and the nonlinear regime, for the
system shown in the left figure.
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4.4 Filler behavior under LAOS

4.4.1 Gyration tensor

(a) (b)

Figure 4.12: Schematic of the contour of a disordered polymer chain measured by
(a) gyration tensor and (b) radius of gyration [95].

In contrast to the equilibrium simulations presented in chapter 3, the fillers are now
subject to a finite shear deformation. Therefore, their orientation and shape may be mod-
ified by the deformation. Here we try to characterize the shape of aggregates under shear
deformation. As seen in chapter 2, the gyration tensor is a useful tool to determine the con-
formation of filler [95], and provides more information than the radius of gyration of filler,
as illustrated in Fig 4.12. As a real symmetrical matrix, S can always be diagonalized. The
eigenvectors indicate the orientation directions of the aggregates and the eigenvalues give
the size of the aggregate in the corresponding directions. They can be used to quantify the
deformation and orientation of the fillers under shear deformation.

One could define the orientation as the direction associated to the largest eigenvalue.
However, because our aggregates are not perfectly rigid but can slightly deform, the largest
eigenvalue can switch from one axis to the other between two successive time steps, as we
have observed. To avoid such discontinuous change in orientation, we proceed as follows.
At the beginning of the simulation, we define the orientation of a given aggregate from the
eigenvector which has the largest eigenvalue. Then, we assume that the aggregates can
not rotate by a large angle in one time step. Accordingly, the eigenvector in the later step
is chosen to be the eigenvector which is the ”nearest one” to the primary eigenvector in
the previous step 2. This method has been implemented following the orientation of the
aggregates which will unveil the relationship between the microscopic behavior (orientation)
of the aggregates and the macroscopic rheological response in the following sections.

4.4.2 Results
We have measured the orientation and the deformation ratio of monodisperse rigid

aggregates under oscillatory shear, the corresponding dynamic moduli is shown in Fig 4.5a,
where the system of interest has volume fraction φ = 10% and an aggregate size Nagg = 20.
The orientation angle is defined as the angle between the projection of the orientation
vector in the velocity profile plane and the shear axis, as shown in Fig 4.13, where λ is the
orientation vector, λxy is its projection on the xy plane, x direction is the shear direction
and y direction is the vertical direction of the velocity profile. In the simulations, the shear
axis is defined as the x direction and the velocity plan is the xy plane. The orientation of
aggregates has been investigated as a function of time points in one sinusoidal shear period

2In practice, the nearest vector is the one that maximizes the absolute value of the scalar
product.
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at a given shear deformation amplitude. The different discrete values of time ti correspond
to different values of the instantaneous deformation γ(ti) = γ0 sin(ti), for a given shear
deformation amplitude γ0.

Figure 4.13: Schematic of the orientation vector of the aggregates.

Orientation

The orientation angles of the aggregates have been investigated at shear deformation
amplitudes γ0 = 0.1 and 0.5, as shown in Fig 4.14a and Fig 4.14b, respectively, where the
legends present the different time points during one shear period and all data are collected
after the system reaches a steady state. The former amplitude corresponds to the linear
regime while the latter is considered in the nonlinear regime.

(a) (b)

Figure 4.14: Normalized distribution of the orientation angle of monodisperse rigid
aggregates (Nagg = 20 and φ = 10%) as function of time points in one sinusoidal
shear period with shear deformation amplitude (a) γ0 = 0.1 and (b) γ0 = 0.5.

One can see that the aggregates do not exhibit any bias on the orientation when the
system is in the linear regime (γ0 = 0.1). In contrast, the orientation of the aggregates
is strongly influenced by the shear deformation in the nonlinear regime (γ0 = 0.5). This
indicates that the system under large shear deformation reaches steady state different from
the equilibrium state at the beginning. It suggests the following picture: as the drop on
both the storage and the loss modulus occurs, the aggregates tend to align and rotate
simultaneously. A simple 2D illustration is shown in Fig 4.15. In the linear regime, the
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aggregates are not oriented by small shear deformation and the average orientation direction
of aggregates is not observed, as shown in Fig 4.15a. When the system is under large shear
deformation, the aggregates are forced to orient towards the shear direction at a given time
and this leads to the alignment of the aggregates shown in Fig 4.15b.

(a) (b)

Figure 4.15: Schematic illustration of the aggregate orientation under shear (a)
in the linear regime (small deformation) and (b) in the nonlinear regime (large
deformation).

Effect of polydispersity The polydisperse rigid aggregates that we consider here are
built following a distribution given by Eq 2.1. This disparity of aggregate size may affect
the relative orientation of the aggregates, as compared to the monodisperse case.

The simulation results are shown in Fig 4.16, where the system consists of polydis-
perse rigid aggregates with volume fraction φ = 10% and the mean aggregates size is
Nagg,mean = 30. We have defined two classes of aggregates: small ones if Nagg ≤ 30 and
large otherwise. In the linear regime, the effect of shear flow on the orientation of aggregates
is mostly negligible, as that shown in Fig 4.14a for the monodisperse case. Then, we have
focused on the effect in the nonlinear regime and the following discussion will be around
the phenomenon occurring at a fixed shear deformation amplitude γ0 = 0.5.

As shown in Fig 4.16b, Fig 4.16c and Fig 4.16d, both the small and the large aggregates
exhibit the same tendency at all three typical time points ωt = 0, π/4 and π/2, correspond-
ing to instantaneous deformations γ(t) = 0; γ0/2 and γ0 respectively. This may indicate
that the aggregates are oriented by large shear deformation regardless their sizes. Hence, we
can conclude that the polydispersity does not influence the orientation of aggregates under
shear deformation.

Deformation ratio

The rigid aggregates modeled here are intended to be unbreakable and highly resis-
tant to deformation, especially for the case under shear. To quantify the deformation, we
introduce the deformation ratio as the quantity λ(t)/λ(t = 0) between the instantaneous
largest eigenvalue and its initial value. The deformation ratio is shown in Fig 4.17, for the
same systems as considered before and the same shear deformation amplitudes. The rigid
aggregates maintain essentially the same structure in the linear regime (γ0 = 0.1), with a
variation in deformation ratio that does not exceed 10%. Under large shear deformation,
the rigid aggregates are slightly deformed, and exhibit a periodic behavior in the nonlinear
regime (γ0 = 0.5), which follows the shear deformation. So it appears that that the rigid
aggregates are relatively stable even under large shear deformation.
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(a) (b)

(c) (d)

Figure 4.16: (a) Storage and loss moduli as a function of shear deformation ampli-
tude γ0 for a polydisperse rigid aggregates with volume fraction φ = 10%. The nor-
malized probabilities of orientation angle of aggregates in terms of the time points in
one shear period and the aggregate size, (b) ωt = 0, (c) ωt = π/4 and (d) ωt = π/2,
at γ0 = 0.5 in the nonlinear regime. The total contribution and the partial contri-
bution from the small and the large aggregates are displayed by distinct colors.

To conclude this part, we see that in the linear regime, the rigid aggregates do not
display any preferred orientation and they are not deformed. In the nonlinear regime, the
rigid aggregates are oriented by shear deformation and present a periodic rotation, as shown
in Fig 4.14b. Meanwhile, the aggregates are slightly deformed with a large ratio more than
10% around γ0 = 0.5. Such changes in the nanocomposite microstructure might be at
the origin of the microscopic phenomena that plays a role in the Payne effect. Indeed,
it is reasonable to relate the alignment and deformation of the aggregate to the stress
softening, as seen in the drop of the storage moduli. More generally, our simulations show
the connection between the nonlinear rheology of nanocomposites and the evolution of the
aggregate degrees of freedom under shear.

4.5 History-dependent LAOS

The question we address now is the following: "does the bias of orientation of aggregates
remain when the shear deformation amplitude decreases?". To answer this question, we will
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(a) (b)

Figure 4.17: Deformation ratio of the same systems shown in Fig 4.14 with shear
deformation amplitude (a) γ0 = 0.1 and (b) γ0 = 0.5.

submit the model system to non trivial deformation history, and concomitantly study the
relative orientation of the aggregates during time. We describe below the history-dependent
rheological phenomena that occur in the nonlinear regime.

4.5.1 Single shear cycle
We consider here an history dependent deformation involving a cycle of deformation

amplitude increasing from γ0 = 0.1 to 1 then back to 0.1, by finite step of 0.1. For every
value of γ0, the system is left a long time (more than 600 cycles) that is generally suffi-
cient to reach a steady state3. Shown in Fig 4.18a are the results for a polydisperse rigid
aggregates system with volume fraction φ = 10%. The storage and the loss moduli exhibit
the monotonous decreasing tendency along the loading process, during which the shear de-
formation amplitude increases, and they display different values in the unloading process,
during which the shear deformation amplitude decreases. The evolution of the shear stress
along the loading and the unloading process is shown in Fig 4.18b, where we can see the
difference on the contour of shear stress in the two processes.

One can readily recognize the difference on the average shear stress over a number
of loops as a given shear deformation amplitude γ0 between the loading and the unloading
process, as shown in Fig 4.19. The shear stress displays transient process in both the loading
and the unloading process, however, the amplitude shrinks in the unloading process. This
may be due to the alignment of the aggregates along the velocity axis under large shear
deformation and it is too hard to relax from the biased stationary state even when the shear
deformation amplitude reduces to a small value, like γ0 = 0.1 in the unloading process.

4.5.2 Long time relaxation
As expressed in the previous section, the storage and the loss modulus drop after a

single cycle of shear amplitudes from γ0 = 0.1 to 1.0. A long time relaxation test has been
simulated in which the system is sheared with a constant deformation amplitude γ0 = 0.1
for a very long time in order to disclose whether or not the system can relax back to its
initial stationary state.

We have tested both the mono- and the poly-disperse rigid aggregates systems. The
storage and the loss modulus as a function of the shear deformation amplitude γ0 is shown
in Fig 4.20a. The systems remain under shear at the last deformation amplitude γ0 = 0.1

3 Note that the steady state does not seem to be reached in the first two steps.
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(a)
(b)

Figure 4.18: (a) Storage and loss moduli as a function of a series of shear deformation
amplitude γ0, for a polydisperse rigid aggregates system with volume fraction φ =
10%. (b) The corresponding shear stress during the loading and the unloading
process, as a function of time.

(a) (b)

Figure 4.19: Average shear stress during one cycle with shear deformation ampli-
tudes (a) γ0 = 0.1 and (b) γ0 = 0.5 in loading and unloading process.

here for 10 time much longer (more than 6000 cycles) than usual and neither the storage
modulus nor the loss modulus display the similar values as those at the beginning of the
loading process. It may be easier to observe this phenomenon in Fig 4.20b, where the
dynamic moduli are displayed as a function of simulation time. The system seems to reach
a quasi-stationary state distinct from the initial stationary state at the beginning of the
loading process. This indicates that the global conformation of the aggregates is oriented
strongly by large shear deformation and the system is "locked" in this oriented stationary
state even after very long times.

4.5.3 Multiple shear cycles
In addition to the single cycle of shear, we have investigated the multiple cycles of shear

under LAOS, for different rigid aggregates systems as shown in Fig 4.21, including both the
mono- and the poly-disperse rigid aggregates systems for two values of the volume fraction.
The systems have been undergoing 3 cycles. Despite some missing points at γ0 = 0.1 in Fig
4.21c, it seems that the systems do not return to their initial stationary state once after
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(a) (b)

Figure 4.20: Storage and loss modulus as a function of (a) shear deformation am-
plitude γ0 and (b) time, for poly- and mono-disperse rigid aggregates with fixed
volume fraction φ = 10% and unique aggregate size Nagg = 20 for the monodisperse
system. Ts ≈ 800Tp is the simulation time used for one deformation amplitude and
Tp = 2π ≈ 6.283 τp,ref is the period of shear deformation.

the loading process in the first cycle and that in both dynamic moduli, the two subsequent
cycles are very close to the unloading of the first cycle. This phenomenon appears to be
independent of the polydispersity of the system or the volume fraction of filler. This may be
related to the case investigated with long time relaxation in the previous section 4.5.2 and
we may conclude that the history-dependent rheological responses under shear are strongly
related to the highly oriented global conformation of filler which is mostly driven by the
large shear deformation.

The distribution of orientation angles for a polydisperse rigid aggregates system, shown
in Fig 4.22a. The rotation angles of aggregates are concentrated around cos(θ) = 0 and
cos(θ) = 1 and this should not occur for a small shear deformation amplitude γ0 = 0.1,
as seen in previous Fig 4.17a. As shown in Fig 4.22b, the probability at cos(θ) = 1 in the
loading process of the first cycle is relatively low and the others are generally 3 or 4 times
higher. This points to a relationship between the microscopic global oriented conformation
and the macroscopic rheological properties which has been discussed before. Moreover, it
is consistent with the conclusion drawn from the case with long time relaxation, that the
system can not return to its initial stationary state once it has been submitted to large
deformation.

To conclude, the aggregates are oriented by the large shear deformation during the
loading process corresponding to the first cycle. Afterwards, the system remains in the
oriented state even though the shear deformation amplitude is reduced. As a result, the
storage and the loss moduli in the second and the third cycles take the values of those in
the unloading process of the first cycle.

4.6 Aggregates with attractive interaction
An overshoot on the loss modulus at large shear deformation amplitude is commonly

seen in experiments, at least if the volume fraction of fillers is sufficiently high, as shown in
Fig 1.13 for the carbon black-filled SSBR compounds. However, in the results presented so
far, we saw that the rheological response of our model nanocomposite is always of type 1
(see Fig 1.11), meaning that the dynamic moduli decrease monotonously with shear defor-
mation amplitude and do not present any overshoot. The latter is often interpreted as the
destruction of filler network due to shear deformation. Because the interaction between the
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(a) (b)

(c) (d)

Figure 4.21: Storage and loss modulus as function of 3 cycles of shear deformation
amplitudes for monodisperse rigid aggregates systems with unique aggregate size
Nagg = 20 and (a) volume fraction φ = 10% and (b) φ = 17%, and polydisperse
rigid aggregates systems with (c) volume fraction φ = 10% and (d) φ = 17%.

(a) (b)

Figure 4.22: (a) Distribution of orientation angles for a polydisperse rigid aggregates
system in Fig 4.21d at shear deformation amplitude γ0 = 0.1 for the loading and
the unloading processes of 3 cycles. (b) Zoom in the area near cos(θ) = 1.

aggregates considered so far are purely repulsive, the aggregates may disperse in a homo-
geneous manner in equilibrium state (in the absence of shear deformation) and we do not
expect the formation of a network. In this section, we investigate the effect of attractive
interaction between particles. We first discuss the implementation of such attractive inter-
action, and show preliminary results on the corresponding non-linear rheology of attractive
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nanofillers systems.

Attractive potential The middle and long range attraction part of the original Lennard-
Jones potential may be ideal to generate the agglomerate of fillers before shear deformation.
As mentioned in the previous section 2.2.1, the original Lennard-Jones potential contains
a short-distance repulsive part and a long-distance attractive part, and can be written as
follows:

ULJ(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]

, (r > 0) . (4.8)

However, the long-distance attractive force is not comparable to the repulsive force at
short distance if they have the same parameters. Thus, the new attractive Lennard-Jones
potential is considered to be independent from the already applied repulsive Lennard-Jones
potential. We consider to increase the attraction between fillers by solely enhancing the
depth of the attractive Lennard-Jones potential εatt while the other parameters remain the
same as those of the repulsive Lennard-Jones potential.

The aggregates maintain their structure via the balance between the recall force from
the springs and the short-distance repulsive force. Introducing an attractive interaction
could modify the aggregate geometry, precluding a meaningful comparison with the results
obtained so far. For this reason, we have chosen not to implement the attractive force be-
tween the particles within the same aggregates. Rather, we propose to apply the attractive
force only between the particles from different aggregates. As illustrated in Fig 4.23, parti-
cles of the same aggregate interact via short-range repulsion and the springs forces, while
particles belonging to different aggregate interact via repulsion and the attractive part.
This approach should be effective to create the agglomeration of the fillers and maintain
the global conformation within a range of shear deformation amplitudes.

(a) (b)

Figure 4.23: Schematic of interactions between particles belonging to (a) the same
aggregate and (b) different aggregates.

Test results

We have tested this model for a monodisperse rigid aggregates system with unique
aggregate size Nagg = 20 and volume fraction φ = 10%, as shown in Fig 4.24a, where the
storage and the loss modulus are displayed as a function of shear deformation amplitudes
γ0 from the linear and the nonlinear regime. The attractive forces are up to 5 times larger
than the repulsive forces εatt = 5εrepul. We see reinforcement on both the storage and the
loss moduli for the case with attraction interaction when compared to the case with only
repulsion. In contrast with the results obtained with the purely repulsive aggregates, the
loss factors for the cases with attraction are no longer monotonous. There is a maximum
in the nonlinear regime, after which the loss modulus starts to decrease, as shown in Fig
4.24b. In the future, we will characterize the evolution of the agglomerate morphology
during LAOS.
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(a) (b)

Figure 4.24: (a) Storage and loss moduli of monodisperse rigid aggregates system
with/without attraction. (b) Corresponding loss factors.

Conclusion

In this chapter, we have investigated the rheological properties of filled entangled poly-
mer systems in the nonlinear regime, under oscillatory shear. All the storage and the
loss modulus in the linear regime are consistent with the dynamic moduli computed from
the stress relaxation modulus via Green-Kubo simulations at equilibrium. In the nonlinear
regime, the well-known Payne effect is observed for our model of nanocomposites, where the
storage and the loss modulus both decrease with increasing shear deformation amplitude.

The filler type always influences the stress response, in the linear regime and the non-
linear regime. Among the three filler types, both the flexible and the rigid aggregates
display a substantial reinforcement on the dynamic moduli when compared to the individ-
ual nanoparticles, where the reinforcement factors are around 101 and 102, respectively. All
three fillers show the Payne effect in the nonlinear regime, however, they are not undergo-
ing the same dynamics. Individual nanoparticles system exhibits suspension-like behavior
and its loss factor is mostly independent from the deformation amplitude. This is different
from the flexible and the rigid aggregates systems, where both systems display monotonous
decreasing loss factors along the deformation amplitude.

The volume fraction of aggregates has a dramatic influence on the reinforcement on
the dynamic moduli for both the mono- and poly-disperse rigid aggregates systems. Note
again the difficulty in generating aggregate systems with high volume fractions. Despite of
various volume fractions, the mono- and poly-disperse rigid aggregates systems exhibit the
same dynamic regime under oscillatory shear. Again, the overshoot in the loss factor has
not been found in the systems with available volume fractions.

The aggregate size also influences the rheology of the system, especially in the monodis-
perse systems. The large aggregate size can induce the reinforcement on the dynamic
modulus, which may be due to the enhanced interaction between aggregates. However, we
have not found overshoot on the two dynamic moduli.

Since the applied shear deformation is sinusoidal, the shear stress display a perfect sinu-
soidal form with a phase angle in the linear regime while the signal is strongly distorted by
the terms of high harmonic orders in the nonlinear regime. This effect should be considered
when computing the storage and the loss modulus since they are both calculated directly
from the shear stress in this chapter. We have confirmed that the effect exists but is negli-
gible when compared to the primary terms in the nonlinear regime. Therefore, despite the
intrinsic non linearity inherent to the Payne effect, the shear response may be characterized
to a good approximation by the linear moduli G′

1(ω) and G′′
1(ω).
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Moreover, we have seen that the aggregates can be mostly aligned in the nonlinear regime
and there are some slight deformation of the rigid aggregates compared to their equilibrium
state. This may lead to a better understanding of the relationship between the microscopic
filler conformation and the macroscopic rheological properties. Once the system is oriented
by large shear deformation, the rigid aggregates can hardly return to their initial stationary
state and this also influences the dynamic modulus. This induces the history-dependent
LAOS phenomenon, in which the shear deformation amplitudes varies in one or multiple
cycles, which contains the loading process, from the initial value to the largest value, and
the unloading process, from the largest one back to the initial value.

An overshoot is often seen on the loss modulus in realistic filled polymer composites, such
as e.g. the carbon black filled SSBR compounds. Unfortunately, this phenomenon has not
been found in the present results. This may be due to the absence of the agglomeration of
fillers in our model system. Thus, we have proposed a method to promote the agglomeration
of filler, by adding an attractive Lennard-Jones potential. We have done the tests for the
former method and the overshoot has not been found. Nevertheless, the loss factors of
the system with attractive interactions are no longer monotonous and display maximum at
the beginning of the nonlinear regime. More work needs to be done before one can fully
assess the role of attractive interactions. Also, further investigation are needed to provide
a microscopic origin of the existence of an overshoot in the loss factor.
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General conclusion

The object of this work was to develop a mesoscopic model to simulate the behavior of
aggregates in a polymer nanocomposites and measure the resulting rheological properties
of model composites. The need to build a mesoscopic model, rather than using molecular
simulations, is justified by the gap in sizes between the filler aggregates and the monomers of
the polymer matrix. This model is based on a generalized Langevin equation, in which the
motion of the polymer chains is not described explicitly, but its effect on the filler particles
is ”averaged out” and represented by a velocity memory kernel. This approach simplifies
the simulation process and reduces significantly the computation cost, as compared to fully
explicit methods. With this model in hand, we have concentrated our effort on model fractal
aggregates nanocomposites, motivated by their wide presence in the industrial applications.

Let’s summarize the results. First, we have shown that aggregates display reinforcement
levels larger than individual nanoparticles. We have systematically studied the rheological
properties of filled polymer compounds in the linear regime, via the stress relaxation mod-
ulus G(t), the storage modulus G′(ω) and the loss modulus G′′(ω), with various fillers in
non-entangled and entangled polymer matrix. The filler volume fraction has been found
to be one of the key parameters to cause reinforcement, mostly owing to the increasing
interaction between fillers. The filler size, especially the aggregate size, also presents a
different reinforcement on the rheology which is probably due to the appearance of filler
network. The filler particle size can also influence the reinforcement owing to the decreas-
ing polymer-filler interaction area when the particles size increases. We have demonstrated
that the effective viscosity of the filled polymer systems are well above the conventional
Einstein-Smallwood law. In terms of aggregate size, a regime change can be found on the
effective viscosity which may disclose the existence of the global filler network. Moreover,
the aggregate polydispersity can further enhance the rheological properties of filled polymer
system over the monodisperse system. In the linear regime, the rheology of aggregates-filled
polymer systems is also accompanied by slow relaxation dynamics at long times where the
primary particles diffuse slowly and the aggregates are not prone to rotate. However, the
local nanoparticle dynamics has been found to be relatively fast, which can be evidenced
by the dynamic structure factor of primary particles, single aggregate and inter-aggregates.
This indicates the complex mechanisms behind reinforcement in our model systems, which
are characterized by both slow and fast degree of freedom.

Beyond the linear regime, we have systematically investigated the rheology of filled
entangled polymer composites under oscillatory shear deformation of increasing amplitude.
Of particular interest, we have shown evidence of the so-called Payne effect, defined as a
drop of the storage modulus for moderate deformation amplitude. We have seen that the
amplitude of the Payne effect is highly dependent on the type of fillers considered. Rigid
aggregates display large reinforcement levels, and accordingly the highest amplitude of the

89



90 CHAPTER 4. NONLINEAR RHEOLOGY: SIMULATIONS AND RESULTS

Payne effect, if we compare to flexible aggregates or individual nanoparticles. The loss
factor of the individual nanoparticles is independent of the deformation amplitude while
those of both the flexible and the rigid aggregates are monotonous decreasing functions
of the deformation amplitude. The filler volume fraction of aggregates can influence the
amplitude of the Payne effect, whatever the aggregate size dispersity. Polydisperse systems
displays a relatively slightly more pronounced stress softening effect when compared to the
monodisperse system, and the effect should be even enhanced by higher volume fractions
that we have considered here.

In the nonlinear regime of deformation, observables measuring the stress response such
as the shear stress or the dynamic moduli, may contain high order harmonic terms. For
instance, the shear stress can be distorted when the system is submitted to large deforma-
tion, while it is perfectly sinusoidal in the linear regime. The dynamic moduli, however, are
always dominated by the primary terms and their high order terms are small and negative
in the nonlinear regime. We have investigated the primary cause behind stress softening
by quantitatively characterizing the configuration changes of the aggregates. Specifically,
we have computed the rotation and the deformation under deformation, via the gyration
tensor which can precisely quantify the orientation direction and the elongation of the ag-
gregates. The large levels of deformation applied on the system may align the aggregates
along the flow direction, leading to the periodic movement related to sinusoidal signal cor-
responding to the shear deformation. This suggests that the structural change corresponds
to the destruction of the filler network, which in turn reduces the effective elasticity of
the system and leads to the decreasing storage modulus. This phenomenon is independent
from the aggregate size dispersity, as the aggregates are only slightly distorted under large
deformation.

The history-dependent LAOS behavior has been observed for a filled polymer system
undergoing multiple cycles of deformation amplitude. Specifically, the deformation ampli-
tude varies in cycle, from initial value to the last value then back to the initial one and
so on. This history-dependent phenomenon appears to be independent from the dispersity
or the filler volume fraction. As a result, the shear stress and the dynamic moduli are
different in the loading process and in the unloading process, an effect that we explain by
the alignment of the aggregates under large deformation. This effect is much enhanced in
the simulations with multiple cycles, in which the dynamic moduli in the second and the
third cycle display the similar values as those obtained in the unloading process in the first
cycle. This suggests that the alignment of the aggregates is long-lived and relatively stable
even when the deformation amplitude varies. Moreover, we have confirmed that the aligned
aggregates can hardly return to their initial stationary state even after a long time relax-
ation process. As a conclusion, this purely structure-driven LAOS phenomenon discloses a
relationship between the microscopic structure and the macroscopic properties.

Despite all systems tested, we have not found any overshoot on the storage or the loss
modulus. Experimentally, an overshoot on the loss modulus in the nonlinear regime may
be found for a filled polymer system, for instance, a carbon black filled SSBR compounds.
However, we note that experimentally the amplitude of the effect is small, unless the filler
volume fraction is high (> 30%). The absence of clear overshoot in our model may be due to
the lack of agglomeration of the fillers. To confirm this interpretation, we have implemented
an attractive interaction between the aggregates in the present model. Preliminary results
clearly show the effect of the attraction between the fillers on the storage modulus, when
compared to the results without attraction. Strikingly also, the computed loss factors are
no longer monotonous decreasing functions but display a maximum at the beginning of
the nonlinear regime. More work is to be done to elucidate the structural origin of this
overshoot.

As a conclusion, we have developed a versatile model to simulate the filled polymer
composites and measure the rheology of the compounds. Our model is flexible enough
to take into account the size polydispersity, the aggregate rigidity and the interaggregate
interactions. We have shown that this simple model, can account for reinforcement, which
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is boosted by large rigid aggregates. The Payne effect is also reproduced. Furthermore, it
is possible to relate these macroscopic effects to the local configurations of the aggregates.

Perspectives The model is based on the generalized Langevin dynamics which is seen
here as a mesoscopic tool, which may help in concentrating on the filler degrees of freedom,
treating the polymer around the filler as an effective viscoelastic medium. This strategy
has the advantage to tackle the large disparity of relevant length scales, from the monomer
units to the filler network size. Specifically, the motion of the polymer chains has been
averaged out in the form of a velocity kernel, apt in describing the viscoelasticity of the pure
polymer melt. However, the interaction between the polymer chains and the filler particles,
which may lead to "bridging" effects between linked particles, has also been discarded. An
additional interaction force between fillers or a semi-empirical potential could be considered
to account for the contribution of the filler-polymer interface. The precise form it should
take remains an open question.

Second, the model in its prime form is designed for repulsive potential between nanopar-
ticles. For most of the situations that we have considered, the configuration of the aggregates
is homogeneous and filler agglomeration is not observed. This leads to the lack of the over-
shoot on the loss modulus, which is usually found in the filled entangled polymer matrix,
at high volume fractions however. To build a large filler network, we need to implement at-
tractive force between agglomerates in the present model, in which the filler network may be
destructed under large shear deformation, leading to enhanced dissipation at intermediate
deformation. Further investigations are needed in order to fully characterize the rheologi-
cal properties of attractive filler aggregates, and also to unveil the structural origin of the
overshoot of the loss tangent.

Third, the present model is flexible and not restricted neither to a given type of filler,
nor to a given polymer matrix. The type of fillers is not only limited to the fractal like
aggregates or the individual nanoparticles. For nanoparticle, an interesting extension would
be to design a velocity kernel that may account for the presence of permanently grafted
chains on the nanoparticle surface. Other type of nanofillers, that have attracted recent
attention, such as nanotubes or nanofibers, can also be considered in the present model.
Furthermore, realistic polymer matrices can be readily considered in the model by using the
the corresponding memory kernel. Thus, there are potentially many situations that remain
to be explored.
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