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Directeur de Thèse :
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Monsieur Thierry Penduff Chargé de Recherche CNRS Rapporteur
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Directeur de Thèse :
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Chapter 1

Introduction

In addition to hosting the most productive upwelling system in the world, the

South Eastern Pacific (SEP) is subject to a rich variability at different timescales, due

in part to the remote influence of the equatorial Pacific as well as to a prominent

ocean-atmosphere interaction. Locally, the circulation in the SEP relates to a nearly

year-round equatorward wind field, associated with the eastern rim of the South Pa-

cific Anticyclone (Muñoz and Garreaud, 2005). This alongshore wind field propels the

coastal upwelling of colder and nutrient-rich subsurface waters that fertilizes the eu-

photic zone, and ultimately results in the high productivity found in the SEP (Strub

et al., 1998).

The conditions imposed by the local forcing in the SEP are also subject to the remote

influence of the equatorial Kelvin waves (EKW) at a variety of timescales (cf. Shaffer et

al., 1997; Pizarro et al., 2002; Pizarro and Montecinos, 2004), where the South American

coast behaves as an extension of the equatorial waveguide and allows for the poleward

propagation of coastally trapped Kelvin-like waves (Spillane et al., 1987), which con-

nect the climate variability in the SEP to the tropical Pacific variability. In this manner,

climatic events that take place in the tropical Pacific, such as the ENSO (El Niño South-

ern Oscillation) events, reflect on the coastal circulation system in the SEP, modulating

the local oceanographic and atmospheric conditions. Considering the high productiv-

ity of the SEP in terms of fish catch, the occurrence of such events is intertwined with

deep socioeconomic repercussions (cf. Cashin et al., 2014), which has motivated sev-

eral international efforts to improve the current understanding of the SEP dynamics

and its teleconnection with the tropical Pacific (e.g. VOCALS-VAMOS1, CLIVAR2 and

TPOS20203 programs).

Although observational efforts to monitor the SEP circulation are currently under-

way, in situ subsurface observations remain sparse, which has prevented a full under-

standing of the circulation in the region. In this context, the present work focuses on

1www.eol.ucar.edu
2www.clivar.org
3www.tpos2020.org
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Chapter 1. Introduction

the problem of the subsurface SEP circulation variability in connection with the vari-

ability in tropical Pacific, based on regional oceanic modeling tools. The present chap-

ter introduces the main aspects of the SEP circulation and variability, as well as the

processes involved in the oceanic teleconnection between the SEP and the equatorial

Pacific. Towards the end of the chapter, a brief description of the ENSO phenomenon

and its diversity is made. This introductory chapter concludes with the presentation

of the scientific questions and objectives of the present work.

1.1 Wind-driven circulation

In each ocean basin, the large-scale circulation over the first hundreds of meters

organizes around a great anticyclonic gyre, and in the case of the Pacific and Atlantic

oceans, these features are roughly symmetric about the equator. Researchers in the

mid-1800s started to realize that the currents changes in the upper ocean followed a

change in the wind field by a matter of hours, and the hypothesis suggesting that the

frictional stress of the wind was the responsible of such relationship was first proposed

by Croll4 in 1875. From that period on, the intrinsic turbulent nature of the natural

water bodies became known and the concept of turbulent or “eddy” viscosity was

developed. Making use of this concept, following works developed the major elements

in wind-driven circulation theory (e.g. how the rotation of the earth is responsible for

the deflection of wind-driven currents (Ekman, 1902; Nansen, 1898), the equatorial

surface currents system and its relationship with the trade winds (Sverdrup, 1947), the

solutions of the wind-driven circulation using a realistic wind field (Munk, 1950)).

One of the main particularities of the large-scale ocean circulation is the so-called

westward intensification, as shown in figure 1.1, where the flow lines tend to be close

together over the western boundary, while they are spaced in the eastern boundary,

illustrating that the flow is swift in the west, while it is sluggish on the opposite side

of the basin. This feature characterizes all ocean basins and was first explained by

Stommel (1948).

In that work, the author based his demonstration in simplified, theoretical models

of the ocean and wind pattern, which consisted in a constant-depth rectangular ocean

on one hemisphere, and a wind field only varying in the latitudinal direction, as show

in figure 1.2. Stommel’s work exposed for the first time that the variation of the Corio-

lis parameter with latitude is responsible for the western intensification of the currents

in the ocean, and following works explained this feature in terms of vorticity conser-

vation (e.g. Pond and Pickard, 1983; Rhines, 1986; Lozier and Riser, 1989). In general

4James Croll, 19th-century Scottish naturalist mainly known for his works on ice ages periodicity.
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1.2. The Humboldt Currents system

Figure 1.1: Mean absolute geostrohpic streamfunction at 5db from Argo data (2004-2010).
Contour interval is 100 m2s−1. Dark gray areas were ommited from the analysis. After Gray
and Riser (2014).

terms, the vorticity put into the ocean by the wind stress must be taken out (or bal-

anced) by friction. In the west, a strong friction is needed to balance out the vorticity

acquired with the poleward increase in f, and for this strong friction to occur strong

currents with strong shear are needed. As a result of the western intensification, we

find slow currents with low lateral shear in the eastern side of the basin. This induces

a poor ventilation of the circulation (Luyten et al., 1983) thus the “age” of the water

masses found in the eastern ocean boundaries is higher compared with what is found

in the western side (Fig. 1.3), as it is the case when comparing the eastern and western

boundaries of the south Pacific.

1.2 The Humboldt Currents system

The south basin of the Pacific Ocean (60◦S, 150◦E-70◦W) accounts for 25% of the

total oceans volume, and hosts in its eastern boundary one of the four major coastal

upwelling systems of the world. Named after the German naturalist Alexander von

Humboldt, the Humboldt Currents System (HCS) extends from southern Chile (near

45◦S) to northern Peru (~4◦S), and from the coast to ~90◦W. This currents system is

most notable for its prodigious production of small pelagic fish, which represents 27%

of the current annual landing for the fisheries in the Pacific Ocean and has played a

key role in the development of several countries for decades.

3



Chapter 1. Introduction

Figure 1.2: Flow patterns (streamlines) for a simplified wind-driven circulation model in the
northern hemisphere with: (a) Constant Coriolis force, (b) Coriolis force increasing linearly
with latitude. Idealized wind stress pattern used to force the model is also shown. After Stommel
(1948).

1.2.1 Large scale circulation in the HCS

The large-scale oceanic circulation that shapes the HCS is closely related to the trade

winds, which are dynamically set up in both the southern and northern hemispheres

by the pressure gradient developed between a low pressure area near the equator and

a high pressure region localized around 30◦. This pressure gradient induces an air-

flow from the mid-latitudes towards the equator, and creates a zonally-narrow wind

convergence zone, known as the Intertropical Convergence Zone (ITCZ; Fig. 1.4). In

the Pacific, the ITCZ is located on average around 10◦N, although its position varies

seasonally in connection with the easterlies. Another convection zone characteristic of

the tropical Pacific is the South Pacific Convergence Zone (SPCZ), which corresponds

to a low-level convection band associated with a subtropical maximum in cloudiness,

precipitation and sea surface temperature (Kiladis et al., 1989). It extends from the

southeast Pacific (30◦S-120◦W) to Papua New Guinea, where it merges with the ITCZ

(Fig. 1.4). Both the ITCZ and the SPCZ determine the large-scale mean rainfall pattern

tropical Pacific band (Takahashi and Battisti, 2007a,b).

The variations of the wind system in the HCS are influenced by the latitudinal shifts

of the ITCZ and trade winds in the northern hemisphere, and the latitudinal variations

of the SPCZ (Karoly et al., 1998), but they are mainly driven by the shifts of the South

Pacific High (SPH) present off central Chile (~30◦S). The changes in both the position

and the intensity of the SPH impact the wind field in the HCS (Rutllant et al., 2004) and

couple to the orographic effect of the Andean mountain range, which results in nearly

alongshore equatorward winds close to the coast (Fig. 1.4).

Nevertheless, the wind field exhibits different characteristics along the coast in the

4



1.2. The Humboldt Currents system

Figure 1.3: Marine radiocarbon ages (relative to the atmosphere) at 18 and 187 m depth. After
Fuente et al. (2015).

Figure 1.4: Mean sea level pressure (blue to orange contours) and wind magnitude and direc-
tion (arrows) in the south Pacific for the period 2000-2008 (ICOADS dataset). Black contours
correspond to mean rainfall values of 3 and 6 mmday−1, evidencing the low-level convergence
bands. Dashed red line qualitatively marks the mean position of the ITCZ.

HCS. Off Peru, the equatorward winds are intense and almost year-round, with a max-

imum during austral winter (Bakun and Nelson, 1991; Dewitte et al., 2011). On the

5



Chapter 1. Introduction

other hand, the wind seasonal cycle off northern Chile peaks during austral spring

(Blanco et al., 2002), and during austral summer off central/southern Chile (Garreaud

and Muñoz, 2005), which has been related to the seasonal migration of the SPH (An-

capichún and Garcés-Vargas, 2015). Off central Chile, the atmospheric conditions are

also subject to the excitation of low atmospheric pressure systems that are trapped to

the coast by the pressure gradient between the marine boundary layer and the coastal

orography, and propagate polewards (Garreaud et al., 2002).

In the ocean, the circulation in the HCS is composed by several equatorward and

poleward alternating currents, with a main surface equatorward flow north of 45◦S

(Strub et al., 1998) located next to the eastern rim of the SPH (Fig. 1.5). At around 10◦S,

the main flow turns offshore and flows into the South Equatorial Current (SEC), and

a weak ramification continues equatorward and joins the SEC at around 8◦S (Wyrtki,

1966). Below the surface, the ramifications of the eastward flowing Equatorial Under

Current (EUC) nourish the subsurface poleward components of the HCS: (1) the Peru-

Chile Under Current (PCUC), a subsurface poleward flow found over the slope and

outer shelf off the Peruvian and Chilean coasts and (2) the Peru-Chile Counter Cur-

rent (PCCC), located between 150 and 300 Km offshore (Strub et al., 1998; Fig. 1.5). In

relationship with its equatorial origins, the PCUC has a distinctive hydrographic sig-

nature, characterized as relatively saltier, higher in nutrients and lower in oxygen than

the surrounding waters, and these characteristics have allowed to trace it as far south

as 48◦S (Silva and Neshyba, 1979).

The HCS exhibits an important seasonality in relation to the yearly cycle of the envi-

ronmental forcing. On a regional scale, the oceanic response to environmental forcing

at seasonal timescale is primarily related to the annual net insolation cycle (Takahashi,

2005), although ocean dynamics contribute to make the system heterogeneous and in-

duce distinctive responses to forcing off Peru and Chile, which has been interpreted

as the result of a compensation between large-scale dynamical signals (Dewitte et al.,

2008a). On the other hand, the oceanic response to environmental forcing next to the

coast is closely related to the wind forcing and manifests as coastal upwelling, which

is the process responsible for the high primary productivity observed along the coast

in the HCS. This coastal upwelling is sustained by the alongshore equatorward wind

stress that generates an Ekman divergence of the currents next to the coast, which

is in turn compensated by a vertical upward flow of nutrient-rich waters carried by

the PCUC (Kelly and Blanco, 1984; Wyrtki, 1963). In addition, the large scale along-

shore wind stress decreases over a few hundred kilometers next to the coast, due to

the coastal orography, the surface drag gradient between land and sea, and the air-

sea interactions over cool seawater (see Capet et al., 2004). It is expected that this

6



1.2. The Humboldt Currents system

Figure 1.5: Oceanic circulation scheme in the HCS: Equatorial Undercurrent (EUC), primary
and secondary Southern Subsurface Countercurrents (pSSCC and sSSCC), South Equatorial
Current (SEC), Peru Coastal Current (PCC), Peru-Chile Undercurrent (PCUC) and Peru-
Chile Countercurrent (PCCC). Black lines denote surface currents and gray lines denote sub-
surface currents. The average position of the 1020 mb sea level pressure contour (used as a
proxy for the South Pacific High position) is also represented (H). Currents compiled following
Strub et al. (1998), Kessler (2006) and Montes et al. (2010b).

phenomenon, also known as wind “drop-off”, would create an onshore wind stress

gradient which would in turn result in a negative wind stress curl and ultimately an

Ekman pumping (Bakun and Nelson, 1991) that could also contribute to the vertical

upwelling.

Although the mechanisms behind the coastal upwelling in the HCS are related to

the large scale wind system present in the region, the small scale variations in the

ocean circulation and coastal orography contribute to make the system heterogeneous,

encompassing three well-defined upwelling subsystems along the HCS (Montecino

and Lange, 2009): (1) the year-round and highly productive upwelling system off Peru,

7



Chapter 1. Introduction

(2) a low productivity “upwelling shadow zone” in southern Peru and northern Chile,

and (3) a productive and seasonal upwelling system in central-southern Chile.

1.2.2 The south Pacific Oxygen Minimum Zone

In addition to a highly productive upwelling system, the SEP encompasses the

southern portion of one of the most extensive Oxygen Minimum Zones of the planet

(OMZs; Paulmier and Ruiz-Pino, 2009). The OMZs are regions in the ocean character-

ized by extremely low concentrations of Dissolved Oxygen (DO) in the water column

(DO < 60 µM), as a result of complex interactions between the ocean circulation and

the biogeochemical cycles (Fig. 1.6; Karstensen et al., 2008). In the HCS, the intense

biological production that takes place in the euphotic zone of the water column (first

200m) is accompanied by an important subsurface remineralization of organic matter,

which translates as a significant DO demand in the mesopelagic zone (Capone and

Hutchins, 2013). This important DO demand couples to poor ventilation, related to

a nearly stagnant circulation (Luyten et al., 1983), which allows the OMZ to persist

in time. Among the most relevant impacts of the OMZ in the SEP we find the habi-

tat compression of the organisms, given that the OMZ represents a respiratory barrier

(Prince and Goodyear, 2006). Additionally, the biogeochemical cycles that take place at

extremely low DO concentrations are involved in the local production of climatically-

active gases, such as CO2 (Paulmier et al., 2011) and N2O (Kock et al., 2016), which are

then outgassed to the atmosphere. In this sense, the OMZ has an impact on both the

local ecosystems and on the global climate.

Despite its potential implications, several questions remain regarding the OMZ

variability and long-term trends (Stramma et al., 2010). Recent light has been shed

upon the mechanisms that shape the OMZ (Bettencourt et al., 2015), emphasizing the

central role of the mesoscale structures. However, it has not been clarified yet whether

or not these structures influence the variability of the OMZ and its long-term evolu-

tion, considering that the mesoscale activity appears as a conspicuous feature in the

SEP circulation.

1.2.3 Mesoscale features

Over the large-scale circulation pattern found in the HCS, rich mesoscale variabil-

ity in the form of eddies or vortices, filaments and squirts is superimposed (Fig. 1.7).

In the HCS, eddies are characterized by a radius between 50-150 km (Chaigneau et

al., 2008; Chaigneau and Pizarro, 2005b) and can persist for months, traveling thou-

sands of kilometers offshore from their genesis region. Eddies are mainly generated

8



1.2. The Humboldt Currents system

Figure 1.6: Global Oxygen Minimum Zones (OMZ), including the upper depth of intermediate
water hypoxia (DO < 60 µmol L−1; color shading), and the spatial distribution of severely
hypoxic minimums (DO < 20 µmol L−1) as white lines. After Moffitt et al. (2015).

from baroclinic instabilities induced by the vertical shear of the currents near the coast

(Leth and Shaffer, 2001), and propagate westward with translation velocities between

3-7 cm s−1 (Chaigneau and Pizarro, 2005b). Observations have shown that the HCS

is highly populated by eddies between 9◦S and ~36◦S, and they participate in the heat

(Colas et al., 2012) and salt balance between the offshore and coastal waters through lat-

eral fluxes, even exceeding the mean advective current fluxes in the coastal upwelling

region (Chaigneau and Pizarro, 2005a). Despite this evidence, the net contribution of

eddies to the SEP’s heat budget is still in debate, due to conflicting modeling and obser-

vational results (cf. Mechoso et al., 2014). Recent observational analyses even suggest

that eddies would not substantially contribute to the surface layer heat budget in the

offshore SEP (Holte et al., 2013).

In the SEP, the mesoscale structures also induce a coupling between physical and

biogeochemical processes (McGillicuddy et al., 1998), which significantly extends the

high primary production zone associated to the coastal upwelling while moving off-

shore. Observational evidence off central Chile (29◦-39◦S) indicates that eddies are

responsible for more than 50% of the winter chlorophyll-a peak in the offshore coastal

transition zone (Correa-Ramirez et al., 2007). In this sense, eddies might represent a

pathway that links the highly productive coastal upwelling region with the (essentially
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oligotrophic) offshore waters. Nevertheless, this vision is still on debate regarding the

highly productive HCS and recent results have established that in fact eddies might

contribute to reduce primary productivity as a result of the transport of nutrients from

the nearshore to the open ocean (Gruber et al., 2011)

1.3 Teleconnection with the equatorial Pacific

Aside from the local atmospheric and oceanic forcing, the variability in the HCS is

intimately related to the variability that takes place in the equatorial Pacific, at timescales

ranging from intraseasonal to seasonal (Pizarro et al., 2002; Shaffer et al., 1999), and

from interannual (Pizarro et al., 2001, 2002; Vega et al., 2003) to interdecadal (Monte-

cinos et al., 2007). The equatorial region behaves as a waveguide, and allows for the

Figure 1.7: Chlorophyll-a concentration in the Humboldt currents system, illustrating the
rich mesoscale variability that is present in the flow. Structures such as eddies, filaments
and plumes can be clearly distinguished. The chlorophyll-a data corresponds to snapshots
taken by the MODIS spectroradiometer (1 km resolution) at different dates: (a) 18/02/2014,
(b) 17/01/2014, (c) 13/09/2014 and (d) 06/07/2014. The coastal orography and clouds
correspond to corrected reflectance (true color), also acquired by MODIS. Data source:
http://worldview.earthdata.nasa.gov
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zonal propagation of different types of waves. One of the most prominent modes of

variability corresponds to the Intraseasonal Equatorial Kelvin Wave (IEKW), gener-

ated in the central equatorial Pacific by intraseasonal westerly wind pulses. The IEKW

travels to the east and impinges on the American continent. As shown by idealized

models, part of the energy is reflected by the eastern boundary and travels to the west

as a long Rossby wave, and part is deflected and travels poleward (Cane and Sarachik,

1977; Moore and Philander, 1977) as a free Coastal Trapped Wave (CTW). The South

American coast behaves then as an extension of the equatorial waveguide. In contrast

to the IEKW, the phase speed of the CTW strongly depends on the shape of the con-

tinental slope (Brink, 1982; Clarke and Ahmed, 1999) and stratification (Allen, 1975),

and its vertical structure varies with latitude. As the wave travels polewards, the inter-

nal Rossby radius of deformation decreases and the bottom topography becomes more

important in determining the vertical structure of the gravest baroclinic modes (Brink,

1980). In this manner, at low latitudes the CTW structure is essentially baroclinic, how-

ever, as latitude increases, the dominant vertical structure tends to be barotropic (Brink,

1982).

As they travel polewards, the CTWs induce perturbations in the density and pres-

sure field over the continental shelf and slope, which has permitted to observe pole-

ward propagating signals along the South American coast at a wide range of frequen-

cies. Fluctuations of sea level and currents off Peru in the synoptic band (period

~10 days) have been reported to have little relationship with the local wind (Cornejo-

Rodriguez and Enfield, 1987; Enfield et al., 1987; R. L. Smith, 1978). Rather, they re-

late to the poleward propagation of first baroclinic mode CTWs (Brink, 1982; Romea

and R. L. Smith, 1983), forced by synoptic-scale mixed Rossby-gravity waves (or Yanai

waves), propagating eastward in the equatorial Pacific (Clarke, 1983; Enfield et al.,

1987). Further studies unveiled the relationship between the sea level and currents

fluctuations observed in the HCS at intraseasonal frequencies (30-90 days) and the re-

mote influence through first baroclinic mode CTWs (Hormazábal et al., 2002; Illig et al.,

2014; Shaffer et al., 1997; Spillane et al., 1987), forced by baroclinic IEKWs impinging on

the South American coast. Such wind-forced equatorial waves tend to be most promi-

nent during austral summer in the central tropical Pacific (Illig et al., 2014; Kessler et

al., 1995), in connection with atmospheric convection events that propagate from the

central Indian Ocean into the western Pacific.

The IEKW activity is strongly modulated at interannual timescales reflecting the

occurrence of El Niño events (Dewitte et al., 2008a; Kessler et al., 1995) and its diversity

(Gushchina and Dewitte, 2012; Mosquera-Vásquez et al., 2014), which corresponds to

the most prominent mode of climatic variability in the equatorial Pacific.

11
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1.3.1 A brief description of El Niño

The occurrence of El Niño events entails important disruptions in the tropical Pa-

cific climate system primarily associated with changes in the SST gradients and the

ocean-atmosphere feedbacks. Due to the efficient teleconnection that links the trop-

ical Pacific and the SEP, this mode of tropical climatic variability induces significant

upheavals in the SEP climate system, which highlights the fact that the influence of

these events extends well beyond the equatorial Pacific. In the present section, a brief

description of El Niño is made, and the modulation of the SEP variability induced by

these events is presented in the following section.

AVERAGE CONDITIONS: in the tropical Pacific, the wind regime dominated by

the easterlies induces a flow to the western part of the basin. As the water flows

westwards along the equatorial region, the strong insolation induces a surface

warming, and a strong zonal SST gradient is developed (around 12◦C between

the western and eastern Pacific). This zonal gradient reflects as a tongue-shaped

cold Sea Surface Temperature (SST) that extends from east to west, and a deeper

equatorial thermocline develops in the western Pacific (Fig. 1.8a). The warm

water found in the western boundary (known as the “warm pool”) generates an

important atmospheric thermal convection. The warm and humid air over the

warm pool ascends and is driven by the high tropospheric circulation towards

the eastern part of the basin, where it loses heat and humidity and settles above

the colder sea surface. The air is then driven towards the west by the easter-

lies, closing the convective loop. This atmospheric circulation cell is known as

the Walker circulation (Fig. 1.8a), in honor of Sir Gilbert Walker, who first de-

scribed the strong inverse correlation between the high and low pressure records

obtained at the eastern and western Pacific, and coined the term Southern Oscil-

lation to describe the “seesaw” behavior of the east-west pressure gradient.

EL NIÑO EVENTS: the onset of an El Niño event is characterized by a relaxation

of the easterlies, and a consequent reduction of the equatorial and coastal up-

welling, which allows the warm pool to grow and expand eastward in the equa-

torial Pacific (Fig. 1.8b). The shift of the warm pool position induces a zonal

displacement of the convective Walker cell which in turns changes the evapora-

tion patterns, generating droughts in the western part of the basin, and strong

precipitations in the eastern part (Fig. 1.8b). These events might be followed

by cold events in the central equatorial Pacific, known as La Niña events (Fig.

1.8c), which are considered as an enhancement of the average conditions. Dur-

ing a La Niña event, the easterlies are stronger than the average conditions, the
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Figure 1.8: (a) Normal conditions in the tropical Pacific. Conditions during (b) an El Niño
event and (c) La Niña event. After Ashok and Yamagata (2009).

warm pool is warmer than average and the waters in the eastern Pacific are even

colder (Fig. 1.8c), which couples to a stronger-than-average Walker circulation.

This marked ocean/atmosphere coupling between the anomalies generated by

El Niño events and the Southern Oscillation is referred to as El Niño-Southern

Oscillation (ENSO).

1.3.2 The ENSO arrival at the Humboldt Currents System

Although the ENSO events peak in the equatorial Pacific, wave dynamics carry the

anomalous ENSO signal to the SEP. The equatorial Pacific is heavily disrupted dur-

ing ENSO events, and this reflects on the IEKW activity. Kessler et al. (1995) showed

that during the onset of El Niño events, the eastward extension of the convection cell

(associated with a warmer SST) gives the westerlies more fetch to blow upon, gener-

ating a more intense IEKW activity. This is coupled to a deepening of the thermocline

along the equatorial Pacific, which favors the leading baroclinic mode and enhances

the phase speed of the IEKW (Benestad et al., 2002). These changes translate as a mod-

ulation of the IEKW at interannual timescale (Dewitte et al., 2008a), which ultimately

impacts the CTW activity in the HCS (Enfield et al., 1987). In this sense, Shaffer et al.

(1997) documented the intraseasonal currents variations at central Chile (30◦S) dur-

ing the 1991-1992 El Niño event, showing that the most important fluctuations were

related to the passage of free CTWs arriving from the north.

Additionally, the CTW activity during the ENSO events severely impacts the coastal

thermocline. At the peak of the 1997-1998 El Niño, the thermocline off the coasts of

southern Peru and northern Chile showed vertical anomalies in the order of 150m,

which were perceived as anomalies in the order of 10 cm in the coastal sea levels ob-

servations (Blanco et al., 2002). Several studies evoked the idea that the vertical dis-

ruptions of the thermocline depth forced by the intraseasonal CTWs would have an
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impact on the source water for the coastal upwelling, such that the upwelled water

would be cooler or warmer (and nutrient rich/poorer), in relationship with the up-

welling/downwelling phase of the wave (Colas et al., 2008; Huyer et al., 1987; Shaffer

et al., 1997). This relationship has been recalled, together with the variations in the

alongshore wind intensity (Rutllant et al., 2004), to explain the low productivity ob-

served in the HCS during El Niño events (Barber and Chávez, 1986; Huyer et al., 1987),

and the subsequent drop of the fisheries (86% decrease during the 1997/98 El Niño; see

Yañez et al. (2001)).

1.3.3 The connection between the equatorial Pacific and the deep

eastern Pacific

The oceanic teleconnection between the eastern and equatorial Pacific is not lim-

ited to the propagation of CTWs. Theoretical works first showed that, depending on

the frequency, the motion might be not only in the form of a Kelvin-like wave trapped

along the meridional boundary, but also in the form of long Rossby waves, with a

group velocity away from the boundary (Clarke, 1983; Schopf et al., 1981). Further

studies demonstrated that for a given frequency, there is a critical latitude (or distance

from the equator) such that the energy radiates offshore in the form of baroclinic Extra-

Tropical Rossby Waves (ETRW) equatorward of that critical latitude (Clarke and Shi,

1991). The formalism that relates frequency and latitude establishes that lower fre-

quencies favor the untrapped motion, and therefore ETRW can radiate at any latitude

along the coast for interannual timescales (Schopf et al., 1981), which has been corrob-

orated by observations as far from the equator as 30◦S (Fig. 1.9).

The offshore radiation of energy in subtropical latitudes at interannual timescales

was first evidenced for the north Pacific (Kessler, 1990; White and Saur, 1983), us-

ing observations of the subsurface thermal structure. Nonetheless, the lack of a well-

established observation system (as the one present in the equatorial Pacific) held back

a more detailed characterization of the ETRW, as well as their modulation and inter-

actions with the mean circulation. This issue was partly addressed with the first long

term observations resulting from the altimetric TOPEX/Poseidon mission, which re-

vealed that the ocean is populated by an ubiquitous Rossby wave field (Chelton and

Schlax, 1996), that has the potential to modulate the average circulation in the ocean.

In this matter, Qiu (2002) analyzed eight years of the (then) recent altimetric mission to

investigate the interannual changes in three subtropical current systems in the north

Pacific. This unprecedented work revealed that much of the interannual perturbations

observed in the large scale circulation in the mid-latitude system were related to sea
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surface height (SSH) anomalies, that propagate from the eastern boundary toward the

basin interior as baroclinic long Rossby waves.

First observations also documented a decrease of the ETRW amplitude as they

propagate westward (Chelton and Schlax, 1996; Wang et al., 1998), and several mech-

anisms were evoked to explain it. Qiu et al. (1997) proposed a theoretical framework

that evaluated the westward decay of long baroclinic Rossby waves off the equatorial

region, related to the effect of eddy dissipation. Later on, using a quasigeostrophic

two-layer model, Lacasce and Pedlosky (2004) also recall the nonlinearities of the flow

as the source of dissipation, explaining the dissipation process in terms of the baro-

clinic instability of the Rossby wave itself. In that work, the authors propose that the

growth of baroclinic instability of the wave may overcome the stabilizing effect of the

planetary vorticity gradient (β effect), and cause the wave to breakdown and transfer

energy to a smaller-scale eddy field. Yet, the linear dispersion of Rossby waves associ-

ated with the β effect also constitutes a type of dissipation. Schopf et al. (1981) showed

that linear dispersion generates a caustic line that originates at the critical latitude and

defines a limit for the propagation of boundary forced Rossby waves. Given that linear

dispersion becomes increasingly important away from the equator, it is also a potential

mechanism that could explain the observed surface decay of the ETRW away from the

boundary.

An additional process to consider in the interpretation of the surface signature of

long Rossby waves is the vertical propagation of energy that involves the constructive

contribution of a certain number of baroclinic modes (Gent and Luyten, 1985; Mc-

Creary, 1984). Vertical propagation of long Rossby waves was first investigated in the

Figure 1.9: Longitude-time diagrams of interannual sea level anomalies (TOPEX/ERS dataset)
for the second half of the 1990s, at three latitudes along the HCS. In particular, the westward
propagation a downwelling ETRW, associated with a strong positive sea level anomaly near the
coast(> 6cm), can be distinguished for the 1997/1998 El Niño event. After Vega et al. (2003).
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equatorial region, in order to document and explain the variations of temperature ob-

served below the thermocline at annual period (Kessler and McCreary, 1993). Using

an ocean general circulation model (OGCM), Dewitte and Reverdin (2000) successfully

reproduced Kessler and McCreary’s results in terms of annual subthermocline variabil-

ity, and reported that the vertical energy propagation in the form of long Rossby waves

also takes place at interannual timescale, associated with the reflection of Kelvin waves

on the eastern boundary of the equatorial Pacific basin (which are prominent during

strong El Niño events).

Figure 1.10: Cross-shore sections of
vertical isotherms displacements (in
meters) during the peak phase of the
1997/1998 El Niño event at 15◦S
(top), 20◦S (middle) and 30◦S (bot-
tom). After Ramos et al. (2008).

In the SEP, works focusing on the variability

of the vertical structure of the circulation later

documented the existence of vertical propagation

of ETRW at seasonal (Dewitte et al., 2008b) and

interannual (Ramos et al., 2008) timescales, evi-

dencing a vertical energy flux associated with the

propagation of the ETRW. In particular, Ramos

et al. (2008) illustrated the close connection be-

tween the subthermocline variability in the SEP

and the equatorial variability during the 1997-

1998 El Niño event. As the event develops, high-

order baroclinic mode contribution to the equato-

rial Kelvin wave becomes more important, related

to a change in the equatorial thermocline depth

and vertical temperature gradients (Dewitte et

al., 2003). This translates as an increasing dom-

inance of high baroclinic modes along the coast

in the SEP throughout the event, which construc-

tively trigger the vertical propagation of ETRW.

As shown by Ramos et al. (2008), the signature of

the ETRW related to the ENSO events extends sev-

eral hundreds of Km offshore and penetrates deep

into the ocean (Fig. 1.10), which questions about

the role that the vertical energy propagation re-

lated to the ENSO events could play in the venti-

lation of the subsurface circulation in the SEP. This

acquires particular relevance in the current under-

standing of the ENSO diversity and its influence

out of the tropical Pacific.
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1.4 ENSO diversity

Recent studies have reported that over the last five decades, two types of El Niño

events have occurred in the equatorial Pacific (Ashok et al., 2007; Kug et al., 2010;

Larkin and Harrison, 2005; Yeh et al., 2009), each one having contrasting SST anomaly

patterns: (1) the Cold Tongue El Niño, or eastern Pacific El Niño (Fig. 1.8b), consist-

ing in a SST anomaly that develops and peaks in the eastern equatorial Pacific (EP),

and the (2) El Niño Modoki (Ashok et al., 2007) or central Pacific El Niño (CP), that

consists of an SST anomaly that develops and persists in the central equatorial Pacific

(Fig. 1.11). In addition, both types also differ in the intensity of the SST anomalies de-

veloped in the tropical Pacific, with the stronger events occurring in the eastern Pacific

(EP). They also exhibit different seasonal evolution patterns (Kao and Yu, 2009; Yeh

et al., 2014). During the EP events, the SST anomalies develop in the far eastern Pacific

during boreal spring and extend westward over summer and fall, while during the CP

events, the SST anomalies extend from the eastern subtropics to the central equatorial

Pacific during boreal spring and summer. Despite the phase differences during the

development phase, both event types achieve their peak amplitude in boreal winter.

Figure 1.11: Conditions in the tropical Pacific during a central Pacific El Niño event. After
Ashok and Yamagata (2009).

The contrasting characteristics of both types of El Niño imply different impacts as-

sociated with their occurrence. Each type induces a different zonal SST gradient across

the equatorial Pacific, and this translates as contrasting atmospheric teleconnections

(Ashok et al., 2007; Weng et al., 2009; Yeh et al., 2009). While the convective cell is

displaced far to the east during the EP events, the SST anomalies developed during

the CP events induce an anomalous twin Walker circulation, with the updraft branch

located in the central Pacific (Fig. 1.11; Ashok et al., 2007). Significant differences are

also observed in the HCS related to each type of El Niño. While EP events are associ-

ated with drastic changes in coastal circulation and hydrographic conditions (Fig. 1.12;
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Blanco et al., 2002; Pizarro et al., 2001) and therefore have a profound impact on the

local ecosystems (Gutiérrez et al., 2008), the changes imposed by the CP events on the

hydrographic characteristics of the HCS are not as severe as during EP events, and are

in turn very close to the climatological mean (Fig. 1.13; Dewitte et al., 2012). Recent

studies also show that the IEKW activity is distinct between CP and EP El Niño events

(Gushchina and Dewitte, 2012; Mosquera-Vásquez et al., 2014).

Figure 1.12: (a) Time-latitude plot of monthly sea level height interannual anomalies from tide
gauge data along the coast of the HCS, from 1980 to 1998. (b) time-depth plot of temperatures
10 km offshore of Iquique (20◦S). Note the severe thermocline depression during the 1981/1982
and 1997/1998 El Niño events. Sampling is indicated by arrows. After Blanco et al., 2002.

1.4.1 ENSO diversity trend

Observations point out that the ENSO diversity has accentuated over the last part of

the 20th century (Fig. 1.14). CP events have become more frequent (Lee and McPhaden,
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Figure 1.13: Composites of the mean thermocline depth off the coast of Peru during the peak
(DJF) and decaying (MAM) phase of an eastern (thick) and central (thick dotted) Pacific El
Niño event. The thin line correponds to the average thermocline depth over the period 1958-
2007. After Dewitte et al. (2012).

2010) as compared to prior decades, which has been interpreted as being related to

changes in ENSO characteristics due to global warming (Yeh et al., 2009). Indeed, SST

projections in CMIP-class models predict an increase in the ratio of CP type to EP type

under different global warming scenarios (Kim and Yu, 2012; Yeh et al., 2009), which is

associated with changes in the atmospheric circulation over the tropical Pacific (Vecchi

et al., 2006; S.-P. Xie et al., 2010). However, the real impact of global warming on the

ENSO diversity is difficult to assess, given that this diversity might also be intrinsically

forced by natural variability of the climate system. Using random combinations of

spatial structures obtained by a linear stochastic model, Newman et al. (2011) showed

that extended epochs dominated by either EP or CP events can be reproduced even

when excluding the anthropogenically-induced changes in the background state. Such

spontaneous generation of multidecadal epochs of CP and EP events has also been re-

produced in coupled GCMs (Kug et al., 2010; Wittenberg et al., 2014), which challenges

the interpretation of the ENSO diversity as being a forced mode of variability related

to the anthropogenic influence on global warming.

1.5 Thesis motivations and objectives

One of the major concerns in the climatic and oceanographic community is the

current earth’s energy imbalance (EEI), which arises from an imperfect closure of the
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Figure 1.14: Intensity of El Niño events in the central (left panel) and eastern (right
panel) Pacific. Linear trend corresponds to 0.20(±0.18)◦C/decade in the central Pacific and
0.39(±0.71)◦C/decade in the eastern Pacific. After Lee and McPhaden, 2010.

planetary radiative budget and manifests as a radiative flux imbalance between the in-

coming and outgoing radiation in the top of the atmosphere (Hansen et al., 2011). Cur-

rently, EEI is positive and is evidenced as a global rise in temperature and sea level,

acceleration of the hydrological cycle and increase in the ocean heat content (OHC).

Although many aspects of climate are determined by the heat capacity of all the com-

ponents of the climate system (atmosphere, land, ice and ocean; Trenberth and Stepa-

niak, 2004), most of the energy accumulation from the EEI manifests as an increased

OHC (Abraham et al., 2013; Church et al., 2011), and even though recent evidence

shows that the largest fraction of OHC increase has occurred in the upper 700m, both

observational and modeling studies indicate that ~25% of OHC increase over the last

45 years took place between 700-2000m depth (Balmaseda et al., 2013; Levitus et al.,

2012; Purkey and Johnson, 2010) and indirect estimations for the full-depth OHC are

in good agreement with the estimated total EEI (Llovel et al., 2014). This highlights the

potential role of the intermediate-deep ocean in buffering the EEI, and calls for a bet-

ter understanding of the mechanisms that participate in the “ventilation” of the deep

oceanic circulation. In this context, the vertical propagation of ETRW that takes place

in the SEP, which constitutes a mechanism that links the shallow coastal ocean with the

deep offshore and conveys information about the tropical surface variability, has the

potential to participate in the oceanic response to the EEI.

While the coastal circulation and its variability in the SEP are relatively well doc-

umented, little is known about the variability of the mid-depth and deep circulation

components of the system. Observations have shown that currents in the meso and

abyssopelagic regions present a marked seasonal cycle, as well as an interannual mod-

ulation (Shaffer et al., 2004), which has been interpreted as related to Rossby waves
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emanating from the coast in connection with ENSO events. Nevertheless, little has

been said about the long-term variations of this mechanism, in connection with the

decadal changes observed in the tropical Pacific. No information about a possible im-

pact of the ETRW on the deep ocean other than a modulation of the currents has been

brought to light either. This last point is of particular importance, considering the near

stagnant nature of the mean circulation in the SEP.

One of the major difficulties in documenting the changes in the SEP circulation

is imposed by the lack of a systematic observational system, and particularly in the

subsurface, where in situ observations are practically nonexistent. International efforts

aiming to resolve this issue are currently underway, such as the deployment of floats in

the context of the ARGO program, but the spatial and temporal resolution in the SEP

is to the present day very low (Fig. 1.15).

Figure 1.15: Argo floats sparseness in the south Pacific ocean (as to 21/04/2016). Distance
corresponds to the average distance to the 4 nearest floats. Source: http://argo.whoi.edu

A possible alternative for coping with the lack of in situ observations could come
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from the current generation of global general circulation models; however, the spa-

tial resolution that is implemented in the global products generates important misrep-

resentations of both the oceanic and atmospheric circulation patterns near the coast

(Richter, 2015; Zheng et al., 2011), which induces severe biases in the coupled simu-

lations, and particularly in the upwelling regions (Fig. 1.16) where important warm

biases are observed. In addition, uncertainties in the atmospheric and oceanic reanal-

ysis products used to force the OGCMs also constitute a source of errors, which has

been evoked to interpret the biases observed in forced ocean simulations (e.g. Brodeau

et al., 2010). In particular, the accuracy oceanic reanalysis products is penalized by the

lack of in situ observations available to constrain the assimilation process, which are

practically nonexistant in some regions (see Lee and McPhaden (2010) for a review),

and atmospheric reanalysis also present errors that are relevant for the dynamics of

coastal systems (e.g. wind stress divergence close to the coast (Astudillo et al., 2016);

errors in air-sea fluxes (Chaudhuri et al., 2013)). A suitable answer to overcome some

of these difficulties could be the use of a regional ocean-modeling platform. The high-

resolution capability of this tool greatly improves the biases observed in coastal up-

welling systems using global models (e.g. Colas et al., 2012; Dewitte et al., 2012; Pen-

ven et al., 2001), and provides with reliable long-term simulations of three-dimensional

ocean fields.

In this context, several questions arise regarding the variability of the SEP, which

motivates the present work:

• One of the main motivations for the present work is to better understand the sea-

sonal to interannual variability of the deep ocean (subthermocline) in the SEP,

with a focus on its forcing mechanisms and how this relates with the elements

encompassed by the subthermocline circulation in the SEP. In particular, the im-

plications that the variability of the circulation in this region have for the un-

derstanding of the OMZ dynamics is a current concern for the community and

remains unaddressed.

• As previously discussed, the ocean plays a central role in the planetary energy

budget at climatic scale, which is reflected by the variations in the OHC. The

correct interpretation of the current OHC trends (and the EEI trends) therefore

requires a sound understanding of the ocean’s ability to store and vertically re-

distribute the excess of energy, which is naturally limited by our knowledge on

the processes involved in the deep circulation variability. In this sense, improv-

ing the current understanding of a process that could have implications for the

ocean’s role at climatic scale, such as the vertical propagation of ETRW, is also a

motivation for the present work.
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Figure 1.16: (a) Observed annual mean sea surface temperature (SST) from the optimally in-
terpolated (OI) SST data set. (b) Annual mean bias of the CMIP5 ensemble, relative to OISST.
Gray boxes denote the four upwelling regions, where the biases are particularly important. Af-
ter Richter (2015).

1.5.1 Scientific objectives and manuscript plan

Although there is substantial evidence that supports the propagation of extra tropi-

cal Rossby waves as being a prominent component of the SEP circulation variability at

different timescales, this process has not been appropriately diagnosed yet. The main

goal of this thesis work is thus to document the connection between the variability

that takes place in the equatorial Pacific and the variability of the subsurface circula-

tion along the coasts of Peru and Chile. Within this context, we can summarize the

objectives and the approach of the present work as follows:
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• To document the vertical energy flux associated with the propagation of the extra-

tropical Rossby wave.

• To investigate the influence of the ETRW on the variability of the OMZ.

• The flow fluctuations in the form of mesoscale structures, prominent in the re-

gion, should also influence the variability of the circulation in the SEP. To evalu-

ate the influence of the mesoscale activity on the variability of the OMZ, and on

the energy flux related to the ETRW are complementary objectives of the present

work.

In order to answer to the scientific questions and achieve the objectives previously

outlined, the thesis manuscript is organized as follows: Chapter 2 introduces the tools

and methodological approach used to study the variability of the circulation in the

SEP and briefly presents the formalism that supports the vertical propagation of extra-

tropical Rossby waves. Chapter 3 focuses on the study of the vertical energy flux re-

lated to the propagation of the extra-tropical Rossby wave at interannual to decadal

timescales, and how it is impacted by the mesoscale activity. Chapter 4 addresses the

impact that the fluctuations of the circulation in the form of ETRW and mesoscale pro-

cesses have for the ventilation of the HCS, from the perspective of the OMZ ventilation

at seasonal timescale. Finally, Chapter5 presents the conclusions of the present work

and proposes some future perspectives around the study of the subsurface circulation

in the region.
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Introduction (français)

Situé le long des côtes du Pérou et du Chili, le Système de Courant de Humbolt

(HCS5) est l’un des plus grand systèmes d’upwelling du monde, reconnu notamment

pour sa forte productivité en termes de ressources halieutiques. Ce système de courant

est sujet à une riche variabilité induite par les interactions océan-atmosphère ayant lieu

tout le long de la côte. Sa variabilité est également modulée par l’influence à distance

de la variabilité présente dans le Pacifique équatorial, et qui se propage le long de la

côte Sud-Américaine.

La circulation grande échelle du Pacifique s’organise autour d’un système de haute

pression, l’Anticyclone du Pacifique Sud (SPA6). Cet anticyclone influence les princi-

pales caractéristiques de la circulation moyenne dans le Pacifique Sud, dont l’asymétrie

Est-Ouest que l’on retrouve dans tous les basins océaniques. Cette asymétrie consiste

en des courants très forts vers les pôles coulant le long des façades Ouest des océans, et

qui contrastent avec les courants des bords Est, beaucoup moins énergétiques, ce qui

entraine de faibles taux de ventilation de la circulation.

Localement, la circulation dans le HCS est fortement liée au vent qui souffle en

surface le long des côtes Sud Américaines en direction de l’équateur. Ce vent influ-

ence d’une part la circulation moyenne de surface que l’on observe dans la région,

dirigée comme le vent vers l’équateur, et d’autre part, le vent parrallèle à la côte induit

un transport des eaux de surfaces vers le large, remplacées par des eaux profondes,

froides, riches en nutriments et en gaz carbonique. Cette dynamique permet la fertilisa-

tion des couches de surfaces sur le plateau continental, ce qui déclenche des maximums

locaux de productivité primaire caractéristiques de la région. Bien que l’upwelling soit

la principale caractéristique régionale, son intensité varie le long de la côte en fonction

de l’orographie locale et de l’intensité du vent. On peut ainsi observer différentes sous-

régions : (1) le Pérou, avec un système d’upwelling très productif et quasi-permanent,

(2) un système très peu productif entre la frontière Sud du Pérou et le Nord du Chili,

et (3) un système très productif et marqué par des variations saisonnières le long des

côtes du Chili central et Sud.

En plus de ces systèmes d’upwelling, le HCS abrite la partie sud de la Zone de Mini-

mum d’Oxygène (OMZ7) la plus étendue au monde. Cette OMZ résulte de l’interaction

entre les forts taux de production primaire ayant lieu dans la couche euphotique, la

dégradation de la matière organique produite consommant de l’oxygène, et de la circu-

lation lente et peu énergétique présente sous la surface, ce qui favorise l’accumulation

5De l’anglais Humbolt Currrent System.
6De l’anglais South Pacific Anticyclone.
7De l’anglais Oxygen Minimum Zone.
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des eaux pauvres en oxygène.

Malgré leur diversité, les impacts de l’OMZ ont été jusqu’à présent relativement

peu étudiés. En effet, l’OMZ du Pacifique Sud est impliquée dans la libération de

gaz à effet de serre, notamment le N2O et le CO2, qui sont importants à prendre en

compte en termes de climat global. De plus, cette zone réduit l’espace habitable par les

organismes marins à cause des faibles concentrations en oxygène, ce qui impacte les

ressources halieutiques de la région. Ces conséquences peuvent être significatives, et

ce à différents niveaux, mais l’étude de la dynamique de l’OMZ en est encore au stade

initial. Par exemple, il a récemment été mis en évidence que l’activité méso-échelle

régionale serait le facteur principal de la forme et de l’étendue de l’OMZ. Cependant,

l‘impact de l’activité méso-échelle sur la variabilité de l’OMZ n’a pas encore été étudié.

On peut donc s’interroger sur l’effet que la variabilité interne de l’océan pourrait avoir

sur les tendances à long terme de l’OMZ.

Les structures de méso-échelle, dominantes dans la région, résultent des instabilités

de la circulation, principalement du cisaillement vertical des courants. Les tourbillons

de méso-échelle se propagent vers l’Ouest et participent ainsi au bilan de chaleur et de

sel entre la zone côtière et le large. Ces structures participent également au couplage

physique/biogéochimique qui étend la région fortement productive de la côte vers le

large.

En plus du forçage atmosphérique local et de la variabilité interne, la modulation

de la circulation du HCS est fortement liée à la variabilité d’origine équatoriale, à des

échelles de temps allant de l’intra-saisonnier au décennal. La côte Sud-Américaine agit

comme une extension du guide d’ondes équatorial, permettant ainsi la propagation

des ondes de type Kelvin piégées à la côte (CTW8) vers le pôle. La propagation de

ces signaux d’origine équatoriale le long des côtes du HCS entraîne la modulation

des caractéristiques océanographiques du plateau continental jusqu’au talus, qui se

manifestent sous la forme de perturbations sur les champs de densité et pression, en

particulier à l’échelle de temps intra-saisonnière.

L’activité des CTW est particulièrement intense pendant les évènements El Niño

(ENSO9), qui est relié à une activité plus importante des ondes de Kelvin à l’équateur.

Ce mécanisme transmet l’information depuis le Pacifique équatorial vers le HCS, et est

responsable des fortes anomalies dans les caractéristiques océanographiques enreg-

istrées le long des côtes Sud-Américaines pendant les évènements ENSO. Par exem-

ple, au cours de la période d’intensité maximale de El Niño 1997-1998, la thermocline

s’approfondît de plusieurs dizaines de mètres (∼150 m) du côté Est du Pacifique en

réponse au passage des CTW, ce qui était également observé sur le niveau de la mer à

8De l’anglais Coastal Trapped Waves.
9De l’anglais El Niño Southern Oscillation.
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la côte, avec des anomalies de l’ordre de la dizaine de centimètres. Plusieurs travaux

ont évoqués l’idée que les déplacements verticaux de la thermocline, forcés par le pas-

sage des CTW au cours de l’ENSO de 1997-1998, pourraient modifier la source des

eaux de l’upwelling selon la phase de l’onde (“upwelling” ou “downwelling”). Ce

mécanisme, associé aussi aux variations du vent parallèle à la côte, serait à l’origine

des chutes des taux de production primaires observés pendant cet évènement, qui ont

eu des conséquences catastrophiques sur les ressources halieutiques et leur exploita-

tion dans cette région.

Aux échelles interannuelles, l’influence du Pacifique équatorial sur le HCS n’est

pas confinée à la côte, et s’étend également vers le large grâce à la propagation d’ondes

de Rossby extratropicales (ETRW10). Les premières observations de la propagation de

ce type de signal hors des latitudes tropicales ont été apportées par l’altimétrie, avec

la mission TOPEX/Poséidon. Ce type d’observations a donné accès, pour la première

fois, à un champ quasi simultané du niveau de la mer global, permettant de docu-

menter également la propagation des signaux se dirigeant vers l’Ouest depuis la côte

Sud-Américaine, associés à l’évènement El Niño 1997-1998.

Les observations altimétriques mettent aussi en évidence la décroissance significa-

tive de l’amplitude de l’ETRW lors de sa propagation vers le large. Ceci peut être lié

à différents mécanismes, par exemple, la dissipation turbulente, le “déferlement” de

l’onde lié aux instabilités de type barocline, ou encore la dispersion linéaire. La prop-

agation d’énergie verticale induite par la contribution d’un certain nombre de modes

baroclines est un autre mécanisme qui peut aussi expliquer l’atténuation de l’onde

de Rossby vers le large. Ce type de mécanisme a été étudié dans un premier temps

pour expliquer les variations des températures de subsurface observées dans le Paci-

fique équatorial à l’échelle annuelle, et a été généralisé par la suite pour les variations

aux fréquences interannuelles, liées aux variations induites par le phénomène El Niño.

Des travaux postérieurs ont mis en évidence que ce processus n’est pas exclusif au Paci-

fique équatorial, mais que la propagation verticale d’énergie liée à l’onde de Rossby est

aussi présente dans le Pacifique Sud-Est. En particulier, Ramos et al. (2008) met en év-

idence la relation directe qui existe entre la variabilité de la circulation profonde (sous

la thermocline) dans le HCS, et la variabilité à l’équateur pendant le fort évènement El

Niño de 1997/1998. Ce travail montre également que le signal issu de la propagation

d’énergie s’étend sur des centaines de kilomètres vers le large dans l’océan profond

depuis les côtes Sud-Américaines, ce qui interroge sur le rôle que ce flux d’énergie

pourrait jouer dans la modulation de la circulation profonde dans le HCS. Cette ques-

tion s’insère dans le contexte actuel où l’on s’interresse aux différents régimes d’ENSO,

10De l’anglais Extra Tropical Rossby Waves.
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et à comment cette diversité pourrait impacter la circulation dans le HCS, sachant que

les évènements forts du type 1997-1998 sont plutôt rares.

Les problématiques actuelles liées au déséquilibre radiatif au niveau planétaire, qui

sont au centre des recherches dans la communauté climatique, placent l’étude de la

circulation profonde et des mécanismes associés à sa variabilité comme l’un de sujets

clefs pour comprendre les changements planétaires climatiques. L’océan absorbe et re-

distribue ∼90% de l’excès d’énergie présent dans l’atmosphère sous forme de chaleur,

et les études récentes montrent qu’au moins 25% de l’augmentation de température

dans l’océan pendant les dernières 45 ans a eu lieu entre 700 et 2000 m de profondeur

(Abraham et al., 2013). Cette découverte en particulier permet de s’interroger sur les

mécanismes pilotant la redistribution d’énergie au sein de l’océan. Sachant qu’il faut

des centaines d’années à la circulation thermohaline pour parcourir un bassin, quels

mécanismes sont responsables des changements à l’échelle décennale ? Le but de ce

travail est de documenter et de mieux comprendre la connexion entre la variabilité

équatoriale et la variabilité de la circulation de subsurface le long des côtes Péruviennes

et Chiliennes, à travers la propagation des ondes de Rossby extratropicales. Dans ce

contexte, on peut résumer les objectifs et l’approche de ce travail comme suit :

• Documenter le flux d’énergie verticale associé à la propagation des ondes de

Rossby extratropicales.

• Estimer l’influence de l’onde de Rossby extratropicale sur la variabilité de l’OMZ.

• Evaluer l’influence de l’activité de méso-échelle sur la variabilité de l’OMZ, et sur

le flux d’énergie verticale lié à l’ETRW.

Afin de répondre à ces objectifs, nous avons organisé le manuscrit de thèse de la

façon suivante. Le Chapitre 2 introduit les outils et l’approche méthodologique util-

isés pour étudier la variabilité de la circulation dans le Pacifique Sud-Est, et présente

aussi de manière succincte le formalisme physique qui justifie la propagation verti-

cale des ondes de Rossby extratropicales. Le Chapitre 3 est dédié à l’étude du flux

d’énergie induit par la propagation de l’ETRW aux échelles de temps interannuelle

et décennale, et comment ce flux est impacté par l’activité mésoéchelle. Le Chapitre 4

étudie l’influence qu’ont les fluctuations de la circulation, sous la forme de l’ETRW et

l’activité de méso-échelle, sur la ventilation du HCS, du point de vue de la ventilation

de l’OMZ à l’échelle de temps saisonnière. Enfin, le Chapitre 5 présente les principales

conclusions de cette thèse, et propose des perspectives pour l’étude de la circulation

de subsurface dans la région.

28



Chapter 2

Methodology and Observations

In the present chapter we introduce the methodological framework used in the the-

sis work. During the first part, a concise description of the numerical ocean model used

throughout the thesis work is made (a detailed description of the simulations config-

uration is provided in the Chapters 3 and 4). The second part of this chapter pursues

with the definition of the physical (Section 4.2) and statistical (Section 4.3) formalisms

upon which the diagnostics were built. The chapter concludes with a description of

the observational information used in the present work (Section 2.4).

2.1 The regional ocean modeling system: ROMS

The orographic features and the circulation characteristics found in the SEP make

this region a challenge for the current generation of geophysical modeling tools. For in-

stance, the coastal upwelling off central Chile is associated with an atmospheric coastal

jet 300 km width (Renault et al., 2009), which is comparable to the grid size of a global

coupled general circulation models (e.g. CMIP5-class). In this context, several studies

have related the global models biases observed in the upwelling regions to misrepre-

sentations of the atmospheric and oceanic processes close to the coast, as a result of an

insufficient spatial resolution (e.g. Large and Danabasoglu (2006); S. P. DeSzoeke et al.

(2012); Xu et al. (2014); Richter (2015)).

On the other hand, regional models have demonstrated to be an appropriate tool

for studying the oceanic and atmospheric processes in the upwelling regions, and par-

ticularly in the HCS (e.g. Penven et al. (2005); Montes et al. (2010a, 2011); Colas et al.

(2012); Dewitte et al. (2012)). For these reasons, we have chosen the Regional Ocean

Modeling System (ROMS; Shchepetkin and McWilliams (2005)) to carry out the present

study. The ROMS model solves the Reynolds-averaged Navier-Stokes equations un-

der the hydrostatic and Boussinesq assumptions, which in Cartesian coordinates can

be written as:
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Chapter 2. Methodology and Observations

Momentum conservation: ∂tu+ ~u · ∇u− fv = −∂xφ+ Fu +Du (2.1)

∂tv + ~u · ∇v + fu = −∂yφ+ Fv +Dv (2.2)

Hydrostatic approximation: ∂zφ = −ρg

ρ0
(2.3)

Tracer conservation: ∂tT + ~u · ∇T = FT +DT (2.4)

∂tS + ~u · ∇S = FS +DS (2.5)

Continuity: ∂xu+ ∂yv + ∂zw = 0 (2.6)

Equation of state: ρ = ρ(T, S, z) (2.7)

with the surface (z = ξ) and bottom (z = −h) boundary conditions prescribed as:

z = ξ z = −h

Av∂zu = τxs Av∂zu = τxb

Av∂zv = τ ys Av∂zv = τ yb

KT
v ∂zT = Q

ρ0Cp
KT

v ∂zT = 0

KS
v ∂zS = (E−P )S

ρ0
KS

v ∂zT = 0

w = ∂tη + u∂xη + v∂yη w = −u∂xh− v∂yh

(2.8)

where:

• ~u = (u, v, w) is the velocity field, in Cartesian coordinates,

• f(x, y) is the Coriolis acceleration,

• h(x, y) is the depth of sea floor below mean sea level,

• η(x, y, t) is the surface elevation,

• g is the gravitational acceleration,

• ρ0 + ρ is the total density,

• T (x, y, z, t) and S(x, y, z, t) are the potential temperature and salinity fields,

• P is the total pressure (P ≈ −ρ0gz),

• φ(x, y, z, t) is the dynamic pressure, equal to P
ρ0

,
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2.1. The regional ocean modeling system: ROMS

• Fu,Fv,FT and FS correspond to forcing/source terms,

• Du,Dv,DT and DS correspond to the horizontal, diffusion terms,

• τxs, τ ys are the Cartesian components of the wind stress,

• τxb, τ yb are the components of the bottom stress,

• Q and E − P , represent the surface heat, evaporation and precipitation fluxes

respectively,

• Av, KT
v and KS

v are the vertical mixing coefficients (viscous, temperature and

salinity).

Please note that there is no river runoff forcing in the simulations used in the present

thesis, considering that there are no large rivers north of 37◦S.

2.1.1 Coordinate transformation

The search for numerical efficiency, and the need to deal with steep topography

and better account for mixing processes incited ROMS developers to apply a spatial

coordinate change before actually solving the equations system (Eqs. 2.1 to 2.7). In the

vertical, the Cartesian coordinate system is replaced by a stretched-vertical coordinate

system that follows the topographic irregularities (σ-coordinate), with the possibility

of increasing the vertical resolution close to the upper and lower boundaries. The

stretched vertical coordinates (s) are related to the Cartesian z-levels by:

z = η(1 + s) + hcs+ (h− hc)C(s); s ∈ [−1, 0] (2.9)

where s is a nonlinear vertical transformation function, η represents the free surface

(as in Eq. 2.8), h(x, y) is the unperturbed water column thickness, hc is a positive thick-

ness that controls the stretching, C is a non-dimensional, monotonic, vertical stretching

function ranging from [−1, 0] defined as:

C(s) = (1− b)
sinh(θs)

sinh(θ)
+ b

tanh(θ(s+ 1/2))− tanh( θ
2
)

2 tanh( θ
2
)

(2.10)

In practice, the vertical resolution in the water column is adjusted using the pa-

rameter hc, and the resolution at the bottom and near the surface is adjusted by the

parameters θ and b respectively.

In the horizontal direction, the Cartesian coordinates are also replaced by a differ-

ent basis that copes better with the terrain irregularities. In ROMS this is achieved
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by implementing a coordinates change from Cartesian to curvilinear. Let η⋆(x, y) and

ξ⋆(x, y) be the new coordinate system, which relate to the velocity field as:

~v · ξ̂⋆ = u

~v · η̂⋆ = v
(2.11)

which can be used to re-write equations (2.1) to (2.7) (cf. Arakawa and Lamb

(1977)).

2.1.2 Pressure gradient errors

The approach of vertical coordinate change results in an accurate representation of

the bottom and surface conditions. However, this approach entails significant errors

in the computation of the pressure force gradient. The pressure force gradient is repre-

sented by the sum of two terms in the s coordinate system; a pressure gradient along

the s-isopleths plus a corrective term that prevents vertical pressure gradients in the

first term. This relationship can be expressed, in the x direction, as follows:

− 1
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∂x
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∣
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s

∂P
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(2.12)

where

Hz ≡
∂z

∂s
(2.13)

The problem arises near steep topographic features, where both terms acquire sim-

ilar amplitude but with opposing sign, which might translate as important truncation

errors when resolving in discrete form (Song, 1998). Over topographic features, this

error is the highest near the bottom, where the s-coordinate slopes are very steep. To

minimize this error, the implementation of a high-order finite differences scheme and

a topography smoothing pre-processing are recommended. The level of smoothing

applied to the topography (h) is done following r = △h

h
. As shown by Haidvogel et al.

(1991), r ≤ 0.2 greatly improves the errors associated with the topographic effect.

2.1.3 Spatial discretization and time stepping

The governing equations (Eqs. 2.1 to 2.7) are discretized over a boundary-fitted,

orthogonal-curvilinear coordinates (ξ⋆, η⋆) grid. The discretization is made over a

second-order scheme, using an Arakawa C-grid (Fig. 2.1a); Arakawa and Lamb (1977)),
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2.1. The regional ocean modeling system: ROMS

which in combination with an adequate spatial resolution allows resolving spatial

scales smaller than the local Rossby deformation radius (Hedström, 1997). The model

variables are staggered over the Arakawa C-grid so the free surface, density and trac-

ers are located at the center of the cell whereas the horizontal velocity components are

located at the west/east and south/north edges of the cell, respectively. That is, the

density is evaluated between the grid cell points where the currents are evaluated.

Figure 2.1: (a) Placement of variables on an Arakawa C-grid. Note the horizontal spacing
between the velocity components and the other variables. (b) Placement of variables on the
staggered vertical grid.

In the vertical direction, the discretization is made over the terrain following grid

described in section 2.1.1. The model state variables are vertically staggered so that

horizontal momentum, density and tracers are located at the center of the grid cell,

while vertical velocity and vertical mixing variables are located at the boundaries of

each grid cell (Fig. 2.1b).

In order to correctly resolve the variability associated with the barotropic mode

(much faster than the one related to the baroclinic modes), a mode-splitting technique

is applied to resolve the primitive equations and the continuity equation in the tem-

poral scheme. This consists in separating the baroclinic (3D) flow component from the

barotropic (2D) one, before solving the equations, and re-coupling them afterward. The

mode splitting is done using a time filter, which ensures that the continuity equation is

satisfied on the discrete level, thus removing previous restrictions of small free-surface

changes (Marchesiello et al., 2003). Solving the baroclinic flow component is (numeri-

cally) more expensive than solving the barotropic component, so the barotropic mode

iteration is done a certain number of times for each iteration of the baroclinic mode.
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The re-coupling between the modes is done by several subsequent substitutions be-

tween the barotropic velocities (2D) and the vertical integral of the baroclinic veloci-

ties. To avoid any potential aliasing of the 2D high-frequencies in the 3D model, the

barotropic components are averaged over the baroclinic time stepping (Shchepetkin

and McWilliams, 2005). The time stepping used corresponds to a third-order leap-

frog/Adams-Moulton (predictor-corrector) scheme.

2.1.4 Advection scheme and mixing parametrization

The tracer and momentum advection terms are processed with high order advec-

tion schemes, conceived to minimize diffusion and the errors related to dispersion. For

the horizontal advection, a third-order upstream-biased scheme is used. This scheme

in particular has a velocity-dependent hyper-diffusion dissipation as the dominant

truncation error (Shchepetkin and McWilliams, 1998). In the vertical, the advection

is found by reconstructing the vertical derivatives using parabolic splines (equivalent

to a 8th-order conventional advection scheme).

The vertical mixing parametrization in ROMS can be either by local or non-local

closure schemes. The most extensively used is the non-local closure scheme based

on the K-profile boundary layer formulation (KPP; Large et al. (1994)), that computes

the vertical mixing coefficients (Av, K
T
v and KS

v ) in the water column. The boundary

conditions of the vertical flux provide the momentum and tracer fluxes at the bottom

and surface.

The horizontal sub-grid scale mixing is parametrized by a biharmonic Laplacian

term, which also smooths the numerical noise related to the advection scheme. How-

ever, implementing this smoothing requires the introduction of important diffusion-

dissipation terms, which in turn induce a numerical diffusion. By construction, the

advective scheme of ROMS limits the dispersion, which means that the dissipation-

diffusion is implicitly treated by the advection scheme, depending on the horizontal

grid size. In this manner, the horizontal viscosity/diffusion coefficients are optimized

by the advection scheme itself. The horizontal diffusion coefficients are therefore de-

fined as:

Dq
h = Aq

h∆hq +Bq
h∆

2
hq,

where q = u, v, T, S, and ∆ = ∂2
xx + ∂2

yy

and Aq
h, B

q
h are determined implicitly.

(2.14)
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2.2. Long Rossby waves

2.2 Long Rossby waves

As was established in Chapter 1, the central objective of the present work is to doc-

ument the variability of the circulation in the SEP related to the vertical propagation of

long Rossby waves. In this sense, it becomes important to recall certain elements that

allow to develop the Rossby wave theory.

2.2.1 At the origin of long Rossby waves: the β-plane

The Coriolis parameter is defined as f = 2Ω sin(θ), where Ω is the angular rotation

rate of the Earth and θ is the latitude. If we consider a varying latitude, we can expand

f (using a Taylor series) around a given latitude θ0:

f = f0 +
∂f

∂θ

∣

∣

∣

θ0

∆θ +
∂2f

∂θ2

∣

∣

∣

θ0

∆θ2

2
+ ...

= 2Ω sin(θ0) + 2Ω cos(θ0)(θ − θ0) +O(∆θ2) (2.15)

where f0 = 2Ω sin(θ0) and ∆θ = θ − θ0. Retaining the first two terms, we have:

f = f0 + β0y (2.16)

where β0 = 2(Ω/a) cos(θ0) and y = a∆θ, where a is the radius of the Earth. Retain-

ing only the first term in Eq. (2.15) corresponds to a fixed latitude approximation, the

so called f -plane. However, we are interested in a framework that allows for varia-

tions of the Coriolis parameter values. Equation (2.16) describes the linear change of

the Coriolis parameter with latitude, and is known as the β-plane. For more rigorous

developments of the β-plane approximation, the reader can refer to the works of Vero-

nis (1963, 1981), Pedlosky (1987), and Verkley (1990). This simple approximation that

allows for the variations of the Coriolis parameter is what gives rise to the propagation

mechanism of Rossby waves.

Consider two water parcels located at a given latitude θ0, and move one poleward

(Fig. 2.2a) and the other equatorward (Fig. 2.2b). If we assume a constant depth around

the latitude θ0, the conservation of potential vorticity reduces to a conservation of ab-

solute vorticity ζ + f . The parcel that was moved poleward will increase its planetary

vorticity (and acquire clockwise relative vorticity), while the one that was displaced

towards the equator will decrease its planetary vorticity (and get anti-clockwise rela-

tive vorticity). This perturbations introduced in the vorticity field will generate in turn

an anomalous circulation. The net effect of the induced circulation on the vorticity

distribution is to advect the interface northward, west of the vorticity minimum (Fig.
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2.2a), and southward, west of the vorticity maximum (Fig. 2.2b). In this manner, the

water parcels oscillate around the equilibrium latitude θ0, and the perturbation propa-

gates westward. This westward propagation of the anomalies constitutes in principle

a Rossby wave.

Figure 2.2: Direction of relative vorticity generated by the meridional (a) poleward and (b)
equatorward movement of water parcels. Plus and minus signs indicate the positive/negative
relative vorticity acquired due to the meridional displacement.

Having described the principles for the existence of the long Rossby wave, it is

now appropriate to develop its formalism, which will be used to diagnose this phe-

nomenon.

2.2.2 The dispersion relation for long Rossby waves

Consider the horizontal movement equations restricted to homogeneous, inviscid

and unforced flows on a β-plane, in the linearized shallow water approximation. The

general idea behind the linearization around a state of rest is that all variables involved

have infinitesimal small amplitude. This means that terms linearly dependent on these

variables have very small amplitude, and the non-linear terms are even smaller (i.e.

negligible). With all these assumptions, the horizontal momentum conservation equa-

tions (Eq. 2.1 and 2.2) become:

∂u

∂t
− (f0 + βy)v = −g

∂η

∂x
∂v

∂t
+ (f0 + βy)u = −g

∂η

∂y

(2.17)
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where η corresponds to the anomalies of the surface elevation and f0 the Coriolis

parameter at a given latitude. For this approximation, the vertically integrated conti-

nuity equation (Eq. 2.6) becomes:

∂η

∂t
+H

(

∂u

∂x
+

∂v

∂y

)

= 0 (2.18)

The system (2.17) can be rearranged as:

f0v = g
∂η

∂x
+

(

∂u

∂t
− βyv

)

f0u = −g
∂η

∂y
−

(

∂v

∂t
+ βyv

) (2.19)

which can be reinjected into Eq. 2.17 to obtain:

1

f0

∂

∂t

[

−g
∂η

∂y
−

(

∂v

∂t
+ βyu

)]

− f0v −
βy

f0

[

g
∂η

∂x
+

(

∂u

∂t
− βyv

)]

= −g
∂η

∂x

1

f0

∂

∂t

[

g
∂η

∂x
−

(

∂u

∂t
− βyv

)]

+ f0u− βy

f0

[

−g
∂η

∂y
−
(

∂v

∂t
+ βyu

)]

= −g
∂η

∂y
(2.20)

In this system, the terms dominated by β are small compared to f0 and can therefore

be dropped. In addition, we are interested in solutions dominated by a frequency

much lower than the changes in the flow, so the time derivatives involving the velocity

field can also be dismissed. This is equivalent to applying the first order geostrophic

approximation in Eq. 2.19, namely u ≃ −g/f0∂yη and v ≃ g/f0∂xη. Rearranging Eq.

2.20 in terms of u and v yields:

v =
g

f0

∂η

∂x
− g

f 2
0

∂2η

∂y∂t
− βg

f 2
0

y
∂η

∂x

u = − g

f0

∂η

∂y
− g

f 2
0

∂2η

∂x∂t
− βg

f 2
0

y
∂η

∂y

(2.21)

Injecting Eq. 2.21 into 2.18 leads to:

∂η

∂t
+H

[

∂

∂x

(

−g

f0

∂η

∂y
− g

f 2
0

∂2η

∂x∂t
+

βg

f 2
0

y
∂η

∂y

)

+
∂

∂y

(

g

f0

∂η

∂x
− g

f 2
0

∂2η

∂y∂t
− βg

f 2
0

y
∂η

∂x

)]

= 0

(2.22)
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which can be expressed as a single equation for the surface displacement:

∂η

∂t
− c2

f 2
0

∂

∂t
∇2η − β

c2

f 2
0

∂η

∂x
= 0 (2.23)

where c2 = gH is the phase speed, and ∇2 is the two-dimensional Laplace operator.

We assume a plane wave-like solution of the form η = η0e
[i(kx+ly−ωt)], where k and l are

the zonal and meridional wavenumbers respectively, and ω the angular frequency. We

introduce this solution in Eq. 2.23, to obtain:

−iω − c2

f 2
0

(−iω)(−k2 − l2)− βik
c2

f 2
0

= 0 (2.24)

or

ω = − βk

k2 + l2 + f 2
0 /c

2
(2.25)

which corresponds to the dispersion relation for long Rossby waves1. Eq. 2.25

states how the angular frequency ω relates to the two horizontal wavenumbers k and

l. From this dispersion relation, we can find the phase speed of the wave, which in

the zonal direction is given by c(x) = ω/k. This relations hip gives a negative phase

velocity, which in Cartesian coordinates implies a westward propagation direction.

The meridional phase velocity is found similarly (c(y) = ω/l), and has no preferred

direction.

This approximation for deriving the long Rossby waves dispersion relation (Eq.

2.25) is suitable for latitudes near the equatorial region, where the use of a Cartesian

form of the governing equations produces an isometric coordinate system. However,

this approximation can be generalized to be used in the extra tropical region, yielding

the exact same result. This is achieved by performing a coordinate change from Carte-

sian to a local Mercator projection. The process requires expanding the coordinate

system around a latitude of interest ϕ0 and substituting the corresponding variables

in the momentum and continuity equations. For the development of the mid-latitude

β-plane, the reader is invited to refer to Gill (1982), section 12.2.

Although the assumptions made here are satisfactory for the theoretical develop-

ment of long Rossby waves, there are serious restrictions for its application to the real

ocean. One of the strongest conditions imposed in most studies is the assumption that

the ocean reduces to one baroclinic mode (i.e. two homogeneous layers). In reality,

stratification (along with f and g) is one of the key steering factors for ocean flows

1Please note that if we consider the short wave limit (k → ∞), equation 2.25 can be reduced to
ω = −β/k, which yields a positive phase velocity in the x-direction. Thus, short Rossby waves propagate
eastward as opposed to westward propagating long Rossby waves.
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and cannot be easily neglected. In particular, the exclusion of a more realistic vertical

ocean structure precludes any process that could take place in the vertical dimension,

which is actually the focus of the present study. This motivates to complement the

present theoretical approach with the appropriate elements for studying the processes

associated with long Rossby waves in the vertical.

2.2.3 Theoretical approach for vertically propagating Rossby waves

One approach commonly used involves a simplification of the momentum equa-

tions using a variables separation technique, which gives the solution of a system as a

sum of normal modes. Each of these modes has a characteristic fixed vertical structure

and behaves in the horizontal dimension (and in time) in the same way as a homo-

geneous fluid with a free surface. In other words, this technique grants access to the

vertical dimension while retaining the simplicity of the barotropic approximation.

In this case we look for solutions of the linearized movement equations with a sep-

arable vertical structure in the form:

[u, v, η] (x, y, z, t) =
∞
∑

n=0

[un, vn, ηn] (x, y, t) ·Ψn(z) (2.26)

This represents the fields [u, v, η] as the sum of a barotropic mode (n = 0) plus an

infinite number of baroclinic modes (n ∈ [1,∞]), where Ψn(z) is the vertical structure

associated with the nth mode. The equations 2.17 and 2.18 can be therefore rewritten

for the case of a continuously stratified ocean as:

∂un

∂t
− (f0 + βy)vn = −g

∂ηn
∂x

∂vn
∂t

+ (f0 + βy)un = −g
∂ηn
∂y

∂ηn
∂t

+
c2n
g

(

∂un

∂x
+

∂vn
∂y

)

= 0

(2.27)

for the horizontal direction, and:

d

dz

(

1

N2

dΨn(z)

dz

)

= − 1

c2n
Ψn(z) (2.28)

for the vertical, where N2 = − g

ρ0

∂ρ

∂z
, is the Brunt-Väisälä frequency and cn is a con-

stant of separation for the homogeneous equation 2.28. This system satisfies the dis-

persion relation for long Rossby waves (2.25), which becomes:

ω = − βk

k2 + l2 + f 2
0 /c

2
n

(2.29)
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As shown in Ramos et al. (2008) and Dewitte et al. (2008b), this dispersion rela-

tion can be adapted to study the vertical propagation of extratropical Rossby waves in

slowly varying media (WKB approximation). The first assumption involves the con-

sideration of very long zonal wavelengths (hence low k), meaning that k2+ l2 ≈ 0. This

assumption yields a reduced form of Eq. 2.29:

ω = −βkc2n
f 2
0

(2.30)

This expression can be differentiated with respect to the local vertical wavenumber

mn, to obtain the vertical group velocity. From the relation mn = N/cn (cf. Gill (1982),

section 6.11), the vertical group velocity (czng) is:

czng =
dz

dt
=

∂ω

∂m
=

2βkN2

f 2
0m

3
(2.31)

similarly, the zonal group velocity can be estimated:

cxng =
dx

dt
=

∂ω

∂k
= −βc2n

f 2
0

(2.32)

In general terms, cxng and czng define the velocity at which the energy or information

is conveyed along the wave, and we can define the trajectory of the wave energy in the

(x, z) plane as:

dz

dx
=

czg
cxg

= 2
ωf 2

0

βcN
(2.33)

Relation 2.33 defines the wave ray-paths under the WKB assumption, and will be

used in the following chapters to diagnose the vertical propagation of long Rossby

waves. In particular, Eq. 2.33 will be used in Chapter 3 to investigate the changes of the

propagation characteristics of ETRW related to the ENSO diversity.

It should be kept in mind that the solution and application of the relation 2.26 (and

subsequent relations) for the study of long Rossby waves under the assumptions made

here (known as the Standard Linear Theory (SLT)), relies on a very simplified approx-

imation of the ocean. It therefore does not take into account the impact that several

characteristics of the real ocean could have on the structure and phase speed of the

normal modes, such as the coupling with bottom topography (Killworth and Blun-

dell, 1999; Tailleux, 2012), mean flow (Fu and Chelton, 2001; Killworth and Blundell,

2003a,b, 2004, 2005; Tailleux, 2012) or vertical vorticity shears (R. A. DeSzoeke and

Chelton, 1999). In particular, in a work that evaluated the effect2 of the baroclinic mean

2The theoretical framework that takes into account the effects of the mean flow and bathymetry is
known as the Extended Linear Theory (Killworth and Blundell, 2003a,b).
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flow and bathymetry on the surface signature of long Rossby waves in the subtropi-

cal Pacific (poleward of 17◦S) west of ~100◦W, Maharaj et al. (2007) evidenced that the

first two baroclinic modes from the extended theory explained up to 60% more vari-

ance in the observed SLA signal than their SLT equivalents. Moreover, in that work

the authors indicate that the impact of the mean flow tends to be the most influential

factor in the extended theory, which suggests that the effect of the mean baroclinic flow

should be considered in the study of ETRW over the central-western Pacific. Over the

SEP however, estimations of the effect of the mean baroclinic flow on the phase speed

value and vertical structure of the first two baroclinic modes show that there is little

deviation between the standard and the extended linear theories for this region (Ramos

et al., 2008), which provides confidence in using the relations derived from the SLT for

the study of the ETRW in the SEP. The relevance of our approximation will be assessed

a posteriori, in the light of the results exposed in Chapters 3 and 4.

2.2.4 Rossby wave energy flux

In the ocean, a significant fraction of the wind power is converted to buoyancy

power, which in turn causes vertical movements in the isopycnals and affects the rate

of change of available potential energy. In the tropics, the mean available potential en-

ergy is primarily a measure of the mean thermocline slope along the equator (Brown

and Fedorov, 2010). Therefore, in the tropical Pacific, there is a direct connection be-

tween the wind power at the ocean surface and the mean thermocline slope. In the

mid-latitudes of the SEP, a large fraction of the wind power that originates in the trop-

ics is converted to buoyancy power in the subthermocline, through the propagation

of extra-tropical Rossby waves that originate from the coast and propagate westward

and downward. Buoyancy power (B) causes vertical movements in the isopycnals and

affects the rate of change of available potential energy (dE/dt). For a water parcel of

volume V , the buoyancy power can be written as follows: B =
∫∫∫

(ρ′gw)dV , where ρ′

is the anomalous density related to the vertical displacement of the isopycnal and w is

the vertical velocity (see equation 5 of Brown and Fedorov (2010)).

This buoyancy power can be related to the vertical energy flux in the ocean asso-

ciated with the vertical movements of the isopycnals, and has a correspondence with

the vertical component of the mechanical energy flux (the so-called Eliassen and Palm

flux, (wp)). For the long-wave field, the mechanical energy flux vector can be defined

as (up, vp, wp), where (u, v, w) is the velocity field and p is the pressure field (Eliassen

and Palm, 1960). This definition will be used in Chapter 3 to diagnose the vertical

energy flux associated with long Rossby waves at interannual to decadal timescales,
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and the results of the vertical energy flux will be interpreted in light of the theoretical

framework provided by Eq. 2.33.

Dissipation of the Rossby wave energy flux

In principle, the energy flux induced by the vertical propagation of long Rossby

waves is an adiabatic (reversible) process, which means that it only acts to conser-

vatively reorganize the energy field. However, as we will see in Chapter 3, we ob-

serve that the amplitude of the vertical energy flux associated with different timescales

decreases (or attenuates) along the propagation trajectory. Invoking the energy con-

servation principle, this amplitude attenuation implies that the wave energy must be

transferred to some other process, and several hypotheses involving the non-linearities

in the momentum conservation equations exist in this regard (e.g. baroclinic insta-

bility and subsequent breaking of the waves (Lacasce and Pedlosky, 2004), momen-

tum diffusion into the eddy field (Qiu et al., 1997), wave triad instability (Qiu et al.,

2013)). Recent theoretical results also indicate that the vertical amplitude attenuation

of long Rossby waves in the mid-latitudes could be due to diapycnal diffusion (i.e.

non-linearities in the tracer conservation equation; (Marchal, 2009)), which has also

been observed in realistic ocean simulations (Furue et al., 2015).

In order to gain further insight on the variations of the vertical energy flux, we de-

velop a formalism based on the anomalous vertical mass flux, which is used in Chapter

3 to interpret our results.

In conditions of stable stratification, the anomalous vertical mass flux associated

with the vertical displacement of a water parcel is given by mz = ρ′w′ (Monin and

Ozmidov, 1985), where the prime denotes the fluctuating density and vertical veloc-

ity. As the water parcel is displaced vertically, a potential energy per unit volume per

second is associated with the change in height, which can be written as gρ′w′.

Assuming that the density fluctuations in the subthermocline are essentially con-

trolled by variations in temperature (T ′), we have:

ρ′ = −αρ0T
′ (2.34)

where α is the volume expansion coefficient of seawater and ρ0 is the average den-

sity. The expression for the potential energy associated with mz can then be written

as:

gρ′w′ = −gαρ0w′T ′ (2.35)
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Before proceeding further, it is convenient to verify how the vertical gradients of w′

scale in relationship to the vertical gradients of p′, for the scales of interest. This condi-

tion will allow us to derive a simplified expression involving p′w′ (the vertical compo-

nent of mechanical energy flux vector induced by the anomalous p′ and w′ fields) from

Eq. 2.35.

From the relations that govern small perturbations in an incompressible stratified

fluid, we can write the vertical velocities associated with those perturbations in terms

of the time derivative of the density perturbations:

∂ρ′

∂t
= w′N2ρ0

g
(2.36)

where N is the Brunt-Vaisala frequency. Using the hydrostatic relation, we can

rearrange Eq. 2.36 in the form:

w′ = − 1

ρ0N2

∂

∂t

[

∂p′

∂z

]

(2.37)

For large-scale waves, the rate of change of pressure perturbations (and velocity) is

proportional to the wave frequency (∂p′/∂t ∝ ω), which allows us to write the dimen-

sional analysis of ∂w/∂z (taking the vertical derivative of Eq. 2.37) as:

∂w′

∂z
=

∆w′

∆z
≈ ω

N2

p′

ρ0H2
(2.38)

where ω the frequency of interest and H is a vertical scale of variation for w′ (which

for the first three baroclinic modes is in the order of 103 to 102m, see Ramos et al.

(2008)). Considering a period superior to 1 year (interannual), H as 103 m, a Brunt-

Vaisala frequency of 0.2 cycles per hour (in the range of the lowest measured values in

the abyssal Pacific; cf. Wunsch (2013), Levitus (1982)), and a typical ρ0 value qual to

1027 kg m−3, Eq. 2.38 scale as:

∆w′

∆z
∼ p′ · 10−9 (2.39)

This suggests that over the same vertical scale, the term p′∂w′/∂z would tend to be

smaller than the term w′∂p′/∂z (See Chapter 3). This also implies that the vertical gra-

dient of the heat flux can be interpreted as anomalous nonlinear vertical advection of

temperature since w′∂T ′/∂z ≈ ∂(w′T ′)/∂z (assuming Eq. 2.34), which links the energy

flux to the rate of temperature change in the deep ocean.
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Using the hydrostatic approximation, we can rearrange Eq. 2.35 as:

∂p′w′

∂z
= gαρ0w′T ′ (2.40)

which implies that the vertical gradients of p′w′ scale as w′T ′.

Introducing a vertical heat flux (Q) defined as:

Q = −Cpρw′T ′ (2.41)

where Cp is the specific heat of seawater at constant pressure, we can then rewrite

Eq. 2.40 in terms of Q as:

∂p′w′

∂z
= −gα

Cp

Q (2.42)

The expression 2.42 relates the vertical gradients of the wave energy flux to a ver-

tical heat flux, and can be interpreted as the rate of energy loss to smaller scales by

working against the vertical density gradients. Therefore, the dissipation3 or decrease

in the vertical wave energy flux traduces as vertical heat flux. This formalism is used in

Chapter 3 to interpret the results obtained from the analysis of the interannual vertical

energy flux.

2.3 ENSO indices

As exposed in the introductory chapter, ENSO is the dominant mode of coupled

ocean-atmosphere variability on interannual timescales, and even though the develop-

ment and peak phases of the events take place in the tropical Pacific, it has an important

influence on the extratropical variability. Over the years, several methodological ap-

proaches have been developed to document and quantify the ENSO modulation of the

oceanographic characteristics and dynamical processes in the SEP. A straightforward

approach involves the analysis of the local oceanographic records during the different

phases of a particular ENSO event, such as the ocean currents data (e.g. Shaffer et al.

(1999); Pizarro et al. (2002)), coastal sea level (Pizarro et al., 2001) or coastal upwelling

conditions (Vargas et al., 2007; Aravena et al., 2014), and describe the impact of the

event in terms of the amplitude of the anomalies.

3Strictly, dissipation corresponds to the effect of molecular friction on kinetic energy. However, in the
present work we use this term in a more general sense as the transfer of energy, e.g. from the large-scale
wave field to the mesoscale field.
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A complementary approach frequently used to document the impact of the events

consists in contrasting the local records against indices that quantitatively define the

ENSO events. This approach has the advantage of summarizing the complex nature of

the ENSO events while retaining information about their duration and intensity. Defi-

nition of such indices are diverse, and range from a simple SST-threshold based index

restricted to the equatorial Pacific (e.g. Niño 3.4 (Trenberth, 1997), Trans Niño Index

(Trenberth and Stepaniak, 2001)), to more complex ones involving several variables

measured over the whole tropical Pacific basin (e.g. Multivariate ENSO Index (Wolter

and Timlin, 1993)).

Given their simplicity and skill, the use of indices to interpret the variability asso-

ciated with ENSO is very common, and has been extensively used for understanding

the remote influence that the equatorial Pacific variability exerts on the SEP. However,

the current understanding of the ENSO diversity has required a reinterpretation of the

classical definitions of El Niño in terms of the EP and CP events, which present very

different spatial patterns in the tropical Pacific, and strongly differ in the amplitude

of the anomalies (Ashok et al., 2007). In this context, Takahashi et al. (2011) proposed

two orthonormal indices that account for the evolution of both ENSO regimes. These

indices (henceforward E and C indices) are based on a 45° rotation of the leading EOF

functions of the SST anomalies in the equatorial Pacific:

E = (PC1− PC2)/
√
2

C = (PC1 + PC2)/
√
2

(2.43)

where PC1 and PC2 correspond to the principal components of the EOF analysis.

This rotation of the first two dominant EOF modes of SST anomalies allows for

deriving two modes than can be more easily interpreted. In particular the E mode ac-

count for extreme El Niño events and the C mode accounts for Central Pacific El Niño

events. Following the methodology of Takahashi et al. (2011), the E and C indices are

estimated. First, an EOF analysis is performed on the SODA data set SST between

10°S and 10°N in the tropical Pacific. The spatial EOF patterns obtained are similar to

the ones reported in Ashok et al. (2007), with a positive amplitude maximum along

the equatorial Pacific for the first mode (Fig. 2.3a), and a (smaller) positive amplitude

located in the central Pacific (near the dateline) for the second (Fig. 2.3b). The disper-

sion diagram of the principal components evidences the two ENSO regimes, where the

PCs from the SST anomalies align following two preferential directions, the E and C

indices (Fig. 2.3c). This result illustrates that the E − C axes selection obeys the direc-

tion preferred by the system and hence they have a dynamical meaning, rather than a

merely statistical one (Takahashi et al., 2011).
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Figure 2.3: (a) First and (b) second EOF-mode pattern of interannual SST in the tropical
Pacific. Percentage of explained variance by each mode is indicated between parentheses. (c)
Dispersion diagram of the Principal components (PC) associated with the spatial EOF-mode
patterns. The E and C axes are also indicated.

This methodology captures the salient features of the two El Niño regimes. The

spatial SST pattern associated with the E index has its maximum amplitude along

the eastern equatorial Pacific (east of 120°W) and along the northern coast of South

America (Fig. 2.4a). On the other hand, the C pattern has its maximum amplitude in

the central equatorial Pacific, in the Niño 4 region (170°E-100°W; Fig. 2.4b).

In Chapter 3, the E and C indices are used as a basis to document the impact of the

two ENSO regimes on the extra-tropical long Rossby wave.

2.4 Observations

Although in the present work we implement a modeling approach to study the

subsurface ocean variability, this work is still supported by observational data sets,

and in the following we introduce the observations used throughout the present study.

In some cases, these data sets might be used as the boundary conditions to force the

oceanic simulations (e.g. reanalyses and climatological data sets), or as a benchmark to

evaluate the realism of the simulations (e.g. in situ measurements and remote sensing

observations). The application and treatment of the information are detailed directly

in Chapters 3 and 4.
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Figure 2.4: SST projections onto the (a) E and (b) C indices in the tropical Pacific over the
period 1958-2008.

2.4.1 Climatologies and reanalyses

Simple Ocean Data Assimilation (SODA) reanalysis data set

The SODA data set is a reanalysis product that assimilates in situ observations from

the last six decades in an eddy-permitting global ocean model (Carton et al., 2000a,b),

to deliver time series of different ocean fields (velocity, temperature, salinity, sea sur-

face height and sea surface wind stress) over a global 0.5°×0.5° horizontal grid in 40-

vertical levels. The main source of in situ observations assimilated in SODA corre-

sponds to the World Ocean Atlas database, extended to include data from the National

Oceanographic Data Center (NOAA) and operational profile observations from the

Global Temperature-Salinity Profile Program archive (combining observations from

the TAO/Triton mooring thermistor array and ARGO floats).
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The assimilation algorithm implemented in SODA can be described by the follow-

ing sequence: (1) a state forecast based on a GCM (POP 2.1; Carton et al., 2000b) is pro-

duced for the time tk. (2) All in situ observations available at time tk are combined with

the forecast, providing an estimation of the ocean state referred to as the “true state”

for time tk. (3) The true state estimation is used as the initial condition for the forecast

at the time tk+1, and the sequence is repeated. More information on the methodology

and the estimation of associated errors can be found in Carton et al. (2000b).

The SODA data set used in the present study covers the period 1958-2008, and is

implemented as the oceanic boundary conditions for the simulations (Chapters 3 and 4),

and for comparison/benchmarking of the model performance.

CSIRO Atlas of Regional Seas (CARS)

The CARS data set is a climatological compilation of ocean observations over the

period of modern ocean measurement (1940-2009; Ridgway et al., 2002). The data is

derived from a quality controlled archive of historical oceanic measurements (mainly

research vessel profiles and autonomous floats), and interpolated on a global 0.5°×0.5°

grid, over 79 vertical levels (with increased resolution near the surface). The map-

ping algorithm is an adapted version of a weighted least-squares quadratic smoother

(Ridgway et al., 2002), which fits a quadratic function in the horizontal plane to gen-

erate a regular grid. The function fitted in the horizontal plane is scaled to take into

account the bottom topography. Further details on the mapping technique employed

in the construction of CARS can be found in Dunn and Ridgway (2002) and the CARS

website4.

CARS does not provide information on a given date, but only the time average

values plus the annual and semiannual harmonics (Condie and Dunn, 2006). The har-

monics are simultaneously fitted to the time series at every grid point, and are pro-

gressively damped as depth increases, until the semiannual and then annual fit are

extinguished. This means that there will be areas where only the information about

the annual harmonic (and time average) will be available. For instance, in the SEP,

CARS provides information on the annual harmonic for the first 1000 meters depth,

but only for the first 250 m in the case of the semiannual harmonic.

In addition to the sea water state variables (temperature and salinity), CARS in-

cludes in its latest versions a set of biogeochemical variables, such as oxygen, nitrate

and phosphate. CARS is used as a biogeochemical ocean boundary conditions for the

simulation experiment in Chapter 4.

4http://www.marine.csiro.au/~dunn/cars2009/
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ICOADS data set

The International Comprehensive Ocean-Atmosphere Data Set (ICOADS5, former

COADS (Slutz et al., 1985)) consists of a compilation of in situ surface marine meteoro-

logical and oceanographic observations since the late 1700s to the present day, over a

regular 1°×1° global grid (Worley et al., 2005), and corresponds to the most complete

and heterogeneous collection of surface marine data in existence. The data process-

ing system that incorporates observations from multiple sources into ICOADS follows

a series of redundant quality control steps aiming to remove outliers and duplicates

based on spatial and temporal statistical criteria, and detect eventual errors associated

with incorrect representation of latitude and longitude in old reports (cf. Woodruff

et al. (1987)). The data is then binned into a regular spatial grid. No “analysis” of the

data is performed (such as spatial or temporal interpolation or smoothing). The quality

control applied to the observations makes the atmospheric variables provided by the

ICOADS data set more accurate over coastal upwelling regions, in comparison to the

available atmospheric reanalyses (e.g. NCEP/NCAR and ERA-40 reanalyses; Narayan

et al. (2010)).

For the present study, monthly ICOADS observations provide the air temperature

used to derive the atmospheric fluxes at the air/sea interface (from bulk formulation

(Hodur et al., 2002)), in addition to the short and longwave radiation and relative hu-

midity used to force the regional simulations of Chapters 3 and 4 at the air/sea interface.

MetOffice temperature analyses

The MetOffice Hadley Centre6 produces and maintains several gridded data sets of

ocean temperature. In Chapter 3 we evaluate the skill of the simulation in reproducing

different aspects of the mean circulation in the region and its variability, by contrasting

the simulated temperature fields against two different temperature products from the

MetOffice Hadley Centre.

We use the EN47 temperature product, which corresponds to a compilation of all

temperature profiles available since 1900, over a global 0.5°×0.5° grid in 42 vertical lev-

els. The EN4 combines temperature profiles from several sources (see Good et al. (2013)

for a comprehensive list), which are subject to a quality control process aiming at re-

moving duplicate profiles, errors in position and faulty profiles (spikes, steps, density

inversions, etc.)8. After the quality check, the data for each month is combined with

5http://icoads.noaa.gov/
6http://www.metoffice.gov.uk/hadobs/index.html
7http://www.metoffice.gov.uk/hadobs/en4/
8see Ingleby and Huddleston (2007) for more details on the quality control process.
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a background ocean state (obtained from a forecast of the previous month), using an

iterative optimal interpolation method (Lorenc et al., 1991), and recursive horizontal-

vertical filters to model the information spreading between observations. For further

details on the data processing techniques applied in producing the EN4 data set, please

refer to Good et al. (2013).

This data set (version 4.2.0) is used to validate the simulated average thermocline

depth in the SEP, which is an essential feature of the regional circulation, and in deter-

mining the vertical structure of the baroclinic modes (Dewitte et al., 2008b, 1999).

2.4.2 Remote sensing data

Sea Surface Temperature (SST)

The Optimum Interpolation Sea Surface Temperature (OISST v.29) data is used in

Chapter 4 to assess the simulation skill in reproducing the mean SST pattern and gradi-

ents. This data set corresponds to an analysis of SST constructed by merging data from

satellite based measurements (Advanced Very High Resolution Radiometer (AVHRR)

SST sensor) and in situ data from different sources (ships, buoys). The OISST analysis

combines the observations over a regular grid using a weighted sum of the data, as-

suming a Gaussian correlation error (see Reynolds and T. M. Smith (1994) for details).

Prior to the data merge, eventual biases in the satellite based measurements (e.g. due

to aerosols contamination of imperfect cloud masking) are corrected relative to the in

situ data using a linear combination of rotated empirical orthogonal functions (Dool et

al., 2000). The product used in the present study corresponds to the 0.25°×0.25° daily

OISST v.2 (Reynolds et al., 2007).

Sea Level Height (SLH)

Satellite altimeter observations of SLH obtained by the radar altimeters onboard

the TOPEX/Poseidon and Jason1-2 missions, and are used in Chapters 3 and 4 to vali-

date different aspects of the SEP circulation reproduced by the simulations. The data

used corresponds to the 0.25°×0.25° weekly sea level height TOPEX/Jason1-2 merged

product, obtained from the Sea Level Research Group, University of Colorado10. The

intermission data merging process involves a bias correction treatment, that takes into

account the inherent errors of each instrument (related to imperfect atmospheric cor-

rections and lack of accuracy of the altimeters), and inter-mission biases related to dif-

ferences in the measurement reported by each instrument (associated for example with

9https://www.ncdc.noaa.gov/oisst
10http://sealevel.colorado.edu/
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measurement delay and instrumental drift). The SLH estimations are then validated

against a global network of tide gauges (Mitchum, 2000). For details on the principles

behind the altimetric SLH estimations, please refer to Fu and Cazenave (2001).

One of the aspects of the circulation that is validated in Chapters 3 and 4 using the

SLH is the mean eddy kinetic energy field, which indirectly reflects the vertical struc-

ture of the circulation and also gives information on the realism of the mesoscale ac-

tivity levels reproduced by the simulation. In Chapter 3, we also use SLH to test the

simulation skill in reproducing the interannual coastal sea level fluctuations in the SEP.

Chlorophyll-a

Ocean color data acquired by the SeawiFS instrument are used in Chapter 4 to as-

sess the skill of the simulation in reproducing the surface Chlorophyll-a (Chl-a) con-

centration pattern and seasonal cycle. These observations are also used as boundary

conditions for a coupled physical/biogeochemical simulation in Chapter 4.

The SeaWiFS instrument consists of an optical sensor, designed to measure the elec-

tromagnetic radiance reflected by the Esarth’s surface (vegetation, water, terrigenous

materials, etc.) and atmosphere inside the visible band of the electromagnetic spec-

trum. The central principle for the use of this sensor in the context of ocean observation

is the specificity of light absorption by the different sea-water constituents (Hooker et

al., 2002). In this manner, it is possible to compute Chl-a concentration from the re-

flected sunlight, using semi-empirical equations that relate certain bands of the visible

spectrum (centered around the blue and green regions) with the Chl-a concentration

(cf. O’Reilly et al. (1998) for details on the algorithms). Given that the SeaWiFS mea-

surement principle operates on the visible part of the electromagnetic spectrum, the

ocean color measurements are severely handicapped by cloud coverage (Woodward

and Gregg, 1998), and it is not uncommon for Chl-a variability studies to use synoptic

binned or mapped products, which merge satellite images from several days and thus

limit the cloud interference (which is particularly important in the SEP as seen in Fig.

1.6).

The data used in Chapter 4 of the present study corresponds to the 9km 8-day binned

composites of Chl-a product, distributed by the Ocean Biology Processing Group (OBPG)

at NASA’s Goddard Space Flight Center11. The binning process consists in combining

all the measurements, spanning 8 days and store them on a global, equal-area grid of

9.2 Km bin size. This process limits to some extent the interference and data loss due

to cloud coverage.

11http://oceancolor.gsfc.nasa.gov/cms/
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2.4.3 In situ data

Sea level stations

The University of Hawaii Sea Level Center (UHSLC12) is part of an international ef-

fort to establish a global in situ sea level observing system (Global Sea Level Observing

System; IOC (2012)), which maintains the largest network of tide gauge measurements

with over 700 hundred active tide gauges around the globe (some of which have been

active for over 150 years). As part of this effort, the UHSLC processes and distributes

hourly and daily sea level data through its website13. The data processing consists of

several quality control steps aimed at removing outliers and rectifying measurement

errors (e.g. datum inconsistencies, timing errors). Sea level data retrieved from UHSLC

is used in Chapter 3 of the present study to evaluate the simulation skill in reproducing

the alongshore sea level variations related to the equatorial Pacific interannual vari-

ability. For this purpose, 8 sea level stations along the coast of South America are used:

La Libertad (2.2°S), Paita (5.1°S), Lobos de Afuera (7.0°S), Callao (12.0°S), Antofagasta

(23.6°S), Caldera (27.0°S), Valparaíso (33.0°S) and Puerto Montt (41.0°S).

ARGO floats data

The ARGO14 program is an international effort to monitor the ocean, that consists

of a global array of lagrangian floats that provide near real-time measurements of tem-

perature and salinity of the ocean, between the surface and 2000m depth. The pro-

gram initiates in the late 1990s as a response to the lack of in situ subsurface ocean

observations at a global scale, which limited the interpretation of trends observed in

ocean measurements (e.g. Skliris et al. (2014), Durack and Wijffels (2010), Hosoda et al.

(2009)), and also prevented the validation and correct interpretation of global climatic

models (Roemmich and Owens, 2000). Today, the ARGO program amounts to over

3500 active floats worldwide, which produce over 105 profiles per year. In this context,

several research groups produce temperature/salinity fields derived from the ARGO

profiles, over a regular grid, using different mapping and interpolation methods (cf.

ARGO website for a comprehensive list of different products based on ARGO data).

In the present work, we use the ISAS13 product developed and maintained by the

LPO (Laboratoire de Physique des Ocèans15), and available upon request16. This prod-

uct consists in monthly temperature/salinity fields over a regular global 0.25°×0.25°

12http://uhslc.soest.hawaii.edu
13http://uhslc.soest.hawaii.edu/datainfo/
14http://www.argo.ucsd.edu
15http://wwz.ifremer.fr/lpo/
16fabienne.gaillard@ifremer.fr
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grid, and 151 vertical levels between 0 and 2000m depth, spanning the period 2002-

2012. The ISAS13 data set is used in Chapter 3 of the present work, in order to investi-

gate the capacity of the ARGO observations to study the vertical propagation of long

Rossby waves in the SEP at annual and interannual timescales.

Currents

In Chapter 3, in situ current measurements are used to validate the velocity field

reproduced by the simulation. These currents measurements were collected by three

Anderaa RCM7 current meters and an upward looking ADCP (Workhorse Sentinel

300 kHz) moored at ~120m depth (Fig. 2.5), spanning the period between November

1991 and September 2008 (Table 2.1). This mooring is part of an observational system

deployed at (71◦47’W, 30◦21’S) and is maintained by the Center for Oceanographic

Research in the Eastern South Pacific (COPAS17), University of Concepción, and was

made available by Dr. Oscar Pizarro18.

Table 2.1: Depth and measuring period for the different current meters in the COSMOS moor-

ing.

Instrument Start End Depth

ADCP Apr 2003 Sep 2006 10-110 m (5m bin size)

RCM7 Nov 1991 Sep 2008 220 m

RCM7 Nov 1991 Sep 2008 480 m

RCM7 Nov 1991 Jun 2008 750 m

17http://www.sur-austral.cl/
18orpa@profc.udec.cl
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Figure 2.5: Schema of the COSMOS mooring. Source: http://www.profc.udec.cl
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Chapter 3

Subthermocline variability in the South

Eastern Pacific: interannual to decadal

timescales

3.1 Overview

As exposed in Chapter 1, the coastal waveguide constitutes an oceanic pathway

that allows for the discharge of the tropical climatic variability onto the mid-latitudes,

which results in the large modulation of the circulation observed in the SEP at ENSO

timescales. Information from the equatorial Pacific is conveyed into the SEP by Kelvin-

like waves that propagate polewards along the coastal waveguide, and trigger the

westward/vertical propagation of interannual extra-tropical Rossby waves. Several

works have related the modulation of the circulation and hydrographic characteris-

tics in the SEP during the ENSO events to the westward propagation of Rossby waves

(e.g. Pizarro et al. (2002); Vega et al. (2003); Correa-Ramirez et al. (2012); Morales et al.

(2013)). Using velocity measurements at different depths over the continental slope at

30°S, Shaffer et al. (2004) observed large anomalies of the alongshore flow in relation-

ship with the 1997/98 El Niño event, in addition with an upward phase propagation

(therefore a downward energy propagation) of the velocity anomalies. This was the

first observational evidence of a vertical energy flux at interannual timescale in the

SEP, in relationship with the equatorial variability. Ramos et al. (2008) would later gen-

eralize this result (from 15° to 30°S), and identify the westward/vertical propagation

of long Rossby waves (from the coast towards the abyssal ocean), as the mechanism

associated with the vertical energy flux during the 1997/98 El Niño event. In this con-

text, the present chapter is dedicated to the study of the energy flux conveyed by the

extra-tropical Rossby wave in relationship with the ENSO events that take place in

the tropical Pacific, and its fate in the abyssal region off South America. In a global

context, documenting the energy fluxes in the ocean can be considered a prerequisite
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for interpreting the response of the oceanic circulation to the present Earth’s energy

imbalance, which is a current concern of the climatic and oceanographic communities.

Recent works evidence that the response of the deep ocean (depths > 700m) to changes

in Earth’s energy balance may have accelerated in recent years (Church et al., 2011;

Gleckler et al., 2016), although the mechanisms of energy redistribution in the deep

ocean remain uncertain (Liu et al., 2016). Understanding the role of the deep ocean

circulation in the planetary energy budget is thus of interest in this matter.

The main objective of this chapter is to document the vertical energy flux associ-

ated with the interannual fluctuations of the subthermocline circulation in the SEP,

which is entailed by the vertical propagation of long Rossby waves. In the first part of

the present chapter we investigate if the signature related to the propagation of long

Rossby waves is present in the available subsurface long-term ARGO observations. In

the second part of the chapter, we document the vertical energy flux associated with

the occurrence of El Niño events and the low-frequency modulation of this flux related

to the interdecadal climatic variability in the tropical Pacific.

3.2 Is it possible to use ARGO data to observe the long

Rossby wave?

Apart from the coastal observations of sea level, surface temperature, and a few

current meter moorings scattered off the Chilean coast, long term in situ observations in

the SEP are practically nonexistent. This has prevented carrying out a documentation

of the vertical/westward propagation of long Rossby waves from observational data in

the SEP. However, a possible solution to these difficulties could come from the gridded

products derived from ARGO floats currently available. Deployment of ARGO floats

date back to the year 2000, and have increased at a rate of ~800 new floats every year

since, which offers an unprecedented spatial and temporal coverage of the ocean. In

this section, the applicability of the ARGO observations for the study of the vertical

propagation of long Rossby waves is evaluated, first in the equatorial Pacific, and then

in the southeastern Pacific. The results are contrasted against previous observational

and modeling works.
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3.2.1 Argo data set

The ARGO product used to complete this diagnosis corresponds to the ISAS131

global monthly temperature and salinity fields, spanning the period 2002-2012. In par-

ticular, this product was selected among the available data sets due to the length of the

record and to its spatial resolution. The horizontal grid corresponds to the isotropic

0.5°x0.5° global Mercator grid (77°S-66.5°N), with a resolution that increases with lat-

itude. The vertical resolution (151 levels) decreases with depth, from 5 m resolution

in the upper layers to 20 at 2000m depth. For further details on the product and its

mapping, the reader is referred to Gaillard (2012).

3.2.2 The equatorial Rossby wave

A diagnosis of the annual signal in the ARGO temperature records is carried out

in order to verify to which extent is possible to use the ARGO data set to document

this process. As a first step, the annual signal in the temperature records along the

equatorial Pacific is analyzed (Fig. 3.1) in a similar manner as in Kessler and McCreary

(1993) and Dewitte and Reverdin (2000), in order to document its main characteristics.

The zonal section suggests two different regimes, divided by a slanted line extending

roughly from 160°E at 2000m to the eastern boundary at around 300m (Fig. 3.1a). To

the west of this line the phase contours are approximately parallel (Fig. 3.1b), with

an upward/westward phase propagation. This distribution changes drastically near

the thermocline, where the phase lines have a more shallow slope. A linear regres-

sion on the phase diagrams of figure 3.1b yields an estimated zonal wavelength λx of

~12200 km. The vertical wavelength λz is estimated similarly to be ~4400m. A merid-

ional section at 170°E (region where the phase lines slope steeply downward) reveals

that the vertical phase structure is characteristic of the region between 6°S and 6°N,

with phase lines roughly horizontal across the equator, and an upward phase propa-

gation below 700m (Fig. 3.1d). The amplitude in this region shows two off-equatorial

maxima below 1000 m depth in consistency with the expected off-equatorial amplitude

maximum of long Rossby waves.

Estimations of the phase speed of the observed signal were carried out using three

different approximations (Note that in order to ease the comparisons against the ex-

isting literature, c and m are used in the present chapter to denote the Rossby wave

phase speed and vertical wavenumber respectively). Using the dispersion relation

for long zonal wavelengths trapped about the equator (Kessler and McCreary, 1993),

it follows that the phase speed for a first-meridional (l = 1) annual Rossby wave is

1http://wwz.ifremer.fr/lpo/content/view/full/71089
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Figure 3.1: Annual harmonic of vertical isotherm displacements along a zonal section at 4°N
(a, b) and a meridional section at 170°E (c,d). (a,c) Amplitude (in meters) and (b,d) phase (with
respect of the date of highest amplitude). Phase contours are labeled in months, with the contour
at the first day of each month. The dashed lines in (a,b) correspond to the WKB raypath of the

l = 1 annual Rossby wave, computed following dz
dx

= (2l+1)ω
Nb(z)

(Kessler and McCreary, 1993).

c ∼ 1.16ms−1. An estimation of the phase speed using the WKB identity c = N
m

,

considering that average value of N = 1.6 · 10−3 s−1 between 1000 and 2000m, yields

c ∼ 1.12ms−1 (3% difference from the previous estimation). Finally, a third estimate

of c might be obtained form the location of the off-equatorial amplitude maxima (ym)

of the l = 1 Rossby wave, using the relation c = (2/3) β y2m (Kessler and McCreary,

1993). From figure 3.1c, the location of the off equatorial maxima is roughly 290 km

(2.6°), which gives a phase speed c ∼ 1.28ms−1 (9% higher than the first estimate and
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Figure 3.2: Root mean square of isotherm displacements interannual anomalies (departs from
mean seasonal cycle) along a section at 2.5°S. Dashed line correspond to the WKB raypath of
the l = 1 Rossby wave (3.7 years period).

13% higher than the second). The consistency of the three estimates of c shows that the

observed signal is coherent with an l = 1 vertically propagating Rossby wave. An ad-

ditional consistency check is achieved by comparing the phase lines and the theoretical

WKB raypath slope for the l = 1 Rossby wave. Below 700m in the western region, the

phase lines orientate approximately parallel to the theoretical WKB raypath, which is

indicative of vertical/westward phase propagation.

These characteristics of the annual Rossby wave estimated from the annual tem-

perature variations in the equatorial region are consistent with the previous observa-

tional (Lukas and Firing, 1985; Kessler and McCreary, 1993) and modeling (Dewitte

and Reverdin, 2000) studies.

The relevance of the ARGO data set for studying the vertical structure of the equa-

torial long Rossby wave at interannual timescales is also evaluated. Figure 3.2 reveals

that the subsurface interannual variability maximum extends from the east part of the

equatorial basin toward the west, and slopes downward. A spectral analysis along this

subsurface maximum reveals a peak at 3.7 yr period, which corresponds to the docu-

mented El Niño frequency. An harmonic analysis similar to what is presented for the

annual cycle was performed for the 3.7 years−1 frequency. Figure 3.3 shows the am-

plitude and phase of the anomalous isotherm displacements (3.7 yr) harmonic along a
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Figure 3.3: Zonal section of the (3.7 yr period) harmonic of vertical isotherm displacements at
2.5°S. (a) Amplitude (in meters) and (b) phase (date of highest temperature). Phase contours
are drawn every 3.7 months (1/12 of the period). Dashed line correspond to the WKB raypath
of the l = 1 Rossby wave (3.7 years period).

zonal section across the Pacific at 2.5°S (latitude of highest harmonic amplitude). Max-

imum subthermocline amplitude is found near the eastern boundary at ~150 m, and

slopes westward and downward along a phase isopleth, which agrees with the the-

oretical WKB raypath for the l = 1 Rossby wave (at 3.7 years−1). As for the annual

timescale, the orientation of the phase lines is suggestive of westward and downward

propagation, although this is less evident than for the previous analysis (phase lines

are not as organized as in the annual harmonic case). Nevertheless, this analysis qual-

itatively agrees with the results obtained by Dewitte and Reverdin (2000). From the

phase diagram presented in figure 3.3b, the zonal wavelength (estimated similarly as

for the annual cycle) is λx ∼ 20000 km which gives a phase speed of c ∼ 0.51ms−1 for a

l = 1 Rossby wave. The vertical wavelength is estimated to be ∼ 1200m, which results

in a phase speed of c ∼ 0.57ms−1, considering N = 3.0 · 10−3 s−1 in the central Pacific

between 500 and 1000 m.

The analyses carried out show that the current ARGO dataset might be exploited

to document the main characteristics of the vertically propagating Rossby wave in the

equatorial Pacific at annual timescale. However, the results are less conclusive when

investigating for the interannual timescale.
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3.2.3 The Extra-Tropical Rossby wave

Previous studies have evidenced the vertical propagation of ETRW in the SEP at

annual (Dewitte et al., 2008b) and interannual timescales (Ramos et al., 2008) occur-

ring as far as 30°S. In this section, the relevance of the ARGO dataset for investigating

the vertical propagation of ETRW is documented for both the annual and interannual

timescales.

Figure 3.4 presents zonal sections of the annual amplitude and phase of the isotherm

displacements at three different latitudes (same latitudes analyzed in Dewitte et al.

(2008b) for the annual period). At 11°S, the amplitude diagram shows a maximum

that extends westward/downward from the coast (∼ 200m), with a slope to the west.

The phase diagram at 11°S shows approximately parallel phase lines sloping offshore,

that agree with the theoretical WKB raypaths for the annual ETRW (first three baro-

clinic modes). However, these characteristics disappear as latitude increases. At 17°S,

although the phase diagram could reveal (to some extent) a westward propagation,

the amplitude maximum does not follow the same orientation, and is not in agreement

with the expected theoretical trajectory. The same results are obtained further south.

At 27°S no evidence of vertical/westward propagation is observed in the amplitude

diagram (Fig. 3.4e).

A similar analysis to the one performed in the equatorial region was carried out

in the SEP, at interannual timescales. Although the RMS of the interannual vertical

isotherm displacements could suggest an offshore signal propagation near the tropical

band (Fig 3.5a), this trend disappears toward mid latitudes (Fig. 3.5bc). The hamornic

analysis (similar to what is shown for the equatorial region) does not show character-

istics of vertical/westward phase propagation at interannual timescale.

3.2.4 Conclusion

The relevance of an ARGO product spanning the period 2002-2012 for document-

ing the vertical propagation of the annual and interannual Rossby wave in the equa-

torial and south eastern Pacific oceans is evaluated. The results concerning the verti-

cal/westward propagation of long Rossby waves at annual and interannual timescales

are satisfying in the equatorial region, and compare well with previous observational

and modeling works. On the other hand, the good results do not replicate off the

equatorial region. At both annual and interannual timescales, no clear evidence of a

vertical/westward propagating signal in the temperature records is observed in the

SEP.
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Figure 3.4: Zonal sections of the annual harmonic of vertical isotherm displacements at three
different latitudes. (a,c,e) Amplitude (meters) and (b,d,f) phase (date of highest temperature).
Phase contours are labeled in months, with the contour at the first day of each month. The
dashed lines correspond to the WKB raypath of the annual Rossby wave (first three baroclinic
modes in (a,b) and only first baroclinic mode in (c,d,e,f)).
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Figure 3.5: Same as Fig. 3.2 but for zonal sections at (a) 11°S, (b) 17°S and (c) 27°S.

Figure 3.6: Average monthly density (1° × 1° pixel) for the ARGO profiles in the (a) equatorial
and (b) south eastern Pacific. Computed over the period 2002-2012.

63



Chapter 3. Subthermocline variability in the South Eastern Pacific

The difficulties to diagnose this process in the SEP could be due to several factors.

First is the length of the records, which will impact the timescales that can be accurately

resolved. This factor is evidenced in the equatorial region by the loss in definition of

the westward propagating signal when analyzing the interannual harmonic (phase

lines less organized in comparison to the analysis for the annual harmonic). Secondly,

the diagnosis of the vertical propagation of long Rossby waves implemented here re-

lies heavily on the appropriate vertical and horizontal resolution of the temperature

product imposed by the spatial coverage of the ARGO floats, which is more impor-

tant in the equatorial Pacific than in the SEP (Fig. 3.6). In addition to a lower spatial

coverage, the phase speed of the long Rossby waves decreases with latitude2, which

difficults even more its observation off the equatorial region. In this sense, it becomes

appropriate to take advantage of the current high resolution modeling tools, in order

to correctly document this process in the SEP.

3.3 Vertical energy flux at interannual to decadal timescales

This subsection corresponds to the manuscript “Vertical energy flux at ENSO timescales

in the subthermocline of the Southeastern Pacific”, published in “Journal of Geophys-

ical Research: Oceans”.

Citation: Vergara, O., B. Dewitte, M. Ramos, and O. Pizarro, (2017), Vertical energy

flux at ENSO time scales in the subthermocline of the Southeastern Pacific, J. Geophys.

Res. Oceans, 122, 6011–6038, doi:10.1002/2016JC012614.
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Abstract The question of how energy is redistributed in the ocean has renewed the interest for the

processes leading to midlatitude subthermocline variability at low frequency. Here we investigate a process

that has been disregarded although potentially relevant for climatic studies dealing with the planetary

energy budget. The focus is on the Southeastern Pacific where an efficient oceanic teleconnection takes

place, linking the remote surface equatorial momentum forcing with the subthermocline through the

vertical propagation of low-frequency long-wavelength extratropical Rossby waves (ETRW). A high-

resolution model is used to document the vertical energy flux associated with ETRW at interannual to

decadal time scales. The analysis of a long-term (1958–2008) simulation reveals that the vertical energy flux

can be interpreted to a large extent as resulting from the coastally forced ETRW as far south as 358S, so that

heat content variability can be predicted along theoretical trajectories originating from the coast below the

thermocline. It is shown that the vertical energy flux associated with the El Ni~no Southern Oscillation forms

beams below the thermocline that account for a large fraction of the total vertical energy flux at interannual

time scales. Extreme El Ni~no events are the dominant contributor to this flux, which is hardly impacted by

mesoscale activity. The energy beams experience a dissipation processes in the ocean below 1000 m that is

interpreted as resulting from vertical turbulent diffusion. Our results suggest that the ETRW at ENSO time

scales are strongly dissipated at the surface but still can modulate the heat content in the deep ocean of

the Southeastern Pacific.

1. Introduction

Due to an extremely weak circulation, the eastern boundary current systems are considered ‘‘shadow

zones,’’ nonventilated by the mean wind-driven circulation [Luyten et al., 1983], which has widespread impli-

cations. For instance, the important subsurface oxygen consumption associated with the highly productive

upwelling system found in the Southeastern Pacific (SEP) combines with this sluggish circulation to yield

one of the largest and most intense oxygen minimum zones (OMZ) of the world [Paulmier and Ruiz-Pino,

2009]. Although this oxygen depleted region is the focus of a growing interest from the scientific commu-

nity, the interpretation of its long-term trends and low-frequency variability remains ambiguous, partly due

to conflicting results from modeling and observational studies [Stramma et al., 2008, 2012], and to the com-

plex biogeochemical-physical processes that govern its variability [Brandt et al., 2015]. Uncertainties in the

fate of the OMZ, which has become a societal concern due to its role in the carbon cycle [e.g., Paulmier

et al., 2011] and its connection with the coastal ocean along densely populated areas, has contributed to

renew the interest for the intermediate to deep circulation in the region.

The mechanisms associated with the variability of the circulation and the ventilation of the subthermocline

in the SEP remain unclear. Most studies have proposed that it is related to the variability in the thermoha-

line circulation (i.e., transport), which has multiples sources [e.g., Shaffer et al., 2004; Yeager and Large, 2007],

and diffusive processes associated with diapycnal mixing [e.g., Furue and Endoh, 2005]. This conceptual

view has in particular served as a background approach for investigating the heat uptake by the deep ocean

associated with climate change [Kuhlbrodt and Gregory, 2012; Marshall and Zanna, 2014]. In general, the
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However, recent modeling studies have suggested that the vertical propagation of long Rossby waves of

equatorial origin could contribute to the ventilation of the subthermocline in the SEP [Dewitte et al., 2008;

Ramos et al., 2008]. Although wave propagation in a well-stratified fluid corresponds to an adiabatic process

(hence no diapycnal mixing is expected) [Winters et al., 1995], dissipation and mixing could result from the

vertical displacement of the isotherms as the wave energy beams form [McCreary, 1984], so that energy (in

the form of heat) could be accumulated. The question of whether such process takes place at low frequency

is therefore also relevant for the interpretation of the deep circulation variability. Although observational

evidence of this process has only been established near the equator [Kessler and McCreary, 1993], it could

also be relevant in the SEP given the efficient oceanic teleconnection that exists between the southeastern

and tropical Pacific basins. Previous studies have shown in particular that several aspects of the coastal cir-

culation of the SEP (SST, thermocline, coastal currents) are linked to the remote equatorial forcing for fre-

quencies spanning from intraseasonal [Shaffer et al., 1997; Dewitte et al., 2011] to seasonal [Ramos et al.,

2006], and from interannual [Pizarro et al., 2002; Dewitte et al., 2012] to interdecadal [Montecinos et al.,

2007]. While at intraseasonal frequencies the pressure and currents variability originating from the equator

is trapped along the coast [Clarke and Shi, 1991], at lower frequency it radiates in the form of extratropical

Rossby waves, with a characteristic signature on sea level anomalies [Chelton and Schlax, 1996]. In particular,

Vega et al. [2003] suggests that altimetric observations off Peru and central Chile during the extraordinary

1997–1998 El Ni~no event could be interpreted as resulting from a first baroclinic-mode Rossby wave forced

along the coast. They also note a significant dissipation at the surface as the wave radiates offshore,

which was also reported by subsequent studies [Challenor et al., 2004; Ramos et al., 2008]. While such dis-

sipation could result from nonlinear processes such as eddy dissipation [Qiu et al., 1997] or wave break-

down and subsequent energy transfer to the eddy field [LaCasce and Pedlosky, 2004], the observed

decrease of the surface Rossby wave signature might also be interpreted as a consequence of the vertical

propagation resulting from the constructive contribution of a certain number of baroclinic modes. Ramos

et al. [2008] evidenced the vertical propagation of long Rossby waves in the SEP based on a medium-

resolution (eddy-permitting) ocean simulation, focusing on the 1997–1998 El Ni~no. In that work the

authors evidenced the offshore propagation of long Rossby waves from the region beneath the perma-

nent thermocline next to the slope, toward the deep ocean, several hundred kilometers offshore. While it

is likely that the characteristics of such a process are model-dependent, the evidence presented in Ramos

et al. [2008] questions the extent to which this process can be relevant for interpreting the heat content

variability at low frequency in the deep ocean (i.e., below 1000 m), for which estimations from observa-

tions remain uncertain, even during the Argo floats era [von Schuckmann et al., 2014]. This issue has been

a concern in the climatic community, since it is currently thought that the planetary radiative imbalance

at the top of the atmosphere could be explained by the heat content absorbed by the intermediate and

deep oceanic layers [see Abraham et al., 2013, for a review] for which very few observations are available

(in particular below 2000 m). The vertical energy flux driven by the propagation of ETRW is thus a relevant

mechanism for better understanding how the ocean might take up energy at climatic time scale in the

subtropical eastern Pacific. Documenting the circulation variability in this region is also relevant for clarify-

ing the contribution of the natural and forced variability to the changes in ocean heat content under

anthropogenic forcing, considering that the Interdecadal Pacific Oscillation (IPO), the internal mode of

decadal-to-interdecadal variability in the Pacific, has a strong influence on the SEP circulation [Montecinos

and Pizarro, 2005; Vargas et al., 2007].

The objective of this paper is to document the subthermocline variability at interannual to decadal time

scale in the SEP, and evaluate the extent to which it can be interpreted as resulting from the vertical propa-

gation of energy. It can be viewed to some extent as an extension of Ramos et al. [2008], which focuses on

a single extreme El Ni~no event. Recent studies report that El Ni~no variability results from at least two

regimes of interannual variability, whose imprints on the SST anomalies are referred to as Eastern Pacific El

Ni~no and Central Pacific El Ni~no events [see Capotondi et al., 2015, for a review]. These two types (or ‘‘fla-

vors’’) of El Ni~no have distinct teleconnections along the coast of Peru and Chile [Dewitte et al., 2012], which

questions the extent to which the results of Ramos et al. [2008] can be applied to all the ENSO events. The

low-frequency change in the frequency of occurrence of the two types of El Ni~no observed in recent
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While previous relevant studies were based on the analysis of medium-resolution oceanic models to

address this issue, here we take advantage of a long-term regional eddy-resolving oceanic simulation of the

SEP that allows for a realistic representation of the mesoscale activity and mean stratification near the coast

(i.e., coastal upwelling). In particular, a realistic simulation of the coastal circulation provides confidence in

the simulation of the energy flux of equatorial origin that propagates in the SEP through the radiation of

ETRW from the coastal domain. The use of a regional oceanic model is motivated essentially by the limita-

tions of the currently available data sets (e.g., coarse temporal and spatial sampling). The model also allows

for addressing aspects of the mesoscale dynamics in the subthermocline and for sensitivity experiments.

The present work is structured as follows: section 2 presents the regional simulations and the observational

data used for benchmarking the simulation, which, for clarity is synthesized in the Appendix A. Section 2

also provides the details of the methods. In section 3, we document the characteristics of the energy flux at

ENSO and decadal time scales, and interpret it as resulting from a vertically propagating ETRW. Section 4 is

a discussion focused on the interpretation of the dissipation of the energy beams evidenced in section 3.

The concluding remarks are presented in section 5.

2. Data and Methods

2.1. Data

Temperature, sea level height (SLH), currents, and reanalysis products are used for evaluating the model

performance:

2.1.1. Sea Level Height

We use the TOPEX-JASON 1 merged SLH data set, distributed by the Sea Level Research Group, University

of Colorado. This data set corresponds to a globally gridded 0.58 3 0.58 monthly product. The information

used corresponds to the period 1992–2008. Further details on this product may be found in Nerem et al.

[2010].

2.1.2. SODA Data Set

The Simple Ocean Data Assimilation (SODA) project is a reanalysis data set that provides gridded state varia-

bles (temperature and salinity), as well as derived fields for the global ocean. In this study, monthly and 5

day means of the SODA 2.1.6 product version are used. This product covers the time period from January

1958 to December 2008, over a horizontal uniform grid of 0.58 3 0.58 and a 40 levels vertical grid, with

10 m resolution near the surface. Further details on both the assimilation algorithm and the data sources

used in the assimilation process may be found in Carton et al. [2000] and Carton and Giese [2008]. The 5 day

means outputs are used as open boundary conditions for the regional model (see section 2.2), while the

monthly mean data are used for estimating the vertical energy flux in order to compare with the regional

model solution.

2.1.3. COSMOS Mooring Data

In situ current measurements from a long-term mooring deployed 13 km offshore of Coquimbo, Chile

(30.48S, 71.88W) are contrasted against the simulation in order to evaluate the model skill in reproducing

the coastal current field. This mooring was maintained by the Center for Oceanographic Research in the

Eastern South Pacific (COPAS) at University of Concepci!on. This mooring remained operational for about

20 years (since November 1991), and it stands as one of the longest coastal current records in the eastern

South Pacific [cf. Shaffer et al., 1997, 2004].

The data used were collected by three Anderaa RCM7 current meters at nominal depths of 220, 480, and

750 m, and an upward looking Acoustic Doppler Current Profiler (ADCP, Workhorse Sentinel 300 KHz)

moored at "120 m depth. The time series used covers the period between November 1991 and September

2006. Time means for each current meter were obtained by averaging the hourly values.

2.1.4. Tide Gauge Data

Tide gauge data from eight locations along the west coast of South America (La Libertad (2.28S, 80.98W),

Paita (5.18S, 81.18W), Lobos de Afuera (6.98S, 80.78W), Callao (128S, 77.18W), Antofagasta (23.78S, 70.48W),

Caldera (27.18S, 70.88W), Valparaiso (338S, 71.68W), and Puerto Montt (41.58S, 72.98W)) are used to test the

simulation skill in reproducing the coastal sea level perturbations. The data are available at web site of the

University of Hawaii Sea Level Center.
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The Met Office EN4 is a compilation of in situ tem-

perature profiles from 1900 to 2016, with world-

wide coverage over 42 vertical levels [Good et al.,

2013]. This data set merges in situ temperature

profiles (including Argo), through an objective-

mapping analysis and profile quality control algo-

rithms. The data are publicly available at the Met

Office website. They are used here to assess the

simulation skill in reproducing the mean thermo-

cline depth.

2.2. Methods

2.2.1. Regional Simulations

Our approach is based on numerical experiments

with a regional oceanic model. The Regional

Ocean Modeling System (ROMS) ocean circulation

model [Shchepetkin and McWilliams, 2005] at an

eddy-resolving resolution (1/128 at the equator) is

used over a domain spanning from 108N to 408S,

and from the coast to 888W, with lateral open

boundaries at its northern, western and southern

frontiers (Figure 1). The model resolves the hydro-

static primitive equations with a free-surface explicit

scheme, and a stretched terrain-following sigma

coordinates with 37 vertical levels. Subgrid vertical

scale is parameterized using the KPP boundary layer

scheme [Large et al., 1994]. Bottom topography is

from the GEBCO 30 arc sec grid data set, interpo-

lated to the model grid and smoothed as in Penven et al. [2005] in order to minimize the pressure gradient

errors and modified at the boundaries to match the SODA bottom topography. The open boundary condi-

tions are provided by 5 day mean oceanic outputs from SODA for temperature, salinity, horizontal velocity,

and sea level for the period 1958–2008. Wind stress and speed forcing at the air-sea interface come from sta-

tistical downscaling of NCEP1 [Kalnay et al., 1996]. The statistical model is built from QuikSCAT data [Centre

ERS d’Archivage et de Traitement (CERSAT), 2002] and was motivated by the need to correct for unrealistic fea-

tures in the NCEP surface winds. Details on the statistical model can be found in Goubanova et al. [2011] while

the benefit of using the downscaled product for regional oceanic modeling in this region is documented in

Cambon et al. [2013]. Atmospheric heat fluxes were derived from the bulk formula using the temperature

from COADS 18 3 18 monthly climatology [daSilva et al., 1994]. Precipitation, relative humidity as well as short-

wave and longwave radiation are also from COADS. No land runoff is applied in our configuration, considering

that there are no large rivers north of 378S.

Two simulations are considered in this study: (1) A Control Run (CR) that is similar to the one of Dewitte

et al. [2012] and (2) an experiment that considers the same forcing than CR but with a modified physics,

consisting in removing the nonlinear terms in the momentum equations and replacing them by a constant

viscosity term with a viscosity coefficient set equal to 100 m2 s21. This latter experiment, referred to as LIN,

simulates a much damped Eddy Kinetic Energy (EKE), and allows assessing the effect of eddies (nonlinear-

ities) on the characteristics of the vertical energy flux by comparing to estimates from CR.

The CR simulation has been previously contrasted against observations for the Peru region [Dewitte et al.,

2012; Vergara et al., 2016], and complementary test are presented here for the whole Peru-Chile region.

Since the magnitude of the vertical energy flux in the subthermocline depends on the characteristics of the

thermocline, we first compare the model thermocline against observations. The thermocline depth is com-

puted following Pizarro and Montecinos [2004] (criteria based on the highest vertical temperature gradient),

for the observations and the simulation (Figure A1). For both the CR and the observations, the maximum

thermocline depth is found in the region west of 808W and south of 208S, with differences of 10 m west of

Figure 1. Model domain bathymetry in meters (color shading

every 500 m). Black contours correspond to 200, 2000, 4000, and

6000 m depth.

Chapter 3. Subthermocline variability in the South Eastern Pacific

68



vations near the coast, particularly south of 15 S, which could be partly due to differences in the vertical res-

olution between the simulation and the data set. However, we observe that the zonal gradient of the mean

thermocline depth (50 year average) in the simulation is similar to the observations (Figure A1c). In order to

assess the realism of the vertical structure variability (i.e., thermocline ‘‘shape’’), we also perform a vertical

mode decomposition of the mean density profiles at each grid point using the local depth for the model

and for the observations (SODA), which provides the vertical mode functions (baroclinic modes) and then

the wind projection coefficients in the linear formalism (Pn, where n stands for the baroclinic mode order)

[see Dewitte et al., 1999, for details on the method]. The wind projection coefficients are an integrated

measure of the ‘‘shape’’ of the stratification. Note that the results of the vertical mode decomposition are

only used at a distance from the coast of at least 50 km and where water depth reaches at least 1000 m,

which ensures that there is little influence of friction along the continental slope-shelf. The Figure A2

presents the Pn of the first three baroclinic modes for the model and SODA averaged over two domains. It

shows a fair agreement between model and SODA indicating that the mean thermocline in the regional

model is realistic. Another indirect measure of how the model simulates the mean circulation is provided

by the mean EKE (Figure A3). The levels of mesoscale activity computed from the simulation and satellite

altimetry have a similar average pattern (over the 1992–2008 period). Given that in this region, the pre-

dominant mechanism for the generation of mesoscale eddies is through baroclinic instabilities [Belma-

dani et al., 2012; Colas et al., 2012], the fair agreement between the simulation and the observations in

terms of EKE levels indirectly reflects a realistic vertical structure of the current system near the coast

from which eddies are generated. However, the simulation presents slightly higher amplitudes than the

observations, which might be due to the model setting not taking into account air-sea interactions at

mesoscale [Renault et al., 2016]. The differences in amplitude could also be due to biases in the equatorial

boundary forcing [Belmadani et al., 2012].

The realism of the coastal current in the SEP simulated by the model is evaluated through direct compari-

son against in situ current measurements over the shelf (Figure A4), which indicates that the simulation rep-

resents a realistic vertical structure of the different components of the mean circulation. Further analyses

evaluate the realism of the interannual variability, complementing the material presented in Dewitte et al.

[2012] (see Appendix A for details).

2.2.2. Estimation of Vertical Energy Flux

The mean energy flux is estimated as the temporal (50 year) mean of the product between the pressure

and velocity anomaly fields. Anomaly is defined as the departure from the mean seasonal cycle (linear trend

was removed from each field prior to the anomaly computation). According to linear theory, this flux forms

beams that approximately follow the theoretical raypaths of long Rossby waves at a particular frequency

[McCreary, 1984]. The beams are more likely to form in regions where vertical temperature gradients are

weak (Wentzel-Kramers-Brillouin (WKB) approximation; see Gill [1982]), that is, below the thermocline.

According to the WKB raypath theory, vertical isotherm displacements f should scale as N21=2, where N is

the Brunt-V€ais€al€a frequency, and therefore f varies smoothly along raypaths below the thermocline. These

raypaths correspond to the trajectory of the energy flux vector u p; v p;w pð Þ, where u; v;wð Þ and p are

the velocity components and pressure deviations from the background state [Eliassen and Palm, 1960].

The vertical velocity is estimated from the temporal derivative of the vertical isothermal displacements

(i.e., @f/@t) instead of using the vertical velocity from the model (w), given that w from the model presents

high-frequency variability related to the nonlinearities of the flow. In particular, we compared harmonics

(amplitude and phase) from both fields, and the prognostic variable is usually noisier (not shown). The

choice of estimating w from temperature also eases the comparison with observations or Reanalysis prod-

ucts, and is consistent with former studies [Kessler and McCreary, 1993; Dewitte and Reverdin, 2000; Ramos

et al., 2008]. Note that this assumes that the advection of vertical isotherm displacements is much weaker

than @f/@t, which is acceptable given the weak mean circulation in the subthermocline in this region

[Shaffer et al., 2004] and is consistent with linear approximation. Throughout the paper, we use p in

meters (i.e., scaled by an average density equal to 1025 kg m23 and the acceleration due to gravity, 9.8 m

s22) and w in m s21, which yields m2 s21 as the units of hp wi. Angled brackets stand for the average

over 1958–2008, the time period of our model experiments. The slope of the theoretical trajectories of

the beams is given by:
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b n

where x is the wave frequency,

f is the local coriolis parameter,

b is its local derivative from the

b-plane approximation, N is the

50 year mean Brunt-V€ais€al€a fre-

quency and cn is the phase

speed of the nth baroclinic

mode (cf. Appendix sections in

Dewitte et al. [2008] and Ramos

et al. [2008], for further details).

The values of cn are obtained

from the vertical mode decom-

position of the mean density

profiles of the model at each

grid point. Figure 2 presents the

distance x (x50 at the coast)

reached by the wave characteristic computed from (1) for a wave period of 2p=x53:7 years (dominant

ENSO period) and a phase speed equal to the average of the phase speeds of the first and second baroclinic

modes. Note that even though theory of vertically propagating waves assumes a background density struc-

ture that is horizontally homogeneous, the formalism can still be applied using a slightly varying back-

ground stratification, which is the case below the thermocline in the study region. The method thus

assumes that modal dispersion is weak and is validated a posteriori, provided that the energy beams exhibit

features that can be interpreted in the light of the ‘‘classical’’ theory. This approach was also used in previ-

ous relevant studies [Dewitte and Reverdin, 2000; Dewitte et al., 2008].

The vertical mode decomposition also yields the vertical structure functions that are used as basis func-

tions for the model variability (pressure) and to estimate the contribution of the baroclinic modes to the

sea level anomaly field. The baroclinic modes contribution to the sea level variability allows deriving the

energy flux associated with the sum of the contributions of the gravest baroclinic modes (modes 1–3)

that are used to interpret the results and for initializing a linear Rossby wave model at the coast (see

section 2.2.3).

It should be kept in mind that the WKB theory has some limitations. First, this theory assumes a slowly vary-

ing N zð Þ, so the interpretation of the estimated fluxes in the near surface region, where stratification experi-

ences important changes, is not straightforward. Second, this theory could break down in regions of steep

topographic features [Tailleux and McWilliams, 2002; Tailleux, 2004], given the impact that such features

have on the local baroclinic modes structure and therefore their phase speed. So, we consider here the

WKB ray trajectory starting from the base of the permanent thermocline and far enough from the continen-

tal shelf and slope, that is at a distance from the coast of at least 50 km or where water depth reaches at

least 1000 m.

A common approach used to study the vertical propagation of Rossby waves is to trace the amplitude-

phase diagrams and the theoretical WKB raypaths for the frequency of interest [e.g., Kessler and McCreary,

1993; Dewitte and Reverdin, 2000; Thierry et al., 2004]. However, we are interested here in diagnosing the

energy flux associated with the ENSO variability, which spans a wide range of frequencies. In order to

encompass the whole spectrum of ENSO variability, the velocity and pressure fields used to compute the

interannual vertical energy flux are regressed against two-independent indices that account for the ENSO

regimes and that allow grasping a significant amount of the variance associated with ENSO. The E and C

indices proposed by Takahashi et al. [2011] are used. They are based on the linear combination of the first

two EOF modes of the SST in the tropical Pacific and allow for describing two regimes of the ENSO variabil-

ity, one accounting for extreme Eastern Pacific El Ni~no events (E) and the other one accounting for the Cen-

tral Pacific El Ni~no events and La Ni~na events (C). The indices are defined as E5 PC12PC2
ffiffi

2
p and C5 PC11PC2

ffiffi

2
p ,

where the PC1 and PC2 are the principal component (PC) time series of the first two EOF modes of SST

Figure 2. Distance from the coast of the theoretical WKB trajectories originating from the

coast below the thermocline ("100 m). The mean value of the phase speed of first and

second baroclinic modes is used for the estimate of the trajectory slope, using a period

equal to 3.7 years.
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tion so that the energy flux can be decomposed as follows through a bilinear regression:

p0approx x; y; z; tð Þ5 pE x; y; zð ÞE tð Þ1 pC x; y; zð ÞC tð Þ (2)

w0
approx x; y; z; tð Þ5 wE x; y; zð ÞE tð Þ1 wC x; y; zð ÞC tð Þ (3)

where the primes denote interannual anomalies (i.e., anomalies with respect to the mean seasonal cycle for

the period 1958–2008). The approximate p0 and w0 (p0approx and w0
approx , respectively) correspond to the p0

and w0 fields regressed against the E tð Þ and C tð Þ indices. The difference between w0 and p0 and its approxi-

mations (from equations (2) and (3)) will be referred to as residual (Res) and thus correspond to the variabil-

ity in w0 and p0 that is not related linearly to ENSO.

Given that the E and C indices are orthogonal, the mean interannual energy flux hp0 % w0i (average over

1958–2008 at a given location x; y; z) reduces to:

hp0approxw0
approxi5 pEwE1 pCwC (4)

This approach allows for taking into account a wide range of frequencies relevant for ENSO in the estimate

of the energy flux. It assumes that the regression of pressure and vertical velocity against the E and C indi-

ces captures the salient features of the ENSO teleconnection in the SEP. The relevance of the method is veri-

fied a posteriori, as long as the estimated flux exhibits features consistent with the vertically propagating

Rossby wave. The residual also contains interannual variability that could be related to decadal or lower

time scales of variability embedded in the E and C indices, and will be also documented and interpreted (cf.

section 3).

Therefore, despite the relatively short record (from 1958 to 2008), an attempt is made to document the

decadal vertical flux that is defined as hpDwDi, where the subscript D stands for the decadal component,

estimated by linearly regressing the interannual anomaly fields p0 and w0 (estimated as above, including

detrending) against an index of the main mode of natural variability in the Pacific, the IPO (Interdecadal

Pacific Oscillation) [Power et al., 1999]. The Tripole Index (hereafter referred to as TPI, Henley et al. [2015]) is

used. The TPI index is estimated using sea surface temperature interannual anomalies (SSTA) from the

SODA data set, following the methodology described in Henley et al. [2015].

2.2.3. Multimode Linear Rossby Wave Model

A multimode linear Rossby wave model is used as a tool for the interpretation of the results. The model is

based on a quasi-geostrophic approximation [cf. Meyers, 1979; Kessler, 1990], and is used to compute the

isotherms excursions forced by the Ekman pumping and the boundary conditions at the coast. Based on

the linearized momentum equations, the linear model equation is:

XM

n51

@thn x; y; tð Þ1 crn yð Þ @xhn x; y; tð Þ1 !n yð Þhn x; y; tð Þð Þ5 2

XM

n51

Pn x; yð Þ r3
~s x; yð Þ

q0f yð Þ

" #" #

% k̂

" #

(5)

where hn is the nth baroclinic mode contribution to the thermocline depth variation, crn is the Rossby wave

phase speed associated with the nth baroclinic mode (crn5 c2n=f
2

$ %

b), averaged over a coastal fringe 500 km

wide. Pn is the wind projection coefficient associated with the nth baroclinic mode, ~s is the surface wind

stress vector, q0 is the reference sea water surface density (1025 kg m23), f is the Coriolis parameter, and !n

is a dissipation coefficient for the nth baroclinic mode, modeled as a Rayleigh-type friction. This coefficient

is computed following Gent et al. [1983], as !n5!1 cn=c1ð Þq, with c1 and cn the phase speed associated with

the first and nth baroclinic modes, respectively (i.e., c2n is the separation constant of the differential equation

which solutions are the linear normal modes, Fjelstad [1933]), !1 fixed equal to 300 days21 and q adjusted

empirically for each latitude. The value of q is selected based on the comparison between the multimode

linear model and the CR simulation. The linear model was run at each latitude (between 58S and 358S) for a

range of q values (from 0 to 2.5, Gent et al. [1983]) and the selected q corresponds to the value for which

the correlation between
P3

n51 hn xð Þ and h xð Þ (from CR) is maximum (we verified that for the selected val-

ues of q the correlation values were always higher than 0.8).

The solution to equation (5) is found by integrating along the wave characteristic
Ð x

0
dx

cn xð Þ [Gill and Clarke,

1974]. A similar model was used by Vega et al. [2003] to interpret the altimetric sea level data during the
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sea level into baroclinic modes as in Vega et al. [2003], we use the contribution of each baroclinic mode to

the thermocline depth anomaly (hn) of the full-physics model as boundary conditions at the coast. The latter

is derived from the vertical mode decomposition of the pressure field (pn) and using the hydrostatic equa-

tion [see Dewitte, 2000]:

hn x0; yð Þ5
g

N2 z5H x0; yð Þ
$ %

XM

n51

pn x0; y; tð Þ
dwn

dz
x0; y; z5H
$ %

(6)

where x0 corresponds to the distance from the coast equal to 50 km or where water depth reaches at least

1000 m, H x0; yð Þ is the mean thermocline depth along the coast estimated as described in Pizarro and

Montecinos [2004], g is the acceleration due to gravity, N is the Brunt-V€ais€al€a frequency, and wn is the verti-

cal structure for the nth baroclinic mode. In order to filter out variability in hn associated with either coastal-

trapped Kelvin waves (that would be related to the intraseasonal time scales) or mesoscale activity not rele-

vant in this linear framework, a 12 month low-pass spectral filter is applied on hn. The linear model solution

consists in the sum of the first three baroclinic modes (i.e., n5 1; 2; 3½ ').

The result of the multimode linear Rossby wave model is used to compute the contribution of the first three

baroclinic modes to the pressure field (pn) and to the vertical isotherm displacements (fnÞ following Dewitte

and Reverdin [2000]:
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X3

n51
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fn x; y; z; tð Þ5
g

N2 x; y; zð Þ

X3

n51

pn x; y; z; tð Þ
dwn x0; y; zð Þ

dz
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where hn is given by the solution of equation (5) using (6) as boundary condition at the coast, cn is the

phase speed (i.e., root mean square of the separation constant) of the baroclinic mode n, H is the time (50

year) average thermocline depth, g is earth’s gravity acceleration, wn is the vertical structure of the nth baro-

clinic mode for pressure and N is the Brunt-V€ais€al€a frequency. Equations (7) and (8) are used to estimate the

contribution of the baroclinic modes to the vertical energy flux (section 4.1).

3. Vertical Energy Flux

In this section, we first document the characteristics of the mean energy flux associated with the interan-

nual anomalies (i.e., hp0w0i over the period 1958–2008), and then we focus on ENSO and decadal time

scales.

3.1. Mean Flux

As a benchmark for the rest of the paper, the total mean energy flux (i.e., hp0w0i) is documented. The hori-

zontal structure of the total vertical energy flux is displayed at different depths in Figures 3a–3c (sign con-

vention throughout the paper is chosen so that downward energy flux is positive). This analysis reveals that

the highest values are found near the equatorial region and along the coast, and that there is a decrease of

the energy flux magnitude as depth increases, indicating that the energy tends to remain close to the coast

as latitude increases. The vertical structure of the energy flux (Figures 3d–3g) is suggestive of its propagat-

ing nature: (1) the region of highest energy flux detaches from the coast as depth increases and (2) there is

a decrease in the magnitude of the energy flux as latitude increases.

3.2. ENSO Time Scale

We now focus on the portion of energy flux due to El Ni~no events alone, using the formalism presented in

the section 2.2.2 to distinguish the energy flux induced by each ENSO regime (cf. equation (4)). Figure 4

presents the vertical energy flux at different depths associated with the E and C regimes, which can be

directly compared to Figures 3a–3c. The horizontal distribution of the energy flux associated with each El

Ni~no regime first reveals that the ENSO energy flux is much more confined to the coastal region than the

total energy flux, with an offshore extension of the amplitude that decreases southward. The comparison
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between Figures 3 and 4 indicates in particular that there is a residual flux not explained by the two ENSO

regimes in the offshore region (Figures 4g–4i). High values of this residual flux are located offshore around

258S west of the Nazca ridge at almost all depths between 500 and 3000 m (not shown). This vertical energy

flux may correspond to interannual variability associated with the interaction between the circulation and

the topography, since it is located between high mounts (this offshore peak of vertical energy flux is also

observed in the LIN experiment, although with weaker amplitude; see section 4.2 for a brief analysis of this

experiment). Figure 4 also indicates that the contribution of the E regime to the vertical energy flux is much

larger than the contribution of the C regime with for instance pEwE "4 times larger than pCwC on average

between 58S and 258S near the slope ("50 km from the slope) at 1100 m. Noteworthy the energy flux asso-

ciated with the C regime is mostly related to La Ni~na events, as was verified by estimating the mean flux for

the periods over which the C index of ENSO is either negative (La Ni~na) or positive (Central Pacific El Ni~no).

The fact that pCwC in the SEP is mostly related to La Ni~na events is consistent with Central Pacific El Ni~no

events being dominantly associated with intraseasonal Kelvin wave activity (as opposed to interannual

Figure 3. Mean interannual vertical energy flux (hp0w0i) at (a) 500 m, (b) 1100 m, and (c) 1600 m. Cross-shore sections of mean interannual vertical energy flux at selected latitudes

(d, e, f, and g). The arrows in Figures 3d–3g correspond to the scaled energy flux vector (hp0u0i,hp0w0i). The scaling consists in normalizing each component of the energy flux vector by

the maximum value of the vector module, found in the displayed field. Arrows are only depicted for positive values of vertical energy flux, and scaled by 0.1 in the upper 500 m for better

legibility. Units are in 1028 m2 s21.
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Figure 4. Same as Figures 3a–3c but for the components of the vertical energy flux associated with the (a–c) E and (d–f) C regimes, respec-

tively (i.e., pEwE and pCwC, respectively). (g–i) Residual term (hp’w’i2p’approxw’approx ) is also plotted. Units are in 1028 m2 s21.
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The vertical structure of the energy flux associated with the ENSO regimes is further documented from

cross-shore sections at different latitudes (Figure 5). Figure 5 reveals that the energy flux follows approxi-

mately the theoretical WKB raypaths associated with a phase speed value between that of the first and third

baroclinic modes (see white and black plain thick lines in Figures 5a–5d and 5e–5h, respectively; trajectories

have been calculated from equation (1)), with a slope that increases with latitude in consistency with theory.

The portion of the vertical energy flux due to El Ni~no events thus concentrates closer to the coast as latitude

increases, which at "500 m could appear as a coastal trapping of the energy from say "208S (Figure 4a).

Note that the energy flux related to the C regime tends to be associated with a slightly larger slope of the

WKB raypaths, which is related to the fact that the spectrum of the C mode has a larger variance at decadal

frequencies than the spectrum of the E mode [Takahashi et al., 2011]. Given that raypath trajectories

depend on the period of the surface-coastal forcing (equation (1)), the energy beams associated with a lon-

ger period of variability would have a smaller raypath slope. Overall, the results suggest the propagation of

energy along the theoretical WKB trajectories at ENSO time scales. As this flux expands toward the deep

ocean, it experiences a decrease in amplitude along its trajectory, which takes place around 1500–2000 m

in the model. While the wave-induced flux is the result of an adiabatic process, its amplitude decrease sug-

gests a dissipation process in the deep ocean. This will be discussed later in section 4.

3.3. Decadal Variability

Despite the simulation covering only five decades, it is interesting to investigate the extent to which the

vertical energy flux in the regional model can also be interpreted as a decadal propagating energy flux. Fig-

ure 6 (top plots) presents the vertical energy flux at decadal time scales for the selected latitudes. First, it is

interesting to note that the amplitude of the decadal energy flux has comparable amplitude than the

energy flux related to the E regime, although weaker by an approximate factor of "2. Second, in a similar

manner than for the energy flux associated with ENSO, the peak amplitude of the decadal flux follows

approximately the theoretical WKB raypaths at 10 year period. The maximum amplitude is usually found off-

shore, which suggests a local forcing in addition to the equatorial source or a nonlinear amplification of the

coastally induced flux. Thus, despite the much weaker amplitude of the decadal mode than the ENSO mode

in the tropical Pacific, the pressure and vertical velocity anomalies covary in such a way that they form

beams having comparable magnitude than the ENSO flux. Although the length of the simulation is a limita-

tion for drawing firm conclusions, our analysis suggests that decadal variability in the SEP subthermocline

can be to a large extent accounted for by linear wave dynamics.

Another indirect estimate of the decadal flux is provided by the residual flux (i.e., p0w0
2p0approxw

0
approx ) that

shall grasp a share of the variability associated with decadal time scales (Figure 6, bottom plots). Interest-

ingly the residual flux exhibits features reminiscent of a decadal vertical propagation although with clear

differences with respect to the decadal flux. In particular the residual flux is in general much larger (by a fac-

tor of 2 to 3 near the coast and below the thermocline), which indicates that the residual flux grasps vari-

ability time scales other than just decadal. Nonetheless, the maximum amplitude is found in the near-

coastal regions where the WKB raypaths at the 10 year period originate, and at some latitude (like 308S) the

residual flux follows approximately the theoretical trajectories far deep. This residual flux also accounts for

mesoscale activity (and its low-frequency modulation), low-frequency modulation of coastal-trapped Kelvin

wave activity (and its impact on thermocline) and (or) ENSO-induced Ekman transport and pumping.

4. Discussion

4.1. Baroclinic Mode Contributions

Given that, physically, the vertical propagation of energy results from the superposition of a certain number

of baroclinic modes, the above result questions the extent to which the propagating characteristics of the

ENSO energy flux arise from the contribution of the gravest modes that radiate off-shore the most, or from

the higher-order modes which dissipate faster (because of the slower phase speed), but are also the conduit

by which the flux should propagate deeper. In this section, we thus present the results of a vertical mode

decomposition of the regional model, which provides material for the interpretation of the vertical energy

flux pattern. Assuming that a large portion of the variance in the w and p fields is accounted for the
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Figure 5. Cross-shore section of vertical energy flux associated with the (a–d) E and (e–h) C regimes at 128S, 208S, 308S, and 378S. Units are in 1028 m2 s21 and contours in black are

depicted every 0.2 3 1028 m2 s21. Gray arrows represent the scaled energy flux vector (hp0u0i,hp0w0i) related to each regime (scaling was performed as in Figure 2). Arrows are only

depicted for positive values of vertical energy flux, below 200 m. Slanted white and black lines denote the theoretical WKB trajectories for phase speed values corresponding to the first

three baroclinic modes (n), at periods of (a–d) 3.7 and (e–h) 4 years.
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contribution from the first three gravest modes (which is the case in the near-equatorial domain, cf. Dewitte

et al. [1999]), the contribution of the gravest baroclinic modes to the vertical energy flux in the regional model

is estimated as hP3
n51 pn %

P3
n51 @fn=@tð Þi, where pn and fn are the nth baroclinic mode contribution to the

pressure field and to the isotherm vertical displacements, respectively (see section 2.2.3). In order to focus on

the ENSO vertical energy flux, the sum of the contributions of the gravest baroclinic modes to the pressure

field and to the isotherm vertical displacements is first regressed against the E and C indices. The results are

presented in Figure 7, which can be compared to Figure 5. The results indicate that the main characteristics of

the energy beams close to the coast can be captured with only three modes, at least for the E regime. The

amplitude of the vertical energy flux is in general lower than that for the estimates from equation (4) (i.e., pE

wE and pCwC ), and the beams are more rapidly attenuated along their trajectory. High-order modes contribute

to extend the energy flux deeper. As a consistency check, the multimode linear model tuned from the OGCM

outputs (i.e., using Pn and cn as derived from the vertical mode decomposition) is run using three modes. The

model is initialized along the coast by the thermocline anomalies as derived from the vertical mode decompo-

sition of the OGCM (see section 2.2.3). No local wind forcing is applied, which also tests the dominant role of

the equatorial oceanic forcing. The results are presented in Figure 8, in a similar manner than above. The anal-

ysis indicates that the linear model can realistically reproduce the characteristics of the energy beams of the

regional model with only three modes. As expected, the ENSO energy flux with three modes does not extend

as far deep as the flux with all the modes. In particular, the vertical dissipation of the ENSO flux is prominent

below 1000 m, which would correspond to the depth where higher-order modes contribute significantly to

the variability. Considering that the wavelength of the wave increases with depth (because of the higher-

order modes having a shorter vertical scales than the gravest modes and the weaker stratification), it is

expected that mixing takes place in the region where the ENSO flux of Figure 8 dissipates the most (see sec-

tion 4.2). Differences between the linear model solution and the OGCM modal decomposition are the largest

south of 208S, which may be due to the modal dispersion not accounted for by the linear model and or inter-

action between Rossby waves and mesoscale activity or the mean circulation. Overall our results support the

interpretation of the vertical energy flux at ENSO time scales as resulting from the vertical propagation of

extratropical Rossby waves originating from the remote equatorial forcing.

Figure 6. (a–d) Cross-shore sections of decadal energy flux (hpDwDi) and (e–h) residual flux (hp0w0i2p0approxw
0
approxÞ at selected latitudes. Slanted lines denote the theoretical WKB trajec-

tories for phase speeds of the (a, b, c, and g) first three and the (d, e, f, and h) first two baroclinic modes with a period of 10 years.
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Figure 7. Vertical mode decomposition of the ENSO vertical energy flux: Summed-up contribution of the first three baroclinic modes to

the vertical energy flux associated with the (a–d) E and C regimes at different latitudes. The white-gray lines represent the theoretical

WKB raypaths, computed using the phase speeds of the baroclinic mode (n), at periods of (a–d) 3.7 and (e–h) 4.0 years. Units are in

1028 m2 s21.
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Figure 8. Linear model solution of the ENSO vertical energy flux: (a–d) E and (e–h) C regimes at 128S, 208S, 308S, and 378S. The white-gray

lines represent the theoretical WKB ray paths, computed using the phase speeds of the baroclinic mode (n), at periods of (a–d) 3.7 and

(e–h) 4.0 years. Units are in 1028 m2 s21. The boundary conditions used to initialize the model were low-pass filtered using a spectral filter

with a cutoff period of 1 year.
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We now discuss some implications that the vertical ETRW propagation diagnosed here might have for the

deep mean circulation in the SEP. In particular, we are interested in the decrease of the ENSO energy flux

observed along the propagation trajectory (section 3), given that dissipation can take place through a num-

ber of processes and might result in a transfer of heat toward the deep ocean (i.e., diabatic dissipation). Pre-

vious studies have documented several processes of wave dissipation which operate through nonlinearities

in the momentum equations (e.g., baroclinic instability and subsequent breaking of the wave, LaCasce and

Pedlosky [2004]), momentum diffusion toward the eddy field [Qiu et al., 1997], and wave triad instability [Qiu

et al., 2013]. Other studies have focused on the effect of temperature-diapycnal diffusion on the wave

amplitude attenuation [Marchal, 2009; Furue et al., 2015], which is more relevant for the interpretation of

our results considering that the vertical flux in LIN (i.e., without nonlinearities in the momentum equations)

yields comparable features than CR (see below). In particular, the theoretical study by Marchal [2009] indi-

cates that vertical diffusion can critically damp the Rossby waves in the longwave limit, with the decay rate

increasing linearly with the square root of vertical diffusivity. This indicates that the vertical attenuation of

hp0w0i evidenced earlier can thus be related to a vertical heat flux. Under certain assumptions, it can be

shown in particular that h@ p0 w0ð Þ
@z i is proportional to hw0

T 0i (see Appendix B for the derivation of this relation-

ship) so that the regions of large vertical gradient in the energy flux should exhibit a peak vertical heat flux.

As an attempt to verify this hypothesis, the vertical heat flux, hw0T 0i, is estimated from the regional model

outputs, where w0 and T 0 are the vertical velocity and temperature field, respectively, and the prime denotes

the interannual anomaly (with respect to the mean seasonal cycle over the simulation period). The results

are presented in Figure 9. This analysis indicates that the regions of maximum vertical heat flux below the

thermocline are located within the trajectories of the WKB ray paths related to the E regime, with a peak

amplitude in the vicinity of the region where the energy beams associated with the summed-up contribu-

tion of the first three baroclinic modes (white contours in Figures 9a–9h) decrease sharply. Our results there-

fore support the theoretical prediction of Marchal [2009] that diapycnal diffusion could significantly

contribute to the observed attenuation of the ETRW. As a consistency check, the same diagnostic is per-

formed for LIN, in which nonlinear advection of momentum is canceled out (Figures 9i–9l). LIN exhibits simi-

lar characteristics than CR, that is vertical dissipation of the ETRW taking place in the region where vertical

diffusion is enhanced, which supports the above interpretation. Other possible processes include wave

breaking at critical layers in a background mean flow. However, there is no evidence for any deep zonal

flows in CR. There is also the possibility that the vertically propagating ETRW modulates the process of trap-

ping of internal waves in the deep ocean, which can take place where N2 is small [Winters et al., 2011]. This

would deserve further study that is beyond the scope of the present paper. We discuss below implications

of our results for the understanding of the processes that intervene in the ocean heat uptake, since they

suggests that a portion of the low-frequency variability of the subthermocline heat content in the SEP could

be associated with the rectification of Eastern Pacific El Ni~no events on the mean deep circulation. This pro-

cess of energy propagation-dissipation would represent an energy pathway linking upper thermocline trop-

ical dynamics with the deep offshore ocean at midlatitudes. As an attempt to evidence such a pathway, we

calculated the dominant SVD (Singular Value Decomposition) mode between low-frequency change (11

year running mean) of heat content in the intermediate layer (1000–2500 m) and of the ENSO vertical

energy flux (hpapproxwapproxiÞ at two different depths, 1000 and 1500 m. The results are presented in Figure

10. It shows that there is a significant covariability (percentage of explained covariance is 70% and the cor-

relation between the PC time series reaches 20.74) between heat content in the intermediate layer (where

approximately, the dissipation of the energy flux is observed) and the ENSO energy originating from the

coast of Peru. The mode patterns also explain a large amount of variance of the original field (see percent-

age in the plots). Positive energy flux is associated with negative heat content anomaly near 108S and

between 208S and 308S that extends offshore, meaning that the ENSO vertical energy flux tends to cool the

intermediate layers. The PC time series suggests that the ENSO energy flux is in advance with respect to the

change in heat content, although the length of the simulation is too short to establish the statistical signifi-

cance of the phase lag. Note the contour in red dashed line in Figure 10b that represents the contour at 0.8

units for the ENSO flux mode pattern associated to the SVD analysis between the ENSO vertical energy at

1000 m (instead of 1500 m) and the heat content (1000–2500 m), which highlights the zonal propagation of

the ENSO energy flux. It thus confirms the tight relationship between the heat content variability in the

intermediate layers and the ENSO vertical energy flux in the model.
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Figure 9. Zonal sections of the total vertical heat flux (hw0T 0i: (a–d) and the decadal heat flux (hwDTDi: (e–h) from CR, and the total vertical heat flux from LIN (hw0T 0i: (i–l). Black slanted
lines correspond to the theoretical WKB raypaths, computed using the phase speed values of the gravest baroclinic modes (n5 1, 3 for a, b, c, e, f, g, i, j, k and n5 1, 2 for d, h, l), at peri-

ods of (a–d, i–l) 3.7 and (e–h) 10 years. Temperature was scaled by the average vertical temperature gradient dT =dz in order to emphasize the vertically coherent patterns in the regions

where the variability of T0 is very low. This yields m2 s21 as the units of hw0T 0i. The energy flux (below 300 m depth) associated with the contribution of the first three baroclinic modes is

plotted in plots Figures 9a–9h (white contours). The white contour values are the same ones as in Figure 6 for the Total CR heat flux (0.5–2.0, every 0.5) and every 0.2 in the 0.2–1.0 inter-

val for the decadal heat flux.
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From a different perspective, our results could also have implications for understanding low-frequency

changes in the SEP OMZ, since the vertical attenuation of the energy flux takes place below 1000 m, which

corresponds to the vicinity of the lower boundary of the OMZ (at least in the range of latitude between 98S

and 218S). There, mean vertical oxygen gradients are strong, which can result from a significant contribution

of the eddy flux to shaping the OMZ limit [Bettencourt et al., 2015; Vergara et al., 2016]. Since the dissipation

of the energy beams contributes to enhance diffusion in the vicinity of the lower OMZ boundary, we may

hypothesize that an eddy oxygen flux is produced there, which can ventilate the OMZ. Interestingly, obser-

vations suggest a significant decadal variability of the lower limit of the OMZ in the eastern tropical Pacific

(cf. Figure 2 in Stramma et al. [2008]). While this issue is difficult to tackle using observations, it could be

addressed from the experimentation with the regional model used in this study coupled to a biogeochemi-

cal model. This is planned for future work.

5. Summary and Conclusions

The subthermocline vertical propagation of energy in the SEP is investigated using a high-resolution

regional OGCM. The focus is on ENSO time scales, considering the efficient oceanic teleconnection linking

Figure 10. Dominant mode of the SVD analysis between the low-frequency changes (11 year running mean) of heat content (1000–2500)

and of the ENSO vertical energy flux at 1500 m: (a) Mode pattern for heat content. (b) Mode pattern for the ENSO energy flux. The ENSO

energy flux corresponds to the quantity hpapproxwapproxi where the mean is computed over 11 year running windows. (c) PC time series for

heat content (blue) and vertical energy flux (red). The full line curve corresponds to the energy flux at 1500 m while the dashed line curve

corresponds to the result of the SVD analysis between the heat content (1000–2500 m) and the vertical energy flux at 1000 m. The contour

at 0.8 for the mode pattern for vertical flux at 1000 m is indicated in Figure 10b in dashed red line. The percentage of explained variance

for both fields is indicated in Figures 10a and 10b, while the percentage of covariance is indicated in Figure 10c.
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Figure 11. Cross-shore section of vertical energy flux associated with the (a–d) E and (e–h) C regimes at 128S, 208S, 308S, and 378S for

SODA. Units in are in 1028 m2 s21. Slanted black lines denote the theoretical WKB trajectories for phase speeds of the first baroclinic

modes (n), at periods of (a–d) 3.7 and (e–h) 4.0 years.
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mately theoretical the WKB raypaths, having steeper slope poleward. The main contribution to the total

energy flux is associated with the so-called tropical Pacific E regime, corresponding to the regime of interan-

nual variability accounting for extreme Eastern Pacific El Ni~no events [Takahashi et al., 2011]. This somehow

generalizes the findings of Ramos et al. [2008] that first documented the vertical propagation of ETRW

energy in the SEP during the strong 1997–1998 El Ni~no event. The vertical energy flux associated with the C

regime accounting for both Central Pacific El Ni~no and La Ni~na events is much weaker than that of the E

regime, and is mostly due to La Ni~na events. The contrasting results between the estimates of pEwE and pC

wC indicate a marked asymmetry of the oceanic ENSO teleconnection in the subthermocline of the SEP. The

existence of the energy beams in the simulation questions the extent to which they can transfer heat to the

deep ocean and thus rectify on the heat content of the deep layers. Consistently with theory [see Marchal,

2009, Appendix B], a sharp decrease of the vertical energy flux associated with ENSO is observed in the

deep ocean (below 1000 m), which is in turn related to vertical temperature diffusion (i.e., vertical eddy

heat flux). Consistent with the fact that eddy activity has a marginal impact on the energy beams (as

revealed by the simulation where nonlinear advection of momentum is cancelled out), our result supports

the notion that diapycnal diffusion is a major process leading to the attenuation of the low-frequency ETRW

in this region. This has implications for the understanding of the heat content low-frequency variability in

the deep-ocean [Roemmich et al., 2015], considering the current difficulties in closing the planetary energy

budget [Church et al., 2011]. Our results suggest in particular a mechanism by which changes in tropical

Pacific SST variability can influence the deep ocean heat content of the midlatitudes at long time scales.

Overall, our results suggest that a realistic representation of the interannual energy flux by ETRW and its dis-

sipation might be important for climate models, considering its potentially important role on the heat bud-

get of the deep ocean. Our case study for the SEP further suggests the critical role played by model physics

(e.g., mixing scheme) and resolution on the simulation of the interannual vertical flux. As an illustration of

the sensitivity of our results to these parameters, we present the estimate of the vertical energy flux as

derived from the SODA outputs (Figure 11) that served as ocean boundary conditions of the regional

model. Note that the comparison between SODA and the regional model is somewhat limited due to the

use of a different atmospheric forcing in SODA compared to the regional model, and to the fact that SODA

makes use of a data assimilation scheme, while there is no data assimilation in our simulation experiments.

With these differences in mind, it is clear that while the SODA reanalysis is able to capture features compa-

rable to the regional model, it also presents important differences, in particular a weaker amplitude of the

vertical energy flux, suggesting a significant impact of resolution and model physics on the vertical propa-

gation of energy at interannual time scales in this region. Considering the on-going challenge for quantify-

ing natural and forced variability in oceanic models [Penduff et al., 2011], such impact may need to be

evaluated. This could be achieved through the experimentation with a regional OGCM in an idealized

framework (e.g., simplified coastline and continental slope, and periodic forcing) for which a heat budget in

the deep ocean would be sought. This is planned for future work.

Appendix A: Comparison to Observations

This appendix provides material for assessing the realism of the regional model simulation, complementing

the material presented in Dewitte et al. [2012].

A.1. Mean Stratification

The correct representation of the subsurface stratification in the simulation is evaluated contrasting the

wind projection coefficients (Pn) for the first three baroclinic modes, defined as:

Pnðx; yÞ5
H x; yð Þ

Ð 0

2H
w2
n x; y; zð Þdz

(A1)

where H x; yð Þ is the mean thermocline depth, H is the bottom depth and wn x; y; zð Þ is the vertical structure

of the baroclinic mode n, obtained from a vertical mode decomposition of the mean stratification [cf. Dew-

itte and Reverdin, 2000]. The first three Pn can depict the mean thermocline structure accounting for its

depth, thickness and intensity [see Dewitte et al., 2008].
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Figure A1. Mean thermocline depth (in m) computed from (a) the EN4 data set and (b) CR for the period 1958–2008. Black contours are depicted at 40, 60, and 80 m depth. (c) Mean

(50 year average) thermocline gradient toward the coast (in cm km21).

Figure A2. Mean value of the nondimensional wind projection coefficients for the first three baroclinic modes (Pi, i5 1, 2, 3) for the

regions of (a) Peru and (b) Chile. The coefficients were computed following equation (A1), using the fields from SODA and CR.
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When contrasting SODA and CR (Figure A2), little difference is observed in the projection coefficients for

the first two baroclinic modes (5% for the Chile region in P2), which illustrates that the mean stratification in

the regional simulation is comparable to the one from SODA. More important differences between SODA

and the simulation are found for the projection coefficient of the third baroclinic mode (18% off Chile and

16% off Peru), related to the differences between the observations and the simulation near the coast. In this

sense, deviations from the reanalysis product are expected near the coast given the higher spatial resolu-

tion of regional model and the realistic wind forcing used in CR [cf. Goubanova et al., 2011]. The latter in par-

ticular allows a more realistic representation of the coastal upwelling [Cambon et al., 2013].

A.1.1. Eddy Kinetic Energy

Sea surface height is used to compute the geostrophic currents field. The Eddy Kinetic Energy field (EKE) is

then derived from the interannual anomalies of the geostrophic surface velocities (Figure A3). The EKE lev-

els are well represented by the simulation (Figure A3b), although in general more intense than observations,

consistent with other modeling studies in the region (see, e.g., Figure 5 in Colas et al. [2012]). Both the simu-

lation and the observations display two regions of large EKE off Peru (108S–188S) and Chile (228S–328S) sep-

arated by a small region of low values centered at 208S, with the model reproducing a slightly higher

amplitude than the observations. Note that differences between model and observations are partly due the

model setting not taking into account air-sea interactions at mesoscale [Renault et al., 2016]. Differences

between the simulation and observations could also arise due to the smoothing inherent to the altimeter

data.

A.1.2. Coastal Currents

As illustrated indirectly by the EKE levels, the simulation captures the main features of the coastal current

system. In order to gain further insight in this matter, we contrast the simulation results against in situ cur-

rents (Figure A4). The mean profiles show a good agreement with the in situ data both in terms of values

range and vertical trend (Figure A4d), although the simulation underestimates the meridional flow at the

depth of the Peru Chile Under Current (PCUC). Cross-shore vertical sections (Figure A4ab) show a realistic

pattern in agreement with the main currents described for the region [cf. Strub et al., 1998]. Near the coast,

the v component exhibits a northward flow, representing the Chile Coastal Current (CCC). Over the slope,

Figure A3. Mean surface eddy kinetic energy (EKE) for: (a) TOPEX-Jason1–2, (b) CR, over the period 1992–2008. Black contours are

depicted every 20 cm2 s22, between 0 and 140 cm2 s22.
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an intense poleward flow extends down to around 600 m depth, corresponding to the PCUC. Offshore pat-

tern shows another poleward flow around 200 km from the coast. This flow might be interpreted as the

Peru Chile Counter Current (PCCC). Farther offshore, the model represents an equatorward flow, which cor-

responds to the Chile Peru Current.

A.1.3. Sea Level Anomalies

To assess the realism of the simulation along the coast, we contrast the simulated sea level against satellite

data (TOPEX-Jason) and tide gauge data. The first EOF mode of the sea level anomalies at eight locations

along the coast corresponding to the tide gauge locations is estimated for all products (Figure A5ab). The

time period for this analysis corresponds to the years 1992–2008. A Pearson correlation analysis shows that

the model is skillful in reproducing the low-frequency variability of the sea level along the coast, with in par-

ticular a good agreement in terms of spectral power, with a significant spectral peak in the period band

between 2 and 4 years for all data sets.

In order to assess the realism in terms of sea level variability for the open ocean, the sea level anomalies

were regressed against the E and C statistical modes for the model and observations and the resulting

regression coefficient are presented in Figures A5c–A5f. The simulation exhibits an overall realistic pattern

of the regression coefficients as compared to observations.

Appendix B: On the Relationship Between Vertical Energy Flux and Heat Flux

In conditions of stable stratification, the anomalous vertical mass flux is mz5q0w0 [Monin and Ozmidov,

1985], where the prime denotes the fluctuating density and vertical velocity. As the mass is displaced verti-

cally, a potential energy per unit volume per second is associated with the change in height, which can be

written as gq0w0 .

Figure A4. (a and c) Mean currents at 308S from the simulation, and (d) mean profiles for both currents components at (b) the COSMOS

mooring site. Black contours in Figures A4a and A4c denote the 0 cm s21. Depicted isobaths in Figure A4b correspond to 500, 1500, 3000,

4000, and 5000 m depth. Continuous lines in Figure A4d correspond to the currents from CR. ADCP (points) and RCMs (triangles) data

from COSMOS mooring are also included in Figure A4d. All units are in cm s21. Average values are computed over the period November

1991 to September 2006.
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Assuming that the density fluctuations in the subthermocline are essentially controlled by variations in tem-

perature (T 0), we have

q052aq0T
0

(B1)

where a is the volume expansion coefficient of seawater and q0 is the average density. The expression for

the potential energy associated with mz can then be written as

gq0w052gaq0w
0
T

0
(B2)

Before proceeding further, it is convenient to verify how the vertical gradients of w0 scale in relationship to

the vertical gradients of p0, for the scales of interest. This condition will allow deriving a simplified expres-

sion involving p0w0 from equation (B2).

From the relations that govern small perturbations in an incompressible stratified fluid, we can write the

vertical velocities associated with those perturbations in terms of the time derivative of the density

perturbations:

@q0

@t
5w0 q

g
N2 (B3)

where q is the time mean density, and N is the Brunt-V€ais€al€a frequency. Using the hydrostatic relation, we

can rearrange equation (B3) in the form:

Figure A5. (a) First EOF mode of the coastal interannual sea level anomalies for CR, TOPEX-JASON 1–2, and Tide Gauge. Coastal points

matching the positions of the sea level stations (gray) were chosen from CR (red). Otherwise, the CR sea level (black) was taken from the

same position as the coastal altimetry (pale blue). Percentage of explained variance for each time series is indicated in parenthesis. Pear-

son correlation coefficients between the time series are also indicated. (b) Spectra of the sea level obtained by applying the Fast Fourier

Transform to the time series depicted in Figure A5a. (c and d) Linear regression of SLA against the E–C indices for the CR simulation and

(e and f) the TOPEX-JASON 1–2 data.
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w0
52

1

qN2

@

@t

@p0

@z

' (

(B4)

For large-scale waves, the rate of change of pressure perturbations (and velocity) is proportional to the

wave frequency @p0=@t / xð Þ, which allows us to write the dimensional analysis of equation (B4) as

w0 " x
N2

p0=q
H
, and its vertical derivative (@w0=@z) as:

Figure B1. Cross shore sections of the terms hw0@p0=@zi and hp0@w0=@zi at 128S, 208S, 308S, and 378S. Please note that the color scales

used to represent each term are different. p’ is expressed in m and w’ in m s21.
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where x is the frequency of interest and H is a vertical scale of variation for w0 (which for the first three bar-

oclinic modes is in the order of 103 to 102 m [see Ramos et al., 2008]). Considering a period superior to 1

year (interannual), H as 103 m, a Brunt-V€ais€al€a frequency of 0.2 cycles per hour (in the range of the lowest

measured values in the abyssal Pacific; cf. Wunsch [2013] and Levitus [1982]) and a typical q value equal to

1027 kg m23, equation (B5) scales as:

Dw0

Dz
" p031029

This suggests that over the same vertical scale, the term p0 @w
0

@z would tend to be smaller than the term

w0 @p0
@z , which is corroborated by the results of Figure B1 that shows the estimates of these two terms from

the model outputs. Note that the result of this dimensional analysis (i.e., p
0 @w0

@z ( w
0 @p0

@z ) also implies that

the vertical gradient of the heat flux can be interpreted as anomalous nonlinear vertical advection of tem-

perature since w
0 @T 0

@z ) @w0
T
0

@z (assuming (B1)), which links the energy flux to the rate of temperature change

in the deep ocean.

Using the hydrostatic approximation, (B2) can be rearranged as follows:

@p0
w

0

@z
5gaq0w

0T 0 (B6)

which implies that the vertical gradient of p0w0 scale as w0T 0 .

Introducing a heat flux Q, defined as:

Q52Cpqw0T 0

where Cp is the specific heat of seawater at constant pressure, we can then rewritte (B6) in terms of Q as:

@p0
w

0

@z
52

ga

Cp
Q (B7)

This expression relates the vertical gradients of the energy flux to a temperature flux, and can be inter-

preted as the rate of energy loss to turbulence, by working against the density gradients. Therefore, the dis-

sipation or decreasing of the vertical wave energy flux results in a vertical heat flux. This formalism is used

to interpret the results of Figure 9. Note that p
0
is used in the present appendix in Pa.
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3.3. Vertical energy flux at interannual to decadal timescales

Résumé de l’article Vertical energy flux at ENSO timescales in the sub-

thermocline of the Southeastern Pacific

La variabilité basse fréquence de la circulation de subsurface dans l’océan Paci-

fique Sud-Est reste très peu étudiée, dû principalement au manque d’observations sur

une durée suffisante. Ce bassin océanique est néanmoins considéré comme l’une des

régions clés dans la compréhension de la variabilité du climat, grâce à sa contribu-

tion au bilan thermique planétaire. La variabilité dans le Pacifique Sud-Est est con-

nectée à celle du Pacifique équatorial à travers la dynamique d’ondes (i.e. l’onde de

Kelvin côtière et l’onde de Rossby extratropicale) se propageant à différentes échelles

de temps, et qui rendent ce système particulièrement sensible à la variabilité clima-

tique des tropiques. Dans ce travail, une simulation régionale de haute-résolution

sur la période 1958-2008 est utilisée pour documenter la variabilité sous la thermo-

cline dans l’océan Pacifique Sud-Est aux échelles de temps interannuelle et décennale.

Dans ce travail, l’accent est mis sur le flux vertical d’énergie induit par la propagation

verticale/vers l’ouest de l’onde de Rossby extratropicale (ETRW), liée au forçage de

type lointain de la part du Pacifique équatorial. Le formalisme WKB est utilisé comme

outil de diagnostique pour interpréter le flux vertical d’énergie le long de la côte Sud-

Américaine. En particulier, nous montrons que ∼80% du flux d’énergie vertical/vers le

large à l’échelle interannuelle est associé aux évènements El Niño du Pacifique Est. Une

décomposition en modes verticaux montre que les schémas de flux verticaux d’énergie

associés aux évènements El Niño se projettent sur la structure verticale des trois pre-

miers modes baroclines, ce qui confirme l’interprétation du flux d’énergie comme étant

associé à la propagation de l’onde de Rossby. Des tests de sensibilité effectués avec

un modèle linéaire ajusté aux conditions de la simulation régionale, révèlent que les

modes baroclines supérieurs contribuent à la propagation du flux d’énergie pendant

les évènements El Niño. Le sort de l’énergie associé à la propagation verticale de l’onde

de Rossby extratropicale est discuté, du point de vue des incertitudes dans le bilan

d’énergie de la région.
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3.4 Synthesis

In this chapter we addressed the subsurface variability of the circulation in the SEP,

in connection with the equatorial forcing.

In the first part of the present chapter, we tested the possibility of studying the sub-

thermocline low-frequency variability in the SEP using the available in situ observa-

tions. First, we contrasted our results against previous works in the equatorial Pacific,

where it was shown that it is possible to document the subsurface variability associated

with the long Rossby waves at seasonal to interannual timescales using the currently

available ARGO observations. However, the results were not satisfying when repro-

ducing the analyses in the extra-tropical region. These apparently conflicting results

are interpreted in consideration of (i) the lower phase speed of the long Rossby wave

off the equatorial Pacific, in combination with (ii) the sparse coverage of the ARGO

floats in the SEP.

The second part of this chapter studied the low frequency variability of the SEP sub-

thermocline circulation, in terms of the energy discharge associated with the different

ENSO regimes.

Using the statistical formalism presented in Chapter 2, we distinguish between the

contributions of the E and C ENSO regimes to the vertical energy flux that propagates

into the SEP subthermocline. We find that the magnitude of the energy flux associated

with the E regime (related to the extraordinary eastern Pacific El Niño events) corre-

sponds to 80% of the interannual vertical energy flux in the SEP. On the other hand,

the energy flux due to the C regime is far less significant than the energy flux related

to the E regime. This energy flux is in fact mostly related to La Niña events, as verified

by computing the C regime energy flux for C > 0 (Central Pacific El Niño events) and

for C < 0 (La Niña events).

We observe a decadal modulation of the interannual vertical energy flux (which is

on average, less than half of the energy flux related to the EP El Niño events), and the

interpretation using the WKB theory reveals that the dominant period of this modula-

tion of the energy flux is ~10 years. We interpret this result in the light of the decadal

modulation of the climatic variability in the equatorial Pacific, that echoes on the SEP

subthermocline circulation.

The use of a multimode-linear model verified our interpretation of the propagat-

ing variability in terms of the vertical/westward propagation of long Rossby waves,

resulting from the constructive contribution of several baroclinic modes that form the

energy “beams” through which the energy propagates. The energy beams agree with

the ray-path slopes predicted by the WKB theory, with a slope that increases with lati-

tude.
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3.4. Synthesis

Our diagnosis of the interannual vertical energy flux also reveals a decrease of the

ETRW amplitude along the propagation trajectory, which is shown to be related to

a vertical temperature diffusion for the E regime and the decadal fluctuations of the

energy flux. This indicates that (i) diapycnal diffusion significantly contributes to the

attenuation of the ETRW in this region and (ii) the discharge of the tropical Pacific onto

the intermediate–deep SEP at interannual and decadal timescales entails a vertical heat

flux into the SEP subthermocline. This process can be seen as an energy transfer from

the large-scale wave field to the smaller scale turbulent field.
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Chapter 4

Ventilation of the South Pacific oxygen

minimum zone: the role of the ETRW

and mesoscale

4.1 Overview

In the previous chapter we investigated the low-frequency variability of the SEP

circulation, in relation with remote forcing. The load of the interannual tropical Pa-

cific variability on the subthermocline circulation was analyzed from the perspective

of the vertical long Rossby wave propagation. In the present chapter, this mechanism

is transposed to study the variability of the subthermocline circulation in the SEP at

seasonal timescale. In particular, we focus on the influence of the seasonal fluctuations

of the circulation on the ventilation of the OMZ found in the SEP, which is a focus of

increasing concern for the scientific community due to its implications at different lev-

els, such as interactions with the local ecosystem and the highly-productive upwelling

system in the SEP (e.g. Prince and Goodyear (2006); Stramma et al. (2010); Gilly et al.

(2013)), and climatic feedbacks through its involving in the global nitrogen and carbon

cycles (Kock et al., 2016; Paulmier et al., 2011).

Although a comprehensive understanding of the OMZ dynamics is still incomplete,

recent efforts have pointed out a close relationship with the circulation features in the

SEP (cf. Bettencourt et al. (2015) and Montes et al. (2014)), which strongly suggests

that the OMZ variability may be also sensitive to the circulation fluctuations. In this

sense, the present chapter responds to the current knowledge gap on the OMZ vari-

ability at seasonal timescale and its relation with the circulation variability. The main

objective of this chapter is thus to document the processes that are influential for the

seasonality of the OMZ. In particular, we analyze to which extent the seasonal variabil-

ity of the OMZ can be interpreted in terms of the vertical propagation of long Rossby
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waves, which, as exposed in the previous chapter, contributes significantly to the low-

frequency variability of the intermediate and deep circulation in the SEP.

Recent evidence indicates that the mesoscale structures play a decisive role in shap-

ing the OMZ (Bettencourt et al., 2015). In this sense, we also evaluate the contribution

of the circulation fluctuations in the form of mesoscale structures to the seasonal OMZ

variability.

4.2 Seasonal variability of the oxygen minimum zone

The body of this subsection corresponds to the article “Seasonal variability of the

oxygen minimum zone off Peru in a high-resolution coupled model”, published in

“Biogeosciences”, in August 2016.

Citation: Vergara, O., Dewitte, B., Montes, I., Garçon, V., Ramos, M., Paulmier, A., and

Pizarro, O., (2016), Seasonal variability of the oxygen minimum zone off Peru in a high-

resolution regional coupled model, Biogeosciences, 13, 4389-4410, doi:10.5194/bg-13-

4389-2016.
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Abstract. In addition to being one of the most productive
upwelling systems, the oceanic region off Peru is embed-
ded in one of the most extensive oxygen minimum zones
(OMZs) of the world ocean. The dynamics of the OMZ off
Peru remain uncertain, partly due to the scarcity of data and
to the ubiquitous role of mesoscale activity on the circulation
and biogeochemistry. Here we use a high-resolution coupled
physical/biogeochemical model simulation to investigate the
seasonal variability of the OMZ off Peru. The focus is on
characterizing the seasonal cycle in dissolved O2 (DO) eddy
flux at the OMZ boundaries, including the coastal domain,
viewed here as the eastern boundary of the OMZ, consider-
ing that the mean DO eddy flux in these zones has a signif-
icant contribution to the total DO flux. The results indicate
that the seasonal variations of the OMZ can be interpreted
as resulting from the seasonal modulation of the mesoscale
activity. Along the coast, despite the increased seasonal low
DO water upwelling, the DO peaks homogeneously over the
water column and within the Peru Undercurrent (PUC) in
austral winter, which results from mixing associated with the
increase in both the intraseasonal wind variability and baro-
clinic instability of the PUC. The coastal ocean acts there-
fore as a source of DO in austral winter for the OMZ core,
through eddy-induced offshore transport that is also shown to
peak in austral winter. In the open ocean, the OMZ can be di-
vided vertically into two zones: an upper zone above 400 m,

where the mean DO eddy flux is larger on average than the
mean seasonal DO flux and varies seasonally, and a lower
part, where the mean seasonal DO flux exhibits vertical–
zonal propagating features that share similar characteristics
than those of the energy flux associated with the annual ex-
tratropical Rossby waves. At the OMZ meridional bound-
aries where the mean DO eddy flux is large, the DO eddy
flux has also a marked seasonal cycle that peaks in austral
winter (spring) at the northern (southern) boundary. In the
model, the amplitude of the seasonal cycle is 70 % larger at
the southern boundary than at the northern boundary. Our re-
sults suggest the existence of distinct seasonal regimes for
the ventilation of the OMZ by eddies at its boundaries. Im-
plications for understanding the OMZ variability at longer
timescales are discussed.

1 Introduction

In addition to hosting one of the most productive upwelling
systems, the South Eastern Pacific (SEP) is home to one of
the most extensive oxygen minimum zones (OMZs) of the
world ocean (Fuenzalida et al., 2009; Paulmier and Ruiz-
Pino, 2009). These oxygen-deficient regions are key to un-
derstanding the role of the ocean in the greenhouse gas bud-
get, in climate and in the presently unbalanced nitrogen cy-

4.2. Seasonal variability of the oxygen minimum zone
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cle (Gruber, 2008). The OMZs represent a net nitrogen loss
to the atmosphere in the form of N2O (particularly the SEP
OMZ; Farías et al., 2007; Arévalo-Martínez et al., 2015) in
addition with other toxic or climatically active gases, such
as H2S and CH4, respectively, in extremely low dissolved
oxygen (DO) concentrations (Libes, 1992; Law et al., 2013).
They might even limit the ocean carbon sequestration and
act as CO2 sources for the atmosphere (Paulmier et al., 2008,
2011). Furthermore, the OMZs contribute to the habitat com-
pression of marine organisms, in a zone that sustains 10 % of
the world fish catch (Prince and Goodyear, 2006; Chavez et
al., 2008). Therefore, understanding the dynamics behind the
OMZ becomes not just a matter of scientific interest but also
a major societal concern.

In general, these low-oxygen regions are considered to re-
sult from the interaction of biogeochemical and physical pro-
cesses (Karstensen et al., 2008). The SEP presents high bio-
logical productivity, inducing a significant DO consumption
mainly through the remineralization associated with a com-
plex nutrient cycle supported by the intense upwelling. In
addition, the SEP encompasses a so-called “shadow zone”, a
near stagnant/sluggish circulation region next to the eastern
basin boundary, not ventilated by the basin-scale wind-driven
circulation (Luyten et al., 1983). Assuming a steady state, lat-
eral oxygen fluxes from subtropical water masses and diapy-
cnal mixing are expected to balance the oxygen consump-
tion (Brandt et al., 2015). However, the diversity of environ-
mental forcings in the SEP and the variety of timescales at
which they operate (Pizarro et al., 2002; Dewitte et al., 2011,
2012) have eluded a proper understanding of the processes
controlling the OMZ structure and variability. On the one
hand, the scarcity of data and rare surveys have only per-
mitted the documentation of the DO temporal variability at a
few locations (e.g., Morales et al., 1999; Cornejo et al., 2006;
Gutiérrez et al., 2008; Llanillo et al., 2013). On the other
hand, the highly complex interaction between physical and
biogeochemical mechanisms makes modeling and prediction
of OMZ location, intensity and its temporal variability a chal-
lenging task (Karstensen et al., 2008; Cabré et al., 2015).
Low-resolution CMIP class coupled models still have severe
biases of physical and biogeochemical origins, particularly
in eastern boundary current systems (Richter, 2015), which
has eluded the interpretation of long-term trends in OMZ
(Stramma et al., 2008, 2012; Cabré et al., 2015). Regional
coupled biogeochemical modeling nonetheless has provided
a complementary approach to gain insight in the dynamics
of OMZ and its relationship with climate (Resplandy et al.,
2012; Gutknecht et al., 2013a). One recent modeling effort
to understand the dynamics behind the OMZ in the eastern
tropical Pacific comes from Montes et al. (2014). This study
provided a first regional simulation of the OMZ in the SEP
and summarized the elements involved in maintaining the
OMZ found off the coast of Peru as the result of a delicate
balance of (i) the equatorial current system dynamics – the
relatively oxygen-rich waters carried by the Equatorial Un-

dercurrent (EUC), the relatively oxygen-poor and nutrient-
rich waters carried by the primary and secondary Tsuchiya
Jets (primary and secondary southern subsurface countercur-
rents) – and (ii) the high surface productivity rates induced
by the coastal upwelling, which in turn triggers an intense
oxygen consumption in the subsurface. Their model experi-
ments also showed that different eddy kinetic energy (EKE)
levels, induced by different representations of the mean ver-
tical structure of the coastal current, may contribute to the
expansion or erosion of the upper boundary of the OMZ.

The study by Montes et al. (2014) established a bench-
mark in terms of numerical modeling of the OMZ in the SEP,
focusing on its permanent regime and connection with the
equatorial current dynamics. In the present study, we also
take advantage of the regional modeling approach in order
to investigate the mechanisms associated with the seasonal
cycle of DO within the OMZ. The motivation for focusing
on seasonal variability is threefold: (1) a better knowledge
of the processes acting on the OMZ at seasonal timescale is
viewed as a prerequisite for interpreting longer timescales of
variability (ENSO, decadal); (2) the scarcity of quality long-
term subsurface biogeochemical data in the SEP is a limita-
tion for tackling the investigation of OMZ variability at low
frequency; (3) to the authors’ knowledge, this issue has not
been addressed in the literature for the eastern tropical Pa-
cific, although it has been a concern for other tropical oceans
(Resplandy et al., 2012; Gutknecht et al., 2013a; Duteil et al.,
2014).

Here, besides investigating to what extent the seasonal
OMZ variability can relate to the variability of the environ-
mental forcing in the SEP (local wind, equatorial Kelvin and
extratropical Rossby waves, hereby referred to as ETRW),
our interest is on examining the DO budget (i.e., the bal-
ance between oxygen sources and sinks) and relating it to
the physical DO flux. In particular, since the Peruvian region
is the location of relatively intense eddy activity (Chaigneau
et al., 2009), the question of whether or not eddy activity is
involved in the seasonal variability of the OMZ arises and
calls for assessing its contribution to the DO flux. There is
growing evidence that the mesoscale activity plays a key
role in the biogeochemical cycles and the OMZ structure
in eastern boundary upwelling systems (Duteil and Oschlies,
2011; Nagai et al., 2015). Most studies addressing the role of
mesoscale processes in the OMZs have focused on the venti-
lation from the coastal domain, where the primary production
bloom provides nutrients and DO anomalies that are in turn
transported offshore (Stramma et al., 2013; Czeschel et al.,
2015; Thomsen et al., 2016). Gruber et al. (2011) showed that
mesoscale activity is prone to reducing the biological produc-
tion and offshore carbon export in upwelling systems by both
rectifying on the mean circulation (i.e., eddy-induced mix-
ing tends to flatten the isotherms nearshore and reduce the
upwelling) and changing its nutrient transport capacity. This
process has been to some extent supported by observations
in the Peruvian OMZ (Stramma et al., 2013). In this sense,
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the mesoscale activity represents a ventilation pathway for
the OMZ, through the offshore transport of oxygen-enriched
waters. The ventilation of the OMZ could also take place at
its meridional boundaries where strong mean DO gradients
are found along with eddy activity. Recently, Bettencourt et
al. (2015) proposed that mesoscale eddies shape the Peruvian
OMZ by controlling the diffusion of DO into the OMZ at the
meridional boundaries. Although it is likely that both pro-
cesses are important for understanding the OMZ structure, it
has not been clarified to which extent the variability of the
OMZ could be understood in terms of the changes in the DO
eddy flux into the OMZ through these different pathways.
The mesoscale activity also exhibits a significant meridional
variability off Peru (Chaigneau et al., 2009), which ques-
tions whether the offshore ventilation process can operate
effectively for modulating the whole OMZ. Another related
open question is at which timescales the ventilation process
through eddies-induced mixing can operate effectively. In
this paper we will tackle these issues from a regional model-
ing approach, focusing on the seasonal timescale.

The paper is organized as follows. After the introduction
(Sect. 1), we detail the observations and model configuration
used in the study, as well as the methodology employed in
the treatment of the information (Sect. 2). We also evaluate
the realism of the simulation against the available observa-
tions in reproducing the main characteristics of the OMZ.
The subsequent section (Sect. 3) characterizes the DO an-
nual cycle inside the OMZ. Section 4 opens with the anal-
ysis of the seasonal variability of the coastal OMZ and the
contribution of the DO budget terms associated with it. This
analysis is followed by the results of DO flux directed off-
shore and completed by the analysis of DO flux across the
OMZ meridional boundaries. Section 5 presents a discussion
of the main results and Sect. 6 presents a summary and the
concluding remarks.

2 Data description and methods

2.1 Data

2.1.1 Dissolved oxygen concentration from the CSIRO

Atlas of Regional Seas (CARS)

CARS is a climatological product derived from a quality-
controlled archive of historical subsurface ocean measure-
ments, most of which were collected during the past 50 years
(additional information might be found on the website
of the project: http://www.marine.csiro.au/~dunn/cars2009/).
For the present study, we use the CARS2009 version of the
CARS product (Ridgway et al., 2002), which has an hori-
zontal resolution of 0.5◦ ⇥ 0.5◦ and 79 vertical levels, with
a 10 m resolution near the surface layer. We use CARS to
assess the model’s skills in simulating the OMZ mean state
and variability. One advantage of this product is its refined

interpolation treatment near steep topography in comparison
to other products such as the World Ocean Atlas (Dunn and
Ridgway, 2002). Also, it includes the annual and semiannual
oxygen cycles, although the semiannual cycle is available
only for the first 375 m over the region of interest due to the
scarcity of data.

2.1.2 Chlorophyll a concentration from SeaWiFS

Eight-day composites at 0.5◦ ⇥ 0.5◦ resolution of the SeaW-
iFS chlorophyll product (version 4), between January 2000
and December 2008, are used to compute the surface chloro-
phyll seasonal cycle (McClain et al., 1998; O’Reilly et al.,
2000).

2.1.3 Sea surface temperature (SST)

The NOAA Optimum Interpolation SST (OISST V2) prod-
uct is contrasted against the simulation SST. This product is
an analysis constructed by combining observations from dif-
ferent platforms (satellites, ships, buoys) on a regular global
grid. More information about the methodology used to con-
struct this data set may be found in Reynolds et al. (2007) and
the product website (https://www.ncdc.noaa.gov/oisst). The
version used in this study corresponds to daily SST maps
with a spatial resolution of 0.25◦ ⇥ 0.25◦, spanning the pe-
riod 2000–2008.

2.1.4 Sea level height (SLH)

The TOPEX/JASON1–2 merged SLH data set, distributed by
the Sea Level Research Group, University of Colorado (http:
//sealevel.colorado.edu/), is used to derive the geostrophic
velocity field and the mean EKE field. This data set corre-
sponds to a globally gridded 0.25◦ ⇥ 0.25◦ weekly product.
The information used corresponds to the period 1993–2008.
Further details on this product may be found in Nerem et
al. (2010).

2.2 Model simulation

We use a high-resolution simulation of the southeastern Pa-
cific, based on the hydrodynamic Regional Ocean Mod-
eling System (ROMS) circulation model (see Shchepetkin
and McWilliams, 2005, 2009, for a complete description of
the model) coupled with a nitrogen-based biogeochemical
model developed for the eastern boundary upwelling systems
(BioEBUS; Gutknecht et al., 2013a, b), hereby referred as
CR BIO.

The model is used at an eddy-resolving resolution (1/12◦

at the Equator) for a region extending from 12◦ N to 40◦ S
and from the coast to 95◦ W – although this study only
focuses on the domain spanning the latitudes of Peru and
Ecuador (Fig. 1) – with lateral open boundaries at its north-
ern, southern and western frontiers. The physical model re-
solves the hydrostatic primitive equations with a free-surface
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Figure 1. Mean sea surface temperature (SST) between 2000 and 2008 for (a) OISST product (0.25◦ ⇥ 0.25◦), (b) the simulation (1/12◦) and
(c) CARS data set (0.5◦ ⇥ 0.5◦). (d) Difference between the OISST product and the simulation. Mean eddy kinetic energy (EKE) between
1993 and 2008, for (e) TOPEX/Poseidon Jason 1–2 merged product (0.25◦ ⇥ 0.25◦), and (f) simulation (1/12◦). EKE was derived from the
interannual anomalies of the geostrophic velocity field.

explicit scheme and a stretched terrain-following sigma co-
ordinates on 37 vertical levels. The configuration is simi-
lar to Dewitte et al. (2012), that is the open boundary con-
ditions are provided by 5-day mean oceanic outputs from
SODA (Version 2.1.6) for temperature, salinity, horizontal
velocity and sea level for the period 1958–2008, while wind
stress and speed forcing at the air/sea interface come from the
NCEP/NCAR reanalysis. The atmospheric fields have been
statistically downscaled following the method by Goubanova
et al. (2011) in order to correct for the unrealistic wind stress
curl near the coast of the NCEP Reanalysis (see Cambon et
al., 2013, for a validation of the method for oceanic appli-
cations). Atmospheric fluxes were derived from the bulk for-
mula using the temperature from COADS 1◦ ⇥ 1◦ monthly

climatology (daSilva et al., 1994). Relative humidity and
shortwave and long-wave radiations are also from COADS.
Bottom topography is from the GEBCO 30 arcsec grid data
set, interpolated to the model grid and smoothed as in Pen-
ven et al. (2005) in order to minimize the pressure gradient
errors and modified at the boundaries to match the SODA
bottom topography. This model configuration has been val-
idated from satellite and in situ observations in Dewitte et
al. (2012) with a focus on mean state interannual variabil-
ity. In general the model is skillful in simulating the mean
SST field (Fig. 1a, c) as well as other main aspects of the
mean circulation (e.g., Peru/Chile Undercurrent, EKE; see
Fig. 3 in Dewitte et al., 2012), although with a slight cold
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Figure 2. Mean oxygen minimum zone core thickness (color scale
in meters) for (a) the simulation and (b) CARS. Depths of the lower
(white) and upper (black) limits of the OMZ core are also depicted.
The OMZ core is defined as [DO] < 20 µM. The red dots denote the
horizontal resolution of the DO field.

bias (⇠ 1 ◦C) that could be partly attributed to the use of cli-
matological heat flux forcing (Fig. 1d).

The mesoscale activity diagnosed from the mean EKE, has
a comparable pattern than altimetry, although with a larger
amplitude (Fig. 1e, f). Similar levels of mesoscale activity
have been obtained by previous modeling studies in the Pe-
ruvian region (e.g., Echevin et al., 2011; Colas et al., 2012).

The ocean model within this configuration is coupled to
the BioEBUS model following similar methodology than
Montes et al. (2014). BioEBUS uses two compartments of
phytoplankton and zooplankton, small (flagellates and cili-
ates, respectively) and large (diatoms and copepods, respec-
tively), detritus, dissolved organic nitrogen and the inorganic
nitrogen forms nitrate, nitrite and ammonium, as well as ni-
trous oxide (see Gutknecht et al., 2013a, b, for a descrip-
tion of the model). The open-boundary conditions for the
biogeochemical model are provided by the climatological
CARS data set (nitrate and oxygen concentrations) and by
SeaWiFS archive (chlorophyll a concentration). Additional
biogeochemical tracers are computed following Gutknecht
et al. (2013a, b). Initial phytoplankton concentration is de-
fined as a function of vertically extrapolated satellite Chl a

following Morel and Berthon (1989). An offshore decreas-
ing cross-shore profile, following in situ observations, is ap-
plied for zooplankton, and a vertical constant (exponential)
profile is used for detritus (nitrite, ammonium and dissolved
organic nitrogen). In order to get a realistic solution for the
region, the model parameters were tuned to simultaneously
fit modeled oxygen and nitrate fields to observations (see Ta-
ble A1 of Montes et al. (2014) for parameter values). These
changes were motivated by the need to adjust the microbio-
logical rates to values observed in the SEP. Within this pa-
rameter configuration, BioEBUS has been shown to be skill-
ful for simulating the OMZ off Peru (Montes et al., 2014).
In particular the pattern correlations between the model and
observations for both the annual mean and the seasonal cy-
cle inside the OMZ present comparable scores (> 0.85, cf.

Montes et al., 2014) as well as low standard deviations (i.e.,
in the order of the observed values). The model was run over
the period 1958–2008 with a 10-year spin-up obtained by re-
peating the year 1958. Although, after the spin-up, the sim-
ulation has reached stable conditions and the OMZ volume
does not drift, we focus in the present study only on the pe-
riod 2000–2008.

The reason for focusing on the last 10 years of our simu-
lation is also motivated by the fact that the atmospheric mo-
mentum forcing is close to the satellite QuickSCAT winds
by construction (see Goubanova et al., 2011, for details) so
that this period of the simulation is the one when the model
is the most constrained by observations. Most previous mod-
eling studies for this region (Penven, et al. 2005; Montes et
al., 2010, 2014; Echevin et al., 2011; Colas et al., 2012) have
also used a wind forcing from the QuickSCAT scatterometer,
which provides a benchmark for assessing our simulation.

A monthly-mean climatology is calculated for all variables
over this period from the 3-day mean outputs of the model,
which can be compared to the CARS data.

Consistently with Montes et al. (2014), the coupled simu-
lation is skillful in simulating the mean characteristics of the
OMZ off the Peruvian coast (Figs. 2 and 3). In particular the
thickness and location of the model OMZ core limits are re-
alistic, and in good agreement with previous studies (Fig. 2;
e.g., Paulmier et al., 2006; Cornejo and Farías, 2012; Montes
et al., 2014). Note that the simulation reproduces a thinner
OMZ around 10◦ S in comparison to CARS, which agrees
with the results obtained by Montes et al. (2014) (see Fig. 2
in that study). Close to the western boundary of our model
domain, the simulated OMZ also exhibits a realistic verti-
cal structure (Fig. 3) with comparable concentration in DO
than observations in the vicinity of the Equatorial Undercur-
rent (⇠ 100 m; Equator). Furthermore, the simulation is con-
sistent in reproducing the oxygen-consuming processes, as
supported by the apparent oxygen utilization (AOU; Fig. 4),
also in good agreement with previous studies (cf. Fig. 8 in
Cabré et al., 2015). AOU was computed as the difference be-
tween the DO concentration and the saturated oxygen (O2sat)
concentration (AOU = O2sat–O2) with O2sat computed fol-
lowing the methodology of García and Gordon (1992). The
realistic representation of the oxygen-consuming processes
is reflected by the particulate organic carbon flux as well
(Fig. 5a), whose values at 100 m fall within the observed
range for the region (30–60 gC m−2 yr−1 in the shelf area;
Dunne et al., 2005; Henson et al., 2012). In addition, the low
transfer efficiency of carbon (10–15 % or lower over and next
to the shelf; Henson et al., 2012), from the euphotic zone
to greater depths (Fig. 5b), implies that the remineralization
processes take place at realistic depths and therefore allow
for a correct vertical representation of the OMZ (cf. Fig. S2
in Cabré et al., 2015, for comparison).

The core of the OMZ, defined with a suboxic concentra-
tion ([DO] < 20 µM; µM will be used to refer to µmol L−1

in all the text and figures), occupies nearly 23 % of the
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Figure 3. Mean oxygen concentration for a meridional section at 85◦ W (a, b) and a cross-shore section at 12◦ S (c, d), for both the simulation
and CARS. Gray contours in (a) show mean zonal speed of 5, 10 and 15 cm s−1, respectively. The black dots denote the horizontal and vertical
resolution of the DO field.

domain volume (Fig. 6a), with the less oxygenated layers
comprised between 5 and 15◦ S, and 100 and 600 m depth
(Fig. 3). As expected, the simulation presents more details
than the climatological product (Fig. 3). Moreover, we com-
puted a geographical OMZ overlapping metric following
Cabré et al. (2015), which quantifies the spatial agreement
of the OMZ volume distribution between the simulation and
CARS, varying between 0 (no agreement) and 1 (perfect
collocation). We obtained a value of 0.79, which is ⇠ 58 %
above the best CMIP5 models used in Cabré et al. (2015).

Despite the overall good agreement between the model
and observations, the simulation overestimates the oxygen
content in certain regions of the domain as compared to
CARS, particularly southwards of 20◦ S (Fig. 3a) and close
to the coast (Fig. 3d). The simulation also underestimates by
6 % the volume of suboxic water (Fig. 6a), which is com-
parable to the differences obtained by Montes et al. (2014)
using the same model within a different configuration and
boundary forcing.

The modeled DO distribution is also characterized by finer
spatial scales of variability inside the OMZ compared to ob-
servations (Fig. 3c and d). In particular, the model oxycline is
shallower and with a more intense DO gradient than the ob-
servations, which has been also observed in a regional sim-
ulation of the Arabian Sea OMZ (Resplandy et al., 2012).
While this could be partly due to CARS underestimating the

DO gradient, as a result of its relatively low vertical resolu-
tion, it could also be that the model underestimates the verti-
cal diffusivity in the vicinity of the oxycline. Also, it must be
kept in mind that CARS is built using all the available data
from the second half of the twentieth century (1940–2009),
whereas we focus on the period 2000–2008 for the simula-
tion, which is known to be a colder period than the previous
decades in the eastern tropical Pacific (Henley et al., 2015).
Other limitations for the comparison between model and
data include the errors associated with the scarcity of data
in some regions (Bianchi et al., 2012) and biases in model
parametrizations. Nonetheless, the simulation is in overall
good agreement with CARS in terms of mean characteristics
of the OMZ (Figs. 4, 6a).

In order to evaluate the realism of the seasonal cycle,
we estimate the seasonal variability of the volume of water
within the suboxic DO concentration range 0–20 µM in both
the model and data (Fig. 6b). The results indicate that, de-
spite a weaker amplitude (by 15 % on average), the seasonal
cycle of the OMZ core is relatively well simulated by the
model. For hypoxic DO volume in the range 40–50 µM, the
agreement is as good as inside the OMZ core, with a Pear-
son correlation value of 0.9 and a volume root mean square
(RMS) difference of 16 %, between the simulation and the
observations.
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Figure 4. Mean apparent oxygen utilization (AOU) at 85◦ W for both CR BIO and CARS. White contours denote the mean oxygen concen-
tration isopleths (in µM). The black dots denote the horizontal and vertical resolution of the DO field.

In order to summarize the model validation, we present a
Taylor diagram showing the statistics of the comparison be-
tween the model and observations for a depth range encom-
passing the OMZ (Fig. 7). This analysis indicates that within
the present model configuration, we reach a skill compara-
ble to the model configuration of Montes et al. (2014) (their
Fig. 1). The good agreement of the seasonal cycle between
CARS and the simulation, in addition to the consistency of
our results with those of Montes et al. (2014), provides con-
fidence in using the model outputs for investigating the pro-
cesses associated with the seasonal variability of the OMZ.

2.3 Methods

In this work, our approach is twofold: First, the biogeochem-
ical processes for DO are investigated explicitly through the
online oxygen budget. Although this methodology can pro-
vide a direct estimate of the seasonal variability in advec-
tion and mixing, it does not allow for a direct estimate of
the eddy contribution to DO change that can also vary sea-
sonally. The DO flux associated with different timescales of
variability is therefore estimated. This consists in computing
the temporal average of the cross-products between DO and
velocity anomalies. Anomalies can refer either to seasonal
anomalies (in that case, this provides the mean seasonal DO
flux: heu⇥eO2i, where ⇠ refers to the seasonal anomalies) or to
the intraseasonal anomalies, calculated here as the departure
from the monthly mean (in that case, this provides an esti-
mate of the mean DO eddy flux: hu0 ⇥ O0

2i, where the apos-
trophe refers to the intraseasonal anomalies). In this paper
we are also interested in the seasonality of the DO eddy flux.
This is estimated from the monthly-mean seasonal cycle of
the mean DO eddy flux calculated over a 3-month running
window and is now referred to as hu0 ⇥ O0

2i. The climatolog-
ical EKE activity is estimated similarly.

Figure 5. (a) Particulate organic carbon (POC) flux at 100 m and
(b) POC transfer efficiency between 100 and 2000 m (POC flux at
2000 m divided by POC flux at 100 m), computed from the simula-
tion. Integrated carbon flux at the depth of 100 m is 0.8 Pg C yr−1.
Black contours correspond to the 200, 1000 and 5000 m isobaths.

The DO budget consists in the following equation:

∂O2

∂t
= −u · (rO2) + Kh · r2O2 +

∂

∂z

(
KZ

∂O2

∂z

)
+ SMS(O2). (1)

The first three terms on the right-hand side represent the
physical processes involved in the changes in oxygen con-
centration. The first term stands for the advection of oxygen,
where u is the velocity vector (note that the model determines
the vertical velocity component from the continuity equa-
tion). The second term corresponds to the horizontal subgrid-
scale diffusivity (with Kh the eddy diffusion coefficient equal
to 100 m2 s−1 in this version of the model), and the third term
corresponds to the vertical mixing (with turbulent diffusion
coefficient Kz calculated based on the K-profile parameter-
ization mixing scheme; Large et al., 1994). Note that the
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Figure 6. (a) Domain volume distribution (25◦ S–5◦ N, 88–70◦ W)
as a function of the oxygen concentration and (b) annual cycle, rel-
ative to the mean, of the volume distribution inside the OMZ core
(DO value range corresponding to 0–20 µmol L−1), for both CARS
and the simulation.

model also has numerical diffusion associated with inherent
spurious diapycnal mixing of the numerical scheme, so that
Kh is empirically adjusted.

The fourth term represents the “source-minus-sink” con-
tribution to the oxygen changes, directly due to biogeochemi-
cal activity. Biogeochemical processes correspond to the sum
of oxygen sources and sinks, namely the photosynthetic pro-
duction, and the aerobic processes (oxic decomposition, ex-
cretion and nitrification). In this study, for simplicity, those
will be considered as a summed-up contribution to the DO
rate of change, whereas physical processes will be divided
into advection and mixing terms. Each term of this oxy-
gen budget is determined online at each time integration.
While horizontal diffusion and vertical diffusivity are explicit
sources of mixing, they are not the only terms contributing
to mixing. Later on in the paper, unless stated otherwise,
the term mixing will refer to the integrated effect of all pro-
cesses contributing to mixing directly or indirectly. Besides
the horizontal diffusion (Kh ⇥ r2O2) and vertical mixing(

∂
∂z

(
KZ

∂O2
∂z

))
, mixing can be also induced by nonlinear ad-

vection. The latter corresponds to
(
u0∂u0/∂x

)
+

(
v0∂v0/∂y

)
+(

w0∂w0/∂z
)
, assuming the Reynolds decomposition for the

velocity field, i.e., ū+u
0, where u

0 accounts for the intrasea-
sonal variability (periods shorter than ⇠ 3 months).

In the SEP, the subthermocline seasonal variability can
be interpreted as resulting from the propagation of ETRW.
ETRW radiate from the coast and propagate vertically, induc-
ing a vertical energy flux whose trajectory follows the the-
oretical Wentzel–Kramers–Brillouin (WKB) ray paths (De-
witte et al., 2008; Ramos et al., 2008). The energy flux re-
sults from the phase relationship between vertical velocity
associated with the vertical displacement of the isotherms,

Figure 7. Taylor diagram of the seasonal mean (hourglass, dia-
mond, square and cross) and annual mean (circle) pattern of DO and
surface chlorophyll (25◦ S–5◦ N, 88–70◦ W). Only annual mean
pattern comparisons are shown for temperature and salinity (same
spatial domain). DO, temperature and salinity were vertically aver-
aged between 100 and 600 m depth (focus on the OMZ core). Only
the surface chlorophyll values within 250 km next to the coast were
considered. The comparisons are made between the simulation and
CARS (for DO, temperature and salinity) and SeaWiFS (for sur-
face chlorophyll). Ordinate and abscissa axes represent the standard
deviation normalized by the observations standard deviation. Blue
dotted radial lines indicate the RMS difference between the obser-
vations and the simulation.

and the pressure fluctuations associated with them. In the re-
gions sufficiently below the thermocline for DO consump-
tion to become weak (that is DO can be considered a pas-
sive tracer), it is expected that changes in DO relate to the
anomalous velocity field and that the DO flux shares com-
parable characteristics than the Eliassen–Palm flux (Eliassen
and Palm, 1960). The trajectories of the WKB ray paths are
a function of latitude, local stratification and the phase speed
of the Rossby wave (see Ramos et al., 2008). The latter con-
sists in the superposition of a certain number of baroclinic
modes, in order to propagate vertically, so the phase speed
can range from c1 to cn, where cn is the theoretical phase
speed of a nth baroclinic mode, obtained from the vertical
mode decomposition of the local density profile.

3 Characteristics of the DO annual cycle

While the annual signal is a conspicuous feature inside the re-
gion (Fig. 6b), it could manifest differently across the OMZ.
As a first step towards investigating processes driving the rate
of DO change, it appears important to document the vertical
structure variability of the DO annual cycle within the OMZ.
The amplitude and phase of the annual harmonic of the
model DO climatology are presented along a zonal section
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Figure 8. (a) Amplitude and (b) phase of the annual maximum (in
months) of the annual harmonic of the normalized DO concentra-
tion at 12◦ S. The slanted vertical lines indicate the theoretical WKB
ray paths at a frequency of ω = 2π ⇥ 1 yr−1, for different values of
phase speed. The theoretical trajectories were computed using the
phase speed of the first (full), second (dashed) and third (dotted)
baroclinic modes of a long Rossby wave. Dashed contours in (a)

and (b) depict the 45 and 20 µM mean DO values. Land and the
region outside the 45 µM mean DO isopleth are masked in white.
(c) Annual harmonic of the DO concentration at 12◦ S, at 150 m
and (d) 700 m depth. Small color scale corresponds to 700 m and
the large color scale denotes the levels used in (c).

off central Peru (12◦ S, Fig. 8a, b), where the OMZ core is ex-
tensive (Fig. 2). The DO climatology has been normalized by
its RMS in order to emphasize the regions where the ampli-
tude in DO changes (and mean DO) is weak. The amplitude
reveals a complex pattern with three regions of large rela-
tive variability: (1) near the coast (i.e., fringe of ⇠ 150 km)
between the oxycline and 400 m, (2) offshore between 82
and 84◦ W in the upper 400 m and (3) below 500 m. The
phase lines over these three regions suggest distinct propa-
gating characteristics: whereas in the coastal region there is
no propagation, in the offshore and deep region there is indi-
cation of a westward propagation. In the region below 500 m,
the phase lines tend also to be parallel and slope downward,
suggestive of westward–downward propagation (estimated
phase speed of ⇠ 2.5 cm s−1). These propagating character-
istics can be evidenced in the Hovmöller diagrams of the re-
composed annual cycle at the depth of 150 m (Fig. 8c) and
700 m (Fig. 8d). While at 150 m the annual signal does not
clearly propagate and only shows two domains of high am-
plitude, separated by low amplitude values (Fig. 8c) there is

a clear westward propagation of the DO anomalies at 700 m,
with the phase speed increasing westward. At 400 m, the
propagation is only observed west of 81◦ W (Fig. 8b). In ad-
dition to the large vertical structure variability of the annual
cycle, the OMZ annual cycle is also characterized by a large
horizontal variability in particular at its northern and south-
ern boundaries. This is illustrated in Fig. 9, which displays
the amplitude of the annual cycle of the DO climatology at
400 m and evidences amplitude peaks at the OMZ meridional
boundaries (between the 20 and 45 µM isopleths).

The annual variability pattern evidenced above results
from a delicate balance between the physical processes
(namely advection and mixing, cf. Eq. 1) and the biogeo-
chemical processes (consumption versus production). As a
first step towards investigating each term of the DO budget,
it is interesting to evaluate the relative contribution of the
physical and biogeochemical fluxes to the DO variability at
seasonal scale. The RMS of the climatological fluxes along
a section at 12◦ S indicates that the maximum amplitude of
the seasonal fluxes takes place near the oxycline and along
the coast over the whole water column (Fig. 10). The rela-
tive importance of the physical processes against the biogeo-
chemical processes varies across the OMZ. At the coast and
near the oxycline, the annual variability of the biogeochemi-
cal processes reaches values almost half those of the variabil-
ity in physical processes (Fig. 10c), as a consequence of the
proximity to both the well-lit and highly productive part of
the water column, and the high remineralization activity that
occurs near the oxycline. Towards offshore and at depth, the
relative importance of the variability of the biogeochemical
processes reduces gradually. Near ⇠ 300 m the variability of
the biogeochemical processes is nearly one-fifth of the phys-
ical processes variability. Below ⇠ 300 m, and towards the
lower part of the OMZ core and below, the physical processes
variability is 1 order of magnitude larger. Consequently, the
distribution of DO in the lower part of the OMZ is rather
a function of advection/diffusion than a consequence of the
biogeochemical processes, although DO consumption even
at very low levels has the potential to generate local gradi-
ents and therefore induce advection. The spatial heterogene-
ity in the seasonal DO changes induced by the biogeochem-
istry and dynamics, as described above, appears as an ubiq-
uitous feature in the OMZ. To illustrate this, we estimate the
proportion of explained variance of the seasonal DO rate of
change by the physical fluxes as

R2
Phys. = (1 − RMS(biogeochemical fluxes)/

RMS(total fluxes)) · 100. (2)

Figure 11a and b present the results of R2
Phys. at 100 and

450 m depth, which evidences that the relative importance
of the physical fluxes versus the biogeochemical fluxes in
the seasonal DO variability increases with depth and is en-
hanced at the OMZ boundaries. However, the biogeochemi-
cal fluxes explain more than 50 % of the variance in seasonal
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Figure 9. Annual DO harmonic amplitude at 400 m depth. White
contours denote the 10, 20 and 45 µM mean oxygen isolines. Black
contours denote the 1, 2, 4, 6 and 8 µM levels.

DO change rate in a narrow (⇠ 200 km width) coastal fringe
that extends more offshore to the north of the domain (around
8◦ S; Fig. 11a) and vertically down to 300 m (Fig. 11c).

Based on the above analysis, it is clear that the coastal re-
gion (first 200–300 km from the coast) below the oxycline
corresponds to a territory where the seasonal variability of
biogeochemical and physical fluxes have a comparable mag-
nitude, whereas outside this region, notably in the lower
part of the OMZ core, the physical fluxes variability domi-
nates over the biogeochemical fluxes variability at seasonal
timescale. Hereafter we examine the possibility of two dis-
tinct regimes of OMZ dynamics at seasonal timescale: one
associated with the upper OMZ (including coastal domain
and meridional boundaries), and one associated with the deep
OMZ. In the following we investigate the processes respon-
sible for the DO flux.

4 Seasonality of the OMZ ventilation

It has been shown for the SEP that the DO content near the
coast is set to a large extent from the transport of oxygen-
deficient waters from the equatorial current system, partic-
ularly the oxygen-depleted secondary southern subsurface
countercurrent (Montes et al., 2014). Therefore, the seasonal
variability of DO is likely to result in part from the seasonal
variability of the different branches of the EUC in the far
eastern Pacific. Local wind stress forcing (and its intrasea-
sonal activity) has also a marked seasonal cycle off Peru (De-
witte et al., 2011) which may impact both the upwelling dy-
namics – through Ekman pumping/transport – and mixing.
Some studies also argue that the DO exchange between the
coastal domain and the OMZ takes place through the off-
shore transport of DO-poor waters by eddies (Czeschel et al.,
2011), implying that the variability of such processes is set
up by coastal processes that determine the nature of the DO

source. As a first step, we investigate the mechanisms respon-
sible for the seasonal variability in DO along the coast, which
can be considered as the eastern boundary of the OMZ. This
is aimed at providing material for the interpretation of the
offshore DO flux variability.

4.1 The coastal domain as the eastern boundary of the

OMZ: variability and mechanisms

We analyze the seasonal variability along the coast, at a sec-
tion at 12◦ S. Similar results are obtained for latitudes be-
tween 7 and 14◦ S (not shown), which corresponds to the lat-
itude range where the Peru Undercurrent (PUC) is well de-
fined. The results are also presented in terms of the first em-
pirical orthogonal function (EOF) mode, in order to ease the
interpretation of the variability, reduced as a spatial pattern
modulated by a seasonal time series. It was verified in par-
ticular that the consideration of the first EOF mode of each
term leads to an almost perfect closure of the DO budget (see
below, Table 1). Figure 12 displays the first EOF mode of var-
ious climatological fields in a section at 12◦ S near the coast
and from the oxycline (45 µM isoline) to the depth of 300 m.
Figure 13 shows the principal components associated with
the first EOF-mode patterns. The seasonal DO cycle is dom-
inated by an annual component, with a peak centered in Au-
gust (Fig. 13a), and the largest variability at the coast below
the oxycline that extends offshore and downward, resulting
in an elongated tongue below 100 m near ⇠ 78◦ W (Fig. 12a).
During the first quarter of the year, oxygen anomalies remain
relatively stable (oxygen rate nearly zero, Fig. 13b) and neg-
ative due to a high production of organic matter in austral
summer (cf. Fig. 1c of Gutiérrez et al., 2011) that stimulates
a subsurface oxygen consumption associated with the degra-
dation of this organic matter. DO anomalies start to increase
during the second quarter, become positive in June and reach
their maximum in August (Fig. 13a). The peak anomaly in
austral winter could be understood in terms of the increased
mixing (see Fig. 13a showing EKE peaking in July) asso-
ciated with the increase in baroclinic instability due to the
seasonal intensification of the PUC from June. Note that the
pattern of the first EOF mode of the alongshore current co-
incides with the mean position of the PUC (see Fig. 12b),
so that seasonal variations of the PUC can be interpreted in
terms of the variations in the vertical shear of the coastal cur-
rent system. Other processes that may explain the peak DO
anomaly in austral winter include the reduced productivity
and downwelling that peaks in June (Fig. 13c), associated
with seasonal equatorial downwelling Kelvin wave.

The following investigates the tendency terms of the DO
budget in order to quantitatively interpret the DO seasonal
cycle near the coast. Given that the analysis is performed
inside the 45 µM isopleth, the biogeochemical flux term is
largely dominated by the “sinks” terms (aerobic processes;
1 order of magnitude larger than “sources”), driven by or-
ganic matter remineralization and zooplankton respiratory
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Figure 10. Root mean square of the seasonal cycle of (a) physical and (b) biogeochemical oxygen fluxes (in 10−5 and 10−6 µM s−1,
respectively) for CR BIO at 12◦ S. (c) Ratio between the RMS of the biogeochemical fluxes and the physical fluxes, expressed as percentage.
Dashed contours depict the 45 and 20 µM mean oxygen values. Note the vertical scale change at 300 m depth. Land and the region outside
the 45 µM mean DO isopleth are masked in white.

Figure 11. Percentage of the seasonal DO rate variance explained by the physical fluxes, at (a) 100 and (b) 450 m depth, and along a cross-
shore section at 12◦ S. Solid white lines (a, b) and dashed gray lines (c) denote the 10, 20 and 45 µM mean DO isopleths. Land and the region
outside the 45 µM mean DO isopleth are masked in white in (c).

metabolic terms (not shown). For clarity, the seasonal DO
budget is presented synthetically, from the first EOF mode
of the climatological advection, mixing (horizontal and ver-
tical diffusion) and biogeochemical fluxes terms. Although
this does not warranty a perfect closure, it eases the interpre-
tation. Note that the residual resulting from the difference be-
tween the first EOF mode of the rate of DO changes and the
summed-up contribution of all the other terms in Fig. 13b is
rather weak, validating to some extent our approach (see also
Table 1). First of all, we find that the largest amplitude of the
mode patterns is found near the coast and inside the mean
PUC core (Fig. 12d to g). During the first part of the year
(January to May), positive advection anomalies are compen-
sated by mixing (horizontal and vertical diffusion), and they

maintain the rate of DO change relatively low (Fig. 13b; Ta-
ble 1). Biogeochemical fluxes anomalies are positive during
that period, associated with a positive anomaly of primary
production in the well lit surface layers, implied by the high
chlorophyll a values (Fig. 13c). A positive oxygen anomaly
is sustained by the advection terms and the biogeochemical
terms and is balanced out by the mean advection of low DO
waters carried by the PUC (Montes et al. 2010, 2014), gener-
ating the relatively stable oxygen values (oxygen rate nearly
0).

From May, the rate of DO changes increases concomi-
tantly with EKE (Fig. 13a, b), followed 1 month later by
mixing (horizontal and vertical diffusion), whereas advection
and biogeochemical fluxes decrease. By June–July, the inten-
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Table 1. Austral summer (DJF mean) and winter (JJA mean) seasonal anomalies of the DO budget, averaged over the core of the Peru
Undercurrent at 12◦ S (as depicted by the red contour in Fig. 12). The values for the seasonal cycle and the reconstructed first EOF mode
(Figs. 12 and 13) are presented along with the difference between climatology and EOF. All values are in 10−6 µM s−1. Mixing here consists

in the summed-up contribution of horizontal diffusion (Kh ⇥ r2O2) and vertical diffusivity
(

∂
∂z

(
KZ

∂O2
∂z

))
.

Climatology EOF Difference

Summer Winter Summer Winter Summer Winter

∂O2/∂t 1.10 −2.74 1.30 −2.67 −0.20 −0.07
Adv 0.61 −9.38 0.85 −9.30 −0.24 −0.08
Mixing −0.42 7.99 −0.35 7.99 −0.07 0.00
Biogeochemical flux 0.91 −1.35 1.00 −1.35 −0.09 0.00

Figure 12. First EOF-mode pattern of (a) DO, (b) alongshore currents component, (c) eddy kinetic energy, (d) oxygen rate, (e) biogeochem-
ical flux, (f) advective terms (sum of horizontal and vertical components) and (g) mixing terms (sum of horizontal and vertical components).
Percentage of explained variance by each EOF-mode pattern is indicated in parentheses on top of each panel. The red contour denotes the
mean position of the Peru Undercurrent core, defined here as alongshore southward current exceeding 4 cm s−1. The black dashed contour
denotes the mean DO 45 µM isopleth. Land and the region outside the 45 µM mean DO isopleth are masked in white. The EOF-mode patterns
were multiplied by the RMS of the principal component (PC) time series. Multiplying the EOF pattern by the PC time series plotted in Fig. 13
yields the contribution of the first EOF mode to the original field, in dimensionalized units (i.e., µM s−1 for the tendency terms).

sification in alongshore winds (Fig. 13c) starts to propel the
coastal upwelling, which has two compensating effects: on
one hand, it triggers photosynthesis in the lit surface layers
(DO rate turns to positive values); on the other hand, it uplifts
low-oxygen waters from the OMZ. The intraseasonal wind
activity also starts to increase at that time (cf. Fig. 13c; see
also Dewitte et al., 2011), which favors mixing and the down-
ward intrusion of positive DO anomalies (note the deepening
of the mixed layer in Fig. 13c). The overall effect is an in-
crease in DO, which leads to a peak anomaly in August. At
that time, the DO rate drops sharply due to the strong subsur-
face DO consumption (Table 1) associated with aerobic rem-
ineralization of organic matter produced earlier in the season
(DO rate moves sharply to negative values) and the high mix-
ing that brings DO-depleted waters from the subsurface into
the deepened mixed layer. Note that this is consistent with
the decrease in surface chlorophyll a (Fig. 13c) and the in-
terpretation proposed by Echevin et al. (2008) to explain the

austral summer minimum in surface chlorophyll a observed
off central Peru.

This change to oxygen-poor conditions combines with the
natural decrease in oxygen production towards the end of the
upwelling season and coincides with a restratification of the
water column, which restricts the oxygenated waters near the
surface (Echevin et al., 2008). This altogether contributes to
maintain a negative DO rate inside the coastal OMZ, despite
the increase in anomalous DO flux from the advective terms
and (later on) biogeochemical processes towards the end of
the year. As a result, oxygen returns to low values towards
the end of the year.

4.2 Offshore flux

While the coastal OMZ variability is heavily constrained
by the environmental forcings – coastal upwelling, coastal
current system and local wind – due to the shallow oxy-
cline there, the offshore OMZ, as embedded in the shadow
zone of the thermohaline circulation, is somewhat insensitive
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to direct local forcing and rather experiences remote influ-
ence in the form of westward-propagating mesoscale eddies
(Chaigneau et al., 2009) and ETRW (Ramos et al., 2008; De-
witte et al., 2008). The influence of westward-propagating
mesoscale eddies on the OMZ translates as the transfer of
coastal water properties towards the open ocean (DO in-
cluded), while these properties are altered during transport
due to physical/biogeochemical interactions (Stramma et al.,
2014; Karstensen et al., 2015). Towards the end of their life-
time, hydrographic and biogeochemical anomalies carried by
eddies are redistributed in the ocean (Brandt et al., 2015),
linking the coast and the open ocean. Although most eddy
genesis takes place near the coast and seasonal ETRW have
a coastally forced component, we expect different character-
istics of the seasonal variability in DO between the coast and
the open ocean, given that oxygen demand will change from
one region to the other. We also distinguish the mean DO
flux associated with the annual component of the circulation
that represents the transport in DO associated with seasonal
changes in the large-scale circulation and the annual vari-
ability of the DO eddy flux that corresponds to the annual
changes in the transport due to eddies. These two quantities
are diagnosed at 12◦ S (Figs. 14 and 15). The DO has been
normalized by its climatological variability in order to em-
phasize variability patterns where DO is low.

4.2.1 Mean seasonal flux

We first document the mean DO flux associated with the an-
nual component of the circulation. It consists in the mean of
the cross-product of the annual harmonics of the climatolog-
ical velocity and DO (Fig. 14a). The results indicate that the
amplitude of the annual DO flux is maximum near the coast
and below ⇠ 400 m and it tends to be orientated westward–
downward, following approximately the trajectories of theo-
retical WKB paths for the annual period Rossby wave. Note
that this is consistent with the westward-propagating pattern
of DO below 400 m evidenced earlier (Fig. 8). As a consis-
tency check, we also estimated the annual energy flux vector
in the (x,z) plane associated with a long extratropical Rossby
wave; that is

(
hp1yr ⇥ u1yri, hp1yr ⇥ w1yri

)
where the super-

script denotes the annual harmonics and the bracket the tem-
poral average (Fig. 14b). The flux vector indicates vertical
propagation of energy at the annual period and the pattern
of maximum flux coincides approximately with the region of
maximum amplitude of the mean seasonal DO flux. This sug-
gests that the annual ETRW are influential on the DO flux be-
low ⇠ 400 m. This is interpreted as resulting from the advec-
tion of DO by the ETRW since biogeochemical fluxes have
much less influence on the DO rate of change below 400 m
(Fig. 10c) and the amplitude of the annual cycle of climato-
logical DO eddy flux has a much reduced amplitude below
that depth (Fig. 15a), suggesting a small contribution of hor-
izontal and vertical diffusion to the DO budget. Note that the
DO (Fig. 15a) was normalized prior to compute the DO eddy

Figure 13. (a, b) Non-dimensional principal components (PCs) as-
sociated with the EOF patterns in Fig. 12. Multiplying the principal
component by the associated EOF pattern (from Fig. 12) yields a
first EOF-mode reconstruction of the original field. RMS values of
the principal components are indicated in parenthesis (correspond-
ing units as in Fig. 12). The residual corresponds to the difference
between the rate of DO change and the sum of all the terms of the
right-hand side of Eq. (1) in terms of the normalized PC time se-
ries. The weak residual indicates that the seasonal DO budget can
be interpreted from the EOF decomposition. The EOF decomposi-
tion was performed over the climatological (mean seasonal cycle)
fields. (c) Normalized seasonal cycle of coastal alongshore wind
(AS wind) and coastal alongshore wind running variance (variance
over a 30-day running window) at 12◦ S, sea level at the coast at
12◦ S, surface chlorophyll a from CR BIO (Chl a) and from Sea-
WiFS (Chl a SW) averaged over a coastal band of 2◦ width at
12◦ S, and mixed layer depth (MLD) at the coast at 12◦ S. Mean
and RMS used to normalize each time series, are indicated in paren-
thesis. Original seasonal cycle is found by multiplying the normal-
ized series by its RMS and then adding the mean. Original units are
N m−2, m, mg m−3 and m, respectively.

flux, so it is possible to compare to Fig. 14a, and therefore
contrast the flux associated with the annual ETRW against
the annual DO eddy flux. It was verified that the vertical
structure variability of the annual DO flux described above
for the section of 12◦ S is comparable at other latitudes within
the OMZ. In particular, the annual DO flux tends to remain
homogeneous along trajectories mimicking the energy paths
of the ETRW at the annual period when the slope becomes
steeper to the south (not shown).

4.2.2 Seasonal eddy flux

As previously described, the annual amplitude of the clima-
tological DO eddy flux is the largest in the upper 400 m near
the coast at 12◦ S consistently with the high EKE in this re-
gion. Since EKE is large along the coast of Peru, exchange
of DO induced by eddies could be expected at all latitudes,
with a direction that depends on the sign of the DO gradient
at the coast. Figure 16 presents the annual harmonic of the
climatological DO eddy flux along the coast and averaged in
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Figure 14. (a) Norm of the annual DO flux vector (i.e.,r(
hu1yr ⇥ O1yr

2 i

)2
+

(
hw1yr ⇥ O1yr

2 i

)2
) for a cross-shore

section at 12◦ S. Arrows indicate the vector direction(
i.e.,

h
hu1yr ⇥ O1yr

2 i, hw1yr ⇥ O1yr
2 i

i)
. The DO signal was

normalized by its root mean square value before computing
the annual harmonic in order to emphasize the flux patterns
where DO concentration is very low. (b) Norm of the annual

energy flux vector (i.e.,
q(

hp1yr ⇥ u1yri
)2

+
(
hp1yr ⇥ w1yri

)2).
Arrows inside the 0.2 contour indicate the vector direction(

i.e.,
h
hp1yr ⇥ u1yri, hp1yr ⇥ w1yri

i)
. Some theoretical WKB

trajectories (1-year period) originating from near the coast at the
surface are drawn for phase speed values of a first (full), second
(dashed) and third (dotted) baroclinic modes. The range of phase
speed values (modes 1–3) is obtained from a vertical mode decom-
position of the mean model stratification. Dashed black contours
indicate the 45 and 20 µM mean DO isopleths. Land and the region
outside the 45 µM mean DO isopleth are masked in white.

a coastal fringe distant 1◦ from the coast and 2◦ width. The
maximum amplitude – reaching ⇠ 1 cm s−1 µM – is concen-
trated in the upper oxycline (Fig. 16a) with a peak during
austral winter. The peak season is also confirmed by the EOF
analysis of the climatological DO eddy flux (not shown). De-
spite the relative large meridional variability in the ampli-
tude, the mean vertical structure of the DO eddy flux consists
in an approximate exponentially decaying profile with depth,
with a decay scale of ⇠ 90 m (Fig. 16b) so that at 300 m the
seasonal DO eddy flux is on average only 19 % of that at
100 m along the coast. Figure 16a also reveals that the an-
nual DO eddy flux is larger towards the northern rim of the
domain and extends deeper than towards the south. The high
values are increasingly confined close to the surface towards
the southern part of the domain, in comparison to the north-
ern part, although the vertical attenuation displays a similar
scale.

4.3 Meridional boundaries

Here, our objective is to document the seasonality of the DO
eddy flux. As a first step, we estimate the distribution of mean

Figure 15. Zonal section of the annual harmonic of the module of

the seasonal DO eddy-flux vector
(
hu0 ⇥ O0

2i, hw0 ⇥ O0
2i

)
at 12◦ S.

(a) Amplitude of the harmonic and (b) phase of the annual maxi-
mum (in months). Dashed white contours indicate the 45 and 20 µM
mean DO isopleths. DO was normalized by its RMS prior to carry-
ing out analysis. Land and the region outside the 45 µM mean DO
isopleth are masked in white.

Figure 16. (a) Amplitude (color shading) and phase (months, gray
contours) of the annual harmonic of the climatological DO eddy
flux along the coast. The climatology of DO eddy flux was averaged
over a coastal fringe of 2◦ width, starting from 1◦ from the coast.
(b) Meridional average vertical profile (black line), ±RMS (gray
shading). An exponential model fitted to the average vertical profile
(dashed blue line) yields a vertical decay scale of ⇠ 90 m.

DO eddy flux in order to identify the regions where its mag-
nitude is large and thus where it is likely to vary seasonally
with a significant amplitude.

4.3.1 Mean seasonal flux

The horizontal distribution of mean DO eddy flux dis-
plays the highest values at the boundaries of the OMZ core
(Fig. 17) and adjacent to the 45 µM isopleth. Towards the
inner OMZ, the mean DO eddy-flux values decrease noto-
riously, with a factor of nearly 10 between the interior and
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Figure 17. Module of the mean DO eddy-flux vector(
hu0 ⇥ O0

2i, hv0 ⇥ O0
2i

)
at (a) 100 m, (b) 250 m, (c) 350 m and

(d) 700 m depth. Arrows displayed only for values above the
central value in each color bar denote the vector direction and
strength. White contours correspond to the 45, 20 and 10 µM mean
DO values. Red and blue lines denote the position of vertical
sections.

exterior of the 10 µM contour. In agreement with the obser-
vations reported in the previous section, the mean DO eddy
flux decreases sharply with depth (approximately 1 order of
magnitude between 100 and 700 m), with the highest values
concentrated near the oxycline, as expected from the increas-
ing oxygen concentration in this part of the OMZ. In this
sense, the pattern of DO eddy flux around the depth of the
oxycline encloses a region of high variability (not shown).

To gain further insight with respect to the vertical struc-
ture of the DO eddy flux and at the same time diagnose the
role of the mesoscale activity at the boundaries of the OMZ,
we compute the mean DO eddy flux across the two sections
that correspond to the northern and southern limits of the
OMZ (depicted in Fig. 18). These limits are defined based

on Fig. 17 and are located in the provinces of high amplitude
of the mean DO eddy flux.

The DO eddy flux across each of the northern and southern
boundaries was computed by averaging the product of the
fluctuating velocity component normal to the boundary in the
horizontal directions and the fluctuating DO concentration
component, thereby obtaining horizontal eddy fluxes.

As observed in Fig. 17, the highest values for both north-
ern and southern boundary sections are found between the
oxycline and the lower OMZ core limit (Fig. 18), be-
ing almost 1 order of magnitude smaller at greater depths
(Fig. 18c). These high values, located between ⇠ 100 and
300 m, are followed by a sharp decrease (average decrease
of 1.5 cm s−1 µM in 100 m). At the range of depths between
100 and 300 m, the DO eddy flux displays higher values at
the southern boundary (nearly twice as large) when com-
pared with the northern boundary. This relationship is less
clear when analyzing the lower part of the OMZ. At both
meridional boundaries, the mean DO eddy flux in the upper
part of the OMZ is nearly 1 order of magnitude larger than in
the lower part.

4.3.2 Seasonal eddy flux

We now document the seasonal variability of the DO eddy
flux across the OMZ boundaries analyzed above (Fig. 18).
An EOF analysis of the mean seasonal cycle of the DO eddy
flux is performed at the boundary sections previously de-
fined. Figure 19 presents the first EOF-mode patterns along
with the associated time series. In order to estimate the uncer-
tainty associated with the location of the OMZ boundaries,
we repeated this analysis for 12 nearby sections parallel to
the boundaries and spaced by ⇠ 20 km. This leads to an esti-
mated error (standard deviation across the different sections)
of the DO eddy flux. The error is represented as a colored
shading in Fig. 19b, d, e. At both locations, the first EOF
accounts for a well-defined seasonal cycle. At the northern
boundary (Fig. 19a), the seasonal cycle of the DO eddy flux
peaks in austral winter, in phase with the DO changes along
the coast (Fig. 16). Note that the seasonal cycle is in phase
with that of the intraseasonal activity of the horizontal cur-
rents normal to the section, which was estimated the same
way as the climatological eddy flux (see red line in Fig. 19b),
supporting the idea that the climatological DO eddy flux re-
sults from anomalous advection. The amplitude of the mode
pattern is maximum at the oxycline with DO between 20 and
45 µM and presents a sharp decrease below the OMZ core
depth (Fig. 19a). This sharp decrease is evidenced by the
mean vertical profile of the DO eddy-flux seasonal variabil-
ity estimated as the RMS across the section of the EOF-mode
pattern (Fig. 19e). The vertical structure of the DO eddy-flux
variability indicates that there is a difference of nearly 1 or-
der of magnitude between 100 and 300 m depth. From that
depth on, the DO eddy-flux variability decreases linearly.
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Figure 18. (a) Mean DO eddy flux normal to the section denoted by the red line in Fig. 17. (b) Mean DO eddy flux normal to the section
denoted by the blue line in Fig. 17. (c) Horizontal mean of (a) and (b) (red and blue lines, respectively). Gray contours denote mean DO
concentrations, and light red/blue contours correspond to positive/negative values of mean currents normal to the section (1.0/−1.0 cm s−1 in
a and 0.4/−0.2 cm s−1 in b). White contour denotes the 0 value. The sign convention was chosen so that a positive horizontal flux indicates
transport towards the interior of the OMZ.

Figure 19. (a) First EOF mode of the seasonal cycle of the DO eddy flux normal to the section depicted in Fig. 17 by the dashed red
line (northern boundary). (b) Principal component (PC) time series associated with the first EOF mode (black line). The red line in (b)

corresponds to the PC time series associated with the first EOF mode of the seasonal cycle of the 30-day running variance of intraseasonal
currents normal to the section. (c) First EOF mode of the seasonal cycle of the DO eddy flux normal to the oblique section depicted in Fig. 17
by the dashed blue line (southern boundary). (d) PC time series associated with the first EOF mode (black line). The blue curves (full and
dashed lines) in (d) correspond to the PC time series associated with the first and second EOF modes of the seasonal cycle of the 30-day
running variance of the intraseasonal currents normal to the section (computed as in b). Percentage of explained variance and RMS value are
indicated in parentheses in the panels (b) and (d) (in cm s−1 µM and cm s−1 for DO eddy flux and currents, respectively). White contours
in (a) and (c) denote mean DO concentration values in µM. (e) RMS of the spatial patterns (a) and (c), computed along the horizontal
direction. Note the scale leap at 300 m. Red/blue shading in (b), (d) and (e) represents an estimate of the error associated with slight changes
in the location of the boundaries, i.e., when the EOF is performed over a section that is located at a distance from the original section (cf.
Fig. 17) compromised between ±120 km (see text). The error corresponds to the standard deviation among 12 PC time series (for b and d)
and EOF patterns (for e).
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In contrast with the northern boundary, the seasonal vari-
ability at the southern boundary peaks during austral spring
(Fig. 19d), in phase with the intraseasonal activity of the hor-
izontal currents normal to the section. The amplitude of the
seasonal cycle is the largest around the depth of the oxycline
and remains high down to the vicinity of the OMZ core up-
per limit (Fig. 19c). Below the depth of the OMZ core, the
amplitude of the EOF mode decreases sharply (⇠ 1 order of
magnitude in 100 m; Fig. 19c). This is evidenced by the pro-
file of the DO eddy-flux seasonal variability, estimated in
the same manner as for the northern boundary (Fig. 19e).
This profile shares some characteristics with its counterpart
at the northern boundary, meaning a sharp decrease between
the oxycline and the OMZ core depths, suffering a reduction
of nearly 90 % (Fig. 19e). In contrast, the variability along
the southern boundary is ⇠ 70 % larger than along the north-
ern boundary. At both boundaries, the zonal wavelength of
the seasonal DO eddy-flux variability along the boundary is
estimated to be in the order of ⇠ 102 km, a scale that falls
within the range of observed eddies diameter (Chaigneau and
Pizarro, 2005), which indicates that locally there can be an
injection or removal of DO across the boundary on average
over a season. The mean DO eddy flux across the boundaries
is nevertheless positive.

5 Discussion

We now discuss some limitations and implications of our re-
sults. While the model realistically simulates the main char-
acteristics of the OMZ (position, intensity, average volume
and seasonal variations), it still presents biases that could be
influential on our results. In particular, and since the coastal
domain is viewed here as a boundary of the OMZ, it is
important to have a realistic mean DO concentration there.
Compared to CARS, the simulated suboxic volume is, how-
ever, underestimated by ⇠ 6 %, and 85 % of this error can
be attributed to the coastal domain (fringe of 3◦ from the
coast). This bias could be due to several factors. Montes et
al. (2014) observed variations of the suboxic volume in the
order of 5 % when contrasting two simulations that used dif-
ferent oceanic open boundary conditions, which indicates a
sensibility of the simulated OMZ to the physical parameters
and to the representation of the equatorial current system.
This bias could also be partly due to coastal sediments pro-
cesses (DO demanding processes) that are not represented
in our simulation. Using a similar configuration to the one
used in the present study on the Namibian OMZ, Gutknecht
et al. (2013a) observed that the differences between the sim-
ulated OMZ volume and CARS increased towards the shelf,
which could be related to the exclusion of the DO demand
from the sediments in the model. The role of benthic pro-
cesses in constraining the DO demand has been studied in
the northern California current system (Bianucci et al., 2012;
Siedlecki et al., 2015), indicating that locally such processes

might be essential to explain the hypoxic conditions. The in-
clusion of a sediment module in the current model setting is
planned for future work to address this issue.

Another process that could contribute to the underestima-
tion of the suboxic volume in the simulation is the higher
mesoscale activity in the model compared to the observations
(Fig. 1), which could in turn induce a higher ventilation of the
OMZ in the simulation.

Besides other likely sources of biases related to an im-
perfect model setting (e.g., use of relatively low-resolution
atmospheric forcings near the coast, absence of air/sea cou-
pling at mesoscale, absence of coupling with benthic oxygen
demand or consideration of N2 fixation), another inherent
limitation of our study is related with the difficulty in vali-
dating some aspects of the eddy field, in particular its vertical
structure. This might be overcome in the future as the Argo
coverage increases (cf. TPOS2020).

With the limitations of our regional modeling approach in
mind, it is worthwhile to discuss some implications of our re-
sults. While previous studies have mostly focused on the role
of the mean DO eddy flux in shaping the OMZ (Resplandy
et al., 2012; Brandt et al., 2015; Bettencourt et al., 2015),
we have documented here how the seasonal DO changes
inside the OMZ are essentially controlled by the DO eddy
flux at the OMZ limits, which means that the seasonality
of the OMZ can be interpreted as resulting from a modu-
lation of the mesoscale activity at seasonal timescales. We
infer that the seasonality of the DO eddy flux is regulated by
different physical processes depending on the region. At the
coast, there is a constructive coupling between eddies result-
ing from the instability of the PUC peaking in austral winter
and the enhanced DO along the coast resulting from an in-
creased horizontal and vertical diffusion at the same season.

At the northern part of the OMZ, the DO eddy flux is re-
lated to the strong EKE around 5◦ S that peaks in austral
winter. Despite the fact that the northern OMZ is embed-
ded in the equatorial wave guide, it can be ruled out that
the seasonal cycle in DO eddy flux is strongly linked to the
intraseasonal long equatorial waves since the intraseasonal
Kelvin wave activity tends to peak in austral summer (Illig
et al., 2014). The boundary forcing sensitivity model experi-
ments of Echevin et al. (2011) also suggest that the enhanced
mesoscale activity observed off northern Peru during winter
would be related to internal variability or local wind stress
rather than being connected to the equatorial Kelvin wave
activity. Whether or not the strong EKE found there results
from the instability of the coastal currents system or of the
EUC and the South Equatorial Current would need to be ex-
plored.

Regarding the southern boundary, it is interesting to note
that the DO eddy-flux peaks in austral spring, 3 months later
than at the northern boundary. A possible mechanism driv-
ing the local variability observed at the southern section
is the generation of local baroclinic instability and vortic-
ity input from wind stress curl as observed for the Califor-
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Figure 20. Schematic of the main processes driving the seasonal variability in the SEP OMZ: the DO eddy flux through the north–south
boundaries and the DO flux that takes place at the coastal boundary of the OMZ. The coastal band limits are defined by the light blue shading
adjacent to the coast. A scale of the seasonal amplitude of the eddy-driven DO flux at each OMZ boundary is indicated (units in cm s−1 µM).
The mean DO concentration (color shading) and the position of the 45 µM isopleth (thick black contour) at 100 m depth are also represented.
The vertical/offshore DO flux induced by the propagation of the annual ETRW across the 45 µM isopleth at 25◦ S is represented in the bottom
panel.

nia system (Kelly et al., 1998). The southern section lies
within the northeastern rim of the southeast Pacific anticy-
clone, and the peak in the seasonal DO eddy flux coincides
with the reported intensity peak of the seasonal cycle of
the Anticyclone, towards the end of the year (Rahn et al.,
2015; Ancapichún and Garcés-Vargas, 2015). Therefore, the
mesoscale activity in this region could be directly modulated
by the winds. An additional source of intraseasonal (inter-
nal) variability in the currents field could be the interaction
between the annual extratropical Rossby wave and the mean
circulation (Dewitte et al., 2008; Qiu et al., 2013). The actual
source of the eddy activity in this region would also deserve
further investigation.

Our study also reveals that the most prominent propagat-
ing features in DO inside the OMZ at annual frequency is
below ⇠ 300 m, where the seasonal DO flux follows approx-
imately the theoretical WKB ray paths of the annual ETRW.
From that depth, the seasonal variability in physical fluxes
becomes 1 order of magnitude larger than that of the bio-
geochemical fluxes (Fig. 10c). This supports the observation
that DO tends to behave as a passive tracer so that verti-
cal displacements of the DO isopleths mimic those of the
isotherms, inducing a seasonal DO flux that resembles the
energy flux path of the ETRW. This mechanism adds a di-
mension to the understanding of the OMZ variability, consid-
ering that the vertical propagation of ETRW can take place
at frequencies ranging from annual (Dewitte et al., 2008) to
interannual (Ramos et al., 2008).

We now discuss some implications of our results with re-
gards to current concerns around OMZ variability at long

timescales. A recent study has suggested a trend in the OMZ
towards expansion and intensification (Stramma et al., 2008),
the forcing mechanism of which remains unclear (Stramma
et al., 2010). Observations in the Pacific Ocean also suggest
that the OMZ characteristics vary decadally (Stramma et al.,
2008, 2010). Since decadal variability can manifest as a low-
frequency modulation of the seasonal cycle, our study may
provide guidance for investigating OMZ variability at long
timescales. In particular, we show that the variability of the
OMZ is not only related to the fluctuations of the equatorial
currents system but also impacted by the subtropical vari-
ability. This view would link the OMZ low-frequency fluc-
tuations to changes in the midlatitude circulation, in addi-
tion to variations in the equatorial Pacific (Stramma et al.,
2010). Although we observe a larger amplitude of the sea-
sonal cycle in the subtropics compared to the equatorial re-
gion, which could denote a preferential OMZ ventilation
through the south, this result should be interpreted in light
of a possible overestimation of the ventilation at that bound-
ary in our simulation. We also note that the relative contri-
bution of the mean DO flux and the DO eddy flux exhibit
significant interannual fluctuations at the OMZ boundaries
(not shown), which suggests that eddy-induced DO flux may
not be the only key player for understanding long-term trend
in the OMZ. It is interesting to note that, so far, it has been
difficult to reconcile the observed trend in the OMZ with the
trend simulated by the current generation of coupled models
(Stramma et al., 2012), which has been attributed to biases in
the mean circulation and inadequate remineralization repre-
sentation (Cocco et al., 2013; Cabré et al., 2015). Our results
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support the view that such discrepancy may partly originate
from the inability of the low-resolution models to account for
the DO eddy flux and its modulation. Regional modeling ex-
periments also showed that eddy activity can be modulated at
ENSO and decadal timescales (Combes et al., 2015; Dewitte
et al., 2012). This issue would certainly require further inves-
tigation and could benefit from the experimentation with our
coupled model platform. This is planned for future work.

Lastly, the seasonal changes in the OMZ evidenced in this
work are associated with a seasonal change of the oxycline
depth (and an oxycline intensity change; not shown), which
can be considered a proxy for the production of greenhouse
gases (CO2 and N2O) inside the OMZ (e.g., Paulmier et al.,
2011; Kock et al., 2016). Our results suggest that the impact
of the OMZ on the atmosphere through the production of
climatically active gases, such as CO2 and N2O, would be
seasonally damped during austral winter due to a deepening
of the oxycline and a weakening of its intensity.

6 Summary and conclusions

A high-resolution coupled physical/biogeochemical model
experiment is used to document the seasonal variability of
the OMZ off Peru. The annual harmonic of DO reveals three
main regions with enhanced amplitude or specific propaga-
tion characteristics, suggesting distinct dynamical regimes:
(1) the coastal domain, (2) the offshore ocean below 400 m
and (3) at the southern and northern boundaries. In the
coastal portion of the OMZ, the seasonal variability is re-
lated to the local wind forcing and therefore follows to a
large extent the paradigm of upwelling triggered productiv-
ity, followed by remineralization. It is shown in particular
that DO peaks in austral winter, which is associated with hor-
izontal and vertical diffusion induced by both the increase in
baroclinic instability and intraseasonal wind activity. This is
counterintuitive with regards to the seasonality of the along-
shore upwelling favorable winds also peaking in austral win-
ter, which would tend to favor the intrusion of deoxygenated
waters from the open-ocean OMZ to the shelf. Instead, the
coastal domain can be viewed as a source of DO in austral
winter for the OMZ through offshore transport. The latter is
induced by eddies that are triggered by the instabilities of the
PUC. In the model, the offshore DO eddy flux has a marked
seasonal cycle that is in phase with the seasonal cycle of the
DO along the coast, implying that the coastal domain, viewed
here as the eastern boundary of the OMZ, is a source of sea-
sonal variability for the OMZ. This appears to operate effec-
tively in the upper 300 m. Below that depth, the DO eddy flux
is much reduced due to both a much weaker eddy activity
and a very low DO concentration. In contrast, a mean sea-
sonal DO flux is observed and exhibits propagating features
reminiscent of the vertical propagation of energy associated
with the annual ETRW.

In the upper 300 m, the OMZ seasonal variability is also
associated with the DO eddy flux at the OMZ meridional
boundaries where it is the most intense. We find that the sea-
sonal cycle in DO eddy flux peaks in austral winter at the
northern boundary, while it peaks a season later at the south-
ern boundary. Additionally, the amplitude of the seasonal cy-
cle in DO eddy flux is larger at the southern boundary than at
the northern boundary. The schematic of Fig. 20 summarizes
the main processes documented in this paper to explain the
seasonality of the OMZ.
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4.2. Seasonal variability of the oxygen minimum zone

Résumé de l’article Seasonal variability of the oxygen minimum zone

off Peru in a high-resolution coupled model

Le Pacifique Sud-Est est reconnu comme l’une des régions les plus productives au

monde en terme de production primaire dans la couche euphotique. Sous la surface, la

région au large du Pérou abrite l’une des zones de minimum d’oxygène (OMZ1) la plus

étendue au monde, qui a fait l’objet d’importants programmes de recherche depuis la

dernière décennie. Malgré ces efforts, le volume de données acquis dans cette région

reste insuffisant pour bien comprendre la dynamique qui contrôle les variations de

l’OMZ. De plus, les interactions biogéochimiques complexes qui ont lieu dans cette

zone et la présence de forts gradient biogéochimiques et d’une dynamique océanique

non-linéraire rendent l’étude de la variabilité de l’OMZ difficile. Dans cette étude,

nous utilisons un modèle couplé physique/biogéo-chimique de haute résolution pour

étudier les variations saisonnières de l’OMZ. En se focalisant sur la caractérisation du

cycle saisonnier de l’oxygène dissout (DO2) induit par les structures de mésoéchelle

(flux turbulents d’oxygène), à travers les différentes frontières de l’OMZ. Du à son

impact significatif sur le flux total d’oxygène, nous prenons aussi en compte les vari-

ations saisonnières de la région côtière, que nous considérons comme la frontière Est

de l’OMZ. Les résultats indiquent que les variations saisonnières de l’OMZ peuvent

s’interpréter à travers la modulation saisonnière de l’activité mésoéchelle. Malgré la re-

montée des eaux suboxiques ayant lieu pendant le pic de la saison d’upwelling, les con-

centrations de DO sur la plate-forme continentale sont maximales durant cette période

le long des côtes Péruviennes. Le maximum saisonnier de DO a principalement lieu

dans le coeur du sous-courant de Pérou-Chili (PUC3) pendant l’hiver austral, résultant

du mélange associé à l’augmentation de l’activité intra-saisonnière du vent de sur-

face et aux instabilités baroclines du PUC. Cette variabilité montre que l’océan côtier

se comporte comme une source d’oxygène pour l’intérieur de l’OMZ pendant l’hiver

austral, lié aux flux d’oxygène vers l’Ouest qui sont induits par l’activité mésoéchelle.

Au large des cotes Péruviennes, l’OMZ peut être divisée verticalement en deux zones.

La première s’étend entre la limite supérieure de l’OMZ et 400 m de profondeur, où les

flux turbulents d’oxygène associés à l’activité de mésoéchelle sont plus importants que

le flux advectif total d’oxygène. Dès 400 m de profondeur, le flux saisonnier d’oxygène

montre des caractéristiques de propagation verticale/vers l’Ouest rappelant les trajec-

toires théoriques du flux d’énergie associé à l’onde de Rossby extratropicale à l’échelle

1De l’anglais Oxygen Minimum Zone.
2De l’anglais Dissolved Oxygen.
3De l’anglais Peru Undercurrent.
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annuelle. Aux frontières océaniques de l’OMZ, le maximum saisonnier du flux turbu-

lent d’oxygène à lieu pendant l’hiver (printemps) austral à travers la frontière Nord

(Sud) de l’OMZ. Dans le modèle, l’amplitude du cycle saisonnier du flux d’oxygène à

travers la frontière Sud est 70% plus important qu’à travers la frontière Nord. Nos ré-

sultats suggèrent l’existence de différents régimes de ventilation à l’échelle saisonnière,

liés à chacune des frontières de l’OMZ. La discussion de nos résultats se fait dans un

contexte d’étude de la variabilité de l’OMZ à long-terme.
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4.3 Synthesis

The purpose of this chapter was to document how the fluctuations of the subther-

mocline circulation at seasonal timescale relate to the seasonal ventilation of the OMZ.

The OMZ results from complex physical-biogeochemical interactions (Karstensen

et al., 2008), which reflects in the different mechanisms that contribute to its seasonal-

ity. Our analyses first evidenced that two regimes define the phenology of the OMZ.

Over the shelf, along the coast, the seasonal variability of the OMZ results from the

combined effect of the fluctuations in the coastal circulation system, and the annual

cycle of organic matter production/degradation. On the other hand, the seasonality of

the offshore OMZ is essentially controlled by the fluctuations of the circulation. This

dichotomy motivated us to address the two regions separately.

Our results indicate that the seasonality of the coastal OMZ emerges from the re-

sponse of the coastal circulation system to the seasonal cycle of the upwelling-favorable

alongshore wind, that triggers a primary production bloom and subsequent remineral-

ization. We evidenced that the seasonal peak in austral winter is related to an increase

in vertical/horizontal diffusion, that involves an offshore transport of oxygen during

this period. We interpret this result as a mechanism that allows for the seasonal venti-

lation of the OMZ from the coast during austral winter.

In the meridional boundaries of the OMZ, we observe that the OMZ seasonality is

controlled by the fluctuations of the circulation, with eddies driving a seasonal venti-

lation of the OMZ in the upper 300m. Below this depth, the seasonal variations of the

OMZ (amplitude and phase) show offshore/vertical propagating features, with a very

similar pattern than the annual extra-tropical Rossby wave.
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Chapter 5

Conclusions and Perspectives

In the present thesis work, we investigated the variability of the intermediate to

deep circulation of the Southeastern Pacific (SEP) at different timescales, focusing on

the circulation fluctuations associated with the propagation of the extra-tropical Rossby

wave (ETRW) and the mesoscale activity. To this extent, we adopted a modeling ap-

proach that allowed us to document the circulation variability from the coast to the

abyssal offshore region.

The oceanic variability in the SEP results from a large number of forcing mech-

anisms, both local and remote, which interplay to shape and modulate the circula-

tion. On the one hand, the local influence of the alongshore wind stress influences

the coastal circulation in the shallow layers, while the coastal waveguide links the dif-

ferent climatic modes of variability of the equatorial Pacific with the coastal and off-

shore components of the SEP circulation. These characteristics motivated the choice

of approaching the study of the SEP circulation through the analysis of the variabil-

ity related to each forcing mechanism. Within this general framework, we first ad-

dressed the problem of the circulation variability related to the ENSO events, which

correspond to the most prominent climatic mode of variability in the equatorial Pa-

cific. The surface variability related to these events is fairly well documented along

the South American coast, although at the same time this region corresponds to one of

the ocean basins with the lowest number subsurface observations, which greatly dif-

ficults documenting and analyzing the vertical structure of the circulation variability.

Using a medium-resolution OGCM, Ramos et al. (2008) first evidenced that the circu-

lation anomalies observed in the SEP during the 1997/98 El Niño event propagated

vertically as ETRW. In this regard, our results with respect to the subthermocline inter-

annual variability can be seen as a generalization of the results of Ramos et al. (2008),

which considered only one event (although it corresponds to the strongest ENSO event

in the modern observations). The time range of our study encompasses 2 events that

have been characterized as extraordinary El Niño events (EP events; Takahashi et al.,
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2011), which account for more than 80% of the interannual energy flux into the subther-

mocline circulation in the SEP (along the theoretical WKB ray-paths). This highlights

the profound implications that the climatic variability in the tropical Pacific has for

the circulation in the SEP, whose effects are not restricted to the coastal circulation but

propagate efficiently toward the abyssal ocean through wave dynamics.

The tropical Pacific also experiences significant variability at decadal timescale,

which partly reflects as a modulation of the climatic variability at shorter timescale,

and in particular the modulation of the ENSO modes (Ogata et al., 2013). Our results

indicate that the decadal variability of the tropical Pacific also propagates into the SEP

subthermocline, following the theoretical trajectories defined by the WKB ray-paths.

For a given latitude, the energy beams related to the decadal energy flux extend far-

ther off-shore in comparison to the interannual energy flux.

In principle, the vertical energy flux induced by the propagation of ETRW corre-

sponds to an adiabatic process, given that it only acts to conservatively rearrange the

energy field. However, there could be energy losses along the propagation trajectory,

that would traduce in a diffusion/dissipation of energy. Our results indicate that the

amplitude of the energy flux does not remain constant but that instead decreases along

the wave propagation trajectory, and that this energy dissipation is associated with a

vertical diffusion of heat into the deep ocean. In particular, there is a vertical heat

diffusion associated with the strong El Niño events and with the decadal modulation

of the interannual variability, that follows the theoretical WKB trajectories. This indi-

cates that the energy discharge of the tropical Pacific onto the SEP subthermocline at

interannual and decadal timescales entails a vertical heat diffusion.

Contrasting the results presented in Chapter 3 against the previous estimations of

vertical energy flux evidences the sensitivity of this process to the spatial resolution of

the model used to document it. In particular, our work contrasts against the energy flux

results obtained by Ramos et al. (2008), which were limited by the use of a medium-

resolution OGCM. Although that work clearly evidences the westward/vertical en-

ergy flux induced by the propagation of the ETRW (supported by the interpretation

using linear wave theory), the vertical structure of the energy beams is poorly resolved,

which prevents performing a diagnosis of its dissipation. In addition, the simulation

used in that study only spans 10 years and encompasses only one El Niño event (even

though is the strongest event in modern records). This could result detrimental for the

interannual energy flux estimations as hinted by the magnitude differences in energy

flux estimations between Ramos et al. (2008) and our study (nearly one order of mag-

nitude). The use of a high-resolution simulation spanning the second half of the XXth

century allowed us not only to document the vertical structure of the energy flux and
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its magnitude, but also its vertical dissipation toward the deep ocean and thus the po-

tential influence of this process on the abyssal accumulation of heat in the mid-latitudes

of the SEP, which could in turn take part in the planetary energy balance.

In the second part of the present thesis work, we concentrated our efforts on doc-

umenting the circulation variability in the SEP at seasonal timescales, from the per-

spective of the interactions between the circulation fluctuations and the OMZ, with a

particular focus on the processes that are influential for its ventilation at this timescale.

Although the role of the OMZ in the climate system and in the habitat compression of

one of the most exploited ecosystems in the ocean are well identified (Kock et al., 2016;

Paulmier et al., 2011; Prince and Goodyear, 2006), significant advances with respect to

the understanding of its dynamics have been only achieved recently. In this context,

the second part of the present thesis work is motivated by the current knowledge gaps

on the OMZ dynamics and variability at different timescales. In this sense, a com-

prehensive understanding of the processes that drive the seasonal OMZ variability is

considered a prerequisite for interpreting longer timescales of variability.

While the subsurface circulation variability at interannual to decadal timescales in

the SEP is largely influenced by the variability that takes place in the tropical Pacific,

the seasonal fluctuations of the circulation in the SEP are determined by both local

ocean-atmosphere interactions and the remote influence of the tropical Pacific (Aguirre

et al., 2012; Penven et al., 2005; Pizarro et al., 2002).

Previous studies evidenced that mesoscale eddies play an important role in shap-

ing the OMZ (cf. Bettencourt et al., 2015), which leads to think that these structures

may also intervene in the OMZ variability. Our results show that in fact the OMZ

variability results from a joint contribution between the biogeochemical processes (re-

duced in our study to a production and consumption of oxygen) and the circulation

variability. However, we notice that the degree of importance attached to each process

varies across the OMZ. Along the coast, the seasonality of the OMZ results from the

response of the coastal circulation system to the seasonal variations of the local along-

shore wind stress, which triggers a primary production bloom in the euphotic zone and

the associated organic matter remineralization in the subsurface. Our results indicate

that the seasonal peak in the coastal OMZ ventilation that takes place in austral winter

relates to a seasonal increase in the oxygen eddy transport. This oxygen transport is

directed toward the less oxygenated region of the OMZ located offshore, meaning that

the coastal region behaves as an oxygen source for the OMZ at seasonal timescales.

Our results evidence that the seasonality of the offshore OMZ, where the oxygen

production is rather weak (Pennington et al., 2006), is essentially controlled by the fluc-

tuations of the circulation. In particular, we observe that the seasonal oxygen changes
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are induced by an eddy flux over the upper 300 m, that drives a seasonal ventilation

through the OMZ boundaries. The vertical structure of the oxygen eddy flux is con-

sistent with the vertical structure of the mesoscale structures observed in the region

(Chaigneau et al., 2011), with the highest amplitude in the upper 300 m. Below that

depth, the amplitude of the eddy-induced oxygen flux is low, and the annual vari-

ations of the OMZ (amplitude and phase of the annual harmonic) evidence a verti-

cal/offshore propagating pattern that matches the structure of the energy beams asso-

ciated with the annual extra-tropical Rossby wave.

The results presented here also suggest that the processes involved in the seasonal

variations of the OMZ could influence its ventilation at lower frequencies of variabil-

ity, and in this sense the critical importance of the eddy fluxes evidenced in Chapter 4

would need to be addressed for longer timescales. It has been recently suggested that

the eddy field in the SEP undergoes a significant modulation at interannual timescales,

in relationship with the strong ENSO events in the tropical Pacific (Combes et al., 2015).

In particular, a decrease of the water volume transported offshore by subsurface eddies

has been observed during strong El Niño events (e.g. 1982-1983, 1997-1998; Combes

et al., 2015), which is related to a relaxation of the isopycnals along the coast and a

weakened baroclinic instability during those periods. The relevance that the interan-

nual variability of the SEP circulation has for the ventilation processes evidenced here

would be a potential next step for research on the OMZ dynamics.

Although the simulation used to characterize the seasonality of the OMZ ventila-

tion in Chapter 4 only spans 8 years, the eddy oxygen flux at the OMZ boundaries

presents a marked interannual variability (Fig. 5.1). This calls for assessing the sensi-

tivity of the OMZ ventilation mechanisms to the interannual variability of the circula-

tion, and in this sense a possible direction for future research could be to investigate

the impact of the different types of El Niño events on the OMZ ventilation, considering

that each type of event is associated with a different modulation of the SEP circulation

characteristics (e.g. during CP events the coastal thermocline in the SEP is very close

to its climatological mean, but it deepens several tens of meters during the EP events;

Dewitte et al., 2012). This question acquires further relevance in the context of the cur-

rently long-term expansion of the OMZ, which mechanisms are not yet elucidated. Re-

cently, Dewitte et al. (2012) suggested that the increased occurrence of the CP El Niño

events rectifies on the mean circulation off Peru, impacting on the vertical structure of

the coastal currents system and reducing the baroclinic instability, which in turn leads

to a reduction of the mean eddy kinetic energy field. In the light of the mechanisms

evidenced in Chapter 4, this rectification of the mean state could also reflect on the long-

term ventilation of the OMZ. In this regard, a possible work hypothesis would be that
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the long-term decrease in the eddy activity (indirectly reflected by the EKE decrease

reported by Dewitte et al. (2012)), would translate as a reduction of the OMZ ventila-

tion rates. This scenario would then favor an accumulation of oxygen depleted waters

and eventually, an expansion of the OMZ. To verify the validity of this hypothesis, a

long-term coupled physical/biogeochemical simulation should be used. It should then

be verified that the ventilation mechanisms observed for the seasonal periods are also

significant for the OMZ ventilation at longer timescales, before looking to document

their long-term trend.

The mean oxygen flux also evidences an interannual modulation below 300m (Fig.

5.1) which suggests that there is a response of the lower OMZ related to the ETRW at

this timescale. The magnitude of the energy flux associated with the ETRW at inter-

annual timescale is higher than the one related to the annual ETRW (Chapters 3 and 4).

In this sense, the interannual modulation of the OMZ by this mechanism could signif-

icantly influence the oxygen flux from the coast towards the OMZ core, and therefore

modulate the oxygenation of the inner and lower parts of the OMZ. Whether or not this

process is influential for the OMZ at interannual timescale could be addressed using

a long-term coupled simulation as mentioned above, conducting analyses of the oxy-

gen fluxes similar to the ones performed in Chapter 4. In this context, addressing the

variability of the lower part of the OMZ for longer timescales could be an additional

objective of such a study, given that the ETRW also induces an energy flux at decadal

timescale that propagates in region below 300m (Chapter 3). Future work on the OMZ

using similar coupled simulations as the one used here should also include a sediments

module, in order to account for its contribution to the oxygen budget. In general, bio-

geochemical processes that take place at the water column/sediments interface can be

considered as a net sink for the oxygen budget (associated with the remineralization of

organic matter), so adding such a module to our coupled platform should in principle

increase the OMZ volume. This improvement has the potential to solve, at least in part,

the slight bias in the OMZ volume observed during our experiment (Chapter 4).

The results obtained during the present thesis work also evidenced the method-

ological challenges in the observation of the physical mechanisms related to the vari-

ability of the intermediate to deep circulation in the SEP. In particular, the sparse ver-

tical/temporal resolution of the observational data sets presently available prevent

documenting the vertical structure of the circulation variability induced by the prop-

agation of the ETRW. Despite that the spatial subsurface coverage in the SEP is still

insufficient to appropriately study the characteristics of the vertical ETRW propaga-

tion (which also prevented the validation of the vertical propagation diagnosed from

the simulations), long-term products derived from ARGO observations at the floats’
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Figure 5.1: Yearly averages of (a,b) oxygen eddy flux and (c, d) oxygen flux (computed using
the monthly terms), averaged along the northern and southern boundaries. Subscript n denotes
the velocity component normal to the boundary, and the apostrophe denotes the intraseasonal
fluctuations (as defined in Chapter 4).
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parking depth evidence the offshore propagation of ETRW at annual timescale (Fig.

5.2). Considering that international efforts are being carried out towards increasing

the spatial coverage of the ARGO floats in the Pacific1 and the extension of the depth

range currently measured2, diagnosing the vertical propagation of ETRW at different

timescales in the SEP from observations will be a possibility in the near future.

The increase of in situ measurements in the SEP will be also beneficial for constrain-

ing the current oceanic simulations, and will contribute to elucidate the questions re-

maining on the deep circulation off South America. Several studies have suggested

that the abyssal flow around 2500 m in the SEP participates in the meridional overturn-

ing circulation and would link the equatorial Pacific to the Southern Ocean (e.g. Reid

(1997), Tsuchiya and Talley (1998), Sloyan et al. (2001), Shaffer et al. (2004)). Document-

ing the mean characteristics and variability of the deep branches of the MOC in the

South Pacific could benefit from the use of a modeling platform as the one used in the

present study. In addition, it would be interesting to investigate the modulation of the

deep flow associated with the vertical propagation of ETRW at the different timescales,

considering that the propagation trajectory of the ETRW spans several hundred km off

the coast in the abyssal SEP. As we documented in the present study, although most of

the interannual energy flux that propagates into the deep SEP is related to the extreme

EP El Niño events, there is a fraction that appears to be unrelated to these events. In

this context it would be interesting to evaluate the different contributions to the “resid-

ual” energy flux; is it locally forced by the surface wind? or is it intrinsically forced by

multi-scale interactions? Dewitte et al. (2008b) suggested that a significant share of the

residual annual variability of the circulation (i.e. that is not related the coastal bound-

ary forcing) arises from the interaction between the mean circulation and the ETRW.

Is this also the case for the interannual timescale? These questions could be answered

through the use of a simulation experiment that only takes into account the boundary

forcing at the equatorial Pacific, and compare the results against a “full” simulation

(which includes both local and remote forcing).

Increasing the observations in the deep ocean is also viewed as an essential step for

elucidating the mechanisms that participate in the planetary energy budget. Currently,

the earth’s climate system experiences a state of positive radiative energy imbalance,

which results from the decrease of the outgoing longwave radiation at the top of the

atmosphere. Consequently, there is a heat trapping in the atmosphere and a global in-

crease in temperature. Given its higher heat capacity compared to the atmosphere, the

ocean absorbs around 93% of the heat excess, which is then redistributed and trans-

lates as a generalized rise in ocean temperature. Although the energy fluxes between

1TPOS2020 program (http://tpos2020.org/)
2Deep ARGO implementation (http://www.argo.ucsd.edu/)
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Figure 5.2: Hövmöller diagrams of the annual harmonic of the vertical isopycnal displacements
at the ARGO floats parking depth (~1000db), at several latitudes in the SEP. Vertical isopycnal
displacements were computed using 1 degree monthly temperature and salinity data (http://sio-
argo.ucsd.edu/) over the period 2004-2016.

the ocean and the atmosphere occur at the interface, observations indicate that as much

as 25% of the ocean heat increase takes place below 700m depth (see Abraham et al.

(2013) for a review), and despite several hypotheses on the mechanisms that partici-

pate in the ocean’s energy redistribution (see Banks and Gregory (2006) and P. Xie and

Vallis (2012)), the subsurface ocean warming and its associated mechanisms remain at

the center of a heated debate in the climatic community (Balmaseda et al., 2013; Llovel

et al., 2014), partly due to insufficient measurements to accurately estimate the deep

ocean contribution to the planetary energy imbalance.

This thesis work focuses on a mechanism that drives an energy discharge from

the tropical Pacific onto the deep Southeastern Pacific, which has the potential to par-

ticipate in the modulation of the deep ocean heat uptake. The results indicate that

the dissipation of the energy flux induced by the passage of the ETRW at interannual

to interdecadal timescales can be interpreted in terms of a vertical heat diffusion to-

ward the deep ocean (Chapter 3). While we did not provide a comprehensive heat
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budget of the deep ocean, our model results suggest a mechanism that could partici-

pate in the energy redistribution over the intermediate to deep ocean layers. Moreover,

the timescales evidenced in the present study (interannual to interdecadal) are much

shorter than the turning times of the deep Pacific MOC (age of the circulation below

1500m ranges from 600 to 900 years in the SEP; Matsumoto, 2007), which leads to think

that this mechanism could also play a role in the deep ocean’s response to the surface

heat changes observed over the last 50 years (Balmaseda et al., 2013). Overall, these

results call for a thorough documentation of the energy and heat fluxes in the abyssal

SEP, and for assessing the role of the ETRW in the context of the deep ocean energy

uptake. In the light of the sparse in situ observations in the deep SEP, this task would

benefit from the use of regional ocean modeling tools, such as the platform used here.

In this task, a first step in closing the heat budget in the bathypelagic zone and

assessing the role of the MOC in the SEP would be to validate the mean heat flux

trends observed with the most recent ARGO products (e.g. Roemmich et al., 2015).

From there, an attempt to perform a closed box-like heat budget for the SEP could be

made, and the different contributions to the heat fluxes in the region could be assessed

in an analogous manner as was done for the oxygen budget in Chapter 4. In this context,

the use of a long-term simulation should be sought, given that it would also allow for

an unprecedented documentation of the deep ocean’s response during the negative

phase of Interdecadal Pacific Oscillation (IPO) and its associated mechanisms. It has

been suggested that the current hiatus in the surface warming trends is associated

with the negative IPO phase (Meehl et al., 2011, 2013), that reinforces the trades and

in turn enhances the upwelling of cold water in the SEP (see Whitmarsh et al. (2015)

for a review). In parallel, observations indicate that the heat burial rate in the deep

Pacific ocean has accelerated during the last 15 years (Gleckler et al., 2016), although

the mechanisms driving this deep warming are uncertain (Liu et al., 2016). Considering

the preponderant role of the ocean as a buffer for the earth’s energy imbalance (Rhein

et al., 2013), such a work (and the present thesis work) embeds in the current efforts of

the scientific community towards a better understanding of the physical mechanisms

involved in the decadal and longer timescale trends of the earth climate system, its

response to anthropogenic forcing, and future evolution.
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Conclusions et Perspectives (français)

Dans ce travail, nous avons étudié la variabilité de la circulation intermédiaire et

profonde dans l’océan Pacifique Sud-Est (SEP : South-Eastern Pacific) à différentes

échelles de temps, allant de l’échelle saisonnière à l’échelle décennale. Nous nous

sommes concentrés en particulier sur les fluctuations de la circulation associées à la

variabilité de méso-échelle et à la propagation de l’onde de Rossby extratropicale (ETRW

: Extra Tropical Rossby Wave). Pour mener ce travail, nous avons adopté une ap-

proche basée sur la modélisation à l’échelle régionale, ce qui nous a permis d’étudier la

variabilité depuis la région côtière vers le large, et depuis la subsurface vers la région

abyssale.

Les fluctuations de la circulation dans le SEP sont le résultat des multiples forçages,

d’origine locale comme lointaine, qui interagissent pour moduler les caractéristiques

de la circulation. D’une part l’influence du vent parallèle à la côte impacte la circula-

tion côtière sur le plateau et module l’intensité de l’upwelling côtier, et d’une autre le

guide d’onde côtier qui fait le lien entre la variabilité équatoriale aux différentes ban-

des de fréquence, impacte les fluctuations de la circulation à la côte et au large dans le

SEP. Cette diversité a motivé le choix d’approcher séparément les différentes échelles

temporelles impliquées dans la variabilité de la circulation. Dans ce cadre, nous nous

sommes intéressés dans un premier temps à l’effet des événements El Niño sur la cir-

culation (échelle interannuelle), et plus précisément au flux vertical d’énergie induit

par la propagation de l’onde de Rossby extratropicale associé à ce type d’évènements

dans le SEP. En particulier, nous avons pu constater que 80% du flux d’énergie qui

se propage verticalement sous la thermocline vers l’océan profond (le long des trajec-

toires théoriques WKB) dans le SEP est lié aux évènements El Niño extraordinaires

(régime “E” dans notre approche), qui ont lieu dans la partie Est du basin équatorial.

Ce résultat met en évidence les profondes implications que la variabilité équatoriale a

sur la circulation dans le SEP, mais également que cette influence ne se limite pas à la

région côtière. L’interprétation de ce flux d’énergie à travers la théorie WKB (adaptée

pour les latitudes moyennes) montre que la propagation verticale d’énergie à l’échelle

interannuelle est le résultat de la contribution des modes baroclines les plus bas.

En plus de l’importante variabilité d’échelle interannuelle, le Pacifique tropical

présente également une variabilité significative à l’échelle décennale, qui s’exprime en

partie comme une modulation des fluctuations d’échelles plus courte, en particulier de

l’échelle interannuelle. Nous constatons l’existence d’un flux d’énergie qui se propage

en suivant les rayons WKB associé aux fluctuations décennales.

En principe, le flux d’énergie induit par la propagation de ETRW dans le SEP cor-

respond à un processus de type adiabatique, et agirait pour réorganiser le champ
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d’énergie de manière conservative (sans dissipation d’énergie). Néanmoins, nous ob-

servons que l’amplitude du flux d’énergie diminue le long de la trajectoire de prop-

agation, ce qui met en évidence un processus de dissipation dans l’océan profond.

Nos résultats montrent que cette dissipation est associée à une diffusion de chaleur

vers l’océan profond. En particulier, nous observons un flux de chaleur lié à la dissi-

pation d’énergie le long des rayons théoriques WKB associé aux évènements El Niño

extraordinaires et aux fluctuations décennales. Ces résultats indiquent que la décharge

d’énergie en provenance du Pacifique tropical sous la thermocline du Pacifique Sud-

Est, aux échelles interannuelle et décennale, comporte une diffusion verticale de chaleur.

Ce dernier résultat s’insère dans les perspectives générales de la communauté cli-

matique. L’océan agit comme un régulateur du climat global, en absorbant l’excès

d’énergie accumulé dans l’atmosphère (plus de 90% du surplus d’énergie radiative

dans l’atmosphère est absorbé par l’océan) et en faisant la redistribution de cette én-

ergie. Bien que l’objet de ce travail ne soit pas d’étudier le sort final du flux d’énergie

sous la thermocline, nous proposons un mécanisme qui pourrait être impliqué dans

la redistribution d’énergie au sein des couches intermédiaires et profondes de l’océan

Pacifique Sud-Est, et qui pourrait donc jouer un rôle dans la dynamique du climat.

Une perspective de travail futur sur cette thématique serait de quantifier la contribu-

tion du mécanisme de propagation d’énergie lié à l’onde de Rossby, dans le contexte

de l’absorption d’énergie de la part de l’océan profond, et sa réponse au différents de

régimes d’ENSO. Un tel travail pourrait bénéficier de l’usage des outils de modélisa-

tion régionale, comme cela était le cas pour cette thèse.

La deuxième partie de ce travail est consacrée à l’étude des fluctuations de la cir-

culation à l’échelle saisonnière, du point de vue de la ventilation de la Zone de Min-

imum d’Oxygène (OMZ : Oxygen Minimum Zone) du Pacifique Sud-Est, et les pro-

cessus associés à cette ventilation. Nos résultats montrent que la ventilation de l’OMZ

sur les premiers 300 m de la colonne d’eau est essentiellement définie par la modula-

tion saisonnière de l’activité de méso-échelle, induisant un flux turbulent d’oxygène à

travers les frontières méridiennes de l’OMZ, et depuis la région côtière, plus oxygénée,

vers l’intérieur de l’OMZ. La structure verticale de ce flux turbulent d’oxygène cor-

respond à la structure verticale des tourbillons dans la région, et montre une forte

décroissance à partir de 300 m de profondeur, où les flux turbulents d’oxygène sont

très faibles. En revanche, à partir de cette profondeur, les fluctuations saisonnières

d’oxygène ont des caractéristiques de propagation qui ressemblent à celles du flux

d’énergie induit par l’onde de Rossby annuelle.

Ces résultats suggèrent aussi que les processus impliqués dans la ventilation de

l’OMZ à l’échelle saisonnière pourraient aussi l’être dans sa variabilité basse fréquence.
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Conclusions et Perspectives

Par exemple, des études récentes montrent que le volume d’eaux transporté par les

tourbillons depuis la côte dans le SEP diminuerait fortement lors des évènements

ENSO, et ce dû à une diminution de l’instabilité barocline, ce qui pourrait impacter

le mécanisme de ventilation de l’OMZ lié au transport d’oxygène par la mésoéchelle.

La contribution de la modulation interannuelle du système des courants à la ventila-

tion de l’OMZ mériterait donc d’être évaluée. En lien avec la sensibilité de l’OMZ aux

fluctuations interannuelles, une perspective de travail serait de quantifier l’effet des

régimes ENSO sur la ventilation de l’OMZ, sachant que chaque régime a des impacts

très contrastés sur la circulation du SEP. Par exemple, certains travaux montrent que les

niveaux d’activité de mésoéchelle dans la région se réduisent drastiquement pendant

les évènements El Niño du Pacifique Central. Ceci permettrait une accumulation des

eaux pauvres en oxygène à l’intérieur de l’OMZ, liée à une baisse de la ventilation par

la méso-échelle, dans le cas où ce type d’évènements ENSO deviennent plus fréquents,

ce qui est suggéré par certains auteurs.

Enfin, la perspective d’évaluer la sensibilité des mécanismes de ventilation l’OMZ

aux échelles interannuelles pourrait aussi être abordée du point de vue de l’ETRW.

Comme il a été montré dans les Chapitres 3 et 4, les niveaux d’énergie associés à l’onde

de Rossby pendant les évènements ENSO sont plus hauts que l’onde de Rossby an-

nuelle, ce qui pourrait impliquer que la rectification de la circulation intermédiaire soit

plus importante pour les fluctuations interannuelles que pour le cycle saisonnier.
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Abstract

The oceanic circulation in the subthermocline of the South Eastern Pacific remains

poorly documented although this region is thought to play a key role in the climate

variability owed to, in particular, the presence of an extended oxygen minimum zone

(OMZ) that intervenes in the carbon and nitrogen cycle. The subthermocline in this

region is also largely unmonitored and historical estimates of ocean heat content are

mostly limited to the upper 500 m. In this thesis we document various oceanic pro-

cesses at work in the subthermocline based on a regional modeling approach that is de-

signed to take in account the efficient oceanic teleconnection from the equatorial region

to the mid-latitudes, in particular at ENSO (El Niño Southern Oscillation) timescales.

The focus is on two aspects: (1) the seasonality of the turbulent flow and its role in

modulating the OMZ volume off Peru, and (2) the planetary wave fluxes associated

with interannual to decadal timescales. It is first shown that the vertical energy flux

at interannual timescales can be interpreted as resulting from the vertical propagation

of extra-tropical Rossby waves remotely forced from the equatorial region. This flux

primarily results from extreme Eastern Pacific El Niño events, despite that a significant

fraction of interannual Sea Surface Temperature (SST) variability in the tropical Pacific

is also associated with Central Pacific El Niño events and La Niña events. Vertically

propagating energy flux at decadal timescales is also evidenced in the model, which,

like for the interannual flux, is marginally impacted by mesoscale activity. On the other

hand, the wave energy beams experience a marked dissipation in the deep-ocean ( 2000

m) which is interpreted as resulting from vertical diffusivity. While the oxygen field

within the OMZ appears to be influenced by the vertical propagation of isopycnals

height anomalies, induced by the seasonal Rossby waves, the seasonality of the OMZ

is shown to be dominantly associated with the seasonal change in the eddy flux at its

boundaries. Implications of the results for the study of both the low-frequency vari-

ability of the OMZ and the Earth’s energy budget are discussed.
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Résumé

L’objectif principal de cette thèse est l’étude de la connexion entre la variabilité dans

l’océan Pacifique équatorial et la circulation de subsurface le long des côtes du Pérou

et du Chili, à des échelles de temps interannuelles à décennales. Les diagnostiques

menés dans ce travail se basent sur un modèle régional océanique. L’accent est mis sur

l’interprétation de la propagation verticale de la variabilité dans les couches intermé-

diaires de l’océan, où l’on trouve une intense zone de minimum d’oxygène (OMZ1), et

la relation de cette propagation verticale avec les processus advectifs et diffusifs. La

propagation verticale est diagnostiquée à travers le flux vertical d’énergie associé à la

propagation verticale de l’onde de Rossby extratropicale (ETRW2).

Aux échelles de temps interannuelles, les résultats montrent que 80% du flux verti-

cal d’énergie dans l’océan Pacifique Sud-Est (SEP3) est associé aux événements El Niño

extraordinaires. Ce flux d’énergie s’étend vers l’Ouest en suivant les rayons théoriques

WKB, avec une pente plus prononcée au fur et à mesure que la latitude augmente.

Les analyses du flux d’énergie mettent aussi en évidence l’existence d’une modula-

tion du flux d’énergie interannuel à l’échelle décennale, qui serait liée aux fluctuations

décennales et inter-décennales dans le Pacifique équatorial. Une décomposition de la

stratification en modes verticaux montre que le flux d’énergie associé à El Niño et aux

fluctuations décennales se projette sur les trois premiers modes baroclines, ce qui con-

firme l’interprétation du flux d’énergie comme la propagation de l’onde de Rossby. Des

tests de sensibilité menés avec un modèle linéaire ajusté aux conditions de la simula-

tion montrent que la propagation d’énergie verticale pendant les événements El Niño

est aussi impactée par la contribution des modes baroclines supérieurs. La variabil-

ité méridienne/verticale du flux d’énergie vertical met en évidence une atténuation

de l’amplitude le long de la trajectoire de l’onde, ce qui est interprété comme un flux

diffusif de chaleur induit par la dissipation de l’onde.

La variabilité de subsurface de la circulation à l’échelle saisonnière est aussi étudiée
1De l’anglais Oxygen Minimum Zone.
2De l’anglais Extra-Tropical Rossby Wave.
3De l’anglais South-Eastern Pacific.
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dans cette région à travers la ventilation de l’OMZ. Les résultats montrent que la vari-

abilité saisonnière de l’OMZ en dessous de 400 m de profondeur possède des carac-

téristiques de propagation similaires à celles du flux d’énergie associé à l’ETRW an-

nuelle, ce qui indique que l’ETRW pourrait influencer la variabilité de l’OMZ profonde,

du moins à l’échelle saisonnière. Au-dessus de 400 m de profondeur, le processus

dominant qui influence la ventilation de l’OMZ à l’échelle saisonnière est le transport

d’oxygène par les tourbillons de méso-échelle.

Dans ce travail, nous mettons en évidence la nature complexe de la variabilité de la

circulation de subsurface dans le SEP. Nous montrons en particulier la connexion entre

la circulation sous la thermocline extratropicale et les modes climatiques de variabilité

du Pacifique équatorial.
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