
HAL Id: tel-02060436
https://theses.hal.science/tel-02060436

Submitted on 7 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recommendation systems for online advertising
Sumit Sidana

To cite this version:
Sumit Sidana. Recommendation systems for online advertising. Computers and Society [cs.CY].
Université Grenoble Alpes, 2018. English. �NNT : 2018GREAM061�. �tel-02060436�

https://theses.hal.science/tel-02060436
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Sumit SIDANA

Thèse dirigée par Massih-Reza AMINI, Professeur, Université
Grenoble Alpes

préparée au sein du Laboratoire Laboratoire d'Informatique de
Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Filtrage collaboratif en ligne : application à la
publicité programmatique

Dynamic collaborative filtering for on-line
advertising

Thèse soutenue publiquement le 8 novembre 2018,
devant le jury composé de :

Monsieur MASSIH-REZA AMINI
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Directeur de thèse
Madame CHARLOTTE LACLAU
MAITRE DE CONFERENCES, UNIVERSITE JEAN MONNET - SAINT-
ETIENNE, Co-directeur de thèse
Monsieur PATRICK GALLINARI
PROFESSEUR, SORBONNE UNIVERSITES - PARIS, Rapporteur
Madame JOSIANE MOTHE
PROFESSEUR, UNIVERSITE TOULOUSE-JEAN JAURES, Rapporteur
Madame SIHEM AMER-YAHIA
DIRECTRICE DE RECHERCHE, CNRS DELEGATION ALPES, Président
Monsieur ROMARIC GAUDEL
PROFESSEUR ASSISTANT, ENSAI - RENNES, Examinateur
Monsieur GILLES VANDELLE
RESPONSABLE SCIENTIFIQUE, SOCIETE KELKOO - ECHIROLLES,
Examinateur

Acknowledgments
First of all, I would like to express my gratitude to my supervisor Massih-Reza Amini
and co-supervisor Charlotte Laclau. I am grateful for your guidance, patience, advice,
time-involved, and for the research ideas shared with me during these three years.
The encouragement, guidance and resources you provided helped me to continue my
research and finish this thesis.

Then, I would like to thank Patrick Gallinari and Josiane Mothe, who kindly agreed
to review my Ph.D. thesis. I would also like to thank Gilles Vandelle and Romaric
Gaudel, who agreed to be part of my thesis committee.

Thanks to Sihem Amer-Yahia of CNRS, who first gave me an opportunity of in-
ternship in LIG, where I got my first research experience, and which encouraged me to
start a PhD. I am also grateful to you for agreeing to be part of my thesis committee.

Thank you to my parents for their emotional support and encouragement during
this PhD.

Thanks to all the AMA members (past and present) for their help and support:
Bikash, Sami, Parantapa, Hamid, Yagmur, Vera, Karim, Thibaut, Anil, Julien, Myriam,
Georgios, Adrien, Maziar, Hesam, Lauren, Saeed, Saeid and Vasilii.

Thanks to LIG and Université Grenoble Alpes for their financial and logistical
support. Thanks to FUI for their financial participation in this thesis.

Thanks to Kelkoo and Purch engineers for providing data and advice in this PhD.

ii

Abstract

This thesis is dedicated to the study of Recommendation Systems for im-
plicit feedback (clicks) mostly using Learning-to-rank and neural network
based approaches. In this line, we derive a novel Neural-Network model
that jointly learns a new representation of users and items in an embedded
space as well as the preference relation of users over the pairs of items
and give theoretical analysis. In addition we contribute to the creation of
two novel, publicly available, collections for recommendations that record
the behavior of customers of European Leaders in eCommerce advertis-
ing, Kelkoo1 and Purch2. Both datasets gather implicit feedback, in form
of clicks, of users, along with a rich set of contextual features regarding
both customers and offers. Purch’s dataset, is affected by popularity bias.
Therefore, we propose a simple yet effective strategy on how to overcome
the popularity bias introduced while designing an efficient and scalable
recommendation algorithm by introducing diversity based on an appro-
priate representation of items. Further, this collection contains contextual
information about offers in form of text. We make use of this textual in-
formation in novel time-aware topic models and show the use of topics
as contextual information in Factorization Machines that improves perfor-
mance. In this vein and in conjunction with a detailed description of the
datasets, we show the performance of six state-of-the-art recommender
models.

Keywords. Recommendation Systems, Data Sets, Learning-to-Rank, Neu-
ral Network, Popularity Bias, Diverse Recommendations, Contextual in-
formation, Topic Model.

1https://www.kelkoo.com/
2http://www.purch.com/

https://www.kelkoo.com/
http://www.purch.com/

iv

CONTENTS CONTENTS

Contents

Contents v

1 Introduction 3
1.1 Challenges in Online Adverstising 4

1.2 Contributions . 6

1.3 Thesis structure . 7

2 Recommender Systems: state-of-the-art and evaluation 9
2.1 Definition of Personalized Recommendation 10

2.2 Content Based Recommender Systems 11

2.3 Collaborative Filtering . 11

2.3.1 Memory-based CF . 12

2.3.2 Matrix Factorization and Low-Rank Approximation 13

2.3.3 Factorization Machines . 18

2.4 Collaborative Ranking . 20

2.4.1 Learning-to-Rank . 20

2.4.2 Pairwise-Ranking for Recommendation Systems 22

2.5 Deep Learning for Recommender Systems 24

2.5.1 Representation Learning (RL) with Embeddings 25

2.5.2 Users and Items Representation Learning (RL) with Embeddings 27

2.6 Diversity in Recommender Systems 28

2.7 Evaluation of Recommender Systems 30

2.7.1 Prediction Accuracy . 30

2.7.2 Ranking Measures . 32

2.7.3 Diversity Measures . 33

v

CONTENTS CONTENTS

2.7.4 Online-Testing . 34

2.8 Conclusion . 35

3 Data-collections 37
3.1 Introduction . 38

3.2 Collection of the data . 38

3.3 KASANDR Dataset . 41

3.3.1 Structure of the data . 41

3.3.2 Basic statistics . 42

3.4 PANDOR Dataset . 45

3.4.1 Structure of PANDOR . 45

3.4.2 Features of PANDOR . 46

3.4.3 Summary . 48

4 Extracting latent topics over timely related articles 49
4.1 Introduction . 50

4.2 General-purpose topic modelling . 51

4.2.1 Latent Dirichlet Allocation (LDA) 51

4.2.2 Topic-Aspect Model (TAM) 53

4.3 Temporal Latent Topic Models . 54

4.3.1 Temporal-LDA (TM–LDA) 54

4.3.2 Time-Aware Topic-Aspect Model 55

4.4 Application to health monitoring on social media over time 58

4.4.1 TM–LDA applied to health documents 59

4.4.2 T–ATAM . 59

4.5 Results . 60

4.5.1 Data . 60

4.5.2 Comparison between models 61

4.6 Conclusion . 61

5 Jointly Learning embeddings and user preference through implicit feed-
back 63
5.1 Introduction . 64

5.2 Theoretical Study . 64

vi

CONTENTS CONTENTS

5.3 A Neural Network model to learn user preference 71
5.4 Diversity . 76

5.4.1 Incorporating diversity to handle popularity bias in recommender
sytems . 76

5.5 Conclusion . 77

6 Experimental Results 79
6.1 Introduction . 80
6.2 Baselines and Evaluation Protocol 80
6.3 NERvE Results . 83
6.4 Results on KASANDR and PANDOR 90
6.5 Conclusion . 99

7 Conclusions and future perspectives 101

List of publications 107

References 109

vii

CONTENTS CONTENTS

viii

CONTENTS CONTENTS

Notations

U ⊆ N ; U = {u1, · · · , un} is the set of n users or the set of indexes over users
I ⊆ N ; I = {i1, · · · , im} is the set of m items or the set of indexes over items
R = a sparse preference matrix of size n×m
rui = Rating given by user u for item i

r̂ui = Predicted rating of target user u of item i

pu = Latent feature vector of user u
qi = Latent feature vector of item i

(i, u, i′) = A triplet composed by the indexes of an item i, a user u and a second item i′

�
u = Preference relation

Uu = The transformed embedding vector of user u
Vi = The transformed embedding vector of item i

S̃n = A random set of size n of interactions by building triplets (i, u, i′)

Nu,k = A ranked list of the k �M preferred items for each user in the test set
Sku = the list of items and k its size
V`1
i (resp. V`1

i′) = the `1-normalized embedding associated with item i (resp. i′)
β is the diversity inducing regularization parameter whose role is to induce more or
less diversity in the final list of recommended items
P = Posts
G = Regions
T = Time periods
Ptg = Posts from region g during time t
Dt
g = Document-set built by mapping the content of each post p ∈ Ptg to a document

1

CONTENTS CONTENTS

2

1. INTRODUCTION

Chapter 1

Introduction

In the recent years, recommender systems (RS) have attracted a lot of interest in both
industry and academic research communities, mainly due to new challenges that the
design of a decisive and efficient RS presents. Given a set of customers (or users), the
goal of RS is to provide a personalized recommendation of products to users which
would likely to be of their interest. This process is described in Figure 1.1. Common
examples of applications include the recommendation of movies (Netflix, Amazon
Prime Video), music (Pandora), videos (YouTube), news content (Outbrain) or ad-
vertisements (Google). The development of an efficient RS is critical from both the
company and the consumer perspective. On one hand, users usually face a very large
number of options: for instance, Amazon proposes over 20,000 movies in its selec-
tion, and it is therefore important to help them to take the best possible decision by
narrowing down the choices they have to make. On the other hand, major companies
report significant increase of their traffic and sales coming from personalized recom-
mendations: Amazon declares that 35% of its sales is generated by recommendations,
two-thirds of the movies watched on Netflix are recommended and 28% of ChoiceS-
tream users said that they would buy more music, provided the fact that they meet their
tastes and interests.1

This thesis is part of the FUI project Calypso, which is designed with the main
goal of improving the performance of the e-commerce advertisements, that will be
generating a large part of the income of the partner companies, namely Kelkoo and

1Talk of Xavier Amatriain - Recommender Systems - Machine Learning Summer School 2014 @
CMU.

3

1. INTRODUCTION

Figure 1.1 – A model is learned based on the set of available user preferences over
items. It is then used to recommend new items to the same set of users (or new users).

Purch. With the help of predictive machine learning approaches, the project proposes
to increase the probability of clicking on the products presented to Internet users in
advertising inserts on the sites of both partners and purchased on advertising market
places. Internet advertising has become a major economic challenge for online selling
companies that have to optimize their catalogs in real time, in order to propose the
products to users that fit the best to their interests and preferences. The companies are
required to display advertisements and offers which user may be interested in engaging
and buying. The overall model needs to address several challenges including but not
limited to, being scalable in order to deal with a large amount of data, work with
highly sparse and implicit feedback, and being able to handle heterogeneous contextual
information regarding both the users and the products.

1.1 Challenges in Online Adverstising

While building efficient and scalable models for online advertising, there are various
challenges and issues which need to be addressed. These are as follows.

Types of feedback

The majority of approaches for RS are based on the previous feedback given by the
users of the system. These feedback can be of different nature when items are presented
to her/him, and we broadly classify them as being either implicit or explicit.

Explicit feedback is probably the most common one in the literature, and can be in

4

1. INTRODUCTION

the form of ratings1, up-votes or likes, for instance. However, while explicit feedback
generally provides a relevant signal for making recommendation, it is also much more
difficult to gather than implicit one, as one needs to convince the user to rate or ex-
plicitly tell their preference after having consumed the item. For this reason, feedback
used for building efficient RS has evolved over time, from explicit feedback to mostly
implicit one.

Implicit feedback is usually inferred from user’s behavior while interacting with
the system, and include clicking on items, bookmarking a page or listening to a song.
Implicit feedback, as contrary to explicit feedback, is in abundance and does not re-
quire an extra effort from user’s side. However, it also presents several challenging
characteristics. Firstly, implicit feedback does not clearly depict the preference of a
user for an item; for instance a user listening to a song or clicking on a product does
not necessarily mean that he or she likes the corresponding item. For this reason, one
cannot measure the degree of preference from such type of interactions. Secondly,
these data present a scarcity of negative feedback, i.e., only positive observations. This
is because a user not clicking on a product may be because of various reasons, such
as, lack of time, or the offer not being in display region of the banner. For this rea-
son, considering the lack of any positive signal as a negative signal introduces bias in
building models. There are no true negatives in implicit feedback.

However, because of its presence in abundance and availability, research on im-
plicit feedback has gained increasing attention in very recent years [He et al., 2016]
and have been greatly encouraged by competitions organized by some of the major
industrial actors, like Criteo2, Outbrain3, or Spotify4, for instance.

Sparsity

Given large sets of users and items, sparsity arises from the fact that users in general
rate or click only a very limited number of items, compared to the number of items
available in the catalogue that are shown to them. This problem is extremely common
in recommender systems, see for example the degree of sparsity present in RS bench-

1https://www.netflixprize.com/
2https://www.kaggle.com/c/criteo-display-ad-challenge
3https://www.kaggle.com/c/outbrain-click-prediction
4http://www.recsyschallenge.com/2018/

5

https://www.netflixprize.com/
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/outbrain-click-prediction
http://www.recsyschallenge.com/2018/

1. INTRODUCTION

marks shown in Table 1.1, and needs to be taken into account while designing a RS.
In addition, for data extracted from online advertising, which interests us in this thesis,
this phenomenon is even more pronounced.

Table 1.1 – Statistics of various collections used in our experiments after preprocessing.
of users # of items # of interactions Sparsity

ML-100K 943 1,682 100,000 93.685%
ML-1M 6,040 3,706 1,000,209 95.530%
NETFLIX 90,137 3,560 4,188,098 98.700%
KASANDR 25,848 1,513,038 9,489,273 99.976%
PANDOR 1,918,968 3,755 225,579 99.997%

Popularity-Bias

Finally, popularity-bias is another prevalent issue in RS and raises the question of how
we recommend instead of just what we recommend to the users.

Indeed, the goal of a RS is to have fewer flops on the top [Paudel et al., 2017] of
the recommended list, and inducing more diversity in this recommended list ensures
that user may prefer to interact with at least some items in contrast to the situation
where we introduce just monotonous relevant items. In addition, the recent work of
[Abdollahpouri et al., 2017] shows that diversity can be used in order to control the
popularity bias in such type of data, also known as the problem of long tail i.e. a
situation where a large majority of items have only very few ratings or clicks, either
because they are new or just unpopular. In recent works [Herlocker et al., 2004; McNee
et al., 2006], it has been shown that only recommending relevant items (within the
semantics of items which are the more likely to be of interest for users) has its limits
and that adding notions of diversity and discovery in the process can highly increase
the performance of a recommendation system [Bradley and Smyth, 2001; McSherry,
2002; Smyth and McClave, 2001; Zhang and Hurley, 2008].

1.2 Contributions

In this thesis, we tried to address these challenges by exploring different type of RS
models.

6

1. INTRODUCTION

These models are mainly evaluated on the basis of two newly created datasets,
KASANDR and PANDOR, arising from the real online traffic recorded by the two part-
ners of the project, and that we made publicly available to the research community,
along with a detailed description. We show that PANDOR, in particular, suffers from
popularity bias and propose diversity based approach, which are based on regulariza-
tion, in order to handle diversity.

Then, in order to deal with the textual content in that we had in hand, we develop
two novel time-aware topic modelling approaches, which are able to extract latent
topics in temporally sequenced textual data. We show that topics derived from this
time-aware topic model can be used to improve the performance of RS models.

Furthermore, for the personalized recommendation part, we propose a novel neural-
network based architecture which can handle data sparsity by learning both a good
dense representation of users and items, as well as the ranked list of the preferences
for all users. This model, in addition to be efficient with implicit feedback, also allows
to deal with large datasets and can easily integrate contextual information, of diverse
nature.

1.3 Thesis structure

The rest of this thesis is organized into 5 chapters. The main contents of each chapter
are summarized below:

Chapter 2 : Describes some common state-of-the-art approaches developed in RS.
We mainly focused on collaborative filtering, learning to rank, item-embedding and
diversity based approaches for recommender systems as our contributions also build
upon these ideas.

Chapter 3 : Presents in detail large scale data sets we have contributed to RS com-
munity during the discourse of this thesis. In particular, we describe basic character-
istics of KASANDR and PANDOR and how making them public can help RS research
community to benchmark their approaches and models on these data sets.

7

1. INTRODUCTION

Chapter 4 : Details the topic-modelling techniques to extract evolution of latent con-
cepts with time from textual data and how they can be applied in context of RS. We first
study general purpose topic modeling techniques. Then, we present two novel time-
aware topic models. We study these approaches as an application to health monitoring
and run experiments to show how our models outperform the existing techniques to
predict the evolution of topics with time.

Chapter 5 : Presents a neural network to optimize two loss functions simultaneously
in order to come up with better representation and ranking functions. In particular, we
learn embedding based representations and pairwise ranking function by optimizing
two losses simultaneously. We then extend this neural network to recommend, not
only relevant offers, but diverse offers as well.

Chapter 6 : Sets out the experiments we conducted in order to show the efficiency
of our models. We first study various settings of the parameters and their effects on
performance of the neural network we developed. Then, we go on to show that it out-
performs the existing techniques in recommending offers when the prediction function
is learned using implicit feedback. Then, we give benchmark results on popular RS al-
gorithms which have been known to perform well on implicit feedback on KASANDR.
Then, we run experiments on PANDOR and present results of various baselines. We
show that baselines run on PANDOR suffer from popularity bias and performance of
models can be improved by using diversity based regularizers. We also show the results
of the models can be improved by using topics from time-aware topic models.

8

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

Chapter 2

Recommender Systems:
state-of-the-art and evaluation

9

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

2.1 Definition of Personalized Recommendation

Personalized recommendations consist of selecting products or offers from the catalog
that create a relevant, individualized interaction environment designed to enhance the
experience of the user. It uses insight based on the user’s personal data, as well as
behavioral data about the actions of similar individuals, to deliver an experience that
meets specific needs and preferences. Advantage of using personalized approaches
to recommendation is that these approaches generally outperform non-personalized
counterparts in performance and are interesting both from academic and industry point
of view.

Before the breakthrough of ML in RS, recommendations were made based on non-
ML approaches, such as for instance, random-based approach, consisting of recom-
mending random items to a given user, or popularity-based approaches consisting of
recommending the most popular items to all users. While these type of approaches are
usually outperformed by personalized recommendation methods, they can still be used
to deal with specific challenges such as user and item cold-start.

In this chapter, we give a brief overview of three families of RS models that are
arguably the most widely used for our task, notably: collaborative filtering, learning-
to-rank and deep learning. The remainder of this chapter is organized as follows.
Section 2.2 describes the content filtering approaches principle, their advantages and
problems. Section 2.3 presents the general idea behind collaborative filtering (CF).
We first define CF and then categorize them into memory-based CF and latent factor
models. Specifically, we describe Matrix Factorization, Factorization Machines. Then,
in section 2.4, we discuss ranking-based CF approaches in detail. We discuss how
pairwise learning-to-rank has been applied to recommender systems. In Section 2.5,
we give details of how deep learning approaches have been successfully applied to
RS. We discuss the concept of representation learning in detail. Finally, in section 2.7,
we discuss various evaluation approaches widely used in RS and specifically the ones
which are relevant to our contributions.

10

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

2.2 Content Based Recommender Systems

Content-based filtering approaches utilize a series of discrete characteristics of an item
in order to recommend additional items with similar properties [Mooney and Roy,
1999]. These approaches present numerous advantages as we are assisted by an in-
creased availability of content information and semantic relationship data, through so-
cial tagging, reviews, platform like BabelNet or Wikipedia. Perhaps, the first popular
content based recommender system was built by [Kamba et al., 1996], where the sys-
tem architects built a personalized news recommender system.

Content-based recommender systems can be broadly classified in two ways in order
to recommend on the basis of content (product attributes). Firstly, long term techniques
consist of building profile of content preferences. Secondly, content based techniques
are also good at helping users browse through catalogs/baskets. For example, while
purchasing things at Amazon, usually we are shown the items similar to the items
we already have in our basket. Content filtering works by first building profile of
each item by using TF-IDF (documents), meta-data (movies) or tags (images). Then,
user profiles are built by aggregating profiles of items rated or consumed by them.
Unrated items are then evaluated by taking the dot-product between item-profile and
user-profile.

The biggest issues with content-based recommender systems is that item-profiles
have to be built and good domain knowledge of items is required, which is not always
feasible. Additionally, user cold-start problem cannot be solved by content-based rec-
ommender systems. For more details on content-based recommender systems, we refer
the reader to the surveys of [Lops et al., 2011; Pazzani and Billsus, 2007].

2.3 Collaborative Filtering

Collaborating Filtering are the set of techniques which ignore user and item attributes
but focus on user-item interactions. They are the pure behavior based recommendation
techniques. Traditionally, we distinguish between memory-based and model-based
approaches. The latter approach is arguably the most popular one nowadays, and in
this section we focus on three of them, including Matrix Factorization, Ranking CF

11

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

and Factorization Machines, which are of particular interest to us in this thesis.

2.3.1 Memory-based CF

Memory-based techniques use the data (likes, votes, clicks, etc) that you have to es-
tablish correlations between either users or items to recommend an item i to a user u
who has never seen it before. In the case of user-based approach, we get the recom-
mendations from items seen by the users who are closest to u. In contrast, item based
approach tries to compare items using their characteristics (movie genre, actors, books
publisher or author etc) to recommend similar new items 1.

User-user CF (UUCF) is the most commonly used form of personalized memory-
based CF [Herlocker et al., 1999]. In order to predict which items should be displayed
or recommended to a given user, the system relies on the analysis of the neighborhood
of this particular user. This neighborhood is composed based on past interactions, and
include other users who have presented similar taste for other items.

More formally, given a set of items I ⊆ N, and a set of users U ⊆ N, and a sparse
matrix of ratings R, we compute the prediction r̂ui as follows:

• For all users v, u ∈ U, such that u 6= v, compute wuv (a simlarity metric - eg.
Pearson correlation coefficient)

• Select a neighborhood of users Nk ∈ U with highest wuv

– May limit the neighborhood to top-k neighbours

– May limit neighborhood to wuv > ε, where ε is a similarity threshold.

• Compute prediction

User-user CF suffers from sparsity issues. With large item-sets and small number
of ratings or clicks, too often, there are points where no recommendations for a user,
who doesn’t have common ratings with other users, can be made. Many solutions have
been proposed to address this problem, with item-item Collaborative filtering being the
most common one.

1https://yasserebrahim.wordpress.com/2012/10/13/memory-based-vs-model-based-
recommendation-systems/

12

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

Item-item collaborative filtering (IICF) was first introduced by [Sarwar et al., 2001]
and overcomes sparsity and computational issues of UUCF in areas where m >> n

(m: number of users, n: number of items). Item-item similarity is on the items which
are co-rated and can also be used to directly recommend top-k items [Deshpande and
Karypis, 2004] in the case of implicit feedback.

While memory-based approaches were the the first ones present in commercial RS,
they present numerous drawbacks, which are as follows. Firstly, the RS datasets suf-
fer from sparsity. Evaluation of RS systems goes through large item sets and users’
interactions on these item sets are under 1%. There is a poor relationship among like
minded but sparse-rating users and memory-based CF fail to capture similarity be-
tween such users. Secondly, it is difficult to make predictions based on nearest neigh-
bor algorithms and accuracy of recommendation may be poor. Thirdly, scalability is
an issue with memory-based CF. Computation of nearest neighbor requires computa-
tion that grows with both the number of users and the number of items. Instead of
using all previous ratings to make a prediction, model-based approaches first build a
model from theses ratings, and use this model to make further recommendations. In
what follows, we describe some popular model-based methods which have established
themselves as main baselines over the past years.

2.3.2 Matrix Factorization and Low-Rank Approximation

Principle of Matrix Factorization Ratings can be seen as matrix or dyadic repre-
sentation as shown in Figure 2.1. But, ratings matrix is an over fit representation of
user tastes and item attributes. This rating matrix can actually be seen as the product
of lower dimensional matrices representing user tastes and item attributes. This idea
gives rise to notion of factorizing matrix into lower dimensional matrices.

Formally, we aim to find the users and items feature matrices, denoted by U and
V, respectively, minimizing the squared error over the known ratings,

(U,V) = arg min
U,V

∑
∀(u,i)∈S

(rui −UuV
T
i)2,

where U ∈ Rn×k, V ∈ Rm×k, are latent representations of users and items, defined
in a lower-dimensional space, i.e., k � min(n,m). However, since a large part of

13

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

the ratings in the matrix are unknown, one usually considers the following regularized
optimization problem (S is the set of observed ratings)

(U,V) = arg min
U,V

∑
(u,i)∈S

(rui −UuV
T
i)2 + λ(‖U‖2

F + ‖V‖2
F), (2.3.1)

where λ controls the extent of regularization to avoid overfitting, and can be determined
by cross-validation.

To proceed, we introduce the main optimization approaches which have been pro-
posed in order to solve this minimization problem, over the past years.

Figure 2.1 – Principle of Matrix Factorization.

Optimization approaches

We can broadly distinguish three main approaches, which propose to optimize the
problem defined above: the Singular Value Decomposition (SVD), Stochastic Gradient
Descent (SGD) and Alternating Least Squares (ALS).

Singular Value Decomposition (SVD) proposes to decompose a given matrix R ∈
Rn×m as follow

R = PΣQ>,

where P and Q are two squared orthogonal matrices of size n and m, respectively, and
Σ is a diagonal matrix of size n×m that contains the non-increasing and non-negative
singular values of R. SVD presents several interesting properties, including the fact

14

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

that it can be used on any matrix which contains real entries, and one can show that
it gives the best rank-k approximation of the original ratings matrix under the global
root mean squared error (RMSE), meaning that this approximation is optimal in the
Frobenius norm.

However, SVD also admits import downsides, especially in the context of Recom-
mender Systems. Firstly, decomposing the ratings matrix is slow, which can be an
important issue as in RS, one need to handle an extremely large volume of data in a
very limited amount of time. Secondly, SVD can only be applied on complete matrix,
meaning that one need to know the preferences of all users for all the movies in ad-
vance, a situation that will of course make RS unnecessary. To overcome the latter,
some imputation strategies have been proposed, such as imputing the mean rating of
items or even null values [Sarwar et al., 2000]. While this strategy allows to obtain a
complete matrix, it also introduces an important bias in the data and requires to deal
with a larger amount of (superficial) data.

Stochastic gradient descent(SGD) The optimization of Equation 2.3.1 using Stochas-
tic Gradient Descent (SGD) was first popularized by [Funk, 2006]. The algorithm first
initializes the user and item latent matrices, U and V, then loops through all ratings in
the training set. For each training instance, the following prection error is computed:

eui = rui −V>i Uu.

Then, based on this prediction error, the latent features Vi and Uu are modified in the
opposite direction of the gradient in the following manner:

Vi ← Vi + γ · (eui ·Uu − λ ·Ui),

Uu ← Uu + γ · (eui ·Vi − λ ·Uu),

where γ is the learning rate of the gradient descent, and λ is the regularization pa-
rameter defined above. Then, the prediction is made using the updated Uu and Vi.
This process of updating the parameters and predicting the rating using updated pa-
rameters keeps going on until a fixed number of iterations or if the error eui is below a
specific threshold. The number of iterations or the threshold is usually fixed by cross-

15

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

validation. SGD based approach is both easy in implementing and has a fast running
time [Koren, 2008; Paterek, 2007; Takács et al., 2007]. Indeed, if we set the number
of epochs to T , and k is the dimension size of Vi and Uu, then the time complexity of
the SGD procedure is O(Nk).

Alternating least squares (ALS) Alternating Least Squares (ALS), initially pro-
posed by [Jain et al., 2013], relies on an iterative optimization procedure that consists
of the two following steps

1. Fix the item latent matrix V and solve the quadratic equation (see Eq. 2.3.1) for
the user latent matrix U, i.e.

Uu = (
∑

(u,i)∈S

ViV
>
i + λId)−1

∑
(u,i)∈S

ruiVi. (2.3.2)

2. Fix the user latent matrix U and solve the same quadratic equation, this time for
the user latent matrix V, i.e.

Vi = (
∑

(u,i)∈S

UuU
>
u + λId)−1

∑
(u,i)∈S

ruiUu. (2.3.3)

where Id is the identity matrix. As for SGD, the algorithm alternates between these
two steps until convergence or for a number of iterations given in advance. While SGD
is faster than ALS, still ALS is desirable in couple of cases. On the one hand, ALS
computes each Vi independently of the other item factors, and each Uu independently
of the other user factors, giving rise to potentially massive parallelization of the algo-
rithm [Zhou et al., 2008]. On the other hand, ALS is also more preferable in the case
of implicit datasets; because the training set cannot be considered sparse, looping over
each single training case as gradient descent does, is not practical [Hu et al., 2008a].

Other formulations of Matrix Factorization

Adding bias : There are systematic biases present in ratings. For example, some
users are generous and tend to give higher ratings than others. Likewise, some items
tend to get higher ratings than others as they are more popular and perceived in a better

16

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

way. To address these issues the Equation 2.3.1 provides fairly simple way of incorpo-
rating such biases. The system then minimizes the following objective function:

arg min
U,V,b

∑
u,i

(rui − µ− bu − bi −V>i (Uu))
2 + λ(|| Uu ||2 + || Vi ||2 +b2

u + b2
i),

where µ is the overall average rating; b = (bu, bi) contains the deviations of user u and
item i from µ, respectively.

Next, we present another version of this model, which, by adding variables, can be
optimized for implicit preferences.

Matrix Factorization for implicit feedback All the above matrix factorization meth-
ods have been used for learning latent user and item factors from explicit feedback. The
traditional model with bias was then extended by [Koren, 2008], where an extra term
was added in for incorporating implicit feedback as follows:

arg min
U,V,b

(
∑
u,i

rui − µ− bu − bi −V>i (Uu+ | N(u) |−
1
2

∑
j∈N(u)

yj))
2 + λ(|| Uu ||2

+ || Vi ||2 +b2
u + b2

i),

where N(u) is the set of items for which user u expressed implicit preference (e.g.
click, like);

∑
j∈N(u) yj is the vector for a user u who showed a preference for items in

N(u); finally, bu, bi are the biases introduced in Equation 2.3.2.

[Hu et al., 2008c] also came up with a novel version of MF able to handle for
implicit feedback. To proceed, they propose the following objective function in their
formulation:

arg min
U,V,b

∑
u,i

cui(rui −V>i Uu)
2 + λ(

∑
u

|| Uu ||2 +
∑
i

|| Vi ||2),

where cui means the extent to which we penalize the error on user u on item i. The
standard choice for cui in the explicit feedback case is cui = 1, if (u, i) ∈ S and 0

otherwise, where S are the set of observed ratings. While Matrix Factorization ap-
proaches are the most commonly used approach for RS, it is difficult to use contextual

17

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

information along with such approaches. Factorization Machines, which we discuss
next, overcome this drawback.

2.3.3 Factorization Machines

Factorization machines (FM) are a generic approach that allows to mimic most fac-
torization models by feature engineering. This way, FM combine the generality of
feature engineering with the superiority of factorization models in estimating interac-
tions between categorical variables of large domain1. FM [Rendle, 2010] can be seen
as a hybrid solution between classification approaches (such as SVM) and factorization
approaches (such as matrix factorization). FM is known to handle very high sparsity,
runs in linear time and can handle contextual information. Matrix Factorization can be
shown to be just the special case of FM.

Let us consider the simple example presented in Figure 2.2, where we have

S = (Tom,Book, 1), (Tom,Movie, 3), (Jack,Music, 3), . . . , (Alice,Music, 2)

Factorization machines are the general predictors like SVM working with real valued
feature vector. FM relies on a specific feature representation, which differs from the
classic dyadic representation User-Items: each user, item and contextual information is
transformed into a real valued feature vector with the corresponding target. In Figure
2.2, there are first | U | binary indicator variables (blue), that represent active user of
transaction. The next | I | binary indicator variables hold the active item. Then, there
are other user and item features which may be real valued.

FM break the independence of interaction parameters by factorizing them. The
prediction function of FM is given by:

f(x) := w0

bias

+
n∑
i=1

wixi

Linear Regression

+
n∑
i=1

∑
j>i

∑
k

vikvjk

factorization

〈xi, xj〉
interaction

(2.3.4)

1http://www.libfm.org/

18

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

Figure 2.2 – Factorization Machines : from a dyadic representation to a new feature
space (taken from Minchul Kim, 2017).

The model parameters that have to be estimated in equation 2.3.4 are:

Θ = {w0 ∈ R,w ∈ R,V ∈ Rn×k}

A row v i within V describes the i-th variable with k factors. Then, [Rendle et al.,
2011] extended their model to handle context as well. Another significant extension of
FM came in the form of Field-aware factorization machines [Juan et al., 2016b] where
authors used different latent factors for different feature parameter pairs.

f(x) :=
n∑

j1=1

n∑
j2=j1+1

(wj1,f2 · wj2,f1)xj1 , xj2 .

There are various disadvantages of using FM/FFM. Firstly, performance of FM/FFM
depends on features in data, and as we keep adding features to FM/FFM to increase
performance, the running time keeps getting slow. To overcome this drawback a lighter
version of FFM was developed 1. Additionally, [Juan et al., 2017] discuss tweaks and
tricks as to how FFM was used in industry. Secondly, FFM is a classification based
approach and treates all the unobserved feedback as equally negative. This drawback
can be overcome by using learning-to-rank based approaches, which we discuss next.

1https://www.kaggle.com/c/outbrain-click-prediction/discussion/27892

19

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

2.4 Collaborative Ranking

Most recommendations are presented in a sorted list with highest predicted score at the
first positions. Recommendation can, therefore, be understood as a ranking problem.
Therefore, learning-to-Rank for recommendations is a more realistic problem to solve,
as compared to, the rating prediction problem addressed by standard CF approaches.

2.4.1 Learning-to-Rank

Learning-to-Rank (LTR) defines the task to automatically construct a ranking model
using training data, such that the model can sort new objects according to their degrees
of relevance, preference, or importance [Liu, 2009] for a given user. Motivated by
automatically tuning the parameters involved in the combination of different scoring
functions, LTR approaches were originally developed for Information Retrieval (IR)
tasks and are grouped into three main categories: pointwise, listwise and pairwise.
LTR models represent a rankable item – e.g. documents, offers etc. – given some
context – e.g. a user – as a numerical vector.

In the context of RS, considering a set of users U and a set of items I, we aim to
discover, for each user u ∈ U a total ordering over I, where i �u i′ implies that i is
preferred to i′ for u. Then, the goal is to learn a ranking function f , defined such that
f : U×I→ R preserves the preference order as much as possible. That is, given a user
u, for all i �u i′ , we want f to satisfy f(u, i) �u f(u, i′). Over the past years, several
ways to learn the ranking function f have been proposed, and they can be classified
into three groups.

Pointwise approaches Pointwise approaches [Crammer and Singer, 2001; Li et al.,
2007] assume that each item pair has an ordinal score. Ranking is then formulated as
a regression problem, in which the rank value of each item is estimated as an abso-
lute quantity. Formally, in point-wise approaches, the function f directly approximate
f(u, i) ≈ rui,∀(u, i) ∈ S. In this case, the ordered sequence of f(u, i1), . . . , f(u, im)

is the total ordered list of preference for a user u.

In the case where relevance judgments are given as pairwise preferences (rather
than relevance degrees), it is usually not straightforward to apply these algorithms for

20

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

learning. Moreover, pointwise techniques do not consider the interdependency among
items, so that the position of items in the final ranked list is missing in the regression-
like loss functions used for parameter tuning.

Listwise approaches On the other hand, listwise approaches [Shi et al., 2010; Xu
and Li, 2007; Xu et al., 2008] take the entire ranked list of items for each query as a
training instance. As a direct consequence, these approaches are able to differentiate
documents from different queries, and consider their position in the output ranked list
at the training stage. Listwise techniques aim to directly optimize a ranking measure,
so they generally face a complex optimization problem dealing with non-convex, non-
differentiable and discontinuous functions. Among popular approaches, we can cite
CliMF [Shi et al., 2012], which optimizes a lower bound of the smoothed reciprocal
rank of “relevant” items in ranked recommendation lists to learn a ranking function
which operates on a binary rating matrix and uses a variant of latent factor collaborative
filtering. [Shi et al., 2013] proposed an extension of CliMF that takes into account
ratings with multiple level of relevance and optimizes a smooth approximations of
the Expected Reciprocal Rank (ERR). Finally, CoFiRank [Weimer et al., 2007] uses a
matrix factorization technique with a trace norm regularization on the factors) to handle
explicit feedback by optimizing various looses including a smooth approximation of
the Normalized Discounted Cumulative Gain (NDCG).

Pairwise approaches Finally, in pairwise approaches [Cohen et al., 1999; Freund
et al., 2003; Joachims, 2002; Pessiot et al., 2007], the ranked list is decomposed into a
set of item pairs. Ranking is therefore considered as the classification of pairs of items,
such that a classifier is trained by minimizing the number of misorderings in ranking.
Therefore, in this case, the ranking function f(u, i) does not try to approximate rui, but
rather focus on preserving the relative order of preferences between two ratings given
by the same user.

In the test phase, the classifier assigns a positive or negative class label to an item
pair that indicates which of the items in the pair should be ranked higher than the other

21

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

one. More formally, the goal is to minimize a risk function

L(f) = E

 1

|I+
u ||I−u |

∑
i∈I+u

∑
i′∈I−u

1yi,u,i′f(i,u,i′)<0

 , (2.4.1)

where I+
u and I−u are the sets of preferred and non-preferred items, respectively, for a

given user u; yi,u,i′ ∈ {−1,+1} is the desired output, and is defined over each triplet
(i, u, i′) ∈ I+

u × U× I−u as:

yi,u,i′ =

{
1 if i �u i′,
−1 otherwise.

(2.4.2)

Typical pairwise losses considered in the case include the Hinge function, the ex-
ponential function or surrogate of the logistic loss [Chen et al., 2009].

Next, we present some popular pairwise ranking approaches that were successfully
applied in the context of recommender system built to handle implicit feedback, in
more details.

2.4.2 Pairwise-Ranking for Recommendation Systems

Bayesian Personalized Ranking (BPR) [Rendle et al., 2009] propose a Bayesian
analysis of the pairwise ranking problem, implicitly assuming that users prefer items
that they have already interacted with, at some other time. More precisely, given θ
the set of parameters of a model (e.g. factorization matrix), BPR aims to maximize
p(θ| �u) ∝ p(�u |θ)p(θ) posterior probabilities. Following this formulation, the opti-
mization of θ can be achieved through the optimization of criterion, namely BPR-Opt,
which is related to the AUC (Area Under the Curve) (i.e., ROC curve) metric and op-
timizes it implicitly. Let us denote the optimization function of BPR-Opt by F (θ),
BPR-Opt→ F (θ)

The gradient of BPR-Opt with respect to the model parameters is, then, expressed
as:

∇θF =
∑
u,i,i′∈S

∂

∂θ
lnσ(ŷu,i,i′)− λ

∂

∂θ
|| θ ||2

where, θ are the model parameters, ŷu,i,i′ is the prediction that i is preferred over i′ by

22

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

u (i.e. f(u, i, i′)), σ is the Sigmoid function and S is the training data

Algorithm 1 presents the procedure for learning the parameters in BPR, where one
can use Stochastic Gradient Descent to optimize the BPR-Opt criterion.

Algorithm 1 BPR: Learning phase
Input : γ - learning rate ; λ - regularization parameter
Output : θ
Initialize θ
repeat

Draw randomly (u, i, i′) from S

θ ← θ + γ(e
−ŷu,i,i′

1+e
−ŷu,i,i′

· ∂
θ
ŷu,i,i′ + λ · θ)

until convergence

Rank-ALS [Jahrer and Tscher, 2012] came up with the ranking based formulation of
collaborating filtering for implicit feedback. The pairwise ranking objective function
they minimize is the following:

arg min
U,V

∑
u,i

cu,i
∑
j∈I

sj[(V
>
i Uu −V>j Uu)− (rui − ruj)]2 (2.4.3)

[Takács and Tikk, 2012], then used Alternating Least Squares for minimizing the ob-
jective function of 2.4.3 and coined the term RankALS for their algorithm. In the
equation 2.4.3,
cu,i is the extent to which we penalize the error on user u and item i. Here, the authors
assumed cui = 0 if rui = 0, and 1 otherwise. This setting selects user-item pairs corre-
sponding to positive feedback. sj sets the importance weight to be given to the j − th
item in the objective function.

Hybrid approaches [Balakrishnan and Chopra, 2012] use Probabilistic Matrix Fac-
torization (PMF) as first step. Then, they use pointwise and pairwise Learning to
Rank methods (given in [Burges, 2010]) by using features learned during the first step
of PMF. A very similar model is built by [Volkovs and Zemel, 2012], who also do
PMF at the first step and use neighborhood approach for reducing the feature space.

23

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

[Liu and Aberer, 2014] optimize a pairwise Learning-to-rank loss, whereas [Lee et al.,
2014] optimize a structured ouput loss. Finally, [Guillou, 2016], in his thesis worked
on Ranking using (No-)Click Implicit Feedback in sequential recommendation of mul-
tiple items.

Pairwise Ranking with Neural Networks Perhaps the first Neural Network model
for ranking is RankProp, originally proposed by [Caruana et al., 1995]. RankProp is
a pointwise approach that alternates between two phases of learning the desired real
outputs by minimizing a Mean Squared Error (MSE) objective, and a modification of
the desired values themselves to reflect the current ranking given by the net. Later on
[Burges et al., 2005] proposed RankNet, a pairwise approach, that learns a preference
function by minimizing a cross entropy cost over the pairs of relevant and irrelevant
examples. SortNet proposed by [Rigutini et al., 2008, 2011] also learns a preference
function by minimizing a ranking loss over the pairs of examples that are selected
iteratively with the overall aim of maximizing the quality of the ranking. The three ap-
proaches above consider the problem of Learning-to-Rank for IR and without learning
an embedding.

2.5 Deep Learning for Recommender Systems

Deep learning has proved its mettle in Speech Recognition, Computer Vision and Nat-
ural Language Processing and in recent years, there have been significant advances in
deep learning applications for recommender systems.

For instance, deep learning has been used in collaborative filtering [Covington
et al., 2016a; Dai et al., 2016; Elkahky et al., 2015; He and McAuley, 2015; Qu et al.,
2016; Salakhutdinov et al., 2007; Wang et al., 2014, 2016; Wu et al., 2016; Zheng et al.,
2016]. Recurrent Neural Networks (RNNs) being the model of choice for sequential
type data, session-based recommendations have been done using RNNs[Chatzis et al.,
2017; Hidasi and Karatzoglou, 2017; Hidasi et al., 2015, 2016; Quadrana et al., 2017;
Ruocco et al., 2017; Smirnova and Vasile, 2017; Suglia et al., 2017; Tan et al., 2016;
Twardowski, 2016] and in feature extraction directly from content[Bansal et al., 2016;
He and McAuley, 2016; McAuley et al., 2015; van den Oord et al., 2013]. However,
since our method in further chapters are based on embeddings and using learning to

24

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

rank in deep learning framework, this section is dedicated to discussing methods sur-
rounding those ideas and approaches.

Specializing Joint Representations for the task of Product Recommendation DLRS 2017, August 27, 2017, Como, Italy

model second order interactions by merging information through
ReLUs. In our paper, we propose the Cross Interaction Unit, a sim-
pler solution that allows fast convergence and good performance
with modeling second order interactions.

In terms of architecture, our work is also similar to the one
proposed by [8], that introduces a scalable solution for video rec-
ommendation at YouTube. Unlike their proposed solution, where,
in order to support user vector queries, the candidate generation
step co-embeds users and items, we are interested to co-embed just
the product pairs because for most ecommerce website the number
of products is smaller than the number of website users. In our
approach, the personalization step can happen a�er the per-item
candidates are retrieved.

3 PROPOSED APPROACH: OVERVIEW
3.1 Architecture
Our proposed approach takes the idea of specializing the input
representations to the recommendation task and generalizes it for
inputs of di�erent types, in order to leverage all product information
and in particular, product images, product title and description text.

�e main criteria for the architecture is to allow for the simple
plugin of new sources of signal and for the upgrade of existing em-
bedding solutions with new versions (e.g. to replace AlexNet with
Inception NN for image processing). As a result, the Content2Vec
architecture has three types of modules, as shown in Figure 1:

• Content-speci�c embedding modules that take raw prod-
uct information and generate the product vectors. In this
paper we cover embedding modules for text, image, cate-
gorical a�ributes and product co-occurrences (description
of the di�erents tested modules in Section 4).

• �e Joint Product Embedding modules that merge all
the product information into a joint product representation.
�e two di�erent architectures for this module are detailed
in Section 5.

• �e Output layer that computes the probability for two
products to be cobought or not (this layer is a sigmoid
over the inner product between the two uni�ed product
embedding vectors)

Content2Vec training follows the architecture, learning module-
by-module. In the �rst stage, we initialize the content-speci�c
modules with embeddings from proxy tasks (classi�cation for image,
language modeling for text) and re-specialize them to the task of
product recommendation. For the specialization task, as mentioned
in Section 1, we frame the objective as a link prediction task where
we try to predict the pairs of products purchased together. We
describe the loss function in Section 3.2 and the di�erent modules
in Section 4.

In the second stage, we concatenate the modality-speci�c em-
bedding vectors generated in the �rst stage into a general product
vector that is fusioned into a joint representation using the second
module. �is will be described in depth in Section 5.

Finally, in the third stage, given the updated product vectors
from stage two, we compute the �nal probability of being cobought
using the output layer.

Figure 1: Content2Vec architecture combines content-
speci�c modules to produce embedding vector for each prod-
uct, then uses these vectors to compute similarities between
products. �e modality-speci�c modules are presented in
section 4 and the Joint Product Embedding module in Sec-
tion 5

3.2 Learning a pair-wise item distance
We aim at learning a distance between products that is aligned with
the probability of two products being of interest for the same user.
�e previous work on learning pair-wise item distances concen-
trated on using ranking loss [26] or siamese networks with L2 loss
[11]. In [43], they introduce the logistic similarity loss :

L(�) =
’
i j

�X+i j log� (sim(ai ,bj)) � X�
i j log� (�sim(ai ,bj)) (1)

where:
� = (ai ,bj) is the set of model parameters, where ai and bj are the
embedding vectors for the products A and B,
X+i j is the frequency of the observed item pair ij (e.g. the frequency
of the positive pair ij),
X�

i j is the frequency of the unobserved item pair ij (we assume that
all unobserved pairs are negatives),
� is the sigmoid function
and the similarity distance is de�ned as:

sim(ai ,bj) = � < ai ,bj > +� (2)

In the following, we detail the di�erent modules used to learn
the distance between products. Based on these modules, we can
compute some similarities between products based either on their
text, their image or their collaborative �ltering data. We combine
these metrics in the �nal module. �ese modules could also be used
on their own since they are trained separately to predict whether
two products are related or not.

4 CONTENT-SPECIFIC EMBEDDING
MODULES

Content-speci�c modules can have various architectures and are
meant to be used separately in order to increase modularity. �eir
role is to map all types of item signal into embedded representa-
tions. In Figure 2 we give an illustrative example of mapping a

Figure 2.3 – Content2Vec architecture combines content specific modules to produce
embedding vector for each product, then uses these vectors to compute similarities
between products. Figure taken from [Nedelec et al., 2017]

Figure 2.4 – Architecture of Prod2Vec and User-Prod2Vec [figure from [Grbovic et al.,
2016]]

2.5.1 Representation Learning (RL) with Embeddings

Vector space model is well known in Information retrieval, in which documents are
represented as vector. Idea of projecting words to a k-dimensional space has also
started becoming popular in recent years. The major idea behind latent space projec-
tions and putting objects in a different and continuous dimensional space, is that the
objects will have a representation (a vector) that has more interesting semantic char-
acteristics than basic objects. There are various ways of representing words in vector

25

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

form. The most naive form of representing words is 1-hot encoding. Given a vocabu-
lary of words with their positions in vocabulary fixed, 1-hot representation is a vector
based representation of the word in which all the entries are zero except at the position
of the word. But, the drawback of such a representation of words is due to the fact
that they cannot model meaningful semantic relation ships among words. Research in
vector representations of words has taken off since the work of [Mikolov et al., 2013a],
who represent words as embedding vectors. These models are based on a distributional
hypothesis stating that words, occurring in the same context with the same frequency,
are similar. In order to capture such similarities, these approaches propose to embed
the word distribution into a low-dimensional continuous space using Neural Networks,
leading to the development of several powerful and highly scalable language models
such as the Word2Vec Skip-Gram (SG) model [Mikolov et al., 2013b,c; Shazeer et al.,
2016]. Word2Vec models come in two flavours: Skip-gram model and Continous bag
of words (CBOW) and were first applied efficiently in Natural language processing
tasks[Bengio et al., 2003; Mikolov et al., 2013a,d; Pennington et al., 2015]. Word2Vec
maximizes the probability of the context given the target word. Neural language mod-
els and word embeddings, in particular, have proven themselves to be successful in
many natural language processing tasks including speech recognition, information re-
trieval and sentiment analysis.

This idea of words occurring in a sequence paves the way for their application in
RS also as items in RS are also consumed in sequence and prediction of context of
items given a particular item sets an ideal analogy between word representations and
item representations. The recent work of [Levy and Goldberg, 2014] has shown new
opportunities to extend the word representation learning to characterize more compli-
cated pieces of information. In fact, this paper established the equivalence between SG
model with negative sampling, and implicitly factorizing a point-wise mutual informa-
tion (PMI) matrix. Further, they demonstrated that word embedding can be applied
to different types of data, provided that it is possible to design an appropriate context
matrix for them. Next, we demonstrate how embeddings and vector representations of
users and items can also be learned using neural networks and various works which
have applied this idea to RS.

26

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

2.5.2 Users and Items Representation Learning (RL) with Embed-
dings

This idea has been successfully applied to recommendation systems where different
approaches attempted to learn representations of items and users in an embedded space
in order to meet the problem of recommendation more efficiently [Covington et al.,
2016b; Grbovic et al., 2015; Guàrdia-Sebaoun et al., 2015; He et al., 2017; Liang et al.,
2016]. In recommendations, notion of words is replaced with items in a session/user-
profile. Various approaches have been developed on this idea, such as, Item2Vec
[Barkan and Koenigstein, 2016b], Prod2Vec, Bagged-Prod2Vec and User-Prod2Vec
[Grbovic et al., 2016], Meta-Prod2Vec [Vasile et al., 2016a] and Content2Vec [Ned-
elec et al., 2017].

In [He et al., 2017], the authors used a bag-of-word vector representation of items
and users, from which the latent representations of latter are learned through word-
2-vec. [Liang et al., 2016] proposed a model that relies on the intuitive idea that the
pairs of items which are scored in the same way by different users are similar. The
approach reduces to finding both the latent representations of users and items, with
the traditional Matrix Factorization (MF) approach, and simultaneously learning item
embeddings using a co-occurrence shifted positive PMI (SPPMI) matrix defined by
items and their context. The latter is used as a regularization term in the traditional
objective function of MF. Similarly, in [Grbovic et al., 2015], the authors proposed
Prod2Vec, which embeds items using a Neural-Network language model applied to a
time series of user purchases. This model was further extended in [Vasile et al., 2016b]
who, by defining appropriate context matrices, proposed a new model called Meta-
Prod2Vec. Their approach learns a representation for both items and side information
available in the system. The embedding of additional information is further used to
regularize the item embedding. Inspired by the concept of sequence of words; the
approach proposed by [Guàrdia-Sebaoun et al., 2015] defined the consumption of items
by users as trajectories. Then, the embedding of items is learned using the SG model
and the users’ embeddings are further used to predict the next item in the trajectory. In
these approaches, the learning of item and user representations are employed to make
prediction with predefined or fixed similarity functions (such as dot-products) in the
embedded space.

27

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

2.6 Diversity in Recommender Systems

More recent research on recommender systems have started to focus on tackling the
problem of how we recommend and not just what we recommend to the users. The
ideal balance of how much diverse, relevant or novel the top recommended items are
depends on the user in question. Although, the objective in recommendations is usually
to have fewer flops on the top, inducing more diversity in the top items ensures that
user may prefer to interact with at least some items in contrast to the situation where
we introduce just monotonous relevant items. In recent works [Herlocker et al., 2004;
McNee et al., 2006], it has been shown that only recommending relevant items (within
the semantics of items which are the more likely to be of interest for users) has its limits
and that adding notions of diversity and discovery in the process can highly increase
the performance of a recommendation system [Bradley and Smyth, 2001; McSherry,
2002; Smyth and McClave, 2001; Zhang and Hurley, 2008].

In past years, approaches that propose to tackle the problem of finding an accuracy-
diversity trade-off mainly rely on the re-ranking, a.k.a, Maximum Marginal Relevance
principle, introduced originally in [Carbonell and Goldstein, 1998]. The re-ranking
procedure is in two steps: first produce a list of the most relevant items for each user,
using some individual scores s(u, i),∀u ∈ U and i ∈ I; then re-rank the previously ob-
tained list to enhance diversity using various diversity metrics [Deselaers et al., 2009;
Drosou and Pitoura, 2009; Zhang and Hurley, 2008; Ziegler et al., 2005].

There have been works on strategies which do not involve re-ranking but clustering
of items. For example, [Zhang and Hurley, 2009] partition the user’s profile into cluster
of items and recommend items from these clusters. In [Boim et al., 2011], authors
cluster the items and then recommend a set of representative items, one for each cluster.
[Li and Murata, 2012], use multi-dimensional clustering in order to provide diversified
recommendations. [Shi, 2013] use graph-based approach and pose the problem as
cost-flow to do bi-clustering and non-negative matrix factorization thus increasing the
probability of non-tail items.

A recent article proposed to avoid re-ranking by directly optimizing a loss that
takes into account both the diversity and the accuracy while building a list of items
for each user. In (Learning to Recommend Accurate and Diverse Items [Cheng et al.,
2017]), they consider the problem as a structural learning problem, where the set of

28

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

recommended items is optimized through structural SVM and a loss function com-
bining diversity and accuracy. The main drawback of this approach is that, due to
computational issue, they start by selecting a set of candidate items for each user, by
only keeping items preferred by the user in the past.

There also have been works on multi-objective optimization, which try to opti-
mize different objective functions for accuracy, diversity etc. For example, [Ribeiro
et al., 2012] use the concept of pareto-efficiency to optimize accuracy, diversity and
novelty simultaneously. [Su et al., 2013] include diversity term in matrix factorization
objective function. [Hurley, 2013] incorporate diversity in learning to rank objective.
[Wasilewski and Hurley, 2016b] also add diversity term in constrained Probabilistic
Latent Semantic Analysis (PLSA).

In RankALS [Wasilewski and Hurley, 2016a], a diversity regularization term is
added, thus taking into account diversity in a single step learning. The objective that
they intend to minimize is given by

LRankALS(Θ) + λreg(U,V),

where λ is the parameter controlling the amount of diversity. The loss LRankALS

is the one defined in Equation 2.4.3. The authors derived various forms for the regu-
larization term from the expected intra-list diversity (EILD) metric (which we define
in section 2.7), all based on a distance matrix between items using some available
characteristics (i.e. the genre of movies for the problem of movie recommendation).

Diverse and Novel Recommendations using Re-inforcement Learning

Reinforcement learning methods solve sequential decision-making tasks, where the
decision is taken under uncertainty. At each time step, the system made of agent and
environment is in a given state. The agent takes an action, and gets a reward or a
cost of taking that action. In the end, the goal is to maximize the cumulative reward.
One of the specific cases of Re-inforcement Learning is that of the point of view of
the Multi-Armed Bandit setting, where there is only one state. Recommender Sys-
tems can be seen as Multi-Armed Bandit setting, where agent has to take action as to
what to recommend next to the user so as to maximize the cumulative reward (clicks
or the time-spent on the website). In a real-world recommender system, there is a

29

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

need for adaptibility and reinforcement learning would embed perfectly to suit that
need [Guillou, 2016]. One specific consequence of Re-inforcement Learning is that
of explore-exploit dilemma. Exploit is the step, where we recommend an
item which led to the best feedback in the past. Explore step enables us to recom-
mend an item which hopefully brings information on the users tastes. [Tang et al.,
2014; Xing et al., 2014; Zhao et al., 2013] have applied explore-exploit techniques to
recommender systems. Indeed, in many recommendation applications such as news
recommendations, it becomes important to adapt to ever-changing user interests and
keep recommending new and diverse items to the user so that user doesn’t get bored
[Zheng et al., 2018].

2.7 Evaluation of Recommender Systems

Most researchers who suggest new recommendation algorithms also compare the per-
formance of their new algorithm to a set of existing approaches. Such evaluations
are typically performed by applying some evaluation metric that provides a ranking
of the candidate algorithms (usually using numeric scores). RS are highly applica-
tion oriented and they have specific goals and tasks. Evaluation should focus on the
application goals and tasks [Gunawardana and Shani, 2015].

2.7.1 Prediction Accuracy

At the core of most RS systems lie the prediction model. Typical predictions consist
of:

• What rating will a user give to an item ?

• Will the user select (e.g. click on) an item ?

• What is the order of usefulness of items to a user ?

Rating prediction accuracy

The RS is evaluated through its prediction for the items by users in test set, by com-
paring how close they are to the real ones. Most popular and widely used metrics are
the folowing:

30

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

Mean Absolute Error (MAE) measures the average absolute deviation between the
real and predicted rating.

MAE =
1

| J |
∑

(u,i)∈J

| r̂ui − rui |

Mean squared error (MSE) Compared to MAE, MSE puts the emphasis on large
errors.

MSE =
1

| J |
∑

(u,i)∈J

(r̂ui − rui)2

The Root of the mean squared error(RMSE) is the square-root of the MSE value,
and it is often employed in large number of collaborative filtering papers.

RMSE =
√
MSE

But, rating prediction task has been shown to have disadvantages. A system in which
almost all ratings are around 3 in a 1 to 5 stars scale, would get a good evaluation score
by predicting a 3 for every item. However, it would be more important to put more
weight on high ratings to be able to correctly predict them from the point of view of
the user. Moreover, high ratings do not necessarily mean high usage. People do not
really watch more 5 star movies than the 3 star movies. The feedback given by the
user has evolved from ratings to user-consumption of an item over time. Therefore,
rating prediction has been deemed unfit from user’s utility point of view[Basilico and
Raimond, 2017].

Usage Prediction Accuracy

Usage prediction accuracy measures, as contrary to rating-prediction, evaluate and
precise if the RS is capable of making relevant recommendations. They compare the
list of recommended items by the RS with the ground truth of user’s preferences. The
relevancy of an item can be defined in different ways: in case of implicit feedback, such
as clicks, an item may be considered relevant if the user clicks on it. In case of explicit
feedback, such as ratings, an item may be considered relevant if the user provides

31

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

rating greater than 3.5 (on a scale of 1-5). Let L(s) denote the recommendation list
and R denote the relevant items for a user, the two metrics can be defined:

• the Precision measures the fraction of relevant items recommended in the list

Precision =
| R
⋂
L(s) |

| L(s) |

• the Recall measures which fraction of the relevant items have been retrieved in
the set of recommendation

Recall =
| R
⋂
L(s) |
| R |

The scores of Precision and Recall can be conflicting and usually there is a trade-
off between the two for any algorithm. Increasing the size of recommendation
list will increase the recall, but decreases precision at the same time. This prob-
lem is often solved by using F1 Score, which is harmonic mean of precision and
recall.

F1 = 2 · Precision ·Recall
Precision+Recall

2.7.2 Ranking Measures

In RS systems, user usually receives a predicted sorted ranked list of recommendations
containing top-k items. In an ideal case, ranked list of items should have highly pre-
ferred items higher in the list. Recommendations can, therefore, be studied as a ranking
problem. Ranking measures have been used to evaluate how good is the evaluation by
directly optimizing ranking measures.

Mean Average Precision@k (MAP@k) Precision@k is defined as the precision
(i.e. the percentage of relevant items among the first k recommendations) at the po-
sition k in the ranked results. Average Precision@k (AP) is computed by taking the
average of Precision@i, ∀i ∈ [1, k]:

AP@k =
1

relevant at k

k∑
1

Precision@k · rel(i),

32

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

where rel(i) is an indicator function equalling 1 if the item at rank k is a relevant rec-
ommendation, zero otherwise. Then, the mean of AP@k across all users is MAP@k.
Below, we detail the step by step procedure of calculating MAP@k:

Precision@K

• Set a rank threshold K

• Compute % relevant in top K

• Ignores documents ranked lower than K

• Ex:

– Precision@3 : 2/3

– Precision@5 : 3/5

Average of P@K

• Ex: has AvgPrec=1
3
(1

1
+ 2

3
+ 3

5
) ' 0.76

The recommendation performance of all methods is evaluated on the test set. For
each user in the test set, a ranking of items (only the items that the user interacted
with) is generated and the mean average precision (MAP) is computed with a cut-off
of different k. Then, the mean of these AP@k (as defined in equation 2.7.2) across
all relevant queries is the MAP@k. In the case of recommendations, MAP@k is the
AP@k across multiple rankings of all users.

2.7.3 Diversity Measures

Most of the RS focus on the relevance of items being recommended to the user. By
doing that, RS increase the sale of popular items. Also, these monotonous recommen-
dations may also bore user and may mean less engagement with the system. In order to
overcome these issues, RS often try to introduce diversity in their recommendations.
Diversity of recommendations is often computed by computing Expected Intra-List
Distance (EILD). Intra-List distance of any list L(s) of items recommended to a par-
ticular user is given by:

ILD(Lu) =
1

N(N − 1)

∑
i,j∈L(s)

d(i, j) (2.7.1)

33

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

EILD is then given by averaging over all users:

EILD =
1

|U |
∑
u∈U

ILD (2.7.2)

Distance d(i, j) between two items i and j is computed using meta-data of items suchas
item-genre, item-category or item-embeddings. High value of EILD indicates high
diversity. For more detailed reading on diversity metrics, one may refer to [Castells
et al., 2015]

2.7.4 Online-Testing

In online-testing evaluation takes place within the real application on the real users.
Typically, one or more recommender models are compared and user is assigned to one
of the alternative systems uniformly at random, so that comparisons between alterna-
tive recommender systems is fair. Usually, it is also beneficial to single out different
concepts. For example, if we are testing the accuracy of the system, user interface
must be fixed across different recommender models. Many real-world systems employ
online testing systems because of their advantages over offline counterparts.

Online-testing gives results over real users. Online-evaluation takes into account
various factors which might effect real-time recommendations. There could be diverse
factors effecting recommendations such as the user’s intent, the user’s personality, such
as how much novelty or diversity vs. how much risk they are seeking, the user’s con-
text, how much they trust the system and the interface through which the recommen-
dations are presented. Online evaluation provides strongest evidence to the true value
of the system by taking into account all the above mentioned factors. Performance is
measured on the real application and results are trustworthy.

But, there are various problems also. Online-testing impacts real users and hence
test system must be decent enough because varying user experience may be deemed
bad. A test system that provides irrelevant recommendations, may discourage the test
users from using the real system ever again. An extensive offline study must, therefore,
be performed before doing online experimentation and an evidence should be obtained
that candidate algorithms are reasonable enough to be tested online. Online-testing is
also a lengthy process and may take long time. A more in-depth analysis on online

34

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

evaluation has been provided in [Gunawardana and Shani, 2015], who provide more
details on significance testing and confidence intervals in online-evaluation.

A/B Testing A/B testing (bucket tests or split-run testing) is a randomized experi-
ment with two variants, A and B. A/B tests are controlled experiments with thousands
of users, which are applied to establish causal relationships between new treatment
and change in user behavior with high probability [Kohavi, 2015]. Two versions (A
and B) are compared, which are identical except for one variation that might affect
a user’s behavior. Online A/B testing is generally used by companies to evaluate the
impact of new technology by running it in a real production environment. Each new
software implementation is tested by comparing its performance with the previous pro-
duction version through randomized experiments. As an example, moving credit card
offers from Amazon’s home page to shopping cart page boosted profits by tens of mil-
lions of dollars 1. Good A/B metrics are of critical importance in order to make sound
data-driven decisions. [Machmouchi and Buscher, 2016] do an in-depth study on the
principles of design of online A/B metrics.

However, [Gilotte et al., 2018] have mentioned concerns for using online-version of
A/B testing and design efficient offline estimators for offline A/B evaluation. [Joachims
and Swaminathan, 2016] also do an indepth study on offline counterfactual evaluation
of online A/B metrics

2.8 Conclusion

In this chapter, we described the state-of-the-art personalized recommendation tech-
niques. We first discussed content based recommendation techniques. Then, we de-
scribe in detail collaborative filtering techniques being used. We go on to describe,
in detail, learning-to-rank based methods for implicit feedback. We go on to detail
the methods being used for representation learning for implicit feedback. Then, we
describe the methods to make recommendations, not just relevant, but diverse. We
finally discuss offline and online methods for evaluating recommendations.

1Kohavi, Ron, and Stefan H. Thomke. ”The Surprising Power of Online Experiments: Getting the
Most Out of A/B and Other Controlled Tests.” Harvard Business Review 95, no. 5 (September-October
2017): 7482.

35

2. RECOMMENDER SYSTEMS: STATE-OF-THE-ART AND EVALUATION

36

3. DATA-COLLECTIONS

Chapter 3

Data-collections

37

3. DATA-COLLECTIONS

3.1 Introduction

Nowadays, there are multiple learning based engines for optimizing the performance of
advertising campaigns. Most of these engines are developed in the sense to be generic
and adaptable for any type of advertiser on Internet, and allow to operate on different
marketing axes, including commercial performance. A competitive engine has precise
campaign objectives defined according to quantitative criteria, whether financial (prof-
itability), media (traffic) or commercial (conversion, registration, purchase), and can
achieve these objectives through a fine user targeting and sophisticated algorithms al-
lowing to decide which ads should be displayed or when to stop presenting a given ad
to the user. This fine ad targeting is primarily based on the collection and processing
of the browsing history of the users, that can be traced using web cookies. Therefore,
our first goal, in this thesis, is to collect, register and extract enough data in order to
perform a first offline evaluation of the proposed models.

Hereafter, we describe two datasets, KASANDR and PANDOR that we extracted
from Kelkoo’s and Purch’s traffic, respectively. They are designed to investigate a
wide range of recommendation algorithms as they include many contextual features
about both customers and proposed offers. For comprehensiveness, a description of
side information and statistics are presented. The description of these datasets are
published in SIGIR’17 [Sidana et al., 2017] and RecSys’18 [Sidana et al., 2018b].

3.2 Collection of the data

For building state of the art and novel RS models, the following constraints are taken
into account. There are two components to the recommendation model: offline and
online. Offline model is built on daily basis and takes long term user-personalizing into
account, while the online model needs to be updated on hourly basis and takes context
of the user as well as the model (built during the offline phase) into account. To make
real time recommendations, various aggregate statistics, such as, number of unique
users, number of returning users (within the month), number of new users (within
the month), number of actions by user (min, max, avg) need also to be maintained.
Finally, offers need to be recommended in real time with a time window of less than
ten milliseconds. Keeping in view all these requirements, for building offline model,

38

3. DATA-COLLECTIONS

data is pushed into HDFS by batch importers at Kelkoo and Purch in compressed
format (.parquet) each day. For doing online updates of the model, data is pushed
by real time importers into AEROSPYKE based database. Kelkoo’s one month logs
are big enough (950 GB uncompressed) to not fit in one system. This leads to a lot of
scalability issues, which come up when pre-processing data of this size. SPARK, which
is a technology developed for handling big data and building machine learning models
in a distributed manner, was used to do pre-processing and build dataset formats on
which RS baselines can be built.

There were numerous bugs found in the initial stages of cleaning and pre-processing
the data. We found that:

• We found that maximum number of the clicks were done by bots and not a
human and many users have done no click at all.

• We found that many offers which were being clicked were never shown to the
users.

• Users were tracked by maintaining cookies and this user-tracking system was
not profound.

We removed/minimized the effects of these problems before starting to build RS base-
lines over the data.

KASANDR

The dataset records interactions of Kelkoo’s customers between June, 1st 2016 and
June, 30th 2016. It is designed to provide useful information in order to create and
develop effective algorithms for the recommendation task. Kelkoo’s traffic can be
broadly classified according to 4 service types: (1) Ads, (2) Kelkoo’s Website, (3)
Kelkoo’s Partners, (4) Kelkoo Feed System (KFS) which are summarized in Table 3.1.
Kelkoo has collaboration with around 1000 partners (publishers/affiliates) on which
users are advertised with offers. Various scenarios in which database at Kelkoo gets
populated can be broadly classified into 4 different types:

39

3. DATA-COLLECTIONS

- User visits Kelkoo’s website and enters a search keyword. In this case, 1 PageView,
1 SearchView (with unique SearchId), N OfferViews (all having unique Offer-
ViewId, where OfferViewId is the concatenation of searchId and offerId) are
generated. If the user does a click, 1 ClickView (with unique ClickId) is gener-
ated.

- User browsing through Kelkoo’s or partner’s website is shown an ad (either a
standard ad, or the user is retargeted, or on the basis of user’s context, for exam-
ple, the content of the page user is browsing). In this case also, 1 PageView, 1
SearchView (with unique SearchId - search keywords generated based on the ad
content) and N OfferViews (1 per offer) are generated.

- User enters search keywords in Kelkoo’s partner’s website which does not cache
offers. For each such search, a new Search Id is generated and hence new Offer-
ViewId is generated (as OfferViewId is concatenation of Search Id and Offer Id).
In this case, there is no way to confirm that offer was displayed to the user.

- User enters search keywords in Kelkoo’s partner’s website on which offers are
cached. In this case several users can see the same set of offers cached by the
partner, hence, generating the same OfferViewId. In this case also, it can not be
said for sure that the offer is displayed to the user.

Table 3.1 – Counts of the number of clicks done for each service type.

Type Ads Kelkoo site Partners’Api Kelkoo Feed System
Count 597,513 1,320,958 10,396,319 2,650,391

PANDOR

PANDOR is also designed to provide useful information in order to create and develop
effective algorithms for online advertising. The dataset records the behavior of users
of Tom’s Hardware website1 during one month; from 1st April 2018 to 30th April
2018. PANDOR gathers implicit feedback in the form of both impressions and clicks,
given by users who have interacted with Purch online ads displayed on web articles.

1http://www.tomshardware.com

40

http://www.tomshardware.com

3. DATA-COLLECTIONS

Information is collected when a user, browsing through Purch’s websites (e.g. Tom’s
hardware), is shown an ad (either a standard ad, or on the basis of user’s context, for
example, the content of the page that the user is browsing). In this context, 1 PageView
and N OfferViews (N being the number of displayed offers) are generated. Then, if the
user clicks on one of the offers that is shown to him, 1 ClickId is generated.

Next, we present the main characteristics of each of these datasets.

3.3 KASANDR Dataset

In the following, we describe the structure of KASANDR and present its basic statistics.

3.3.1 Structure of the data

The dataset is divided into four main databases that contain implicit feedback (offer
views, clicks) of the users that have interacted with Kelkoo ads as well as a lot of
contextual information (for full details, see Table 3.2). For privacy reasons, the UserID,
name of the merchant and source were anonymized. In terms of contextual features,
we have the following attributes:

- All four main files contain information about the geographic location of the user
and the timestamp of each interaction. As mentioned previously, the data were
collected across 20 countries and we provide the country code associated with
each user.

- The click file contains the category of clicked products. There are more than
650 categories, provided by Kelkoo, organized hierarchically (according to two
levels). We provide an XML file that describes this hierarchy and contains cate-
gories’ ID and label.

- The search table contains details about the users query: the string used to retrieve
offers (QueryString), the list of filters apply to some of the queries to refine the
search and a Boolean feature that indicates whether or not the query is filled by
the user in the search box (isPrompt).

41

3. DATA-COLLECTIONS

Table 3.2 – Description of free-available files. train set and test set have been created
from Click and Offers for training recommender algorithms and further details are in
next section.

File name Format Features
Page View csv UserId, CountryCode, Timestamp, Url

Search csv SearchId, UserId, CountryCode, isPrompt, Timestamp, QueryString
Offers csv OfferId, OfferViewId, UserId, OfferRank, Merchant, price, Timestamp, CountryCode
Click csv ClickId, UserId, OfferId, OfferViewId, CountryCode, Category, Source, Timestamp, Keywords, OfferTitle

Product Cat xml id and labels of product category presented as a tree
train set csv UserId, OfferId, Service Type, ProductCategory, Country, Merchant, Feedback (1 or -1)
test set csv UserId, OfferId, Service Type, ProductCategory, Country, Merchant, Feedback (1 or -1)

Finally, we also provide the train set and the test set used in the next section. All
these files and additional details about the features can be found on-line1.

3.3.2 Basic statistics

Table 3.3 and 3.4 report some basic descriptive statistics of the whole data. As outlined
in these tables, we gather actions made by 123 million users over 56 million offers. In
total, over the 3 billion offers displayed to those users, only 16 million were clicked
resulting in the mega-sparsity of KASANDR.

Table 3.3 – Overall Dataset Statistics: 2016-06-01 to 2016-06-30.

of users # of unique offers # of offers shown # of clicks
123,529,420 56,667,919 3,210,050,267 16,107,227

Table 3.4 – Overall Dataset Aggregate Statistics.

Sparsity 99.9999997848%
Average # of Offers Shown to 1 user 26
Maximum # of clicks done by 1 user 3,722
Minimum # of clicks done by 1 user 0
Average # of clicks done by 1 user 0.13

Average # of clicks done by 1 user (if user did at least one click) 1.71

Figure 3.1(a) shows that the number of users fall sharply as the number of clicks
rise, and most of the times either 3 or 6 offers are shown to the users. Figure 3.1(b)

1http://ama.liglab.fr/kasandr/, http://archive.ics.uci.edu/ml/
datasets/KASANDR

42

http://ama.liglab.fr/kasandr/
http://archive.ics.uci.edu/ml/datasets/KASANDR
http://archive.ics.uci.edu/ml/datasets/KASANDR

3. DATA-COLLECTIONS

depicts how the number of users and the number of clicks vary during the month.
We can see that both numbers remain stable over the weeks. In addition, as previously
mentioned, the data is collected across 20 countries and most of the clicks are generated
by France and Italy, followed by Germany (see Figure 3.1(c)).

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

1 2 3 4 5 6 7 8 9 10 11

#
U

s
e
rs

#Clicks/Offer Views

#Users vs. #Clicks

#Users vs. #Offer views

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

22 23 24 25 26

C
o
u
n
t

Week

#users

#clicks

Figure 3.1 – (a) Number of clicks and number of offer views vs. number of users; (b)
Number of clicks and number of users who did at least one click per week

From Table 3.5, one can observe that, over a month of data, very few number of
users actually return to the system, when compared to the number of new users that
emerge every week. This observation indicates that the time-window considered for
making recommendation is important and gives information on how often a recom-
mender model should be trained (offline) in order to provide relevant recommenda-
tions.

Table 3.5 – Number of new users and returning users per week.

Week Number # New Users # Returning Users
23 36,932,009 165,951
24 26,736,201 199,467
25 22,358,876 185,749
26 13,908,242 135,303

Kelkoo’s June data consists of many features which were made available to us to
work with. For instance, it consists of nine different sources/partners from which data
is collected. Apart from that, 461128 keywords and 680 different categories are con-
tained in Click logs. Country-wise distribution of categories and merchants is shown
in Figure 3.3

Next, we present PANDOR, another large scale dataset with rich text information.

43

3. DATA-COLLECTIONS

 0

 500000

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

 3.5x10
6

fr it d
e

e
s

u
k

n
o

b
r

d
k

s
e

n
l

b
e

p
l

fi ru p
t

n
b

a
t

ie c
h

c
z

#
C

lic
k
s

Country Code

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

it fr e
s

d
e

s
e

u
k

n
o

d
k

n
l

p
l

b
r

b
e

a
t

fi c
h

ie ru p
t

c
z

n
b

#
O

ff
e
rs

Country Code

0.00*10
+
00

5.00*10
+
06

1.00*10
+
07

1.50*10
+
07

2.00*10
+
07

2.50*10
+
07

3.00*10
+
07

3.50*10
+
07

4.00*10
+
07

4.50*10
+
07

fr it e
s

s
e

n
o

d
k

u
k

d
e

n
l

b
r

b
e

fi p
l

a
t

c
h

c
z

n
b

p
t

ru ie

#
U

s
e
rs

Country Code

Figure 3.2 – (a) Number of clicks per country. (b) Number of offers per country. (c)
Number of users per country.

 0

 200

 400

 600

 800

 1000

 1200

it fr de pl be se no es nl dk nb uk at br ie fi ch ru pt cz

#
M

e
rc

h
a

n
ts

Country Code

Number of Merchants versus Country

 50

 100

 150

 200

 250

 300

 350

fr uk it dk es nl de no se ie pl at ch br cz fi ru pt be nb

#
C

a
te

g
o

ri
e

s

Country Code

Number of Categories versus Country

Figure 3.3 – (a) Number of Merchants per country. (b) Number of categories per
country.

44

3. DATA-COLLECTIONS

3.4 PANDOR Dataset

This Section presents in detail, another novel and publicly available dataset for online
recommendation provided by Purch1. The dataset, referred to as PANDOR, records the
behavior of users of Tom’s Hardware website2 during one month; from 1st April 2018
to 30th April 2018. PANDOR gathers implicit feedback in the form of both impressions
and clicks, given by users who have interacted with Purch online ads displayed on web
articles.

3.4.1 Structure of PANDOR

The dataset contains implicit feedback (offer views, clicks) of the users that have in-
teracted with Purch’s ads (see Table 3.6 for details where we list the features we use
to train our baselines). It should be noted that the dataset which we are going to make
public also contains contextual information about offers such as keywords, titles, at-
tributes and url of the page (and its anonymized text) on which offer was displayed.
As some of the baselines we run later do not use contextual information, and to keep
the comparison fair, we do not use them in the baselines we compare on PANDOR.
However, baselines and our approach can be easily adapted to make use of all the con-
textual information we provide with this dataset. For privacy reasons, the UserID was
anonymized. For each feedback (positive and negative), the Timestamp is recorded.

Table 3.6 – Description of train set, test set and Ratings files in PANDOR.

File name Format Features
Ratings csv utcDate, userId, offerViewId, offerId, wasClicked
train set csv UserId, OfferId, Feedback (1 or -1), Timestamp
test set csv UserId, OfferId, Feedback (1 or -1), Timestamp

Finally, we also provide the train set and the test set used in the next section. All
these files and additional details about the features can be found online.3

1http://www.purch.com/
2http://www.tomshardware.com
3For research purpose we will make available all the files along with all the contextual information

as well as the codes that we used in our experiments and the pre-processed data sets.

45

http://www.purch.com/
http://www.tomshardware.com

3. DATA-COLLECTIONS

3.4.2 Features of PANDOR

Some statistics are provided in Tables 3.7 and 3.8, highlighting the complexity of the
proposed data, both in terms of sparsity and size. As outlined in Table 3.7, the datasets
gather the actions of close to 2M users over 3.7K products. We further describe more
contextual information present in PANDOR in Table 3.10. By one event, we mean the
act of being shown a banner of advertisements to a user. As can be seen from that
Table, PANDOR is also suitable for text based Recommender Systems. This text based
information present in PANDOR makes it fit for applying topic modeling techniques
for getting meaning semantics as a preprocessing step. Among the 48M interactions
observed, only 337K resulted in a positive feedback, i.e., click. Furthermore, one can
observe that the maximum number of clicks done by one user is 119 while the average
number of clicks is below 0.057 (see Table 3.8).

Table 3.7 – Overall Dataset Statistics, from 2018-04-01 to 2018-04-30.

of users # of unique offers # of offers shown # of clicks
5,894,431 14,716 48,754,927 337,511

Table 3.8 – Overall Dataset Aggregate Statistics.

Maximum # of offers shown to 1 user 2,029
Average # of Offers Shown to 1 user 8.271
Maximum # of clicks done by 1 user 119
Minimum # of clicks done by 1 user 0
Average # of clicks done by 1 user 0.057

Average # of clicks done by 1 user (if user did at least one click) 1.351

Table 3.9 – Number of new users and returning users per week.

Week Number # New Users # Returning Users
14 1,387,876 99
15 1,298,355 592
16 1,447,586 647
17 1,395,424 774

From Figure 3.4(a), one can observe that the number of users fall sharply as the
number of clicks rise. In addition, the majority of users were shown one offer (i.e.

46

3. DATA-COLLECTIONS

 1⋅10
0

 1⋅10
5

 1⋅10
6

 1 3 5 7 9 1
1

 1
3

 1
5

 1
7

 1
9

 2
1

#
U

s
e

rs

#Clicks

#clicks
#impressions

10
0

10
1

10
2

10
3

10
4

10
5

10
6

W1 W2 W3 W4 W5

C
o

u
n

t

Week

#users

#clicks

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 500 1000 1500 2000 2500 3000

C
o

u
n

t

Items

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

C
o

u
n

t

Items

Figure 3.4 – (a) Number of clicks and number of offer views vs. number of users; (b)
Number of clicks and number of users who did at least one click per week; (c) Long
tail item : number of time each item is recommended; (d) Long tail item : number of
time each item is clicked

Table 3.10 – Overall Dataset Textual Statistics, from 2018-04-01 to 2018-04-30.

Events 48,602,664
Events where user did at least 1 click 4,544,848

Events which have at least 1 page text words 1,212,170
Events which have at least 1 product text words 450,050

Events which have at least 1 keyword 4,492,544
Page text vocabulary size 9,111

Product text vocabulary size 6,016
Keyword vocabulary size 543

Offers which have at least 1 text word 2,701 (27.4%)
Pages which have at least 1 text word 1,990 (28.1%)

impressions), while, the number of users that were shown 2 to 7 offers are quite bal-
anced. Figure 3.4(b) depicts how the number of users and the number of clicks vary

47

3. DATA-COLLECTIONS

during the month the dataset was collected. We can see that both numbers remain sta-
ble over the weeks. Finally, an important specificity of the dataset is that, at the time it
was extracted, the actual recommendation system in production was mainly based on
the popularity of the items, meaning that the ads displayed to any particular user were
mostly related to the most clicked or sold products. Another part of recommendations
system is based on LDA-based user profile similarity. As a result, the coverage of
items is extremely low and the dataset presents what is referred to as the long-tail phe-
nomenon or the popularity bias in the literature [Anderson, 2006; Park and Tuzhilin,
2008](see Figure 3.4(c)).

Other dataset collections We briefly mention the other datasets, we are going to
use in experiments section 6.3 here. These collections are not the contributions of
this thesis, but some popular collections, which RS community tend to use for bench
marking their models. In particular, we use ML-100K, ML-1M and NETFLIX. All
of these are explicit feedback datasets and synthetically made implicit by considering
rating ≥ four as one (and less than four as 0). More details about these datasets and
analysis will be done in Section 6.3

3.4.3 Summary

In this chapter, we presented novel datasets in order to encourage future research on
recommendation systems using implicit feedback. They are designed to investigate
a wide range of recommendation algorithms as it includes many contextual features
about both customers and proposed offers. For comprehensiveness, a description of
side information and statistics are presented.

Another interesting perspective include the integration of textual information avail-
able in KASANDR and PANDOR using the URL to retrieve the content of the page on
which the item is presented, the tag associated to it, or the query string entered by the
user for his search. For this purpose, models based on text mining, semantic analysis
or natural language processing can be investigated. We also left aside other features
in the experimentation such as the consumer’s behavior w.r.t. the type of device that
s/he is using or the price of the items which we believe that they can greatly impact the
performance of RS.

48

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

Chapter 4

Extracting latent topics over timely
related articles

49

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

4.1 Introduction

Recommendations are actions at a moment in time. This moment can be controlled by
the user’s actions such as visit time of the user or session length of the user. Time is a
critical aspect in any RS [Basilico and Raimond, 2017]. Hence, some works have tried
to address this aspect of time [Ding and Li, 2005; Koren, 2010; Rendle et al., 2010;
Shani et al., 2005; Zimdars et al., 2013]. Recurrent Neural Networks (RNNs) have been
used for session-based recommendations [Chatzis et al., 2017; Hidasi and Karatzoglou,
2017; Hidasi et al., 2015, 2016; Quadrana et al., 2017; Ruocco et al., 2017; Smirnova
and Vasile, 2017; Tan et al., 2016; Twardowski, 2016]. Comprehensive survey has
been done in time-aware recommendations [Campos et al., 2014].

On a similar note, textual data plays an important role in content-based recommen-
dations. [Musto et al., 2016, 2017] use textual data in order to provide content-based
recommendations. RS data are usually sparse with users providing very little feedback
about their preferences. There are wide variety of textual data, which can provide an
extra feedback signal. Textual data such as product-reviews gives an explicit prefer-
ence signal of the user. On the other hand, page browsing, search-text, offer (title, tags
and categories), which user clicked on, provide implicit preference of users. All these
explicit or implicit feedback, if modeled properly, can help boost performance of RS
models.

Topic modeling is a good way to exploit textual data and to extract relevant in-
formation and topics. These relevant topics can be used as a contextual information
in wide variety of RS. In other words, the topics inferred from text can be used as
supplementary feature in RS models.

This contextual information of topics can also be used in content-filtering based
RS. For example, on a news website, a particular user has viewed/engaged with a
particular set of page views. The text contained in these page-views can then be used
to model the topics of interest to the user. These topics can then be used to make
future recommendations to the user by building long term user-profile by aggregating
the topics of pages which user has engaged in the past. The topics of interest of the
user also evolves with time. This evolution of intent of the user with time is also of
interest in making recommendations to the user.

All the above approaches rely on how well are we able to model the topics of

50

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

underlying document collections as well as on how these underlying topics and the
intent of the user over these topics evolve over time. In this vein, we make use of both
text and time and use topic-model based approaches.

In what follows, we present various topic-modelling techniques. In Section 4.3,
we first define general-purpose topic modelling techniques. Then we present a novel
temporal topic model, which we developed during the course of this thesis, in Sec-
tion 4.2.2. We then depict the efficacy of the two novel temporal topic models on
health-based recommendations by using perplexity in the results Section 4.5 of
this chapter. Then, in experiments Section 6.4, we use topics derived from one of
these temporal topic models as contextual information in Factorization Machines, a
popular approach for RS with implicit feedback. This chapter is the extension of work
published in SIGIR’16 [Sidana et al., 2016] and IEEE TKDE’18 [Sidana et al., 2018a]

4.2 General-purpose topic modelling

In this section, we describe two topic models, which are central to our work. These
topic models are used to model general purpose topics. In Section 4.2.1, we describe,
in detail, Latent Dirichlet Allocation (LDA). Then, in Section 4.2.2, we proceed with
the description of the Topic Aspect Model (TAM), which, not only takes into account,
the topics associated with document, but also aspects. Aspect, which we describe in
next section, is underlying theme or perspective of the text contained in the document.

4.2.1 Latent Dirichlet Allocation (LDA)

LDA represents each document as a probability distribution over k topics [Blei et al.,
2003]. Each topic z in turn is represented as a probability distribution φz over a set of
words and both follow multinomial distribution. Figure 4.1, shows the plate diagram
of LDA. The topic distribution of the document d is denoted by θd and the word dis-
tribution of the topic z is denoted by φz. In other words, topics assigned to words in
document d follow a multinomial distribution with parameter θd and words are gen-
erated (once the topic z has been assigned) by again using a multinomial distribution
with parameter φz. In this manner, each document holds its own multinomial topic
distribution vector and each topic, in turn, holds its own multinomial word distribution

51

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

vector. The topic distribution θd of a document d and the word distribution φz of a topic
z are, themselves, generated according to a Dirichlet (prior) distribution. In Figure 4.1,
α is the dirichlet prior to the topic distribution θ and β is the dirichlet prior to word
distribution φ. The prior distribution is our belief about topic and word distributions
before seeing any data. We take Dirichlet as the prior, because, Dirichlet is the con-
jugate prior to Multinomial and this ensures that posterior distribution of topics and
words is of the same type as their prior distribution. The vectorial parameters α and β
of these Dirichlet distributions are assumed to be common to the whole corpus. The
lesser the sum of α, more spread out is the weight to all the topics in a given document.
If we consider M as the number of documents each of length and Ni as the number of
words in the vocabulary, then generative process of LDA is as follows:

Generative Process of LDA
Choose θi ∼ Dir(α);
Choose φz ∼ Dir(β) ;
for each of the word positions i,j, where i ∈ {1, . . . ,M} , and j ∈ {1, . . . , Ni}
do

Choose a topic zi,j ∼Mult(θi). ;
Choose a word wi,j ∼Mult(φki,j).;

Values of α and β are often pre-chosen before running LDA. Lower values of
Dirichlet parameters tend to make it more spread out, while large values tend to make
the distribution more peaky. Hence, if we think the documents are about many topics,
it may make more sense to take lower values of α parameter. Given the words of
the document, the goal of the LDA, is to infer the topic assignments z to each of the
words. Once the topic assignments to words have been inferred, topic distribution θ
can be calculated. Exact inference of the posterior distribution of the latent variables
z is intractable. In practice, a Markov chain Monte Carlo algorithm, namely, Gibbs
Sampling [Andrieu et al., 2003] is used to do approximate inference of latent variables.
In a Gibbs Sampler, new values of all the latent variables are iteratively sampled for
each token i from the posterior probability conditioned on the previous state of the
model (i.e., the current values for all other tokens). One can refer to [Blei et al., 2003]
for more details on all the inference equations involved in LDA.

52

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

α θ z w

φ

K

β

N
M

Figure 4.1 – Latent Dirichlet Allocation.

4.2.2 Topic-Aspect Model (TAM)

Paul and Girju [2010] came up with a topic-aspect model TAM. We show the plate
diagram of TAM in Figure 4.2. In TAM also, each document is a probabilistic multi-
nomial distribution over topics, denoted by θ in Figure 4.2. Each topic is a probabilistic
distribution over words, denoted by φ. θ has a Dirichlet prior, namely α and φ has a
Dirichlet prior β. Words within each topic are semantically related somehow.

The novelty of TAM compared to other topic models, is a second mixture compo-
nent that can affect the nature of a documents content. We broadly define an aspect
of a document as a characteristic that spans the document such as an underlying theme
or perspective. In Figure 4.2, aspect is denoted as the variable y. Binary switch-
ing variable x determines if the word comes from the aspect-neutral word distribution
or aspect-dependent distribution. A computational linguistics paper may have both
a computational aspect and a linguistic aspect. For instance, the computational as-
pect of the SPEECH RECOGNITION topic might focus on Markov models and error
detection, while the linguistic aspect might focus on prosody. Other computational
linguistics topics would likewise have words that are characteristic of each aspect. x is
drawn from a binomial distribution parameterized by π, which has a beta prior γ.

TAM also includes a additional mixture component to distinguish common words
and functional words from topical words. All the common background words that
appear independently of a document’s topical content are included in the case of l =

0. A common word like using would likely belong to background level, as it is not
particularly topical. In the lower level l = 1, each word is associated with a topic. l is
drawn from binomial distribution parameterized by the parameter λ.

53

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

wl

x y z

θπ

λ

γ

α

φ

β

Z + Y A + Y
N

D

A

Figure 4.2 – Topic Aspect Model.

If the word is generated from the background model, the word is sampled from
P (word|l = 0, x = 0) or P (word|l = 0, x = 1, aspect) depending on if the aspect-
independent or -dependent model is used. If the word is generated from topical model,
it is sampled from P (word|l = 1, x = 0, topic) or P (word|l = 1, x = 1, aspect, topic).

Just like the LDA model, Gibbs sampling can be used for inference and parameter
estimation for TAM as well. In what follows, we propose the time-aware topic models
as topics which are time-dependent tend to be more meaningful than time-oblivious
topics in applications such as RS.

4.3 Temporal Latent Topic Models

In this Section, we describe topic models, which take time at which topics are inferred
into account. First, we describe a simple yet effective technique which builds on the
top of LDA in Section 4.3.1. Then, in Section 4.3.2, we describe a novel topic model,
which treats time as an observed random variable inside TAM .

4.3.1 Temporal-LDA (TM–LDA)

In order to take into account the evolution of the underlying topics of a dynamic collec-
tion of documents with time (e.g., a microblog or a facebook page), Wang et al. (2012)

54

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

introduced a modified version of the LDA model, TM–LDA [Wang et al., 2012]. In
[Wang et al., 2012], TM–LDA was introduced to extend LDA with modeling evolution
of topics of dynamic collection of documents over time. Topic distribution of the i–th
document, θi is assumed to depend linearly on the topic distribution of the previous
document, θi−1. At the heart of the algorithm lies the following equation.

θi ≈
θi−1.M

‖θi−1.M‖`1
(4.3.1)

where M is a k × k matrix, called the transition matrix, and k is the number of topics.
To obtain the transition matrix, the authors propose to solve the following least squares
problem (‖ · ‖F denotes the Frobenius norm and X denotes the search space):

M = arg min
X

‖A.X −B‖F (4.3.2)

where A and B are as specified below.

A =


θ1

...
θi−1

 , B =


θ2

...
θi

 (4.3.3)

TM–LDA is quite elegant in modeling general purpose topics over time. But, one
significant disadvantage of using TM–LDA, is the huge amount of postprocessing,
which is required to model transition matrices.

4.3.2 Time-Aware Topic-Aspect Model

TAM can then be extended to include a document level characteristic a such as the one
shown in Plate diagram 4.3. Document level characteristic could be anything such as
overall sentiment of the document or a disease in case of health document. Indeed,
recommender system documents are often accompanied by document reviews such
as Amazon product reviews 1 and have an overall sentiment attached to them. a is
drawn from multinomial distribution η with a Dirichlet prior σ. If a is considered as
sentiment, then, possible values of a can be positive, negative or more generally, could

1http://jmcauley.ucsd.edu/data/amazon/links.html

55

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

contain more values such as very-positive, positive, neutral, negative, very-negative.

Sentiment towards topics also evolves over time. For example, in news recom-
mender systems, taste of users towards various topics keep changing with time and it
becomes important that any RS we build to recommend news to users, is time-aware
of such evolving interests. Hence, we introduce a random variable t for time in TAM
as shown in Plate diagram 4.4. Here document level characteristic a such as sentiment
is drawn depending on time t. Time t itself is drawn from a multinomial distribution ψ
drawn from Dirichlet prior µ.

Generative process of time-aware TAM with document level characteristic a is as
follows:

Generative process of time-aware TAM with document level characteristic a
Set the background switching binomial λ
Draw a sentiment distribution η ∼ Dir(σ)
Draw A multinomials ψA ∼ Dir(µ)
Draw word multinomials φ ∼ Dir(β) for the topic, sentiment, and background
distributions
for each message 1 ≤ m ≤ D do

Draw a switching distribution π ∼ Beta(γ0, γ1)
Draw a sentiment a ∼Mult(η)
Draw a time stamp t ∼Mult(ψa)
Draw a topic distribution θ ∼ Dir(αa)
for each word wi ∈ Nm do

Draw aspect yi ∈ {0, 1, 2}(observed)
Draw background switcher l ∈ {0, 1} ∼ Bi(λ)
if l == 0: then

Draw wi ∼Mult(φB,y)(a background)
else

Draw xi ∈ {0, 1} ∼ Bi(π)
if xi == 0 :(Draw word from topic z) then

Draw topic zi ∼Mult(θ)
Draw wi ∼Mult(φz)

else
(draw word from sentiment a aspect y)
Draw wi ∼Mult(φa,y)

56

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

wl

x y z

a θπ

λ

ησγ

α

φ

β

Z + Y A + Y
N

D

A

Figure 4.3 – Topic Aspect Model with a document level charateristic a. This a could
be seen as over all sentiment of the document.

Document-level Gibbs sampling for a is given by following equation:

P (am|a−m,w, t, y, x, l)

∝ P (am|a−m)P (tm|t−m, a, µ)

Nm∏
n

p(wm,n|a,w−(m,n), y, x, l)

(4.3.4)

The inference equations for other latent variables stay the same as TAM and are
detailed in [Paul and Girju, 2010]. In the next section, we divide data temporally into
train and test and compare all the topic models on health text (tweets) in their ability
to predict topics of non-seen future text. We use perplexity (which we describe in the
next section) in order to do so.

57

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

wl

x y z

at θπ

λ

ησγ ψ

µ

α

φ

β

Z + Y A + Y
N

D

A

A

Figure 4.4 – Time-Aware Topic Aspect Model. Sentiment a is time-aware.

Table 4.1 – Mapping tweets to documents

Term Description
P posts
G regions
T time periods
Ptg posts from region g during time t
Dt
g document-set built by mapping the content

of each post p ∈ Ptg to a document

4.4 Application to health monitoring on social media
over time

Henceforth, we apply the topic models which we described so far with an application
to health monitoring on Twitter over time. Twitter has become a major source of data
for early monitoring and prediction in areas such as health [Manikonda and Choud-
hury, 2017], disaster management [Chowdhury et al., 2013] and politics [Davidson
et al., 2017]. In the health domain, the ability to model transitions for ailments and
detect statements like “people talk about smoking and cigarettes before talking about
respiratory problems”, or “people talk about headaches and stomach ache in any or-

58

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

der”, benefits syndromic surveillance and helps measure behavioral risk factors and
trigger public health campaigns. Notations we used in this section are summarized in
Table 4.1.

4.4.1 TM–LDA applied to health documents

First model is a direct application of TM–LDA which is described in Section 4.3.1 to
health documents and the resulting model is coined the term TM–ATAM [Sidana et al.,
2016]. TM–ATAM, at its heart, solves following equation:

Atg ≈ At−1
g .M (4.4.1)

where

At−1
g =


Θ1
g

...
Θt−1
g

 , Atg =


Θ2
g

...
Θt
g

 (4.4.2)

M is an unknown transition matrix which is obtained by solving the following least
square problem:

min
M
‖Atg − At−1

g .M‖F

TM–ATAM thus learns a transition matrix which is used to model health topics.

4.4.2 T–ATAM

T–ATAM is a direct application of time-aware topic aspect model, which was described
in the Section 4.2.2 to health documents with the only difference that instead of sam-
pling a sentiment for each document, we sample an ailment/disease for a document
since the corpus we are using is health tweets [Sidana et al., 2018a]. In Figure 4.4,
Document-level random variable a is treated as ailment. The plate diagram and gen-
erative process stays the same. For aspects, we use symptom, treatment and general
related aspects in health documents.

59

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

Table 4.2 – Dataset Statistics

collection period (days) 235
#tweets 1,360,705,803

#tweets (health-related) 698,212
#tweets (health-related+geolocated) 569,408

4.5 Results

We conduct experiments to evaluate the performance of TM–ATAM and T–ATAM on
the real world data. In section 4.5.1, we describe the data we use for experiments.
Then, in section 4.5.2, we compare different topic models which we described above
using perplexity.

4.5.1 Data

We employ Twitters Streaming API to collect tweets between 2014-Oct-8 and 2015-
May-31. We use the Decahose Stream1 which gives a 10% random sample of the total
tweets generated each day. The collected tweets were subjected to two pre-processing
steps. We removed retweets and tweets containing URLs; they were almost always
false positives (e.g., news articles about the flu, rather than messages about a users
health). Since our interest lies in public health discourse on social media, we only
keep tweets containing one of 20,000 health-related keywords obtained from wrong-
diagnosis.com. This website lists detailed information about ailments, symptoms and
treatments. Resulting tweets were given to an SVM classifier [Cortes and Vapnik,
1995] with linear kernel and uni-gram, bi-gram and tri-gram word features. To train the
classifier, a modest-sized sample of the original corpus was annotated through crowd-
sourcing efforts where annotators were asked to label 5, 128 tweets. The precision and
recall of the employed classifier are 0.85 and 0.44. In our case, we focused on high pre-
cision as high quality health tweets is a pre-requisite for both TMATAM and TATAM
to function efficiently. Table 4.2 shows that out of the 1.36B tweets we collected, 698K
were health-related.

1https://dev.Twitter.com/streaming/overview

60

https://dev.Twitter.com/streaming/overview

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

4.5.2 Comparison between models

The probabilistic Ailment Topic Aspect Model was designed specifically to uncover
latent health-related topics in a collection of tweets [Paul and Dredze, 2011] In this
section, we compare the performance of TM–ATAM and T–ATAM against ATAM
TM–LDAand LDA.

Perplexity We use perplexity, an empirical measure often used in NLP. 1 Perplexity
of a language model measures how accurately the model can explain previously unseen
data/documents. Given a language model l and a document d, perplexity is defined as
below.

Perplexity(l) = 2−
∑
wi∈d

log pl(wi) (4.5.1)

This formula of perplexity for a document d can be converted to a formula of perplexity
for a set of documents Dt

g as follows:

Perplexity Dt
g(l) = 2

−
∑
wi∈d

log

∑
d∈Dtg

pl(wi)

|Dtg | (4.5.2)

It denotes the perplexity of language model l on a document-set at geo-granularity g
and temporal granularity t. Higher probability of words that occur in unseen docu-
ments results in lower perplexity and is hence better.

Figure 4.5 shows that TM–ATAM and T–ATAM consistently beats TM–LDA and
ATAM in predicting future health topics on the test month by computing lower per-
plexity on the words of the tweets of the test month in all social media active states.

4.6 Conclusion

In this Chapter, we first describe how topics derived from topic models can be used for
recommendations. To this end, we first described numerous topic models which can be
used to model general topics of given document collections. In particular, we describe
LDA, TAM and then introduce a document-level characteristic a as a random latent
variable within TAM. This a is described as an overall sentiment of the document or

1https://en.wikipedia.org/wiki/Perplexity

61

https://en.wikipedia.org/wiki/Perplexity

4. EXTRACTING LATENT TOPICS OVER TIMELY RELATED ARTICLES

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

Arizona

California

Connecticut

Illinois

NewJersey

Ohio
Oklahoma

Pennsylvania

Gauteng

Tennessee

Texas

Singapore

Dublin

JakartaRaya

JervisBay

KualaLumpur

Manila

NewHampshire

Pasay

Putrajaya

P
e

rp
le

x
it
y

Region

Empirical comparison of T-ATAM, TM-ATAM, ATAM, TM-LDA and LDA.

TATAM

TM-ATAM

ATAM

TM-LDA

LDA

Figure 4.5 – Perplexity comparison of T–ATAM, TM–ATAM, TM–LDAand ATAM
for top 20 social media active regions.

an ailment in case of health documents. Then, we introduce temporal nature of these
topics and go on to describe time based topic models.

We first describe a simple yet effective extension of LDA for modelling topic tran-
sitions by solving a least squares problem between historical and present topic distri-
butions. The topics, thus modeled, can be used as contextual information and fed into
existing RS models. This model can be useful in the cases where, besides clicks, we
just have item text (title, tag, description) information and can help in dealing with
sparsity of data.

Then, we introduce time as a random variable in TAM. This time-aware TAM can
be used to model topics of news articles and to build profiles of the user by aggregating
the topics of the news articles which user has engaged in. These profiles can then be
used to recommend future articles to the user.

Finally, we show the effectiveness of time-based topic models as an application
to health monitoring on social media over time. In particular, we use perplexity for
comparing performance of various topic models in their ability to detect transition and
topic predictions in health documents.

62

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

Chapter 5

Jointly Learning embeddings and user
preference through implicit feedback

63

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

5.1 Introduction

In recommender systems, latent factor models have had quite a bit of success. In
these models user and items are often represented as latent vectors. In recent years,
using embeddings as latent vectors have become popular. Additionally, learning to
rank based methods have quite a bit of success in recommender systems. In this work,
we are interested in the learning of user preferences, mostly, provided in the form of
implicit feedback in RS. Our aim is twofold and concerns:

• the development of a theoretical framework for learning user preference in rec-
ommender systems and its analysis in the worst case where all users provide a
minimum of positive/negative feedback;

• the design of a new neural-network model based on this framework that learns
the preference of users over pairs of items and their representations in an embed-
ded space simultaneously without requiring any contextual information.

In Section 5.2, we first describe the theoretical study of the work. Then, in Section 5.3,
we describe a neural network to learn representation and pairwise ranking objective
function simultaneously. Then, finally in Section 5.4, we study how the neural network
can be extended to handle diversity. This chapter is under review for a publication.

5.2 Theoretical Study

We denote by U ⊆ N (resp. I ⊆ N) the set of indexes over users (resp. the set of
indexes over items). Further, for each user u ∈ U, we consider two subsets of items
I−u ⊂ I and I+

u ⊂ I such that;

i) I−u 6= ∅ and I+
u 6= ∅,

ii) for any pair of items (i, i′) ∈ I+
u × I−u ; u has a preference, symbolized by �u .

Hence i �u i′ implies that, user u prefers item i over item i′.

From this preference relation, a desired output yi,u,i′ ∈ {−1,+1} is defined over each

64

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

triplet (i, u, i′) ∈ I+
u × U× I−u as:

yi,u,i′ =

{
1 if i �u i′,
−1 otherwise.

(5.2.1)

Learning objective

The learning task we address is to find a scoring function f from the class of functions
F = {f | f : I× U× I→ R} that minimizes the ranking loss:

L(f) = E

 1

|I+
u ||I−u |

∑
i∈I+u

∑
i′∈I−u

1yi,u,i′f(i,u,i′)<0

 , (5.2.2)

where |.| measures the cardinality of sets and 1π is the indicator function which is
equal to 1, if the predicate π is true, and 0 otherwise. Here we suppose that there exists
a mapping function Φ : U× I→ X ⊆ Rk that projects a pair of user and item indices
into a feature space of dimension k, and a function g : X × X → R such that each
function f ∈ F can be decomposed as:

∀u ∈ U, (i, i′) ∈ I+
u × I−u , f(i, u, i′) = g(Φ(u, i))− g(Φ(u, i′)). (5.2.3)

In the next section we will present a Neural-Network model that learns the mapping
function Φ and outputs the function f based on a non-linear transformation of the
user-item feature representation, defining the function g.

The previous loss (5.2.2) is a pairwise ranking loss and it is related to the Area
under the ROC curve [Usunier et al., 2005]. The learning objective is, hence, to find a
function f from the class of functions F with a small expected risk, by minimizing the
empirical error over a training set

S = {(zi,u,i′
.
= (i, u, i′), yi,u,i′) | u ∈ U, (i, i′) ∈ I+

u × I−u },

constituted over N users, U = {1, . . . , N}, and their respective preferences over M

65

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

items, I = {1, . . . ,M} and is given by:

L̂(f, S) =
1

N

∑
u∈U

1

|I+
u ||I−u |

∑
i∈I+u

∑
i′∈I−u

1yi,u,i′ (f(i,u,i′))<0

=
1

N

∑
u∈U

1

|I+
u ||I−u |

∑
i∈I+u

∑
i′∈I−u

1yi,u,i′ (g(Φ(u,i))−g(Φ(u,i′)))<0. (5.2.4)

However this minimization problem involves dependent random variables as for each
user u and item i; all comparisons g(Φ(u, i)) − g(Φ(u, i′)); i′ ∈ I−u involved in the
empirical error (5.2.4) share the same observation Φ(u, i). Different studies proposed
generalization error bounds for learning with interdependent data [Amini and Usunier,
2015]. Among the prominent works that address this problem are a series of contri-
butions based on the idea of graph coloring introduced in [Janson, 2004], and which
consists in dividing a graph Ω = (V,E) that links dependent variables represented by
its nodes V into J sets of independent variables, called the exact proper fractional cover
of Ω and defined as:

Definition 1 (Exact proper fractional cover of Ω, [Janson, 2004]). Let Ω = (V,E) be
a graph. C = {(Mj, ωj)}j∈{1,...,J}, for some positive integer J , with Mj ⊆ V and
ωj ∈ [0, 1] is an exact proper fractional cover of Ω, if: i) it is proper: ∀j, Mj is an
independent set, i.e., there is no connections between vertices in Mj; ii) it is an exact

fractional cover of Ω: ∀v ∈ V,
∑

j:v∈Mj
ωj = 1.

The weight W (C) of C is given by: W (C)
.
=
∑J

j=1 ωj and the minimum weight
χ∗(Ω) = minC∈K(Ω)W (C) over the set K(Ω) of all exact proper fractional covers of Ω

is the fractional chromatic number of Ω.
Figure 5.1 depicts an exact proper fractional cover corresponding to the problem

we consider for a toy problem with M = 1 user u, and |I+
u | = 2 items preferred over

|I−u | = 3 other ones. In this case, the nodes of the dependency graph correspond to 6

pairs constituted by; pairs of the user and each of the preferred items, with the pairs
constituted by the user and each of the no preferred items, involved in the empirical
loss (5.2.4). Among all the sets containing independent pairs of examples, the one
shown in Figure 5.1,(c) is the exact proper fractional cover of the Ω and the fractional
chromatic number is in this case χ∗(Ω) = |I−u | = 3.

By mixing the idea of graph coloring with the Laplace transform, Hoeffding like

66

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

x1
+

x2
+

x3
-

x1
+ x1

-(,)

x1
+ x2

-(,)

x1
+ x3

-(,)

x2
+ x1

-(,)

x2
+ x2

-(,)
x2
+ x3

-(,)

x1
+ x1

-(,) x1
+ x2

-(,)
x1
+ x3

-(,)

x2
+ x1

-(,) x2
+ x2

-(,)
x2
+ x3

-(,)

M1

M2

M3

x1
+ x1

-(,) x1
+ x2

-(,)
x1
+ x3

-(,)

x2
+ x1

-(,) x2
+ x2

-(,)
x2
+ x3

-(,)

M1, w1=1

M3, w3=1

M2, w2= 4
1

x1
+ x1

-(,)

x1
+ x2

-(,)

x1
+ x3

-(,) x2
+ x1

-(,)

x2
+ x2

-(,)

x2
+ x3

-(,)

M1, w1=1

M3, w3=1

M2, w2=1

(a) (b) (c)

x1
+

x2
+

x1
-

x2
-

x3
-

x2
-

x1
-

Figure 5.1 – A toy problem with 1 user who prefers |I+
u | = 2 items over |I−u | = 3 other

ones (top). The dyadic representation of pairs constituted with the representation of
the user and each of the representations of preferred and non-preferred items (middle).
Different covering of the dependent set, (a) and (b); as well as the exact proper frac-
tional cover, (c), corresponding to the smallest disjoint sets containing independent
pairs.

concentration inequalities for the sum of dependent random variables are proposed
by [Janson, 2004]. In [Usunier et al., 2006] this result is extended to provide a gen-
eralization of the bounded differences inequality of [McDiarmid, 1989] to the case of
interdependent random variables. This extension then paved the way for the definition
of the fractional Rademacher complexity that generalizes the idea of Rademacher com-
plexity and allows one to derive generalization bounds for scenarios where the training
data are made of dependent data.

In the worst case scenario where all users provide the lowest interactions over the
items, which constitutes the bottleneck of all recommendation systems:

∀u ∈ S, |I−u | = n−∗ = min
u′∈S
|I−u′|, and |I+

u | = n+
∗ = min

u′∈S
|I+
u′ |,

the empirical loss (5.2.4) is upper-bounded by:

L̂(f, S) ≤ L̂∗(f, S)

=
1

N

1

n−∗ n
+
∗

∑
u∈U

∑
i∈I+u

∑
i′∈I−u

1yi,u,i′f(i,u,i′)<0.
(5.2.1)

67

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

Following [Ralaivola and Amini, 2015, Proposition 4], a generalization error bound
can be derived for the second term of the inequality above based on local Rademacher
Complexities that implies second-order (i.e. variance) information inducing faster con-
vergence rates.

For sake of presentation and in order to be in line with the learning representations
of users and items in an embedded space introduced in Section 5.3, let us consider
kernel-based hypotheses with κ : X × X → R a positive semi-definite (PSD) kernel
and Φ : U×I→ X its associated feature mapping function. Further we consider linear
functions in the feature space with bounded norm:

GB = {gw ◦ Φ : (u, i) ∈ U× I 7→ 〈w,Φ(u, i)〉 | ||w|| ≤ B} (5.2.2)

where w is the weight vector defining the kernel-based hypotheses and 〈·, ·〉 denotes
the dot product. We further define the following associated function class:

FB = {zi,u,i′
.
= (i, u, i′) 7→ gw(Φ(u, i))− gw(Φ(u, i′)) | gw ∈ GB},

and the parameterized family FB,r which, for r > 0, is defined as:

FB,r = {f : f ∈ FB,V[f]
.
= Vz,y[1yf(z)] ≤ r},

where V[.] denotes the variance. The fractional Rademacher complexity introduced in
[Usunier et al., 2006] entails our analysis:

RS(F) =
2

m
Eξ

n−∗∑
j=1

EMj
sup
f∈F

∑
α∈Mj
zα∈S

ξαf(zα),

where m = N ×n+
∗ ×n−∗ is the total number of triplets z in the training set and (ξi)

m
i=1

is a sequence of independent Rademacher variables verifying P(ξi = 1) = P(ξi =

−1) = 1
2
.

Theorem 1. Let U be a set of M independent users, such that each user u ∈ U

prefers n+
∗ items over n−∗ ones in a predefined set of I items. Let S = {(zi,u,i′

.
=

(i, u, i′), yi,u,i′) | u ∈ U, (i, i′) ∈ I+
u × I−u } be the associated training set, then for any

68

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

1 > δ > 0 the following generalization bound holds for all f ∈ FB,r with probability

at least 1− δ:

L(f) ≤ L̂∗(f, S) +
2BC(S)

Nn+
∗

+

5

2

√2BC(S)

Nn+
∗

+

√
r

2

√ log 1
δ

n+
∗

+
25

48

log 1
δ

n+
∗
,

where C(S) =

√
1
n−∗

∑n−∗
j=1 EMj

[∑
α∈Mj
zα∈S

d(zα, zα))

]
, zα = (iα, uα, i

′
α) and

d(zα, zα) = κ(Φ(uα, iα),Φ(uα, iα))

+κ(Φ(uα, i
′
α),Φ(uα, i

′
α))−2κ(Φ(uα, iα),Φ(uα, i

′
α)).

Proof. As the set of users U is supposed to be independent, the exact fractional cover
of the dependency graph corresponding to the training set S will be the union of the
exact fractional cover associated to each user such that cover sets which do not contain
any items in common are joined together.

Following [Ralaivola and Amini, 2015, Proposition 4], for any 1 > δ > 0 we have
with probability at least 1− δ:

ES [L̂∗(f, S)]− L̂∗(f, S)

≤ inf
β>0

(1 + β)RS(FB,r) +
5

4

√
2r log 1

δ

n+
∗

+
25

16

(
1

3
+

1

β

)
log 1

δ

n+
∗



The infimum is reached for β∗ =

√
25
16

log 1
δ

n+
∗ ×RS(FB,r)

which by plugging it back into

the upper-bound, and from equation (5.2.1), gives:

L(f) ≤ L̂∗(f, S) + RS(FB,r) + 5
2

(√
RS(FB,r) +

√
r
2

)√
log 1

δ

n+
∗

+ 25
48

log 1
δ

n+
∗
. (5.2.3)

Now, for all j ∈ {1, . . . , J} and α ∈ Mj , let (uα, iα) and (uα, i
′
α) be the first and

the second pair constructed from zα, then from the bilinearity of dot product and the

69

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

Cauchy-Schwartz inequality, RS(FB,r) is upper-bounded by:

2

m
Eξ

n−∗∑
j=1

EMj
sup
f∈FB,r

〈
w,
∑
α∈Mj
zα∈S

ξα (Φ(uα, iα)− Φ(uα, i
′
α))

〉

≤ 2B

m

n−∗∑
j=1

EMj
Eξ

∥∥∥∥∥∥∥
∑
α∈Mj
zα∈S

ξα(Φ(uα, iα)− Φ(uα, i
′
α))

∥∥∥∥∥∥∥
≤ 2B

m

n−∗∑
j=1

EMjξ

 ∑
α,α′∈Mj
zα,zα′∈S

ξαξα′d(zα, zα′))




1/2

, (5.2.4)

where the last inequality follows from Jensen’s inequality and the concavity of the
square root, and

d(zα, zα′) = 〈Φ(uα, iα)− Φ(uα, i
′
α),Φ(uα, iα)− Φ(uα, i

′
α)〉 .

Further, for all j ∈ {1, . . . , n−∗ }, α, α′ ∈ Mj, α 6= α′; we have Eξ[ξαξα′] = 0, [Shawe-
Taylor and Cristianini, 2004, p. 91] so:

RS(FB,r) ≤
2B

m

n−∗∑
j=1

EMj

∑
α∈Mj
zα∈S

d(zα, zα))




1/2

=
2Bn−∗
m

n−∗∑
j=1

1

n−∗

EMj

∑
α∈Mj
zα∈S

d(zα, zα))




1/2

.

By using Jensen’s inequality and the concavity of the square root once again, we finally
get

RS(FB,r) ≤
2B

Nn+
∗

√√√√√√ n−∗∑
j=1

1

n−∗
EMj

∑
α∈Mj
zα∈S

d(zα, zα))

. (5.2.5)

The result follows from equations (5.2.3) and (5.2.5).

70

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

This result suggests that :

• even though the training set S contains interdependent observations; following
[Vapnik, 2000, theorem 2.1, p. 38], theorem 1 gives insights on the consistency
of the empirical risk minimization principle with respect to (5.2.1),

• in the case where the feature space X ⊆ Rk is of finite dimension; lower values
of k involves lower kernel estimation and hence lower complexity term C(S)

which implies a tighter generalization bound.

5.3 A Neural Network model to learn user preference

Some studies proposed to find the dyadic representation of users and items in an em-
bedded space, using neighborhood similarity information [Volkovs and Yu, 2015] or
the Bayesian Personalized Ranking (BPR) [Rendle et al., 2009]. In this section, we
propose a feed-forward Neural Network, denoted as NERvE, to jointly learn the em-
bedding representation, Φ(.), as well as the scoring function, f(.), defined previously.
The input of the network is a triplet (i, u, i′) composed by the indexes of an item i, a
user u and a second item i′; such that the user u has a preference over the pair of items
(i, i′) expressed by the desired output yi,u,i′ , defined with respect to the preference re-
lation �u (Eq. 5.2.1). Each index in the triplet is then transformed to a corresponding
binary indicator vector i,u, and i′ having all its characteristics equal to 0 except the one
that indicates the position of the user or the items in its respective set, which is equal to
1. Hence, the following one-hot vector corresponds to the binary vector representation
of user u ∈ U as shown in Figure 5.2:

1

↓ . . .
u−1

↓
u

↓
u+1

↓ . . .
N

↓
u⊤ = (0, . . . , 0, 1, 0, . . . , 0).

1

Figure 5.2 – one-hot vector corresponds to the binary vector representation of user
u ∈ U.

71

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

The network then entails three successive layers, namely Embedding (SG), Map-

ping and Dense hidden layers depicted in Figure 5.3.

BinarizationInput

i i

uu

i′i′

Embedding Mapping
Φ(., .)

Dense g Output

g(Φ(u, i)) − g(Φ(u, i′))

1

Figure 5.3 – The architecture of NERvE trained to reflect the preference of a user u
over a pair of items i and i′.

• The Embedding layer transforms the sparse binary representations of the user
and each of the items to a denser real-valued vectors. We denote by Uu and
Vi the transformed vectors of user u and item i; and U = (Uu)u∈U and V =

(Vi)i∈I the corresponding matrices. Note that as the binary indicator vectors
of users and items contain one single non-null characteristic, each entry of the
corresponding dense vector in the SG layer is connected by only one weight to
that characteristic.

• The Mapping layer is composed of two groups of units each being obtained from
the element-wise product between the user representation vector Uu of a user u
and a corresponding item representation vector Vi of an item i inducing the
feature representation of the pair (u, i); Φ(u, i).

• Each of these units are also fully connected to the units of a Dense layer com-
posed of successive hidden layers (see Section 6.3 for more details related to the
number of hidden units and the activation function used in this layer).

72

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

The model is trained such that the output of each of the dense layers reflects the re-
lationship between the corresponding item and the user and is mathematically defined
by a multivariate real-valued function g(.). Hence, for an input (i, u, i′), the output
of each of the dense layers is a real-value score that reflects a preference associated
to the corresponding pair (u, i) or (u, i′) (i.e. g(Φ(u, i)) or g(Φ(u, i′))). Finally, the
prediction given by NERvE for an input (i, u, i′) is:

f(i, u, i′) = g(Φ(u, i))− g(Φ(u, i′)). (5.3.1)

Algorithmic implementation

We decompose the ranking loss as a linear combination of two logistic surrogates:

Lc,p(f,U,V, S) = Lc(f, S) + Lp(U,V, S), (5.3.2)

where the first term reflects the ability of the non-linear transformation of user and item
feature representations, g(Φ(., .)), to respect the relative ordering of items with respect
to users’ preferences:

Lc(f, S) = 1
|S|
∑

(zi,u,i′ ,yi,u,i′)∈S
log(1 + eyi,u,i′ (g(Φ(u,i′))−g(Φ(u,i))). (5.3.3)

The second term focuses on the quality of the compact dense vector representations of
items and users that have to be found, as measured by the ability of the dot-product in
the resulting embedded vector space to respect the relative ordering of preferred items
by users:

Lp(U,V, S) = 1
|S|
∑

(zi,u,i′ ,yi,u,i′)∈S

[
log(1 + eyi,u,i′U

>
u (Vi′−Vi)) + λ(‖Uu‖+ ‖Vi′‖+ ‖Vi‖)

]
,

(5.3.4)
where λ is a regularization parameter for the user and items norms. Finally, one

can also consider a version in which both losses are assigned different weights:

Lc,p(f,U,V, S) = αLc(f, S) + (1− α)Lp(U,V, S), (5.3.5)

where α ∈ [0, 1] is a real-valued parameter to balance between ranking prediction

73

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

ability and expressiveness of the learned item and user representations. Both options
will be discussed in the experimental section.

Training phase

The training of the NERvE is done by back-propagating [Bottou, 2012] the error-
gradients from the output to both the deep and embedding parts of the model using
mini-batch stochastic optimization (Algorithm 1).

During training, the input layer takes a random set S̃n of size n of interactions by
building triplets (i, u, i′) based on this set, and generating a sparse representation from
id’s vector corresponding to the picked user and the pair of items. The binary vectors
of the examples in S̃n are then propagated throughout the network, and the ranking
error (Eq. 5.3.2) is back-propagated.

Algorithm 2 NERvE.: Learning phase
Require:

T : maximal number of epochs
A set of users U = {1, . . . , N}
A set of items I = {1, . . . ,M}
for ep = 1, . . . , T do

Randomly sample a mini-batch S̃n ⊆ S of size n from the original user-item
matrix
for all ((i, u, i′), yi,u,i′) ∈ S̃n do

Propagate (i, u, i′) from the input to the output.
Retro-propagate the pairwise ranking error (Eq. 5.3.2) estimated over S̃n.

Ensure: Users and items latent feature matrices U,V and the model weights.

Model Testing

As for the prediction phase, shown in Algorithm 2, a ranked list Nu,k of the k � M

preferred items for each user in the test set is maintained while retrieving the set I.
Given the latent representations of the triplets, and the weights learned; the two first
items in I are placed in Nu,k in a way which ensures that preferred one, i∗, is in the
first position. Then, the algorithm retrieves the next item, i ∈ I by comparing it to i∗.
This step is simply carried out by comparing the model’s output over the concatenated
binary indicator vectors of (i∗, u, i) and (i, u, i∗).

74

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

Hence, if f(i, u, i∗) > f(i∗, u, i), which from Equation 5.3.1 is equivalent to
g(Φ(u, i)) > g(Φ(u, i∗)), then i is predicted to be preferred over i∗; i �u i∗; and
it is put at the first place instead of i∗ in Nu,k. Here we assume that the predicted pref-
erence relation �u is transitive, which then ensures that the predicted order in the list is
respected. Otherwise, if i∗ is predicted to be preferred over i, then i is compared to the
second preferred item in the list, using the model’ prediction as before, and so on. The
new item, i, is inserted in Nu,k in the case if it is found to be preferred over another
item in Nu,k.

By repeating the process until the end of I, we obtain a ranked list of the k most
preferred items for the user u. Algorithm 2 does not require an ordering of the whole
set of items, as also in most cases we are just interested in the relevancy of the top
ranked items for assessing the quality of a model. Further, its complexity is at most
O(k ×M) which is convenient in the case where M >> 1. The merits of a similar
algorithm have been discussed by [Ailon and Mohri, (2008] but, as pointed out above,
the basic assumption for inserting a new item in the ranked list Nu,k is that the predicted
preference relation induced by the model should be transitive, which may not hold in

Algorithm 3 NERvE.: Testing phase
Require:

A user u ∈ U; A set of items I = {1, . . . ,M};
A set containing the k preferred items in I by u;
Nu,k ← ∅;
The output of NERvE. learned over a training set: f
Apply f to the first two items of I and, note the preferred one i∗ and place it at the
top of Nu,k;
for i = 3, . . . ,M do

if g(Φ(u, i)) > g(Φ(u, i∗)) then
Add i to Nu,k at rank 1

else
j ← 1
while j ≤ k AND g(Φ(u, i)) < g(Φ(u, ig))) // where ig = Nu,k(j) do
j ← j + 1

if j ≤ k then
Insert i in Nu,k at rank j

Ensure: Nu,k;

75

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

general.

In our experiments, we also tested a more conventional inference algorithm, which
for a given user u, consists in the ordering of items in I with respect to the output given
by the function g, and we did not find any substantial difference in the performance of
NERvE..

5.4 Diversity

Additionally, we demonstrate how PANDOR can be of a great interest for developing
novel algorithms incorporating diversity in RS, where the feedback provided are im-
plicit and no meta information about the proposed items is available. Indeed, although,
the goal of a RS is to have fewer flops on the top of the recommended list, inducing
more diversity in this recommended list ensures that user may prefer to interact with
at least some items in contrast to the situation where we introduce just monotonous
relevant items. In addition, the recent work of [Abdollahpouri et al., 2017] shows that
diversity can be used in order to control the popularity bias in such type of data, also
known as the problem of long tail i.e. a situation where a large majority of items have
only very few ratings or clicks, either because they are new or just unpopular.

5.4.1 Incorporating diversity to handle popularity bias in recom-
mender sytems

Hereafter, we propose to explore the ability of diversity in RS to overcome the strong
bias induced by popular items, or items with high CTR. Also, we focus only on the
setting in which we test on all items as most approaches fail to provide good results on
such setting. To this end, we propose to evaluate two approaches. The first one was
initially proposed by [Wasilewski and Hurley, 2016a] and consider the objective func-
tion of Rank-ALS [Takács and Tikk, 2012] augmented with a regularization term that
consists of the intra-list diversity (ILD) measure. Then, without loss of generality, we
propose to build upon NERvEc. The diversity regularizers, we add here for RankALS
or NERvEc, can be used with any loss function. In [Wasilewski and Hurley, 2016a],
the authors used the movies’ genre to compute distances between two items. However,

76

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

on many occasions item metadata is not available. To overcome this problem of ab-
sence of item metadata, we propose to compute item embeddings as meta data [Barkan
and Koenigstein, 2016a]. Here, we would like to stress on the fact that computing em-
beddings with the Item2Vec [Barkan and Koenigstein, 2016a] technique to measure
diversity is a fresh departure from previous works on this topic; indeed, in our case,
item diversity is not related to the characteristics of the items themselves, such as the
genre, or the category, but rather to the diversity of the sequence of items displayed
to users. This means that our goal is to, somehow, force the RS algorithm to display
various diverse sequences of items to each user. We compute item embeddings, with
Gensims based Skip-Gram implementation of Word2Vec (adapted to Item2Vec). We
set the dimension to 20 and consider 3 as the context window.

NERvEc with diversity For NERvEc, we propose to minimize the objective func-
tion of NERvEc and to incorporate diversity within the list of items recommended to
each user through a penalty term based on the Kullback-Leibler (KL). To this end, we
propose to measure the dissimilarities between each pair of items i ∈ Su (where Sku de-
notes the list of items and k its size) of the loss function associated to this new problem
can be written as

LNERvEc(f, U, V, S) + β
1

|U |
∑
u∈U

(
1

k(k − 1)

) ∑
i,i′∈Sku

KL(V`1
i ||V

`1
i′),

where V`1
i (resp. V`1

i′) is the `1-normalized embedding associated with item i (resp.
i′); β is the diversity inducing regularization parameter whose role is to induce more
or less diversity in the final list of recommended items. Positive values of β imply
minimizing diversity and vice versa. We cross-validate the value of β on a validation
set built from the original training set.

5.5 Conclusion

We presented and analyzed a learning to rank framework for recommender systems
which consists of learning user preferences over items. We showed that the minimiza-
tion of pairwise ranking loss over user preferences involves dependent random vari-
ables and provided a theoretical analysis by proving the consistency of the empirical

77

5. JOINTLY LEARNING EMBEDDINGS AND USER PREFERENCE THROUGH
IMPLICIT FEEDBACK

risk minimization in the worst case where all users choose a minimal number of pos-
itive and negative items. From this analysis, we then proposed NERvE, a new neural-
network based model for learning the user preference, where both the user’s and item’s
representations and the function modeling the user’s preference over pairs of items are
learned simultaneously. The learning phase is guided using a ranking objective that can
capture the ranking ability of the prediction function as well as the expressiveness of
the learned embedded space, where the preference of users over items is respected by
the dot product function defined over that space. The training of NERvE is carried out
using the back-propagation algorithm in mini-batches defined over a user-item matrix
containing implicit information in the form of subsets of preferred and non-preferred
items. The learning capability of the model over both prediction and representation
problems show their interconnection and also that the proposed double ranking objec-
tive allows to conjugate them well. Finally, we proposed an objective function which
extends objective function of NERvEc which incorporates diversity within the list of
items recommended to each user through a penalty term based on the Kullback-Leibler
(KL).

78

6. EXPERIMENTAL RESULTS

Chapter 6

Experimental Results

79

6. EXPERIMENTAL RESULTS

6.1 Introduction

This Chapter details the results of all the experiments which we conducted in order
to depict the efficacy of the models we developed and datasets we contributed. By
efficacy of datasets, we mean that the datasets are well suited for setting benchmarks
for recommender models developed for leveraging implicit feedback.

In Section 6.3, we first show the performance of NERvE on many implicit feed-
back datasets as compared to other state-of-the-art methods in RS for implicit feed-
back. Then, in Section 6.4, we present the first results of state-of-the-art models using
contextual information on KASANDR, the data-set which we contributed. We proceed
by presenting the results that we obtained on PANDORin Section 6.4. In particular,
we demonstrate how the performance of the baselines gets strongly affected due to
popularity bias in the dataset, and how by introducing diversity in Section 6.4 we
can overcome this problem. Later in the same Section 6.4, we show how introducing
contextual information such as topics (extracted from TM–LDA) can boost the perfor-
mance of Factorization Machines (a popular baseline for RS).

We run all experiments on a cluster of five 32 core Intel Xeon @ 2.6Ghz CPU (with
20MB cache per core) systems with 256 Giga RAM running Debian GNU/Linux 8.6
(wheezy) operating system.

6.2 Baselines and Evaluation Protocol

We describe all the approaches we are going to test against. We choose three non-
machine learning approaches:

• The random rule (Rand), that consists of recommending random items to the
user,

• The popularity rule (Pop), that consists of recommending items with the best
degree of success among all users,

• the past interaction technique (PastI), that consists of recommending items that
the user has already interacted with.

80

6. EXPERIMENTAL RESULTS

We implement our version of Pop, PastI and Rand. We choose various machine learn-
ing approaches which are meant for handling implicit feedback in RS as follows:

• Matrix Factorization (MF) [Koren et al., 2009]. For MF, we use built-in imple-
mentation of Spark which is based on [Hu et al., 2008a].

• Factorization Machines (FM) [Rendle, 2010]. In terms of implementation, we
use LIBFM

• Field-Aware Factorization Machines (FFM) [Juan et al., 2016a]. FFM has won
two recent world-wide click-through rate prediction competitions (hosted by
Criteo and Avazu). In terms of implementation, we use LIBFFM for FFM, re-
spectively.

• Rank-ALS [Takács and Tikk, 2012], a ranking formulation of Matrix Factoriza-
tion presented in Section 2.4.2;

• Bayesian Personalized Ranking (BPR) [Rendle et al., 2009], a pairwise ranking
approach; provides an optimization criterion based on implicit feedback; which
is the maximum posterior estimator derived from a Bayesian analysis of the pair-
wise ranking problem, and proposes an algorithm based on Stochastic Gradient
Descent to optimize it. The model can further be extended to the explicit feed-
back case.

• LightFM [Kula, 2015], that relies on learning the embedding of users and items
with the Skip-gram model while optimizing a ranking loss. LightFM was first
proposed to deal with the problem of cold-start using meta information. As with
our approach, it relies on learning the embedding of users and items with the
Skip-gram model and optimizes the cross-entropy loss.

• Co-Factor [Liang et al., 2016], is a model for implicit feedback, constraints
the objective of matrix factorization to jointly use item representations with
a factorized shifted positive pointwise mutual information matrix of item co-
occurrence counts. The model was found to outperform WMF [Hu et al., 2008b]
also proposed for implicit feedback.

81

6. EXPERIMENTAL RESULTS

• NERvEc,p uses a linear combination of Lp and Lc as the objective function,
with α ∈]0, 1[. We study the two situations presented before (w.r.t. the pres-
ence/absence of a supplementary weighting hyper-parameter).

• NERvEp focuses on the quality of the latent representation of users and items by
learning the preference and the representation through the ranking loss Lp (Eq.
5.3.4).

• NERvEc focuses on the accuracy of the score obtained at the output of the frame-
work and therefore learns the preference and the representation through the rank-
ing loss Lc (Eq. 5.3.3).

Please note that we show results on subset of baselines in each section wherever
it is feasible to run them.

Finally, we consider two settings w.r.t. to the set of items selected for the prediction.

1. Item recommendation only relies on past interacted offers, that is, we only consider
for a given user, the items that the user interacted with in the training phase. By
interacted, we mean the user was either shown the offer or user clicked on the offer.
In the context of movie recommendation, a shown item is defined as a movie for
which the given user provided a rating. For KASANDR, PANDOR and KASANDR-
GER, the definition is quite straight-forward as the data were collected from an
on-line advertising platform, where the items are displayed to the users, who can
either click or ignore them. While this is probably the most popular setting in the
literature, it is also the less realistic one, as in an real online setting one has to
consider all the available items when making prediction.

2. The RS considers the full set of items as possible candidate for the prediction.

The first setting is arguably the most common in academic research, but is abstracted
from the real-world problem as at the time of making the recommendation, the notion
of shown items is not available, therefore forcing the RS to consider the set of all items
as potential candidates. The goal of the second setting is to reflect this real-world
scenario, and we can expect lower results as compared to the first setting as the size
of the search space of items increases considerably. To summarize, predicting only
among the items that were shown to user evaluates the model’s capability of retrieving

82

6. EXPERIMENTAL RESULTS

highly rated items among the shown ones, while predicting among all items measures
the performance of the model on the basis of its ability to recommend offers which
user would like to engage in. We proceed with the presentation of the results obtained
with our model, NERvE on some popular benchmarck datasets.

6.3 NERvE Results

We conduct a number of experiments aimed at evaluating how the simultaneous learn-
ing of user and item representations, as well as the preferences of users over items can
be efficiently handled with NERvE.. To this end, we consider four real-world bench-
marks commonly used for collaborative filtering. We validate our approach with re-
spect to different hyper-parameters that impact the accuracy of the model and compare
it with competitive state-of-the-art approaches. All subsequently discussed compo-
nents were implemented in Python3 using the TensorFlow library with version 1.4.0.1

Datasets

We report results obtained on three publicly available movie datasets, for the task
of personalized top-N recommendation: MOVIELENS2 100K (ML-100K), MOVIE-
LENS 1M (ML-1M) [Harper and Konstan, 2015], NETFLIX3, and one clicks dataset,
KASANDR-GER 4 [Sidana et al., 2017], a recently released data set for on-line adver-
tising.

• ML-100K, ML-1M and NETFLIX consists of user-movie ratings, on a scale of
one to five, collected from a movie recommendation service and the Netflix com-
pany. The latter was released to support the Netlfix Prize competition5. For all
three datasets, we only keep users who have rated at least five movies and remove
users who gave the same rating for all movies. In addition, for NETFLIX, we take
a subset of the original data and randomly sample 20% of the users and 20% of
the items. In the following experiments, as we only compare with approaches

1https://www.tensorflow.org/.
2https://movielens.org/
3http://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542cee9a
4https://archive.ics.uci.edu/ml/datasets/KASANDR
5B. James and L. Stan, The Netflix Prize (2007).

83

https://www.tensorflow.org/
https://movielens.org/
http://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542cee9a
https://archive.ics.uci.edu/ml/datasets/KASANDR

6. EXPERIMENTAL RESULTS

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
A

P
@

1

Embeddings Size

ML100K
NervEc

NervEp

NervEc,p

(a) ML-100K

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
A

P
@

1

Embeddings Size

ML1M
NervEc

NervEp

NervEc,p

(b) ML-1M

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
A

P
@

1

Embeddings Size

KASANDR
NervEc

NervEp

NervEc,p

(c) KASANDR-GER

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
A

P
@

1

Embeddings Size

Netflix
NervEc

NervEp

NervEc,p

(d) NETFLIX

Figure 6.1 – MAP@1 as a function of the dimension of the embedding for ML-100K,
ML-1M and KASANDR-GER.

developed for the ranking purposes and our model is designed to handle implicit
feedback, these three data sets are made binary such that a rating higher or equal
to 4 is set to 1 and to 0 otherwise.

• The original KASANDR dataset contains the interactions and clicks done by the
users of Kelkoo, an online advertising platform, across twenty Europeans coun-
tries. In this article, we used a subset of KASANDR that only considers inter-
actions from Germany. It gathers 17,764,280 interactions from 521,685 users
on 2,299,713 offers belonging to 272 categories and spanning across 801 mer-
chants. For KASANDR-GER, we remove users who gave the same rating for all
offers. This implies that all the users who never clicked or always clicked on
each and every offer shown to them were removed.

84

6. EXPERIMENTAL RESULTS

Table 6.1 provides the basic statistics on these collections after pre-processing, as
discussed above.

Table 6.1 – Statistics of various collections used in our experiments after preprocessing.

of users # of items # of interactions Sparsity
ML-100K 943 1,682 100,000 93.685%
ML-1M 6,040 3,706 1,000,209 95.530%
NETFLIX 90,137 3,560 4,188,098 98.700%
KASANDR-GER 25,848 1,513,038 9,489,273 99.976%

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
A

P

alpha

MAP@1

MAP@5

MAP@10

(a) ML-100K

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
A

P

alpha

MAP@1

MAP@5

MAP@10

(b) ML-1M

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
A

P

alpha

MAP@1

MAP@5

MAP@10

(c) KASANDR-GER

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

M
A

P

@

MAP@1

MAP@5

MAP@10

(d) NETFLIX

Figure 6.2 – MAP@1, MAP@5, MAP@10 as a function of the value of α for ML-1M,
ML-100K and KASANDR-GER.

Compared baselines

In order to validate the framework defined in the previous section, we propose to com-
pare the following approaches: BPR-MF, Co-Factor, LightFM, NERvEp, NERvEc,
NERvEc,p.

85

6. EXPERIMENTAL RESULTS

Table 6.2 – Best parameters for NERvEp, NERvEc and NERvEc,p when prediction is
done on only shown offers; k denotes the dimension of embeddings, λ the regulariza-
tion parameter. We also report the number of hidden units per layer.

ML-100K ML-1M NETFLIX KASANDR-GER

NERvEc NERvEp NERvEc,p NERvEc NERvEp NERvEc,p NERvEc NERvEp NERvEc,p NERvEc NERvEp NERvEc,p
k 1 2 2 16 1 1 9 2 6 19 1 18
λ 0.05 0.005 0.005 0.05 0.0001 0.001 0.05 0.01 0.05 0.0001 0.05 0.005

units 32 64 16 32 16 32 64 16 16 64 16 64

Table 6.3 – Best parameters for NERvEp, NERvEc and NERvEc,p when prediction is
done on all offers; k denotes the dimension of embeddings, λ the regularization pa-
rameter. We also report the number of hidden units per layer.

ML-100K ML-1M NETFLIX KASANDR-GER

NERvEc NERvEp NERvEc,p NERvEc NERvEp NERvEc,p NERvEc NERvEp NERvEc,p NERvEc NERvEp NERvEc,p
k 15 5 8 2 11 2 3 13 1 4 16 14
λ 0.001 0.001 0.001 0.05 0.0001 0.001 0.0001 0.001 0.001 0.001 0.0001 0.05

units 32 16 16 32 64 32 32 64 64 32 64 64

Evaluation protocol

For each dataset, we sort the interactions according to time, and take 80% for training
the model and the remaining 20% for testing it. In addition, we remove all users and
offers which do not occur during the training phase. We study two different scenarios
for the prediction phase: (1) interacted offers (2) all items as defined in section 6.2.

As a result, in this setting, for ML-100K, ML-1M, KASANDR-GER and NETFLIX,
we only consider in average 25, 72, 6 and 8 items for prediction per user.

All comparisons are done based on the Mean Average Precision (MAP) 2.7.2. In
the following results, we report MAP at different rank ` = 1 and 10.

Hyper-parameters tuning

First, we provide a detailed study of the impact of the different hyper-parameters in-
volved in the proposed framework NERvE.. For all datasets, hyper-parameters tuning
is done on a separate validation set.

• The size of the embedding is chosen among k ∈ {1, . . . , 20}. The impact of k
on the performance is presented in Figure 6.1.

• We use `2 regularization on the embeddings and choose λ ∈ {0.0001, 0.001, 0.005

, 0.01, 0.05}.

86

6. EXPERIMENTAL RESULTS

• We run NERvE with 1 hidden layer with relu activation functions, where the
number of hidden units is chosen in {16, 32, 64}.

• In order to train NERvE, we use ADAM [Kingma and Ba, 2014] and found the
learning rate η = 1e − 3 to be more efficient for all our settings. For other
parameters involved in Adam, i.e., the exponential decay rates for the moment
estimates, we keep the default values (β1 = 0.9, β2 = 0.999 and ε = 10−8).

• Finally, we fix the number of epochs to be T = 10, 000 in advance and the size
of mini-batches to n = 512.

• One can see that all three versions of NERvE perform the best with a quite small
number of hidden units, only one hidden layer and a low dimension for the rep-
resentation. As a consequence, they involve a few number of parameters to tune
while training.

• In terms of the ability to recover a relevant ranked list of items for each user,
we also tune the hyper-parameter α (Eq. 5.3.5) which balances the weight given
to the two terms in NERvEc,p. These results are shown in Figure 6.2, where the
values of α are taken in the interval [0, 1]. While it seems to play a significant
role on ML-100K and KASANDR-GER, we can see that for ML-1M the results
in terms of MAP are stable, regardless the value of α.

From Figure 6.1, when prediction is done on the interacted offers, it is clear that best
MAP@1 results are generally obtained with small sizes of item and user embedded
vector spaces k. These empirical results support our theoretical analysis where we
found that small k induces smaller generalization bounds. This observation on the
dimension of embedding is also in agreement with the conclusion of [Kula, 2015],
which uses the same technique for representation learning. For instance, one can see
that on ML-1M, the highest MAP is achieved with a dimension of embedding equals
to 1. Since in the interacted offers setting, the prediction is done among the very
few shown offers, NERvE makes non-personalized recommendations. This is due to
the fact that having k = 1 means that the recommendations for a given user with
a positive (negative) value is done by sorting the positive (negative) items according
to their learned embeddings, and in some sense, can therefore be seen as a bi-polar

87

6. EXPERIMENTAL RESULTS

popularity model. This means that in such cases popularity and non-personalized based
approaches are perhaps the best way to make recommendations. For reproducibility
purpose, we report the best combination of parameters for each variant of NERvE in
Table 6.2 and Table 6.3. Hereafter, we compare and summarize the performance of
NERvE. with the baseline methods on various data sets. Empirically, we observed that
the version of NERvEc,p where both Lc and Lp have an equal weight while training
gives better results on average, and we decided to only report these results later.

Tables 6.4 and 6.5 report all results. In addition, in each case, we statistically com-
pare the performance of each algorithm, and we use bold face to indicate the highest
performance, and the symbol ↓ indicates that performance is significantly worst than
the best result, according to a Wilcoxon rank sum test used at a p-value threshold of
0.01 [Lehmann and D’Abrera, 2006].

Setting 1 : interacted items

When the prediction is done over offers which user interacted with (Table 6.4), the
NERvE architecture, regardless the weight given to α, beats all the other algorithms
on KASANDR-GER, ML-100K and ML-1M. However, on NETFLIX, BPR-MF out-
performs our approach in terms of MAP@1. This may be owing to the fact that the
binarized NETFLIX movie data set is strongly biased towards the popular movies and
usually, the majority of users have watched one or the other popular movies in such
data sets and rated them well. In NETFLIX, around 75% of the users have given rat-
ings greater to 4 to the top-10 movies. We believe that this phenomenon adversely
affects the performance of NERvE. However, on KASANDR-GER, which is the only
true implicit dataset NERvE significantly outperforms all other approaches.

Setting 2 : all items

When the prediction is done over all offers (Table 6.5), we can make two observations.
First, all the algorithms encounters an extreme drop of their performance in terms of
MAP. Second, NERvE framework significantly outperforms all other algorithms on all
datasets, and this difference is all the more important on KASANDR-GER, where for
instance NERvEc,p is in average 15 times more efficient. We believe, that our model is
a fresh departure from the models which learn pairwise ranking function without the

88

6. EXPERIMENTAL RESULTS

knowledge of embeddings or which learn embeddings without learning any pairwise
ranking function. While learning pairwise ranking function, our model is aware of
the learned embeddings so far and vice-versa. We demonstrate that the simultaneous
learning of two ranking functions helps in learning hidden features of implicit data and
improves the performance of NERvE.

Comparison between NERvE versions

One can note that while optimizing ranking losses by Eq. 5.3.2 or Eq. 5.3.3 or Eq.
5.3.4, we simultaneously learn representation and preference function; the main dif-
ference is the amount of emphasis we put in learning one or another. The results pre-
sented in both tables tend to demonstrate that, in almost all cases, optimizing the linear
combination of the pairwise-ranking loss and the embedding loss (NERvEc,p) indeed
increases the quality of overall recommendations than optimizing standalone losses to
learn embeddings and pairwise preference function. For instance, when the prediction
is done over offers which user interacted with (Table 6.4), (NERvEc,p) outperforms
(NERvEp) and (NERvEc) on ML-1M, KASANDR-GER and NETFLIX. When predic-
tion is done on all offers (Table 6.5), (NERvEc,p) outperforms (NERvEp) and (NERvEc)
on KASANDR-GER. Thus, in case of interacted offers setting, optimizing ranking and
embedding loss simultaneously boosts performance on all datasets. However, in the
setting of all offers, optimizing both losses simultaneously is beneficial in case of true
implicit feedback datasets such as KASANDR-GER(recall that all other datasets were
synthetically made implicit).

Table 6.4 – Results of all state-of-the-art approaches for implicit feedback when predic-
tion is done only on offers shown to users. The best result is in bold, and a ↓ indicates
a result that is statistically significantly worse than the best, according to a Wilcoxon
rank sum test with p < .01.

ML-100K ML-1M NETFLIX KASANDR-GER

MAP@1 MAP@10 MAP@1 MAP@10 MAP@1 MAP@10 MAP@1 MAP@10
BPR-MF 0.613↓ 0.608↓ 0.788↓ 0.748↓ 0.909 0.842↓ 0.857↓ 0.857↓

LightFM 0.772↓ 0.770↓ 0.832↓ 0.795↓ 0.800↓ 0.793↓ 0.937↓ 0.936↓

CoFactor 0.718↓ 0.716↓ 0.783↓ 0.741↓ 0.693↓ 0.705↓ 0.925↓ 0.918↓

NERvEc 0.894 0.848 0.877↓ 0.835 0.880↓ 0.847 0.958↓ 0.963↓

NERvEp 0.881↓ 0.846 0.876↓ 0.839 0.875↓ 0.844 0.915↓ 0.923↓

NERvEc,p 0.888↓ 0.842 0.884 0.839 0.879↓ 0.847 0.970 0.973

89

6. EXPERIMENTAL RESULTS

Table 6.5 – Results of all state-of-the-art approaches for recommendation on all im-
plicit feedback data sets when prediction is done on all offers. The best result is in
bold, and a ↓ indicates a result that is statistically significantly worse than the best,
according to a Wilcoxon rank sum test with p < .01

ML-100K ML-1M NETFLIX KASANDR-GER

MAP@1 MAP@10 MAP@1 MAP@10 MAP@1 MAP@10 MAP@1 MAP@10
BPR-MF 0.140↓ 0.261 0.048↓ 0.097↓ 0.035↓ 0.072↓ 0.016↓ 0.024↓

LightFM 0.144↓ 0.173↓ 0.028↓ 0.096↓ 0.006↓ 0.032↓ 0.002↓ 0.003↓

CoFactor 0.056↓ 0.031↓ 0.089↓ 0.033↓ 0.049↓ 0.030↓ 0.002↓ 0.001↓

NERvEc 0.106↓ 0.137↓ 0.067↓ 0.093↓ 0.032↓ 0.048↓ 0.049↓ 0.059↓

NERvEp 0.239 0.249 0.209 0.220 0.080 0.089 0.100↓ 0.100↓

NERvEc,p 0.111↓ 0.134↓ 0.098↓ 0.119↓ 0.066↓ 0.087 0.269 0.284

6.4 Results on KASANDR and PANDOR

In this Section, we provide results obtained from baseline methods including non-
machine learning approaches and three algorithms that have proven efficient for the
recommendation task based on implicit feedback for the two datasets described in
Chapter 3.

To proceed, we recall the main characteristics of KASANDR and PANDOR in Table
3.3 and 3.7 respectively.

Results on KASANDR

Compared methods In order to depict the effectiveness of KASANDR as a novel
dataset which is suitable to test recommendation models using meta-information and
encourage future research on recommendation systems using implicit feedback, we
show results of following baselines on KASANDR: Pop, PastI, Rand, MF, FM, FFM,
FFM-F. We also perform parameter tuning for the aforementioned machine learning
algorithms on a different validation set and report the optimum ones in Table 6.6.

Table 6.6 – Parameters used for compared approaches.

Algorithm Optimization #Iterations #Latent Factors Learning Rate Reg Param
MF ALS 20 50 N.A. 0.01
FM SGD 10 1,1,10 0.001 0.01

FFM SGD 15 8 0.2 0.001

Furthermore, because we run the tested approaches per country, we define macro

90

6. EXPERIMENTAL RESULTS

MAP as:
Macro MAP@k =

1

| c |
∑
c∈C

MAP@k(c)

and micro MAP as:

Micro MAP@k =
C∑
c=1

nc
N
MAP@k(c),

where c, nc and N are the country, number of users in that country and total number
of users, respectively. One can observe that Micro MAP takes into account the size of
the traffic within each country and gives more weight to bigger countries while Macro
MAP simply averages the results obtained for all countries.

Table 6.7 – Comparison between all tested methods in terms of Micro and Macro MAP
for non-machine learning based methods. The best results are in bold.

Rand Pop PastI
Micro Macro Micro Macro Micro Macro

MAP@5 2.41E-6 1.54E-005 0.004 0.004 0.017 0.011
MAP@30 4.25E-6 2.33E-005 0.004 0.005 0.017 0.011
MAP@100 5.64E-6 2.996E-005 0.005 0.005 0.016 0.011

Table 6.8 – Comparison between all tested methods in terms of Micro and Macro MAP
for machine learning based methods. The best results are in bold.

MF FM FFM FFM-F
Micro Macro Micro Macro Micro Macro Micro Macro

MAP@5 0.044 0.037 0.721 0.814 0.732 0.829 0.760 0.861
MAP@30 0.044 0.037 0.726 0.817 0.736 0.831 0.764 0.862
MAP@100 0.044 0.037 0.726 0.817 0.735 0.831 0.763 0.862

Experimental setting Furthermore, we only keep the users who clicked at least once
and the offers which were either shown or clicked by such users. For all interactions,
we assigned +1 (positive feedback) if the user clicked on an offer that was shown to
him, and -1 if the user did not click (negative feedback).

Finally, we sort the data w.r.t the timestamp and further divide it into 70% for
training and 30% for testing, for all recommender algorithms. Such temporal split

91

6. EXPERIMENTAL RESULTS

makes more sense than random split because the interest of users change over time and
is also more realistic with respect to the on-line setting. For experiments on KASANDR,
we consider only the setting of interacted items.

Tables 6.7 and 6.8 reports MAP@5, 30 and 100 of all compared methods. As
expected, non-machine learning methods namely Rand, Pop and PastI do not perform
well. Similarly, we observe that MF also performs poorly when compared to FM and
FFM. This result can be attributed to the fact that the number of new users in the test
set is larger than the number of returning ones, and MF is well-known to fail to learn
any latent factors for such users.

However, FM and its extension FFM are designed in a way that allow them to
overcome this drawback and to learn from a reduced amount of positive feedback. For
FFM, we include the userId, offerId, country code, offer category and merchant, as
fields.

Then, we also propose to compute two supplementary count features from the raw
data: the number of times the user clicked, regardless of the items, and the number of
time an offer is clicked, regardless of the users. This version is referred to as FFM-F
in the following. As shown in Table 6.8, FFM-F outperforms all the other models. We
believe there is still room for improvement of FFM by doing such feature engineering;
for instance by including the same count but computed on different time-windows,
such as per week, as for now we consider the whole month.

One can also observe that results in terms of Macro MAP for FM and all its deriva-
tives are usually higher than the results in terms of Micro MAP. A very simple expla-
nation comes from the fact that the latter takes into account the size of the traffic of
each country, and for instance, FFM-F obtains a MAP of 0.6397 for France versus a
MAP of 0.9787 for Ireland which generates less traffic.

Finally, Table 6.9 reports the training and testing time for each approach on all
countries. Not surprisingly, non-machine learning approaches are less computation-
ally demanding. We can also see that FFM-F is only slightly slower than FFM, as it
includes the two extra quantitative features but still much more faster than MF.

In this section, we presented KASANDR in a hope to encourage future research on
recommendation systems using implicit feedback. It is designed to investigate a wide
range of recommendation algorithms as it includes many contextual features about
both customers and proposed offers. For comprehensiveness, we gave a description of

92

6. EXPERIMENTAL RESULTS

Table 6.9 – Training and testing time (in seconds).

Rand Pop PastI MF FM FFM FFM-F
Train 341.759 630.112 139.409 36067.117 1142.096 1804.565 2179.745
Test 0 0 0 10259.487 444.924 462.800 490.498

side information and statistics. We also conducted experiments and compared strong
baselines approaches, where we observed that, FFM was the best approach for this
problem. We also demonstrated that feature engineering can greatly improve the results
and should be more investigated on KASANDR.

Another interesting perspective include the integration of textual information avail-
able in KASANDR using the URL to retrieve the content of the page on which the item
is presented, the tag associated to it, or the query string entered by the user for his
search. For this purpose, models based on text mining, semantic analysis or natural
language processing can be investigated. We also left aside other features in the exper-
imentation such as the consumer’s behavior w.r.t. the type of device that s/he is using
or the price of the items which we believe that they can greatly impact the performance
of RS. In the next section, we discuss PANDOR, which has rich text information and
suffers from popularity bias.

Results on PANDOR

Compared approaches First, we compare the performance of different state-of-
the art approaches that do not take into account the diversity for recommendation.
The tested methods include: two non-machine learning approaches and five machine-
learning based approaches which were developed to deal with highly sparse data and
implicit feedback: Pop, Rand, Rank-ALS, BPR, FM, LightFM.

We don’t use Macro MAP@k or Micro MAP@k in case of PANDOR as we don’t
have country information in PANDOR. However, as PANDORsuffers from popularity
bias, we show diversity results by using EILD.

Evaluation Protocol We filter out users without a single click; the dataset contains
1,767,589 interactions from 119,536 unique users on 2,840 unique items. In addition,
we sort all interactions according to time, then take the first 70% interactions for train-
ing the models, and the remaining 30% for testing. Finally, we consider both settings

93

6. EXPERIMENTAL RESULTS

w.r.t. to the set of items selected for the prediction as defined in section 6.2.

1. Item recommendation only relies on past interacted offers

2. The RS considers the full set of items as possible candidate for the prediction.

For the first setting, the average number of interacted items per user is 20.653 , i.e.
the prediction is done over 20.653 items on average, while for the second one, the
prediction is over 2840 items. The accuracy of the ranking list of items is evaluated by
the Mean Average Precision (MAP) obtained for the set of top k= 1, 5 and 10 items.
Then, following [Wasilewski and Hurley, 2016a], we use the EILD (expected intra-list
diversity) to measure diversity. High value of EILD indicates high diversity, and we
report this metric at k=10. Because of the absence of meta information on the items,
the distance between items is computed as the distance between their embeddings. We
give more details about this choice on Page 94, where we give diversity results.

The results of comparing all methods on PANDOR, in both settings are summarized
in Tables 6.10 and 6.11. One can see that on interacted items, LightFM significantly
outperforms all competing approaches and achieved reasonable performance for this
task. However, looking at the results of the second setting, the compared approaches
give very low performance, and BPR-MF and NERvEgive slightly better performance
than LightFM and FM. Figure 6.3 provides a deeper analysis of these results for FM
and LightFM, which are supposed to be particularly efficient for this type of data. This
figure shows the rank of items as a function of their click-through rate (CTR) i.e. the
ratio of clicks to impressions of an item, for FM, LightFM and Popularity. We can
make two observations: (1) FM’s recommendation is driven by items with the highest
CTR (in the top 1%); (2) LightFM behaves like Popularity, recommending only the
most clicked items.

Next, we demonstrate how incorporating diversity using item embeddings, in Rank-
ALS and NERvE, can enhance these results.

Diversity Results We run diversity tests on PANDOR. We propose to explore the
ability of diversity in RS to overcome the strong bias induced by popular items, or
items with high CTR. Also, we focus only on the setting in which we test on all items as
most approaches fail to provide good results on such setting. To this end, we propose to

94

6. EXPERIMENTAL RESULTS

Table 6.10 – MAP@k obtained for all compared approaches on interacted items on
PANDOR. The best results are in bold.

MAP@1 MAP@5 MAP@10 EILD@10
Random 0.135 0.157 0.161 0.172

Popularity 0.249 0.262 0.266 0.080
FM (SGD) 0.244 0.269 0.273 0.191
BPR-MF 0.222 0.240 0.229 0.173
LightFM 0.479 0.526 0.535 0.099
NERvEc,p 0.251 0.292 0.299 0.115
Rank-ALS 0.256 0.261 0.261 0.008

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Rank

C
T

R

2 4 6 8 101 2 3 4 5 6 7 8 9 10

FM
LightFM
Pop

Figure 6.3 – Rank of recommended items as a function of their CTR. Here the results
are for the setting where all items are considered for making prediction. The dot line
represents the average CTR of all items.

95

6. EXPERIMENTAL RESULTS

Table 6.11 – MAP@k obtained for all compared approaches on all items on PANDOR.

MAP@1 MAP@5 MAP@10 EILD@10
Random 9.934e-05 0.0001 0.0001 0.536

Popularity 0.007 0.009 0.011 0.396
FM (SGD) 0.001 0.002 0.003 0.534
BPR-MF 0.005 0.008 0.010 0.493
LightFM 0.0002 0.0008 0.002 0.287
NERvEc,p 0.006 0.008 0.010 0.560
Rank-ALS 0.002 0.002 0.003 0.564

Table 6.12 – Results of NERvEcoupled with diversity. HM denotes the harmonic mean
of MAP and EILD.

Metric Maximized β MAP@10 EILD
MAP@10 0.0001 0.010 0.633

EILD 0.1 0.001 0.666
HM(MAP@10,EILD) 0.0001 0.010 0.633

HM(MAP@10,EILD) while maximizing diversity -0.75 0.006 0.635

evaluate two approaches. The first one was initially proposed by [Wasilewski and Hur-
ley, 2016a] and consider the objective function of Rank-ALS [Takács and Tikk, 2012]
augmented with a regularization term that consists of the intra-list diversity (ILD) mea-
sure. Then, without loss of generality, we propose to build upon NERvE. The diversity
regularizers, we add here for RankALS or NERvE, can be used with any loss function.
In [Wasilewski and Hurley, 2016a], the authors used the movies’ genre to compute
distances between two items. We propose to compute item embeddings as meta data
[Barkan and Koenigstein, 2016a]. Here, we would like to stress on the fact that com-
puting embeddings with the Item2Vec [Barkan and Koenigstein, 2016a] technique to
measure diversity is a fresh departure from previous works on this topic; indeed, in our
case, item diversity is not related to the characteristics of the items themselves, such as
the genre, or the category, but rather to the diversity of the sequence of items displayed
to users. This means that our goal is to, somehow, force the RS algorithm to display
various diverse sequences of items to each user. We compute item embeddings, with
Gensims based Skip-Gram implementation of Word2Vec (adapted to Item2Vec). We
set the dimension to 20 and consider 3 as the context window.

96

6. EXPERIMENTAL RESULTS

Table 6.13 – Results of RankALS coupled with diversity. HM denotes the harmonic
mean of MAP and EILD

Metric Maximized regularizer MAP@10 EILD
MAP@10 PLapDQ-min 0.018 0.552

EILD No-Regularizer 0.0002 0.692
HM(MAP@10,EILD) PLapDQ-min 0.018 0.552

HM(MAP@10,EILD) while maximizing diversity DQ-max 0.016 0.553

Table 6.14 – By Introducing diversity we are able to increase both relevance of the
items and diversity of items

Before Diversity After Diversity
MAP@1 MAP@5 MAP@10 EILD@10 MAP@1 MAP@5 MAP@10 EILD@10

NERvE 0.006 0.008 0.010 0.561 0.009 0.009 0.010 0.633
RankALS 0.002 0.002 0.003 0.564 0.010 0.014 0.016 0.553

NERvEand RankALS with diversity In Section 5.4, we described the way of incor-
porating diversity in NERvE. Next, we describe the way of doing it in RankALS and
the results we obtained after doing the same. In RankALS [Wasilewski and Hurley,
2016a], a diversity regularization term is added, thus taking into account diversity in a
single step learning, as we propose for NERvE. From the EILD metric, the authors de-
rived various forms for the regularization term, all based on a distance matrix between
items using some available characteristics. In this work, we compute the distance be-
tween items embeddings as described previously.

Best results are summarized in Tables 6.12, 6.13 and 6.14. Overall, one can ob-
serve that in both cases, adding diversity based on embeddings, results in significant
boost of the RS performance in terms of MAP, and allows Rank-ALS and NERvEto
outperform BPR-MF (which was found to be the strongest baseline in this setting). For
NERvE, one can also note that by taking negative β, we are actually able to improve
MAP and EILD computed in Table 6.11. This observation stresses the fact that by
introducing more diversity in recommendations on data sets such as PANDOR, which
were built by popularity biased algorithms, we are actually able to improve the rele-
vance of recommended offers. For Rank-ALS, the gap in terms of MAP between the
versions with and without diversity is even more important.

97

6. EXPERIMENTAL RESULTS

Topic-Modelling application to RS

In chapter 4, we had first introduced topic models and how topics derived from such
topic models can be used to make recommendations. In this section, we use one of the
topic models described in Section 4.3, namely TM–LDA, and feed the topics derived
from it, as contextual information to Factorization Machines.

Experimental setting We first sort the dataset temporally. Then, we remove all the
users who did not do a single click during the whole time period. We, then, take first
80% for training and remaining 20% for testing. We make use of Page Text for running
TM–LDA. This is because pages, which users are browsing on, depict the interest of
the user and indeed, offers to be shown at any given time should match the interest of
the user. We remove all the pages from test period which were not there in the training
period. Various statistics of data are summarized in Table 6.15.

Table 6.15 – Overall Dataset Aggregate Statistics.

#Unique Pages 1770
Total Interactions with Page Text 605,386

Interactions in training data 578618
Interactions in test data 26768

As for the baselines, we compare against Factorization Machine without any con-
textual information. We also compare against two non-machine learning baselines,
namely, Random and Popularity. The results are shown in Table 6.16. Using TM–LDA
based topics as contextual information in Factorization Machines improves recommen-
dations as shown in Table 6.16.

Table 6.16 – MAP@k improves after putting TM–LDA-based topics as contextual in-
formation in Factorization Machines on interacted items on PANDOR. The best results
are in bold.

MAP@1 MAP@5 MAP@10
Random 0.135 0.157 0.161

Popularity 0.249 0.262 0.266
Factorization Machines (FM) 0.244 0.269 0.273

TM–LDA-Based FM using Page Text 0.385 0.390 0.389

98

6. EXPERIMENTAL RESULTS

6.5 Conclusion

In this chapter, we first described the results on NERvE, a neural network to learn
good representation and pairwise ranking function simultaneously. We assessed and
validated the proposed approach through extensive experiments, using four popular
collections proposed for the task of recommendation. Furthermore, we studied two
different settings for the prediction phase and demonstrate that the performance of
each approach is strongly impacted by the set of items considered for making the pre-
diction. In both the settings, NERvEoutperforms the other approaches using MAP as
a metric. We run recommender baselines meant to learn from implicit feedback on
KASANDR and set benchmarks which may be helpful for RS community. We then de-
scribe PANDOR and baseline results on PANDOR and how the preliminary results suffer
from popularity bias, a known problem in RS. We introduce diversity in loss functions
of NERvE and Rank-ALS, and depict improvement in preliminary results. Finally, we
showcase the use of contextual information such as time and text by using TM–LDA
based topics in Factorization Machines and show using this information can lead to
significant improvement of results.

99

6. EXPERIMENTAL RESULTS

100

7. CONCLUSIONS AND FUTURE PERSPECTIVES

Chapter 7

Conclusions and future perspectives

In this thesis, we first presented and focused on Kelkoo’s June data and Purch’s one
month data of implicit preference signals (clicks) from twenty European countries.
Working with industry data presents interesting challenges. Kelkoo’s data was big
enough (353 GB compressed and 650 GB uncompressed) to not fit in one system. This
led us to spend considerable time on reading the data in main memory and preprocess
and cleaning the data so that RS models could be build on the data. SPARK, which is a
technology developed for handling big data and building machine learning models in a
distributed manner, was used to do pre-processing and build dataset formats on which
RS baselines can be built.

There were numerous bugs found in the initial stages of cleaning and preprocessing
the data. For instance, we found that maximum number of the clicks were done by bots
and not a human and many users have done no click at all. We also found that many
offers which were being clicked were never shown to the users. Additionally, users
were tracked by maintaining cookies and this user-tracking system was not profound.

Having removed/mimimized the effect of the bugs, we started reading literature and
found out that all the traditional classification based RS models use ratings as input and
converting clicks (which were available to us) into ratings was an unnatural thing to do.
Nevertheless, we started by treating number-of-clicks as a rating and no-click as zeros.
This led to a problem of mega-sparsity where almost all interactions were no-clicks.

We started building models on this big and skewed data. We began with simple ap-
proaches such as recommending most popular items and items, which user interacted
in past. Our next objective was to see if Machine Learning based approaches can do

101

7. CONCLUSIONS AND FUTURE PERSPECTIVES

better than these simple approaches, which served as the baselines which needed to be
outperformed. We saw that Matrix Factorization based approach, which was the win-
ning approach for Netflix prize, did not perform very well on this data. Most probable
explanation for this in literature has been (and which we also observed) that matrix fac-
torization based approach tries to optimize Root Mean Squared Error (RMSE) which
is well suited for ratings and not clicks. Additionally, matrix factorization based ap-
proaches do not make use of contextual information. Some of these shortcomings
were overcome by making use of Factorization Machines and Field-Aware Factoriza-
tion Machines. We tried to put FFM in Kelkoo’s production system and is one of our
future perspectives. We also built numerous RS models developed for implicit feed-
back for KASANDR and compared their performances. KASANDR dataset contains
twenty countries and we evaluate the RS baselines on all the twenty countries using
Micro-MAP and Macro-MAP.

Having computed the basic statistics and run the baselines, we contributed KASANDR

and the baseline results, as well as rich meta-information accompanying it as a bench-
mark, which can be useful for research community working in RS. We presented and
described these contextual features present in the data set.

Then, we started working on another industry dataset, coined the name, PANDOR.
We computed all the basic statistics and did feature study as before. We also noted
that PANDOR is the dataset in which items recommended to the user have popularity
bias in it. Due to this bias, performance of all the RS baselines get affected. In order
to overcome the popularity bias, we introduce diversity term in cost function of two
ranking algorithms. We noted that by introducing diversity, performance of baselines
improved. As before, we contributed this dataset along with contextual information
accompanying it to RS community. Diversity results were also presented along with
other learning-to-rank based baselines developed for handling implicit feedback.

When optimizing on clicks, we came to understand that main objective is to come
up with an item, which user is most likely to click, so that this item can be presented
on top of the list of recommended items. We also observed that deep learning based
methods are increasingly being applied to the problem of RS leading to considerable
increase in performance over traditional methods. This observation led to switch of
our focus from classification based approaches to learning-to-rank and neural network
based methods.

102

7. CONCLUSIONS AND FUTURE PERSPECTIVES

We developed a neural network, coined the term NERvE, which learns by minimiz-
ing two losses simultaneously during backpropogation. One of the losses involved fo-
cuses on learning representations. Representations are based on a technique developed
recently called Item2Vec. The other loss function stresses on pairwise learning-to-rank

function. The Neural Network framework was developed in Tensorflow. Tensorflow
implements all the backpropogation based gradients by itself. We just need to specify
the structure of the network and associated loss functions. We rigorously tuned param-
eters involved in learning the predictions and monitor the performance of this neural
network by trying out many parameter values for all the parameters. We study the per-
formance of this neural network under three different settings. Two settings consist of
minimizing the individual loss functions and the third setting consists of minimizing
both the losses simultaneously. We test this model on many RS data sets, including
KASANDR. We noted that by minimizing these two losses simultaneously, we are able
to outperform many popular baselines on many implicit feedback datasets.

New to PANDOR dataset was also the rich textual information accompanying it.
As KASANDR, PANDOR also suffers from the problem of mega-sparsity as most of
the interactions are no-clicks (non-positive feedback). In order to handle the prob-
lem of sparsity, many works have suggested to make use of meta-data. We thought
to make use of topic outputs of time-aware topic models to be used in RS models
as contextual information. So, we used two novel time-aware topic modelling tech-
niques, namely, TM–ATAM and T–ATAM. Both of these topic modelling techniques
are time-aware and are fresh departure from topic modeling techniques which are time-
oblivious. TM–ATAM involves post-processing of inferences in order to come up with
a transition matrix, entries of which, model the quantity by which topics will trans-
form into another with time. In particular, it solves a least squares problem between
distributions of consecutive temporal posts. T–ATAM treats time as a random observed
variable inside the model itself and doesn’t require any post processing. We show that
these time-aware topic models perform very well on health dataset by using perplexity.
Then, we test our hypothesis that, using contextual information can help RS models.
In order to do that, we show that topics learned by using a time-aware general pur-
pose model (such as TM–LDA) improves performance of Factorization Machines for
recommending products. With that said, we list down some of the ideas pertaining to
temporal topic models we would like to test as future perspectives in next section.

103

7. CONCLUSIONS AND FUTURE PERSPECTIVES

In all the above mentioned RS models, one perennial problem facing RS is that,
we test against the offers shown to the user in the test set. However, offers shown to
user are the result of the model, which was used to show those offers. But, there could
have been many offers which user would have clicked had they been shown to him/her.
We discuss this problem of bias introduced because of using a particular model in next
section and approaches which have been suggested to overcome this problem.

Future perspectives

Here, we made an attempt to solve some of the central problems surrounding RS. How-
ever, numerous improvements and extensions over the models which we developed
and we aspire to develop are possible. In this vein, we provide different perspectives
in which the existing models can be extended or new models can be developed.

First of all, the idea of feeding contextual information present in NERvE, and look-
ing at the change in effects in performance excites us. This contextual information can
either be item meta-information present in the data or topics inferred from time-aware
topic models. We also intend to apply topic modeling techniques to content-filtering
recommendation techniques. We would like to extend NERvE in order to take into
account additional contextual information regarding users and/or items. More specif-
ically, we are interested in the integration of data of different natures, such as text or
demographic information. We believe that this information can be taken into account
without much effort and by doing so, it is possible to improve the performance of our
approach and tackle the problem of providing recommendation for new users/items at
the same time, also known as the cold-start problem. The second important extension
will be the development of an on-line version of the proposed algorithm in order to
make the approach suitable for real-time applications and on-line advertising.

A natural problem arising from the online aspect of RS, and commonly referred to
as cold-start, describes a situation when one needs to address new users and/or items.
Traditional RS rely on past interaction data in order to generate new recommendations.
Therefore, those approaches fail to generate relevant recommendations for new users
and items arriving into the system due to missing information about their past inter-
actions. The simple strategy is to recommend the most popular items to a new user.

104

7. CONCLUSIONS AND FUTURE PERSPECTIVES

Another way is to use, when available, contextual information regarding the new user,
such as the gender or demographic information (i.e. country of residence), to recom-
mend items liked by similar users for whom we have past feedback [Balabanovic and
Shoham, 1997; Basu et al., 1998; Claypool et al., 1999; Pazzani, 1999]. To address
the issue of item cold-start, one can use content-based approaches, relying on the use
of contextual information such as the title of the offer or the genre of a movie to infer
similarity with other items already present in the system [Chu and Park, 2009; Good
et al., 1999; Park et al., 2006; Schein et al., 2002; Stern et al., 2009]. This idea of
using contextual information excites us and we would like to extend NERvE by us-
ing contextual information in order to handle the problem of user cold-start and item
cold-start.

Treating recommender problem as a sequential learning problem is interesting from
many view-points. Problem of recommendations is a natural sequential learning prob-
lem because user’s interest changes rapidly and recommender model also need to adapt
to ever-changing user’s interests. In this vein, collaborative bandits (reinforcement
learning) can be applied to come up with better recommendations. Collaborative ban-
dits handle explore-exploit dilemma very well, where, explore step tries to discover
new interests of the user and meet ever-changing demands of the user, while exploit
step tries to recommend to the user using whatever has been learned about the user so
far. Also, user can click on what we show. But, what we show is the result of what
our model predicted was good. In other words, there are no counterfactuals. This is
the problem with implicit feedback, that, it has got no real negatives. Explore-exploit

approaches are potential solution to this problem.

Another line of research, we want to consider, is intent-aware or session-aware
recommendations. Recurrent Neural Networks (RNNs) also handle recommendations
as a sequence and have been shown to perform very well recently in session based
recommendations. We would like to also adapt the techniques we have developed to
adapt to the framework of RNNs and monitor the performance.

One more future perspective, which can have impact in performance of RS, that
we want to consider is value-aware recommendations. The approaches developed in
this domain consider that not all clicks/actions have same “reward”. These approaches
focus on the trade-offs between long-term retention vs. short-term clicks (clickbait).
In this thesis, we have been focussing on clicks as target, but focussing just on clicks

105

7. CONCLUSIONS AND FUTURE PERSPECTIVES

may not generate revenue for the company or value for the customer.
One area of research is in the direction of full-page optimization. This area takes

recommendations into multi-task learning domain, where we would like to jointly op-
timize for the set of items to recommend and their placement on the page and also
incorporate those other factors such as diversity, freshness, coverage of items being
recommended.

Personalizing how we recommend and not just what we recommend is one another
line of research we would like to explore. Ideal balance of diversity, novelty, popular-
ity, freshness, etc. may depend on the person. In other words, how we present items
or explain recommendations can also be personalized. These techniques also aim to
balance the needs of lean-back users and power users on the interaction level.

All in all, a lot of topics and challenging problems still remain unsolved in RS and
recommender problem, in general, is still far from being perfectly solved problem.

106

7. CONCLUSIONS AND FUTURE PERSPECTIVES

Published articles

1. Learning to Recommend Diverse Items over Implicit Feedback on PANDOR
with Charlotte Laclau, Massih-Reza Amini, RecSys 2018.

2. Health Monitoring on Social Media over Time with Sihem Amer-Yahia, Mar-
ianne Clausel, Majdeddine Rebai, Son T Mai, Massih-Reza Amini in IEEE
Transactions on Knowledge and Data Engineering Journal, 30(8), pp. 1467–
1480, 2018.

3. KASANDR: A Large-Scale Dataset with Implicit Feedback for Recommenda-
tion with Charlotte Laclau, Massih-Reza Amini, Gilles Vandelle, Andr Bois-
Crettez, SIGIR 2017.

4. Health Monitoring on Social Media over Time with Shashwat Mishra, Sihem
Amer-Yahia, Marianne Clausel, Massih-Reza Amini, SIGIR 2016.

Submitted articles

5. Representation Learning and Pairwise Ranking for Implicit Feedback in Recom-
mendation Systems with Mikhail Trofimov, Oleg Horodnitskii, Charlotte Laclau,
Yury Maximov, Massih-Reza Amini

107

7. CONCLUSIONS AND FUTURE PERSPECTIVES

108

REFERENCES REFERENCES

References

Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Controlling popularity
bias in learning-to-rank recommendation. In Proceedings of RecSys, pages 42–46,
New York, NY, USA, 2017. ACM. 6, 76

Nir Ailon and Mehryar Mohri. An efficient reduction of ranking to classification. In
Proceedings of COLT, pages 87–98, (2008). 75

Massih-Reza Amini and Nicolas Usunier. Learning with Partially Labeled and Inter-

dependent Data. Springer, New York, NY, USA, 2015. ISBN 978-3-319-15726-9.
66

Chris Anderson. The Long Tail: Why the Future of Business Is Selling Less of More.
Hyperion, 2006. 48

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An
introduction to MCMC for machine learning. Machine Learning, 50(1-2):5–43,
2003. doi: 10.1023/A:1020281327116. URL https://doi.org/10.1023/

A:1020281327116. 52

Marko Balabanovic and Yoav Shoham. Content-based, collaborative recommendation.
Commun. ACM, 40(3):66–72, 1997. 105

Suhrid Balakrishnan and Sumit Chopra. Collaborative ranking. In WSDM, 2012. 23

Trapit Bansal, David Belanger, and Andrew McCallum. Ask the GRU: Multi-task
learning for deep text recommendations. In Proceedings of the 10th ACM Confer-

ence on Recommender Systems, Boston, MA, USA, September 15-19, 2016, pages
107–114, 2016. 24

109

https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116

REFERENCES REFERENCES

Oren Barkan and Noam Koenigstein. ITEM2VEC: neural item embedding for collab-
orative filtering. In International Workshop on Machine Learning for Signal Pro-

cessing, MLSP, pages 1–6, 2016a. 77, 96

Oren Barkan and Noam Koenigstein. Item2vec: Neural item embedding for collabo-
rative filtering. In Proceedings of the Poster Track of RecSys, 2016b. 27

Justin Basilico and Yves Raimond. Déjà vu: The importance of time and causality in
recommender systems. In Proceedings of RecSys, page 342. ACM, 2017. 31, 50

Chumki Basu, Haym Hirsh, and William W. Cohen. Recommendation as classifica-
tion: Using social and content-based information in recommendation. In AAAI/IAAI,
pages 714–720. AAAI Press / The MIT Press, 1998. 105

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural
probabilistic language model. Journal of Machine Learning Research, 3:1137–1155,
2003. 26

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.
Journal of Machine Learning, 3:993–1022, 2003. 51, 52

Rubi Boim, Tova Milo, and Slava Novgorodov. Diversification and refinement in col-
laborative filtering recommender. In Proceedings of CIKM, pages 739–744, 2011.
28

Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the

Trade - Second Edition, pages 421–436. 2012. 74

Keith Bradley and Barry Smyth. Improving recommendation diversity, 2001. 6, 28

Christopher J. C. Burges. From RankNet to LambdaRank to LambdaMART: An
overview. Technical report, Microsoft Research, 2010. 23

Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N. Hullender. Learning to rank using gradient descent. In
Proceedings of ICML, pages 89–96, 2005. 24

110

REFERENCES REFERENCES

Pedro G. Campos, Fernando Dı́ez, and Iván Cantador. Time-aware recommender sys-
tems: a comprehensive survey and analysis of existing evaluation protocols. User

Model. User-Adapt. Interact., 24(1-2):67–119, 2014. 50

Jaime G. Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In Proceedings of SIGIR, pages
335–336, 1998. 28

Rich Caruana, Shumeet Baluja, and Tom M. Mitchell. Using the future to sort out the
present: Rankprop and multitask learning for medical risk evaluation. In Proceed-

ings of NIPS, pages 959–965, 1995. 24

Pablo Castells, Neil J. Hurley, and Saul Vargas. Novelty and diversity in recommender
systems. In Recommender Systems Handbook, pages 881–918. 2015. 34

Sotirios Chatzis, Panayiotis Christodoulou, and Andreas S. Andreou. Recurrent latent
variable networks for session-based recommendation. CoRR, abs/1706.04026, 2017.
24, 50

Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, and Hang Li. Ranking measures
and loss functions in learning to rank. In Proceedings of NIPS, pages 315–323.
Curran Associates, Inc., 2009. 22

Peizhe Cheng, Shuaiqiang Wang, Jun Ma, Jiankai Sun, and Hui Xiong. Learning to
recommend accurate and diverse items. In Proceedings of the 26th International

Conference on World Wide Web, WWW ’17, 2017. 28

Soudip Roy Chowdhury, Muhammad Imran, Muhammad Rizwan Asghar, Sihem
Amer-Yahia, and Carlos Castillo. Tweet4act: Using incident-specific profiles for
classifying crisis-related messages. In 10th Proceedings of the International Confer-

ence on Information Systems for Crisis Response and Management, Baden-Baden,

Germany, May 12-15, 2013., 2013. 58

Wei Chu and Seung-Taek Park. Personalized recommendation on dynamic content
using predictive bilinear models. In Proceedings of WWW, pages 691–700. ACM,
2009. 105

111

REFERENCES REFERENCES

Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry Netes, and
Matthew Sartin. Combining content-based and collaborative filters in an online
newspaper, 1999. 105

William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order things.
J. Artif. Intell. Res. (JAIR), 10:243–270, 1999. 21

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995. doi: 10.1007/BF00994018. URL http://dx.doi.org/

10.1007/BF00994018. 60

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM Conference on Recommender

Systems, RecSys ’16, 2016a. 24

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube
recommendations. In Proceedings of RecSys, pages 191–198, 2016b. 27

Koby Crammer and Yoram Singer. Pranking with ranking. In Proceedings of NIPS,
pages 641–647, 2001. 20

Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Recurrent coevolutionary
feature embedding processes for recommendation. CoRR, abs/1609.03675, 2016.
24

Thomas Davidson, Dana Warmsley, Michael W. Macy, and Ingmar Weber. Automated
hate speech detection and the problem of offensive language. In Proceedings of

the Eleventh International Conference on Web and Social Media, ICWSM 2017,

Montréal, Québec, Canada, May 15-18, 2017., pages 512–515, 2017. 58

Thomas Deselaers, Tobias Gass, Philippe Dreuw, and Hermann Ney. Jointly optimis-
ing relevance and diversity in image retrieval. In Proceedings of CIVR, 2009. 28

Mukund Deshpande and George Karypis. Item-based top-N recommendation algo-
rithms. ACM Trans. Inf. Syst., 22(1):143–177, 2004. 13

112

http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018

REFERENCES REFERENCES

Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of the 14th

ACM International Conference on Information and Knowledge Management, CIKM
’05, 2005. 50

Marina Drosou and Evaggelia Pitoura. Diversity over continuous data. IEEE Data

Eng. Bull., 32(4):49–56, 2009. 28

Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. A multi-view deep learning ap-
proach for cross domain user modeling in recommendation systems. In Proceedings

of WWW, pages 278–288, 2015. 24

Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting
algorithm for combining preferences. Journal of Machine Learning Research, 4:
933–969, 2003. 21

Simon Funk. Netflix update: Try this at home. http://sifter.org/simon/

journal/20061211.html, 2006. 15

Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and
Simon Dollé. Offline A/B testing for recommender systems. In Proceedings of the

Eleventh ACM International Conference on Web Search and Data Mining, WSDM

5-9, 2018, pages 198–206, 2018. 35

Nathaniel Good, J. Ben Schafer, Joseph A. Konstan, Al Borchers, Badrul Munir Sar-
war, Jonathan L. Herlocker, and John Riedl. Combining collaborative filtering with
personal agents for better recommendations. In AAAI/IAAI, pages 439–446. AAAI
Press / The MIT Press, 1999. 105

Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit
Savla, Varun Bhagwan, and Doug Sharp. E-commerce in your inbox: Product rec-
ommendations at scale. In Proceedings of SIGKDD, pages 1809–1818, 2015. 27

Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit
Savla, Varun Bhagwan, and Doug Sharp. E-commerce in your inbox: Product rec-
ommendations at scale. CoRR, abs/1606.07154, 2016. 25, 27

113

http://sifter.org/simon/journal/20061211.html
http://sifter.org/simon/journal/20061211.html

REFERENCES REFERENCES

Élie Guàrdia-Sebaoun, Vincent Guigue, and Patrick Gallinari. Latent trajectory mod-
eling: A light and efficient way to introduce time in recommender systems. In
Proceedings of RecSys, pages 281–284, 2015. 27

Frédéric Guillou. On Recommendation Systems in a Sequential Context. (Des Systèmes

de Recommandation dans un Contexte Séquentiel). PhD thesis, Charles de Gaulle
University, Lille, France, 2016. 24, 30

Asela Gunawardana and Guy Shani. Evaluating recommender systems. In Recom-

mender Systems Handbook, pages 265–308. 2015. 30, 35

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and con-
text. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December 2015. 83

Ruining He and Julian McAuley. VBPR: visual bayesian personalized ranking from
implicit feedback. CoRR, abs/1510.01784, 2015. 24

Ruining He and Julian McAuley. VBPR: visual bayesian personalized ranking from
implicit feedback. In Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages 144–150, 2016.
24

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix factor-
ization for online recommendation with implicit feedback. In Proceedings of SIGIR,
pages 549–558. ACM, 2016. 5

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
Neural collaborative filtering. In Proceedings of WWW, pages 173–182, 2017. 27

Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An algorith-
mic framework for performing collaborative filtering. In SIGIR ’99: Proceedings

of the 22nd Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, August 15-19, 1999, Berkeley, CA, USA, pages
230–237, 1999. 12

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John Riedl. Eval-
uating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):
5–53, 2004. 6, 28

114

REFERENCES REFERENCES

Balázs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k
gains for session-based recommendations. CoRR, abs/1706.03847, 2017. 24, 50

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
Session-based recommendations with recurrent neural networks. CoRR,
abs/1511.06939, 2015. 24, 50

Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk.
Parallel recurrent neural network architectures for feature-rich session-based recom-
mendations. In Proceedings of the 10th ACM Conference on Recommender Systems,

Boston, MA, USA, September 15-19, 2016, pages 241–248, 2016. 24, 50

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feed-
back datasets. In Proceedings of ICDM, pages 263–272, 2008a. 16, 81

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feed-
back datasets. In Proceedings of ICDM, pages 263–272, 2008b. 81

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feed-
back datasets. In Proceedings ICDM, pages 263–272, 2008c. 17

Neil J. Hurley. Personalised ranking with diversity. In Proceedings of RecSys, pages
379–382, 2013. 29

Michael Jahrer and Andreas Tscher. Collaborative filtering ensemble for ranking. In
KDD Cup, volume 18 of JMLR Proceedings, pages 153–167. JMLR.org, 2012. 23

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion
using alternating minimization. In Symposium on Theory of Computing Conference,
pages 665–674, 2013. 16

S. Janson. Large Deviations for Sums of Partly Dependent Random Variables. Random

Structures and Algorithms, 24(3):234–248, 2004. 66, 67

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceed-

ings of SIGKDD, pages 133–142, 2002. 21

115

REFERENCES REFERENCES

Thorsten Joachims and Adith Swaminathan. Counterfactual evaluation and learning for
search, recommendation and ad placement. In Proceedings of the 39th International

ACM SIGIR conference on Research and Development in Information Retrieval,

SIGIR, pages 1199–1201, 2016. 35

Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware fac-
torization machines for CTR prediction. In Proceedings of RecSys, pages 43–50,
2016a. 81

Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factor-
ization machines for CTR prediction. In Proceedings of the 10th ACM Conference

on Recommender Systems, pages 43–50, 2016b. 19

Yuchin Juan, Damien Lefortier, and Olivier Chapelle. Field-aware factorization ma-
chines in a real-world online advertising system. In Proceedings of WWW (Com-

panion Volume), pages 680–688. ACM, 2017. 19

Tomonari Kamba, Krishna Bharat, and Michael C. Albers. The krakatoa chronicle:
An interactive personalized newspaper on the web. World Wide Web Journal, 1(1),
1996. 11

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. 87

Ron Kohavi. Online controlled experiments: Lessons from running a/b/n tests for
12 years. In Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’15, 2015. 35

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27,

2008, pages 426–434, 2008. 16, 17

Yehuda Koren. Collaborative filtering with temporal dynamics. Commun. ACM, 53
(4):89–97, 2010. 50

Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. IEEE Computer, 42(8):30–37, 2009. 81

116

REFERENCES REFERENCES

Maciej Kula. Metadata embeddings for user and item cold-start recommendations. In
Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender

Systems co-located with RecSys., pages 14–21, 2015. 81, 87

Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram Singer. Local
collaborative ranking. In Proceedings of the 23rd International Conference on World

Wide Web, WWW ’14, 2014. 24

E.L. Lehmann and H.J.M. D’Abrera. Nonparametrics: statistical methods based on

ranks. Springer, 2006. 88

O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. In
Proceedings of NIPS, pages 2177–2185, 2014. 26

Ping Li, Christopher J. C. Burges, and Qiang Wu. Mcrank: Learning to rank using
multiple classification and gradient boosting. In Proceedings of NIPS, pages 897–
904, 2007. 20

Xiaohui Li and Tomohiro Murata. Using multidimensional clustering based col-
laborative filtering approach improving recommendation diversity. In 2012

IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent

Agent Technology, Macau, China, December 4-7, 2012, pages 169–174, 2012. 28

Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M. Blei. Factorization meets
the item embedding: Regularizing matrix factorization with item co-occurrence. In
Proceedings of RecSys, pages 59–66, 2016. 27, 81

Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in

Information Retrieval, 3(3):225–331, 2009. 20

Xin Liu and Karl Aberer. Towards a dynamic top-n recommendation framework. In
Eighth ACM Conference on Recommender Systems, RecSys ’14, pages 217–224,
2014. 24

Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based recom-
mender systems: State of the art and trends. In Recommender Systems Handbook,
pages 73–105. Springer, 2011. 11

117

REFERENCES REFERENCES

Widad Machmouchi and Georg Buscher. Principles for the design of online A/B met-
rics. In Proceedings of the 39th International ACM SIGIR conference on Research

and Development in Information Retrieval, SIGIR 2016, Pisa, Italy, July 17-21,

2016, pages 589–590, 2016. 35

Lydia Manikonda and Munmun De Choudhury. Modeling and understanding visual
attributes of mental health disclosures in social media. In Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, May

06-11, 2017., pages 170–181, 2017. 58

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
Image-based recommendations on styles and substitutes. In Proceedings of the 38th

International ACM SIGIR Conference on Research and Development in Information

Retrieval, Santiago, Chile, August 9-13, 2015, pages 43–52, 2015. 24

C. McDiarmid. On the method of bounded differences. Survey in Combinatorics,
pages 148–188, 1989. 67

Sean M. McNee, John Riedl, and Joseph A. Konstan. Being accurate is not enough:
how accuracy metrics have hurt recommender systems. In Extended Abstracts Pro-

ceedings of the Conference on Human Factors in Computing Systems, CHI, pages
1097–1101, 2006. 6, 28

David McSherry. Diversity-conscious retrieval. In Advances in Case-Based Reason-

ing, 6th European Conference, ECCBR, pages 219–233, 2002. 6, 28

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013a. URL http:

//arxiv.org/abs/1301.3781. 26

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013b. 26

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of

NIPS, pages 3111–3119. 2013c. 26

118

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

REFERENCES REFERENCES

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In Pro-

ceedings of NIPS, pages 3111–3119, 2013d. 26

Raymond J. Mooney and Loriene Roy. Content-based book recommending using
learning for text categorization. CoRR, cs.DL/9902011, 1999. 11

Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, and Pasquale Lops. Learn-
ing word embeddings from wikipedia for content-based recommender systems. In
Proceedings of ECIR, volume 9626 of Lecture Notes in Computer Science, pages
729–734. Springer, 2016. 50

Cataldo Musto, Marco de Gemmis, Giovanni Semeraro, and Pasquale Lops. A multi-
criteria recommender system exploiting aspect-based sentiment analysis of users’
reviews. In Proceedings of RecSys, RecSys ’17, 2017. 50

Thomas Nedelec, Elena Smirnova, and Flavian Vasile. Specializing joint representa-
tions for the task of product recommendation. In Proceedings of the 2nd Workshop

on Deep Learning for Recommender Systems, DLRS@RecSys, pages 10–18, 2017.
25, 27

Seung-Taek Park, David M. Pennock, Omid Madani, Nathan Good, and Dennis De-
Coste. Naı̈ve filterbots for robust cold-start recommendations. In Proceedings of

SIGKDD, pages 699–705, 2006. 105

Yoon-Joo Park and Alexander Tuzhilin. The long tail of recommender systems and
how to leverage it. In Proceedings of RecSys, pages 11–18, New York, NY, USA,
2008. ACM. 48

Arkadiusz Paterek. Improving regularized singular value decomposition for collabo-
rative filtering. 01 2007. 16

Bibek Paudel, Thilo Haas, and Abraham Bernstein. Fewer flops at the top: Accuracy,
diversity, and regularization in two-class collaborative filtering. In Proceedings of

RecSys, pages 1–6. ACM, 2017. 6

Michael J. Paul and Mark Dredze. You Are What You Tweet: Analyzing Twitter for
Public Health. In ICWSM’11, 2011. 61

119

REFERENCES REFERENCES

Michael J. Paul and Roxana Girju. A two-dimensional topic-aspect model for discov-
ering multi-faceted topics. In AAAI. AAAI Press, 2010. 53, 57

Michael J. Pazzani. A framework for collaborative, content-based and demographic
filtering. Artificial Intelligence Review, 1999. 105

Michael J. Pazzani and Daniel Billsus. Content-based recommendation systems. In
The Adaptive Web, volume 4321 of Lecture Notes in Computer Science, pages 325–
341. Springer, 2007. 11

Jeffrey Pennington, Felix X. Yu, and Sanjiv Kumar. Spherical random features for
polynomial kernels. In Proceedings of NIPS, pages 1846–1854, 2015. 26

Jean-François Pessiot, Tuong-Vinh Truong, Nicolas Usunier, Massih-Reza Amini, and
Patrick Gallinari. Learning to rank for collaborative filtering. In Proceedings of

ICEIS, pages 145–151, 2007. 21

Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
Product-based neural networks for user response prediction. In IEEE 16th Interna-

tional Conference on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona,

Spain, pages 1149–1154, 2016. 24

Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.
Personalizing session-based recommendations with hierarchical recurrent neural
networks. In Proceedings of the Eleventh ACM Conference on Recommender Sys-

tems, RecSys 2017, Como, Italy, August 27-31, 2017, pages 130–137, 2017. 24,
50

Liva Ralaivola and Massih-Reza Amini. In Proceedings of ICML, pages 2436–2444,
2015. 68, 69

Steffen Rendle. Factorization machines. In Proceedings of ICDM, pages 995–1000,
2010. 18, 81

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
BPR: bayesian personalized ranking from implicit feedback. In Proceedings of UAI,
pages 452–461, 2009. 22, 71, 81

120

REFERENCES REFERENCES

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing per-
sonalized markov chains for next-basket recommendation. In Proceedings of the

19th International Conference on World Wide Web, WWW 2010, Raleigh, North

Carolina, USA, April 26-30, 2010, pages 811–820, 2010. 50

Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme.
Fast context-aware recommendations with factorization machines. In Proceedings

of SIGIR, pages 635–644. ACM, 2011. 19

Marco Túlio Ribeiro, Anı́sio Lacerda, Adriano Veloso, and Nivio Ziviani. Pareto-
efficient hybridization for multi-objective recommender systems. In Proceedings of

RecSys, pages 19–26, 2012. 29

Leonardo Rigutini, Tiziano Papini, Marco Maggini, and Monica Bianchini. A neural
network approach for learning object ranking. In Proceedings of ICANN, pages
899–908, 2008. 24

Leonardo Rigutini, Tiziano Papini, Marco Maggini, and Franco Scarselli. Sortnet:
Learning to rank by a neural preference function. IEEE Trans. Neural Networks, 22
(9):1368–1380, 2011. 24

Massimiliano Ruocco, Ole Steinar Lillestøl Skrede, and Helge Langseth. Inter-session
modeling for session-based recommendation. In Proceedings of the 2Nd Workshop

on Deep Learning for Recommender Systems, DLRS 2017, 2017. 24, 50

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey E. Hinton. Restricted boltzmann
machines for collaborative filtering. In Proceedings of ICML, pages 791–798, 2007.
24

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. Application
of dimensionality reduction in recommender system – a case study. In IN ACM

WEBKDD WORKSHOP, 2000. 15

Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the Tenth In-

ternational World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5,

2001, pages 285–295, 2001. 13

121

REFERENCES REFERENCES

Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock. Meth-
ods and metrics for cold-start recommendations. In Proceedings of SIGIR, pages
253–260. ACM, 2002. 105

Guy Shani, David Heckerman, and Ronen I. Brafman. An mdp-based recommender
system. Journal of Machine Learning Research, 6:1265–1295, 2005. 50

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, New York, NY, USA, 2004. ISBN 0521813972. 70

Noam Shazeer, Ryan Doherty, Colin Evans, and Chris Waterson. Swivel: Improving
embeddings by noticing what’s missing. arXiv preprint arXiv:1602.02215, 2016.
26

Lei Shi. Trading-off among accuracy, similarity, diversity, and long-tail: a graph-based
recommendation approach. In Proceedings of RecSys, pages 57–64, 2013. 28

Yue Shi, Martha Larson, and Alan Hanjalic. List-wise learning to rank with matrix
factorization for collaborative filtering. In Proceedings of RecSys, pages 269–272,
2010. 21

Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Nuria Oliver, and
Alan Hanjalic. Climf: learning to maximize reciprocal rank with collaborative less-
is-more filtering. In Sixth ACM Conference on Recommender Systems, RecSys,
pages 139–146, 2012. 21

Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, and Alan Han-
jalic. xclimf: optimizing expected reciprocal rank for data with multiple levels of
relevance. In Seventh ACM Conference on Recommender Systems, RecSys, pages
431–434, 2013. 21

Sumit Sidana, Shashwat Mishra, Sihem Amer-Yahia, Marianne Clausel, and Massih-
Reza Amini. Health monitoring on social media over time. In SIGIR, pages 849–
852. ACM, 2016. 51, 59

Sumit Sidana, Charlotte Laclau, Massih-Reza Amini, Gilles Vandelle, and André Bois-
Crettez. KASANDR: A large-scale dataset with implicit feedback for recommenda-

122

REFERENCES REFERENCES

tion. In Proceedings of the 40th International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 1245–1248, 2017. 38, 83

Sumit Sidana, Sihem Amer-Yahia, Marianne Clausel, Majdeddine Rebai, Son T. Mai,
and Massih-Reza Amini. Health monitoring on social media over time. IEEE Trans.

Knowl. Data Eng., 30(8):1467–1480, 2018a. 51, 59

Sumit Sidana, Charlotte Laclau, and Massih-Reza Amini. Learning to recommend di-
verse items over implicit feedback on PANDOR. In Proceedings of the 12th ACM

Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, Oc-

tober 2-7, 2018, pages 427–431, 2018b. 38

Elena Smirnova and Flavian Vasile. Contextual sequence modeling for recommenda-
tion with recurrent neural networks. In Proceedings of the 2nd Workshop on Deep

Learning for Recommender Systems, DLRS@RecSys 2017, Como, Italy, August 27,

2017, pages 2–9, 2017. 24, 50

Barry Smyth and Paul McClave. Similarity vs. diversity. In Proceedings of Inter-

national Conference on Case-Based Reasoning, ICCBR, pages 347–361, 2001. 6,
28

David H. Stern, Ralf Herbrich, and Thore Graepel. Matchbox: large scale online
bayesian recommendations. In Proceedings of WWW, pages 111–120. ACM, 2009.
105

Ruilong Su, Li’ang Yin, Kailong Chen, and Yong Yu. Set-oriented personalized rank-
ing for diversified top-n recommendation. In Proceedings of RecSys, pages 415–418,
2013. 29

Alessandro Suglia, Claudio Greco, Cataldo Musto, Marco de Gemmis, Pasquale Lops,
and Giovanni Semeraro. A deep architecture for content-based recommendations
exploiting recurrent neural networks. In Proceedings of UMAP, pages 202–211.
ACM, 2017. 24

Gábor Takács and Domonkos Tikk. Alternating least squares for personalized ranking.
In Proceedings of RecSys, pages 83–90, 2012. 23, 76, 81, 96

123

REFERENCES REFERENCES

Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Major compo-
nents of the gravity recommendation system. SIGKDD Explorations, 9(2):80–83,
2007. 16

Yong Kiam Tan, Xinxing Xu, and Yong Liu. Improved recurrent neural networks for
session-based recommendations. CoRR, abs/1606.08117, 2016. 24, 50

Liang Tang, Yexi Jiang, Lei Li, and Tao Li. Ensemble contextual bandits for personal-
ized recommendation. In RecSys, pages 73–80. ACM, 2014. 30

Bartlomiej Twardowski. Modelling contextual information in session-aware recom-
mender systems with neural networks. In Proceedings of the 10th ACM Conference

on Recommender Systems, Boston, MA, USA, September 15-19, 2016, pages 273–
276, 2016. 24, 50

Nicolas Usunier, Massih Amini, and Patrick Gallinari. A data-dependent generalisa-
tion error bound for the AUC. In ICML workshop on ROC Analysis in Machine

Learning, 2005. 65

Nicolas Usunier, Massih-Reza Amini, and Patrick Gallinari. Generalization error
bounds for classifiers trained with interdependent data. In Proceedings of NIPS,
pages 1369–1376, 2006. 67, 68

Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based
music recommendation. In Advances in Neural Information Processing Systems 26:

27th Annual Conference on Neural Information Processing Systems 2013. Proceed-

ings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States.,
pages 2643–2651, 2013. 24

Vladimir Vapnik. The nature of statistical learning theory. Springer Science & Busi-
ness Media, 2000. 71

Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec: Product em-
beddings using side-information for recommendation. In Proceedings of RecSys,
pages 225–232, 2016a. 27

124

REFERENCES REFERENCES

Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec: Product em-
beddings using side-information for recommendation. In Proceedings of RecSys,
pages 225–232, 2016b. 27

Maksims Volkovs and Guang Wei Yu. Effective latent models for binary feedback in
recommender systems. In Proceedings of SIGIR, pages 313–322, 2015. 71

Maksims Volkovs and Richard S. Zemel. Collaborative ranking with 17 parameters.
In Advances in Neural Information Processing Systems, pages 2303–2311, 2012. 23

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recom-
mender systems. CoRR, abs/1409.2944, 2014. 24

Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Collaborative recurrent autoencoder:
Recommend while learning to fill in the blanks. CoRR, abs/1611.00454, 2016. 24

Yu Wang, Eugene Agichtein, and Michele Benzi. TM-LDA: Efficient Online Modeling
of Latent Topic Transitions in Social Media. In KDD’12, pages 123–131, 2012. 55

Jacek Wasilewski and Neil Hurley. Incorporating diversity in a learning to rank rec-
ommender system. In Proceedings of FLAIRS, pages 572–578, 2016a. 29, 76, 94,
96, 97

Jacek Wasilewski and Neil Hurley. Intent-aware diversification using a constrained
PLSA. In Proceedings of RecSys, pages 39–42, 2016b. 29

Markus Weimer, Alexandros Karatzoglou, Quoc V. Le, and Alexander J. Smola. COFI
RANK - maximum margin matrix factorization for collaborative ranking. In Ad-

vances in Neural Information Processing Systems, pages 1593–1600, 2007. 21

Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. Collaborative de-
noising auto-encoders for top-n recommender systems. In Proceedings of the Inter-

national Conference on Web Search and Data Mining, pages 153–162, 2016. 24

Zhe Xing, Xinxi Wang, and Ye Wang. Enhancing collaborative filtering music recom-
mendation by balancing exploration and exploitation. In ISMIR, 2014. 30

125

REFERENCES REFERENCES

Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval. In
Proceedings of SIGIR, pages 391–398, 2007. 21

Jun Xu, Tie-Yan Liu, Min Lu, Hang Li, and Wei-Ying Ma. Directly optimizing evalu-
ation measures in learning to rank. In Proceedings of SIGIR, pages 107–114, 2008.
21

Mi Zhang and Neil Hurley. Avoiding monotony: improving the diversity of recom-
mendation lists. In Proceedings of RecSys, pages 123–130, 2008. 6, 28

Mi Zhang and Neil Hurley. Novel item recommendation by user profile partitioning.
In 2009 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2009,

Milan, Italy, 15-18 September 2009, Main Conference Proceedings, pages 508–515,
2009. 28

Xiaoxue Zhao, Weinan Zhang, and Jun Wang. Interactive collaborative filtering. In
Proceedings of the 22nd ACM international conference on Conference on informa-

tion & knowledge management, CIKM ’13, 2013. 30

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing
Xie, and Zhenhui Li. DRN: A deep reinforcement learning framework for news
recommendation. In Proceedings of the 2018 World Wide Web Conference on World

Wide Web, WWW, pages 167–176, 2018. 30

Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. A neural autoregres-
sive approach to collaborative filtering. CoRR, abs/1605.09477, 2016. 24

Yunhong Zhou, Dennis M. Wilkinson, Robert Schreiber, and Rong Pan. Large-scale
parallel collaborative filtering for the netflix prize. In Algorithmic Aspects in In-

formation and Management, 4th International Conference, AAIM, pages 337–348,
2008. 16

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Improv-
ing recommendation lists through topic diversification. In Proceedings of WWW,
pages 22–32, 2005. 28

Andrew Zimdars, David Maxwell Chickering, and Christopher Meek. Using temporal
data for making recommendations. CoRR, abs/1301.2320, 2013. 50

126

REFERENCES REFERENCES

127

	Contents
	1 Introduction
	1.1 Challenges in Online Adverstising
	1.2 Contributions
	1.3 Thesis structure

	2 Recommender Systems: state-of-the-art and evaluation
	2.1 Definition of Personalized Recommendation
	2.2 Content Based Recommender Systems
	2.3 Collaborative Filtering
	2.3.1 Memory-based CF
	2.3.2 Matrix Factorization and Low-Rank Approximation
	2.3.3 Factorization Machines

	2.4 Collaborative Ranking
	2.4.1 Learning-to-Rank
	2.4.2 Pairwise-Ranking for Recommendation Systems

	2.5 Deep Learning for Recommender Systems
	2.5.1 Representation Learning (RL) with Embeddings
	2.5.2 Users and Items Representation Learning (RL) with Embeddings

	2.6 Diversity in Recommender Systems
	2.7 Evaluation of Recommender Systems
	2.7.1 Prediction Accuracy
	2.7.2 Ranking Measures
	2.7.3 Diversity Measures
	2.7.4 Online-Testing

	2.8 Conclusion

	3 Data-collections
	3.1 Introduction
	3.2 Collection of the data
	3.3 Kasandr Dataset
	3.3.1 Structure of the data
	3.3.2 Basic statistics

	3.4 PANDOR Dataset
	3.4.1 Structure of Pandor
	3.4.2 Features of Pandor
	3.4.3 Summary

	4 Extracting latent topics over timely related articles
	4.1 Introduction
	4.2 General-purpose topic modelling
	4.2.1 Latent Dirichlet Allocation (LDA)
	4.2.2 Topic-Aspect Model (TAM)

	4.3 Temporal Latent Topic Models
	4.3.1 Temporal-LDA (TM–LDA)
	4.3.2 Time-Aware Topic-Aspect Model

	4.4 Application to health monitoring on social media over time
	4.4.1 TM–LDA applied to health documents
	4.4.2 T–ATAM

	4.5 Results
	4.5.1 Data
	4.5.2 Comparison between models

	4.6 Conclusion

	5 Jointly Learning embeddings and user preference through implicit feedback
	5.1 Introduction
	5.2 Theoretical Study
	5.3 A Neural Network model to learn user preference
	5.4 Diversity
	5.4.1 Incorporating diversity to handle popularity bias in recommender sytems

	5.5 Conclusion

	6 Experimental Results
	6.1 Introduction
	6.2 Baselines and Evaluation Protocol
	6.3 NERvE Results
	6.4 Results on KASANDR and PANDOR
	6.5 Conclusion

	7 Conclusions and future perspectives
	List of publications
	References

