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Résumé

Les microcavités à semiconducteurs apparaissent aujourd’hui comme une plateforme
particulièrement propice à l’étude des fluides quantiques en interactions. Dans ces
cavités, la lumière et les excitations électroniques sont confinées dans de petits vol-
umes et leur couplage est rendu si fort que les propriétés optiques sont gouvernées
par des quasi-particules hybrides lumière-matière appelées polaritons de cavité. Ces
quasi-particules se propagent comme des photons, mais interagissent avec leur en-
vironnement via leur partie matière. Elles peuvent occuper massivement un même
état quantique et se comporter comme une onde macroscopique cohérente et non-
linéaire. On parle alors de fluide quantique de lumière.

Dans cette thèse, nous étudions la dynamique de fluides quantiques de po-
laritons dans différentes microstructures unidimensionnelles. La technologie de
gravure de microcavités planaires, développée au C2N, permet de réaliser une
ingénierie complète du potentiel dans lequel nous générons ces fluides de polaritons
et d’implémenter des géométries complexes.

Dans une première partie, nous avons étudié les propriétés de localisation des
états propres de réseaux synthétiques quasi-périodiques. De tels réseaux, qual-
ifiés de quasi-cristallins, sont connus pour présenter des propriétés de localisa-
tion d’une grande variété, notamment en raison de leur absence de périodicité.
Par exemple, deux modèles célèbres de quasi-cristaux avec des propriétés très
différentes sont le modèle de Fibonacci et le modèle de Aubry-André-Harper. Nous
étudions le diagramme de phase de localisation des modes propres lors d’une
déformation originale d’un quasi-cristal, une déformation continue entre ces deux
modèles. L’exploration théorique de diagramme de phase a dévoilé une nouvelle
transition de type délocalisation-localisation, transition que nous avons pu observer
expérimentalement.

Une deuxième partie de la thèse est consacrée à l’étude de la dynamique
non-linéaire de deux fluides contra-propageant dans un canal unidimensionnel.
La compétition entre énergie cinétique et énergie d’interactions conduit alors à
l’apparition de solitons sombres, dont le nombre discret et la position peuvent être
contrôlés optiquement. La nature discrète de ces solitons, excitations non-linéaires
d’un superfluide, est révélée par leur apparition et disparition brutale lors d’un scan
de la puissance d’excitation, ainsi que lors d’un scan d’une différence de phase im-
primée sur les deux fluides. Nous avons de plus mis en évidence une bistabilité
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contrôlée par cette différence de phase.
La dernière partie du travail concerne l’étude des non-linéarités pour un flu-

ide de polaritons occupant une bande plate. Une telle bande peut être obtenue
par ingénierie d’un réseau de Lieb de micropiliers. Dans la bande plate, l’énergie
cinétique du fluide est nulle, si bien que sa propagation est gelée. Nous observons
alors la formation de domaines non-linéaires de taille quantifiée. Nous montrons que
ces domaines appartiennent à une catégorie de solitons de gap spécifique, appelée
ondes de Bloch tronquées. Nous mettons également en évidence une multistabilité
entre domaines de différentes tailles lors du scan de la puissance d’excitation.

Ce travail ouvre des perspectives prometteuses, tout particulièrement pour
l’exploration de phases topologiques de bosons en interactions. De plus, aug-
menter les interactions polariton-polariton permettrait de générer des états corrélés à
plusieurs photons, et à plus long terme d’envisager l’utilisation de notre plate-forme
comme un simulateur quantique.

4



Remerciements
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exceptionnelle, fabriqués dans les salles blanches du C2N. Je remercie ainsi Aris-
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Senellart, animatrice du groupe, notamment pour ses précieux retours lors de la
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Introduction

Quantum fluids are systems whose properties are governed by the laws of quan-
tum mechanics, at a macroscopic scale. This definition can apply to many different
systems, such as liquid helium or superconducting materials, but perhaps the most
famous example are Bose-Einstein condensates (BEC) of cold atoms, in which a
macroscopic number of atoms occupy a single quantum state and exhibit extended
spatial coherence [1]. Predicted by Einstein in 1925 and first experimentally real-
ized in 1995 [2], atomic BEC have allowed thorough exploration of the physics of
quantum fluids, and their fascinating properties. A particularly rich situation occurs
when inter-particle interactions are present. In this case, spectacular effects can be
observed, such as superfluidity [3] and superconductivity [4].

Polaritons in semiconductor microcavities have recently emerged as a powerful
platform for the study of quantum fluids [5]. In a semiconductor microcavity, the
photonic mode of a semiconductor-based optical Fabry-Pérot cavity is coupled to the
exciton transition of a quantum well embedded in the cavity. If the coupling strength
between the two overcomes the loss, the regime of strong coupling is reached, in
which a photon in the cavity can be emitted and re-absorbed several times in the
quantum well before escaping the cavity. This process of coherent energy transfer
between the photonic and excitonic modes is known as Rabi oscillations. In this
situation, photons and excitons are no longer eigenstates of the system. The new
eigenstates are quasiparticles called polaritons.

The first experimental observation of polaritons in semiconductor microcavities
was reported in 1992, in a pioneering work of C. Weisbuch and Y. Arakawa [6]. Due
to their hybrid light-matter nature, polaritons present a number of properties that
have attracted a lot of interest following this first discovery. From their photonic
part, they inherit a very light effective mass (induced by the vertical confinement of
light in the optical cavity), whereas the excitonic part provides strong interactions.
Additionally, polaritons behave as bosonic quasiparticles. Soon after their discovery,
it was thus predicted that they could undergo bosonic condensation and macroscopi-
cally occupy a single quantum state [7], at temperatures much higher than in atomic
condensates due to the low effective mass. First observations of bosonic stimulation
effects were reported in the early 2000s [8, 9], and definitive experimental evidence
for Bose-Einstein condensation of polariton was provided in 2006 by the groups of
B. Deveaud and Le Si Dang [10]. This opened the way to the use of polaritons
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as a platform for the study of interacting quantum fluids of light. Since polaritons
are an intrinsically dissipative system, they allow for the exploration of the physics
of quantum fluids out of thermal equilibrium. In the past decade, taking advan-
tage of the strong nonlinearity brought by polariton-polariton interactions, a wide
range of hydrodynamic effects have been observed, perhaps the most spectacular of
them is superfluidity [11], but also the controlled nucleation of vortices [12–14], and
solitons [15–17].

An additional degree of freedom of microcavity polaritons is the ability to en-
gineer the eigenmodes and band structure. For example, at C2N, a technology for
etching microstructure out of planar microcavities was developed. We can thus
fabricate synthetic lattices, in which polaritons are strongly confined. In this way,
careful design of the structure geometry allows emulating a wide range of 1D and 2D
Hamiltonians. Several other techniques have been implemented by other groups to
enable band structure engineering [18], offering the possibility to use polaritons as a
very versatile photonic simulator [19]. In the recent years, studies of polaritons in 0D
traps [20, 21], synthetic molecules of coupled pillars [22, 23], 1D potentials [24–26]
and 2D lattices [27–29] have been reported.

In this thesis, we investigate the linear and nonlinear dynamics of polaritons
fluids in various 1D microstructures. Etching 1D microstructures presents several
advantages. First, it enables precise engineering of the band structure. Second, con-
straining the polariton flow in a 1D channel facilitates its manipulation. These two
combined features open the way to the exploration of a large variety of fundamental
physical problems. In the present work, we use 1D microstructures for polaritons to
address a set of experimentally open questions, such as the localization of waves in
quasiperiodic potentials, the response of a nonlinear polariton fluid to constraints
on its kinetic energy at its boundaries, or the nonlinear dynamics of a quantum fluid
in a system where its kinetic energy is completely quenched.

The present manuscript is organized as follows.

In the first chapter, we introduce the physics of microcavity polaritons. We
describe their two basic components, photons confined in a cavity and excitons in a
semiconductor quantum well, and discuss the conditions for strong coupling between
the two. Polaritons are the quasi-particles resulting from this strong coupling. We
detail the polariton-polariton interaction mechanism, and discuss the non-resonant
and resonant excitation schemes for the injection of a polariton fluid. We also
provide information on the experimental methods (sample structure, optical setup
and optical characterization of planar samples).

The second chapter is dedicated to the confinement of polaritons in lower
dimensional microstructures. We present the etching technique used at C2N to fab-
ricate structures with designed geometry out of a planar sample. We show how this
etching allows to emulate a wide range of Hamiltonians. In particular, Hamiltonian
engineering can be based on two approaches: designing a 1D potential for polari-
tons, in a nearly-free particle approach, or forming arrays of coupled pillars, for a
tight-binding approach.
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In the third chapter, we use 1D microstructures for polaritons to study the
linear localization properties of light in quasicrystals. We first consider two models
of quasicrystals: the Fibonacci model, and the Aubry-Andryé-Harper model. These
two models have been extensively studied, and are known to show very different
localization properties. We investigate the localization properties in a family of
quasicrystals obtained by continuously deforming one model into the other, following
a theoretical proposal from Oded Zilberberg. In collaboration with his group, we
establish a theoretical localization phase diagram in the continuous deformation,
where the localization properties are so far unexplored. There, we identify a novel
and unexpected delocalization phase transition. We then implement the model
with 1D quasiperiodic microstructures for polaritons. Experiments in both non-
resonant photoluminescence and resonant spectroscopy are used to reconstruct the
experimental localization phase diagram, and in particular we evidence the presence
of this exotic delocalization phase transition.

In the fourth chapter, we address the counter-propagation of two nonlinear
polaritons fluids, injected in a 1D channel. At high excitation power, the interaction
energy in the fluid competes with the kinetic energy, and the interplay between the
two is responsible for a self-organization of the fluid into a train of dark solitons.
When scanning the excitation power, the abrupt disappearance of solitons reflects
the discrete nature of these nonlinear excitations. We also impose a phase twist
across the wire, to accommodate additional kinetic energy into the fluid. We find
that the phase twist controls the position of the soliton train, but also the parity
of their number. We evidence a novel type of bistable behavior, appearing when
scanning the phase twist up and down, at constant power.

In the fifth chapter, we study the nonlinear dynamics of a polariton fluid in a
flat band. A flat band corresponds to infinite effective mass, and thus the kinetic
energy is quenched in such a band. The influence of interactions in a flat band
is still an open question experimentally. We engineer a 1D Lieb lattice of coupled
micropillars, which hosts a flat band due to geometric frustration. Polaritons are
directly injected into the flat band, using resonant excitation. In the nonlinear
regime, due to the absence of kinetic energy, propagation of the fluid is frozen and
we observe the formation of nonlinear domains of quantized size. The size of the
domain increases with pumping power, and we report multistability of the domains.
We show that the domains classify as Truncated Bloch Waves (TBW), a specific
family of gap solitons. We thus report the formation of TBW in a driven dissipative
context. We also discuss the influence of disorder on the behavior of the nonlinear
fluid.

Finally, our results are summarized in the conclusion, and we discuss general
perspectives of our work.
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Chapter1
Introduction to microcavity
polaritons

The first chapter of this thesis is dedicated to the presentation of microcavity polari-
tons. Polaritons are bosonic quasiparticles, arising from the strong coupling between
photons confined in a cavity and excitons trapped in a quantum well. These two
elementary components are described in sections 1.1 and 1.2. In section 1.3, we dis-
cuss the condition for the strong coupling regime, and show that when this regime
is reached, polaritons emerge as new eigenstates of the system. These half-light
half-matter quasiparticles interact via their excitonic component. The polariton-
polariton interaction mechanism is detailed in section 1.4, and we discuss collective
properties of polaritons fluids that arise from the combination of these interactions,
their bosonic nature and finite lifetime. In particular, we consider two different ex-
citation schemes: non-resonant and resonant excitation. Section 1.5 concludes this
chapter with experimental details concerning the sample structure, optical setup
and methods used to characterize our samples.

1.1 Confinement of light in optical cavities

In this section, we introduce the first component necessary to the formation of
polaritons: optical microcavities in which photons are strongly confined along the
z direction. Most of the properties of our microcavities can be understood from
the simple Fabry-Pérot cavity with perfect mirrors. We first present the properties
of such cavities. We then describe Distributed Bragg Reflectors and conclude with
semiconductor microcavities.

15
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Figure 1.1: (a) Schematic representation of a Fabry-Pérot cavity. (b) Reflection
coefficient R as a function of φ, calculated for r2

1 = r2
2 = 0.8.

1.1.1 Fabry-Pérot cavity

A Fabry-Pérot cavity, schematically illustrated in Fig. 1.1(a), consists in two mir-
rors, separated by a layer of length Lcav and optical index ncav. The mirrors have
reflectivity coefficients r1, r2 and transmission t1, t2.

The transmission and reflection properties of this cavity are the result of inter-
ferences due to multiple reflections of the incident field inside the cavity. Let us
consider a plane wave, with complex amplitude Ei and wavelength λ in vacuum,
incident on mirror 1 with an angle of incidence α. Snell-Descartes law gives the
angle θ of propagation inside the cavity: next sinα = ncav sin θ (in the following we
consider next = 1). The phase difference for the wave induced by a round-trip in the
cavity is φ = 4πncavLcav cos(θ)/λ. Thus, the transmitted field writes:

Et = Eit1t2e
iφ/2

∞∑
j=0

(r1r2e
iφ)j = Eit1t2e

iφ/2 1

1− r1r2e
iφ

(1.1)

We deduce the transmission and reflection coefficients of the Fabry-Pérot cavity
for the intensity:

T =

∣∣∣∣EtEi
∣∣∣∣2 =

(t1t2)2

1 + (r1r2)2 − 2r1r2 cosφ
, R = 1− T (1.2)

Note that we have neglected any source of loss (absorption in the mirror or layers,
diffusion, etc.).

The reflection coefficient R is plotted as a function of φ in Fig. 1.1(b). Sharp
reflectivity dips are observed for φ = 2πp, with p integer, corresponding to destruc-
tive interference between the multiple reflections inside the cavity. In other words,
a Fabry-Pérot cavity only transmits discrete modes, labeled with integer p. These
resonances occur for wavelengths given by the relation

ncavLcav cos(θ) =
pλ

2
(1.3)
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1. Introduction to microcavity polaritons

In normal incidence, the free spectral range ∆E (energy difference between two
modes) and full width at half maximum (FWHM) of a given mode γc are:

∆E =
π~c

Lcavncav
(1.4)

γC =
~c

Lcavncav

1− r1r2√
r1r2

(1.5)

Based on these quantities, we can define two figures of merit that characterize the
cavity: the finesse F and the quality factor Q, with

F =
∆E

γC
= π

√
r1r2

1− r1r2

(1.6)

Q =
E

γC
= pF = pπ

√
r1r2

1− r1r2

(1.7)

The finesse corresponds to the number of times a photon bounces off the mirrors
before escaping the cavity. The photon stays in the cavity for a characteristic time
τ = ~/γc = ~Q/E. Note that F is simply related to the characteristic of the mirrors,
whereas Q depends on the considered mode p.

Finally, let us consider a plane wave with finite angle of incidence α 6= 0. We note
k = kz + k‖ the wave vector of the incident field inside the cavity (see Fig. 1.1(a)).

The norm of k is given by k =
√
k2
z + k2

‖ = 2πncav/λ. Given that kz = k cos θ, the

quantization condition from Eq. (1.3) transforms into:

kz =
pπ

Lcav
(1.8)

The dispersion relation for the optical modes in the cavity is then given by:

EC(k) =
~c
ncav

√(
pπ

Lcav

)2

+ k2
‖ (1.9)

For small values of k‖ � k, this relation can be approximated as a parabola. This
allows to define an effective mass mph for photons in the cavity:

EC(k‖) =
p~cπ

Lcavncav
+

~2k2
‖

2mph

(1.10)

with

mph =
p~πncav
cLcav

(1.11)

Due to the vertical confinement, photons in the cavity acquire a parabolic dispersion,
i.e. a finite effective mass for their in-plane motion.
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Figure 1.2: (a) Schematic representation of a Distributed Bragg Reflector. (b)
Reflectivity spectrum of a AlAs/GaAs DBR, calculated with the transfer matrix
method, at normal incidence and for different number of pairs N . The DBR is
designed with λBragg = 840 nm, indicated by the vertical dashed line.

1.1.2 Distributed Bragg Reflectors

In order to get a cavity with very high quality factor, i.e. long lifetime of the photons
inside the cavity, it is necessary to use mirrors with very high reflectivity. This can
be achieved with Distributed Bragg Reflectors (DBR), also known as Bragg mirrors.

A DBR consists in a periodic stack of dielectric layers with two different refractive
index n1, n2, as depicted in Fig. 1.2(a). The layer thickness is chosen such that
L1n1 = L2n2 (equal optical thickness). We consider a stack with N pairs of layers,
in contact with a material of index ni (nf ) on the incident (transmission) side.

The optical transmission and reflection properties of such a structure, arising
from interference between multiple reflections at each interface, can be determined
with the transfer matrix method [30]. We find that a DBR acts as a mirror with
high reflectivity, on a broad energy range, called stop band.

In normal incidence, the reflectivity is maximal for the wavelength λBragg such
that n1,2L1,2 = λBragg/4. For N � 1, and considering n1 < n2, the reflectivity at
λBragg is approximately given by [30]:

R(λBragg) ≈ 1− 4
ni
nf

(
n1

n2

)2N

(1.12)

The stop band is centered on λBragg, and its FWHM in energy, noted δE, is propor-
tional to the refractive index contrast:

δE =
2~c
λBragg

n2 − n1

n2 + n1

(1.13)

For example, in Fig. 1.2(b) we have computed the reflectivity at normal incidence
of a GaAs/AlAs DBR, for different number of pairs N (we have used nGaAs = 3.54,
nAlAs = 2.96). Increasing the number of pairs increases the reflectivity of the stop
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1. Introduction to microcavity polaritons

band, allowing to get arbitrarily high reflectivity R = 1− ε for high N . Thus, DBR
are an excellent choice, in view of fabricating cavities with high quality factor.

Different to the case of a metallic mirror, the electric field penetrates inside the
structure. For a DBR with low index material first on the incident side (i.e n1 < n2,
see Fig. 1.2(a)), the penetration length inside the mirror, at λBragg, is given by:

LBragg =
λBragg

2ni

n1n2

n2 − n1

(1.14)

The above definition of a penetration depth allows to take into account the energy-
dependent phase for the reflected field φ(E):

φ(E) ≈
niLBragg

~c
(E − EBragg) (1.15)

where EBragg = hc/λBragg is the energy corresponding to λBragg. The DBR can thus
be modeled as a mirror with zero thickness, and complex reflection coefficient r,
with phase φ(E).

1.1.3 Bragg mirror microcavity

Finally, we consider the case of a microcavity formed by two DBR, separated by a
layer of length Lcav and index ncav (Fig. 1.3(a)). The exact optical transmission and
reflection properties can be obtained by the transfer matrix method. An example of
reflectivity spectrum in normal incidence is presented in Fig. 1.3(b). In the energy
range corresponding to the DBR stop band, the structure behaves as a Fabry-Pérot
interferometer, with highly reflective mirrors.

A very narrow reflectivity dip is observed at the center of the stop band. It
corresponds to a cavity mode, with wavelength λ such that ncavLcav = pλ/2. Usually,
the cavity and DBR are designed such that λ = λBragg (but this is not a necessary
condition). From Eq. (1.5) and Eq. (1.13), we notice that the width of the stop band
δE is narrower than the free spectral range ∆E of the cavity, explaining why a single
mode is observed. Due to the almost unitary mirror reflectivity, very high quality
factors Q can be achieved in GaAs-based semiconductor microcavities, typically
above 200000.

The amplitude of the electric field inside the cavity can also be calculated with the
transfer matrix method. The electric field distribution for a λ/2 cavity (ncavLcav =
λ/2, i.e. p = 1) is shown in Fig. 1.3(c). The mode is confined within the cavity,
with a strong enhancement of the field with respect to its value outside the cavity.
Additionally, the field decays exponentially in each Bragg mirror, with a decay given
by the penetration length LBragg.

1.2 Quantum well excitons

Semiconductor materials are characterized by the presence of an energy gap separat-
ing their conduction and valence bands. The ground state of the system corresponds
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Figure 1.3: (a) Schematic representation of a microcavity. (b) Reflectivity spec-
trum, calculated at normal incidence, of a λ/2 microcavity with GaAs/AlAs mirrors
(18 pairs) and AlAs spacer. The cavity mode is at λ = 840 nm (c) Electric field
amplitude of the confined cavity mode (red line) and refractive index in the different
layers (blue). Image taken from [31].

to a completely full valence band, and completely empty conduction band. How-
ever, in semiconductors the gap width is relatively small, such that an electron from
the valence band can be easily excited to the conduction band, e.g. by applying
a voltage or by optical excitation. In this case, the valence band lacks a single
negative charge. This empty state in the valence band can be described as a quasi-
particle of positive charge +e, referred to as hole. The elementary excitation of
a semiconductor thus corresponds to the creation of an electron-hole pair. Taking
into account attractive Coulomb interaction between the electron and hole, a bound
state is formed, known as exciton [32]. In this section, we describe excitonic states
both in bulk semiconductors and in the case of a quantum well, and discuss their
coupling to the electromagnetic field.

1.2.1 Excitons in bulk semiconductors

In the bulk of a semiconductor with direct gap, each electronic band can be ap-
proximated by a parabola close to k = 0. In the conduction band, electrons can
then de described as free particles with positive effective mass me, directly related
to the curvature of the parabola. For the valence band, the negative band curvature
corresponds to a positive hole effective mass mh. Thus, the dispersion relations for
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Figure 1.4: Schematic band structure of bulk GaAs. The bandgap is direct, with
a minimum at Γ-point. The valence band is split into light- and heavy-hole bands
(LH and HH, respectively). The split-off band (SO) is at lower energy and can be
neglected. Note that at 4K, Eg = 1.52 meV. Figure reproduced from [33].

the conduction and valence bands can be written:

Ec(k) = Eg +
~2k2

2me

Ev(k) = −~2k2

2mh

(1.16)

where Eg is the energy gap width (and k is the norm of wave vector k).
For example, the band structure of GaAs is represented in Fig. 1.4. Note that

due to effects of the electron spin, the valence band is split into several subbands.
Indeed, as for most semiconductors, GaAs has a unique conduction band, which
corresponds to electronic states with total angular momentum J = 1/2. But for
the valence band, the total angular momentum can take the values J = 1/2 and
J = 3/2, giving rise to different bands. The band with J = 1/2 (split-off hole band)
has lower energy than J = 3/2 and can be neglected. Additionally, the band with
J = 3/2, is split into two subbands, corresponding to angular momentum projection
Jz = ±3/2 and Jz = ±1/2. These subbands are degenerate at k = 0, but have a
different effective mass: holes in the band Jz = ±3/2 (Jz = ±1/2) are called heavy
holes (light holes), with mass mhh (mlh) such that mhh > mlh. In the following, we
only consider the valence band with highest energy, i.e. the heavy hole band.

To describe the eigenstates of a single electron-hole pair, Coulomb interaction
needs to be taken into account. The Hamiltonian of the system becomes:

H = Eg +
p2
e

2me

+
p2
h

2mh

− e2

κ|re − rh|
(1.17)
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1. Introduction to microcavity polaritons

where pe and re (resp. ph and rh) are the momentum and position vectors for the
electron (hole). κ is the static dielectric constant of the bulk semiconductor.

It is convenient to work in the center of mass frame, introducing the center of
mass position R and relative position r, defined as:

R =
me

M
re +

mh

M
rh, r = re − rh (1.18)

with M = me + mh. The corresponding momenta are noted P and p. We also
define the reduced mass µ = memh/M .

In the center of mass frame, H rewrites as the sum of two terms:

H = Hcen +Hrel (1.19)

with:

Hcen = Eg +
P 2

2M
(1.20)

Hrel =
p2

2µ
− e2

κr
(1.21)

These two terms commute with each other (as one depends only onR, and the other
on r). Thus, the eigenstates of H take the form

ΨK,n(R, r) =
1√
V
eiK.Rφn(r) (1.22)

This form is the product of a plane wave with wave vector K, eigenstate of Hcen,
and an envelope function φn(r), eigenstate of Hrel. As the latter corresponds to an
hydrogenoid Hamiltonian, the envelope functions φn(r) = φnlm(r) are the orbitals
of an hydrogenoid atom (1s, 2s, 2p, etc.).

The n = 1s state, with lowest energy, is given by φ1s(r) = e−r/aB/
√
πa3

B, where
aB is the exciton Bohr radius, that characterizes the spatial extension of the exciton:

aB =
~2κ2

2µe2 (1.23)

In the end, we obtain the eigenenergies of the system:

E(K, n) = Eg +
~2K2

2M
− Eb

n
(1.24)

with Eb = ~2/2µa2
B the binding energy of the 1s exciton.

Note that the above derivation also applies for the light hole, simply plugging the
proper value of its effective mass. Thus, two different types of excitons exist, namely
heavy-hole and light-hole excitons. They are described by the same formalism, but
with different effective mass, and hence different Bohr radius and binding energy.
The heavy-hole exciton is strongest bound. In GaAs, its Bohr radius is aB ≈ 10 nm
and binding energy Eb ≈ 4 meV. In particular because of this relatively low binding
energy, excitons in GaAs can only be observed at cryogenic temperatures.
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Figure 1.5: Confined electron and hole states χe(z), χh(z) in a semiconductor
QW. Black lines: edges of the conduction and valence bands in materials A,B. The
energies of the confined states are indicated by dashed lines.

1.2.2 Excitons in quantum wells

We now consider the case of a semiconductor quantum well, a heterostructure in
which excitons are confined along one spatial direction z, while they are free to
move in the (x, y) plane. A quantum well can be fabricated by growing a sequence
of three 2D layers of semiconductors, where a material B, with a typical thickness
comparable to the bulk exciton Bohr radius, is sandwiched between two layers of
a material A characterized by a higher energy gap. The difference of energy gaps
creates an effective potential well for the electrons and holes. This is illustrated in
Fig. 1.5, in which the extrema of the valence and conduction bands in materials A
and B are plotted along the growth direction z.

The addition of a confinement potential Ve,h(z) along the z direction for electron
and holes to the electron-hole pair Hamiltonian H (Eq. (1.17)) modifies the exciton
wave function (as in the previous section, we only consider heavy holes). We can
assume that these functions are separable in z and in-plane coordinates (x, y). Not-
ing ρe,r the in-plane vector position, the coordinates in the in-plane center of mass
frame are R‖ = (meρe +mhρh)/M and ρ = ρe − ρh. The excitonic wave functions
are then of the form:

ΨK‖,n
(R‖,ρ, ze, zh) =

1√
S
eiK‖.R‖χe(ze)χh(zh)φn(ρ) (1.25)

where K‖ is a wave-vector in the (x, y) plane. φn(ρ) are the solutions of a 2D
hydrogenoid Hamiltonian (2D equivalent of Eq. (1.21)).

In the above expression, χe(z) and χh(z) are the ground-state solutions of the
1D Schrödinger equation for electrons and holes in the rectangular potential Ve,h(z),
represented in Fig. 1.5. The corresponding energies are noted Ee,h. Note that for
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1. Introduction to microcavity polaritons

the values of potential well width and depth typical of GaAs quantum wells, a single
confined state exists within, for both the electron and hole.

Finally, the exciton eigenenergies are given by:

En(K‖) = Eg + Ee + Eh +
~2K2

‖

2M
− Eb(

n− 1
2

)2 (1.26)

If we consider the 1s exciton (n = 1), it has parabolic dispersion, with energy at
K = 0 given by EX = Eg + Ee + Eh − 4Eb.

We point out that the binding energy is modified with respect to the bulk case.
This is because the Bohr radius a∗B for a 2D hydrgenoid atom differs from the 3D
case. More precisely, in a purely 2D case, we have a∗B = aB/2. Thus, the exciton
binding energy in a quantum well is E∗b = 4Eb. In real QW structures, the exciton
is not exactly two-dimensional, and its binding energy is between Eb and 4Eb. The
confinement in the quantum well increases the overlap between the electron and hole
wave functions with respect to the bulk, resulting in an enhancement of the exciton
binding energy.

In this thesis, we will consider InxGa1−xAs QW with low indium content, for
reasons that are explained later. The binding energy of the exciton in a 8 nm QW
with x = 0.05 indium fraction is E∗b = 7 meV, corresponding to a Bohr radius
a∗B = 10 nm. Additionally, a QW with low indium content is only a shallow trap
(due to the small difference of bandgap with GaAs). In particular, because the
confinement energy of a particle in a well is inversely proportional to its mass, light
holes are only weakly confined in shallow QWs. The only relevant excitons in our
samples are thus heavy-hole excitons.

Finally, since their two constituents (electrons and holes), are fermions, it follows
that excitons behave as bosonic quasiparticles. They have integer pseudo-spin. This
is however only valid in the limit of low exciton densities. At high density, Coulomb
attraction between electrons and holes is screened by the presence of a high number
of particles, and excitons dissociate into a plasma of unbound electrons and holes [34–
36]. This transition, happens for densities n ∼ a∗B

−2
, i.e on the order of 1011 cm−2 in

GaAs [37]. All experimental situations discussed in this thesis are below this limit.

1.2.3 Exciton-photon coupling

Let us now describe the interaction between an exciton and light. The electron and
hole in an exciton form a dipole, that interacts with the electromagnetic field. In
the dipolar approximation, and in Coulomb gauge, the exciton-photon interaction
Hamiltonian is:

Hint ≈ −
e

m
p.A (1.27)

where p is the momentum vector of an electron, with charge −e and mass m, and
A is the magnetic vector potential associated with the electromagnetic field.
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1. Introduction to microcavity polaritons

An exciton can thus be created by photon absorption, or on the other way around
a photon can be emitted by electron-hole recombination of the exciton. The prob-
ability of absorption or emission of a photon is directly proportional to the matrix
element 〈K|p.A|0〉, where |0〉 is the ground state and |K〉 the excitonic state, with
wave vector K. This matrix element is non-zero only in specific cases, correspond-
ing to a few selection rules that need to be satisfied for the optical transition to be
allowed.

The first selection rule concerns conservation of angular momentum. Heavy-
hole excitons can have angular momentum J = ±1 or J = ±2, since electrons in
the conduction band have J = ±1/2 and heavy holes J = 3/2. As the a photon
has angular momentum projection ±1, conservation of angular momentum imposes
J = ±1 for excitons to be coupled to the electromagnetic field. Excitons with
J = ±2 do not radiate, they are called dark excitons.

Second, the in-plane wave vector is conserved. An exciton with wave vector K
couples only to photons with same wave vector k‖ in the quantum well plane. As
translational symmetry is broken in the z direction, no conservation rules apply
to the wave vector component kz of the photon, in contrast with excitons in bulk
materials.

Finally, energy needs to be conserved. Together with conservation of in-plane
wave vector, this imposes an upper bound on the exciton wave vectorK. The energy
of a photon propagating with wave vector k in the well material, of index n, has
energy ~ck/n (so-called light cone). Recall that for the photon, k2 = k2

‖ + k2
z Thus,

we define krad such that ~ckrad/n = EX + ~2k2
rad/2M . In this way, krad corresponds

to the intersection of the parabolic exciton dispersion with the light cone edge. For
K < krad, the exciton energy is inside the light cone: there exist a value of kz > 0 for
the photon such that both energy and in-plane momentum conservation is fulfilled.
This is no longer the case if the exciton energy is out of the light cone: excitons
with K > krad do not radiate.

In the case where the optical transition is allowed, the probability of the transi-
tion is characterized by the oscillator strength f , defined as:

f =
2

m~ω
|〈K|p.A|0〉|2 (1.28)

where ~ω is the energy of the transition.

1.3 Microcavity polaritons

We have presented the two building blocks of a microcavity structure for polaritons.
Now, we address the strong coupling of excitons and photons in a cavity, achieved by
inserting the QW at the center of the optical cavity. In the strong coupling regime,
new eigenstates emerge, corresponding to half-light half-matter quasiparticles: cav-
ity polaritons.
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1. Introduction to microcavity polaritons

1.3.1 Strong light-matter coupling

In the previous section, we have detailed the coupling mechanism for excitons to the
electromagnetic field. In particular, excitons can recombine by emitting a photon,
with a probability related to the oscillator strength f .

Let us now consider the case where the quantum well is embedded inside a
microcavity, with the cavity mode resonant with the excitonic transition. Upon
exciton recombination, the photon is emitted in the mode of the cavity. Due to the
high reflectivity of the cavity mirrors, the photon makes several round-trips inside
the cavity and stays for a time τC = ~/γC before escaping. Thus, it has a finite
probability of being re-absorbed in the QW, and create an exciton again. In this
way, multiple emission and re-absorption events can occur before the photon finally
escapes the cavity. This coherent transfer of a single excitation between the QW and
the cavity mode is called Rabi oscillations. In particular, the oscillations correspond
to a renormalization of the exciton and photon energies. This is the strong coupling
regime, where the eigenstates of the system are no longer bare excitons and photons,
but a superposition of both, which can be described as a quasi-particle known as
polariton.

The conditions for the strong coupling regime can be expressed more formally,
using a semi-classical description of the excitonic transition and cavity mode as two
coupled Lorentz oscillators [38, 39]. The coupling strength between the two is

g0 =

√
2cγ0

ncavLeff
∝

√
f

Leff
(1.29)

where γ0 is the exciton radiative decay rate in the absence of the cavity, and Leff =
Lcav + 2LBragg is the effective cavity length, that takes into account penetration of
the electric field in the dielectric mirrors.

The coupling is essentially governed by two terms. First, the oscillator strength f ,
which depends on the local electric field amplitude at the position of the QW. Thus,
the QW is placed at an anti-node of the intra-cavity field, where the electric field
amplitude is maximal, to maximize the coupling. Second, g depends on the volume
over which the electromagnetic fielc is confined, given by Leff . The microcavity
enables to reach very small mode volume, hence big g. The coupling can also be
enhanced by inserting multiple quantum wells in the cavity (for N wells, the coupling
scales as

√
N). In GaAs based cavity, couplings of few meV can thus typically be

achieved.

The exciton-photon coupling lifts the degeneracy of the exciton and photon en-
ergy when their dispersions cross. The resulting energy splitting is called Rabi
splitting ΩR, or normal mode splitting. We have:

ΩR = 2

√
g2

0 −
(γ2
C + γ2

X

4
(1.30)
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where γX is the non-radiative exciton decay rate. Note first that for g0 < (γ2
C+γ2

X)/4,
ΩR is purely imaginary. The coupling does not affect the real part of the eigenener-
gies, but modifies the decay rates of each mode (imaginary part of the eigenenergy).
This is a regime of weak coupling. In the opposite case, when g0 > (γ2

C + γ2
X)/4,

the dissipation is low enough for the coherent transfer of population between the
oscillators, realizing the strong coupling regime. In practice, an empirical condition
for the experimental observation of the strong coupling regime is to have the energy
splitting bigger than the exciton and photon linewidth, i.e. ΩR � γ0, γC . We can
then make the approximation ΩR ≈ 2g0.

The first theoretical discussion of the strong coupling regime in solid state sys-
tem was made by Hopfield in 1958 [40]. It was also largely explored in the field of
atoms in a cavity, with the theoretical work of Jaynes and Cummings [41]. The first
evidence of strong coupling in semiconductor microcavities with embedded QW was
reported by the group of Weisbuch and Arakawa in 1992 [6], marking the experi-
mental discovery of cavity polaritons.

1.3.2 Quantum description of polaritons

We now present a quantum mechanical description of polaritons, using the formalism
of second quantization. The annihilation and creation operators for a photon with
in-plane wave vector k are noted a†k, ak, and b†k, bk for the exciton. They obey
bosonic commutation relations. For simplicity, we will omit the z component of the
photon wave vector.

The total Hamiltonian for exciton and cavity coupled with Rabi splitting ΩR is
H =

∑
kHk, with:

Hk = EC(k)a†kak + EX(k)b†kbk +
ΩR

2

(
a†kbk + b†kak

)
(1.31)

where EX(k), EC(k) are the parabolic exciton and photon dispersions.

The Hamiltonian (1.31) can be diagonalized in the following way:

Hk = ELP (k)p†kpk + EUP (k)q†kqk (1.32)

where we have introduced the operators p†k, q
†
k, obtained form the photon and exciton

operators by application of the unitary transformation

(
p†k
q†k

)
=

(
ck xk
−xk ck

)(
a†k
b†k

)
(1.33)

The coefficients ck, xk are called Hopfield coefficients [40]. They are real positive,
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Figure 1.6: (a) Lower and upper polariton branches as a function of δ. Dashed
lines correspond to bare exciton and cavity energies. (b) Corresponding excitonic
and photonic fraction |x|2, |c|2 for the lower polariton. (c-e) Polariton dispersion,
calculated with (c) δ(0) = −ΩR, (d) δ(0) = 0 and (e) δ(0) = +ΩR. The color
indicates the excitonic fraction of each branch. Dashed lines are the bare exciton
and cavity dispersions.

depend only on the norm of k, and are given by:

|xk|2 =
1

2

1 +
δ(k)√

δ(k)2 + Ω2
R

 (1.34)

|ck|2 =
1

2

1− δ(k)√
δ(k)2 + Ω2

R

 (1.35)

where δ(k) = EC(k)−EX(k) is the detuning between the cavity and exciton. Note
that |xk|2 + |ck|2 = 1.

The operators p†k, q
†
k are creation operators for new quasiparticles, eigenstates

of the exciton-cavity coupling Hamiltonian, and referred to as lower and upper po-
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1. Introduction to microcavity polaritons

lariton, respectively. Thus, a polariton is a coherent superposition of an exciton
and a photon. The Hopfield coefficients |x|2, |c|2 give respectively the weight of the
excitonic/photonic component for the lower polariton (the opposite for the upper
polariton). For example, at δ = 0, we have |x|2 = |c|2 = 1/2 for both the up-
per and lower polaritons, corresponding to maximally mixed half-light half-matter
polaritons.

The eigenenergies of Hk, corresponding to lower and upper polariton branches,
are given by:

ELP,UP (k) =
1

2

(
EC(k) + EX(k)∓

√
δ(k)2 + Ω2

R

)
(1.36)

Note that ELP (k) < EUP (k) (hence the denomination of ”lower” and ”upper” for
the two branches).

The lower and upper polariton energy are plotted in Fig. 1.6(a) as a function
of δ. An avoided crossing is observed close to δ = 0, characteristic of the strong
coupling. The minimal energy splitting between the lower and upper branches is ΩR

(occurring for δ = 0). In Fig. 1.6(b), we show the excitonic and photonic fractions
|x|2, |c|2 versus δ, for the lower polariton. Starting from δ < 0, the lower polariton
is almost completely photonic (|c|2 ≈ 1): the lower polariton coincides with the
photonic mode. The excitonic fraction continuously increases as δ is increased, and
for positive δ the lower polariton is exciton-like (|x|2 ≈ 1), meaning that it coincides
with the exciton. The behavior is the opposite for the upper polariton.

Figure 1.6(c-e) represent the polariton dispersion for different values of δ(k = 0).
In each case, the color of the line indicates the excitonic fraction |xk|2. The anti-
crossing is observed at k such that δ(k) ≈ 0. The lower and upper polariton exchange
their excitonic or photonic nature at the vicinity of the anti-crossing (Fig. 1.6(c)).
Note also that the anticrossing is responsible for the apparition of an inflexion point
in the lower polariton dispersion, where the band curvature becomes negative. More-
over, close to the bottom of their relative dispersion, in k = 0, both the lower and
upper polariton can be approximated by a parabola, ELP,UP . Taylor expansion of the
polariton dispersion (1.36) around k = 0 allows determining the effective polariton
mass mLP,UP . For the lower polariton, we find:

1

mLP

=
|x0|2

M
+
|c0|2

mph

(1.37)

where M,mph are the exciton and photon effective mass. Note that M � mph, so in

general we can approximate mLP = mph/|c0|2 (for cavity-exciton detuning δ(0) . 0),

typically on the order of 10−5 me, where me is the electron mass. For the same
reason, in all practical cases we can assume a flat exciton dispersion (EX(k) = EX).

So far, we have neglected the finite exciton and photon linewidth, in particular
assuming ΩR = 2g0. Finite lifetime due to dissipation can be accounted for in
a simple way, by considering complex energies Ej(k) − iγj, with j = X,C, for
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1. Introduction to microcavity polaritons

the exciton and cavity mode in the Hamiltonian (1.31). Also replacing ΩR/2 with
g0, diagonalization of H allows to retrieve Eq. (1.30) for the Rabi splitting value.
More interesting, we find complex eigenenergies. The real part gives the polariton
dispersion and is identical to Eq. (1.36). The imaginary part corresponds to the
lower and upper polariton linewidth, γLP (k), γUP (k). We find:

γLP (k) = |xk|2γX + |ck|2γC (1.38)

γUP (k) = |ck|2γX + |xk|2γC (1.39)

In general, the non-radiative exciton lifetime, τX = ~/γX , exceeds hundreds of ps,
while the cavity lifetime, τC = ~/γC , is around 10 ps. Similar to the effective mass,
we can thus consider γLP ≈ |ck|2γC .

1.3.3 Polariton pseudo-spin

Polaritons also possess a pseudo-spin degree of freedom, inherited from their com-
ponents: excitons and photons. In particular, we have mentioned that only exciton
with total angular momentum J = 1 couple to the electromagnetic field. The an-
gular momentum projection for the exciton takes two possible values: Jz = +1,
when the hole and electron have (Jz,h = +3/2, Jz,e = −1/2), and Jz = −1 for
(Jz,h = −3/2, Jz,e = +1/2). If we note | ↑〉, | ↓〉 these two states, then in normal
incidence, | ↑〉 is excited by photons with right circular polarization (σ+), while | ↑〉
is excited by left circular polarization (σ−).

Therefore, polaritons have total angular momentum J = 1, and only two values
of the angular momentum projection are possible: Jz = ±1. More precisely, there is
a one-to-one mapping between the polariton Jz and photons that escape the cavity:
polaritons with Jz = ±1 emit (or are excited by) circularly polarized σ± photons. In
consequence, polaritons behave as particles with pseudo-spin 1/2, and their pseudo-
spin can be represented on the Bloch sphere. The polariton pseudo-spin can be
reconstructed by measuring the polarization of photons emitted by the cavity.

The spin degree of freedom of polaritons is a valuable asset in the emulation of
a wide range of Hamiltonians. For example, the formation of spin textures due to
a form of spin-orbit coupling for polaritons has been reported [42]. In principle, we
need to consider spin-dependent polariton operators pσ,k, where σ = ±1 describes
the polariton spin in a chosen basis (e.g. circular left-right, or linear horizontal-
vertical). However, in this thesis, we will only deal with experimental situations
where the two spin components can be considered completely independent (i.e. there
exists a pseudo-spin basis in which the system Hamiltonian is diagonal), and we omit
the spin degree of freedom.

1.4 Nonlinear polariton fluids

In the previous section, we have introduced a single-particle Hamiltonian for po-
laritons in microcavities. However, a key asset of polaritons is that their excitonic
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component brings strong nonlinearities, in the form of polariton-polariton interac-
tions. In this section, we detail this interaction mechanism. We then discuss how
this feature, in combination with the bosonic character of polaritons and their driven
dissipative nature, makes of polaritons an ideal platform for the study of nonlinear
Bose fluids, out of thermal equilibrium.

1.4.1 Polariton-polariton interaction

To understand polariton-polariton interactions, we first need to focus on exciton-
exciton interactions. Indeed, Coulomb interactions between electrons and holes can
be recast as a two-body contact interaction for excitons, given by the Hamilto-
nian [5]:

HXX =

∫
d2r

VXX
2

Ψ̂†X(r)Ψ̂†X(r)Ψ̂X(r)Ψ̂X(r) (1.40)

where we have introduced the field operator for the exciton Ψ̂X(r), defined as :

Ψ̂X(r) =
1√
V

∑
k

bke
ik.r (1.41)

The term VXX is the effective interaction potential between two excitons. An ap-
proximation for the value of this coefficient was derived in Refs. [43, 44], and is:

VXX ≈ 6e2a∗B/ε (1.42)

where a∗B is the 2D exciton Bohr radius and ε the dielectric constant of the QW
material. Note that the interaction constant VXX is also often noted gexc in the
literature, which is the notation we use in the following.

The polariton-polariton interaction Hamiltonian is deduced by writing HXX in
the basis of lower and upper polariton operators. Considering only the lower po-
lariton branch, and neglecting completely the upper polariton, we find an effective
polariton-polariton contact interaction, with interaction constant:

g = |x|4gexc (1.43)

Note that g > 0, corresponding to repulsive interactions.
The precise determination of gexc is challenging experimentally, especially at the

single-particle level. In most cases, its value is thus inferred from the collective
nonlinearity of a macroscopic polariton population. For this reason, values of gexc
varying over more than two orders of magnitude can be found in the literature, but
estimations from different groups with different methods have converged towards
the value g ≈ 30µeV.µm2 [45–48], in agreement with theoretical predictions [43].

Finally, in the above we have considered a single value for the exciton spin. Thus
the interaction constant that we derived concerns only interactions between excitons
of the same spin. Interactions between excitons with opposite spin also exist, but
they are, in general, much weaker than same-spin interactions [49]. Here, we will
neglect them.
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1. Introduction to microcavity polaritons

1.4.2 Mean-field description

We have seen that polaritons have repulsive interactions due to their excitonic com-
ponent, but in state-of-the-art GaAs based microcavities, the typical interaction
energy g/A for two polaritons confined within an area A is below the polariton
linewidth. This implies that effects of interactions at the single-particle level are
very weak, preventing for example the observation of the theoretically proposed po-
lariton blockade [50], even though intense efforts are currently under progress to
reach this regime [47, 48].

However, nonlinear effects can still be observed, when the polariton population
is high enough for the total interaction energy to be above the polariton linewidth.
Thus, in the nonlinear experiments discussed in this thesis, we will always deal with
relatively high polariton density (typically 102 − 103µm−2). In this case, quantum
fluctuations can be neglected, and a mean-field approach is sufficient to describe
the system evolution. The main effect of interactions will be a local blueshift of
magnitude gn of the polariton dispersion, where n is the local polariton density.

Here, we present the description of polaritons in the mean-field approximation.
We focus on the lower polariton branch, neglecting the upper polariton. For sim-
plicity, we omit indices LP in the notations.

We recall that the lower polariton field operator is given by:

Ψ̂(r) =
1√
V

∑
k

p̂ke
ik.r (1.44)

with p̂k the annihilation operator for lower polariton with in-plane wave vector k.
The mean-field approximation consists in replacing Ψ̂(r, t) with a classical field
Ψ(r, t), where Ψ(r, t) = 〈Ψ̂(r, t)〉. The coherent evolution of the wave function
Ψ(r, t) is then given by the following nonlinear Schrödinger equation [5]:

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + g|Ψ(r, t)|2

)
Ψ(r, t) (1.45)

The above equation is also known as Gross-Pitaevskii equation [1], and is used to

describe dilute Bose gases at low temperatures, as well as χ(3) nonlinear optical
media.

The Gross-Pitaevskii equation describes the evolution of a conservative system,
but polaritons are an inherently dissipative system. To take losses into account,
a non-hermitian term needs to be added to Eq.(1.45), resulting in the dissipative
Gross-Pitaevskii equation:

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + g|Ψ(r, t)|2 − i~γ

2

)
Ψ(r, t) (1.46)

This additional term corresponds to particle loss with a rate γ.
As polaritons continuously escape the cavity, the system also needs to be

pumped. Several pumping terms can be included in Eq. (1.46), corresponding to
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(a) 

Pump 

(b) 

Figure 1.7: (a) Schematic representation of carrier relaxation under non-resonant
excitation. (b) Evidence for polariton condensation in a CdTe based microcavity.
Momentum-space resolved polariton emission for increasing pumping power, (bot-
tom row) for the lowest polariton energy and (top row) corresponding full energy
spectrum, along one direction. Both panels taken from [10]

different experimental configurations. Two types of pumping schemes can be dis-
tinguished: non-resonant excitation, and resonant excitation. They are described in
the following sections.

1.4.3 Polariton condensation under non-resonant excitation

We first consider non-resonant excitation. In this scheme, illustrated in Fig. 1.7(a),
the energy of the excitation laser is set far higher in energy than the lower polariton
branch, typically ∼ 100 meV, e.g. in first reflectivity dip on the high-energy side
of the stop band of the cavity, and well above the semiconductor bandgap. Thus,
the non-resonant laser creates free electron-hole pairs in the QW. These free carriers
then relax towards lower energy states by acoustic and optical phonon emission,
down to the exciton energy. Since high-momentum excitons do not radiate, they
are long-lived (compared to other timescales of the system, in particular radiative),
and consequently the relaxation of electrons and holes leads to the formation of an
exciton reservoir. From this reservoir, further relaxation down to the lower polariton
states occurs, assisted by acoustic phonon emission. As a result, all lower polariton
states are populated.

Due to the bosonic nature of polaritons, stimulated relaxation can occur if the
polariton occupation of a given state exceeds 1. This can be achieved by increas-
ing the power of the non-resonant pump, and results in a macroscopically occupied
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polariton state, a situation referred to as polariton laser. More specifically, if the
relaxation rates are sufficiently large with respect to the radiative decay rate (pho-
tons escaping the cavity), bosonic stimulation occurs for the lowest energy state, at
k = 0. In this case, we speak of a Bose-Einstein condensate of polaritons. Such
a condensate, however, is strongly out of thermodynamic equilibrium, as it is the
result of a dynamic balance between particles continuously escaping the cavity and
excitons relaxing towards the condensate.

Bose-Einstein condensation of polaritons was first observed by the group of B.
Deveaud and Le Si Dang in CdTe microcavities [10] (Fig. 1.7(b)). This work has
sparked the interest in polaritons as a suitable system to study the physics of dilute
Bose gases. Polariton condensation has since been reported by many other groups
(see for example Ref. [31] for a review) and it has even been achieved at room
temperature [51], using organic cavities with strong exciton binding energy.

The non-resonant pumping can be accounted for in Eq. (1.46) by adding gain
as a non-Hermitian term, proportional to the density of excitons in the reservoir
nR(r, t). In this case, the dynamics of the exciton reservoir also needs to be taken
into account. We get the following set of coupled equation [52]:

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + g|Ψ(r, t)|2 + 2gRnR(r, t)− i~

2
(RnR(r, t)− γ)

)
Ψ(r, t)

(1.47)
∂nR(r, t)

∂t
= P (r)− (γR +R|Ψ(r, t)|2)nR(r, t) (1.48)

where P (r) is the pumping rate, R the relaxation rate of the reservoir into the
condensate, and γR the exciton loss rate. We have also added a term 2gRnR(r, t)
in Eq. (1.47), corresponding to interactions between polaritons and excitons in the
reservoir. The exciton-polariton coupling constant is gR = |x|2gexc (with |x|2 the
excitonic fraction at k = 0). Note that gR = |x|2gexc > g. Additionally, the exciton
density in the reservoir is higher than the condensate polariton density. Thus,
an important feature of non-resonantly pumped polariton condensates is that the
interactions are in general dominated by interactions with the exciton reservoir, and
polariton-polariton interactions are negligible. As we discuss in the next chapter,
this issue can be circumvented by engineering a potential for polaritons, which allows
to separate spatially the condensate from the exciton reservoir.

Finally, note that if the pump power is increased too much, strong coupling is
bleached due to the screening of excitons in the QW, and in this case a conventional
photon lasing regime is observed.

1.4.4 Resonant injection of polariton fluids

Another possible scheme of excitation is to use a laser in resonance (or quasi-
resonant) with the lower polariton branch. In this case, polaritons are injected
directly into the lower band, and their energy is fixed by the resonant pump. It is
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also possible to control the velocity of the injected polaritons, by tuning the angle of
incidence of the pump beam. An important advantage of this scheme is that the pop-
ulation of incoherent excitons in the reservoir is negligible in a first approximation,
and we can reach regimes where the dynamics is governed by polariton-polariton in-
teractions. For this reason, it is the scheme that we will use to inject and investigate
the behavior of nonlinear polariton fluids in various one-dimensional potentials, in
chapters 4 and 5.

The resonant pump is added in Eq. (1.46) as a coherent drive term F (r, t),
proportional to the intra-cavity field of the pump laser, resulting in the driven-
dissipative Gross-Pitaevskii equation [5]:

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + g|Ψ(r, t)|2 − i~γ

2

)
Ψ(r, t) + iF (r, t) (1.49)

This excitation scheme has been used to explore a great range of nonlinear phe-
nomena. For example, optical parametric oscillations (OPO) [8, 53–55], bistabil-
ity [56] and multistability [46, 57, 58], or squeezing [59] have been reported, similar

to optical media with χ(3) Kerr nonlinearity. But the possibility to inject a fluid with
controlled velocity also enables to study quantum hydrodynamics effects. Perhaps
one of the most spectacular of these effects is superfluidity, which has been reported
in a resonantly injected polariton fluid [11]. Formation of bright solitons [17], integer
and half-integer vortices [12, 13, 60], or dark solitons [15, 16, 61] have also been ob-
served. A review of resonantly excited polariton fluids can be found in Ref. [5], and
we also give a more detailed introduction to quantum hydrodynamics in chapter 4.

1.5 Experimental methods

In this section, we provide information on various aspects of the experimental meth-
ods used throughout this thesis: we detail the structure of our microcavity samples,
present the optical experimental setup and finally discuss the optical characteriza-
tion of planar samples.

1.5.1 Sample structure

The nominal structure of the different samples used in this thesis is presented
in Fig. 1.8. It consists in a single 8nm In0.05Ga0.95As QW, placed at the
center of a λ cavity. The cavity mirrors have respectively 36 (40) pairs of
Al0.1Ga0.9As/Al0.95Ga0.05As layers on the top (bottom) side. Such a structure is
optimized for experiments with resonantly injected nonlinear polariton fluids. This
structure was designed according to the following criteria.

First, the use of a single QW is motivated by the objective of maximizing
polariton-polariton interactions. In a structure with N QW, excitons in different
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Nominal structure
Repetition

Material Thickness (nm)

Top mirror
Al0.1Ga0.9As 60.40

x36
Al0.95Ga0.05As 70.30

λ/2 cavity

GaAs 114.70 x1

In0.05Ga0.95As 8.00 x1

GaAs 114.70 x1

Bottom mirror
Al0.95Ga0.05As 70.30

x40
Al0.1Ga0.9As 60.40

Substrate GaAs - -

Figure 1.8: Nominal structure of the microcavity samples.

QW do not interact with each other, and consequently the polariton-polariton in-
teraction strength needs to be renormalized, as g = |x|4gexc/N . We have already
mentioned that increasing N increases the Rabi splitting, but at the very high ex-
pense of decreasing the interactions: we thus choose N = 1.

Second, we want to use resonant excitation to inject nonlinear polariton fluids
in the cavity. In the case of resonant excitation, it is very convenient to work in
transmission geometry, where the pump laser is focused on the top side and emission
from the sample is collected through the back side. That way, the cavity acts as a
filter for the resonant laser: the collected light only corresponds to polariton emission
from the cavity. This implies that the GaAs substrate needs to be transparent for
the wavelength of the bare exciton and cavity modes. The cavity mode energy
is easily tuned by adjusting the spacer and mirrors thickness. For the QW, we use
InxGa1−xAs, which has a smaller bandgap than GaAs due to the addition of indium.
In this way, the exciton energy is below the GaAs bandgap. We design a shallow
QW, with x = 0.05 and thickness 8nm, embedded in a GaAs spacer. This ensures
narrow linewidth for the exciton, typically around 0.5 meV.

Finally, we use a λ cavity, that has maximal field amplitude at its center. The
QW is located at the position of this maximum. The mirrors and cavity spacer
are designed for a nominal resonance wavelength λ0 = 840 nm. Additionally, a
wedge in the spacer and upper mirror thickness is introduced during the sample
growth procedure, resulting in in-plane position-dependent energy of the cavity in
the final 2D microcavity sample. The number of pairs gives a nominal quality factor
approx. 75000 for the cavity mode, limited by residual absorption in the different
layers.

The samples are grown by molecular beam epitaxy, in the clean room facilities
of C2N. In particular, the samples used in this thesis result from the precious work
of Aristide Lemâıtre, Elisabeth Gallopin and Carmen Gomez.
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1.5.2 Experimental setup

A scheme of the setup used for micro-photoluminescence experiments, in transmis-
sion geometry, is shown in Fig. 1.9(a).

All the experiments discussed in this thesis are performed under continuous-wave
(cw) excitation. To this end, we use a cw monomode Ti:Sapphire, tunable in the
range 690-900 nm, and with linewidth below 10 MHz.

The samples are maintained at cryogenic temperatures. Two slightly different
cryostat configurations were used in this thesis. In the experiments reported in
chapter 3 and 4, the sample was pasted to the cold finger of a continuous-flow
cryostat, where the flux of liquid helium was adjusted to reach a temperature of
10K. In chapter 5, the continuous flow cryostat was replaced with a closed-cycle
cryostat. Here, the cold finger to which the sample is pasted is cooled down to 4K.
In both cases, thermal conduction is assured by the use of a vacuum grease, and the
cryostat chamber is under high vacuum with 10−5 − 10−6 mbar pressure.

The main difference between these two configurations concerns how light is fo-
cused on or collected from the sample. In the case of the continuous-flow cryostat,
we use two microscope objectives with long working distance and high numerical
aperture (NA = 0.55 to 0.65), as depicted in the inset of Fig. 1.9(a). The objectives
have effective focal length 4 mm. On the other hand, the closed-cycle cryostat has a
big inner chamber of diameter 30 cm. Thus, the objectives are replaced with single
aspherical lenses, of same focal length and numerical aperture, placed inside the
cryostat (Fig. 1.9(a)). This configuration presents the big advantage of reducing the
level of vibrations and improves the image quality, with respect to objectives outside
of the cryostat.

Finally, we have worked in transmission geometry, and collection and excitation
side can be considered independently. On the excitation side, a half-wave (λ/2)
plate associated with a polarizing beam-splitter (PBS) is used to control the pumping
power, and a subsequent λ/2 plate controls the direction of linear polarization of the
incident beam. A regular 50:50 beam-splitter (BS) allows to measure the pumping
power.

On the collection side, the emission from the sample is collected by the objective
(or lens), and focused on the entrance slit of a spectrometer. Note that the spec-
trometer can also be used as a normal imaging system, by measuring the 0th order
of diffraction. A λ/2 plate and PBS are used for linear polarization selection of the
emission. Neutral density (ND) filters can be used to reduce the light intensity on
the CCD, and avoid saturation.

Two configurations allow to image either the near-field (real space) or far-field
(momentum space) emission from the sample. These two configurations are illus-
trated in Fig. 1.9(b,c). For real-space imaging, Fig. 1.9(b), light emitted from a
single position on the sample is focused on a single pixel on the CCD. An additional
telescope and slit may be added on the optical path. A real image is formed in the
focal plane of the telescope, where the slit is placed. This allows for spatial filtering
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Figure 1.9: (a) Schematic representation of the experimental setup, in transmis-
sion configuration. The sample is placed inside the chamber of a closed-cycle cryo-
stat. Inset: with a continuous-flow cryostat, excitation and collection are achieved
with long-working distance objectives outside the cryostat. (b),(c) Collection setup
for (b) real- and (c) momentum-space imaging. The optical path of two different
rays is shown, illustrating the principle of each measurement scheme. Note that
when using a microscope objective, the distance between the sample and Lcol is the
objective working distance d, different from its effective focal length f .
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Figure 1.10: Momentum-space photoluminescence spectra, measured at three
different positions on a planar microcavity sample, corresponding to three values of
the cavity-exciton detuning δ. Angles of emission θ are also indicated. In panel (c),
solid lines are the theoretical lower and upper polariton dispersions. Dashed lines
denote the bare cavity and exciton energies.

of the image.

For momentum-space imaging, a lens is placed to image the Fourier plane of
the objective (Fourier lens L3). That way, rays emitted from the sample with same
angle of emission arrive on the same position on the CCD. It is also possible to
measure selectively momentum-space emission after spatial filtering. In this case,
it is necessary that L1 is placed at a distance f + f1 from Lcol (i.e. L1 images the
Fourier plane of Lcol.

Note that the setup represented in Fig. 1.9(a) depicts the minimal experimental
setup, but in practice the optical setup is highly modular. In the following chapters,
it will be adapted for the purposes of the different experiments: addition of a cylin-
drical lens on the excitation side to create an extended excitation spot, splitting
of the incident beam to create multiple spots, addition of an interferometer on the
collection side, and so on.

1.5.3 Characterization of planar samples

To conclude this chapter, we discuss the characterization of planar microcavity sam-
ples. This characterization is performed under non-resonant excitation. The advan-
tage of the non-resonant excitation scheme is that it enables to populate all the
energy states of the system. Under weak pumping power, we can thus have access
to all linear eigenstates at once, using the spectrometer to resolve spectrally the pho-
toluminescence (PL) from the cavity (the weak pumping power ensures that we do
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1. Introduction to microcavity polaritons

not create a significant exciton reservoir, which would blueshift modes locally). For
a non-resonant excitation, we set the laser energy to 780 nm (i.e. around 1.6 eV).
Additionally, the in-plane polariton wave vector is conserved when a photon escapes
the cavity. Thus, angle-resolved measurements of the PL emission provide direct
information on the polariton dispersion inside the cavity. For a polariton (photon)
with energy E, the relation between the angle of emission outside the cavity θ and
in-plane wave vector k is given by E = ~ck/ sin θ

Figure 1.10 shows the PL spectrum, resolved in energy and momentum-space,
measured on three different positions of a single sample under non-resonant excita-
tion. In each case, the lower and upper polariton branches are identified, with a clear
avoided crossing between the two. From each dispersion, we can extract the different
parameters of the system: bare exciton energy, EX , bare cavity energy at k = 0,
EC(0), Rabi splitting ΩR and photon effective mass mph. The theoretical polariton
dispersions for Fig. 1.10(c) are plotted in solid gray lines (dashed lines for bare exci-
ton and cavity energy). The parameters used for these fits are EX = 1478.62 meV,
EC(0) = 1474.47 meV, ΩR = 3.3 meV and mph = 4.8 × 10−5 me, with me the free
electron mass.

The three spectra from Fig. 1.10 are well fitted with the same Rabi splitting and
photon mass. However, due to the wedge in the cavity introduced during growth,
the cavity energy varies with position on the sample. Note that the exciton energy
is also slightly dependent on position (there is a small wedge for the QW as well),
but much less than the cavity. In conclusion, the wedge allows to tune the cavity-
exciton detuning δ = EC(0)−EX , which is in particular very useful to probe different
excitonic fractions for the lower polariton branch at k = 0. The typical detuning
gradient in our samples is ∼ 6 µeV.µm−1.
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Chapter2
Polaritons in low-dimensional
microstructures

In this chapter, we present how the potential landscape for polaritons can be de-
signed at will in confined microstructures. Creating a controlled potential is a key
asset of microcavity polaritons, as it offers the possibility to engineer the band
structure and emulate elaborate Hamiltonians. In this way, polaritons emerge as a
versatile platform for photonic simulation. For example, they allow to simulate the
physics of electrons in solid state material, and deepen our understanding of their
physical properties. New effects, such as exotic transport properties, can even be
observed, by engineering artificial Hamiltonians.

We begin with a review of the different experimental techniques that have been
developed to implement and control potential landscapes for polaritons. In our
group, we developed a technology allowing to etch microstructures out of planar cav-
ities. The etching confines polaritons in structures with lowered dimensionality. We
show how this can be used to tailor band structures for polaritons, considering two
approaches. We first consider a nearly-free particle approach: we demonstrate how
one-dimensional structures can be mapped to a 1D effective potential, determined
by the lateral width of the structure. Then, we present a tight-binding approach,
relying on arrays of coupled pillars, which offers a very flexible method to emulate
a great variety of tight-binding Hamiltonians.

2.1 Potential engineering for polaritons

Several techniques have been implemented to engineer potential landscapes for po-
laritons. Here we briefly present these techniques. A more comprehensive review can
be found in Ref. [18]. On a general level, the different methods can be separated in
two categories: either the potential is induced by acting on the excitonic component
of polaritons, or on their photonic component.
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2. Polaritons in low-dimensional microstructures
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Figure 2.1: Techniques to create an excitonic potential for polaritons: (a) Sur-
face Acoustic Waves, (b) pressure-induced trap and (c) optically-induced exciton
reservoir. Images taken respectively from [27], [20] and [62].

2.1.1 Potential induced by the excitonic component

Figure 2.1 summarizes the techniques that act on the excitonic component for the
creation of a potential for polaritons.

The first technique, illustrated in Fig. 2.1(a) relies on Surface Acoustic Waves
(SAW), and was developed by the group of P. Santos. The exciton energy is sensitive
to strains of the material (e.g. GaAs), thus application of a SAW creates a periodic
modulation of the exciton energy due to the periodic deformation. The periodic
modulation is responsible for a folding of the polariton dispersion along the SAW
propagation direction. Note that strictly speaking, the SAW also affects the photonic
component by introducing a change in the thickness and refractive index of the
cavity layer, but the amplitude of the energy shift is weaker than for the excitonic
component. Using this technique, polariton condensation has been reported in 1D
and 2D dynamical acoustic lattices [27, 63].

A second technique, that also involves sensitivity of the exciton energy to strain
fields, is to apply mechanical pressure on the back of the sample with a tip, as
illustrated in Fig. 2.1(b). This technique was developed by the group of D. Snoke.
The pressure induces a lowering of the exciton energy at the position of the tip. For
example, this technique has been used to trigger polariton condensation in a local
trap, spatially separated from the exciton reservoir [20]. As shown in Fig. 2.1(b),
lower panel, when the non-resonant pump is located away from the tip position,
a polariton flow is observed towards the minimum of the pressure-induced trap
(together with an energy relaxation towards the bottom of the trap). The main
drawback of this technique is that is does not allow for complex potential geometries.

Finally, a potential arising from the excitonic component can be induced op-
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2. Polaritons in low-dimensional microstructures

tically, as illustrated in Fig. 2(c). A non-resonant pump beam creates a spatially
localized exciton reservoir. At the position of the pump, exciton-exciton interac-
tions cause a local blueshift of the exciton energy, acting as a repulsive potential for
polaritons. One of the first group to use this strategy was the group of A. Bramati,
to create defects and control optically the flow of a polariton fluid [13, 64]. The
technique has been also employed in many other groups [25, 65–67], for example
with two pump beams to create a local trap [62], as shown in Fig. 2.1(c) where the
different confined modes are visible in the real-space energy spectrum (lower panel),
or with periodic arrangements of pump beams to generate 2D lattices [68, 69]. This
technique offers the advantage of being all-optical, providing a very good control
over the potential geometry. On the other hand, a drawback is that it relies on
non-resonant excitation, and thus results in polariton injection correlated with the
potential geometry. This can have important effects on the dynamics of the system.

2.1.2 Potential induced by the photonic component

Figure 2.2 summarizes the techniques that act on the photonic component for the
creation of a potential for polaritons.

The first technique, presented in Fig. 2.2(a), consist in depositing a patterned
thin metallic layer on top of the sample. This layer induces a local change in
the dielectric constant of the top mirror of the cavity, resulting in a small shift
in the energy of the optical resonance (typically below 1 meV). This technique was
developed by the group of Y. Yamamoto. Quite simple to implement, it has been
used to realize 1D and 2D periodic potentials [24, 28, 73, 74]. For example, the
spontaneous build-up of coherence in an array of 1D polariton condensates has been
observed [24], as shown in Fig. 2.2(a), lower panel, where the two peaks (θ = ±8◦)
in momentum space indicate a phase difference of π between neighboring real-space
lobes. However, as the additional layer deposited on top only affects the evanescent
field in the top mirror, the resulting confinement energy is limited. Additionally,
and for the same reason, this technique cannot be used for cavity with high quality
factors (in which the evanescent field at the top interface vanishes).

Another strategy to shift the cavity energy is to modify locally the cavity thick-
ness. This can be done during the fabrication process, by etching selectively the
spacer above the QW before growing the top DBR. This results in mesas, as il-
lustrated in Fig. 2.2(b), in which the cavity energy is lowered, creating a photonic
confinement in the mesa. The etching-before-overgrowth technique, developed in
the group of B. Deveaud, has initially been used to realize 0D confining struc-
tures [21, 75, 76]. The real-space spectrum of such 0D trap is shown in Fig. 2.2(b),
lower panel, together with the two lowest energy modes [21]. More recently, this
technique has also been used in the group of S. Höfling to fabricate 2D lattices [77].

Alternatively, confinement of the photonic mode can be achieved by deep etch-
ing of the cavity, through the top mirror, QW and bottom mirror, down to the
substrate, as illustrated in Fig. 2.2(c). The high refraction index contrast between
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Figure 2.2: Techniques to create an photonic potential for polaritons. (a) Metallic
deposition. (Bottom) Real- and momentum-space images of a polariton condensate
under a 1D periodic array of metallic strips. Taken from [24]. (b) Etching before
top mirror growth. (Bottom) Real-space energy spectrum of a circular 5 µm radius
mesa, and k-space image of the two lowest energy modes. Taken from [21]. (c) Deep
etching. (Bottom) Avoided crossing between confined photonic modes in a pillar
and exciton, as a function of temperature. Taken from [70]. (d) Hybrid cavities
with photonic crystal as top mirror and (e) open cavity with coated optical fiber.
Images taken respectively from [71] and [72].
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2. Polaritons in low-dimensional microstructures

the semiconductor (n ≈ 3.5 for GaAs) and air (n ≈ 1) ensures confinement of the
photonic mode inside the structure. This technique was developed in parallel by
the groups of J. Bloch [78] and M. Bayer [70], who both first demonstrated strong
coupling between exciton and confined photonic modes in etched pillars, as shown in
Fig. 2.2(c), lower panel. A big advantage of the etching technique is that structures
with almost arbitrary geometry can be fabricated, in which the photonic mode is
strongly confined. This enables precise band structure engineering for polaritons.
A great variety of structures have been realized in our group, emulating various
potentials, but also in other groups [79–82]. Examples of structures realized in our
group are discussed ahead in this chapter. The main challenge of the etching tech-
nique is to preserve the high quality of the optical properties of the 2D microcavity.
The main source of degradation arises from non-radiative exciton recombination at
the side walls of the etched QW. To reduce this issue, some groups have reported
etching of the top DBR only, to leave the QW intact [83–86].

Finally, new techniques have recently emerged relying on hybrid cavities, where
the top and bottom mirror are of different nature. For example, the top DBR has
been replaced with a planar photonic crystal [71, 87], as depicted in Fig. 2.2(d).
The photonic mode is strongly confined under the photonic crystal, resulting in
very small mode volume. Another hybrid system are open cavities, where a concave
dielectric DBR deposited at the end of an optical fiber tip serves as top mirror [72].
The concaveness of the fiber tip also causes strong confinement of the photonic
mode. The cavity energy can be tuned by adjusting the distance from the fiber to
the sample. A pair of coupled photonic traps has also been realized by milling two
dips in the fiber tip, opening the way to the realization of more complex potential
geometries [88].

2.1.3 Etching technique at C2N

Our samples are obtained by post-growth deep etching of GaAs based microcavi-
ties. First, after the microcavity and embedded QW are grown by molecular beam

(b) (c)(a)

100 μm 10 μm 10 μm

Figure 2.3: (a) SEM image of a sample after etching with different structures
such as (b) 1D wires and (c) circular and rectangular pillars.
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2. Polaritons in low-dimensional microstructures

epitaxy, a photoresist layer is spin coated on top of the planar cavity. Then, electron-
beam lithography is used to draw a mask on the photoresist layer. The mask design
can have arbitrary geometry. Finally, Inductive Coupled Plasma etching is used
to etch away all the layers of the cavity down to the substrate. Only regions were
the photoresist was not shined by the e-beam are etched, imprinting the desired
geometry into the sample. Images of a sample after etching, obtained thanks to a
Scanning Electron Microscope (SEM), are shown in Fig. 2.3.

We would like to underline here the work done by Luc le Gratiet, Abdelmounaim
Harouri and Isabelle Sagnes, who performed the etching processes, and without
whom all of our studies would be impossible.

In the rest of this chapter, we show how engineering the structure geometry allows
for the emulation of different potentials and Hamiltonians. First, we demonstrate
how an effective 1D potential can be derived from 1D structures with modulated
lateral width. Then, we discuss the mapping of tight-binding Hamiltonians to arrays
of coupled pillars.

2.2 One-dimensional microstructures: mapping

to a 1D potential

2.2.1 Derivation of the effective potential

In the following, we discuss how the geometry of a 1D microstructure can be mapped
to an effective 1D potential for polaritons. This is particularly useful, as it allows
to engineer arbitrary 1D potentials, by careful design of the structure width.

The setting of the problem is the following. The high refraction index contrast
between the cavity and air creates confined modes within the structure, with evanes-
cent fields outside. For structures of lateral size d bigger than the penetration depth
outside the structure (typically d > 1.5 upmum), we can neglect the evanescent
fields, and make the approximation that the electromagnetic field amplitude is zero
at the edges of the structure. Thus, etching a structure out of a planar cavity
is equivalent to setting zero boundary conditions for the polariton wave function
ψ(x, t), with specific geometry (i.e. at the structure edges). The linear eigenmodes
and eigenenergies of a given structure are solutions, satisfying the zero boundary
conditions, of the 2D Schrödinger equation:

EΨ(x, y) = − ~2

2m
∇2Ψ(x, y) (2.1)

where m is the polariton effective mass and (x, y) are defined only within the struc-
ture. We recall that the Schrödinger equation corresponds to the single-particle
polariton Hamiltonian (i.e. without polariton-polariton interactions), introduced in
the previous chapter. We have set E0, the lower polariton energy at k = 0 (in
the planar cavity), as the origin of energies. Note that zero boundary conditions

46



2. Polaritons in low-dimensional microstructures

(b) (c)

0 1

n=1
n=1

n=3 n=2

n=2

w = 8 µm w = 3 µm

n=1

n=3

n=2

(a)

w

Figure 2.4: (a) Schematic representation of the first three confined modes in an
infinite potential well of width w. (b),(c) Measured k-space spectrum, for linearly
polarized emission along the long wire direction (TE), and for a wire of width (b)
w = 8 µm and (c) w = 3 µm. 1D subbands and their respective labels are indicated
in each panel.

are equivalent to solving Eq. (2.1) on R2, with the addition of an infinite potential
outside the structure. Evanescent fields can be taken into account by considering
finite potential, with an amplitude determined by the penetration depth.

Our goal is to reduce the 2D problem to a 1D Schrödinger equation, with an
effective 1D potential V (x):

Eψ(x) =

(
− ~2

2m
∇2 + V (x)

)
ψ(x) (2.2)

We recall that in the planar cavity, the solution to Eq. (2.1) are plane waves,
leading to the parabolic relation dispersion:

E(k) =
~2

2m
(k2
x + k2

y) (2.3)

with k the in-plane wave vector.
In order to understand how the etching of 1D microstructures can be mapped to

an effective 1D potential, let us first consider the case of a simple wire, of width w
in the lateral direction (y direction, with −w/2 ≤ y ≤ w/2), similar to those shown
in Fig. 2.3(b). For simplicity, we consider an infinite wire in the x direction. In
this case, the wave function is separable, Ψ(x, y) = ψ(x)φ(y). In the x direction,
the solutions are still plane waves. In the y direction, as illustrated in Fig. 2.4(a),
the lateral confinement imposes cosinusoidal φ(y) = cos(kyy), with quantized wave
vector ky:

ky,n =
nπ

w
(2.4)

where n is an integer. The first three lateral eigenmodes are schematically repre-
sented in Fig. 2.4(a).
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2. Polaritons in low-dimensional microstructures

The ansatz Ψ(x, y) = ψ(x)φ(y) can be inserted in the 2D Schrödinger equation.
It results in inserting the quantization condition in the 2D dispersion relation. We
get a set of 1D subbands, with a parabolic dispersion along x:

En(kx) =
~2

2m
k2
x +

~2π2

2mw2n
2 (2.5)

In particular, the quantization condition corresponds to a confinement energy Vn:

Vn =
~2π2

2mw2n
2 (2.6)

Note also that in real space, the lateral profile of the eigenstates from each subband
corresponds to the lateral eigenmodes φ(y), as shown in Fig. 2.4(a) (meaning that
a mode from subband n has n bright lobes and n− 1 nodes).

Figure 2.4(b,c) presents the momentum-space spectrum of wires of width w =
8 µm and w = 3 µm, measured under non-resonant excitation. The presence of 1D
subbands is clearly identified. Additionally, reducing the wire width results in an
increase of the splitting between the different bands, and of the confinement energy
of the lowest subband (n = 1), as predicted by Eq. (2.5).

The next step is to consider a modulated wire, with position-dependent width
w(x). The wave functions Ψ(x, y) solutions to Eq. (2.1) are no longer separable. The
principle of the mapping is to find a proper basis for the space of solutions, such that
we can get rid of the y degree of freedom. In analogy with the simple wire discussed
above, we make the approximation that Ψ(x, y) take the form of quasi-transverse
modes, almost separable in x and y:

Ψ(x, y) = ψ(x) cos(ky,n(x)y) (2.7)

Experiment1D Schrödinger(c) (d)

(a)

(b)

0 1

Figure 2.5: (a) Periodic 1D potential with steps of length a = 2 µm and height
1 meV. (b) Width of the modulated wire, calculated to implement the potential in
(a). Top: sketch of the corresponding wire. (c) Calculated local density of states in
momentum space for the 1D potential in (a). (d) Measured k-space spectrum for
the wire in (b).
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2. Polaritons in low-dimensional microstructures

with ky(x) = nπ/w(x), and −w(x)/2 ≤ y ≤ w(x)/2. With this form, we assume
that at each position x along the chain, the lateral profile is an eigenmode of the
lateral 1D infinite potential well of width w(x) (remind that this is strictly exact for
the wire with constant width). We remind that these eigenmodes are illustrated in
Fig. 2.4(a).

Next, we plug the ansatz (2.7) into the 2D Schrödinger equation (2.1). We get:

EΨ(x, y) = − ~2

2m

[
cos

(
nπ

w(x)
y

)
∂2

∂x2ψ(x) + ψ(x)
∂2

∂x2 cos

(
nπ

w(x)
y

)
+ ψ(x)

∂2

∂y2 cos

(
nπ

w(x)
y

)]
(2.8)

We make the additional approximation that the spatial derivatives of w(x) can
be neglected in Eq. (2.8). This assumption of adiabatic width variations simplifies a
lot the derivation, as it implies that the second term on the right-hand side in (2.8)
is zero. It allows to reduce the 2D Schrödinger equation to an effective 1D equation
along the x direction:

Eψ(x) =

(
− ~2

2m
∇2 + Vn(x)

)
ψ(x) (2.9)

where the 1D potential Vn(x) is given by:

Vn(x) =
~2π2

2mw(x)2n
2 (2.10)

Eventually, the 1D effective potential is locally equal to the confinement potential in
a wire of same width, as given by Eq. (2.6). Note that each subband, labeled with
index n, has a different effective potential Vn(x), and consequently they need to be
treated separately in Eq. (2.9). In the following we focus on the lowest subband
n = 1, without loss of generality.

To illustrate the validity of our approach, we consider the example of the peri-
odic 1D potential plotted in Fig. 2.5(a). It consists in steps of length a = 2 µm,
that alternate between only two possible values, 0 or 1 meV. We etched a structure
in order to implement this effective potential. After a preliminary determination
of the polariton effective mass in the planar cavity, we chose two widths such that
the difference in confinement energy between the two equals 1 meV, according to
Eq. (2.10) (for the lowest subband n = 1). The resulting width profile is presented
in Fig. 2.5(b). The measured momentum-space energy spectrum of this structure
is shown in Fig. 2.5(d). A gap opens due to the periodicity of the structure. We
can also calculate the momentum-space spectrum associated with the potential from
Fig. 2.5(a). To this end, we solve the 1D Schrödinger equation, with the potential
from Fig. 2.5(a), Fourier transform the eigenstates and extract the local density of
states (LDOS) in momentum space. The result is presented in Fig. 2.5(c). Addi-
tionally, in Fig. 2.5(c) the LDOS was convoluted with a Lorentzian, to take into
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2. Polaritons in low-dimensional microstructures

account the experimental finite linewidth. The excellent agreement between the ex-
periment and numerical simulations confirm the validity of the 1D effective potential
mapping.

It is important to point out that a rigorous derivation of the 1D effective poten-
tial, taking into account spatial derivatives of w(x), can be found in the Supplemental
Material of Ref. [26]. Note, in particular, that in this case x and y are truly not
independent, and it is necessary to project the 2D Schrödinger equation on the nor-
malized transverse modes

√
2/w(x) cos(ky(x)y) to derive an effective 1D Schrödinger

equation for ψ(x). It leads to an additional term in the effective potential:

V (x) =
~2

2mw(x)2

[
π2 +

π2 + 3

12

(
w′(x)

)2
]

(2.11)

where w′(x) = dw/dx denotes the spatial derivative of w(x). In most of the practical
cases however, the approximation of adiabatic width variations is valid and the term
proportional to w′(x)2 can be neglected, for example in the case studied in Fig. 2.5.
Note also that so far we have ignored couplings between transverse modes of different
order. This can be taken into account by writing solutions Ψ(x, y) as a sum of quasi-
transverse modes with different n, and introduces additional terms with higher-order
derivatives of w(x) in the effective potential.

Finally, note that the etching also introduces an energy splitting between photons
linearly polarized, parallel to the wire (TE) and orthogonal to the wire (TM), that is
not taken into account in the formalism of the Schrödinger equation (this is because
we used a scalar field ψ to describe the lower polariton, effectively considering a single
polarization). In a 1D structure, the two polarizations can indeed be considered
independent. This will be discussed in more details in the following chapters.

2.2.2 Applications

Figure 2.6 presents examples of 1D structures that have been realized in our group.
Optical manipulation and coherent propagation of polariton condensates over long
distances (typically above 100 µm) have been demonstrated in microwires [25], as
shown in Fig. 2.6(a). Polariton condensation was also studied in periodically modu-
lated wires, such as described previously, see also Fig. 2.6(b). For a small excitation
spot, it was shown that for strong non-resonant pumping power, polariton-polariton
interactions lead to the formation of gap solitons, i.e. localized states at an energy
in the gap that opens due to the periodic modulation [89].

Exploiting the long propagation distances, proof of concepts for polaritonic cir-
cuits have been realized. For example, a resonant tunneling diode for polaritons was
reported [90]. As shown in Fig. 2.6(c), it consists in a double barrier structure. An
effective potential well is created at the position of the central island, with discrete
modes within. The energy of the discrete modes in the island can be tuned optically,
addressing it with a non-resonant pump that creates an exciton reservoir. In this
way, the transmission of a propagating monochromatic polariton fluid through the
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Figure 2.6: Examples of 1D structures for polaritons. (a) Propagation of a po-
lariton condensate in a 1D wire. Taken from [25]. (b) Formation of gap solitons
in periodic wires. Taken from [89]. (c) Controlled transmission through a polari-
ton diode. Taken from [90] (d) Controlled transmission through a Mach-Zender
interferometer for polaritons. Taken from [91]

island can be controlled: resonant tunneling through the barriers is possible only
when a discrete mode is in resonance with the polariton energy. No transmission
is observed when the reservoir-induced blueshift is above or below this resonance
condition.

A structure combining a similar isolated island and periodically modulated wires
was recently used to implement a polariton router [92]. The island is connected on
its sides to two modulated wires with different periodicity, i.e different gap energy.
Polaritons are injected in the island. Tuning the island energy in the gap of one
of the wires allows to route polaritons in the desired direction. A Mach-Zender
polariton interferometer has also been realized [91], Fig. 2.6(d). A non-resonant
pump addressing one of the two arms of the interferometer allows to control the
phase difference for polariton traveling in the two arms. This offers an all-optical
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Figure 2.7: (a) Energy Enl of the modes with lowest values of (l, n), versus pillar
radius, calculated with a polariton mass m = 3 × 10−5 me. (b) Corresponding
calculated eigenmodes. The value of (l, n) are indicated in each panel. The gray
line is the pillar edge. (c) Measured real-space spectrum of a 3.9 µm-diameter pillar.
The inset on top illustrates the position of the spectrometer slit with respect to the
pillar image.

control of the transmission at the output, which can even be completely suppressed
if the phase difference is π.

A local modification of the wire width was also used to engineer a defect in
the flow of a nonlinear polariton fluid. The formation of an analogue black hole
horizon at the defect position was reported [93]. This result will be discussed in
details in chapter 4. Finally, wires with a quasiperiodic modulation implementing
the Fibonacci sequence have been realized [26, 94], revealing in particular a fractal
energy spectrum.

2.3 Arrays of coupled pillars: tight-binding ap-

proach

2.3.1 Single circular pillar

In this section, we present how tight-binding Hamiltonians for polaritons can be
engineered, using arrays of coupled micropillars.

In this approach, the elementary building block is a single, isolated circular
pillar (see Fig. 2.3(c)). We consider a circular pillar, of radius r, and as previously,
we assume zero boundary conditions (or equivalently infinite potential outside the
structure). In this case, the 2D Schrödinger equation (2.1) can be solved analytically.
The eigenenergies are given by the zeros of spherical Bessel functions as follows:

Enl = z2
l,n

~2

2mr2 (2.12)
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Figure 2.8: (a) Sketch of two coupled pillars. (b) In the tight-binding picture,
two modes, noted |L,R〉, coupled with coupling strength t, give rise to bounding
and anti-bounding eigenstates. (c) Lowest energy modes of the structure in panel
(a), calculated by solving the 2D Schrödinger equation. The energy associated
with a given mode is indicated in each panel. The gray line indicates the structure
edges. (d) Energy of the bonding (solid lines) and anti-bonding (dashed) s, px and py
modes, as a function of pillar distance, calculated from the 2D Schrödinger equation
for r = 1.5 µm.

where zl,n is the nth zero of the lth spherical Bessel function (and m the polari-
ton effective mass). The energy as a function of r are plotted in Fig. 2.7(a) for
the first values of (l, n). The analytical expression for the eigenmodes is given by
spherical Bessel functions. The six eigenmodes with lowest energy, corresponding to
Fig. 2.7(a), are plotted in Fig. 2.7(b). As spherical Bessel functions are the equiva-
lent of spherical harmonics in 2D, the shape of the different eigenmodes correspond
to atomic orbitals: the lowest energy mode, with (l, n) = (0, 0) has a single bright
lobe and thus corresponds to an s-mode; the next energy mode is twice degenerate,
with (l, n) = (±1, 0)–it is a p-mode; and so on.

Fig. 2.7(c) presents the measured real-space spectrum for a pillar with r =
1.95 µm. The slit of the spectrometer images a central cut of the pillar, as illustrated
in the inset. The two lowest energy discrete eigenmodes are visible. In particular,
the second mode has two bright lobes and a node at the center, characteristic of a
p-state. The lowest mode, with a single lobe, is labeled as an s-state.

We can thus conclude that micropillars behave like artificial atoms. Noteworthy,
their eigenenergies can be tuned by adjusting the pillar radius.

2.3.2 Coupled pillars

The key elements to the mapping of a tight-binding Hamiltonian for polaritons, is
that the eigenstates in a chain of coupled pillars can be written as linear combinations
of the Bessel functions in each individual pillars.
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2. Polaritons in low-dimensional microstructures

To illustrate this, let us discuss the case of two circular pillars, with same r,
separated by a distance d < 2r, such that the two pillars overlap, as depicted in
Fig. 2.8(a). The solution to the corresponding 2D Schrödinger problem is no longer
analytical, but we can compute the eigenmodes numerically. For example, the six
lowest energy eigenmodes computed for two overlapping pillars with r = 1.5 µm
and d = 2.4 µm are shown in Fig. 2.8(c). Let us focus on the two modes with lowest
energy (bottom row). Looking back at the s-mode in a single pillar (Fig. 2.7(b)), the
two modes from Fig. 2.8(b), bottom row, can be described as the linear superposition
of the s-mode in the left pillar (noted |L〉) and s-mode in the right pillar (|R〉),
respectively with the same phase (left panel) or opposite phase (right panel)–note
the zero intensity in between the pillars in this latter case. In other words, the
two lowest energy eigenmodes can be labeled bonding and anti-bonding s-modes,
i.e. (|L〉 ± |R〉)/

√
2. This corresponds to the tight-binding picture illustrated in

Fig. 2.8(b). Thus, writing the wave function |ψ〉 in the basis of s-modes {|L〉, |R〉},
the 2D Schrödinger equation can be mapped to a set of 0D equations describing two
coupled modes:

EψL = E0ψL − tψR
EψR = E0ψR − tψL

(2.13)

where ψj = 〈ψ|j〉, with j ∈ {L,R}, is the wave function amplitude on the left
(right) pillar, E0 is the s-mode energy in the single pillar, and t denotes the coupling
amplitude. This coupling between |L〉, |R〉 arises from the overlap between the two
pillars, as it describes a probability for a polariton to tunnel from one pillar to the
other. More precisely, t is given by |〈L|H0|R〉|2, where H0 is the single-particle
polariton Hamiltonian that includes the external potential outside the structure
(corresponding to Eq. (2.1)). In this sense, increasing the overlap between the two
pillars allows to increase t. This is confirmed by the dependence on distance d of the
energy splitting between bonding and anti-bonding s-modes, shown in Fig. 2.8(c),
blue lines. This plot was obtained by solving the 2D Schrödinger equation, for two
pillars of radius r = 1.5 µm. The value of t for the tight-binding model (2.13) is
given by half the energy splitting between the bonding and anti-bonding modes.
Note that as d → 0, the energy of the bonding s-mode tends to the s-mode in a
single pillar, whereas the anti-bonding s-mode becomes a p-mode of the single pillar.

Considering the four other eigenmodes plotted in Fig. 2.8(b), we can easily see
that the same argument applies: they can be identified as bonding and anti-bonding
combinations of px, py modes. Additionally, the coupling strength for these modes
can also be controlled with the pillar distance, as shown in Fig. 2.8(c), green and
orange lines.

This line of thought can be naturally extended to arrays of coupled pillars. The
eigenmodes of the system can be written using the Bessel functions in individual
pillars as a basis for the Hilbert space. Noting |n〉 the eigenvector from this basis
(i.e. Bessel functions in each pillar), the 2D Schrödinger problem is reduced to a
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2. Polaritons in low-dimensional microstructures

(a) (b) (c) (d) 3 µm 

Figure 2.9: Examples of coupled pillars structures: (a) dimer molecule, (b) ben-
zene molecule, (c) 1D SSH lattice and (d) 2D honeycomb lattice.

very general tight-binding Hamiltonian:

H =
∑
n

En|n〉〈n| −
∑
n,m

tn,m (|m〉〈n|+ h.c.) (2.14)

The lattice geometry completely determines the Hamiltonian. The on-site energies
En and couplings tmn can be tuned by adjusting the pillars size and relative distance.
The number of neighbors per site is directly related to the geometrical arrangement
of pillars, and we can implement Hamiltonians for s-orbitals, p-orbitals, d-orbitals,
etc., or even a mixing of these modes. Note, though, that since the coupling arises
from the overlap between neighboring pillars, we can only implement tight-binding
Hamiltonians with nearest-neighbor coupling. For the same reason, only ferromag-
netic couplings (tmn > 0) can be achieved. However, this approach is highly versatile
and offers relatively easy design of Hamiltonians. In the next section we present ex-
amples of 0D molecules, 1D and 2D lattices of coupled pillars previously realized in
our group.

Finally, let us mention briefly an important limit to the validity of this approach:
Bessel functions in individual pillars do not form an orthogonal set of eigenvectors.
In fact, we even identified the finite overlap between modes in adjacent pillars as
the origin for the couplings. Thus, contrary to the tight-binding picture, the Hamil-
tonian (2.14) is not written in an orthogonal basis. In the case of two coupled
pillars, non-orthogonality is responsible for an asymmetry between the bonding and
anti-bonding modes energies with respect to the single pillar. This is visible in
Fig. 2.8(c), e.g. for the s-modes: reducing d away from 3 µm, the bonding energy
decreases faster than the anti-bonding increases (this is even clearer for strongly
coupled px modes). Non-orthogonality is stronger for bigger pillars overlap, thus we
cannot take d arbitrarily small. Typically, we restrict the parameters to d & 3r/2.
For 1D and 2D lattices, non-orthogonality distorts the bands in the energy spectrum
with respect to the ideal tight-binding Hamiltonian case. This will be discussed in
more details in chapter 5.
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2. Polaritons in low-dimensional microstructures

2.3.3 Applications

The method described above was used in our group to implement various tight-
binding models of 0D molecules, 1D and 2D lattices. Examples of such structures
are shown in Fig. 2.9.

Starting from the simplest case of two coupled pillars (Fig. 2.9(a)), polariton
condensation was demonstrated in both bonding and antibonding states, dependent
on the position of the non-resonant pumping spot [22]. Strongly nonlinear regimes
have been reached, where polariton-polariton interactions play an important role,
with the observation of nonlinear Josephson oscillations and self-trapping [95]. More
recently, it was also shown that the phase acquired by polaritons hopping between
cavities can be controlled through polariton-polariton interactions [46].

More complex molecules with six pillars arranged in a hexagonal geometry
have also been realized, constituting a polaritonic analogue of a benzene molecule
(Fig. 2.9(b)). Such structures have been used to engineer an analogous of spin-
orbit coupling for polaritons, arising from polarization-dependent couplings between
neighboring pillars. It was shown that the engineered spin-orbit coupling drives the
condensation of polaritons into states with complex polarization textures [23]. This
has recently been used to trigger lasing in states carrying finite orbital angular mo-
mentum, with a chirality fully controlled by the pump laser polarization [96].

One-dimensional lattices of coupled pillars have also been realized, such as SSH
chains (Fig. 2.9(c)) or 1D Lieb lattices. The study of the 1D Lieb lattice is the topic
of chapter 5. The SSH lattice has two sites per unit cell, with alternating strong
and weak couplings, and is one of the simplest example of lattice with nontrivial
topological properties. We have demonstrated lasing in a topologically protected
edge state, located in the gap between the p-bands, and robust to local deformations
of the lattice [97].

Finally, 2D honeycomb lattices for polaritons have been engineered, to emulate
the physics of graphene (Fig. 2.9(d)). In such lattices, the presence of Dirac cones
and flat bands in the dispersion was demonstrated [29]. Edge states, both s- and
p-bands have also been investigated [98, 99]. Recently, stretched and compressed
versions of the honeycomb lattice were implemented, by adjusting the inter-pillar
distance along one spatial direction, allowing for the observation of exotic tilted
Dirac cones [100].

1D and 2D lattices have also been used to study the spatial and temporal coher-
ence properties of polariton condensates with a negative effective mass, by triggering
condensation at the top of s-bands (where the band curvature is negative) [101]. It
was shown that negative mass condensates exhibit much longer coherence (specifi-
cally spatial coherence) as their positive mass counterparts. A modulational insta-
bility is present in positive mass condensates. Condensation in states with negative
effective mass allows to tame this instability.
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Chapter3
Localization properties of
Aubry-André-Harper-Fibonacci
quasicrystals

This chapter is dedicated to the study of the localization properties of waves in a spe-
cific family of quasicrystals, emulated with 1D polariton microstructures. Quasiperi-
odic systems, with specific long-range correlations, can exhibit very different local-
ization properties. For example, two famous models of quasicrystals with com-
pletely different localization properties are the Fibonacci model and the Aubry-
André-Harper (AAH) model. A continuous deformation between these two models
was introduced by Kraus and Zilberberg [102], and the question of how localization
properties evolve in this continuous deformation is so far an open question, both
theoretically and experimentally. Owing to the possibility of controlling precisely
the potential for polaritons in 1D structures, and easy access to the polariton wave
function by photoluminescence experiments, polaritons are a very suitable platform
for the experimental investigation of such problems. Here, we investigate localiza-
tion properties in the continuous deformation introduced by Kraus and Zilberberg.
This work was performed in collaboration with the theory group of Oded Zilberberg,
in ETH Zurich.

Section 3.1 presents a short introduction to the physics of quasicrystals. In sec-
tion 3.2, we focus on two specific models of one-dimensional quasicrystals, namely
the Aubry-André-Harper model and the Fibonacci model. The properties of these
two models are discussed, with a special focus on the localization properties. We
also briefly review their experimental implementation in various systems, including
cavity polaritons. Finally, we introduce a continuous deformation from one model
to the other, which preserves their topological properties. In section 3.3, we estab-
lish a theoretical localization phase diagram in the continuous deformation between
the AAH and Fibonacci quasicrystals. The localization properties are studied in
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3. Localization properties of Aubry-André-Harper-Fibonacci quasicrystals

two different cases: in the limit of a tight-binding Hamiltonian, and in the limit
of a free particle subject to a quasiperiodic potential, more suited to experiments
with polaritons. In both cases, an original delocalization-localization phase transi-
tion is discovered when deforming the quasicrystal. In section 3.4, we implement
our model with polaritons in one-dimensional modulated wires, with the aim of
evidencing this effect. We explore experimentally the localization phase diagram,
by means of non-resonant and resonant excitation measurements, and evidence the
delocalization-localization transition predicted by our numerical findings. Conclu-
sions and perspectives are discussed in section 3.5.

3.1 Introduction to quasicrystals

In condensed matter systems, quasicrystals (QC) are an intermediate between com-
pletely periodic perfect crystals and completely random or disordered media. They
are structures that lack translational symmetry, but still exhibit long-range order.
In reciprocal space, this order is characterized by sharp Bragg diffraction peaks,
as for perfect crystals, but may present noncrystallographic rotational symmetry.
This was first observed by Shechtman et al. in 1984 [103] (later rewarded with the
Nobel prize for Chemistry in 2011), who reported X-ray diffraction pattern of AlMn
alloys presenting ten-fold rotational symmetry. Such a symmetry is forbidden by
the rules of crystallography in periodic lattices. Shortly after, Levine and Stein-
hardt interpreted these observations as the diffraction pattern of aperiodic Penrose
tilings [104], as illustrated in Fig.3.1. This marked the discovery of QC, which came
as a complete surprise, and triggered considerable interest in their exotic properties.

The complexity of QC arise from their combined lack of periodicity, which ex-

(a) (c) (b) 

Figure 3.1: (a) Example of aperiodic Penrose tiling. (b) First measurement of the
diffraction pattern of a QC, by Shechtman et al. [103]. Note the ten-fold rotational
symmetry. (c) Position of the Bragg peaks for a QC with geometric configuration
from (a), calculated by Levine and Steinhardt [104], and which accounts for the
measurements shown (b).

58



3. Localization properties of Aubry-André-Harper-Fibonacci quasicrystals

cludes the possibility of describing them with analytic tools such as Bloch’s theorem,
and existence of long-range order. This has important consequences, especially on
the localization properties of the eigenstates. Indeed, in a periodic system, Bloch’s
theorem implies that all eigenstates are completely delocalized over the whole sys-
tem. On the hand, in the limit of a perfectly random disordered system, in 1D
and 2D all states are exponentially localized due to Anderson localization (in 3D,
Anderson localization only occurs above a threshold disorder amplitude). QC are
at the boundary between these two limits. In QC, it is actually possible to find
extended or localized states, but also so-called ”critical” states, which are neither
completely extended nor localized. Additionally, the associated energy spectrum
usually presents highly fragmented energy bands, with fractal nature. These as-
pects will be presented in detail the next section.

Shortly after their initial discovery, QC have been engineered in artificial sys-
tems, facilitating in particular the experimental investigation of their localization
and transport properties. Emulation of QC has been realized with photonic plat-
forms, such as multilayer structures [105, 106], coupled waveguides [107, 108], mi-
crowave resonators [109] and cavity polaritons [26, 94]. In this chapter, we will
consider only 1D QC, but a review of transport properties in photonic QC in one,
two and even three dimensions can be found in Ref. [110]. For example, a surprising
regime of transport enhanced by the presence of disorder has been reported in a
photonic 2D QC [111]. QC have also been implemented in different systems, such
as cold atoms [112–114], or for phonons [115].

In the recent years, specific interest in QC has also arisen from their non-trivial
topological properties [102, 116, 117]. In particular, topological edge states have
been investigated experimentally, mainly in photonic systems [94, 108, 118, 119],
and exploited to implement topological pumping [108], and 4D quantum Hall ef-
fect [120–122]. The realization of topological insulators with 2D QC has also been
proposed [123–125].

Over the years, many models of QC have been introduced and studied, in par-
ticular quasiperiodic sequences like the Thue-Morse, Rudin-Shapiro or frequency
doubling sequences [115, 126]. In this chapter, we focus on 1D QC, and more specif-
ically on two most famous models: the Aubry-André-Harper and Fibonacci QC.
These two models were proven topologically equivalent, and it is possible to deform
continuously one model into the other, but both show very different localization
properties. Following a theoretical proposal from Oded Zilberberg, we aim to unify
the localization properties of these two model, by exploring the localization phase
diagram of the continuous deformation between the two.
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3.2 Fibonacci and Aubry-André-Haper QC mod-

els

3.2.1 The Aubry-André-Harper model

The Aubry-André-Harper (AAH) model [127, 128] describes a 1D lattice to which a
sinusoidal modulation of the on-site energy is applied, with a period incommensurate
with the lattice spacing. In the tight-binding formalism, such a situation can be
described by the following Hamiltonian:

Hψn = −t(ψn−1 + ψn+1) + λ cos(2πbn)ψn (3.1)

where ψn is the wave function amplitude at site n, t the hopping strength, λ the
modulation amplitude (or contrast) and b the periodicity of the modulation. If b is an
irrational number, the sequence of on-site potential Vn = cos(2πbn) is quasiperiodic,
as depicted in Fig. 3.2(a). Note that the sinusoidal modulation can also be applied
to the hopping terms (so-called off-diagonal AAH model) ; here we focus on the
diagonal model (modulation of the on-site energies).

Aubry and André introduced this model in 1980 [128], and demonstrated that
a metal-insulator transition occurs at λ = 2t (transition from completely extended
to exponentially localized states). Indeed, the AAH Hamiltonian has a self-dual
nature: in reciprocal space, Eq. (3.1) becomes

Hψk =
λ

2
(ψk−1 + ψk+1)− 2t cos(2πbk)ψk (3.2)

where we have introduced the Fourier transformed states ψk = 1/
√
N
∑

n e
iknψn, for

a lattice with N sites. Eq. (3.2) is of the same form as Eq. (3.1), with interchanged
roles for of λ and 2t: this is precisely the definition of self-duality. It follows that
λ = 2t is a fixed point of the dual transformation used in Eq. (3.2), corresponding
to a localization transition at this point [128, 129]. Noteworthy, the localization
transition occurs for all states at once. As illustrated in Fig. 3.2(b), eigenstates are
extended (delocalized) for λ < 2t, and localized for λ > 2t (only the ground state is
plotted in Fig. 3.2(b)).

This localization transition has been reported experimentally in artificial sys-
tems such as cold atoms [113], or photons [107]. For cold atoms, the AAH model is
implemented using an optical lattice perturbed with a second, weaker, incommen-
surate lattice [113]. Increasing the amplitude of the second lattice, a transition is
observed from ballistic expansion of the condensate to an absence of diffusion, as
shown in Fig. 3.3. For photons, in Ref. [107] Lahini et al. fabricated 1D arrays of
coupled waveguides, as illustrated in Fig. 3.2(c). The on-site energy is tuned by ad-
justing the refraction index in each waveguide, realizing the quasiperiodic sequence
of Fig. 3.2(a). Several samples corresponding to different λ were fabricated. Light
was injected in a single site at the input of the lattices, and intensity distribution
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(c) (b) 

(d) λ/t=0 (e) λ/t=1.6 (f) λ/t=3.1 

(a) 

𝑉 𝑛
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λ/
t 

Figure 3.2: (a) A quasiperiodic AAH lattice is obtained by modulating the on-
site energies of a periodic lattice (bars) at a frequency incommensurate with the
lattice spacing (dashed line). (b) Calculated amplitude profile of the ground state
of the incommensurate lattice versus strength of the modulation depth λ. A sharp
localization transition is observed at λ = 2t. (c) Artist view of a lattice of coupled
waveguides, excited at a single input site. (d-f) Measurements of a localization
transition in lattices as the one depicted in (c), implementing the AAH model.
Each panel shows the expansion of a single site initial wave packet after 6 mm of
propagation (blue) and 21 mm (red), for various values of λ, (d,e) below and (f)
above the localization threshold. Images from [107], except for (c), taken from [108].

at the output was measured, after propagation along the waveguides. As shown in
Fig. 3.2(d-f), for λ/t = 0, the wave packets expand during the propagation, corre-
sponding to the metallic phase (extended states). This is still the case at λ/t = 1.6,
but with a smaller expansion rate. However, for λ/t = 3.1, the wave packet remains
tightly localized to the input site, corresponding to the insulator phase.

It should be noted that the localization transition in the AAH model is different
from Anderson localization: in an infinite 1D system (as well as in 2D) with perfectly
random disorder, Anderson localization occurs for vanishing disorder amplitude, and
all states are exponentially localized [130] (but for finite systems, in case of small
disorder the localization length can exceed the system size, so that the states appear
as extended states). In the AAH model however, extended states exist for finite
disorder due to the specific correlations of this ”disorder” (i.e. the modulation of
the on-site energy).

If self-duality of the Hamiltonian from Eq. (3.1) is broken, different states un-
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(a) (b)

Figure 3.3: Observation of the AAH localization transition with cold atoms. (a)
Quasiperiodic potential realized in the experiment, with J the hopping between
neighboring sites and ∆ the contrast of the on-site energy modulation. (b) Images,
at different times after initialization, of the Bose–Einstein condensate diffusing along
the quasiperiodic lattice, for different values of ∆/J . For ∆/J = 7, the size of the
condensate does not increase, indicating localization. Images from [113].

dergo the localization transition at different λ, leading to the appearance of a mobil-
ity edge in the energy spectrum. For energies below (respectively above) the mobility
edge, all states are localized (extended). Such a mobility edge was predicted [131]
and recently observed in an atomic cloud loaded in shallow quasiperiodic optical lat-
tices [132] (in a shallow lattice, the tight-binding approximation is no longer valid,
which breaks self-duality).

Aside from its localization properties, the AAH model has also been studied
for its topological properties. Following the initial work of Harper [127], it was
demonstrated that the energy spectrum of the AAH Hamiltonian is broken into
a fractal set of band and gaps, famously known as the Hofstadter butterfly [133],
similar to the spectrum of electrons in a periodic 2D lattice in the presence of a
magnetic field (2D Hall system). The pioneering work of Thouless et al. [134] showed
that, in the latter case (2D lattice with a magnetic field), each gap in the spectrum
is associated with a quantized and nontrivial Chern number (an integer topological
invariant proportional to the Hall conductance). More recently, Kraus et al. showed
that the 1D AAH model can be exactly mapped to the 2D Hall system [108]. As
a consequence, 1D QC can be assigned Chern numbers. The key idea is that an
additional degree of freedom can be added to the AAH Hamiltonian as follows:

H(φ)ψn = −t(ψn−1 + ψn+1) + λ cos(2πbn+ φ)ψn (3.3)

The additional degree of freedom, encoded in the phason φ, can be considered as
an additional dimension, such that the system becomes effectively 2D. However,
a change of φ corresponds to a translation of the QC (it shifts the origin of the
modulation–note that this is only true if b is irrational and the QC of infinite size),
and does not affect bulk properties such as the bulk energy spectrum and the Berry
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(a) (b)

(c)

(d)

Figure 3.4: (a) Calculated spectrum of Eq. (3.3) as a function of φ. The bulk of
the spectrum remains fixed, whereas few modes, localized at the boundaries, sweep
across the gaps. The insets depict the spatial intensity profile of typical eigenstates:
(1) a left edge state, (2) a right edge state, and (3) an extended bulk state within
the band. (b-d) Experimental observation of an edge state on the left boundary, for
φ = π/2. Light is injected into a single waveguide (red arrows), and the intensity
profile is measured at the output. (c),(d) An excitation at the central or rightmost
site of the lattice results in a significant spread. (e) For an excitation at the leftmost
site, light remains tightly localized at the boundary, marking the existence of an
edge state. Images from [108].

curvature. Thus, the Chern number can be calculated from the 1D Hamiltonian with
any value of φ. As illustrated in Fig. 3.4(a), this leads to the presence of edge sates
in the different gaps. Kraus et al. fabricated arrays of coupled waveguides similar
to those discussed earlier (Fig. 3.2), and evidenced the presence of localized edge
states for well-chosen values of φ (see Fig. 3.4). They further used the topological
nature of the edge states to engineer topological pumping across the lattice.

3.2.2 The Fibonacci model

The Fibonacci sequence is probably the theoretically and experimentally most stud-
ied QC model since its introduction in the context of QC by the works of Kohmoto
et al. [135] and Ostlund et al. [136]. It consists in a sequence of letters A and B
arranged according to the following recursive rule: Sj = Sj−1Sj−2, for j ≥ 2, with
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S0 = A and S1 = AB. For example, the 6 first Fibonacci words Sj, j ≤ 5, are:

S0 = A

S1 = AB

S2 = ABA

S3 = ABAAB

S4 = ABAABABA

S5 = ABAABABAABAAB

The Fibonacci sequence corresponds to the infinite chain S∞. Since the recur-
sive construction methods is a concatenation rule, it is easy to see that the num-
ber of letters in the jth Fibonacci word Sj follows the famous Fibonacci series:
1, 2, 3, 5, 8, 13, ... (hence its name). Additionally, the ratio of the number of letters A
to the number of B in Sj tends towards the golden ratio τ = (1 +

√
5)/2 as j →∞.

A tight-binding Hamiltonian can be written for a Fibonacci QC, by assigning a
different on-site potential ±λ to letters A and B. We get:

Hψn = −t(ψn−1 + ψn+1) + λχnψn (3.4)

where χn is the characteristic function of S∞, which takes two possible values: +1 if
the nth letter of S∞ is A, −1 for B. Note that Eq. (3.4) corresponds to the diagonal
Fibonacci model. Similar to the AAH model, the Fibonacci sequence can also be
encoded on the couplings (so-called off-diagonal Fibonacci model).

The early works on the Fibonacci model demonstrated that the eigenstates have
exotic localization properties: they are neither completely extended nor localized,
but ”critical” [137–139]. As illustrated in Fig. 3.5, the critical states are states
showing a self-similar structure, with multiple scaling indices (the structure of the
wave function remains unchanged when zooming in or our, with a proper scaling
coefficient, that can take several values). This fractal nature arises from the recur-
sive construction method of the Fibonacci sequence itself. Additionally, the wave
function amplitude shows non-monotonous evolution. The main peaks are separated
by a number of sites corresponding to a Fibonacci number, and their amplitude is
expected to decay algebraically [137]. Note that for this reason, critical states are
sometimes mistakenly classified as states with a power-law decay in the literature.
It is in general not possible to fit a power-law decay to critical states, as pointed
out in Ref. [139].

The energy spectrum also has a rich structure; it is a Cantor set with zero
Lebesgue measure [140]. This means that, if one picks an energy, it is in a gap with
probability 1: the spectrum is nowhere dense, or in other words the total bandwidth
is zero (but there are no isolated points). This is called a singular continuous spectral
distribution. Finally, the spectrum also has a self-similar structure, with various
scaling indices (it is multifractal, like the eigenstates) [138].

The first experimental implementation of a Fibonacci QC was realized for elec-
trons by Merlin et al. as early as in 1985 [142]. It consisted in a GaAs/AlAs su-
perlattice with layers of different lengths, arranged into a Fibonacci sequence. This
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(a)

(b)

(c)

(d)

Site Site

Figure 3.5: Example of a critical wave function, calculated for a Fibonacci QC
of 5000 sites. To evidence the self-similarity of the wave function, a zoom on the
portion around the maximum (at site n0) and delimited by the two arrows in (a) is
shown (b). (c) and (d) are rescaled with the same procedure. Note that 55, 233 and
987 all belong to the Fibonacci series.

design was extended to the field of optics by Kohmoto et al. [143], who investigated
theoretically the optical transmission spectrum of Fibonacci multilayers, predict-
ing multifractal nature for the spectrum. In two parallel pioneering work in 1994,
Gellermann et al. [105] and Hattori et al. [106] fabricated stacks of dielectric layers of
SiO2 and TiO2, with different thickness and refractive index, arranged into different
Fibonacci words, as represented in Fig. 3.6(a). Fig. 3.6(b) shows the experimen-
tally measured transmission spectra, reproduced from Ref. [105], of the structures
corresponding to the Fibonacci words S5 to S7, compared with theoretical calcula-
tions. The self-similarity of the transmission spectrum becomes more apparent as
the number of layers is increased. In particular, these experiments showed that the
different Fibonacci words have similar transmission spectra when the frequency axis
is multiplied by an appropriate scaling factor. Several similar works followed, based
on different layer compositions, or with higher order words [110, 144, 145]. However,
the main limitation of the multilayer approach is that the transmission spectra gives
quite indirect informations on the eigenstates of the system.

In a previous work from our group, Tanese et al. implemented the Fibonacci
model for polaritons [26]. This work was realized during the PhD thesis of Dimitri
Tanese, inspired by a theoretical proposal from Eric Akkermanns and in collabora-
tion with him. The implementation of the Fibonacci model was achieved by etching
1D modulated wires out of a planar cavity. The letters A and B from the Fibonacci
words were encoded as blocks of same length a, but of different width wA,B (by ex-
tension, we refer to these blocks as letters), resulting in a structure such as the one
in Fig. 3.7(a). As discussed in chapter 2, the lateral confinement with letters of 2
different width creates a 1D effective potential as shown in Fig. 3.7, corresponding to
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(a) (b) 

Figure 3.6: (a) Schematic representation of a multilayer Fibonacci structure,
composed of two dielectric layers (SiO2 and TiO2) of thicknesses LA and LB. Im-
age from [110] (note that A and B are exchanged with respect to the Fibonacci
sequence described in the main text). (b) Measured (top) and calculated (bottom)
optical transmission spectra of such Fibonacci coating stacks, corresponding to the
Fibonacci words S5,6,7 (from left to right). Results extracted from [105].

(a)

(c) (d)

(b)

Figure 3.7: (a) SEM image, viewed from top, of a 1D wire for polaritons, fabricated
at C2N, and modulated according to the Fibonacci sequence, with wide (narrow)
letters A (B), of same length a. (b) Schematic depiction of the corresponding effec-
tive 1D potential for polaritons. (c) Measured and (d) calculated momentum-space
resolved photoluminescence spectrum of the Fibonacci wire. Red arrows indicate the
position of the gaps, labeled with two integers [p, q], as given by the Gap Labeling
theorem [141]. Images from [26].

66



3. Localization properties of Aubry-André-Harper-Fibonacci quasicrystals

(a) (b)

𝑞 = −1

𝑞 = +2

Figure 3.8: (a) Real-space resolved photoluminescence spectrum of a mirror Fi-

bonacci structure (i.e. a Fibonacci word
−→
FN(φ), concatenated with its mirror

←−
FN(φ)),

for a given value of the phason (φ = 0.62π). Red arrows indicate edge states, visible
in the two lowest main energy gaps, characterized by q = +2 and q = −1, at the
interface between the two Fibonacci words. (b) Measured energy of the edge states
of gaps q = +2 and q = −1 as a function of the phason φ. Images from [94].

the Fibonacci sequence. The photoluminescence was measured under non-resonant
excitation, both in real- and momentum-space. The fractal nature of the spectrum
was clearly evidenced in the momentum-space spectrum, as presented in Fig. 3.7(c),
in agreement with theoretical simulations based on a 1D Schrödinger equation, see
Fig. 3.7(d). Importantly, the Gap Labeling theorem [141] states that each gap in
the spectrum can be identified with a unique pair of integers [p, q]. The wave-vector
kp,q at which the gap opens is determined by these integers as:

kp,q =
π

a
(p+

q

τ
) (3.5)

We remind that τ is the golden ratio. This is illustrated in the experiments of Tanese
et al., as shown in Fig. 3.7(c) where the integers [p, q] associated with each gaps are
indicated. It should be noted that for an infinite system, the set of gaps at kp,q
generated by pairs [p, q] is infinite and dense in the interval [0, π/a], explaining why
the spectrum is singular continuous. The number of gaps visible in the experiments
depends on the system size, as well as on the polariton linewidth. The latter is the
limiting factor.

The Fibonacci model also has nontrivial topological properties. In fact, the
integer q from the pair [p, q] identifying a gap is the Chern number of this gap [141].
This was shown experimentally in another work from our group [94], where Baboux
et al. investigated the presence of edge states at the interface between a Fibonacci

word and its mirror (respectively noted
−→
FN and

←−
FN = [χNχN−1...χ1], with N the

number of sites). These structures were implemented as modulated 1D wires, as
described above. The existence of edge states was evidenced by measuring the real-
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space resolved photoluminescence emission under non-resonant excitation, as shown
in Fig. 3.8(a). The link between the gap labels [p, q] and their Chern number was
shown by scanning a phason degree of freedom φ. Indeed, similar to the AAH model,
the origin of the topological properties of the Fibonacci model can be understood by
the addition of a phason, i.e an additional effective dimension. This was first done
in Ref. [102], where Kraus and Zilberberg showed that the characteristic function of
the Fibonacci sequence can be written:

χn = sgn
[
cos(2πnτ−1)− cos(πτ−1)

]
(3.6)

with sgn(x) the sign function (sgn(x) = +1 if x > 0, -1 if x < 0). A phason φ can
be included in the above expression, replacing cos(2πnτ) with cos(2πnτ + φ). As in
the AAH model, a change of φ corresponds to a translation of the QC, for a lattice
of infinite size. In the case of a finite chain with N sites, sweeping φ from 0 to 2π
induces a series of N local changes in the structure, corresponding to the exchange
of two letters (AB ↔ BA) at specific locations. Baboux et al. fabricated multiple
copies of 1D Fibonacci modulated wires with N = 55 sites, corresponding to each of
the N = 55 structures in a sweep of φ from 0 to 2π. The energy of the edge states in
the two main gaps was measured as a function of φ, revealing that the edge states
crosses the gap a number of times given by 2q (as seen in Fig. 3.8(b)), as expected
for a gap with Chern number q (note also that the sign of q determines the direction
of the traverses).

Simultaneously to Baboux’s work, a similar strategy was used to measure the
topological invariants from the diffraction pattern of a Fibonacci sequence imple-
mented with digital mirror devices [119]. The topological properties of the Fibonacci
model were also evidenced through topological pumping across a lattice of coupled
waveguides [146].

3.2.3 Continuous deformation between the two models

We have seen that the AAH QC and Fibonacci QC share similar topological prop-
erties. In fact, Kraus and Zilberberg [102] have shown that the AAH model and Fi-
bonacci model are topologically equivalent, if the modulation frequency of the AAH
model is b = 1/τ . To demonstrate this, they introduced a smooth deformation,
controlled by a parameter β, transforming the AAH potential into the Fibonacci
potential:

Vn(β) =
tanh(β [cos(2πnb)− cos(πb)])

tanh β
(3.7)

Note that in the original work of Ref. [102], the phason degree of freedom φ, which
was included in the term cos(2πbn). Since the phason has no influence on the
localization properties (as is corresponds to a translation along the lattice), we
ignore this degree of freedom in the rest of the chapter.
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Figure 3.9: (a) Continuous deformation between the Harper and Fibonacci mod-
ulations. Vn(β) (dots) and its generating function g(x, β) (solid lines) are plotted
for b = 1/τ and different values of β. (b) Illustration of the (λ, β) space of the
AAHF model: β → 0 coresponds to the AAH model, while the Fibonacci model is
approached as β →∞, independent of the modulation amplitude λ.

Figure 3.9(a) represents Vn(β) for different values of β. We have also plotted the
function g(x, β) generating the discrete series of Vn, such that Vn(β) = g(n, β). It
is easy to verify that in the limit of small β, this modulation becomes the Harper
modulation, with a constant shift: Vn(β → 0) = cos(2πbn) − cos(πb). On the
other hand, for β → ∞, the modulation approaches the Fibonacci modulation, as
illustrated in Fig. 3.9(a): Vn can only take the values ±1, depending on the sign
of cos(2πnb)− cos(πb), which for b = 1/τ corresponds exactly to the characteristic
function of the Fibonacci sequence (Eq. (3.6)).

From the smooth deformation, we defined a generalized Aubry-André-Harper-
Fibonacci (AAHF) model, corresponding to the Hamiltonian:

H(β)ψn = −t(ψn−1 + ψn+1) + λVn(β)ψn (3.8)

Kraus and Zilberberg have shown that for a fixed b, no gap in the energy spec-
trum closes when scanning β. In particular, this implies that the Chern number
associated with each gap remains constant in the deformation from the AAH to
Fibonacci model: both have the same topological properties. Note that strictly
speaking, the Fibonacci model corresponds to b = 1/τ , but the topological equiv-
alence between AAHF Hamiltonians with different β holds for any irrational b. It
was also demonstrated that the off-diagonal model, with the modulation applied
to the couplings, has the same topological properties as the diagonal model from
Eq. (3.8) with same b. However, two AAHF QC with different b have gaps with
different Chern numbers and are thus topologically distinct.

The existence of topological phase transitions in the AAHF model was explored
experimentally by Verbin et al. [118], using arrays of coupled waveguides. They
observed the presence of edge states at the interface between AAH models with
different modulation frequency, confirming the distinct topological properties. On
the other hand, no edge state was observed at the interface between a AAH and
Fibonacci lattices, confirming their topological equivalence.
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Figure 3.10: (a-c) Examples of (a) extended; (b) localized and (c) critical eigen-
states, calculated with (a) β = 0, λ/t = 1; (b) β = 0, λ/t = 4 and (c) β =∞, λ/t = 2.
The occupation per site |ψn|2 is in logarithmic scale. (d) Schematic of a diagram for
the AAHF model. The localization properties have been explored only in the limits
of the AAH (β → 0) and Fibonacci (β → inf) models, indicated by thick lines.

The phase space of AAHF models with equivalent topology (i.e. for fixed b) is
spanned by the two parameters β and λ/t. This space can be represented as in
Fig. 3.9(b), where the limits β → 0 and β → ∞ corresponds to the AAH model
and Fibonacci model, respectively. We have seen that the localization properties of
these two models are very different: while a localization transition occurs in the AAH
model at λ/t = 2, all states are critical for any value of λ/t in the Fibonacci model.
As a reminder, examples of an extended, localized and critical state are plotted
in Fig. 3.10(a-c). These localization properties are summarized in the preliminary
phase diagram from Fig. 3.10(d): only two limits of the diagram are determined, and
for any other value of (β, λ), the localization properties are so far unexplored, both
theoretically and experimentally. Owing to the very different nature of the states
in the different limiting cases, we can expect a rich localization phase diagram.
For example, one of the open questions is the extent of the extended and localized
phases of the AAH limit when increasing β. The exploration of the localization
phase diagram of the AAHF model is the objective of the present chapter. This
idea originally emanated from Oded Zilberberg, who proposed us to use polaritons
for experimental implementation of the AAHF model. The work presented in this
chapter is realized in collaboration with his group.
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3.3 Theoretical localization phase diagram of the

AAHF model

3.3.1 Tight-binding model

First, we investigate the localization phase diagram theoretically, based on the tight-
binding Hamiltonian from Eq. (3.8). To this end, we set b = τ (this choice is
motivated below). The tight-binding calculations presented in this section were
performed by Antonio Štrkalj and José Lado, in the group of Oded Zilberberg in
Zürich.

The localization of the bulk states can be systematically characterized by ex-
tracting the localization length from the tails of the wave functions. We define an
inverse localization localization length Λ as follows:

Λ = lim
n→∞

−
log(ψ∗n0

ψn0+n)

n
(3.9)

where ψn is the wave function amplitude at site n and n0 denotes the site where
this amplitude is maximal. Computing Λ enables to distinguish between extended
and localized states: for a localized state, the wave function decays exponentially,
as ψn ∝ e−Λ|n−n0|, with a finite Λ. On the other hand, for an extended state (e.g. a
Bloch state), the wave function amplitude does not decay, corresponding to Λ→ 0.

For a systematic characterization of the localization, we diagonalize the AAHF
Hamiltonian for all values of (λ, β). For each set of (λ, β), we compute the inverse
localization length for each eigenstate, and finally average Λ over all states. The
resulting map of average inverse localization length gives a phase diagram, presented
in Fig. 3.11(a). Dark regions corresponds to extended states, while white regions
denote localized states. We can first point out that we recover the localization
transition at λ/t = 2, β = 0, from the AAH model. Moreover, intriguing features
are observed: starting from β = 0 in the localized phase, several delocalization
tongues are identified towards high values of β, the main one around β = 2. This
corresponds to a delocalization-localization transition when scanning β at fixed λ.

The phase diagram from Fig. 3.11(a) corresponds to an averaged Λ, and thus
we loose some information on the nature of the different states in the spectrum. To
gain further insight on the delocalization tongue, we have plotted in Fig. 3.11(b) the
inverse localization for each eigenstate in the energy spectrum, in a scan of β for a
fixed λ/t = 2.5. Note that extended states (respectively localized), are represented
by blue (orange) dots. We see that, for β ≈ 1, extended states are found only in the
lowest energy band. All other states remain localized.

From Fig 3.11(b) we can get an insight on the origin of the delocalization tongue:
it occurs at values of β where the width of the lowest band shrinks, due to the
specific deformation of the AAHF modulation. As the energy spacing between
the different localized modes reduces, the eigenstates get more and more extended,
and full delocalization is reached below some threshold spacing value. Increasing
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Figure 3.11: (a) Map of the mean of the inverse localization length Λ, versus λ/t
and β. (b) Localization of all eigenstates in the energy spectrum in a scan of β at
fixed λ/t = 2.5, as indicated by the blue line in panel (a). Shaded gray regions are
the energy gaps.

β further, the energy spacing increases and modes re-localize. This is of course
a qualitative argument. Quantitative investigations are still carried out by our
collaborators in Zürich to capture analytically this transition.

The localization-delocalization transition that we identified is very peculiar: it
corresponds to the opening of a conduction channel in a single band only. In the
following, we will focus more specifically on this transition, and in particular one of
our goals will be to evidence its existence experimentally.

Finally, let us comment on the choice b = τ . In the previous section, we have
considered b = 1/τ , mainly because for β → ∞ the AAHF modulation coincides
with the definition of the Fibonacci sequence. However, since τ is the golden ratio,
we have the relation τ = 1 + 1/τ . From Eq. (3.7), it follows that the AAHF
modulation with b = τ leads to the same Hamiltonian as for b = 1/τ , with the
change of sign λ→ −λ (plus a translation, or addition of a phason φ = π). In other
words, for a given λ, the AAHF models with b = τ and b = 1/τ have inverted energy
spectrum. In particular, this implies that the delocalization-localization transition
described above occurs in the upper band for b = 1/τ . As we shall see in the
next paragraph, for the implementation of the AAHF model with polaritons it is
more convenient to consider the case where this transitions occurs in the lowest
band. Note also that this corresponds to the Fibonacci potential implemented for
polaritons previously [26, 94], with on-site energy of sites A lower than sites B.

3.3.2 Nearly-free particle model

We want to explore experimentally the phase diagram with polaritons. However,
implementing the tight-binding AAHF model with chains of coupled pillars is dif-
ficult, because it requires a very fine control of the on-site energies. This is very
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Figure 3.12: (a) One-dimensional potential V (x) on 50 letters, for β = 0, β = 2
and β =∞ (b) Lowest energy eigenstate, computed for fixed λ = 2 meV and β = 0,
β = 1, β =∞.

challenging to achieve, especially if we want constant couplings. Thus, we opt for a
different approach, inspired from the implementation of the Fibonacci sequence with
polaritons from Refs. [26, 94]. The idea is to engineer a 1D quasiperiodic potential
corresponding to the modulation from the AAHF model, and study the localization
properties for the polariton wave function in such a potential, considering the po-
lariton as a free particle of mass m. In other words, this corresponds to a nearly-free
particle approach to the AAHF model.

First, we investigate theoretically the localization phase diagram corresponding
to this approach, in particular to see how it compares with the diagram obtained
with the tight-binding formalism.

The discrete modulation Vn(β) given by Eq. (3.7) is converted into a step-like
1D potential V (x, β), defined as:

V (x, β) = Vbx/ac(β) (3.10)

where bxc is the floor function, and a is the length of each step (in the following,
we refer to steps as letters). Examples of the 1D potential for different values of β
are presented in Fig. 3.13(a).

Next, we solve for the eigenstates ψ(x) and eigenenergies E of the linear 1D
Schrödinger equation describing the behavior of a particle of mass m in a 1D poten-
tial: (

− ~2

2m
∇2 + λV (x, β)

)
ψ(x) = Eψ(x) (3.11)

We use a mass m = 3× 10−5 me (typical polariton mass in our samples), and letter
length a = 2 µm. Examples of eigenstates are shown in Fig. 3.12(b), calculated for
λ = 2 meV and three values of β: β = 0, β = 1 and β = 2, for which the state is
respectively localized, extended and critical.
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Figure 3.13: (a) Map of the IPR for the lowest energy eigenstate state of the 1D
Schrödinger equation (3.11), in the nearly-free particle approach. The blue (green)
dot corresponds to the eigenstate with β = 0 (β = 1) in Fig. 3.12(b). (b) Localization
diagram from the tight-binding model, averaging Λ over the lowest energy band only.

It should be noted that it is possible to rescale the x axis in the Schrödinger
equation (Eq. (3.11)), to the dimensionless x̃ = x/a. It follows that the modulation
amplitude and eigenenergies can also be rescaled to dimensionless λ̃ = αλ and
Ẽ = αE, with the rescaling factor α = 2ma2/~2. We get a dimensionless Schrödinger
equation: (

∇2 + λ̃V (x̃, β)
)
ψ(x̃) = Ẽψ(x̃) (3.12)

One consequence is that a change in the value of a results in the same phase diagram,
but with a rescaling of the λ axis proportional to a−2 (and same rescaling for the
energy spectrum). Thus, the choice of a is not critical at this point.

To distinguish systematically between extended and localized states, we intro-
duce a figure of merit different from the inverse localization length Λ used previously:
we compute the Inverse Participation Ratio (IPR) of each state. The need for a dif-
ferent figure of merit arises from the fact that extracting the inverse localization
length requires chains with a high number of sites N . In 1D numerical simulations,
this is computationally heavy. The advantage of the IPR is that it is well defined
for chains with moderate number of sites. In our 1D simulations, we use N = 100.
The IPR of a state ψ is defined as:

IPR = a

∫
|ψ(x)|4dx (3.13)

Note that the above definition is an extension to a continuous 1D system of the
IPR defined for a discrete wave function ψn as IPR =

∑
n |ψn|

4. The participation
ratio (PR = IPR−1) indicates the number of sites (or letters in the continuous 1D
case) over which an eigenstate has non-vanishing amplitude. Thus, the IPR provides
similar information to the inverse localization length. It remains finite for a localized
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state (it takes maximal value 1 for a wave function perfectly localized on a single
site), and vanishes for extended states.

Figure 3.13(a), presents the IPR for the lowest energy eigenstate only, calculated
for all values of (λ, β). As a comparison, in Fig. 3.13(b) we show the phase diagram
obtained from the tight-binding model, but where the inverse localization length
Λ is averaged only over the lowest energy band. The diagram for the nearly-free
model is very close to the diagram from the tight-binding model. In particular, a
clear localization transition in observed at β = 0 (limit of the AAH model), for
λ = 1 meV. More interesting, a similar delocalization tongue is present at high λ,
around β ≈ 1. Since a single eigenstate is considered in Fig. 3.13(b), we observe
a single delocalization tongue. This is also the case in Fig. 3.13(b) for the tight-
binding diagram of the lowest band. Note however a small quantitative difference
between the two models, in the value at which the delocalization and subsequent
localization transitions are expected when scanning β.

A more significant difference of the nearly-free model with the tight-binding
model appears when we consider the full energy spectrum at a given value of (λ, β).
For example, in Fig. 3.14 we have plotted the spectrum, resolved both in (a) real and
(b) momentum space (simply obtained by Fourier transform of the eigenstates ψ(x)),
calculated for λ = 2 meV and β = 0. On the phase diagram, this is in the localized
phase, as indicated by the blue dot in Fig. 3.13(a). The lowest energy state is plotted
in Fig. 3.12(b), top panel. In Fig. 3.14 the other states from the lowest band are
clearly localized, as evidenced in particular by the broadness of the peaks at k = 0
in momentum space (i.e. blurred lowest band). However, the eigenstates in higher
energy bands are delocalized (very narrow peaks, thin bands, in k space). This is
because in a nearly-free particle model, the kinetic energy is not bound (contrary
to the tight-binding model where the kinetic energy is fixed by the hopping t, and
is identical for all states). Thus, in the nearly-free particle model the 1D potential

(a)

0 1

(b)

Figure 3.14: (a) Real- and (b) momentum-space resolved energy spectrum, calcu-
lated for a chain of 50 letters with a = 2 µm and λ = 1.5 meV, β = 0, corresponding
to the blue dot in the phase diagram from Fig. 3.13(b).
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affects mostly the bottom of the parabolic dispersion (E(k) = ~2k2/2m) of the free
particle, where the kinetic energy is low. For higher kinetic energy, the potential
is averaged and has barely any effect. As discussed previously, this corresponds to
the appearance of a mobility edge in the spectrum [131, 132]. The states in higher
bands can also localize, but at higher values of λ with respect to the lowest band.

In conclusion, our numerical simulations indicate that the nearly-free approach
results in localization properties very close to the tight-binding model, but for the
lowest energy bands only. Thus we choose to implement the nearly-free particle for
the experimental investigation of the localization phase diagram with polaritons,
since the engineering of this model is simpler as compared to the tight-binding
model. In the experiments, we will mainly be interested in the lowest energy bands.

3.4 Experimental investigation of the localization

properties

3.4.1 Implementation of the AAHF model with polaritons

In this section, we investigate experimentally the localization phase diagram of the
AAHF model with polaritons. The nearly-free AAHF model discussed above is im-
plemented by etching 1D modulated wires (also referred to as chains in the following)
out of planar microcavities.

We have introduced in chapter 2 how the geometry of such microstructures can
be mapped to a 1D potential profile. Here, let us recall that the lateral confinement
in a modulated wire, described by a position-dependent width w(x), creates the
following 1D potential for the transverse mode of order n (or nth 1D subband):

V (x) =
~2π2

2m

n2

w(x)2 (3.14)

with m the lower polariton mass. We use this relation to design wires implementing
the nearly-free AAHF model: the targeted 1D potential corresponding to a given
(λ, β) is converted to structure width using Eq. (3.14). Let us discuss in detail this
engineering procedure.

First some limitations exist regarding the geometry of the modulated wires fea-
sible in practice. In particular, the width of a letter cannot exceed or be inferior to
a maximal and minimal width. If a letter is too narrow, typically below 1.5 µm,
strong non-radiative exciton recombinations occur at the outer sides, which broad-
ens the polariton linewidth. On the other hand, if the width is above 4 to 5 µm, the
energy spacing between the lowest order n = 1 mode and second transverse mode
n = 2 is too small, such that the 1D approximation is no longer valid. Thus, when
designing the modulated wires we set a maximal letter width wmax = 4 µm (we
note V0 the corresponding lateral confinement potential). The minimal value of the
target potential is assigned the letter width wmax. Taking this minimal value as a
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Figure 3.15: (a) Width of the modulated wire, designed to implement the AAHF
modulation with β = 0 and λ = 1 meV. The corresponding 1D wire is depicted
on top. (b) Resulting 1D potential profile along the wire, arising from the lateral
confinement, for n = 1 modes (blue line) and n = 2 modes. The contrast λ2 for
n = 2 modes is 4 times stronger than the contrast λ1 for n = 1 modes. (c) SEM
images of modulated wires etched out of a planar cavity, implementing the AAHF
model for 3 values of β.

reference for the potential (V = 0), the wire width is determined from Eq. (3.14) by
applying a global offset V0 to the target potential.

As an illustration, Fig. 3.15(a) presents the width of a wire implementing the
step-like AAHF modulation with β = 0 and λ = 1 meV for the lowest 1D subband
(n = 1). The targeted potential profile along the wire is plotted in Fig. 3.15(b), blue
line.

Taking into account the lower bound on the letter width, we can achieve mod-
ulation amplitude typically up to λ ≈ 1.5 meV for the n = 1 transverse modes.
In the theoretical localization phase diagram from Fig. 3.13, this would be barely
above the localization transition for β = 0, so access to higher λ is necessary for
thorough exploration of the phase diagram. However, a very advantageous feature
of the modulated wires is the presence of higher order transverse modes (n > 1).
The lateral confinement for these modes is significantly stronger than for n = 1
modes, since it is proportional to n2. In other words, a structure designed with a
target (λ, β) for n = 1 modes also implements the AAHF modulation for n ≥ 2
modes, with same β but with increased modulation amplitude λn = n2λ. Thus,
n = 2 modes undergo a potential with 4 times stronger contrast as n = 1 modes
(λ2 = 4λ1). This is illustrated in Fig. 3.15(b), where we have plotted the calculated
1D potential profile for the n = 1 modes (blue line) and n = 2 modes (orange),
created by the structure width from Fig. 3.15(a). The enhanced contrast for n = 2
modes is particularly interesting, as it enables the exploration of high values of λ
in the phase diagram, i.e. in the region where we have identified an unexpected
delocalization-localization phase transition.
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Figure 3.16: (a) Momentum-space resolved photoluminescence spectrum mea-
sured for a chain with β = 0 and λ = 0.2 mev. Two sets of subbands are clearly
identified, corresponding to n = 1, 2 modes. (b) Bottom: Real-space resolved spec-
trum measured for a chain with β = 0 and λ = 0.6 mev. Top: corresponding
real-space image of the photoluminescence, integrated over the lowest band, for
n = 1 and n = 2 modes. The blue (resp. orange) bar in the lower plot indicates the
energy range over which the emission pattern is integrated, for the n = 1 (n = 2)
mode. Dashed gray lines are guides for the eyes, indicating the maximal wire with.

The choice of letter length a is also the result of a trade-off, due to the scaling of
λ and eigenenergies with a−2, as described in the previous section. As the letter size
decreases, the amplitude of every energy bands increases, which is interesting be-
cause the spectral resolution in the experiment is limited by the polariton linewidth,
but at the same time the localization transition at β = 0 occurs at higher λ (ad-
ditionally it is harder to address a single letter experimentally with the excitation
laser spot). On the other hand, in the limit of long letters, the energy bands are very
narrow, and due to the finite polariton lifetime, the propagation distance amounts
to a small number of letters (which hinders the distinction between localized and ex-
tended states). With these considerations, and based on the calculations presented
previously, we set a = 2 µm. With this value, the localization transition at β = 0 is
expected at λ ≈ 1 (see Fig. 3.13).

Several wires were fabricated, corresponding to a large set of λ and β, in order to
explore the localization phase diagram. Examples of structures with β = 0, β = 2
and β = ∞ are shown in Fig. 3.15(c). These structures are characterized under
weak non-resonant excitation, tuning the laser energy around 1.6 eV. We measure
the photoluminescence emission from a single chain, resolved either in momentum or
real space. Only one linear polarization is considered, e.g. horizontal polarization.
We have verified that the energy spectrum is identical in the other orthogonal po-
larization (except for a global shift of the energies, induced by a small polarization
splitting).
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Fig. 3.16(a) presents the momentum-space resolved emission spectrum of a chain
with β = 0 and λ = 0.2 meV. Two sets of bands are clearly visible, identified as
n = 1 and n = 2 subbands. We can also confirm from the bigger gap in the n = 2
bands that the modulation amplitude is enhanced with respect to the n = 1 modes.
Accordingly, n = 1 and n = 2 modes are also identified in the real-space emission
spectrum shown in Fig. 3.16(b), measured on a chain with β = 0 and λ = 0.6 meV.
It is also possible to obtain the 2D real-space image of individual eigenmodes from
the n = 1 and n = 2 subbands, by spectrally filtering the emission at the energy of
these bands. The 2D map of the emission pattern is reconstructed from spectra such
as the one shown in Fig. 3.16(b), measured at different lateral positions across the
wire. The result is presented in Fig. 3.16(b), top panel, and evidences the nature of
the n = 1 and n = 2 modes: in particular, the second transverse modes n = 2 have
the characteristic transverse profile with two bright lobes, and a zero at the center
of the chain.

3.4.2 Localization transition in the AAH model

First, to confirm the validity of our implementation of the AAHF model, we evidence
the localization transition in the limit of the AAH model, i.e. for β = 0.

According to the theoretical calculations, with letter length a = 2 µm the lo-
calization transition is expected around λ = 1 meV. With the n = 1 modes, the
maximal λ that we could implement is 1.4 meV. This should be enough to observe
the localization transition, expected from the numerical simulations at λ ≈ 1, but
is not far above this theoretical localization threshold. Thus, we focus on the n = 2
modes, which allow to explore up to λ = 5.6 meV.

The non-resonant characterization of three different wires, with β = 0 and re-
spectively λ2 = 0.8 meV, λ2 = 1.6 meV and λ2 = 2.4 meV is presented in Fig. 3.17,
both in momentum space and real space. For the lowest value λ2 = 0.8 meV, in
Fig. 3.17(a), the lowest n = 2 band is very thin in k space, indicating extended
modes. This is confirmed by the real-space spectrum, in which we can see that the
modes are delocalized over several letters. Moving to a wire with higher contrast
λ2 = 1.6 meV, Fig. 3.17(b), the real-space spectrum shows that the lowest energy
n = 2 modes now consist in isolated bright lobes, each at different energy: these
are localized states. Accordingly, in k space the lowest energy modes are very broad
and no longer form a band. The same behavior is observed for the highest value
λ2 = 2.4 meV presented in Fig. 3.17(c). Note, though, that the higher energy n = 2
modes are still relatively delocalized for λ2 = 1.6 meV, but completely localized for
λ2 = 2.4 meV (this is best seen in the k space spectrum). As expected, due to their
higher kinetic energy, these modes localize for stronger λ.

Note also that the chain with λ2 = 2.4 meV corresponds to λ1 = 0.6 meV, below
the localization threshold. We indeed observe extended n = 1 modes in this chain.

In Fig. 3.17, we have also reproduced the theoretical localization phase diagram
obtained with the nearly-free AAHF model. The position on the diagram corre-
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Figure 3.17: Observation of the localization transition for β = 0. (Left column)
Momentum- and (right) real-space resolved PL emission of three modulated wires,
with β = 0 and (a) λ2 = 0.8 meV, (b) λ2 = 1.6 meV and (c) λ2 = 2.4 meV. The
corresponding positions on the theoretical localization phase diagram are reported
in the upper panel (colored dots). In each panel, the arrow indicates the lowest
band of n = 2 modes.
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Figure 3.18: (Top) Real-space image of the emission and (bottom) semi-
logarithmic plot of the normalized intensity profile, integrated in the transverse
wire direction, measured under resonant excitation of the site at x = 0, on the same
three wires as in Fig. 3.17 (and same position on the wire), i.e. with β = 0 and (a)
λ2 = 0.8 meV, (b) λ2 = 1.6 meV and (c) λ2 = 2.4 meV.

sponding to the three structures characterized experimentally was reported on this
phase diagram. The experimental localization properties of the different structures
fall exactly in the localization phase expected in theory, indicating faithful imple-
mentation of the AAHF model. More experimental values of λ can be found in
Appendix A, and confirm this good agreement.

We can also use resonant excitation, with the pumping laser focused on a sin-
gle letter, to attest the extended or localized nature of the states. If the states
are extended, polaritons can ballistically propagate away from the excitation spot,
whereas propagation is impossible in localized states. For each of the three struc-
tures presented above, we tune the laser energy in resonance with a n = 2 mode
and measure the real-space emission pattern. We use very weak pumping power
(typically a few µW), to probe the linear eigenmodes and avoid nonlinear effects
due to polariton-polariton interactions. Note also that in order to excite resonantly
the n = 2 mode, we have to move the laser spot slightly to the side of the letter,
to couple to one of the two lateral lobes of the n = 2 mode only (this is because
the two lobes have opposite phase, whereas the resonant laser imposes a constant
phase).

The measured real-space emission pattern for each structure is presented in
Fig. 3.18, together with the normalized intensity profile obtained by integrating the
real-space pattern over the transverse direction of the wire, plotted in logarithmic
scale. In each case, the laser spot was exciting the site at x = 0, at the same position
on the chain as in Fig. 3.17. For λ2 = 0.8 meV, polaritons propagate on each side
of the excited letter, with an exponential decay of the intensity profile due to the
finite polariton lifetime. On the other hand, for λ2 = 1.6 meV and λ2 = 2.4 meV
the polariton emission is clearly limited to the excited letter, confirming that we are
above the localization threshold.
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3.4.3 Delocalization-localization transition

We now want to evidence the existence of the new delocalization-localization tran-
sition discovered in the theoretical (λ, β) phase diagram. To this end, we consider
chains with increasing β at a fixed λ. We probe the localization properties of wires
with λ2 = 2.4 meV, well in the localized phase in the AAH limit, and different values
of β.

Figure 3.19 presents the non-resonant characterization of three wires, with β = 0,
β = 1 and β = 2. According to the theoretical diagram these should be respectively:
in the localized phase, in the delocalization tongue, and above this tongue in the
second localized phase, as depicted in the upper panel. For β = 0, Fig. 3.19(a),
it is clear both from the momentum- and real-space spectra that the lowest n = 2
modes are localized (this is actually the same chain as in the previous paragraph).
The chain with β = 2 presents similar spectra (see Fig. 3.19(c)), with n = 2 modes
clearly localized.

Interestingly, for the chain with β = 1, we see in the real-space spectrum of the
n = 2 modes with lowest energy that the lobes, corresponding to the different letters,
are all at the same energy (or at least in a narrow energy window). Accordingly, in
the corresponding momentum-space spectrum, a single, almost flat energy band is
visible for the lowest energy n = 2 modes. In fact, a zoom on this energy region,
shown in Fig. 3.20, reveals the presence of a band with finite effective mass, i.e.
a weak curvature, corresponding to a band width of ∼ 30 µeV (comparable to
the spectral resolution of the spectrometer). Here, the fact that we can observe
a proper band with finite width is a clear evidence for the existence of coherence
between distant letters (i.e. between the different lobes observed in the real-space
spectrum). In other words, it proves that eigenstates are extended, and that we are
not in the presence of uncoupled localized states with same energy.

We tried to confirm the extended nature of the eigenstates at β = 1 with res-
onant excitation measurements, similar to those discussed earlier. However, in a
dissipative system, the propagation distance is determined not only by the finite
particle lifetime, but also by the group velocity of the excited eigenstate, defined at
a given k as vg(k) = 1/~(∂E/∂k). In the case of the chain with β = 1, the band is
almost flat, thus the group velocity is small: considering a band width of 30 µeV, the
maximum group velocity is vg . 0.3 µm.ps−1. As a consequence, even neglecting the
presence of any disorder, the propagation can not exceed a few microns, typically
6 µm for a polariton linewidth of 20 µeV. This means that observing propagation
to a single neighboring letter would already be a convincing proof for the existence
of delocalized eigenstates at β = 1.

In Fig. 3.21 we compare the real-space emission pattern, and corresponding in-
tensity profile, obtained upon resonant excitation of a single letter, on the three
chains considered in Fig. 3.19 (λ2 = 2.4 meV and β = 0; 1; 2). In each case, the laser
spot is focused on the letter at position x = 0, and the laser energy is tuned in reso-
nance with the lowest energy n = 2 eigenstate. For β = 0 and β = 2, Fig. 3.21(a,c),
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Figure 3.19: Observation of the delocalization-localization transition, at fixed
λ. (Left column) momentum- and (right) real-space resolved PL emission of three
modulated wires, with λ2 = 2.4 meV and (a) β = 0, (b) β = 1 and (c) β = 2. The
corresponding positions on the theoretical localization phase diagram are reported
in the upper panel (colored dots). In each panel, the arrow indicates the lowest
band of n = 2 modes.
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Figure 3.20: Zoom on the momentum-space spectrum of the modulated wire with
λ2 = 2.4 meV, β = 1. A band with weak curvature can be identified, indicating
long-range coherence, i.e. extended states.
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Figure 3.21: (Top) Real-space image of the emission and (bottom) semilogarithmic
plot of the normalized intensity profile, integrated in the transverse wire direction,
measured under resonant excitation of the site at x = 0, on the same three wires as
in Fig. 3.19 (and same position on the wire), i.e. with λ2 = 2.4 meV and (a) β = 0,
(b) β = 1 and (c) β = 2.

only the excited letter is bright, confirming that eigenstates are localized in these
structures. On the other hand, for β = 1, Fig. 3.21(b), we notice polariton emission
on a letter at x = −6 µm, to the left of the excitation spot (i.e. 3 letters away from
the spot), as indicated by the black arrow. As argued above, this propagation in
the wire, even small, is sufficient to confirm that the eigenstates are extended.

Finally, we have also characterized 1D chains corresponding to many different
values of β and λ, for a more thorough exploration of the localization phase diagram.
These measurements are summarized in Fig. 3.22, where we have represented each
measured chain as a point in the phase diagram (considering both n = 1 and n =
2 modes). Applying the same criterion as previously, based on the non-resonant
momentum- and real-space spectra, to distinguish between extended and localized
states, we assign each point with a color: blue for extended states, light orange for
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n=1 modes
n=2 modes

LocalizedExtended

Figure 3.22: Experimental localization phase diagram, obtained by characterizing
chains with different (λ, β). Blue (orange) dots code for extended (localized) lowest
energy states. Empty triangle (full circles) indicate n = 1 (n = 2) modes. The
momentum- and real-space spectra used to classify states as extended or localized
can be found in Appendix A.

localized states. We only consider the band with lowest energy. The momentum- and
real-space spectra for all chains can be found in Appendix A. Of course, this remains
a qualitative classification, and we are still missing a quantitative figure of merit to
establish a rigorous experimental localization phase diagram. Nevertheless, it allows
first insight on the extent of the delocalization tongue, and is in very good agreement
with the theoretical phase diagram (Fig. 3.13). To conclude, our experiments thus
demonstrate experimentally the existence of the novel extended phase predicted by
the numerical simulations, which is responsible for a delocalization phase transition,
followed by a localization transition, when increasing β at fixed λ .

3.5 Conclusions and perspectives

In this chapter, we have investigated the localization properties of the family of
AAHF quasicrystals, i.e. in the continuous deformation between the Aubry-André-
Harper and Fibonacci models. Adopting tight-binding formalism to describe the
QC, we have established a theoretical localization phase diagram, which in par-
ticular features an unexpected and peculiar delocalization tongue, for the lowest
energy band. We then extended our theoretical analysis to the case of a free par-
ticle in a 1D quasiperiodic potential, and found a localization phase diagram with
quantitative features identical to the tight-binding one. Finally, we designed 1D
modulated wire for polaritons to implement these QC models, and we probed ex-
perimentally the localization properties by non-resonant and resonant excitations
measurements. These experiments allowed us to evidence the existence of the pre-
dicted delocalization-localization transition when increasing β at a fixed λ. Our re-
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sults provide a unification of the localization properties of the AAH and Fibonacci
QC, showing a rich phase diagram especially with bulk states that can be tuned
from extended to localized, by controlling a single parameter β.

In this study, we have focused mostly on the lower right corner of the localization
diagram, i.e low β and high λ values. A natural extension of this work would be to
explore the upper half of the diagram, towards the Fibonacci limit (β →∞), to see
how criticality sets in. A first challenge, on the theory side, is that the measures
that we introduced (inverse localization length, and IPR) do not enable to make
clear the distinction between critical states and extended or localized ones. Indeed,
the inverse localization length assumes exponentially decaying tails, while the IPR
does not provide any information on the nature of the decay, and eventual presence
of non-monotonous variations of the wave function amplitude. On the experimental
side, since the specificity of critical states arises on long distances, we would need
longer propagation in our sample for their experimental evidence. A way to provide
this is to use shorter letter length a. We have fabricated such structures, and they
are currently being investigated.

From a more general standpoint, in this chapter we only investigated linear eigen-
states of polariton microstructure, and completely ignored nonlinearity brought by
polariton-polariton interactions. It would be very interesting to inject a nonlinear
polariton fluid in the different quasicrystals, and see how the different linear localiza-
tion regimes affect the nonlinear fluid dynamics. Novel many-body localization and
delocalization effects are expected. Finally, we have mentioned in the introduction
that the AAHF model has non-trivial topological properties. Consequently, our 1D
quasiperiodically modulated wires for polaritons are an ideal platform for the study
of topology in the presence of interactions and dissipation.
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Chapter4
Generation and control of dark
soliton trains in a polariton fluid

In this chapter, we demonstrate that when the interaction energy provided by
polariton-polariton interactions is comparable with the kinetic energy of a nonlinear
polariton fluid, the interplay of the two results in a spectacular self-organization
of the fluid. We consider a simple one-dimensional wire, in which we inject coun-
terflowing polariton fluids by means of resonant excitation. In the regime of high
polariton densities, we report and investigate the formation of dark soliton trains in
the fluids.

In section 4.1 we briefly review basic concepts of quantum hydrodynamics, in par-
ticular the notion of dark solitons, and discuss microcavity polaritons as a platform
for the study of quantum fluids. Section 4.2 presents the experimental configuration
for the injection of counterpropagating polariton fluids in a 1D channel. We then
show that for high excitation power, polariton-polariton interactions are responsible
for the self organization of the fluid into a dark soliton train. When scanning the
excitation power, the abrupt disappearance of solitons reflects the discrete nature of
these nonlinear excitations. In section 4.3, we apply a phase twist across the wire,
enabling the control of both the position of the soliton train, and also more impor-
tantly the parity of their number. We evidence a novel type of bistable behavior,
appearing when scanning the phase twist up and down, at constant power. Finally,
in section 4.4 we conclude and discuss perspectives for this work, in particular we
propose schemes for the investigation of soliton-soliton interactions and excitation
of the soliton pattern oscillations, based on numerical simulations.

4.1 Dark solitons in polariton superfluids

In this section, we introduce the notion of dark solitons in quantum fluids. We also
present a few concepts of quantum fluid hydrodynamics, and review the principal
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Figure 4.1: Schematic representation of: (left) a bright soliton and (right) a dark
soliton.

experimental studies of quantum hydrodynamic effects in exciton polariton systems.
Dark solitons are among the fundamental nonlinear collective excitations of one-

dimensional (1D) quantum degenerate fluids with positive mass and repulsive inter-
actions. We call nonlinear quantum fluid a system whose evolution is described by
the nonlinear Schrödinger equation (NLSE) [147]:

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + ~g|ψ|2ψ (4.1)

where ψ is the order parameter of the system, e.g. its wave function, m is the particle
mass (or effective mass) and g the particle-particle interaction constant. Here, we
focus on 1D systems. In the case of attractive particle-particle interactions, g < 0,
the NLSE is known to support nonlinear localized solutions called bright solitons,
whose shape does not evolve during propagation [148]. On the other hand, for repul-
sive interactions, g > 0, the NLSE supports dark solitons. They are characterized
by a dip in a uniform background density and a jump of π in the macroscopic phase
across it (in this sense they can be seen as a 1D equivalent of a vortex). The shape
and size of the dip is given by the interplay of mass and nonlinearity. Because the
NLSE is a universal model that describes nonlinear media, dark solitons have been
observed in a wide variety of systems ranging from Bose-Einstein condensates of
cold atoms [149–151], optical fibers [152], to thin magnetic films [153].

Note that the 1D geometry is particularly suitable to the study of dark soli-
tons, because solitons are unstable with respect to transverse perturbations, leading
to their decay into other more stable structures (e.g. vortices). This is the so-
called snaking instability, well documented in conservative systems such as atomic
BEC [154].

Interestingly, dark solitons have also been observed in nonlinear open-dissipative
systems [155], and in particular in semiconductor microcavities [15, 16, 61, 156, 157].
Cavity polariton as a platform for studying quantum hydrodynamics have attracted
considerable interest since the demonstration of superfluid polariton flow [11]. As
already discussed in chapter 1, the resonant excitation scheme allows precise control
of the kinetic energy, interaction energy and phase of the fluid. The evolution of
the lower polariton wave function Ψ(r, t) is given by the driven-dissipative Gross-
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Figure 4.2: (a) Lower polariton dispersion calculated under low-power resonant
pumping, at the point indicated by the yellow dot. Injected polaritons can elasti-
cally scatter to the same energy states as those indicated by the green arrow. (b)
Dispersion renormalized by interactions calculated under strong resonant pumping,
corresponding to the Bogolyubov excitation spectrum of a superfluid (red branch).
Backscattering is suppressed, owing to the absence of available final states at the
energy of the pump (c, d) Experimental images of the real-space polariton density,
showing the transition from a (c) normal fluid, at low pumping power to (d) a super-
fluid at high pumping power. Polariton superfluidity is apparent as a suppression
of the real-space density modulation around the point defect. (e, f) Corresponding
theoretical results obtained by numerically solving the Gross-Pitaevskii equation.
Images taken from [11].

Pitaevskii equation [5]:

i~
∂Ψ(r, t)

∂t
=

(
E0 −

~2

2m
∇2 + ~g|Ψ(r, t)|2 − i~γ

2

)
Ψ(r, t) + iF (r, t) (4.2)

where m is the lower polariton effective mass, E0 the energy of the bottom of the
lower polariton branch, g the polariton-polariton interaction constant and γ the
polariton decay rate. The term F (r, t) accounts for the coherent drive: it is propor-
tional to the incident field.

The interaction term ~g|Ψ|2 is responsible for a renormalization of the single-
particle parabolic dispersion, as illustrated in Fig. 4.2(a,b). The excitation spectrum
of the fluid in the presence of interactions is calculated by linearization of the Gross-
Pitaevskii equation. The resulting dispersion is called Bogolyubov dispersion of
excitations [1]. It is linear for small excitation energies, allowing to define a sound
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(a) (b) 

Figure 4.3: (a) Experimental observation of hydrodynamically generated oblique
dark solitons in a flowing polariton superfluid hitting a defect (top). The phase
interferogram (bottom) clearly reveals a phase jump across the soliton lines (dashed
lines). Taken from [15]. (b) Nucleation of vortex pairs in a polariton fluid moving
leftwards towards a defect. The three rows show (top) the polariton density, (middle)
the fringes of the measured interferogram, and (bottom) the polariton phase, at
different times after the excitation pulse. The defect position is indicated by the
green circles. Vortices start being visible at t = 3.7 ps, and are indicated by white
markers on the density plot and red circles on the fringes and phase plots. Taken
from [12].

speed in the fluid, given by cs =
√

~g|Ψ|2/m. An important advantage of the

resonant excitation scheme is that it allows controlling the velocity of the injected
polariton fluid, by tuning the drive wave vector kp. Amo et al. [11] demonstrated that
when the fluid velocity v = ~kp/m becomes smaller than the sound speed in the fluid
cs, backscattering on a defect placed in the fluid flow is suppressed (see Fig. 4.2). The
condition v < cs corresponds to the Landau criterion for superfluidity, as introduced
for conservative systems based on the Bogolyubov dispersion of excitations of a
superfluid [1]. Recently, room-temperature superfluity of polariton has also been
reported by the group of Sanvitto [158].

Based on a similar experimental configuration, later works demonstrated the
hydrodynamic nucleation of vortex pairs [12, 13] and dark solitons [15, 16] in the
flow of the superfluid past an obstacle. As illustrations, the results from Refs. [12]
and [15] are reproduced in Fig. 4.3. Another key feature from the resonant excitation
is that under the pump spot, the coherent drive imposes the phase of the polariton
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wave function. In Ref. [11], where the spot completely overlaps with the defect,
this prevents the formation of topological defects such as dark solitons and vortices,
since the latter are characterized by very specific phase patterns (for a vortex, a
winding of 2π for the phase around the vortex core, and for a soliton, a phase
jump of π across the soliton core). To circumvent this issue, two different strategies
were adopted. Amo et al. placed the pump spot slightly upstream of the defect.
Subsequently, the phase of the fluid is free to evolve as it encounters the defect.
They reported the formation of dark oblique solitons in the wake of the defect,
visible as two density dips associated with the characteristic π phase jump across
each dip (Fig. 4.3(a)). Nardin et. al [12] used pulsed excitation (as is the case
in Refs. [13, 16]), instead of continuous wave coherent pumping used in the works
discussed above. The pulse injects during a short period of time the fluid, which
then evolves freely before decaying due to the finite polariton lifetime. A streak
camera was used, in synchroscan mode, to measure time-resolved images of the
polariton fluid. As shown in Fig. 4.3(b), the formation of pairs of vortices with
opposite winding is clear at t = 4.7 ps, as the fluid flows past the defect. Note that
in this experiment, the streak camera only allowed to measure images averaged over
many realizations. The vortices were visible in these average images only because
they were pinned by disorder, i.e. they have the same trajectory in each realization.

Aside from these examples, a number of other quantum fluid effects have been
studied in semiconductor microcavities, including diffusive Goldstone modes [159]
or Bogolyubov excitation spectrum for the superfluid [160, 161]. Generation of
bright solitons was also reported, using a resonant pump at an energy above the
inflexion point of the lower polariton dispersion, corresponding to a negative effective
mass [17, 162].

Even though we first presented the fact that the resonant drive imposes locally
the phase of the fluid as a drawback, this is actually a remarkable feature: it offers the
possibility to externally manipulate the boundary conditions and impose a controlled
phase pattern across a polariton fluid. This was first explored in a two-dimensional
polariton condensate in which a spatial vortex phase profile was imposed on the
polariton field, resulting in persistent currents with high orbital momentum [164].
Note that this feature is purely characteristic of the driven-dissipative nature of
the system, and opens up a new playground for the exploration of the elementary
excitations of polariton quantum fluids. In particular, it has been proposed that
by imposing a phase twist across the fluid via the external pumping, the superfluid
fraction could be measured [165] and different Josephson dynamical regimes could
be addressed [166, 167].

A theoretical proposal for the controlled nucleation of dark solitons was also
presented in Ref. [163]. The authors showed, based on numerical simulations, that
for resonantly excited counterpropagating polariton superfluids in a 1D channel,
imposing a phase twist across the channel would result in a density dip at the center
of the channel, with a phase jump of π across the dip for the polariton wave function
(Fig. 4.4). More precisely, for certain values of the phase twist, two solutions are
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Figure 4.4: (a) Sketch of the configuration considered in [163] for the resonant
injection of counterflowing polariton fluids in a 1D channel. (b) Profile of the phase
of the polariton wave function across the channel, for the two stable states at a
phase twist Φ = 3π/2. (c,d) Corresponding density profiles in the channel. Taken
from [163].
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Figure 4.5: Acoustic black hole in a 1D polariton fluid. (a) Sketch of the ex-
perimental configuration. (b,c) Spatially resolved emission for excitation powers
p = 7 mW and p = 100 mW, respectively. Backscattering from the defect is sup-
pressed in (c), indicating superfluid flow upstream of the defect. (d) Interaction
energy in the upstream (blue circles) and downstream (orange squares) regions as a
function of excitation power.
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stable: a profile with homogeneous density, and a profile with a density dip. Though
the authors did not interpret it explicitly as such, we will show in this chapter that
this density dip is indeed a dark soliton.

First experimental investigations of superfluid hydrodynamic effects in a 1D po-
lariton fluid was achieved in our group [93]. The main results are reported in Fig. 4.5.
In this work, the authors engineered a defect that was placed in the flow of the reso-
nantly injected polariton fluid. At moderate excitation power, strong backscattering
from the defect is present, giving rise to interference upstream of the defect. At high
excitation power however, the interaction energy of the fluid overcomes its kinetic
energy , and the Landau criterion v < cs is fulfilled. Accordingly, the backscattering
is suppressed, as shown by the absence of intensity modulations upstream of the
defect, indicating superfluid flow. More precisely, the author showed that the defect
separates a high density subsonic flow from a low-density supersonic flow, setting
up an acoustic horizon, as theoretically proposed in Refs. [168, 169] and offering
promising perspectives to observe Hawking radiation.

Finally, it should be noted that theoretical studies on the generation, control and
stability properties of dark solitons in 1D channels have also been carried out taking
into account an incoherent exciton reservoir, i.e. modeling non-resonantly excited
polariton condensate [170–172]. However, the non-resonant excitation schemes pro-
posed in the above works do not offer the same level of control over the polariton
fluid as resonant excitation. Thus, in this chapter, we consider resonantly injected
polariton fluids. We use a counter-propagation geometry similar to the proposal of
Ref. [163], which allows fixing the boundary conditions for the fluid in the channel.
We show that tuning these boundary conditions, we can trigger the nucleation of
dark solitons in a controlled manner.

4.2 Injection of counterpropagating nonlinear po-

lariton fluids in a 1D channel

4.2.1 Experimental configuration

We want to investigate the dynamics of polariton fluids in a one dimensional channel.
To this end, we used electron beam lithography and dry etching to fabricate wires of
width 3 µm and length 200 µm out of a planar cavity, as schematically represented in
Fig. 4.6. The polariton dispersion in a chosen wire has been characterized by measur-
ing the photoluminescence (PL) under nonresonant pumping. Figure 4.6 shows the
momentum-space emission, for the polarization parallel to the wire (TE), evidencing
the lower and upper polariton 1D subbands (a similar dispersion is measured in the
orthogonal polarization (TM). Throughout this chapter we ignore TM polarization
and focus only on TE). From these, we deduce a Rabi splitting ΩR = 3.5 meV, and
an exciton-photon detuning δ = EC(k = 0)−EX(k = 0) = −3.3 meV, where EC(k)
is the bare photon energy and EX(k) the bare exciton energy. This corresponds to
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Figure 4.6: Top: schematic representation of 3 µm-wide wire etched out of a
planar cavity. Bottom: momentum space-resolved photoluminescence measured un-
der nonresonant pumping, in TE polarization. Solid lines are theoretical fits of the
lower (LP) and upper (UP) polariton branches and dashed lines indicate the bare
exciton and photon energy. The horizontal segment shows the energy and width for
the resonant excitation conditions.

an excitonic fraction |x|2 = 0.16 at k = 0. We recall that close to k = 0, the lower
polariton branch can be approximated by a parabola, E(k) = E0 + ~2k2/2m. Here
the polariton effective mass deduced from the fits is m = 4× 10−5 me, with me the
free electron mass. Note that only the first 1D subband is visible in Fig. 4.6. The
second subband is not observed, because this measurement is for ky = 0 (in the di-
rection orthogonal to the chain), where the second subband does not radiate due to
the antisymmetric nature of its eigenstates (n = 2 states as discussed in chapter 3).
The other subbands are higher in energy, i.e. outside of the energy window plotted
in Fig. 4.6.

The experimental scheme for the resonant injection of counterflowing polariton
fluids in this wire is summarized in Fig. 4.7. We use a cw resonant laser split into
two separate beams, linearly polarized along the wire (TE) and focused at normal
incidence onto two spots separated by a distance d. The laser energy Ep = ~ωp is
blueshifted by ∆E = ~ωp − E0 with respect to the lower polariton energy E0 at
k = 0 (see Fig. 4.6). The phase difference ∆ϕ between the two beams can be varied
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Figure 4.7: (a) Sketch of the experimental setup for the resonant injection of
coutnterpropagating fluids in the wire. A delay stage allows to control the phase
difference ∆ϕ = ϕ2 − ϕ1 between the two pumping spots, as illustrated in (b).

using a delay stage controlled by a piezoelectric actuator added to the path of one of
the excitation beams. This is very important, since the phase of the resonant drive
sets the phase of the polariton wave function under the pumping spot.

4.2.2 Theoretical model for numerical simulations

To model the experimental configuration described above, we introduce a 1D Gross-
Pitaevskii equation comparable to the one already discussed: it includes pump and
loss terms, and only the lower polariton branch is considered. The evolution of the
polariton wave function Ψ(x, t) is given by:

i~
∂Ψ(x, t)

∂t
=

(
E0 −

~2

2m

∂2

∂x2 + ~g|Ψ(x, t)|2 − i~γ
2

)
Ψ(x, t) + iF (x)e−iωpt (4.3)

where γ is the polariton decay rate and g the polariton-polariton interaction con-
stant. The drive term F (x)e−iωpt, at frequency ωp, is adapted to our experimental
scheme: it describes two pumping spots injecting counterflowing polaritons. We use

F (x) = F0(f1(x) + f2(x)), (4.4)

with |F0|2 being proportional to the total power of the coherent drive, and f1,2(x) is
a complex function describing the spatial profile and the relative phase of the pump
beams:

f1,2(x) = e−(x−x1,2)
2
/2σ

2

e±ikpx+iϕ1,2 , (4.5)
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for Gaussian spots with width w = 2
√

2ln2σ, centered on position x1,2 = ±d/2. For
pumping spots at normal incidence, the central pump wave vector is kp = 0.

The steady-state solutions of Eq. (4.3) in the frame rotating at frequency ωp
are obtained numerically, using parameters values directly extracted from the ex-
periments. The experimentally measured linewidth is ~γ = 47 µeV, and E0 =
1478.57 meV. In the experiment, we use a laser detuning ∆E = 0.27 meV, and
Gaussian spots of width w = 8 µm separated by d = 50 µm. Finally, we take
an interaction constant ~g = 0.3 µeV.µm. This value is obtained by considering
an exciton-exciton interaction strength ~gexc = 30 µeV.µm2 [46]. The polariton-
polariton interaction depends on the excitonic fraction |x|2, and we also need to
take into account the 1D nature of the system with a proper rescaling of the 2D
interaction strength. In the end, ~g = |x|4~gexc/a, which for |x|2 = 0.16 and wire
width a = 3 µm gives the above value.

4.2.3 Nonlinear regime: nucleation of dark solitons

Superfluidity and nucleation of dark solitons are features showing up in quantum
fluids when the interparticle interaction energy is comparable to the kinetic energy.
In our system, the interaction energy is ~gn, where g is the polariton-polariton
interaction constant and n the polariton density, controlled by the excitation power.
We thus investigate the dynamics of the injected polariton fluid when the power
of the resonant drive is increased. In this section, we fix ∆ϕ = 0. Note that this
corresponds to symmetric boundary conditions for the fluid.

It is instructive to discuss first what happens in the linear regime, i.e. at low
pumping power, where polariton-polariton interactions are negligible. Figure 4.8(c)
shows the polariton emission, spatially resolved along the wire, measured for such
low pumping power P = 8 mW, well in the linear regime. The two excitation
spots positions are indicated by white circles, and the bright regions outside of the
wire, above and below the spots, correspond to laser light scattered by the wire
edges, and are thus not relevant. Even though the excitation spots are at normal
incidence, their finite angular aperture allows injecting polaritons with wavevectors
kf = ±

√
2m∆E/~ = ±0.53 µm−1, as schematically depicted in Fig. 4.8(a). Between

the two excitation spots, we observe a regular fringe pattern with a spacing of s =
6.0 µm = π/kf , arising from interference of the two counter-propagating polariton
waves (the fringe pattern is well fitted by a sinusoid, as shown in Fig. 4.9(a)). The
position of the fringe pattern is determined by the boundary conditions imposed by
the excitation spots, namely the distance between them and their phase difference
∆ϕ. Here, ∆ϕ = 0, leading to an intensity maximum at x = 0, at the center between
the two spots.

As shown in Fig. 4.8(b), when the excitation power is increased, a first abrupt
jump in the total emission intensity is observed at Pth = 12 mW. It corresponds to
the threshold for the nonlinear regime, precisely when the blueshift due to polariton-
polariton interactions under the pump spots equals ∆E. When the power is further
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Figure 4.8: (a) Single-particle parabolic lower polariton dispersion. In the linear
regime, due to the finite numerical aperture of the excitation spots (with central
wave vector kp), particles are injected with wave vector ±kf . (b) Total measured
emission intensity (integrated along both the transverse and longitudinal directions
of the wire) as a function of pump power. The shaded gray region corresponds to the
linear regime. Linear regime. (c) Spatially resolved emission measured along the
wire in the linear regime, for P = 8 mW, ∆E = 0.27 meV, d = 50 µm and ∆ϕ = 0.
Dotted lines indicate the wire edges. (d) Measured intensity profile integrated in the
transverse direction. Nonlinear regime (e) Spatially resolved emission measured
along the wire for P = 23 mW, and (f) intensity profile integrated over the transverse
direction. (g) Corresponding calculated emission profile.
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(a) 

(b) 

Figure 4.9: (a) Density profile in the linear regime, corresponding to Fig. 4.8(d),
fitted by a cosine function (black line). (b) Density profile in the nonlinear regime,
corresponding to Fig. 4.8(f). The orange (resp. purple) line is a fit of the left (right)
soliton. Dashed lines indicate regions where the fits are not valid due to the presence
of the second soliton.

ramped up, a second threshold is observed. This second threshold is associated with
a change of the spatial pattern. This behavior is very similar to the observations in
Ref. [93] for a 1D polariton fluid in a configuration in which polaritons are excited
by a single beam and reflected by an external potential.

A typical emission pattern above the second threshold is shown in Fig. 4.8(e).
It strongly differs from the linear case: two density dips, dropping almost to zero,
are visible in an otherwise almost constant high density profile. Those dips are
identified as dark solitons – nonlinear collective excitations of the fluid. This profile
is well reproduced by numerical simulations based on Eq. (4.3) (see Fig. 4.8(f)). We
provide a first confirmation that we are indeed in the presence of solitons thanks to
a fit to the density profile with a hyperbolic tangent function. Indeed, the analytical
solution of the Gross-Pitaevskii equation determining the profile of a soliton train
is an elliptic function [1]. In the case of a profile with a single dark soliton, the
density evolves as n(x) = tanh2

(
(x− x0)/

√
2ξ
)
, with x0 the soliton position and ξ

the healing length of the fluid [148]. In Fig. 4.9(b), we use this single soliton solution
to fit the density profile in the nonlinear regime from Fig. 4.8(f). The two soliton
dips are fitted independently, using the same soliton width of 5.2 µm, corresponding
to a healing length ξ = 1.8 µm. The experimental data is well reproduced by
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Figure 4.10: (a) Measured and (b) calculated emission profile when scanning the
power up (the low power data have been amplified by a factor 10 for clarity). The
horizontal red, blue lines corresponds to the profiles shown in Fig. 4.8(d,f).

the theoretical profile of two independent solitons in the region between the two
excitation beams. The fits reproduce the presence of the soliton dips on top of a
flat background. The dips are separated by 13.5 µm, significantly more than twice
their width. This situation is very different to what is observed in the linear regime,
Fig. 4.9(a), in which a standard cosine-like interference pattern is observed with
minima separated by exactly twice the FWHM. Note that the theoretical value of
the healing length for a laser detuning ∆E = 0.27 meV is ξ = ~/

√
2m∆E = 1.9 µm,

in excellent agreement with the fitting value (recall that in the nonlinear regime,
the interaction energy of the fluid is equal to ∆E).

Figure 4.10(a) presents the evolution of the intensity profile when ramping the
pumping power up. It reveals that the number of solitons depends on the excitation
power. Directly above the first threshold at Pth = 12 mW, four solitons are present in
the region between the spots. Further increasing the excitation power, we observe at
P = 21 mW the abrupt expulsion of two solitons so that only two of them remain.
The abrupt nature of this expulsion is a further proof of the nonlinear character
of the density dips: the solitons are elementary excitations of the polariton fluid.
Interestingly, the polariton density between the spots, outside of the dark solitons
is almost independent of the pumping power. Notice that the observed expulsion
of two solitons, replaced by regions of high polariton density, is responsible for the
small jump in total emitted intensity that is visible at the second threshold (see
Fig. 4.8(d)). Throughout the whole power scan in Fig. 4.10(a), the number of
solitons remains even because of the symmetry of the excitation conditions. Indeed,
since we impose ∆ϕ = 0, the polariton wave function must remain symmetric,
implying an even number of solitons (because of the π phase jump across each
soliton).

The numerical simulations, presented in Fig. 4.10(b), perfectly reproduce the
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low power interferences and the abrupt transition to the nonlinear regime resulting
in the nucleation of four dark solitons and, at higher power, two dark solitons. In
particular, this agreement confirms that we can base our interpretation on the Gross-
Pitaevskii equation to discuss the mechanism for the soliton formation. This is the
topic of the following paragraph.

4.2.4 Interaction and kinetic energy of the fluid

The nucleation of solitons in the nonlinear regime, and the abrupt change in their
number when increasing the excitation power can be intuitively understood from the
hydrodynamics of the polariton flow. We work in the frame rotating at frequency
ωp. In the steady state, in the central region far from the excitation spots (F = 0),
the real part of The Gross-Pitaevskii equation (Eq. (4.3)) multiplied by Ψ∗(x) can
be written as a ”local” energy conservation law as follows:

~ωp = E0 −
~2

2m

Re(Ψ∗∇2Ψ)(x)

n(x)
+ ~gn(x) (4.6)

with n(x) = |Ψ(x)|2 the local polariton density. Equation (4.6) expresses that the en-
ergy per polariton, fixed by ωp, is locally equal to the sum of three terms: the single-

polariton energy E0 at k = 0; a kinetic term Ekin(x) = −(~2/2m)Re(Ψ∗∇2Ψ)/n(x);
and a polariton-polariton interaction term Eint(x) = ~gn(x).

Let us not forget the imaginary part of the steady-state equation. It writes:

0 = − ~2

2m
Im(Ψ∗∇2Ψ)(x)− i~~γ

2
n(x) (4.7)

At this point it is convenient to express the wave function in terms of its modulus
and phase φ(x):

Ψ(x) =
√
n(x)eiφ(x) (4.8)

Inserting this into Eq. (4.7) enables simplification of the term Im(Ψ∗∇2Ψ)(x).
Eq. (4.7) becomes:

∇ (nv) = −i~γn (4.9)

where we introduced the fluid velocity, defined as v(x) = ~∇φ(x)/m [1]. This is a
continuity equation that accounts for the losses due to the finite polariton lifetime.
Note that using the same notation, the kinetic term can be written as:

Ekin =
1

2
mv2 − ~2∇2√n

2m
√
n

(4.10)

The second term on the right-hand side is the quantum pressure. It cannot be
neglected in the case of dark solitons because of the finite density gradient.

The specific dark soliton profile at a given pump power is a result of the local
interplay between the kinetic and interaction terms. In the core of a soliton, where

100



4. Generation and control of dark soliton trains in a polariton fluid

𝐸𝑘𝑖𝑛
𝐸𝑖𝑛𝑡

𝐸𝑝 − 𝐸0

𝑛(𝑥)
|𝐹 𝑥 |

(a)

(b)

Figure 4.11: (a) Calculated density profile n(x) from Fig. 4.8(g), and correspond-
ing drive amplitude |F (x)| for the two pumping spots. (b) Kinetic and interaction
energy terms Ekin(x), Eint(x) as defined from the main text, calculated from (a),
compared with the drive detuning ∆E. Note that equation (4.6) holds true only
when the drive amplitude is negligible. This condition is not fulfilled in the shaded
gray regions.

the density is low and its second order derivative is high, the kinetic term dominates
over interactions, while it is the opposite in the high density regions far from the core.
This is illustrated in Fig. 4.11, where we have calculated Ekin(x) and Eint(x) for a
profile with two solitons. In this sense, dark solitons can be viewed as the elementary
excitation of a superfluid, which allow for the accommodation of kinetic energy in
the fluid. At pump densities just above the first nonlinear threshold, the polariton
flow from the pump spots towards the central region contains a high kinetic energy
that needs to be accommodated in the form of a large number of solitons, four in the
case depicted in Fig. 4.10(a) in the 12−21 mW range. When the excitation power is
further increased, the higher density in the wire results in an increase of interactions.
In the balance established by Eq. (4.6), a higher weight of the interaction term must
be accompanied by a decrease of the kinetic term, resulting in the expulsion of
solitons. The results of the numerical simulations (Fig. 4.10(b)) reproduce nicely
the features observed in the experiment: at low pump intensities, there is a linear
interference whereas when interactions become significant, the sinusoid transforms
into a soliton train, more precisely an elliptic function shape, as first discussed
in [173] and [174].
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4.2.5 Phase jump of the polariton wave function across the
soliton

Let us comment briefly on the characteristic π phase jump of the wave function
expected across each soliton. Polaritons offer easy access to the phase of the wave
function by interferometric measurements, allowing to verify the presence of this π
phase jump. We use the pump laser beam, which has a constant phase, as a reference
and we overlap this constant-phase reference beam with the real space emission from
the wire (see Fig. 4.12(a)). The phase of the polariton fluid can then be extracted
from the resulting interferogram. In particular, a phase jump of π can be detected
in the interference pattern as a discontinuity in the fringes. Fig. 4.12(c) presents
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Nonlinear regime Linear regime 
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Sample 
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Figure 4.12: (a) Sketch of the experimental setup used to measure the phase of the
polariton fluid. (b) Real space emission profile and (c) corresponding interferogram
of the wire, in the nonlinear regime. A phase jump of π is clearly visible at the
position of the soliton, indicated by the white arrows. (d) Real space emission
profile and (e) corresponding interferogram in the linear regime. A phase jump of
π is also observed around each node of the standing wave pattern, see, e.g., the
position indicated by the white arrows.
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an interference pattern measured in the nonlinear regime, but for slightly different
parameters as in Fig. 4.8. With the choice of experimental parameters here, a single
soliton is present in the wire, as shown in Fig. 4.12(b). A π phase jump across the
soliton is clearly evidenced in the interferogram, at the position indicated by the
white arrows.

We emphasize, however, that measuring this phase jump of π is not sufficient
to ascertain that the density dip in the nonlinear regime is indeed a dark soliton.
As mentioned above, in the linear regime, a standing wave is formed between the
pumping spots. Hence, also in the linear regime, there is a π phase jump across
each density dip, i.e., between each two nodes of the standing wave, as shown in
Fig. 4.12(d),(e), for example at the position indicated by the white arrows. The
nonlinear nature of the dark solitons present at high pumping power is confirmed
by their abrupt generation and expulsion in the power scans, as well as by analysis
of their profile. The presence of the π phase jump is a mere sanity check.

4.2.6 Bistability of the soliton pattern

In this section, we present experiments revealing that such a hysteresis is present
when scanning the pumping power upward or downward. The hysteresis affects not
only the transmitted intensity, but also the field profile in the cavity: we report a
bistability of the soliton pattern, controlled by the pumping power.

Fig. 4.13(a) presents the evolution of the real space emission profile along the
wire, integrated over the transverse direction, in an upward scan of the pumping

(a) (b) 
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1 

Figure 4.13: (a) Integrated density profile measured as a function of pump power,
for an increasing pump power. The number of solitons in the wire for a power range
over which it remains constant is indicated in white. ∆E = 0.27 meV, d = 40 µm
and ∆ϕ ≈ 0 (but non zero). (b) Power scan with the same parameters, but for a
decreasing pump power. Inset: Total intensity in the wire for the upward (red dots)
and downward (blue dots) pump power scans.
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power. Fig. 4.13(b) is the corresponding downward scan, with the same experi-
mental parameters and starting from the maximum pumping power reached in the
upward scan. ∆ϕ is fixed to a value close to zero (but non zero). The threshold
power corresponding to the transition between the linear and the nonlinear regime is
measured at P = 23 mW in the upward scan. In the downward scan, this threshold
value is lowered, at P = 9 mW. As one can see in the inset of Fig. 4.13(b), this
behavior corresponds to a hysteresis loop. There exist a power range over which two
different profiles can be observed, with either zero or two solitons, depending on the
history of the power scan.

Focusing now on the evolution of the profile in the nonlinear regime, we notice,
in the upward scan, a second transition at P = 28 mW from a profile containing two
solitons directly above threshold, to a profile with zero solitons for higher pumping
powers. The mechanism responsible for such a transition has already been discussed
earlier. In the downward scan however, a profile that contains a single soliton is
clearly visible from P = 27 mW down to P = 21 mW, before the transition to a
pattern with two solitons when the power is further decreased. Thus, a bistable
behavior of the soliton pattern in the nonlinear regime is identified. Note that the
existence of a regime with a single soliton is due to the fact that ∆ϕ is not exactly
0, which relaxes the parity condition for the polariton fluid. Profiles with an even
number of solitons are nevertheless still more favorable, which is why the profile
with a single soliton is not observed in the upward scan (the precise influence of ∆ϕ
on the soliton pattern is the topic of the next section).

To summarize, in counterpropagating nonlinear polariton fluids, we have ob-
served the nucleation of dark solitons. Let us summarize briefly what we have
demonstrated until now: in counterpropagating nonlinear polariton fluids, we ob-
served the nucleation of dark solitons. The abrupt expulsion of solitons in a scan of
the excitation power illustrates that solitons are the discrete elementary excitation
of a superfluid, i.e. the way for a superfluid to accommodate kinetic energy. We
have also evidenced bistable behavior of the soliton pattern when scanning the exci-
tation power up and down. So far, we only considered ∆ϕ = 0. In the next section,
we address the influence of the additional degree of freedom provided by the phase
twist ∆ϕ.

4.3 Phase-controlled bistability of the soliton

train

4.3.1 Tuning the phase twist across the wire

We now tune the phase twist ∆ϕ across the polariton fluid imposed by the excitation
lasers, at constant excitation power. We investigate how the soliton train evolves
when changing ∆ϕ.

Figure 4.14(a)-(d) presents the polariton density profiles for a fixed excitation
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Figure 4.14: (a), (c) Spatially resolved emission for P = 57 mW, ∆E = 0.37 meV,
d = 50 µm and: (a) ∆ϕ = 0; (c) ∆ϕ = π. (b), (d) Corresponding intensity profiles
integrated over the transverse direction. (e), (f) Measured –(g), (h) calculated–
intensity profiles for increasing (e),(g) and decreasing (f),(h) phase difference ∆ϕ
between the spots. White dotted lines indicate the value of ∆ϕ for which a soliton
is expelled or generated. The measured number of solitons is indicated in white.

power P = 57 mW (∆E = 0.37 meV) and different values of ∆ϕ. For ∆ϕ = 0
(Fig. 4.14(a)) a symmetric profile is observed with four solitons (more solitons
are present, due to the higher laser energy). On the contrary, when ∆ϕ = π
(Fig. 4.14(c)), an antisymmetric profile is measured, with only three solitons, con-
sistent with the antisymmetric boundary conditions.

When scanning ∆ϕ, the transition between the two situations takes place
abruptly, as shown in Fig. 4.14(e) (white dashed lines). This is in strong contrast
with the linear regime behavior reported in Fig. 4.15: in the linear regime, when ∆ϕ
is scanned, we observe a continuous spatial displacement of the interference pattern.
Indeed, when polariton-polariton interactions are negligible, a linear standing wave
forms, which position is fixed by ∆ϕ, with linear dependence. In comparison, the
abrupt expulsion and generation events attest the nonlinear character of the fluid.
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Figure 4.15: Influence of ∆ϕ in the linear regime. (a) Measured and (b) calculated
emission profile when scanning the phase difference up. Note that no hysteresis is
observed when scanning ∆ϕ down (not shown here).
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Figure 4.16: Evidence for phase-controlled bistability of the soliton pattern. Left:
number of solitons in the upward (red dots) and downwards (blue) scan of ∆ϕ,
extracted from Fig. 4.14. Right: Real-space emission profiles for the value of ∆ϕ
indicated on the left panel.

The abrupt transition in the latter case can be understood in a similar way to the
case of Fig. 4.10, where a scan in power induces a change in interaction energy. In
the present situation, the phase twist results in a change in kinetic energy across
the fluid, which is accommodated via the expulsion or addition of a soliton to the
fluid pattern. When approaching ∆ϕ = π, the choice between the expulsion and
the inclusion of a soliton is settled by the most stable solution at the considered
excitation power.

Remarkably, when scanning ∆ϕ in the upward and downward directions for
a fixed excitation power, we observe a bistable behavior, as already foreseen in
Ref. [163]. In Fig. 4.14(f), ∆ϕ is now decreased, starting from the situation ∆ϕ = 2π
from Fig. 4.14(e). The expulsion or generation of single solitons takes place at
different values of ∆ϕ than in the upward scan. In other words, there exist values
of the phase difference between the beams, for which two different profiles –with
either four or three solitons– are stable, depending on the history of the phase scan,
as shown explicitly in Fig. 4.16. Thus, we evidence a bistability entirely controlled
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Figure 4.17: Phase shift of the linear standing wave pattern versus imposed phase
difference ∆ϕ, extracted from Fig. 4.15(a). The dashed line indicates the theoretical
linear shift. We obtain a standard deviation of 0.03π with respect to the linear shift.

by the relative phase of the pumping beams.

The numerical simulation presented in Fig. 4.14(g,h) is in good qualitative agree-
ment with the measured phase scan, including the bistable behavior. There are
however some differences: first, the range of bistability is slightly smaller in the
experiments as compared to simulations. A possible explanation is the presence of
phase noise in the pump beams, due to mechanical vibrations of the different optical
elements. We can estimate the phase noise from the measured phase scans in the
linear regime (Fig. 4.15(a)). We have measured the shift of the interference pattern
when we vary linearly the relative phase between the two laser beams, as shown in
Fig. 4.17. The standard deviation between the measured interference shift and that
expected in the absence of noise (dashed line) provides an estimate of the phase
noise/fluctuations induced by the experimental setup. We get a standard deviation
of 0.03π, corresponding to vibrations of amplitude of 16 nm, which is less than the
phase increase between two successive steps in the phase scan. The small value of
these fluctuations is thus not enough to explain the significantly smaller bistability
range in the measurement compared to that expected from simulations.

A second difference between experiments and simulations is that the theoretical
patterns shown in the two panels from Fig. 4.14(g,h) transform into each other under
the ∆ϕ→ 2π−∆ϕ transformation, while in the experiment, this symmetry is only
approximately satisfied. Indeed the simulation shows a more regular displacement
of the soliton pattern than the measurement. For instance, when three solitons are
stable, the measured pattern appears almost fixed in space for a wide range of ∆ϕ,
whereas it shifts continuously in the simulations. The presence of spatial disorder in
the wire also needs to be considered. We show in the next section that this can be
explained by the presence of disorder in the wire, as confirmed by simulations when
introducing a small potential dip to model a defect. We will see that the introduction
of disorder also allows to account for the smaller bistability range mentioned above.
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4.3.2 Influence of a defect

Here, we discuss the influence of disorder on the motion of the soliton train when
tuning the phase twist. We perform numerical simulations including an additional
potential energy term that accounts for the presence of defects in the wire. A defect
is modeled by a gaussian potential:

V (x) = Vdefe
−

(x−xdef )
2

w
2 , (4.11)

where the defect depth Vdef can be either positive or negative, xdef is the defect
position and w its width.

From the general theory of solitons in atomic Bose gases [175], it is known that
for repulsive Vdef > 0 defect potentials, the energy of a dark soliton is minimum
when the soliton is located at the defect position where the background atomic
density is lower (and vice-versa for an attractive defect). This is easily understood
in a perturbative picture as the interaction energy with the defect is proportional
to the local particle density. On the other hand, the effective mass of a dark soliton
seen as a quasiparticle is negative, as intuitively understood from the fact that the
dark soliton corresponds to missing particles. As a result, while energy minimization
suggests that a dark soliton tends to bind to a repulsive defect, its actual kinematics
is characterized by a repulsive acceleration [176].

Even if we are not aware of any complete theoretical study for polariton fluids,
we can reasonably expect that these features remain valid also in this case. As
the dissipative nature of these systems reduces the importance of energetic argu-
ments, the physics is however likely to be dominated by the kinetic aspects and our
simulations appear to confirm this naive expectation.

Figure 4.18(a-c) present the results of numerical simulations carried out with
various defects (b,c), compared to a simulation without defects (a). The latter
corresponds to the simulation of Fig. 4.8(g) discussed in the previous section. In
both Fig. 4.18(b) and (c), the defect width is w = 1 µm. It is clearly visible that the
presence of defects modifies the position of the solitons in the wire. More precisely,
a negative defect has an attractive effect for a soliton, while a positive defect repels
solitons.

Fig. 4.18(d-f) shows numerical simulations of the evolution of the soliton pattern
in a scan of ∆ϕ, highlighting the effect of disorder on the soliton train position. As
discussed earlier, the displacement of the soliton pattern, shifted rightwards as ∆ϕ
is increased, is regular in the scan with no defects (d).

In the case of a negative defect (e), the displacement is distorted: due to the
attractive effect of the negative defect, a soliton coming close to the defect position is
pinned and stays at the defect position in a finite range of ∆ϕ. Beyond a threshold
value of ∆ϕ, the soliton is abruptly depinned as indicated by a white arrow in
Fig. 4.18(e). Such behavior is very close to the one experimentally observed and
shown in Fig. 4.14(e,f).
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Figure 4.18: Top row – Numerical simulations of the density profile in a wire
with ∆ϕ = 0 and: (a) no defect. (b) Vdef = −60 µeV, xdef = 0 µm. (c) Vdef =
60 µeV, xdef = 0 µm. On each panel, the blue line is the local interaction energy,
proportional to the local polariton density (Eint(x) = ~gn(x)). The green line is the
potential energy arising from defects. Gray lines are guides for the eye, indicating the
position of the solitons in the profile without defects. Bottom row – Corresponding
phase scans in the upward direction. The white dotted line is a guide for the eye,
indicating the position of the defect in (e) and (f).

For a positive defect on the other hand (f), there is no value of ∆ϕ for which
a soliton is at the defect position, confirming the repulsive effect of the potential
step. Moreover, because of this repulsion, an abrupt jump of the soliton pattern is
observed, with a soliton jumping from the left of the defect to its right (indicated
by the white arrow), when ∆ϕ is increased to the point that the solution with two
solitons on the right of the defect becomes more stable than two solitons on the left.

This interpretation in terms of disorder is further supported by the observation
that different sections of the sample showed slightly different soliton profiles while
keeping the same excitation conditions.

Finally, note that the values of ∆ϕ corresponding to the generation and expulsion
of a soliton are affected by the presence of a defect. In particular, the hysteresis
range measured during a phase scan depends significantly on the disorder in the
wire. This is very clear in Fig. 4.18(d-f), if we remind that the down scan of ∆ϕ is
easily deduced from the up scan, by applying the transformation ∆ϕ→ 2π −∆ϕ.

4.3.3 Control of the number of solitons

Eventually, we demonstrate that the number of solitons in the wire can be controlled
by the different parameters of the experiment: laser detuning ∆E, distance between
the spots d and excitation power P . Figure 4.19 presents the phase scans, at constant
pumping power, in the upward and downward direction, for different configurations
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Figure 4.19: Left column – Phase scans in the upward direction (∆ϕ increasing).
Right column – Corresponding phase scans in the downward direction. The param-
eters for each scans are: (a),(b) ∆E = 0.21 meV, P = 42 mW, d = 60 µm. (c),(d)
∆E = 0.35 meV, P = 90 mW, d = 40 µm. (e),(f) ∆E = 0.20 meV, P = 103 mW,
d = 40 µm. Panels (a), (b) (resp. (c),(d) and (e),(f)) correspond to Fig. 4.20(b)
(resp. (c) and (d)).
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Figure 4.20: (a)-(d) Number of solitons measured when scanning ∆ϕ up (empty
symbols) and down (full symbols). (a) Same parameters as in Fig. 4.10(e),(f); (b)
∆E = 0.21 meV, P = 42 mW, d = 60 µm; (c) ∆E = 0.35 meV, P = 90 mW,
d = 40 µm; (d) ∆E = 0.20 meV, P = 103 mW, d = 40 µm.

of excitation powers and distances d (see figure caption for the parameters values).
The number of solitons versus ∆ϕ in the different scans are summarized in Fig. 4.20.
Abrupt switching between trains with N and N+1 solitons is observed for N ranging
from 0 to 3. In each of these situations, we observe a well defined phase-controlled
bistability.

The phase-controlled bistability is the counterpart of the power-controlled bista-
bility presented first, in the sense that the number of solitons in the wire can be
controlled by two independent parameters: the pumping power P , and the phase
twist imposed across the wire, ∆ϕ. Tuning either of these parameters, the expul-
sion or generation of a soliton is an abrupt event inherent to the discrete nature of
the solitons, and additionally such a transition is associated with a hysteresis when
scanning a single parameter.

4.4 Conclusion and perspectives

4.4.1 Probing soliton-soliton interactions

We have shown that our experimental configuration allows for the nucleation of
dark solitons in a well-controlled manner. We now discuss possible perspectives
for this work. As a first example, we propose a configuration where soliton-soliton
interactions could be explored.

We discussed previously the influence of defects on the solitons position. In
particular, we found that a positive defect has a repulsive effect on dark solitons
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Figure 4.21: (Left) Calculated evolution of the density profile with two solitons,
in an adiabatic sweep of a repulsive defect across the wire. The white dashed line
indicates the defect position. (Right) Distance between the two solitons in the scan
of the defect position.

(Fig. 4.18). The potential hill corresponding to such defect could for example be
induced optically, by means of a non-resonant laser [62]. This way, it is possible to
manipulate the solitons, by moving the defect along the wire to drag the solitons, in
a fully all-optical way. This is illustrated in Fig. 4.21, where we have calculated the
steady-state polariton profile in an adiabatic sweep of a repulsive defect across the
wire. The drive conditions are identical to those in Fig. 4.18, leading to a density
profile with two solitons: d = 50 µm, ∆ϕ = 0, ∆E = 0.27 meV. The defect is
also the same as in Fig. 4.18(c): it is gaussian-shaped with width w = 1 µm and
amplitude Vdef = +60 µeV. The defect position xdef is swept from left to right, at
a speed much slower than all relevant timescales of the system. As xdef is increased,
the defect repels the leftmost soliton, which is displaced rightwards. Interestingly,
the right soliton is also affected shift to the right. The shift increases until at
xdef = −3 µm, the left soliton jumps abruptly to the left of the defect. The right
soliton undergoes a similar jump leftwards. Finally, when xdef is increased further,
the right soliton in turn jumps to the left of the defect, at xdef = 6 µm.

This behavior clearly indicates a repulsive interaction between the dark solitons.
Such behavior is well documented in conservative systems such as in nonlinear optics
and in cold atoms, both theoretically [177–179] and experimentally [180, 181]. In
particular, the interaction between dark solitons is known to fall off exponentially
with distance [177, 182]. Nevertheless, such interactions have not been explored in
the driven-dissipative context of cavity polaritons. The present setup offer great
and simple control on the dark soliton pattern, and seems particularly suited to
such study.

Note that the soliton position is constrained not only by their relative interaction
and repulsion from the defects, but also by the presence of the two driving spots
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at each end of the wire. Since the phase is locked under the spots, solitons cannot
penetrate the driven regions. In this sense the two spots exert a strong repulsive
force on the dark solitons, creating an effective trap. In particular, this explains why
the solitons jumps to the left on the defect when the latter is swept to the right: the
repulsion from the region under the right spot becomes stronger than the one from
the defect.

We have underlined that the two spots of the coherent drive create an effective
trap for the solitons, which in addition to the repulsive soliton-soliton interactions
constrains the soliton position at a fixed ∆ϕ. Another interesting perspective would
be to investigate the dynamics of the soliton train. We discuss this topic in the
following section.

4.4.2 Collective soliton oscillations

Here, we show that using a resonant probe, it is possible to trigger collective oscil-
lations of the solitons. We are going to excite locally the soliton train and look at
its dynamical response.

First, we consider a perturbation of the soliton pattern with a probe pulse,
resonant with the drive. We fix the pulse length to 3 ps (Fig. 4.22(a)), the maximal
amplitude is half the drive amplitude F . The spatial shape of the pulse is Gaussian,
with the same width as each excitation spot (w = 8 µm), centered on x = 0.
In Fig. 4.22(b), we present the calculated time-resolved evolution of the polariton
wave function subsequent to the perturbation by the pulse, at t = 50 ps. The
initial steady-state, a pattern with two dark solitons, corresponds to the same drive
parameters as in the previous paragraph. The soliton pattern is strongly affected
by the perturbation: the two soliton collapse immediately after the pulse. Then,
each soliton trajectory shows damped oscillations, with both the oscillation period
and damping on timescales comparable to the polariton lifetime (we recall that
in these simulation the polariton decay rate is ~γ = 47 µeV, corresponding to a
polariton lifetime of 28 ps). We point out that due to the symmetric nature of the
drive conditions and perturbation, the triggered oscillations are out of phase. In
Fig. 4.22(c), the same pulse is applied to a profile with four solitons initially present
(the spots separation is increased to d = 70 µm), triggering similar oscillations.

Note that since the probe pulse is resonant with the drive, its phase is also
important. We find that different phase lead to different initial perturbation of
the soliton pattern, but qualitatively the behavior is the same (same amplitude
and frequency of the soliton oscillations). Additionally, the amplitude of the initial
perturbation is proportional to the probe amplitude.

The above scheme allows the excitation of soliton oscillations, but one of the
issue is the short damping time, which would hinder the observation of more than
one period of oscillations. To circumvent this issue, we now consider a continuous
perturbation. A weak probe, with amplitude 0.1F , is abruptly switched on, with a
rise time of a few picoseconds (Fig. 4.22(d)). We consider perturbation of a two-
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Figure 4.22: (Left) Perturbation with a probe pulse. (a) Temporal profile of the
pulse, of length τ = 3 ps, as shown in the inset. (b, c) Time-resolved evolution of
the density profile under perturbation by the probe pulse, for a pattern with (b)
two solitons and (c) four solitons. The dashed line indicates the time of arrival of
the pulse, and the white arrow indicated its central position. (Right) Continuous
wave perturbation. (d) Temporal profile of the step-like profile of the probe, with
a rise time shown in inset. (e) Time-resolved evolution of the soliton pattern, at
(lower half) inital times and (upper half) longer times of the evolution. (f, g) Fourier
spectrum of the left, right soliton trajectory.
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soliton pattern. The spatial profile of the probe is identical to the previous one, but
it is displaced to the right side of the wire, in order to break the mirror symmetry
and trigger in-phase soliton oscillations (thus exciting the whole spectrum of soli-
ton oscillations). The calculated time evolution of the density profile under such
perturbation is shown in Fig. 4.22(e). After the perturbation is applied, oscillations
of the soliton pattern occur, but they are not damped and survive at long times
(t > 6 ns). Moreover, two oscillation timescales can be identified: a fast oscillation
corresponds to out of phase oscillations, while in-phase oscillations are present with
a longer period. The Fourier transform of each soliton trajectory reveals the energy
scale associated with these oscillations. The two modes can be interpreted as the
bonding and antibonding excitation modes of the soliton pair. Note that the anti-
bonding mode has an energy of 60 µeV, above the polariton linewidth, which would
enable its experimental observation without time-resolved measurements.

Extending these results to patterns with more solitons, we can consider the
soliton train as a Wigner crystal of dark solitons: mutual repulsion between the
solitons fixes their position in the wire, resulting in a 1D periodic soliton lattice.
The collective oscillations of the soliton train can then be seen as the excitations of
the soliton lattice. A similar configuration was discussed in Ref. [183].

It should be noted that similar oscillations of dark solitons have been experimen-
tally reported in Bose-Einstein condensates of cold atoms [184], and subsequently
investigated theoretically [182]. However, no experimental work has been carried
out in a driven-dissipative context so far.

4.4.3 Conclusion

In conclusion, we have demonstrated in this chapter the ability to generate and
control soliton trains in a 1D polariton quantum fluid. The nucleation of dark
solitons arises from an interplay between the interaction and kinetic energy of the
fluid. Moreover, the ability to impose a controllable phase twist across the fluid using
a coherent drive allowed us to reveal a novel bistable behavior. As we have shown
with numerical simulations, this experimental configuration offers a new perspective
to explore the physics of dark solitons and their interactions, and in particular the
excitation spectrum of a soliton lattice, in pump and probe experiments, or other
theoretical proposals requiring a high level of control over the soliton train. For
example, the realization of a Newton’s cradle based on a soliton lattice has been
proposed [185].

Moreover, we could exploit the polarization degree of freedom of polaritons,
that we have completely ignored in this whole chapter. Using pumping spots with
orthogonal linear polarization, the formation of circularly polarized spin domains has
been predicted [163]. The formation of half soliton trains, which has been discussed
theoretically with different excitation configurations [183, 186, 187] is also at hand.
Note that in the two cases, one would need no energy splitting between the TE and
TM polarized modes of the wire at k = 0, which is in general not the case in our
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samples, due to the polarization-dependence of the boundary conditions in the wire
(as discussed in detail in the next chapter), and additional effects such as strain in
the microstructure induced by etching, so further optimization would be required.
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Chapter5
Nonlinear dynamics of a polariton
fluid in a flat band

In chapter 4 we have seen how the interplay between kinetic and interaction energy
gives rise to a rich variety of phenomena for a nonlinear polariton fluid. In the
present chapter, we investigate the response of the nonlinear fluid when additional
constraints are imposed to its kinetic energy. In particular, we address the question
of the fate of the fluid in a system with infinite effective mass, where the kinetic
energy is completely quenched. Such a case occurs when one of the energy band is
dispersionless, or completely flat: the energy is independent of wave vector k.

In section 5.1, we review briefly the basics of flat band physics and present the
recent progress of its emulation with microcavity polaritons. In section 5.2 we intro-
duce the one dimensional Lieb lattice, investigate the origin of the flat energy band
in this lattice, and discuss its implementation for polaritons. Section 5.3 presents the
experimental results of the resonant injection of a nonlinear polariton fluid in a flat
band. We demonstrate the formation of localized nonlinear domains, in strong con-
trast with the behavior reported in dispersive bands. Numerical simulations based
on the Gross-Pitaevskii equation are carried out, and we discuss the interpretation
for the experimental results. In section 5.4, we investigate the influence of disor-
der on the nonlinear domains, both experimentally and via numerical simulations,
introducing in the latter a simplified disorder model. Finally, conclusions and per-
spectives are discussed in section 5.5. In particular, we present preliminary results
on multistability of nonlinear domains, focusing more specifically on the different
steady-states that can be obtained from identical initial conditions.

117



5. Nonlinear dynamics of a polariton fluid in a flat band

5.1 Introduction to flat band physics

5.1.1 Lattices with a flat band

A flat band is a dispersionless energy band: its energy is independent of the wave
vector k. The corresponding effective mass is infinite, so the kinetic energy in such a
band is zero and single-particle transport is suppressed. Consequently, flat bands are
associated with localized eigenstates. Additionally, due to its dispersionless nature,
a flat band is macroscopically degenerate, and the density of state diverges at the
flat band energy.

Flat bands can be found in a wide variety of systems, among which Landau levels
of a two-dimensional electron gas in a magnetic field [188], Aharonov-Bohm cages in
networks of superconducting wires and normal metal lattices [189–191], or frustrated
magnets [192, 193]. For the latter case, frustration arise from the geometry of the
system. An archetypal example of geometric frustration is found with three spins,
located at each vertices of a triangle and linked by antiferromagnetic couplings. The
antiferromagnetic alignment cannot be fulfilled for the three spins at once, and in
this case the ground state is degenerate. Extending this simple case to a triangular
lattice of antiferromagnetic spins results in a macroscopic degeneracy for the ground
state of the system (corresponding to a flat band).

Certain types of lattices are also known to host a flat band. The study of
such lattices was initiated in 1986 by Sutherland [194]. He described how ’strictly
localized states’ (now called compact localized states) exist in the dice lattice, giving
rise to a flat band. Such states have a vanishing wave function amplitude, except
on a finite number of sites, as illustrated in Fig. 5.1(a) (on a side note, Sutherland
actually first identified those states in quasiperiodic Penrose tilings, and then found
out a design for a periodic lattice where they also exist). The compact localized

+

+

+

+ +
+

+

+
- 

- 

- 

- 

- 

- 

- 

- 

(a) (b) (c)

Figure 5.1: Examples of two-dimensional lattices with a flat band in their energy
spectrum: (a) the dice lattice; (b) the Lieb lattice and (c) the Kagome lattice.
White circles indicate the sites excited by single compact localized states along with
the signs of the eigenstate amplitudes required to eliminate hopping to neighboring
unexcited sites.
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modes arise from a form of geometric frustration similar to the one discussed above,
but here it constrains the phase of the wave function (this mechanism, termed
phase frustration, will be described in detail in the next section). Later works,
in particular by Lieb [195], Mielke [196] and Tasaki [197] extended this idea to
different lattice geometries. Nowadays, many examples of lattices with a flat band
are known, in one, two or three spatial dimensions (see [198] for a review). Famous
two-dimensional lattices with a flat band include the Kagome lattice, and the Lieb
lattice (see Fig. 5.1).

General to any flat band conservative system, due to the absence of kinetic en-
ergy, any perturbation can have dramatic effect, since no matter how weak the
perturbation, it sets a new dominant energy scale for the flat band states. For
example, interactions give rise to correlated many-body states, such as fractional
quantum Hall states [199], spin liquids and spin ices [200], or itinerant ferromag-
netism [195–197]. Note that in a dissipative system, the finite particle lifetime sets a
natural energy scale. In this case, the amplitude of the perturbation must overcome
the linewidth to affect significantly the behavior of the system.

In the specific case of flat band lattices with repulsive particle-particle interac-
tions, theoretical predictions differ depending on the interaction strength. In the
limit of very high interaction, Wigner crystallization is expected at precise values
of the filling factor, depending on the considered lattice [201, 202]. For smaller
interaction strength, the system can be described with the mean-field nonlinear
Schrödinger equation, and discrete solitons (or discrete breathers) typical from pe-
riodic systems with nonlinearities are predicted [203–206]. This formalism and the
associated predictions will be discussed in more details later in this chapter.

Additional topic of particular interest is superfluidity in a flat band. The cuprates
exhibiting high Tc superconductivity have a Lieb lattice structure [207], and the
presence of the flat band is thought to be responsible for the high value of the
critical temperature [208, 209]. Moreover, it has been proposed that the recent
observation of superconductivity in twisted bilayer graphene at magic angle is also
due to the presence of almost flat bands [210, 211].

Finally, another important type of perturbations to the system is disorder. In
a flat band, it has been predicted that disorder may be responsible for a modi-
fied Anderson localization, with unconventional critical exponents and multifractal
behavior in certain types of lattices [212], on the other hand induce an inverse An-
derson localization in other cases [213], or induce mobility edges if the disorder has
specific correlations [214].

In the quest for emulation of this rich physics, intense efforts were made over
the past few years to build artificial flat band lattices. A recent review of these pio-
neering works can be found in Ref. [198]. Among the different platforms in which a
flat band in a frustrated lattice was reported, let us mention cold atoms [218–220],
as well as several photonic systems: lattices of spoof terahertz resonators [215], ar-
rays of coupled lasers [216] and coupled waveguides [217, 221, 222], and microcavity
polaritons [29, 73, 86, 223]. The review of experimental work on flat band in micro-
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Figure 5.2: Examples of photonic flat bands: (a) I. Kagome lattice for terahertz
spoof plasmons. II. Calculated band structure of the lattice. III. Transmission
diagram of the lattice. A minimum in the transmission is observed at the flat band
frequency (dashed line). Images from [215] (b) I. Experimental arrangement for
coupling more than a thousand independent lasers. A mask of apertures placed in
the optical cavity forms the many laser channels. II. Near and far field images of the
emission, for negatively coupled lasers arranged either in a triangular or Kagome
lattice. For the triangular lattice, the sharp Bragg peaks in the far field pattern
indicate long range phase ordering. In the Kagome lattice on the other hand, the
absence of sharp peaks evidences the absence of long range phase ordering, due
to geometric frustration. Images from [216] (c) I. Femtosecond laser-written Lieb
lattice waveguide arrays. II, III. Output profiles from the waveguides, for different
input conditions: II. single-site excitation, leading to diffraction in the lattice, and
III. excitation of a flat band compact state, for which diffraction is suppressed. The
inset indicates the input intensity. Images from [217].
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cavity polaritons is the topic of the next paragraph. For now, let us focus briefly
on the experimental results reported in other photonic platforms, summarized in
Fig. 5.2. In Ref. [215], Nakata et al. fabricated a Kagome lattice of metallic disk
(Fig. 5.2(a)). They characterized the transmission diagram of the lattice in the
terahertz range, and observed a resonance at energy independent of wave vector,
corresponding to a flat band for a spoof plasmonic mode. In Ref. [216], Nixon et al.
fabricated arrays of more than a thousand lasers (Fig. 5.2(b)). A mask of apertures
was placed inside a cavity with gain medium, forming independent laser channels
arranged in a two-dimensional lattice, of arbitrary geometry. Coupling between ad-
jacent lasers is provided by the overlap between neighboring channels. The author
measured the far field emission pattern of a Kagome lattice, and compared it to a
triangular lattice: they observed for the triangular lattice sharp Bragg peaks attest-
ing coherence between all lasers, i.e. long range phase ordering. On the other hand,
for the Kagome lattice no such sharp peak is present in the far field emission pattern.
This lack of long range ordering is an evidence of geometric frustration. Note that
contrary to Ref. [215], here the couplings were antiferromagnetic, and consequently
the flat band is the lowest energy band and the ground state of the system. Finally,
Vicencio et al. [217] and Mukherjee et al. [222] reported two very similar studies,
carried out simultaneously and independently, with 2D Lieb lattices of waveguide
arrays (Fig. 5.2(c). The lattices are written in a fused silica glass wafer, by means of
femtosecond laser pulses. The author of both works reported that when the lattice of
coupled waveguides is excited at its input with proper initial conditions, correspond-
ing to the amplitude and phase of a flat band compact state, then light propagates
without any spatial spreading in the waveguides. On the other hand, other input
states such as a single site excitation leads to diffraction to neighboring sites during
propagation in the waveguides. Recently, Aharonov-Bohm cages for photons were
also reported [224], offering a new approach to the realization of photonic flat bands.

So far, all these works have been limited to a regime where particle-particle
interactions are absent, and the influence of such interactions remains experimentally
unexplored.

5.1.2 Bosonic condensation in the flat band

Flat band lattices have been investigated with microcavity polaritons. The idea to
implement flat bands for polaritons was pioneered by the group of Yamamoto [73].
In this work, a thin metallic film was deposited on top of a planar cavity, and was
patterned into a Kagome lattice (as discussed in chapter 2, a weak confinement
potential for polaritons is created under the thin metallic film). The presence of
an almost flat energy band was observed in the single-particle polariton dispersion
(the confinement potential was too shallow to observe perfectly flat bands). Shortly
after, a flat band was also evidenced in our group, in the p-bands of a honeycomb
lattice of coupled micropillars [29].

More recently, efforts have been oriented towards the observation of bosonic con-
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Figure 5.3: (a) SEM image of a one-dimensional Lieb lattice of coupled micropil-
lars. (b) Momentum-space resolved photoluminescence of the lattice. (c,d) Real
space image of the condensate in the upper dispersive band and in the flat band.
(e) Energy-resolved emission of the dispersive band condensate in real space, mea-
sured along the line of pillars B,C. (f) Energy-resolved emission of the flat band
condensate, measured along the line of pillars A. (g,h) Spatial map of the emission
energy corresponding to (e,f), where the color code indicates the emission energy.
Adapted from [223].

densation in a flat band. In particular, a previous work from our group reported
bosonic condensation in the flat band of a 1D Lieb lattice of coupled micropillars
[223]. The 1D Lieb lattice consists in a stripe of a single unit cell from the 2D
Lieb lattice, and similar to its two-dimensional counterpart, it holds a flat band
(Fig. 5.3(a,b)). The 1D Lieb lattice and the origin of its flat band will be discussed
in details in the next section. Baboux et al. reported that depending on the spatial
configuration of the non-resonant pump, the bosonic condensation can be triggered
either in the upper dispersive band, or in the flat band. The real space image of the
flat band condensates shows dark B sites characteristic of the phase frustration, in
clear contrast with the dispersive band condensate (Fig. 5.3(c,d)). Moreover, mea-
surements on the spatial coherence of the condensate in the flat band reveals very
short coherence length with respect to the dispersive band condensate. The author
attributed this difference to the existence of multiple highly localized condensates in
the flat band, induced by the presence of disorder in the lattice. They confirmed this
with spectral imaging, as shown in Fig. 5.3(e,f). In the dispersive band (Fig. 5.3(e)),
a single monomode extended condensate exists. In strong contrast, in the flat band
(Fig. 5.3(f)), significant spectral variations are visible across the lattice. The re-

122



5. Nonlinear dynamics of a polariton fluid in a flat band

0 

1 (a) 

(b) 

(c) (d) 

S 

P 

H V H V 

Figure 5.4: (a) SEM image of a two-dimensional Lieb lattice of coupled micropil-
lars. Inset: schematic representation of a single unit cell. (b) Momentum-space
resolved photoluminescence of the lattice, with s- and p-bands visible. (c, d) Top
row: real space image of a condensate in the s and p flat band, respectively. Bottom
row: corresponding degree of linear polarization. The color scale is linear with red
(blue) representing H (V) polarization. Adapted from [86].

construction of the main energy of emission per site, shown in Fig. 5.3(h), allows
to identify localized condensates corresponding to CLS. Because of the absence of
kinetic energy in the flat band, any finite amount of disorder localizes the eigen-
states and breaks the degeneracy, leading to the observed fragmentation. Here, the
disorder arises from several factors: imperfection of the cavity and quantum well
during growth, fluctuations in the size of the pillars during the etching, or any other
possible defaults during and after fabrication.

Beyond demonstrating bosonic condensation in a flat band, the work in Ref. [223]
thus underlines the important role of disorder in a system with quenched kinetic
energy. Similar results for polaritons condensates were later reported in 2D Lieb
lattices [83, 86]. In particular, in Ref. [86], Whittaker et al. investigated condensa-
tion in the flat bands formed from the s but also the px,y photonic orbitals (Fig. 5.4).
They observed that the flat band condensates exhibit pseudospin textures, which
they attributed to a form of spin-orbit coupling for polaritons, arising from the
symmetry of the orbital wave functions combined with polarization-dependent hop-
ping energy. Such effect is inherent to the 2D configuration. They also reported
fragmentation of the condensate due to disorder.

In these works, polariton-polariton interactions were negligible. A blueshift of
the polariton dispersion is observed when increasing the pumping power, but is in-
duced by interaction with the excitonic reservoir, created by non-resonant pumping.
Such a blueshift only acts as a global potential, i.e. it is purely a linear contribu-
tion to the equation describing the polariton wave function. In this chapter, we
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5. Nonlinear dynamics of a polariton fluid in a flat band

present investigations of the role of polariton-polariton interactions. In particular,
this requires injecting a polariton fluid in which the interaction energy overcomes
the polariton linewidth (and the amplitude of disorder). To this end, we will use
resonant pumping to inject polariton directly in the flat band.

5.2 One dimensional Lieb lattice for polaritons

5.2.1 Phase frustration in the 1D Lieb lattice

The one-dimensional Lieb lattice (also named stub lattice) is one of the simplest
example of a lattice known to host a flat band in its energy spectrum. In this section,
its properties are studied within the tight binding approximation. As depicted in
Fig. 5.5(a), the unit cell consists in three sites, labeled A,B and C, linked by nearest-
neighbor couplings, of amplitude t for the link B–C and t′ for A–B. Additionally,
each site can have a different on-site energy, labeled EA,B,C (only one orbital per site
is considered). In the tight-binding approximation, the corresponding single-particle
Hamiltonian is:

Ĥ =
∑
l,n

El|ln〉〈ln| −
∑
n

(
t
(
|Bn〉〈Cn|+ |Bn〉〈Cn+1|

)
+ t′|An〉〈Bn|+ h.c.

)
(5.1)

where |ln〉, with l ∈ {A,B,C}, is the wave function of site l in the nth unit cell. It is
convenient to work in momentum space, using the basis of the Fourier transformed
states

|A(k)〉 =
1√
N

∑
n

eikan|An〉 (5.2)

and similar |B(k)〉, |C(k)〉, where N is the total number of unit cells of the lattice
and a the lattice parameter (physical size of the unit cell).

In this basis, Ĥ is recast as a block-diagonal matrix, with 3 x 3 blocks noted
Ĥ(k), corresponding each to a value of k:

Ĥ(k) =

EA −t′ 0

−t′ EB −t(1 + e−ika)

0 −t(1 + eika) EC

 (5.3)

The diagonalization of Ĥ(k) for all k gives the energy spectrum associated with
the lattice, separated in three distinct bands. As shown in Fig. 5.5(b), there exist
sets of parameters for which one of these bands can be turned completely flat (or
dispersionless): the energy is independent of k. In Fig. 5.5(b) this is the case when
EA = EB = EC = 0 and t = t′, while the middle band is dispersive for EA = −0.5t.

Qualitatively, the origin of the flat band can be understood in the following
way. In the lower and upper bands, both dispersive, the eigenfunctions are Bloch
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Figure 5.5: (a) Tight-binding representation of the 1D Lieb lattice. The hopping
energies between sites B − C and A − B are noted t and t′, respectively. (b)
Dispersion relation calculated with t = t′, and on-site energies EB = EC = 0 and
EA = 0 (solid line), EA = −0.5t (dashed gray line). (c-e) Schematic representation
of an eigenmode in the lower (c), upper (d) and middle (e) bands at k=0 (for
EA = EB = EC = 0). Filled circles indicate the relative phase (±) of the wave
function on each site, while empty circles correspond to sites where the amplitude
vanishes. Panel (e) is an example of a CLS in a flat band.

states, linear combinations of |A(k)〉, |B(k)〉, |C(k)〉, delocalized over the whole lat-
tice. We note them |ψ(k)〉 = ak|A(k)〉 + bk|B(k)〉 + ck|C(k)〉. Due to the positive
couplings, the eigenstates with minimum energy are those with the same phase on
each site within the unit cell, i.e. with ak, bk, ck of the same sign. The lower band
eigenstates thus have all sites in phase, as depicted in Fig. 5.5(c). On the contrary,
the eigenstates with maximum energy, the upper band eigenstates, have all sites
out of phase with their nearest neighbor. This corresponds to alternating signs for
ak, bk, ck, see Fig. 5.5(d). Following this line of thought, the eigenstates for the
middle band should be constructed with a site out of phase with its next nearest
neighbor within the unit cell. This implies opposite phase on A and C. But in this
case, there is no natural choice for the phase of site B: this is precisely a situation
of phase frustration on this site (Fig. 5.5(e)). The result is a destructive interference
on site B. Depending on the parameters of the lattice, the destructive interference
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can be complete, and the wave function amplitude on B is exactly zero. Due to
the geometry of the lattice, with the sublattice formed by sites A,C connected only
via the B sublattice, zero amplitude on B implies that tunneling to the next unit
cell can be completely suppressed. In other words, it is possible to build eigenstates
which have non-zero amplitude only on a finite number of sites, in strong contrast
with usual Bloch waves. Such states are called compacted localized states (CLS),
or plaquettes. The CLS of minimal size |fn〉, centered on site n, is represented in
Fig. 5.5(e). It extends over 2 unit cells. The flat band eigenspace is the subspace
generated by {|fn〉}n, the family of CLS centered on each unit cell, which all have
the same energy. Note that this implies that the extended Bloch eigenstates of Ĥ(k)
can be expressed as a linear combinations of CLS. The degeneracy of the flat band
is equal to the number of unit cells in the lattice N .

To understand in quantitative ways the condition for the existence of the flat
band, let us first consider the simple case of equal couplings t = t′, and on-site
energies EA = EB = EC = 0. In this case, the analytical diagonalization of Ĥ(k)
gives the eigenenergies E(k) = 0 ; ±t

√
3 + 2cos(ka), corresponding to the three

bands plotted in Fig. 5.5(b), solid lines. We seek localized eigenstates of Ĥ with
energy 0. This corresponds to solving the linear system of equations for the wave
function amplitudes an, bn, cn on sites A,B,C:

0 = −tbn (5.4a)

0 = −tan − tcn − tcn+1 (5.4b)

0 = −tbn (5.4c)

In particular, this confirms, in accordance with our qualitative discussion, that the
flat band eigenstates have zero amplitude on B, due to the phase frustration. Note
that since Ĥ(k) has 0 as eigenenergy, its determinant is 0. The rank of Ĥ(k) is thus
lower than 3, explaining the two identical equations in (5.4). More importantly, the
CLS of minimal size is then:

|fn〉 =
1√
3

(−|An−1〉+ |Cn〉 − |An〉) (5.5)

depicted in Fig. 5.5(e), as discussed earlier. Note the finite overlap between CLS
centered on neighboring cells, |fn〉 and |fn+1〉: the CLS form a non-orthogonal basis
of the flat band subspace.

Generalization to t 6= t′ preserves the existence of the flat band at E = 0. Indeed,
the determinant of Ĥ(k) is still 0: its first and third column are directly proportional,
for any k (this can also be interpreted in terms of preserved chiral symmetry, so the
band structure is still symmetric [225]). The CLS have modified relative weight on
A,C sites: |fn〉 = |Cn〉 − t/t′(|An−1〉 + |An〉) (with a global normalization factor
omitted).

Taking now into account different on-site energies, the analytical diagonalization
of Ĥ(k) becomes delicate. We set EC = 0 without loss of generality. We notice
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Figure 5.6: Spectral range of the bands as a function of (a) EB, (b) t and (c)
t′. The other parameters are fixed: (a) t = 0.30 meV, t′ = 0.30 meV; (b) EB = 0,
t′ = 0.30 meV; (c) EB = 0, t = 0.30 meV. For all plots EA = EC = 0.

that if EA = 0, we retrieve the proportionality between column 1 and 3 of Ĥ(k),
independently of k: the rank of the matrix is 2 and consequently, Ĥ(k) has 0 as
eigenvalue for all k. We have thus found the sufficient condition that EA = EC for
the existence of a flat band at energy EC . It is simple to prove that this condition
is also necessary.

In the case EA 6= EC , the middle band becomes dispersive, as shown in Fig. 5.5(b)
for EA = −0.5t (dashed gray lines). The destructive interference on site B is not
perfect, and the wave function amplitude on these sites is small but non-zero. We
retrieve the Bloch states as the only eigenstates of the system.

To conclude our presentation of the tight-binding model, let us comment on the
influence of the other parameters (namely EB, t, t′) on the band structure, when
the middle band is flat. For EA = EC = 0, the lower and upper bands are given

by E(k) = EB/2 ±
√

(EB/2)2 + t′2 + t2(2 + 2cos(ka)). The evolution of the band

structure when tuning one parameter only is then easily understood, as summarized
in Fig. 5.6): the main effect of tuning EB is to shift the position of the flat band
relative to the other two bands. t controls the width of the lower and upper bands,
but has no effect on the gap above and below the flat band. Finally, increasing t′

increases the magnitude of gaps around the flat band, and has only little effect on
the amplitude of the dispersive bands.

5.2.2 Engineering of the lattice parameters

As discussed in chapter 1, the implementation of a tight-binding model for polaritons
is achieved by etching arrays of coupled pillars out of a planar cavity. Each pillar acts
as a site of the tight-binding lattice, and the coupling arises from the overlap between
neighboring pillars. For a tight-binding model with a single orbital per site, such as
the one described in the previous section, we are then interested in the s-bands of
the structure, i.e. the bands originating from the hybridization of the lowest energy
mode confined in each micropillar. The different parameters from the theoretical
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Figure 5.7: (a) Geometric configuration of the micropillars in a 1D Lieb lattice
for polaritons. Colored regions indicate the overlap of A, B and C pillars with their
respective neighbor, leading to reduced confinement of the mode within a pillar. (b)
SEM image of the corresponding lattice, etched out of a planar cavity.

model can be tuned with careful design of the geometry of the structure: in a first
approximation, the on-site energy is controlled by the pillar radius, and the coupling
strength depends on the distance between neighboring pillars. However, we will see
in the present section that these two knobs are not completely independent, and that
the precise engineering procedure of the lattice geometry, in order to implement a
target set of parameters, is more subtle.

One-dimensional Lieb lattices for polaritons were fabricated, using e-beam lithog-
raphy to draw a mask of coupled pillars and then etching them out of the planar
cavity, resulting in structures such as the one shown in Fig. 5.7(b). Note that simi-
lar structures were already fabricated for the work of Baboux et al. [223], but on a
sample with 12 GaAs quantum wells, i.e. suited to the study of polariton conden-
sation under non-resonant pumping (which requires strong Rabi splitting–with 12
QW, ΩR = 15 meV). Here, we use a sample dedicated to the study of resonantly in-
jected polaritons fluids, leading to two major differences in sample structure. First,
we use a sample embedding a single QW, in order to maximize polariton-polariton
interactions. Second, we work with an InGaAs QW, to collect photoluminescence
in transmission geometry. Due to the difference in samples, we had to fabricate new
structures. The goal of the present section is to detail how these structures were
designed.

It is important to realize that the condition EA = EC necessary for the middle
band to be flat is relatively fragile, due to our implementation of the tight-binding
model with overlapping pillars. In particular, we can expect that taking equal
diameters for A and C pillars does not result in effective on-site energies EA =
EC . Contrary to the tight-binding approximation, in which the on-site energy is
unaffected by couplings to neighboring sites, the confinement energy in a pillar (i.e.
effective on-site energy) depends on its number of neighbors. Consider, e.g., pillars
A and C: a pillar A has only one neighbor, while pillars C have two. For a fixed
pillar diameter, the confinement is thus reduced in C with respect to A, as depicted
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in Fig. 5.7(a). Consequently, for rA = rC we expect EC < EA. Anticipating this,
we fabricated several lattices, varying the diameter of pillar C for a fixed diameter
for pillar A, in order to achieve EA = EC and obtain a flat band (it turns out that
in the work of Baboux et al., a flat band was indeed observed for a lattice with
rA = rC . We will comment on this specific point later in the discussion).

Aside from getting a flat band, we engineered the lattice parameters with a
second objective in mind: we want to inject a nonlinear polariton fluid into the flat
band. As we have seen in previous chapters, this requires pumping with a laser
slightly blueshifted from the flat band, with a detuning typically equal to few times
the polariton linewidth. We thus want to maximize the gap above the flat band to
increase the range of laser detunings that can be used experimentally (if the laser
energy is above the gap, states from the upper dispersive band might be excited
rather than the desired flat band states).

To achieve EA = EC and fulfill our primary goal, we varied 2rC in the range
[2.8 µm; 3.1 µm], and fixed 2rA = 3.0 µm. For the second objective, we choose B
pillars with a slightly smaller diameter, 2rB = 2.8 µm, to increase effective EB and
shift the dispersive bands upwards with respect to the flat band (see Fig. 5.6(a)).
Moreover, the distance between pillars A and B is set to dA−B = 2.3 µm, while
dB−C is fixed to 2.4 µm. Each lattice consists in 40 unit cells.

We characterize optically the band structure of these lattices in the linear regime.
A single lattice is excited non-resonantly tuning the laser energy around 1.6 eV. The
momentum-space resolved emission for both linear polarizations, parallel (H) and
orthogonal (V) to the chain, of three different structures is shown in Fig. 5.8. In
each case, three bands are evidenced, arising from the hybridization of the s modes
in each pillar.

These bands (dashed lines) are fitted with a tight-binding model, to which we
added a next nearest neighbor coupling term tNNN to Ĥ, with unphysical negative
values. Indeed, an important deviation from tight binding present in the experiment
is the nonorthogonality of orbitals on neighboring sites, i.e. here between s states
in neighboring pillars. It is in particular responsible for the asymmetry between
the lower and upper bands, visible e.g. in Fig. 5.8(c). As originally explained in
Ref. [226], to the first oder, the effect of nonorthogonality on the relation dispersion
can be taken into account by the introduction of a next nearest neighbor coupling
term to the Hamiltonian. However, this does absolutely not correspond to a physical
hopping of polaritons from a pillar to its next nearest neighbor.

The value of the fitting parameters is summarized in Fig. 5.8. Note that for the
upper band, the band folding expected from the tight-binding fit is not observed
in the experiment. This is due to another deviation from our model: the mixing
between the s-and p-bands (p modes are the second lowest energy confined modes
in the pillars). This mixing cannot be captured by our tight-binding model, that
considers only a single s orbital per site. Inclusion of p orbitals in the model is
possible, but beyond the scope of the present study.

Let us first focus on the dispersions measured in H polarization. When rC
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Pol. H 

Pol. V 
2𝑟𝑐 = 3.1µm 2𝑟𝑐 = 3.0µm 2𝑟𝑐 = 2.9µm 
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Figure 5.8: Momentum-space resolved photoluminescence of three distinct 1D
Lieb lattices, for H and V polarizations. The three chains differ by the diameter of
pillar C: (a,d) 2rC = 3.1 µm, (b,e) 2rC = 3.0 µm and (c,f) 2rC = 2.9 µm. Dotted
lines are fits obtained with the tight-binding model. The faint intensity modulation
arises from multiple reflections between the bottom mirror and the polished back
side of the substrate.

Pol. H Pol. V 

2rC  (µm) 3,1 3,0 2,9 3,1 3,0 2,9 

EA  1468,85 1468,87 1468,88 1468,74 1468,76 1468,81 

EB 1468,39 1468,46 1468,63 1468,10 1468,17 1468,34 

EC 1468,62 1468,75 1468,92 1468,35 1468,50 1468,66 

t 0,31 0,30 0,32 0,34 0,34 0,33 

t’ 0,33 0,34 0,34 0,34 0,32 0,33 

tNNN -0,06 -0,05 -0,04 -0,06 -0,07 -0,06 

Figure 5.9: Parameters of the tight-bing Hamiltonian used to fit the dispersion
from Fig. 5.8. A next nearest neighbor term tNNN is added to take into account
deviations from the tight-binding approximation.
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is reduced, starting from 3.1 µm down to 2.9 µm, the width of the middle band
decreases, and finally the band is flat for 2rC = 2.9 µm (Fig. 5.8(a-c)). As seen in
Fig. 5.9, in terms of parameters for the tight binding model extracted from the fits,
the decrease of rC is the cause for an increase of the on-site energy EC . The band
is flat when EA = EC . In accordance with our expectations, the latter does not
happen for the lattice with rA = rC , but for 2rc = 2.9 µm, i.e. rC < rA.

Let us now compare the energy spectrum measured in H and V polarizations.
Similar to Baboux et al., we observe a strong difference between H and V polarized
dispersions: in all the lattices shown in Fig. 5.8, the width of the middle band is
significantly larger in polarization V than in H. For a given lattice, e.g. the one
with 2rC = 3.1 µm, we can see from Fig. 5.9 that this difference in the measured
dispersions is associated with a redshift of the on-site energy of each pillar (in V
polarization, with respect to H), while the couplings remain roughly the same. The
origin of this shift lies in the polarization dependence of the boundary conditions
for the photonic modes in the pillars. Indeed, for an isotropic pillar, H and V
polarized modes are degenerate. In the present situation, however, the overlap
with neighboring pillars creates a local anisotropy. Because of the polarization-
dependent boundary conditions, the anisotropy lifts the degeneracy and creates an
energy splitting between H and V polarized modes. Moreover, pillars A, B and
C have each a different geometry, i.e. different boundary conditions. Thus, the
H-V splitting is different for the three types of pillars. This is indeed the case in
the experiment: we extract from tight-binding fits a splitting of ∼ 0.1 meV for A
pillars, ∼ 0.3 meV for B and ∼ 0.25 meV for C pillars (Fig. 5.9). Note that these
values are independent of rC .

Finally, we point out that this polarization splitting may differ from sample to
sample, in particular when changing the sample structure (number and composition
of Bragg pairs and QWs). It can also depend on the cavity-exciton detuning. In the
work of Baboux et al. for example, the polarization splitting was of opposite sign
as here. This explains why a flat band was observed in a lattice with rA = rC (in
one polarization, the shift compensated the reduced confinement in pillars C). In
particular, this implies that fabricating several lattices, i.e. tuning rC , is necessary
to achieve a flat band, since the polarization-dependent shift cannot be known before
etching.

An important consequence of the splitting is that in the same chain, we get
a perfectly flat band in H polarization, while in V the middle band is dispersive
(for 2rC = 2.9 µm, Fig. 5.8(c,f)). We will later take advantage of this feature to
compare the behavior of a nonlinear polariton fluid in a flat and a dispersive band,
with identical disorder.
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5.3 Injection of a nonlinear polariton fluid in the

flat band

5.3.1 Resonant excitation of the flat band

To investigate the nonlinear dynamics of a polariton fluid in the flat band, we select
a Lieb lattice of pillars which has dispersionless middle band : we work with the
chain that has 2rC = 2.9 µm, in H polarization. The dispersion in both H and V
polarizations is reproduced in Fig. 5.10. Note that in this sample, the exciton energy
is 1473.8 meV. Taking into account the Rabi splitting ΩR = 3.2 meV, in the chosen
lattice the photon-exciton detuning is −4.3 meV in the flat band, and the excitonic
fraction |x|2 = 0.10.

Polaritons are injected into the flat band using a resonant cw laser. As described
in chapter 4, the detuning ∆ between the excitation and the flat band controls
the interaction energy of the injected polariton fluid. The laser is focused into a
Gaussian-shaped elongated spot, of 40µm x 3µm FWHM, centered on the line of
B,C pillars (Fig. 5.11(a)).

Additionally, the angle of incidence of the beam is of importance to address the
flat band modes. This can be understood by studying the momentum-space resolved
photoluminescence (PL) of the flat band modes. This pattern can be obtained by
spectrally filtering the emission at the flat band energy. The (kx, ky) map of the
emission is then reconstructed from spectra such as the one shown in Fig. 5.10 mea-
sured at different values of ky. The result is presented in Fig. 5.11(b): the intensity
is zero at the center of the BZ ((kx, ky) = 0), and is maximal at the BZ edges

H V 

ℏ𝜔𝐻 

ℏ𝜔𝑉 

Figure 5.10: Energy-resolved far field photoluminescence, in H and V polar-
izations, of the Lieb chain of micropillars used for experiments involving resonant
injection of polaritons into a flat band. Solid lines are the tight-binding fits. Arrows
indicate the energy and wave vector of the resonant pump.
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(b)(a)

(c) (d)

0

1

Figure 5.11: (a) Real- (top) and momentum-space (bottom) images of the laser
spot used for resonant excitation. (b) Measured real- and momentum-space photo-
luminescence at the flat band energy. (c,d) Calculated real- and momentum-space
emission pattern of two examples of flat band eigenstates: (c) a single CLS |fn〉;
and (d) a linear combination of four CLS with alternating sign on neighboring cells∑3

j=0(−1)j|fn+j〉. In all panels, dotted lines indicate the edges of the first Brillouin
zone.
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(kx = π/a). This reflects the antisymmetric nature of the flat band eigenmodes
(opposite phase on A,C pillars). Thus, exciting the flat band at the BZ edge en-
sures efficient coupling to the polariton states in the flat band. In consequence, the
pumping beam is tilted from normal incidence by an angle of 5.0◦ in the x direction
(along the chain). In momentum space, this corresponds indeed to the edge of the
first Brillouin zone (BZ) of the lattice, as shown in Fig. 5.11(a).

Note that the real-space photoluminescence at the energy of the flat band can
also be obtained with a similar method (with spectral filtering of the real-space
energy resolved PL). As expected due to geometric frustration, we measure vanishing
intensity on sites B (Fig. 5.11(b), top).

Let us comment briefly on the consequence of exciting the flat band at the BZ
edge. For a Bloch state with wave vector k at the BZ edge, i.e. k = π/a, there is a
phase difference of exactly π between one unit cell and the next. In the case of the
Lieb lattice, the middle band Bloch eigenstate at the BZ edge, obtained from the
diagonalization of Ĥ(k), is |ψ(π/a)〉 = |C(π/a)〉 = 1/

√
N
∑

n(−1)n|Cn〉. In other
words, only pillars C have a non-zero occupation. This state can easily be written
in the basis of CLS: |ψ(π/a)〉 = 1/

√
N
∑

n(−1)n|fn〉. It is nothing but the sum
of CLS on neighboring unit cells, with a phase difference of π between them. The
opposite sign on C sites in neighboring unit cells leads to a destructive interference
also on A sites. Even though in the flat band the relevant eigenstates are not the
Bloch states but the CLS, the coupling of the resonant laser at the BZ edge will
be greater with modes that have a structure similar to the Bloch state |C(π/a)〉.
For example, in Fig. 5.11(c,d) we have calculated the real- and momentum-space
emission pattern of two different localized eigenstates: a single CLS |fn〉 (as given
by Eq. (5.5)), and a linear superposition of four CLSs, of same magnitude but
alternating sign on neighboring sites, which can be written

∑3
j=0(−1)j|fn+j〉. To

compute these radiation patterns we have used a simplistic model to describe the
eigenfunctions of the chain of pillars: we considered a Gaussian-shaped orbital per
pillar (corresponding to the s mode). The orbital at each site was attributed the
amplitude given by the eigenstates from the 0D model, resulting in a real-space wave
function for the whole lattice. The momentum-space radiation pattern was simply
obtained by Fourier transformation of this wave function. The state in Fig. 5.11(d),
with a phase difference of π between neighboring CLS, corresponds exactly to the
Bloch state |C(π/a)〉, but truncated to only 4 unit cells. As a consequence, the
intensity of the radiation pattern in k space is maximal at the edge of the Brillouin
zone, in contrast with the radiation pattern associated with the single CLS. With our
excitation scheme, it is thus easier to excite states of the type of Fig. 5.11(d) rater
than of Fig. 5.11(c), due to the bigger overlap with the pumping spot in momentum
space.

Note that the experimentally measured k-space emission pattern from
Fig. 5.11(b) is the sum of the emission pattern of all flat band eigenmodes. In
particular, this is why it does not correspond perfectly to either Fig. 5.11(c) or (d).
Nevertheless, the experimental ring-shaped pattern from Fig. 5.11(b) is closer to the
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5. Nonlinear dynamics of a polariton fluid in a flat band

pattern in Fig. 5.11(d) than (c). This tends to indicate that the flat band eigen-
modes are not single CLS, but are rather localized over a few unit cells. Since the
localization length in the flat band is strongly influenced by disorder, this gives a
first information on disorder in the lattice (thorough investigation of disorder and
its role is the topic of a later section).

5.3.2 Nonlinear regime

We now investigate the dynamics of the polariton fluid in the flat band in the
nonlinear regime. The energy of the resonant laser is set to ~ωH = 1468.99 meV, i.e
detuned from the flat band by ∆ = 60 µeV, which corresponds to one fifth of the
gap width separating the flat band from the upper dispersive band. Figure 5.12(a)
presents the measured total emitted intensity when scanning the excitation power
P up and down. A complex evolution is observed with several consecutive abrupt
jumps. Moreover, the jumps in the upward and downward scans occur for different
excitation powers such that a clear hysteretic behavior is observed. To understand
the origin of the observed features, we investigate the spatial pattern of the emission.
Fig. 5.12(c-g) show the spatially resolved emission for different excitation powers,
indicated by the arrows in Fig. 5.12(a). We first point out that in all cases, pillars
B are completely dark: the destructive interference due to geometric frustration in
the linear regime survives in the nonlinear regime. In the following, we disregard
pillars B.

For P = 7 mW, above the lowest power intensity jump, Fig. 5.12(c) evidences the
formation of a 4 unit cell (u.c.) nonlinear domain. It is located around the center of
the excitation spot and its shape does not evolve when P is further increased, up to a
power of 10 mW, where the next jump is reached. We then observe the formation of a
larger nonlinear domain with 10 u.c. Actually, in both scans up and down, all jumps
correspond to an evolution of the domain size by a discrete number of unit cells.
This is shown in Fig. 5.13(e), where we have plotted the integrated intensity profile
versus pumping power in the up scan. The profile at a given power was obtained
by integrating the intensity on pillars A and C (see for example Fig. 5.13(a-d)). We
also plot the size of the nonlinear domains in Fig. 5.13(f). Note that the size of
the domains is well defined because their edges are extremely sharp: the emission
intensity drops by more than an order of magnitude over one unit cell on each side.

Due to the hysteretic behavior mentioned above, several patterns can be ob-
served at a given pump power, for example at P = 11 mW where both patterns in
Fig. 5.12(d) and (g) are stable: this is an evidence of bistability of the patterns.
In fact, each abrupt jump event is associated with an hysteresis cycle. To evidence
this we repeat the power scans but with different sweep histories. For example,
starting from the lowest power, we ramp the power up, and immediately after the
jump at P = 10 mW we ramp the power down. Repeating similar procedure at
various abrupt jumps allows to explore the different stable branches. Fig. 5.14(a)
shows the measured total intensity resulting from these various scans. It evidences
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Figure 5.12: Nonlinear regime in the flat band, measured with a H polarized
pumping laser at energy ~ωH , as indicated in Fig. 5.10. (a) Total emission intensity
from the lattice, measured as a function of resonant pumping power. Blue (resp.
red) dots are measured under increasing (decreasing) pumping power. (b) Real-
space resolved image of the excitation spot. Black line is the spot profile, integrated
over the transverse direction. (c-g) Real-space resolved emission from the chain,
measured at the pumping powers indicated in (a). The position of micropillars is
indicated by circles. Black circles are a guide for the eye, denoting pillars for which
intensity is higher than an arbitrary threshold.
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Figure 5.13: (a-d) Intensity profiles, integrated on pillars A (orange bars) and
C (blue), corresponding to the images in Fig. 5.12(d-f). (e) Intensity profile versus
pump power in the upward power scan of Fig. 5.12. The arrows indicate the pro-
files corresponding to panels (a-d). (f) Size of the nonlinear domain versus power,
deduced from (e).
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Figure 5.14: (a) Total emission intensity from the lattice, measured as a function
of resonant pumping power. Each plot color corresponds to a different power scan
history. (b-d) Real-space image of the four stable states at P = 10 mW
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0

1

Figure 5.15: Measurement of the phase of the wave function in the nonlin-
ear regime. (Top) Real-space image of the emission from the lattice. (bottom)
Corresponding normalized interference pattern, obtained by superposition with a
constant-phase reference beam.

the coexistence of multiple stable branches, e.g. four branches at P = 10 mW,
which correspond to the four emission patterns shown in Fig. 5.14(b-e). We thus
demonstrate multistability of the nonlinear domains when resonantly driving the
flat band.

Finally, we underline the fact that in each of the nonlinear domains, a broad
spatial region is present where pillars A are completely dark. As discussed in the
previous section, this is inherited from the linear regime, where the pumping at the
BZ edge imposes a phase difference of π between neighboring unit cells, leading
to a destructive interference on sites A. We verify that the latter argument still
holds in the nonlinear regime: we measure the phase of the polariton fluid in the
lattice, by means of interferometric techniques. Fig. 5.15(b) shows the normalized
interference pattern obtained by overlapping the pumping laser beam, which serves
as a constant-phase reference beam, to the real space emission from the chain of
pillars (same method as discussed in chapter 4, see Fig. 4.12). In cells with a dark
A site, a discontinuity in the fringes is clearly visible between neighboring C pillars,
as indicated by the white arrows. This corresponds indeed to a phase jump of π
between the two C sites.

5.3.3 Comparison with a dispersive band

To emphasize the specificity of the physics of a nonlinear polariton fluid injected in a
flat band, we compare the previously described features with the behavior of a fluid
injected in a dispersive band. We take advantage of the polarization dependence of
the band structure of our chain of micropillars: pumping the chain with a V polarized
beam enables the excitation of the now dispersive middle band, while keeping all
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Figure 5.16: Nonlinear regime in the dispersive middle band, measured with
a V polarized pumping laser at energy ~ωV (a) Total emission intensity from the
lattice, measured as a function of resonant pumping power. Blue (resp. red) dots
are measured under increasing (decreasing) pumping power. (b) Intensity profile,
extracted on pillars A and C, versus pump power in the upward power scan.

other excitation conditions identical (see Fig. 5.10). Additionally, this guarantees
the same disorder configuration in the two cases. Note that in V polarization, the
curvature of the middle band at the BZ edge corresponds to a positive effective mass,
avoiding complications which could arise in a band with negative effective mass.

In Fig. 5.16 we present the results for the nonlinear regime. We use the same
detuning ∆ = 60 µeV with respect to the bottom of the band as in Fig. 5.12,
working on the same portion of the lattice. A much simpler behavior as in the flat
band is observed: first a nonlinear increase in the total emitted intensity is observed
at P = 10 mW, followed by a jump at P = 17 mW in the upward scan, with
an associated bistability range. Additionally, the integrated intensity profile shows
that the intensity evolves smoothly along the lattice, so no clear domain edge can
be defined.

In Fig. 5.17, we compare the spatial profile in the dispersive and flat band, for
the same P . Fig. 5.17(b,d) presents the integrated intensity profile corresponding
to the spatial profiles in panels (a,c), considering only C pillars. For the dispersive
band, we can fit an exponential decay corresponding to a propagation distance of
13.6 µm (2.8 u.c.) for the fluid. In contrast, in the flat band, the abrupt end of the
nonlinear domain is very clear, with more than two orders of magnitude decrease in
pillar intensity over two unit cells, yielding a propagation distance of only 2.1 µm
(0.4 u.c.).

5.3.4 Gross-Pitaevskii equation for the Lieb lattice

We now perform numerical simulations to reproduce and explain the experimental
observations described above. We use the tight-binding formalism to model a lattice
with N unit cells (3N sites in total). We introduce a discrete version of the driven-
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Figure 5.17: (a,c) Spatially resolved emission for P = 19 mW, ∆ = 60 µeV,
in logarithmic color scale, for (a) the dispersive middle band (pol. V) and (c) the
flat band (pol. H). The corresponding intensity profiles integrated on pillars C are
shown in (b,d). The dotted line indicates the shape of the pumping spot.

dissipative Gross-Pitaevskii equation (GPE), to describe the time evolution of the
wave function |ψ(τ)〉. Basically, this correspond to replacing the kinetic energy term
~2∇2/2m in the continuous GPE used in previous chapters, with the couplings given
by the Lieb Hamiltonian Ĥ from Eq. (5.1) (this is easily understood since this kinetic
term describes the unitary evolution of the wave function, as does the Hamiltonian
in a tight-binding model). In the frame rotating at the drive frequency ω, the time
evolution of the wave function |ψ(τ)〉 is described by a set of 3N coupled nonlinear
equations for the wave function amplitudes an(τ), bn(τ), cn(τ):

i~
dan
dτ

=

(
EA − ~ω + ~g|an|2 − i

~γ
2

)
an − t′bn + iFA

n (5.6a)

i~
dbn
dτ

=

(
EB − ~ω + ~g|bn|2 − i

~γ
2

)
bn − t′an − t(cn + cn+1) + iFB

n (5.6b)

i~
dcn
dτ

=

(
EC − ~ω + ~g|cn|2 − i

~γ
2

)
cn − t(bn + bn−1) + iFC

n (5.6c)

where we have considered implicit time dependence for an, bn, cn. In the above
equations, ~g is the polariton-polariton interaction energy and γ the polariton decay
rate. The drive is described by vector F = (..., FA

n , F
B
n , F

C
n , ...). We use a Gaussian
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Figure 5.18: Dispersion relations calculated from the parameters used in the
numerical simulations, for EA = 0 (left) and EA = 6~γ (right). The dot indicates
the drive energy ∆ and wave vector used in Fig. 5.20. The shaded gray region is a
guide for the eye, indicating the total spectral width of the middle dispersive band.

spot of width σ and wave vector kp, such that:

F l
n = Fe−(x

l
n)

2
/4σ

2

e−ikpx
l
n (5.7)

where F is real and describes the drive amplitude, and xln is the spatial coordinate of
site l in the nth unit cell, along the lattice direction: xA,Bn = na+ a/2 and xCn = na
(note that with the above definition, σ is the Gaussian width of the drive intensity
|F l
n|2). Note also that |ψ〉 is not a normalized wave function; in fact |an|2 gives the

number of polaritons on site An (and similar for B,C of course). In the following,
we use either the term population or occupation per site to describe this quantity.

It is convenient to introduce the drive detuning ∆ = ~ω − EC . We notice from
Eq. (5.3) that the eigenenergy of the middle band at the BZ edge is always EC ,
whatever the value of the other parameters (and in particular, whether the band is
flat or not). Thus, this definition of ∆ indeed corresponds to the detuning of the
drive energy from the middle band at k = π/a. In the following we take site C as
the reference energy, i.e. EC = 0, so we can simply identify ~ω with ∆ in Eqs. (5.6).

In the following, we solve for the steady-state of Eqs. (5.6) using parameter
values extracted from the experiment: we take ~γ = 30 µeV, obtained from the
measured linewidth in Fig. 5.26. Considering an exciton-exciton interaction strength
~gexc = 30 µeV.µm2 [46] and excitonic fraction |x|2 = 0.10, we get a polariton-
polariton interaction ~g = |x|4~gexc/A = 0.04 µeV for a pillar with areaA = 7.0 µm2

(corresponding to radius 1.5 µm). The spot width is σ = 3.0 unit cells, and the
wave vector kp = π/a. We consider a chain with 40 unit cells. Finally, the on-
site energies and couplings are extracted from the fits to the dispersion in Fig.5.10
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(see also Fig. 5.9): we use t = t′ = 0.3 meV, EB = −0.3 meV. To model the
experiments in H polarization (flat band), we take EA = 0, and EA = 0.18 meV
for the experiments in polarization V (dispersive middle band). The corresponding
band structures are represented in Fig. 5.18.

5.3.5 Numerical simulations

First, we address the power scan in the flat band. Choosing EA = 0 and ∆ = 3~ω,
we compute the steady-state of Eqs. (5.6) for different drive intensities F 2. The up
and down power scans are obtained by increasing (decreasing) F 2 by small steps
and letting the system evolve to its new steady-state. Figure 5.19(a) presents the
calculated total population in the lattice 〈ψ|ψ〉 =

∑
l,n |ln|

2, in the up and down
scans of the drive intensity. We observe qualitatively similar behavior as the one
reported experimentally: a series of abrupt jumps, happening at different powers for
the up and down scans, resulting in a clear hysteresis. Moreover, the spatial profiles
at a given F , shown for example in Fig. 5.19(b,c), are characterized by a region with
high occupation on sites A,C (while sites B remain dark), delimited by sharp edges
where the occupation drops abruptly. Between each jump event, the size s of these
nonlinear domain remains constant. A jump in the total population corresponds to
a change of the domain size by exactly one unit cell, except for the biggest jump
(at F 2 = 120 in the up scan) which marks the onset of the nonlinear regime. This
is shown in Fig. 5.20(a), where we have plotted the steady-state occupation profile
on sites C, for various values of F 2 in the up scan. Note that in all cases, the

(a)

(b)

(c)

Figure 5.19: Numerical calculations of the polariton population in the nonlinear
regime in a flat band, for ∆ = 3~γ. (a) Total population in the lattice versus drive
power, when increasing (blue dots) and decreasing (red) the drive power. (b,c)
Bistable steady-state profiles in (b) the up scan and (c) the down scan, at the same
power indicated by the arrows in (a). The population |an|2 on sites A (resp. |cn|2
on sites C) is indicated by orange bars (blue).
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Figure 5.20: Comparison between the nonlinear regime in a flat (a) and a dis-
persive band (b), for ∆ = 3~γ. Top: total population in the chain versus drive
intensity F 2, scanning F 2 upwards. Middle: steady-state occupation |cn|2 on sites
C at various drive intensities. The dashed line indicates the shape of the pumping
spot. Bottom: occupation profile |an|2, |cn|2 on sites A,C versus drive intensity.
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occupation drops by approximately one order of magnitude at the domain edges,
which are thus clearly defined. Additionally, we confirm that each jump in the scan
of F 2 is associated with an hysteresis, giving rise to multistability (only bistability
is explicitly demonstrated in Fig. 5.19 since we did not implement various scan
histories to explore all the stable branches).

Note that the fact that each jump corresponds to domain size increase of exactly
one unit cell is not in agreement with the experiment, where jumps of several unit
cells at once are observed (see Fig. 5.13(f)). We explain this later in this chapter,
by taking into account disorder in the numerical simulations.

Also, since we use a symmetric pumping spot, centered on a C site, we could
expect symmetric profiles (i.e with an odd number of sites, and jump event hap-
pening at equal F 2 on each side of the spot), which is not what we obtain in the
calculations (this is especially visible in Fig. 5.20(a), bottom row). We attribute the
asymmetry to fluctuations introduced by numerical errors in the calculation.

Next, we repeat the numerical simulation of the power scan, but for EA = 6~γ,
i.e. when the middle band is dispersive. The total population versus drive inten-
sity, shown in Fig. 5.20(b) for the up scan, displays a single jump. It corresponds
to the onset of the nonlinear regime, when the blueshift due to polariton-polariton
interactions under the pump spot equals ∆. The spatial profile is shown for various
values of F 2: the occupation diminishes smoothly towards the outside of the driving
spot, contrary to the sharp edges observed in the flat band. In accordance with the
experimental observations, the dispersive band behavior corresponds to the propa-
gation of a nonlinear fluid in the lattice, on each side of the pumping spot. Such a
propagation was discussed in details in Ref. [227], where the authors reported the
propagation of nonlinear switching fronts away from a localized excitation spot in a
planar cavity. In a flat band however, our results demonstrate that the propagation
of the switching fronts is frozen: the kinetic energy of the polariton fluid is quenched.
As a result, discrete nonlinear domains are formed.

As for the flat band, we also note a quantitative difference between the power scan
in the dispersive band in the experiment (Fig. 5.18) and in the numerical simulation
(Fig. 5.20(b)). In the experiment we observe a nonlinear increase before the abrupt
jump, whereas only a single jump is present in the simulation. We show in the next
section that this discrepancy is also solved by taking into account disorder.

We now investigate the influence of the interaction energy, which is directly set
by ∆, by computing the power scan for different values of ∆. In particular, we
want to know how the nonlinear domains build up when increasing the interaction
energy. These scans are presented in Fig. 5.21. For the smallest value of the detuning
considered, ∆ = ~Γ, a nonlinear increase of the total population is observed but no
abrupt jump. Above the nonlinear increase, the occupation profile has no clear
domain edges, even though the occupation drops rapidly. This regime is weakly
nonlinear, interactions are too small to play a significant role (here the relevant
energy scale is the polariton lifetime. In particular, note that ∆ = ~γ is just above
the minimal detuning for which bistability occurs, ∆ >

√
3/4~γ). As ∆ is increased
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Figure 5.21: Influence of drive detuning ∆ on the nonlinear regime in the flat
band (EA = 0). Left column: total population in the chain in an increasing drive
intensity scan. Right column: corresponding steady-state occupation |cn|2 on sites
C for a given value of F 2.
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Figure 5.22: Influence of drive detuning ∆ on the nonlinear regime in the disper-
sive band (EA = 6~γ). Left column: total population in the chain in an increasing
drive intensity scan. Right column: corresponding steady-state occupation |cn|2 on
sites C for a given value of F 2.

146



5. Nonlinear dynamics of a polariton fluid in a flat band

further into the gap above the flat band, abrupt jump events appear and become
sharper with higher ∆. Correspondingly, the edges of the nonlinear domain are
visible already at ∆ = 2~γ as a drop by a factor ≈ 5 in the occupation of sites C
(at u.c. ±5 for F 2 = 125 in Fig. 5.21). For ∆ = 4~γ the drop is increased to more
than an order of magnitude.

In comparison, we study the influence of increasing ∆ in the dispersive band.
The different scans are presented in Fig. 5.22. As for the flat band case, for ∆ = ~γ
only a nonlinear increase is observed. For higher values of ∆, a sharp jump appears,
which gets bigger with increasing ∆. As discussed previously, only a single jump is
present in the up scan, and for ∆ ≤ 4~γ the spatial profile demonstrates propagation
of the nonlinear fluid. We comment on the profile with ∆ = 5~γ (for which the drive
energy is in the gap above the middle band) a bit later.

5.3.6 Influence on the spot shape

We have underlined that the formation of nonlinear domains in the flat band is in-
herent to the absence of kinetic energy in such a system. An important consequence
is that the Gaussian shape of the pumping spot has a strong influence on the precise
size of the domain that forms in the nonlinear regime, as we demonstrate now.

Qualitatively, the dependence on the drive intensity of the domain size can be
understood in terms of the CLS |fn〉 discussed previously (Eq. (5.5)). There have
been recent theoretical predictions that the linear CLS, and any linear superposition
of them, are still eigenstates in the presence of interactions [203, 204]. However, these
nonlinear CLS require precise shaping of the pump intensity and phase in order to be
addressed with a resonant pump [228]. In the present situation, the Gaussian shape
of the pumping spot does not allow for the observation of these states. Still, for a
qualitative discussion on the domain formation we can consider them as a relevant
basis to describe the nonlinear steady-states. As discussed in chapter 4 and for the
dispersive band, the onset of the nonlinear regime for a single CLS happens when
the polariton population is such that the interaction-induced blueshift equals ∆.
This corresponds to a threshold value for the drive intensity Fth. But because of the
absence of propagation, we can also consider a CLS on a given unit as independent
from CLS on neighboring cells. Consequently, at a given F , the size of the domain
is determined only by the number of unit cells for which the local drive intensity
(determined by the Gaussian shape of the spot) is higher than Fth. As the power
is ramped up, an abrupt increase in the domain size is observed whenever the drive
intensity on the unit cell right outside the domain edge reaches this threshold value,
and the domain size increases by one unit cell as one CLS is brought to the nonlinear
regime.

This is of course a simplistic picture, in particular because neighboring CLS have
a finite overlap and thus cannot be considered as independent. However, it gives
a good intuition of how the domain size is affected by the spot shape. To confirm
this, we repeat the numerical simulations for the power scan in the flat band, but
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(a) (b)

Driven sites:

Figure 5.23: Numerical simulations of the nonlinear regime in a flat band pumped
with a top hat spot. (a) Size of the nonlinear domain in the up (blue) and down
(red) power scan. (b) Occupation profile on sites A,C versus drive intensity F 2, in
the up scan. The image on top depicts the shape of the pumping spot (sites where
F l
n 6= 0 are in black).

this time using a top-hat spot. The drive amplitude F l
n on a given site ln is given

by:

F l
n =

{
Fe−ikpx

l
n if |xln| ≤ w/2

0 otherwise
(5.8)

where w is the width of the spot. We set w = 9 u.c. and take the same detuning
∆ = 3~γ as previously (and keep kp = π/a).

The results are presented in Fig. 5.23, and confirm the picture discussed above:
as seen in panel (a), in both the up and down scan, the size of the nonlinear do-
main shows two jumps close to the threshold for the nonlinear regime, but remains
constant for the highest values of F 2. The evolution of the occupation on sites A,C
shown in Fig. 5.23(b) confirms the sharp edges of the domain. With the top-hat spot
profile, each site is either driven or undriven, so the size of the nonlinear domain
is directly fixed by the spot width (even though all sites should jump together, at
the same drive intensity). Here, the initial consecutive jumps in the up scan are
attributed to the sensitivity to fluctuations around the threshold for the nonlinear
regime (and similar for the down scan). Note also that the size of the domain is
bigger than the spot size by one unit cell on each side. This is due to the overlap
between the outer CLS and the pumping spot on the last site A of the driven region.

5.3.7 Interpretation of the domains as Truncated Bloch
Waves

The nonlinear domains that form in the flat band can actually be classified as a
specific form of gap solitons, namely Truncated Bloch Waves. To evidence this, we
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Figure 5.24: Left: zoom on the middle band and the gap above it, calculated
for EA = 6~γ. The shaded gray region is a guide for the eye, indicating the total
spectral width of the middle band. Blue dots indicate the drive energy and wave
vector used in each of the right panels. Right: steady-state occupation |cn|2 on sites
C for different values of ∆, in the nonlinear regime (for a value of F 2 indicated in
each panel).

first investigate with numerical simulations the behavior of a nonlinear fluid injected
in the gap above a dispersive band. Indeed, a significant difference between the flat
and dispersive band is that for a flat band, for any finite detuning ∆, the drive
energy is in the gap. We have seen that in comparison, in a dispersive band, for
values of ∆ smaller than the bandwidth there is propagation in the lattice. But
what happens when ∆ is larger than the bandwidth, i.e. when the drive energy is
in the gap ?

Figure 5.24 presents the steady-state profiles calculated for EA = 6~γ, and dif-
ferent values of the drive energy: ∆ = 4, 5 and 7~γ, in the nonlinear regime. Note
that for EA = 6~γ, the width of the middle band is ∼ 4.6~γ. For ∆ = 4~γ, i.e.
for a drive below the band edge, the propagation outside the spot is visible as an
exponentially decaying polariton occupation. The slope of this decay depends on γ
and on the group velocity 1/~(∂E/∂k) at energy ∆. Increasing the drive energy to
∆ = 5~γ, in the gap above the middle band, a sharp decrease in the occupation is
now observed at u.c ±11. This is reminiscent of the flat band nonlinear domains.
Here the propagation of particles is prevented because the drive injects polaritons
with an energy within a gap: there is no single-particle state at this energy. The
tunneling from a highly occupied site (where the energy is renormalized by inter-
actions) to a neighboring site with low occupation is impossible. For ∆ = 7~γ,
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(a)

(b)

(c)

(d)

Theory

TBW in atomic BEC

TBW in nonlinear fibers

TBW in temporal lattices

Figure 5.25: (a) Left: theoretical band-gap diagram of a 1D lattice showing
bifurcation of nonlinear Bloch waves from the band edges. Solid circles correspond
to the TBW shown in panels C,D. Dashed lines in C,D are the associated nonlinear
extended Bloch waves. Images from [229]. (b) Observation of self-trapping in a
BEC of cold atoms loaded in a deep periodic lattice. In contrast to the diffusive
regime observed for a low initial number of atoms (black squares), repulsive atom-
atom interactions lead to a stopping of the global expansion of the wave packet for
a high initial atom number (gray circles). In this self-trapping regime, the wave
packet develops steep edges (shown in the lower inset), i.e. a TBW is formed.
Images from [230]. (c) Experimental observation of TBW in periodic arrays of
optical waveguides with defocusing nonlinearity. (Top) Input beam profile, (middle)
diffraction pattern in the linear regime at the output and (bottom) localization for
high nonlinearities. Images from [231]. (d) Observation of TBW in a temporal
lattice, using a recirculating fiber-loop setup. Top left: Linear evolution of a six-pulse
sequence, in the absence of nonlinearity, resulting in a discrete diffraction pattern.
Other panels: formation and stable propagation, in presence of nonlinearities, of
(top right) a single gap soliton, (bottom left) a TBW with six peaks and (bottom
right) a different TBW, with a defect at its center. Images from [232].
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further into the gap, the renormalization caused by interactions is increased, and
accordingly, the domain edge is even sharper.

This self-trapping localization mechanism arising from the interplay between
interactions and the existence of an energy gap is precisely the one at play for
so-called gap solitons [233, 234]. In particular, the existence of soliton clusters
extending over few lattice sites was discussed from a theoretical standpoint a few
years ago by the group of Kivshar [229, 235, 236]. These states were called Truncated
Bloch Waves (TBW), as they correspond to nonlinear Bloch waves truncated to a
few unit cells, as represented in Fig. 5.25(a). They bifurcate from the band edges.
Their experimental observation was also reported in conservative systems such as
cold atoms [230], arrays of coupled waveguides [231] or optical fiber loops [232].
These experimental results are summarized in Fig. 5.25(b-d).

From the above considerations, it follows that the nonlinear domains created in
the flat band can also be classified as TBW: because the band width is zero, for any
finite value of ∆ the drive energy is in the gap. This facilitates their experimental
observation, since it reduces the interaction energy required to the self-trapping
mechanism. Our results thus demonstrate the generation of TBW in a driven-
dissipative context. In particular, the drive and dissipation allow to generate such
structures and control their size via the pumping power, and observe multistability
of the different patterns.

5.4 Influence of disorder

5.4.1 Experimental disorder characterization

We already mentioned that disorder is an important element to take into account
in a flat band. We also pointed out a discrepancy between the experiment and
numerical simulation: the fact that in the simulation, the nonlinear domain size
always increases by one unit cell only, whereas jumps of several cells are observed
in the experiment. We suggested that disorder was responsible for such effects. In
this section, we investigate the precise effect of disorder on the size and shape of the
nonlinear domains.

First, we characterize the disorder present in our lattice. We can access partial
information on this disorder with resonant spectroscopy of the flat band eigenstates,
in the linear regime. To this end, we tune the laser in resonance with the flat band,
and scan the energy across the band, using a very weak pumping power, well in
the linear regime (typically P ∼ 10 µeV). The results for the same portion of the
chain as in Fig. 5.16 are presented in Fig 5.26. In particular, Fig. 5.26(a) shows
the emission intensity on pillars A and C versus the resonant laser energy. When
the laser is in resonance with an eigenstate, an intensity maximum is observed: this
reveals that the energy of the flat band eigenstates changes slightly over few unit
cells wide regions. Eigenstates are detected over a range of approx. 100 µeV. For
example, Fig. 5.26(b) and (c) show the real-space emission for two different energies,
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C pillars 

(c)  E = 1468.89 meV 

(b)  E = 1468.93 meV (a) A pillars 

0 1 

Figure 5.26: Measured intensity profile on pillars A,C as a function of resonant
drive energy, in the linear regime (P = 10 mW). The dotted line indicates the drive
energy ~ωH used for the power scans in Fig. 5.12. (b,c) Real-space emission patterns
measured for a drive energy indicated by the arrows in panel (a).

corresponding to two different eigenstates. In accordance with the results reported
in Ref. [223], we find that disorder fragments the flat band into smaller domains.

We remind that since the k of the pump is at the BZ edge, it couples better to
specific eigenmodes, which have high intensity at k = π/a in their momentum-space
radiation pattern. For this reason, note that the disorder characterization from
Fig. 5.26 is only partial: it does not reveal all of the eigenstates (in particular, we
miss the modes close to the single CLS, see Fig. 5.11 and the associated discussion).

To evidence the effect of disorder in the nonlinear regime, we now repeat the
power scan on a different portion of the chain. The disorder landscape of this new
portion is presented in Fig. 5.27(a). The power scan is carried out using similar ∆
(precisely, with ~ωH = 1468.94 meV, as indicated by the dotted line on Fig. 5.27(a)).
The results are presented in Fig. 5.27(b-d): the global features described previously
are still present, namely the observation of a nonlinear domain of finite size, which
increases by abrupt jumps as the power is ramped up. A hysteresis is also present
when the power is ramped down. However, the precise shape and size of the pattern
is significantly different from the scan in the first portion of the chain, reproduced in
Fig. 5.27(e,f). Since the only difference between these two situations is the disorder
landscape, these results suggest that disorder has a pinning effect for the edges of
the nonlinear domain, influencing the exact domain size for a given power.

5.4.2 Modeling disorder

The above experimental observations have underlined the crucial role of disorder
on the shape and size of the nonlinear domains. To confirm the pinning effect of
disorder on the switching fronts (i.e. the domain edges), we perform numerical
simulations that take disorder into account. We consider disorder on the on-site
energies only, since disorder on the couplings does not fragment the flat band into
eigenstates with different energies.
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Figure 5.27: (a) Measured intensity profile on pillars A,C as a function of resonant
drive energy, in the linear regime, on a different portion of the lattice than that
studied in section 5.4 and Fig. 5.26. (b-d) Nonlinear regime in this portion. (b)
Total emission intensity from the lattice, measured as a function of resonant pumping
power, scanning the power up (blue dots) and down (red). (c) Integrated intensity
profile versus pump power in the upward power scan and (d) corresponding size of
the nonlinear domain. (e, f) Same as (c,d) but on the previous portion of the lattice
(reproduced from Fig. 5.13).
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Figure 5.28: Influence of disorder in the nonlinear regime for the flat band.
Occupation profile |a2

n, |cn|2 on sites A,C versus drive intensity in the up scan, for
different redshift amplitudes δdis, and ∆ = 3~γ. The redshift is applied to sites
indicated in black in the schematic representation of the lattice in the top right.
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Figure 5.29: Size of the nonlinear domain versus drive intensity for the power
scans presented in Fig. 5.28.

Even though we were able to perform a characterization of the disorder landscape
in the lattice (Fig. 5.26), we have already pointed out that such a characterization
was only partial due to the specific pump wave vector at the BZ edge. Moreover, even
with a measurement giving complete access to the linear eigenstates, the deconvolu-
tion to reconstruct the precise on-site energy on each pillar would be a challenging
task. We thus consider a simplified model for disorder in our numerical simulations:
we add a redshift δdis on the sites of 3 unit cells. These cells are located to the left
of the pumping spot, as depicted in Fig. 5.28. This creates locally similar redshifted
eigenstates as the ones observed experimentally in Fig. 5.26 at position −3u.c.

Figure 5.28 presents the occupation on sites A,C in an increasing F 2 scan, com-
puted for different values of δdis and ∆ = 3~γ. The domain size versus drive intensity
is extracted from all of these scans and plotted in Fig. 5.29. Recall that in the ab-
sence of disorder (δdis = 0, solid line), the domain edge progresses by one unit cell at
each jump. When disorder is included, e.g for δdis = 0.5~γ, a bigger jump from 6 to 9
u.c at F 2 = 250 is observed. For the spatial pattern, it corresponds to a progression
of the domain edge through all disordered sites at once. For bigger disorder ampli-
tude, even bigger jumps in the domain size are observed, at higher drive intensity.
In other words, for increasing δdis, there is an increasing range of drive intensities F 2

for which the left domain edge is pinned at the position of the rightmost redshifted
state (at u.c. -2). Note, on the other hand, that as we could expect, the evolution
of the domain size on the right side of the spot, where no disorder was added, is
only very little affected by the increase of δdis. From this we can conclude that the
redshifted sites create a barrier for the polariton fluid, which has a strong pinning
effect for the domain edges. We can understand this from our previous discussion on
the formation of the nonlinear domains: on the redshifted sites, the effective detun-
ing between the drive and flat band modes is bigger (by δdis). Thus, the threshold
power corresponding to the onset of the nonlinear regime is increased on these sites.
A higher drive intensity is required for the domain to extend on the redshifted sites,
with respect to the other sites, resulting in the pinning effect described above.
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Figure 5.30: Influence of disorder in the nonlinear regime for the dispersive
band. (a) Calculated total population in the lattice versus F 2, in the up (blue)
and down (red) scan. (b) Occupation profile on sites A,C versus F 2 in the up scan.
The redshift amplitude was δdis = 2~γ on the same sites as for the flat band, and
∆ = 1.5~γ. (c,d) Comparison with the total emission intensity and intensity profile
measured in the dispersive band (reproduced from Fig. 5.16.)

These simple simulations confirm the determinant influence of disorder on the
precise size of the domain at a given F 2. In the experiment, the disorder landscape is
certainly more complex, and complete deconvolution of the role of disorder is harder.
However, if we were able to implement the experimental disorder configuration in the
numerical simulations, we could expect to reproduce with high fidelity the evolution
of the domain size versus power.

Finally, note that disorder also has an influence on the nonlinear regime in the
dispersive band. This is due to the fact that the disorder amplitude in the experi-
ment, on the order of 50 µeV, is comparable to the interaction and kinetic energy
of the fluid with our choice of laser detuning ∆ = 60 µeV. In Fig. 5.30, we present
the results of a numerical simulation taking disorder into account in the dispersive
band: we have set δdis = −2γ, ∆ = 1.5~γ and EA = 6~γ. The total population
versus drive intensity in the up and down scans, as well as the spatial occupation
profile on sites A,C in the up scan are in excellent agreement with the experimental
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results, reproduced in Fig. 5.30(c,d). In particular, the presence of disorder explains
the first nonlinear increase in the total population before the abrupt jump (only
one jump was observed in disorder free simulations, see e.g. Fig. 5.28). We point
out that the effect of disorder is easier to capture in the dispersive band because
the finite kinetic energy attenuates the impact of disorder on the fluid dynamics,
allowing for a faithful reproduction of the experimental features in the numerical
simulations.

5.5 Conclusion and perspectives

5.5.1 Excitation on a single site

All of the experiments discussed so far used an elongated excitation spot. We now
present preliminary studies on excitation with a small spot, addressing a single pillar
of the chain.

First, we point out that excitation with a long spot presents important limita-
tions. To understand this, and see why single site excitation might be of interest,
let us come back briefly to our discussion on disorder. We have underlined that in
the nonlinear regime, the domain size at a given power is the result of a competi-
tion between disorder and interactions. In particular, we confirmed this with the
introduction of a simple model for disorder in the numerical simulations. However,
as we already mentioned, the experimental disorder landscape is more complicated,
and even its characterization by resonant spectroscopy (as presented in Fig. 5.26)
was only partial. But actually, it is possible to gain more information on disorder
in the lattice, by changing the excitation conditions. As a first example, changing
the pump central wave vector enables coupling to eigenmodes which have a differ-
ent radiation pattern, such as the single CLS (see Fig. 5.11). Thus, we repeat the
resonant spectroscopy of the flat band, with an elongated spot, but changing the
angle of incidence of the pumping beam to normal incidence, such that the pump
central wave vector is kp = 0 (i.e. exciting at the BZ center). The result is presented
in Fig. 5.31(b), whereas the previous characterization with kp = π/a on the same
portion is reproduced in Fig. 5.31(a). The measurement with kp = 0 reveals that the
region between u.c -1 and +4 is fragmented by disorder, even though no disordered
modes were visible in the scan with kp = π/a. In other words, this illustrates the
fact that using an elongated spot reduces the effective number of eigenmodes that
we can couple to (due to the verify specific phase profile that the pump imposes).
Opting for single-site excitation allows to relax this constraint, retrieving the full
degeneracy of the flat band.

Note that single-site excitation provides yet another way to probe disorder. Fig-
ure 5.31(c,d) presents the resonant spectroscopy of the flat band using a small spot,
i.e. with single-site excitation (still on the same portion of the chain). There, the
spot was exciting a single pillar C, on two neighboring unit cells for the two scans.
These measurements reveal all of the eigenstates that have a finite overlap with the
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Figure 5.31: Disorder characterization of a single portion of the chain with differ-
ent drive conditions. (a,b) Pumping with an elongated Gaussian spot, with central
wave vector (c) at the BZ edge, kp = π/a and (d) at the BZ center, kp = 0. (c,d)
Pumping a single C site, indicated by the arrow.

excited site. In this sense they are complementary with the long spot measurements
from Fig. 5.31(a,b) (they contain redundant information–a full disorder character-
ization could be obtained either by repeating the long spot resonant scan for all k
or equivalently the small spot scan on all sites).

We repeat the power scan experiments with a laser slightly blueshifted from the
flat band, but this time using single-site excitation. Figure 5.32 presents the results
of multiple power scans, with different scanning histories, for a pumping beam fo-
cused on the pillar A indicated by the arrow in panel (b) (and with ∆ = 120µeV).
The total intensity versus power in Fig. 5.32(a) shows multiple abrupt jumps and
multistability. The real-space pattern corresponding to the three nonlinear branches
in (a) are shown in Fig. 5.32(b-d). Similar to the long spot experiments, we observe
the formation of localized nonlinear domains. The domain size changes by abrupt
jumps, with an associated hysteresis for each jump. However, the multistability pre-
sented here has a very peculiar feature: starting from the steady-state in Fig. 5.32(c)
with P = 20mW and decreasing the power, we observe at P = 15mW a jump which
corresponds to an increase of the total intensity in the chain. This goes against the
usual paradigm of increasing polariton population with increasing pumping power.
We attribute this effect to the competition between disorder and interactions. Even
though further investigation would be required, our interpretation is that the ef-
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Figure 5.32: Evidence of multistability for single-site drive. (a) Total emission
intensity versus power, for various sweep directions. Each color corresponds to a dif-
ferent scanning history, as indicated by the colored arrows. (b-d) Spatially-resolved
emission corresponding to the powers and branches indicated by black arrows in (a).
The arrow in (b) indicates the driven site.

fective detuning and overlap with the drive is different for each of the disordered
linear eigenstates. This affects the power range of stability for the different non-
linear branches associated with each of these eigenstates, resulting in the complex
multistability observed in the experiment.

A confirmation for this interpretation is that this effect is very fragile: it depends
heavily on disorder as well as on the laser energy. This can be easily understood: it
is demonstrated in Ref. [46] that for a much simpler setting, i.e two coupled pillars,
with only two linear eigenstates, up to 5 stable modes can be found in the nonlinear
regime. In the present situation, with a complex disorder landscape such as the
one in Fig. 5.31(d), where several eigenmodes with different energies coexist on the
driven pillar as well as on neighboring pillars, predicting the number of stable modes
and their stability range becomes a very challenging task. Even slightly different
disorder configurations might lead to very different nonlinear behavior.

In fact, for specific disorder and laser detuning, we could even observe more
intriguing behavior. In the multistability from Fig. 5.32, the steady-state pattern
that we observe is always fully determined by the history of the power scan. In
particular, identical initial conditions lead to an identical steady-state pattern. To
the contrary, we have found experimental conditions where it is possible to obtain
different steady-state patterns from the same initial conditions. The experimental
parameters were the following: we excited the same pillar C as in Fig. 5.31(c), and
set the laser energy ~ωH = 1469.11meV and power P = 23mW. Several initial-
izations of the system (simply realized by switching the laser off and on again, on
timescales of a few milliseconds, i.e. much slower than any relevant timescales for
exciton-polaritons) resulted in the observation of the three distinct patterns shown
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Figure 5.33: Spatially-resolved emission patterns measured with identical pump-
ing conditions, but after several initializations of the system. The arrow indicates
the driven site.

in Fig. 5.33. This effect is very fragile when changing either laser detuning or disor-
der configuration. Even though we were able to reproduce these observations on the
same position on the chain but on different dates (several months apart), further
investigations would be required to ascertain the origin of this seemingly chaotic
behavior.

5.5.2 Conclusion

In conclusion, we have investigated the dynamics of a nonlinear polariton fluid res-
onantly injected in a flat band. We have demonstrated that due to the absence of
kinetic energy, propagation of the nonlinear switching fronts is suppressed, resulting
in the formation of domains of discrete size, that can be interpreted as Truncated
Bloch Waves. We have shown that the size of these domains is controlled by the
power of the drive laser, and have evidenced multistability of the domains of different
size.

These results mark a first step in the exploration of the physics of flat bands in
the presence of particle interactions. A natural extension of this work would be to
different lattice geometries with a flat band, and in particular in higher dimensions.
For example, in the 2D Lieb lattice, the flat band is not gapped from the other
two bands, and it is not clear whether the switching fronts propagation would still
be frozen. Additionally, determination of the excitation spectrum of the nonlinear
fluid might be of interest, regarding interpretations in terms of superfluidity. We
have also shown that the interplay between disorder and interactions leads to very
rich multistability diagrams and seemingly chaotic behavior, which calls for further
investigations.

Another possible future prospect is studying quantum fluctuations, as was done
in recent polariton works [237, 238], but in a frustrated lattice. It has been predicted
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that in a 1D Lieb lattice with partial driving (on sites A), the photon emitted from
the dark sites show strong bunching, for a strength of nonlinearity comparable to
ours [239, 240]. This is an interesting proposal towards the realization of strongly
correlated phases of light, beyond the mean field approximation. However, the main
challenge is that the proposed experiment relies on measuring the correlations of
photons emitted by dark B sites, meaning that the rate of photon emission would
be extremely small. A very efficient single photon detector is thus required for this
experiment.

Finally, a topic attracting great interest recently is the interplay between topol-
ogy and a flat band. For example, a recent theoretical proposal from Ozawa [241]
presents a scheme to measure the quantum geometric tensor of the flat band in a
photonic 2D Lieb lattice. Additionally, there is an intense effort to realize topologi-
cal flat bands, i.e. flat bands with nontrivial Chern numbers [242, 243]. A precious
ingredient for the realization of such a flat band is spin-orbit coupling, which has
been engineered in a 2D Lieb lattice of coupled pillars [86]. This should allow to fur-
ther explore the delicate interplay of frustration, interactions, and topology, which
has been predicted, in the regime of strong interactions, to lead to the emergence
of fractional quantum Hall states, without Landau levels [244–246]. Let us mention
that so far, polariton-polariton interactions are too weak to observe such effects.
However, reaching the regime of strong polariton-polariton interactions, where non-
linear effects could be observed at the single-particle level, is currently one of the
main goals of the research field of microcavity polaritons. Promising strategies are
being explored [247, 248], and the requirements in terms of interaction strength for
the above proposals could be reached in a near future.
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Conclusion

In this thesis, we have investigated the dynamics of polaritons fluids in various
one-dimensional structures. The possibility to etch microstructures with controlled
geometry allowed to engineer the band structure and localization properties of the
linear polariton eigenstates. We have used this feature to explore the interplay
between kinetic and interaction energy in nonlinear polariton fluids.

In the first part, we have studied the linear localization properties of the Aubry-
André-Harper-Fibonacci family of quasi-crystals. Our collaborators from the group
of O. Zilberberg have established a theoretical localization phase diagram in the case
a tight-binding model of quasicrystal, and identified an unexpected delocalization-
localization transition when continuously deforming a Aubry-André-Harper qua-
sicrystal towards a Fibonacci quasicrystal. We have extended the theoretical local-
ization diagram to the case of a nearly-free particle model, more suited to implemen-
tation with 1D polariton microstructures. Our analysis confirmed the presence of the
delocalization tongue in this nearly-free model. We have then designed and etched
1D wires with modulated lateral dimension, in order to implement the quasiperiodic
AAHF potential. The localization properties were probed using photoluminescence
measurements both under non-resonant excitation and in resonant spectroscopy
experiments. We have been able to establish an experimental localization phase
diagram, and evidenced the delocalization-localization transition predicted by our
theoretical analysis.

In the second part of this thesis, we have considered the counter-propagation
of two nonlinear polariton fluids in a 1D channel. The fluids were injected using
resonant excitation. When ramping the pumping power up, the linear interference
pattern transformed into a train of dark solitons. We explained the formation of dark
solitons as the result of the interplay between the kinetic and interaction energy of
the fluid. More precisely, dark solitons are the elementary excitation of a superfluid.
The discrete nature of these excitations was evidenced by the observation of abrupt
soliton expulsion events in the power scan. We then considered an additional degree
of freedom, offered by the application of a phase twist across the wire. We demon-
strated that this phase twist controls not only the position of solitons in the wire,
but also the parity of their number. We even evidenced phase-controlled bistability
of the soliton pattern. Control of the bistability by the phase of the external drive
constitute a novel paradigm for optical bistability.
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Finally, in the last part, we have investigated the fate of a nonlinear polariton
fluid injected into a flat band, where the fluid kinetic energy is quenched. First,
we have shown that upon careful engineering of the lattice parameters of a 1D
Lieb lattice of coupled micropillars, geometric frustration leads to a perfectly flat
middle band in the linear polariton dispersion. We have used resonant excitation to
inject nonlinear polariton fluids directly into the flat band. In the nonlinear regime,
we have observed the formation of domains of quantized size, due to the frozen
propagation of the switching fronts. The size of the domains can be controlled
by the resonant pumping power, and we reported multistability of these domains.
A comparison with the nonlinear dynamics of a fluid in a dispersive band with
same disorder clearly highlights the difference in non linear dynamics in presence or
absence of kinetic energy. The nonlinear domains observed for the flat band can be
related to a family of gap solitons, named Truncated Bloch Waves which had never
been observed in a driven dissipative context.

The present work demonstrates the potential of the microcavity polariton plat-
form for the study of nonlinear quantum fluids of light in engineered potential land-
scapes. The different configurations considered in this thesis open a broad range of
perspectives. In the case of quasicrystal, the exploration of the localization phase
diagram in the presence of interactions might lead to exotic many-body localization
and delocalization phase transitions. In the case of counterpropagating nonlinear
fluids, we have shown how the collective excitation spectrum of the soliton train
could be explored. Finally, our work in the Lieb lattice constitute the first experi-
mental investigation on the influence of nonlinearities in a flat band, and paves the
way to further investigations, for stronger on-site interactions.

Another promising perspective lies in the rapidly-growing field of topological
photonics [249, 250]. The main goal of this field of research is to transpose the math-
ematical concepts of topology, used to classify the transport properties of electrons
in solids, into the realm of photonics. For example, one objective is the realization
of topologically protected transport of light, robust to disorder and perturbations.
The observation of non-trivial topological phases requires in general complex Hamil-
tonians, with time-reversal symmetry breaking mechanism, which can for example
be achieved by engineering artificial gauge fields, spin polarized excitation or by ap-
plying an external magnetic field. First studies on topological effects were already
achieved in polariton systems, for example in our group with the demonstration
of a lasing regime in a topologically protected edge state of a one-dimensional Su-
Schrieffer-Heeger lattice of coupled pillars [97], which was also a part of my PhD
work. More recently, a milestone has been reached with the realization of a 2D po-
lariton topological insulator [84]. So far, these works have addressed regimes where
polariton-polariton interactions are negligible. Taking advantage of their nonlinear-
ity, microcavity polaritons now appear as a particularly promising platform for the
exploration of topological phases of interacting bosons.

On the longer term, a particularly interesting goal of the research on microcav-
ity polaritons is achieve stronger polariton-polariton interactions, in order to achieve
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non-linearity at the single-particle level. An intense effort is currently under progress
towards this direction. A seemingly promising strategy is to make use of indirect
excitons, which have their electron and hole spatially separated, for example in two
different quantum wells. This results in a strong exciton dipole moment, which in
turn enhances the exciton-exciton interactions [247, 251]. Another possibility is to
couple polaritons to a Fermi sea of electrons [248]. Higher polariton interactions
would enable going beyond the mean-field approximation used throughout this the-
sis, and for example allow for the observation of correlated many-body states out of
thermal equilibrium in artificial lattices [201, 244–246, 252]. First reports of quan-
tum correlations between polaritons have recently been reported [47, 48], opening
the way to the realization of strongly interacting photonic systems in a near future.

Finally, the recent observation at room-temperature of quantum hydrodynamic
effects, such as superfluidity [158], offers promising perspectives towards the realiza-
tion of polaritonic devices, with practical applications for integrated photonics [253].
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AppendixA
Non-resonant characterization of
AAHF chains

Here, we present additional experimental data, that correspond to the experimental
localization phase diagram of the AAHF model presented in Fig. 3.22, chapter 3. We
present both the momentum- and real-space spectrum, measured under non-resonant
excitations, for chains with β ∈ [0; 0.5; 0.8; 1; 2; 1000] and λ1 ∈ [0.2; 0.4; 0.6; 0.8] meV.
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𝝀𝟏 = 0.2 meV ; 𝝀𝟐 = 0.8 meV 0 1

Figure A.1: Momentum-space spectra, measured on 1D chains with λ1 = 0.2 meV
and β ∈ [0; 0.5; 0.8; 1; 2; 1000]

𝛽 = 0 𝛽 = 0.5 𝛽 = 0.8

0 1

𝛽 = 2 𝛽 = 1000𝛽 = 1

Figure A.2: Real-space spectra, measured on 1D chains with λ1 = 0.2 meV and
β ∈ [0; 0.5; 0.8; 1; 2; 1000]. In each case, n = 1 modes and n = 2 modes were
measured separately, corresponding to the energy window below (above) the dashed
line for n = 1 (n = 2) modes.
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Figure A.3: Momentum-space spectra, measured on 1D chains with λ1 = 0.4 meV
and β ∈ [0; 0.5; 0.8; 1; 2; 1000]
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Figure A.4: Real-space spectra, measured on 1D chains with λ1 = 0.4 meV and
β ∈ [0; 0.5; 0.8; 1; 2; 1000]. In each case, n = 1 modes and n = 2 modes were
measured separately, corresponding to the energy window below (above) the dashed
line for n = 1 (n = 2) modes.
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Figure A.5: Momentum-space spectra, measured on 1D chains with λ1 = 0.6 meV
and β ∈ [0; 0.5; 0.8; 1; 2; 1000]
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Figure A.6: Real-space spectra, measured on 1D chains with λ1 = 0.6 meV and
β ∈ [0; 0.5; 0.8; 1; 2; 1000]. In each case, n = 1 modes and n = 2 modes were
measured separately, corresponding to the energy window below (above) the dashed
line for n = 1 (n = 2) modes.
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Figure A.7: Momentum-space spectra, measured on 1D chains with λ1 = 0.8 meV
and β ∈ [0; 0.5; 0.8; 1; 2; 1000]
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Figure A.8: Real-space spectra, measured on 1D chains with λ1 = 0.8 meV and
β ∈ [0; 0.5; 0.8; 1; 2; 1000]. In each case, n = 1 modes and n = 2 modes were
measured separately, corresponding to the energy window below (above) the dashed
line for n = 1 (n = 2) modes.
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vskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape
engineering,” Reports on Progress in Physics 80, 016503 (2017).

[19] A. Amo and J. Bloch, “Exciton-polaritons in lattices: A non-linear photonic
simulator,” Comptes Rendus Physique 17, 934 – 945 (2016).

[20] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein
condensation of microcavity polaritons in a trap.” Science (New York, N.Y.)
316, 1007–10 (2007).

[21] R. Cerna, D. Sarchi, T. K. Paräıso, G. Nardin, Y. Léger, M. Richard,
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W. Langbein, and P. G. Lagoudakis, “Realizing the classical xy hamiltonian
in polariton simulators,” Nature Materials 16, 1120–1126 (2017).

[70] T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin,
and P. A. Knipp, “Weak and strong coupling of photons and excitons in pho-
tonic dots,” Phys. Rev. B 57, 9950–9956 (1998).

[71] B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and
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polariton condensate in a photonic crystal potential landscape,” New Journal
of Physics 17, 023001 (2015).

[78] J. Bloch, R. Planel, V. Thierry-Mieg, J. Gérard, D. Barrier, J. Marzin, and
E. Costard, “Strong-coupling regime in pillar semiconductor microcavities,”
Superlattices and Microstructures 22, 371–374 (1997).

181

http://dx.doi.org/ 10.1103/PhysRevB.97.195109
http://dx.doi.org/ 10.1103/PhysRevB.97.195109
http://dx.doi.org/10.1038/nmat4971
http://dx.doi.org/10.1103/PhysRevB.57.9950
http://dx.doi.org/10.1038/lsa.2014.16
http://dx.doi.org/10.1103/PhysRevApplied.3.014008
http://dx.doi.org/10.1103/PhysRevApplied.3.014008
http://dx.doi.org/ 10.1088/1367-2630/14/6/065002
http://dx.doi.org/10.1088/1367-2630/15/3/035032
http://dx.doi.org/10.1103/PhysRevB.74.155311
http://dx.doi.org/10.1063/1.2172409
http://dx.doi.org/ 10.1088/1367-2630/17/2/023001
http://dx.doi.org/ 10.1088/1367-2630/17/2/023001
http://dx.doi.org/10.1006/SPMI.1996.0317


Bibliography

[79] A. Kuther, M. Bayer, T. Gutbrod, A. Forchel, P. A. Knipp, T. L. Reinecke,
and R. Werner, “Confined optical modes in photonic wires,” Phys. Rev. B 58,
15744–15748 (1998).

[80] M. Bayer, T. Gutbrod, A. Forchel, T. L. Reinecke, P. A. Knipp, R. Werner,
and J. P. Reithmaier, “Optical demonstration of a crystal band structure for-
mation,” Phys. Rev. Lett. 83, 5374–5377 (1999).

[81] G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping:
tailoring the optical properties of semiconductor microcavities,” Semiconduc-
tor Science and Technology 18, S339 (2003).

[82] J. Fischer, I. G. Savenko, M. D. Fraser, S. Holzinger, S. Brodbeck, M. Kamp,
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Titre : Fluides quantiques de polartions dans des réseaux unidimensionnels synthétiques : 

localisation, propagation et interactions 

Mots clés : Polaritons de cavité, Fluides quantiques, Non-linéarité, Microstructures, Spectroscopie optique 

Résumé : Les microcavités à semiconducteurs apparaissent aujourd’hui comme une plateforme 

particulièrement propice à l’étude des fluides quantiques en interactions. Dans ces cavités, la lumière et les 

excitations électroniques sont confinées dans de petits volumes et leur couplage est rendu si fort que les 

propriétés optiques sont gouvernées par des quasi-particules hybrides lumière-matière appelées polaritons de 

cavité. Ces quasi-particules se propagent comme des photons, mais interagissent avec leur environnement via 

leur partie matière. Elles peuvent occuper massivement un même état quantique et se comporter comme une 

onde macroscopique cohérente et non-linéaire. On parle alors de fluide quantique de lumière. 

Dans cette thèse, nous étudions la dynamique de fluides quantiques de polaritons dans différentes 

microstructures unidimensionnelles. La technologie de gravure de microcavités planaires, développée au C2N, 

permet de réaliser une ingénierie complète du potentiel dans lequel nous générons ces fluides de polaritons et 

d’implémenter des géométries complexes. Dans une première partie, nous avons étudié les propriétés de 

localisation des états propres de réseaux synthétiques quasi-périodiques. L’exploration théorique du diagramme 

de phase de localisation des modes propres a dévoilé une nouvelle transition de type délocalisation-localisation 

lors d’une déformation originale d’un quasi-cristal, transition que nous avons pu observer expérimentalement. 

Une deuxième partie de la thèse est consacrée à l’étude de la dynamique non-linéaire de deux fluides contra-

propageant dans un canal unidimensionnel. La compétition entre énergie cinétique et énergie d’interactions 

conduit alors à l’apparition de solitons sombres, dont le nombre discret et la position peuvent être contrôlés 

optiquement. Nous avons mis en évidence une bistabilité contrôlée par la différence de phase imprimée sur les 

deux fluides. La dernière partie du travail concerne l’étude des non-linéarités pour un fluide de polaritons 

occupant une bande plate. L’énergie cinétique du fluide y est nulle, si bien que sa propagation est gelée. Nous 

observons alors la formation de domaines non-linéaires de taille quantifiée.  

Ce travail ouvre des perspectives prometteuses, tout particulièrement pour l’exploration de phases topologiques 

de bosons en interactions. De plus, augmenter les interactions permettrait d’utiliser notre plate-forme comme un 

simulateur quantique. 

 

Title: Polariton quantum fluids in 1D synthetic lattices: localization, propagation and interactions 

Keywords: Cavity polaritons, Quantum fluids, Nonlinearity, Microstructures, Optical spectroscopy 

Abstract: Semiconductor microcavities have emerged as a powerful platform for the study of interacting 

quantum fluids. In these cavities, light and electronic excitations are confined in small volumes, and their 

coupling is so strongly enhanced that optical properties are governed by hybrid light-matter quasiparticles, 

known as cavity polaritons. These quasiparticles propagate like photons and interact with their environment via 

their matter part. They can macroscopically occupy a single quantum state and then behave as an extended 

coherent nonlinear wave, i.e. as a quantum fluid of light.  

In this thesis, we study the nonlinear dynamics of polariton quantum fluids in various one-dimensional 

microstructures. The possibility to etch microstructures out of planar cavities, a technology developed at C2N, 

allows full engineering of the potential landscape for the polariton fluid, and implementing complex geometries. 

In a first part, we have studied the localization properties of the eigenstates in synthetic quasiperiodic lattices. 

Theoretical exploration of the localization phase diagram revealed a novel delocalization-localization transition 

in an original deformation of a quasicrystal and we have experimentally evidenced this transition. A second part 

of the thesis is dedicated to the study of the nonlinear dynamics of two counterpropagating polariton fluids in a 

one-dimensional channel. The interplay between kinetic and interaction energy is responsible for the formation 

of dark solitons, whose number and position can be controlled by optical means. We have evidenced a bistable 

behaviour controlled by the phase twist imprinted on the two fluids. The last part of this work addresses the 

study of nonlinearities for a fluid injected in a flat band. Therein, the kinetic energy of the fluid is quenched, so 

that propagation is frozen. We then observe the formation of nonlinear domains with quantized size. 

This work opens us exciting perspectives, specifically towards the exploration of topological phases of 

interacting bosons. Enhancing interactions would also allow using our platform for quantum simulation. 
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