
HAL Id: tel-02061977
https://theses.hal.science/tel-02061977

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming methodologies for ADAS applications in
parallel heterogeneous architectures

Djamila Dekkiche

To cite this version:
Djamila Dekkiche. Programming methodologies for ADAS applications in parallel heterogeneous
architectures. Computer Vision and Pattern Recognition [cs.CV]. Université Paris Saclay (COmUE),
2017. English. �NNT : 2017SACLS388�. �tel-02061977�

https://theses.hal.science/tel-02061977
https://hal.archives-ouvertes.fr


◆◆❚ ✿ ✷✵✶✼❙❆❈▲❙✸✽✽

✶

❚❤ès❡ ❞❡ ❞♦❝t♦r❛t ❞❡ ❧✬❯♥✐✈❡rs✐té

P❛r✐s✲❙❛❝❧❛②

♣ré♣❛ré❡ à

❯♥✐✈❡rs✐té P❛r✐s✲❙✉❞

▲❛❜♦r❛t♦✐r❡ ❞❡s ❙②st❡♠s ❡t ❆♣♣❧✐❝❛t✐♦♥s ❞❡s ❚❡❝❤♥♦❧♦❣✐❡s ❞❡ ❧✬■♥❢♦r♠❛t✐♦♥ ❡t ❞❡

❧✬❊♥❡r❣✐❡

❊❝♦❧❡ ❞♦❝t♦r❛❧❡ ♥◦580

❙❝✐❡♥❝❡s ❡t ❚❡❝❤♥♦❧♦❣✐❡s ❞❡ ❧✬■♥❢♦r♠❛t✐♦♥ ❡t ❞❡ ❧❛ ❈♦♠♠✉♥✐❝❛t✐♦♥

❙♣é❝✐❛❧✐té ❞❡ ❞♦❝t♦r❛t

❚r❛✐t❡♠❡♥t ❞✉ s✐❣♥❛❧ ❡t ❞❡s ✐♠❛❣❡s

♣❛r

▼♠❡✳ ❉❥❛♠✐❧❛ ❉❊❑❑■❈❍❊

Pr♦❣r❛♠♠✐♥❣ ♠❡t❤♦❞♦❧♦❣✐❡s ♦❢ ❆❉❆❙ ❛♣♣❧✐❝❛t✐♦♥s ♦♥ ♣❛r❛❧❧❡❧

❤❡t❡r♦❣❡♥❡♦✉s ❛r❝❤✐t❡❝t✉r❡s

❚❤ès❡ ♣rés❡♥té❡ ❡t s♦✉t❡♥✉❡ à ✧❉✐❣✐t❡♦ ▲❛❜s✱ ●✐❢✲s✉r✲❨✈❡tt❡✧✱ ❧❡ ✶✵ ◆♦✈❡♠❜r❡ ✷✵✶✼✳

❈♦♠♣♦s✐t✐♦♥ ❞✉ ❏✉r② ✿

▼✳ ❋r❛♥ç♦✐s ❱❊❘❉■❊❘ Pr♦❢❡ss❡✉r✱ ❯♥✐✈❡rs✐té ❞❡ ◆✐❝❡ ✭Prés✐❞❡♥t ❞✉ ❥✉r②✮
▼✳ ❱✐♥❝❡♥t ❋❘❊▼❖◆❚ ▼❛îtr❡ ❞❡ ❝♦♥❢ér❡♥❝❡s✱ ❯❚❈✱ ❈♦♠♣✐è❣♥❡ ✭❘❛♣♣♦rt❡✉r✮
▼✳ ❉♦♠✐♥✐q✉❡ ❍❖❯❩❊❚ Pr♦❢❡ss❡✉r✱ ●r❡♥♦❜❧❡✲■◆P✱ ●r❡♥♦❜❧❡ ✭❘❛♣♣♦rt❡✉r✮
▼✳ ▼❛r❝ ❉❯❘❆◆❚❖◆ ❊①♣❡rt ✐♥t❡r♥❛t✐♦♥❛❧✱ ❈❊❆ ▲■❙❚ ✭❊①❛♠✐♥❛t❡✉r✮
▼✳ ❆❧❛✐♥ ▼❊❘■●❖❚ Pr♦❢❡ss❡✉r✱ ❯♥✐✈❡rs✐té P❛r✐s✲s✉❞ ✭❉✐r❡❝t❡✉r ❞❡ t❤ès❡✮
▼✳ ❇❛st✐❡♥ ❱■◆❈❑❊ ▼❛îtr❡ ❞❡ ❝♦♥❢ér❡♥❝❡s✱ ❯♥✐✈❡rs✐té P❛r✐s✲s✉❞ ✭❈♦✲❉✐r❡❝t❡✉r ❞❡ t❤ès❡✮
▼✳ ❲✐t♦❧❞ ❑▲❆❯❉❊▲ ❈❤❡❢ ❞❡ ♣r♦❥❡t✱ ❘❡♥❛✉❧t✱ ■❘❚ ❙②st❡♠❳ ✭■♥✈✐té✮



Title: Programming methodologies of ADAS applications on parallel heterogeneous
architectures
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Abstract: Computer Vision (CV) is
crucial for understanding and analyzing
the driving scene to build more intel-
ligent Advanced Driver Assistance Sys-
tems (ADAS). However, implementing
CV-based ADAS in a real automotive en-
vironment is not straightforward. Indeed,
CV algorithms combine the challenges
of high computing performance and al-
gorithm accuracy. To respond to these
requirements, new heterogeneous circuits
are developed. They consist of several
processing units with different parallel
computing technologies as GPU, dedi-
cated accelerators, etc. To better exploit
the performances of such architectures,
different languages are required depend-

ing on the underlying parallel execution
model.
In this work, we investigate various paral-
lel programming methodologies based on
a complex case study of stereo vision. We
introduce the relevant features and limi-
tations of each approach. We evaluate the
employed programming tools mainly in
terms of computation performances and
programming productivity. The feedback
of this research is crucial for the devel-
opment of future CV algorithms in ade-
quacy with parallel architectures with a
best compromise between computing per-
formance, algorithm accuracy and pro-
gramming efforts.

Titre: Méthodologies de programmation d’algorithmes de traitementd’images sur des
architectures parallèles et hétérogènes
Mots Clés : ADAS, traitement parallèle, computer vision, systèmes embarqués

Résumé: La vision par ordinateur est
primordiale pour la compréhension et
l’analyse d’une scène routière afin de con-
struire des systèmes d’aide à la conduite
(ADAS) plus intelligents. Cependant,
l’implémentation de ces systèmes dans
un réel environnement automobile et loin
d’être simple. En effet, ces applications
nécessitent une haute performance de cal-
cul en plus d’une précision algorithmique.
Pour répondre à ces exigences, de nou-
velles architectures hétérogènes sont ap-
parues. Elles sont composées de plusieurs
unités de traitement avec différentes tech-
nologies de calcul parallèle: GPU, ac-
célérateurs dédiés, etc. Pour mieux ex-
ploiter les performances de ces architec-
tures, différents langages sont nécessaires
en fonction du modèle d’exécution paral-

lèle.
Dans cette thèse, nous étudions diverses
méthodologies de programmation paral-
lèle. Nous utilisons une étude de cas com-
plexe basée sur la stéréo-vision. Nous
présentons les caractéristiques et les lim-
ites de chaque approche. Nous évalu-
ons ensuite les outils employés principale-
ment en terme de performances de cal-
cul et de difficulté de programmation.
Le retour de ce travail de recherche est
crucial pour le développement de futurs
algorithmes de traitement d’images en
adéquation avec les architectures paral-
lèles avec un meilleur compromis entre les
performances de calcul, la précision algo-
rithmique et la difficulté de programma-
tion.
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1

Introduction

As reported by the World Health Organization (WHO) in 2015 [2], every year approx-

imately 1.25 million people die as a result of road traffic crash. Between 20 and 50

million more people suffer from non-fatal injuries, with many incurring a disability as

a result of their injury. Most of these accidents are attributed to human errors or

drivers distractions. Although the big efforts spent since 1990s to develop safety tech-

nologies solutions such as airbags, anti-lock brakes, etc, human casualties in the road

environment are still too high. To better manage the road traffic and reduce the risk

of accidents, new technologies have been proposed, called Advanced Driver Assistance

Systems (ADAS), such as the Adaptive Cruise Control (ACC) and the Lane Departure

Warning (LDW) systems. ADAS are on-board intelligent systems developed to avoid

the risk of accidents and improve road safety by assisting the drivers in their driving

tasks. These systems help with monitoring, warning, braking, and steering tasks while

driving. The demand of ADAS is expected to increase over the next decade. This

is largely requested by regulatory and consumers interest for safety applications that

protect drivers and reduce accidents. Indeed, both the European Union and the United

States are planing to equip all vehicles with autonomous emergency-braking systems

and forward-collision warning systems by 2020.

This research work has been carried out in the framework of the Technological

Research Institute SystemX (IRT SystemX), and therefore granted with public funds

within the scope of the French Program "Investissements d’Avenir". The IRT SystemX

is specialized in digital sciences, it holds collaborative projects bringing together research

laboratories and industrial companies. This work is carried out in a project called

"Electronique et Logiciel pour l’Automobile" with academic laboratories and automobile
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1.1 Context : Embedding Vision-Based ADAS

Figure 1.1: Architecture of an ADAS

industrial partners such as: Renault, PSA, Intempora, Continental, Valeo . . . . The

project aims to study and investigate the different aspects related to autonomous cars

such as security, vision-based ADAS and real time supervisors. My work is involved

within the second task "image processing" where we investigate the different parallel

programming tools as well the embedding methodologies of ADAS applications.

1.1 Context : Embedding Vision-Based ADAS

An ADAS is considered as complex real time embedded system which consists of three

important layers [3], [4] as illustrated in Figure 1.1.

• The perception layer includes a set of sensors such as radars and cameras. It may

also include a sensor data fusion unit which allows the computation of appropriate

sensors data to estimate a consistent state of a vehicle and its environment.

• The decision layer uses the data fusion unit outputs to analyze the current situ-

ation and to decide the appropriate actions to be transmitted to actuators.

• The action layer receives the actions from the decision layer, and either it delivers

visual, acoustic and/or haptic warning information to the driver, or it provides

automatic actions such as braking.

As depicted in Figure 1.1, the perception layer consists of a set of sensors and a fusion

unit. Usually we find passive sensors as cameras, and active sensors such as radars and

lidars . Computer vision, together with radar and lidar, is at the forefront of technologies

that enable the evolution of ADAS. Radars and lidars offer some advantages, such as

long detection range (about 1-200 m), and capability to operate under extreme weather

conditions. However, it is vulnerable to false positives, especially around road curves,

2
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since it is not able to recognize objects. Camera-based systems have also their own

limitations. They are very affected by weather conditions, and they are not as reliable

as radar when obtaining depth information. On the other hand, they have a wider field

of view, and more importantly, they can recognize and categorize objects. From cost

point of view, cameras are usually cheaper than radars. For all these reasons, modern

ADAS applications use sensor fusion to combine the strengths of all these technologies.

Normally, a radar or lidar sensor is used to detect potential candidates, and then, during

a second stage, computer vision is applied to analyze the detected objects. However,

not all applications need sensor fusion, and some applications such as Lane Departure

Warning (LDW) or Driver Fatigue Warning (DFW) can rely entirely on a camera-based

system.

1.1.1 ADAS Challenges and Opportunities

There are several challenges to design, implement, deploy, and operate ADAS. The

system is expected to be fast in processing data, accurately predict context, and react

in real time. In addition, it is required to be robust, reliable, and have low error rates.

There have been significant efforts and researches to solve all these challenges and to

develop the technology that will make ADAS and autonomous driving a reality.

ADAS are considered as hard real-time control systems in the automotive domain.

ADAS use a lot of data reported from several sensors. These data must be updated

regularly to reflect the current environment state. Thus, these systems need to be

managed by real-time database systems in order to store and manipulate real-time data

efficiently. However, the design of ADAS is highly complex; it is difficult to model the

time constraints related to both data and transactions.

1.1.2 Real-Time ADAS

Computer vision algorithms are traditionally designed to give high accuracy with less

focus on speed or execution time [5]. However, ADAS require images to be processed

as they are captured so that the car can react quickly to changes. A fast computer

vision algorithm has to complete its execution within a predictable time bound so

that time spent on one frame does not delay the next frame.

An autonomous vehicle must be as good as or better than a human driver. The

average reaction time of an human driver alert is 700 ms [6]. Hence, each ADAS task
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must have a runtime that is bounded above by 700 ms. In safety-critical tasks that

could prevent the loss of life such as pedestrian detection, the bound should be much

lower. In an automotive real-time system, many programs will execute as periodic tasks,

with different periods depending on the program’s purpose. For example, the vehicles

detector must run as frequently as possible. When the vehicles detector finishes

processing an image it should immediately start again processing the newest image

from the camera since what it has been processed is already out of date. In system with

lower criticality, such as lane departure warning, the period between executions of the

task may be much longer.

1.2 Problem Statement

The role of computer vision in understanding and analyzing the driving scene is of great

importance in order to build more intelligent driver assistance systems. However, the

implementation of these Computer vision-based applications in a real automotive envi-

ronment is not straightforward. The vast majority of works of the scientific literature

test their driver assistance algorithms on standard PCs. When these algorithms are

ported to an embedded device, they see their performance degraded and sometimes

they cannot even be implemented. Since there are several requirements and constrains

to be taken into account, there is a big gap between what is tested in a standard PC

and what finally runs in the embedded platform. Furthermore, there is no standard

hardware and software for a specific application. Hence, different architectures and

programming tools have been proposed by the industry and the scientific community

and it is on still non-mature markets.

1.2.1 Challenges of Embedded Image Processing Algorithms

Image processing algorithms combine the challenges of high computing performance and

algorithm accuracy to cope with the rapidly rising resolution and frame rate of sensors

and the increasing complexity of image processing algorithms.

To understand the challenge of efficient image processing, consider a 3× 3 box filter

implemented as separate horizontal and vertical passes. We might write this in C++ as

a sequence of two loop nests. An efficient implementation on a modern CPU requires

SIMD vectorization and multi-threading. However, once we start to exploit parallelism,
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Figure 1.2: Processing Levels Specifications

the algorithm becomes bottlenecked on memory bandwidth. Computing the entire

horizontal pass before the vertical pass destroys producer-consumer locality. In other

words, horizontally intermediate values are computed before they are consumed by the

vertical pass. This doubles the storage and memory bandwidth required. Exploiting

locality requires interleaving the two stages by tiling and fusing the loops. Tiles must

be carefully sized for alignment, and efficient fusion redundant computing values on the

overlapping boundaries of intermediate tiles. At the end, these optimizations allow to

accelerate the considered 3× 3 box filter.

From this simple example, we notice that accelerating image processing algorithms

is not a trivial task. In this work, we focus on the real aspect and requirements to

embed vision-based ADAS. Obtaining a real time performance on embedded vision is

a very challenging task, as there is no hardware architecture that meets perfectly the

requirements of each processing level and kernel specifications. From the literature, we

distinguish three different processing levels in computer vision applications: low-level,

mid-level and high-level [7]. Figure 1.2 illustrates the specifications of each level in

terms of parallelism, data amount and complexity.

In low-level processing, we find repetitive operations at pixel level which is then

characterized by high level of parallelism. As an example, we may cite simple filters

such as edge detectors (Sobel) and noise reduction (Gaussian). These processing are

usually optimized through SIMD instructions. In the second processing level–mid-level–

, operations are performed on certain region of interest which respond to particular
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criteria. This level includes operations such as features extraction, segmentation, object

classification and optical flow. This level shows lower parallelism and higher complexity

compared to filters. These operations can only be parallelized on high performance

architectures such as many-core and GPUs. Finally, the last level includes decision-

making operations where sequential processing is present the most of the time.

1.2.2 Hardware Platforms

As discussed previously, computer vision applications deal with an important amount of

data requiring high computing performance. Also, a hardware product that is installed

inside a vehicle must be embedded and needs to fulfill the requirements of embedded

vision systems. Actually, there is no hardware architecture that meets perfectly all the

requirements. This section gives an overview of available hardware.

FPGA A Field Programmable Gate Array (FPGA) is an IC designed to be config-

ured by a customer after manufacturing. They have lower power consumption and they

are better suited for low-level processing than general purpose hardware, where they

clearly outperform them. However, they are not so good for the serial processing nec-

essary in mid and high levels. As FPGAs are dynamically programmable, they can be

reconfigured to different applications. For instance, a driver-assistance system might

use different applications at day and night, or when driving through tunnels. Rather

than have all the algorithms implemented in custom hardware (ASICs) at the same

time, an FPGA-based system can select the most suitable algorithm, reconfigure, and

continue processing.

GPU Graphics Processing Unit (GPU) was initially designed to accelerate the cre-

ation of images intended for output to a display and for image rendering tasks. Nowa-

days, GPUs are also used for general-purpose computing. GPUs have traditionally been

considered as power consuming devices and they are not very frequent yet in vehicle

applications. However, recent solutions such as the NVIDIA DRIVE PX platform based

on the NVIDIA Tegra X1 SoC [8] are very promising.
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DSP Digital Signal Processors (DSPs) have been the first choice in image processing

applications. DSPs offer single cycle multiply and accumulation operations, in addition

to parallel processing capabilities and integrated memory blocks. DSPs are very attrac-

tive for embedded automotive applications since they offer a good price to performance

ratio. However, they require higher cost compared with other options such as FPGAs,

and usually, they are not easy and fast to program.

Multi-core Systems Multi-core systems are usually appreciated by car manufac-

tures and suppliers for many reasons. First, existing software of multiple conventional

single-core processors can be executed in parallel without any software changes using

an appropriate operating system. Second, multi-core systems are at the lower end of

the price scale.

Heterogeneous Architectures Each of the previously discussed hardware solutions

has some advantages and limitations. For instance, GPUs provide high performance

computing but consume an important amount of energy. FPGAs consume less energy

but need more time and knowledge to prototype, design and program an application. To

cope with this issue and find a better compromise between computing performance, en-

ergy efficiency and cost, heterogeneous Systems on Chips (SoCs) have been introduced.

Semiconductor manufacturers proposed to integrate two or more processing units with

different technologies in the same chip. SoCs are usually cheaper and have higher reli-

ability than multi-chip solutions. Recently there is a growing trend to use System on

Chips in embedded vision. As examples, we can cite Texas Instruments (TI) TDAx

SoCs [9] (ARM, DSP, EVE) and NVIDIA Tegra X1 [10] (ARM, GPU).

1.2.3 Software Tools

To address vision-based ADAS challenges in embedded systems, several approaches have

been presented that introduce an additional layer of abstraction between the developer

and the actual target hardware. These approaches aim to cope with the high computa-

tion needs and energy efficiency demand of image processing algorithms particularly in

terms of real time requirements.

As first approaches, we find extensions to C programming language and libraries or

APIs. These approaches allow to keep the original C code. Parallelization is performed
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by adding for instance directives to the for loops. OpenMP [11] and OpenACC [12] optimize

image processing algorithms via the compiler at the loop level through directives. Both

OpenMP and OpenACC can be used on CPUs and GPUs. OpenACC has been initially

developed to target different hardwares. However, OpenMP was only supported on CPU-

based systems such as multi-core architectures for shared memory parallelization. GPU

support is available from OpenMP.4.0 release.

Relevant parallel languages have been proposed in graphics such as CUDA [13] and

OpenCL [14]. These languages employ single program multiple data programming model.

CUDA can only be used on NVIDIA GPUs. OpenCL is a well known programming environ-

ment for both many-core accelerators and GPUs. It is supported by some heterogeneous

architectures like Altera FPGA architecture [15]. Like C, they allow the specification of

very high performance implementations for many algorithms. But because parallel work

distribution, synchronization, kernel fusion, and memory are all explicitly managed by

the programmer, complex algorithms are often not adapted to these languages, and the

optimizations required are often specific to an architecture, so code must be rewritten

for different platforms.

The previous discussed programming languages and libraries are general purpose

techniques. However, some domain-specific languages (DSL) for image processing ap-

plications exist such as Halide [16]. Halide is a programming language for image pro-

cessing algorithms targeting different architectures including x86/SSE, ARM v7/NEON,

GPU(CUDA, OpenCL) and Native Client. Halide model is based on stencil pipelines

for better locality and parallelism. We find also Numerical Template Toolbox NT2. It

is a C++ library-based DSL. It uses generative programming idioms so that architecture

features become mere parameters of the code generation process.

There are some compilers which allow automatic parallelization. These compilers

examine the for loops to automatically decide sections that can be run in parallel, as

well as how many threads to use. As an example, Intel C/C++ compiler icc does this when

the option -parallel is enabled. At a glance, the automatic parallelization compiler

seems to be the best solution since it does not require the user to do anything, but in

reality, as the code becomes more complex, the compiler has difficulty finding what can

be parallelized, making the performance suffer. To our best knowledge nowadays (July

2017), no existing compiler (at least no commercial) can auto-generate parallel code for

heterogeneous systems such as the accelerator.
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1.3 Motivations

Embedding vision-based ADAS applications raised important scientific challenges which

were behind the birth of this work. As discussed previously, vision-based ADAS require

high performance computing in real time. This led to the design and development of new

architectures and new programming languages. Both proposed hardwares and softwares

have different features and no one is perfect of a specific application. For instance, GPUs

respond to the performance computing requirement of image processing algorithms, but

they are considered as power consuming devices. In the other hand, FPGAs consume

less power but require more time to design and develop an application based on hardware

description languages such as VHDL. From software point of view, high-level techniques

such as compiler directives (OpenMP, OpenACC) are easy to use and no code rewriting is

required anymore. However, there are some functionalities which are not managed such

as shared and texture memory in GPUs. CUDA which is a low-level language support

more features and allows the programmer to better optimize the code for instance at

different memory levels. However, with CUDA, code rewriting is required.

As a general idea, it is not evident to find the best architecture and parallel language

which will respect our constraints particularly in terms of real time requirements. In-

deed, things get more complicated in heterogeneous architectures where different com-

puting technologies are employed which may then need different programming tech-

niques.

Figure 1.3 illustrates the development process of embedded ADAS as well as the

corresponding challenges. Globally, embedding an ADAS application requires three

major steps. First, after the algorithm specifications are set, the algorithm is developed

on a standard fixed platform (PC). The algorithm is then validated at functionality level.

Second, before moving to embedded platforms, some analysis of the code is required

to determine the bottlenecks–most time consuming functions– and the algorithm is

decoupled to small blocks referred as functions or kernels. Third, porting process can

be started by focusing on the previously identified bottlenecks.

During the whole process, the developer meets a set of challenges as illustrated in

Figure 1.3 (blue bubbles) :

• Efficient migration PC → embedded systems While this seems to be straight-

forward, it is not that evident. With small codes and less algorithm complexity,
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Figure 1.3: Embedded ADAS Development Process and Challenges.

developers may port the whole algorithm at once. However, with more compli-

cated algorithm, sometimes it is better to make progressive migration. In other

words, we port one block (function, kernel) at once. This is a good approach for

fast debugging.

• Portability If different architectures are targeted, then the portability becomes

a crucial point. Since most of the high-level languages such as CUDA can only be

applied to NVIDIA GPUs.

• Rewriting cost This is related to portability. If we use different architectures,

we may need different programming languages. Hence, rewriting is required which

is a time consuming process which has also a cost at economy level for companies.

• Parallel programming technique(s)’ selection As we have seen previously,

different parallel programming techniques exist. Each one has its advantages and

limitations. The developer needs sometimes to write the algorithm with different

techniques to select the best approach at the end.

• Hardware selection At hardware level, there are also a wide choice. Some

architectures are designed for energy efficiency purpose as FPGA. Others provides

high performance computing as FPGAs.
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• Algorithm Architecture Adequacy (AAA) Embedding image processing al-

gorithms may require some adaptations less or more important at algorithmic

level to achieve the requirements. A compromise between algorithm quality and

speedup is necessary on embedded vision-based applications.

1.4 Research Goals and Contributions

In this thesis, the previously presented challenges are targeted. We focus mainly on the

portability issue of vision-based ADAS applications. Portability is related to parallel

programming techniques in one hand and to the choice of the hardware in another hand.

In this work, we first propose an algorithm for vehicles detection based on stereo

vision [17]. The algorithm is based on disparity map segmentation and objects classifi-

cations. It is worth noting that this algorithm has not been developed to compete or to

give better performance compared to the existing works in the literature. It has been

rather developed to be used as a use-case for our experiments on embedding vision-based

algorithms. This algorithm has two important features:

1. High performance computing To target the previously discussed challenges, we

need to have a time consuming algorithm which needs to be processed in real-time

in embedded systems. For this reason, we selected the stereo vision as perception

system. Stereo matching is then performed to generate a disparity map. Stereo

matching is one of the most studied problems in computer vision. For decades,

many stereo matching algorithms have been proposed with new improvements in

both matching accuracy and and algorithm efficiency. Most of the proposed works

tend to be contradictory in reported results: accurate stereo matching methods are

usually time consuming. For this reason, we selected to include stereo matching

in our ADAS application.

2. Various kernels specifications When parallelizing image processing algorithms,

optimizations may differ from one kernel to another. This difference comes from

kernels’ specifications. By specifications we mean for instance data access pattern,

data flow, data dependency, etc. Each feature requires a specific optimization.

As an example, let’s take Sobel filter. From data access pattern point of view,

it is a local neighboring operator. To compute each output pixel, we need the
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neighboring pixels of the corresponding input pixel. This feature implies to focus

on memory accesses and cache locality for better performance. We developed the

algorithm in such a way to have a variety of kernels with different features. This

allows us to perform different experiments and test various optimizations.

Once the algorithm is developed and validated, we move to the core of this thesis.

We start the process of embedding the algorithm. We target different architectures

available in the market an we use various parallel programming methodologies. We

selected multi-core systems (CPU-based) and NVIDIA platforms; Jetson k1 and Tegra

X1 (GPU-based). The choice is based on two important criteria. First, we selected the

most available and employed platforms in automobile industry nowadays such NVIDIA

platforms. Second, we focus on the stability and the performance of the hardware in

one hand and the maturity of the corresponding software in the other hand. For each

employed architecture, we introduce its relevant features and then describes their effects

on the applied algorithm and the parallelization approaches.

For image processing, the global organization of execution and storage is critical.

Image processing pipelines are both wide and deep: they consist of many data-parallel

stages that benefit hugely from parallel execution across pixels. However, stages are

often memory bandwidth limited; they do little work per load and store. Gains in speed

therefore come not just from optimizing the inner loops, but also from global program

transformations such as tiling and fusion that exploit producer-consumer locality down

the pipeline. In other words, optimizations of vision-based applications fall in two

major axes: kernel-level and system-level. By kernel-level optimizations we mean all

optimizations that we apply on kernels or small functions. In this case, we usually use

traditional parallel languages such as OpenMP, OpenCL, CUDA, etc. With these tools,

we only optimize parts of the algorithm. In the second axis–system-level–, we aim to

optimize the algorithm as a whole system. This is performed by focusing for instance on

data transfers and allocations, memory bandwidth and inter-processor communications.

Usually these optimizations are managed through frameworks such as OpenVX.

In this work we target both axes. In the first part, we employ and investigate

kernel-level optimizations. We use different parallel techniques such as vectorization

and shared memory parallelization. We use also various programming approaches start-

ing from high-level techniques such compiler directives (OpenMP, OpenACC) to low-level
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approaches (CUDA). We test different optimizations to accelerate the algorithm on the

selected architectures. The best choice of optimization is architecture-specific; imple-

mentations optimized for an x86 multicore and for a modern GPU often bear little

resemblance to each other. Each optimization is tested with the different programming

techniques for evaluating the obtained results at the end. We present the advantages

and limitations of each technique. We evaluate the employed approaches in terms of

obtained performances and programming productivity.

In the second part, we target the second axis; system-level optimizations. We use

OpenVX framework which allows us to apply some system-level optimizations such as

kernels fusion and data tiling. We investigate the different proposed optimizations [18].

In the third part, we propose an approach to target both kernel-level and system-

level optimizations [19]. To our best knowledge, this approach has not yet proposed

in the literature. We propose to embed customized computer vision kernels on OpenVX

framework. We use different techniques to accelerate kernels and then embed them in

OpenVX to benefit from its system-level optimizations simultaneously.

The feedback of this research is crucial for the development of future image process-

ing applications in adequacy with parallel architectures with a best compromise between

computing performance and algorithm accuracy.

1.5 Thesis Organization

Chapter 2 refers to related works regarding ADAS vision-based acceleration on em-

bedded systems. We enumerate the different programming techniques proposed and

employed in the literature.

In chapter 3, we present the use-case we developed and employed in this thesis to

perform our experiments. It is an ADAS application which performs vehicles detection

based on stereo vision. We present the algorithm in details. A comparison with the

state of the art is also provided at the end.

The first part of chapter 4 concentrates on analyzing the algorithm from the execu-

tion time point view. We identify the bottlenecks; those functions or part of the code

which are the most time consuming in the whole algorithm. After that, we propose

to adapt the application at algorithmic level to respond to some features required in

parallel computing such regular access pattern. In the second part, we give the first
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results of accelerating the algorithm on CPU-based approaches at kernel-level. Differ-

ent programming techniques are employed which perform either vectorization or shared

memory parallelization. At the end of the chapter, we evaluate the obtained results and

the contribution as well as the limitation of each programming technique.

In chapter 5, we propose to accelerate the algorithm on GPU-based systems at

kernel-level. We propose different optimizations from high priority to low priority ac-

cording to the complexity of GPUs architectures and memory hierarchy. We use two

different approach, a low-level and a high-level technique. We discuss the obtained

results, the issues encountered as well as the performance obtained. At the end, we

compare the two approaches from different aspects: performance, productivity, limita-

tions, etc.

In chapters 6, we start by investigating the OpenVX framework. We test some system-

level techniques such as kernels fusion and data tiling. We show the relevant features

and limitations of each technique. In the second part, we propose a novel approach

to accelerate vision kernels at both kernel- and system-level. We propose to integrate

accelerated kernels on OpenVX framework to benefit at the same time from the system-

level optimizations of this framework. We test the approach on different architectures.

The thesis concludes with a summary of the different contributions and an outlook

on potential perspectives.
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State of the Art

Recently Computer Vision (CV) applications have rapidly emerged in the field of au-

tonomous driving. Both algorithm accuracy and execution time are important metrics

in designing real-time CV algorithms. Existing CV algorithms usually perform well in

one aspect but not good enough in the other. Indeed, researchers and developers focus

either on improving accuracy or on code optimization of an existing algorithm. There

are two main ways to accelerate the algorithm. The first approach consist in optimizing

at algorithmic level by using specific algorithm. In the second approach, we rely on

hardware capabilities of some dedicated high performance architectures such as FPGAs

and GPUs. In this case, we exploit the performance of these architectures through

software optimizations by using specific programming languages or parallel techniques

to accelerate the algorithm.

Developing CV algorithms for embedded systems is often severely constrained by

the computation requirements and hardware resources of the corresponding systems,

as well as the real-time operating conditions. Developers must be able to optimize the

performance of their applications within the constraints imposed to the systems. Perfor-

mance metrics in terms of data processing throughput and accuracy have to be balanced

with other optimization objectives, such as code/data size, memory bandwidth, latency,

and power consumption. It is a challenging task for embedded developers to be able to

map a CV algorithm derived from theoretical research to performance-optimized soft-

ware that is running in real time on an embedded platform. The author in [20] gives

an overview of the different challenges we are faced to when using high performances

embedded systems.
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2.1 Parallelism Fundamentals

Parallel processing is applied to accelerate computation by sharing the workload among

multiple processors. Scientific applications are typically subdivided into two major

classes; regular and irregular applications. In regular applications, the data structures

used are dense arrays and the accesses to these data structures can be characterized

well at compile time. In irregular applications, some of the data structures used may be

sparse arrays whose structure can only be determined at the time of program execution.

In terms of algorithm design, parallel computing strategies profits from the natural

parallelism present in the algorithm which provides two main resources of parallelism:

• Data parallelism is the simultaneous execution on multiple cores of the same

function across the elements of a dataset.

• Task parallelism is the simultaneous execution on multiple cores of many different

functions across the same or different datasets.

In image processing and CV algorithms, task parallelism may exist, however, it

is data parallelism that can be most efficiently exploited for the following reasons.

Firstly, comparing to task parallelism, data parallelism is present more often in image

processing algorithms. Secondly, even if task parallelism exists, it only offers limited

opportunities for parallelization and speed improvement. Also, the significant increase

of image resolution increases the computational requirements of most image processing

algorithms rapidly. These high performance requirements can only be compensated by

exploiting data parallelism. Consequently, in this thesis, we will focus on exploiting

data parallelisms in CV algorithms.

2.2 Embedded Platforms for Vision-based ADAS

Achieving optimal results in terms of speed and accuracy depends both on the algorithm

and the hardware platform. Usually, real-time image processing algorithms with low

errors compared to the ground truth are characterized by heavy computations. One

promising direction to achieve real-time processing in high performance computing ap-

plications such as image processing would be to exploit the computing performance and

parallelism in some dedicated architectures.
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Nowadays, there are different types of parallel computers which have been built or

proposed. These architectures can be classified differently based on several aspects. One

important feature is whether or not the parallel machine has a single shared memory. In

a shared memory machine, all of the processors read from and write to a single common

memory. This memory is connected to the processors through an interconnection net-

work. In a non-shared memory computer, we rather find processors which have private

local memories, and an interconnection network is used for communication. Usually,

the shared memory parallel machines are easier to program since the user does not

care about or perform any communication operation. However, the non-shared memory

parallel computers are generally more efficient because local data accesses do not go

through an interconnection network. Also, the programmer performs communication

operations in the most efficient manner possible.

Another important feature to classify parallel machines is whether it operates in a

Single Instruction Multiple Data Stream (SIMD) or Multiple Instruction Multiple Data

Stream (MIMD) mode. In MIMD mode, the machine has the ability to process different

instructions on different data simultaneously. In other words, the cores can process

multiple tasks at the same time, and the system is designed to exploit task parallelism.

Each core is considered as a fully functional single core processor. Hence, they are

completely compatible with sequential programs for single core processors. In the other

hand, the SIMD architecture aims to exploit only the data parallelism by executing

the same instruction on the multiple data streams simultaneously. Since all the cores

or the Processing Elements (PEs) share the same instruction at the same time, SIMD

processors have significantly lower hardware complexity than MIMD processors. Hence,

it is easily possible to find more PEs in SIMD processors that in MIMD processors. This

results in a significant speed improvement when exploiting data parallelism with SIMD.

However, the greater data-parallelism the SIMD processors are designed to exploit, the

more hardware limitations the processors will have. As a result, processors designed

to utilize the data parallelism usually are incompatible with programs or algorithms

designed for sequential processors.

2.2.1 Multi-cores

One of the most important innovation in computer engineering has been the develop-

ment of multi-core processors. They are composed of two or more cores in a single
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physical package. Today, many processors, including Digital Signal Processors (DSPs)

and Graphical Processing Units (GPUs) ([21]) have a multi-core design, driven by the

demand of higher performance. CPU vendors have changed strategy away from in-

creasing the raw clock rate to adding on-chip support for multi-threading by increasing

the number of cores; dual-, quad- and many-core are now commonplace. Signal and

image processing developers can benefit dramatically from these advances in hardware,

by modifying single-threaded code to exploit parallelism to run on multiple cores. Also,

one important reason of using multi-core machines is the presence of a shared memory.

This decreases significantly the cost of data transfers and inter-cores communication.

However, a coherence protocol is required to ensure that the data read by a processor

is consistent. It also provides a set of rules to keep the data in the cache of a processor

consistent. Another reason to use multi-core processors is the programming facility at

software-level based on some extensions to traditional programming languages such as

C. This allows the programmer to benefit from the computing performances of multi-

core processors with less programming efforts. These extensions will be discussed in the

next section.

Different works have been proposed in the literature to implement ADAS applica-

tions on CPU-based multi-core systems. In [22], the authors presented a vision-based

vehicle detection and tracking pipeline. An approach based on smartphone cameras is

employed which supposes a versatile solution and an alternative to other expensive and

complex sensors on the vehicle, such as LiDAR and radars. The algorithm runs at 7.6

fps (frames per second) on iPhone 5, 13.2 fps on iPhone 6 and 62.5 fps on a simulator

with Intel i7 processor. The authors in [23] presented an implementation of a traffic

sign detection system on a multi-core processor. The whole system can run at 25 fps

on the multi-core processor, where 10 worker threads are used. In [24], a pedestrian

detection algorithm was implemented on multi-core work station with Intel processor.

The experimental results showed a speedup ranging from 2 to 4.

2.2.2 GPUs

GPUs were initially developed to perform graphical calculations. In 2006, most GPUs

were designed based on a graphic pipeline model. The inputs were geometric primitives

which are processed through several stages such as vertex operations and composition

to give a final image [25]. Each element of this pipeline is processed by a separate
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hardware computing unit and multiple copies of the pipeline were printed on a GPU.

This allows the execution of thousands of operations simultaneously to produce images

as outputs in the screen.

The success of GPUs in graphics led to extend their application to more general

purpose applications. General Purpose GPUs (GPGPUs) are considered as a more gen-

eralized hardware which makes them suitable for a wide range of algorithms. They are

increasingly used in scientific supercomputers and other high performance applications

[26]. As applications in general require more and more computation capabilities, GPUs

are increasingly implemented in mobile phones, tablets and other low cost devices.

Since 2010/2011, GPUs are used in vehicles produced by BMW and AUDI [27]. At

the beginning, these applications mostly serve in entertainment systems, but recently

they are used for ADAS such as in the lane departure warning system. The manufacturer

NVIDIA provide GPU-based embedded platforms with CPU ARM as host processor

for applications in automotive applications [10], [28]. Today there are more than 4.5

million cars on the road powered by NVIDIA processors, including the newest models

from Audi, BMW, Tesla Motors and Volkswagen [28], [29].

The literature is rich in terms of vision-based ADAS applications on GPUs. In [30],

the authors proposed a real-time pedestrian detection system implemented on NVIDIA

Tegra X1 GPU-CPU hybrid platform. The experiments show that the algorithm can

execute 20 images of 1242×375 pixels per second, and the GPU-acceleration provides

between 8x and 60x performance speedup with respect to a baseline CPU implemen-

tation. The authors in [31] proposed a vehicles detection and trajectory estimation in

multiple lanes. Algorithm computation are distributed between CPU and GPU with

multi-thread capabilities. An implementation of a lane detection algorithm on NVIDIA

Jetson K1 (GPU+CPU) is proposed in [32]. Different approaches of lane detections

have been tested on different configurations; CPU(ARM), GPU and CPU+GPU.

2.2.3 FPGAs

Field Programmable Gate Arrays (FPGAs) are configurable devices with a set of hard-

ware resources such as logic blocks, that can be configured in different manners to

perform various functionalities. Unlike CPUs or GPUs, where functionality and routing

of hardware blocks is irreversible after the manufacturing stage, FPGAs can change

their hardware layout at run time. Desired layouts are stored on a non-volatile cache
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memory and can be loaded whenever it is necessary. Programs written for a CPU are

compiled to fit the hardware layout. In FPGAs, however, the hardware is routed to

fit a program’s requirements. This allows a very efficient and dynamic combination of

both parallel and serial computation parts.

The study of the state of the art shows various works which have been conducted

in implementing ADAS applications on FPGAs. In [33], the authors reviewed several

pedestrian detection algorithms and discussed issues related to implementing these al-

gorithms on an FPGA platform. An FPGA-based implementation of an automatic

traffic surveillance sensor network is proposed in [34]. The algorithm extracts moving

vehicles from real-time camera images for the evaluation of traffic parameters, such as

the number of vehicles and their direction of movement. The obtained results show a

processing frame speed of 117 fps. In [35], a vision-based lane departure warning system

and its implementation on an FPGA device are presented. The algorithm runs at 40

fps on 748×260 images.

2.2.4 ASICs

Application Specific Integrated Circuits (ASIC) are Integrated Circuits (IC) designed

for a particular applications, rather than for general purpose use. Designers of ASICs

usually use a hardware description language such as Verilog or VHDL to describe the

functionality of ASICs. ASICs usually have high performance and low power consump-

tion. However, ASICs are not reconfigurable. Hence, once they are manufactured, they

cannot be reprogrammed. This lack of flexibility has led to the use of other repro-

grammed hardwares such as Field Programmable Gate Arrays (FPGAs). Despite this

problem of flexibility, we can find some examples of ADAS implementations on ASICs in

the literature [36], [37]. Also, ASICs have been used by Mobileye to build its first ADAS

product EyeQ [38] and then improve it with more powerful hardware and processing

units through the EyeQ series [39].

2.2.5 Heterogeneous Architectures

The previously presented hardwares mainly GPUs, FPGAs and multi-cores can be clas-

sified as geleral purpose multi-core systems. These systems tend to consist of multiple

conventional processors on a single chip, thus providing a homogeneous processing plat-

form. However, modern image processing algorithms contain several individual tasks
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with different granularities and different complexities. This implies the need to use dif-

ferent computing technologies within the same application to achieve the requirements

mainly in terms of real-time. Actually, each hardware technology has its advantages

and limitations.

Let’s compare FPGA to GPU. From development complexity point of view, FPGA

boards usually rely on synthesizable VHDL models. An important number of concurrent

VHDL statements and small processes connected through signals are used to implement

the desired functionality. Reading, understanding data flow VHDL code is not an

easy task. Actually, the concurrent statements and processes do not execute in the

order they are written, but when any of their input signals change value. GPUs have

issues related to compatibility and portability, for instance, NVIDIA GPUs support only

CUDA programming language. Actually, performance improvement could be highly

variable depending on the type of graphic and employed APIs, e.g. CUDA or OpenCL.

Moreover, not all tasks are suited for running on a GPU such as I/O and memory bound

operations. Therefore, different architectures specialized for specific image processing

tasks should be combined in order to achieve a high performance. These led to the

development of heterogeneous architectures. These systems consist of two or more

computing units with different computing technologies. Recently there is a growing

trend to use heterogeneous systems in embedded vision. As examples, we find Texas

Instruments (TI) TDAx SoCs [9] (ARM, DSP, EVE), NVIDIA TegraX1 [10] (ARM,

GPU), NVIDIA Drive PX [8] and the R-car SoCs of Renesas [40].

In the literature, several works have been presented in implementing vision-based

ADAS on heterogeneous architectures. In [41], the authors proposed a pedestrian and

vehicle detection implementation on both GPU and CPU. The application runs on

640×480 images with a processing speed of 23.8 fps (42 ms) and detects both pedestrians

and vehicles. A lane departure warning implementation on a hybrid CPU-FPGA system

is proposed in [42]. The algorithm runs at 25 fps on 256×256 images.

2.3 Parallel Software Tools for Embedded Platforms

Computing hardware continues to move toward more parallelism and more heterogeneity

to provide higher computing performance. Nowadays, we find several levels of paral-

lelism expressed by the interconnections of multi-core and many-core accelerators. To
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Figure 2.1: Parallel Programming Models

follow this trend in hardwares, different programming tools have been developed that

introduce an additional layer of abstraction between the developer and the actual target

hardware. These approaches aim to cope with the high computation requirements of

some applications such as image processing algorithms to reach real-time conditions.

The available computing softwares rely on different parallel programming models

which can be classified into several categories from different aspects. Figure 2.1 depicts

some parallel programming tools and their corresponding classification. It is worth

noting that this figure shows mainly the employed tools and architectures on this work.

First, there are some tools which provide parallelization at kernel-level while

others at system-level. Kernel-level optimizations aim to optimize parts of the algo-

rithm such as functions. In other words, these optimizations are applied only at low level

referred as kernel-level, not on the complete algorithm. System-level optimizations in

the other hand aim to optimize the algorithm as a whole system such as optimizing the

inter-processors communications, data transfers and memory bandwidth.

Second, Each parallel tool work on special level of data. Some tools aim to describe

what happens at pixels level. In other words, how each pixel is treated to express

parallelism. It is also possible to optimize at table levels. For instance, we describe how

a whole image is parallelized. Finally, some tools provide an approach to work on a set

of data as vectors for instance to apply vectorization.

Finally, the parallel tools can be classified according to the approach employed to
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express the parallelism. The first category includes directive-based high-level tools. The

programmer keeps the original C/C++ code and annotates explicitly this sequential code

to specify the parallel regions. The compiler than applies the appropriate parallelization

at compile time. In the second category, we find low-level libraries which are usually

based on data-parallelism. In this case, the programmer relies on some libraries to write

the parallel code and specify explicitly the regions to be parallelized. The sequential code

is first analyzed at low-level to identify the parallel regions where repetitive operations

are present. In the third category, special instruction sets are employed to apply

vectorization referred as intrinsics such as Intel SSE and ARM NEON. In the last category,

we find those tools which aim to apply more global optimizations. They are usually

implemented through frameworks and DSLs such as OpenVX and NT2.

In the following sections, we give more details and examples of the different tools

available in each category. We focus more on the tools applied in this research work.

2.3.1 Directive-based Tools

On the top of the list, we find extensions to C programming language and libraries or

APIs. These approaches allow to keep the original C code. Parallelization is performed

by adding directives to the for loops. OpenMP [11] and OpenACC [12] are the most

employed tools in this categories. They optimize image processing algorithms via the

compiler at the loop level through directives. While OpenMP has been first developed

for multi-core systems, OpenACC has been rather proposed to target accelerators such

as GPUs. Starting from release 4.0 [43], OpenMP supports parallel programming on

accelerators such GPUs.

2.3.1.1 OpenMP

OpenMP Programming Model OpenMP API provides of a set of compiler directives

and runtime library routines for parallel applications programmers. The main goal

of OpenMP model to to greatly simplifies writing multi-threaded programs in Fortran

and C/C++, it is a higher-level approach compared to Pthreads. In C/C++, directives

implemented as #pragma omp are employed. Hence, the same sequential source code

can be maintained and parallelized by adding few directives. Listing 2.1 shows a C++

code source of a matrix-vector multiplication. This example exhibits a simple shared

memory parallelism since the same instruction is applied to all elements. Listing 2.2
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Figure 2.2: UMA and NUMA Memory Models.

shows the OpenMP version. The only difference between the two codes is the OpenMP

directives added before the for loop (lines 3 and 6, Listing 2.2).

1 void MatVecMult(int n, int m, double *restrict a, double *restrict b, double *restrict c)

2 {

3 for (int i=0; i<n; i++) {

4 c[i] = 0.0;

5 for (int j=0; j<m; j++)

6 c[i] += b[i*m+j] * a[j];

7 }

8 }

Listing 2.1: C++ Matrix-Vector Multiplication Source Code.

1 void matVecMul_OpenMP(int n, int m, double *restrict a, double *restrict b, double *restrict c)

2 {

3 #pragma omp parallel for

4 for (int i=0; i<n; i++) {

5 c[i] = 0.0;

6 #pragma omp parallel for

7 for (int j=0; j<m; j++)

8 c[i] += b[i*m+j] * a[j];

9 }

10 }

Listing 2.2: OpenMP Matrix-Vector Multiplication Source Code.

OpenMP Memory Model OpenMP supports multi-core shared memory machines.

The architecture of these machines can be shared memory Unified Memory Access

(UMA) or Non UNiform Memory Access (NUMA) as shown in Figure 2.2. In our

experiments, the UMA model is used in many-core machines. OpenMP assumes that

there is a one memory space for storing and retrieving data that is available to all

threads. This space is then shared among all threads. However, it is possible for a
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thread to have a temporary view of some memory space or data which is cannot be seen

by other threads. This is the case with private variables for example. Each variable

used within a parallel region can be either shared or private. Shared variable references

inside the parallel construct refer to the original variables of the same name. For each

private variable, a reference to the variable name inside the parallel construct refers to

a variable of the same type and size as the original variable, but private to the thread,

i.e., it is not accessible by other threads.

2.3.1.2 OpenACC

Presented in 2011, OpenACC has a directive-based approach to programming accelera-

tors. This standard has been developed by a group of hardware and compiler vendors

such as NVIDIA, PGI, Cray and CAPS. OpenACC provides a simple interface to pro-

grammers, offering a trade-off between performance and development effort. Generally,

the compiler is responsible for generating an efficient code to take advantage of the

hardware. Static compiler passes can figure out particular data or arrays with an op-

portunity for parallelization. As static passes and compiler optimizations are limited,

OpenACC API also provides a set of directives that can be used to write parallel program

on Fortran, C/C++ to run on accelerators such as GPUs.

The main purpose behind developing OpenACC is to propose a single model while

targeting different platforms as illustrated in Figure 2.3. OpenACC was initially devel-

oped by Portland Groop (PG) and supports multi-core systems and NVIDIA/CAPS

GPUs. In multi-core systems, no data copy or transfer is required since we work on the

same processor; the host. PGI compilers on Linux, Windows, and Mac OS X support

OpenACC for multicore. It works with any supported PGI target. This feature will

work with any valid PGI license.

OpenACC Programming Model on CPU OpenACC programming model in multi-

core systems is similar to OpenMP one. It relies on shared memory model. Directives are

employed to give hints to the compiler; with OpenMP we use #pragma omp directives ,

while with OpenACC, we use #pragma acc directives. The multicore CPU is treated like

an accelerator device that shares memory with the initial host thread. With a shared-

memory device, most of the OpenACC data clauses (copy, copyin, copyout, create) are

ignored, and the accelerator device (the parallel multicore) uses the same data as the
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Figure 2.3: CPU and GPU Model of OpenACC.

initial host thread. Similarly, update directives and most OpenACC data API routines

will not generate data allocation or movement.

OpenACC Programming Model on GPU OpenACC and CUDA have the same ex-

ecution model on GPU, since in both cases, the host (CPU) manages the execution of

kernels in the device (GPU). Usually, kernels affected by parallelization consists of one

or several nested loops. Current OpenACC compilers can handle loops which are nested

up to three levels deep referred to gang, worker and vector (Figure 2.4). In NVIDIA

GPUs, gang represents a block, worker refers to a warp of threads and vector is equivalent

to CUDA thread. The compiler decides on how to map these constructs based mainly

on the hardware and the device capabilities.

OpenACC Directives OpenACC directives are identified from the string #pragma acc

just like an OpenMP directive which can be identified with #pragma omp string. OpenACC

provides two directives to create a parallel region, parallel construct and kernel

directive. While the formal one is used for loop-sharing loops, the later one is rather

used to generated different kernels when there are several loops. OpenACC parallel

directive works as OpenMP directive and it allows more explicit user-defined parallelism.
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Figure 2.4: OpenACC Programming Granularity

1 void matVecMul_OpenACC(int n, int m, double *restrict a, double *restrict b, double *restrict c)

2 {

3 //100 thread blocks, each with 128 threads, each thread executes one iteration of the loop

4 #pragma acc parallel num_gangs(100) vector_length(128)

5 #pragma acc loop gang vector

6 for (int i=0; i<n; i++) {

7 c[i] = 0.0;

8 for (int j=0; j<m; j++)

9 c[i] += b[i*m+j] * a[j];

10 }

11 }

Listing 2.3: OpenACC Matrix-Vector Multiplication Source Code with Parallel

Directive.

In parallel directive, the compiler generates only one kernel which will be executed

at the launch time with a fixed number of gangs and vectors. Listing 2.3 gives and

example of a matrix-vector multiplication with OpenACC. It also illustrates how to use

parallel clause. We show how to set the CUDA grid in OpenACC through num_gangs and

vector_length. In contrast to parallel construct, kernel directive may generates

several kernels with different number of gangs and works.

It is worthy to note that OpenACC does not allow synchronization or data sharing

between gangs just like CUDA and OpenCL. Data is only shared among workers within the

same gang. This assumption is to maintain scalability on a large number of processing

elements (PE) that run in parallel and can efficiently perform vector-like vectorization.

OpenACC Memory Model All details concerning data transfer between the host

and the device memory and temporary data storage are handled by the compiler and the

runtime environment. Hence, all these initialization tasks are completely transparent

to the programmer. Data transfers between host and device memory spaces can be
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managed implicitly by the compiler based on some OpenACC directives inserted by the

programmer in the code. Device data environment is used through the #pragma acc

data directive followed by specific clause as copyin for data copy from host to device

and copyout for data movement from device to host.

2.3.2 Low-level APIs

On the top of the most employed tools for parallel computing we find CUDA and OpenCL.

While CUDA can only be-used on NVIDIA GPUs, OpenCL can be used on multi-core and

FPGAs in addition to GPUs. Both tools are C-based low-level approaches which require

more development efforts compared to directive-based techniques.

2.3.2.1 CUDA

In 2007, NVIDIA introduced a new parallel computing platform called CUDA (Compute

Unified Device Architecture) which enables GPU usage for general-purpose computa-

tions. CUDA provides top level APIs to facilitate program development of GPGPUs while

using massive parallelization powers of GPUs. CUDA is available only on NVIDIA cards

which restricts developers to NVIDIA hardware. However, programmers can download

it into a CPU-based system to compile code in GPU emulation mode. CUDA allows

modified C/C++ code to specify part of the code within source files to be executed on

GPU.

CUDA Programming Model In CUDA programming model, the system consists

of a traditional CPU called host, and one or more massively data-parallel co-processing

compute unites referred as devices. CUDA programs are considered as hybrid since

they consist of multiple phases that are executed on either the host or a compute device

such GPU. When a program or part of it exhibits low or no data parallelism, it is

compiled with the host’s standard C compiler such as gcc and runs as an ordinary

sequential process, hence, it is executed in the host (CPU). A program with high data

parallelism is implemented in the device (GPU) code. It is written using C programming

language extended with keywords to label parallel regions called kernels. Host code uses

a CUDA-specific function-call syntax to invoke kernel code.

CUDA model is based on a set of threads running in parallel. A warp is a group of

threads that can run simultaneous on a streaming multiprocessor (SM). The warp size
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Figure 2.5: CUDA Memory Grid Configuration

is fixed for a specific GPU, 32 for example. It is up to the developer to set the number

of threads to be executed. If the number of threads is more than the warp size, they are

time-shared internally on the SM. A block is a group of threads running on a one SM at

a given time. Multiple blocks can be assigned to a single SM. The set of all configured

blocks is called a grid (Figure 2.5). All SM resources are divided equally between all

threads of all blocks of the SM. A unique ID is associated to each single thread and

block which is accessed by the thread during its execution. All threads will execute

the same instructions set called kernel. Listing 2.4 gives an example of a matrix-vector

multiplication with CUDA.

1 __global__ void matVecMul_CUDA(int n, int m, double *restrict a, double *restrict b, double *

restrict c)

2 {

3 int row = blockIdx.y*blockDim.y+threadIdx.y;

4 float sum =0;

5 if (row <n){

6 for (int k=0; k<m; k++)

7 sum += b[row*m+k] * a[k];

8 }

9 c[row] = sum;

10 }

Listing 2.4: CUDA Matrix-Vector Multiplication Source Code.
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CUDA Memory Model All CUDA enabled GPUs have different memory spaces.

Each type of memory has its own specifications such access latency, address space,

scope and lifetime (table 2.1). Each memory type has some trade-offs to be considered

when developing algorithms CUDA kernels. Developers have to be aware of how and

when to use each type of memory to optimize the performance of their applications.

For example, global memory has a very large address space, but the latency to access

this memory type is very high. Shared memory has a very low access latency but the

memory address is small compared to Global memory.

Table 2.1: CUDA Device Memory Specifications

Memory Speed Rank Location Cached Scope Access Lifetime

Register 1 On-chip No 1 thread R/W Thread

Shared 2 On-chip No 1 block R/W Block

Constant 3 Off-chip Yes All threads + host R Host allocation

Texture 4 Off-chip Yes All threads + host R Host allocation

Local 5 Off-chip CC 2.0 All threads + host R/W Host allocation

Global 6 Off-chip CC 2.0 All threads + host R/W Host allocation

2.3.2.2 OpenCL

Open computing language (OpenCL) [14] is an open programming standard proposed

by Khronos group for heterogeneous parallel computing hardware. Currently there

are plenty of OpenCL supported hardware in the market. Major chip manufactures all

provide their OpenCL support for CPU, desktop GPU, and embedded GPU [44], [45],

[46], [47]. There are also some researches on evaluating OpenCL on other platforms

such as embedded multi-core digital signal processors [48]. In the literature, several

implementations of CV applications with OpenCL have been performed. In [49], the

authors proposed an implementation of a graph-based classifier (Optimum-Path Forest)

in a SoC/FPGA board using the OpenCL language.

OpenCL Programming Model OpenCL controls multiple Compute Devices, for in-

stance, GPUs. Each of these compute devices consists of multiple Compute Units (arith-

metic processing unit, cores in multi-core) and within these are multiple Processing

Elements. At the lowest level, these processing elements all execute OpenCL Kernels.
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At the top level, the OpenCL host uses the OpenCL API platform layer to query and

select compute devices, submit work to these devices and manage the workload across

compute contexts and work queues. In contrast, at the lower end of the execution

hierarchy , we find OpenCL Kernels running on the each processing element. Listing 2.5

illustrates a naive implementation of matrix-vector multiplication with OpenCL.

1 __kernel void matVecMul_OpenCL(int n, int m, __global double *restrict a, __global double *

restrict b, __global double *restrict c)

2 {

3 int tx = get_global_id(O);

4 float sum = 0;

5 for (unsigned int k = 0; k < m; ++k) {

6 sum += b[tx*m + k] * a[k];

7 }

8 c[tx] = sum;

9 }

Listing 2.5: OpenCL Matrix-Vector Multiplication Source Code.

OpenCL Memory Model The OpenCL memory hierarchy is structured in such a

way to resemble the physical memory configurations of NVIDIA hardware. The basic

structure of top global memory vs local memory per work-group is consistent. Further-

more, the lowest level execution unit has a small private memory space for program

registers.

An important issue to keep in mind when programming OpenCL Kernels is that

memory access on the DRAM global and local memory blocks is not protected in any

way. This means that segfaults are not reported when work-items dereference memory

outside their own global storage [50].

2.3.3 Data Flow-Based Graphs for Parallel Programming

Among the proposed approaches for developing efficient CV applications for embedded

systems, we find those based on data flow graphs [51]. These techniques profit from

the data-flow nature of image processing algorithms. Graph-based techniques describe

another parallel approach for accelerating CV applications. That is, image processing

algorithms are expressed explicitly by the user as a graph of tasks [52]. In this case,

tasks are managed based on the data-flow dependencies. All aspects related to task

communication, synchronization and scheduling are hidden to the user.
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In [52], the authors proposed a domain specific high-level parallel programming

model for digital signal-processing applications referred as SignalPU ([53]). It is based

on data-flow graph models of computation, and StarPU ([54]) as a dynamic run-time

model of execution. StarPU is a runtime system designed to dynamically schedule a

group of tasks on heterogeneous cores with different scheduling policies. The presented

model in SignalPU targets heterogeneous clusters composed of CPUs and different ac-

celerators such as GPUs. The execution takes advantage of the availability and the

capability of the devices based on StartPU scheduler.

OpenVX [55] is a well known graph-based framework for accelerating image processing

applications. OpenVX allow the programmer to optimize the algorithm at system-level.

By system-level optimizations, we make reference to all optimizations applied to op-

timize the algorithm as a whole system such as data transfers, memory bandwidth,

inter-processors communication, kernels fusion, etc. OpenVX framework is employed in

this work. A more detailed description of its programming model and possible opti-

mizations are given in Chapter 6.

2.3.4 DSL

There are some Domain-specific languages (DSLs) which provide a high-level language

interface suitable for image processing algorithms such as Halide [16] and NT2 [56].

They have been proposed to improve programmability as well as deliver performance

for both general-purpose processors as well as accelerators like GPUs and FPGAs.

2.3.4.1 Halide

Halide is an open-source domain-specific language for the complex image processing

pipelines found in modern computational vision applications. It is embedded in C++

language. Compiler targets include x86/SSE, ARM v7/NEON, CUDA, Native Client,

and OpenCL [16].

Halide Programming Model A Halide program has two sections: one for the

algorithm, and one for the processing schedule. The schedule specifies the size and

shape of the image chunks that each core needs to process at each step in the pipeline,

and it can specify data dependencies. Once the schedule is drawn up, however, Halide

handles all the accounting automatically. If we then want to export a program to a
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different architecture supported by Halide, we just need to change the schedule, not

the algorithm description. If we want to add a new processing step to the pipeline, we

just need to add it to the description of the new procedure, without having to modify

the existing ones. However, a new step in the pipeline will require a corresponding

specification in the schedule.

Listing 2.6 illustrates a naive example of a matrix vector multiplication with Halide.

The first step consist on describing the algorithm functionality as shown in line 6. Then,

the algorithm is scheduled on the target where optimizations can be applied at this level

as illustrated in line 8. We selected to apply data tiling with tiles of size [256, 32]. We

also applied vectorization corresponding to SIMD instructions. Finally, parallelization

is applied at line level. However, for this simple example, actually Halide manages tp

perform the scheduling without specifying it explicitly by the programmer in the code.

1 Func matVecMul_Halide(Func b, Func a ) {

2 Func c;

3 Var x, y, xi, yi;

4 RDom r(0, b.width(), 0, b.height );

5 // The algorithm

6 c(y) += (b(r.x,r.y) * a(r.x));

7 // The schedule

8 c.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y);

9 return mvMul;

10 }

Listing 2.6: Halide Matrix-Vector Multiplication Source Code

2.3.4.2 NT2

The Numerical Template Toolbox (NT2) is an open source C++ library aimed at sim-

plifying the development, debugging and optimization of high-performance computing

applications. It provides a Matlab-like syntax that eases the transition between the

prototype and the actual application.

NT2 keeps a high level of expressiveness by exploiting the architecture-specific in-

formation as early as possible in the code generation process. It selects architectural

features from either compiler-based options or user-defined preprocessor. In all cases,

no additional code is required, the code is written once with NT2 statements. The

main asset of NT2 is its ability to distinguish between architecture and runtime support.

User can test different optimizations by setting different run-time supports for a given

architecture until required performance is partially or completely satisfied.

33



2.3 Parallel Software Tools for Embedded Platforms

NT2 Execution Model NT2 implements a subset of Matlab language as a DSEL

based on Expression Template C++ idiom. As such, developers can convert Matlab

code easily to NT2 by copying the original code to a C++ file and by performing minor

changes (e.g., variables’ definition, functions call instead of operators).

The main element of NT2 is the template class table. The latter’s type can be

parametrized with additional optional settings. The behavior of a table instance is

similar to Matlab multi-dimensional arrays. An important subset of Matlab functions

has been implemented on NT2 such as arithmetic, exponential, trigonometric and bitwise

functions. Vectorization based on Boost.SIMD [57] is supported on all these functions.

Boost.SIMD is a C++ template library which simplifies programming on SIMD by

providing a high-level abstraction to handle vectorization computations on SSE, Altivec,

AVX and NEON. The wrapper class pack of Boost.SIMD selects automatically the best

SIMD register type according to its scalar template type.

NT2 Parallel Code Generation NT2 C++ library is designed based on Expression

Template [58]. The latter is a well known meta-programming technique. It constructs

at compilation a type representing the Abstract Syntax Tree (AST) of an arbitrary

statement. Boost.proto [59] has been used for this purpose. Compared to traditional

DSEL based on hand-written expression templates, Boost.proto provides a higher level

of abstraction based on pattern matching of DSEL statements.

The expression evaluation of NT2 is based on Generative Programming [60].

This approach consists in defining a model to implement several components of a sys-

tem. For instance, the Standard Template Library (STL) provides components that

the user aggregates according to his configuration knowledge. Czarnecki [60] proposed

a methodology called DERMAL1. DERMAL formalization of Generative Programming

techniques. However, it does not manage architecture level during components genera-

tion. To cope with this issue, NT2 integrates the architecture support as another gener-

ative component. A new methodology Architecture Aware DERMAL (AA-DERMAL)

[56] has then been introduced.

NT2 relies on Tag Dispatching technique to consider architecture in AA-DERMAL.

With this technique, NT2 selects the correct implementation of a function while still

being aware of its properties. The best implementation for the current architecture

1Domain Engineering Method for Reusable Algorithmic Libraries
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is then selected. A tag is defined for every supported architecture such as openmp_

for OpenMP shared memory parallelization. Nesting architecture tags is also possible at

compile-time to generate automatically codes for different architecture levels.

NT2 Optimizations At NT2 compilation, automatic rewriting may occur when architecture-

driven optimizations are possible and user high-level algorithmic improvements are in-

troduced. These optimizations are integrated within Boost.SIMD [57]. The most im-

portant optimizations include:

• Vectorization on sub-matrix access through the colon option a(_, i) (correspond-

ing to : in Matlab)

• Loop fusion to increase cache locality through the tie function which groups state-

ments of compatible dimensions in a single loop nest. The multi-statement code

snippet (lines 2 and 3) in Listing 2.7, can be converted to a single statement with

tie function (line 4).

1 table<float> a, b, c;

2 a = b + 2.f*c;

3 c = a - 3.f/b;

4 tie(a,c) = tie(b + 2.f*c, a - 3.f/b);

Listing 2.7: Multi-statement and lopp fusion code snippet

Another important asset of NT2 is its ability to extend its architecture and run-time

back-ends support. The current supported architectures and runtimes include:

• SIMD extensions through Altivec on PowerPC, AVX and all SSE variations (from

SSE2 to SSE4.2) on x86, and NEON on ARM architecture.

• Shared memory systems through OpenMP or Intel Threading Building Blocks (TBB)

• LAPACK-like runtimes for NETLIB LAPACK, MKL and MAGMA on CUDA capable GPUs.

• GPGPUs by generating CUDA kernels directly from C++ code with NT2 statements.

The kernel generator has been integrated on existing CUDA libraries like cuBLAS

and MAGMA.

Listing 2.8 illustrates how to perform matrix-vector multiplication with NT2. We

first give the NT2 version without any optimization (lines 8 → 13) to show how to

employ NT2 tables. Then, we show the equivalent version by using the colon "_"
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option to accelerate the processing (lines 15, 16). This optimization allows to vectorize

the operations at line level by enabling the SIMD compiling flags.

1 #define N 10000

2 using nt2::_;

3 table<double> b = ones(N,N);

4 table<double> a = ones(N);

5 table<double> c(nt2::of_size(N));

6 double sum;

7 // NT2 without any optimization

8 for (int i=1; i<=N; i++) {

9 sum = 0;

10 for (int j=1; j<=N; j++)

11 sum += b(i,j)*a(j);

12 c(i) = sum;

13 }

14 // NT2 with colon (_) optimization

15 for (int j =1; j<=N; j++)

16 c(_) += b(_,j)*a(j);

Listing 2.8: NT2 Matrix-Vector Multiplication Source Code with/without Optimization

2.3.5 Vectorization: SIMD

SIMD instructions allow to achieve a form of data parallelism. This is sometimes also

called vector processing. Let’s take array multiplication to explain the principle.

1 float a[n], b[n], c[n];

2 for(int i = 0; i < n; i++) {

3 c[i] = a[i] * b[i];

4 }

Listing 2.9: Array Multiplication: Scalar Version, One Element per Iteration.

In scalar version as shown in Listing 2.9, a loop that iterates through all array elements,

multiplying each element of first array with its corresponding from second array, and

storing the result in the destination array. What if instead of doing one multiplication

per loop iteration we could do more?

1 float a[n], b[n], c[n];

2 for(int i = 0; i < n; i+=4) {

3 c[i] = a[i] * b[i];

4 c[i+1] = a[i+1] * b[i+1];

5 c[i+2] = a[i+2] * b[i+2];

6 c[i+3] = a[i+3] * b[i+3];

7 }

Listing 2.10: Array Multiplication: Scalar Version, Four Elements per Iteration.
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1 #include <xmmintrin.h>

2 float a[n], b[n], c[n];

3 __m128 A, B, C;

4 for (int i = 0; i < nElements; i += 4) {

5 // load data in a, b

6 A = _mm_load_ps(&a[i]);

7 B = _mm_load_ps(&b[i]);

8 // multiply data

9 C = _mm_mul_ps(A, B);

10 // store result in c

11 _mm_store_ps(&c[i], C);

12 }

Listing 2.11: Array Multiplication: SSE Version.

In Listing 2.10, we process four elements at once. This lets us iterate through the

loop four times fewer. This optimization is called loop unrolling. In terms of efficiency we

have gained very little since the same arithmetic operations are being done; this is where

SIMD instructions come in. Instead of loop unrolling that performs four multiplications in

series there is a single instruction that can calculate four multiplications simultaneously.

SIMD uses special registers on the CPU that are 128 bits wide. These registers can hold

any type of data that will fit in 128 bits, like two double precision numbers, four single

precision, or 16 bytes.

The program first needs to explicitly load data into the SIMD registers by using the

_mm_load_ps() intrinsic (Listing 2.11). The __m128 _mm_mul_ps (__m128 a, __m128

b) instruction multiplies packed single-precision (32-bit) floating-point elements in a

and b, and store the results in destination register. The result is then moved from SIMD

register into an output array using the _mm_store_ps() intrinsic (Listing 2.11).

2.4 Conclusion

In this chapter, we presented an overview of the existing hardwares and parallel pro-

gramming tools for vision-based applications. It is obvious that the choice is not trivial

on both aspect. First, from hardware point of view, different architectures exist, each

one with its advantages and limitations. Second, from software point of view, several

parallel approaches have been developed. Different techniques and approaches are em-

ployed while targeting different platforms. The developers of embedded vision-based
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applications meets several challenges and ask different questions such as: which hard-

ware will fit well the selected application in terms of performance computing? which

programming language allows to achieve the real-time conditions with less programming

efforts? at which level adaptations are applied in the algorithm to reach the require-

ments? what is the best compromise between algorithm accuracy and performance?

All these questions are discussed in this work. We investigate several programming

tools on different hardwares. A complex use-case is selected based on stereo vision to

detect vehicles. The results and the feedback of this work will help future embedded

vision-based developers to develop CV applications with less programming effort while

respecting the initial requirements.
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ADAS Use Case

Stereo Vision Based Vehicles Detection Algorithm

In this chapter, we propose a coarse to fine algorithm for on-road vehicles detection and

distance estimation based on disparity map segmentation [17]. The whole algorithm is

supervised by stereo vision.

One of the common issues in on-road obstacles detection are the off-road information

such as high walls, buildings and trees along the road which may affect the precision of

the detection and increase the false alarms. Different approaches have been proposed in

the literature such as constructing a convex hull [61]. The first contribution of this

work is the approach proposed to remove the off-road objects based on the connected

segments labeling algorithm. While this approach has been used in the literature [61]

mainly for on-road obstacles detection, we propose to use it also for off-road objects

subtraction. The second contribution of the proposed algorithm is the approach

employed for obstacles classification. We rely on a set of tests based on the obstacles

geometry as the width and height which are not measured in meters, they are expressed

in pixels in terms of the disparity. The idea is inspired from the fact that close objects

are projected with many pixels while far objects with only few pixels. This solution

reduces the errors of disparity quantification and allows more accurate detection and

classification.

3.1 Related Works

Stereo vision systems have recently emerged in the domain of robotics and autonomous

cars. These systems provide the 3D perception of the environment which is employed in
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Advanced Driver Assistance Systems (ADAS) to support a variety of functions including

obstacles detection [62], [63], [61], lane departure warning [64], [65] and collision warning

systems [66]. While the depth measurement precision of stereo vision systems is not as

high as with active sensors such as RADAR and LIDAR, binocular stereo vision can

compete with these active technologies due to the amount of traffic scene information

it provides in one hand, and the low cost of cameras in the other hand.

The literature describes several works on stereo vision based vehicles detection. All

approaches investigate the data provided by the stereo cameras to extract the necessary

information. The study of the state of the art in this field reveals that the majority of

proposed approaches rely on a depth map which can be obtained either directly from

specialized 3D cameras [67] or from a disparity map. The later is generated through

stereo matching ; namely the search of points correspondences between two images in the

horizontal direction after rectification. The literature shows two major axes in the field

of stereo matching. In the first axis, both monocular and stereo visions are employed.

The idea is to perform features tracking in the monocular image plane of one of the

stereo cameras and 3-D localization in the disparity and depth maps [68]. Several works

on vehicles detection based on the combination of stereo vision and motion analysis have

been conducted [68], [69] ,[70]. In the second axis, the disparity map is transformed

in a more representative and compact form including occupancy grid [71] and ground

surface modeling [72]. These different transformations aim mainly to facilitate scene

segmentation and reduce computation time such as the U-V disparity approach.

3.1.1 U-V Disparity

The V-disparity [72] is a popular approach for ground plane estimation and road scene

analysis [67]. It is a compact representation of the disparity map in a new space, more

robust and more representative for obstacles detection lying above the ground surface.

Actually, the V-disparity transformation is a histogram of disparity values for pixels

within the same image’s line (v coordinate). This transformation models the road

surface as a slanted line and vertical obstacles as vertical lines above the road’s line.

Lines can be detected using curve fitting techniques such as Hough transform [73].

The V-disparity has been widely used in stereo vision for road plane estimation

and obstacles detection. It has been introduced for the first time in [72]. The authors

propose an approach for road estimation and obstacles detection under the hypothesis
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that the road is flat. In [67], the V-disparity is used to detect the road based on a

modified Hough transform.

The same principle has been used to generate the U-disparity map with a histogram

of pixels locating on the same image’s column (u coordinate). This map has been used

for free space estimation [74] as well as for obstacles detection [67], [75].

Some works combine both maps–U-V, to perform road and obstacles detection. In

[67], the V-disparity is used to detect the road as well as the vertical position of the

obstacles. The U-disparity map is used to find the horizontal position of the obstacles.

The authors in [76] follow the same approach but rely on a 3D camera to generate the

depth map in a addition to a modified Hough transform which is placed to extract the

straight line feature from the depth map with improved accuracy.

As mentioned previously, obstacles detection based on the U-V disparity maps relies

on the detection of lines on those maps by using generally the Hough transformation.

However, possible stereo matching errors and high structured scene make the results of

these maps largely noisy and distorted. Another issue to take into consideration is the

fact that the frontal vehicles are projected in the U-disparity map under the form of an

horizontal segment, where as, vehicles close to camera or those coming in the inverse

direction are projected with more that one segment which may be horizontal or slanted.

The hough transform suffers with such cases. To overcome these issues, we propose to

use connected segments labeling algorithm which recovers all vehicle’s pixels projected

on the U-disparity. This proposed solution increases the detection’s precision and gives

a better estimation of the distance.

3.2 Stereo Matching Basics

In this section, we describe the fundamental principles of stereo matching. We review

the different techniques employed for finding a set of corresponding points between two

images. This task involves selecting a suitable similarity measure and then employing

local or global methods to identify correct matches.

3.2.1 Epipolar Geometry

Stereo matching algorithm consists on matching a given pixel in one image to its corre-

sponding pixel in the other image. This definition implies that establishing correspon-
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Figure 3.1: Epipolar Geometry in Stereo Vision

dences requires a search through the whole image. Fortunately, the epipolar constraint

of stereo vision reduces this research to a single line.

In Figure 3.1, left and right stereo cameras are centered at OL and OR respectively.

The point X is the point of interest. Points XL and XR are the projections of the point

X on the left and right images planes respectively. We call baseline the line connecting

the two cameras centers (OL−OR). The gray planes in Figure 3.1 represent the epipolar

planes. The intersection of the baseline with each image’s plane gives the epipoles, eL

and eR in the figure. The epipolar constraints states that for each point projected in an

image plane, the same point must be projected in the other image on a known epipolar

line [77]. In other words, the projection of point X in the right image plane XR must

be in the epipolar line eR −XR. This is true if only the projection XL is known, and

the epipolar line in the right image plane (eR −XR) is also known. It is important to

note that all points X,X1, X2, X3 verify this constraint.

This constraint simplifies then the stereo matching process by limiting the research

region of correspondences to a single line instead of the whole image. This implies that

the position of corresponding points is only different in horizontal direction. To satisfy

this condition, a transformation projects both stereo images onto a common image

plane in such a way that the corresponding points have the same row coordinates. This

image projection makes the image appear as though the two cameras are parallel. This

transformation is referred as rectification and clarified in Figure 3.2 (a). Now, finding

the corresponding point in the right image becomes more convenient.

As discussed previously, the main goal behind stereo matching is to recover the
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(a) (b)

Figure 3.2: Rectification (a) and Depth Measurement (b) from Stereo Matching

depth and perform 3D reconstruction for instance later on. After the rectification, it

is easy to compute the depth of the point apart from the cameras [78]. From Figure

3.2 (b), based on the triangles (POROT ) and (Ppp′), we could get the depth value (Z)

through Equation 3.1. Z represents the real distance of the considered point P apart

from the stereo camera baseline, f is the focal distance of the camera, and B is the

baseline distance between the two stereo cameras. Finally, we replace xR − xT with d

referred as disparity .

B

Z
=

(B + xT )− xR
Z − f

=⇒ Z =
B × f

xR − xT
=

B × f

d
(3.1)

Disparity is the horizontal difference (x coordinate) between two corresponding pix-

els in the stereo images. In computer vision and image processing, when the disparity

of all pixels is known, a disparity map is generated where each pixel intensity presents

the disparity of the corresponding pixel in gray scale. Based on Equation 3.1, disparity

is inversely proportional to real depth, hence, pixels closer to the camera (with lower

Z), have higher disparity and looks brighter. This property is illustrated in Figure 3.3.

3.2.2 Correspondences : Matching Pixels

Numerous stereo matching algorithms have been proposed over the years. The study of

the state of the art shows two categories; sparse and dense stereo matching [78].
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(a) Left Image (b) Right Image (c) True Disparity Map

Figure 3.3: Disparity Map Example from Middlebury Dataset [1] (Tsukuba2001)

In the first axis; sparse stereo matching, features such contours or edges are first

extracted from the images. Features from one image are then matched to their corre-

sponding ones in the other image. The resulting sparse depth map or disparity map

may then be interpolated using surface fitting algorithms. Early work in finding sparse

correspondences was motivated mainly by the limited computational requirements at

the time, but also by the observation that certain features in an image give more re-

liable matches than others. Such features include edge segments and profile curves.

These features occur along the occluding boundaries. However, these early algorithms

required several closely-spaced camera viewpoints in order to stably recover features.

Recent research has focused on extracting features with greater robustness and more

important repeatability. These features are then employed to interpolate the missing

disparities. These algorithms are referred as feature points detectors. The literature is

rich in this field. Numerous algorithms have been proposed such as SIFT [79] and SURF

[80]. These approaches extract a set of discriminative points with different techniques.

The second axis; dense stereo matching, aims to find a dense set of correspondences

between two or more images. The resulting dense depth map is useful for 3D model-

ing and rendering applications. These techniques typically involve the calculation and

aggregation of matching costs, from which disparity values may then be computed and

refined. In this axis, a lot of stereo matching algorithms have been proposed and the

research of fast and precise stereo correspondence problem is still going on. A taxonomy

and evaluation of dense stereo matching algorithms has been presented in [78]. From

this taxonomy, most of dense stereo matching algorithms perform the following steps:

1. Matching cost computation.
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2. Cost aggregation.

3. Disparity computation or optimization.

4. Disparity refinement (optional).

3.2.2.1 Matching Cost Computation

Regardless of the stereo matching algorithm used, determining the similarity between

pixels in different images is the core to remove ambiguities between potential matches

and to find correspondences. Let’s take a given pixel p(u, v) in the left image Il. The

objective is to find the corresponding point of pixel p in the right image Ir. To do so,

we need to measure the degree of similarity between left and right pixels.

One of the basic measure is the Squared intensity Difference (SD) [[81], [82]], given by

equation 3.2.

CSD(u, d) = (Il(u, v)− Ir(u− d, v))2. (3.2)

In the presence of image noise, the similarity measure may be made more robust to

outliers within the window by imposing a penalty that grows less quickly than the

quadratic SD term. A common robust measure is the Absolute intensity Difference

(AD) [[83], [84]] given by equation 3.3.

CAD(u, d) = |Il(u, v)− Ir(u− d, v)|. (3.3)

In this case, the cost function grows linearly with the residual error between the win-

dows in the two images, thus reducing the influence of mismatches when the matching

cost is aggregated. Besides measuring the residual error in window intensities, another

commonly used similarity measure is the Cross Correlation where the maximum cor-

relation value among all the candidate disparities corresponds to the most probable

match. There exist other traditional matching costs such as Normalized Cross Correla-

tion (NCC) [85], and binary matching costs [86] based on binary features such as edges

or the sign of the Laplacian. It is worth noting that binary matching costs are not

commonly used in dense stereo matching.

3.2.2.2 Cost Aggregation

Actually the differences (SD, AD) are aggregated in a support window surrounding the

considered pixel. Window-based methods aggregate the matching cost by summing or
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averaging over a support region. The most known measures are the SSD (Sum of SD)

and SAD (Sum of AD). The commonly known regions are two-dimensional but they

also may be three-dimensional. Traditionally, they have been implemented using square

windows or Gaussian convolution. The literature is rich in this field, we can find the

sliding window where a window is shifted along the epipolar line in the right image [83].

We find also the adaptive window technique where the size of the window is modified

for higher disparity precision [[87], [88]].

3.2.2.3 Disparity Computation

Dense stereo matching algorithms may be subdivided into two main categories: local

and global.

Local approaches determine the correspondence of a point by selecting the candi-

date point along the epipolar lines that minimizes a cost function. To reduce matching

ambiguity, the matching costs are aggregated over a support window rather than com-

puted point-wise. There are different techniques to get the disparity, the common one

is the Winner-Takes-All (WTA) [[84], [83], [88]].

Global methods do not aggregate the matching costs, but instead rely on explicit

smoothness assumptions to ensure accuracy. The objective of global stereo algorithms

is to find the disparity assignment which minimizes an energy function. In fact, cost

aggregation is not required with global global matching since each pixel has a range

of disparities. Hence, there is an important number of disparities combinations for

all pixels in the whole image. It is then obvious that global methods require more

computations and memory capacity too. However, global methods give better disparity

map in terms of quality. Among the most common methods, we find belief propagation

[[89], [90]], dynamic programming [91] and graph cuts [92] techniques.

3.2.2.4 Disparity Refinement

Usually, the disparity is estimated over a discretized space such as for integers dispar-

ities. Discrete disparities are adequate for some applications as robot navigation and

people tracking. However, for image-based rendering applications as quantized maps,

discrete disparities gives a disparity or depth map with shearing layers. To cope with

this issue, some stereo matching algorithms apply sub-pixel refinement to make the

disparity map smoother. Finally, a set of post processing operations are applied such
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Figure 3.4: Proposed Vehicles Detection Algorithm’s Functional Diagram

as left and right consistency check to detect occluded areas. Holes resulted from occlu-

sions can be filled by gap interpolation techniques based on neighboring disparities to

estimate holes’ disparity [93]. A median filter can also applied to remove mismatches.

3.3 Vehicles Detection Proposed Algorithm

In this section, we describe the proposed algorithm for vehicles detection and distance

estimation based on stereo vision. The approach can be divided into three processing

levels as shown in Figure 3.4.

The first one deals with the generation of a dense disparity map based on the grabbed

rectified left and right stereo images, the algorithm proposed in [94] has been used for

this purpose. We selected this algorithm based on two important criteria. First, it is

considered as one of the most accurate and efficient stereo matching algorithm which
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has been widely employed in the literature [95], [96], [97], [98]. Second, the algorithm

is most of the time sequential and difficult to parallelize.

The second level performs scene segmentation. This segmentation relies on the V-

disparity map and a set of post processing. It provides all necessary information to

facilitate the vehicles detection task for the next level, also it increases the detection

efficiency and reduces the computation cost by limiting the region of interest. The

result of this level is the extraction of the road plane profile with two disparity maps; a

free space disparity map and an obstacles disparity map. Finally, vehicles detection is

processed in the third level based on the U-disparity map generated from the obstacles

disparity map.

3.3.1 Level 1 : Disparity Map Generation

In this work, we worked on the Efficient LArge scale Stereo matching (ELAS) algorithm

[94] to generate the disparity map. The approach relies on the observation that not all

pixels are difficult to match, but instead there should be a set of discriminative points

which can be matched easily and used to generate a sparse disparity map.

As depicted in Figure 3.6, in the first level, a descriptor is associated to all pixels

of both stereo images. Figure 3.5 illustrates how to compute each pixel’s descriptor.

Sobel gradients are used for this purpose. For both images and for all pixels we compute

Sobel vertical and horizontal gradients. Then, we take a patch of size 5 × 5 centered

on the considered horizontal and vertical gradients corresponding to the considered

pixel. Actually, in the published paper [94], authors propose a descriptor of 25 elements

consisting of the 25 elements of each patch concatenated together. However, for fast

implementations, in the code they selected only 16 elements as depicted in Figure 3.5

which is said to give empirically the best results in terms of disparity quality and

precision according.

Then a set of discriminative support points candidates are selected from the reference

image. The second level is the core of the whole algorithm. First, the disparity of

these support points is determined based on the classic Sum of Absolute Difference

(SAD) method. These support points are then used to build a 2D mesh via Delaunay

triangulation. This mesh helps to find the disparity of the remaining pixels based on

a generative probabilistic model. Finally, some post-processing operations are applied
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Figure 3.5: Pixel’s Descriptor in Elas Algorithm

Figure 3.6: ELAS Functional Diagram

to remove noise from generated map and interpolate the gaps resulted from occlusion

areas. Figure 3.6 summaries the different operations encountered in ELAS algorithm.

3.3.1.1 Supports Points

ELAS algorithm generates a dense disparity map, i.e., it computes the disparity of all

pixels. It is a Bayesian approach which builds a prior from a set of support points.

In other words, it first builds a sparse disparity map providing the disparity of some

points which will be used to estimate the disparity of all pixels. By support points, we

refer to some pixels which can be robustly matched due to their texture and uniqueness

[94]. Different approaches [83],[99], [100] have been proposed in the literature to find

stable stereo correspondences. ELAS algorithm relies on a different approach. The idea

consists on describing each pixel with a descriptor. The later is formed by concatenating

the horizontal and vertical Sobel gradients of 9× 9 pixel windows. A mask of size 3× 3

is used to compute Sobel gradients. As cost function, the l1 distance is employed

between pixel’s descriptors. The authors [94] experimented with sparse interest points

descriptors of SURF [80]. They found that SURF descriptors do not improve disparity
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accuracy while being slow to compute compared to Sobel based descriptors.

3.3.1.2 Generative Probabilistic Model for Dense Stereo Matching

This section describes the generative probabilistic model used to construct the dense

disparity map based on the support points disparity. Given the support points and an

observation in the left image taken as the reference image, samples from the correspond-

ing observation in the right image can be obtained based on a generative probabilistic

model.

Let’s formalize this idea:

• Let S, be a set of support points S = {s1, . . . , sM}.

• Each support point sm = (um, vm, dm)T is defined as the concatenation of its

image coordinates (um, vm) ∈ N2 and its disparity dm ∈ N .

• Let O = {o1, . . . , oN} be a set of image observations.

• Each observation on = (un, vn, fn)T is formed as the concatenation of its image

coordinates (um, vm) ∈ N2 and a feature vector fn ∈ RQ

• o(l)
n and o(r)

n are the observation in the left and right image respectively.

The left image is taken as the reference. Let’s assume that the observations {o(l)
n ,o(r)

n }
and the support points S are conditionally independent. Then, given their disparities

dn the joint distribution factorizes

p(dn, o
(l)
n , o(r)

n ,S) ∝ p(dn|S,o(l)
n )p(o(r)

n |o(l)
n , dn) (3.4)

• p(dn|S,o(l)
n ) is the prior.

• p(o(r)
n |o(l)

n , dn) is the likelihood.

The authors took the prior to be proportional to a combination of a uniform distri-

bution and sampled Gaussian.

p(dn|S,o(l)
n ) ∝







γ + exp(−(dn−µ(S,o
(l)
n ))2

2σ2 ) if |dn − µ| < 3σ ∨ dn ∈ Ns

0 otherwise
(3.5)

With:
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• Ns is a set of all support point disparities in a small 20× 20 pixel neighborhood

around the considered pixel (u
(l)
n , v

(l)
n ).

The condition dn ∈ Ns is to take into consideration discontinuities of disparity in

some pixels where linearity is not verified.

• µ(S,o(l)
n ) is a mean function which relates the support points to the observations.It

is expressed as a piecewise linear function that interpolates the disparities using

the Delaunay triangulation computed based on the support points.

For each triangle in the mesh, we obtain a plane defined by :

ui(o
(l)
n ) = aiun + bivn + ci (3.6)

Where

– i is the index of the triangle the pixel (un, vn) belongs to.

– on = (un, vn, fn)T is an observation.

For each triangle i, the plane parameters (ai, bi, ci) are obtained by solving a linear

system of three equations. These equations are formed by replacing the vertices’s coor-

dinates of the triangle in equation 3.6.

As an example, let’s ∨1(u1, v1, d1), ∨2(u2, v2, d2) and ∨3(u3, v3, d3) be the three vertices

of triangle i. If we replace these three points in equation 3.6, we get:











d1 = aiu1 + biv1 + ci

d2 = aiu1 + biv2 + ci

d3 = aiu3 + biv3 + ci

(3.7)

These equations can be transformed to a simple linear system Ax = b That can be

solved easily.




d1
d2
d3



 =





u1 v1 1
u2 v2 1
u3 v3 1



×





ai
bi
ci





Once the prior is evaluated, let’s express the second part of equation 3.4 which is the

likelihood. The authors have chosen to express the image likelihood as a constrained

Laplace distribution as follow:

p(o(r)
n |o(l)

n , dn) ∝











exp(−β||f(l)n − f(r)n ||1) if

[

u
(l)
n

v
(l)
n

]

=

[

u
(r)
n + dn

v
(r)
n

]

0 otherwise

(3.8)
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f(l)n and f(r)n are the feature vectors of o(l)
n and o(r)

n respectively. Classical descriptors

such as SIFT, SURF, BRIEF, . . . could be used in such case to describe each pixel

(observation) with respect to its neighborhood. The authors made a choice to use Sobel

filter to form a feature descriptor by concatenating horizontal and vertical gradients.

3.3.1.3 Samples’ Selection on the Right Image

Once the prior and the likelihood have been calculated, samples or observation on the

right image can be extracted based onto these two measures and by using equation 3.4.

The idea is to extract a set of samples or points in the right image which match most

likely an observation in the left image.

To do so, we need to:

1. Obtain a disparity dn from the prior p(dn|S,o(l)
n ) given S(support points) and o(l)

n

(left image observations).

2. Draw an observation o(r)
n from the likelihood p(o(r)

n |o(l)
n , dn) given o(l)

n and dn.

3.3.1.4 Disparity Estimation

The purpose behind defining the prior (equation 3.5) and the likelihood (equation 3.8)

is to determine at the end the disparity of the remaining pixels if we exclude the support

points to construct a dense disparity map. As discussed in the previous section, samples

on the right image can be drawn for each observation in the left image. Based on these

samples, we can estimate the disparity, the authors have relied on Maximum a-posteriori

MAP to compute the disparity given by the following formula:

d∗n = argmax p(dn|o(l)
n , o

(r)
1 , . . . , o

(r)
N , s) (3.9)

The authors in [94] proposed a stereo matching algorithm which is able to compute

accurate disparity maps of high resolution images at frame rates close to real time. They

have shown that a prior distribution estimated from robust support points reduces stereo

matching ambiguities. ELAS algorithm has been evaluated on the Middlebury bench-

mark and real-world imagery. The results show that the proposed approach performs

better with respect to the state-of-the-art approaches.
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Figure 3.7: Scene Segmentation Approach

3.3.2 Level 2 : Scene Segmentation

The dense disparity map is segmented into two distinctive spaces; free space and obsta-

cles space (Figure. 3.7). The former one includes road, sidewalks and sky, the later one

covers static obstacles (trees, building, panels) and dynamic ones (moving vehicles and

pedestrians). The obstacles map can be viewed as a confident map since the probability

of detecting vehicles is higher in this map compared to the complete dense disparity

map.

3.3.2.1 Road Detection

The detection of the road profile is based on the V-disparity space [72] where the x axis

plots the disparity d and the y axis plots the image row number. The intensity value of

a pixel pvdisp(d, v) on this map is identified According to Eq. (3.10).

pvdisp(d, v) =

cols
∑

u=0

λ, λ =

{

1 if pdisp(u, v) = d .

0 otherwise .
(3.10)
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The ground plane is projected as a slanted line under the hypothesis that the road’s

surface is plane and horizontal. The Hough transform [73] has been used to detect

this line and to identify its equation ad + b. Then, for each pixel pdisp(u, v) in the

disparity map, we calculate its distance dist (Eq. (3.11)) with respect to the road’s line

which should be less than a threshold ǫ (few pixels) to classify this pixel as road’s pixel.

Through this process, road’s pixels are subtracted from the disparity map. Figure 3.7

(b, c, d) shows results of road segmentation (d) based on the dense disparity map (b)

and the V-disparity map (c).

pdisp(u, v) =

{

0 if dist < ǫ

pdisp(u, v) otherwise
, dist =

|au− vb|√
1 + a2

. (3.11)

3.3.2.2 Pixels’ Classification

The classification phase aims to recover the non-road free space pixels by using the U-

disparity map. The intensity of a pixel pudisp(u, d) in the U-disparity map is determined

according to Eq. (3.12)).

pudisp(u, d) =

rows
∑

v=0

λ, λ =

{

1 if pdisp(u, v) = d .

0 otherwise .
(3.12)

If the intensity of a pixel on the U-disparity map is higher than a certain threshold τ ,

this means that in a certain column u of the disparity map, there are too many pixels

with the same distance to the camera and these points belong to potential obstacles.

Based on this observation, pixels with high intensity are kept and the others are set to

0 (Eq. (3.13)). The threshold τ refers to the height of obstacles measured in pixels, in

our case, it has been set to 40 pixels. Figure 3.7 (d, e, f) shows the results of pixels

classification (f) based on the disparity map after road subtraction (d) and by using the

U-disparity map (e).

pdisp(u, v) =

{

pdisp(u, v) if pudisp(u, d) > τ, d = pdisp(u, v) .

0 otherwise .
(3.13)

3.3.2.3 Free Space Propagation

Pixels classification has been performed to get two sets of pixels candidates belonging

to free space and obstacles space. These classified pixels are taken as initial seed points

to determine the class of the non-classified pixels. The idea is to count the contribution
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of classified free space and obstacles space pixels on the neighbor of each pixel. An

accumulator accum has been used to count this contribution. If the neighbor’s pixel

belongs to free space, accum is decremented, otherwise it is incremented (Eq. (3.14)).

Figure 3.7 (g) shows the results of free space propagation.

d(u, v) =

{

0 (free space pixel) if accum < 0

d(u, v) (obstacles space pixel) otherwise
(3.14)

3.3.2.4 Sky Subtraction

While many free space pixels have been recovered through free space propagation, wrong

classification may happen concerning the sky’s pixels classified as obstacles pixels (Fig-

ure 3.7(g)). The reason is that, the propagation task relies on the analysis of the

surrounding pixels, since the sky’s pixels are on the top part of the image far from the

free space and close to obstacles space, the contribution of obstacles pixels is higher. To

remove sky from disparity map, the saturation (S) channel (Figure 3.7(h)) of the HSL

color space is used and applied as a mask on the last segmented disparity map by using

Eq. (3.15).

d(u, v) =

{

0 if s(u, v) is (black(0) ∨ white(255)) ∧ (v < b− ǫ)

d(u, v) otherwise
(3.15)

The saturation channel has been used because the sky’s pixel s(u, v) on this channel is

either white or black. It is white in case the sky is blue or grey on the RGB color space

and it is black when the sky is white. We may then apply the S channel as a mask to

each pixel d(u, v). However, to avoid removing pixels belonging to potential vehicles,

the mask is applied only for the part above the horizon line b identified previously (see

section 3.3.2.1) with a tolerance range ǫ (30 pixels). The result is shown on Figure

3.7(i).

3.3.3 Level 3 : Vehicles Detection

Vehicles detection task relies on the U-disparity map which is less noisy compared to

the the V-disparity map. This choice is based on the fact that, in the U-disparity map,

obstacles in general are represented by separate horizontal lines even side to side vehicles

which is not the case on the V-disparity map where obstacles at the same distance are
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Figure 3.8: Vehicles Detection Algorithm: Phase 1 Off-road Features Subtraction

overlapped and represented by the same line. However, the crucial point with the U-

disparity map is how to remove the off-road features. To cope with this issue, connected

segments labeling algorithm has been used. Finally, on-road vehicles are detected and

recognized based on their geometry. The whole process can be divided into two phases:

an off-road features subtraction phase and an on-road vehicles detection phase.

3.3.3.1 Phase 1 : Off-Road Features Subtraction

Figure 3.8 shows an example of the complete off-road subtraction phase. First, the U-

disparity map is generated from the obstacles disparity map. Then, connected segments

algorithm is applied based on the 4-connected neighborhood approach (Figure 3.10 (a))

as follows:

1. Scan the U-disparity map from left to right and from top to bottom

2. The first non zero pixel is taken as the seed point

3. check for the horizontal (left and right) and the vertical (top and bottom) neigh-

bors

4. Join each non-zero neighbor to the seed point

5. Apply recursively the 4-connected neighborhood for each new joined pixel (steps

3 and 4)
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Figure 3.9: Vehicle’s Width Variation in Pixels with Distance for a 1.5 m Vehicle’s

Width

Once the whole U-disparity map is processed, a list of segments is recovered and

each one is treated according to its width. To take into consideration the fact that an

obstacle looks smaller when it is far and bigger when it is close, the width is measured

in function of the disparity. Figure 3.9 illustrates the principle.

Let the pixel Pi(u, v) be a projection on the image plane of a point Pw(X,Y, Z) in

the real world plane. To recover X based on the image coordinate system we rely on

Eq. (3.16). Cu is the projection of the x coordinate of the camera’s optical center in

the image plane, Z is the distance and f is the focal distance.

X = (u− Cu)× Z/f . (3.16)

Let suppose umin and umax are the minimum and maximum vertical limits of a vehicle

in the image plane. By using Eq. (3.16), we can determine the width W in meter as

shown in Eq.(3.17). Figure 3.9 shows the variation of the width in pixels (umax−umin)

with distance for a fixed vehicle’s width of 1.5 m.
{

Xmin = (umin − Cu)× Z/f

Xmax = (umax − Cu)× Z/f
⇒ W = (Xmax −Xmin) = (umax − umin)× Z/f.

(3.17)

To remove off-road segments represented by long segments, we have fixed the width

interval from 1.5m to 3m and the detection distance from 30m to 70m. Based on this,

we have determined the variation interval of the width in pixel to take into consideration.

Figure 3.8 shows the result of applying this to remove the off-road features.
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Figure 3.10: Objects Classification and Vehicles Identification

3.3.3.2 Phase 2 : On-Road Vehicles Detection

Hypothesis Generation To detect on-road vehicles, the list of on-road segments

generated is investigated. To distinguish between on-road vehicles and other on-road

objects we rely on the geometry features of vehicles. From the previous phase, the

vertical position of each segment on the image plane (umin, umax) is recovered (Figure

3.10 (a)) and hence the width in meter is deduced according to Eq. (3.17). Also, the

disparity range is determined (Figure 3.10 (a)). Then, for each on-road segment, in the

disparity map region limited by umin and umax, we recover all pixels having disparity in

the disparity range [dispmin, dispmax] (Figure 3.10 (a)). The horizontal position is then

determined (vmin, vmax) and the height is found. Also we refine the vertical position

(U
′

min, U
′

max) as shown in Figure 3.10 (b). Figure 3.11 shows these different steps at the

hypothesis generation level.

Hypothesis Verification To select on-road vehicles among other on-road obstacles,

two tests are applied (Figure 3.11). First,the height in pixels is checked (Eq. 3.17).

Vehicles have height between 1.5m and 3.5m, any obstacle with height outside this

range is rejected. If the test is verified, the ratio between the 2D box area and the

external contour is computed. The external contour is limited by the pixels which have

been recovered (Figure 3.10 (b)). The reason of using this ratio as a metric is that, for

vehicles, this ratio is supposed to be high which is not the case for panels as shown in

Figure 3.10 (c).
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Figure 3.11: Vehicles Detection Algorithm: Phase 2 On-Road Vehicles Detection

3.4 Experimental Results

It is worth noting that the proposed approach performs on-road vehicles detection with-

out tracking. The algorithm has been evaluated on KITTI datasets. For each dataset,

a list of tracklets is available as the ground truth representing the different objects avail-

able on each frame. Each tracklet is presented in velodyne coordinates as a 3D box with

its corresponding width, height and length. The algorithm is implemented on a stan-

dard PC with an Intel CPU (i5) of 1.8 GHz. The operating system is Ubuntu 14.04.

The disparity map as mentionned previously is generated from LibELAS library based

on the approach explained on section 3.3.1.

3.4.1 Experimental Design

To evaluate the algorithm, KITTI [101] datasets have been used. The set up of the

system employed to grab the stereo images is detailed in [102] and [103]. Table 3.1 give

some specifications of the employed cameras.

Before using the tracklets for evaluation, there are some points to take into consid-
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Table 3.1: KITTI Datasets Specifications

Feature Set-up

Baseline 54cm

Non-rectified image size 1382× 512

Rectified image size 1242× 375

2× grayscale cameras (FL2-14S3M-C), 1.4 Mp,CCD, global shutter

2× color cameras (FL2-14S3C-C), 1.4 Mp, CCD, global shutter

eration. The first one deals with the obstacles type; since our algorithm deals only with

vehicles, we need first to filter all non-vehicles tracklets. The second point concerns

the detection distance range of our algorithm which is set up from 30m to 70m, hence,

we have to take into consideration only tracklets having distance within this range. To

cope with these issues the position and motion history data of the tracklets have been

used, for instance, to remove non-vehicles objects, the object’s type has been employed.

For evaluation, we determine the rate of correct detections or missed ones and false

alarms. For better evaluation, these criteria are checked manually when the data pro-

vided by the tracklets is not sufficient. To test, we need first to perform a 2D projection

of the 3D boxes representing the tracklets. Then, we determine the percentage of in-

tersection between the 2D box of each tracklet taken as a ground truth and the 2D

box generated by our algorithm. A detection is then validated once the percentage of

intersection is higher than 70%. For evaluation we have selected 3 datasets:

• Dataset 1: High way

• Dataset 2: Urban road

• Dataset 3: Rural road

3.4.2 Analysis of Obtained Results

Table 3.2 shows the evaluation results of the algorithm whiteout the aid of a tracking

module on the 3 different datasets. Two hundreds frames have been selected for each

dataset. Dataset 1 contains 270 on-road detections, 241 of them have been well detected.

In dataset 2 there exists 236 detections, 211 have been well detected, while the rest have

been missed. Dataset 3 contains 128 on-road vehicles associated with tracklets, 211 have
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Table 3.2: On-road Vehicles Detection Evaluation

Dataset Correct detections Missed detections False alarms

Dataset 1 89.26% 10.74% 8.88%

Dataset 2 89.40% 10.59% 2.96%

Dataset 3 92.19% 7.81% 11.71%

been correctely detected. For evaluation, the three criteria previously presented have

been determined for each dataset. During the evaluation, we noticed the absence of

redundant detections due to the use of connected component algorithm to recover the

segments on the U-disparity map. This solution also increases the accuracy of distance

estimation. The results show that high successful detection rate can be achieved as

shown in the top left image in Figure 3.12 and the estimated distance reaches 70m. Also

the classification task works well since different types of vehicles have been detected like

cars and trucks, the bottom left image in Figure 3.12 illustrates this situation.

Figure 3.12: Some Detections Results Obtained from KITTI Dataset

Although the algorithm gives sufficient results, it has still some deficiencies. The

first point concerns the use of the connected component algorithm to remove off-road

features. This technique fails when we deal with on-road vehicles close to high off-road

features, in this case, we will loose the vehicles. Also, this approach is highly sensitive

to the stereo matching errors since it is related to the U-disparity map generated from

the projection of the disparity map. This may increase the false alarms and the rate

of missed detections as shown in the top right image of Figure 3.12. The false alarms
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are generally sidewalks panels and road markers as illustrated on the top and bottom

right images in Figure 3.12. They are usually generated because of the stereo matching

errors that affect directly the scene segmentation task and hence the on-road vehicles

detection phase. This can be solved by merging the proposed algorithm with a lane

marking detection module.

We have compared the performances of our algorithm with some contributions cited

in Table 3.3 in terms of the Farthest Detection Distance (FDD), the Correct Detections

Rate (CDR) and the False Detections FD).

Table 3.3: Comparison of our Algorithm with other On-Road Vehicles Detection

Algorithms

Article FDD CDR FD Detection Type

Sun et al. [104] 32× 32 image region 98.5% 2% Rear

Alonso et al. [105] - 92.63% 3.63% Rear and front

Bergmiler et al. [106] - 83.12% 16.7% Rear

Southall et al. [107] 40m 99% 1.7% Single lane rear

Chang et Cho [108] 32× 32 image region 99% 12% Rear

Kowsari et al. [109] 120m 98.6% 13% Multi view

Our algorithm 70m 90.28% 7.85% Multi view

3.5 Discussion

In this chapter, a stereo vision based scene segmentation and on-road vehicles detection

algorithm has been proposed. While a variety of vehicles detection algorithms exist in

the literature, the proposed algorithm provides improvements to cope with some crucial

issues. The first one concerns the off-road features subtraction. It is an important

point to deal with when on-road objects are targeted for detection. We proposed to use

the connected segments labeling algorithm which has been also used to recover the on-

road segments instead of the traditional Hough transform for better and fast obstacles

detection. For the second improvement, width and height of objects are not measured

in meter but rather in pixels in function of the disparity. This solution increases the

detection precision and distance estimation. Also, some cues have been presented for

objects classification like the ratio between the 2D box area and the external contour
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of the object. The algorithm has been evaluated on the KITTI vision dataset and the

experimental results show that it can detect the most on-road vehicles and determine

their distance up to 70m.
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4

Kernel-Level Optimizations on CPU

Vectorization and Shared Memory Parallelization

This chapter concentrates on optimizing and evaluating the stereo matching algorithm

at kernel-level on CPU-based systems. Vectorization and shared memory parallelization

are targeted based on different approaches and programming languages. The stereo

matching algorithm is evaluated from the execution time aspect. The main contributions

of this chapter are summarized in the following paragraph.

We start by analyzing the algorithm to (1) identify the most time consuming kernels.

After that, (2) we propose to optimize the stereo matching approach at algorithmic

level to fit the parallelization requirements such as having regular dense operations.

We then start parallelizing the algorithm with various approaches at different levels.

The first approach consist on (3) parallelizing the cost function (SAD) of the stereo

matching algorithm through vectorization via SIMD instructions. Then, (4) we optimize

the algorithm at global level through shared memory parallelization via OpenMP on multi-

core systems. We then (5) combine both vectorization (SIMD) and shared memory

parallelization (OpenMP) for a maximum performance. After that, (6) we use OpenACC

directives on CPU to parallelize on multi-core systems. As a last approach, (7) we use

a template-based technique referred as NT2 to parallelize the algorithm on CPU-based

systems. Finally, (8) an evaluation of the obtained results is performed. We discuss the

contributions of each approach from different aspects such as the obtained performance

and the required productivity. We also present their limitations and the issues met

during our experiments.
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4.1 CPU Based Stereo Matching Algorithm

In this section, the original CPU-based stereo matching algorithm is described. We

analyze the algorithm to determine potential parallelism. Bottlenecks, or time consum-

ing functions are identified through profiling before optimizing the algorithm. We also

present some improvements applied to the algorithm for better and efficient paralleliza-

tion.

4.1.1 ELAS : Original CPU Based Algorithm

ELAS algorithm [94] is based on a generative probabilistic model to generate a dense

disparity map. The approach relies on a set of support points to compute a sparse

disparity map. The latter is then used as a depth prior to enable efficient sampling of

disparities in a dense fashion (refer to chapter 3, section 3.3.1 for more details). While

ELAS generates a disparity map with an important precision, it is not fast enough to

respond to real time requirements. Indeed, some optimizations at algorithmic level are

required before focusing on accelerating the algorithm.

It is well known that parallelization is possible whenever regular operations are

present, i.e, the same operation is applied to a set of data such as pixels within an

image. Stereo matching algorithm responds well to this criteria since we compute the

disparity for all pixels based on some matching cost function also called similarity

measure. The later defines the core of many stereo matching algorithms.

Based on the required data to compute the cost function, we distinguish two cat-

egories: window-based and pixel-based cost functions. Pixel-based cost function is the

simplest matching costs which assumes constant intensities at matching image loca-

tions. In other words, it depends only on values Li (considered pixel’s intensity in the

left image) and Ri + d (candidate pixel’s intensity in the right image). Common pixel-

based matching costs include Absolute Differences (AD) and Squared Differences (SD)

presented in chapter 3. Window-based cost functions rely on the neighboring pixels

within a specific window of n × n pixels of Li and Ri − d. Common window-based

matching costs include the Sum of Absolute or Squared Differences (SAD / SSD) and

Normalized Cross Correlation (NCC). Figure 4.1 illustrates these two approaches of

stereo matching. The red lines both represent the epipolar line (pixels) which is the

same since the images are rectified. The green pixels are all pixels candidates in the
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Figure 4.1: Pixel-based vs Windows-based Stereo Matching

right image– here the left image is taken as a reference. The boundaries of the green

strip is the same on both approaches, however, in window-based technique we also use

the neighboring pixels depicted with the blue window in Figure 4.1.

In ELAS algorithm, window-based cost function is used. However, pixels’ intensity is

not directly used to compute the cost function. A descriptor of 16 elements – extracted

from Sobel horizontal and vertical gradients, is associated to each pixel. The SAD

cost function is applied to the left and right descriptors. To compute the disparity of

each pixel, we first compute the boundaries –minimum and maximum, of the research

region in the right image. Based on some prior data from support points’ disparity, we

determine these boundaries for each pixel. Hence, we do not have the same research

region for all pixels withing the same line.

Algorithm 1 illustrates part of the stereo matching process in ELAS algorithm for the

left image. The algorithm goes through all the generated triangles from the Delaunay

triangulation. For each triangle, slight lines from corners A to B, and B to C and

their corresponding data (corners, planes . . . ) are respectively used to estimated the

disparity. The pseudo code 1 is only for the first slight line; A → B. The same

algorithm is used for the second part; B → C. For each slight, the horizontal range

(over the colons) is computed from the y coordinates of the corners (line 2 in Algorithm

1). Concerning the vertical range (over the rows), we use line’s equation parameters of

both lines AC and BC (lines 3, 4). After that, we compute the disparity range over which

we look for the homologue pixel in the other image. To do so, we use the triangle’s

plane parameters; PA, PB, PC and PD. Each triangle plane can be presented with the
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following Equation ( 4.1) :

PD = PA× col + PB × row + PC (4.1)

Since parameters PA, PB and PC are already known from the Delaunay triangulation,

we can compute PD for pixel P1 located at position (row1, col1) as follow:

PD1 = PA× col1 + PB × row1 + PC (4.2)

Algorithm 1 Original Sequential Stereo Matching in ELAS (CDDL)

Require: TRI[M], LD[H x W x 16], RD[H x W x 16], PRIO[[256]

1: for M=0 to m do ⊲ for all triangles do: treat A→B(below), then B→C(same)

2: for col=A.y to B.y do ⊲ A.y, B.y are y coordinates of corners A & B

3: row1=a1×col+b1 ⊲ use AC line’equation parameters (a1, b1)

4: row2=a2×col+b2 ⊲ use BC line’equation parameters (a2, b2)

5: for row=min(row1,row2) to max(row1,row2) do

6: DMIN=f1(PA,PB,PC) ⊲ PA, PB, PC are triangle planes parameters

7: DMAX=f2(PA,PB,PC)

8: for d=DMIN to DMAX do ⊲ disparity reasearch distance

9: SAD = PRIOR[|d-PD|] ⊲ add prior, PD=PA×col+PB×row+PC

10: for i=0 to 15 do ⊲ go through pixel’s descriptor elements

11: SAD += abs(LD[row][col][i] - RD[row][col-d][i])

12: end for

13: if SAD<SADmin then

14: SADmin = SAD

15: disparity = d

16: end if

17: end for

18: D[row][col] = disparity

19: end for

20: end for

21: end for

We then have the necessary data to compute the disparity range (lines 6, 7) as illustrated

in Equation 4.3. A radius of r is taken into consideration, it has been set to 2 in ELAS
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code. the maximum disparity we can get is set to 256 (dispmax)

DMIN = max(PD-r, 0) → f1 in Algorithm 1 line 6 (4.3)

DMAX = min(PD+r, dispmax) → f2 in Algorithm 1, line 7

Once the disparity range is computed, at each disparity, we estimate the disparity. We

start by adding the prior data. The prior has been presented in the previous chapter.

Listing 4.1 illustrates how to compute the prior. We notice a set of parameters which

are employed. These parameters have been set in ELAS code to KITTI dataset as shown

in the comment. They have been also set to Middlebury dataset.

1 for (int delta=0; delta<disp_max; delta++)

2 // for KITTI dataset: gamma=5, sigma= 1, beta=0.02

3 PRIOR[delta] = (int)((-log(gamma+exp(-delta*delta/2*sigma*sigma))+log(gamma))/beta);

Listing 4.1: PRIOR Computation in ELAS

4.1.2 A-ELAS: Adapt to Parallelize

From the previous discussion of the original ELAS stereo matching algorithm, we notice

two main issues from the parallelization point of view. First, the global loop iterates

over the triangles. The number of triangles is not known from the beginning since it

depends on the number of the supports points which is itself not fixed. Hence, we

cannot estimate the required performance precisely and whether the available hardware

can respond to these requirements. Secondly, each pixel has its own research region of

the disparity (DMAX-DMIN), hence, when parallelizing, it may happen that threads do

not receive the same amount of work which is not desired if we want to achieve work

balance for a maximum performance.

In order to maximize the potential parallelism, we propose to improve the algorithm.

The idea consists on having the same boundaries of disparity research region of all pixels

on the same image’s line. These boundaries are computed separately before performing

the stereo matching. Algorithm 2 gives the pseudo code of this proposed approach

applied both to CDDL and CDDR functions. We notice that we do have the same algorithm

for both function expect when the SAD is computed between the left descriptor(LD) and

the right one (RD) as illustrated in pseudo code 2; line 7 for the forward left disparity

and line 9 for the backward right disparity. It is worth noting that even if in this

algorithm we presented the forward and backward disparities in the same code, in our
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Algorithm 2 Adapted Sequential Stereo Matching (CDDL/CDDR)

Require: LD[H x W x 16], RD[H x W x 16], PRIOR[256], DMIN[H], DMAX[H],

PD[H x W]

1: for row=2 to H-2 do

2: for col=2 to W-2 do

3: for d=DMIN[row] to DMAX[row] do ⊲ disparity reasearch distance

4: SAD = PRIOR[|d-PD[row][col]|]

5: for i=0 to 15 do ⊲ go through pixel’s descriptor elements

6: if left then ⊲ left disparity (forward)

7: SAD += abs(LD[row][col][i] - RD[row][col-d][i])

8: else ⊲ right disparity (backward)

9: SAD += abs(LR[row][col][i] - LD[row][col+d][i])

10: end if

11: end for

12: if SAD<SADmin then

13: SADmin = SAD

14: disparity = d

15: end if

16: end for

17: D[row][col] = disparity

18: end for

19: end for

implementation, we developed 2 independent functions.

In this algorithm we go through all image’s pixels (lines 1, 2). However, we notice that

we have the same disparity research boundaries (DMIN, DMAX) for all pixels in the same

image’s line which have been computed as before (Equation 4.3). These boundaries,

PD and the PRIOR are computed in a separate function in contrast to original ELAS

(Algorithm 1)

This optimization allows better use of cache memory since all pixels in each line

loaded from right image are used by all pixels in the left image within the same line.

The efficiency of this improvement will be discussed also in the next chapter with shared

memory in GPUs. Also it gives more regular operations to facilitate the parallelization

process. We call this improved algorithm A-ELAS, A is for Adaptive. We could

then have the following algorithm of dense stereo matching with several choices of
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parallelization.

After the CPU based A-ELAS stereo matching is implemented, we will investigate

possible parallelization or vectorization approaches. We have several choices:

1. Parallelize the first and the second for loops.

2. Parallelize the third for loop only.

3. Parallelize the fourth for loop only.

4. Parallelize the first, second and third for loops.

5. Parallelize the fourth loop only.

At first glance, the fourth option seems to be the best as it can parallelize the CPU

solution mostly. In this case, an important number of iterations need to be parallelized.

However, in this chapter we target parallelization in multi-core systems with only few

threads. Hence, we do not have enough threads to accelerate the algorithm. Thus, this

option should be denied.

Secondly, for the second and the third options, generally image size (H or W) is much

greater than descriptor size (16) or disparity range(DMAX-DMIN) , so parallelizing the

computation on each pixel is not a wise strategy.

Based on the above discussion, the rest we can do is the first and/or the fifth options.

The first option seems to be the best solution where all pixels can run concurrently

(depending on the number of threads) and within each pixel the procedure is sequential.

This option allows then parallelization at global level. The fifth choice seems also to

work since the size of SIMD registers allows to hold a descriptor and hence perform

the SAD at once. SSE registers size is 128 bits which is enough to hold one descriptor

(16×8− bits) while in NEON since registers size is 64 bits, 2 registers are concatenated

in this case. This option is performed at low level. Hence, if we combine both first and

second options we expect to achieve an important performance.

4.1.3 A-ELAS : Profiling and Analysis

To determine the most time consuming functions, we profiled the algorithm with gprof

profiler by adding the -pg compiling option. The algorithm has been profiled in the

four selected platforms on KITTI dataset. Figure.4.2 shows the obtained results.

• CSM (ComputeSupportMatches) Computes supports points’ disparity.
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Figure 4.2: A-ELAS Profiling Results on KITTI Dataset.

• CDDL (ComputeDenseDisparityLeft) Computes dense disparity of left image.

• CDDR (ComputeDenseDisparityRight) Computes dense disparity of right image.

• Others Include pre-processing and post-processing.

The most important observation concerns the 3 functions; CSM, CDDL and CDDR, which

take all together more than 90% of the total algorithm’s execution time on all platforms.

By others, we mean pre-processing such as Sobel filter, and post-processing as left and

right consistency check. According to these results, to accelerate the stereo matching

algorithm, we need to focus on CSM, CDDL and CDDR functions.

4.2 Experimental Design

In our experiments, we use KITTI [101] raw stereo dataset of 1242x375 pixels to discuss

each proposed optimization. Then, we will apply the obtained optimized algorithm on

9 image pairs with different resolutions from Middlebury stereo datasets [1]. Table 4.1

depicts the CPU hardware specifications of the platforms employed in these experiments.

It is worth mentioning that ARMv8 in NVIDIA Tegra X1 is packing four high

performance Cortex-A57 big cores and four high efficiency Cortex-A53 little cores. The

big cores are fast and use more power, but the little cores are great for background
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Table 4.1: Employed Platforms CPU Specification

Specification i7-6700HQ i7-4600M ARMv7 rev3 ARMv8 rev1
#cores 4 2 4 8

#threads 8 4 4 4
Max CPU Clock 3.50GHz 3.60GHz 2.32GHz 1.73GHz
L1 Cache (KB) 256 128 32 2048(A57), 512(A53)
L2 Cache (KB) 1024 512 2048 32(A57), 32(A53)
L3 Cache (KB) 6144 4096 _ _
RAM Size (GB) 16 16 2 4

SIMD sse1 sse1 neon asimd2

fp/fpu/vfp fpu fpu vfpv4, vfpv3 fp

1 sse, sse2, ssse3, sse4_1, sse4_2
2 advanced simd

processing and are much more power-efficient. Most chips that use this eight-core

configuration are tied together using a system from ARM called big.LITTLE. Instead

of using ARM’s method to control the eight cores, NVIDIA is using cluster migration

with a custom cache coherence system to move data between the two islands. Under this

model, the OS scheduler only sees one cluster (either big or little) at a time. Actually,

Tegra X1 can only run processes on one set of cores at a time, but the data can be

moved back and forth between the big cores and the small cores.

4.3 SIMD Implementation

The first approach to accelerate the stereo matching algorithm consists on using the

SIMD intrinsics. The idea comes from the fact that pixel’s descriptor in ELAS algorithm

includes 16 elements of 8-bits each corresponding to the size of SSE registers (128-bits)

and double the size of NEON registers. Actually, in the original ELAS [94], the authors

proposed a descriptor of 50 elements, 25 Sobel horizontal gradients concatenated with

25 Sobel vertical gradients. Each 25 gradients are recovered from a patch of size 5× 5

around the considered pixel. For performance purpose, the authors decided to use only

16 elements while writing the code.
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4.3.1 Intel(SSE) vs ARM(NEON)

On fixed platforms with Intel processor, SSE instructions set is employed. On embedded

platforms with ARM processor, NEON instructions set is used. Adaptations have been

made to port code from Intel to ARM processor. First, code has been rewritten with

NEON intrinsics since the SIMD instruction set is not the same. Second, There are more

advanced instructions like SAD operation in SSE which are not available in NEON and

need to be implemented explicitly by the programmer.

The part of the algorithm affected with this optimization is the match energy com-

putation in the 3 functions (CDDL, CDDR, CSM). The cost matching function used in ELAS

algorithm is the Sum of Absolute Differences (SAD). The later is computed by using

the descriptor of the considered pixel in the left image and its corresponding descrip-

tor in the right image. Each descriptor consists of 16 elements of 8-bits each. This

configuration fits well SIMD registers. In Intel processors, SSE registers are of 128-bits

size which can then hold one descriptor. In ARM processors, NEON registers’ size is 64-

bits, in this case two registers are concatenated together to hold one descriptor at once.

The SAD operation is implemented in SSE with _mm_sad_epu8 intrinsic. However,

in NEON, vabdq_u8 intrinsic is provided which computes only the absolute difference

between registers elements. Hence, we have implemented the SAD version in NEON by

using the available instructions.

1 __m128i sad_tmp = _mm_sad_epu8(x1,x2);

2 uint32_t sad = _mm_extract_epi16(sad_tmp,0) + _mm_extract_epi16(sad_tmp,4);

Listing 4.2: SSE Version of SAD

Listing 4.2 shows the SSE intrinsics employed to compute the SAD between two

descriptors of 16-byte elements each. Only two SSE intrinsics are employed. First,

__m128i _mm_sad_epu8(__m128i a, __m128i b) is used to compute the absolute dif-

ferences (AD) of packed unsigned 8-bit integers in a and b. Figure 4.3 illustrates the

function of this intrinsic. It horizontally sums each consecutive 8 differences to pro-

duce two unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low

16 bits of 64-bit elements in the output register. Second, int _mm_extract_epi16

(__m128i a, int imm8) is used to extract a 16-bit integer from a, selected with imm8,

and store the result in the lower element of a scalar output. It is called twice to extract
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4.3 SIMD Implementation

Figure 4.3: Functional diagram of SSE SAD Intrinsic

the two generated 16-bit of _mm_sad_epu8 instruction. We then sum the two extracted

values to obtain the final SAD.

Listing 4.3 shows the NEON snippet code to compute the SAD between two descriptors

of 16-byte elements each. Five NEON intrinsics are employed. Figure 4.4 illustrates the

function of each intrinsic.

1 uint64x2_t sad_tmp = vabdq_u8((uint8x16_t)x1, (uint8x16_t)x2);

2 sad_tmp = vpaddlq_u8((uint8x16_t)sad_tmp);

3 sad_tmp = vpaddlq_u16((uint16x8_t)sad_tmp);

4 sad_tmp = vpaddlq_u32((uint32x4_t)sad_tmp);

5 uint32_t sad = vgetq_lane_u64((uint64x2_t)sad_tmp, 0) + vgetq_lane_u64((uint64x2_t)sad_tmp, 1);

Listing 4.3: NEON Version of SAD

First, uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b) is employed to compute

the absolute differences (AD) of packed unsigned 8-bit integers in a and b. It sub-

tracts the elements of vector b from the corresponding elements of vector a and stores

the absolute values of the result into the elements of the destination vector. Second,

uint16x8_t vpaddlq_u8(uint8x16_t a) is used to perform a long pairwise addition.

It adds adjacent pairs of elements of a vector, sign or zero extends the results to twice

their original width (16 bits in this case), and places the final results in the destina-

tion vector. Third, uint32x4_t vpaddlq_u16(uint16x8_t a) does the same thing but

works on 16-bits data and store the results in a 32-bits vector. Fourth, uint64x2_t
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Figure 4.4: Functional diagram of NEON Equivalent SAD Intrinsics

vpaddlq_u16(uint32x4_t a) adds the 32-bits adjacent data in a vector and store the

results in a 64-bits vector. At this level, we get the same output as the _mm_sad_epu8 SSE

intrinsic. Finally, to extract the two elements, uint64_t vgetq_lane_u64(uint64x2_t

vec, __constrange(0,1) int lane) is used. We then sum the two extracted values

to obtain the final SAD.

1 // ARMv7

2 mul r0, r0, r1 //Scalar

3 vmul d0, d0, d1 //SIMD

4 // ARMv8

5 mul x0, x0, x1 //Scalar

6 mul v0.u8, v0.u8, v1.u8 //SIMD

7 )

Listing 4.4: Scalar vs SIMD in ARMv7 and ARMv8

4.3.2 ARMv7(Cortex-A15) vs ARMv8(Cortex-A57)

There are NEON instruction sets for both AArch32 (equivalent to the ARMv7 NEON in-

structions) and for AArch64. Both can be used to significantly accelerate repetitive
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Table 4.2: SIMD Compiling Options

Processor Compiling Options

Intel Core i7-4600M 2.90GHz -O3 -ffast-math -msse4.2

Intel Core i7-6700HQ 2.60GHz -O3 -ffast-math -msse4.2

Jetson TK1 ARMv7 rev 3 (v7l) -O3 -ffast-math -mfpu=neon+vfp4

Tegra X1 ARMv8 rev 1 (v8l) -O3 -ffast-math -mcpu=cortex-a57+simd+fp

operations on large data sets. The NEON architecture for AArch64 uses 32 × 128-bit

register, twice as many as for ARMv7. These are the same registers used by the floating-

point instructions. The compiler is free to use any NEON/VFP registers for floating-point

values or NEON data at any point in the code. In ARMv8, the same mnemonics as for

general purpose registers are used as shown in Listing 4.4. The only way to distinguish

between scalar and SIMD instruction in assembly code of an ARMv8 is to check the

registers employed. Both floating-point and NEON are required in all standard ARMv8

implementations.

4.3.3 Obtained Results

By following the aforementioned details, the cost matching function (SAD) has been

programmed with SIMD instructions in selected platforms and applied to the three func-

tions; CSM, CDDL and CDDR. Table 4.2 shows the compiling option employed. To compile

in Cortex-A53, we just need to change the compiling option -mcpu=cortex-a57 shown

in Table 4.2 to -mcpu=cortex-a53.

Figure 4.5 shows the scalar version (C++) versus the SIMD one. The code has been

profiled in KITTI dataset(1242x375) by using gprof profiler with -pg compiling option.

The red labels above the green bars present the obtained speedup of the SIMD version

with respect to the scalar one.

If we compare the scalar version, we notice that we have the same execution time in the

first two fixed platforms since we have the same processor family (Intel core i7) with

different model and hardware specifications. However, we have the same SIMD enabled

flags. In these two platforms, we obtain a speedup of more that 4 in CDDL and CDDR

functions and a speedup of almost 12 with CSM function.
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Figure 4.5: C++ vs SIMD Execution Time on KITTI(1242x375) dataset.

In Jetson TK1 platform, CDDL and CDDR are 3 times faster with NEON. A speedup

of 5 is achieved with CSM function. In Tegra X1, the NEON code has been executed

and profiled on both ARM processors, CortexA57 and CortexA53. Figure 4.5 shows

that there is no difference in terms of execution time. While a speedup of 2.2 is

achieved with CDDL and CDDR, CSM function runs 9 times faster in NEON compared to its

scalar(C++) version. The difference in speedup between Intel and ARM processors is

mainly related to the intrinsics employed to compute the SAD. As explained before, SSE

instructions set provides an intrinsics to compute the SAD in contrast to NEON which

provides an intrinsic to compute only the absolute differences. Table 4.3 depicts the

latency and throughput of the employed intrinsics. If we compute the total latency

in Intel processor required to compute the SAD, we get 3 + 2× 3 = 9 cycles. In ARM

processors, we get 3 + 3× 3 + 5× 2 = 22 cycles. Hence, more cycles are required in ARM

processors to compute the SAD compared to Intel processors.
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4.3 SIMD Implementation

Table 4.3: SIMD Intrinsics Latency

Intrinsic Execution Latency Execution throughput
_mm_sad_epu8() 3 1

_mm_extract_epi16() 3 1
vabdq_u8 3 1

vpaddlq_u8 3 2
vpaddlq_u16 3 2
vpaddlq_u32 3 2

vgetq_lane_u64 5 1
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Figure 4.6: C++ vs SSE Execution Time on Middlebury dataset.

Figure 4.6 depicts the execution time of the scalar(C++) and SIMD versions on dif-

ferent image size. Middlebury dataset is used in this experiment. Since execution time
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4.4 OpenMP Implementation

of CDDL and CDDR is quite the same, only CDDL results are depicted in Figure 4.6 and

referred as CDD. the results of CSM function are also depicted. We notice an important

speedup with SIMD of both functions (CDD, CSM) on all architectures. While scalar

curves in all cases increase rapidly with image size, SIMD curves increase in a slower

fashion.

Algorithm 3 Parallel Stereo Matching of A-ELAS (CDDL/CDDR) with OpenMP

Require: LD[H x W x 16], RD[H x W x 16], PRIOR[256], DMIN[H], DMAX[H],

PD[H x W]

1: for row=2 to H-2 parallel do ⊲ use #pragma omp parallel for

2: for col=2 to W-2 parallel do ⊲ use #pragma omp parallel for

3: for d=DMIN[row] to DMAX[row] do ⊲ disparity reasearch distance

4: SAD = PRIOR[|d-PD[row][col]|]

5: for i=0 to 15 do ⊲ go through pixel’s descriptor elements

6: if left then ⊲ left disparity (forward)

7: SAD += abs(LD[row][col][i] - RD[row][col-d][i])

8: else ⊲ right disparity (backward)

9: SAD += abs(LR[row][col][i] - LD[row][col+d][i])

10: end if

11: end for

12: if SAD<SADmin then

13: SADmin = SAD

14: disparity = d

15: end if

16: end for

17: D[row][col] = disparity

18: end for

19: end for

4.4 OpenMP Implementation

Open specifications for Multi Processing (OpenMP) is an Application Program Interface

(API) which allows explicit and portable model for multi-threaded and shared memory

parallelization. OpenMP is an extension to C/C++ and Fortran languages. The first

OpenMP standard was released in 1997, OpenMP 3.0 was finalized in 2008. It supports
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Figure 4.7: C++ vs OpenMP Execution Time on KITTI(1242x375) Dataset.

a variety of machines from multi/many-core to GPUs in the last release (4.0). In the

following experiments , OpenMP.3.1 version is used whith gcc.4.8.5 compiler.

4.4.1 Obtained Results

We use OpenMP directives to parallelize the three bottlenecks identified previously –CSM,

CDDL and CDDR.

Algorithm 3 illustrates the OpenMP implementation of CDDL and CDDR. The parallelization

is performed at the first and the second loop to go through all image pixels in such a

way that each thread computes the disparity of one pixel.

Figure 4.7 shows the obtained results in KITTI dataset. The CPU hardware specifi-

cations of each employed processor have been presented previously in Table 4.1. In Intel

Core i7-6700HQ, with 4 physical cores, we obtained an acceleration factor of around 3

in all cases. With Intel Core i7-4600M having 2 physical cores, a speedup of around
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Figure 4.8: C++ vs OpenMP Execution Time on Middlebury Datasets.

2 is achieved – 1.9 with CDDL and CDDR, 1.8 with CSM. In NVIDIA Jetson TK1

with 4 ARM Cortex-A15 cores, we obtained an average speedup of 3.4. In NVIDIA

Tegra X1, we executed the code on both Cortex-A53 and Cortex-A57 processors. In

both cases, we have 4 distinct cores. The results are depicted in Figure 4.7(d). First,

we notice that there is no important difference between Cortex-A53 and Cortex-A57

results. Second, we obtained a speedup of 3 with CDDR and CDDL, and a speedup of 3.5

with CSM function.

To evaluate the execution time of the OpenMP version with respect to image size,

we executed the code on Middlebury dataset with different image resolutions. Figure

4.8 depicts the obtained results. Since the execution time of CDDL and CDDR function is
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Figure 4.9: C++ vs SIMD vs OpenMP Performance on KITTI Dataset.

quite similar, we depict only the results of CDDL function referred as CDD in Figure 4.8 for

better visibility of the curves. We notice that with OpenMP, the curves increase slowly

compared to scalar version with C++. In NVIDIA Tegra X1, we observe that Cortex-A57

and Cortex-A53 both give the same performances with a very small difference at high

resolution with both functions.

4.5 SIMD + OpenMP

This section describes the obtained performance by merging both OpenMP directives

and SIMD instructions to accelerate the stereo matching algorithm. The SIMD code

is wrapped within OpenMP directives to take advantage of the maximum performance

computing of the CPU.
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Figure 4.10: C++ vs SIMD vs OpenMP Performance on Middlebury Dataset.

4.5.1 Obtained Results

Figure 4.9 depicts the first obtained results on KITTI dataset. In all architectures, the

best results are obtained with both SIMD and OpenMP. In fixed platforms, we notice that

Intel Core i7-6700HQ CPU with 4 physical cores outperforms Intel Core i7-4600M with

only 2 physical cores. The same observation concerning Jetson TK1 which gives better

performance with CDDL and CDDR compared to Tegra X1. The results depicted with

Tegra X1 are obtained from Cortex-A57, actually we got the same performances with

Cortex-A53.

Figure 4.10 shows the performance obtained from benching the algorithm on Mid-

dlebury dataset with different image resolutions. For better readability of the graphs,

only CDDL function’s results are depicted referred as CDD, indeed, CDDL and CDDR give
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the same performance in all cases. Also, in NVIDIA Tegra X1, since ARM Cortex-A57

outperforms lightly ARM Cortex-A53, the results of the later are not depicted. We

notice the same observation as in KITTI dataset(Figure 4.9), The best performance in

all platforms with both function (CDD, CSM) and with all image resolutions are obtained

by using OpenMP directives and SIMD instructions.

4.6 OpenACC Parallelization on CPU

4.6.1 Obtained Results

We used OpenACC directives to parallelize the identified bottlenecks – CSM, CDDL and

CDDL. The approach is similar as with OpenMP since they are both based on directives.

The idea is to keep the scalar source code and add directives before the loops to par-

allelize. It is worth noting that according to our best knowledge, there is non OpenACC

compiler for ARM architecture. Hence, the code has been executed only on platforms

with Intel processors (Intel Core i7-6700HQ, Intel Core i7-4600M). Release 16.10 of PGI

compiler has been employed. Hardware specification of both architectures are presented

in Table 4.1. It is important to mention that scalar (C++) results in all experiments are

obtained with g++-4.8 compiler and gprof profiler. It is also important to mention

that OpenACC is used only on CPU-based systems in this chapter.

4.6.1.1 CDD Function

We implemented CDDL and CDDR functions with OpenACC directives. The original C++

source code has been used. Directives have been added to guide the compiler to par-

allelize the loops. We used pgc++ compiler of PGI. To compile OpenACC on multi-core

systems, we need to add the -ta=multicore option to select multi-core system as the

target accelerator for which to compile. We used the following compiling options :

-O3 -acc -ta=multicore -Minfo=accel. The -Minfo=accel option reports relevant

information on the optimizations applied. As first experiment, we selected to test both

approaches; with kernels and parallel constructs.

Algorithm 4 illustrates the pseudo code employed to accelerate CDDL and CDDR func-

tions with OpenACC on multi-core systems. As illustrated, we use only kernels clause

at the beginning of the first for loop to give hint to the compiler concerning the region
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we wish to parallelize. The rest of the algorithm as well as the scalar code C++ were not

touched.

Algorithm 4 Parallel Stereo Matching of A-ELAS (CDDL/CDDR) with OpenACC

Require: LD[H x W x 16], RD[H x W x 16], PRIOR[256], DMIN[H], DMAX[H],

PD[H x W]

1: #pragma acc kernels ⊲ parallel region: line 2 → line 20

2: for row=2 to H-2 parallel do

3: for col=2 to W-2 parallel do

4: for d=DMIN[row] to DMAX[row] do ⊲ disparity reasearch distance

5: SAD = PRIOR[|d-PD[row][col]|]

6: for i=0 to 15 do ⊲ go through pixel’s descriptor elements

7: if left then ⊲ left disparity (forward)

8: SAD += abs(LD[row][col][i] - RD[row][col-d][i])

9: else ⊲ right disparity (backward)

10: SAD += abs(LR[row][col][i] - LD[row][col+d][i])

11: end if

12: end for

13: if SAD<SADmin then

14: SADmin = SAD

15: disparity = d

16: end if

17: end for

18: D[row][col] = disparity

19: end for

20: end for

Figure 4.11 depicts the compiling information feedback of PGI compiler of CDDL function

with OpenACC. From this figure we first notice that PGI compiler detects the four loops

presented in the algorithm. Second, only the outermost for loop has been parallelized

at gang level which confirms the aforementioned limitations of OpenACC. At line 1009 in

Figure 4.11, the compiler gives back a restriction concerning input data employed which

have not been allocated on GPU. This a bug on the compiler since we are working on

multi-core systems. On line 1030 corresponding to the for loop at line 4 in Algorithm 4,

the compiler detects a data dependency which does not allow to loop to be parallelizable

.
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Figure 4.11: PGI Compiling Information Feedback of CDDL Function with OpenACC
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Figure 4.12: C++ vs OpenACC Execution Time on KITTI Dataset of CDD Function.

In the second experiment, we replaced the kernel pragma in Algorithm 4 with

a parallel construct : #pragma acc parallel loop. Since the parallelization is only

possible at one level, we did not add this pragma to the other loops. As complier

feedback, we got the same information as illustrated in Figure 4.11.

Figure 4.12 depicts the obtained results on KITTI dataset with both approaches;

kernels and parallel. First, we notice that on both architectures, we got almost

the same results in terms of execution time with both kernels and parallel clauses.

Red labels associated to the top of each bar corresponds to the speedup obtained with

respect to the scalar version (C++). In Intel Core i7-6700HQ with 4 physical cores and

8 threads (2 threads per each core), OpenACC version of CDDL/CDDR achieves a speedup

of 4.75. In the second platform –Intel Core i7-6700HQ, with 2 physical cores and 4

threads (2 threads per each core), we achieve a speedup of 2.6. We notice that in both

cased the speedup is greater than the number of physical cores. Indeed, OpenACC applies
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Figure 4.13: C++ vs OpenACC Execution Time on Middlebury Dataset of CDD

Function.

also auto vectorization included on -O3 option whenever its possible. Figure 4.13 shows

the execution time of CDDL referred as CDD, in Middlebury dataset with different image

resolutions. Only results obtained with kernels are depicted for better visibility since

there is a very small difference with respect to parallel clause. We clearly notice the

the important speedup obtained with OpenACC on both architectures. We also notice

that the OpenACC curves rise slower than the scalar ones.

4.6.1.2 CSM Function

We followed the same approach to parallelize CSM function with OpenACC directives.

The same compilers – g++-4.8 for C++ and pgc++ for OPenACC. The same compiling

options are also used. We used kernels clause in this case. Figure 4.14 illustrates the

approach employed to compute the cost function in CSM function. There two important

differences between CDDL/CDDR functions and CSM in terms of computing the disparity:

1. Disparity research distance In CDDL/CDDR functions, we limit the boundaries (min,

max) when looking for the homologue pixel thanks to the prior data provided by

the support points. However, for CSM function, since at this level we do not have

any prior information, the disparity research distance is set to [0, 255] correspond-

ing to the maximum distance.
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Figure 4.14: CSM Cost Function Approach

2. Cost aggregation As depicted in Figure 4.14, we use the four corners of a 5 × 5

window centered at the considered support point to compute the cost function.

We use pixel’s descriptor of 16 elements associated to each pixel/corner.

3. All in one Figure 4.15 depicts a flowchart of the algorithm employed in CSM func-

tion to compute the disparity of one support point. For the final dense disparity,

forward disparity, backward disparity and consistency check are three distinct

functions. Functions CDDL and CDDR are completely independent. However, as

illustrated in Figure 4.15, backward disparity depends on forward disparity. Also

consistency check between left and right disparity is performed at the end before

validating the disparity.

With OpenACC, we used the same approach as with CDDL/CDDR functions. We put

OpenACC pragmas on the outermost loop with kernels construct. We expected to get

as previously with CDD function a speedup of at least 4 and 2 in Intel Core i7-6700HQ

and Intel Core i7-4600M respectively. Figure 4.16 (a) depicts the results of the first

implementation. It is clear that the obtained results are far from the expectations.

While in in Intel Core i7-6700HQ, a speedup of less than 2 is achieved, in Intel Core

i7-4600M, we notice almost no speedup.

To understand the obtained results, we wanted first to check the execution time of

the scalar C++ version of CSM function compiled with pgc++ compiler. The results are

depicted in Figure 4.16 (b). We notice clearly that pgc++ version is slower than g++
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Figure 4.15: CSM Algorithm Flowchart

one. These results have been also noticed by some users of pgc++ compiler and posted

question on PGI forum without getting clear explanation.

The first track we investigated concerns the compiling options. Since PGI compiler

optimize the code accordingly. We focused on -O3 option. The later specifies aggressive

global optimization. It performs all level-one (-O) and level-two (-O2) optimizations

and enables more aggressive hosting and scalar replacement optimizations that may or

may not be profitable. Globally, it proposes three options:

• -Mcache_align aligns large objects on cache-line boundaries

• -Mpre enables partial redundancy elimination

• -Mvect=sse controls automatic SSE vectorization.

To understand why pgc++ is slower than gc++, the three options are tested. We en-

able and disable each option and we verify its effect on the execution time. With the

first option (-Mcache_align) we did not notice any effect neither with the second one

(-Mpre). To test the third option, it is a bit more complicated since it consists of a set
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Figure 4.16: C++ vs OpenACC Execution Time on KITTI Dataset of CSM Function.

Compiling

Option

Time(ms) C++(pgc++) Time(ms) C++(g++)

-O3 -O3 -Mvect=nosse -O3 -Mvect=levels:x -O3 -Mvect=nosse,levels:1 -O3

Intel Core i7-6700HQ 394 292 x=1 : 255

x=2 : 396

259 239

Intel Core i7-4600M 418 293 x=1 : 258

x=2 : 415

263 232

Table 4.4: C++ Execution Time of CSM with pgc++ Compiling Options vs g++ on

KITTI Dataset

of sub-options (17 exactly) such as fuse to enable loop fusion, simd to generate SIMD

instructions and tile to enable loop tiling. We tested all these sub-options one by one.

We found that only two sub-options have effects on execution time which are : [no]sse

and levels:<n>. The formal one generates or not the SSE instructions, the later one

sets the maximum nest level of loops to optimize.

Table 4.4 shows the execution time of the scalar version (C++) of CSM function with

different configurations of aforementioned options (sse,levels:<x>). We notice clearly

the difference with only -O3 option between g++ and pgc++ compilers. When nosse

option is used, the execution time decreases but is still greater than the C++ version

with g++. The second option (levels:<x>) gives rather better results, we reach the

smallest execution time with pgc++ by setting the maximum nest loops to optimize
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Compiling

Option

Time(ms) OpenACC(pgc++) Time(ms) C++(pgc++)

-O3 -O3 -Mvect=nosse -O3 -Mvect=levels:x -O3 -Mvect=nosse,levels:1 -O3 -Mvect=levels:x

Intel Core i7-6700HQ 139 105 x=1 : 86

x=2 : 135

92 255

Intel Core i7-4600M 230 160 x=1 : 136

x=2 : 244

141 258

Table 4.5: OpenACC Execution Time of CSM with pgc++ Compiling Options on

KITTI Dataset
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Figure 4.17: C++ vs OpenACC Execution Time on KITTI Dataset of CSM Function.

to only one level. When both options are merged, the execution time is smaller than

with only -O3 option, however, it is lightly greater than the execution time with only

levels:1 option.

We did the same experiment with OpenACC, we measured the execution time with

different configurations of -O3, nosse and levels:<x> options. Table 4.5 depicts the

obtained results. With only -O3 option, we notice a very small speedup on Intel Core

i7-4600M architecture with 2 physical cores and 4 threads. In Intel Core i7-6700HQ

with 4 physical cores and 8 threads, we achieved a speedup of 1.8. As previously with

scalar version, the option levels:1 together with -O3 gives the best speedup; 1.9 in

Intel Core i7-4600M and 2.9 in Intel Core i7-6700HGQ. Figure 4.17 summarizes the

obtained results on KITTI dataset. We clearly notice the improvement on the speedup

when compiling options are configured for a maximum performance.

91



4.7 NT2 Implementation

 0

 50

 100

 150

 200

 250

 300

 350

 400

1
9
2
x
1
4
4

2
3
0
x
1
7
3

3
8
4
x
2
8
8

4
6
1
x
3
4
6

5
7
6
x
4
3
2

6
1
4
x
4
6
1

7
6
8
x
5
7
6

8
0
6
x
6
0
5

9
2
2
x
6
9
1

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Image Size

C++(g++:-O3)
C++(pgc++:-O3,-Mvect=levels:1)

OpenACC(pgc++:-O3)
OpenACC(pgc++:-O3,-Mvect=levels:1)

(a) Intel Core i7-6700HQ

 0

 50

 100

 150

 200

 250

 300

 350

 400

1
9
2
x
1
4
4

2
3
0
x
1
7
3

3
8
4
x
2
8
8

4
6
1
x
3
4
6

5
7
6
x
4
3
2

6
1
4
x
4
6
1

7
6
8
x
5
7
6

8
0
6
x
6
0
5

9
2
2
x
6
9
1

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Image Size

C++(g++:-O3)
C++(pgc++:-O3,-Mvect=levels:1)

OpenACC(pgc++:-O3)
OpenACC(pgc++:-O3,-Mvect=levels:1)

(b) Intel Core i7-4600M

Figure 4.18: C++ vs OpenACC Execution Time on Middlebury Dataset of CSM

Function.

To evaluate the implemented OpenACC version of CMS function, the later has been

benched on different image resolutions from Middlebury dataset. Figure 4.18 depicts the

obtained results. We selected the worst results with default compiling options (-O3) and

the best results we obtained with -O3, -Mvect=levels:1. In scalar version (C++), we

notice a small difference before and after setting the right compiling options. However,

this difference is more important with OpenACC on both architectures and gets greater

with image resolutions. Also this difference with OpenACC is higher on Intel Core i7-

4600M processor with only two physical core compared to the Intel Core i7-6700HQ

with 4 physical cores.

4.7 NT2 Implementation

In this section, we present the obtained results of accelerating CDD and CSM functions

with NT2. NT2 implements a subset of Matlab language as a DSEL based on Expres-

sion Template C++ idiom. NT2 has been presented previously in chapter 2, for more

details, refer to section 2.3.4.2. At NT2 compilation, automatic rewriting may occur

when architecture-driven optimizations are possible and user high-level algorithmic im-

provements are introduced. These compile-time optimizations are integrated within

Boost.SIMD [57].
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4.7.1 Obtained Results

NT2 proposes different optimizations (2.3.4.2) such as the colon option "_". The latter

applies vectorization on sub-matrix access which corresponds to ":" in Matlab. We

have used this option to accelerate both CDD and CSM functions.

4.7.1.1 CDD Function

To accelerate the CDD function with NT2, we selected the colon (_) for vectorization. The

idea consists in optimizing at line granularity, in other words, vectorization is applied

on one image’s line through the colon option. Algorithm 5 illustrates the global pseudo

code employed to compute the disparity of all image’s line in parallel with NT2 "_"

option.

Algorithm 5 Parallel Stereo Matching of A-ELAS (CDDL) with NT2

Require: LD[H×W×16], RD[H×W×16], PRIOR[256], DMIN[H], DMAX[H],

PD[H×W], DISP_OUT[H×W]

1: for row=2 to H-2 parallel do

2: disp_max = (int)*(DMIN + row)

3: disp_min = (int)*(DMAX + row)

4: computeDisparityLeftLine(LD, RD, row, disp_min, disp_max, PD,

PRIOR, DISP_OUT

5: end for

As illustrated in Algorithm 5, we have one for loop which iterates over image’s

lines (line 1). Then we get the boundaries of the disparity range (lines 2, 3). After that

we call the function computeDisparityLeftLine() (line 4) for left disparity in CDDL

function to compute the disparity of all pixels in each line (row). It is worth noting that

the same pseudo code is employed with CDDR function by using another function referred

as computeDisparityRightLine(). The only difference as explained previously is that

with CDDR function, since we compute the backward disparity, we take the right descrip-

tors (RD) as the reference from which we subtract the values of the left descriptors (LD).

Listing 4.5 illustrates how to use NT2 to program the computeDisparityLeftLine()

function.
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1 computeDisparityLeftLine(T &ld, T &rd, int32_t v, int32_t disp_min, int32_t disp_max, uint8_t* pd

, int32_t* prior, float* disp_out )

2 {

3 using nt2::_;

4 nt2::table<float, nt2::settings(nt2::shared_,nt2::_1D)> disp_out_shared( nt2::_1D(w), nt2::

share((float*)disp_out+v*w, (float*)disp_out+v*w + w));

5 nt2::table<int16_t> min_valueT(nt2::of_size(w));

6 nt2::table<int16_t> minval(nt2::of_size(w));

7 nt2::table<float> mind(nt2::of_size(w));

8 nt2::table<int16_t> prior_line(nt2::of_size(w));

9 minval(_) = (int16_t)(10000);

10 mind(_) = (float)(-1);

11 min_valueT(_) = (int16_t)(0);

12 for(int32_t disp_range = disp_min; disp_range <disp_max; ++disp_range) {

13 int32_t uwarp_begin = 2-disp_range ;

14 int32_t uwarp_end = w-2-disp_range;

15 for (int ii = 1; ii<=w; ii++){

16 uint8_t d_plane = pd[ii-1 + v*w];

17 prior_line(ii) = *(prior+abs(disp_range- d_plane));

18 }

19 min_valueT(_(2, w-2)) = prior_line(_(2, w-2));

20 for (int32_t jj = 1; jj<=16; jj++)

21 min_valueT(_(2, w-2)) += nt2::abs(desc1(_(2, w-2),v_offset, jj) - desc2(_(uwarp_begin,

uwarp_end),v_offset, jj)) ;

22 minval(_(2, w-2)) = nt2::if_else( min_valueT(_(2, w-2)) < minval(_(2, w-2)), min_valueT(_(2,

w-2)), minval(_(2, w-2)));

23 mind(_(2, w-2)) = nt2::if_else( min_valueT(_(2, w-2)) == minval(_(2, w-2)), nt2::cast<float>(

disp_range), mind(_(2, w-2)));

24 }

25 disp_out_shared(_(2, w-2)) = nt2::if_else( mind(_(2, w-2)) >= 0.f, mind(_(2, w-2)), (float)(-1)

);

26 }

Listing 4.5: Code Snippet of computeDisparityLeftLine() Function with NT2

While programming with NT2, we work on NT2 table class. Hence, adaptations are

required to fit the specifications of this class. Here are the most important features to

take into consideration:

• To avoid creating an NT2 table of the output image and copying back the results

to the C++ array (disp_out, line 1, Listing 4.5), we use the NT2 shared option of

table class. The idea consists on creating an NT2 table which is actually a view

of the C++ array without any data copy. This allows us to have access as input

to the selected C++ array. Also, when the NT2 shared table is updated, the C++

equivalent data are also updated automatically without any data copy. This is
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Table 4.6: Execution Time (ms) of CDDL Function (Listing 4.5) with NT2

Platform i7-6700HQ i7-4600M Jetson K1 ARMv7 Tegra X1 ARMv8
C++ 190 190 380 410
NT2 231 230 642 854

NT2_SIMD 228 226 425 898
NT2_OpenMP1 132 147 965 500

NT2_SIMD_OpenMP 131 150 548 555

1 add -fopenmp compiling option

illustrated in Listing 4.5, line 4. we created a view to the C++ array data (pixels)

at line v.

• All operations have to be performed between tables. In other words, if in C++

version we used some constants variables to be added or subtracted, then with

NT2, we need to create an NT2 table holding the same constant. This is also

applied to temporary variables as illustrated in Listing 4.5, lines 5 → 11.

• Control operators such as "if then else" in C++ code, have to be substituted

with their NT2 equivalent which can be applied to a set of data simultaneously

(Listing 4.5, lines 22, 23, 25).

To enable code acceleration with NT2, we rely on compiling options. In our case,

since we employed the colon (_) option which is supposed to apply vectorization along

the data, we added the following options :

• Intel CPU: -DBOOST_SIMD_NO_STRICT_ALIASING -fno-strict-aliasing

-ffast-math -msse2 -msse3 -msse4.1 -msse4.2

• ARM Jetson K1: -DBOOST_SIMD_NO_STRICT_ALIASING -fno-strict-aliasing

-mfpu=neon -ffast-math

• ARM Tegra X1: -DBOOST_SIMD_NO_STRICT_ALIASING -fno-strict-aliasing

-mcpu=cortex-a57+simd+fp -ffast-math

We then executed the NT2 code of CDD function on our selected CPU-based platforms.

Table 4.6 gives the execution time in ms with different compiling options. In addition

to enabling SIMD vectorization, we also tested OpenMP parallelization by adding the

-fopenmp compiling option on both Intel and ARM CPUs. The first line (C++) gives
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the execution time (ms) of the scalar version taken as the reference without any NT2 code

or any specific compiling option. In the second line (NT2), we have the execution time

of the NT2 version corresponding to the code illustrated in Listing 4.5. If we compare

C++ to NT2, we notice that code rewriting with NT2 adds a cost at the execution time

which is significantly important at ARM-based architectures.

The third line (NT2_SIMD) shows the obtained execution time with NT2 by enabling the

SIMD instructions. The code of this version is the same as the one employed in the

second line (NT2). To enable SIMD, we just need to add the required compiling options

as explained previously, no code rewriting is necessary. We notice different results

among the four platforms. First, in Intel-based CPUs (i7-6700HQ, i7-4600M), we have

got almost no performance compared to NT2 results. In Jetson K1 ARM processor,

we obtained a speedup of 1.5 with NT2_SIMD compared to NT2. In Tegra X1 ARM

processor, the execution time has rather increased. The absence of performance with

SIMD can be explained by the fact that NT2 did not mange to unroll the instructions with

SIMD. In this case, it lets the compiler the freedom to try to unroll or apply any other

optimization to accelerate the code. This may happen when the arithmetic intensity is

not high enough for NT2.

To accelerate the code, we added OpenMP compiling option to the same code. The

obtained results are shown in line 4 in Table 4.6 (NT2_OpenMP). We observe a small

speedup in Intel CPUs, 1.4 in i7-6700HQ and 1.3 in i7-4600M processor. However, in

Jetson TK1 ARM processor, the execution time has increased compared to both NT2

and NT2_SIMD results. In Tegra X1, we managed to obtain a speedup of 1.7 compared

to NT2 execution time. The low performance with OpenMP can be explained by the

memory bandwidth at L3 cache which is shared among the processor and may be small

compared to L2 cache or DRAM.

4.7.1.2 CSM Function

With CDD function, we parallelized at line granularity in such a way to compute the

disparity of all image’s line pixels simultaneously. In CSM function, we do not compute

the disparity for all pixels, but only for the supports points candidates. Supports points

are separated from each other horizontally and vertically by 5 pixels. Hence, we cannot

keep the same programming model as in CDD function, otherwise we loose in terms of

performance. The approach we followed consists in vectorizing the loop scanning pixels
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in the right image (here we take the left image as a reference) to compute the cost

matching of each support point. In CSM function, we do not have any prior data at this

level to estimate the disparity research range. the cost aggregation window is slided

along 255 distance, which is the maximum disparity we can get.

1 // for each support point condidate do

2 for(int16_t jj = disp_min; jj <=disp_max; jj += BLOCK) {

3 if (jj + BLOCK < disp_max) {

4 if (!right_image) u_warp = u-jj; //left/forward disparity

5 else u_warp = u+jj; //right/backward disparity

6 sums(_) = (int16_t)(0);

7 if (!right_image) { // compute left/forward disparity

8 for(int i=1;i<=16;i++){

9 sums(_) += nt2::abs( LD(_(u-u_step, u-u_step+BLOCK-1), v-v_step, i) - RD(_(u_warp-u_step

, u_warp-u_step+BLOCK-1), v-v_step, i));

10 sums(_) += nt2::abs( LD(_(u+u_step, u+u_step+BLOCK-1), v-v_step, i) - RD(_(u_warp+u_step

, u_warp+u_step+BLOCK-1), v-v_step, i));

11 sums(_) += nt2::abs( LD(_(u-u_step, u-u_step+BLOCK-1), v+v_step, i) - RD(_(u_warp-u_step

, u_warp-u_step+BLOCK-1), v+v_step, i));

12 sums(_) += nt2::abs( LD(_(u+u_step, u+u_step+BLOCK-1), v+v_step, i) - RD(_(u_warp+u_step

, u_warp+u_step+BLOCK-1), v+v_step, i));

13 }

14 }

15 else { /* compute right/backward disparity */ }

16 // disparity refinement and optimization (update maximum a posteriori (MAP))

17 }

18 // if number of pixels < BLOCK size

19 else { /* compute left and right disparity in C++ */ }

20 }

21 // check for best match, if valid, return disparity value, or return -1

Listing 4.6: Code Snippet of CSM() Function with NT2

To parallelize, we propose to divide the sliding region, from minimum disparity to

maximum, into equal blocks. We vary the size of block to find the optimal one and

analyze the evolution of the obtained performance while varying the block size.

Listing 4.6 illustrates part of the code. The disparity research region ([disp_min,

disp_max]) is divided into equal regions of BLOCK size each (line 2). If the last region

size is less than BLOCK, then the remaining pixels will be processed sequentially (C++)

as illustrated in line 19. In line 8, we have a loop which iterates over the descriptors

(16 elements). The four sums (lines 9, 10, 11, 12) corresponds to the four corners in a

window of 5 × 5 surrounding the corresponding support points. The colon (_) option

is employed compute the SAD between the left (LD) and right (RD) descriptors. The

same approach is employed to compute the backward disparity of the right image by
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Figure 4.19: Execution Time of CSM Function withNT2 on KITTI Dataset

interchanging the left and right descriptors (LD, RD) while computing the sums (lines

9 → 12) and using the appropriate disparity (line 5).

Figure 4.19 depicts the obtained execution time (ms) of CSM function written with

NT2 executed on the four platforms. In this case, we have just enabled the SIMD flags

previously presented; we did not use OpenMP. First, we notice high execution time in

all architectures at BLOCK=1. Then, the execution time decreases significantly while

increasing the BLOCK size corresponding actually to the SIMD registers size. However,

the best performance is far away from the expected ones.

4.8 Evaluation

To evaluate the employed tools in this chapter, we propose to compare :

1. OpenMP to OpenACC, since they are both directive-based approaches

2. SIMD to NT2 since they both apply vectorization. While with SIMD, we used explicit

intrinsics to write the code, in NT2, we wrote the code with the colon "_" option

to hint the compiler to generate a vectorized code.
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Figure 4.20: C++ vs OpenMP vs OpenACC Execution Time on KITTI Dataset.

4.8.1 OpenMP vs OpenACC

In this section, we discuss the obtained results with shared parallelization approach. We

compare the two tools employed for this purpose; OpenMP and OpenACC. Since we could

not use OpenACC on ARM-based systems – lack of compatible compiler, we compare the

obtained results inly on x86-based systems (Intel Core i7-6700HQ, Intel Core i7-46008).

4.8.1.1 CDD Function

If we compare from programing productivity between OpenMP and OpenACC, we can say

that it is quite similar. As discussed before when results are presented, we did not meet

any special difficulty in CDD function with both tools. All we did is we took the scalar

version (C++) and we added OpenMP/OpenACC directives before the for loops we want to

parallelize. Figure 4.20 shows the difference in terms of execution time between OpenMP

and OpenACC on KITTI dataset as well as the obtained speedup w.r.t C++. The scalar

(C++) results are obtained by using g++-4.8 compiler. We clearly observe that OpenACC

gives better performances in both architectures compared to OpenMP. This difference may

be explained by the optimizations applied by PGI compiler such as auto-vectorization

and loop unrolling in addition to the shared memory parallelization applied through

the directives explicitly by the programmer. Figure 4.21 depicts the obtained execution

time on Middlebury dataset with different image resolutions.
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Figure 4.21: C++ vs OpenMP vs OpenACC Execution Time of CDD Function on

Middlebury Dataset.

4.8.1.2 CSM Function

As discussed previously, we encountered some difficulties to accelerate CSM function with

OpenACC compared to OpenMP. With OpenMP, the approach was straightforward as we

did with CDD function; adding directives before the for loops we wish to parallelize was

enough. However, with OpenACC, we noticed that compiling options affected significantly

the obtained performance. Specifying explicitly some options – number of nested loops

to parallelize, was required to accelerate the algorithm. Hence, from programming

productivity, it took more time to accelerate the function, to understand and analyze

the reasons behind it.

Figure 4.22 depicts the execution time of CSM function with OpenMP versus OpenACC.

Different compiling options are employed with pgc++ compiler to obtain the best per-

formance as close as possible to OpenMP ones. We observe that OpenMP outperforms

lightly OpenACC. Figure 4.23 depicts the execution time of CSM on Middlebury dataset

with both OpenMP and OpenMP. We notice the same observation as in KITTI dataset,

OpenMP is lightly faster compared to OpenACC.
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Figure 4.23: C++ vs OpenMP vs OpenACC Execution Time of CSM Function on

Middlebury Dataset.

4.8.1.3 Limitations of OpenACC on Multi-core Systems

Does OpenACC support multi-level parallelism in multi-core systems? Re-

lease 16.10 of OpenACC is employed in this work which have few limitations. First, while

OpenACC on GPU accelerators manifests three levels of parallelism ; gang, worker and

vector–are presented in more details in the next chapter, multi-level parallelism is not
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yet supported on multi-core systems. Hence, the collapse clause is ignored, so only the

outer loop is parallelized at gang level. The worker level of parallelism is ignored; PGI is

still exploring how best to generate parallel code that includes gang, worker and vector

parallelism.

Is it possible to create a unified binary for GPU and multi-core ? The current

release of OpenACC does not support a unified binary. Actually, we cannot use GPU

compiling option -ta = tesla and multi-core one -ta=multicore. Hence, putting -ta

= tesla, multicore is not yet supported. This feature could be important on a cluster

where some of the nodes are GPU-accelerated and other nodes are not.

4.8.2 NT2 vs SIMD

From programming productivity, NT2 requires much more time especially at debugging

stage. Unfortunately, the tool is still new to provide enough documentations and details

for the programmer. In the other hand, we did not meet any issues while programming

with SIMD intrinsics. With Intel processor, users can refer to Intel intrinsics guide

available online ([110]). With ARM CPUs, some advanced instructions are not available

such as the SAD operations which has to be then implemented by the programmer based

on the available intrinsics as we did in section 4.3.1.

From performance point of view, unfortunately, NT2 did not manage to accelerate

the selected functions (CDD, CSM). Despite the fact that we obtained a small speedup

with CDD function on Intel processors by enabling the OpenMP flag, The performances

globally are significantly low. The vectorization with the colon "_" option which is

supposed to unroll the instructions in a SIMD model did not work.

4.9 Discussion

In this chapter, we investigated and evaluated different parallel tools on CPU-based

systems. In the first part, we tested two directives-based approaches for shared mem-

ory parallelization: OpenMP and OpenACC. The programming model is similar with both

techniques. The main purpose behind these approaches is to accelerate the process

of parallelizing algorithms with a minimal cost of code rewriting. The original code

(C++) is maintained and directives are added to give hints to the compiler. We obtained
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important performances and speedup with both approaches. While with OpenMP the

process of parallelization was straightforward, with OpenACC, we met some issues on

parallelizing CSM function requiring deeper analysis to cope with those issues. How-

ever, from performance point of view, OpenACC often outperforms OpenMP due to the

additional optimizations applied by the compiler such as auto-vectorization and loop

unrolling.

In the second part, we investigated two techniques of vectorization based on SIMD

model. The first approach consists on rewriting the code by using the SIMD intrinsics.

The second technique–NT2– relies on automatic code generation after rewriting the code

with appropriate options to give hints to the compiler. The obtained results show that

automatic generation of accelerated image processing algorithms with NT2 are not yet

enough mature to provide the required performances compared to employing the SIMD

intrinsics explicitly.
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5

Kernel-Level Optimizations

GPU Implementation

Parallel programming with compiler directives, such as OpenMP, is widely employed

in scientific computing to accelerate algorithms. It is mainly used when parallelism

appears in regular repeated operations such as C/C++ for loops. OpenACC [12] is a

compiler directives-based tool that allows parallel computing on different accelerators

such as GPUs and multi-cores . In contrast to the well known mainstream GPU pro-

gramming tools, such as CUDA [13] and OpenCL [111], where more explicit compute and

data management is necessary, porting GPU-based applications with OpenACC requires

only code annotations without any significant changes in the original code. This allows

considerable simplifications and productivity improvements with existing applications

particularly if heterogeneous architecture–with different computing units– is targeted.

This chapter concentrates on optimizing and evaluating the stereo matching algo-

rithm at kernel-level on GPUs platforms. Two different programming APIs are used :

CUDA and OpenACC. Different optimizations at several levels are tested. To understand

the contributions and limitations of each employed tool, an evaluation of the obtained

results is performed with both CUDA and OpenACC. Three research questions are dis-

cussed in this chapter: (1) Is OpenACC programming time shorter than CUDA for the

same parallelizable problem? (2) Is CUDA obtained performance (execution time) better

than OpenACC performance? (3) Does OpenACC provide the same optimizations as CUDA?

We conduct this investigation and evaluation between CUDA and OpenACC mainly

based on the following two factors: (1) CUDA is one of the most popular parallel pro-

gramming tools on GPUs and OpenACC is an easily learned and simplified high-level

parallel language, especially for parallel programming beginners with basic knowledges
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on parallel computing; (2) One motivation for OpenACC is to simplify low-level parallel

language such as CUDA.

5.1 GPU Architecture Overview

Graphics Processing Units (GPUs) were originally designed to perform rendering and

shading of 2D and 3D graphics data. They have been used to accelerate graphics opera-

tions based on mathematical computing required in 3D games such as geometry shading,

bilinear, texture mapping and depth buffering. It did not take long time for program-

mers to realize that these powerful co-processors can also be used for applications other

than computer graphics. Harris [112] introduced in 2003 the term General Purpose

computations on GPUs (GPGPU) to describe non-graphics applications running on

GPUs.

The programming paradigm of GPUs has changed dramatically when the two main

GPU manufacturers, NVIDIA and AMD, modified the hardware architecture. They

changed dedicated graphics rendering pipeline to a multi-core computing platform.

They implemented shader algorithms in software running on these cores, and explicitly

support general-purpose computations on GPUs by offering programming languages

and software development toolchains.

While CPUs are designed for low latency computations, GPUs are optimized for

high throughput. Low latency on memory-intensive applications typically requires large

caches, which use a lot of silicon area. Additional transistors are used to greater effect

in GPU architectures because they are applied to additional processors that increase

throughput. In addition, programmable GPUs are inexpensive, readily available and

compatible with multiple operating systems and hardware architectures.

5.2 Performance Bounds on GPUs

GPUs are considered as very interesting computing platforms for many algorithms due

to their pure computing power. One might expect a higher speed up computations of

GPUs, but as the examples in the following sections show, this is not the case for many

applications. The reason is that in order to make use of the computational power of

GPUs, applications need to fulfill some conditions to avoid some bottlenecks affecting
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GPU performance. Usually the performance of an application is limited by one or more

factor. Here we discuss the most important bottlenecks.

Effective memory bandwidth usage Bandwidth is the rate at which data can be

transfered. It is one of the most important gating factors for performance. To measure

performance accurately, it is useful to calculate theoretical and effective bandwidth

[113]. When the later is much lower than the former, the developer has to review

the implementation to increase the bandwidth which should be the primary goal of

optimization efforts.

Mem_bandwidth(GPU) = memFrec(MHz)×memWidth(Byte)× 2 (5.1)

Equation 5.1 is used to compute the theoretical bandwidth. The factor of 2 in the

numerator is due to the double data rate, which means that data is transfered on both

the rising and falling edges of the clock signal within computer bus operations. Take

the Quadro M2000M used in this work as an example. Its memFreq is 2505 MHz, the

memWidth is 128 bits (16 bytes), hence its theoretical memory bandwidth is :

Mem_bandwidth(Quadro M2000M) = 2505× 16× 2 = 80.16GHz (5.2)

Equation 5.3 is used to compute the effective bandwidth. Here, the effective band-

width is in GB/sec, Br is the number of bytes read from global memory per kernel.

Bw is the number of bytes written to global memory per kernel, and time, is the time

taken by the kernel in seconds.

Effective_bandwidth(GPU) =
Br +Bw

time
(5.3)

Memory access pattern Memory-access patterns is crucial point to take into con-

sideration on GPU-based systems compared to CPU-based ones. Indeed, most of the

chip area in GPUs consists of ALUs while in CPUs, a large part of the chip area is re-

served to fast caches that reduce load and store latencies. Computations that can keep

the active set of data in the available registers benefit from the large computational

power of the ALUs. However, the high latencies of device-memory loads and stores

result in huge performance penalties in applications that cannot.

Some applications can use the shared memory on NVIDIA GPUs, Fermi GPUs make

this easy by using a configurable amount of shared memory as transparent cache. Shared
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memory fits situations where the same data is required by all threads. However, if each

thread requires different data in cache, and the amount of available shared memory is

not sufficient then the compilers use device memory for register spills. Another way to

deal with high memory latencies is to run more threads and thus hide the latencies.

Note that this comes at the price of a smaller number of registers per thread and even

higher requirements on data-level parallelism.

Data transfer between host memory and device memory Another potential

bottleneck is data transfer between host memory and device memory. Transferring data

between the host and device is a very costly move. It is not uncommon to have code

making multiple transactions between the host and device without the programmer’s

knowledge. In order to get the most bang for your buck in your application, you

really need to minimize the host↔device data transfers. Cleverly structuring code

can save tons of processing time. Also, it is imperative to understand the cost of

these host↔device transfers. In some cases, it may be more beneficial to run certain

algorithms or pieces of code on the host due to the costly transfer time associated to

transferring data to the device.

5.3 Optimizations Techniques on GPUs

In order to get rid of the aforementioned limitations, we apply a set of optimizations

to our application presented in the CUDA Best Practice guide [114]. The proposed

optimizations are classified according to their importance and impact on obtained per-

formance. We selected to classify them into high-priority and medium-priority

optimizations as follow:

1. High-priority

• Maximize parallel execution At device level, we should assign enough threads

per block and enough blocks per grid such that the SMs are maximally

utilized. At SM level, the number of threads per block should be a multiple

of warp size(32) to avoid warps with inactive threads. Also, Depending on

the register usage and the shared memory usage, block size must be selected

to give the best occupancy.
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• Minimize global memory use global memory is the slowest type of memory to

avoid whenever it is possible. The solution here is straightforward: wherever

possible, allocate memory once at the beginning of an application and then

reuse that memory in each kernel invocation.

• Minimize data transfer between the host and the device memories To reduce

the severity of data transfers between the host and the device, developers

should attempt to perform as much computation on the GPU as possible.

• Ensure coalesced accessing to global memory whenever possible The global

memory of the GPU is accessed in blocks of 32, 64 or 128 bytes, so the

number of accesses to satisfy a warp depends on how data are grouped.

• Use shared memory to avoid redundant transfers from global/device memory

Shared memory accesses are faster than global/device memory ones. Hence,

we should use shared memory whenever a set of data is shared by threads

within the same block. However, the size of shared memory is limited per

block and can affect the number of executed warps.

2. Medium-priority

• Ensure access to shared memory without bank conflicts Shared memory is

divided into several banks with equal sized width (32/64 bits depending on

the compute capability). One memory bank can serve one thread once. If

more than one thread access the same bank simultaneously, then there will

be bank conflicts and threads in a warp are serialized.

• Avoid different execution paths with the same warp (branch divergence) GPU

threads are grouped into sets of 32 named warps in CUDA language. When

a task is being executed over a warp, the 32 threads carry out this task

simultaneously. However, due to conditional flow instructions in the code,

not all the threads will perform the same operation, so the different tasks

are executed sequentially, giving rise to a significant loss of efficiency.

5.4 Nvprof Metrics

In the following experiments, NVIDIA nvprof profiler is used to profile our applications

with CUDA and OpenACC. This profiler provides a set of metrics and events [115] to analyze
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the application for better understanding the obtained results. In this work, here are the

employed metrics and events in the next experiments:

• sm_efficiency The percentage of time at least one warp is active on a multipro-

cessor averaged over all multiprocessors on the GPU.

• achieved_occupancy Ratio of the average active warps per active cycle to the

maximum number of warps supported on a multiprocessor

• gld_efficiency Ratio of requested global memory load throughput to required

global memory load throughput expressed as percentage

• gst_efficiency Ratio of requested global memory store throughput to required

global memory store throughput expressed as percentage

• gld_throughput Global memory load throughput

• gst_throughput Global memory store throughput

• L2_read_throughput Memory read throughput seen at L2 cache for all read

requests

• L2_write_throughput Memory write throughput seen at L2 cache for all write

requests

• dram_read_sectors Number of read requests sent to all sub-partitions of all the

DRAM units. This event is not directly available with nvprof. The later provides

a metric for each sub-partition such as fb_subp0_read_sectors for sub-partition

0 and fb_subp1_read_sectors for sub-partition 1. Hence, dram_read_sectors is

no more than the sum of reads on all partitions in the DRAM.

5.5 Experimental Design

Different NVIDIA GPUs are used with different specifications such as compute capabil-

ity and number of cores. It is worth noting that users are not allowed to use a specific

number of cores in one GPU since it is not provided to do so and all of the CUDA cores

in one graphic card always run together. Hence, to decrease or increase the number of

cores, we have to change and use a different GPU. Table 5.1 shows the employed GPUs

with their most important specifications. We use two fixed platforms; the GeForce

GTX780M and the Quadro M2000M, and two embedded platforms : NVIDIA Jetson
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Table 5.1: GPUs Specifications

GPU Generation C.C1 #SM #cores CUDA

GeForce GTX780M Kepler 3.0 8 1536 (192/SM) 8.0 / 7.5

Quadro M2000M Maxwell 5.0 5 640 (128/SM) 8.0 / 7.5

Tegra X1 Maxwell 5.3 2 256 (192/SM) 8.0

GK20A(k1) Kepler 3.2 1 192 (192/SM) 6.5

1 Compute Capability

TK1 and Tegra TX1. In the following experiments and results, we refer to Jetson TK1

as GK20A corresponding to the name of its GPU.

It is worth noting that with CUDA, the four platforms have been employed since all

required softwares such CUDA compiler (nvcc) and profilers (nvprof, nvvp) are available

on both architectures; Intel and ARM. However, with OpenACC, for our best knowledge,

there is no available compiler for ARM architectures. There are appreciated open source

projects such as accULL [116], Omni [117] and IPMACC [118] compilers. These projects

aim to provide a suitable compiler for OpenACC on ARM architectures. Unfortunately,

we tested all these compilers and we did not manage to launch any OpenACC sample on

ARM, some of them were not even installed completely.

In our experiments, we use KITTI [101] raw stereo data base each time an opti-

mization is applied to the algorithm for discussion and analysis, then, we apply the

obtained optimized algorithm on 9 pairs of image with different resolution from Mid-

dlebury Stereo Datasets [1].

5.6 OpenACC and CUDA Optimization of CDD Function

This section describes the implementation of CDDL and CDDR functions on GPUs. Since

these two functions have almost the same execution time, we choose to present the

results of only one function referred as CDD. Different optimizations are proposed tar-

geting several aspects of parallelization in GPUs such as global memory accesses and

shared memory usage by following the degree of priority as discussed previously (sec-

tion 5.2).
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Algorithm 6 First Parallel Stereo Matching of A-ELAS (CDDL) with CUDA

Require: LD[H×W×16], RD[H×W×16], PRIOR[256], DMIN[H], DMAX[H], PD[H×W]

1: for row=2 to H-2 parallel do

2: for col=2 to W-2 parallel do

3: for d=DMIN[row] to DMAX[row] do ⊲ disparity reasearch distance

4: SAD = PRIOR[|d-PD[row][col]|]

5: for i=0 to 15 do ⊲ go through pixel’s descriptor elements

6: SAD += abs(LD[row][col][i] - RD[row][col-d][i])

7: end for

8: if SAD<SADmin then

9: SADmin = SAD

10: disparity = d

11: end if

12: end for

13: D[row][col] = disparity

14: end for

15: end for

While CUDA provides different optimizations to get the required performances, it is

not evident to reach those performances from the first try. Actually, developers usually

write different versions and test a variety of approaches and optimization to reach the

final desired performance.

5.6.1 First Naive Implementation

5.6.1.1 CUDA Kernel

The first implementation consists on taking the scalar version (C++) and writing a CUDA

kernel at pixel granularity, i.e., each thread computes the disparity of one pixel. The

kernel takes pixels’ descriptors of left and right images as inputs in addition to the prior

data and image research boundaries (DMIN, DMAX) as shown in Algorithm 6. Each

descriptor is of size H ×W × 16, where W and H are the width and height of the input

stereo images respectively. The size is multiplied by 16 referring to the 16 gradients

used to describe each pixel.

Algorithm 6 illustrates the approach employed to parallelize CDDL function with

CUDA. For more details concerning the employed variables, refer to section 4.1.2 in chap-

ter 4. The same algorithm is employed for CDDR function except at line 6, where the
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Figure 5.1: Execution Time of First CDD CUDA Kernel on KITTI(1242x375)

left and the right descriptors (LD, RD) are permuted since we compute the backward

disparity in this case. Parallelization is done at two levels corresponding to the first

and second loops. Hence, a 2D CUDA grid is created. Concerning the CUDA grid size, a

block of 32 × 4 threads is employed in this experiment. The impact of block size will

be discussed in further experiments.

Figure 5.1 depicts the obtained results on KIITI dataset. We notice different re-

sults and speedup among the four architectures. The best performance is obtained on

fixed platforms with a speedup of 5 on Quadro M2000M and more than 4 on GeForce

GTX780M. On Tegra X1, a speedup of almost 3 is achieved while on GK20AK1, the

speedup is too low (1.2).

In all architectures, the obtained speedup is far away from the required one and

far from the available hardware performance. To determine the bottlenecks of this

kernel, we gathered some metrics from nvprof profiler as shown in Table 5.2. These

metrics have been presented previously in section 5.4. All nvprof metrics and events

are presented in CUDA guide [115] on how using nvprof profiler.

Global memory load and store throughputs are respectively represented by gld_

throughput and gst_throughput metrics. Equations 5.4 and 5.5 give the formula to

compute these metrics. Equations 5.6 and 5.7 show respectively how to compute the

total number of read and write requests to L2 cache. We notice that in those equations

the memory is partitioned to 4 sectors (subp0, subp1, subp2, subp3) but this may not
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5.6 OpenACC and CUDA Optimization of CDD Function

Table 5.2: CDD CUDA First kernel results on KITTI(1242x375): GPU execution time,

Nvprof Metrics and Events

Nvprof Metric/Event GK20A(K1) Tegra X1 GeForce GTX780M Quadro M2000M

sm_efficiency 100% 99.68% 99.70% 99.88%

achieved_occupancy 0.94 0.93 0.88 0.94

gld_throughput (measured) 22.49 GB/s 57.81 GB/s 200.39 GB/s 213.57 GB/s

gst_throughput 5.62 MB/s 15.51 MB/s 53.85 MB/s 57.68 MB/s

gld_efficiency 6.17% 6.17% 6.16% 6.16%

gst_efficiency 84.21% 84.21% 84.21% 84.21%

L2_read_throughput 22.5 GB/s 57.83 GB/s 200.39 GB/s 215.48 GB/s

L2_write_throughput 6.01 MB/s 15.51 MB/s 53.86 MB/s 57.68 MB/s

L2_total_read_sector_queries 265517048 265771809 265378107 267789110

gpu_time 316 ms 142 ms 43 ms 37 ms

gld_throughut_computed (5.4) 26.88 GB/s 59.89 GB/s 197.49 GB/s 231.6 GB/s

be always the case, it depends on the hardware employed.

gld_throughput = ((128×L1_global_load_hit)+(L2_total_read_sector_queries)×32−

(L1_local_ld_miss× 128))/gputime (5.4)

gst_throughput = (L2_total_write_sector_queries)× 32−

(L1_local_ld_miss× 128))/gputime (5.5)

L2_total_read_sector_queries = L2_subp0_read_requests+L2_subp1_read_requests+

L2_subp2_read_requests+ L2_subp3_read_requests (5.6)

L2_total_write_sector_queries = L2_subp0_write_requests+L2_subp1_write_requests+

L2_subp2_write_requests+ L2_subp3_write_requests (5.7)

We used Equation 5.4 to compute the global load throughput and compared it to

the measured results with nvprof. The result is shown in table 5.2. We got close

results with a small difference between the measured (gld_throughput_measured) and

the computed (gld_throughput) global load throughputs.

We notice also that in Equations 5.4 and 5.5 L1 loads are employed to compute those

metrics. However, from table 5.2, we notice that gld_throughput and L2_read_throughput
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Algorithm 7 First Parallel Stereo Matching of A-ELAS (CDDL) with OpenACC

Require: LD[H×W×16], RD[H×W×16], PRIOR[256], DMIN[H], DMAX[H], PD[H×W]

1: #pragma acc kernels copyin(...) copyout(...) ⊲ data transfer host↔device

2: #pragma acc loop independent

3: for row=2 to H-2 do

4: #pragma acc loop independent

5: for col=2 to W-2 do

6: compute_disparity[row][col] ⊲ Algorithm 6 line 3→ line 13

7: end for

8: end for

metrics give the same values, the same observation concerns gst_throughput and

L2_write_throughput metrics, they are both equal. In other words, the cache L1

is not used by default.

5.6.1.2 OpenACC kernel

We implemented the same kernel with OpenACC directives. While multi-level paral-

lelization is not possible with OpenACC on multi-core (release 16.10), fortunately, it is

supported on GPU-based architectures. As first version, we employed kernels con-

struct and hence let freedom to the compiler to configure CUDA grid (block size and

number). We also employed loop clause to guide the compiler and explicitly mention

that we want to parallelize at two levels as illustrated on Algorithm 7. In contrast to

OpenACC on multi-core machines where data transfers between the host and the device

memory are hidden, on GPU, they are managed explicitly by the programmer. Clause

copyin is used to copy input data from the host to the device, and clause copyout is

used to transfer data to the host.

It is important to notice that each time we compare OpenACC kernel to its cor-

responding CUDA kernel, both kernels are supposed to perform the same instructions

and if any optimization is presented, it is applied also to both kernels. If there is any

difference, it is presented and details are given. For this OpenACC first kernel, the only

difference is the CUDA grid size. In CUDA kernel, we used a block of [32×4] threads. With

OpenACC, we choose at the beginning to let the compiler configure CUDA grid through

the kernel clause. The purpose behind this is to understand how the compiler sets the

size of blocks.
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Figure 5.2: Execution Time of First CDD OpenACC Kernel vs First CDD CUDA kernel on

KITTI(1242x375)

Table 5.3: OpenACC Configuration with Kernel Clause

GPU Grid_Size Block_Size Reg1 SSMem2 DSMem3

GeForce GTX780M (1242 375 1) (32 1 1) 37 16B 128B

Quadro M2000M (1242 375 1) (32 1 1) 37 16B 128B

1 Number of registers used by one thread
2 Static Shared Memory
3 Dynamic Shared Memory

Figure 5.2 depicts the execution time of this first OpenACC kernel versus the first

naive CUDA kernel of CDD. We notice clearly that OpenACC kernel is too slow compared

to CUDA one on both architectures. Actually OpenACC kernel is even slower than the

scalar version on GeForce GTX780M architecture since the speedup is less than 1.

To understand this important difference, we collected some data from PGI compiler

and nvprof profiler as shown in Table 5.3. The most important information concerns

the grid configuration and particularly the block size. The later is configured along

colons only (1D) of [32 × 1] threads. In CUDA kernel, we rather used a 2D block of

[32× 4] threads. Another observation concerns the use of static (SSMem) and dynamic

(DSMem). It seems that the PGI compiler tries to optimize the kernel through shared
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Figure 5.3: Execution Time of Optimized First CDD OpenACC Kernel vs First CDD CUDA

on KITTI(1242x375)

memory. With this version, we can conclude that PGI compiler could configure a 2D

CUDA grid via kernel clause.

Fortunately, OpenACC allows users to manually set the size of CUDA block. To do

so, we need to add gang() and vector() clauses to both for loops. Listing 5.1 shows

how we use gang() and vector() clauses. Figure 5.3 depicts the obtained execution of

OpenACC kernel (OpenACC_1) by setting CUDA block size to [32×4]. In GeForce GTX780M

GPU, we get the same execution time as CUDA_0 kernel. However, in Quadro M2000M,

OpenACC_1 kernel is faster than CUDA_0 one. The next section explains this difference.

1 #pragma acc kernels copyin(inputs) copy(output){

2 #pragma acc loop independent gang(94) vector(4)

3 for(int32_t row=2; row<H; row++)

4 #pragma acc loop independent gang(39) vector(32)

5 for( int32_t col=0; col<W; col++){

6 // compute disparity at pixel (row, col)

7 }

8 }

Listing 5.1: CUDA Grid Set with gang and vector Clauses

While gang() clause is used to set the number of blocks, vector() clause sets the

number of threads within a block. If we want to use a block of [32 × 4] threads, then,

as shown in listing 5.1, vector(32) is used in the first for loop to set the size of the

block along the image’s width (x direction), and similarly, vector(4) is used in the
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Table 5.4: Some nvprof Metrics and Events of OpenACC_0 and OpenACC_1 Kernels

Nvprof Metric/Event GTX780M V0 GTX780M V1 M2000M V0 M2000M V1

sm_efficiency 100.00% 99.10% 100.00% 99.76%

achieved_occupancy 0.25 0.68 0.49 0.47

gld_throughput 6.21 GB/s 199.09 GB/s 15.64 GB/s 414.80 GB/s

gst_throughput 57.44 MB/s 51.98 MB/s 84.27 MB/s 99.35 MB/s

L2_read_throughput 6.21 GB/s 199.09 GB/s 6.22 GB/s 40.38 GB/s

L2_write_throughput 57.44 MB/s 51.98 MB/s 84.27 MB/s 99.36 MB/s

gld_efficiency 36.57% 6.20% 21.13% 5.57%

gst_efficiency 12.50% 83.81% 12.50% 83.81%

dram_read_sectors 4.33× 106 1.17× 106 11.2× 106 1.86× 106

second for loop to set the size of the block along the image’s height (y direction). In

this experience, we use KITTI dataset with [1242×375] resolution. Hence, with a block

size of [32×4], we need 39 blocks along the x direction (1242÷32), and 94 blocks along

the y direction (375÷ 4). Listing 5.1 gives a code snippet of this configuration.

Table 5.4 gives some metrics and events returned by nvprof on both architectures.

kernels OpenACC_0 and OpenACC_1 are referred as V0 (version 0) and V1 (version 1)

respectively. The most important result concerns the throughput of loads from global

memory (gld_throughput). The latter has been increased significantly in OpenACC_1

on both architectures. The same observation concerning L2_read_throughput. The

number of reads from dram are lower compared to kernelOpenACC_0. Finally, we notice

that on Quadro M2000M GPU, gld_throughput is greater than L2_read_throughput

in both kernels, where as, in GeFore GTX780M they are both equal. This difference is

related to L1 cache usage which will be discussed in the next section.

5.6.2 Optimization 1 : L1 Caching of Global Loads

The first optimization of CUDA developers targets global memory accesses. This may

happen through explicit caching of global data in shared memory. However, sometimes

algorithms have memory access patterns that cannot be coalesced, and that do not fit

shared memory. Fermi GPUs have an automatic L1 cache on each streaming multipro-

cessor (SM) that can be used in this case (irregular access pattern). First-generation
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Table 5.5: L1 Cache/Shared Memory Configuration Options on Compute 3.x Devices

parameter L1 Size CC 3.0-3.5 Shared Size CC 3.7 Shared Size

cudaFuncCachePreferShared 16 48 112

cudaFuncCachePreferL1 48 16 80

cudaFuncCachePreferEqual 32 32 96

Table 5.6: GPUs Memory Specifications

Specification GK20A(k1) Tegra X1 GeForce GTX780M Quadro M2000M

Memory Clock Rate 924 MHz 13 MHz 2500 MHz 2505 MHz

Memory Bus Width 64 bits 64 bits 256 bits 128 bits

globalL1CachSupported 1 1 0 1

Peak Memory bandwidth 14.78 GB/s 0.2 GB/s 160 GB/s 80 GB/s

L2 cache size 128 KB 256 KB 512 KB 2048 KB

L1 cache size 48 KB(L1/shared) 48 KB(L1/shared) 48 KB(L1/shared) 48 KB(L1/shared)

Kepler GPUs have an automatic L1 cache on each SM, but it only caches local mem-

ory accesses. In these GPUs, the absence of automatic L1 cache for global memory is

replaced by a separate 48 KB read-only (texture) cache per SM. Developers can config-

ure the split between L1 and shared memory via the cudaDeviceSetCacheConfig and

cudaFuncSetCacheConfig API calls (Table 5.5).

NVIDIA has enabled L1 caching of global memory on some GPUs such as GK110B,

GK20A and GK210 chips. The Tesla K40 (GK110B), Tesla K80 (GK210) and Tegra K1

(GK20A) all support by default this feature. To query whether a GPU supports caching

global memory operations or not, developers can use cudaGetDeviceProperties and

check the globalL1CacheSupported property. Actually, examining only the Compute

Capability is not enough; Tesla K20/K20x and Tesla K40 both support Compute Capa-

bility 3.5, but only the K40 supports caching global memory in L1. On Kepler GPUs,

even if they do support caching global memory in L1, by default, it is disabled. Pro-

grammers have to enable caching by passing -Xptxas="-dlcm=ca" compiling option to

NVCC.

In Maxwell GPUs of Compute Capability 5.0, the L1 cache and texture/read-only

cache are combined into a single unit, with a separate dedicated 64KB shared memory
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Figure 5.4: Execution Time of CDD CUDA Kernel with L1 Caching on KITTI(1242x375)

unit. Read-only global memory accesses can be cached with const __restrict__ pointer

qualifiers, or via the __ldg() intrinsic. Local memory operations are only cached in

L2. In second-generation Maxwell GPUs with Compute Capability 5.2, global memory

caching can be done through the -Xptxas="-dlcm=ca" option to NVCC.

Table 5.6 gives information concerning global and cache memories in the employed

platforms in these experiments. Other information such as Compute Capability have

been presented previously in table 5.1. We enabled global memory caching on L1 accord-

ing to each architecture, its corresponding Compute Capability and GPU’s generation.

5.6.2.1 CUDA Kernel

Based on the aforementioned details, we enabled the L1 on the employed architectures.

Figure 5.4 depicts the obtained results. We observe better performance when global

memory accesses are cached through L1 in all architectures except in NVIDIA GeForce

GTX780M. Actually, the latter is of Compute Capability 3.0 belonging to the first

generation of Kepler GPUs where L1 cache is not enabled. As explained previously,

NVIDIA enabled L1 cache only on specific first generation Kepler GPUs such as GK20A

which is integrated in Jetson TK1. In Tegra X1, a speedup of 2 is obtained compared

to the first kernel without caching. In Jetson TK1, a speedup of 3 is achieved. Finally,

in Quadro M2000M, we notice a speedup of less than 2.
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Table 5.7: Nvprof Metrics of CDD CUDA Second Kernel with L1 Caching (1242x375)

Nvprof Metric GK20A(k1) Tegra X1 GeForce GTX780M Quadro M2000M

gld_throughput 22.49 GB/s 57.81 GB/s 200.39 GB/s 213.57 GB/s

gld_throughput_ca 91.46 GB/s 137.13 GB/s 200.39 GB/s 412.07 GB/s

gst_throughput 5.62 MB/s 15.51 MB/s 53.85 MB/s 57.68 MB/s

gst_throughput_ca 20.22 MB/s 33.24 MB/s 53.85 MB/s 102.12 MB/s

L2_read_throughput 22.5 GB/s 57.83 GB/s 200.39 GB/s 215.48 GB/s

L2_read_throughput_ca 962.12 MB/s 53.52 GB/s 200.39 GB/s 125.94 GB/s

L2_write_throughput 6.01 MB/s 15.51 MB/s 53.86 MB/s 57.68 MB/s

L2_write_throughput_ca 20.23 MB/s 32.42 MB/s 53.86 MB/s 102.13 MB/s

Table 5.7 presents some nvprof metrics with and without L1 caching. Metrics

suffixed with _ca are collected with L1 caching enabled. In GeForce GTX780M,

since L1 cache is disabled, we notice no difference between metrics with and without

caching through L1. In the other systems, global memory loads (gld_throughput_ca)

and stores (gst_throughput_ca) throughputs with caching through L1 are higher.

We also observe that L2_read_throughput_ca is less than L2_read_throughput and

gld_throughput_ca. The difference represents the use of L1 cache. In Kepler GPUs

with Compute Capability of 3.x, we can check the use of L1 cache through nvprof

events; l1_global_load_hit and l1_global_load_miss. In GeForce GTX780M, these

events are always null. In GK20A GPU, they are not when L1 caching is enabled.

Unfortunately, nvprof does not provide these events in Maxwell GPUs. Finally, the

throughput of writing in L2 memory (L2_write_throughput_ca) has been improved

when L1 caching is enabled.

Since CDDL and CDDR give almost the same performance, we chose to represent only

one function (CDDL) for referred as CDD. Figure 5.5 depicts the obtained performance of

CDD on Middlebury dataset of CUDA kernel with L1 caching versus CUDA kernel with-

out caching. As expected, in GeForce GTX780M, CUDA and CUDA_CACHED are presented

with the same curve since L1 cache is not enabled in this GPU.

5.6.2.2 OpenACC Kernel

PGI compiler provides -ta=loadcache:L1 option o enable L1 cache. We applied this

option with OpenACC_1. Actually, we did not get any performance, in other words we
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Figure 5.5: Execution Time of CDD CUDA Kernel with L1 Caching on Middlebury

Dataset

got the same performances as with OpenACC_1 kernel without adding this compiling

option. To explain the reason, let’s refer again to table 5.4. We noticed previously,

gld_throughput is greater than l2_read_throughput Quadro M2000M GPU, while

they are both equal in GeForce GTX GPU. As we explained with CUDA, this is related

to L1 cache which is enabled on Quadro M2000M GPU an not on GTX780M. Hence,

pgcc compiler uses automatically L1 cache whenever it is possible even without adding

any compiling option. Figure 5.6 depicts the obtained execution time on Middlebury

dataset with different resolutions. We notice that the blue curve (OpenACC_1) and

the red one (CUDA_1) corresponding to CUDA kernel with L1 cache enabled (when it is
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possible), overlap. This confirms that pgcc compiler caches global memory access in L1

cache by default whenever it is possible.
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Figure 5.6: Execution Time of OpenACC kernels on Middlebury Dataset
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Figure 5.7: Execution Time of Third CDD CUDA Kernel on KITTI(1242x375)

5.6.3 Optimization 2 : Minimize Global Memory Use/Accesses

Among the optimizations with high priorities already mentioned; minimizing global

memory transfers to device memory. ELAS algorithm relies on 2 descriptors’ images
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Figure 5.8: Execution Time of Third CDD CUDA Kernel on Middlebury Dataset

of Hight × Width × 16 size. in this image, each pixel is described with 16 elements

from Sobel horizontal and vertical gradients. We propose to work directly on Sobel

images. In other words, instead of using 2 × [Hight × Width × 16] images, we only

use 4× [Hight×Width] images; we reduce the required memory size by a factor of 8.

Also, descriptors images are first transfered to device memory before calling CDD or CSM

CUDA kernels. By working directly on Sobel images, we do zero transfer since Sobel

images are already in device memory computed from Sobel CUDA kernel.

5.6.3.1 CUDA Kernel

Figure 5.7 depicts the execution time of CDD CUDA kernel on KITTI dataset with the

aforementioned optimization. We observe clearly that CUDA_2 kernel gives better
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Figure 5.9: Execution Time of CDD CUDA and OpenACC kernels on KITTI(1242x375)

performance by reducing the execution time on all architectures. In Jetson K1 GPU

(GK20A), we reach a speedup of almost 12. In both Tegra X1 and GeForce GTX780M, a

sppedup of 25 is achieved. Finally, the best performance is obtained in Quadro M2000M

GPU with a speedup of more than 28. These results show clearly the importance of

reducing global memory transfers.

Figure 5.8 depicts the obtained performance of this kernel (CUDA_2) compared to

the previous ones on Middlebury dataset with different image resolution. We observe

clearly the high importance and priority of minimizing global memory accesses and

transfers in order to obtain better performance of CUDA kernels.

5.6.3.2 OpenACC Kernel

We applied the same optimization to the last OpenACC kernel (OpenACC_1). Figure 5.9

depicts the obtained results with both CUDA and OpenACC. We clearly observe the im-

portance of minimizing global memory transfers and accesses on both architectures and

with both tools (CUDA, OpenACC). Also, we notice that we obtain the same performance

in (OpenACC_2) kernel compared to CUDA_2 one on both architectures. These results

show that OpenACC can compete CUDA in computing performance while it requires less

programming efforts and time compared to CUDA.
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5.6.4 Optimization 3 : Use Shared Memory

From section 5.2, the use of shared memory belongs to medium-priority optimizations.

Shared memory is a very fast read and write memory. It is used whenever data is

accessed by more than one thread in the same block to reduce global memory transfers

and device memory accesses. In CDD function, the research boundaries (minimum and

maximum) of the disparity in the right image (the left image is the reference) is the

same for all pixels in the same image’s line. Hence, all pixels in the left image access the

same pixels in the right image. There is an obvious data access redundancy in the right

image. Here comes the importance of shared memory use to minimize data accesses to

device memory.

5.6.4.1 First Naive Implementation

We propose a first CDD CUDA kernel using shared memory with the following features:

• Load right horizontal and vertical Sobel gradients on shared memory.

• Use 1 thread/ 4 pixels granularity to minimize shared memory size per block

and maximize parallelism.

• Use pixel’s descriptors of size 16.

• Use CUDA block of [32x4] threads.

• load 4KB data on shared memory corresponding to 2 blocks of [256 × 8] each

(vertical and horizontal right gradients).

• In Jetson k1, try with different configurations of L1/shared memories since they

share the same physical memory block (see table 5.5).

Figure 5.10 depicts the obtained results of CUDA_3V0 kernel which uses shared mem-

ory. The results of the previous kernel (CUDA_2) which uses L1 cache are also depicted.

The results on Jeston K1 are depicted and discussed in the following paragraphs since

we have different possible configurations of the shared memory. We observe that on

GTX780M (5.10), almost no performance has been achieved compared to CUDA_2 ker-

nel. In Maxwell GPUs (Tegra X1, Quadro M2000M) having separate shared and L1

cache memory blocks, we notice a better performance. From nvvp profiler, the bottle-

neck of this kernel is the pattern access employed to load data from device memory to
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Figure 5.10: Execution Time of First Version of Third CDD CUDA (CUDA3_V0) Kernel

with Shared Memory on KITTI Dataset

shared memory. The pattern employed to get each pixel descriptor is not regular enough

for memory coalescing.
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Figure 5.11: Execution Time of First Version of Third CDD CUDA (CUDA3_V0) Kernel

with Shared Memory on KITTI Dataset, in Jetson K1

The obtained results of Jetson K1 (GK20A) are depicted in Figure 5.11. We clearly

notice that this first implementation with shared memory is not optimized to benefit

from the fast memory access of the shared memory. We notice that the execution time

is more important with all possible configurations compared to the previous version

(CUDA_2) without shared memory.
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Figure 5.12: Execution Time of Second Version of Third CDD CUDA (CUDA_3V1)

Kernel with Shared Memory on KITTI Dataset

5.6.4.2 Optimize Regular Access Pattern

To improve the previous kernel, we propose to change the pattern employed to get

each pixel descriptor. The idea consists on using a descriptor of 18 elements. Each

9 elements are obtained from horizontal and vertical gradients respectively by using a

patch of 3 × 3 size around the considered pixel. This optimization gives more regular

access pattern which allows also loop unrolling since a loop can be used to load the data

in this case which is not possible in the previous kernel. In this version (CUDA_3V1),

we keep the same configuration (except this optimization) as in the previous kernel

CUDA_3V0 such as block size, thread/pixel granularity . . .

Figure 5.12 shows the obtained execution time on KITTI dataset of this CUDA kernel

in the three architectures: Tegra X1, GeForce GTX780M and Quadro M2000M . We

observe better performance with lower execution time in all architectures. If compare

CUDA_3V0 to CUDA_3V1, we obtain a speedup of 2. With respect to the scalar version

(C++), the speedup is more than 50 in all architectures.

Figure 5.13 depicts the obtained results on Jetson K1 GPU. We notice better per-

formance with CUDA_3V1 compared with CUDA_3V0. We managed to double the speedup

by modifying the memory access pattern to the shared memory. These results show the

importance of working on regular memory accesses when fast memories such as caches

or shared memory are employed to accelerate the algorithm.
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Figure 5.13: Execution Time of Second Version of Third CDD CUDA (CUDA_3V1)

Kernel with Shared Memory on KITTI Dataset in Jetson K1

5.6.4.3 Maximize Number of Warps

In this version (CUDA_3V2), we propose to reduce thread/pixel granularity to 2 pixels

per thread. The GPUs employed in these experiments all are configured to have a

maximum of 48KB of shared memory per SM. Because each kernel in CUDA_3V1 version

is configured to use 4KB of shared memory for each block, each SM is limited to

simultaneously executing 12 bloks(48 warps) instead of 16 bloks(64 warps). By reducing

the amount of shared memory per block by 2, we get maximum number of warps (64)

executed in each SM. We keep the same features as in kernel CUDA_3V1 except the

proposed optimization.
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Figure 5.14: Execution Time of Third Version of Third CDD CUDA (CUDA_3V2) Kernel

with Shared Memory on KITTI Dataset
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Figure 5.15: Execution Time of Third Version of Third CDD CUDA (CUDA_3V2) Kernel

with Shared Memory on KITTI Dataset in Jetson K1

Figure 5.14 shows the obtained execution time with CUDA_3V2 kernel of CDD function

on KITTI dataset in all architectures except in Jetson K1 (see the next paragraph). We

managed to accelerate the CDD function by maximizing the number of launched warps

per SM. This is an important feature to achieve better performance. We notice an

important speedup which is more than 88 for instance in Quadro M2000M.

Figure 5.15 depicts the obtained results on Jetson K1. We notice better performance

in this version (CUDA_3V2). The results illustrates also small difference between the
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Table 5.8: CSM and CDD Specifications

Feature CDDL CDDR CSM

N1 H ×W H ×W (H ×W )÷ 25

disp_max_range 40 40 250

left_disp yes(1) no(0) yes(1)

right_right no(0) yes(1) yes(1)

M2 1 1 4

total_num_SAD H ×W × 40× (1 + 0)× 1 H ×W × 40× (0 + 1)× 1 ((H ×W )÷ 25)× 250× (1 + 1)× 4

1 Number of treaded pixels for which the disparity is computed.
2 Number of neighboring pixels used to compute the cost matching function (SAD).

different configuration of shared/L1 memories compared to the previous versions such

as CUDA_3V0.

5.7 OpenACC and CUDA Optimizations of CSM

In this section, we present and discuss the optimizations applied to accelerate the CSM

function. The latter computes the disparity of a set of support points candidates. The

SAD cost function is employed. To find the disparity of each support point we compute

the SAD between the 4 corners surrounding the considered support points. The corners

are taken from a patch of size 5 × 5 pixels. This results in irregular memory accesses.

Also, at this level we do not have any prior data for the disparity range. Hence, for

each pixel, we look for its corresponding pixel in a maximum range of 255. For more

details of this function presently presented in chapter 4, refer to section 4.6.1.2.

Before optimizing CSM function, we analyzed it in terms of arithmetic intensity to

compare it to CDDL and CDDR functions. Table 5.8 gives some data required to compute

the total number of SAD computed in each function. While CDDL and CDDR functions

compute the disparity for the whole image (H × W ), CSM function treats only some

support points candidates. These points are selected in such a way that each points

are separated horizontally and vertically by 5 pixels. Hence, we only compute disparity

for (H × W ) ÷ 25 pixels. The maximum disparity range is smaller in CDDL and CDDR

functions, since at this level, we already got some prior data from support points to limit

the disparity boundaries. However, with CSM function, there is no prior data, hence we

take the maximum disparity range ([0 : 250]). In KITTI dataset, we get a an average
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Figure 5.16: Execution Time of CSM CUDA First Kernel on KITTI(1242x375) with

CUDA

disparity range of 40, which can varies in other datasets. Finally, in CDDL and CDDR

function, we compute only one disparity, left and right respectively. In CSM function,

we rather compute both disparities and we perform some post processing to check for

consistency between the two disparities. From table 5.8, CSM function computes twice

number of SAD compared to CDDL and CDR function. Hence, we expect this function to

be slower and requires different optimization approaches.

5.7.1 First Naive Implementation

As first implementation, we selected to use directly Sobel images as input data instead

of descriptor images. Since choice is based on the previous performance obtained on CDD

function. As discussed previously (section 5.6.3). This optimization allows to minimize

accesses to global memory which a crucial point with a high priority. The CUDA block

size is set to 32 × 4. Each thread computes the forward (left) and backward (right)

disparity of each support point.

5.7.1.1 CUDA Kernel

We then implemented the CSM function by using Sobel images as input data. Figure 5.16

depicts the execution time of this kernel (CUDA_0) compared to the scalar version (C++).

We clearly notice that CUDA kernel is faster than the scalar version in all GPUs. The

speedup in Maxwell’s GPUs (Tegra X1, Quadro M2000M) is around 25. In GeForce
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Figure 5.17: Execution Time of CSM OpenACC First Kernel on KITTI(1242x375)

GTX GPU, a speedup of around 16 is achieved while in Jetson K1 the speedup obtained

is only 7.6.

5.7.1.2 OpenACC Kernel

We implemented the same kernel with OpenACC by setting the same CUDA block size by

using gang and vector clauses. The results are depicted in Figure 5.17. Despite the

fact that we obtained an important speedup compared to the scalar version (C++), this

speedup is lower compared to CUDA’s kernel speedup. To accelerate OpenACC kernel, we

propose two optimizations discussed in the next sections

5.7.2 First Optimization with OpenACC: avoid warp divergence

The first optimization consist on minimizing the warp divergence. Warp divergence

occurs with control conditions and branches such as with if→then→else statements.

When this happens, threads within the same warp may not follow the same branch,

hence, they wont do the same instructions. This yields to the execution of the different

branches sequentially. To avoid this divergence, we propose to perform a test on

the thread index to make sure that all threads within the same warp follow the same

direction. The idea consist on replacing each test applied to the thread index with %32.

In other words, let’s take a thread at location (u,v). If in the original code we have a

test if u<2 and v<2 then ..., then we replace this statement with the following if

u%32<2 and v%32<2 then ...
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Figure 5.18: Execution Time of CSM OpenACC Second Kernel on KITTI(1242x375)

Figure 5.18 depicts the obtained results with this optimization (OpenACC_1). This

optimization allows to decrease the execution time and consequently increase the speedup.

However, we notice that we did not yet reach the same performance as with CUDA_0

kernel. We propose the next optimization to accelerate more the OpenACC kernel of CSM

function.

5.7.3 Second Optimization with OpenACC: Explicit Loop Unrolling

When working with directive-based approaches, it is evident to understand and debug

when the obtained performances are far from the expected ones. With CSM function,

we faced a problem of understanding why OpenACC kernel is slower than CUDA one with

the same parallelization approach. The approach we followed to figure out the issue is

a progressive one. The idea consist on comparing the performance between CUDA_0 and

OpenACC_2 kernels by omitting and putting back parts of the code step by step. Each

time we remove part of the CSM code, we compare the execution time of the two kernels.

By doing so, we manages to find where the PGI compiler fails to optimize the code.

Actually, we found that PGI compiler fails to perform loop unrolling on the for

loop which computes the SAD between the four corners. The solution then is to do loop

unrolling explicitly by hand. Figure 5.19 shows the obtained results. We notice that

with this optimization (OpenACC_2), we managed to improve the obtained speedup and

even get better performance compared to CUDA_0 kernel on both architectures.
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Figure 5.19: Execution Time of CSM OpenACC Third Kernel on KITTI(1242x375)

5.8 Evaluation : CUDA vs OpenACC

5.8.1 Productivity

CUDA is the most widely used programming platforms for high performance scientific

computing on GPUs. However, it is a low-level and explicit programming language

which cannot be handled easily by non-experts in the field. This results in relatively

low programming productivity. Actually, porting existing CPU-based (scalar) code to

CUDA is a whole process. First, code is profiled and analyzed to determine the most

time consuming regions referred to bottlenecks. These regions are then rewritten into

CUDA kernels, with less or more significant changes in the original code. Then, the pro-

grammer has to analyze the code to optimize it according to the available hardware

computing capabilities and software specifications. In the other hand, OpenACC also re-

quires bottlenecks identification. However, compared to CUDA, no rewriting is required

anymore, in other words, the original CPU-based code can be reused. The programmer

needs just to add some annotations in the regions to parallelize through OpenACC di-

rectives to give hints to the compiler. This concept reduces significantly programming

efforts when porting large applications.

Porting Cycle Programmers should take an incremental approach to accelerate ap-

plications using OpenACC to ensure correctness. This approach starts by assessing appli-

cation performance, then using OpenACC to parallelize important loops in the code, after
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that, optimizing data locality to remove unnecessary data movements between the host

and accelerator, and finally optimizing loops within the code to maximize performance

on a given architecture. There are two important things to take into consideration.

First, during the process of optimization, application performance may actually slow

down. Developers should not become frustrated if their initial efforts result in a loss of

performance. This is generally the result of implicit data movement between the host

and accelerator, which will be optimized as a part of the porting cycle. Second, it is

critical that developers check the program results for correctness after each change.

Frequent correctness checks will save a lot of debugging effort, since errors can be found

and fixed immediately. Some developers may find it beneficial to use a source version

control tool such as Git to track the code after each successful change so that any

breaking changes can be quickly thrown away and the code returned to a known good

state.

5.8.2 Portability

OpenACC has been designed in such a way that with a single programming model, pro-

grammers can write a single parallel program which can run with high performance

while targeting a wide range of architectures used today: multi-core CPUs with SIMD

instructions, many-core processors such as Kalary MPPA-256, massively parallel GPUs,

and heterogeneous design where a host CPU is coupled to a co-processor or GPU ac-

celerator. PGI has developed OpenACC compilers targeting NVIDIA Tesla and AMD

Radeon GPUs, multicore and manycore CPUs. Several works in the literature provide

benchmarks and applications which show performance portability of OpenACC across

different systems [119], [120], [121].

OpenACC targets portability between CPU-based platforms such as multicore and

manycore CPUs, and GPU-based systems. This allows developers to develop codes at

once, with no need to include compile-time conditionals (ifdefs) or any special mod-

ules for each target which reduces significantly development and maintenance cost. If

GPU-accelerated systems are targeted, programmers can develop parallel OpenACC code,

test on multicore laptop or workstation without a GPU. This simplification separates

algorithm development from GPU performance tuning. Also, usually, developers find

debugging easier on the host than with both host and GPU code.
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To summarize, while CUDA is only used on NVIDIA GPUs, in contrast, OpenACC has

been designed to be portable on different architectures (CPU, GPU) from multiple

vendors.

5.8.3 Performance

OpenACC portability across different architectures results in limiting the use of vendor-

specific architectural specifications. OpenACC does not support software-addressable

on-chip memory referred to shared memory in CUDA. OpenACC provides cache directive

to fetch data from shared memory. However, it is limited to read-only data due to the

lack of synchronization related to shared memory.

5.8.3.1 OpenACC Benefits and Limitations

The simplicity and portability that OpenACC programming model sometimes comes at

a cost to performance. The OpenACC abstract accelerator model cannot represent archi-

tectural specifications of any device without making the language less portable. There

will always be some optimizations that are possible in a lower-level programming model,

such as CUDA or OpenCL, that cannot be represented at a high level. For instance, al-

though OpenACC has the cache directive, shared memory on NVIDIA GPUs is more

easily represented using CUDA. It is up to the developers to determine the cost and

benefit of selectively using a lower level programming language for performance crit-

ical sections of code. In cases where performance is too critical to take a high-level

approach, it is still possible to use OpenACC for much of the application.

5.9 Discussion

In this chapter, we investigated and evaluated two different parallel approaches on

GPUs. As a directive-based approach, we selected OpenACC mainly for its portability on

different architectures (CPUs, GPUs). As a second approach, we worked on CUDA. The

latter is widely employed on programming GPUs (NVIDIA GPUs). The obtained results

allow us to evaluate both approaches from different aspects; performance, portability

and programming effort. To conclude, we can say that actually no approach is perfect

for a particular application. In other words, one approach may be easy and fast to use

such as OpenACC but may not give easily the expected performances as we have seen
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with CSM function 5.7. In the other hand, CUDA gives good performances, but the process

of optimization is a progressive one which implies testing different optimizations before

getting the required performance.
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Kernel-System-Level Optimizations

Accelerating image processing algorithms is not a trivial task. Actually, optimization ef-

forts fall into two axes: kernel-level and system-level. Kernel-level optimizations aim to

optimize parts of the algorithm such as functions. In other words, these optimizations

are applied only at low level referred as kernel-level, not on the complete algorithm.

System-level optimizations in the other hand aim to optimize the algorithm as a whole

system such as optimizing the inter-communications, data transfers and memory band-

width.

In the previous chapters, we presented different kernel-level optimizations while

targeting CPU-based systems as well GPUs. In chapter 4, we discussed shared mem-

ory parallelization and vectorization on CPU-based systems with various techniques

(OpenMP, SIMD, OpenACC, NT2). In chapter 5, the algorithm is parallelized on GPUs

with different approaches (CUDA, OpenACC).

In this chapter, we investigate one system-level technique proposed by Khronos

group. It is a graph-based framework referred as OpenVX. It is a cross platform API

standard where image processing applications are presented with a set of basic func-

tions interacting with some data dependencies. The literature states several works on

optimizing OpenVX. The majority of the proposed approaches describe techniques to

accelerate the execution of graph-based image processing applications with OpenVX on

many-core accelerators [122]. However, to the best of our knowledge, no work has

investigated OpenVX optimizations presented in the first release of OpenVX [55].

In the first part of this chapter, we study the impact of OpenVX on computer vi-

sion applications [18]. Three important OpenVX optimizations are investigated; kernels
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merge, data Tiling and parallelization via OpenMP. We also show the important impact

of data access pattern and how OpenVX responds to each pattern access class.

In the second section of this chapter, we propose an approach to target both system-

level and kernel-level optimizations on different hardware architectures [19]. Our ap-

proach consists in merging OpenVX framework and Numerical Template Toolbox NT2

Library. OpenVX gives a close attention to system-level optimizations and enables hard-

ware vendors to implement customized accelerated image and vision algorithms. NT2

library (see section 2.3.4.2 from chapter 2) accelerates kernels on different architectures

with a minimal cost of rewriting, based on generative programming model. We test

our approach on different computer vision kernels employed in ADAS. We target dif-

ferent acceleration techniques such as vectorization and shared memory parallelization.

We perform our experiments on x86 architecture as well as on NVIDIA Tegra X1 ARM

cores. We manage to execute OpenVX hardware customized kernels in both architectures

with zero rewriting cost thanks to NT2. Also, it is worth noting that we get the same

performances on both architectures.

6.1 OpenVX

6.1.1 Background

OpenVX [55] is a cross-platform C-based API standard. It allows enabling hardware

vendors to implement and optimize image processing and computer vision applications.

It is strongly supported by many industrial actors such as NVIDIA. OpenVX framework

is fully transparent to architectural details. Indeed, all details concerning hardware

platform are hidden in the underlying Run-Time Environment (RTE). This features

enables the portability of computer vision applications across different heterogeneous

platforms. This approach allows the hardware vendors to delegate the performance

tuning according to their requirements and hardware specifications.

OpenVX API uses a graph-based software architecture to enable efficient computation

on heterogeneous computing platforms, including those with accelerators such as GPUs.

OpenVX provides a set of primitives (kernels) which are commonly used in computer

vision algorithms. It also provides a set of data objects that may be simple data

structures as scalars, arrays, matrices and images. In addition, it supplies high level

data objects as histograms, image pyramids and look-up tables.
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Figure 6.1: OpenVX Framework Objects.

6.1.2 Programming Model : Front-End

OpenVX programming model is inspired from the fact that most image processing algo-

rithms can be structured as a set of basic functions. Indeed, OpenVX relies on graph-

oriented execution model based on Directed Acyclic Graphs (DAG) to describe data

flow and processing. OpenVX also defines the vxu utility library referred also as the

immediate mode. It enables the programmer to use OpenVX predefined functions as a

directly callable C function, without creating a graph. However, this mode do not

benefit from the optimizations enabled by graphs. The vxu library is the simplest way

to use OpenVX and as the first step in porting existing vision applications.

Figure 6.1 illustrates OpenVX framework objects and their relationships.

• OpenVX context is a container of all OpenVX objects. A graph is also created in

reference to the context. Hence, before creating a graph and using any data object,

a framework context is first created.

• OpenVX graph gathers nodes with their connections. The graph must be directed

(only goes one-way) and acyclic (does not loop back). The order of nodes’ execu-

tion inside a single graph is defined by the data-flow which is guaranteed.

• OpenVX data objects are used by an OpenVX program such as images. They are

declared within the context. Data objects may be declared as virtual. Virtual

data define only a dependency between adjacent kernel nodes, however, they are

not associated to any memory area accessible through API functions
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Figure 6.2: OpenVX Sample Graph Diagram of Sobel Filter.

• OpenVX kernel is the abstract representation of a computer vision function, such

as a “Sobel Gradient”. OpenVX standard provides a library of predefined vision

kernels. It also supports customized user defined kernels with new features.

• OpenVX node is an instance of a kernel. The node encapsulates the kernel func-

tionality. Every node that is created has to belong to a graph. It is important to

understand the difference between a kernel and a node. By kernel, we mean the

implementation of the processing function or algorithm. Where as, a node is an

instance of the kernel within the graph.

1 vx_status status = VX_SUCCESS;

2 vx_context context = vxCreateContext(); // create context

3 vx_graph graph = vxCreateGraph(context); // create graph

4 // create images

5 vx_image images[] = {

6 vxCreateImage(graph, width, height, VX_DF_IMAGE_U8),

7 vxCreateImage(graph, width, height, VX_DF_IMAGE_S16),

8 vxCreateImage(graph, width, height, VX_DF_IMAGE_S16),

9 vxCreateImage(graph, width, height, VX_DF_IMAGE_S16),

10 };

11 vxuFReadImage(context, "lenna.pgm", images[0]); // read input image

12 // construct graph nodes

13 vx_node nodes[] = {

14 vxSobel3x3Node(graph, images[0], images[1], images[2]),

15 vxMagnitudeNode(graph, images[1], images[2], images[3]),

16 };

17 status = vxVerifyGraph(graph); // verify graph

18 if (status == VX_SUCCESS)

19 status = vxProcessGraph(graph); // execute graph

Listing 6.1: C Code Snippet of OpenVX Sobel Filter.

141



6.1 OpenVX

Listing 6.1 shows a typical C code of an OpenVX Sobel filter. Its corresponding

diagram is depicted in Figure 6.2. The employed kernels are all predefined primitives

available in OpenVX standard. The programming flow starts by creating a context for

the OpenVX to manage references to all used objects (line 2, Listing 6.1). Based on this

context, we construct a graph (line 3). At this level, we create all required data objects

(lines 6 to 9). We read the input data (line 11). We notice here that we used the vxu

function to read the input outside the graph, we could also use the vx function inside

the graph. Then, we make connections between nodes to build the graph nodes (lines

13 → 15). Then, the graph is verified (line 17) to guarantee some mandatory properties

such as:

• Input and output specifications (data direction, data type . . . ) must be compliant

to the node interface.

• Cycles are not allowed in the graph.

• It is not allowed to associate more than a single writer node to any data object.

Finally, the graph is processed by the OpenVX framework (line 19). At the end of the

code execution, we destroy all created data objects and the graph, and finally we release

the context.

6.1.3 System-Level Optimizations

The most important optimizations of OpenVX [55] are :

• Graph Scheduling consists in splitting the graph execution across the whole

system which may be heterogeneous. Hence, we can execute a set of kernels in

different processing units like CPU, GPU and DSP. The scheduling is performed

according to the performance requirements of each kernel. These requirements

refer to faster execution and lower power consumption.

• Kernels Merge replaces a subgraph which consists of different kernels with one

single kernel for better memory locality and less kernel launch overhead.

• Data Tiling executes a subgraph at tile granularity rather than at image gran-

ularity. Tilable kernels are those where the output depends only on a subset of

the input, not the entire input. Data is automatically broken into tiles. Tiling is
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Figure 6.3: Tiling Principle in Image Processing

important and useful for several reasons. First, intermediate data tiles are stored

entirely in on-chip local memory or caches. As a consequence, external memory

usage and bandwidth are reduced. In addition, memory access coherence is better

managed.

• Memory Management relies on virtual data to better use memory by reduc-

ing allocation overhead. Virtual data are not allocated or constructed, they are

not guaranteed to actually reside in main memory. Basically, they just define a

dependency between adjacent kernel nodes.

6.1.4 OpenVX User Kernel Tiling Extension

The idea behind tiling is related to the processors architecture in one hand, and to the

image processing algorithms requirements in the other hand. Modern processors have

different memory hierarchy ranging from small, fast and expensive memory to relatively

large, slow and inexpensive memory. Image data is generally too large to fit in small

and fast memory. So, the solution is to break the image into small blocks called tiles

which fit into small and fast memory. This tiling optimizes memory access and allows

parallel execution of different tiles. Figure 6.3 illustrates the principle of tiling in image

processing. OpenVX proposes a user tiling API to better optimize the user nodes. To use

the OpenVX tiling extension, the developer must provide the kernel function. There are

two types of function to provide:

• Flexible function : it accepts irregular tile sizes and it may be called near the

edge of the tile’s parent image, so it has to take into consideration these issues.
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• Fast function it is a specific case of the flexible function, it accepts only regular

tiles size and it doesn’t care about the edges and the neighborhood region of the

parent image. It is only called with tile size and pixel alignment that are multiple

of the user-specified "tile block size"

If the developer gives only the fast function, output near to the edges will not be

computed. If the flexible function is given, then output is computed in the whole images

including the tiles edges and the image neighborhood region. Even though irregular tile

sizes are possible with flexible function, OpenVX attempts always to use regular sizes

and alignments where possible. If both functions are provides then fast function is called

as much as possible with its restriction and flexible function is called elsewhere where

it is necessary (edges).

Tiling is managed by the OpenVX graph manager. However, the data access pattern

is not taken into account. In an unoptimized OpenVX, images are by default allocated

in L3 memory. Meanwhile, with tiling, the OpenVX run-time manager allocates the tiles

in L1 buffers.

The performed experiments as well as the obtained results on investigating OpenVX

optimizations are presented on section 6.3

6.2 Boost.SIMD

For the second part of this chapter, we selected to use one important optimization

of NT2 referred as boost.SIMD [123]. It is a C++ template library which provides a

simple approach to benefit from the SIMD hardware based on a C++ programming model.

Boost.SIMD allows vectorization on different hardware in a more portable way with

different technologies of SIMD such as Altivec, SSE or AVX while providing a generic

way to extend the set of supported functions and hardwares. Recently, a support for

ARM-based architecture is available which allows then to generate a NEON-like code.

6.2.1 Why boost.SIMD

When SIMD units were introduced, processors can exploit the data parallelism available

in applications by executing a single instruction on multiple data simultaneously in one

single register.
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In 2009, ARM designers introduced a new feature in ARM-based embedded pro-

cessors by providing an enhanced floating point capabilities together with NEON SIMD

technology into Cortex-A series microprocessors [124]. These processors were initially

designed for smartphone market. These new features allow more effective data move-

ment with a smaller instruction stream. The fact of adding improved floating point and

SIMD instructions comes from the rapidly increasing demands of modern multimedia

applications [125]. The current range of Cortex-A processors are capable of performing

single precision floating point operations with SIMD. Recently, 64-bit ARM v8-A series

support double precision operations such as in Tegra X1 ARM CPU [10].

With a constantly increasing need for performance in applications, today’s proces-

sors’ designers provide richer SIMD instructions set while using larger and larger SIMD

registers. For instance, Intel introduced the AVX extension in 2011 with registers of size

256-bits to enhance the x86 instruction set. However, programming applications with

SIMD instructions on the current targets is not a trivial task. Actually, to take advantage

of the SIMD extension, programmers usually use low-level intrinsics and need to write a

new code of the initial algorithm in adequacy with the architecture specific details. In

addition, all these efforts are repeated for every different SIMD extension and on every

architecture. This yields to a low portable design and time consuming programming

approach.

To cope with the aforementioned issues–portability, time-consuming development–

different solutions have been proposed in the literature. First, automatic vectorization,

or autovectorization [126], [127], [128], performed by compilers. A code is analyzed

to identify profitable instructions for conversion from scalar to vector, then the code is

transformed appropriately. However, compilers fail when a code is not presenting a clear

vectorizable pattern, for instance, with complex data dependencies and non-contiguous

memory accesses. Another solution based on compilers also consists on using explicitly

directives to give hints to the compiler where possible vectorization may be performed.

As an example of this approach, we may cite the ICC and GCC #pragma simd directives.

It is possible to autovectorize via some libraries such as Intel MKL [129]. These libraries

provides a set of linear algebra and/or signal processing kernels optimized for a specif

architecture. Hence, for some applications, we may not find the required routines to

autovectorize the code.
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6.2.2 What is boost.SIMD

Boost.SIMD is high-level C++ library designed to program SIMD architectures. It has

been designed as an Embedded Domain Specific Language (EDSL). Boost.SIMD uses a

generic programming model to handle vectorization in a portable way. This portability

is guaranteed through an abstraction of SIMD registers. This abstraction is handled

through pack class. For a given type T and a given static integral value X (X being a

power of 2), a pack encapsulates the best type able to store a sequence of X elements

of type T. For arbitrary T and X, this is simply std::array<T,X>, but when T and X

matches the type and width of a SIMD register, the architecture-specific type used to

represent this register is used instead. The class pack, supports an important number of

high-level functions ranging from C++ operators to arithmetic and reduction functions.

In the following section, we show the results of investigating some OpenVX optimiza-

tions. In section 6.4, we show the experiments and the obtained results on integrating

kernels on OpenVX previously accelerated with boost.SIMD.

6.3 System-level Optimizations

It is compulsory to deal with pattern access when we work on stencils and image pro-

cessing optimizations. Each pattern type implies different memory management, opti-

mization and parallelization approaches. OpenVX standard does not provide anyway to

specify the supported patterns’ types and how it manages the run-time optimizations

for each type. Hence, to assess the real impact of OpenVX and its optimizations, we

have employed different image processing algorithms with various data access patterns

(Figure 6.4).

We use for our experiments kernels from our previous work on a stereo vision vehicles

detection algorithm based on disparity map segmentation and objects classification [17].

The selected kernels and their corresponding data access pattern (Figure 6.4) are as

follows:

• Point operator the value of each output point or pixel is computed from its corre-

sponding input point like threshold kernels. We have selected the sky-subtraction

kernel [17]. This kernel removes the sky from the disparity map.
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Point Operators Local Neighbor Operators Statistical Operators

Figure 6.4: Some Classes of Data Access Pattern.

• Local neighbor operator the value of each output point depends on an input

tile like morphological corrections. Sobel edge detector has been selected for this

category.

• Statistical operator the value of each output point is computed with a statistical

function like in histograms. For this category, we have used the V-disparity map

[17]. It is a kind of histogram constructed from the disparity map to detect the

road.

The first experiment consists in comparing the execution time of OpenVX kernels

with C++ equivalent programs. Then, we test kernel merge optimization to understand

its real contribution on execution time,i.e. we compare the time performance of two

kernels before and after their merging. We then investigate data tiling. Finally, we

parallelize OpenVX kernels via OpenMP with and without OpenVX tiling.

We have done our experiments on a standard PC with an Intel CPU (i5) of 1.8 GHz. The

operating system is Ubuntu 14.04. We installed the OpenVX 1.1 sample implementation

got from Khronos group [130].

6.3.1 Obtained Results

6.3.1.1 First Experience : OpenVX vs C++

In this section, we discuss whether the OpenVX framework and its graph management

add an overhead compared to C++ language. To do so, we implemented the three

aforementioned kernels in C++ and in OpenVX. For C++, we used OpenCV API to read
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Figure 6.5: Employed Images for Sobel Filter

input images and display outputs. For OpenVX, we have used the default template

provided in the different samples within OpenVX.

To add a new kernel to OpenVX framework, we followed the steps mentioned in the

file NEWKERNEL found in OpenVX home directory after installation. As a whole, there 10

major steps with a set of sub-steps on each one. Each step aim to update particular

files in OpenVX to add some information concerning the new kernel. The steps can be

summarized as follow:

1. Add kernel node and describe it in details such specifying data transfer direction

(in, out) of all the parameters.

2. Add node prototype.

3. Add any external types needed.

4. Create a new file and write new kernel description. Describe in details all the

specification of the input(s) and the outputs (s) such as the data types and their

corresponding transfer direction.

5. Add vxu function if desired.

6. Write the C code of the kernel in a new file.

7. Compile the OpenVX directory to updates all the files and check for possible errors.

8. To test the new kernel, either modify or add new unit test in the provides samples.

By following the aforementioned steps, we added our kernels to OpenVX framework

by wrapping the same code of the scalar version and by following the template provided
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in OpenVX. As first results, we focus on one kernel, Sobel filter, the results of the other

kernels are discussed later one. Figure 6.5 depicts the employed images on Sobel filter

and their corresponding resolutions. For sky-removal and V-disparity kernels, we used

KITTI [101] dataset of 1242× 375 pixels.

1 for (y = 1; y < h-1 && (status == VX_SUCCESS); y++) {

2 for (x = 1; x < w-1; x++) {

3 vx_uint8 *in_00 = vxFormatImagePatchAddress2d(src_base, x-1, y-1, &src_addr);

4 vx_uint8 *in_01 = vxFormatImagePatchAddress2d(src_base, x, y-1, &src_addr);

5 vx_uint8 *in_02 = vxFormatImagePatchAddress2d(src_base, x+1, y-1, &src_addr);

6 vx_uint8 *in_10 = vxFormatImagePatchAddress2d(src_base, x-1, y, &src_addr);

7 vx_uint8 *in_12 = vxFormatImagePatchAddress2d(src_base, x+1, y, &src_addr);

8 vx_uint8 *in_20 = vxFormatImagePatchAddress2d(src_base, x-1, y+1, &src_addr);

9 vx_uint8 *in_21 = vxFormatImagePatchAddress2d(src_base, x, y+1, &src_addr);

10 vx_uint8 *in_22 = vxFormatImagePatchAddress2d(src_base, x+1, y+1, &src_addr);

11 // compute horizontal and vertical gradients

12 grad_x = (*in_02) + 2*(*in_12) + (*in_22) - (*in_00) - 2*(*in_10) - (*in_20);

13 grad_y = (*in_20) + 2*(*in_21) + (*in_22) - (*in_00) - 2*(*in_01) - (*in_02);

14 vx_uint8 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);

15 // compute the sum of gradients

16 sum = sqrt(pow(grad_x, 2) + pow(grad_y, 2));

17 // normalize the sum and store the result

18 *dst = (sum) > 255 ? 255:(vx_uint8)(sum);

19 }

20 }

Listing 6.2: C Code Snippet of our OpenVX Sobel Filter.

Listing 6.2 illustrates part of Sobel kernel code that we wrapped within OpenVX by

following the provided template in the samples. The kernel takes a gray scale image

(8-bits) as an input. Some initializations are performed before such as extracting the

rectangular patch required from the input and the output images through the function

vxAccessImagePatch(). In our case the whole images are employed. We start by

getting the required non zero neighboring pixels (lines 3 → 10). Then, we compute the

horizontal and vertical gradients of each pixel (lines 12, 13). The gradients are stored in

temporary short (16-bits) variables. After that we calculate the sum (line 16). Finally,

we normalize the sum to the gray scale range [0:255] (lines 17, 18) and store the final

result on the corresponding output pixel.

Figure 6.6 shows the obtained execution time on Sobel filter on different image

resolutions. The first column (C++) presents the time obtained with C++ and the second

column (OpenVX) gives the results with OpenVX by following the default programming
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Figure 6.6: Performance Comparison Between C++ Language and OpenVX Framework

on Sobel Edge Detector.

model of OpenVX samples. We clearly notice that OpenVX performs worse than C++

with an average factor of almost 2.

By analyzing the code of the OpenVX provided samples, we noticed that the reason

behind this difference in execution time is related to the way OpenVX accesses image

pixels via the function vxFormatImagePatchAddress2d(). The latter extracts a patch

with the corresponding horizontal and vertical offsets. Hence, each time a pixel is

required, its address is computed with this function. To get rid of this difference, we

modified the programming model of our kernels in OpenVX to avoid computing pixels’

address each time. We did so by fetching a pointer to each image line once and then use

it to get pixels according to their vertical position along the columns within the same

line. This approach is referred as linear addressing. Listing 6.3 illustrates the principle

(lines 2, 3, 4).

The results of this optimization are shown in the third column (OpenVX_mod) of

Figure 6.6, mod stands for modified. We clearly notice that With this approach, we get

the same performances compared to C++.

From this experiment we can conclude that OpenVX provided samples are not opti-

mized in terms of execution time, hence, the developer needs to adapt his program for

better performance.
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1 for (y = 1; y < h-1 && (status == VX_SUCCESS); y++) {

2 // get image’s lines address

3 in_0 = vxFormatImagePatchAddress2d(src_base, 0, y-1, &src_addr);

4 in_1 = vxFormatImagePatchAddress2d(src_base, 0, y, &src_addr);

5 in_2 = vxFormatImagePatchAddress2d(src_base, 0, y+1, &src_addr);

6 vx_uint8 *dst = vxFormatImagePatchAddress2d(dst_base, 0, y, &dst_addr);

7 for (x = 1; x < src_addr.dim_x -1; x++) {

8 // compute gradients

9 grad_x = in_0[x+1] + 2*in_1[x+1] + in_2[x+1] - in_0[x-1] - 2*in_1[x-1] - in_2[x-1];

10 grad_y = in_2[x-1] + 2*in_2[x] + in_2[x+1] - in_0[x-1] - 2*in_0[x] - in_0[x+1];

11 // compute the sum of gradients

12 vx_int32 sum = sqrt(pow(grad_x, 2) + pow(grad_y, 2));

13 // normalize the sum and store the result

14 dst[x] = (sum) > 255 ? 255:(vx_uint8)(sum);

15 }

16 }

Listing 6.3: C Code Snippet of our Modified OpenVX Sobel Filter (OpenVX_mod).

6.3.1.2 Impact of Data Access Pattern

We implemented the V-disparity and the sky-subtraction kernels–Sobel filter has been

implemented from the previous experiment– to evaluate the impact of data access pat-

terns on OpenVX framework and to confirm the previous results. Figure 6.7 shows the

obtained performances in Mega pixels per second (Mp/s) for each kernel. Sobel filter is

applied to an image of size 1024 × 1024, kernels sky-subtraction and V-disparity both

use KITTI images of size 1242× 375.

Concerning the sky-subtraction kernel, the algorithm takes a bidirectional image

(i.e. a disparity map) to update or not with respect to some tests applied on another

input image (i.e. a saturation channel). Using a bidirectional data object avoids data

copying when a pixel value is not updated in case the test is not verified. C++ with

OpenCV API and OpenVX framework both allow using input/output images.

Figure 6.7 confirms that OpenVX gives the same execution time with different data access

pattern. These are the expected results since we did not apply any optimization at this

level, only scalar kernels are used. Data access pattern is crucial when optimizations

are applied which may work with one pattern and not with others.
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Figure 6.7: Data Access Pattern Impact on OpenVX Execution Time

Table 6.1: Execution Time of Kernel Merge Optimization on Sobel Filter.

Image Size t(Gx)(ms) t(Gy)(ms) t(G)(ms) ts(ms) tm(ms)

512x512 0.121 0.124 2.515 2,760 2.113

1024x1024 0.453 0.434 6.334 7,221 7.149

2048x2048 1.632 1.638 31.498 34,768 32.143

6.3.1.3 Kernels Merge

We selected Sobel filter to test kernels merge optimization. Sobel filter is a cascade of

three elementary functions or kernels (Figure (6.2)): horizontal gradient (Gx), vertical

gradient (Gy) and sum or magnitude of gradients (G =
√

G2
x +G2

y). We developed

these three kernels in OpenVX since as discussed previously (Listing 6.1), horizontal and

vertical gradient kernels are merged in one kernel within OpenVX (vxSobel3x3Node()).

Then we developed also the merged version of the three kernels in one which is not also

available in OpenVX standard.

Table 6.1 presents the execution times of: the horizontal gradient t(Gx), the vertical

gradient t(Gy), the sum of the gradients t(G), the total time of the three kernels (sep-
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Figure 6.8: Kernels Merge Execution Time with OpenVX on Sobel Filter.

arable version) ts = (t(Gx) + t(Gy) + t(G)) , and the time of the whole Sobel filter

merged in one kernel tm = t(Gx +Gy +G).

From Table 6.1, we notice that the execution time of the merged kernels tm is around 5%

less than the non merged ones (ts). However, we expected the results to be better than

this. Indeed, the performance of merging kernels is only obtained if the time required

for memory accesses in the original algorithm is much more important than arithmetic

operations’ one. Then, if by merging the kernels we manage to reduce memory access

by keeping the same arithmetic complexity, we then expect to accelerate our algorithm.

We perform the same experiment on the horizontal and vertical gradients. The

latter choice is motivated by the ratio of memory accesses to arithmetic operations R.

To compute each output pixel, R is equal to 7/7 on horizontal and vertical gradients

corresponding to 6 reads to get the local non zero neighbor pixels, 5 additions, 2 multi-

plications and 1 write to store the output. However, if we merge these two kernels, we

end up with R which is less than 1; with 8 reads of the required local neighbor points of

both gradients, 7× 2 = 14 arithmetic operations and 2 writes. Then, in this case, R is

equal to 10/14. Based on this ratio, we implemented a merged kernel of only horizontal

and vertical gradients on OpenVX and then compared the obtained performance with the

separable kernels one. Figure 6.8 shows the execution time (ms) obtained on different

image resolutions. We notice an average acceleration factor of 2 when we merge the two
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Figure 6.9: Obtained Execution Times with OpenVX Tiling Extension

kernels (p(Gx+Gy)) compared to the separable version (p(Gx)+p(Gy). It is related to

the reduction of memory accesses and OpenVX kernels launch overhead.

From this experiment we can conclude that Kernels merge optimization of OpenVX

framework gives important results with respect to non merged kernels evaluated sep-

arately. However, we need first to analyze the kernels we want to merge to check if

they respond to some features required to obtain a speedup. These features concern

memory accesses and arithmetic operations. Indeed, this optimization does not aim

to accelerate the processing such as with kernel-level optimization. It focuses on the

memory accesses on the whole algorithm– kernels we want to merge. If by merging the

kernels we manage to reduce the number of memory accesses while keeping the same

arithmetic complexity, then we can expect to accelerate our kernels. This optimization

can give important speedup mainly with memory bound kernels such local neighbor

operators (filters).

6.3.1.4 Data Tiling

To test OpenVX Tiling , we implemented our three kernels and compared the obtained

results with the previous ones without tiling. We modified the image access approach

as explained in section 6.3.1.1. Figure 6.9 depicts the obtained execution time in (ms)

as well as the obtained slowdown with tiling.
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Concerning Sobel Filter (local neighbor operator) and sky-subtraction kernel (point

operator), we notice a small difference of OpenVX performance compared to OpenVX

with tiling. A slowdown of 1.2 is obtained with Sobel kernel and 1.1 with sky-removal

kernel. When we worked with the V-disparity kernel, we faced the problem of different

size between the input and the output, since the width of the V-disparity map is equal

to the maximum disparity we can get, namely 255. Actually, OpenVX tiling extension

considers by default the same size for input and output tiles. So, we executed our code

by setting the right input and output tiles size by hand. This results in a slowdown of

1.4 in performance. Globally, the obtained performances with OpenVX tiling extension

are far from the expected ones [55]. This slowdown can be related to the following

features of OpenVX tiling extension :

• OpenVX tiling extension is implemented in software.

• OpenVX tiling configuration is fixed for all kernels and for all image sizes.

• OpenVX tiling is applied only at kernel granularity.

• There are not enough computations and memory accesses which may saturate the

cache memory in the selected kernels.

Tiling in OpenVX is done in software by storing the tiled image in main memory.

But, software tiling is not the best solution [131]. Indeed, storing untiled images in

main memory have important advantages. First, the image storing and transferral

mechanisms, such as DMA or I/O devices, are independent of the tiling scheme and can

add some overhead. Second, different tilings mechanisms may be used on the same

image. And the third, and possibly most important, advantage is that the address

translation is transparent to user software. These advantages show that a conversion

of the address take place when caching, and not in software. Hardware tiling improves

performance. System software calls are made by the users to set up the cache for higher

performance. For example, to allocate tiled memory a call to a custom allocation routine

can set up the memory area to be tiled while cached.

Configuration of tile’s size and numbers is performed by software and fixed in all

cases. Here are the most important features :

1. The number of tiles by default is fixed to 64.
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Figure 6.10: Obtained Execution Times on OpenVX with OpenMP

2. The image is tiled only vertically; the width of the tile by default is equal to the

image’s width.

These details can be found in the file vx_interfaces.c from OpenVX installation direc-

tory. We notice that Khronos developers selected to not tile the image along the width.

This choice may be a good one with small images where the tile can fit a cache line,

however, with images of high resolutions, this may not be a good solution.

Tiling in OpenVX is only applied at kernel granularity, in other words, it cannot be

applied for instance at graph granularity. At graph granularity, tiling is applied at all

images (input, temporary, output) and at all kernels. We expect the results to be better

in this case.

The selected kernels for this experiment are not so time consuming. Usually, tiling

is supposed to give better performance with kernels of high computing requirements

and memory accesses.

6.3.1.5 OpenVX with OpenMP

In this section, we present the results obtained by testing OpenMP with OpenVX. We per-

formed our tests on a computer with 2 physical cores of 2 threads each. Parallelization

is applied at pixel granularity, i.e., each thread computes the output of one pixel in all

kernels. Figure 6.15 shows the obtained results in (ms) for the different kernels.
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Figure 6.11: Accelerating OpenVX Tiling Extension with OpenMP

We notice an acceleration factor of almost 2 with all kernels. This experiment shows

one important feature of OpenVX which allows users to develop customized kernels for

a specific architecture. In this chapter, we selected OpenMP shared memory paralleliza-

tion as an example on multi-core systems. In the next section (6.4), more advanced

implementations will be discussed with a different approach.

6.3.1.6 OpenVX Data Tiling with OpenMP

We test OpenVX tiling with OpenMP. Two approaches are possible. The first one consists

in parallelizing the inner loops by associating threads to pixels within the same tile.

This technique corresponds to the work presented in section (6.3.1.5) with OpenMP. The

second approach consists of parallelizing along the outer loops by associating tiles to

threads. We followed the second approach.

The obtained results are depicted in Figure 6.11. We notice better results with

an average factor of 2. These results show that tiling extension can be optimized by

parallelizing at tile level.
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Figure 6.12: Summary of the Obtained Results with the Different Optimizations Tested

on OpenVX

6.3.2 Discussion and Analysis of Obtained Results

Figure 6.12 summarizes the obtained results by using the different aforementioned op-

timizations tested on OpenVX with the three selected kernels. The speedup is also

depicted with OpenMP. First, we notice that the employed approaches behave differently

with respect to each data access pattern of the selected kernels. This confirms the

importance of data access pattern in optimizing image processing applications. If we

compare C++ and OpenVX_mod with the modification we applied on the image access,

we notice almost no difference in execution time. However, tiling does not respond

similarly with the three kernels. Indeed, OpenVX tiling extension does not manage data

access pattern. Finally, OpenMP allows the reduction of execution time, hence, increasing

the performance according to the time consumption of each kernel and the hardware

specifications (number of cores).

6.4 kernel-System-level Optimizations

Before discussing the obtained results, we first describe the hardware employed as well as

the kernels we use to test the approach we propose which consists on combining OpenVX

and boost.SIMD. We perform our experiments on an x86 architecture and on the host
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(ARM quad-core) of NVIDIA Tegra X1 platforms. This proposed approach could not be

tested on NVIDIA Tegra X1 GPU since the CUDA generator of NT2 is not yet available.

Despite the fact that some optimizations of NT2 on GPU have been implemented, the

equivalent CUDA-like required operations and functions for our applications are not

available. Hence, we selected to use boost.SIMD, which is part of NT2, for CPU-based

vectorization while wrapping the code on OpenVX.

The architectural specifications of each platform are as follows:

• x86: 2-Core/4-Threads Intel 64-bits i5-3337U, CPU (1.8GHz), SIMD (SSE4.2/AVX),

256KB L2 cache, gcc 4.8.4, ubuntu1 14.04 LTS

• Tegra X1 CPU: 8-Core/8-Threads ARM 64-bits: 4xA53(1.7GHz), 4xA57(1.9GHz)

SIMD(NEON), 2MB (A57), 512KB(A53) L2 cache, gcc 4.8.4, ubuntu1 14.04

We use for our experiments kernels from our previous work on a stereo vision vehicles

detection algorithm based on disparity map segmentation and objects classification [17]

presented previously in chapter 3. The selected kernels are:

• Sky-removal : it is a point operator where the value of each output point or pixel

is computed from its corresponding input point. This kernel removes the sky

from the disparity map. The sky is removed based on some tests applied to the

saturation canal [17].

• Road-removal : it is a local point operator also. It removes the road from the

disparity map [17] based on the V-disparity approach [132].

• Sobel-filter : it is a local neighbor operator, i.e, the value of each output point

depends on neighboring pixels. Sobel edge detector describes pixels for robust

stereo matching. This filter computes the horizontal and vertical gradient of each

pixel on a 3x3 surrounding patch.

The aforementioned kernels have been selected according to two important criteria

: (1) data access pattern and (2) kernel specifications. Data access patterns are crucial

when we work on stencils and image processing optimizations. Each pattern type im-

plies different memory management, optimization and parallelization approaches. By

kernel specifications, we mean data requirements and their corresponding character-

istics, mainly the data flow direction (input and/or output) and type’s size (8-bits,

16-bits). These specifications are depicted in Table 6.2.
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Table 6.2: Kernels Specifications.

Kernel Specifications

Sky-removal
image-inout : 8-bit, disparity map

image-in : 8-bit, saturation canal

Road-removal
image-inout : 8-bit, disparity map

road’s equation (a,b) : 8-bit

Sobel-filter

image-in : 8-bit, left stereo image

image-out1 : 8-bit, horizontal gradient

image-out2 : 8-bit, Vertical gradient

Sky-removal kernel requires an input/output 8-bits image. the latter is the disparity

map to update or not according to some tests applied to the saturations canal. Road-

removal kernel removes the road from the disparity map based on some input parameters

corresponding to the road equation. This kernel also uses an input/output image. Sobel-

filter works on an input 8-bitd image. This image is used to compute horizontal and

vertical gradients. These two gradients are stored on 8-bits images. Temporary 16-bits

images are also required to store the results of convolution to be converted later on to

8-bits.

6.4.1 Obtained Results

In this section, we describe the different experiments performed to test the proposed

approach. We present the obtained performance on the selected kernels executed on

the aforementioned architectures. We start by analyzing the obtained performances

with OpenVX and boost.SIMD separately, then we discuss the results when wrapping

boost.SIMD codes on OpenVX.

6.4.1.1 OpenVX on Embedded Platforms

As first experiment, we developed the selected kernels on OpenVX. We followed the same

approach as discussed previously on section 6.3.1.1. The obtained results of this exper-

iment will be taken as a reference to compare the results of the following experiments.

Figure 6.13 depicts the obtained execution time in ms of the three selected kernels

with C++ and OpenVX on x86 Intel dual-core processor and Tegra X1 ARM quad-core
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Figure 6.13: C++ vs OpenVX Obtained Performances on Fixed and Embedded

Systems.

processor. Kernels are executed on mono-threading mode; only on one core on both

architectures.

Sky-removal and road-removal kernels have been tested on KITTI images (1242x375

pixels), Sobel filter has been applied to a 512x512 image. These results confirm the well-

known difference in performance between Intel and ARM CPUs, Tegra X1 quad-core

ARM is slower by an average factor of 2 compared to Intel dual-core. The results show

also that OpenVX is around 5% slower than the scalar version on both architectures.

This is due to OpenVX framework overhead. This non trivial overhead, which is not

avoidable comes mainly from the verification stage of OpenVX graphs.

6.4.1.2 Vectorization Results with boost.SIMD

To accelerate our kernels with NT2, we used boost.SIMD [133]. It allows us to write a

code once and to execute it in x86 and ARM architectures thanks to the abstraction

level of SIMD registers. Hence, we do not write our kernels with SSE instructions for

x86 architecture and with NEON for ARM architecture.

Listing 6.4 illustrates part of the sky-removal kernel with boost.SIMD wrapped on

OpenVX. First, we need to fix the size of data to get the size of the SIMD registers later

on. In this kernel, since we work on gray scale data (input/output), we fix the data size

n to 8 bits as illustrated in line 1 in Listing 6.4 with the type pack_u8_t. Then, based

on OpenVX function vxFormatImagePatchAddress2d(), we get the image’s line address
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Figure 6.14: C++ vs OpenVX vs NT2 Obtained Performances on Fixed and Embedded

Systems.

in memory of the input and output images (lines 3, 5). After that, we compute the

image’s width which can be vectorized (line 5). In other words, we find the number of

pixels along the image’s width which is a multiple of SIMD register size. For these pixels,

the operations will be vectorized (lines 7 → 11). The remaining pixels for which the

size is less than the SIMD register will be processed sequentially (lines 13, 14). The same

approach is employed for the two other kernels; Sobel filter and road-removal kernel.

1 size_t n = pack_u8_t::static_size;

2 for (int32_t v=0; v<height; v++){

3 in_1 = (vx_uint8*)vxFormatImagePatchAddress2d(src1_base, 0, v, &src1_addr);

4 in_out = (vx_uint8*)vxFormatImagePatchAddress2d(src_dst_base, 0, v, &src_dst_addr);

5 aw = width &∼(n-1);

6 for (int32_t u = 0; u < aw; u+=n){ // For multiple size of SIMD registers, vectorize

7 pack_u8_t p = boost::simd::load<pack_u8_t>(&in_1[u]);

8 pack_s8_t r = boost::simd::bitwise_cast<pack_s8_t>(boost::simd::genmask(p==mask));

9 pack_u8_t disp = boost::simd::load<pack_u8_t>(&in_out[u]);

10 disp = boost::simd::bitwise_andnot(disp,r);

11 boost::simd::store(disp, &in_out[u]);

12 }

13 for (int32_t u=aw; u<width; u++)

14 // Continue what is left in scalar

15 }

Listing 6.4: NT2 Snippet Code of Sky-removal Kernel Wrapped on OpenVX.

The results of this experiment are depicted in Figure 6.14. First, we notice an im-

portant speedup with boost.SIMD on both architectures. The speedup of Sobel filter

with boost.SIMD is relatively slow on ARM. The reason is related to data access pattern
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Table 6.3: Kernels Specifications at arithmetic level.

Instruction sky-removal road-removal Sobel-filter

bs::simd::load<>() 2 1 13

bs::simd::store<>() 1 1 6

bs::simd::not() - - 8

bs::simd::and() - - -

bs::simd::and_not() 1 4 -

bs::simd::add() - - 16

bs::simd::sub() - - 4

bs::simd::shift_right() - - 4

bs::simd::genmask() 1 6 8

bs::simd::splat<>() - 5 3

bs::simd::split_high() - 1 3

bs::simd::split_low() - 1 3

bs::simd::groups() - 1 2

bs::simd::bitwise_cast<>() 1 8 18

Total 6 28 68

of Sobel filter which is a local neighbor operator. Indeed, vectorization is well known

for its sensitivity to cache misses. Also, data casting was applied to save temporary

data of size 16-bits. We notice also that the speedup decreases on kernels with higher

arithmetic intensity. Table 6.3 gives the different boost.SIMD instructions used on each

kernel. We notice clearly that we do have more instructions on road-removal kernel

compared to sky-removal and much more instruction on Sobel-filter compared to both

sky-removal and road-removal kernels.

As last remark, it is worth noting one important NT2 trade-off concerning the compi-

lation time. Compiling heavily templated C++ code is often considered as a limit to

the extensive use of such techniques. This is due to the compiler’s task consisting in

keeping track of all already instantiated template types.

6.4.1.3 Shared Memory Parallelization Results with OpenVX

In this section, we test shared memory parallelization via OpenMP on OpenVX. We followed

the same approach presented previously in section 6.3.1.5. The goal in this chapter is to
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Figure 6.15: OpenMP Parallelization Performances on OpenVX.

show that OpenVX allows user-defined or customized kernels to be optimized by different

approaches and architectures. In this section, we first show the results of OpenMP paral-

lelization on OpenVX. Parallelization for different architectures with different approaches

is also possible by wrapping optimized kernels on OpenVX. as will be discussed in the

next section.

Listing 6.5 illustrates how the sky-removal kernel is accelerated with OpenMP direc-

tives within OpenVX framework. Lines 2 → 9 is the OpenVX code without any modifi-

cation. The only difference is the OpenMP directive on line 1 which gives hints to the

compiler where we wish to parallelize.

1 #pragma omp parallel for shared(src1_image, src_dst_image) private(in_1, in_out)

2 for (int y = 0; y < src1_addr.dim_y ; y++) {

3 in_1 = (vx_uint8*)vxFormatImagePatchAddress2d(src1_base, 0, y, &src1_addr);

4 in_out = (vx_uint8*)vxFormatImagePatchAddress2d(src_dst_base, 0, y, &src_dst_addr);

5 for (int x = 0; x < src1_addr.dim_x ; x++) {

6 if ((in_1[x] == 255))

7 in_out[x] = 0;

8 }

9 }

Listing 6.5: OpenVX Snippet Code of Sky-removal Kernel with OpenMP.

Figure 6.15 depicts the obtained execution time (ms) of OpenVX kernels with and

without OpenMP. The speedup is also given. We notice a speedup of around 2 on x-86

Intel dual-core processor and an average of 3 on ARM quad-core. We observe also that
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Figure 6.16: Execution time (ms) of boost.SIMD Vectorization and OpenMP

parallelization on OpenVX

we reach almost the same execution time on both architectures. Indeed, the difference

between ARM and x86 architectures in execution time is compensated on ARM with 4

physical cores compared to Intel i5 processor with only 2 cores.

6.4.1.4 Shared Memory Parallelization and Vectorization on OpenVX with

boost.SIMD

In this section, we apply two optimizations to our kernels. First, we apply vectorization

through boost.SIMD as discussed previously on section 6.4.1.2. Then, we integrate

these boost.SIMD accelerated kernels on OpenVX and apply parallelization on OpenVX

with OpenMP. It worth noting that no rewriting effort has been performed on ARM

architecture. Setting appropriate compiling options (-mfpu=neon) is sufficient.

Figure 6.16 depicts the obtained execution time as well as the speedup of the three

kernels in x86 and ARM architectures. The speedup is computed with respect to the

OpenVX execution time taken as the reference. We show the speedup obtained with

the different approaches employed previously presented to accelerated the execution

time. Globally, we notice that the kernels respond differently to each architecture and

acceleration technique (OpenMP, boost.SIMD and both).
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If we compare OpenMP and boost.SIMD results, we notice that on x86 architecture,

boost.SIMD performs better than OpenMP with a speedup of 7.1 for sky-removal kernel

and 2.8 for the road-removal kernel and 2.2 for Sobel filter. However, the observation is

not similar on ARM due to the double number of cores -compared to x86 and to kernels

specifications. In sky-removal kernel, with few computations, boost.SIMD performs

better than OpenMP as on x86 architecture. In road-removal kernel with more com-

putations, OpenMP and boost.SIMD both give the same speedup; 3.3. In Sobel-filter,

OpenMP is better than boost.SIMD. The reason is related to the data access pattern

which imposes adaptation at kernel implementation level. In scalar version, Sobel has

been implemented as a non-separable filter where one global loop is employed to keep

threads busy with OpenMP and reduce threads launch cost. However, non-separable ver-

sion is not suitable for vectorization. The latter is highly affected by cache misses, so,

we implemented the separable version of Sobel filter in boost.SIMD for better locality.

With only boost.SIMD, we notice an important speedup on both architectures. We

notice also that the speedup in this case decreases with kernels complexity mainly

at arithmetic level as discussed previously. Finally, for maximum performance, we

wrapped boost.SIMD kernels on OpenVX framework and applied OpenMP directives to

benefit from the hardware performances. We notice that with the sky-removal kernel,

the speedup with boost.SIMD is the same as with both boost.SIMD and OpenMP. This

can be explained by the fact that this kernel is a not a so time consuming one, it takes

less than 0.5ms in scalar version.

6.5 Discussion

In the first part of this chapter, we have investigated the contribution of OpenVX frame-

work to computer vision applications. We first compared OpenVX to traditional C++

language to assess if graph-based approaches add some overhead due to graph manage-

ment or not. We have observed that the template provided in OpenVX samples is not so

optimized concerning pixel accessing in images. So, we have written our own improved

codes to get the same performance results compared to C++.

In the unoptimized version of OpenVX, data access pattern is not taken into account.

However, access patterns are important for optimizing image processing applications

and stencils. Thus, we have used different data access patterns to evaluate how OpenVX
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responds to each pattern type.

We tested kernels merge optimization of OpenVX and access its importance on acceler-

ating operation from memory accesses point of view.

Concerning OpenVX tiling extension, we noticed that it adds a small overhead via the

run-time manager which sets tiles sizes and copies data from input images located in

L3 to tiles in L1 buffers. We also faced another issue with tiling when the input and

output data have different sizes such with statistical operators like histograms. In this

case, tiling does not respond well since in OpenVX tiling extension, by default, the size of

input and output images and tiles are assumed to be equal. Finally, we tested OpenMP

with OpenVX and managed to accelerate the execution of our kernels.

In the second section of this chapter, we managed to accelerate computer vision

kernels on two different architectures with zero rewriting cost. We merged OpenVX

framework and boost.SIMD. OpenVX allows us to develop hardware customized kernels

for different architectures. However, targeting different architectures in OpenVX requires

rewriting kernels’ code with compatible languages. To cope with this issue, we propose

to integrate boost.SIMD in OpenVX. Boost.SIMD allows us to develop kernels once while

targeting different architectures with minimal rewriting cost. We tested this approach

on x86 and ARM (Tegra X1) architectures. The kernels are written once and then

vectorization is enabled–SSE on x86 and NEON on ARM–. An important speedup

has been obtained with this approach on both architectures. Speedup depends on

architecture’s specifications such as number of cores and also kernel’s specifications as

data access pattern.

The obtained results with OpenVX are far away from the expectations as presented in

the first release [55]. Despite the fact that we managed to accelerate OpenVX kernels with

others approaches such as OpenMP and boost.SIMD, some important OpenVX optimiza-

tions such as tiling are not yet enough mature to give good performances. Also, there

are some optimizations that have not been implemented such as graph-scheduling in

heterogeneous systems. Consequently, we did not expand our experiments to accelerate

our stereo-based algorithm as we did in chapter 4 and chapter 5.
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7

Conclusion

7.1 Conclusions

Embedding vision-based ADAS applications raised important scientific challenges which

were behind the birth of this research work. Vision-based ADAS require high perfor-

mance computing in real time. This led to the design and development of new archi-

tectures and parallel programming tools. Both proposed hardware and software have

different features and no one is perfect for a specific application. This thesis research ad-

dresses the challenge of programming methodologies of vision-based ADAS applications

on parallel architectures. The main contribution of this work is to provide a feedback

for the development of future image processing applications in adequacy with parallel

architectures with a best compromise between computing performance, algorithm accu-

racy and programming efforts. We evaluated different programming tools of embedded

vision-based ADAS application from different aspects and provide the contributions as

well as the limitations of each tool.

At first, we proposed and developed an algorithm for vehicles detection based on

stereo vision. It is worth noting that this algorithm has not been developed to com-

pete or to give better performance compared to the existing works in the literature.

It has been rather developed to be used as a use-case for our experiments on em-

bedding vision-based algorithms. This algorithm has two important features: High

performance computing and Various kernels’ specifications. To target the previously

mentioned challenge, we need to have a time consuming algorithm which needs to be

processed in real-time in embedded systems. For this reason, we selected the stereo
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vision as perception system. For decades, many stereo matching algorithms have been

proposed with new improvements in both matching accuracy and algorithm efficiency.

Most of the proposed works tend to be contradictory in reported results: accurate stereo

matching methods are usually time consuming. For this reason, we selected to include

stereo matching in our ADAS application. When parallelizing image processing algo-

rithms, optimizations may differ from one kernel to another. This difference comes from

kernels’ specifications. By specifications we mean for instance data access pattern, data

flow, data dependency, etc. Each feature requires a specific optimization. We developed

the algorithm in such a way to have a variety of kernels with different features. This

allows us to perform different experiments and test various optimizations.

In the second part of this research work, we addressed the optimizing process of

computer vision algorithms in embedded systems from both hardware and software

aspects. We employed different architectures available in the market for ADAS sys-

tems and we used various parallel programming methodologies. We selected multi-core

systems (CPU-based) and NVIDIA platforms; Jetson K1 and Tegra X1 (GPU-based).

The choice is based on two important criteria. First, we selected the most available and

employed platforms in automobile industry nowadays such NVIDIA platforms. Second,

we focused on the stability and the performance of the hardware in one hand and the

maturity of the corresponding and compatible softwares in the other hand.

After selecting the appropriate hardwares, we moved to the core of this research

work: embedding the developed use-case on the selected hardwares with different paral-

lel tools. The goal of this work is to investigate some approaches from different aspects

of parallel programming to provide the advantages and limitations of each employed

tool. We selected the parallel tools based on a set of features and criteria. First (1),

from programming level, we took low-level programming languages such as CUDA as well

as high-level techniques such as directives-based tools (OpenMP, OpenACC). Second (2),

at portability level, since we target heterogeneous architectures, we selected tools which

are compatible with one or more processing units such as CPUs and GPUs. Third

(3), for optimizing level, we selected both kernel- and system-level tools. To recall,

by kernel-level optimizations we mean all optimizations that we apply on kernels or

small functions. In this case, we usually use traditional parallel languages. In this work

we worked with SIMD instructions, directives-based tools (OpenMP, OpenACC) and CUDA
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programming language. With system-level optimizations, we aim to optimize the algo-

rithm as a whole system. This is performed by focusing for instance on data transfers

and allocations, memory bandwidth. For this case, we selected OpenVX framework. As

fourth and last feature (4), we focus on programming efforts. Some tools required code

rewriting to get the optimized version to be executed in parallel. This happens with

CUDA for instance. Some other tools require less code rewriting and rely on compliers to

generate the parallel code such as OpenMP and OpenACC. We also used a EDSL referred as

NT2 which allows code generation for some specific optimizations such as vectorization

with SIMD with minimal rewriting cost.

After identifying the bottlenecks–most time consuming kernels/functions– of our

algorithm, we wrote the optimized version with the aforementioned tools. The obtained

results allowed us to evaluate the different tools from mainly programming efforts and

obtained performance. It is worth noting that one important step before starting the

parallelization process is to analyze the algorithm to check whether it responds to some

important features of parallel computing such as dense repetitive computations and

regular memory accesses. In our algorithm, we made some important adaptations at

algorithmic level before parallelizing the algorithm for better and efficient results. This

process is what we usually call Algorithm-Architecture-Adequacy (AAA). For

instance, embedded systems have low memory capacities and even smaller caches, hence

it is crucial to ensure contiguous and coalesced memory accesses to benefit from the

cache memories.

As a second important result, it is crucial to optimize the code at different levels

to reach the required performance. For instance, we can apply vectorization (SIMD) at

inner operations while parallelizing globally the outer operation with another approach

such as OpenMP. In other words, a mixture of parallel tools at different algorithmic level

is usually necessary for maximum performances.

Table A.1 illustrates the evaluation of the different employed parallel programming

tools. The evaluation is performed in terms of:

• Portability The possibility to use the parallel tool/language on different archi-

tectures.

• Cross-platforms portability The fact of executing the same code on different

architecture without code rewriting
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Table 7.1: Evaluation of Employed Parallel Programming Tools

Parallel

Tool
Portability

Cross-Platforms

Portability
Performance

Programming

Efforts

OpenMP CPUs, GPUs CPUs, GPUs *** **** ****

OpenACC CPUs,GPUs CPUs, GPUs *** **** ****

CUDA NVIDIA GPUs NVIDIA GPUs * **** **

NT2 CPUs,GPUs CPUs, GPUs *** ** *

SIMD CPUs CPUs* **** **

Boost.SIMD CPUs SSE, AVX, Altivec, Neon**** **** **

OpenVX CPUs,GPUs CPUs, GPUs *** ** *

• Performance In this work, we rely on the obtained execution time as a measure

of performance.

• Programming efforts Two features are taken into consideration: (1) the time

spent to master the tool and rewrite the code, (2) the difficulties encountered

during code optimizations.

The obtained results and evaluations showed that directive-based approaches with

less programming efforts such as OpenMP and OpenACC can compete high-level tools as

CUDA at performance level. Knowing that CUDA requires code rewriting and the developer

has to master the tool with the different aspects to reach the required performance.

However, There are some important aspects which are not yet covered by directive-

based tools. For instance, having access to shared memory is not possible with OpenACC

while CUDA allows the developer to use this memory for fast memory accesses. Also, the

optimizing process with CUDA is a progressive one. The developer has to test different

optimizations at several levels. It is worth noting that directive-based tools may not

always give good performance since they rely on the compilers to generate the parallel

code which may fail with complex algorithms and high data dependency.

NT2 provides high portability and cross-platforms portability as well. However, as

shown in Table A.1, the obtained performances are not as expected. The tool is not yet

mature to optimize complex functions with high data dependencies. Also, it requires

more programming efforts to master the tool and find the required parallel expressions.

Vectorization results with SIMD and boost.SIMD give important results in terms of

performance and programming efforts. While code rewriting is required through the
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intrinsics, the time spent and the difficulties encountered are much lower compared

to CUDA. However, it is worth noting that in this work, vectorization with SIMD or

boost.SIMD is only applied to the cost function SAD while CUDA is applied to the

whole matching function. At portability level, with SIMD, we used the instructions

set corresponding to each architecture such as SSE on Intel CPUs and NEON on ARM

CPUs. However, with boost.SIMD, no rewriting code is required and hence provides

better cross-platforms portability.

The investigation of OpenVX system-level optimizations revealed several results. The

important remark concerns the ability to integrate and embed customized optimized

kernels. We managed to integrate and accelerate our kernels in OpenVX with different

parallel tools such as OpenMP and boost.SIMD. Here comes another contribution of this

work. We proposed an approach to target both kernel- and system-level optimizations.

We also managed to launch the optimized kernels on different architectures with zero

cost of rewriting thanks to boost.SIMD. We investigated some proposed optimizations

such as kernels merge and data tiling. The results show that there is still work to be

done to get better results mainly with tiling.

To summarize, embedding and parallelizing vision-based algorithms is not a trivial

task. While different parallel tools and high performance architectures are available,

the process of parallelizing is still not a straightforward one. This is why it is impor-

tant to investigate the different available parallel tools to provide a feedback for future

developers to better select the parallel tool in adequacy with the selected hardware and

applications.

7.2 Future Works

Several tracks are possible to extend the work presented in this manuscript to provide

a more detailed evaluation and feedback concerning programming methodologies of

vision-based ADAS on parallel architectures.

First, we consider to investigate other parallel tools and approaches to extend our

evaluations. Among the available tools we may cite Halide [16] and HIPAcc [134]

framework. The parallel tools investigated in this work have been evaluated from two

aspects: programming efforts and obtained performances. As a second perspective, it
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would be interesting to take into consideration the energy consumption as an evaluation

criteria which is a crucial point when working on embedded systems.

Third, from hardware point of view, in this work we employed multi-core and

heterogeneous (CPU+GPU) platforms in our experiments. For future works, we are

considering to work on other architectures such as FPGAs, DSPs to extend our eval-

uation on other hardwares and test other tools compatible with these architectures.

Fourth, we propose to work on other use-cases. In this work, we selected a stereo

vision based vehicles detection algorithm, it would be interesting to work on others

algorithms such as deep learning for better evaluation the parallel tools.

Fifth, it would be interesting to perform a comparison or an evaluation with the

state of the art such as the implementation of the Semi-Global Matching (SGM) algo-

rithm on GPUs [135].

Finally, Concerning the results obtained with NT2 which were not encouraging, it

is worth noting that it requires time to analyze, understand the issues behind the low

performances. We are considering to rely on Roofline model [136] to analyze the results

for better understanding the obtained performances. Also using STREAM benchmark

[137] for benchmarking the ultimate DRAM of a multi-core processor would allow us to

get deeper insight of the obtained results.
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Appendix A

Synthèse en Français

Dans ce chapitre, une synthèse de la thèse en Français est proposée. Nous expliquons le

contexte et la problématique de ce travail de recherche. Les objectifs ainsi que l’approche

sont aussi présentés. Nous donnons à la fin de ce chapitre un récapitulatif des résultats

obtenus ainsi que quelques conclusions.

A.1 Contexte

L’Organisation mondiale de la santé (OMS) [2] a montré en 2015 que chaque année,

environ 1,25 million de personnes meurent à la suite d’un accident de la route. La

plupart de ces accidents sont attribués à des erreurs humaines ou à des distractions.

Bien que des efforts considérables sont déployés depuis les années 1990 pour développer

des solutions technologiques pour améliorer la sécurité telles que les coussins gonflables

(airbag), les pertes humaines dans l’environnement routier sont encore trop élevées.

Pour mieux gérer la circulation routière et réduire les risques d’accidents, de nou-

velles technologies ont été proposées, appelées Application d’aide à la conduite (Ad-

vanced Driver Assistance Systems ,ADAS), telles que les systèmes de régulation de

vitesse adaptative (ACC) et d’avertissement de sortie de voie (LDW). Les ADAS sont

des systèmes intelligents embarqués développés pour éviter les risques d’accidents et

améliorer la sécurité routière en aidant les conducteurs dans leurs tâches de conduite.

Un ADAS est considéré comme un système embarqué complexe temps réel composé

de trois couches importantes. La couche de perception comprend un ensemble de cap-

teurs tels que les radars et les caméras. Il peut également comprendre une unité de
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fusion de données qui permet le calcul de données de capteurs appropriées pour estimer

un état cohérent d’un véhicule et de son environnement. La couche de décision utilise

les sorties de l’unité de fusion de données pour analyser la situation actuelle et décider

des actions appropriées à transmettre aux actionneurs. La couche d’action reçoit les

actions de la couche de décision, et soit elle délivre des informations d’avertissement

visuelles, acoustiques et/ou même des vibrations au conducteur, soit elle fournit des

actions automatiques comme le freinage.

A.1.1 ADAS : Challenges et Opportunités

La conception, le développement et le déploiement d’ADAS présentent plusieurs défis.

Le système devrait être rapide dans le traitement des données, prédire avec précision le

contexte et réagir en temps réel. En outre, il est requis d’être robuste, fiable, et avoir des

taux d’erreur faible. Les ADAS utilisent beaucoup de données rapportées par plusieurs

capteurs. Ces données doivent être mises à jour régulièrement pour transmettre l’état

actuel de l’environnement. Ainsi, ces applications doivent être gérées par des systèmes

de bases de données en temps réel afin de stocker et de manipuler efficacement les don-

nées en temps réel. Cependant, la conception d’ADAS est très complexe; il est difficile

de modéliser les contraintes de temps liées à la fois aux données et aux transactions. Des

efforts et des recherches considérables ont été déployés pour résoudre tous ces problèmes

et développer la technologie qui fera des ADAS et de la conduite autonome une réalité.

A.2 Problématique

Le rôle de la vision par ordinateur dans la compréhension et l’analyse d’une scène

routière est primordial pour construire des systèmes d’aide à la conduite (ADAS) plus

intelligents. Cependant, le développement et l’implémentation de ces applications dans

un réel environnement automobile et loin d’être simple. En effet, le portage de ces

applications a entraîné d’importants défis scientifiques à relever qui étaient derrière la

naissance de ce travail de recherche.

L’étude de l’état de l’art montre que la majorité des algorithmes utilisés dans les

applications d’aide à la conduite sont développés et implémentés sur des PC standards.

Lorsque ces algorithmes sont portés sur des systèmes embarqués, leurs performances se

dégradent et parfois, le portage n’est plus possible. En effet, il y a plusieurs exigences et
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contraintes à prendre en compte notamment la performance de calcul. Il y a un grand

écart entre ce qui est testé sur un PC standard et ce qui finalement s’exécute dans la

plateforme embarquée. De plus, il n’y a pas de matériel et de logiciel standard pour une

application spécifique. Ainsi, différentes architectures et outils de programmation ont

été proposés par l’industrie et la communauté scientifique qui s’avèrent être pas assez

matures pour répondre aux besoins des ADAS sans fournir un effort supplémentaire.

A.3 Motivations

Les algorithmes de traitement d’images nécessitent une haute performance de calcul en

plus d’une précision algorithmique pour faire face à l’évolution importante de la réso-

lution d’images ainsi que la fréquence de capture dans les capteurs. Pour répondre à

ces exigences, de nouvelles architectures hétérogènes sont apparues. Elles sont com-

posées de plusieurs unités de traitement avec différentes technologies de calcul parallèle:

multi-core, GPU, SIMD, accélérateurs dédiés, etc. Au niveau de la programmation,

pour mieux bénéficier et exploiter les performances de ces architectures, différents lan-

gages et outils sont nécessaires en fonction du modèle d’exécution parallèle. Toutes

ces fonctionnalités rendent la tâche d’embarquer les algorithmes de traitement d’images

cruciale et contraignante.

A.4 Approche et Objectives

Dans cette thèse, nous étudions diverses méthodologies et modèles de programmation

parallèle d’algorithmes de traitement d’images embarqués. nous utilisons une étude de

cas complexe basée sur la stéréo-vision développée au cours de cette thèse. Nous présen-

tons les caractéristiques et les limites pertinentes de chaque approche. Nous évaluons

ensuite les outils de programmation utilisés principalement en matière de performances

de calcul et de difficulté de programmation. Le retour de ce travail de recherche est cru-

cial pour le développement de futurs algorithmes de traitement d’images en adéquation

avec les architectures parallèles avec un meilleur compromis entre les performances de

calcul, la précision algorithmique et le temps de développement.
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A.4.1 Cas d’usage

Dans ce travail, nous proposons d’abord un algorithme de détection de véhicules basé

sur la vision stéréo [17]. L’algorithme est basé sur la segmentation de la carte de

disparité et la classification d’objets. Il est à noter que cet algorithme n’a pas été

développé pour concurrencer ou donner de meilleures performances par rapport aux

travaux existants dans la littérature. Il a été plutôt développé pour être utilisé comme

un cas d’utilisation pour nos expériences sur l’intégration d’algorithmes de vision par

ordinateur. Cet algorithme a deux caractéristiques importantes:

1. Calcul haute performance Pour cibler les défis discutés précédemment, nous devons

disposer d’un algorithme gourmand en terme de puissance de calcul et qui doit

être traité en temps réel dans les systèmes embarqués. Pour cette raison, nous

avons choisi la vision stéréoscopique comme système de perception. La mise en

correspondance est ensuite effectuée pour générer une carte de disparité. La mise

en correspondance dans la stéréo vision est l’un des problèmes les plus étudiés

en vision par ordinateur. Pendant des décennies, de nombreux algorithmes de

mise en correspondance ont été proposés avec de nouvelles améliorations à la fois

en termes de précision d’appariement et d’efficacité des algorithmes. La plupart

des travaux proposés tendent à être contradictoires dans les résultats rapportés:

des méthodes d’appariement stéréo précises prennent habituellement beaucoup de

temps. Pour cette raison, nous avons choisi d’inclure la correspondance stéréo

dans notre application ADAS.

2. Traitements à spécifications diverses : Lors de la parallélisation d’algorithmes de

traitement d’image, les optimisations peuvent différer d’un traitement à l’autre.

Cette différence provient des spécifications de chaque traitement. Par spécifi-

cations, nous entendons par exemple le pattern d’accès aux données, le flux de

données, les dépendances des données, etc. Chaque fonctionnalité nécessite une

optimisation spécifique. Nous avons développé l’algorithme de manière à avoir

une variété de traitements avec des caractéristiques différentes. Cela nous permet

d’effectuer différentes expériences et de tester plusieurs optimisations.
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A.4.2 Architectures

Une fois l’algorithme développé et validé, nous passons au cœur de cette thèse. Nous

commençons le processus d’intégration de l’algorithme. Nous ciblons différentes archi-

tectures disponibles sur le marché et nous utilisons différents modèles et langages de

programmation parallèle. Nous avons sélectionné des systèmes multi-core (basés sur

CPU) et des plateformes NVIDIA; Jetson k1 et Tegra X1 (basé sur GPU). Le choix

est basé sur deux critères importants. Tout d’abord, nous avons sélectionné les plate-

formes les plus disponibles et les plus utilisées dans l’industrie automobile de nos jours,

telles que les plateformes de chez NVIDIA. Deuxièmement, nous nous concentrons sur

la stabilité et la performance du matériel d’une part et sur la maturité du logiciel

correspondant d’autre part. Pour chaque architecture employée, nous présentons ses

caractéristiques pertinentes, puis nous décrivons leurs effets sur l’algorithme appliqué

et les approches de parallélisation.

A.4.3 Langages de Programmation Parallèle

L’objectif principal de ce travail est d’étudier certains modèles/outils de programma-

tion parallèle en prenant en considération différents aspects pour fournir les avantages

et les limites de chaque outil employé. Nous avons sélectionné les outils en fonction

d’un ensemble de caractéristiques et de critères. (1) Nous avons pris des langages de

programmation de bas niveau tels que CUDA ainsi que des techniques de haut niveau

telles que les outils basés sur des directives (OpenMP, OpenACC). (2) Au niveau de la

portabilité, comme nous ciblons des architectures hétérogènes, nous avons sélectionné

des outils compatibles avec une ou plusieurs unités de traitement telles que les CPU

et les GPU. (3) Concernant le niveau d’optimisation, nous avons sélectionné les deux

axes, niveau kernel et niveau système. Pour rappel, par optimisations au niveau kernel,

nous entendons toutes les optimisations que nous appliquons sur les kernel/fonctions

de notre programme. Dans ce cas, nous utilisons généralement des langages parallèles

traditionnels. Dans ce travail, nous avons travaillé avec les instructions SIMD, les out-

ils basés sur des directives (OpenMP, OpenACC) et le langage de programmation CUDA.

Avec les optimisations niveau système, nous visons à optimiser l’algorithme dans son

ensemble. Ceci est effectué en se concentrant par exemple sur les transferts de données

et les allocations, la bande passante mémoire. Pour ce cas, nous avons sélectionné le
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framework OpenVX. En tant que quatrième et dernière caractéristique (4), nous nous

concentrons sur les efforts de programmation. Certains outils nécessitent une réécriture

du code pour que la version optimisée soit exécutée en parallèle. Cela arrive avec CUDA

par exemple. D’autres outils nécessitent moins de réécriture de code et s’appuient sur

les compilateurs pour générer le code parallèle tel que OpenMP et OpenACC. Nous avons

également utilisé un EDSL appelé NT2 qui permet la génération du code pour certaines

optimisations spécifiques telles que la vectorisation avec SIMD avec un coût de réécriture

minimal.

A.5 Résultats

Il convient de noter qu’une étape importante avant de commencer la parallélisation

consiste à analyser l’algorithme pour vérifier s’il répond à certaines caractéristiques im-

portantes de la programmation parallèle, telles que les calculs répétitifs denses et les

accès mémoire réguliers. Dans notre algorithme, nous avons fait quelques adaptations

importantes au niveau algorithmique avant de paralléliser l’algorithme pour des résul-

tats meilleurs et plus efficaces. Ce processus est ce que nous appelons habituellement

Adéquation-Algorithme-Architecture (AAA). Par exemple, les systèmes embar-

qués ont des capacités de mémoire faibles et même des caches plus petits, il est donc

crucial de garantir des accès mémoire contigus pour bénéficier des mémoires cache.

En tant que deuxième résultat important, il est crucial d’optimiser le code à dif-

férents niveaux pour atteindre la performance requise. Par exemple, nous pouvons

appliquer la vectorisation (SIMD) aux opérations (boucles) internes tout en parallélisant

globalement l’opération externe avec une autre approche telle que OpenMP. En d’autres

termes, un mélange de modèles de programmation parallèles à différents niveaux algo-

rithmiques est nécessaire pour des performances maximales.

Le tableau A.1 illustre l’évaluation des langages et outils de programmation paral-

lèles employés dans ce travail. L’évaluation est faite en termes de:

• La portabilité La possibilité d’utiliser l’outil sur différentes architectures.

• La portabilité multi-plateformes Le fait d’exécuter le même code sur dif-

férentes architectures sans réécrire le code
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Table A.1: Evaluation d’Outils de Programmation Parallèle

Outil de

Programmation
Portabilité

Portabilité

multi-plateformes
Performance

Efforts de

Programmation

OpenMP CPUs, GPUs CPUs, GPUs *** **** ****

OpenACC CPUs,GPUs CPUs, GPUs *** **** ****

CUDA NVIDIA GPUs NVIDIA GPUs * **** **

NT2 CPUs,GPUs CPUs, GPUs *** ** *

SIMD CPUs CPUs* **** **

Boost.SIMD CPUs SSE, AVX, Altivec, Neon**** **** **

OpenVX CPUs,GPUs CPUs, GPUs *** ** *

• La performance Dans ce travail, nous utilisons le temps d’exécution obtenu

comme mesure de performance.

• Les Efforts de programmation Deux fonctionnalités sont prises en compte: (1)

le temps passé à maîtriser l’outil et à réécrire le code, (2) les difficultés rencontrées

lors de l’optimisations de code.

Les résultats obtenus et les évaluations montrent que les approches basées sur des di-

rectives telles que OpenMP et OpenACC peuvent rivaliser avec les outils de haut niveau

comme CUDA au niveau de la performance tout en demandant moins d’effort au niveau

de la programmation. Sachant que CUDA nécessite une réécriture du code, le développeur

doit maîtriser l’outil avec les différents aspects pour atteindre les performances requises.

Cependant, certains aspects importants ne sont pas encore couverts par les outils basés

sur des directives. Par exemple, avoir accès à la mémoire partagée n’est pas possible

avec OpenACC tandis que CUDA permet au développeur d’utiliser cette mémoire pour

des accès mémoire plus rapides. En outre, le processus d’optimisation avec CUDA est

progressif. Le développeur doit tester différentes optimisations à plusieurs niveaux. Il

convient de noter que les outils basés sur des directives ne donnent pas toujours de

bonnes performances car l’optimisation est faite par le compilateur qui peut échouer

avec des algorithmes complexes et une dépendance de données élevée.

NT2 offre également une grande portabilité et une portabilité multi-plateforme im-

portante. Cependant, comme indiqué dans la tableau A.1, les performances obtenues

sont loin de celles attendues. L’outil n’est pas encore mature pour optimiser les fonc-

tions complexes avec des dépendances de données élevées. En outre, il nécessite plus
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d’efforts de programmation pour maîtriser l’outil et trouver les expressions parallèles

requises.

Les résultats de la vectorisation avec SIMD et boost.SIMD donnent des résultats

importants en termes de performance et d’efforts de programmation. Alors que la

réécriture du code est nécessaire à travers les intrinsèques, le temps passé et les dif-

ficultés rencontrées sont beaucoup plus faibles par rapport à CUDA. Cependant, il est

à noter que dans ce travail, la vectorisation avec SIMD ou boost.SIMD est seulement

appliquée à la fonction du coût SAD tandis que CUDA est appliqué à l’ensemble de la

fonction de correspondance. Au niveau de la portabilité, avec SIMD, nous avons utilisé

les instructions correspondantes à chaque architecture comme SSE sur les processeurs

Intel et NEON sur les processeurs ARM. Cependant, avec boost.SIMD, aucune réécriture

du code n’est requise et offre donc une meilleure portabilité multi-plateformes.

L’étude des optimisations niveau système avec OpenVX a révélé plusieurs résultats.

Le résultat le plus important concerne la possibilité d’intégrer des kernels optimisés

avec d’autres outils dans OpenVX. Nous avons réussi à intégrer et accélérer nos kernels

dans OpenVX avec différents outils parallèles tels que OpenMP et boost.SIMD. L’une des

contributions de ce travail c’est de proposer une approche pour cibler à la fois les

optimisations niveau kernel et niveau système. Nous avons également réussi à exécuter

les kernels optimisés sur différentes architectures sans aucun coût de réécriture grâce

à boost.SIMD. Nous avons étudié certaines optimisations proposées telles que la fusion

de kernels et le tiling de données. Les résultats montrent qu’il y a encore du travail à

faire pour obtenir de meilleurs résultats principalement avec le tiling.

A.6 Contributions et Conclusions

Le portage d’applications ADAS –basées sur la vision– sur des plateformes embarqués a

soulevé d’importants défis scientifiques qui étaient à l’origine de la naissance de ce tra-

vail de recherche. Les ADAS basés sur la vision nécessitent un calcul haute performance

en temps réel. Cela a conduit à la conception et au développement de nouvelles archi-

tectures et d’outils de programmation parallèle. Le matériel et les logiciels proposés ont

des caractéristiques différentes. Ce travail de recherche aborde le défi des méthodologies

et modèles de programmation parallèle d’applications ADAS basées sur la vision sur des

architectures parallèles et embarquées. La contribution principale de ce travail est de

183



A.6 Contributions et Conclusions

fournir un retour pour le développement de futures applications de traitement d’image

en adéquation avec les architectures parallèles avec un meilleur compromis entre les per-

formances de calcul, la précision algorithmiques et les efforts de programmation. Nous

avons évalué différents outils de programmation parallèle de différents aspects et nous

avons fourni les contributions ainsi que les limites de chaque outil.

Pour résumer, paralléliser des algorithmes basés sur la vision et les porter sur des

architectures embarqués n’est pas une tâche triviale. Bien que différents outils parallèles

et diverses architectures haute performance soient disponibles, le processus de la par-

allélisation n’est toujours pas simple. C’est pourquoi il est important d’étudier les dif-

férents outils parallèles disponibles pour fournir un retour aux futurs développeurs afin

de mieux choisir le modèle de programmation parallèle en adéquation avec le matériel

et les applications.
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