
HAL Id: tel-02062174
https://theses.hal.science/tel-02062174v1

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automation of legal reasoning and decision based on
ontologies

Mirna El Ghosh

To cite this version:
Mirna El Ghosh. Automation of legal reasoning and decision based on ontologies. Web. Normandie
Université, 2018. English. �NNT : 2018NORMIR16�. �tel-02062174�

https://theses.hal.science/tel-02062174v1
https://hal.archives-ouvertes.fr

THESE

Pour obtenir le diplôme de doctorat

Spécialité INFORMATIQUE

Préparée au sein de « INSA de ROUEN »

AUTOMATISATION DU RAISONNEMENT ET DECISION JURIDIQUES

BASÉS SUR LES ONTOLOGIES

Présentée et soutenue par

Mirna El Ghosh

Thèse dirigée par Habib ABDULRAB, INSA du Rouen, laboratoire LITIS et Mohamad KHALIL,

Université Libanaise, Faculté de génie.

Thèse soutenue publiquement le (24 septembre 2018)

devant le jury composé de

M. Enrico FRANCESCONI
Prof / Chercheur / TTIG-CNR, the Legal Information Institute of

the National Research Council of Italy
Rapporteur

Mme Zahia GUESSOUM MCF / HDR / Laboratoire d’Informatique de Paris 6 (LIP6) Rapporteur

Mme Maroua BOUZID
Prof / Professeur / Université de Caen-Basse Normandie,
Membre du GREYC UMR6072

Examinateur

Mme Cecilia ZANNI-MERK Prof / Professeur / INSA de ROUEN, LITIS Examinateur

M. Habib ABDULRAB Prof / Professeur / INSA de ROUEN, LITIS Directeur de thèse

M. Mohamad KHALIL Prof / Professeur / Université Libanaise, Faculté de Génie Codirecteur de thèse

Mme Hala NAJA Prof / Professeur / Université Libanaise, Faculté des Sciences Co-encadrante de thèse

To Julie

Acknowledgements

First, I gratefully acknowledge INSA de Rouen and LITIS laboratory for making it
possible for me to carryout my research.

My deepest gratitude goes to my thesis supervisor prof. Habib ABDULRAB for
his invaluable advice, constant support and trust in me and without whom this
work would never have been done. He provided me with many useful comments
and suggestions for the preparation of this thesis. He also deserves my gratitude
for providing me the opportunities to attend several conferences, workshops and
meetings that have widen my research network.

I extend my gratitude to my thesis co-supervisor prof. Hala NAJA for her insightful
guidance, continuous effort and for her repeated reading of the work and offering
comments that have led to many improvements over the years. I am grateful too
for my thesis second co-supervisor prof. Mohamad KHALIL for his continuous
support and encouragement during my research work.

Besides my supervisors, I would like to thank the rest of my thesis committee: prof.
Enrico FRANCESCONI, prof. Zahia GUESSOUM, prof. Maroua BOUZID and
prof. Cecilia ZANNI-MERK, for their insightful comments and encouragement, but
also for the hard question which incented me to widen my research from various
perspectives. In particular, I am grateful for the reporters of this PhD for accepting
the extra amount of work, for examining my PhD thesis and providing many
helpful suggestions.

Finally, i would like to thank my family: my husband, my parents, my sisters and
brothers for supporting me spiritually throughout my thesis and my life.

This work has been supported by the project CLASSE2 (Corridors Logistiques, Ap-
plication à la Vallée de la Seine et à Son Environnement), CNRS Lebanon, Lebanese
university and LaseR.

Computer Science is no more about computers than
astronomy is about telescopes. - EW Dijkstra, 1970

Abstract

This thesis analyses the problem of building well-founded domain ontologies for
reasoning and decision support purposes. Specifically, it discusses the building of
legal ontologies for rule-based reasoning.

In fact, building well-founded legal domain ontologies is considered as a difficult
and complex process due to the complexity of the legal domain and the lack of
methodologies. For this purpose, a novel middle-out approach called MIROCL is
proposed. MIROCL tends to enhance the building process of well-founded domain
ontologies by incorporating several support processes such as reuse, modulariza-
tion, integration and learning.

MIROCL is a novel modular middle-out approach for building well-founded
domain ontologies. By applying the modularization process, a multi-layered
modular architecture of the ontology is outlined. Thus, the intended ontology
will be composed of four modules located at different abstraction levels. These
modules are, from the most abstract to the most specific, UOM(Upper Ontology
Module), COM(Core Ontology Module), DOM(Domain Ontology Module) and
DSOM(Domain-Specific Ontology Module).

The middle-out strategy is composed of two complementary strategies: top-down
and bottom-up. The top-down tends to apply ODCM (Ontology-Driven Conceptual
Modeling) and ontology reuse starting from the most abstract categories for build-
ing UOM and COM. Meanwhile, the bottom-up starts from textual resources, by
applying ontology learning process, in order to extract the most specific categories
for building DOM and DSOM. After building the different modules, an integration
process is performed for composing the whole ontology.

The MIROCL approach is applied in the criminal domain for modeling legal norms.
A well-founded legal domain ontology called CriMOnto (Criminal Modular Ontol-
ogy) is obtained. Therefore, CriMOnto has been used for modeling the procedural
aspect of the legal norms by the integration with a logic rule language (SWRL). Fi-
nally, an hybrid approach is applied for building a rule-based system called CORBS.
This system is grounded on CriMOnto and the set of formalized rules.

5

Contents

List of Figures 10

List of Tables 15

1 Introduction 16
1.1 Overview . 17
1.2 Thesis Context . 17

1.2.1 Interest of AI in Law . 17
1.2.2 Artificial Intelligence and Law 18
1.2.3 Legal Knowledge Based Systems (LKBS) 19
1.2.4 Role of Ontologies in the Automation of Legal Reasoning . . 20
1.2.5 The Semantic Web and Law . 21

1.3 Problem Statement . 22
1.3.1 Difficulty and Complexity of Well-founded Ontology Build-

ing Process . 22
1.3.2 Lack of Definition of Rule-based Legal Reasoning Models

based on Domain Ontologies 23
1.4 Limitations of Existent Approaches . 23
1.5 Thesis Objectives . 24
1.6 Thesis Contributions . 25
1.7 Structure of the Thesis . 27

2 Background 28
2.1 Overview . 28
2.2 Ontology Engineering . 29

2.2.1 Ontologies . 29
2.2.1.1 From Philosophy to AI 29
2.2.1.2 Conceptualization and Ontologies 30
2.2.1.3 Definitions of Ontologies 33
2.2.1.4 Classifications of Ontologies 34
2.2.1.5 Criteria of Ontologies 36
2.2.1.6 Components of Ontologies 37

2.2.2 Foundational Ontologies . 39
2.2.2.1 The Unified Foundational Ontology UFO 39

6 Contents

2.2.3 Ontologies in the legal Domain 46
2.2.3.1 The Functional Ontology of Law (FOLaw) 47
2.2.3.2 LRI-Core . 48
2.2.3.3 Ontology of Criminal Law (OCL.NL) 50
2.2.3.4 LKIF-Core . 50
2.2.3.5 DALOS Domain Ontology 53
2.2.3.6 Ontology of Professional Judicial Knowledge (OPJK) 56
2.2.3.7 UFO-L . 58

2.2.4 Roles and Uses of Legal Ontologies 59
2.2.5 Ontology Engineering Methodologies 60

2.2.5.1 Uschold and colleagues 61
2.2.5.2 CommonKADS . 63
2.2.5.3 Methontology . 64
2.2.5.4 Ontology Development 101 65
2.2.5.5 ON-TO-KNOWLEDGE Methodology (OTKM) . . . 66
2.2.5.6 SABiO: Systematic Approach for Building Ontologies 68

2.2.6 Ontology Engineering Tools and Environments 70
2.2.7 Ontology Languages and Formalisms 73

2.2.7.1 RDF . 74
2.2.7.2 RDF Schema . 75
2.2.7.3 OWL . 75
2.2.7.4 OWL 2 . 76
2.2.7.5 Description Logics (DL) 76

2.2.8 Ontology Engineering Support Processes 78
2.2.8.1 Ontology Learning 79
2.2.8.2 Ontology Reuse . 90
2.2.8.3 Ontology Modularization 93
2.2.8.4 Ontology Evaluation 95

2.3 Knowledge Engineering . 98
2.3.1 Modeling Principles in Knowledge Engineering 99
2.3.2 Knowledge Engineering Approaches 101

2.3.2.1 CommonKADS . 101
2.3.2.2 MIKE . 103
2.3.2.3 PROTÉGÉ-II . 103

2.3.3 Legal Knowledge Engineering Approaches 104
2.3.3.1 Rule-Based Approach 104
2.3.3.2 Model-Based Approach 105

2.4 Legal Rule-Based Systems . 108
2.4.1 Evaluation of Rule-Based Systems 108
2.4.2 Methods of Reasoning in Rule-Based Systems 109

2.4.2.1 Forward Chaining . 110
2.4.2.2 Backward Chaining 110

Contents 7

2.4.3 Existent Rules Interchange Languages 111
2.4.3.1 RuleML . 111
2.4.3.2 SBVR . 111
2.4.3.3 SWRL . 112
2.4.3.4 RIF . 113
2.4.3.5 LKIF . 113
2.4.3.6 LegalRuleML . 114

2.5 Conclusion . 115

3 MIROCL: A Modular Middle-Out Collaborative Approach for Building
Well-Founded Domain Ontologies 117
3.1 Overview . 118
3.2 Problems Facing Ontology Building Process 118
3.3 Well-founded Domain Ontologies . 119

3.3.1 Ontology-Driven Conceptual Modeling 120
3.3.2 ONTOUML: Conceptual Modeling via UFO 121

3.4 Middle-out Ontology Engineering . 123
3.5 Collaborative Ontology Engineering 125
3.6 Data Heterogeneity . 126

3.6.1 Ontology-based Approaches for Resolving Data Heterogeneity127
3.7 MIROCL Motivations . 130

3.7.1 Heterogeneity of Data sources in MIROCL 130
3.7.2 Ontology Modularization in MIROCL 132
3.7.3 Ontology Reuse in MIROCL 134

3.7.3.1 Ontology Reuse for Building Ontology Modules . . 135
3.7.3.2 Ontology Reuse for Grounding Ontologies 136

3.7.4 Ontology Learning from Textual Resource in MIROCL 137
3.7.5 Ontology Integration in MIROCL 139

3.8 MIROCL Aspects . 142
3.8.1 Middle-out Aspect of MIROCL 142
3.8.2 Collaborative Aspect of MIROCL 143

3.9 Life-Cycle of MIROCL . 145
3.10 Conclusion . 147

4 CriMOnto: A Criminal Ontology for Modeling Legal Norms 149
4.1 Overview . 150
4.2 Modeling Legal Norms . 150
4.3 Approaches for Modeling Legal Norms 152
4.4 Ontology-based Approach for Modeling Legal Norms 154
4.5 Phase1: Advantages of Using MIROCL for Modeling the Content of

Legal Norms . 156
4.6 Phase1: The Building Process of CriMOnto 157

8 Contents

4.6.1 Identification of Data sources in CriMOnto 157
4.6.1.1 Textual Resources in CriMOnto 157
4.6.1.2 Existent Validated Ontologies in CriMOnto 159

4.6.2 Building of Ontology Modules in CriMOnto 159
4.6.2.1 Top-down: ODCM and Reuse 160
4.6.2.2 Bottom-up: Ontology Learning Process 160

4.6.3 The modules of CriMOnto . 166
4.6.3.1 Upper Ontology Module (UOM) 166
4.6.3.2 Core Ontology Module (COM) 174
4.6.3.3 Domain Ontology Module (DOM) 179
4.6.3.4 Domain-specific Ontology Module 181

4.6.4 Integration of CriMOnto Modules 181
4.6.4.1 Example of Upper and Core modules mapping . . . 182
4.6.4.2 Example of Core and Domain modules mapping . . 182
4.6.4.3 Example of Domain and Domain-specific modules

mapping . 183
4.6.5 CriMOnto Evaluation . 184

4.7 Similar Works . 184
4.7.1 Discussion . 187

4.8 Conclusion . 188

5 Modeling and Formalizing the Procedural Aspect of Legal Norms 190
5.1 Overview . 191
5.2 Ontology-Based Approach for Modeling and Formalizing Legal Norms191

5.2.1 Integration of Rules and Ontologies 193
5.2.2 Formalizing Legal Rules . 195

5.2.2.1 Selection of a Rule Language for Modeling Legal
Norms . 196

5.2.2.2 Rule Reasoners for SWRL 199
5.3 Case Study: Modeling and Formalizing the Legal Norms of the

Lebanese Criminal Code . 201
5.3.1 Application of the Ontology-based Approach using Protégé . 201

5.4 Similar Works . 212
5.5 Conclusion . 213

6 CORBS: Rule-Based System Grounded on CriMOnto 215
6.1 Overview . 216
6.2 CORBS . 216

6.2.1 Hybrid Approach for Building CORBS 217
6.2.2 Reasoning Model of CORBS . 218

6.2.2.1 User Interface . 219
6.2.2.2 Knowledge Base . 219

Contents 9

6.2.2.3 Inference Engine . 221
6.2.3 Tasks of CORBS . 222
6.2.4 Implementation of CORBS . 222

6.2.4.1 Loading CriMOnto 225
6.2.4.2 Semantic Search and Queries Executing 226
6.2.4.3 Rules Executing . 229

6.3 Similar Works . 230
6.3.1 COMUS: Context-Based Music Recommendation Ontology

for Rule-Based Reasoning . 230
6.3.2 Emotiono: Ontology for Rule-Based Reasoning for Emotion

Recognition . 231
6.3.2.1 Rule-Based Reasoning in Emotiono 232

6.4 Conclusion . 233

7 Conclusion 234
7.1 Thesis Overview . 235
7.2 Future Directions . 235

10

List of Figures

1.1 Ashley’s illustration of computational model of legal reasoning (Ash-
ley et al., 2001). 19

2.1 Conceptualization (Guarino, 1998). 31
2.2 Relations between conceptualization, Model, Modeling Language

and Specification (Guizzardi, 2005). 31
2.3 Relations between a material domain conceptualization, domain on-

tology, general meta-conceptualization, and ontology representation
language (Guizzardi, 2005). 32

2.4 Ullmann’s Triangle (Guizzardi, 2005). 32
2.5 Example of ontology classification according to the level of generality

(Guarino, 1998). 35
2.6 Ontology of Universals (Guizzardi, 2005). 40
2.7 Ontology of Universals (Guizzardi et al., 2012). 40
2.8 Two partitions of the same Kind Person: a subkind partition (Man,

Woman) and a phase partition (Child, Adolescent, Adult) (Guizzardi,
2005). 41

2.9 A Fragment of a Foundational Ontology of Endurants (UFO-A) (Guiz-
zardi et al., 2008a). 42

2.10 A Fragment of a Foundational Ontology of Perdurants (UFO-B)
(Guizzardi et al., 2008a). 43

2.11 Complex Events as Sums of Object’s Participations (Guizzardi et al.,
2013a). 43

2.12 A Fragment of a Foundational Ontology of Social Entities (UFO-C)
(Guizzardi et al., 2008a). 44

2.13 Agents, objects, and normative descriptions (Nardi et al., 2016). . . . 44
2.14 Actions, mental moments, and social moments (Nardi et al., 2016). . 46
2.15 The Functional Ontology of Law FOLaw (Valente, 1995). 47
2.16 LRI-Core (Breuker et al., 2004c). 49
2.17 Concept anchoring in OCL.NL/LRI-Core (Breuker et al., 2002). . . . 50
2.18 The modules of LKIF-Core. 51
2.19 DALOS knowledge organization (Francesconi et al., 2008). 54
2.20 Excerpt of the DALOS Consumer Protection Ontology (Francesconi

et al., 2008). 55

List of Figures 11

2.21 Excerpt of the DALOS Consumer Protection Ontology (Agnoloni
et al., 2011). 55

2.22 Contexts and regulated situations (Francesconi et al., 2008). 56
2.23 Excerpt of OPJK v 1.0 in Protégé (Casellas, 2008a). 57
2.24 UFO-L pattern for right-duty relations (Griffo et al., 2016). 58
2.25 Survey about methodologies used to develop ontologies (Cardoso,

2007). 61
2.26 Uschold and King’s methodology (Uschold et al., 1995). 63
2.27 The Methontology methodology (Corcho et al., 2005). 64
2.28 Tasks of the conceptualization activity according to METHONTOL-

OGY (Corcho et al., 2005). 65
2.29 The methodological process of OTKM (Sure et al., 2003). 68
2.30 Ontology engineering process of SABiO (Falbo, 2014). 69
2.31 The languages stack in the Semantic Web (Corcho et al., 2003). 74
2.32 W3C Semantic Web stack. 74
2.33 Ontology Learning process. 80
2.34 Ontology learning from text, layer cake (Buitelaar et al., 2005a). . . . 81
2.35 Bachimont’s Ontology learning approach (Bachimont et al., 2002). . . 85
2.36 Ontology learning process steps (Sabou et al., 2005). 86
2.37 Ontology learning process steps (Maedche et al., 2001). 87
2.38 Architecture of Text2Onto (Biebow et al., 1999). 88
2.39 Architecture of Text2Onto (Cimiano et al., 2005b). 89
2.40 T2K. 90
2.41 The different components of knowledge models (Heijst et al., 1997). . 100
2.42 A schematic overview of how modern knowledge engineering ap-

proaches view the knowledge engineering process. (Heijst et al.,
1997). 101

2.43 CommonKADS models (Schreiber et al., 2000). 102
2.44 MIKE development process (Angele et al., 1998) 103
2.45 Model-based approach (Valente et al., 1992). 106

3.1 Conceptual modeling language founded on UFO. 120
3.2 A Subset of OntoUML Stereotypes (Nardi et al., 2016). 121
3.3 Some OntoUML Stereotypes (Teixeira et al., 2014). 122
3.4 Example of OntoUML Diagram (Guerson et al., 2015). 123
3.5 From stand-alone ontology to collaborative ontology (Tudorache,

2007). 125
3.6 The three possible ways for using ontologies for resolving semantic

heterogeneity (Wache et al., 2001) . 128
3.7 Contributors for the selection of heterogeneous data sources. 131
3.8 Ontology modularization in MIROCL. 133
3.9 Reusing upper and core ontologies: top-down strategy. 135

12 List of Figures

3.10 Simple reuse process from UFO. 136
3.11 Representing core concepts in UFO. 137
3.12 The main phases of ontology learning phase. 138
3.13 Ontology learning from text: bottom-up strategy. 139
3.14 Example of Ontology modules integration. 142
3.15 Middle-out approach for building ontology modules. 143
3.16 Collaboration of various contributors. 144
3.17 The life-cycle of MIROCL. 146

4.1 A bi-phased ontology-based approach for modeling legal norms. . . 155
4.2 Excerpt of the Lebanese criminal code. 158
4.3 Ontology learning process using Text2Onto. 162
4.4 Pre-processing phase in Text2Onto. 163
4.5 The re-engineering process (Gomez-Perez et al., 1999). 166
4.6 Conceptual modeling process of the Upper Ontology Module (UOM).166
4.7 The concept Substance represented using OntoUML. 167
4.8 The concept Substance represented in Protégé. 168
4.9 The concept Event represented using OntoUML. 169
4.10 The concept Event represented in Protégé. 169
4.11 The concept Situation represented using OntoUML. 170
4.12 The concept Agent represented using OntoUML. 171
4.13 The concept Agent represented in Protégé. 171
4.14 The concept Communicating_Agent represented in Protégé. 172
4.15 The concept Action_Contribution represented in Protégé. 172
4.16 The concept Intention in OntoUML. 173
4.17 The concept Intention in Protégé. 173
4.18 Metrics of the Upper ontology module. 174
4.19 Conceptual modeling process of the core module. 174
4.20 The concept Medium. 175
4.21 The concept Legal_Source. 176
4.22 Representing he concept Code in OntoUML. 176
4.23 The concept Code in Protégé. 177
4.24 The concept Expression. 177
4.25 The concept Process in LIKF-Core. 178
4.26 The concept Legal_Event. 178
4.27 The concept Legal_Role. 178
4.28 The concept (Professional_Legal_Role). 179
4.29 Criminal_Act in Protégé. 179
4.30 Intentional_Felony in Protégé. 180
4.31 Penalty in Protégé. 180
4.32 Punishment in Protégé. 181
4.33 Instances of Article 196 of the Lebanese criminal code. 181

List of Figures 13

4.34 Example of Upper and Core modules mapping using OWL:imports

formalism in Protégé. 182
4.35 Example of Upper and Core modules mapping using OWL:imports

formalism in Protégé. 182
4.36 Example of Core and Domain modules mapping using OWL imports

in Protégé. 183
4.37 Example of Domain and Domain-specific modules mapping using

OWL imports in Protégé. 183

5.1 The second phase of the ontology-based approach for modeling legal
norms. 192

5.2 Levels of the legal semantic web (Biasiotti et al., 2008; Sartor, 2009). . 193
5.3 Homogeneous integration of rules and ontologies. 194
5.4 Hybrid integration of rules and ontologies. 194
5.5 Example of complement classes. 198
5.6 The class Accomplice in Protégé. 202
5.7 The object property is_punishable_by in Protégé. 202
5.8 The class Offence in Protégé. 203
5.9 Article 213 using CriMOnto and SWRL in Protégé. 203
5.10 The class Political_Motive in Protégé. 204
5.11 Article 196 using SWRL and CriMOnto in Protégé. 205
5.12 The class Homicide of CriMOnto in Protégé. 206
5.13 The class Offender of CriMOnto in Protégé. 206
5.14 The class Felony_Penalty of CriMOnto in Protégé. 207
5.15 Data properties for the class Sentence_Fixed_Term in Protégé. 207
5.16 Inferring Article 547 using CriMOnto and SWRL in Protégé. 208
5.17 Inferring Article 547 using CriMOnto and SWRL in Protégé. 208
5.18 The class Instigator in Protégé. 209
5.19 Article 218 using CriMOnto and SWRL in Protégé. 210
5.20 The class Intentional_Act in Protégé. 211
5.21 Article 550 using SWRL in Protégé. 212
5.22 Article 550 using SWRL in Protégé. 212

6.1 Architecture of CORBS combining ontologies with rules. 216
6.2 Hybrid approach for building CORBS. 218
6.3 Reasoning Model of CORBS. 219
6.4 The criminal domain ontology CriMOnto. 220
6.5 Handling ontologies in Jena. 223
6.6 A UML diagram showing the management of ontologies in the OWL

API (Horridge et al., 2011). 224
6.7 Example of querying ontologies (sub-classes). 227
6.8 SPARQL-DL querying. 227

14 List of Figures

6.9 Example of querying CriMOnto using SPARQL-DL. 229
6.10 User-defined context reasoning rules (Rho et al., 2009). 230
6.11 A prototype for COMUS (Rho et al., 2009). 231
6.12 Excerpt of Emotiono Ontology (Zhang et al., 2011). 232
6.13 Emotiono Reasoning (Zhang et al., 2011). 233

15

List of Tables

2.1 A summary of Ontology definitions. 34
2.2 A summary of Legal ontologies . 59
2.3 A summary of Ontology development methodologies. 70
2.4 A comparison of Ontology engineering systems. 73
2.5 A summary of Ontology learning tools. 90
2.6 A summary of Knowledge engineering approaches 104

3.1 A comparison of collaborative engineering methodologies. 126
3.2 A comparison of Ontology-based approaches for resolving semantic

heterogeneity . 129

4.1 List of experimented tools. 161
4.2 Excerpt of the concepts extracted using Text2Onto. 163
4.3 Excerpt of the taxonomies extracted Text2Onto. 164
4.4 Excerpt of the relations extracted Text2Onto. 164
4.5 Excerpt of the disjoint axioms extracted Text2Onto. 165
4.6 Ontologies for modeling legal norms. 188

5.1 Comparison of rule reasoners that support SWRL. 200

6.1 A comparison of OWL API and Jena framework. 225
6.2 Supported query patterns in SPARQL-DL. 228

16

Chapter 1

Introduction

Contents
1.1 Overview . 17

1.2 Thesis Context . 17

1.2.1 Interest of AI in Law . 17

1.2.2 Artificial Intelligence and Law 18

1.2.3 Legal Knowledge Based Systems (LKBS) 19

1.2.4 Role of Ontologies in the Automation of Legal Reasoning 20

1.2.5 The Semantic Web and Law 21

1.3 Problem Statement . 22

1.3.1 Difficulty and Complexity of Well-founded Ontology
Building Process . 22

1.3.2 Lack of Definition of Rule-based Legal Reasoning Models
based on Domain Ontologies 23

1.4 Limitations of Existent Approaches 23

1.5 Thesis Objectives . 24

1.6 Thesis Contributions . 25

1.7 Structure of the Thesis . 27

1.1. Overview 17

1.1 Overview

This thesis is the result of a research work into legal knowledge conceptualization,
representation and reasoning. More precisely, developing well-founded domain
ontologies for building (rule-based) legal reasoning models.

A lesson learned over decades of research designing rule-based legal reasoning systems is the
need for an ontology to organize the concepts and manage their interactions (Ashley, 2011).
Accordingly, this thesis attempts to answer the question: “For building rule-based
legal reasoning systems, what kinds of ontologies should be used and what kinds
of methodologies are available for building them?”.

For answering the question, the thesis discusses mainly the legal ontologies as a type
of knowledge representation and formalization of legal knowledge and explores the
issues related to the ontology engineering domain such as knowledge extraction,
modeling methodologies and tools for the construction of well-founded ontologies.
Additionally, the thesis addresses the role of well-founded legal ontologies for
building rule-based legal reasoning models in order to perform decision support
purposes.

Thus the work arises from two strands of research: (1) the research into legal ontolo-
gies and (2) the research into legal reasoning models. Therefore, the intersection
of these two strands permits the development of legal knowledge-based systems
(LKBS) that perform legal reasoning grounded on legal domain ontologies.

This chapter provides the general research lines and technical aspects of the thesis.

1.2 Thesis Context

1.2.1 Interest of AI in Law

The interest from the AI community for the formalization of legal information
and knowledge for computer processing is not thus recent (Casellas, 2008a). Since
the 1970s there is a great amount of interest in the development of legal expert
systems around the world (Greenleaf, 1989). Legal expert systems, also called
“Legal Knowledge Based Systems (LKBS)” (Susskind, 1986), are considered as
attempts to develop programs aiming to solve legal problems. This because the law
is considered as an attractive domain for AI research since much legal knowledge
is readily accessible and relatively well structured, codified and indexed (Gardner,
1987). Moreover, Law is a system of readily understood rules with procedures for
interpreting these rules. These skills are of interest to computer science researchers
wishing to examine the way in which humans think, in order to replicate some
features of human reasoning (Zeleznikow et al., 1992).

18 Chapter 1. Introduction

Although, the International Association for Artificial Intelligence and Law (IAAIL)
was founded on 1987 and the first meeting of the ICAIL conference took place in
Boston on that same year and the Foundation for Legal Knowledge Based Systems
(JURIX) has held annual international conferences on legal knowledge and infor-
mation systems since 1988 (Casellas, 2008a). This, in turn, led to the foundation of
the Artificial Intelligence and Law Journal, first published in 1992. Moreover, since
2007 the JURISIN workshops have been held in Japan under the auspices of the
Japanese Society for Artificial Intelligence.

Since the 1990s, the development of formalizations of domain conceptualizations,
(so-called ontologies), became popular in AI following the work of Gruber (Gruber,
1993) (Gruber, 1995). Early examples in AI and Law include Valente’s functional
ontology (Valente et al., 1994b) and the frame-based ontology of Visser and van
Kralingen (Van Kralingen, 1995), (Visser, 1995). Legal ontologies have since become
the subject of regular workshops at AI and Law conferences.

1.2.2 Artificial Intelligence and Law

AI & Law is a subfield of AI research that focuses on designing computer programs,
or computational models, that perform or simulate legal reasoning. In other words,
AI & Law is the field of modeling computationally the legal reasoning for the
purpose of building tools to assist in legal practice (Ashley et al., 2001). Therefore,
the development of such computational models of legal reasoning can actually be
used for problem-solving systems called legal expert systems or legal knowledge-
based systems (LKBS).

The field of AI & Law has always had two distinct motivations: practical and
theoretical. The practical side is for building intelligent legal information systems
that can assist users in their interactions with legal rules. Meanwhile, the theoretical
side is for understanding the process of legal reasoning and legal argumentation
using computational models and techniques (McCarthy, 1980).

Thus, this domain is called Computational Law (Love et al., 2005) which is an inter-
disciplinary research field that addresses both the use of strategies for the repre-
sentation of legal knowledge, as the possibilities for creating automated reasoning
systems.

According to Ashley’s studies (Ashley et al., 2001), computational models of legal
reasoning can be described in terms of the inputs to the program, its outputs and the
intervening steps that transform the former into the latter. Thus, they are comprised
of a knowledge representation and an inference mechanism (see Figure 1.1).

The knowledge representation aims to capture some important aspects of legal
knowledge, as inputs, and to represent it formally in a conceptual hierarchy in

1.2. Thesis Context 19

order to be used by computer systems. These techniques has become a primary
goal of expert systems research (Gruner, 1986). Such “Knowledge engineering” has
been successfully undertaken in a number of fields to produce expert systems that
perform a variety of important tasks. Knowledge engineering was also the source
for the growing interest in the development and use of legal ontologies (Valente,
1995) aiming to improve information retrieval of legal sources (Benjamins et al.,
2005a) and to bridge the gap between text and knowledge (Buitelaar et al., 2007).

Meanwhile, the inference mechanisms are algorithms that enable a program to
use those input elements of legal knowledge that are represented in order to solve
problems (Ashley et al., 2001). For instance, the inference mechanism may take
a problem situation and compare it to other cases, draw inferences about how
that problem should be decided, and generate arguments, as outputs, using the
information in the computational model.

FIGURE 1.1: Ashley’s illustration of computational model of legal
reasoning (Ashley et al., 2001).

1.2.3 Legal Knowledge Based Systems (LKBS)

Legal professionals, such as judges and lawyers, dedicate a significant amount of
their time to finding, reading, analyzing and synthesizing information in order
to take decisions, and prepare advice and trials, among other tasks (Benjamins
et al., 2005b). For this purpose, developing legal AI systems can support legal
professionals in fulfilling their tasks.

20 Chapter 1. Introduction

Generally, legal AI systems are categorized in legal retrieval and legal analysis
systems (Popple, 1990). The legal analysis systems can be judgment machines or
legal expert systems, known as Legal Knowledge Based System (LKBS), which are
decision support systems.

Rather than aiming at the impossible dream (or nightmare) of building judgment
machines, or automatic judges, AI research has aimed at developing LKBS which
are practical tools to support judicial activities as well as new analytical tools for
understanding and modeling judicial decision-making (Sartor et al., 1998).

Any LKBS must be capable of legal reasoning (Popple, 1990). Thus, the system must
be based upon a model of legal reasoning by describing the norms that operate
within the legal system (Popple, 1996). Legal reasoning, applied earlier in various
approaches for decision making purposes, describes how legal expert system takes
legal decisions with the help of rules (Valente et al., 1991). Accordingly, legal
reasoning is considered as a rule-guided activity, where most part of it consists of
applying legal rules to interpretations of cases (Gardner, 1987), (Breuker, 1990). This
kind of reasoning is called rule-based reasoning performed by rule-based expert
systems where the reasoning process is based on a set of if-then rule statements
(Dove, 1996a), used to describe certain patterns of the giving domain such as
legal norms, and a process called inference. Inference is the process of deriving
conclusions from premises (Zeleznikow et al., 1992).

1.2.4 Role of Ontologies in the Automation of Legal Reasoning

Ontologies provide reusable pieces of declarative knowledge, which can be together
with problem-solving methods and reasoning functionality assembled into high-
quality technology and application systems in an economical fashion (Neches et al.,
1991a) (Guarino, 1998).

In the 1990s, research interest in large scale formalizations and reuse of legal knowl-
edge shifted to ontologies (Bench-Capon et al., 2012). The importance of an onto-
logical approach in the legal domain is introduced first by the work of Valente and
Breuker, and later stressed by Bench-Capon and Visser (Bench-Capon et al., 1997),
(Bench-Capon et al., 1987) with regard to information management in general and
for the legal domain in particular.

In later years, ontologies introduced to AI & Law in works such as (Ven et al., 2008)
and (Bench-Capon et al., 1997) have been widely used for modeling, comparing
and harmonizing legal knowledge. For instance, the work of (Ven et al., 2008),
where ontologies are used for building legal expert systems and for reasoning with
description logics.

1.2. Thesis Context 21

In this regard, the work of Sartor (Sartor, 2006) is considered as an essential reference
for legal knowledge modeling for his contribution to the characterization of legal
concepts by providing a formal model of their structure and a logical framework
able to deal with the specificity of legal reasoning.

In this context, it is noticeable that the Semantic Web technologies are used earlier
for modeling legal knowledge and resources with the work of Boer, van Engers and
Winkels’s (Boer et al., 2003) paving the way to succeeding works on legal knowledge
modeling and acquisition within the same legal Semantic Web framework.

1.2.5 The Semantic Web and Law

The Semantic Web is one of the most important application areas of ontologies (Sim-
perl et al., 2013). In this context, the knowledge components, that is, the ontologies,
are formalized using Web-suitable, semantically unambiguous representation lan-
guages such as Resource Description Framework (RDF) Schema and Web Ontology
Language (OWL) and are pervasively accessible and shared across the Web.

The Semantic Web intends to enable machines to understand -to some extent- what
is in the Web; not only to improve human communication, but in particular to dele-
gate more and more “intelligent” tasks to machines. The Semantic Web technology
had an important role in the legal domain (Benjamins et al., 2005a). It enables access-
ing of Web resources by semantic content rather than by keywords, involving the
automation of service discovery, acquisition, composition and monitoring (Davies
et al., 2004).

The legal domain has several characteristics that make it an interesting application
for Semantic Web technology (Benjamins et al., 2005a). For instance, the notion
of information retrieval as document retrieval is not always sufficient in the legal
domain. Often a particular question requires some deduction or inference before an
appropriate answer can be given. In order words, ’question-answering’ seems more
relevant than ’information retrieval’, as regulations may contain many different ar-
ticles about the same topic and one can only assess whether something is permitted
or not by understanding the full documentation. A rather detailed understanding
is required, in particular, because regulations generally contain complex structures
of exceptions (Benjamins et al., 2005a).

Legal professionals, be they judges or lawyers, handle information in order to take
decisions. As such they are vulnerable to the Information Overload phenomenon.
Moreover, increasingly more non-legal professionals have to deal with the Law
due to increasing regulations in for example environmental protection and public
security in buildings (Benjamins et al., 2005a).

Legal Semantic Web technologies typically involve two types of applications:

22 Chapter 1. Introduction

• Applications in internal corporate settings: CLIME (Boer et al., 2001), e-
COURT (information management of criminal court cases (Breuker et al., n.d.)
and E-POWER (drafting tax law (Boer et al., 2002b)).

• Applications with public information on the Internet such as JurWordNet
(Sagri et al., 2004).

1.3 Problem Statement

This thesis addresses two main problems: (1) difficulty and complexity of building
well-founded legal domain ontologies and (2) lack of definition of rule-based legal
reasoning models based on domain ontologies for decision support purposes.

1.3.1 Difficulty and Complexity of Well-founded Ontology Building
Process

In fact the problem of the difficulty and complexity of building well-founded ontolo-
gies is divided into two main sub-problems: (1) the complexity of the legal domain
and (2) the lack of methodologies for building well-founded domain ontologies.

1. The complexity of the legal domain: any ontology building process should
include the complexity of the relationship between ontology and corpus
since the complexity attached to ontologies is mirroring the complexity of the
application field (Mazzega et al., 2011). In the legal domain, legal conceptual
knowledge is closely related to the use of language (Francesconi et al., 2008).
The written text is the most widely used way of communicating legal matters
(Lame, 2005). Meanwhile, the implicit knowledge of the natural language is
one of the main obstacles to progress in the field of artificial intelligence and
law (McCarty, 2007).

The complexity of legal knowledge is seen from two different perspectives.
First, because the language used in legal documents is too complex. Legal
rules and standards are written, for the most part, in ordinary language. The
language implemented in the writing of the rules and standards contain ambi-
guities, either by accident or intent (Dove, 1996a). Specifically the problem of
open texture property, or in other words, incomplete definition of many legal
concepts of the law that is originally addressed by Gardner (Gardner, 1987).
For instance, ’reasonable’ and ’intentional’ are examples of vague concepts
that are intentionally or unintentionally arguable in meaning and cannot be
modeled in a way analogous to human thinking. What constitutes reasonable
behavior will vary from time to time, place to place and person to person
(Dove, 1996a). For the other perspective, the legal complexity is defined in

1.4. Limitations of Existent Approaches 23

terms of the amount of information that must be collected and processed in
order for lawyers or judges to evaluate a case and litigation to proceed (White,
1992).

2. The lack of methodology for building well-founded domain ontologies: well-
founded domain ontologies must be represented with the support of a founda-
tional theory not just building them from scratch. Such an approach has still
not been broadly adopted (Zamborlini et al., 2008). One of the key problems
the ontology engineering community has to face is that most ontologies are
built from scratch-rather than reusing existing ones-leading to high engineer-
ing efforts and costs (Hartmann et al., 2009). Generally, Building ontologies
from scratch is not an easy task. It is considered as a resource-intensive, time
consuming and costly task. This is due to the difficulty and complexity of cap-
turing knowledge from legal sources which are mainly unstructured textual
documents such as legislations and codes. Additionally, this strategy will not
lead to well-founded domain ontologies.

1.3.2 Lack of Definition of Rule-based Legal Reasoning Models based
on Domain Ontologies

For decision support purposes, there is a need for building legal reasoning models
aiming to resolve giving legal problems. The second problem addressed in this
thesis is the lack in defining reasoning models, specifically rule-based, grounded
on legal domain ontologies. In other words, there is a need for a methodology that
defines the process of building rule-based reasoning models by integrating domain
ontologies.

1.4 Limitations of Existent Approaches

Two main limitations are addressed in the existent approaches: (1) limitation in
knowledge acquisition and modeling and (2) limitation in knowledge sharing and
reasoning.

1. Limitation in knowledge acquisition and modeling: the fundamental assump-
tion for building any expert or knowledge-based system is “Knowledge is
Power” (Buchanan et al., 1982). The point is the richer the knowledge-base
of a system the higher performance of problem-solving capabilities. Thus,
it is now widely recognized that building ontologies is an essential step in
the development of knowledge-based systems. Meanwhile, there is lacking
in a clear understanding of how to build ontologies. However, there exists a
growing number of methodologies that specifically address the issue of the
development of ontologies, either from scratch or by reusing existent ones,

24 Chapter 1. Introduction

such as (Uschold et al., 1995), (Swartout et al., 1997), and (Gruninger et al.,
1995) . These methodologies have focused on core ontology development
activities such as: requirements analysis, conceptualization, implementation,
evaluation and maintenance.

A second generation of methodologies, such as Methontology (Corcho et al.,
2005) and OnToKnowledge (Sure et al., 2003) shifted this focus towards a
more iterative engineering process in which application-specific requirements
are seen as an integral part of the requirements analysis activity.

Actually, by studying these methodologies, we found that most of the ap-
proaches focus on building ontologies from scratch due to several reasons
(Hartmann et al., 2009). First, ontologies are usually tailored to work for
specific applications, restricting its potential reusability. Second, developers
usually follow a monolithic approach when developing ontologies, usually
covering different domains, restricting the reusability of relevant parts for
other applications. Therefore, most of the existing developed domain ontolo-
gies are not well-founded. Additionally, there is no focus on the participatory
approach in the ontology engineering process. Meanwhile, such approach
can effectively simplify and enrich the ontology building process specifically
for complex domains such as the legal domain. In fact, there is a need for a
truly collaborative effort carried out by different contributors, domain experts
and ontology engineers, handling heterogeneous data sources for building
well-founded and rich domain ontologies (Simperl et al., 2013).

2. Limitation in knowledge sharing and reasoning: in the literature, most of the
legal ontologies are not built for reasoning purposes such as the works of
(Hoekstra et al., 2007), (Breuker et al., 2002), and (Casellas, 2008b). In the other
hand, some other ontologies are built for legal reasoning and specifically case-
based reasoning such as (Henderson et al., 2001), (Zeng et al., 2005), (Wyner,
2008) and (Ashley, 2011). However, developing ontologies for rule-based
reasoning is missing.

1.5 Thesis Objectives

The overall objective of the thesis is to build a well-founded legal domain ontology
for a rule-based reasoning model.

The concrete objectives of the research are categorized into two main categories:
(1)Knowledge acquisition and modeling; (2)Knowledge sharing and reasoning.

1. Knowledge acquisition and modeling: To capture knowledge from several
data sources, considered as heterogeneous sources, starting from scratch

1.6. Thesis Contributions 25

(documents of the domain application), existent validated foundational on-
tologies, and domain experts and turn it into machine processable form. In
this category, this thesis aims to:

• propose a novel approach in order to simplify the complexity of building
well-founded domain ontologies.

• apply the proposed approach in order to develop a well-founded legal
domain ontology for modeling the legal norms of the legal domain. This
includes a deep analysis for the legal norms with the support of legal
experts.

• enable the procedural aspect of the legal norms to be expressed through
the legal domain ontology for building rule-based reasoning model. This
requires the application of a modeling process based on a rule language
and the legal domain ontology for building a set of logical formal rules.

2. Knowledge sharing and reasoning: To combine semantically enriched infor-
mation with context to provide actionable meaning, applying inferencing and
reasoning for decision support. In this category, this thesis aims to:

• enable the execution of rules combined with the instances of the legal
domain by using inferential mechanisms for reaching new conclusions.

• develop rule-based reasoning model grounded on the integration of the
logical rules and the legal domain ontology.

1.6 Thesis Contributions

As aforementioned, this thesis aimed at fulfilling the main requirements for building
a well-founded legal domain ontology for legal decision support purposes. The
primary contribution of this research is the exploration of a novel solution to
the complex problem of building well-founded domain ontologies for reasoning
purposes. Although, this research has produced several other contributions. The
main contributions are the following:

• The design of MIROCL: a modular middle-out collaborative approach that
supports the following features:

– Collaborative ontology building process handling heterogeneous data
sources as a foundation for decentralized and iterative approach for
developing the target ontology. Thus ontology building is performed in
a collaborative workspace involving at least a computer scientist and an
expert of the (legal) domain. The expert has the theoretical and practical

26 Chapter 1. Introduction

knowledge of the field and the computer scientist brings methods and
tools to represent it.

– Ontology modularization that divides the target ontology into indepen-
dent ontology modules serving in simplifying the ontology building
process.

– Ontology-driven conceptual modeling process, as a top-down strategy,
that supports the development of well-founded ontologies by reusing
existent validated foundational ontologies and using an ontologically
well-founded conceptual modeling language (OntoUML).

– Ontology learning process, as a bottom-up strategy, that extracts semi-
automatically semantic objects from textual resources with the support
of NLP techniques.

– Ontology integration that merges the independent developed ontologies
into one global ontology.

• The development of a well-founded modular legal domain ontology, named
CriMOnto, by applying the MIROCL approach. The purpose of CriMOnto is
to model the legal norms of the legal domain, specifically the criminal domain,
in order to support rule-based legal decision support purposes. CriMOnto
covers the criminal domain by connecting multiple complementary levels of
granularity.

• The procedural aspect of the legal norms is expressed through the integra-
tion of the legal domain ontology and a logic rule language by applying an
ontology-based modeling approach. For the current work, the ontology-based
approach is monotonic where the SWRL rule language is selected for formal-
izing the legal rules. This approach suffers from some limitations specially
in modeling complex rules and negation as failure. For future works, it is
recommended to apply a non-monotonic approach where logic programming
formalisms are applied.

• The design and implementation of a rule-based reasoning model for a decision
support system named CORBS grounded on the integration of the legal
domain ontology and set of logic rules. For the implementation, the Java-
based frameworks such as Jena Semantic Web or libraries such as OWL API
can be used.

The reader is invited to note that although the above contributions are made in the
context of the legal domain, they can be applied to general ontology applications.

1.7. Structure of the Thesis 27

1.7 Structure of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 provides a general overview of the background of the thesis mainly
ontology and knowledge engineering domains. We discuss the ontologies, their
definitions, classifications, criteria and components. Furthermore, a series of related
studies including the legal ontologies, their role and uses, the ontology engineering
methodologies, tools, environments, languages and formalisms are discussed. Then,
we discuss the existent approaches in the literature concerning the knowledge
engineering in general and in the legal domain as well.

Chapter 3 introduces a novel modular middle-out approach for building well-
founded domain ontologies named MIROCL. The Phases of the approach are
defined where top-down and bottom-up strategies are applied in a complementary
fashion using a diversity of ontology engineering support processes including
ontology modularization, reuse, learning and integration.

Chapter 4 discusses the application of MIROCL in the legal domain for developing
well-founded legal domain ontology named CriMOnto. The aim of CriMOnto is
modeling the content of the legal norms. The Lebanese criminal system is selected
as a case study for this work, specifically the Lebanese criminal code.

Chapter 5 works on modeling and formalizing the procedural aspect of the legal
norms based on the developed legal domain ontology. A modeling approach as
well as a rule language are defined for this purpose.

Chapter 6 describes CORBS, a rule-based legal knowledge based system which is
grounded on the integration of the developed legal domain ontology (CriMOnto)
and the formalized legal rules. This chapter outlines as well the implementation of
this system using Java-based Semantic Web libraries.

Chapter 7 summarizes the thesis, draws conclusions and discusses the future work.

28

Chapter 2

Background

Contents
2.1 Overview . 28

2.2 Ontology Engineering . 29

2.2.1 Ontologies . 29

2.2.2 Foundational Ontologies 39

2.2.3 Ontologies in the legal Domain 46

2.2.4 Roles and Uses of Legal Ontologies 59

2.2.5 Ontology Engineering Methodologies 60

2.2.6 Ontology Engineering Tools and Environments 70

2.2.7 Ontology Languages and Formalisms 73

2.2.8 Ontology Engineering Support Processes 78

2.3 Knowledge Engineering . 98

2.3.1 Modeling Principles in Knowledge Engineering 99

2.3.2 Knowledge Engineering Approaches 101

2.3.3 Legal Knowledge Engineering Approaches 104

2.4 Legal Rule-Based Systems . 108

2.4.1 Evaluation of Rule-Based Systems 108

2.4.2 Methods of Reasoning in Rule-Based Systems 109

2.4.3 Existent Rules Interchange Languages 111

2.5 Conclusion . 115

2.1 Overview

This chapter introduces the background research of the thesis needed for the de-
velopment of formal legal ontologies and their use for reasoning support purposes
in legal knowledge-based systems. Thus, the most important related fields are
Ontology Engineering (OE) for developing legal ontologies and legal Knowledge

2.2. Ontology Engineering 29

Engineering (KE) for building legal knowledge-based systems (LKBS). We start
by introducing the ontology engineering domain (section 2.2) and discussing the
ontologies (section 2.2.1), their definitions (section 2.2.1.3), classifications (section
2.2.1.4), design criteria (section 2.2.1.5) and components (section 2.2.1.6). Therefore,
an overview about foundational ontologies (section 2.2.2) and legal ontologies
(section 2.2.3) and their roles are outlined (section 2.2.4). Moreover, we discuss the
available methodologies (section 2.2.5), tools (section 2.2.6) and formalisms (section
2.2.7) for developing ontologies as well as some basic ontology engineering support
processes (section 2.2.8). Furthermore, the knowledge engineering field is explored
(section 2.3) and the available approaches in the legal domain for building knowl-
edge based systems are presented (section 2.3.3). In (section 2.4), the rule-based
systems are outlined, their evaluation, methods of reasoning and the existents rule
interchange languages. Finally, the conclusion (section 2.5) concludes the chapter.

2.2 Ontology Engineering

The ultimate purpose of Ontology Engineering as declared by (Mizoguchi et al.,
1997) is: “To provide a basis of building models of all things in which computer science
is interested”. Ontology Engineering refers to the set of activities that concern
the ontology development process, the ontology life cycle and methodologies for
building ontologies, and the tools and languages that support them (Gomez-Perez
et al., 2004). More generally, the ontology engineering is considered as the task of
designing, implementing and maintaining ontology-based applications (Euzenat
et al., 2007).

In this section, we will overview the term ontology starting from philosophy to
the domains of AI and semantic web, ontology definitions, classifications, design
criteria and components. Additionally, we will outline the foundational ontologies
and the ontologies in the legal domain. The ontology engineering methodologies,
tools, languages are discussed as well.

2.2.1 Ontologies

2.2.1.1 From Philosophy to AI

The term ontology is borrowed from philosophy where an ontology is a systematic
account of Existence (Gruber, 1993). Ontology or Ontologia is composed of two greek
words: ontos(be, exist) and logos(study, science), which means the study of what
exists, The science of what is. Ontology is introduced by the german philosopher Jacob
Lorhard in 1606 in his Ogdoas Scholastica, and then used by Johannes Clauberg in 1646,
the disciple of Descartes, in his Elementa philosophiae sive Ontosophia. In this work,

30 Chapter 2. Background

Clauberg considered the ontology as a branch of metaphysics that studies the kinds
and structures of objects, properties, events, processes and relations in every area of
reality (Savini, 2011).

In the Artificial Intelligence domain, it was John McCarthy who first recognized the
overlap between work done in philosophical ontology and the activity of building
the logical theories of AI systems. McCarthy affirmed already in 1980 that builders
of logic-based intelligent systems must first “list everything that exists, building an
ontology of our world” (McCarthy, 1980).

Most AI efforts focused on capturing information about the world that is compatible
with the perspective of human common sense, and these efforts were closely allied
with research on the topic of common-sense reasoning (Ernest, 1990). A similar
perspective, but with broader ambitions and with an even more explicit recognition
of an overlap with philosophy, was proposed by John Sowa, who refers to an
ontology for a possible world a catalog of everything that makes up that world, how it’s put
together, and how it works (Sowa, 1984).

Finally, the lessons drawn from information systems are resumed in that ontology
can support the efforts of those philosophers who have concerned themselves not
only with the development of ontological theories, but also in a field sometimes
called Applied ontology (Koepsell, 1999) - with the application of such theories in
domains such as law (Koepsell, 2003), or commerce (Grassl, 1999), or medicine
(Schubert, 2001).

2.2.1.2 Conceptualization and Ontologies

The notion of conceptualization has been defined in (Genesereth et al., 1987) as: an
abstract, simplified view of the world that we wish to represent for some purpose. Every
knowledge base, knowledge-based system, or knowledge-level agent is committed to some
conceptualization, explicitly or implicitly .

Uschold (Uschold, 1996), considered that a conceptualization may be implicit or
explicit. The implicit conceptualization exists only in someone’s head or embodied
in a piece of software.

Meanwhile, the explicit conceptualization is usually called an ontology. Further-
more, Guarino (Guarino, 1998) considered the conceptualization as the result of
a complex abstraction process from multiple presentation experiences. Guarino
defined formally the conceptualization as an ontological commitment (see Figure
2.1):

2.2. Ontology Engineering 31

FIGURE 2.1: Conceptualization (Guarino, 1998).

According to Guizzardi, conceptualization of reality is represented by a conceptual
model (Guizzardi et al., 2008b). Conceptualizations and Models are abstract entities
that only exist in the mind of the user or a community of users of a language.
In order to be documented, communicated and analyzed they must be captured,
i.e. represented in terms of some concrete artifact. This implies that a language
is necessary for representing them in a concise, complete and unambiguous way
(Guizzardi, 2005).

The relation between a model and its representation, and their relationship with
the conceptualization and representation language is depicted in figure 2.2. The
representation of a model in terms of a representation language L is called a model
specification and the language L used for its creation is called a modeling (or
specification) language.

FIGURE 2.2: Relations between conceptualization, Model, Modeling
Language and Specification (Guizzardi, 2005).

32 Chapter 2. Background

In this context, a domain ontology is considered as a special type of conceptual
model specification (Guizzardi et al., 2008b) and an ontology representation lan-
guage as a special type of general conceptual modeling language (see Figure 2.3).

FIGURE 2.3: Relations between a material domain conceptualization,
domain ontology, general meta-conceptualization, and ontology

representation language (Guizzardi, 2005).

This idea is elaborated from the well known Ullmann’s triangle depicted in figure
2.4 that represents the relation between a language, a conceptualization and the
portion of reality that this conceptualization abstracts.

FIGURE 2.4: Ullmann’s Triangle (Guizzardi, 2005).

2.2. Ontology Engineering 33

2.2.1.3 Definitions of Ontologies

In the Artificial Intelligence field, Neches and his colleagues (Neches et al., 1991b)
were the first who defined the term ontology as follows: An ontology defines the
basic terms and relations comprising the vocabulary of a topic area as well as the rules for
combining terms and relations to define extensions to the vocabulary. This definition is
considered as an attempt to explain how to proceed in building an ontology by
giving general vague guidelines (Gomez-Perez, 1999). By 1993, Tom Gruber defined
the ontology as An explicit specification of a conceptualization (Gruber, 1993) (Gruber,
1995). This definition become the most widely famous and cited one. This definition
is based on two main concepts: conceptualization and specification.

• Conceptualization: an abstract, simplified view of the world aimed to be
represented for some purpose. Every knowledge base, knowledge-based
system, or knowledge-level agent is committed to some conceptualization,
explicitly or implicitly (Genesereth et al., 1987).

• Specification: the formalization or non-ambiguous formal description of the
conceptualization.

The term explicit used in the definition means that the ontology concepts and axioms
should be represented clearly and precisely.

Furthermore, various authors defined ontologies based on the Gruber’s definition,
such as Borst and Studder. In 1997, Borst added two new concepts to the Gruber’s
definition (formal and shared) and defined the ontology as a formal specification of
shared conceptualization (Borst, 1997). In 1998, Studer combined both definitions in
one: an ontology is a formal, explicit specification of a shared conceptualization (Studer
et al., 1998). According to (Guarino et al., 2009), adding shared to the definition of
ontologies is essential in order to make them supporting large-scale interoperability
and to be well-founded in the sense that the basic primitives they are built on
are sufficiently well-chosen and axiomatized to be generally understood. Guarino
defined the ontology in the simplest way as an ontology describes a hierarchy of concepts
related by subsumption relationships; in more sophisticated cases, suitable axioms are added
in order to express other relationships between concepts and to constrain their intended
interpretation (Guarino, 1998).

For Swartout and his colleagues, an ontology is a hierarchically structured set of terms
for describing a domain that can be used as a skeletal foundation for a knowledge base
(Swartout et al., 1997).

34 Chapter 2. Background

Author Year Definition

Gruber 1993 An explicit specification of a conceptualization
Borst 1997 a formal specification of shared conceptualiza-

tion
Swartout 1997 hierarchically structured set of terms for describ-

ing a domain that can be used as a skeletal foun-
dation for a knowledge base

Studer 1998 a formal, explicit specification of a shared con-
ceptualization

Guarino 1998 describes a hierarchy of concepts related by sub-
sumption relationships; in more sophisticated
cases, suitable axioms are added in order to ex-
press other relationships between concepts and
to constrain their intended interpretation

TABLE 2.1: A summary of Ontology definitions.

We conclude that the literature provides a diversity of definitions of the term
ontology giving different and complementary points of view of the same reality.
Meanwhile, the Gruber’s definition is the most widely used and commonly known
in the studies of the field.

2.2.1.4 Classifications of Ontologies

In the literature, there is a diversity of strategies for ontology classifications pre-
sented in different studies such as: (Schreiber et al., 1993), (Heijst, 1995), (Heijst
et al., 1997), (Mizoguchi et al., 1995), (Uschold et al., 1995), (Borst, 1997), (Guarino,
1997) and (Studer et al., 1998).

These classifications of ontologies have been established based on different dimen-
sions: the purpose, the level of formality, the level of generality, the complexity, the
subject-matter, etc. The most known classification is the one proposed by Guarino
(see Figure 2.5). Meanwhile, most of the researchers agree that it is useful to distin-
guish between different generality levels of ontologies. Based on this, ontologies can
be classified in four main categories: Domain, Generic (upper or core ontologies),
Application and Representation.

2.2. Ontology Engineering 35

FIGURE 2.5: Example of ontology classification according to the
level of generality (Guarino, 1998).

The ontologies of such classification tend to capture static knowledge in a problem-
solving independent way. However, Knowledge Engineering is also concerned
with problem-solving knowledge, therefore another useful types of ontologies are
so-called method and task ontologies are needed (Studer et al., 1998).

In order to resume and to present the most recent analysis of ontology classification,
we will refer to a study provided by Gomez-Perez and Fernandez-Lopez (Gomez-
Perez, 1999), (Gomez-Perez et al., 2003a). According to them, the most commonly
types of ontologies according to their subject of conceptualization are:

• Knowledge representation ontologies: capture the representation primitives
used to formalize knowledge in Knowledge representation paradigms.

• General or common ontologies: represent common sense knowledge that is
reusable across domains.

• Top-level or upper-level ontologies: describe very general concepts and pro-
vide general notions under which all root terms in existing ontologies should
be linked.

• Linguistic ontologies: describe semantic constructs rather than model specific
domains.

• Domain ontologies: provide vocabularies about concepts and their relation-
ships within a domain and the activities that take place in it.

• Task ontologies: describe the vocabulary related to a generic task or activity
by specializing the terms in the top ontologies, providing a vocabulary to
solve problems associated with tasks that may or may not belong to the same
domain.

36 Chapter 2. Background

• Domain-task ontologies: task ontologies reusable in a given domain, but not
across domains (application-independent).

• Method ontologies: give definitions of the relevant concepts and relations
applied to specify a reasoning process so as to achieve a particular task.

• Application ontologies: application-dependent and contain all the defini-
tions needed to model the knowledge required for a particular application
(specialize the vocabulary of task and domain ontologies for the envisioned
application).

2.2.1.5 Criteria of Ontologies

In this section, we summarize some design criteria of ontologies suggested in the
literature. In 1993, Gruber (Gruber, 1993) proposed a set of criteria for the design of
ontologies based on a claim that “in order to guide and evaluate our designs, we
need objective criteria that are founded on the purpose of the resulting artifact”.
The proposed criteria are: clarity, coherence, extendibility, minimal encoding bias
and minimal ontological commitment. Later in 1996, Uschold and his colleagues
(Uschold et al., 1996) defined the same general criteria based on Gruber in order
to help building ontologies: clarity, consistency and coherence, and extensibility
and reusability. Furthermore, Gomez-Perez provided list of criteria “that have
been proved useful for ontology development” (Gomez-Perez, 1999). This list is
established based on the previous authors and other contributions.

• Clarity and objectivity (Gruber, 1993): “the ontology should provide the
meaning of defined terms by providing objective definitions and also natural
language documentation”;

• Completeness (Gruber, 1993): “a definition expressed by a necessary and
sufficient conditions is preferred over a partial definition (defined only by a
necessary or sufficient condition)”;

• Coherence (Gruber, 1993): “to permit inferences that are consistent with the
definitions”;

• Maximum monotonic extendibility (Gruber, 1993): “new general or special-
ized terms should be included in the ontology in such a way that is does not
require the revision of existing definitions”;

• Minimal ontological commitments (Gruber, 1993): “making as few claims
as possible about the world being modeled, which means that the ontology
should specify as little as possible about the meaning of its terms, giving the
parties committed to the ontology freedom to specialize and instantiate the
ontology as required”;

2.2. Ontology Engineering 37

• Ontological Distinction Principle (Borgo et al., 1996): “classes in an ontology
must be disjoint”;

• Diversification of hierarchies to increase the power provided by multiple
inheritance mechanisms (Arpirez et al., 1998): “if enough knowledge is repre-
sented in the ontology and as many different classification criteria as possible
are used, it is easier to enter new concepts and to inherit properties from
different points of view”;

• Modularity (Bernaras et al., 1996): “to minimize coupling between modules”;

• Minimization of the semantic distance between sibling concepts (Arpirez
et al., 1998): “Similar concepts are grouped and represented as subclasses of
one class and should be defined using the same primitives, whereas concepts
which are less similar are represented further apart in the hierarchy”;

• Standardization of names whenever is possible (Arpirez et al., 1998).

2.2.1.6 Components of Ontologies

According to authors such as Gruber (Gruber, 1993), knowledge in ontologies are
formalized using five main kinds of components: concepts, relations, functions,
axioms and instances. For (Gomez-Perez, 1999), classes in ontologies are usually or-
ganized in taxonomies. Sometimes, taxonomies are considered to be full ontologies
(Studer et al., 1998). Gomez-Perez established the list of components as defined by
Gruber (Gomez-Perez, 1999).

• Concepts: “can be abstract or concrete, elementary or composite, real or
fictitious. A concept can be anything about anything about which something is
said and therefore, could also could also be the description of a task, function,
action, strategy, reasoning process, etc”;

• Relations: “represent a type of interaction between concepts of the domain.
They are formally defined as any subset of a product of n sets, that is: R :
C1xC2x...xCn. Examples of binary relations subclass-of and connected-to ”;

• Functions: “special case of relations in which the n-th element of the relation-
ship is unique for the n-1 preceding elements. Formally, functions are defined
as : F: C1xC2x...xCn-1 =⇒ Cn. Examples of functions are Mother-of and
square”;

• Axioms: “are used to model sentences that are always true”;

• Instances: “are used to represent elements”.

Recent studies such as (Mizoguchi, 2004) and (Guarino et al., 2009) consider that in
order to build expressive ontologies, hierarchically organized concepts, axiomatic

38 Chapter 2. Background

definition of concepts and relations are necessary. From this perspective, the main
components of an expressive ontology O are identified. A formal ontology is
represented mainly by 6-tuple (Guarino et al., 2009): O = (C, P, H, R, I, A), Where:

C = CC ∪ CI , where: C is the set of entities or concepts of the ontology. CC is the
classes set, i.e. concepts that represent entities.

Example: Person ∈ CC.

CI is a class instances set.

Example: Erik Brown ∈ CI

P = propC (ck, datatype) | ck ∈ CC P is the set of properties of ontology entities,
where the relationship propC defines the basic datatype of a class property.

Example: subject (Case, String).

H = kind_of (c1, c2) | c1 ∈ CC, c22 ∈ CC, where c11 is a subclass of c2. H is the set of
taxonomic relationships between concepts. These relationships define a concept
hierarchy and are denoted by "kind_of (c1, c2) ".

Example: kind_of(Lawyer, Person).

R = relk (c1, c2,..., cn) | ∀ i, ci ∈ CC R is the set of non-taxonomic ontology relation-
ships.

Example: represents (Lawyer, Client).

I = is_a (c1,c2) | c1 ∈ CI , c2 ∈ CC ∪ propI (ck,value) | ck ∈ CI ∪ relk(c1,c2,..., cn) |
∀ i, ci ∈ CI I is the set of instance relationships related to the CC , P and R sets.

Example: CC: is_a (Anne Smith, Client) R: represents (Erik Brown, Anne Smith) P:
subject (Case12, "adoption")

A= conditionx =⇒ conclusiony (c1,c2,..., cn) | ∀ j, cj ∈ CC

conditionx = (cond1,cond2,...,condn) | ∀ z, condz ∈ H ∪ I ∪ R.

A is a set of axioms, rules that allow checking the consistency of an ontology and
infer new knowledge through some inference mechanism.

Example: "∀ Defense_Argument, OldCase, NewCase, applied_to (De-
fense_Argument, OldCase), similar_to (OldCase, NewCase) =⇒ applied_to
(Defense_Argument, New-Case)

(If two legal cases are similar then, the defense argument used in one case could be applied
to the other one).

2.2. Ontology Engineering 39

2.2.2 Foundational Ontologies

Foundational ontologies are the most general and formal ontologies (Borgo et al.,
2004). They define a range of top-level domain-independent ontological categories,
which form a general foundation for more elaborated domain-specific ontologies
(Guizzardi et al., 2005b). Theoretically, they are well-founded domain independent
systems of categories that have been successfully used to improve the quality of
conceptual models and semantic interoperability (Guizzardi et al., 2010b) (Guizzardi
et al., 2008a). Foundational or top ontologies have four main roles:

• Give a starting position for more detailed modeling by providing a structure
of classes where a domain ontology can hang its main concepts as subclasses.

• Help in consistency checking by applying inheritance (get already defined
properties).

• by reusing them, they tend to facilitate and speed up the ontology devel-
opment process by preventing to reinvent known modeling solutions (Keet,
2011).

• Help to establish a theoretical basis to achieve consistency in the negotiations
of meaning during the collaboration process (Rosa et al., 2012).

Various foundational ontologies exist in the literature such as DOLCE (Masolo et al.,
2003) and UFO (Guizzardi et al., 2005b). In the following, the Unified Foundational
Ontology (UFO) is discussed.

2.2.2.1 The Unified Foundational Ontology UFO

The unified foundational ontology (UFO) is an example of a descriptive founda-
tional ontology that has been constructed for more than a decade employing results
from formal ontology, cognitive psychology, linguistics, philosophical logics, but
also significant accumulated empirical and theoretical results from the area of con-
ceptual modeling in computer science (Griffo et al., 2015). UFO has been used
to evaluate, redesign and integrate (meta) models of conceptual modeling lan-
guages, as well as to evaluate, re-design and give real-world semantics to domain
ontologies.

UFO is initially proposed by Guizzardi and Wagner (Guizzardi et al., 2005b) and
developed to support the activities of both conceptual and organizational modeling.
UFO essentially distinguishes between Universals and Particulars (see Figure 2.6).
Particulars are entities that exist in reality possessing a unique identity, while
universals are patterns of features, which can be realized in a number of different
particulars.

40 Chapter 2. Background

FIGURE 2.6: Ontology of Universals (Guizzardi, 2005).

FIGURE 2.7: Ontology of Universals (Guizzardi et al., 2012).

Therefore, UFO permits the building of an ontology by reusing some generic
concepts as modeling primitives such as category, kind, subkind, relator, role
and role-mixin where the ontologist does not need to rebuild these concepts (see
Figure 2.8).

• The concept Kind provides a principle of application and a principle of identity
for its instances (Guizzardi, 2005). It represents a rigid concept, i.e., a class
that applies necessarily to its instances. In other words, instances of these
types will continue to be so as long as they exist in the model (Guizzardi,
2005).

• A Kind can be described in a taxonomic structure where its subtypes are also
rigid types known as Subkinds (e.g., Man and Woman) (Guerson et al., 2014).

• The concept Role, in turn, is an anti-rigid concept, applying contingently to
its instances (e.g., Offender, Instigator).

2.2. Ontology Engineering 41

• A Phase is an anti-rigid concept that it is defined by a partition of a kind and
whose contingent instantiation condition is related to intrinsic changes of an
instance of that kind.

• A Relator (e.g. entities with the power of connecting other entities) is a
rigid concept and existentially depends on the instances it connects through
mediation relations.

• A Mixin represents properties which are essential to some of its instances and
accidental to others (semi-rigidity). An example is the mixin Seatable, which
represents a property that can be considered essential to the kinds Chair and
Stool, but accidental to Crate, Paper Box or Rock.

• A RoleMixin represents an anti-rigid and externally dependent nonsortal,
i.e., a dispersive universal that aggregates properties which are common to
different roles. It includes formal roles such as whole and part, and initiatior
and responder.

• A Category represents a rigid and relationally independent mixin, i.e., a
dispersive universal that aggregates essential properties which are common
to different substance sortals. For example, the category RationalEntity as a
generalization of Person and IntelligentAgent.

FIGURE 2.8: Two partitions of the same Kind Person: a subkind
partition (Man, Woman) and a phase partition (Child, Adolescent,

Adult) (Guizzardi, 2005).

UFO is divided into three layered sets: UFO-A, UFO-B and UFO-C.

• UFO-A (see Figure 2.9): the core of UFO (Guizzardi et al., 2004a), ontology of
objects, defines terms related to endurants such as Universal, Relator, Role,
Intrinsic_Moment among many others.

A fundamental distinction in this ontology is between the categories of Par-
ticular (Individual) and Universal (Type). Particulars are entities that exist

42 Chapter 2. Background

in reality possessing a unique identity. Universals, conversely, are pattern of
features, which can be realized in a number of different particulars.

Substances are existentially independent individuals such as person, house,
car, etc..

Moment, in contrast, denotes an individualized (objectified) property or
property in particular. The word bears no relation to the notion of time instant
in colloquial language. A moment is an individual that can only exist in other
individuals. Typical examples of moments are a color, a connection, an electric
charge, a symptom, a covalent bond. Moments have in common that they are
all dependent of other individuals (their bearers).

Intrinsic moments are dependent of one single individual (e.g., color, a
headache, a temperature).

Relators depend on a plurality of individuals (e.g., an employment, a medical
treatment, a marriage).

Relations are entities that glue together other entities. Two main categories of
relations are typically considered, namely, material and formal relations.

Situations are special types of endurants. These are complex entities that are
constituted by possibly many endurants (including other situations). Situa-
tions are taken here to be synonymous to what is named state of affairs in
the literature, i.e., a portion of reality that can be comprehended as a whole.
Examples of situations include “John being with fever and influenza”.

FIGURE 2.9: A Fragment of a Foundational Ontology of Endurants
(UFO-A) (Guizzardi et al., 2008a).

• UFO-B (see Figure 2.10): ontology of events, defines terms related to perdurants
such as Event, State, Atomic_Event, Complex_Event among many others
(Guizzardi et al., 2013a).

2.2. Ontology Engineering 43

FIGURE 2.10: A Fragment of a Foundational Ontology of Perdurants
(UFO-B) (Guizzardi et al., 2008a).

UFO-B makes a distinction between endurants and perdurants. Endurants
are individuals that are wholly present whenever they are present, i.e., they
don’t have temporal parts (Guizzardi et al., 2004a) (Guizzardi et al., 2008a) .
Examples of endurants are a house, a person, the moon.

“Perdurants are individuals composed of temporal parts, they happen in time
in the sense that they extend in time accumulating temporal parts. Examples
of perdurants are a conversation, a football game, a symphony execution, a
birthday party, the Second World War and a business process" (Guizzardi
et al., 2008a).

As shown in figure 2.10, the main category on this ontology is Event (Per-
durant, Occurrent). Events can be Atomic or Complex, depending on their
mereological structure. Atomic events have no improper parts. Meanwhile,
complex events are aggregations of at least two events (that can themselves
be atomic or complex).

Events are ontologically dependent entities in the sense that they existentially
depend on their participants in order to exist (see Figure 2.11). As shown in
figure 2.11, the relations of exclusively depends on, participation of and the
notion of participation itself are all derived notions (derived from the relations
of parthood and existential dependence) (Guizzardi et al., 2013a).

FIGURE 2.11: Complex Events as Sums of Object’s Participations
(Guizzardi et al., 2013a).

44 Chapter 2. Background

• UFO-C: ontology of social_entities (both endurants and perdurants) built
on top of UFO-A and UFO-B. UFO-C defines terms related to intentional
and social entities including linguistic aspects such as Social_Agent,
Social_Object, Social_Role and Normative_Description. A fragment of
this ontology is depicted in Figure 2.12.

FIGURE 2.12: A Fragment of a Foundational Ontology of Social
Entities (UFO-C) (Guizzardi et al., 2008a).

In UFO-C, there is a distinction between Agents and Objects. Agents can be
physical (e.g., a person) or social (e.g., an organization, a society). Objects
are particulars that possess (direct) spatial-temporal qualities and that are
founded on matter (Guizzardi et al., 2010a). They can also be further catego-
rized in physical and social objects. Physical objects include a book, a tree, a
car; Social objects include money, language and Normative Descriptions.

Figure 2.13 presents a fragment of UFO-C that focuses on the distinction
between agents and objects, and on the definition of normative description.

FIGURE 2.13: Agents, objects, and normative descriptions (Nardi
et al., 2016).

2.2. Ontology Engineering 45

A normative description defines one or more rules/norms recognized by
at least one social agent.

Agents are substantials that can bear special kinds of moments named Inten-
tional Moments.

Every intentional moment has a type (e.g., Belief, Desire, Intention) and a
propositional content. Intending something is a specific type of intentionality
termed Intention. The propositional content of an Intention is a Goal.

Intentions cause the agent to perform Actions.

Actions are intentional events, i.e., events which instantiate a Plan.

A Communicative Act (a speech act such inform, ask or promise) is an example
of an atomic action.

As events, actions can be atomic or complex. A complex action is composed
of two or more participations. These participations can themselves be
intentional (i.e., be themselves actions) or unintentional events.

Figure 2.14 presents a fragment of UFO-C that focuses on types of intentional
moments.

It is not the case that any participation of an agent is considered an action, but
only those intentional participations - termed here Action Contributions.

Only agents (entities capable of bearing intentional moments) can perform
actions. An object participating in an action is termed a Resource.

A complex action composed of action contributions of different agents is
termed an Interaction.

46 Chapter 2. Background

FIGURE 2.14: Actions, mental moments, and social moments (Nardi
et al., 2016).

2.2.3 Ontologies in the legal Domain

Legal ontologies are generalized conceptual models of specific parts of the legal
domain. They provide stable foundations for knowledge representation (Mommers,
2003). They have been developed already far before the idea of the Semantic
Web was put into W3C actions and standards where they have been used for
legal knowledge management and as knowledge bases in legal knowledge systems
(Benjamins et al., 2005a). Moreover, these ontologies have been useful in a number of
applications to support information retrieval, extraction, integration and reasoning
as demonstrated by (Wyner, 2009), (Ashley, 2009) and (Wyner et al., 2010).

It is important to notify that legal ontologies differ from ontologies in other fields
of practice, like medicine or engineering in that they have to cover a wide range
of common-sense concepts that are part of physical, abstract, mental, and social
worlds. Legal domains share complex and varied notions of norm and responsibility,
but besides this legal core, a legal domain refers to some world of social activities
(Benjamins et al., 2005a). Concerning the legal core notions, they include: norm, case,
contract, institution, person, agent, role, status, normative position (duties, rights,
etc.), responsibility, property, crime, provision, interpretation, sanction, delegation,
legal document.

We revised the literature to offer a brief review about some of the most relevant legal
ontologies: FOLaw(Valente et al., 1994b) (Valente et al., 1996) (Valente et al., 1999a),
LRI-Core (Breuker, 2004), OCL.NL (Ontology of Dutch Criminal Law) (Breuker
et al., 2002), LKIF-Core (Hoekstra et al., 2007), DALOS domain ontology (Agnoloni

2.2. Ontology Engineering 47

et al., 2007) (Francesconi et al., 2008), OPJK (Casellas, 2008a) and UFO-L (Griffo
et al., 2015).

2.2.3.1 The Functional Ontology of Law (FOLaw)

The Functional Ontology of Law (FOLaw) is a legal core ontology developed by
(Valente, 1995). FOLaw captured dependencies between various types of knowledge
involved in legal reasoning (see Figure 2.15). The main purpose of FOLaw is to
enable knowledge reuse for building new applications, in particular, enabling the
reuse of a library of ontologies. However, authors also included the idea that it
could be used for the study of legal knowledge (Valente et al., 1996).

FIGURE 2.15: The Functional Ontology of Law FOLaw (Valente,
1995).

FOLaw was used for designing the architecture the project ON-LINE (Valente et al.,
1999a) for legal problem solving specifically to distinguish the various types of
knowledge in legal reasoning, to explain the dependencies between types of legal
knowledge, to organize and index libraries of domain ontologies and to support
knowledge acquisition towards the construction of new ontologies.

List of primitive categories are defined in FOLaw: normative knowledge, world
knowledge, responsibility knowledge, reactive knowledge, creative knowledge,
and meta-level knowledge.

• Normative knowledge: this is probably the most typical legal knowledge:
it refers to norms(adopted by the authors from Kelsen (Kelsen, 1991)) as

48 Chapter 2. Background

indicated by deontic operators such as ’permitted’, ’forbidden and ’obliged’
but also to concepts like rights and duties.

• world knowledge: composed of two related types of knowledge: definitional
knowledge (used by normative knowledge) and causal knowledge (used by
responsibility knowledge).

• responsibility knowledge: had the function of assigning or limiting the re-
sponsibility of an agent over certain state of affairs. Acts as an intermediary
concept between normative and reactive knowledge.

• reactive knowledge: specified which action ought to be taken and how. It
concerns the kinds of punishments or rewards that the law has in stock.

• creative knowledge: it was defined as the creation of entities that did not exist
before in the world. The law may create (virtual or real) agents or institutions
with a legal status.

• meta-level knowledge: the knowledge required to solve conflicts between
norms.

Finally, Breuker and Hoekstra (Breuker et al., 2004a) described FOLaw as an episte-
mological framework, rather than a core ontology as it “lacked the abstract, core
concepts that make up law”, although the authors recognized that it had provided
insight into legal reasoning.

2.2.3.2 LRI-Core

LRI-Core is a more generic core ontology developed in order to overcome the
epistemological promiscuity of the FOLaw ontology (Breuker et al., 2004a). The
purpose of developing our ’LRI-Core’ is not to propose yet-another-upper-ontology,
but to provide a broad, rather than ’deep’ conceptual structure for the typical
legal, or legally relevant, ’upper notions (Breuker et al., 2002). LRI-Core aims at
supporting knowledge acquisition for legal domain ontologies (Breuker, 2004).

LRI-Core ontology was not grounded in any existing foundational or top ontology,
but is constructed including FOLaw. The legal core ontology consists at the top
level of five portions or worlds: physical concepts (object and process), mental
concepts, abstract concepts, roles and occurrences (see Figure 2.16).

2.2. Ontology Engineering 49

FIGURE 2.16: LRI-Core (Breuker et al., 2004c).

The upper or foundational part of LRI-Core had 5 major worlds: physical world
(Energy, Matter, Phycical Object, Substance, Physical Change, Time, Space), mental
world (Emotion, Mental Process, Mental Object), roles (Case Role, Social role,
Communication Role, Function, Social Organisation), abstractions (Set, Formula,
Geometrical Entity, Number) and occurrences (Situation, History, Spatial Temporal
Reference, Event, Causation, State).

The ontology was formalized in OWL-DL using Protégé and in (Breuker et al., 2003)
LRICore was formalized in RDF(S) with Protégé-2000). The size of the ontology
was about 100 concepts (Breuker, 2004).

LRI-Core was used to aid the development of ontologies in the e-Court project
(Breuker et al., n.d.), specifically, used by the Dutch criminal law ontology of the
e-Court project to support knowledge acquisition.

Nevertheless, the authors concluded that “the number of legal concepts in LRI-
Core was rather small; it was rather a top ontology covering abstract concepts of
common-sense rather than the field of law” (Breuker et al., 2007).

50 Chapter 2. Background

2.2.3.3 Ontology of Criminal Law (OCL.NL)

The OCL.NL ontology was developed by Leibniz Center for Law within the e-Court
project1 that aimed at semi-automated information management of transcriptions
of criminal trial hearings (Breuker et al., 2002).

The core of OCL.NL is conformed by actions (offences) and punishments. The role
of ontologies in indexing the e-Court hearing documents was: 1) they provided a
structured vocabulary for meta-data descriptions and maintained consistent use
and semantic distinctions, 2) the ontology browser supported the hand tagging
of the hearings, and 3) the concepts contained in the ontology were used to index
documents (Breuker et al., 2004c).

OCL.NL concepts were ’anchored’ in LRI-Core concepts. Figure 2.17 describes the
anchoring of the OCL.NL concepts into agent LRI-Core concepts (boldface terms).

FIGURE 2.17: Concept anchoring in OCL.NL/LRI-Core (Breuker
et al., 2002).

2.2.3.4 LKIF-Core

LKIF is a Legal Knowledge Interchange Format developed at the Estrella Project2 in
order to “enable the translation between legal knowledge bases written in different
representation formats and formalisms” and to act “as a knowledge representation
formalism that is part of a larger architecture for developing legal knowledge
systems” (Hoekstra et al., 2007).

1e-COURT European Project IST-2000-28199, project duration 2000-2003
2Estrella is a 6th European Framework project (IST-2004-027665). See also:

http://www.estrellaproject.org

2.2. Ontology Engineering 51

The LKIF Core Ontology 3 is a legal core ontology that contains ’basic concepts of
law’ and is part of a generic architecture to enable the interchange of knowledge
(LKBS). Thus, LKIF-Core is directed at supporting legal inference, knowledge
acquisition and knowledge exchange.

For building LKIF-Core, a combination of methodologies for ontology engineering
are used such as (Uschold et al., 1996) within others. The main steps of the ontol-
ogy building process are: identification of purpose and scope, ontology capture,
ontology coding, integration with existing ontologies, and evaluation.

The ontology is composed of three main layers: Top level(most classes are borrowed
from LRI-Core), Intentional Level(includes concepts and relations which describe
behaviour “of rational agents that can be effectively influenced by the law”) and
Legal level (legal agents, actions, rights, roles and concepts definitions).

The LKIF legal core ontology is composed of 15 modules (see Figure 2.18), catego-
rized in 3 main categories, each of which describes a set of closely related concepts
from both legal and commonsense domains (Hoekstra et al., 2009).

FIGURE 2.18: The modules of LKIF-Core.

• Abstract Concepts: The most abstract concepts are defined in five closely
related modules: top, place, mereology, time and spacetime.

3http://www.leibnizcenter.org/general/lkif-core-ontology, retrieved september 10 2017

52 Chapter 2. Background

– Top: The LKIF top ontology is largely based on the top-level of LRI-Core
but has less ontological commitment in the sense that it imposes less
restrictions on subclasses of the top categories.

– Place: The place module partially implements the theory of relative
places in OWL DL.

– Mereology: The mereology module defines mereological concepts such
as parts and wholes, and typical mereological relations such as part of,
component of, containment, membership etc.

– Time: The time module provides an OWL DL implementation of the
theory of time.

• Basic Concepts: Basic-level concepts are distributed across four modules:
process, role, action and expression.

– Process: The process module extends the LKIF top ontology module with
a definition of changes, processes (being causal changes) and physical
objects. It introduces a limited set of properties for describing participant
roles of processes.

– Role: The role module defines a typology of roles (epistemic roles, func-
tions, person roles, organisation roles) and the plays-property for relating
a role filler to a role.

– Action: The action module describes the vocabulary for representing
actions in general. Actions are processes which are performed by some
agent (the actor of the action). This module does not commit itself to a
particular theory on thematic roles.

– Expression: The expression module describes a vocabulary for describ-
ing, propositions and propositional attitudes (belief, intention), qualifi-
cations, statements and media. It furthermore extends the role module
with a number or epistemic roles, and is the basis for the definition of
norms.

• Legal Concepts: These basic clusters are extended by three modules that form
the legal ontology: legal action, legal role and norm.

– Legal-action: The legal action module extends the action module with a
number of legal concepts related to action and agent, such as public acts,
public bodies, legal person, natural person etc.

– Legal-role: The legal role module extends the role module with a small
number of legal concepts related to roles, legal professions etc.

– Norm: The norm module is an extension primarily on the expression
module where norms are defined as qualifications. It furthermore defines

2.2. Ontology Engineering 53

a number of legal sources, e.g. legal documents, customary law etc., and
a typology of rights and powers.

• Framework Modules: two modules(modification and rules) are provided that
cover the basic vocabulary of two frameworks.

– Modification: The modification module is both an extension of the time
module and the legal action module. The time module is extended with
numerous intervals and moments describing the efficacy and being in
force of legal documents. The action module is extended with a typology
of modifications.

– Rules: The rules & argumentation module defines roles central to argu-
mentation, and describes the vocabulary for LKIF rules.

• Core and Extended Ontology: Finally, the twelve modules of the abstract,
basic and legal level are integrated in the LKIF Core ontology module. This
module does not provide any additional definitions, but functions as an entry-
point for users of the ontology library. The two framework modules are
accessible through the LKIF Extended ontology module. This module imports
the LKIF Core module.

The ontology is formalized in OWL-DL. The current version of LKIF-Core (1.1)
contains 155 classes and 97 object properties 4.

2.2.3.5 DALOS Domain Ontology

The DALOS domain ontology is the consumer protection ontology developed
within the DALOS project by Francesconi et al., 2007 (Agnoloni et al., 2007)
(Francesconi et al., 2008) (Agnoloni et al., 2009) (Biasiotti et al., 2011). The DALOS
project aims at ensuring that legal drafters and decision-makers have control over
legal language at national and European level, by providing law-makers with the
linguistic and knowledge management tools to be used in the legislative processes,
in particular within the phase of legislative drafting. This project uses the results of
the LOIS project, composed by about 35.000 concepts, but focuses on the consumer
protection domain.

The DALOS resource is organized in two layers (see Figure 2.19):

• Ontological layer: contains the conceptual representations of the domain at
a language-independent level (Agnoloni et al., 2007). This layer acts as a
knowledge layer where to align concepts at European level independently
from the language and the legal systems.

4https://github.com/RinkeHoekstra/lkif-core, retrieved september 10, 2017

54 Chapter 2. Background

• Lexical layer: contains lexical manifestations in different languages (Italian,
English, Spanish and Dutch) of the concepts at the ontological layer.

FIGURE 2.19: DALOS knowledge organization (Francesconi et al.,
2008).

At the ontological layer, concepts are linked by subsumption (subclass-of) as well
as by domain-dependent object property relationships. However, at the lexical
layer, terms are linked by linguistic relationships as those ones used for the LOIS
database (hyperonymy, hyponymy, meronymy, etc.). In particular, to implement the
lexical layer, the subset of the LOIS database pertaining to the consumer protection
lexicon is used.

The connection between these two layers is aimed at representing the relationship
between concepts and their lexical manifestations. In order to link the two layers,
the hasLexicalization and hasConceptualization relationships are used.

Therefore, the DALOS ontological-linguistic resource is implemented through three
main activities (Agnoloni et al., 2009) (Francesconi et al., 2007):

• Semi-automatic term extraction on the domain of consumer protection law
from a set of selected texts by using NLP tools such as GATE and ontology
learning systems such as T2K (Lexical layer implementation)

T2k (Text to knowledge) (Dell’Orletta et al., 2014) is a hybrid ontology learning
system combining linguistic technologies and statistical techniques and is
used for implementing the Italian version of the DALOS Lexical layer.

GATE is an architecture, a framework and a development environment for
Language Engineering (LE) applications. GATE uses NLP based techniques
to assist the knowledge acquisition process for ontological domain modeling,

2.2. Ontology Engineering 55

applying automated linguistic analyses to create ontological knowledge from
textual resources or to assist ontology engineers and domain experts by means
of semi-automatic techniques.

• Manual construction of a Domain Ontology on the consumer protection

domain (Ontological layer implementation);

• Connection between the Lexical layer (the LOIS database) and the Ontological
layer by the hasLexicalization property implementation.

The DALOS domain ontology (see Figures 2.20 and 2.21) imports some top-level
basic notions, such as legal_role and legal_situation (see Figure 2.22), from
so called CLO (Core Legal Ontology) which specializes the DOLCE foundational
ontology.

FIGURE 2.20: Excerpt of the DALOS Consumer Protection Ontology
(Francesconi et al., 2008).

FIGURE 2.21: Excerpt of the DALOS Consumer Protection Ontology
(Agnoloni et al., 2011).

56 Chapter 2. Background

FIGURE 2.22: Contexts and regulated situations (Francesconi et al.,
2008).

2.2.3.6 Ontology of Professional Judicial Knowledge (OPJK)

The Ontology of Professional Judicial Knowledge (OPJK) (Casellas, 2008a) is a
legal ontology developed to map questions of junior judges to a set of stored
frequently asked questions. The purpose of OPJK is searching and indexing for
the JURISERVICE web-based application. OPJK ought to represent the relevant
concepts related to the problems that take place during the on-call period in Spanish
first instance courts. The ontology contains domain specific knowledge, professional
knowledge, gathered by experience from the practice during on-call periods with
semi-structured interviews.

The methodological approach applied for building OPJK comprise list of steps that
have been established from the analysis of the most detailed and complete method-
ologies: 1) preparatory phase (specification of ontology requirements), 2) develop-
ment phase (knowledge acquisition-experts, documents, reuse-, conceptualization-
classes, relations, properties, instances-, expert validation and formalization), and
3) evaluation phase (internal consistency, requirements, competency questions and
expert evaluation).

The construction process of OPJK and its formalization has been based on the
terminology, information and knowledge contained in the corpus of questions. The
judicial knowledge contained in these questions expresses practical problems faced
by judges in their fist appointment during their on call court period. In order to
conceptualize and formalize the terms extracted from the corpus, the modeling
decisions are supported by course syllabus, legislation, and doctrine. Moreover,
several upper and core ontologies, such as SUMO, PROTON, DOLCE/CLO or
LKIF-Core, have been revised in order to obtain a set of top concepts for grouping
and supporting middle-out conceptualization.

2.2. Ontology Engineering 57

Thus, the main top classes of OPJK are: Role, Agent, Document, Process and Act
(see Figure 2.23).

FIGURE 2.23: Excerpt of OPJK v 1.0 in Protégé (Casellas, 2008a).

OPJK version 1.0 includes 56 classes, 55 rdfs:subClassOf relations and 913 instances,
together with a total of 25 owl:ObjectProperty axioms (10 owl:subPropertyOf and
12 owl:inverseOf), 1 transitive and 1 functional owl:ObjectProperty.

Furthermore, OPJK is integrated into PROTON (Proto Ontology)5 offering some
constraints towards the engineering process. This integration implies that the
Ontology for Professional Judicial Knowledge should include the System Module
and Top Module from PROTON.

5http://proton.semanticweb.org/, retrieved 7 September 2017

58 Chapter 2. Background

2.2.3.7 UFO-L

UFO-L (Ontology of Legal Concepts) is a legal core ontology (LCO), which repre-
sents essential concepts of the Law based on Alexy’s Theory of Fundamental Rights
(Griffo et al., 2015). This ontology is still under development, but we will overview
its general aspects and methodology applied.

UFO-L is built as a layer on top of the Unified Foundational Ontology (UFO). UFO
is an example of a descriptive foundational ontology that has been constructed for
more than a decade employing results from formal ontology, cognitive psychol-
ogy, linguistics, philosophical logics, but also significant accumulated empirical
and theoretical results from the area of conceptual modeling in computer science.
(Guizzardi, 2005).

UFO-L uses domain-independent concepts of domain provided by UFO. Extending
these concepts, a conceptualization for legal domain is built, which can be used in
other particular domain ontologies and legal knowledge bases. The main idea is to
built ontological patterns in order to be used for supporting the modeling of legal
concepts in conceptual models of the legal domain (see Figure 2.24).

FIGURE 2.24: UFO-L pattern for right-duty relations (Griffo et al.,
2016).

2.2. Ontology Engineering 59

Ontology Aim Architecture

FOLaw designing the architec-
ture of ON-LINE for le-
gal problem solving

normative knowledge, world
knowledge, responsibility knowl-
edge, reactive knowledge, creative
knowledge, and meta-level knowl-
edge.

LRI-Core supporting knowledge
acquisition for legal do-
main ontologies

physical, mental, roles, abstractions,
occurrences

OCL.NL e-Court concepts anchored in LRI-Core
LKIF-Core Estrella Abstract concepts, basic, legal,

framework, core and extended
DALOS
Consumer
Protection

Consumer protection
Law with the DALOS
European project

Two knowledge level: Ontological
(reuse of CLO) and Lexical (ontol-
ogy learning from texts).

OPJK mapping questions of
junior judges to FAQs

Main classes: Role, Agent, docu-
ment, Process, Act

UFO-L LCO based on Robert
Alexy’s Theory of
Constitutional Rights,
grounded on UFO

Ontological patterns

TABLE 2.2: A summary of Legal ontologies

2.2.4 Roles and Uses of Legal Ontologies

The need for the development of legal ontology is increasing together with the
diversity of applications of legal knowledge management (Casanovas et al., 2007),
ranging from document retrieving, data and text mining, modeling legal reasoning,
development of decision support systems, etc (Mazzega et al., 2011) (Mommers,
2010). Five main roles of legal ontologies are identified in the literature (Valente,
2005), (Breuker et al., 2004b) and (Mommers, 2010):

• Organize and structure information: ontologies are used to define legal vo-
cabularies which are typically used to define the terms used in regulations.
They are considered as representations of the law domain, e.g. taxes, crime,
traffic, immigration, etc. Examples of such ontologies: Jur-Wordnet ontology
(Gangemi et al., 2003) and Italian Crime Ontology (Asaro et al., 2003).

• Reasoning and problem solving: ontologies aim to represent the knowledge
of the domain so that an automated reasoner can represent problems and
generate solutions for these problems. This use is found in the many expert
systems and decision making systems developed in AI & Law. Examples of

60 Chapter 2. Background

such ontologies: CLIME Ontology (Boer et al., 2001), that is used as a basis
for a legal advice system for maritime law, and Zeleznikow and Stranieri’s
ArgumentDeveloper (Zeleznikow et al., 2001), which was used in connection
with several legal knowledge-based systems. By using these ontologies, there
is a need for inference engine that is used to conclude specific goals. Valente et.
al. (Valente et al., 1999b) argue that ontological choices are strongly influenced
by the purpose of the ontology. That is, the same knowledge will be structured
or formalized differently depending of how it will be used by the reasoner
in reaching the desired conclusions in a specific context. This indicates that
reusability is a good idea, but it can never be accomplished completely.

• Semantic indexing and search: ontologies can be used to represent and search
semantically the content of documents to go beyond word or keywords. Two
main works,(Benjamins et al., 2003) and (Saias et al., 2003), are examples of
such ontologies.

• Semantics integration and inter-operation: The basic role of ontologies in this
case is to support applications to exchange information electronically. This
use is less common in the legal domain.

• Understanding the domain: ontologies in this case is to provide a view of
what a domain is about. They work as a map that specifies what kinds of
knowledge can be identified in the domain. These types of ontologies have
been called core ontologies (Valente et al., 1996) such as FOLaw (Valente et al.,
1994b).

There is a growing body of research and practice in constructing legal ontologies
and applying them to the law domain (Valente, 2005). To build and maintain legal
ontologies, proper techniques and methods from ontology engineering have been
used: conceptual analysis, knowledge representation, ontology modularization and
layering, ontology alignment and merging, evolution and dynamics, multilingual
and terminological aspects, etc. (Benjamins et al., 2005a). We will outline the most
common known and used methodologies.

2.2.5 Ontology Engineering Methodologies

When a new ontology is going to be built, several basic questions arise related to the
methodologies, tools and languages to be used in its development process: (Corcho
et al., 2003):

• Which methodologies have to be used for building ontologies, either from
scratch, or reusing other existent ontologies?

• Which tool(s) give/s support to the ontology development process?

• Which language(s) should be used to implement the ontology?

2.2. Ontology Engineering 61

In this section, the available methodologies for building ontologies will be outlined,
and the tools and languages will be discussed in the following sections. Starting
with a survey about the methodologies used to develop ontologies (see Figure 2.25)
where 60% of the participants did not use any methodology to build their ontologies
(Cardoso, 2007), and the methodologies with greatest adoption among ontologists
are On-to-knowledge (Sure et al., 2003) and Methontology (Corcho et al., 2005).
In the literature, several methodologies have been proposed to build ontologies.
Some of them are designed for building ontologies from scratch or reusing other
ontologies without modifying them. Generally, the ontology engineering method-
ologies are divided into two main generations. The first generation compose the
methodologies that focused on core development process such as: (Uschold et al.,
1995), (Swartout et al., 1997), and (Gruninger et al., 1995). The second generation
of methodologies are the most complete ones, according to (Roussey et al., 2011),
such as: Methontology (Corcho et al., 2005) and On-to-knowledge (Sure et al., 2003).
These methodologies shifted the focus towards a more iterative process where the
development process is not linear but a refinement one where each activity can be
repeated several times.

FIGURE 2.25: Survey about methodologies used to develop ontolo-
gies (Cardoso, 2007).

2.2.5.1 Uschold and colleagues

Uschold and King’s (Uschold et al., 1995), Uschold and Gruninger (Uschold et
al., 1996) offered a set of guidelines towards ontology construction and merging.
According to Uschold and king, there are no standard methodologies for building
ontologies. In an attempt to begin filling this gap, they proposed a comprehensive
methodology for building ontologies four main stages:

• Identify purposes: identify why the ontology is being built and what are its
intended uses and users.

62 Chapter 2. Background

• Building the ontology:

– Ontology capture: defined in four main steps.

1. identification of the key concepts and relationships in the domain of
interest.

2. production of precise unambiguous text definitions for such con-
cepts and relationships.

3. identification of terms to refer to such concepts and relationships.

4. agreeing on all of the above.

– Ontology coding: an explicit representation of the conceptualization cap-
tured in the ontology capture stage in some formal language. This will
involve committing to some meta-ontology choosing a representation
language and creating the code.

– Integrating existing ontologies: during the capture and/or the coding
stages, there is a possibility to use ontologies that already exist. The
question is how and whether to use these ontologies.

• Evaluation: generally evaluation of ontologies could contribute to a compre-
hensive methodology for building ontologies. The current approach is to
look

first at what has been done in the field of KBS and to adapt it for ontologies.

• Documentation: establish guidelines for documenting ontologies possibly
differing according to type and purpose of the ontology. Inadequate doc-
umentation of existing knowledge bases and ontologies is one of the main
barriers to effective knowledge sharing (Skuce, 1995).

2.2. Ontology Engineering 63

FIGURE 2.26: Uschold and King’s methodology (Uschold et al.,
1995).

2.2.5.2 CommonKADS

CommonKADS (Schreiber et al., 2000) is a methodology for building knowledge-
based systems, but also offers useful features also for ontology engineering (Sure
et al., 2004). The CommonKADS methodology for the construction of a knowledge
model includes activities which could be relevant towards ontology construction.

• Knowledge Identification:

– Domain familiarization (information sources, glossary, scenarios);

– List of potential model components for reuse (task- and domain related
components).

• Knowledge Specification

– Choose task template (provides initial task decomposition, e.g., diagno-
sis, assessment, etc.);

– Construct initial domain conceptualization (main domain information
types): Domain-specific conceptualizations and Method-specific concep-
tualizations.

– Complete knowledge-model specification (knowledge model with par-
tial knowledge bases).

64 Chapter 2. Background

• Knowledge Refinement:

– Validate knowledge model (paper simulation, prototype of reasoning
system);

– Knowledge-base refinement (complete the knowledge bases).

2.2.5.3 Methontology

Methontology is an ontology building methodology from scratch described in
(Fernandez-Lopez et al., 1997), (Fernandez-Lopez et al., 2002), (Fernandez-Lopez,
1999) (Gomez-Perez et al., 2003a) and (Corcho et al., 2005). This methodology
describes the different steps to be taken not only in the conceptualization process of
an ontology but also during the ontology development life cycle.

The methodology takes into account development activities as well as management
and support activities (see Figure 2.27) (control and quality assurance together
with knowledge acquisition (from experts or semi-automatic ontology extraction),
integration, evaluation (ontology verification, validation, and assessment), docu-
mentation and configuration management).

FIGURE 2.27: The Methontology methodology (Corcho et al., 2005).

Concerning the development, the main activities are:

• Specification: establishes informally or formally (competency questions) the
purpose and scope of the ontology (why, what use, who are the end users).

• Conceptualization: organize the knowledge acquired (see Figure 2.28).

2.2. Ontology Engineering 65

– Build a glossary of terms (with definitions, synonyms and acronyms)
following a middle-out strategy;

– Classify terms into one or more taxonomies of concepts (understood as
abstractions of one or more terms);

– Define binary relations between the concepts;

– Built the concept dictionary (class attributes);

– Detail the concept dictionary (cardinality, inverse relations, properties,
etc.)

– Define axioms and rules.

• Formalization.

• Implementation.

• Maintenance.

FIGURE 2.28: Tasks of the conceptualization activity according to
METHONTOLOGY (Corcho et al., 2005).

Finally, several tools such as ODE and WebODE were built to give technological
support to this methodology (Corcho et al., 2005), although several other existing
tools may also be used such as Protégé, OntoEdit and KAON, etc.).

2.2.5.4 Ontology Development 101

Noy and McGuinness (Noy et al., 2001) offered a simple knowledge-engineering
methodology in 7 steps Ontology Development 101. These steps are resumed in
follows:

66 Chapter 2. Background

• Determine the domain and the scope of the ontology:

– What is the domain that the ontology will cover?

– For what we are going to use the ontology?

– For what types of questions (competency questions) the information in
the ontology should provide answers?

– Who will use and maintain the ontology?

• Consider reusing existing ontologies

• Enumerate important terms in the ontology.

• Define the classes and the class hierarchy. Several approaches:

– Top-down

– Bottom-up

– Combination

• Define the properties of classes-slots, such as:

– intrinsic properties

– extrinsic properties

– parts, if structured

– relationships to other individuals

• Define the facets of the slots, such as:

– Slot value-type: string, number, boolean slots, enumerated slots, instance-
type slots.

– Domain and range.

• Create individual instances of classes in the hierarchy.

2.2.5.5 ON-TO-KNOWLEDGE Methodology (OTKM)

The OTKM is described in (Sure et al., 2002a) and (Sure et al., 2003). This method-
ology was influenced by the methodologies of Uschold and his colleagues, Com-
monKADS and METHONTOLOGY.

The ontology building process in OTKM is divided into five steps:

1. Feasibility study: identify stakeholders (users and supporters of the system),
identify uses cases describing usage scenarios and their supporting uses cases.

2. Ontology Kickoff: initiates the development of the ontology,

2.2. Ontology Engineering 67

• Description of an Ontology Requirements Specification Document
(ORSD), which includes:

– Goal, domain and scope of the ontology;

– Design guidelines;

– Knowledge sources;

– (Potential) users and usage scenarios;

– Competency questions;

– Supported applications.

• Analysis of knowledge sources (build initial lexicon);

• Create a semi-formal description of ontology (draft).

3. Refinement: Knowledge is acquired and formalized in a cyclic approach.

• Knowledge elicitation process with domain experts (based on input from
kickoff phase), modification or extension of draft ontology;

• Formalization of target ontology.

4. Evaluation:

• Technology-focused evaluation: mainly consistency and language con-
formity checking.

• User-focused evaluation: assessment of the requirements specified and
the competency questions established in the resulting ontology, and
testing results from prototype application.

• Ontology-focused evaluation: formal analysis of ontologies (e.g., Onto-
Clean evaluation methodology).

5. Application.

68 Chapter 2. Background

FIGURE 2.29: The methodological process of OTKM (Sure et al.,
2003).

OTKM is supported by the OntoEdit ontology development tool.

2.2.5.6 SABiO: Systematic Approach for Building Ontologies

The Systematic Approach for Building Ontologies (SABiO) (Falbo, 2014) is an
ontology engineering approach that focus on the development of domain ontologies,
and also propose support processes. SABiO distinguishes between reference and
operational ontologies, providing activities that apply to the development of both
types of domain ontologies.

Domain reference ontology means a domain ontology that is built with the goal of
making the best possible description of the domain. It is a solution-independent
specification (conceptual model) with the aim of making a clear and precise de-
scription of domain entities for the purposes of communication, learning and
problem-solving. Meanwhile, domain operational ontologies are machine-readable
implementation version of the ontology, designed with the focus on guaranteeing
desirable computational properties (Fielding et al., 2004). Thus, before implement-
ing an operational ontology, a design phase should be accomplished taking techno-
logical non-functional requirements and the ontology implementation environment
into account.

SABiO has been used for building several domain ontologies, such as ontologies
for the software process and cardiology domains. The development process of
SABiO comprises five main phases (see Figure 2.30): (1) Purpose identification
and requirements elicitation; (2) ontology capture and formalization; (3) design; (4)

2.2. Ontology Engineering 69

implementation; and (5) test. Support processes are performed in parallel to the
development process.

FIGURE 2.30: Ontology engineering process of SABiO (Falbo, 2014).

the first three activities of the development process are accomplished if someone
is interested in building a domain reference ontology. However, for building an
operational ontology, then the entire development process should be performed.

In Table 2.3, the ontology engineering methodologies are summarized by mention-
ing the building process.

70 Chapter 2. Background

Methodology Building process

Uschold and col-
leagues

Purpose, building, evaluation and documentation

CommonKADS Identification, ipecification, refinement
Methontology Specification, conceptualization, formalization, imple-

mentation, maintenance
Ontology Devel-
opment 101

Scope, reuse, hierarchy, properties, domain, range, in-
staces

OTKM Feasibility, requirement, analysis, draft, refinement, for-
malization

SABiO Purpose identification and requirements elicitation, ontol-
ogy capture and formalization, design, implementation,
testing

TABLE 2.3: A summary of Ontology development methodologies.

2.2.6 Ontology Engineering Tools and Environments

As aforementioned, the ontology engineering methodologies are needed for on-
tology development. However, a methodology itself is not sufficient. Developers
need an integrated environment or tool in order to help them while building the
intended ontology in every phase of the building process (Mizoguchi et al., 2009).
In the literature, there is a diversity of ontology engineering tools and environments
that support the ontology building process, specifically for ontology learning or
acquisition and editing. In fact, Ontology acquisition is considered as an essential
step in building ontologies. Knowledge can be acquired using ontology learning or
editing tools. In the following section, we will outline briefly the most relevant tools
and environments for ontology development based on some extensive revisions for
(Gomez-Perez, 1999), (Gomez-Perez et al., 2003a).

Ontolingua Server Ontolingua server 6 was the first ontology tool created at the
beginning of 1990s at Stanford university. Initially, the main module inside the
Ontolingua Server was the ontology editor, then other modules were included in
the environment, such as a Webster, an equation solver, and Chimaera (an ontology
merging tool). The ontology editor also provides translators to languages, such as
Prolog, and CLIPS.

6http://ksi.cpsc.ucalgary.ca/KAW/KAW96/farquhar/

2.2. Ontology Engineering 71

OntoEdit OntoEdit7 (Sure et al., 2002b) has been developed by AIFB in Karlsruhe
University. It is similar to the previous tools: it is an extensible and flexible environ-
ment, based on a plug-in architecture, which provides functionality to browse and
edit ontologies.

Protégé Protégé8 is an extensible, platform-independent environment for creating
and editing ontologies and knowledge bases developed by the Stanford Medical
Informatics (SMI) at Stanford University. It is an open source, standalone application
with an extensible architecture.

The core of this environment is the ontology editor, and it holds a library of modules
that can be plugged, called plug-ins, to add more functions to the environment. The
main Protégé functions are to: load and save OWL and RDF ontologies; edit and
visualize classes, properties, and SWRL rules; define logical class characteristics
as OWL expressions; execute reasoners such as description logic classifiers; and
edit OWL individuals for Semantic Web markup. Protégé is available in different
versions, each including different plug-ins, whose main difference is the ontology
language that they support:

• Protégé version 3 supports OWL 1.0, RDF(S) and Frames.

• Protégé versions 4 and 5 supports OWL 2.0.

Neon Toolkit The Neon Toolkit 9 is an ontology engineering environment that
supports the complete life cycle of large-scale ontology networks (Haase et al., 2008).
In order to support such a broad ontology modeling functionality, it has an open
and modular architecture, which the NeOn Toolkit inherits from its underlying
platform, Eclipse.

Eclipse is a very rich development environment, which is widely adopted in the pro-
gramming world and which perfectly fits to the modeling paradigm for ontologies.
It provides developers with a framework to easily create, publish and integrate new
features into the NeOn Toolkit. A substantial number of so-called plugins has been
developed within and outside the NeOn consortium and are available at NeOn
Toolkit homepage. The NeOn Toolkit is available as an installable core version with
the basic ontology functionality such as editing, browsing, ontology and project
management. Currently, the following versions are available:

• The basic NeOn Toolkit provides the core functionality for handling OWL 2
ontologies.

7http://ontoserver.aifb.unikarlsruhe.de/ontoedit/
8 http://protege.stanford.edu/
9http://neon-toolkit.org/

72 Chapter 2. Background

• The NeOn Toolkit extended configuration includes advanced functionality
for managing rule based models and ontology mapping facilities based on
commercial extensions.

WebODE WebODE10, a successor of ODE (Blazquez et al., 1998), is an ontolog-
ical engineering workbench developed by the Ontological Engineering group at
Universidad Politécnica de Madrid (UPM) in order to give technological support
to most of the activities involved in the ontology development process proposed
by METHONTOLOGY (Arpirez et al., 2003). Although this does not prevent it
from being used with other methodologies or without following any methodology
(Corcho et al., 2003).

The editor is a Web application built on top of the ontology access service (ODE
API), which integrates several ontology building services from the workbench:
ontology edition, navigation, documentation, merge, reasoning, etc.

OntoUML Lightweight Editor (OLED) The OntoUML lightweight editor (OLED)
11 is an environment for the development, evaluation and implementation of do-
main ontologies using the UFO-based ontologically well-founded modeling lan-
guage OntoUML (Guerson et al., 2015). OLED is developed by the Nemo research
group 12. UFO, the Unified Foundational Ontology, is a foundational ontology that
provides a sound ontological basis to evaluate and give real-world semantics to
conceptual modeling language’s constructs such as UML (Guerson et al., 2015).
OntoUML (Guizzardi, 2005) is an ontologically well-founded profile of the class
diagram fragment of UML 2.0. OntoUML’s categories are put forth by UFO.

Modelers specify their domain ontologies in OntoUML, constraining them using
the Object Constraint Language (OCL) 13. They can import models designed with
EA into OLED. The tool provides a set of built-in design patterns to speed up the
modeling activity through re-use. To improve the quality of the models built using
OLED, it provides an automatic syntax verification alongside two complementary
validation features, visual simulation (Benevides et al., 2011) and anti-patterns. To
apply the knowledge formalized in the OntoUML in semantic web applications,
OLED features a number of predefined automatic transformations to the Web
Ontology Language (OWL) (possibly enhanced with SWRL rules) (Albuquerque,
2013) (Barcelos et al., 2013).

10http://webode.dia.fi.upm.es/webODE/
11https://nemo.inf.ufes.br/projects/oled/, https://code.google.com/p/ontouml-lightweight-

editor/, retrieved September 7 2017
12https://nemo.inf.ufes.br/, retrieved 7 September 2017
13http://www.omg.org/spec/OCL/2.4/

2.2. Ontology Engineering 73

Tool Functionalities Pricing policy Standards

Ontolingua Ontology editor, sup-
port building of shared
ontologies geographi-
cally seperated

Free web access Ontolingua

OntoEdit support OTKM Freeware and li-
censes

XML,
RDF(S),
FLogic,
DAML+OIL

Protégé A graphical ontology
editor and knowledge
base framework for
ontology manipulation
and query

Open source RDF, RDFS,
OWL,
OWL2

Neon
Toolkit

supports the complete
life cycle of large-scale
ontology networks

Open source RDF, RDFS,
OWL,
OWL2

WebODE support METHONTOL-
OGY

Free Web access
Licenses

XML,
RDF(S)

OLED model-based envi-
ronment to support
Ontology Engineering
in OntoUML

Open access OntoUML,
OWL,
SWRL

TABLE 2.4: A comparison of Ontology engineering systems.

2.2.7 Ontology Languages and Formalisms

In the ontology engineering process, there is a need for ontology languages in order
to implement expressively the ontology and make it processable and understand-
able by the machine. Different ontology languages having different expressiveness
and inference mechanisms are found in the literature. A major decision to take is
to select the appropriate language. AI-based Ontology implementation languages
started to be created at the beginning of the 1990s (Corcho et al., 2006) such as
KIF (Genesereth et al., 1992) (based on first-order logic as a knowledge representa-
tion (KR) formalism), FLogic (Kifer et al., 1995) (based on frames combined with
first-order logic), Loom (MacGregor, 1991) (based on description logics), etc.

Furthermore, the web-based ontology languages (see Figures 2.31 and 2.32), or
ontology markup languages, appeared such as SHOE (Luke et al., 2000), XOL (Karp
et al., 1999), OIL (Horrocks et al., 2000), DAML+OIL (Horrocks et al., 2001), RDF
(Lassila et al., 1999), RDF Schema (Brickley et al., 2004), OWL (Dean et al., 2004)

74 Chapter 2. Background

and OWL2 (Motik et al., 2009). From these ontology languages, the ones that are
based on description logics (DL) and supported now and that we will overview in
the following are: RDF, RDFS, OWL and OWL2.

FIGURE 2.31: The languages stack in the Semantic Web (Corcho
et al., 2003).

FIGURE 2.32: W3C Semantic Web stack.

2.2.7.1 RDF

RDF stands for Resource Description Framework. It was developed by the W3C
(World Wide Web Consortium) to create metadata for describing web resources
and its data model is equivalent to the semantic networks formalism, consisting
of three object types: resources, properties and statements. RDF is just a data
model; it does not have any significant semantics (Smith et al., 2004). In RDF

2.2. Ontology Engineering 75

models, the classes used to type resources and the properties of these classes can be
defined using a vocabulary such as rdfs:Class, rdf:Property, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain and rds:range.

2.2.7.2 RDF Schema

The RDF data model does not have mechanisms for defining the relationships be-
tween properties and resources. This is the role of the RDF Vocabulary Description
language also known as RDF Schema. RDF(S) is the term commonly used to refer
to the combination of RDF and RDFS. Thus, RDF(S) combines semantic networks
with frames but it does not provide all the primitives that are usually found in
frame-based knowledge representation systems. Summary of basic features of RDF
Schema:

• Classes and their instances.

• Binary properties between objects.

• Organization of classes and properties in hierarchies.

• Types for properties: domain and range restrictions.

2.2.7.3 OWL

OWL, W3C Web Ontology Language, is a semantic web language designed for
encoding and exchanging ontologies. It is designed for use by applications that
need to process formally the content of information instead of just creating standard
terms for concepts as is done in XML. Every OWL document is RDF document.
Semantically, OWL is based on description logics (Baader et al., 2002) and is used to
formalize a domain by defining terminology that can be used in RDF documents
such as classes and properties. Classes are declared explicitly in OWL as rdf:type
owl:Class. OWL can also define two types of properties: object properties and
datatype properties. Object properties specify relations between pairs of classes.
Datatype properties specify a relation between a class and a data type value.

• Define instances called individuals and assert properties about them.

• Reason about these classes and individuals to the degree permitted by the
formal semantics of the OWL language.

In OWL, taxonomies can be specified for both classes and properties. The OWL
language consists of three increasingly expressive sub-languages: OWL Lite, OWL
DL and OWL Full. OWL Lite is intended for users with simple modeling needs.
OWL DL has the closest correspondence to an expressive description logic. OWL
Full is meant for users who want maximum expressiveness.

76 Chapter 2. Background

OWL is grounded on Description Logics (Baader et al., 2002) and has several
inference engines that can be used for constraint checking of concepts, properties
and instances, and for automatic classification of concepts into hierarchies. Its
semantics are described in two different ways: as an extension of the RDF(S) model
theory and as a direct model-theoretic semantics of OWL. Both of them have the
same semantic consequences on OWL ontologies.

2.2.7.4 OWL 2

OWL 2, a Semantic Web KR language based on description logics (DLs), is the
successor of OWL and has a very similar overall structure to OWL. OWL 2 adds
new features such as keys, property chains, richer datatypes, asymmetric, reflexive
and disjoint properties, enhanced annotation capabilities, etc. 14. The language
family of OWL 2 is composed of OWL 2 Full and OWL 2 DL. OWL 2 Full interprets
any RDF graph under OWL-RDF entailment regime (undecidable). OWL 2 DL,
fragment of first-order predicate logic (FOL), interprets OWL 2 ontologies by means
of decidable SROIQ description logic semantics.

OWL 2 also defines three new profiles or sub-languages that trade some expressive
power for the efficiency of reasoning 15: OWL 2 EL, OWL 2 QL and OWL 2 RL. The
three profiles are subsets of OWL 2 DL.

• OWL 2 EL: is particularly suitable for applications where very large ontologies
are needed, and where expressive power can be traded for performance
guarantees.

• OWL 2 QL: is particularly suitable for applications where relatively
lightweight ontologies are used to organize large numbers of individuals and
where it is useful or necessary to access the data directly via relational queries
(e.g., SQL).

• OWL 2 RL: is particularly suitable for applications where relatively
lightweight ontologies are used to organize large numbers of individuals and
where it is useful or necessary to operate directly on data in the form of RDF
triples. Reasoning systems for ontologies in the OWL 2 RL (Rule Language)
profile can be implemented using rule-based reasoning engines.

2.2.7.5 Description Logics (DL)

In this section, We briefly introduce Description Logics (DLs), which are the logic-
based knowledge representation (KR) formalisms behind the OWL family of web
ontology languages and designed to represent and reason about knowledge in

14https://www.w3.org/TR/owl2-overview/, retrieved 7 September 2017
15https://www.w3.org/TR/owl2-profiles/, retrieved 7 September 2017

2.2. Ontology Engineering 77

a structured and well-understood way (Baader et al., 2003a). DLs are decidable
fragments of first-order logic (FOL) and widely used in ontological modeling
(Krotzsch et al., 2014). Notably, DLs are essentials in the design of OWL (description
logic SHOIN, 2004) and OWL2 (description logic SROIQ, 2009), the current standard
language to represent ontologies. DLs provide the techniques to model relationships
between individuals of a given domain (Krotzsch et al., 2014). DLs are based on
a common family of languages called description languages, which provide a set
of constructors to build concept (class) and role (property) descriptions. Such
descriptions can be used in axioms and assertions of DL knowledge bases, or
ontologies, and can be reasoned about DL knowledge bases by DL systems (Baader
et al., 2005). Reasoning allows one to infer implicitly represented knowledge from
the knowledge that is explicitly contained in the knowledge base (Baader et al.,
2003a).

Description Logics support inference patterns that occur in many applications of
intelligent information processing systems, and which are also used by humans to
structure and understand the world: classification of concepts and individuals.

Classification of concepts determines subconcept/superconcept relationships
(called subsumption relationships in DL) between the concepts of a given termi-
nology. This hierarchy provides useful information on the connection between
different concepts, and it can be used to speed-up other inference services.

Classification of individuals (or objects) determines whether a given individual
is always an instance of a certain concept (i.e., whether this instance relationship
is implied by the description of the individual and the definition of the concept).
It thus provides useful information on the properties of an individual. Moreover,
instance relationships may trigger the application of rules that insert additional
facts into the knowledge base (Baader et al., 2003b).

Typically, a DL ontology consists of a set of statements called axioms that can be
categorized into three groups: TBox, ABox, and RBox (Krisnadhi et al., 2014).

TBox and RBox axioms describe intensional knowledge about concepts and roles
respectively. TBox axioms describe relationships between concepts. The basic TBox
axioms are concept inclusion as in

Mother v Parent,

this assertion is used to states that the concept Mother is subsumed by the concept
Parent.

Concept equivalence asserts that two concepts have the same instances such as

Person ≡ Human.

78 Chapter 2. Background

To describe more complicated situations, DLs allow building new complex concepts
expressions using various concept constructors in order to describe relationships
such as disjointness which asserts that two concepts do not share any instances.

RBox axioms refer to properties of roles. Role inclusion and role equivalence are
role assertions. Role inclusion such as

parentOf v ancestorOf,

which asserts that parentOf is a subrole of ancestorOf: every pair of individuals
related by parentOf is also related by ancestorOf.

The two roles parentOf and ancestorOf are disjoint. This axiom is written as
follows:

disjoint(parentOf, ancestorOf).

Concerning the complex roles, DLs provide inverse role, universal role and empty
role. Other RBox axioms are provided such as role transitivity, symmetry, asymme-
try, reflexivity and irreflexivity.

ABox axioms describe specific knowledge in the form of membership of an individ-
ual in a concept and relationships between individuals through a role. The most
common ABox axioms are concepts assertions such as

Mother(Julia),

which asserts that the individual named Julia is an instance of the concept Mother.

Role assertions describe relations between named individuals such as

parentOf(Julia, John),

which asserts that the individual named Julia is in relationship represented by
parentOf to the individual named John.

Individual inequality assertions such as

Julia 6= John,

are used to assert that Julia and John are different individuals. In contrast, Indi-
vidual equality assertions such as

John ≈ Johnny,

are used to states that two different names refer to the same individuals.

2.2.8 Ontology Engineering Support Processes

All the methodologies discussed in section 2.2.5 were proposed for building on-
tologies. However, many others have been proposed for supporting the ontology

2.2. Ontology Engineering 79

building process, such as ontology learning, ontology modularization, ontology
reuse, ontology re-engineering , ontology evaluation, ontology merging , etc.

In this section, the most relevant ontology support processes that may an ontol-
ogy engineer needs during the development process of his intended ontology are
discussed.

2.2.8.1 Ontology Learning

The term Ontology Learning (OL) was introduced by Madche and Staab (Maedche et
al., 2001) and is considered as an important task in Artificial Intelligence, Semantic
Web and Knowledge Management. It can be described as the acquisition of a
domain model from data (Cimiano, 2006). More specifically, OL is considered as a
subtask of Information Extraction (IE), which is a type of Information Retrieval (IR)
(Rogger et al., 2010). The main purpose of OL process is to apply methods from
various fields such as linguistic analysis, machine learning, knowledge acquisition,
statistics and information retrieval in order to extract knowledge from texts and
support the construction of ontologies.

Knowledge acquisition techniques, usually supported by machine learning and nat-
ural language processing, can be used for implementing taxonomies or suggesting
concepts for upper level ontologies, mainly hand-crafted by domain experts, as
well as for identifying and representing legal rules. Ontology learning needs input
data from which to learn the concepts relevant for a given domain, their definitions
as well as the relations holding between them (Cimiano, 2006). OL is considered
as a dynamic process of building ontologies. This dynamic process, depicted in
the Figure 2.33, takes as input implicit and unstructured knowledge and produces
as output explicit structured knowledge (Cimiano et al., 2005a). Purely automatic
learning approaches will fail to generate ontologies which are good enough for a
particular, e.g. reasoning-based, application (Lehmann et al., 2014). Generally, OL is
a semi-automatic process where the ontology engineer and the domain expert can
be involved to achieve better results. Thus, the techniques used in the ontology de-
velopment process will be under their supervision. Their expertise and background
knowledge helps in verifying the obtained information and decide the valuable
information.

80 Chapter 2. Background

FIGURE 2.33: Ontology Learning process.

• Input: Ontologies can be learn, by applying the OL process, from various
sources of data types: structured (e.g. databases, existing ontologies and
knowledge bases), semi-structured (e.g. XML and WordNet) and unstructured
natural language textual documents such as Word, PDF and Web pages. The
unstructured type is the most available format as input for ontology learning
processes. They reflect mostly the domain knowledge for which the user is
building the ontology. In addition, they describe the terminology, concepts
and conceptual structures of the given domain. However, some authors, such
as (Rogger et al., 2010), consider that processing unstructured data is the most
complicated problem because most of the knowledge is implicit and allows
conceptualizing it by different people in different manner.

• Output: Ontology learning from text is the process of deriving concepts,
relations and axioms from textual resources to build ontologies. The main
output of the OL process is a structured content represented in an explicit
formal way. For (Cimiano et al., 2004), the tasks in ontology learning from text
are organized in a set of layers (see Figure 2.34) known as ontology learning
layer cake (Cimiano, 2006). These tasks aim at returning six main outputs:
terms, synonyms, concepts, taxonomic relations, non-taxonomic relations and
axioms. These outputs represent the main elements of ontology.

For illustration purposes, Figure 2.34 includes some concrete examples from the
domain of medicine on the left of each layer.

2.2. Ontology Engineering 81

FIGURE 2.34: Ontology learning from text, layer cake (Buitelaar
et al., 2005a).

Ontology Learning Tasks and Methods In this section, the ontology learning
tasks will be described along with the lines of ontology learning layer cake (Buitelaar
et al., 2005b) (Cimiano, 2006).

1. Terms: The term extraction task is a prerequisite for all aspects of ontology
learning from text (Cimiano, 2006). Terms are linguistic realizations of domain-
specific concepts and are therefore central to further more complex tasks. From
a linguistic point of view, terms are either single or multi-word compounds
with a very specific meaning in a given domain. For Cimiano, term is defined
as any single or multi-word compound relevant for the domain in question as a term.
The input of this task is a collection of documents representing the domain of
interest, while output is a set of strings SC and SR representing terms which
will be used as signs for concepts and relations respectively (Cimiano, 2006).

Concerning the term extraction methods, the literature provide many exam-
ples that could be used as a first step in ontology learning from texts. Most
of these methods are are based on information retrieval methods for term
indexing (Salton et al., 1988), but many also are inspired by terminology and
NLP research such as (Bourigault et al., 2001) (Pantel et al., 2001).

2. Synonyms: Generally, synonyms discovery consists of finding words which
denote the same concept. The synonym level addresses the acquisition of
semantic term variants in and between languages, where the latter in fact
concerns the acquisition of term translations (Buitelaar et al., 2005a). For
Cimiano (Cimiano, 2006), two words are considered as synonyms if they
share a common meaning which can be used as a basis to form a concept
relevant to the domain in question.

For synonyms extraction, most of the works have focused on the integration
of WordNet16 for the acquisition of English synonyms, and EuroWordNet17

16http://wordnet.princeton.edu
17http://www.elda.fr

82 Chapter 2. Background

for bilingual and multilingual synonyms and term translations (Buitelaar
et al., 2005a).

Meanwhile, other works have focused on algorithms for dynamic acquisition
of synonyms using different techniques and methods such as clustering and
related techniques, particularly Harri’s hypothesis that consider words are
semantically similar to the extent to which they share linguistic context (Harris,
1968). Other important techniques are cited in the literature LSI (Latent
Semantic Indexing) (Landauer et al., 1997) and PLSI (Probabilistic Latent
Semantic Indexing) (Hofmann, 1999). Finally, synonyms are detected on the
web using statistical information measures (Baroni et al., 2004).

3. Concepts: According to Buitelaar and his colleagues (Buitelaar et al., 2006),
concept formation should ideally provide:

• An intensional definition of concepts

• Set of concept instances, i.e. its extension

• A set of linguistic realizations, i.e. (multilingual) terms for this concept.

Thus, a concept is defined as a triple < i(c), [c], RefC(c) > (Cimiano, 2006).

The task of concept extraction from text is considered as difficult and con-
troversial since it is not clear what a concept extraction is supposed to be.
Some works considered clustered of related terms as concepts such as (Lin
et al., 2002). Other works, such as (Evans, 2003) have addressed concept
formation from an extensional point of view. Finally, some systems learn
concepts intensionally such as OntoLearn (Velardi et al., 2005).

4. Concept Hierarchies: The concept hierarchy is defined by Cimiano as the tasks
related to inducing, extending and refining the ontology’s backbone. Three main
paradigms are exploited to induce concept hierarchies from texts:

• Lexico-syntactic patterns.

• Harris’ distributional hypothesis using hierarchical clustering algorithms
(Cimiano et al., 2005a).

• Analysis of co-occurrence of terms in the same sentence, paragraph or
document (Sanderson et al., 1999).

5. Relations: Four main tasks can be distinguished in the relation learning task
(Cimiano, 2006):

• Finding concepts in C standing in non-taxonomic ontological relation,

• Specifying R, i.e. finding appropriate labels and relation identifiers on
the basis of te given corpus,

2.2. Ontology Engineering 83

• Given a certain relation r ∈ R, determining the right level of abstraction
with respect to the concept hierarchy for the domain and range of the
relation,

• Learning a hierarchical order ≤R between the relations in R.

In the literature, few approaches have addressed the issue of learning on-
tological relations from texts such as the use of association rules extraction
algorithm based on sentence-based term co-occurrence (Madche et al., 2000),
the use of syntactic dependencies (Gamallo et al., 2002).

6. Axioms and Rules: The task of learning axioms can be understood as consist-
ing in deriving more complex relationships and connections between concepts
and relations (Cimiano, 2006). These axioms can be represented using the
Horn-fragment of first-order logic. Initial blueprints of this task can be found
in (Lin et al., 2001) (Haase et al., 2005) (Shamsfard et al., 2004).

Ontology Learning Approaches There are many approaches in the literature that
deal with ontology learning from textual resources (Gomez-Perez et al., 2003b). The
most relevant approaches are, among others, the ones proposed by Aussenac-Gilles
and her colleagues (Aussenac-Gilles et al., 2000), Bachimont (Bachimont et al., 2002),
Sabou and her colleagues (Sabou et al., 2005)and Maedche and Staab (Maedche
et al., 2001).

Aussenac-Gilles and colleagues’s Approach Aussenac-Gilles and her colleagues
proposed an ontology learning approach based on knowledge elicitation from
technical documents (Aussenac-Gilles et al., 2000). The approach allows creating a
domain model by analyzing of a given corpus using natural language processing
(NLP) tools and linguistics techniques. Thus, the central role in this method is given
to the textual resources.

Therefore, the approach combines knowledge acquisition tools based on linguistic
with modeling techniques that allows keeping links between models and texts.

The ontology learning process in this approach is composed of four main activities:

• Corpus constitution: Texts are selected among the available technical docu-
mentation from the ontology requirements. The authors recommend that the
selection of texts be made by an expert in texts of the domain. Also according
to the authors, the corpus has to cover the entire domain specified by the ap-
plication. To perform this activity is very useful to have a glossary of terms of
the domain. Thus, the expert selects texts containing the terms of the glossary.

• Linguistic study: This activity consists in selecting adequate linguistic tools
and techniques and applying them to the texts. The main difficulty is to select

84 Chapter 2. Background

the tools to be used, which strongly depend on the language to be processed.
As a result of this activity, domain terms, lexical relations, and groups of
synonyms will be obtained.

• Normalization: The result of this activity is a conceptual model expressed
by means of a semantic network. This conceptual model is rather informal,
however, it can be easily understood by the ontology designer. Normalization
includes a linguistic step and a conceptual modeling step.

• Formalization: It includes ontology validation and implementation.

Bachimont’s Approach The ontology learning approach proposed by Bachimont
(Bachimont et al., 2002) is based on a claim that an ontology has to introduce knowledge
primitives which will be the building blocks for programming a Knowledge-Based System
(KBS). From this perspective, the approach consists of three main steps (see Figure
2.35):

• Semantic normalization: The goal of the first step is to reach a semantic
agreement about the meaning of the labels used for naming the concepts.
The ontologist has to choose the relevant terms of a domain and specify
their meaning, expressing the similarities and differences of each notion with
respect to its neighbors: its parent-notion and its siblings-notions. The result is
a taxonomy of notions where the meaning of a node is given by the gathering
of all similarities and differences attached to the notions found on the way
from the root notion (the more generic) to this node.

• Formalization: The ontological tree obtained in the first step allows to disam-
biguate the notions and to clarify their meanings for a domain-specific

application. Hence, the user can constrain the domains of a relation, define
new concepts, add properties to these concepts or add general axioms.

• Operationalization: this step transcribes the ontology into a specific knowl-
edge representation language.

2.2. Ontology Engineering 85

FIGURE 2.35: Bachimont’s Ontology learning approach (Bachimont
et al., 2002).

Sabou’s Approach The ontology learning approach proposed by Sabou and her
colleagues (Sabou et al., 2005) represent a natural language processing approach.
The ontology extraction method uses a set of syntactic patterns to discover the
dependency relations between words. Their extraction method exploits the syn-
tactic regularities which are inherent from the sublanguage nature of web service
documentations, which is a specialized form of natural language. The ontology
extraction process consists of four main steps, as depicted in Figure 2.36.

• Dependency parsing: consists of annotating the corpus with linguistic infor-
mation that helps in deciding the possible role of each word in the future
ontology to be built.

• Syntactic patters: a set of syntactic patterns is used to identify and extract
information from the annotated corpus.

• Ontology building: transforms the extracted relevant information into onto-
logical constructs.

• Ontology pruning: excludes potentially uninteresting concepts from the on-
tology.

86 Chapter 2. Background

FIGURE 2.36: Ontology learning process steps (Sabou et al., 2005).

Madche and Staab’s Approach Maedche and Staab (Maedche et al., 2001) have
proposed a semi-automatic ontology learning approach with human intervention
adopting the paradigm of balanced cooperative modeling (Morik, 1993) for the
construction of ontologies for the Semantic Web. The ontology engineering cycle is
composed of five main steps (see Figure 2.37):

1. Import/Reuse: existing ontologies are imported and reused by merging
existing structures or defining mapping rules between existing structures and
the ontology to be established.

2. Extract: in this phase, major parts of the target ontology are modeled with
learning support feeding from web documents.

3. Prune: the rough outline of the target ontology needs to be pruned in order to
better adjust the ontology to its prime purpose.

4. Refine: ontology refinement profits from the given domain ontology, but
completes the ontology at a fine granularity.

5. Validate: application serves as a measure for validating the resulting ontology.

2.2. Ontology Engineering 87

FIGURE 2.37: Ontology learning process steps (Maedche et al., 2001).

Ontology Learning Tools The main goal of using ontology learning tools is to
reduce the time and cost of ontology development process. In the literature, a long
list of ontology learning tools has been proposed. The existent tools differ according
to input data types, output formats and mainly the methods and algorithms used
in order to extract the ontological structures. In this section, the most relevant tools
are outlined: Terminae, Text2Onto, OntoGen and T2K.

Terminae Terminae (Biebow et al., 1999) is a tool based on a methodology elabo-
rated from practical experiments of ontology building in the domain of telecommu-
nications. Linguistic and knowledge engineering tools are integrated in Terminae
to guide the knowledge acquisition from texts and to build terminological and
ontological models. The linguistic engineering part allows the definition of ter-
minological forms from the study of term occurrences in a corpus using several
NLP techniques (such as term extractor and relation extractor with lexico-semantic
patterns). The knowledge engineering part involves knowledge-base management
with an editor and browser for the ontology.

The Terminae methodology is composed of two main steps (see Figure 2.38):

• Terminological: established list of terms. This requires the constitution of a
relevant corpus of texts on the domain. Then LEXTER (Bourigault, 1994), a

88 Chapter 2. Background

term extractor, proposes to the knowledge engineer a set of candidate terms
from which the effective terms have to be selected with the help of an expert.

• Modeling: conceptualizes each term. The knowledge engineer analyzes the
uses of the term in the corpus to define all the notions (meanings) of the
term. He/she gives a definition in natural language for each notion and then
translates the definition into a formalism.

FIGURE 2.38: Architecture of Text2Onto (Biebow et al., 1999).

Text2Onto Text2Onto is a data-driven ontology learning tool that supports semi-
automatic development of ontologies from textual documents (Cimiano et al.,
2005b). Text2Onto is built upon the GATE18 framework. Accordingly, Text2Onto im-
plements linguistic processing and machine learning statistical techniques to extract
domain concepts and relations. This tool features also algorithms for generating
concepts, taxonomic and non-taxonomic relations.

In Text2Onto, the learned knowledge is represented into a meta level model called
probabilistic ontology model (POM). POM is a collection of modeling primitives
independent from any ontology representation language. Such primitives are
defined in the Modeling Primitives Library (MPL) (see Figure 2.39).

In Text2Onto, seven main modeling primitives are distinguished:

• Concepts

• Concept inheritance (Taxonomic relationships)

• Concept instantiation (Instances)

• Properties/relations (Non taxonomic relationships)

• Domain and range restrictions (Axioms)

• Mereological relations (Part-of relations)

• Equivalence.

Text2Onto uses data driven change discovery for algorithms for supporting auto-
matic and semi-automatic adaptation of a given ontology according to changes in a

18https://gate.ac.uk/

2.2. Ontology Engineering 89

data set and provides several algorithms for instantiating each modeling primitive
from POM.

FIGURE 2.39: Architecture of Text2Onto (Cimiano et al., 2005b).

OntoGen OntoGen is a semi-automatic and data-driven ontology editor focusing
on editing of topic ontologies (a set of topics connected with different types of
relations (Fortuna et al., 2007). OntoGen tends to help the users to build ontologies
by suggesting concepts and relations. This system integrates machine learning and
text mining algorithms. OntoGen offers two main features: concept suggestion and
naming and ontology and concept visualization.

T2K T2K, Text to Knowledge, extracts domain-specific information from texts
using natural language processing techniques in three main phases (see Figure 2.40)
(Dell’Orletta et al., 2014):

• Preprocess text and extract terms using NLP tools

• Form concepts using POS patterns

• Relations or knowledge organization.

90 Chapter 2. Background

FIGURE 2.40: T2K.

Tool Extracted Elements Learning Techniques

Terminae
(2005)

Terms, synonyms, concepts,
taxonomies, non-taxonomic
relations

linguistic and knowledge en-
gineering (Conceptual Clus-
tering)

Text2Onto
(2005)

Terms, synonyms, concepts,
taxonomies, non-taxonomic
relations, instances

linguistic processing, statis-
tical text analysis, machine
learning and association rules

OntoGen
(2006)

Terms, concepts, taxonomies Machine learning and text
mining

T2K (2008) Terms, concepts, taxonomies statistical text analysis and
machine learning

TABLE 2.5: A summary of Ontology learning tools.

2.2.8.2 Ontology Reuse

Ontology reuse can be defined as the process in which existing ontological knowl-
edge is used as input to generate new ontologies. Being reusable is an intrinsic
property of ontologies, originally defined as means for “knowledge sharing and
reuse” .

Ontology reuse is still rarely encountered today. This is partly due to the problem
of finding suitable ontologies to reuse, and the way most ontologies are created,
namely without reusability in mind. Also, most of the established ontologies
containing domain knowledge are simply too big to be easily reused, and no quality
information is available on web ontologies (Hartmann et al., 2009).

2.2. Ontology Engineering 91

Ontology Reuse Case Studies In this section we give an overview of the most
prominent case studies in ontology reuse, which have been published in the knowl-
edge/ontology engineering literature.

Gómez-Pérez and Rojas-Amaya’s Case Study Gomez-Perez and Rojas-Amaya
describe a case study, in which an ontology for standard units and a chemical
ontology are reused for the purpose of developing an ontology for environmental
pollutants (Gomez-Perez et al., 1999). The reuse process clearly focuses on a method
for ontology re-engineering, which attempts to capture the conceptual model of the
implemented source ontologies in order to transform them into a new, more correct
and more complete ontology. The re-engineering methodology proposed by the
authors consists of three steps:

• Reverse engineering: on the basis of the code of the source ontology (i.e. its
implementation in a particular representation language) one derives a possible
conceptual model. This step is performed iteratively, by extracting models
with an increasing complexity: the taxonomic structure, followed by relations
between concepts and instances and finally more expressive constructs such
as axioms or functions.

• Re-structuring: the objective of this step is to evaluate the correctness of the
extracted model, correct the detected errors and refine it in conformity with
the requirements of the new application setting.

• Forward engineering: the ontology is re-implemented on the basis of the
revised conceptual model.

The reuse process was performed along the following stages:

1. Select reuse candidates: ontologies stored on the Ontolingua and the Cyc
servers were manually selected and evaluated with respect to their relevance
to the target domain and with respect to a series of general-purpose modeling
guidelines.

2. Re-engineering: relevant ontologies were re-engineered as described above

3. Merging: the ontologies were merged to a final product.

The focus of the work is to demonstrate the applicability of the re-engineering
approach with the help of a case study.

The authors admit the limitations of their approach with respect to the complexity
of the ontological sources employed, and the need for automatic means. The
experiment is restricted to taxonomic ontologies containing a manageable number
of at most several hundreds of concepts.

92 Chapter 2. Background

Capellades’ Case Study Capellades aimed at building an application ontology
by reusing ontologies available at the Ontolingua Server (Capellades, 1999).

The reuse process covered two main stages:

• Select candidate ontologies: the selection step does not have to cope with
the issue of discovering potential reuse candidates, as the set of reusable
ontologies was limited to the Ontolingua repository.

• Customize and integrate relevant ontologies: due to the poor application
relevance results obtained in the previous step, the integration was restricted
to extracting particular fragments of the selected ontology, which were subse-
quently embedded to the application system.

In this case study, two main problems was associated with ontology reuse were:
(1) the analysis and evaluation of existing ontologies is too costly in terms of
development time, even when using current on-line browsing and editing tools;
and (2) the lack of methods for quickly assessing the reusability and the consistency
of existing ontologies make the decision process associated with reuse difficult.

The authors suggested that it is necessary to experiment more with ontology reuse
and to objectively measure its cost-effectiveness, so that convergence to a conclusion
regarding the feasibility of ontology sharing can be reached.

Arpirez et al. According to Arpirez and his colleague, knowledge reuse by means
of ontologies faces three important problems at present (Arpirez et al., 2000): (1)
there are no standardized identifying features that characterize ontologies from the
user point of view; (2) there are no web sites using the same logical organization,
presenting relevant information about ontologies; and (3) the search for appropriate
ontologies is hard, time-consuming and usually fruitless.

In order to solve these problems, they give an account for a case study in which
the (ONTO)2 ontology was reused in order to build a living domain ontology
about ontologies called Reference ontology, a meta-ontology intended to capture
information about ontologies and ontology engineering projects.

The activities performed in the case study are not representative for a complete
reuse life cycle, covering three phases:

• Choosing candidate ontologies: in this step the (ONTO)2 ontology was evalu-
ated with respect to its relevance and usability for the desired purpose. The
reuse candidate fulfilled many of the evaluation criteria, ranging from domain
to representation formalism.

• Analysis of the candidate ontologies: the ontology was analyzed as regards
the quality of its modeling decisions and its validity.

2.2. Ontology Engineering 93

• Integration: the (ONTO)2 ontology was extended and revised in order to
adapt it to the requirements of the new Reference ontology.

Reusing the (ONTO)2 ontology was perceived as beneficial by the case study au-
thors, who mention cost and interoperability as two of the major advantages of
this engineering strategy. However, they also identify the circumstances which
contribute to the efficient operation of the reuse process: the availability of the
reused ontology in an appropriate representation form (including its conceptual
structure) and the extensive knowledge of the ontology engineers with respect to
the domain of the ontology.

2.2.8.3 Ontology Modularization

The main idea of modularization originates from the general notion of modular
software in the area of software engineering. In software engineering domain, the
modularity is a well established notion where it refers to a way of designing software
in a clear, well structured way that supports maintenance and reusability (Grau et al.,
2007b). However, in the ontology engineering domain, the notion of modularization
and the problem of formally characterizing a modular representation for ontologies
are not as well understood (Grau et al., 2007a), which causes suffer in the existing
work and prevents further development (d’Aquin et al., 2007).

Despite this vagueness, ontology modularization is considered as a major topic in
the field of formal ontology developments and a way to facilitate and simplify the
ontology engineering process (Hois et al., 2009).

Generally, modularization denotes the possibility to perceive a large knowledge
repository as a set of modules, i.e. smaller repositories that, in some way, are parts
of and compose the whole knowledge (Stuckenschmidt et al., 2009). Therefore,
an ontological modularization process is seen as a call for organizing ontologies
into modules which could then be reused and combined in novel ways (Hois et al.,
2009). In other words, ontology modularization is considered as a way to structure
ontologies, meaning that the construction of a large ontology should be based on the
combination of self-contained, independent and reusable knowledge components
(d’Aquin et al., 2007).

In the literature, several different approaches for ontology modularization ap-
peared. These approaches are classified into two main categories (Abbes et al., 2012)
(d’Aquin et al., 2007): (1) ontology composition and (2) ontology partitioning and
module extraction.

The first main category comprises approaches that focus on the composition of
existing ontologies by means of integrating and mapping ontologies. Ontology
composition aims to develop independently a set of ontology modules and assemble

94 Chapter 2. Background

them coherently and uniformly, by means of integrating and mapping, to form a
wider ontology. Examples of ontology composition approaches are, among others
(Steve et al., 1997) and (Bezerra et al., 2009).

The second main category comprises approaches for modularizing ontologies in
terms of ontology partitioning and ontology module extraction.

• Ontology partitioning aims at splitting up an existing ontology into a set of
ontology modules. Approaches for partitioning ontologies are proposed by
(Schlicht et al., 2007), (MacCartney et al., 2003).

• Ontology module extraction, or segmentation (Doran, 2006), aims at reducing
an ontology to its relevant sub-parts. Examples of approaches for ontology
module extraction are (Grau et al., 2007c) (Sattler et al., 2009).

Ontology Modules Generally speaking, a module is a part of a complex system
that functions independently from this system (Konev et al., 2009). In contrast to
the software engineering domain, the notion of ontology module is not clear or
understood in the domain of ontological engineering (Doran, 2006).

There is a need to formalize and define an ontology module, particularly in terms
of its requirements (Bezerra et al., 2008). For (Grau et al., 2006), ontology module is
considered as extractable part that can be reused outside the context of the general
ontology.

More clearly, an ontology module is defined by (Doran, 2006) as “An ontology
module is a reusable component of a larger or more complex ontology, which is
self-contained but bears a definite relationship to other ontology modules including
the original ontology”. This definition implies that ontology modules can be reused
either as they are, or by extending them with new concepts, and relationships. Each
ontology module is considered as ontology itself since it can be extended with new
concepts and relationships. Thereby, ontology modules are themselves ontologies
(Abbes et al., 2012).

Based on their content, ontologies, or ontology modules, are classified into five
main categories (Guarino et al., 1994), (Guarino, 1997) and (Heijst et al., 1997):

• Generic, or top-level, ontologies: describe generic concepts independently of
a particular domain or problem.

• Core ontologies: in contrast to generic ontologies that span across many fields,
core ontologies describe the basic categories within a domain such as law.

• Domain ontologies: specialize a subset of generic ontologies in a domain or
sub-domain, e.g., criminal law.

2.2. Ontology Engineering 95

• Application or domain-specific ontologies: developed for a specific applica-
tion.

Ontology Modules Criteria The criteria of ontology modules generally aim at
characterizing modular ontologies in order to evaluate the quality of modules
(Gangemi et al., 2004). Generally, inspired by the soft-ware engineering domain,
three main criteria a module should fulfill: self-contained, loose coupling and high
cohesion (Stuckenschmidt et al., 2007) (Stuckenschmidt et al., 2003). Therefore, in
the ontological engineering domain, some studies, such as (d’Aquin et al., 2009),
believe that modularization criteria should be defined in terms of the applications
for which the modules are created. They defined some ontology module criteria
such as:

• Encapsulation: a module can be easily exchanged for another, or internally
modified, without side-effects on the application.

• Independence: self-containment and reusability in order to improve the scala-
bility of reasoning mechanisms.

• Domain coverage: generate significant module according to the different
domains or topics covered by the original ontology.

2.2.8.4 Ontology Evaluation

Ontologies are a fundamental data structure for conceptualizing knowledge,but
many different ontologies are built for conceptualizing the same body of knowledge
and it should be possible to define them concerning some predefined criterion. Con-
structing an ontology need a way to evaluate the resulting ontology and possibly
to guide the construction process and any refinement steps. Automated or semi-
automated ontology learning techniques also require effective evaluation measures,
which can be used to select the “best” ontology out of many candidates, to select
values of tunable parameters of the learning algorithm, or to direct the learning
process itself (Brank et al., 2005).

Ontology evaluation is an emerging field that has a number of frameworks and
methodologies in existence (Vrandecic, 2009). Several studies in the literature, such
as (Vrandecic, 2009), (Brank et al., 2005), (Gomez-Perez, 1995) and (Gomez-Perez
et al., 2004), have defined ontology evaluation. Generally ontology evaluation is
described as the process of deciding on the quality of an ontology in respect to a
particular criteria (Brank et al., 2005).

An ontology can be evaluated against many criteria: its coverage of a particular
domain and the richness, complexity and granularity of that coverage; the specific
use cases, scenarios, requirements, applications, and data sources it was developed

96 Chapter 2. Background

to address; and formal properties such as the consistency and completeness of the
ontology and the representation language in which it is modeled (Obrst et al., 2007).

In the literature, various approaches to the evaluation of ontologies have been
considered depending on what kind of ontologies are being evaluated and for what
purpose (Brank et al., 2005). These approaches are mainly classified into four main
categories:

• based on comparing the ontology to a “golden standard” (Maedche et al.,
2002).

• based on using the ontology in an application and evaluating the results
(Porzel et al., 2004).

• based on involving comparisons with a source of data (e.g. a collection of
documents) about the domain to be covered by the ontology (Brewster et al.,
2004).

• based on human evaluation by assessing how well the ontology meets a set
of predefined criteria, standards, requirements, etc. (Gomez-Perez, 2004).

Moreover, the ontology evaluation approaches can be grouped according to level of
evaluation based on some quality metrics (Gangemi et al., 2006; Brank et al., 2005):
lexical and concept/data (Maedche et al., 2002), taxonomic and semantic relations
(Brewster et al., 2004), context-level (Ding et al., 2004), application-based (Porzel
et al., 2004) and data-driven (Patel et al., 2003).

• Lexical, vocabulary, or data layer: Evaluation on this level tends to involve
comparisons with various sources of data concerning the problem domain (e.g.
domain-specific text corpora), as well as techniques such as string similarity
measures (e.g. edit distance). An example of an approach that can be used
for this evaluation level is the one proposed by Maedche and Staab (Maedche
et al., 2002).

• Hierarchy or taxonomy and other semantic relations: An ontology typically
includes a hierarchical is-a relation between concepts. Although various other
relations between concepts may be also defined, the is-a relationship is often
particularly important and may be the focus of specific evaluation efforts.

Several approaches exist in the literature concerning this level such as (Brew-
ster et al., 2004) that suggested a data-driven approach to evaluate the degree
of structural fit between an ontology and a corpus of documents, (Guarino
et al., 2002b) that presented a different aspect of ontology evaluation based
on several philosophical notions that can be used to better understand the
nature of various kinds of semantic relationships that commonly appear in
ontologies, and to discover possible problematic decisions in the structure of

2.2. Ontology Engineering 97

an ontology and (Maedche et al., 2002) that proposed several measures for
comparing the relational aspects of two ontologies.

• Application level: Typically, the ontology will be used in some kind of ap-
plication or task. The performance of the application depends partly on the
ontology used in it. Thus, a good ontology will helps the application in ques-
tion to produce good results on the given task. Therefore, ontologies may be
evaluated by plugging them into an application and evaluating the results of
the application.

In this context, task-based evaluations offer a useful framework for measur-
ing practical aspects of ontology deployment, such as the human ability to
formulate queries using the query language provided by the ontology, the
accuracy of responses provided by the system’s inferential component, the
degree of explanation capability offered by the system, the coverage of the
ontology in terms of the degree of reuse across domains, the scalability of the
knowledge base, and the ease of use of the query component (Obrst et al.,
2007).

• Data-driven level: Evaluation of the ontology by comparing it to existing
data (usually a collection of textual documents) about the problem domain
to which the ontology refers. Examples of approaches in this level are (Patel
et al., 2003) and (Brewster et al., 2004).

• Syntactic level: Evaluation on this level may be of particular interest for
ontologies that have been mostly constructed manually. The ontology is usu-
ally described in a particular formal language and must match the syntactic
requirements of that language.

• Structure, architecture, design: This is primarily of interest in manually con-
structed ontologies. The ontology should meet certain pre-defined design
principles or criteria.

Additionally, other studies, such as (Gangemi et al., 2006), identify three main
types of validation measures: (1)structural measures, that are typical of ontologies
represented as graphs; (2)functional measures, that are related to the intended use
of an ontology and of its components, i.e. their function; (3)usability-profiling
measures, that depend on the level of annotation of the considered ontology.

Finally, we present the ontology validation concept in the work of Gomez-Perez
(Gomez-Perez, 1995) who claimed that the development team must perform a
global technical evaluation that ensures well-defined properties in two main levels:
definitions of the ontology and documentation.

98 Chapter 2. Background

• Definitions of the ontology: technical evaluation that must be performed
during the whole ontology life-cycle in order to detect the absence of some
well-defined properties in the definitions. The evaluation steps include:

– Check the structure or architecture of the ontology: to figure out if the
definitions are built following the design criteria of the environment in
which they are included.

– Check the syntax of the definitions: to detect syntactically incorrect
structure and/or wrong keywords in definitions without looking into
their meaning.

– Check the content in the definitions: to identify lack of knowledge and
mistakes in the definitions. It deals with the problem of the three Cs:
Consistency, Completeness and Conciseness.

∗ Consistency: refers to the incapability of getting contradictory con-
clusions simultaneously from valid input data. An ontology is se-
mantically consistent if and only if its definitions are semantically
consistent.

∗ Completeness: refers to the extension, degree, amount or coverage
to which the information in a user-independent ontology covers the
information of the real world.

∗ Conciseness: refers to if all the information gathered in the ontology
is useful and precise.

• Documentation: to guarantee that certain documents are developed and that
they evolve in step with the definitions and software. Documentation includes:
the natural language string in each definition, general information about the
ontology, its basic ontological commitments, a summary of its definitions,
studied cases in its evaluation and definitions taken from other ontologies.

2.3 Knowledge Engineering

After surveying the domain of ontology engineering, we will overview the knowl-
edge engineering domain that consists of the process of building intelligent systems
(Negnevitsky, 2005) which are considered as expert systems, or commonly known
as knowledge-based systems (KBSs). Early, the Knowledge engineering (KE) is
considered as a transfer process that turns the process of constructing KBSs from
art into an engineering discipline (Studer et al., 1998). In other words, to transform
the human knowledge into an implemented knowledge base based on knowledge
acquisition. This requires the analysis of the building and maintenance process itself

2.3. Knowledge Engineering 99

and the development of appropriate methods, languages, and tools specialized for
developing KBSs.

During the last decade, comprehensive knowledge-engineering methodologies
have emerged which provide support for organizing the development process
of knowledge-based systems (KBS) (Heijst et al., 1997). So far, the process of
knowledge engineering or building a KBS may be seen as a modeling activity (Studer
et al., 1998) (Valente et al., 1992). Building a KBS means building a computer model
with the aim of realizing problem-solving capabilities comparable to a domain
expert.

This knowledge is not directly accessible, but has to be built up and structured
during the knowledge acquisition phase. Therefore this knowledge acquisition
process is no longer seen as a transfer of knowledge into an appropriate computer
representation, but as a model construction process (Clancey, 1989) (Fensel et al.,
1996). This modeling view of the building process of a KBS has the following
consequences (Studer et al., 1998):

• The modeling process is only an approximation of the reality.

• The modeling process is a cyclic process. New observations may lead to a
refinement, modification, or completion of the already built-up model. On
the other side, the model may guide the further acquisition of knowledge.

• The modeling process is dependent on the subjective interpretations of the
knowledge engineer. Therefore this process is typically faulty and an evalua-
tion of the model with respect to reality is indispensable for the creation of an
adequate model.

2.3.1 Modeling Principles in Knowledge Engineering

In an overview of the field of knowledge engineering, three modeling principles
are identified which lie at the heart of all recent knowledge engineering approaches
(Musen et al., 1995): (1) role-limiting, (2) knowledge typing and (3) reusability.
An additional fourth general knowledge engineering principle, which is skeletal
models, is identified by (Heijst et al., 1997).

1. Role-limiting: is a mechanism for organizing knowledge by putting con-
straints on the ways knowledge elements of particular types can be used in
reasoning (Heijst et al., 1997).

2. Knowledge typing: according to role-limiting, knowledge elements must be
typed according to their role in problem solving. According to (Heijst et al.,
1997), five different types of knowledge are distinguished in the literature (see
Figure 2.41):

100 Chapter 2. Background

• Tasks: goals that must be achieved during problem solving.

• Problem-solving methods: ways to achieve the goals described in tasks.

• Inferences: reasoning steps in the problem-solving process, called also
mechanisms. The inferences form a functional model which is sometimes
called the inference model or inference structure.

• Ontologies: describe the structure and vocabulary of the static domain
knowledge.

• Domain knowledge: refers to a collection of statements about the do-
main.

FIGURE 2.41: The different components of knowledge models (Heijst
et al., 1997).

3. Reusability: reuse of knowledge components across domains and tasks is es-
sential for knowledge engineering approaches. The availability of libraries of
validated and well-documented knowledge components not only speeds up
the KBS development process but it also facilitates maintenance and upgrad-
ing. However, there are differences between the approaches with respect to
the nature and the grain size of the components that they consider potentially
reusable.

4. Skeletal models: for this principle, the knowledge model components are
often reused in the form of skeletal models (see Figure 2.42). Such models
specify one part of a knowledge model (e.g. the problem solving method).
The knowledge engineer then has to fill in the other parts to complete the

2.3. Knowledge Engineering 101

knowledge model. As a result of knowledge typing, the already specified
parts in the skeletal model constrain how the other parts can be modeled. This
way, skeletal models structure the knowledge modeling process.

FIGURE 2.42: A schematic overview of how modern knowledge
engineering approaches view the knowledge engineering process.

(Heijst et al., 1997).

The knowledge model is an implementation-independent description of the
knowledge and methods needed to perform a task. The design model de-
scribes how the knowledge model can be operationalized in a knowledge
based system. The design model specifies both the general architecture of
the KBS and the representations and algorithms that are used by the KBS to
perform its task.

2.3.2 Knowledge Engineering Approaches

During the last decade, a number of approaches to knowledge engineering were
proposed that are similar in spirit, although they differ in their details and ter-
minology (Heijst et al., 1997) such as, among others, CommonKADS (Schreiber
et al., 1993), MIKE (Angele et al., 1998), Generic Tasks (Chandrasekaran et al., 1992),
Components of Expertise (Steels, 1990), Role-limiting Methods (McDermott, 1993)
and Protégé (Puerta et al., 1992). We will review briefly the main features of the
most known and used approaches.

2.3.2.1 CommonKADS

CommonKADS is the leading approach to support KBS engineering (Schreiber
et al., 1993). It is considered as the best established and the most comprehensive
knowledge engineering approach. CommonKADS provides the methods to perform
a detailed analysis of knowledge tasks and processes (Schreiber et al., 2000). This
approach originated from KADS (Schreiber et al., 1993). A basic characteristic of
KADS is the construction of a collection of models, where each model captures
specific aspects of the KBS to be developed as well as of its environment (Studer et
al., 1998). An important aspect of CommonKADS is its reliance on multiple models
to address the complexity of a knowledge management or knowledge engineering

102 Chapter 2. Background

project. In CommonKADS, six main models are distinguished (see Figure 2.43):
Organization, Task, Agent, Knowledge,Communication and Design.

FIGURE 2.43: CommonKADS models (Schreiber et al., 2000).

We will discuss the knowledge model which distinguishes three main types of knowl-
edge required to solve a particular task (Studer et al., 1998): domain layer, task layer
and inference layer.

• Domain layer: in order to solve a given task, there is a need to model all
the domain specific knowledge. This includes a conceptualization of the
domain in a domain ontology, and a declarative theory of the required domain
knowledge. One objective for structuring the domain layer is to model it as
reusable as possible for solving different tasks.

• Inference layer: at this layer the reasoning process of the KBS is specified
by exploiting the notion of a PSM (Problem-Solving Method). The inference
layer describes the inference actions the generic PSM is composed of as well
as the roles, which are played by the domain knowledge within the PSM. The
dependencies between inference actions and roles are specified in what is
called an inference structure.

• Task layer: the task layer provides a decomposition of tasks into subtasks and
inference actions including a goal specification for each task, and a specifi-
cation of how these goals are achieved. The task layer also provides means
for specifying the control over the subtasks and inference actions, which are
defined at the inference layer.

The clear separation of the domain specific knowledge from the generic description
of the PSM at the inference and task layer enables in principle two kinds of reuse: on
the one hand, a domain layer description may be reused for solving different tasks
by different PSMs, on the other hand, a given PSM may be reused in a different
domain by defining a new view to another domain layer (Studer et al., 1998).

2.3. Knowledge Engineering 103

Furthermore, CommonKADS methodology is tailored to the legal domain by
adding domain-specific elements (Van Kralingen et al., 1999).

2.3.2.2 MIKE

The MIKE approach (Angele et al., 1998) (Model-based and Incremental Knowledge
Engineering) provides a development method for KBSs covering all steps from the
initial elicitation through specification to design and implementation. In MIKE, the
entire development process is divided into a number of sub-activities (see Figure
2.44): Elicitation, Interpretation, Formalization/Operationalization, Design, and
Implementation. Each of these activities deals with different aspects of the system
development.

FIGURE 2.44: MIKE development process (Angele et al., 1998)

.

2.3.2.3 PROTÉGÉ-II

The PROTÉGÉ-II approach (Eriksson et al., 1995), (Puerta et al., 1992) aims at
supporting the development of KBSs by the reuse of PSMs and ontologies. In addi-
tion, PROTÉGÉ-II puts emphasis on the generation of custom-tailored knowledge-
acquisition tools from ontologies (Eriksson et al., 1994). PROTÉGÉ-II relies on the
task-method-decomposition structure. By applying a PSM, a task is decomposed
into corresponding subtasks. This decomposition structure is refined down to a
level at which primitive methods, so-called mechanisms, are available for solv-
ing the subtasks (Studer et al., 1998). Three main types of ontologies are used
in PROTÉGÉ-II: method, domain and application. Method ontologies define the

104 Chapter 2. Background

concepts and relationships that are used by the PSM for providing its functionality.
Domain ontologies define a shared conceptualization of a domain. Both PSMs and
domain ontologies are reusable components for building up a KBS. Application
ontologies extend domain ontologies with PSM specific concepts and relationships.

Approach Core Concepts Concepts Instances

CommonKADS Models Organization, Task, Agent, Commu-
nication, Knowledge, Design

MIKE Ativities Elicitation, Interpretation, Formal-
ization/Operationalization, Design,
and Implementation

PROTÉGÉ-II Task-method decompo-
sition structure

Subtasks

TABLE 2.6: A summary of Knowledge engineering approaches

2.3.3 Legal Knowledge Engineering Approaches

The development of a knowledge-based system is seen as the construction of a set
of models of problem solving behavior, such that the system is a computational
realization of these models. All approaches to legal knowledge engineering have
an implicit and general goal which is the development of (better) legal knowledge-
based systems (LKBS) (Valente et al., 1992).

In the legal engineering domain, three main approaches are distinguished for
building legal knowledge-based systems: case-based, rule-based and model-based.
In this section, the rule-based and model-based approaches will be discussed.

2.3.3.1 Rule-Based Approach

The aim of the rule-based approach is to represent the knowledge of the domain
in the form of productive rules in order to solve given problems by applying rule-
based reasoning techniques. Rules represent general knowledge of the domain and
exhibit a number of attractive features such as, naturalness, modularity and ease of
explanation. They constitute a popular knowledge representation scheme used in
the development of KBSs. However, one of their major drawbacks is the difficulty
to acquire them (Gonzalez et al., 1993).

Rule based reasoning (RBR) is one of the most popular reasoning paradigms used
in artificial intelligence (AI) (Buchanan et al., 1984). The reasoning architecture
of rule-based systems has two major components: the knowledge base (usually
consisting of a set of “IF . . . THEN . . . ” rules representing domain knowledge)
and the inference engine (usually containing some domain independent inference

2.3. Knowledge Engineering 105

mechanisms, such as forward/backward chaining). (Buchanan et al., 1984). In
the legal domain, a legal norm is represented by an obligation rule that denotes
that the conclusion of the rule will be treated as an obligation (Governatori et al.,
2006). The representation of legal norms is obviously crucial for representing legal
documents, regulations and other sources of law (Gordon et al., 2009). Representing
legal contents though obligation rules comports with the widespread idea that legal
norms typically have the conditional form:

IF condition (operative facts) THEN conclusion (legal effect).

If ... Then is a normative conditional. This view highlights an immediate link
between the concepts of the norm and the rules (Gordon et al., 2009). This link
relies on ontologies since they are used for filling the gap between document
representation, expressed in natural language, and rules modelling using logical
formalisms (Palmirani et al., 2009). Thus, the legal rules are considered as legal
interpretation and modelling of the meaning of texts by transforming the legal
norms to logical rules for permitting rule-based reasoning (Palmirani et al., 2012).

The most popular expert systems are rule-based systems. A great number have been
built and successfully applied in such areas as business and engineering, medicine
and geology, power systems and mining (Negnevitsky, 2005). Examples of legal
expert systems that applied rule-based approach:

1. LDS: a rule-based legal decision-making system for the field of product liabil-
ity law (Waterman et al., 1980). The system is being used to study the effect of
changes in legal doctrine on settlement strategies and practices.

2. Gardner’s System: a rule-based system to identify legal issues in the analysis
of law school examination fact patterns involving the contracts law of offer
and acceptance. The program primarily used if-then rules to represent its
legal knowledge of contract law(Gardner, 1987).

3. TAXMAN: McCarty’s rule-based system concerned with the development
of a computational theory of legal reasoning, using corporate tax law as an
experimental problem domain.

4. JUDITH: a rule-based system for the German Civil Code (Popp et al., 1975)

5. LEGOL: a rule-based system for the analysis of the administrative systems in
terms of rules and regulations.

2.3.3.2 Model-Based Approach

The case-based and rule-based approaches are interested mainly in capturing the
inferential aspects of legal knowledge more than in expressing the conceptual
components and dependencies among kinds of knowledge (Biasiotti et al., 2011).

106 Chapter 2. Background

The model-based approach, proposed by (Valente et al., 1992), implied two ma-
jor changes to the domain of knowledge engineering focusing on the modeling
perspectives (see Figure 2.45):

• The process of developing knowledge-based systems is divided into two
phases: modeling and realization.

– The focus of the modeling phase is on the conceptual level where there
is much more emphasis on the analysis of the problem and the domain.

– Meanwhile, the focus of the realization phase is on the design and the
implementation of the computational system.

• The modeling paradigm proposes the separation of the domain knowledge
and problem-solving knowledge. This separation implies two main advan-
tages. The first advantage is that domain models can be developed indepen-
dently of specific tasks and problems, and can therefore have a high degree
of reusability. The second advantage is that general problem solving models
can also be used and adapted to domain-specific tasks, generating relatively
domain- independent tasks.

The development of domain-specific models should, whenever possible, be sup-
ported by theories. Following the separation of domain and problem-solving
knowledge, there can be two theories: a theory of domain reasoning and a theory
of domain knowledge. The first specifies the specific characteristics of reasoning in
the domain. This is made by specifying common reasoning modes and structures
for typical tasks in the domain. The second explains how the domain is organized
by containing an ontology of the domain (Valente et al., 1992).

FIGURE 2.45: Model-based approach (Valente et al., 1992).

2.3. Knowledge Engineering 107

The model-based approach established some principles and guidelines summarized
in follows (Valente et al., 1992):

• The use of models of legal argument and argumentation: Legal arguments
and argumentation play a significant role in legal reasoning (Gardner, 1987) ,
(McCarty, 1980).The representation of legal arguments(arguments in concep-
tual, structured form, not only in natural language) can be used as a basis for
representing legal reasoning.

• Generality in legal systems and disciplines: Within some legal systems there
are sub-systems that are referred to as different disciplines (e.g. Civil and
Penal Law). However, legal systems and legal disciplines could have more
in common than what is usually assumed. Thus, a principle is taken that,
whenever possible, the theories and models developed within the model-
based approach should be general - i.e. valid for all major legal systems. As a
result, there should be theories that explain these differences in terms of the
knowledge categories each system or discipline contains and/or how they
are used in specific legal problem solving.

• Broad ontologies of law: Most theoretical efforts in legal knowledge engi-
neering have concentrated on the characteristics and roles of open-textured
concepts. Although this is indeed a very important aspect, few works have
been dedicated to represent the differences between normal rules of law
(norms) and rights, legal positions, etc.

• The use of theories from legal philosophy: computational theories of law do
not need to be divorced from philosophical ones, but rather borrow from their
investigations and avoid reinventing the wheel.

• Legal knowledge and commonsense knowledge: to adopt the principle of
separating legal knowledge and commonsense knowledge. Some claim that
this is impossible, because law is incurably permeated with commonsense
knowledge. The key for such a separation rely on a broader discussion about
ontologies of law.

Finally, according to (Valente et al., 1992), the model-based approach to legal knowl-
edge engineering can provide an alternative to traditional approaches to AI & Law
by: (1) requiring a coherent domain theory based on explicit ontologies; (2) focusing
on the use of knowledge-level models and (3) viewing knowledge engineering as a
modeling task.

108 Chapter 2. Background

2.4 Legal Rule-Based Systems

A rule-based system consists of set of IF-THEN rules, set of facts, and some in-
terpreter controlling the application of the rules on the given facts. Therefore, in
a rule-based system, much of the knowledge is represented as rules, that is, as
conditional sentences relating statements of facts with one another (Buchanan et al.,
1983).

In the legal domain, any legal expert system, known as legal knowledge based
systems (LKBS), must be capable of legal reasoning (Popple, 1990). Thus, the
system must be based upon a model of legal reasoning by describing the norms
that operate within the legal system (Popple, 1996). Legal reasoning, applied earlier
in various approaches for decision making purposes, describes how legal expert
system takes legal decisions with the help of rules (Valente et al., 1991). Accordingly,
legal reasoning is considered as a rule-guided activity, where most part of it consists
of applying legal rules to interpretations of cases (Gardner, 1987). This kind of
reasoning is called rule-based reasoning performed by rule-based expert systems
where the reasoning process is based on a set of if-then rule statements used to
describe certain patterns of the giving domain such as legal norms.

Mainly, legal norms are expressed in textual sources such as legislations and codes
and have basically the following structure (Davis et al., 1984):

If A1,...,A2 then B;

where “A1,...,A2” are the conditions of the norm, “B” is the legal effect and
“if...then” is a normative conditional. This view highlights an immediate link
between the concepts of the norm and the rules (Gordon et al., 2009).

This link relies on ontologies since they are used for filling the gap between doc-
ument representation, expressed in natural language, and rules modeling using
logical formalisms (Palmirani et al., 2009). Thus, the legal rules are considered as
legal interpretation and modeling of the meaning of texts by transforming the legal
norms to logical rules for permitting reasoning (Palmirani et al., 2012).

2.4.1 Evaluation of Rule-Based Systems

Basically, rule-based systems have several advantages and limitations. Concerning
the advantages, the most known are presented in the following (Negnevitsky, 2002):

• Natural knowledge representation in the form of if-then rules that reflect
the problem-solving procedure explained by the domain experts.

• Uniformity of structure where all the production rules are expressed in the
same IF...THEN format.

2.4. Legal Rule-Based Systems 109

• Modularity of structure where each rule is an independent piece of knowledge.
The very syntax of production rules enables them to be self-documented.

• Separation of knowledge from its process. The structure of a rule-based expert
system provides an effective separation of the knowledge base from the infer-
ence engine. This makes it possible to develop different applications using
the same expert system shell. It also allows a graceful and easy expansion of
the expert system. To make the system smarter, a knowledge engineer simply
adds some rules to the knowledge base without intervening in the control
structure.

• Justification of the determinations by explaining how the system arrived at a
particular conclusion and by providing audit trails.

Meanwhile, rule-based systems suffer from some limitations, such as:

• Opaque relations between rules because of the uniformity and modularity of
their structure.

• Inability to learn from experience.

• In this context, a limitation to cite, that concerns not only rule-based systems
but all legal expert systems, which is the problem of how to model vague or
“open-textured” concepts. For instance, uncertain and fuzzy legal concepts
such as “reasonable” and “intentional” cannot be modeled in a way analogous
to human thinking. What constitutes reasonable behavior will vary from time
to time, place to place and person to person (Dove, 1996b). In this context,
some authors in the field (Breuker, 1990) considered that “open texture prob-
lems are functional to adequate regulations and should not be resolved by
automatic legal reasoning systems. They form the human interface between
case and regulation and should be implemented as such in legal reasoning
systems, i.e. as a task for the user”.

Despite these limitations, there are still many problems that can be solved by
rule-based systems. The goal of these systems is not to solve all legal automation
problems, but there are ideal for encoding legal principles found in statutes and
regulations where the law is explicit and knowable, but logically complicated.

2.4.2 Methods of Reasoning in Rule-Based Systems

It is commonly known that rule-based systems are categorized in forward chaining
and backward chaining systems. Forward chaining systems are primarily data-
driven, while backward chaining systems are goal-driven. In this section, we study
the reasoning process of these systems.

110 Chapter 2. Background

2.4.2.1 Forward Chaining

In forward chaining systems, the purpose is to determine results from premises.
The start is defined from the available information and then draw conclusions.
Thus, the system analyzes the problem by looking for the facts that match the IF
part of its IF-THEN rules. If there is a matching, then the rule is executed. This
process continues until the goal is found. Therefore, forward chaining is considered
as a data-driven approach. The forward chaining algorithm is represented as the
sequence of the following steps:

1. Initial facts are inputs from the user to be set into the database (working
memory);

2. Check left side of the production rules;

3. If the logical condition part of a rule (IF part) matches, then the rule fires;

4. Execute right side actions;

5. Retract old conditions/facts;

6. Input new conditions/facts;

7. Do other input-output actions, unifications etc.

8. Repeat until no other rules fire.

Matching of patterns in chaining process is also known as unification. So the
application of the chaining procedure depends on unification. In the unification
a set of binding of variables is considered. In a unification process two atomic
sentences are compared and a unifier is returned if one of the given sentences exists.

2.4.2.2 Backward Chaining

In backward chaining systems, the start is defined from an hypothesis (expectation)
and then seek evidence that supports (or contradicts) the expectation. Backward
chaining works in reverse to forward chaining, and starts from the goal and tries to
find data to prove its goal. Therefore, it is also called a goal-driven reasoning. After
starting from the given goal, the search of THEN parts of the given rules (action
part) (RHS) is conducted, and if the rule is found and its IF part (condition) matches
the data in the database, then the rule is executed (fired). The backward chaining
algorithm can be represented in the following form:

1. The rule that matches the goal is selected;

2. IF the condition (IF part) is empty, ask the user for information; ELSE WHILE
not end, AND we have the selected rules DO,

3. Add the conditions of the rules,

2.4. Legal Rule-Based Systems 111

4. IF the condition is not met, THEN put the condition as a goal to solve END
WHILE.

2.4.3 Existent Rules Interchange Languages

In this paragraph, the most known rule interchange languages are presented for the
purpose of modeling and formalizing rules in rule-based systems.

2.4.3.1 RuleML

RuleML(Rule Markup Language)19 is an XML based language for the representation
of rules. It encompasses a hierarchy of rules from reaction rules (event-condition-
action rules), via integrity-constraint rules (consistency-maintenance rules) and
derivation rules (implicational-inference rules), to facts (premiseless derivation
rules).

RuleML is capable of specifying queries and inferences in Web ontologies, mappings
between Web ontologies, and dynamic Web behaviors of workflows, services, and
agents (Boley et al., 2001).

RuleML provides a way of expressing business rules in modular stand-alone units
which maintains the flexibility and the extensibility of the language. Each module
is meant to implement a particular feature relevant for a specific language or
application (e.g., modules for various types of negation, for example, classical
negation, and negation as failures). Each module is intended to refer to a semantic
interpretation of the feature implemented in the module. However, RuleML does
not have a mechanism to specify semantic structures on which to evaluate elements
of the language (Wagner et al., 2004). Moreover, it lacks support for the use of
deontic concepts, such as obligations, permissions and prohibitions (Lam et al.,
2016).

In the literature, some works proposed extension and interpretation for this area, in
particular for the representation of (business) contracts (Grosof, 2004; Governatori,
2005; Governatori et al., 2009).

2.4.3.2 SBVR

SBVR(Semantics of Business Vocabulary and Business Rules)20 is a standard pro-
posed by the Object Management Group (OMG) for the representation and formal-
ization of business ontologies, including business vocabularies, business facts and
business rules.

19http://www.ruleml.org, retrieved 22-12-2017
20http://www.omg.org/spec/SBVR/1.0/, retrieved 22-12-2017

112 Chapter 2. Background

Thus, SBVR bears on business rules, which may or may not have legal standing
(Athan et al., 2014). Business rules are generally expressed in natural language.
SBVR provides a logic means, called semantic formulations, for describing the
structure of the meaning of rules. The formal representation is based on several
logics including first order logic and deontic logic. Furthermore, SBVR adopts
model theoretic interpretations for semantic formulations.

The focus of SBVR is on modeling not providing a framework for executing the
rules (Gordon et al., 2009). Concerning the modeling of norms, SBVR has two
main features for the modeling of norms: (1) the introduction of deontic operators
to represent obligations and permissions and (2) the use of controlled natural
languages for modeling norms. Unfortunately, SBVR is not suitable for representing
deontic notions and conflicts since it is based on first-order-logic.

2.4.3.3 SWRL

SWRL(Semantic Web Rule Language)21 is a W3C proposal for a rule interchange
format which combines ontologies represented in OWL with RuleML. SWRL is
originally proposed by (Horrocks et al., 2004) as “a combination of the OWL DL and
OWL Lite sublanguages of the OWL Web Ontology Language with the Unary/Binary
Datalog RuleML sublanguages of the Rule Markup Language [RuleML]". The SWRL
language has an RDF syntax and an XML syntax based on RuleML.

SWRL extends OWL axioms to include (monotonic) Horn-like rules. It is the only
approach that gathers ontology and rules in product development (Fiorentini et al.,
2010) where users are permitted to write rules that can be expressed in terms of
OWL concepts and that can reason about OWL individuals (O’Connor et al., 2008).

In SWRL, rules are of the form of an implication between an antecedent (body)
conjunction and a consequent (head) conjunction in the following form (Antoniou
et al., 2005a):

a1 ∧ a2 ∧ a3 ... an =⇒ b1 ∧ b2 ∧ b3 ... bn;

where description logic expressions can occur on both sides, "∧" is an operator for
the logical AND, " =⇒ " is an operator for drawing the conclusion and ai and bi

are OWL atoms such as, among others, concepts, object properties, data properties,
sameAs, and differentFrom. The intended interpretation of SWRL rules is in classi-
cal first-order logic: whenever the conditions specified in the antecedent hold, then
the conditions specified in the consequent must also hold. SWRL supports a rich
set of built-ins inspired by XQuery and XPath2 functions22.

21https://www.w3.org/Submission/SWRL/, retrieved 22-12-2017
22 http://www.w3.org/TR/xpath-functions/, retrieved January 3 2018

2.4. Legal Rule-Based Systems 113

SWRL is supported by several DL reasoners such as KAON223 and Pellet (Sirin
et al., 2005) that facilitate the DL-safe fragment of SWRL, while RacerPro (Haarslev
et al., 2001) supports a SWRL-like syntax with a slightly different semantics (for
instance, closed world reasoning is supported in RacerPro’s variant of SWRL) (Eiter
et al., 2008).

2.4.3.4 RIF

RIF(Rule Interchange Format)24 Working Group was chartered by the World Wide
Web Consortium in 2005 to create a standard for exchanging rules among rule
systems, in particular among Web rule engines. Like RuleML, RIF is intended to
be an extensible framework for a whole family of rule languages, possibly with
different semantics (Gordon et al., 2009).

Concerning the RIF dialects, the RIF Working Group has focused on two kinds of
dialects: logic-based dialects and dialects for rules with actions.

• Logic-based dialects: include languages that employ some kind of logic, such
as first-order logic or non-first-order logics.

• The rules-with-actions dialects: include production rule systems, such as
Jess25, Drools26 and JRules27, as well as reactive (or event-condition-action)
rules, such as Reaction RuleML28 (Paschke, 2014).

RIF does not provide direct support for adequate representation of legal rules and
legal reasoning since they do not support e.g. logic-based negation, non-monotonic
reasoning, events and temporal metadata, among other relevant features (Athan
et al., 2014).

2.4.3.5 LKIF

LKIF(The Legal Knowledge Interchange Format)29 is a Semantic Web based lan-
guage, developed in the European project ESTRELLA30, for representing legal
knowledge in order to support modeling of legal domains and to facilitate inter-
change between legal knowledge-based systems.

23http://kaon2.semanticweb.org/
24https://www.w3.org/TR/rif-overview/, retrieved 23-12-2017
25http://www.jessrules.com/
26http://www.drools.org/
27http://www.ilog.com/products/jrules
28http://wiki.ruleml.org/index.php/Specification_of_Reaction_RuleML_1.02
29http://www.estrellaproject.org/doc/D1.1-LKIF-Specification.pdf
30http://www.estrellaproject.org

114 Chapter 2. Background

In general, LKIF provides a direct support for representing three types of knowledge,
which have been identified as most indispensable to law and legal reasoning:
terminological knowledge, legal rules and normative statements.

• Terminological Knowledge: this layer is supported in LKIF through the Web
Ontology Language (OWL).

• Legal Rules: LKIF does not use XML schema for modeling legal rules, such
as Common Logic, RuleML, SWRL, or RIF. This layer has required more
sophisticated formalism. For that reason, a partly novel rule formalism, called
LKIF rules, has been developed and incorporated in LKIF.

• Normative Statements: this layer is given a direct support via the Norm mod-
ule included in LKIF-Core ontology. No particular deontic logic is imposed
on LKIF representation.

Thus, LKIF is a specification that includes a legal core ontology (LKIF-Core) and a
legal rule language that closely represents legal knowledge and reasoning. Accord-
ing to (Athan et al., 2014), LKIF does not provide mechanisms to handle concurrent
interpretations of a legal source; more specifically, while it might be possible to
represent the content of the individual (alternative) interpretations, it is not possible
to specify that these representations are mutually exclusive.

A reference inference engine for LKIF, called Carneades31 (Gordon et al., 2007),
was developed in ESTRELLA. Carneades is written in a functional style, using
the Scheme programming language, and is available as Open Source software.
Carneades places some restrictions on LKIF rules: The heads of rules are limited to
literals (positive or negated atomic formulas) and the bi-conditional (⇔) operator
and first-order quantifiers are not supported (Gordon et al., 2009).

2.4.3.6 LegalRuleML

LegalRuleML is an extension of RuleML, an XML based language for the repre-
sentation of legal rules using formal semantics (Palmirani et al., 2011; Athan et al.,
2013a). The goal of the LegalRuleML is to extend RuleML with features specific to
the formalization of norms, guidelines, and legal reasoning. It aims to bridge the
gap between natural language descriptions and semantic norms.

It reuses and extends concepts and syntax of RuleML wherever possible, and also
adds novel annotations (Athan et al., 2015). LegalRuleML introduces features which
are fundamental for modeling legal rules (Athan et al., 2013b; Athan et al., 2015):

31https://carneades.github.io/

2.5. Conclusion 115

• Isomorphism between rules and natural language normative provisions: to
maintain a link between the units of natural language textual provisions and
the sets of rules.

• Defeasible logics: norms are often written in a way that they admit exceptions.
Defeasiblity allows for a natural representation of exceptions and permits
terms to be defined in an open textured fashion.

• Jurisdiction of norms: norms emanated from different authorities, differ-
ent locations, and different times. Relative to such differences, norms can
produce different effects. To properly model such contextual dependence,
LegalRuleML associates rules with the jurisdictions where the rules hold.

• Legal temporal parameters: LegalRuleML is able to define temporal instants
and intervals that can be used to build complex legal events and situations
(e.g. date of publication, interval of suspension, interval of efficacy but not
applicability).

• Legal deontic operators: the function of prescriptive rules is to describe the
normative effects that they produce (e.g., obligations, permissions, prohibi-
tions, ...), the parties related to them, and the conditions under which such
effects are produced.

• Qualifications of norms: legal documents can contains different types of
norms (constitutive, technical, prescriptive, etc.). Some norms are intended to
define the terms used in the document, others to produce normative effects,
and others to describe legal procedures.

• Semantic management of negation;

The specifications of core or domain legal ontologies are out of the scope of Legal-
RuleML. This interchange language is independent from any legal ontology and
logic framework. However it includes a mechanism, based on IRIs, for pointing to
reusable classes of a specified external ontology.

2.5 Conclusion

We presented in this chapter the main research lines covering the background of the
thesis which are the domains of ontology engineering and knowledge engineering
and the rule-based systems.

Firstly, we analyzed the ontologies in general, their definitions, classifications, crite-
ria and components. Furthermore, the legal ontologies are discussed as well as their
roles and uses. Secondly, the most relevant ontology engineering methodologies,

116 Chapter 2. Background

tools and formalisms are surveyed. Additionally, we presented some ontology engi-
neering support processes that can be useful during the development of ontologies.
Finally, the domain of knowledge engineering is discussed. The most commonly
known knowledge engineering approaches are outlined. Then, the approaches for
building legal knowledge based systems are explored.

The literature review conducted in our work shows the extensive work done in the
field of building ontologies. However, this domain suffers from some limitations
that could make the ontology building process difficult and complicated. Actu-
ally, the outlined methodologies address the issue of development of ontologies
specifically either from scratch or by reusing existent ones. Most of them have
focused on core ontology development activities such as: requirements analysis,
conceptualization, implementation, evaluation and maintenance. Moreover, the
application-specific requirements are seen as an integral part of the requirements
analysis activity of various methodologies. This will restrict the potential reusability
of the developed ontologies as well as making them not well-founded.

Other limitations are noticed such as the lack of the focus on the participatory
approach in the ontology engineering process. Meanwhile, such approach can ef-
fectively simplify and enrich the ontology building process specifically for complex
domains such as the legal domain. Additionally, concerning the over-viewed legal
ontologies, we found that most of them are not built fo reasoning purposes. Though,
an essential role of legal ontologies is reasoning and problem solving capabilities,
where an ontology can be used as a knowledge base for building knowledge-based
systems.

We propose in our research some key challenges that could enrich the ontology
building process, make it more cooperative and simple and leading to well-founded
ontologies at the end. Firstly, we suggest to diversify the data sources such as
existent validated ontologies to be reused as well as textual resources related to the
domain of discourse, to enforce the cooperative work and to apply some support
processes (discussed in chapter 3). Secondly, the use of the developed ontology in
reasoning purposes such as rule-based reasoning model (discussed in chapter 5).

117

Chapter 3

MIROCL: A Modular Middle-Out
Collaborative Approach for
Building Well-Founded Domain
Ontologies

Contents
3.1 Overview . 118

3.2 Problems Facing Ontology Building Process 118

3.3 Well-founded Domain Ontologies 119

3.3.1 Ontology-Driven Conceptual Modeling 120

3.3.2 ONTOUML: Conceptual Modeling via UFO 121

3.4 Middle-out Ontology Engineering 123

3.5 Collaborative Ontology Engineering 125

3.6 Data Heterogeneity . 126

3.6.1 Ontology-based Approaches for Resolving Data Hetero-
geneity . 127

3.7 MIROCL Motivations . 130

3.7.1 Heterogeneity of Data sources in MIROCL 130

3.7.2 Ontology Modularization in MIROCL 132

3.7.3 Ontology Reuse in MIROCL 134

3.7.4 Ontology Learning from Textual Resource in MIROCL . . 137

3.7.5 Ontology Integration in MIROCL 139

3.8 MIROCL Aspects . 142

3.8.1 Middle-out Aspect of MIROCL 142

3.8.2 Collaborative Aspect of MIROCL 143

3.9 Life-Cycle of MIROCL . 145

3.10 Conclusion . 147

118
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

3.1 Overview

The overall objective of this thesis is to build a well-founded legal domain ontology
for rule-based reasoning purposes. In this chapter, a novel modular middle-out col-
laborative approach, named MIROCL, is presented. The aim of MIROCL is to build
well-founded domain ontologies from heterogeneous data sources by applying
different ontology engineering support processes such as: ontology modularization,
integration, reuse and learning from texts. The proposed approach is considered
as middle-out composed mainly of two complementary strategies, top-down and
bottom-up. MIROCL tends to simplify the ontology building process, make it more
cooperative by incorporating different contributors from various backgrounds such
as domain experts, knowledge engineers and ontology engineers.

The remainder of this chapter is organized as follows: in section 3.2, we present
the problems facing ontology building processes. In order to solve these prob-
lems, several issues are taken into consideration such as the concept of building
well-founded ontologies which is discussed in section 3.3, the middle-out aspect of
building ontologies presented in 3.4, the collaborative aspect of ontology develop-
ment analyzed in section 3.5 and the data heterogeneity concept is introduced in
section 3.6. Furthermore, the motivations of the proposed approach are introduced
in section 3.7. The ontology building support processes that compose MIROCL, on-
tology modularization, ontology reuse, ontology learning from texts and ontology
integration, are then discussed in sections 3.7.2, 3.7.3, 3.7.4 and 3.7.5 respectively.
Finally, section 3.9 introduced the life-cycle of MIROCL and section 3.10 concludes
the chapter.

3.2 Problems Facing Ontology Building Process

Actually, the ontology engineering community is facing several key problems
concerning the ontology building processes. In the following, we discuss the main
problems that we have noticed in this domain:

• Build ontologies from scratch: Most ontologies are built from scratch, rather
than reusing existing ones, leading to high engineering efforts and costs
(Hartmann et al., 2009). In fact, building ontologies from scratch is not easy. It
is considered as a resource-intensive, time consuming and costly task. This
is due to the difficulty and complexity of capturing knowledge from textual
sources which are mainly unstructured documents such as legislations and
codes in the legal domain.

• Build ontologies that are not well-founded: This problem is considered as a
consequence of the aforementioned one. Actually, building ontologies from

3.3. Well-founded Domain Ontologies 119

scratch will not lead to well-founded domain ontologies. These ontologies
must be represented with the support of a well-known foundational theory.

• Build ontologies for specific purpose: Most existing ontologies are built having a
specific application scenario in mind, making them similar to custom software
(Hartmann et al., 2009). When designing these ontologies, engineers focus on
expected behavior in the application rather than on reuse and interoperability
with other ontologies.

• Difficulty of ontology reuse: Ontologies trying to cover domains in the knowl-
edge representation sense are often too big to be reused efficiently. These
ontologies try to capture the complete domain knowledge whilst ontology
engineers normally only need to reuse certain parts for their ontology.

• Collaboration is missing while building ontologies: Generally, little attention has
been paid to formalisms and tools for collaborative ontology construction
(Bao et al., 2004b). Most of the ontology engineering methodologies, reviewed
in chapter 2 implement a centralized engineering model focusing on core
ontology development activities and the participatory approach is missing.

Having presented the main problems facing the ontology building process, the
following sections address the main issues that could help to solve these problems
from our perspective such as the building of well-founded ontologies, the middle-
out aspect of the ontology building process, the collaborative ontology development
and the concept of data heterogeneity.

3.3 Well-founded Domain Ontologies

The concept of well-founded ontologies have raised mainly in Guizzardi’s works,
such as (Guizzardi, 2005; Guizzardi, 2007), where the author admit that ideally
domain ontologies should be developed grounded in foundational (top-level) on-
tologies (Falbo, 2014). Therefore, concepts and relations in a domain ontology must
be previously analyzed in the light of a foundational ontology. Consequently, for
achieving the grounding purpose, there is a need for a well-known foundational
ontology, and an ontologically well-founded conceptual modeling language for
representing domain ontologies. The process of representing domain ontologies
using these components is called ontology-driven conceptual modeling (ODCM).

In this thesis, UFO(see chapter 2, section 2.2.2.1) is selected as the most convenient
foundational ontology for the application of ontology-driven conceptual modeling
for three main reasons:

• Its successful application in a large number of domains ranging from natural
science domains such as Petroleum and Gas and Electro-physiology of the

120
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

heart to social domains such as organizations, services and software (Griffo
et al., 2015) (Guizzardi et al., 2010c; Genesereth et al., 1992);

• The fact that UFO comprises a rich theory of relations and complex relational
properties that is absent in other foundational ontologies (Guizzardi et al.,
2005a).

• The availability of a conceptual modeling language founded on this ontology
(OntoUML) (see Figure 3.1).

FIGURE 3.1: Conceptual modeling language founded on UFO.

In the following sections, we will discuss two essential concepts for the building
of well-founded domain ontologies: the ontology-driven conceptual modeling
(ODCM) and the ontologically well-founded conceptual modeling language (On-
toUML).

3.3.1 Ontology-Driven Conceptual Modeling

“A challenge to the modeling of ontologies is the lack of well-founded structural and temporal
constructs of the conventional design techniques. Ontology-driven conceptual modeling
has been successfully applied to overcome this issue, where ontological analysis based on
a foundational ontology supports the development of well-founded ontologies” (Moreira
et al., 2016). Ontology-Driven Conceptual Modeling (ODCM) is firstly introduced
by Guarino et al. (Guarino et al., 2002a). ODCM is still a relatively new research
domain in the field of information systems, there is still much discussion on how
the research in ODCM should be performed and what the focus of this research
should be (Guizzardi et al., 2008b) and (Saghafi et al., 2014).

Generally, conceptual modeling is defined as “the activity of representing aspects of the
physical and social world for the purpose of communication, learning and problem solving
among human users” (Mylopoulos, 1992). In other words, conceptual modeling is
concerned with identifying, analyzing and describing the relevant concepts and
constraints of a domain with the help of a modeling language that is based on a
small set of basic meta-concepts (Guizzardi et al., 2004b). In order to make con-
ceptual modeling languages more suitable for representing the real world and less

3.3. Well-founded Domain Ontologies 121

oriented by systems, the attention of researchers have turned to philosophy where
ontologies, dealing with the modeling reality, represent a branch of it (Verdonck,
2014). Therefore, the ontologies were introduced in order to provide a foundation
for conceptual modeling by expressing the fundamental elements of a domain
(Guarino, 1998). Moreover, ontologies are used to analyze and improve existing
conceptual modeling languages (Wand, 1996). Thus, ontological or ontology-driven
modeling is concerned with capturing the relevant entities of a small set of ba-
sic, domain-independent ontological categories (forming an upper level ontology)
(Guizzardi et al., 2004b).

Recently, ontology-driven conceptual modeling is defined by Guizzardi as the
utilization of ontological theories, coming from areas such as formal ontology,
cognitive science and philosophical logics, to develop engineering artifacts (e.g.
modeling languages, methodologies, design patterns and simulators) for improving
the theory and practice of conceptual modeling (Guizzardi, 2012).

3.3.2 ONTOUML: Conceptual Modeling via UFO

One of the main success factors behind the use of a modeling language is its ability
to provide to its target users a set of modeling primitives that can directly express
relevant domain conceptualizations (Guizzardi, 2005). In order to make possible the
activity of conceptual modeling via UFO(see chapter 2, section 2.2.2.1), a conceptual
modeling language, named OntoUML (Ontological Unified Modeling Language)
(Benevides et al., 2009b) is used. OntoUML was proposed by Guizzardi (Guizzardi,
2005) based on the need for an ontology-based language that would provide the
necessary semantics to construct conceptual models using concepts faithful to
reality.OntoUML uses the ontological constraints of UFO as modeling primitives
and is specified above the UML2.0 meta-model (Guizzardi, 2005) (see Figure 3.2
and 3.3). The figure 3.3 presents a brief summary of some OntoUML’s modeling
primitives.

FIGURE 3.2: A Subset of OntoUML Stereotypes (Nardi et al., 2016).

122
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

FIGURE 3.3: Some OntoUML Stereotypes (Teixeira et al., 2014).

In (Guizzardi, 2006), the authors show how a modeling language based on UFO
can be used to address a number of semantic interoperability problems which
cannot be handled by semantic web languages such as OWL and RDF. The Unified
Foundational Ontology (UFO) is a foundational ontology that provides a sound
ontological basis to evaluate and give real-world semantics to conceptual modeling
language’s constructs such as UML. OntoUML is a result of such evaluation. The
class diagram fragment of UML 2.0 was re-designed and evaluated according to
the structural layer of UFO (Guerson et al., 2015).

Over the years, OntoUML has been adopted by many research, industrial and
government institutions worldwide (Guizzardi et al., 2015). OntoUML is a well-
founded modeling language that allows modelers to formalize world-views in a
technologically neutral way, aiding in the solution of such interoperability chal-
lenges (Benevides et al., 2009a) (Guerson et al., 2015). According to (Guerson et
al., 2014), this language has been successfully employed in a number of indus-
trial projects in several domains such as Petroleum and Gas, News Information
Management, E-Government and Telecommunication.

In figure 3.4, a sample OntoUML diagram is depicted. To build, evaluate and
implement OntoUML models, a model-based environment is needed such as the
standalone tool OLED1 (OntoUML Lightweight Editor) (Benevides et al., 2009a).
This modeling tool has been developed as an academic effort for several years (Mor-
eira et al., 2016). Recently, OLED has been entirely re-factored and transformed into

1Available at: https://code.google.com/p/ontouml-lightweight-editor/

3.4. Middle-out Ontology Engineering 123

a commercial tool, named Menthor Editor2 (ontology-driven conceptual modeling
platform) (Moreira et al., 2016).

There are two ways to model domain ontologies with the Menthor Editor (Moreira
et al., 2016). First, the tool provides a class diagram interface with OntoUML
stereotypes (see Figure 3.4). Second, Sparx’s Enterprise Architecture3 (EA) tool may
be used for modelling, where the models may be exported to Menthor Editor using
an OntoUML plug-in for EA, i.e. a UML profile that reflects OntoUML meta-model,
implemented with the MDG technology4.

FIGURE 3.4: Example of OntoUML Diagram (Guerson et al., 2015).

Finally, the domain ontology implementation can be automatically generated in
OWL and SWRL through model transformations, taking design decisions into
account. Menthor Editor presents a set of settings to configure the transformation
approach, including filters, axioms and data types’ selection (Moreira et al., 2016).

3.4 Middle-out Ontology Engineering

Generally, ontology building methodologies are classified into two main categories:
top-down and bottom-up (Francesconi et al., 2010).

• Top-down: the ontology construction starts by modeling the most generic
concepts and build a structure by specialization. In this approach, the ontology
building process starts by an analysis and study of relevant information
sources about the given domain and then modeling the top level concepts
which will be refined in next steps. This category of approaches is typically

2http://www.menthor.net/
3http://www.sparxsystems.eu/enterprisearchitect/
4http://www.sparxsystems.com.au/resources/mdg_tech/

124
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

carried out manually by domain experts and leads to a high-quality, reusable
and shareable ontologies.

Although, a top-down approach results in better control of the level of de-
tail. However, starting at the top can result in choosing arbitrary high-level
categories which lead to a risk of less stability in the model.

• Bottom-up: start from the most specific concepts and build a structure by
generalization. In this approach, the building process of the ontology usually
starts with linguistic study on existing data structures forms (documents,
reports, etc.) in order to extract relevant concepts of the domain and relations
among them with the semi-automatic support in document analysis.

This approach results in a very high level of detail which makes it difficult
to spot commonality between related concepts and increases the risk of in-
consistencies (Uschold et al., 1996). Moreover, the bottom-up approach is
limited by developing domain-specific or application ontologies that are not
reusable. Meanwhile, it can support the refining and expanding of existing
ontologies by incorporating new knowledge emerging from texts(Francesconi
et al., 2010).

According to (Francesconi et al., 2010), there is a complementarity between top-
down and bottom-up approaches and preferring one approach over the other means
ignoring complementary information that can help creating a better ontology. Thus,
for better results in building comprehensive ontologies, there is a need to combine
the two categories (Francesconi et al., 2010). Actually, this is a fact acknowledged in
the literature, specifically in the studies of Uschold and Gruninger (Uschold et al.,
1996), who include among their guidelines for ontology construction and merging
the so-called middle-out approach, based on the combination of top-down and bottom-
up ontology modeling. Therefore, a middle-out approach is a combination of top-
down and bottom-up approaches leading to an integration of theoretical modeling
and textual analysis. This approach strikes a balance in terms of the level detail.
Detail arises only as necessary, by specializing the basic concepts (Uschold et al.,
1996).

More recently, scholars advocating a middle-out approach to ontology construc-
tion started explicitly mentioning the “support of automatic document analysis”
through which relevant lexical entries are extracted semi-automatically from avail-
able documents (Francesconi et al., 2010). The (semi-)automatic support in ontology
development is nowadays referred to as ontology learning.

3.5. Collaborative Ontology Engineering 125

3.5 Collaborative Ontology Engineering

A collaborative ontology is defined as “two or more people interact and exchange
knowledge in order to build a common, shared ontology in pursuit of a shared,
collective, bounded goal” (Tudorache, 2007) (see Figure 3.5).

FIGURE 3.5: From stand-alone ontology to collaborative ontology
(Tudorache, 2007).

In a collaborative ontology engineering scenario process, methods and tools are
explicitly designed to support a decentralized group of stakeholders or community
of interest in the sense of geographical dispersion, varying levels of skills, experience
and responsibilities, as well as potentially divergent agendas to reach a consensus
in an incremental and asynchronous fashion (Simperl et al., 2013).

A collaborative ontology engineering process typically starts with an analysis of
the domain to be captured by the ontology, and of the requirements imposed by
the ontology-based application as it is common in any other ontology engineer-
ing process. The team developing the shared ontology consists of stakeholders
with different, and perhaps divergent, interests and complementary competencies.
Classical ontology engineering distinguishes between three roles: domain experts,
knowledge engineers and ontology engineers (Gomez-Perez et al., 2004).

• Domain experts are knowledgeable in the domain that is captured by the
ontology; they have “intricate” knowledge about domain-relevant concepts
and their attributes, as well as their interdependencies and relationships.

• Knowledge engineers try to obtain these insights from the domain experts,
for instance via interviews, to create a conceptual model of the domain.

• The ontology engineers represent the conceptual model in a suitable knowl-
edge representation language.

In this context, each member of the community can play several roles, depending
on the types of contributions the respective individual is allowed to perform on the
shared ontology, but also on the level of technology support in place and on the
type of ontology that the project targets (Simperl et al., 2013).

126
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

In this regard, domain experts become increasingly involved in developing ontolo-
gies. This development is a natural consequence of ontologies covering domains
in more detail, including information that ontology engineers simply do not know
such as the domain of law, medicine, etc...

In the literature, several collaborative approaches are found such as methodology
of Holsapple and Joshi (Holsapple et al., 2002), DILIGENT (Vrandecic et al., 2005)
and HCOME (Kotis et al., 2004).

Approach strategy for identifying concepts Life cycle

Holsapple and Joshi top-down iterative
DILIGENT middle-out iterative
HCOME bottom-up, ontology reuse, impro-

vising of ontologies, alignment of
multiple ontologies

iterative

Ontology Maturing bottom-up No life cycle model pro-
posed

TABLE 3.1: A comparison of collaborative engineering methodolo-
gies.

3.6 Data Heterogeneity

In this section we overview the concept of data heterogeneity and the possible
classifications founded in the literature. Generally, ontology engineering refers
to the study of the “activities that concern the ontology development process,
the ontology life cycle, and the methodologies, tools and languages for building
ontologies” (Gomez-Perez et al., 2004). In other words, ontology engineering is
the task of designing, implementing and maintaining ontology-based applications
(Euzenat et al., 2007). Actually, this is the standard definition of the ontology
engineering process. Meanwhile, recently, authors considered the distributed
concept in the definition of this process. For instance, Euzenat (Euzenat et al.,
2007) considered that the ontology engineering process represents the context
where users are confronted with heterogeneous ontologies. Therefore, this activity
requires support of ontology matching because ontology engineering has to deal
with multiple, distributed and evolving ontologies. From this perspective, the
ontology heterogeneity become an essential concept while designing an ontology
for a domain of interest in the ontology engineering process. Thus, ontology-based
system designers often have to integrate different ontologies, either for the sake of
enforcing reuse, and thus not multiplying ontologies on the same topic, or because
it is necessary for interconnecting various relevant resources (Euzenat et al., 2007).

3.6. Data Heterogeneity 127

In fact, there are different classifications of data heterogeneity. A number of re-
searchers (Kim et al., 1991), (Kashyap et al., 1997), (Cui et al., 2000), (Hakimpour
et al., 2001b), (Hakimpour et al., 2001a) and (Hakimpour et al., 2002) have classified
heterogeneities into two main types: structural and semantic.

• Structural heterogeneity: means that different data systems store their data in
different structures i.e. different data models.

• Semantic heterogeneity: involves discrepancies in the meaning of related
data among heterogeneous systems. For example, two schema elements (i.e.,
classes or attributes) in two data sources can have different names, but the
same meaning. Thus, during integration, these two elements may be treated
differently even though they may refer to the same concept.

According to (Goh, 1997), the semantic heterogeneity can be classified as
follows:

– Semantically equivalent concepts (the models use different terms to
refer the same concept, e.g. synonymous; the properties are modeled
differently by distinct systems, etc.).

– Semantically unrelated concepts (the same term may be used by distinct
systems to denote completely different concepts).

– Semantically related concepts (generalization/specification, different
classifications, etc.).

3.6.1 Ontology-based Approaches for Resolving Data Heterogeneity

Due to an increased awareness of ontology (Gruber, 1993), applications and the
availability of multiple ontologies over same domain leads to semantic hetero-
geneities between ontologies. Ontology mapping has been the suggested solution
to find semantic correspondences between similar elements of different ontologies
thereby enabling semantic interoperability between them (Patel et al., 2005).

Ontology is considered to provide definitions for the term used to represent knowl-
edge (Gruber, 1993), (Gruber, 1995), which consist of concepts, relations and their
taxonomic hierarchies, also express constraints (Guarino, 1998). Therefore, explicit
and formal definitions of the semantics of the terms guided researchers to apply
formal ontologies (Guarino, 1998) as a potential solution to semantic heterogeneity.
Thus, an ontology is considered to be suitable for information integration tasks
because of its potential to describe the semantic of data sources and to solve the
data meaning heterogeneity problems (Goh, 1997) and (Cui et al., 2000). Many
ontology-based approaches exist for the integration of heterogeneous data sources.
(Wache et al., 2001) categorized different methods using ontologies into three major
approaches (see Figure 3.6):

128
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

FIGURE 3.6: The three possible ways for using ontologies for resolv-
ing semantic heterogeneity (Wache et al., 2001)

• Single ontology approach (see Figure 3.6 (a)): in this approach, one global
ontology provides a shared vocabulary for the specification of the semantics.
All information sources are related to the global domain ontology. The global
ontology can be a combination of several specialized ontologies. A reason for
the combination of several ontologies can be the modularization of a potential
large monolithic ontology.

However, this approach requires that all sources have nearly the same view on
a domain, with the same level of granularity. For instance, if one information
source has a different view on a domain by providing another level of granu-
larity, finding the minimal ontology commitment (Gruber, 1995) becomes a
difficult task.

• Multiple ontology approach (see Figure 3.6 (b)): in this approach, the seman-
tics of an information source is described by its own separate ontology. The
source ontology can be a combination of several other ontologies but it cannot
be assumed, that the different source ontologies share the same vocabulary.

The advantage of this approach is that no common and minimal ontology
commitment (Gruber, 1995) about one global ontology is needed. Each source
ontology can be developed independently from the other sources or their
ontologies. Thus, the ontology architecture can simplify the integration task
and supports the change, i.e. the adding and removing, of sources.

3.6. Data Heterogeneity 129

On the other hand, the lack of a common vocabulary makes it difficult to
compare different source ontologies. Therefore, there is a need for inter-
ontology mapping in order to identify semantically corresponding terms of
different source ontologies, taking into account different views on a domain.

• Hybrid ontology approach (see Figure 3.6 (c)): in this approach, information
sources are described by local ontologies that are built from a global shared
vocabulary that contains basic terms of a domain. This in order to make the
local ontologies comparable to each other. Sometimes the shared vocabulary
is also an ontology (Stuckenschmidt et al., 2009).

The advantage this approach is that new sources can easily be added without
the need of modification. It also supports the acquisition and evolution of
ontologies. However, existing ontologies cannot easily be reused, but have to
be redeveloped from scratch.

The following table summarizes the ontology-based approaches for resolving se-
mantic heterogeneity:

Approach Semantic Heterogeneity Adding/Removing
sources

Single-ontology ap-
proach

Similar view of a domain need for some adapta-
tion in the global ontol-
ogy

Multiple-ontology
approach

supports heterogeneous
views

providing a new source
ontology; relating to
other ontologies

Hybrid-ontology
approach

supports heterogeneous
views

providing a new source
ontology

TABLE 3.2: A comparison of Ontology-based approaches for resolv-
ing semantic heterogeneity

130
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

3.7 MIROCL Motivations

In this section, we discuss five main key challenges that MIROCL aim to solve in
one cohesive approach which are: data heterogeneity, ontology modularization,
ontology reuse, ontology learning and ontology integration.

3.7.1 Heterogeneity of Data sources in MIROCL

In order to prevent building domain ontologies totally from scratch, we proposed
different heterogeneous data sources aiming at enriching the domain of discourse
and the intended ontology as well. For this purpose, two main category of resources
are identified in MIROCL:

• Textual resources related to the domain of application. For example, legis-
lations and codes in the legal domain. From these resources, domain and
domain-specific ontologies, that are not reusable, can be extracted using semi-
automatic support tools.

• Existent validated ontologies such as foundational or upper-level ontologies
that are abstract and common for all the domains and core ontologies that
cover the higher levels of the application domain. These ontological sources
are for enforcing ontology reuse and not reinventing the wheel. Core and
upper-level ontologies, that can be reusable, are extracted from these sources.

Therefore, the main purposes of this heterogeneity are:

• The interconnection of various heterogeneous relevant resources aiming to
enrich the ontologies to build.

• Enforcing the ontology reuse that will simplify the ontology building process.

• Encouraging the collaborative aspect of the ontology building process since
the heterogeneous data sources need the intervention of various contributors
such as domain experts and lexical engineers for the textual data sources and
ontology and knowledge engineers for the ontology reuse process.

• The possibility of building ontologies that contain different level of details:
(1) domain and domain-specific extracted from textual resources and (2) core
and upper extracted from reusing existent general and core ontologies.

Therefore, facing this heterogeneity of data sources, there is a need for an ontology-
based approach that could solve it. for this purpose, we will apply the Multiple
ontology approach (see Figure 3.6 (b)). The main reasons for selecting this approach
are:

• The possibility of describing the semantics of an information source by its own
separate ontology. Each source ontology can be developed independently

3.7. MIROCL Motivations 131

from the other sources or their ontologies. This will support the collabora-
tive building of ontologies and the reusability of the separated developed
ontologies.

• The ontology architecture can simplify the integration task and supports the
change, i.e. the adding and removing, of sources.

Finally, there is need for a selection process in order to identify the most relevant
data sources. The textual resources should be related directly to the domain of
discourse in order to express the most possibly the domain. The selection of the
upper and core ontologies depend on different criteria:

• The content of the ontology to be reused.

• The possibility to apply partial reuse or extraction of ontology modules since
it may be not necessary to apply a complete reuse known as import for the
whole ontology.

The selection of the upper ontology is discussed in section 2.2.2. Concerning the core
ontology, the selection of an existent validated ontology is related to the domain of
application since this ontology represent the most common categories of a specific
domain. We cite two main core ontologies in the literature: LKIF-Core for the law,
and GENE ontology for the medicine. The selection process of the different data
sources is performed by domain experts that recognize mostly the most convenient
materials representing the domain. The ontology engineers have an essential role
in the selection of the existent ontologies to be reused under the supervision of
domain experts specifically for the core ontologies (see Figure 3.7).

FIGURE 3.7: Contributors for the selection of heterogeneous data
sources.

132
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

3.7.2 Ontology Modularization in MIROCL

Actually, interest in modularization techniques, as an ontology engineering prin-
ciple, has increased in order to resolve the problems of reusability, scalability and
maintenance of ontologies (d’Aquin et al., 2007). Three main reasons are discussed
in the following for applying ontology modularization in MIROCL:

• Reusability: It is commonly known that ontologies aim to capture consensual
knowledge of a given domain in a generic and formal way, to be reused and
shared across applications and by groups of people (Corcho et al., 2007). In
this context, the number of available ontologies has increased considerably in
various domains such as bio-informatics, genetics, medicine and law, among
many others, but they are also becoming larger and more complex to manage
and reuse (Pathak et al., 2009). In the literature, several studies such as, (Turla-
pati et al., 2013) and (Bench-Capon et al., 1997), consider that in any realistic
application, it is often desirable not to concentrate on creating one ontology
for the domain, but on the creation of a library that contains several dedicated
ontologies, developed independently, at different abstraction levels and sup-
ports their combination to create a composite ontology. This would allow for
the modular design of large ontologies and would facilitate knowledge reuse
tasks.

• Resolving data heterogeneity: The main use of ontologies is making the
intended meaning of a given domain available to all agents. thus, an ontology
conceptual architecture is required to represent this meaning. Meanwhile,
there is a need to modularize the conceptual architecture dealing with the
complexity of the domain such as heterogeneous knowledge with different
levels of detail of that knowledge. Therefore, the resulted designed ontologies
are obtained with a high quality (Gangemi et al., 2004).

• Collaborative aspect: By applying ontology modularization to an ontology
building process, the collaborative effort is encouraged where different con-
tributors can cooperate in building different modules independently in order
to combine them at the end.

Therefore, ontology modularization has several benefits where modular representa-
tions are easier to understand, reason with, extend and reuse (Grau et al., 2007c),
and using modularization reduces the complexity of designing ontologies and
facilitates the ontology reasoning, development, and integration. Meanwhile, there
is no universal way to modularize ontologies and that the choice of a particular
technique should be guided by the requirements of the considered application
(d’Aquin et al., 2007).

In MIROCL, we pursue the modularity strategy by taking into account the con-
tent and level of ontologies. Here, modular ontologies support design clarity by

3.7. MIROCL Motivations 133

specifying the different perspectives on a domain. i.e., each modularly-designed
ontology provides the semantics for a particular view. As a result, the different
ontologies are located in a layered architecture, connected by integration and can
interact in a meaningful way. Thus, we pursued the ontology composition approach
(see chapter 2, section 2.2.8.3), where the different ontology modules are developed
independently, then assembled together to compose the target ontology. Note that
the modularization process performed by ontology engineers and supervised by
domain experts. A multi-layered modular architecture of the ontology is outlined
by identifying the main modules, their level, number, type and criteria, as well as
the knowledge to be represented in each module. MIROCL modularizes the do-
main ontology into four different modules: Upper Ontology Module (UOM), Core
Ontology Module (COM), Domain Ontology Module (DOM) and Domain-Specific
Ontology Module (DSOM) (see Figre 3.8).

FIGURE 3.8: Ontology modularization in MIROCL.

• Upper Ontology Module (UOM): located at the higher level (L3). It consists
of abstract concepts and relations which are effectively independent of any
specific domain such as Agent, Action, Event, etc...For a well founded building
of this module, a partial reuse of existent foundational, or top-level, ontology
can help to facilitate and speed up the ontology development process by
preventing to reinvent the wheel concerning basic categories.

• Core Ontology Module (COM): located at the level (L2). It consists of concepts
and relations that are common across the domain of discourse and can provide
the basis for specialization into domain and domain-specific concepts. Build-
ing COM is related to a reuse process from an existent validated core ontology

134
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

such as LKIF5 for the legal domain or Gene Ontology6 for the medicine.

• Domain Ontology Module (DOM): located at the level (L1). It is composed of
categories that are related mainly to the domain of discourse such as criminal
law for the legal domain. For building this module, two main strategies are
applied:

– specialize the concepts and relations of the core module;

– extract the knowledge from textual resources using an ontology learning
process in order to extract the relevant concepts and relations. This
process is supported by semi-automatic techniques such as ontology
learning tools and NLP (Natural Language processing) techniques.

• Domain-Specific Module (DSOM): located at the lower level (L0). It consists of
the instances or individuals of a specific subject domain such as the Lebanese
criminal system. Domain-specific ontologies are useful in systems involved
with reasoning. Thus, they should be at higher level of expressiveness, in other
words, rich in axioms. This module is developed using ontology learning
techniques as well as manual strategy with the help of domain experts.

All the modules can be developed independently by different contributors such as
domain experts, ontology engineers, knowledge engineers and lexical engineers.

3.7.3 Ontology Reuse in MIROCL

Ontology reuse process, is considered as one of the important research issues in
the ontology field (Doran, 2009), and is recommended as a key factor to develop
cost effective and high quality ontologies. Actually, ontology reuse reduces the cost
and the time required for building ontologies from scratch (Ben Mustapha et al.,
2013), (Bezerra et al., 2009). Moreover, by reusing validated ontology components,
the quality of the newly implemented ontologies is increased. For the purpose of
building well-founded domain ontologies, the reuse process in MIROCL is applied
on two main levels:

• Building the content of the upper module by reusing general common con-
cepts from foundational ontologies and the content of the core module by
reusing domain core concepts from core ontologies.

• Grounding the upper and core modules in an existent validated foundational
ontology such as UFO.

5https://github.com/RinkeHoekstra/lkif-core
6http://www.geneontology.org/

3.7. MIROCL Motivations 135

These two processes are performed starting from the most general concepts down
to the core concepts. Thus, the reuse process is considered as a top-down strategy
for building the upper and core ontology modules (see Figure 3.9).

FIGURE 3.9: Reusing upper and core ontologies: top-down strategy.

3.7.3.1 Ontology Reuse for Building Ontology Modules

The ontology reuse process for building ontology modules can be performed com-
pletely of partially where an existent validated ontology can be imported with all
the content or extracted partly as module extraction for instance. In MIROCL, the
reuse process is performed partially where ontology categories or modules are
extracted for building new ontologies. For instance, the concepts of the unified
foundational ontology UFO are reused partially for building the upper ontology
module (UOM). In figure 3.10, an example of simple reuse process is depicted. For
building an upper ontology module, there is a need for some general concepts that
are not related directly to a specific domain of application such as Agent, Object,
Action, etc.. Such concepts can be reused from UFO (see section 2.2.2.1 for more de-
tails), specifically from the layers UFO-B and UFO-C. Then, the extracted concepts
can be specialized in the target ontology or merged with other concepts in order
to add new ones. This process depends mainly on the purpose of the intended
ontology.

136
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

FIGURE 3.10: Simple reuse process from UFO.

3.7.3.2 Ontology Reuse for Grounding Ontologies

Ontology grounding is introduced by Harnad (Harnad, 1990) who claimed that exist-
ing approaches to ontology design pose the classical symbol grounding problem.
Harnad wondered how a logical theory of a concept, that can be explicit, easier to
communicate and axiomatized, is feasibly related to a human understanding of that
same concept and avoiding constructing an abstract theory or model for another
model. Moreover, how are its primitives grounded outside the formal system? In
other words, how the semantic interpretation of a formal symbol system can be
made intrinsic to the system, rather than just parasitic on the meanings in human
head (Harnad, 1990). In this context, some studies such as (Kohn, 2003) illustrated
the ontology grounding by avoiding resorting endlessly from one formal system to
another in explaining the meaning of symbols. They claim that if ontologies are not
grounded in something that their users share, they will be of very limited practical
use. Therefore, ontology engineering methods have to supply a list of concepts (or
at least of the kinds of concepts) considered meaningful outside the formal theories
(Kohn, 2003).

Our concern is to build a well-grounded domain ontology that could be expanded,
compared or merged with other ontologies. According to (Guarino, 1998), ide-
ally domain ontologies should be grounded in foundational ontologies. Thus,
ontology grounding using foundational ontologies refers to the reuse process of
their basic categories. It can be expressed by the application of foundational on-
tologies in conceptual modeling for building domain ontologies. This process is
called Ontology-Driven Conceptual Modeling (ODCM) discussed in section 3.3.1.
Therefore, a foundational ontology (UFO) and a conceptual modeling language
(OntoUML) are needed for grounding domain ontologies in MIROCL.

In figure 3.11, we illustrate the concept of grounding the core ontology module
(COM) in UFO by reusing its basic categories such as kind, sub-kind, role and phase.

3.7. MIROCL Motivations 137

Thus, the concepts of the core module will be represented in the context of UFO.
This will simplify the integration process of the upper and core ontology modules
since they will be defined in the same conceptual modeling language (OntoUML).

FIGURE 3.11: Representing core concepts in UFO.

3.7.4 Ontology Learning from Textual Resource in MIROCL

Generally, the knowledge expressed and conveyed in texts using domain-specific
terminology does not provide a well-defined structure to be used by machines for
reasoning tasks. Meanwhile, the extracting and mining of this terminology will lead
to a certain domain representation model such as ontology (Madche et al., 2000).

In this context, extracting and maintaining ontologies manually remains a resource-
intensive, time consuming and costly task. This is due to the difficulty in capturing
knowledge, also known as the “knowledge acquisition bottleneck”. In order to
reduce the cost of creating and maintaining ontologies, there is a need for ontology
learning (OL) supported by semi-automatic methods and tools. Ontology Learning
greatly facilitates the construction of ontologies by the ontology engineer (Maedche
et al., 2001). For this reason, we defined in MIROCL a bottom-up strategy that starts
from textual analysis and conceptual representation of the intended meaning of the
available resources by applying an ontology learning process supported by natural
language processing techniques for building semi-automatically the domain and
domain-specific modules of the target ontology. This process tends to extract from
texts, the relevant categories of ontologies: concepts, taxonomies, relations, axioms

138
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

and instances. Thus, the main output of the OL process is a structured content
represented in an explicit formal way.

However, even after a comprehensive literature review, we found a difficulty to
define a complete approach or tool that can totally extract domain and domain-
specific ontologies from textual resources. Additionally, there is no guarantee
that the (semi-)automatically generated ontology is correct and precise enough to
characterize the domain in question (Rudolph et al., 2007). For this reason, the
intervention of ontology engineer and legal expert during the ontology learning
process is required in order to supervise the work and to verify the obtained
information. Furthermore, a re-engineering methodology is needed in order to
enhance the results by transforming the resulted ontology into a new more correct,
complete and expressive ontology.

From these perspectives, we defined five main phases of the ontology learning
process (see Figure 3.12):

FIGURE 3.12: The main phases of ontology learning phase.

1. Material selection: in this phase, the material related to the context of interest
is selected based on the requirements of the application, taking into account
the type of documents and their language.

2. Tool selection: there is a need for a semi-automatic tool that supports the
user in order to reduce the complexity of the ontology building process. The
selection of an appropriate tool is related to the requirements of the ontology
and the intended results.

3. Documents pre-processing: the purpose of this phase is to prepare the corpus
and remove the ambiguity by filtering out worthless symbols and words, in
order to extract meaningful textual content from the input documents. This

3.7. MIROCL Motivations 139

phase is performed using machine learning approaches with basic linguistic
processing such as tokenization or lemmatizing and shallow parsing.

4. Extraction of the main components of the ontology: this phase is performed
with the support of the selected tool by implementing list of algorithms and
techniques.

5. Re-engineering phase: after extracting the ontology semi-automatically from
textual resources, there is a need to correct, prune and enrich the results.

The contributors involved in this process are:

• Domain experts, such as lawyer or judge for the legal case for better selection
of the convenient materials and pre-processing phase.

• Lexical experts and Knowledge engineers for managing the pre-processing
and tool selection phases.

• Ontology engineers for the extraction of ontology components.

• The re-engineering phase can be performed under the supervision of domain
experts and ontology engineers as well.

The ontology learning process from text in MIROCL is performed starting from
texts to semantic level in a bottom-up strategy (see Figure 3.13).

FIGURE 3.13: Ontology learning from text: bottom-up strategy.

3.7.5 Ontology Integration in MIROCL

One of the main objectives of MIROCL is to integrate information from hetero-
geneous sources. More specifically, integration of independently developed local

140
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

ontologies, or modules, into a global ontology.

Authors, such as, Pinto and her colleagues (Pinto et al., 1999) elaborate on issues
concerning ontology integration. They clarify the term ‘integration’ terminologically
and how it has been used in different works. Thus, three meanings of ontology
‘integration’ are identified (Kalfoglou et al., 2003):

• Building a new ontology by reusing (assembling, extending, specializing or
adapting) other ontologies already available;

• Building an ontology by merging several ontologies into a single one that
unifies all of them;

• Building an application using one or more ontologies.

In MIROCL, the integration process is established by building different ontologiy
modules, semantically heterogeneous, then assembling them into one global ontol-
ogy. In order to make the integration accessible through the uniform interface of the
global ontology, semantic mappings are established between the global ontology
and the local ontologies, or modules. Thus, this mapping process is accomplished
during the construction of the global ontology, which is generated by merging the
local ontologies. We consider that each local ontology (module) is merged into
the global target ontology. The process of ontology merging consists of several
operations:

• Copying a class and/or its properties: classes and properties that do not exist
in the target ontology are copied into it.

• Class Generalization: related classes in the local and target ontologies can be
generalized into a superclass.

• Class Merging: conceptually equivalent classes in the local and target ontolo-
gies are combined into one class in the target ontology.

• Property Merging: conceptually equivalent properties of a class in the local
and target ontologies are combined into one property in the target ontology.

• Relationship Merging: conceptually equivalent relationships from one class
c1 to another class c2 in the local and target ontologies are combined into a
single relationship in the target ontology (i.e., an RDF property having c1 as
its domain and c2 as its range).

Subsequently, in the resulting ontology, regions that were taken from the integrated
modules can be identified. Moreover, it is essential to consider heterogeneity
resolution and related ontology matching or mapping strategies to be an internal
part of ontology integration (Caldarola et al., 2015). In this context, list of semantic
mappings will be created among concepts of the different modules. Generally, the
mapping concept is defined by (Kalfoglou et al., 2003) as a morphism. Meanwhile,

3.7. MIROCL Motivations 141

in this study a more loosely definition is used based on some works in the literature
such as (Dmitrieva et al., 2011) and claims such as “simple mappings methods are
sufficient and outperform more complex methods” (Ghazvinian et al., 2009). For
ontology mappings, several studies, such as (Euzenat, 2007) and (Borgida et al.,
2003), have proposed a number of specialized semantics. Meanwhile, for other
studies, such as (Jimenez-Ruiz et al., 2008), ontology mappings are represented
as OWL2 axioms of the form subClassOf, EquivalentClass and DisjointClass

(Grau et al., 2008).

In MIROCL, the modules are located on different vertical conceptual levels, or
layers, from general (upper module), located at the higher layer, to specific (domain-
specific module), located at the lower layer. For this reason, the mappings will
be based mainly on a parent-child, or subsumption, hierarchical (Wang et al.,
2010) and instanceof relationships. These mappings are established manually as
structural axiom of the form subClassOf and instanceOf. Thus, the hierarchical
relationship is established among the concepts of modules. For this purpose, a
linguistic-based matcher, such as WordNet, is used to deal with ontology mapping
for calculating the similarity values between concepts (Miller, 1995). Then a domain
expert, knowledgeable about the semantics of legal concepts, validates the proposed
mappings. Given two concepts Ci and Cj from the modules UOM and COM
respectively, if Cj is considered as a subclass of Ci, then the subClassOf axiom
is added between the two concepts in the resulting ontology. Concerning the
instanceOf axiom, it is performed between DSOM and DOM where the instances
are located at the lower layer (DSOM). Given an instance Ik from DSOM, it is
considered as an instance for a concept Ck from DOM, then a instanceOf axiom is
added between them.

Therefore, the main contributors of the integration process are domain experts
knowledgeable about the domain, lexical experts for the linguistic-matching part.
The knowledge and ontology engineers are concerned in performing the integration
process using ontology editors such as Protégé for the domain and domain-specific
modules, and OLED for the upper and core modules.

142
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

FIGURE 3.14: Example of Ontology modules integration.

3.8 MIROCL Aspects

Based on the application of the aforementioned ontology building support pro-
cesses, we consider that two main aspects characterize MIROCL: middle-out and
collaborative.

3.8.1 Middle-out Aspect of MIROCL

MIROCL is considered as a middle-out approach combining two independent com-
plementary strategies: top-down and bottom-up (see Figure 3.15). This observation
is based on the independent building of the different modules of the target ontology,
where each module is related to a predefined data source located on a different
level of detail. Then, the modules will be integrated together to compose the global
ontology.

3.8. MIROCL Aspects 143

FIGURE 3.15: Middle-out approach for building ontology modules.

• Top-down: starts from the most general concepts, represents two main pro-
cesses: (1) the ontology-driven conceptual modeling process (ODCM) guided
by reusing the unified foundational ontology UFO for grounding the target
domain ontology and (2) the ontology partial reuse of the components of the
existent validated ontologies (foundational and core) for building the upper
and core ontology modules.

• Bottom-up: starts from the most specific concepts that are related closely to
the domain of discourse. It aims to build the domain and domain-specific
modules using the ontology learning process from the available textual re-
sources.

3.8.2 Collaborative Aspect of MIROCL

After a deep study of the available ontology engineering approaches in the literature,
and inspired by different studies in the field such as (Bao et al., 2004a) and (Simperl
et al., 2013), we consider that for building well-founded and rich domain ontologies,

144
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

there is a need for a truly collaborative effort carried out by different contributors
handling heterogeneous data sources, or indirect cooperation through reuse or
adaptation of previously published developed ontologies. Actually, the recent
definitions of ontology engineering process moved toward the cooperative efforts
in ontology building where users are confronted with integrating heterogeneous
ontologies either for the sake of enforcing reuse, and thus not multiplying ontologies
on the same topic, or because it is necessary for interconnecting various relevant
resources (Euzenat et al., 2007).

Therefore, building ontologies in a collaborative and increasingly community-
driven fashion has become a central paradigm of modern ontology engineering
(Simperl et al., 2013). This will provide the technological support that makes it
easier for non-experts to become involved in ontology-related activities beyond
requirements elicitation.

In MIROCL, the collaboration is included as an integral part of the ontology de-
velopment itself. It is performed on two levels: (1) direct cooperation of various
contributors such as domain experts, lexical experts, knowledge engineers and
ontology engineers (depicted in Figure 3.16) and (2) indirect cooperation through
the ontology reuse process of existent validated ontologies (see section 3.7.3). These
activities required support such as ontology modularization, matching and inte-
gration because it has to deal with multiple, distributed and evolving ontology
modules (Euzenat et al., 2007) (Stuckenschmidt et al., 2009).

FIGURE 3.16: Collaboration of various contributors.

We conclude that there is an active involvement of domain experts during all the
life-cycle of MIROCL. They lead the process, as well as providing the relevant
conceptual knowledge specifically in collaboration with the ontology engineers.

3.9. Life-Cycle of MIROCL 145

3.9 Life-Cycle of MIROCL

After discussing the main key challenges that MIROCL aim to solve, which are
data heterogeneity, ontology modularization, ontology reuse, ontology learning
and ontology integration, its overall process can be summarized by a generation
of independent local ontologies, or ontology modules, for each data source and by
different contributors and then the use of a global merged ontology which defines
the integrated underlying distributed heterogeneous data sources. The global
merged ontology provides a unified representation of all underlying modules and
will be utilized as a knowledge base for a legal reasoning and decision support
system.

In such settings, typically, different participants have only partial knowledge of the
domain, and hence can contribute only partial ontologies of the domain. A common
task involves refinement of a predefined ontology. Another common task involves
integration of several such partial ontologies to obtain a coherent ontology that
covers a much larger portion of the domain. Semantic mismatches and logical in-
consistencies between independently developed ontologies are unavoidable. Thus,
there is an urgent need for principled approaches and flexible tools for allowing
individuals to collaboratively build, refine, and integrate existing ontologies as
needed in specific contexts or for specific applications e.g., data-driven knowledge
acquisition from semantically heterogeneous, distributed data sources (Bao et al.,
2004a). Therefore, the proposed approach MIROCL, depicted in figure 3.17, consists
of four main phases:

146
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

FIGURE 3.17: The life-cycle of MIROCL.

1. Identify relevant heterogeneous data sources: the identified data sources
are divided mainly into two categories, pre-existing validated ontologies
and textual resources related to the domain of context. In this phase, the
domain experts and ontology engineers select the most relevant sources for
the efficiency of the study. The output of this phase comprise a relevant
textual resource that reflects accurately the domain of discourse as well as a
foundational and core ontologies for reuse purposes.

2. Ontology reuse and building of ontology modules: in this phase, a partial
reuse process is applied for reusing categories from the unified foundational
ontology UFO and a core ontology related directly to the domain of discourse
in order to build the upper and core ontology modules (UOM and COM).

3.10. Conclusion 147

Therefore, the main outputs of this phase are two independent ontology
modules. The main contributors at this phase are: ontology engineers, domain
experts and knowledge experts. This phase can be performed in parallel with
the ontology learning phase that will be detailed in the next phase.

3. Ontology learning process and building of ontology modules: this process
extracts the relevant concepts and relations from the textual data sources of
the domain with the support of semi-automatic tools and NLP techniques.
The main outputs of this phase are the domain and domain-specific modules
(DOM and DSOM). Thus, two independent developed modules are derived
from this phase. The ontology learning process should be performed under
the supervision of all the contributors.

4. Integration of ontology modules: the last phase tends to integrate the different
ontology modules in a global ontology. The integration process should be
semantically coherent combination of the local ontologies. Thus, one global
ontology is obtained at the end of this process which is considered as com-
posite ontology composed of four modules, developed independently and
located at different abstraction levels. This phase is accomplished by all the
contributors.

3.10 Conclusion

The main goal of this thesis is to build a well-founded domain ontology for legal rea-
soning decision support system. In this chapter, we have presented and discussed a
novel modular middle-out approach, named MIROCL, for building well-founded
domain ontologies. Our concern is to solve some problems facing the ontology
engineering domain concerning the complexity of ontology building process, the
difficulty of reusing existent ontologies, as well as the lack of building well-founded
ontologies and the missing of the participatory approaches in this field.

From our perspective, solving these issues can enhance and simplify the process of
building well-founded domain ontologies. Based on this prospect, we suggested
to enrich the ontology building process by some useful concepts in the field such
as data heterogeneity, middle-out ontology building strategy, ontology-driven
conceptual modeling and collaborative ontology development. For this purpose,
four main ontology support processes are applied in a coherent way in order to
achieve our goal. These processes are: ontology modularization, ontology reuse,
ontology learning from texts and ontology integration.

Regarding the ontology modularization process, we suggested to modularize the on-
tology into four modules, upper, core, domain and domain-specific, to be developed
independently and are located at different levels of granularity. The application of

148
Chapter 3. MIROCL: A Modular Middle-Out Collaborative Approach for Building

Well-Founded Domain Ontologies

this process have several benefits such as simplifying the building process of the
ontology modules as well as of the target ontology, participating several contribu-
tors in the building process and enforcing the reusability of the ontology modules
specifically the upper and core ones.

Concerning the ontology reuse process, it is applied in MIROCL on two levels,
the simple one that consists of reusing concepts from existent validated ontologies
(foundational and core ontologies) in order to simplify the development of ontolo-
gies and not to reinvent the wheel. The second level of the reuse process is the
application of ontology-driven conceptual modeling based on existent foundational
ontology such as UFO for well grounding the target ontology. This level aims
to build well-founded ontologies using an ontology-based conceptual modeling
language such as OntoUML.

The purpose of proposing the application of ontology learning process is to extract,
semi-automatically with the support of NLP techniques, domain and domain-
specific ontology components directly from textual resources that are related directly
to the domain of discourse. This process is the most suitably technique for reflecting
the domain under the supervision of the domain experts.

Finally, the ontology integration process is applied for combining the developed
ontology modules into one global ontology using subClassOf and instanceOf

axioms.

Furthermore, the validation of the proposed approach MIROCL will be accom-
plished in chapter 4 for building a well-founded legal domain ontology as well as
in chapter 5 for testing the developed ontology in rule-based reasoning purposes.

149

Chapter 4

CriMOnto: A Criminal Ontology
for Modeling Legal Norms

Contents
4.1 Overview . 150

4.2 Modeling Legal Norms . 150

4.3 Approaches for Modeling Legal Norms 152

4.4 Ontology-based Approach for Modeling Legal Norms 154

4.5 Phase1: Advantages of Using MIROCL for Modeling the Con-
tent of Legal Norms . 156

4.6 Phase1: The Building Process of CriMOnto 157

4.6.1 Identification of Data sources in CriMOnto 157

4.6.2 Building of Ontology Modules in CriMOnto 159

4.6.3 The modules of CriMOnto 166

4.6.4 Integration of CriMOnto Modules 181

4.6.5 CriMOnto Evaluation . 184

4.7 Similar Works . 184

4.7.1 Discussion . 187

4.8 Conclusion . 188

150 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

4.1 Overview

In this chapter, the building process of a well-founded legal domain ontology
named CriMOnto is discussed. The aim of CriMOnto is modeling the content
of legal norms. Furthermore, CriMOnto will be used as a ground for building
a rule-based legal reasoning model. The domain application of this work is the
Lebanese criminal system. Thus, the available domain sources are the legal norms
of the Lebanese criminal code. Therefore, the concept of modeling legal norms
is discussed in section 4.2, then the existent approaches are outlined in section
4.3. A proposed bi-phased ontology-based approach for modeling legal norms is
presented in section 4.4. For the current, the first phase of the proposed approach is
presented in section 4.6 which promotes the building of the legal domain ontology
CriMOnto. Finally, section 4.7 explores the related works and section 4.8 concludes
the chapter.

4.2 Modeling Legal Norms

Generally, norms are defined as an abstract mandatory command concerning rights
or duties (Kelsen, 1991). For Boer and his colleagues (Boer et al., 2005), “the norm is
an epistemological concept identified by its role in a type of reasoning and not something
that exclusively belongs to the vocabulary of the legal domain ”. Within a legal system, the
role of norms is to specify how and when the chosen behavior agrees with the basic
principles of the legal system (Boella et al., 2005). According to some studies, such
as (Gostojic et al., 2013), a legal norm is a rule of conduct of people that may contain
a rule on the application of a sanction in the case of its violation. This definition is
limited to the regulatory form of a legal norm. Meanwhile, some studies such as
(Von Wright, 1963) and (Biagioli, 1997) classified legal norms into three main types:

• Determinative or constitutive: define concepts or constitute activities that
cannot exist without such norms. Legal norms are constitutive when they
operate within the legal system defining it in order to describe legal institutes
(Biagioli, 1991).

• Technical or procedural: state that something has to be done in order for
something else to be attained.

• Regulative or normative: these norms are similar to orders. They regulate
actions by making them obligatory, permitted, or prohibited in a direct and
imperative manner and are normally followed by provisions providing for
sanctions (Biagioli, 1997). These norms are aimed explicitly at the citizen, at
the point of contact or union between the legal institute and the real regulated
world, of which it represents a model (Biagioli, 1991).

4.2. Modeling Legal Norms 151

The modeling of legal norms consists of interpretation of text’s meaning in order to
transform the norms in logical rules for legal reasoning. It is commonly known that
legislative documents are semi-structured and hierarchically structured in nature.
In this context, the structure of the document consists of normative parts rather than
simply textual documents which facilitates the understanding of legal concepts and
thus the interpretation of text (Heflin et al., 2000) (Ouksel et al., 1999).

In the legal domain, three conceptual layers are distinguished: norms, textual
provisions and rules (Palmirani et al., 2012).

• Legal norms: abstract mandatory commands concerning rights or duties.
They are usually expressed in written using legal text.

• Textual provisions: instantiation of the norms in one possible textual repre-
sentation (sentence, article, and paragraph).

• Legal rules: interpretation of the textual provisions formalized using logical
rules in the form of antecedent and consequent. Sometimes several provisions
will form a single rule, or a single provision may include multiple rules
(Palmirani et al., 2013).

The legal norms are expressed in textual sources such as legislations and codes and
have basically the following structure (Davis et al., 1984), (Kelsen, 1991):

If A1, ...,A2 then B;

where “A1, ..., A2” are the conditions of the norm, “B” is the legal effect and “if
...then” is a normative conditional.

This view highlights an immediate link between the concepts of the norm and the
rules (Gordon et al., 2009). This link relies on ontologies since they are used for
filling the gap between document representation, expressed in natural language,
and rules modeling using logical formalisms (Palmirani et al., 2009). Thus, the legal
rules are considered as legal interpretation and modeling of the meaning of texts by
transforming the legal norms to logical rules for permitting reasoning (Palmirani
et al., 2012).

However, according to (Palmirani et al., 2012), the scholars in the domain of AI &
Law, have focused only on the rules modeling and on the foundational logical theory,
and apart the isomorphism principles (Bench-Capon et al., 1992) and neglected
the ontology aspects. Actually, there is a theoretical and important debate in the
AI & Law community on the interpretation of the legal textual provisions and on
formalizing of the rules using logical formalisms (Boella et al., 2011).

152 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

4.3 Approaches for Modeling Legal Norms

There are a variety of approaches in the literature that deal with the translation of
legal rules expressed in natural language to a machine-processable formal repre-
sentation format for reasoning purposes. In this section, three main approaches
are presented: Palmirani and her colleagues (Palmirani et al., 2009; Palmirani et al.,
2012), (Francesconi, 2010; Francesconi, 2011) and (Wyner et al., 2013) .

Palmirani and her Colleagues: Fill the Gap between Texts and Rules The ap-
proach proposed by Palmirani and her colleagues is under the “Fill the gap” project
(Palmirani et al., 2009; Palmirani et al., 2012) that aims to design a set of XML
standards for modeling legal documents in the Semantic Web. The authors have
used three main concepts: (1) the translation of textual provisions into XML using
Akoma Ntoso1 (Vitali et al., 2007), (2) developing the corresponding rules in Legal-
RuleML (Palmirani et al., 2011), and (3) an ontology for modeling and defining
macro-concepts specific for the legal domain is developed and expressed in LKIF-
Core. The approach is applied on a fragment of the legal norms of the US copyright
domain.

Francesconi: Learning Legal Rules based on Semantic Model of Legislation An
approach to support the acquisition and modeling of legal rules contained in
legislative documents is proposed by Francesconi (Francesconi, 2010; Francesconi,
2011). The author considers that the extraction of legal rules from legislative
texts can be an effective method to make it easier the implementation of rules-
based systems for legal assessment and reasoning, as well as for implementing
advanced search and retrieval systems for legislative documents. For this purpose,
Francesconi’s approach is based on machine learning and NLP techniques for
extracting legal rules on the basis of a semantic model for legislative texts, which is
oriented to knowledge reusability and sharing.

This approach combines two strategies: top-down and bottom-up. The top-down
strategy provides a model for legal rules, while the bottom-up strategy identifies
rules instances from legal texts. The bottom-up strategy is processed automat-
ically using machine learning and NLP techniques. Therefore, the approach is
composed of two main methodologies: (1) knowledge modeling and (2) knowledge
acquisition.

• Knowledge Modeling: definition of a semantic model for legislative texts able
to describe legal rules ; Francesconi tends to separate in his approach, oriented
to interoperability and reusability, the types of knowledge to be represented
by Semantic Web standards. The key-point is to represent independently

1http://www.akomantoso.org/

4.3. Approaches for Modeling Legal Norms 153

knowledge about the domain and knowledge about reasoning on the domain.
In this regard, the knowledge model of the proposed approach is organized
into two main components: Domain Independent Legal Knowledge (DILK)
and Domain Knowledge (DK).

• Knowledge Acquisition: bottom-up strategy for the instantiation of legal rules,
driven by the defined semantic model, through the analysis of legislative texts
based on machine learning and NLP techniques.

Wyner and Governatori: Translating Regulatory Rules from Natural Language
to Defeasible Logic Wyner and Governatori (Wyner et al., 2013) have compared
two different approaches for translating regulatory rules from natural language. The
first approach is manual and tends to convert the rules to Defeasible and Deontic
Logic. Meanwhile, the aim of the second approach is to apply the C&C/Boxer
tool (Bos, 2008) to translate regulatory statements to semantic representations. The
domain application of the work is the Australia’s Telecommunications Consumer
Protections Code.

First, the source data is preprocessed. Furthermore, C&C/Boxer automatically
parses the sentences of the Modified Source. Thus, every sentence is parsed and
given a semantic representation. Furthermore, the Defeasible Logic is used to
represent the defeasible rules and the Deontic Logic to represent the concepts
of obligation, prohibition and permission. The proposed approach is based on an
assumption that in the legal domain, rules are non-monotonic , that is, they admit
of exceptions where the rule does not apply or where new information blocks the
inference from the rule.

In Description Logic, five main key features are identified:

• Facts: indisputable statements.

• Strict rules: material implication in classical logic.

• Defeasible rules: rules from which inferences are drawn, unless the rule is
defeated by superior, contrary evidence.

• Defeaters: rules that prevent conclusion of a defeasible rule from holding.
They produce contrary evidence.

• Superiority relation among rules: the relation allows to draw a "winning"
conclusion from rules with opposition conclusions.

After applying the approaches, the authors conclude that:

154 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

• The use of C&C/Boxer highlight some limitations: the output parse and
semantic representation given by the tool must be manually checked to accu-
rately correlate to the intended semantic interpretation of the input expres-
sion; relatedly, the outputs have not been associated with logical or machine-
readable representations that could serve as requirements for the semantic
representation.

• On the other hand, studies using Defeasible Logic and LegalRuleML do
not systematically relate to natural language or the issues of acquiring the
formal representations from the source material that is represented in natural
language.

There remains, then, a significant gap between natural language source material
and formal, machine-processable representations.

4.4 Ontology-based Approach for Modeling Legal Norms

After presenting the existent approaches in the literature that deal with the mod-
eling of legal norms, we found that most of them neglect the role of ontologies.
Meanwhile, the use of ontologies can enhance and simplify the modeling process.

It is commonly known that the legal domain is dominated by the use of natural
language. Generally, legal norms are expressed in natural language textual sources,
such as legislations and codes, which make them ambiguous since an expression
can have multiple meanings. This problem causes some difficulties in interpreting
them (Van Gog et al., 2001). The general rule is that any document of this domain is
always embedded in a context of norms. Thus, understanding concepts of a legal
norm is important to understanding other legal norms (Machado et al., 2014). Based
on this perspective, we relied on the role of ontologies as a ground for modeling
legal norms. The aim of building legal ontologies is to describe the facts of legal
cases at a comfortable level of abstraction and the "law" of the domain application
which consists of "norms" and "concepts" (McCarty, 1983).

In this context, we have relied on three main criteria, inspired by (Biagioli, 1991),
(Boer et al., 2005) and (Gordon et al., 2009), for proposing an ontology-based
approach for modeling legal norms:

• The modeling of legal norms is considered as developing a formalism which
is not too different from the way in which the legislator expresses himself. The
aim is to create models that should be defined from within the legal world
and not imposed on it from outside.

4.4. Ontology-based Approach for Modeling Legal Norms 155

• The separation of knowledge about reasoning - epistemology - and knowledge
about the problem domain - domain ontology - for the reusability of the
knowledge representation.

• The faithful representation of legal rules is obviously crucial for representing
legislative documents, regulations, and other sources of law.

Based on these criteria, a direction that separates the modeling of the legal content
of the norms from their procedural aspects where logical inferences is tracked.
Therefore, a bi-phased ontology-based approach is proposed for modeling legal
norms (see Figure 4.1):

FIGURE 4.1: A bi-phased ontology-based approach for modeling
legal norms.

Phase1: Modeling the content of the legal norms The aim of the first phase is to
model the content of the legal norms which reflects the given domain. Thus, we
obtain an ontological model, which is the intended legal domain ontology, aiming
to provide a well-founded representation of concepts and semantic relationships
among them in the context of the norms of the given domain. In this regard, the
MIROCL approach, introduced in chapter 3 is applied for several reasons detailed
in section 4.5.

Phase2: Modeling the procedural aspect of the legal norms The second phase
of the proposed approach tends to model the procedural aspect of the norms using
logical formalisms in order to translate the norms into a list of formalized rules. In
this phase, it is preliminary to follow the isomorphism principle stated by (Bench-
Capon et al., 1992; Bench-Capon et al., 2009) for connecting legal textual provisions
with formalized rules. At the end, we obtain a list of logic rules formalized using a

156 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

rule language based on the legal domain ontology. This phase will be discussed in
chapter 5.

4.5 Phase1: Advantages of Using MIROCL for Modeling
the Content of Legal Norms

As aforementioned, the aim of the first phase of the ontology-based approach for
modeling legal norms is to model their content. Therefore, we will obtain a legal
domain ontology that reflects the model of the given legal norms. The target is
to build a well-founded legal domain ontology. Thus, the modular middle-out
approach MIROCL, proposed in chapter 3, is suggested for the following reasons:

• The most promising way to build legal ontologies is through the integration
of top-down and bottom-up approaches. Such an integrated approach leads
to accurate ontology construction, which cannot be achieved by either bottom-
up or top-down approach alone. This is particularly true in the legal domain,
where ontology construction should follow insights provided by legal theory
but at the same time should guarantee textual grounding (Francesconi et al.,
2010).

Therefore, from one side linguistic resources are indeed important resources
for identifying concepts and can be used as consensus references to root
ontology. From the opposite point, lexical resources and semantic resources,
such as ontologies, need each other and are complementary one to each other
as ontologies allow to represent the complex relationship between the lexical
and the semantic meaning of a term (Biasiotti et al., 2011).

• Starting the modeling activity from theoretical assumptions and semantic
resources already developed by the scientific community in the field of legal
ontologies can lead to a well-founded ontological model (Cherubini et al.,
2008).

• Additionally, the literature suggests that legal ontologies may be distinguished
by the levels of abstraction of the ideas they represent (Breuker et al., 2009),
with the key distinction being between core and domain levels. The core
level ontology is a model of general concepts common for all legal domains
(Valente, 1995). Accordingly, research in this field should not concentrate on
creating a single ontology of the legal domain but on the creation of a library
that contains several dedicated ontologies at different abstraction levels and
supports their mapping to create a composite ontology (Piovesan et al., 2014).

In fact, the approach MIROCL satisfies the three aforementioned points which are
the middle-out aspect, the reuse of existent semantic resources in order to build

4.6. Phase1: The Building Process of CriMOnto 157

a well-founded domain ontology and the modularization or composition of the
ontology.

4.6 Phase1: The Building Process of CriMOnto

CriMOnto is a well-founded legal domain ontology for modeling the content of
legal norms. It is intended to be used for supporting rule-based reasoning purposes.
Therefore, a conceptualization process is needed for modeling the domain in the
context of the legal norms provided as input texts. In this regard, an issue must
be recognized is that there is no agreement on the basic conceptualization aspects
of the legal domain in general. Thus, the same domain can be conceptualized in
different ways. What is needed is rather for the ontologies to be sufficiently clearly
stated (Bench-Capon et al., 1997).

For the reasons mentioned in section 4.5, MIROCL will be used for building Cri-
MOnto. Therefore, the main tasks of MIROCL are executed: (1) identification of
data sources; (2) building of ontology modules by using two different strategies:
bottom-up for ontology learning and top-down for ontology reuse and ontology-
driven conceptual modeling; (3) integration of ontology modules; (4) ontology
evaluation.

4.6.1 Identification of Data sources in CriMOnto

In MIROCL, two main data sources are identified: (1) the textual resources that are
related to the domain application and (2) existent validated ontologies (foundational
and core ontologies).

4.6.1.1 Textual Resources in CriMOnto

In the legal domain, the textual resources are considered as the legal discourse. For
Tiscornia (Tiscornia, 2005), different levels of legal language exist, such as:

• The discourse of the legislator (laws and regulations);

• The discourse of the judges (judgments and other judicial decisions);

• The discourse of the doctrine (studies on several legal sub-domains, system-
atizing legislator and judges’ discourses);

• The discourse of legal theory (legal works having a general content, not
addressing a particular legal system).

The legal discourse in this thesis is limited to the discourse of legislator. For
CriMOnto, the domain application is the Lebanese criminal system. The available

158 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

textual resources used as input are the legal norms of the Lebanese criminal code
which is considered as relevant source of the discourse to be considered. This
corresponds to explicit legal knowledge, codified in specific and standardized ways
by the legal community (laws and articles) (Fernandez-Barrera et al., 2011).

The Lebanese criminal code (??, see Figure 4.2) contains the general criminal laws
of Lebanon. First enacted in 1943 and it remains in effect till today. It is translated
to French and English versions. Concerning the structure of the code, it is divided
into two main books, General Provisions and Offences, composed of 770 articles.

FIGURE 4.2: Excerpt of the Lebanese criminal code.

In the Lebanese criminal code, the legal norms are represented in unstructured
natural language texts. Two main types of norms are identified: determinative,
known also as terminological, and regulative, known also as normative.

Determinative Rules The determinative rules, as defined in section 4.2, consist in
definitions of some of the concepts of the criminal domain that are used to describe
the criminal facts. For instance, the concept perpetrator is defined in article 212 as:

“Article 212: The perpetrator of an offence is anyone who brings into being the constituent
elements of an offence or who contributes directly to its commission”.

Another example, the article 240 where the legislator clarify some terms used in the
code such as child, adolescent and minor.

“Article:240: For the purposes of this Code, a child means anyone from the age of 7 to the
age of 12.

An adolescent means anyone from the age of 12 to the age of 15.

A minor means anyone from the age of 15 to the age of 18 ”.

4.6. Phase1: The Building Process of CriMOnto 159

Normative Rules The normative rules, as defined in section 4.2, connect the legal
consequences to descriptions of certain facts and situations, such as in articles 217
and 398:

“Article 217: Anyone who induces or seeks to induce another person to commit an offence
shall be deemed to be an instigator”.

“Article 398: Any Lebanese citizen who knew of a felony against state security and failed to
report the matter at once to the public authorities shall be punishable by imprisonment for a
term of between one and three years and by loss of his civil rights”.

4.6.1.2 Existent Validated Ontologies in CriMOnto

Existent validated ontologies are the second type of data sources. They are selected
not only for simple reuse but for grounding the target ontology as well. Actually,
two main types of ontologies are recognized: foundational and core.

In MIROCL, the Unified Foundational Ontology UFO (Guizzardi et al., 2005b) is
identified as a foundation for the ontology grounding process (see chapter 3, section
2.2.2.1). Meanwhile, the core ontology is related to the domain application. For
instance, in case of CriMOnto, since the domain application is law, then the core
ontology should be legal core ontology. For this purpose, a selection process have
to be applied in order to choose the convenient ontology. In the legal domain, three
main recent legal core ontologies are identified: LKIF-Core (Hoekstra et al., 2007),
OPJK (Casellas, 2008a) and UFO-L (Griffo et al., 2015).

UFO-L is still under development. Concerning OPJK, actually we consider this
ontology as domain ontology because it is intended for a specific application which
is the JURISERVICE web-based application. Additionally, the modelers have used
existent upper and core ontologies for building OPJK. LKIF-Core is defined by the
authors as legal core ontology, and directed at supporting legal inference, knowl-
edge acquisition and knowledge exchange. Beside this, LKIF-Core is composed of
modules which simplifies the ontology reusing. Therefore, LKIF-Core is the most
convenient as a legal core ontology (see chapter 2, section 2.2).

4.6.2 Building of Ontology Modules in CriMOnto

As mentioned previously, the building process of the ontology modules, by fol-
lowing the MIROCL approach, is a combination of two main strategies: top-down
and bottom-up. These strategies tends to modularize the ontology into four differ-
ent modules which are themselves ontologies: upper (UOM), core (COM), domain
(DOM) and domain-specific (DSOM). The upper and core modules are developed
by applying the top-down strategy that represents an ontology-driven conceptual

160 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

modeling process performed by reusing existent foundational and legal core ontolo-
gies. Meanwhile, the bottom-up strategy starts from textual analysis and conceptual
representation of the intended meaning of the legal norms as an ontology learning
process for building the domain and domain-specific modules.

Before detailing the four ontology modules, the identified strategies are discussed
in the following.

4.6.2.1 Top-down: ODCM and Reuse

Concerning the top-down strategy, an ontology-driven conceptual modeling process
(ODCM) guided by reusing foundational and core ontologies is established for
grounding the legal domain ontology. For this purpose, two main existent validated
ontologies are reused: The unified foundational ontology UFO and the legal core
ontology LKIF-Core in order to build two top modules: upper (UOM) and core
(COM). In CriMOnto, the ontology-driven modeling is concerned with capturing
the relevant entities of the given domain in the upper and core ontology modules
using the ontology specification language OntoUML which is based on a set of
basic, domain-independent ontological categories of UFO.

4.6.2.2 Bottom-up: Ontology Learning Process

“Since legal domain is strictly dependent on its own textual nature, a methodology
for ontology construction must privilege a bottom-up approach, based on a solid
theoretical model” (Biasiotti et al., 2011). Thus, considering the complexity of
the law, the most promising way to fill the gap between conceptual models and
lexical patterns extracted from texts is the use of methodologies based on ontology
learning techniques (Biasiotti et al., 2011). In MIROCL, the ontology learning
process is defined in five main phases (see Figure 3.12). We discuss in the following
each phase.

1. Material selection: As aforementioned, the domain application for building
CriMOnto is the criminal domain, and the available resources are the legal
norms of the Lebanese criminal code. Thus the material is the Lebanese
criminal code which is unstructured textual document. The available language
is the English.

2. Tool selection: After exploring the literature and collecting the state-of-the-art
for the most frequently used ontology learning tools (see chapter 2), we met
some access difficulties in our experimentations. In fact, three of the tools
were publicly available on the Internet to download and install: Terminae,
OntoGen and Text2Onto. We discuss briefly the usability of each tool.

4.6. Phase1: The Building Process of CriMOnto 161

Concerning the input type, all the tools accept simple text files (.txt), Text2Onto
and Terminae accept PDF files (.pdf) as well. For OntoGen, there are additional
input file types that need to be pre-processed, such as Named Line-Document
and Bag of Words. Terminae and OntoGen need preprocessing efforts.

Starting with Terminae where the linguistic tool extract terms automatically
from the corpus based on their occurrences. Meanwhile, the rest of the
steps are processed manually which is too resource demanding and too time
consuming. For this reason, this tool is discarded. Furthermore, we face
some difficulties while using OntoGen. We could not control the system that
generates sequences of terms that are not well related. In addition to this, the
suggestion of concepts is limited to single-word terms, proposed only from
the input documents (no external resources), and the relations extraction is
limited as well to taxonomic. Meanwhile, OntoGen provide a visualization
and exploration of concepts only and not of the whole ontology. OntoGen
is discarded too. We finished our experiments by Text2Onto. According
to (Gherasim, 2013), Text2Onto is an ontology learning tool that covers the
entire process of extracting OWL ontologies. Furthermore, it provides a long
list of proposed concepts and relationships along with their weights in a
tabular form. Meanwhile, Text2Onto does not have any mechanism to filter
the concepts irrelevant to goal (Hatala, 2012). The user input is limited to
removing concepts and relationships extracted from the supplied course. In
Text2Onto, the visualization of the structure of the resulted ontology is missing.
Regarding the external resources, Text2Onto uses WordNet to improve and
enrich the algorithms of pattern-based relation extraction. However, some
authors found that WordNet lacks the richness of named relations (Fouad,
2015). For this reason, they decided to use online ontologies as an alternative
to WordNet.

Regarding the limitations of Text2Onto, this tool still answers the main require-
ments of our work: automatic extraction, usability, scalability and reusability.
Based on this selection, we proposed to apply a re-engineering phase that
consists of evaluating the ontology extracted using Text2Onto, correcting the
detected errors, refine the ontology model and finish by enrich the semantic
relations and axioms.

Tool Terminae OntoGen Text2Onto

User Input Add, Remove,
Modify

Add, Remove,
Modify

Remove

Visualization NA Concepts NA
External Re-
sources

NA NA WordNet

TABLE 4.1: List of experimented tools.

162 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

Therefore, the following phases, pre-processing and extraction of ontology
elements, are performed using Text2Onto in order to extract the domain
ontology module from texts (see Figure 4.3).

FIGURE 4.3: Ontology learning process using Text2Onto.

3. Preprocessing: The aim of this phase is to extract meaningful textual content
from the input document after removing the ambiguity by filtering out worth-
less symbols and words. The tasks performed in this phase are: extraction of
plain text, splitting text into sentences, elimination of stop words, tagging and
parsing of the sentences.

In Text2Onto, there is a combination of machine learning approaches with
basic linguistic processing such as tokenization or lemmatizing and shallow
parsing (Cimiano et al., 2005b). In addition to this, Text2Onto benefits from
GATE by the integration of JAPE that provides finite state transduction over
annotations based on regular expressions.

Therefore, two main steps composed the preprocessing phase (see Figure 4.4):

(a) Basic linguistic preprocessing using GATE applications; it starts by tok-
enization and sentence splitting, then applying the POS tagging on the
resulting annotation set, and finish by lemmatizing using a morphologi-
cal analyzer and a stemmer respectively.

(b) The second step runs a JAPE transducer over the annotated corpus in
order to match a set of particular patterns required by the ontology
learning algorithms. JAPE patterns are developed for shallow parsing
and identification of modeling primitives such as concepts, instances
and relations.

4.6. Phase1: The Building Process of CriMOnto 163

FIGURE 4.4: Pre-processing phase in Text2Onto.

4. Extraction of the main components of the ontology: This phase is performed
with the support of the selected tool Text2Onto by implementing list of al-
gorithms and techniques. In Text2Onto, the main extracted components or
modeling primitives of the ontology are concepts, taxonomies, relations, dis-
joint axioms and instances. For the concepts, RTF algorithm is applied. The
taxonomies are learned using three algorithms combined together: vertical
relations, WordNet and patterns. For the relations, Text2Onto uses syntactic
pattern matching technique to extract general relations. Finally, the extraction
of the disjoint axioms is based on lexico-syntactic patterns.

• Concepts: In our experiments, in order to extract the concepts from the
corpus, we have applied the RTF algorithm. This algorithm calculates
the relative frequency of the terms as follows:

rt f (t, D) =
absoluteterm f requency

maximumabsoluteterm f requency

By applying this algorithm, 486 single and multi-word concepts are
extracted (see Table 4.2).

Single word Multi-word

Probation Constituent element
Criminal Deportation measure
Prosecution Drug addict
Location Instance judgment
Selfishness Term penalty

TABLE 4.2: Excerpt of the concepts extracted using Text2Onto.

164 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

However, some verbs are extracted as concepts such as stay, incur and
abort. Moreover, some meaningless concepts are extracted such as hand,
harm, interior, lack, loss, etc...

• Taxonomies: or concept inheritance (subclass-of relations), Text2Onto
provides three main algorithms to classify concepts based on Vertical
Relations, WordNet, and Patterns. Based on our experiments, we decided
to combine them for achieving better results (see Table 4.3).

Domain Range

Treatment Manner
Offender Person
Death penalty Penalty
Corrective measure Measure

TABLE 4.3: Excerpt of the taxonomies extracted Text2Onto.

• Relations: Text2Onto relies on an algorithm that uses syntactic pattern
matching technique to extract general relations by identifying the follow-
ing syntactical frames:

Transitive: Subject+verb+object.

Intransitive+prepostition phrase-complement: Subject+verb+preposition+object.

Transitive+prepostition phrase-complement: Subject+verb+object+preposition+
prepositional+object.

The number of extracted relations is limited to 20. In table 4.4, an excerpt
of the extracted relations is depicted.

Label Domain Range

involve Residence Placement
require Activity License
exceed Offence Bound
preclude prescription Enforcement
commit Society Offence

TABLE 4.4: Excerpt of the relations extracted Text2Onto.

• Disjoint Axioms: Based on lexico-syntactic patterns, Text2Onto extracts
86 disjoint axioms from the corpus (see Table 4.5).

4.6. Phase1: The Building Process of CriMOnto 165

Domain Range

Measure Penalty
Felony Disposal
Person Association
Substitute Penalty
Summary Judgment

TABLE 4.5: Excerpt of the disjoint axioms extracted Text2Onto.

Some wrongful disjoint axioms are extracted such as disjoint(Penalty,
Fine) and disjoint(Person, Perpetrator).

• Instances: The extracted instances are limited to name of days or months,
countries and languages such as Friday, November, Lebanon and Arabic.
Actually this is due to the quality of the input resources written in
legal language, which is authoritative and contains legal speech acts
accompanied by rituals of various types. For this reason, the tool will
not recognize easily the instances of the relevant domain without the
help of the legal expert.

After applying Text2Onto to extract the ontology components from the
Lebanese criminal code, we conclude that the generated ontology is limited in
the expressiveness and mainly consists of concepts organized in hierarchies.
Meanwhile, an expressive ontology, rich in axioms and instances, is required
mainly for reasoning purposes. Therefore, there is a need for correcting,
pruning and enriching the results by applying an ontology re-engineering
process with the intervention of legal experts in order to achieve better results
more correct and expressive.

5. Ontology Re-engineering: In this phase, the legal experts correct, prune and
enrich the obtained results of Text2Onto. As aforementioned, the main goal is
to obtain a more expressive domain ontology rich in axioms and instances.

Generally, the knowledge re-engineering is defined as the correction and
continuous reuse of preexisting knowledge for a new task (Wyner et al., 2010).
For ontological purposes, the re-engineering concept is defined by Gomez-
Perez (Gomez-Perez et al., 1999) as: “the process of retrieving and transforming
a conceptual model of an existing and implemented ontology into a new more cor-
rect and more complete conceptual model which is reimplemented ”. Accordingly,
the ontological re-engineering process is composed of three main activities:
reverse engineering, restructuring and forward engineering (see Figure 4.5).

166 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

FIGURE 4.5: The re-engineering process (Gomez-Perez et al., 1999).

After applying the re-engineering process under the supervision of ontology
engineers and legal experts, the domain and domain-specific modules are
presented in the following paragraphs.

4.6.3 The modules of CriMOnto

4.6.3.1 Upper Ontology Module (UOM)

As a result, UOM consists of 74 concepts (classes in protégé), 54 relations (object
properties in protégé) and 144 hierarchies (subClassOf axioms in protégé). UOM is
composed of abstract concepts and relations which are effectively independent of
any specific domain such as Agent, Action, Event, etc.. For a well-founded building
of this module, a partial reuse of the unified foundational ontology UFO is applied.
More specifically, the reuse process covers the UFO-C and UFO-B layers.

Concerning the conceptual modeling process of the upper module, the ontology
modeling language OntoUML is used for representing the upper concepts reused
from UFO in order to compose the upper ontology module (see figure 4.6 adapted
from (Guizzardi, 2005)).

FIGURE 4.6: Conceptual modeling process of the Upper Ontology
Module (UOM).

4.6. Phase1: The Building Process of CriMOnto 167

Below are detailed the following fragments:

• Substance in figures 4.7 and 4.8.

• Event in figures 4.9 and 4.10.

• Agent in figures 4.12 and 4.13.

• Intention in figures 4.16 and 4.17.

substance Substance category is considered as an endurant where Agents and
Ojects are disjoint substances. Agent can be physical (Physical_Agent) or social
Social_Agent. Natural_Person is an example of Physical_Agent. Organization
is an example of Social_Agent.

As Agent, Object can be physical (Physical_Object) or social (Social_Object).
Normative_Description is considered as a Social_Object and is recognized by at
least one Social_Agent. Each Physical_Object has a role (Resource).

FIGURE 4.7: The concept Substance represented using OntoUML.

168 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

FIGURE 4.8: The concept Substance represented in Protégé.

Event The concept Event is a basic concept in the legal domain and specifically
in the criminal domain. Event can be later instantiated into Legal_Event in the
core module, and Criminal_Event in the domain module. In UFO, events can be
atomic (Atomic_event) or complex (Complex_Event). While atomic events have
no proper parts, complex events are aggregations of at least two disjoint events
(Guizzardi et al., 2013b). Example of an event is the murder of a person which can
be decomposed into sub-events such as attack and death.

Events existentially depend on the objects that participate in them (Guizzardi et al.,
2013b). Participation is an event, and it represents the participation of one object
into an event and it depends exclusively on one object.

4.6. Phase1: The Building Process of CriMOnto 169

FIGURE 4.9: The concept Event represented using OntoUML.

FIGURE 4.10: The concept Event represented in Protégé.

An event occurs in a certain situation at a certain point in time, and transforms it to
another situation (Guizzardi et al., 2013b). The figure 4.11 depicts the Situation

concept and its relationship to Event. Actually, Situation is considered as a basic
concept in the ontological account of events in UFO-B.

170 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

FIGURE 4.11: The concept Situation represented using OntoUML.

Agent Only agents are able to create actions. Actions, as events, can be atomic
(Atomic_Action) or complex (Complex_Action).

Each Agent has a role. It can be Communicating_Agent or Interacting_Agent. A
Communicating_Agent is the sender and receiver of a Communicating_Act which is
considered as an Atomic_Action (see Figure 4.14). Meanwhile, the Interaction is a
Complex_Action composed of minimum 2 Action_Contribution (see Figure 4.15).

4.6. Phase1: The Building Process of CriMOnto 171

FIGURE 4.12: The concept Agent represented using OntoUML.

FIGURE 4.13: The concept Agent represented in Protégé.

172 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

FIGURE 4.14: The concept Communicating_Agent represented in
Protégé.

FIGURE 4.15: The concept Action_Contribution represented in
Protégé.

4.6. Phase1: The Building Process of CriMOnto 173

Intention In UFO, agents can bear special kinds of moments named Inten-
tional_Moment. Every Intentional_Moment has a type (e.g., Belief, Desire,
Intention) and a Propositional_Content. Intending something is a specific type of
intentionality termed Intention. The propositional content of an Intention is a
Goal. Intentions cause the agent to perform Actions.

FIGURE 4.16: The concept Intention in OntoUML.

FIGURE 4.17: The concept Intention in Protégé.

174 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

FIGURE 4.18: Metrics of the Upper ontology module.

4.6.3.2 Core Ontology Module (COM)

COM consists of 61 classes, 30 object properties and 100 subClassOf axioms. The
core ontology module provides a definition of structural knowledge in the legal
domain which constitutes the basis for specialization into domain and domain-
specific knowledge. For instance, concepts, such as Legal_Source, Legal_Act and
Legal_Document, are common for all the legal fields (criminal, civil, etc.). The core
module is built by reusing the concepts and relations of an existent validated legal
core ontology which is LKIF-Core. The core concepts are represented in the unified
foundational ontology UFO, using OntoUML as an ontology modeling language,
in order to compose the conceptualization of the core module which is represented
by the core ontology module (see Figure 4.19).

FIGURE 4.19: Conceptual modeling process of the core module.

In the following, we detail some excerpts of the core modules (COM) which are:

4.6. Phase1: The Building Process of CriMOnto 175

• Medium in figure 4.20.

• Legal_Source in 4.21.

• Code in figures 4.22 and 4.23.

• Expression in figure 4.24.

• Process in figure 4.25.

• Legal_Event in figure 4.26.

• Legal_Role in figure 4.27.

• Professional_Legal_Role in figure 4.28.

Medium A medium is a bearer of expressions, i.e. externalized propositions.
Propositions become expressions once they are externalised through some medium.
A Medium can be Legal_Document or Legal_Source. A legal document is a document
bearing norms or normative statements.

FIGURE 4.20: The concept Medium.

Legal_Source A legal source is a source for legal statements, both norms and legal
expressions. In a sense it is literally a ’source’ of law.

176 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

FIGURE 4.21: The concept Legal_Source.

Code A legal code bears one or more norms, all of which are uttered by some
legislative body. It cannot bear expressions which are not uttered by a legislative
body.

FIGURE 4.22: Representing he concept Code in OntoUML.

4.6. Phase1: The Building Process of CriMOnto 177

FIGURE 4.23: The concept Code in Protégé.

Expression An expression is a proposition beared by some medium, e.g. a docu-
ment, and is stated by some communicated attitude.

FIGURE 4.24: The concept Expression.

Process A process is a ’causal’ change: any change which can be explained
through some known or understood causal structure. Every process has some
Time_Period as duration.

178 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

FIGURE 4.25: The concept Process in LIKF-Core.

Legal_Event , it is clearly stated in the upper module the Event concept. For
this reason, we created the concept Legal_Event to be a core legal concept. A
Legal_Event brings about some Legal_Situation.

FIGURE 4.26: The concept Legal_Event.

Legal_Role A Legal_Role is a role played in a legal context. Legal role players
can be both Agents and other ’things’.

FIGURE 4.27: The concept Legal_Role.

Professional_Legal_Role A professional legal role is a legal profession of some
person, examples: lawyer, judge etc.

4.6. Phase1: The Building Process of CriMOnto 179

FIGURE 4.28: The concept (Professional_Legal_Role).

4.6.3.3 Domain Ontology Module (DOM)

As a result, DOM consists of 70 classes, 54 object properties and 123 subClassOf
axioms. The domain module is composed of categories that are related mainly to
the criminal domain such as Criminal_Act, Penalty, Misdemeanor, Violation, etc.

Below, some domain module concepts are illustrated:

• Criminal_Act in figure 4.29.

• Intentional_Felony in figure 4.30.

• Penalty in figure 4.31.

• Punishment in figure 4.32.

FIGURE 4.29: Criminal_Act in Protégé.

180 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

FIGURE 4.30: Intentional_Felony in Protégé.

FIGURE 4.31: Penalty in Protégé.

4.6. Phase1: The Building Process of CriMOnto 181

FIGURE 4.32: Punishment in Protégé.

4.6.3.4 Domain-specific Ontology Module

DSOM consists of 40 instances. The domain-specific module is composed of in-
stances for concepts and relations of the domain module. These instances are
specific for the Lebanese criminal domain. In figure 4.33, we present an instance of
the class Articles, which is for representing the article 196 of the Lebanese criminal
code.

FIGURE 4.33: Instances of Article 196 of the Lebanese criminal
code.

4.6.4 Integration of CriMOnto Modules

After building the ontology modules (upper, core, domain and domain-specific),
there is a need for an integration process to combine them for composing the global
ontology CriMOnto.

In CriMOnto, we will apply the integration process defined in MIROCL (see chapter
3, section 3.7.5). Thus, the modules are located on vertical conceptual levels from
general (upper module) to specific (domain-specific module). For this reason, the
mappings will be based mainly on a parent-child, or subsumption, hierarchical

182 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

relationship and established in Protégé as structural axiom of the form subClassOf

and instanceOf.

Therefore, the hierarchical relationship is established among the concepts of mod-
ules. A domain expert, knowledgeable about the semantics of legal concepts,
validates the proposed mappings. Below three examples of modules integration are
detailed.

4.6.4.1 Example of Upper and Core modules mapping

In figure 4.34, we outline the legal core concept Legal_Event added as a subclass of
the upper concept Event.

FIGURE 4.34: Example of Upper and Core modules mapping using
OWL:imports formalism in Protégé.

In figure 4.35, we outline the legal core concept Legal_Source added as a subclass
of the upper concept Normative_Description.

FIGURE 4.35: Example of Upper and Core modules mapping using
OWL:imports formalism in Protégé.

4.6.4.2 Example of Core and Domain modules mapping

In figure 4.36, we outline the legal domain concept Criminal_Act added as a sub-
class of the core concept Legal_Act.

4.6. Phase1: The Building Process of CriMOnto 183

FIGURE 4.36: Example of Core and Domain modules mapping using
OWL imports in Protégé.

4.6.4.3 Example of Domain and Domain-specific modules mapping

In figure 4.37, an example of the instanceOf mapping is depicted where the indi-
vidual Art212 added as an instance of the domain concept Article. The object and
data property assertions are fulfilled with the appropriate values from the Lebanese
criminal code.

FIGURE 4.37: Example of Domain and Domain-specific modules
mapping using OWL imports in Protégé.

184 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

4.6.5 CriMOnto Evaluation

Ontology evaluation is an important task that is needed in many situations. For
example, during the process of building of an ontology, ontology evaluation is
important to guarantee that what is built meets the application requirement (Tartir
et al., 2010). In addition to the need during the process of building an ontology,
evaluation and validation of ontologies are also useful for end users in domains
where several ontologies with similar areas of interest are common. Additionally,
ontology evaluation includes aspects of ontology validation and verification relating
to structural, functional, and usability issues (Obrst et al., 2007). The verification
ensures that the ontology is constructed correctly, and the validation ensures that
the ontology represents the real world (Gomez-Perez et al., 2004).

Therefore, after building CriMOnto, there is a need to evaluate the characteristics
and the validity of the resulting ontology. According to (Hartmann et al., 2004),
evaluation is required during the whole life-cycle of an ontology in order to guaran-
tee that what is built meets the requirements. Thus, we will discuss the evaluation
phase of CriMOnto by referring to the studies presented in chapter 2 section 4.6.5.

From our perspective, the kind and purpose of the ontology will affect its validation.
Since CriMOnto is a legal domain ontology and will be used for reasoning purposes
mainly for building a rule-based legal reasoning model, its evaluation will be based
on the following levels:

• Ontology Definitions: in this level, the evaluation process will cover the
architecture of the ontology, its hierarchy, the syntax and the content of the
definitions. For this level, a logic-based reasoner such as Pellet in Protégé can
help in checking the consistency of the ontology as well as a legal expert who
can verify closely all the syntactical and lexical issues.

• Application-based: as aforementioned, CriMOnto will be used for building a
rule-based reasoning model for a legal knowledge-based system that will be
be discussed in the chapters 5 and 6. Therefore, the results of this usage will
affect the validity of CriMOnto.

4.7 Similar Works

In the literature, several studies that deal with the building of legal ontologies are
found. We classified them in three main categories: ontologies for modeling legal
norms, middle-out building of legal ontologies and ontologies for the criminal
domain.

• Building ontologies for modeling legal norms (Cherubini et al., 2008; Gostojic
et al., 2013; Machado et al., 2014):

4.7. Similar Works 185

– (Cherubini et al., 2008) designed a preliminary ontology-based com-
putable model of the normative framework and of the sequences of
operational activities of public bodies (or enterprises) for producing ser-
vices. The main methodological assumption adopted by the authors of
this study is to differ between ontology of norms and ontology of pro-
cedures. Furthermore, they define a mapping procedures between the
two ontologies where all the overlapping concepts and the dependency
relations are represented and managed by a meta-model.

– (Gostojic et al., 2013) described a formal model of legal norms, using
their elements and elements of legal relations they regulate, intended
for the development of expert systems for semi-automatic drafting and
semantic retrieval and browsing of legislation. The scope of the model
are general and abstract legal norms, abstract social relations, abstract
subjects, abstract objects and legislation. A top-down approach is applied
for the ontology development in order to identify and formally specify
concepts that are essential for the description of a legal system (a system
of legal norms). The general concepts are imported from the foundational
ontology DOLCE and the legal concepts from the legal ontology CLO.

– (Machado et al., 2014) proposed the building of a reference legal ontology
of relationships for Brazilian civil law system using the ontology model-
ing language OntoUML. The main goals of the ontology are conveying
a legal knowledge base and supporting reasoning knowledge-based
systems.

• Application of middle-out strategies for building legal ontologies (Casellas,
2008a; Francesconi et al., 2010; Saias et al., 2005):

– (Saias et al., 2005) tend to automatically create a legal ontology from a
set of legal documents where the top-down strategy choose an already
existent top-level legal ontology. Meanwhile, the purpose of the bottom-
up is to identify the concepts and their properties using NLP techniques.

– (Casellas, 2008a) developed a legal ontology, called Ontology of Profes-
sional Judicial Knowledge (OPJK), to map questions of junior judges to
a set of stored frequently asked questions. for this purpose, two main
strategies are identified: (1) top-down where top concepts from upper
ontologies such as DOLCE Lite (CLO), SUMO, PROTON, and LKIF-Core
are taken into account; (2) bottom-up where the acquisition of conceptual
knowledge from textual resources is performed by ontology learning
from texts. OPJK methodology focus on distributed ontology develop-
ment involving different stakeholders with different purposes and needs
and usually not at the same location.

186 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

– (Francesconi et al., 2010) have proposed a methodology, which combines
top-down and bottom-up strategies in a middle-out, for multilingual
legal knowledge acquisition and modeling in the work of the DALOS
KOS project. The top-down strategy defines the conceptual language-
independent structure of the legal domain under consideration on the ba-
sis of expert judgment. This structure is language-independent, modeled
manually as an ontology. Another top-down approach is the exploitation
of the explicit structure of legal texts, which enables the targeted identifi-
cation of text spans that play an ontological role and their subsequent
inclusion in the knowledge model. Meanwhile, the bottom-up strategy
uses semi-automatic NLP techniques for the knowledge acquisition from
texts. The domain application of this work is the consumer protection
law.

• Building ontologies for the criminal domain (Breuker, 2003; Asaro et al., 2003;
Bezzazi, 2007; Rodrigues et al., 2016).

– (Breuker, 2003) described the use of various ontologies for the informa-
tion management of documents coming from and related to criminal
trial hearings. Tis work is part of the e-COURT European IST project.
Particularly, the author focused on the role of the upper ontology LRI-core
in providing anchors and interpretation to the various legal domain
ontologies. The role of LRI-core is exemplified by an ontology about
Dutch criminal law (see section 2.2.3.3).

The hard core of the OCL.NL consists of actions which are categorized
in crime and punishment:

∗ The criminal actions themselves (called ’offences’) that are executed
by the person who is successively acting as suspect, defendant, and
eventually convict.

∗ The punishments that are declared by the legal system.

– (Asaro et al., 2003) outlined a construction of The Italian Crime Ontology.
In the first phase of crime modeling, they have used UML class diagram
to formalize the ontological concept of crime. For them, the crime is
composed of offender, behavior, penalty and optionally by an event and
coercions.

– (Bezzazi, 2007) proposed the implementation of a formal ontology for
criminal law and the application of the counter-factual reasoning on
it. The domain application of this work is the legal texts of the French
criminal law related to the cybercrime. The tools used in this study are
the ontology editor Protégé, and the reasoning system Racer.

4.7. Similar Works 187

– (Rodrigues et al., 2016) proposed an ontological formalization for the
Theory of Crime from Brazilian Penal Code, as well as for Property
Crimes applications. The aim of this work, which is inspired by the UFO-
B foundational ontology of events, is to support some decision-making
process, as the agents behavior classification and the inference of punish-
ments. UFO-B is used for modeling the different violations of individual
property, in terms of events and participating states. Two main ontolo-
gies are developed in this work: the domain ontology OntoCrimeAlpha
and the application ontology OntoPropertyCrime. OntoCrimeAlpha is
built inspired by LKIF and UFO-B. Meanwhile, the purpose of Onto-
PropertyCrime is to map the allowed and prohibited behaviors of the
set of articles describing the crimes against property. Thus, the concepts,
relationships, properties and axioms were built based on the domain
model. For developing the ontologies, the methodology Methontology
is applied. The relevant information are extracted from official texts in
a middle-out strategy: from a list of relevant terms, the specialization
and/or generalization of concepts is generated.

4.7.1 Discussion

Concerning the category of ontologies for modeling legal norms, the approaches
are recognized as top-down where reusing of upper ontologies is applied. They
focused on modeling the hierarchical aspect of legal norms more than their content
which is related mainly to the textual resources.

The category of building legal ontologies using middle-out approaches is charac-
terized mainly the application of two strategies top-down and bottom-up. In the
top-down, existent validated ontologies are reused. Meanwhile, the bottom-up
strategy applied the ontology learning process.

For the category of building ontologies for the criminal domain, the works focused
mainly on modeling the criminal aspect either by reusing foundational ontologies
such as UFO-B (ontology of events) or LRI-CORE, or directly from textual resources.

We conclude that some limitations are recognized in these works such as the missing
of the participatory approach, the lack of reusing existent ontologies that could
simplify the building process, the focus on the general modeling of the norms and
the deficiency of the modeling of the procedural aspect of the norms for reasoning
purposes.

Therefore, by applying MIROCL for building the legal domain ontology CriMOnto,
we covered the main aspects proposed in these works and enhanced them in one co-
herent approach. The main aspects identified for building CriMOnto are: (1) using
a middle-out strategy for the ontology building process, (2) application of ontology

188 Chapter 4. CriMOnto: A Criminal Ontology for Modeling Legal Norms

modularization for dividing the target ontology into modules, (3) using OntoUML
as an ontology-based conceptual modeling language for modeling the upper and
core modules of CriMOnto, (4) an existent foundational ontology (UFO) and legal
core ontology (LKIF-Core) are reused for simplifying the ontology building pro-
cess, (5) application of ontology learning process from texts for constructing the
domain and domain specific modules, (6) the contribution of different stakeholders
(ontology engineers, knowledge engineers, legal experts and linguistic experts) in
the ontology building process.

Middle-out Modularization Collaboration Reuse

(Cherubini et
al., 2008)

- + - -

(Gostojic et al.,
2013)

- - - +

(Machado
et al., 2014)

- - - +

(Casellas,
2008a)

+ - + +

(Francesconi et
al., 2010)

+ - + +

(Asaro et al.,
2003)

- - - -

(Bezzazi, 2007) - - - -
(Rodrigues et
al., 2016)

+ - - +

CriMOnto + + + +

TABLE 4.6: Ontologies for modeling legal norms.

4.8 Conclusion

In this chapter, we have presented a bi-phased ontology-based approach for mod-
eling legal norms. The aim of the first phase is to model the content of the legal
norms in a legal domain ontology. Meanwhile, the second phase tends to model
and formalize the procedural aspect of the legal norms based on the developed
ontology by using a logic rule language. The focus of the current chapter is on the
first phase where a modular legal domain ontology named CriMOnto for modeling
legal norms of the criminal domain is obtained. For building CriMOnto, the pro-
posed approach MIROCL (see chapter 3) is applied. The main phases of MIROCL
are discussed: identification of data sources, building of ontology modules and
ontology integration.

4.8. Conclusion 189

Regarding the data sources, we admitted an heterogeneity of selection where two
main existent validated ontologies are selected which are UFO, as foundational
ontology, and LKIF-Core, as legal core ontology. Moreover, the Lebanese Criminal
Code is specified as textual source.

Concerning the building of ontology modules, the middle-out strategy is applied.
The top-down tends to develop the upper and core modules using an ontology-
driven conceptual modeling process and OntoUML, as conceptual modeling lan-
guage, as well as a partial reuse process of the identified ontologies (UFO and
LKIF-Core). Meanwhile, for building the domain and domain-specific modules, an
ontology learning process defined in five main steps is performed. These steps are:
material selection, tool selection, pre-processing, extraction of ontology components
and re-engineering.

Finally, the developed modules are integrated using simple hierarchical mappings
such as subclassOf and instanceOf.

CriMOnto will be used for building a rule-based legal reasoning model which will
be discussed in chapters 5 and 6.

190

Chapter 5

Modeling and Formalizing the
Procedural Aspect of Legal Norms

Contents
5.1 Overview . 191

5.2 Ontology-Based Approach for Modeling and Formalizing Le-
gal Norms . 191

5.2.1 Integration of Rules and Ontologies 193

5.2.2 Formalizing Legal Rules . 195

5.3 Case Study: Modeling and Formalizing the Legal Norms of the
Lebanese Criminal Code . 201

5.3.1 Application of the Ontology-based Approach using Protégé201

5.4 Similar Works . 212

5.5 Conclusion . 213

5.1. Overview 191

5.1 Overview

The main focus of this thesis is building a well-founded legal domain ontology
using a novel collaborative approach (see chapters 3 and 4). The main purpose of
the developed ontology is to be used for reasoning applications such as rule-based
reasoning systems. In this chapter, we discuss the second phase of the proposed
ontology-based approach which is the modeling and formalizing process of the
procedural aspect of the legal norms based on the legal domain ontology CriMOnto
(section 5.2). The section 5.2 analyses the concept of integration of rules and ontolo-
gies (section 5.2.1). Then, the selection of the most appropriate rule language for
modeling and formalizing the legal norms of the Lebanese criminal code is outlined
in section 5.2.2.1 as well as the existent rules reasoners for swrl (section 5.2.2.2). A
case study that defines the application of the ontology-based approach for modeling
and formalizing an excerpt of the legal norms of the Lebanese Criminal code is
presented in section 5.3. Finally, the similar works are outlined in section 5.4 and
the section 5.5 concludes the chapter.

5.2 Ontology-Based Approach for Modeling and Formaliz-
ing Legal Norms

Reasoning with both ontological knowledge and rule-based knowledge has recently
gained in interest in the Semantic Web community (Heymans et al., 2005). Generally,
extracting and formalizing norms remain a highly knowledge and labor intensive
task, creating a significant bottleneck between the semantic content of the source
material, expressed in natural language, and computer-based, automatic use of
that content (Wyner et al., 2011). The legal domain is one of the most challenging
area for developing applications based on the Semantic Web principles because of
the complex nature of legal information and document workflow, as well as the
peculiarities of legal user’s information needs, which require advanced information
retrieval and reasoning services (Francesconi, 2016). From this perspective, we have
proposed an ontology-based approach for modeling and formalizing legal norms
grounded mainly on a legal domain ontology in order to simplify the gap between
norms represented in natural language and the formalized logic rules for reasoning
purposes.

In chapter 4, the two-phased ontology-based approach for modeling legal norms is
discussed, mainly, the first phase, which is the modeling of the content of the legal
norms. This phase resulted in an ontological model, which is the criminal domain
ontology (CriMOnto), aiming to provide a well-founded representation of concepts
and semantic relationships among them in the context of the norms of the criminal
domain. In this chapter, we present the second phase which is the modeling and

192 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

formalizing of the procedural aspect of the legal norms using logical formalisms in
order to obtain list of formalized rules (see Figure 5.1).

FIGURE 5.1: The second phase of the ontology-based approach for
modeling legal norms.

In the proposed approach, the reasoning with rules and ontologies are based mainly
on the semantic web standards and tools (see Figure 5.2). Thus, the main require-
ments of this approach are:

• The modeling of the procedural aspect of the the legal norms is based mainly
on the developed criminal domain ontology. Thus, there is a need to integrate
the ontology with the legal rules.

• There is a need for a rule language that respects this integration.

For this purpose, we will overview the domain of the integration of ontologies and
rules and the existent approaches. Furthermore, the existent logic rule languages
are discussed in order to select the most convenient for this study.

5.2. Ontology-Based Approach for Modeling and Formalizing Legal Norms 193

FIGURE 5.2: Levels of the legal semantic web (Biasiotti et al., 2008;
Sartor, 2009).

5.2.1 Integration of Rules and Ontologies

Rules and ontologies represent two main components in the semantic web vision
(Eiter et al., 2006b). They ensure that information available on the World Wide
Web is machine-readable (Kaneiwa et al., 2009). Using rules in conjunction with
ontologies is a major challenge for the semantic web (Golbreich, 2004). Ontologies,
or conceptual models, are considered as the common and distinctive conceptu-
alizations of a domain of knowledge (Valente et al., 1994a). They comprise five
main modeling primitives: concepts, taxonomic relations (sub-class relations), non-
taxonomic relations, axioms and instances (individuals). OWL (Web Ontology
Language) is the standard representation language of ontologies. Meanwhile, rules
are represented using inferential links according to the following pattern:

IF precondition THEN conclusion.

The role of inferential links is to govern the reasoning, they are considered as " rules
for judging ". The reasoning is processed by the evaluation of the left side of the rule
with reference to the knowledge base, and if this succeeds, the action specified by
the right side is performed (Davis et al., 1984). Reasoning with rules and ontologies
affects the Ontology and Rule layers of the semantic web layer cake (Berners-Lee,
2005).

In the literature, several approaches have been discussed for the integration be-
tween ontologies and rules such as, among others, (Grosof et al., 2003), (Eiter et
al., 2004), (Eiter et al., 2006b), (Eiter et al., 2006a), (Rosati, 2006a), (Rosati, 2006b)

194 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

and (Antoniou et al., 2005a). Two main integration approaches have been distin-
guished: homogeneous, which are monotonic approaches, and hybrid, which are
non-monotonic approaches (Antoniou et al., 2005b; Eiter et al., 2006a).

• Homogeneous: the integration between ontologies and rules is defined over
a tight semantic integration where ontologies and rules are embedded in a
common logical language (see Figure 5.3). Ontologies are treated as external
sources of information, which are accessed by rules. Ontology concepts and
properties may be defined through the rules (Antoniou et al., 2005b). The
most typical homogeneous paradigms are:

– Combination of OWL ontologies with SWRL rules (Horrocks et al., 2004)
expressed in First Order Logic (FOL) which is family of monotonic
Knowledge Representation (KR) formalisms.

– Description Logic programs (DLP) which is a Knowledge Representation
(KR) contained within the intersection of Description Logic (DL), which
is the basis of ontology languages, and Logic Programs (LP), which is
the basis of rules languages (Grosof et al., 2003).

FIGURE 5.3: Homogeneous integration of rules and ontologies.

• Hybrid: the integration between ontologies and rules is defined over a strict
semantic separation where the ontology elements and the rules predicates
are separated (see Figure 5.4). Ontology elements, such as concepts and
properties, represent the conceptualization of the domain. Rules cannot define
them but some application-specific relations. Thus, in the hybrid approach,
the ontology remains unchanged and rules are built on top of ontologies
(Eiter et al., 2006b). In this strategy, rules are expressed in Logic Programming
LP formalism which is family of non-monotonic Knowledge Representation
(KR). The most typical hybrid approaches are, among others, Answer Set
programming (ASP) (Gelfond et al., 1991; Gelfond et al., 1988), dl-programs
(Eiter et al., 2004) and DL+log (Rosati, 2006a).

FIGURE 5.4: Hybrid integration of rules and ontologies.

5.2. Ontology-Based Approach for Modeling and Formalizing Legal Norms 195

5.2.2 Formalizing Legal Rules

Legal regulations are expressed in natural language. To make them automatically
processable for reasoning or information extraction, they must be represented in a
machine readable form (Wyner et al., 2013).

In the last years, an extensive research has been devoted for developing rule lan-
guages in the legal domain (Gordon et al., 2009). In this regard, new languages
are devised, or the existing ones are adjusted, specifically for documenting and
modeling the semantics of business vocabularies, facts, and rules such as RuleML
(Governatori, 2005; Grosof, 2004) and SBVR1. Meanwhile, the faithful represen-
tation of legal rules is obviously crucial for representing legislative documents,
regulations, and other sources of law (Gordon et al., 2009).

In the literature, there are significant experiences for representing legislative docu-
ments throughout XML languages such as CEN MetaLex (Boer et al., 2002b) (Boer
et al., 2002a) and AKOMA NTOSO2.These works have mostly focused on represent-
ing legal documents rather than modeling directly legal rules (Gordon et al., 2009).
They are not based on robust or comprehensive conceptual models for representing
legal rules to be applied in the legal domain.

In this context, few works are devoted for devising rule interchange languages
specifically for the legal domain such as LKIF and LegalRuleML.

Important requirements for legal rule languages from the field of AI&Law include
the following (Gordon et al., 2009) (Palmirani et al., 2011):

• Isomorphism (Bench-Capon et al., 1992; Bench-Capon et al., 2009): the term
has been seen as a desirable property of executable representations of law
to be used in legal knowledge based systems. Isomorphism is intended to
capture the notion of creating a well defined correspondence between source
documents and the representation of the information they contain used in
the system. To ease validation and maintenance, there should be a one-to-
one correspondence between the rules in the formal model and the units of
natural language text which express the rules in the original legal sources,
such as sections of legislation. This entails, for example, that a general rule
and separately stated exceptions, in different sections of a statute, should not
be converged into a single rule in the formal model.

• Rule Semantics: Any language for modeling legal rules should be based on
a precise and rigorous semantics, which allows for correctly computing the
legal effects that should follow from a set of legal rules.

1http://www.omg.org/spec/SBVR/, retrieved 22-12-2017
2http://www.akomantoso.org/, retrieved 22-12-2017

196 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

• Defeasibility (Gordon, 1995; Prakken et al., 1996): for managing exceptions,
conflicting norms, different interpretations. For instance, when the antecedent
of a rule is satisfied by the facts of a case, the conclusion of the rule presumably
holds, but is not necessarily true.

• Contraposition (Prakken et al., 1996): Rules do not counterpose. If some
conclusion of a rule is not true, the rule does not sanction any inferences about
the truth of its premises.

• Normative effects: obligations, permissions and prohibitions are examples of
normative effects that follow from applying rules.

5.2.2.1 Selection of a Rule Language for Modeling Legal Norms

In this section, a selection process, from the list of rule interchange languages
presented in chapter 2, section 2.4.3.3, for choosing the most appropriate rule
language, is discussed.

Actually, the main goal of the thesis is to build a well-founded legal domain ontology
for reasoning purposes. For this purpose, the focus was set on designing a novel
approach that aims to develop a well-founded legal domain ontology. Therefore,
the target ontology will be considered as a ground for an ontology-based approach
for modeling and formalizing the legal norms of the criminal domain (see section
5.2).

From this perspective, the following requirements define the selection of the appro-
priate rule language:

• The rule language should be suitable for ontology-based models. For instance,
the rules can be expressed using the OWL ontology concepts, object and data
properties.

• The rule language should be compatible with the OWL syntax.

• Since, the legal norms of the criminal code can almost be expressed in first-
order logic, the rule language should allow to write them in form of Horn-like
rules that can be expressed in terms of OWL concepts.

Thus, for the current work it is just necessary to prove the efficiency of the developed
ontology in modeling and formalizing the legal norms by applying the ontology-
based approach and by using an appropriate rule language. For this reason, we
found that the rule language SWRL (Semantic Web Rule Language3, see chapter 2,
section 2.3.3.1) can serve in formalizing part of the legal norms of the criminal code

3https://www.w3.org/Submission/SWRL/

5.2. Ontology-Based Approach for Modeling and Formalizing Legal Norms 197

which are in the form of first-order logic. In this regard, the proposed ontology-
based approach will be considered as homogeneous respecting a tight semantic
integration of the domain ontology and SWRL.

In fact, SWRL represents an approach that gathers ontology and rules in product
development (Fiorentini et al., 2010). It provides a way to define derivation rules
based on ontology, the main purpose of which is to inference the individuals in
semantic web application. Therefore, it allows to write Horn-like rules that can be
expressed in terms of OWL concepts and that can reason about OWL individuals.
The rules can be used to infer new knowledge from existing OWL knowledge bases
(O’Connor et al., 2005; O’Connor et al., 2008). Thus, SWRL is considered as the
most appropriate rule language for ontology-based models. Moreover, the SWRL
specification does not impose restrictions on how reasoning should be performed
with SWRL rules. Thus, variety of rule engines can be used to reason with the
SWRL rules.

Meanwhile, SWRL suffers from some limitations in expressing rules such as:

• Concerning the modeling of legal rules, since SWRL rules are Horn clauses,
it is not possible to model legal rules in an isomorphic way. Most legal rules
would need to be modeled using several SWRL rules (Gordon et al., 2009).

• SWRL works usually under the Open World Assumption (OWA) (Fiorentini et
al., 2010), since they focus on the Semantic Web, that deals with an unlimited
knowledge resource. In this context, SWRL suffers from the lack of non-
monotonic features, thus it does not support the negation as failure. Therefore,
many common rule-like statements cannot be expressed in SWRL.

This problem can be solved by expressing it explicitly to the system by using
classical negation with the class description owl:complementOf.

A class C1 is defined as complement of class C2, if C1 contains all individuals
that do not belong to C2. ComplementOf in OWL is analogous to the logical
negation. It is the same as if the NOT operator of set theory is applied to
classes. A typical example of this case are the Intentional_Legal_Event and
Unintentional_Legal_Event classes (see Figure 5.5).

The class Unintentional_Legal_Event is defined as NOT Intentional_Legal_Event.

198 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

FIGURE 5.5: Example of complement classes.

• The problem of undecidability that is possibly solved by introducing the
notion of DL-safe rules which restricts the application of SWRL rules only to
individuals (Motik et al., 2005). Moreover, OWL2, successor of OWL, added
new features based on DL SROIQ (Horrocks et al., 2006) which can completely
internalize DL rules as decidable fragment of SWRL.

• SWRL has difficulties dealing with complex rules (Fortineau et al., 2012). For
instance, it is not possible in theory to create rules with numbered predicates
(Elenius et al., 2009). This limitation can be overtaken with SWRL built-ins
(Rossello-Busquet et al., 2011). Built-ins allow to define a rdf list of OWL
arguments, that then feed a SWRL rule as an unique antecedent. However,
this method is complex.

• SWRL rules cannot be used to modify existing information in an ontology
(Rossello-Busquet et al., 2011). In fact, SWRL rules originally create new
knowledge, i.e. new instances or new properties between existing instances
(Fortineau et al., 2012).

• SWRL does not support the disjunction of atoms. So, for example, the follow-
ing rule is not possible:

A(?x) or B(?x) =⇒ C(?x)

In order to solve this limitation, the following two rules will produce the
intended effect:

A(?x) =⇒ C(?x)

B(?x) =⇒ C(?x)

Concerning the complex rules of the criminal code, such as the defeasible rules (e.g.
Articles 2, 9, 28, 162, 200, 203, 204, 250 and 335) that SWRL cannot express, there is
a need for non-monotonic formalisms such as Defeasible Logic (DL) (Nute, 1994) to
translate them.

5.2. Ontology-Based Approach for Modeling and Formalizing Legal Norms 199

5.2.2.2 Rule Reasoners for SWRL

A reasoner is a program that infers logical consequences from a set of explicitly
asserted facts or axioms and typically provides automated support for reasoning
tasks such as classification, debugging and querying (Dentler et al., 2011). The main
reasoners that support rules, specifically SWRL are: Pellet, Hermit, KAON2 and
RacerPro. In this section, two reasoners, Pellet and HermiT are outlined.

Pellet (Sirin et al., 2007b; Parsia et al., 2004) is a Java-based, open source OWL-
DL reasoner. It can be used with Jena and OWL API libraries. It is based on the
tableau algorithm and supports expressive description logics. The reasoner allows
ontologies to use XML-Schema built-in and user-defined datatypes that extend
numeric and date/time types. Moreover, the query engine of Pellet is capable of
answering SPARQL queries. Finally, the tool supports reasoning with DL-safe rules
encoded in SWRL.

HermiT is a free (under LGPL license) Java reasoner for OWL 2/SROIQ with
OWL 2 datatype support (Glimm et al., 2014). It implements a hypertableau-based
decision procedure, which allows the reasoner to avoid some of the nondeterminis-
tic behavior exhibited by the tableau calculus used in Pellet, The reasoner uses the
OWL API 3.0, and is compatible with the OWLReasoner interface of the OWL API.
This allows HermiT to be used in any application based on the OWL API, and it
also allows the Protégé editor to use HermiT as a plugin. Apart from the standard
OWL 2 reasoning task of entailment checking, HermiT supports several specialized
reasoning services such as class and property classification, as well as a range of
features outside the OWL 2 standard such as DL-safe SWRL rules, SPARQL queries,
and description graphs.

In table 5.1, we compare the reasoners based on some basics characteristics in-
spired from the work of (Abburu, 2012): methodology, ABOX reasoning, OWL API,
Protégé support, Jena support, availability, and implementation language.

• Methodology: indicates the procedure or an algorithm that is used by the
reasoner for solving basic reasoning problems in description logics. E.g:
Tableau (Baader et al., 2003c), Tableaux (Horrocks et al., 2005) etc.

• ABOX reasoning: reasoning with individuals and includes instance checking,
conjunctive query answering and ABox consistency checking.

• OWL API based applications (such as Protégé).

• Protégé support: indicates whether the reasoner can be used with protégé
tool or not.

200 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

• Jena support: indicates whether the reasoner can be used with Jena API or
not.

• Availability: indicates availability of reasoner. Many reasoners are free and
open.

• Implementation language: indicates the language which is used to implement
a reasoner.

Reasoner Pellet RacerPro HermiT KAON2

Methodology Tableau
based

Tableaux
based

Hyper-
tableau
based

Disjunctive
Datalog
programs

ABOX reasoning Yes Yes Yes Yes (except
nominals)

OWL API Yes Yes Yes Yes
Protégé Support Yes Yes Yes Yes
Jena Support Yes No No No
Availability Open

source
Commercial Open

source
Commercial

Implementation
language

Java LISP Java Java

TABLE 5.1: Comparison of rule reasoners that support SWRL.

5.3. Case Study: Modeling and Formalizing the Legal Norms of the Lebanese
Criminal Code

201

5.3 Case Study: Modeling and Formalizing the Legal
Norms of the Lebanese Criminal Code

In the case study, we will discuss the application of the ontology-based approach for
modeling and formalizing an excerpt of the legal norms of the Lebanese Criminal
code. The proposed ontology-based approach is homogeneous and monotonic es-
tablished by integrating the criminal domain ontology CriMOnto and the semantic
web rule language SWRL. Actually, the approach is applied on approximately 100
selected norms which can be represented using the first-order logic.

As aforementioned, the formalized SWRL rules are OWL-level constructs; the
unary predicates are class expressions from CriMOnto such as Accomplice,
Intentional_Act and Instigator, and the binary predicates are object and
data properties such as motivated_to and offence_phase_type("Abortive")

respectively. Additionally, the SWRL rules match on named individuals such as
hard-labour and death.

The SWRL rules are written and edited in Protégé. Concerning the selection of the
appropriate reasoner that can handle the SWRL rules, and after reviewing the list
of reasoners in section 5.2.2.2, we found that Pellet has the best support for SWRL
rules. Actually, Pellet is open-source Java based OWL DL reasoner and it can be
used with Jena and OWL API libraries.

5.3.1 Application of the Ontology-based Approach using Protégé

In the following, 5 legal norms (Articles) are selected from the Lebanese criminal
code for the application of the ontology-based approach: 213, 196, 547, 218 and
550. The study is performed using Protégé based on the developed legal domain
ontology CriMOnto (see chapter 4).

Article 213 - An accomplice to an offence shall be liable to the penalty prescribed by law
for the offence.

In SWRL, the Article 213 is formalized using OWL classes and object properties
based on the ontology CriMOnto as following:

Accomplice(?x) ∧ commit(?x,?y) ∧ is_punishable_by(?y,?z) =⇒
is_liable_to_punished_by(?x,?z).

Where, Accomplice is an OWL class of the ontology CriMOnto (see figure 5.6).
commit is an object property that characterizes the class Accomplice (see Figure 5.6)
in the following form:

Accomplice commit some Offence.

202 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

is_punishable_by (see Figure 5.7) is an object property that characterizes the class
Offence (see Figure 5.8) in the following form:

Offence is_punishable_by some Penalty.

is_liable_to_punished_by is an object property that characterizes the class
Accomplice (see Figure 5.6).

FIGURE 5.6: The class Accomplice in Protégé.

FIGURE 5.7: The object property is_punishable_by in Protégé.

5.3. Case Study: Modeling and Formalizing the Legal Norms of the Lebanese
Criminal Code

203

FIGURE 5.8: The class Offence in Protégé.

Given the following individuals: accomplice1 for the class Accomplice, offence1
for Offence and penalty1 for Penalty. The execution of the Article 213 in SWRL
based on the given individuals will be:

Accomplice(accomplice1) ∧ commit(accomplice1, offence1) ∧
is_punishable_by(offence1, penalty1) =⇒

is_liable_to_punished_by(accomplice1, penalty1).

The figure 5.9 depicts the inference of the SWRL rule of the Article 213 using the
reasoner Pellet.

FIGURE 5.9: Article 213 using CriMOnto and SWRL in Protégé.

As shown in figure 5.9, the execution of the given rule results in inferring the object
property is_liable_to_punished_by with the individual penalty1 which is the
head of the rule of the article 213.

204 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

Article 196 - Political offences are intentional offences committed by the perpetrator for a
political motive.

In SWRL, the Article 196 is formalized using the OWL classes and object properties
of CriMOnto as following:

Offence(?x) ∧ Political_Motive(?y) ∧
is_perpetrated_with_motive(?x,?y) =⇒ Political_Offence(?x).

Where, Offence and Political_Motive are OWL classes of CriMOnto depicted
respectively in Figures 5.8 and 5.10.

The object property is_perpetrated_with_motive characterizes the class Offence
in the following form:

Offence is_perpetrated_with_motive some Motive.

FIGURE 5.10: The class Political_Motive in Protégé.

Given the following individuals: offence2 for the class Offence and
political_motive1 for Political_Motive. The execution of the Article 196
in SWRL based on the given individuals will be:

Offence(offence2) ∧ Political_Motive(political_motive1) ∧
is_perpetrated_with_motive(offence2, political_motive1) =⇒

Political_Offence(offence2).

In figure 5.11, the article 196 is formalized using SWRL and CriMOnto and inferred
using the reasoner Pellet.

5.3. Case Study: Modeling and Formalizing the Legal Norms of the Lebanese
Criminal Code

205

FIGURE 5.11: Article 196 using SWRL and CriMOnto in Protégé.

As shown in figure 5.11, the execution of the given rule results in inferring the head
of the rule Political_Offence with the individual offence2.

206 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

Article 547 - Anyone who intentionally kills another person shall be punishable by hard
labour for a term of between 15 and 20 years.

In SWRL, the Article 547 is formalized using the OWL classes and object properties
of CriMOnto as following:

Rule: Intentional_Homicide(?x) ∧ Offender(?y) ∧ is_committed_by(?x,

?y) =⇒ is_sentenced_by(?y, hard_labour)∧
Felony_Penalty(hard_labour) ∧ has_max_sentence_term(hard_labour,

maximum_sentence_fixed_term1) ∧ has_minimum_sentence_term(hard_labour,

minimum_sentence_fixed_term1) ∧
sentence_fixed_term_type(maximum_sentence_fixed_term1, "year") ∧
sentence_fixed_term_value(maximum_sentence_fixed_term1, 20) ∧

sentence_fixed_term_type(minimum_sentence_fixed_term1, "year") ∧
sentence_fixed_term_value(minimum_sentence_fixed_term1, 15).

Where, Intentional_Homicide, Offender, Felony_Penalty are OWL classes of Cri-
MOnto depicted respectively in figures 5.12, 5.13 and 5.14.

FIGURE 5.12: The class Homicide of CriMOnto in Protégé.

FIGURE 5.13: The class Offender of CriMOnto in Protégé.

5.3. Case Study: Modeling and Formalizing the Legal Norms of the Lebanese
Criminal Code

207

FIGURE 5.14: The class Felony_Penalty of CriMOnto in Protégé.

The object property is_committed_by characterizes the class Intentional_Homicide
(see Figure 5.12). The object property is_sentenced_by characterizes the class
Offender (see Figure 5.13). The object properties has_max_sentence_term and
has_min_sentence_term characterize the class Felony_Penalty (see Figure 5.14).

sentence_fixed_term_type and sentence_fixed_term_value are data properties
for the class Sentence_Fixed_Term (see Figure 5.15).

FIGURE 5.15: Data properties for the class Sentence_Fixed_Term in
Protégé.

Given the following individuals: killing for the class Intentional_Homicide and
offender1 for Offender. The execution of the Article 547 in SWRL based on the
given individuals will be:

Rule: Intentional_Homicide(killing) ∧ Offender(offender1) ∧
is_committed_by(killing, offender1) =⇒ is_sentenced_by(offender1,

hard_labour)∧ Felony_Penalty(hard_labour) ∧
has_max_sentence_term(hard_labour, maximum_sentence_fixed_term1) ∧
has_minimum_sentence_term(hard_labour, minimum_sentence_fixed_term1)

∧ sentence_fixed_term_type(maximum_sentence_fixed_term1, "year") ∧

208 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

sentence_fixed_term_value(maximum_sentence_fixed_term1, 20) ∧
sentence_fixed_term_type(minimum_sentence_fixed_term1, "year") ∧

sentence_fixed_term_value(minimum_sentence_fixed_term1, 15).

The figures 5.16 and 5.17 depict the SWRL version of the article 547 and its inference
using the reasoner Pellet. It shows the inference of the rule based on the given
individuals.

FIGURE 5.16: Inferring Article 547 using CriMOnto and SWRL in
Protégé.

FIGURE 5.17: Inferring Article 547 using CriMOnto and SWRL in
Protégé.

The figure 5.16 shows the execution of the rule and resulting with the head
mainly the object property is_sentenced_by. Meanwhile, the figure 5.17 depicts
the inference part of the data properties sentence_fixed_term_value and
sentence_fixed_term_type.

5.3. Case Study: Modeling and Formalizing the Legal Norms of the Lebanese
Criminal Code

209

Article 218 - The instigator shall be liable to the penalty for the offence that he wished to
commit, whether the offence was completed, attempted or abortive.

In SWRL, the Article 218 is formalized using the OWL classes and object properties
of CriMOnto as following:

Instigator(?x) ∧ wish_to_commit(?x, ?y) ∧ Offence(?y) ∧
has_legal_action_phase(?y, ?p) ∧ legal_action_phase(?p,"completed") ∧

is_punishable_by(?y, ?z) =⇒ is_liable_to_punished_by(?x, ?z).

Instigator(?x) ∧ wish_to_commit(?x, ?y) ∧ Offence(?y) ∧
has_legal_action_phase(?y, ?p) ∧ legal_action_phase(?p,"attempted") ∧

is_punishable_by(?y, ?z) =⇒ is_liable_to_punished_by(?x, ?z).

Instigator(?x) ∧ wish_to_commit(?x, ?y) ∧ Offence(?y) ∧
has_legal_action_phase(?y, ?p) ∧ legal_action_phase(?p,"abortive") ∧

is_punishable_by(?y, ?z) =⇒ is_liable_to_punished_by(?x, ?z).

Where, Instigator (see Figure 5.18) and Offence are OWL classes in CriMOnto.

wish_to_commit is an object property that characterizes the class Instigator. The
objects properties has_legal_action_phase and is_punishable_by characterize
the class Offence. The data property legal_action_phase define the class
Legal_Action_Phase

FIGURE 5.18: The class Instigator in Protégé.

The article 218 is an example of rules with the logic operator Or. Three main values
are given for the data property legal_action_phase: "completed", "attempted"
or "abortive". For each value, the article is formalized using SWRL. The figure
5.19 depicts the version of the "completed" value.

Given the following individuals: instigator1 for the class Instigator, offence3
for the class Offence and penalty1 for the class Penalty. The execution of the
article 218 will be:

210 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

Instigator(instigator1) ∧ wish_to_commit(instigator1, offence3) ∧
Offence(offence3) ∧ has_legal_action_phase(offence3, phase1) ∧

legal_action_phase(phase1,"completed") ∧ is_punishable_by(offence3,

penalty1) =⇒ is_liable_to_punished_by(instigator1, penalty1).

The figure 5.19 depicts the SWRL version of the article 218 and its inference using
the reasoner Pellet. It shows the inference of the rule based on the given individuals.

FIGURE 5.19: Article 218 using CriMOnto and SWRL in Protégé.

As shown in figure 5.19, the head of the rule is inferred which is the object property
is_liable_to_punished_by.

5.3. Case Study: Modeling and Formalizing the Legal Norms of the Lebanese
Criminal Code

211

Article 550 - Anyone who causes the death of a person through beatings, violence, assault
or any other intentional act without intending to kill him shall be punishable by hard labour
for a term of at least five years.

In SWRL, the Article 550 is formalized using OWL classes and object properties
based on the ontology CriMOnto as following:

Intentional_Act(?x) ∧ resulted_in(?x, ?y) ∧ has_non_goal(?x, ?k)

=⇒ is_sentenced_by(?x, ?h) ∧ has_minimum_sentence_term(?h,

minimum_sentence_fixed_term2) ∧
sentence_fixed_term_type(minimum_sentence_fixed_term2, "year") ∧

sentence_fixed_term_value(minimum_sentence_fixed_term2, 5).

Where, Intentional_Act is an OWL class in CriMOnto (see Figure 5.20). The object
properties resulted_in and has_non_goal characterize the class Intentional_Act
in the following form:

Intentional_Act resulted_in some Criminal_Result.

Intentional_Act has_non_goal Goal.

FIGURE 5.20: The class Intentional_Act in Protégé.

Given the following individuals: violence for the class Intentional_Act, death
for the class Criminal_Result, killing2 for the class Goal, hard_labour2 for the

212 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

class Fixed_Term_Hard_Labour and minimum_sentence_fixed_term2 for the class
Minimum_Sentence_Fixed_Term.

The execution of the Article 550 in SWRL based on the given individuals will be:

Intentional_Act(violence) ∧ resulted_in(violence, death) ∧
has_non_goal(violence, killing2) =⇒ is_sentenced_by(violence,

hard_labour2) ∧ has_minimum_sentence_term(hard_labour2,

minimum_sentence_fixed_term2) ∧
sentence_fixed_term_type(minimum_sentence_fixed_term2, "year") ∧

sentence_fixed_term_value(minimum_sentence_fixed_term2, 5).

In figures 5.21 and 5.22, the article 550 is executed and inferred using Pellet.

FIGURE 5.21: Article 550 using SWRL in Protégé.

FIGURE 5.22: Article 550 using SWRL in Protégé.

As shown in figure 5.21, the execution of the given rule results in inferring the object
property is_sentenced_by with the individual hard_labour2 which is the head of
the rule of the article 550.

5.4 Similar Works

In this section, we will overview briefly the related works concerning modeling
rules using SWRL for ontology-based models.

5.5. Conclusion 213

Modeling Rules using SWRL for Ontology-Based Models In the literature, sev-
eral works in different fields about modeling rules using SWRL for ontology-based
models are found. Zhao (Zhao et al., 2008) provides a methodology to translate
EXPRESS-driven models to OWL and SWRL. In other works, SWRL provides associ-
ation rules, and allows to "associate instances to new classes and to create properties
between instances", such as the works of Yang (Yang et al., 2008) and Dong (Dong
et al., 2011) for the product configuration case. Elenius (Elenius et al., 2009) auto-
mates military events analysis with a SWRL-based reasoning. In the Healthcare
field, Beimel (Beimel et al., 2011) have used OWL-DL to provide a model of the
hospital organization, and control policies are expressed as implication rules, using
SWRL, on classes and properties from the OW-DL part. Lezcano (Lezcano et al.,
2011) have proposed the integrating of formal representations(ontologies) using
OWL with rules expressed using SWRL providing an approach to apply the SWRL
rules to concrete instances of clinical data. In another context, Rossello-Busquet
(Rossello-Busquet et al., 2011) achieves automated actions with a SWRL-based
model involving energy management. Finally, in the work of Fortineau (Fortineau
et al., 2012), SWRL is used as a rule language for ontology-based models in the
power plant design.

5.5 Conclusion

After building the legal domain ontology CriMOnto in chapter 4, by applying the
first phase of the proposed ontology-based approach for modeling legal norms,
this chapter addressed its employment for modeling the procedural aspect of these
norms by applying the second phase of the approach. The most relevant approaches
for modeling legal norms in the literature are surveyed such as (Palmirani et al., 2009;
Palmirani et al., 2012), (Francesconi, 2010; Francesconi, 2011) and (Wyner et al., 2013).
Then, the ontology-based approach for modeling and formalizing the procedural
aspect of the legal norms is discussed. This approach is grounded on the integration
of the developed ontology CriMOnto, which represents the modeling of the content
of the legal norms, with a logic-based rule language. For this purpose, the domain
of integration of ontologies and rules is outlined including the available approaches
as well as the existent rule interchange languages needed for the formalization
process such as RuleML, SBVR, SWRL, RIF, LKIF and LegalRuleML. Furthermore,
a selection process for the most convenient language is made. SWRL is selected
for several reasons discussed in section 5.2.2.1. Moreover, the rule reasoners for
SWRL are introduced. Additionally, a case study, that employed CriMOnto and
SWRL for modeling and formalizing an excerpt of the legal norms of the Lebanese
criminal code, is presented. The logic rules are formalized in Protégé and inferred
using the Pellet reasoner. Finally, we have reviewed some related works in the
literature concerning the integration of ontologies and rules and the modeling of

214 Chapter 5. Modeling and Formalizing the Procedural Aspect of Legal Norms

rules using SWRL. The list of the formalized rules as well as CriMOnto will be
used for building a rule-based legal reasoning model for a legal knowledge-based
systems which will be presented and discussed in chapter 6.

215

Chapter 6

CORBS: Rule-Based System
Grounded on CriMOnto

Contents
6.1 Overview . 216

6.2 CORBS . 216

6.2.1 Hybrid Approach for Building CORBS 217

6.2.2 Reasoning Model of CORBS 218

6.2.3 Tasks of CORBS . 222

6.2.4 Implementation of CORBS 222

6.3 Similar Works . 230

6.3.1 COMUS: Context-Based Music Recommendation Ontol-
ogy for Rule-Based Reasoning 230

6.3.2 Emotiono: Ontology for Rule-Based Reasoning for Emo-
tion Recognition . 231

6.4 Conclusion . 233

216 Chapter 6. CORBS: Rule-Based System Grounded on CriMOnto

6.1 Overview

In this chapter, we discuss the building of a legal rule-based decision support
system, named CORBS that performs rule-based reasoning for the criminal domain.
CORBS is grounded on CriMOnto, the criminal domain ontology developed using a
modular middle-out collaborative approach (see chapters 3 and 4), and a set of logic
rules formalized in SWRL rule language (see chapter 5). The domain ontology and
the rules are integrated together to compose the legal reasoning model of CORBS.

In section 6.2, we discuss the proposed rule-based system CORBS, the building
approach, the model reasoning and the implementation are analysed as well. The
similar works are presented in section 6.3 and section 6.4 concludes the chapter.

6.2 CORBS

In an environment of growing complexity of regulations, automated support for
reasoning with regulations is becoming increasingly necessary. For this reason,
we propose a legal decision support system that tends to help users in the legal
domain to solve legal problems. The proposed system is an ontology-driven legal
rule-based system named CORBS targeted mainly to validate the developed legal
domain ontology CriMOnto (discussed in chapter 4). CriMOnto is constructed by
applying the modular middle-out approach MIROCL (see chapter 3). Therefore,
CORBS aims to embody the rules of the criminal domain, specifically the Lebanese
criminal code as domain application, that are constructed based on CriMOnto (see
chapter 5), in a prototype expert system. Thus, the system is grounded on the
integration of a legal domain ontology and set of logical rules formalized using the
logic rule language SWRL (see Figure 6.1).

FIGURE 6.1: Architecture of CORBS combining ontologies with
rules.

For developing such system, there is a need for an approach that defines its reason-
ing model which will be discussed in the following sections.

6.2. CORBS 217

6.2.1 Hybrid Approach for Building CORBS

In chapter 2 section 2.3.3, we have discussed the existent approaches in the literature
for building legal knowledge-based systems which are mainly: case-based, rule-
based and model-based where each approach is based on a specific model of
reasoning. The case-based and rule-based approaches are interested mainly in
capturing the inferential aspects of legal knowledge more than in expressing the
conceptual components and dependencies among kinds of knowledge. For building
CORBS, a hybrid approach combining model-based and rule-based approaches is
proposed.

• The rule-based approach depends on a rule-based reasoning model where the
knowledge of the domain is represented in the form of productive rules in
order to solve given problems.

• The model-based approach focuses mainly on two phases: modeling of the
domain and the realization of the computational system. Additionally, this
approach tends to separate the domain knowledge and the problem-solving
knowledge. This promotes flexibility and transparency because the knowl-
edge base can then be manipulated and examined as any other data structures
(Buchanan et al., 1983).

Therefore, this separation implies two main advantages:

– The domain models can be developed independently of specific tasks
and problems, and can therefore have a high degree of reusability;

– The general problem solving models can also be used and adapted to
domain-specific tasks, generating relatively domain-independent tasks.

Therefore, for the development of models, two theories are maintained: a
theory of domain reasoning and a theory of domain knowledge. The first
specifies the specific characteristics of reasoning in the domain. This is made
by specifying common reasoning modes and structures for typical tasks in
the domain. The second explains how the domain is organized by containing
an ontology of the domain.

Therefore, the propose hybrid is composed of two main phases: knowledge base
construction phase and rule-based reasoning phase.

• Knowledge base construction phase: represents the construction of the sys-
tem’s model that is represented by the legal domain ontology CriMOnto (see
chapter 4) and the legal formalized rules (see chapter 5). In this phase, the
knowledge of the task area is separated as much as possible from the pro-
cedures that manipulate it. Thus, the building of CriMOnto is independent
from the formalization process of the legal rules. Therefore, the model of the
domain is represented by the criminal domain ontology CriMOnto and the

218 Chapter 6. CORBS: Rule-Based System Grounded on CriMOnto

problem-solving methods are the legal rules formalized using SWRL based
on CriMOnto.

• Rule-based reasoning phase: represents the reasoning strategy of the system
based on the developed knowledge base.

FIGURE 6.2: Hybrid approach for building CORBS.

Based on this approach, we will define the reasoning model of CORBS in the
following section.

6.2.2 Reasoning Model of CORBS

Legal knowledge-based systems are built on the assumption that the user will
provide the current facts to which the legal expert will apply the law (Susskind,
1986). In this context, McCarty, father of AI and law, claims that a LKBS must be
able to represent the facts that involve all the complexities of daily life (human
actions, beliefs, intentions, motivations, etc.) and the law that consists of a system
of “concepts” and “rules” (Popple, 1996; McCarty, 1983). Most of the LKBS attempt
to develop and implement complex models of legal reasoning (Popple, 1993). How-
ever, a LKBS need to be based upon a simple, but expressive, model in order to
produce useful reasoning or decision. The power and utility of such systems rely on
two main parts: a significant domain knowledge base and an intelligent reasoning
module, or inference engine (Corsar et al., 2008).

From this perspective, and based on the hybrid approach proposed in section 6.2.1,
the reasoning model of CORBS is composed of three main components (see Figure
6.3): user interface, knowledge base and inference engine.

6.2. CORBS 219

FIGURE 6.3: Reasoning Model of CORBS.

6.2.2.1 User Interface

The user interface is the means of communication between a user seeking a solution
to the problem and an expert system. The communication should be as meaningful
and friendly as possible (Negnevitsky, 2002). In CORBS, the user interface is an
ontology-based interface. Through the interface, the user can provide the system
with facts and queries that will be processed by the inference engine for reasoning
purposes.

6.2.2.2 Knowledge Base

Generally, the knowledge base contains the domain knowledge useful for problem
solving. In a rule-based expert system, the knowledge is represented as a set of
rules. Each rule specifies a relation, recommendation, directive, strategy or heuristic
and has the IF (condition) THEN (action) structure. When the condition part of
a rule is satisfied, the rule is said to fire and the action part is executed (Negnevitsky,
2002).

In CORBS, we have defined an ontology-based approach (see chapter 5) for building
these rules grounded on a legal domain ontology (CriMOnto). Thus, the knowledge
base of CORBS is composed of two main categories of knowledge: ontological and
problem-solving.

Ontological Knowledge The ontological knowledge tends to model in a clear
and unambiguous way the application domain of the system. This knowledge is
represented by the criminal domain ontology CriMOnto, developed earlier and
discussed in chapter 4. CriMOnto is a modular ontology developed using a middle-
out collaborative approach (see chapter 3) from heterogeneous sources, such as
reusing existent validated upper ontologies and textual resources representing the
domain (the Lebanese criminal code).

220 Chapter 6. CORBS: Rule-Based System Grounded on CriMOnto

CriMOnto is composed of four independently developed ontology modules that are
themselves ontologies (see Figure 6.4): Upper, Core, Domain and Domain-Specific.
They are located on different levels from the most abstract (Upper) to the most
specific (Domain-Specific).

• The Upper module contains the most general concepts such as Mode, Phase,
Role, Action, Event,... This module includes 83 classes, 159 hierarchies and
60 relations.

• The Core module consists of legal core concepts such as Legal_Role,
Legal_Event, Legal_Action, Act_of_Law, Medium,... This module contains 44
classes, 82 subclasses relations and 19 semantic relations.

• The Domain module represents the criminal domain concept such as
Offender, Perpetrator, Criminal_Action, Offence, Terrorism,...This
module contains 127 classes, 226 subclasses relations and 67 semantic
relations.

• Finally, the Domain-Specific module that contains the instances of the DO-
MAIN module. These instances are related closely to the Lebanese criminal
domain.

The modules are integrated together to compose the general ontology CriMOnto.
The concepts of the different modules are interlinked using subClassOf and
instanceOf relations. Meanwhile, the different modules can still be identified in
CriMOnto.

FIGURE 6.4: The criminal domain ontology CriMOnto.

Problem-solving Knowledge Problem-solving knowledge is about how to use
the domain knowledge to achieve various goals. This knowledge is often in the form
of a problem solving methods (PSM) which are the set of rules in a rule-based LKBS.

6.2. CORBS 221

In CORBS, PSMs are the formalized legal rules discussed earlier in chapter 5. These
rules represent the procedural aspect of the legal norms of the Lebanese criminal
code. They are developed based on CriMOnto by mentioning vocabulary specified
by this ontology and formalized using SWRL. Moreover, they are independent,
self-contained chunks of knowledge where each rule can be changed or updated
without requiring the modification of other rules or affecting the entire system.
Furthermore, the performance of the system is affected by their reliability.

In the following, an excerpt of the formalized legal rules is presented.

Article 213: Accomplice(?x) ∧ is_punishable_by(?y,?z) ∧ commit(?x,?y)

=⇒ is_liable_to_punished_by(?x,?z).

Article 196: Intentional_Act(?x) ∧ motivated_to(?m, ?x) ∧ motive_type(?m,

"Political_Motive") =⇒ Political_Offence(?x).

Article 547: Intentional_Homicide(killing) ∧ committed_towards(killing,

?y) ∧ committed_by(killing, ?x) =⇒ is_punished_by(?x, hard-labour)

∧ imposed_for_maximum(hard-labour, max_d_2) ∧ imposed_for_minimum

(hard-labour, min_d_2) ∧ term_value(max_d_2, 20) ∧ term_value(min_d_2,

15) ∧ term_type(max_d_2, "years") ∧ term_type(min_d_2, "years").

6.2.2.3 Inference Engine

The inference engine consists of algorithms for manipulating the knowledge rep-
resented in the knowledge base. It applies the logic contained in the knowledge
base to the information input by the user and outputs advice. The inference engine
carries out the reasoning whereby the expert system reaches a solution. It links
the rules given in the knowledge base with the facts provided in the database
(Negnevitsky, 2002).

In CORBS, we define a reasoning process for solving legal problems based on
forward chaining systems. The legal rules, formalized in SWRL, are used by the
inference engine or OWL reasoner, such as Pellet and Hermit (Glimm et al., 2014),
in order to derive new knowledge. Note that HermiT is one of the few reasoners
ported so far to OWL API 5. The reasoning process consists of the following
sub-steps:

1. Select the applicable rules.

2. Match the facts, that are defined as the individuals of the OWL classes in our
ontology, with the condition of the rules to determine which rules should be
applied and selects the most appropriate rule.

3. Deduce new facts from the existing facts.

222 Chapter 6. CORBS: Rule-Based System Grounded on CriMOnto

4. The selected rule is fired by the inference engine and the action associated
with it is executed.

5. The inference engine repeats this reasoning process in a loop through all the
rules and facts until no more conclusion can be reached or the termination
conditions are satisfied.

Therefore, in CORBS, the inference engine drives the legal reasoning by retrieving
the facts (input) submitted to the system and matching them with the rule base to
identify the rule, or rules that satisfy the input.

6.2.3 Tasks of CORBS

Generally, CORBS is defined as a legal decision support system that aims to help the
users to access regulations semantically, perform querying and rule-based reasoning.
Therefore, the common tasks of CORBS are:

• Semantic search and querying: that would ensures the provision of useful
and relevant information to the user where the user can search for results by
contextual meaning of input query instead of keyword matching.

• Rule-based reasoning: that enables the reasoning over input facts such as
determining the legal punishments for crime perpetrators.

6.2.4 Implementation of CORBS

For the implementation of CORBS, Eclipse1, as a programming environment, and
Java, as a programming language, are used. Moreover, for developing an ontology-
based application, such as CORBS, there is a need for a Java-based library such
as Jena and OWL API. In the following paragraphs, we discuss these API and
determine the most relevant for our work.

Jena Framework Jena2 is a an open source Java framework for building Semantic
Web and linked data applications. It provides a programmatic environment for
RDF, RDFS, OWL, SPARQL and includes a rule-based inference engine. Jena has
an API to extract data from and write to RDF graphs and OWL ontologies. In
Jena, all state information provided by a collection of RDF triples is contained in
a data structure called a Model. The model denotes an RDF graph in Jena and can
be created by using data from URLs, files, databases or by combining different
sources. Jena includes support for a variety of reasoners through the inference API.

1http://www.eclipse.org/
2https://jena.apache.org/, last accessed 11 February 2018

6.2. CORBS 223

Additionally, a memory and persistent storage for storing large number of RDF
triples is provided in Jena. SPARQL can be used to query the model.

Concerning the ontology support, Jena provides an Ontology API that presents the
graph using concepts from OWL and RDFS (Carroll et al., 2004) (see Figure 6.5).

FIGURE 6.5: Handling ontologies in Jena.

OWL API OWL API3 is a Java interface and implementation for working with
OWL ontologies. The OWL API is closely aligned with the OWL 2 structural
specification. It supports parsing and rendering in the syntaxes defined in the W3C
specification (Functional Syntax, RDF/XML, OWL/XML and the Manchester OWL
Syntax); manipulation of ontological structures; and the use of reasoning engines.
The reference implementation of the OWL API, written in Java, includes validators
for the various OWL 2 profiles - OWL 2 QL, OWL 2 EL and OWL 2 RL. The OWL
API has widespread usage in a variety of tools and applications (Horridge et al.,
2011).

The OWL API includes the following components:

• An API for OWL 2 and an efficient in-memory reference implementation.

• RDF/XML parser and writer.

• OWL/XML parser and writer.

• OWL Functional Syntax parser and writer.

• Turtle parser and writer.

• KRSS parser.

3https://owlcs.github.io/owlapi/, last accessed 11 February 2018

224 Chapter 6. CORBS: Rule-Based System Grounded on CriMOnto

• OBO Flat file format parser.

• Support for integration with reasoners such as Pellet and FaCT++.

• Support for black-box debugging.

In OWL API, an ontology is simply viewed as a set of axioms and annotations
as depicted in Figure 6.6. The names and hierarchies of interfaces for entities,
class expressions and axioms in the OWL API correspond closely to the structural
specification, relating the high level OWL 2 specification directly to the design of
the OWL API. The OWL API supports loading and saving ontologies is a variety
of syntaxes. However, none of the model interfaces in the OWL API reflect, or are
biased to any particular concrete syntax or model. For example, unlike other APIs
such as Jena, the representation of class expressions and axioms is not at the level
of RDF triples (Horridge et al., 2011).

FIGURE 6.6: A UML diagram showing the management of ontolo-
gies in the OWL API (Horridge et al., 2011).

6.2. CORBS 225

OWL API Jena API

Java API and reference implementation Java framework
Free and open-source Free and open-source
OWL-centric RDF-centric
OWL2 support OWL2 not supported
Creating, manipulating and serializing
OWL2 ontologies

API to extract data from and write to RDF
graphs

Reasoner interfaces: FaCT++, HermiT, Pel-
let, and Racer

Pellet

Support importing ontologies (Modular-
ity of ontologies)

Importing ontologies not supported

Reasoning support for SWRL SWRL not supported
supports SPARQL-DL querying supports SPARQL querying

TABLE 6.1: A comparison of OWL API and Jena framework.

Based on the aforementioned, the most relevant API for our work is OWL API
(version 5) since it is OWL-centric and dedicated for manipulating ontologies mainly.
Additionally, OWL2 is supported in this API. Moreover, two main important reasons
for this selection are: (1) the support of modular ontologies which is the case of
our developed ontology CriMOnto; (2) the support pf SWRL rules using the rule
engines Pellet and Hermit.

6.2.4.1 Loading CriMOnto

The implementation of CORBS is based mainly on loading the developed legal
domain ontology CriMOnto. For this purpose, the selected API should handle this
process specifically the modular aspect of CriMOnto.

In OWL API, OWLOntologyManager is the central class for managing ontologies. It
handles creating, loading and saving ontologies, the application of changes such
as annotations or axiom additions. Moreover, OWLOntologyManager can hold more
than one ontology. The most important case where this becomes relevant in our
work since we are dealing with multiple ontology modules in CriMOnto. We
need to import and load four main modules (Upper, Core, Domain and Domain-
specific) and to handle them as unified global ontology. In OWL, this dependency
is made explicitly by adding an owl:imports statement. For example, in CriMOnto,
Domain-specific module depends on Domain module which in turn depends on
Core module that depends as well on Upper Module. In OWL API, the import
process of the CriMOnto modules is made as mentioned in the following code:

OWLOntologyManager m=OWLManager.createOWLOntologyManager(); File file1

= new File("C:/Users/Mirna/workspace/misc/src/ontology/UPPER-FINAL.owl");

226 Chapter 6. CORBS: Rule-Based System Grounded on CriMOnto

IRI iri1=

IRI.create("http://www.semanticweb.org/mirna/ontologies/2018/0/UPPER-FINAL");

m.getIRIMappers().add(new SimpleIRIMapper(iri3,

IRI.create("C:/Users/Mirna/workspace/misc/src/ontology/DOMAIN-FINAL.owl")));

OWLOntology onto1=m.loadOntologyFromOntologyDocument(file1);

When a local copy of one or more ontologies is used, an ontology IRI mapper can be
used to provide a redirection mechanism. This means that ontologies can be loaded
as if they were located on the Web.

6.2.4.2 Semantic Search and Queries Executing

In OWL API, the reasoners implement the OWLReasoner interface. Through the
OWLReasoner interface, a number of interesting things can be done such as, compute
ontology axioms and query for sub-classes, equivalent classes and instances.

OWLReasonerFactory rf = new ReasonerFactory();

OWLReasoner r = rf.createReasoner(onto2);

r.precomputeInferences(InferenceType.CLASS_HIERARCHY);

In figure 6.7, an example of querying for sub-classes is depicted. For example, for
listing the subclasses of the class Legal_Event, which is located in the Core module
of CriMOnto, the following code is applied:

OWLClass per =

df.getOWLClass(IRI.create("http://www.semanticweb.org/mirna/ontologies/2018/0/

CORE-FINAL#Legal_Event"));

NodeSet<OWLClass> subClses = r.getSubClasses(per, true);

Set<OWLClass> clses = subClses.getFlattened();

System.out.println(�Subclasses of Legal Event: �);

for(OWLClass cls : clses) { System.out.println(cls); }

6.2. CORBS 227

FIGURE 6.7: Example of querying ontologies (sub-classes).

Additionally, for querying CriMOnto, a query engine SPARQL-DL ia used. In the
following paragraph, SPARQL-DL is presented as well as example of Java code.

SPARQL-DL API SPARQL-DL is a query language for OWL-DL ontologies(Sirin
et al., 2007a). SPARQL-DL4 query engine is settled on top of the OWL API. The
library is fully aligned with the OWL 2 standard and adds a SPARQL-DL interface
to every OWL API 3 reasoner (see Figure 6.8).

FIGURE 6.8: SPARQL-DL querying.

The SPARQL-DL query language is a distinct subset of SPARQL (a query language
for RDF). The subset is tailored to ontology specific questions which typically come
into focus when dealing with OWL. SPARQL-DL is a quite expressive language
which particularly allows to mix TBox, RBox, and ABox queries.

SPARQL-DL supports two different types of queries: ASK and SELECT. An ASK-query
returns a Boolean result whereas a SELECT-query returns all possible bindings of
the provided variables.

4http://www.derivo.de/en/resources/sparql-dl-api/

228 Chapter 6. CORBS: Rule-Based System Grounded on CriMOnto

ASK-queries:

ASK [comma-separated list of atoms]

SELECT-queries:

SELECT [DISTINCT] [space-separated list of variables] [WHERE] [comma-separated

list of atoms]

[OR WHERE [comma-separated list of atoms]]

As within SPARQL, the DISTINCT keyword removes automatically all redundant
bindings within the result set.

SPARQL-DL Query Patterns

Class(a)
Property(a)
Individual(a)
Type(a, b)
PropertyValue(a, b, c)
EquivalentClass(a, b)
SubClassOf(a, b)
EquivalentProperty(a, b)
SubPropertyOf(a, b)
InverseOf(a, b)
ObjectProperty(a)
DataProperty(a)
Functional(a)
InverseFunctional(a)
Transitive(a)
Symmetric(a)
Reflexive(a)
Irreflexive(a)
SameAs(a, b)
DisjointWith(a, b)
DifferentFrom(a, b)
ComplementOf(a, b)
Annotation(a, b, c)
StrictSubClassOf(a, b)
DirectSubClassOf(a, b)
DirectType(a, b)
StrictSubPropertyOf(a, b)
DirectSubPropertyOf(a, b)

TABLE 6.2: Supported query patterns in SPARQL-DL.

6.2. CORBS 229

In figure 6.9, an example of applying SPARQL-DL for querying CriMOnto is de-
picted. This example illustrates the selection of articles from the criminal code that
contains the keyword Perpetrator or any other synonym.

FIGURE 6.9: Example of querying CriMOnto using SPARQL-DL.

In Java, using SPARQL-DL, the following code is applied for a SELECT query:

String q= "PREFIX domain:

<http://www.semanticweb.org/mirna/ontologies/2018/0/DOMAIN-FINAL#>" +

"PREFIX core:

<http://www.semanticweb.org/mirna/ontologies/2018/0/CORE-FINAL#>" +

"PREFIX ds:

<http://www.semanticweb.org/mirna/ontologies/2018/0/DOMAIN-SPECFIC-FINAL#>"

+

"SELECT ?x WHERE PropertyValue(?x, domain:contains_key, ds:perpetrator)";

Query query = Query.create(q);

QueryResult result = engine.execute(query);

6.2.4.3 Rules Executing

For the executing of rules, there is a need to integrate an OWL reasoner that supports
rule-based reasoning such as Pellet and HermiT. In the OWL API library, the main

230 Chapter 6. CORBS: Rule-Based System Grounded on CriMOnto

interfaces for managing SWRL rules are SWRLDataFactory, SWLAtom, SWRLRule and
SWRLVariable.

An example of listing the SWRL rules is presented in the following:

OWLDataFactory dataFactory = new OWLDataFactoryImpl();

Set<SWRLRule> rules = ontology.getAxioms(AxiomType.SWRL_RULE);

SWRLRule parsedRule = rules.iterator().next(); System.out.println("rule:

"+rules);

6.3 Similar Works

6.3.1 COMUS: Context-Based Music Recommendation Ontology for
Rule-Based Reasoning

COMUS (Context-based Music Recommendation) ontology consists of about 500
classes and instances, and 52 properties definitions created in Protégé (Rho et al.,
2009). This ontology describes music related information about relationships and
attributes that are associated with people, genre, mood, location, time, and situation
events in a daily life. COMUS ontology is used to support ontology rue-based
reasoning for recommending appropriate music to users. The reasoning can be
brought in by specifying user-defined reasoning rules towards defining high level
conceptual contexts such as “What music does the user want to listen to when
he/she is stressed?” can be deduced from relevant low-level context (see Figure
6.10).

FIGURE 6.10: User-defined context reasoning rules (Rho et al., 2009).

A prototype music recommendation system is developed based on COMUS and
extended the music ontology to enable mood and situation reasoning in a music
recommendation system (see Figure 6.11). The system provides various types of
query interfaces to the users.

6.3. Similar Works 231

FIGURE 6.11: A prototype for COMUS (Rho et al., 2009).

6.3.2 Emotiono: Ontology for Rule-Based Reasoning for Emotion
Recognition

Emotiono is an emotional and related ontology in the Affective Computing domain
(Zhang et al., 2011). The Emotiono ontology defines the terms used to describe and
represent emotional knowledge including basic concepts (different affective states,
participants’ EEG features and sampling rate) and the relationships that exist among
them. Some concepts and some hierarchy of concepts in the Emotiono ontology
with their subclasses include: Spatial_Parameter, Channel_Type and Electrode.

232 Chapter 6. CORBS: Rule-Based System Grounded on CriMOnto

FIGURE 6.12: Excerpt of Emotiono Ontology (Zhang et al., 2011).

6.3.2.1 Rule-Based Reasoning in Emotiono

In Emotiono ontology, a user’s desired emotional state is deduced from the ontology
based on his situation (prevailing state), personal information, and his EEG features.
In order to get the main relations between EEG features of a certain person and his
affective states Generic rule reasoner, a Jena Reasoner engine is used; the reasoner
consists of the reasoning engine and context-based engine. The context-based
engine extracts the contexts of interrelation with input data for emotion recognition.
Therefore, the Emotiono ontology relies on well-defined context definitions to arrive
at the correct emotional state. When the reasoner receives the EEG signal data or
user request, a context-based reasoning engine generates the query as rules to
generate the correct results.

6.4. Conclusion 233

FIGURE 6.13: Emotiono Reasoning (Zhang et al., 2011).

6.4 Conclusion

In this chapter, the legal rule-based systems are discussed, their architecture, ad-
vantages and disadvantages. The most known methods of reasoning, forward and
backward chaining, that exist for rule-based systems are presented. Furthermore, for
building CORBS, the target rule-based decision support systems, a hybrid approach
is proposed which is a combination of rule-based and model-based approaches.
The reasoning model of CORBS, which is composed of three main components
(user interface, knowledge base and inference engine), is analyzed. Moreover, the
implementation of CORBS is introduced using the Java-based OWL API where the
main tasks are discussed such as loading CriMOnto, semantic search and querying
and rules executing. Finally, some recent similar works, that consider the building
of ontologies for rule-based reasoning purposes, are explored.

234

Chapter 7

Conclusion

Contents
7.1 Thesis Overview . 235

7.2 Future Directions . 235

7.1. Thesis Overview 235

7.1 Thesis Overview

This thesis addresses the problem of building well-founded domain ontologies for
reasoning purposes. Actually, the field of ontology engineering suffers from several
limitations in the fields of knowledge acquisition and modeling and knowledge
sharing and reasoning. Most of the existent approaches in the literature focus on
core ontology development or build ontologies from scratch leading to non well-
founded ontologies. Moreover, the approaches neglect the participatory aspect of
building ontologies. Additionally, most of the developed ontologies are not built
for reasoning purposes.

Therefore, aiming to tackle the addressed limitations, the thesis had four main
contributions. Firstly, we provided a novel modular middle-out collaborative
approach named MIROCL for developing well-founded domain ontologies. This
approach supports the following features: (1) Collaborative ontology building
process handling heterogeneous data sources; (2) Ontology modularization; (3)
Ontology-driven conceptual modeling process; (4) Ontology learning process; (5)
Ontology integration. Thus, MIROCL focused on building well-founded domain
ontologies collaboratively from different heterogeneous sources such as reusing
predefined existent validated ontologies and textual resources as well as simplifying
the ontology development process by applying the ontology modularization and
learning processes. MIROCL was presented and discussed in chapter 3. Secondly,
we applied the approach MIROCL in the legal domain, specifically the Lebanese
criminal domain, for building well-founded criminal domain ontology named
CriMOnto. The main purpose of CriMOnto was modeling the content of the legal
norms of the Lebanese criminal code as a domain application. CriMOnto is targeted
to be used for rule-based reasoning purposes. The building process of CriMOnto
and the results were presented and evaluated in chapter 4. Thirdly, we proposed
an ontology-based approach for modeling and formalizing the procedural aspect
of the legal norms of the Lebanese criminal code based on the developed ontology
CriMOnto. The application of the approach and the results were analyzed in chapter
5. Finally, we put together all these works for building a legal decision support
system named CORBS grounded on the integration of the legal domain ontology
CriMOnto and the formalized legal rules. The main purpose of CORBS was to
validate the legal domain ontology by emerging it in an ontology-based application.
CORBS is developed using the Java-based library OWL API.

7.2 Future Directions

In this thesis, the novel modular middle-out approach MIROCL have been proposed,
described and validated for building well-founded domain ontologies for reasoning

236 Chapter 7. Conclusion

purposes in the legal domain. Meanwhile, we found several future directions
related to our work which can be described for improving the current research. We
will discuss these directions in the following:

• MIROCL is a middle-out approach that tend to solve several limitations in
the field of ontology development by combining different ontology building
support processes such as ontology modularization, integration, ontology-
driven conceptual modeling and ontology learning. Actually, the results
obtained, using the ontology learning tool Text2Onto for extracting the do-
main and domain-specific ontologies from textual resources, were described
as lightweight and required the intervention of domain experts and ontology
engineers for correcting, pruning and enriching the results. This process is
described as resource intensive and time consuming. To allow for a more
enhanced results obtained by applying the ontology learning process, and
for minimizing the efforts exhausted for the correction phase, we suggest to
develop an ontology learning tool that have the capability to extract semi-
automatically semantic objects (such as hierarchies, semantic relations, ax-
ioms,..) from texts. These objects can be classified as heavyweight, rich and
containing the minimum possible of errors.

• For developing our legal domain ontology, we have reused the legal core
ontology LKIF-Core. For future works, we suggest the application of UFO-L
which is a recent legal core ontology developed based on the unified founda-
tional ontology UFO.

• Concerning the domain application and the language, we have applied the
proposed approach MIROCL on the Lebanese criminal domain specifically
the Lebanese criminal code as textual resources. We suggest its application on
other legal domains such as civil code for example. Regarding the application
language, we have used the English language in this research. For future
works, we need to verify the application of MIROCL on other languages such
as the Arabic or French.

• Apart from applications on the legal domain, the proposed approach MIROCL
is indeed general and can be applied to other domains such as medicine
for instance. In fact, the experience in the medical domain concerning the
ontology development by applying MIROCL could offer a starting point for
comparative research for building well-founded domain ontologies.

• Regarding the reasoning part, the developed legal domain ontology CriMOnto
is used for modeling the procedural aspect of the legal norms by applying
an homogeneous monotonic ontology-based approach. Therefore, the rule
language SWRL is used for formalizing the rules. Meanwhile, SWRL suffers
from some limitations which cause the difficulty of formalizing the complex
legal norms of the criminal code. For this reason, we recommend for future

7.2. Future Directions 237

works to apply a non-monotonic approach where rules can be expressed using
Logic Programming formalisms, such as ASP (Answer Set Programming),
which is a family of non-monotonic knowledge representation.

• For the implementation part, in this work we have developed a desktop
ontology-based application using the OWL API Java-based library. We can
improve it by developing a web-based application using the GWT library.

238

Bibliography

Abbes, S. et al. (2012). “Characterizing modular ontologies”. In: 7th International
Conference on Formal Ontologies in Information Systems (FOIS), pp. 13–25.

Abburu, S. (2012). “A Survey on Ontology Reasoners and Comparison”. In: Interna-
tional Journal of Computer Applications 57.17, pp. 33–39.

Agnoloni, T. et al. (2007). “Building an ontological support for multilingual leg-
islative drafting”. In: Proceedings of the 2007 conference on Legal Knowledge and
Information Systems: JURIX 2007: The Twentieth Annual Conference. Ed. by A. Lod-
der and L. Mommers. Vol. 165. Frontiers in Artificial Intelligence and Applications.
IOS Press, pp. 9–18.

Agnoloni, T. et al. (2009). “A two-level knowledge approach to support multilingual
legislative drafting”. In: the 2009 conference on Law, Ontologies and the Semantic
Web: Channelling the Legal Information Flood. Ed. by J. Breuker et al. Vol. 188.
Frontiers in Artificial Intelligence and Applications. IOS Press Amsterdam, The
Netherlands. Chap. A two-level knowledge approach to support multilingual
legislative drafting, pp. 177–198.

Agnoloni, T. and Francesconi, E. (2011). “Modelling Semantic Profiles in Legislative
Documents for Enhanced Norm Accessibility”. In: ICAIL 11 Proceedings of the 13th
International Conference on Artificial Intelligence and Law, pp. 111–115.

Albuquerque, A. (2013). “Ontological Foudations for Conceptual Modeling
Datatypes”. PhD thesis. Federal University of Espirito Santo.

Angele, J. et al. (1998). “Developing Knowledge-Based Systems with MIKE”. In:
Automated Software Engineering 5.4, pp. 389–418.

Antoniou, G. et al. (2005a). Combining Rules and Ontologies: A survey. Tech. rep.
IST506779/Linkoping/I3-D3/D/PU/a1. Linkoping University.

Antoniou, G. et al. (2005b). Combining Rules and Ontologies - A survey. Deliverables
I3-D3, REWERSE. URL: http://rewerse.net/deliverables/m12/i3-d3.pdf.

Arpirez, J. et al. (1998). “(ONTO)2Agent: An ontology-based WWW broker to select
ontologies”. In: Workshop on Application of Ontologies and PSMs, pp. 16–24.

Arpirez, J. et al. (2000). “Knowledge and Information Systems”. In: vol. 2. 4. Springer.
Chap. Reference Ontology and (ONTO)2 Agent: The Ontology Yellow Pages,
pp. 387–412.

Arpirez, J. et al. (2003). “WebODE in a nutshell.” In: AI Magazine 24.3, pp. 37–47.

http://rewerse.net/deliverables/m12/i3-d3.pdf

BIBLIOGRAPHY 239

Asaro, C. et al. (2003). “A Domain Ontology: Italian Crime Ontology”. In: ICAIL
2003 Workshop on Legal Ontologies & Web based legal information management.

Ashley, K. (2009). “Ontological Requirements for Anological Teleological, and Hy-
pothetical Legal Reasoning”. In: Proceedings of the 12th International Conference on
AI and Law (ICAIL).

Ashley, K. (2011). “Approaches to Legal Ontologies”. In: ed. by G. Sartor et al.
Vol. 1. Law, Governance and Technology Series. Springer, Dordrecht. Chap. The
Case-Based Reasoning Approach: Ontologies for Analogical Legal Argument,
pp. 99–115.

Ashley, K. et al. (2001). “Legal Reasoning and Artificial Intelligence: How Comput-
ers "Think" Like Lawyers”. In: The University of Chicago Law School Roundtable
8.1.

Athan, T. et al. (2013a). “OASIS LegalRuleML”. In: The Fourteenth International
Conference on Artificial Intelligence and Law. ICAIL13. New York: ACM Press, pp. 3–
12.

Athan, T. et al. (2013b). “Theory, Practice, and Applications of Rules on the Web.
RuleML 2013”. In: ed. by L. Morgenstern et al. Vol. 8035. Lecture Notes in Com-
puter Science. Springer, Berlin, Heidelberg. Chap. LegalRuleML: From Meta-
model to Use Cases, pp. 13–18.

Athan, T. et al. (2014). “Legal interpretations in legalruleml”. In: Proceedings of
the Semantic Web for the Law and Second Jurix Doctoral Consortium Workshops
(SW4LAW+JURIX-DC 2014). Vol. 1296. CEUR-WS.org.

Athan, T. et al. (2015). “Reasoning Web. Web Logic Rules. Reasoning Web 2015”.
In: ed. by W. Faber and A. Paschke. Vol. 9203. Lecture Notes in Computer Sci-
ence. Springer, Cham. Chap. LegalRuleML: Design Principles and Foundations,
pp. 151–188.

Aussenac-Gilles, N., Biebow, B., and Szulman, S. (2000). “Revisiting ontology design:
a methodology based on corpus analysis”. In: 12th International Conference in
Knowledge Engineering and Knowledge Management (EKAW 00). Vol. 1937. Lecture
Notes in Artificial Intelligence. Springer, Berlin, pp. 172–188.

Baader, F. et al., eds. (2002). The Description Logic Handbook. Cambridge University
Press.

Baader, F. et al., eds. (2003a). Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press.

Baader, F., Horrocks, I., and Sattler, U. (2005). “Mechanizing Mathematical Reason-
ing”. In: ed. by D. Hutter and W. Stephan. Vol. 2605. Lecture Notes in Computer
Science. Springer-Verlag Berlin Heidelberg. Chap. Description Logics as Ontology
Languages for the Semantic Web, pp. 228–248.

Baader, F. and Nutt, W. (2003b). “The description logic handbook”. In: Cambridge
University Press New York, NY, USA. Chap. Basic description logics, pp. 43–95.

240 BIBLIOGRAPHY

Baader, F. and Nutt, W. (2003c). “The description logic handbook”. In: Cambridge
University Press New York, NY, USA. Chap. Basic Description Logics Cambridge
University, pp. 41–95.

Bachimont, B., Isaac, A., and Troncy, R. (2002). “Semantic commitment for designing
ontologies: a proposal”. In: EKAW 2002. Ed. by A. Gomez-Perez and V. Benjamins.
Vol. 2473. LNAI. Springer-Verlag Berlin Heidelberg, pp. 114–121.

Bao, J. and Honavar, V. (2004a). “Collaborative Ontology Building with Wiki@nt”.
In: 3rd Intl. Workshop on Evaluation of Ontology Based Tools at Intl. Semantic Web
Conference.

Bao, J. and Honavar, V. (2004b). Ontology Language Extensions to Support Localized
Semantics, Modular Reasoning, and Collaborative Ontology Design and Ontology Reuse.
Tech. rep. 243.

Barcelos, P. et al. (2013). “An Automated Transformation from OntoUML to OWL
and SWRL”. In: Ontobras. Vol. 1041, pp. 130–141.

Baroni, M. and Bisi, S. (2004). “Using cooccurrence statistics & the web to dis-
cover synonyms in a technical language”. In: Proceedings of the 4th International
Conference on Language Resources and Evaluation. Vol. 5, pp. 1725–1728.

Beimel, D. and Peleg, M. (2011). “Using OWL and SWRL to represent and reason
with situation-based access control policies”. In: Journal of Data and Knowledge
Engineering 70, pp. 596–615.

Ben Mustapha, N. et al. (2013). “A dynamic composition of ontology modules
approach: application to web query reformulation”. In: International Journal of
Metadata, Semantics and Ontologies 8.4, pp. 309–321.

Bench-Capon, T. et al. (2012). “A history of AI and Law in 50 papers: 25 years of the
international conference on AI and Law”. In: Artificial Intelligence and Law 20.3,
pp. 215–319.

Bench-Capon, T. and Coenen, F. (1992). “Isomorphism and Legal Knowledge Based
Systems”. In: Artificial Intelligence and Law 1.1, pp. 65–86.

Bench-Capon, T. and Gordon, T. (2009). “Isomorphism and argumentation”. In:
ICAIL 2009, pp. 11–20.

Bench-Capon, T. and Visser, P. (1997). “Ontologies in legal information systems; the
need for explicit specifications of domain conceptualizations”. In: Sixth Interna-
tional Conference on Artificial Intelligence and Law, pp. 132–141.

Bench-Capon, T. et al. (1987). “Logic programming for large scale applications in
law: A formalisation of supplementary benefit legislation”. In: First International
Conference on Artificial Intelligence and Law. ACM Press, pp. 190–198.

Benevides, A. and Guizzardi, G. (2009a). “A model-based tool for conceptual mod-
eling and domain ontology engineering in OntoUML”. In: ICEIS 2009: Enterprise
Information Systems. Vol. 24. LNBIP, pp. 528–538.

Benevides, A. et al. (2009b). “Assessing Modal Aspects of OntoUML Conceptual
Models in Alloy”. In: International Workshop on Evolving Theories of Conceptual
Modeling (ETheCoM 2009). Gramado, Brazil.

BIBLIOGRAPHY 241

Benevides, A. et al. (2011). “Validating modal aspects of OntoUML conceptual
models using automatically generated visual world structures”. In: J. Univers.
Comput. Sci. 16, pp. 2904–2933.

Benjamins, V. et al. (2003). “Ontologies of Professional Legal Knowledge as the Basis
for Intelligent IT Support for Judges”. In: ICAIL 2003 Workshop on Legal Ontologies
& Web based legal information management.

Benjamins, V. et al. (2005a). “Law and the Semantic Web”. In: vol. 3369. LNCS.
Springer-Verlag Berlin Heidelberg. Chap. Law and the Semantic Web, an Intro-
duction, pp. 1–17.

Benjamins, V. et al. (2005b). Law and the Semantic Web Legal Ontologies, Methodologies,
Legal Information Retrieval, and Applications. Ed. by V. Benjamins et al. Springer.

Bernaras, A., Laresgoiti, I., and Correra, J. (1996). “Building and Reusing Ontologies
for Electrical Network Applications”. In: 12th European conference on Artificial
Intelligence (ECAI), pp. 298–302.

Berners-Lee, T. (2005). “Web for Real People,” in: 14th World Wide Web Conference
(WWW2005). URL: http://www.w3.org/2005/%20Talks/0511-keynote-tbl/.

Bezerra, C. et al. (2008). “ModOnto: A tool for modularizing ontologies”. In: Proc.
WONTO-08. Vol. 427. ceur-ws.org.

Bezerra, C. et al. (2009). “An approach for ontology modularization”. In: Proc.
Brazil/INRIA colloquium on computation: cooperations, advances and challenges,
pp. 184–189.

Bezzazi, H. (2007). “Building an Ontology That Helps Identify Criminal Law Articles
That Apply to a Cybercrime Case”. In: Proceedings of the Second International
Conference on Software and Data Technologies.

Biagioli, C. (1991). Definitional Elements of a Language for the Representation of Statutory
Texts. Rechtstheorie, Beiheft 11, Berlin: Duncker and Humblot.

Biagioli, C. (1997). “Towards a Legal Rules Functional Micro-Ontology”. In: First
International Workshop proceedings on Legal Ontologies.

Biasiotti, M. and Tiscornia, D. (2011). “Approaches to Legal Ontologies”. In: ed. by
G. Sartor et al. Law, Governance and Technology Series. Springer, Dordrecht.
Chap. Legal Ontologies: The Linguistic Perspective, pp. 143–166.

Biasiotti, M. et al. (2008). “Legal informatics and management of legislative docu-
ments”. In: Global Center for ICT in Parliament Working Paper 2.

Biebow, B. and Szulman, S. (1999). “TERMINAE: A Linguistics-Based Tool for the
Building of a Domain Ontology”. In: International Conference on Knowledge Engi-
neering and Knowledge Management EKAW 1999: Knowledge Acquisition, Modeling
and Management. Vol. 1621. LNCS, pp. 49–66.

Blazquez, M. et al. (1998). “Building ontologies at the knowledge level using the
ontology design environment”. In: 11th International Workshop on Knowledge Ac-
quisition, Modeling and Management (KAW 98). Ed. by M. M. B.R. Gaines.

http://www.w3.org/2005/%20Talks/0511-keynote-tbl/

242 BIBLIOGRAPHY

Boella, G., Lesmo, L., and Damiano, R. (2005). “Law and the Semantic Web”. In:
ed. by V. Benjamins et al. Vol. 3369. Lecture Notes in Computer Science. springer,
Berlin, Heidelberg. Chap. On the Ontological Status of Norms, pp. 125–141.

Boella, G. et al. (2011). “A Formal Study on Legal Compliance and Interpretation”.
In: AICOL Workshops(2009). Springer, pp. 162–183.

Boer, A., Engers, T., and Winkels, R. (2003). “Using ontologies for comparing and
harmonizing legislation”. In: ICAIL 03 Proceedings of the 9th international conference
on Artificial intelligence and law, pp. 60–69.

Boer, A., Engers, T., and Winkels, R. (2005). “Mixing Legal and Non-legal Norms”.
In: Jurix 2005: The Eighteenth Annual Conference. Legal Knowledge and Information
Systems. Ed. by M. F. M. andP. Spyns. IOS Press, pp. 25–36.

Boer, A., Hoekstra, R., and Winkels, R. (2001). “The CLIME Ontology”. In: Second
International Workshop on Legal Ontologies.

Boer, A., Hoekstra, R., and Winkels, R. (2002a). “Metalex: Legislation in XML”. In:
In Proc. JURIX 2002.

Boer, A. et al. (2002b). “Proposal for a dutch legal xml standard”. In: EGOV2002 -
Proceedings of the First International Conference on Electronic Government.

Boley, H., Tabet, S., and Wagner, G. (2001). “Design rationale for RuleML: A markup
language for Semantic Web rules”. In: Proc. SWWS’01, The first Semantic Web
Working Symposium. Ed. by I. Cruz et al., pp. 381–401.

Borgida, A. and Serani, L. (2003). “Distributed description logics: Assimilating
information from peer sources”. In: J. Data Semantics 1, pp. 153–184.

Borgo, S., Guarino, N., and Masolo, C. (1996). “Stratified Ontologies: the case of
physical objects”. In: Workshop on Ontological Engineering. ECAI96, pp. 5–15.

Borgo, S. and Leitao, P. (2004). “The role of foundational ontologies in manufacturing
domain applications”. In: OTM 2004: On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE. Vol. 3290. Lecture Notes in Computer Science,
pp. 670–688.

Borst, E. (1997). “Construction of Engineering Ontologies for Knowledge Sharing
and Reuse”. PhD thesis. University of Twente.

Bos, J. (2008). “Wide-coverage semantic analysis with boxer”. In: Semantics in Text
Processing. STEP 2008 Conference Proceedings, Research in Computational Semantics.
Ed. by J. Bos and R. Delmonte, pp. 277–286.

Bourigault, D. (1994). “LEXTER, un Logiciel d’EXtraction de TERminologie. Appli-
cation a l’acquisition des connaissances a partir de textes”. PhD thesis. EHESS
Paris.

Bourigault, D., Jacqueminand, C., and L’Homme, M. (2001). Recent Advances in
Computational Terminology. Ed. by D. Bourigault. John Benjamins.

Brank, J., Grobelnik, M., and Mladenic, D. (2005). “A survey of ontology evaluation
techniques”. In: Conference on Data Mining and Data Warehouses (SiKDD 2005),
pp. 166–170.

BIBLIOGRAPHY 243

Breuker, J. (1990). “Legal KBS: aims for research and development”. In: chap. To-
wards a workbench for the legal practitioner.

Breuker, J. (2003). “The construction and use of ontologies of criminal law in the
e-Court European project”. In: Means of Electronic Communication.

Breuker, J. (2004). “Constructing a legal core ontology: Lri-core”. In: Workshop on
Ontologies and their Applications.

Breuker, J. et al. (2007). Owl ontology of basic legal concepts (lkif-core). Deliverable 1.4
D.1.4, ESTRELLA project. Tech. rep.

Breuker, J., Dieng, R., and Gadon, F. (2003). “Managing legal domains: in search of
a core ontology for law”. In: Workshop on Knowledge Management and the Semantic
Web at KCAP-2003.

Breuker, J. and Hoekstra, R. (2004a). “Epistemology and ontology in core ontologies:
FOLaw and LRI-Core, two core ontologies for law”. In: roceedings of Workshop
on Core Ontologies in Ontology Engineering in the 14th International Conference
(EKAW’04).

Breuker, J., Valente, A., and Winkels, R. (2004b). “Legal Ontologies in Knowledge
Engineering and Information Management”. In: Artificial Intelligence and Law 12,
pp. 241–277.

Breuker, J. and Winkels, R. (2004c). “Use and reuse of legal ontologies in knowledge
engineering and information management”. In: Artificial Intelligence and Law.

Breuker, J. et al. (2002). “Ontologies for Legal Information Serving and Knowledge
Management”. In: In Legal Knowledge and Information Systems, Jurix 2002: The
Fifteenth Annual Conference.

Breuker, J. et al. (2009). “Law, Ontologies and the Semantic Web - Channelling the
Legal Information Flood”. In: IOS Press. Chap. The Flood, the Channels and the
Dykes: Managing Legal Information in a Globalized and Digital World.

Breuker, J. et al. (n.d.). IT Support for the Judiciary: Use of Ontologies in the e-Court
Project.

Brewster, C. et al. (2004). “Data driven ontology evaluation”. In: Int. Conf. on Lan-
guage Resources and Evaluation. Lisbon.

Brickley, D. and Guha, R. (2004). RDF vocabulary description language 1.0: RDF schema.
Tech. rep. W3C Recommendation.

Buchanan, B. and Duda, R. (1982). Principles of Rule-Based Expert Systems. Tech. rep.
Stauford University.

Buchanan, B. and Duda, R. (1983). “Advances in Computers”. In: vol. 22. Elsevier,
Science Direct. Chap. Principles of Rule-Based Expert Systems, pp. 163–216.

Buchanan, B. and Shortliffe, E. (1984). Rule-Based Expert Systems. Addison-Wesley.
Buitelaar, P. et al. (2006). “DFKI-LT - LingInfo: Design and Applications of a Model

for the Integration of Linguistic Information in Ontologies”. In: Proc. of OntoLex06,
a Workshop at LREC.

Buitelaar, P. and Cimiano, P. (2007). Bridging the Gap from Text to Knowledge. Selected
Contributions in Ontology Learning and Population from Text. Tech. rep.

244 BIBLIOGRAPHY

Buitelaar, P., Cimiano, P., and Magnini, B. (2005a). Ontology Learning from Text:
Methods, Evaluation and Applications. Vol. 123. Frontiers in Artificial Intelligence
and Applications. IOS Press.

Buitelaar, P. and Magnini, B. (2005b). “Ontology Learning from Text: An Overview”.
In: Ontology Learning from Text: Methods, Applications and Evaluation. Ed. by P.
Buitelaar, P. Cimiano, and B. Magnini. IOS Press, pp. 3–12.

Caldarola, E., Picariello, A., and Rinaldi, A. (2015). “An approach to ontology
integration for ontology reuse in knowledge based digital ecosystems”. In: 7th
International Conference on Management of computational and collective intElligence in
Digital EcoSystems. ACM, pp. 1–8.

Capellades, M. (1999). Assessment of the Reusability of Ontologies: A Practical Example.
Tech. rep. AAAI.

Cardoso, J. (2007). “The Semantic Web Vision: Where are We?” In: IEEE Intelligent
Systems, pp. 22–26.

Carroll, J. et al. (2004). “Jena: implementing the semantic web recommendations”.
In: Proceedings of the 13th international World Wide Web conference on Alternate track
papers & posters. Ed. by S. Feldman et al. New York, NY, USA: ACM, pp. 74–83.

Casanovas, P., Noriega, P., and Bourcier, D. (2007). Trends in Legal Knowledge. The Se-
mantic Web and the Regulation of Electronic Social Systems. European Press Academic
Publishing.

Casellas, N. (2008a). “Modelling Legal Knowledge through Ontologies. OPJK: the
Ontology of Professional Judicial Knowledge”. PhD thesis. Universitat Autonoma
de Barcelona.

Casellas, N. (2008b). “Modelling Legal Knowledge through Ontologies. OPJK:
the Ontology of Professional Judicial Knowledge”. PhD thesis. UNIVERSITAT
AUTONOMA DE BARCELONA.

Chandrasekaran, B., Johnson, T., and Smith, J. (1992). “Task-Structure Analysis for
Knowledge Modelling”. In: Communications of the ACM 35.9, pp. 124–137.

Cherubini, M. and Tiscornia, D. (2008). “An ontology-based model of procedural
norms and regulated procedures”. In: eGov international conference proceedings.

Cimiano, P. (2006). Ontology Learning and Population from Text. Algorithms, Evaluation
and Applications. Springer.

Cimiano, P., Hotho, A., and Staab, S. (2005a). “Learning concept hierarchies from
text corpora using formal concept analysis”. In: Journal of Artificial Intelligence
research 24, pp. 305–339.

Cimiano, P. and Volker, J. (2005b). “Text2Onto: a framework for ontology learning
and data-driven change discovery”. In: NLDB 05 Proceedings of the 10th interna-
tional conference on Natural Language Processing and Information Systems, pp. 227–
238.

Cimiano, P. et al. (2004). Ontology Learning. Handbook on Ontologies. Springer.
Clancey, W. (1989). “The Knowledge Level Reinterpreted: Modeling How Systems

Interact”. In: Machine Learning 4, pp. 285–291.

BIBLIOGRAPHY 245

Corcho, O., Fernandez-Lopez, M., and Gomez-Perez, A. (2003). “Methodologies,
tools and languages for building ontologies. Where is their meeting point?” In:
Data & Knowledge Engineering 46, pp. 41–64.

Corcho, O., Fernandez-Lopez, M., and Gomez-Perez, A. (2006). “Ontologies for
Software Engineering and Software Technology”. In: ed. by C. Calero, F. Ruiz,
and M. Piattini. Springer. Chap. Ontological Engineering: Principles, Methods,
Tools and Languages, pp. 1–48.

Corcho, O., Fernandez-Lopez, M., and Gomez-Perez, A. (2007). “Semantic Web
Services: Theory, Tools and Applications”. In: IGI Global. Chap. Ontological
Engineering: What are Ontologies and How Can We Build Them?, pp. 44–70.

Corcho, O. et al. (2005). “Law and the Semantic Web, LNAI 3369”. In: ed. by V. Ben-
jamins et al. Springer-Verlag Berlin Heidelberg. Chap. Building Legal Ontologies
with METHONTOLOGY and WebODE, pp. 142–157.

Corsar, D. and Sleeman, D. (2008). “Developing knowledge-Based Systems using
the Semantic Web”. In: SSS-08 on Symbiotic Relationships between the Semantic Web
& Knowledge Engineering.

Cui, Z., Jones, D., and Brien, P. (2000). “Domain ontology management environ-
ment”. In: 33rd Hawaii International Conference on System Sciences 2000.

d’Aquin, M. et al. (2007). “Ontology modularization for knowledge selection: Exper-
iments and evaluations”. In: 18th International Conference on Database and Expert
Systems Applica-tions (DEXA 07). Ed. by R. Wagner, N. Revell, and G. Pernul.
Vol. 4653. LNCS. Springer, pp. 874–883.

d’Aquin, M. et al. (2009). “Modular Ontologies: Concepts, Theories and Techniques
for Knowledge Modularization”. In: ed. by H. Stuckenschmidt, C. Parent, and
S. Spaccapietra. Vol. 5445. LNCS. Springer. Chap. Criteria and evaluation for
ontology modularization techniques, pp. 67–89.

Davies, N., Fensel, D., and Richardson, M. (2004). “The future of Web Services”. In:
BT Technology 22.1, pp. 118–130.

Davis, R. and King, J. (1984). “Rule Based Expert Systems-The MYCIN Experiments
of the Stanford Heuristic Programming Project”. In: ed. by B. Buchanan and E.
Shortlie. Addison-Wesley. Chap. The origin of rule-based systems in AI, pp. 20–
52.

Dean, M. and Schreiber, G. (2004). OWL Web ontology language reference. Tech. rep.
W3C Recommendation.

Dell’Orletta, F. et al. (2014). “T2K: a System for Automatically Extracting and Orga-
nizing Knowledge from Texts”. In: proceeding of LREC, pp. 26–31.

Dentler, K. et al. (2011). “Comparison of reasoners for large ontologies in the OWL
2 EL profile”. In: Semantic Web 2.2, pp. 71–87.

Ding, L. et al. (2004). “Swoogle: A search and metadata engine for the semantic
web”. In: Proc. CIKM, pp. 652–659.

Dmitrieva, J. and Verbeek, F. (2011). “Modular Approach for a new Ontology.” In:
5th International Workshop on Modular Ontologies WoMO.

246 BIBLIOGRAPHY

Dong, M., Yang, D., and Su, L. (2011). “Ontology-based service product config-
uration system modeling and development”. In: Journal of Expert systems with
applications 38.9, pp. 11770–11786.

Doran, P. (2006). “Ontology reuse via ontology modularization.” In: Proceedings of
Knowledge-Web PhD Symposium, pp. 1–6.

Doran, P. (2009). “Ontology modularization: Principles and practice.” PhD thesis.
University of Liverpool, Liverpool, UK.

Dove, I. (1996a). “LEGAL EXPERT SYSTEMS: THE END OF JURISPRUDENCE?”
In:

Dove, I. (1996b). “LEGAL EXPERT SYSTEMS: THE END OF JURISPRUDENCE?”
In: The Journal of Legal Studies in Business 5.

Eiter, T. et al. (2004). “Combining answer set programming with description logics
for the semantic web”. In: The International Conference of Knowledge Representation
and Reasoning (KR04).

Eiter, T. et al. (2006a). “Effective Integration of Declarative Rules with External
Evaluations for Semantic-Web Reasoning”. In: The Semantic Web: Research and
Applications. ESWC 2006. Ed. by Y. Sure and J. Domingue. Vol. 4011. Lecture Notes
in Computer Science. Springer, Berlin, Heidelberg.

Eiter, T. et al. (2006b). “Reasoning with rules and ontologies”. In: Reasoning Web
2006, pp. 93–127.

Eiter, T. et al. (2008). “Reasoning Web”. In: ed. by C. Baroglio et al. Vol. 5224.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. Chap. Rules
and Ontologies for the Semantic Web, pp. 1–53.

Elenius, D. et al. (2009). “Reasoning about resources and hierarchical tasks using
OWL and SWRL”. In: International Semantic Web Conference. USA.

Eriksson, E. et al. (1995). “Task Modeling with Reusable Problem-Solving Methods”.
In: Artificial Intelligence 79, pp. 293–326.

Eriksson, H., Puerta, A., and Musen, M. (1994). “Generation of Knowledge Ac-
quisition Tools from Domain Ontologies”. In: Int. J. Human-Computer Studies 41,
pp. 425–453.

Ernest, D. (1990). Representations of Commonsense Knowledge. Los Altos: Morgan
Kaufman.

Euzenat, J. (2007). “Semantic precision and recall for ontology alignment evalua-
tion”. In: IJCAI, pp. 348–353.

Euzenat, J. and Shvaiko, P. (2007). Ontology Matching. Springer-Verlag, Heidelberg
(DE).

Evans, D. (2003). “A framework for named entity recognition in the open domain”.
In: the Recent Advances in Natural Language Processing (RANLP-2003).

Falbo, R. (2014). “SABiO: Systematic Approach for Building Ontologies,” in:
ONTO.COM/ODISE@FOIS.

Fensel, D. and Straatman, R. (1996). “Advances in Knowledge Acquisiiton, Lec-
ture Notes in Artificial Intelligence (LNAI) 1076”. In: ed. by N. Shadbolt et al.

BIBLIOGRAPHY 247

Springer-Verlag, Berlin. Chap. The Essence of Problem-Solving Methods: Making
Assumptions for Efficiency Reasons.

Fernandez-Barrera, M. and Sartor, G. (2011). “Approaches to Legal Ontologies”. In:
ed. by G. Sartor et al. Vol. 1. Law, Governance and Technology Series. Springer,
Dordrecht. Chap. The Legal Theory Perspective: Doctrinal Conceptual Systems
vs. Computational Ontologies, pp. 15–47.

Fernandez-Lopez, M. (1999). “Overview of methodologies for building ontologies”.
In: Workshop on Ontologies and Problem-Solving Methods in conjunction with the
Sixteenth International Joint Conference on Artificial Intelligence (IJCAI’99), pp. 4.1–
4.13.

Fernandez-Lopez, M. and Gomez-Perez, A. (2002). “Overview and analysis of
methodologies for building ontologies”. In: Knowledge Engineering Review 17.2,
pp. 129–156.

Fernandez-Lopez, M., Gomez-Perez, A., and Juristo, N. (1997). “Ontological En-
gineering: Papers from the 1997 Spring Symposium AAAI97”. In: ed. by A.
Farquhar and M. Gruninger. Chap. Methontology: from ontological art towards
ontological engineering, pp. 33–40.

Fielding, J. et al. (2004). “Ontological Theory for Ontology Engineering”. In: Proceed-
ings of 9th International Conference on the Principles of Knowledge Representation and
Reasoning.

Fiorentini, X. et al. (2010). “An analysis of description logic augmented with do-
main rules for the development of product models”. In: Journal of Computing and
Information Science in Engineering 10, pp. 1–13.

Fortineau, V. et al. (2012). “Product Lifecycle Management. Towards Knowledge-
Rich Enterprises. PLM”. In: ed. by L. Rivest, A. Bouras, and B. Louhichi. Vol. 388.
IFIP Advances in Information and Communication Technology. Springer, Berlin,
Heidelberg. Chap. Swrl as a rule language for ontology-based models in power
plant design, pp. 588–597.

Fortuna, B., Grobelnik, M., and Mladenic, D. (2007). “Ontogen: Semi-automatic
ontology editor”. In: Proceedings of Human Interface and the Management of Informa-
tion. Interacting in Information Environments, Symposium on Human Interface 2007.
Vol. 4558. Lecture Notes in Computer Science. Springer, pp. 309–318.

Francesconi, E. (2010). “Legal rules learning based on a semantic model for legisla-
tion”. In: Proceedings of the LREC 2010 Workshop on the Semantic Processing of Legal
Texts (SPLeT-2010). Malta.

Francesconi, E. (2011). “Approaches to Legal Ontologies - Theories, Domains,
Methodologies”. In: ed. by P. Casanovas et al. Vol. 1. Law, Governance and Tech-
nology. Springer Berlin / Heidelberg. Chap. A Learning Approach for Knowledge
Acquisition in the Legal Domain, pp. 219–233.

Francesconi, E. (2016). “Semantic model for legal resources: Annotation and reason-
ing over normative provisions”. In: Semantic Web 7.3, pp. 255–265.

248 BIBLIOGRAPHY

Francesconi, E., Spinosa, P., and Tiscornia, D. (2007). “A linguistic-ontological sup-
port for multilingual legislative drafting: the DALOS Project”. In: Proceedings
of LOAIT’07, II Workshop on Legal Ontologies and Artificial Intelligence Techniques.
Ed. by P. Casanovas et al.

Francesconi, E. and Tiscornia, D. (2008). “Computable Models of the Law”. In:
ed. by P. Casanovas et al. Vol. 4884. LNCS. Springer-Verlag Berlin, Heidelberg.
Chap. Building Semantic Resources for Legislative Drafting: The DALOS Project,
pp. 56–70.

Francesconi, E. et al. (2010). “Semantic Processing of Legal Texts: where the Lan-
guage of Law Meets the Law of Language”. In: ed. by E. Francesconi et al.
Springer-Verlag, Berlin, Heidelberg. Chap. Integrating a bottom-up and top-
down methodology for building semantic resources for the multilingual legal
domain, pp. 95–121.

Gamallo, P. et al. (2002). “Mapping Syntactic Dependencies onto Semantic Rela-
tions”. In: ECAI Workshop on Machine Learning and Natural Language Processing for
Ontology Engineering.

Gangemi, A., Catenacci, C., and Battaglia, M. (2004). “Inflammation ontology design
pattern: an exercise in building a core biomedical ontology with descriptions and
situations”. In: Stud Health Technol Inform 102, pp. 64–80.

Gangemi, A., Sagri, M., and Tiscornia, D. (2003). “Metadata for Content Description
in Legal Information”. In: ICAIL 2003 Workshop on Legal Ontologies & Web based
legal information management.

Gangemi, A. et al. (2006). “Modelling ontology evaluation and validation”. In:
Proceedings of the 3rd European Semantic Web Conference (ESWC2006). LNCS 4011.
Budva: Springer.

Gardner, A. (1987). An Artificial Intelligence Approach To Legal Reasoning. Ed. by E.
Rissland. MIT Press. Chap. Book Review, pp. 223–233.

Gelfond, M. and Lifschitz, V. (1988). “The Stable Model Semantics for Logic Pro-
gramming”. In: Proc. of ICLP’88. Cambridge, Massachusetts: MIT Press, pp. 1070–
1080.

Gelfond, M. and Lifschitz, V. (1991). “Classical negation in logic programs and
disjunctive databases”. In: New Generation Computing 9.3-4, pp. 365–385.

Genesereth, M. and Fikes, R. (1992). Knowledge interchange format. Version 3.0. Refer-
ence Manual. Tech. rep. Stanford University, Computer Science Department. URL:
http://logic.stanford.edu/kif/Hypertext/kif-manual.html.

Genesereth, M. and Nilsson, N. (1987). Logical Foundations of Artificial Intelligence.
Morgan Kaufmann.

Ghazvinian, A., Noy, N., and Musen, M. (2009). “Creating mappings for ontologies
in biomedi-cine: Simple methods work”. In: AMIA 2009 Symposium Proceedings.

Glimm, B. et al. (2014). “HermiT: An OWL 2 Reasoner”. In: Journal of Automated
Reasoning 53.3, pp. 245–269.

http://logic.stanford.edu/kif/Hypertext/kif-manual.html

BIBLIOGRAPHY 249

Goh, C. (1997). “Representing and reasoning about semantic conflicts in heteroge-
neous information sources”. PhD thesis.

Golbreich, C. (2004). “Combining Rule and Ontology Reasoners for the Semantic
Web”. In: Rules and Rule Markup Languages for the Semantic Web. RuleML 2004.
Ed. by G. Antoniou and H. Boley. Vol. 3323. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg.

Gomez-Perez, A. (1995). “Some ideas and examples to evaluate ontologies”. In: 11th
Conference on Artificial Intelligence for Applications.

Gomez-Perez, A. (1999). “Ontological Engineering: A State of the Art”. In: Expert
Update. British Computer Society 2.3, pp. 33–44.

Gomez-Perez, A. (2004). “Handbook on Ontologies”. In: ed. by S. Staab and R.
Studer. Springer Berlin Heidelberg, Berlin, Heidelberg. Chap. Ontology Evalua-
tion, pp. 251–274.

Gomez-Perez, A., Fernandez-Lopez, M., and Corcho, O. (2003a). Ontological Engi-
neering. Springer Verlag.

Gomez-Perez, A., Fernandez-Lopez, M., and Corcho, O. (2004). Ontological Engi-
neering with Examples from the Areas of Knowledge Management, e-Commerce and the
Semantic Web. Advanced Information and Knowledge Processing 1st ed.

Gomez-Perez, A. and Manzano-Macho, D. (2003b). A Survey of Ontology Learning
Methods and Techniques,Ontoweb Deliverable 1.5.2003. Tech. rep.

Gomez-Perez, A. and Rojas, M. (1999). “Ontological reengineering and reuse”.
In: 11th European Workshop on Knowledge Acquisition, Modeling and Management
(EKAW ’99). Ed. by D. Fensel and R. Studer. Vol. 1621. Lecture Notes in Artificial
Intelligence. Springer Berlin, pp. 139–156.

Gonzalez, A. and Dankel, D. (1993). The engineering of knowledgebased systems, theory
and practice. Englewood Cliffs, NJ: Prentice Hall.

Gordon, T. (1995). “The Pleadings Game; An Artificial Intelligence Model of Proce-
dural Justice”. PhD thesis. University of Darmstadt.

Gordon, T., Governatori, G., and Rotolo, A. (2009). “Rules and Norms: Requirements
for Rule Interchange Languages in the Legal Domain”. In: RuleML 2009: Rule
Interchange and Applications. Ed. by G. G. G., J. Hall, and A. Paschke. Vol. 5858.
Lecture Notes in Computer Science (LNCS). Springer, Berlin, Heidelberg, pp. 282–
296.

Gordon, T., Prakken, H., and Walton, D. (2007). “The Carneades model of argument
and burden of proof”. In: Artificial Intelligence 171.10-11, pp. 875–896.

Gostojic, S. and Milosavljevic, B. (2013). “Ontological Model of Legal Norms for
Creating and Using Legal Acts”. In: The IPSI BgD Journal 9.1, pp. 19–25.

Governatori, G. (2005). “Representing business contracts in RuleML”. In: Interna-
tional Journal of Cooperative Information Systems 14.2-3, pp. 181–216.

Governatori, G. and Pham, D. (2009). “Dr-contract: An architecture for e-contracts
in defeasible logic”. In: International Journal of Business Process Integration and
Management 5.4.

250 BIBLIOGRAPHY

Governatori, G. and Rotolo, A. (2006). “Logic of violations: A Gentzen system for
reasoning with contrary-to-duty obligations”. In: Australasian Journal of Logic 4,
pp. 193–215.

Grassl, W. (1999). “The Reality of Brands: Towards an Ontology of Marketing”. In:
The American Journal of Economics and Sociology 58.2, pp. 313–359.

Grau, B. and Kutz, O. (2007a). “Modular ontology languages revisited”. In: Proc. of
the IJCAI-2007 Workshop on Semantic Web for Collaborative Knowledge Acquisition.

Grau, B. et al. (2006). “Modularity and web ontologies”. In: KR, pp. 198–209.
Grau, B. et al. (2007b). “A logical framework for modularity of ontologies”. In:

Proceedings of IJCAI 07. AAAI Press, pp. 298–303.
Grau, B. et al. (2007c). Extracting modules from ontologies: Theory and practice. Tech. rep.

University of Manchester.
Grau, B. et al. (2008). “OWL 2: The next step for OWL”. In: J. Web Semantics 6.4,

pp. 309–322.
Greenleaf, G. (1989). “Legal Expert Systems - Robot Lawyers? (An Introduction to

Knowledge-Based Applications to Law)”. In: Australian Legal Convention.
Griffo, C., Almeida, J., and Guizzardi, G. (2015). “Towards a Legal Core Ontol-

ogy based on Alexy’s Theory of Fundamental Rights”. In: MWAIL2015 ICAIL
Multilingual Workshop on AI & Law Research, pp. 89–100.

Griffo, C., Almeida, J., and Guizzardi, G. (2016). “A Pattern for the Representation
of Legal Relations in a Legal Core Ontology”. In: JURIX 2016. Frontiers in Artificial
Intelligence and Applications.

Grosof, B. (2004). “Representing e-commerce rules via situated courteous logic
programs in RuleML”. In: Electronic Commerce Research and Applications 3.1, pp. 2–
20.

Grosof, B. et al. (2003). “Description logic programs: Combining logic programs
with description logic”. In: The Twelfth International World Wide Web Conference
(WWW 2003). ACM, pp. 48–57.

Gruber, T. (1993). “A Translation Approach to Portable Ontology Specification”. In:
Knowledge Acquisition, pp. 199–220.

Gruber, T. (1995). “Toward principles for the design of ontologies used for knowl-
edge sharing”. In: International Journal of Human-Computer Studies 43, pp. 907–
928.

Gruner, R. (1986). “Thinking like a Lawyer: Expert Systems for Legal Analysis”. In:
Berkeley Technology Law Journal 1.2.

Gruninger, M. and Fox, M. (1995). “Methodology for the design and evaluation of
ontologies”. In: IJCAI95 Workshop on Basic Ontological Issues in Knowledge Sharing,
pp. 6.1–6.10.

Guarino, N. (1997). “Understanding, building and using ontologies”. In: Interna-
tional Journal of Human-Computer Studies 46.2-3, pp. 293–310.

BIBLIOGRAPHY 251

Guarino, N. (1998). “Formal Ontology and Information Systems”. In: Formal Ontol-
ogy in Information Systems. Proceedings of FOIS 98. Trento, Italy: IOS Press, pp. 3–
15.

Guarino, N., Carrara, M., and Giaretta, P. (1994). “An Ontology of Meta-Level
Categories”. In: Principles of Knowledge Representation and Reason-ing: Proceedings
of KR94. Ed. by E. S. J Doyle and P. Torasso.

Guarino, N., Oberle, D., and Staab, S. (2009). “Handbook on Ontologies”. In:
Springer. Chap. What Is an Ontology?, pp. 1–17.

Guarino, N. and Schneider, L. (2002a). Ontology-Driven Conceptual Modelling: Ad-
vanced Concepts. ER 2002. Pre-Conference Tutorials. URL: http : / / www . loa -
cnr.it/odcm.html.

Guarino, N. and Welty, C. (2002b). “Evaluating ontological decisions with Onto-
Clean”. In: Comm. of the ACM 45.2, pp. 61–65.

Guerson, J., Almeida, J., and Guizzardi, G. (2014). “Support for Domain Constraints
in the Validation of Ontologically Well-Founded Conceptual Models”. In: Enter-
prise, Business-Process and Information Systems Modeling. Vol. 175. LNBIP. Springer,
pp. 302–316.

Guerson, J. et al. (2015). “OntoUML Lightweight Editor: A Model-Based Environ-
ment to Build, Evaluate and Implement Reference Ontologies”. In: Enterprise
Distributed Object Computing Workshop (EDOCW), 2015 IEEE 19th International.

Guizzardi, G. (2005). “Ontological Foundations for Structural Conceptual Models”.
PhD thesis. Telematica Institut, The Netherlands.

Guizzardi, G. (2006). “The Role of Foundational Ontology for Conceptual Modeling
and Domain Ontology Representation”. In: 7th DB&IS, Vilnius, IEEE Press.

Guizzardi, G. (2007). “On Ontology, ontologies, Conceptualizations, Modeling Lan-
guages and (Meta)Models”. In: Frontiers in Artificial Intelligence and Applications,
Databases and Information Systems IV. IOS Press.

Guizzardi, G. (2012). “Ontological Foundations for Conceptual Modeling with
Applications”. In: CAiSE 2012: Advanced Information Systems Engineering. Ed. by
J. Ralyte et al. Vol. 7328. LNCS. Springer, pp. 695–696. URL: http://doi.org/10.
1007/978-3-642-31095-9_45..

Guizzardi, G. et al. (2013a). “Towards Ontological Foundations for the Conceptual
Modeling of Events”. In: ER 2013: Conceptual Modeling. Ed. by W. Ng, V. C. Storey,
and J. C. Trujillo. Vol. 8217. LNCS. Springer, Berlin, Heidelberg, pp. 327–341.

Guizzardi, G., Falbo, R., and Guizzardi, R. (2008a). “Grounding software domain
ontologies in the unified foundational ontology (ufo): The case of the ode software
process ontology”. In: 1th Iberoamerican Workshop on Requirements Engineering and
Software Environments (IDEAS 2008).

Guizzardi, G. and Halpin, T. (2008b). “Ontological foundations for conceptual
modelling”. In: Applied Ontology 3, pp. 1–12.

Guizzardi, G. and Wagner, G. (2004a). “A unified foundational ontology and some
applications of it in business modeling”. In: In CAiSE Workshops (3), pp. 129–143.

http://www.loa-cnr.it/odcm.html
http://www.loa-cnr.it/odcm.html
http://doi.org/10.1007/978-3-642-31095-9_45.
http://doi.org/10.1007/978-3-642-31095-9_45.

252 BIBLIOGRAPHY

Guizzardi, G. and Wagner, G. (2005a). “Applications of a Unified Foundational
Ontology.” In: chap. Some Applications of a Unified Foundational Ontology in
Business Modeling, pp. 345–367.

Guizzardi, G. and Wagner, G. (2005b). “Towards Ontological Foundations for Agent
Modelling Concepts Using the Unified Fundational Ontology (UFO)”. In: Agent-
Oriented Information Systems II. Vol. 3508. LNCS, pp. 110–124.

Guizzardi, G. and Wagner, G. (2010a). “Theory and Applications of Ontology:
Computer Applications”. In: ed. by R. Poli, M. Healy, and A. Kameas. springer.
Chap. Using the Unified Foundational Ontology (UFO) as a Foundation for
General Conceptual Modeling Languages, pp. 175–196. DOI: https://doi.org/
10.1007/978-90-481-8847-5_8.

Guizzardi, G. and Wagner, G. (2012). “TUTORIAL: CONCEPTUAL SIMULATION
MODELING WITH ONTO-UML”. In: 2012 Winter Simulation Conference. Ed. by
C. Laroque et al.

Guizzardi, G. and Wagner, G. (2013b). “DISPOSITIONS AND CAUSAL LAWS
AS THE ONTOLOGICAL FOUNDATION OF TRANSITION RULES IN SIMU-
LATION MODELS”. In: 2013 Winter Simulation Conference. Ed. by R. Pasupathy
et al.

Guizzardi, G. et al. (2004b). “An Ontologically Well Founded Profile for UML
Conceptual Models”. In: Advanced Information Systems Engineering, Proceedings
of16th CAiSE Conference. Ed. by A. Persson and J. Stirna. Springer.

Guizzardi, G. et al. (2010b). “The role of foundational ontologies for domain on-
tology engineering”. In: International Journal of Information System Modeling and
Design 2.1, pp. 1–22.

Guizzardi, G. et al. (2010c). “The Role of Foundational Ontologies for Domain
Ontology Engineering: An Industrial Case Study in the Domain of Oil and Gas
Exploration and Production”. In: International Journal of Information System Model-
ing and Design 1.2, pp. 1–22.

Guizzardi, G. et al. (2015). “Towards Ontological Foundations for Conceptual Mod-
eling: The Unified Foundational Ontology (UFO) Story”. In: Applied Ontology.
DOI: 10.3233/AO-150157.

Haarslev, V. and Moller, R. (2001). “RACER System Description”. In: Proceedings
of the First International Joint Conference on Automated Reasoning (IJCAR 2001).
Vol. 2083. Lecture Notes in Computer Science (LNCS). Springer Verlag, pp. 701–
705.

Haase, P. and Volker, J. (2005). “Ontology Learning and Reasoning - Dealing with
Uncertainty and Inconsistency”. In: Uncertainty Reasoning for the Semantic Web.
Vol. 5327. LNCS, pp. 366–384.

Haase, P. et al. (2008). “The Neon Ontology Engineering Toolkit.” In: International
World Wide Web Conference, 17, Beijing, China.

Hakimpour, F. and Geppert, A. (2001a). Ontologies: An Approach to Resolve Semantic
Heterogeneity in Databases. Tech. rep. Swiss National Science Foundation.

https://doi.org/https://doi.org/10.1007/978-90-481-8847-5_8
https://doi.org/https://doi.org/10.1007/978-90-481-8847-5_8
https://doi.org/10.3233/AO-150157

BIBLIOGRAPHY 253

Hakimpour, F. and Geppert, A. (2001b). “Resolving Semantic Heterogeneity in
Schema Integration: An Ontology Based Approach”. In: FOIS’OI, international
conference on Formal Ontology in Information Systems, pp. 297–308.

Hakimpour, F. and Geppert, A. (2002). “Global schema generation using formal
ontologies”. In: 21st Int’l Conf. on ConceptualModeling (ER2002). Ed. by S. Spaccapi-
etra, S. T. March, and Y. Kambayashi. Vol. LNCS 2503. Springer Verlag, pp. 307–
320.

Harnad, S. (1990). “The symbol grounding problem”. In: Physica D. 42, pp. 335–346.
Harris, Z. (1968). Mathematical structures of language. Interscience Publishers.
Hartmann, J., Palma, R., and Gomez-Perez, A. (2009). “Handbook on Ontologies”.

In: International Handbooks on Information Systems book series (INFOSYS).
Springer. Chap. Ontology Repositories, pp. 551–571.

Hartmann, J. et al. (2004). Methods for ontology evaluation, Knowledge Web Deliverable
D1.2.3. Tech. rep.

Heflin, J. and Hendler, J. (2000). “Semantic interoperability on the web”. In: Extreme
Markup Languages 2000.

Heijst, G. (1995). “The Role of Ontologies in Knowledge Engineering”. PhD thesis.
University of Amsterdam.

Heijst, G., Schreiber, A., and Wielinga, B. (1997). “Using explicit ontologies in KBS
development”. In: Int . J . Human Computer Studies 45, pp. 183–292.

Henderson, J. and Bench-Capon, T. (2001). “Dynamic arguments in a case law
domain”. In: In ICAIL 01: Proceedings of the 8th international conference on Artificial
intelligence and law. New York, USA: ACM Press, pp. 60–69.

Heymans, S., Nieuwenborgh, D., and Vermeir, D. (2005). “Nonmonotonic Ontologi-
cal and Rule-based Reasoning with Extended Conceptual Logic Programs”. In:
ESWC 2005: The Semantic Web: Research and Applications, pp. 392–407.

Hoekstra, R. et al. (2007). “The LKIF Core ontology of basic legal concepts”. In:
Proceedings of the Workshop on Legal Ontologies and Artificial Intelligence Techniques
(LOAIT 2007), pp. 43–64.

Hoekstra, R. et al. (2009). “Law, Ontologies and the Semantic Web”. In: vol. 188.
Frontiers in Artificial Intelligence and Applications. IOS Press. Chap. LKIF Core :
Principled Ontology Development for the Legal Domain, pp. 21–52.

Hofmann, T. (1999). “Probabilistic latent semantic indexing”. In: SIGIR 99 Proceedings
of the 22nd annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 50–57.

Hois, J., Bhatt, M., and Kutz, O. (2009). “Modular Ontologies for Architectural
Design”. In: Proc. of FOMI-09. Vol. 198. Frontiers in Artificial Intelligence and
Applications. IOS Press.

Holsapple, C. and Joshi, K. (2002). “A collaborative approach to ontology design”.
In: Communications of the ACM 45.2, pp. 42–47.

Horridge, M. and Bechhofer, S. (2011). “The OWL API: A Java API for OWL Ontolo-
gies”. In: Semantic Web 2.1, pp. 11–21.

254 BIBLIOGRAPHY

Horrocks, I. et al. (2000). “OIL in a nutshell”. In: 12th International Conference in
Knowledge Engineering and Knowledge Management (EKAW 00). Ed. by R. D. Õ.
Corby. LNAI 1937. Springer-Verlag, pp. 1–16.

Horrocks, I. and Harmelen, F. (2001). Reference description of the DAML+OIL (March
2001) ontology markup language. Tech. rep.

Horrocks, I., Kutz, O., and Sattler, U. (2006). “The even more irresistible SROIQ”. In:
10th Int. Conf. On Principles of Knowledge Representation and Reasoning. AAAI Press,
pp. 57–67.

Horrocks, I. and Sattler, U. (2005). “A tableaux decision procedure for SHOIQ”. In:
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI
2005), pp. 448–453.

Horrocks, I. et al. (2004). SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. W3C Member Submission. URL: http://www.w3.org/Submission/
SWRL/.

Jimenez-Ruiz, J. et al. (2008). Ontology integration using mappings: Towards getting the
right logical consequences. Tech. rep. Universitat Jaume, University of Oxford.

Kalfoglou, Y. and Schorlemmer, M. (2003). “Ontology Mapping: The State of the
Art”. In: The Knowledge Engineering Review Journal 18.1, pp. 1–31.

Kaneiwa, K. and Mizoguchi, R. (2009). “Distributed reasoning with ontologies
and rules in order-sorted logic programming”. In: Journal of Web Semantics 7.3,
pp. 252–270.

Karp, P., Chaudhri, V., and Thomere, J. (1999). XOL: An XML-based ontology exchange
language. Version 0.3. Tech. rep.

Kashyap, V. and Sheth, A. (1997). “Cooperative Information Systems: Current
Trends and Directions”. In: ed. by M. Papazoglou and G. Schlageter. Academic
Press. Chap. Semantic Heterogeneity in Global Information Systems: The Role of
Metadata, Context and Ontologies.

Keet, M. (2011). “The use of foundational ontologies in ontology development: An
empirical assessment,” in: Proc. 8th Extended Semantic Web Conference. Vol. 6643,
pp. 321–335.

Kelsen, H. (1991). General Theory of Norms. Clarendon Press, Oxford.
Kifer, M., Lausen, G., and Wu, J. (1995). “Logical foundations of object-oriented and

frame-based languages”. In: Journal of the ACM 42.4, pp. 741–843.
Kim, W. and Seo, J. (1991). “Classifying schematic and data heterogeneity in multi-

database systems”. In: IEEE Computer 24.12, pp. 12–18.
Koepsell, D., ed. (1999). Proceedings of the Buffalo Symposium on Applied Ontology in

the Social Sciences. Vol. 58. 2. The American Journal ofEconomics & Sociology.
Koepsell, D. (2003). The Ontology of Cyberspace: Philosophy, Law, and the Future of

Intellectual Property. Open Court Publishing.
Kohn, W. (2003). “Grounding Ontologies”. In: COSIT 2003 Workshop on FUNDA-

MENTAL ISSUES IN SPATIAL AND GEOGRAPHIC ONTOLOGIES.

http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/

BIBLIOGRAPHY 255

Konev, B. et al. (2009). “Ontology modularization”. In: ed. by H. Stuckenschmidt, S.
Spacciapietra, and C. Parent. Vol. 5445. LNCS. Springer. Chap. Formal properties
of modularization, pp. 25–66.

Kotis, K., Vouros, G., and JAlonso, J. (2004). “HCOME: A Tool-Supported Method-
ology for Engineering Living Ontologies”. In: Semantic Web and Databases. Second
International Workshop - SWDB 2004. Ed. by C. Bussler, V. Tannen, and I. Fundulaki.
Vol. 3372. LNCS. Springer-Verlag, pp. 155–166.

Krisnadhi, A. and Hitzler, P. (2014). “Description Logics”. In: Encyclopedia of Social
Network Analysis and Mining.

Krotzsch, M., Simancik, F., and Horrocks, I. (2014). Description Logics. URL: http:
//korrekt.org/papers/Kroetzsch-Simancik-Horrocks_DL-Intro_IEEE-IS-

2014.pdf.
Lam, H., Hashmi, M., and Scofield, B. (2016). “Enabling Reasoning with Legal-

RuleML”. In: 10th International Web Rule Symposium (RuleML 2016). Ed. by N.
Bassiliades et al. New York, USA: Springer International Publishing, pp. 241–257.

Lame, G. (2005). “Using nlp techniques to identify legal ontology components:
concepts and relations”. In: Lecture Notes in Computer Science 3369, pp. 169–184.

Landauer, T. and Dutnais, S. (1997). “A Solution to Plato’s Problem: The Latent Se-
mantic Analysis Theory of Acquisition, Induction, and Representation of Knowl-
edge”. In: Psychological Review 104.2, pp. 211–240.

Lassila, O. and Swick, R. (1999). Resource description framework (RDF) model and
syntax specification. Tech. rep. W3C Recommendation.

Lehmann, J. and Voelker, J. (2014). “Perspectives on Ontology Learning”. In: ed. by
J. Lehmann and J. Voelker. AKA/IOS Press. Chap. An introduction to ontology
learning, pp. ix–xvi.

Lezcano, L., Sicilia, M.-A., and Rodriguez-Solano, C. (2011). “Integrating reasoning
and clinical archetypes using OWL ontologies and SWRL rules”. In: Journal of
Biomedical Informatics 44.2, pp. 343–353.

Lin, D. and Pantel, P. (2001). “Dirt - discovery of inference rules from text”. In: In
Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 323–328.

Lin, D. and Pantel, P. (2002). “Concept discovery from text”. In: COLING 02 Proceed-
ings of the 19th international conference on Computational linguistics. Vol. 1, pp. 1–
7.

Love, N. and Genesereth, M. (2005). “Computational law”. In: Proceedings of the 10th
International Conference on Artificial Intelligence and Law, ICAIL ’05, New York, NY,
USA, pp. 205–209.

Luke, S. and Heflin, J. (2000). SHOE 1.01. Proposed specification. Tech. rep. University
of Maryland, Parallel Understanding Systems Group, Department of Computer
Science. URL: https://www.cs.umd.edu/projects/plus/SHOE/onts/.

http://korrekt.org/papers/Kroetzsch-Simancik-Horrocks_DL-Intro_IEEE-IS-2014.pdf
http://korrekt.org/papers/Kroetzsch-Simancik-Horrocks_DL-Intro_IEEE-IS-2014.pdf
http://korrekt.org/papers/Kroetzsch-Simancik-Horrocks_DL-Intro_IEEE-IS-2014.pdf
https://www.cs.umd.edu/projects/plus/SHOE/onts/

256 BIBLIOGRAPHY

MacCartney, B. et al. (2003). “Practical partition-based theo-rem proving for large
knowledge bases”. In: Proceedings of the 18th international joint con-ference on
Artificial intelligence, pp. 89–96.

MacGregor, R. (1991). “Inside the LOOM classifier”. In: SIGART Bulletin 2.3, pp. 70–
76.

Machado, A. and Oliveira, J. (2014). “A Legal Ontology of Relationships for Civil
Law System”. In: 1st Joint Workshop ONTO.COM / ODISE proceedings on Ontologies
in Concep-tual Modeling and Information Systems Engineering.

Madche, A. and Staab, S. (2000). “Mining ontologies from text”. In: Proceedings of
EKAW 00, pp. 189–202.

Maedche, A. and Staab, S. (2001). “Ontology learning for the semantic web”. In:
IEEE Intelligent Systems 16, pp. 72–79.

Maedche, A. and Staab, S. (2002). “Measuring similarity between ontologies”. In:
Proc. CIKM. Vol. 2473. LNAI.

Masolo, C. et al. (2003). Wonderweb Deliverable D18 (ver. 1.0), Ontology Library. Tech.
rep.

Mazzega, P. et al. (2011). “Approaches to Legal Ontologies”. In: ed. by G. Sar-
tor et al. Vol. 1. Law, Governance and Technology Series. Springer, Dordrecht.
Chap. A Complex-System Approach: Legal Knowledge, Ontology, Information
and Networks, pp. 117–132.

McCarthy, J. (1980). “Circumscription - A Form of Non-Monotonic Reasoning”. In:
Artificial Intelligence 5.13, pp. 27–39.

McCarty, L. (1980). “The TAXMAN project: Towards a cognitive theory of legal
argument”. In: ed. by B. Niblett. Cambridge University Press. Chap. 3, pp. 23–43.

McCarty, L. (1983). “Intelligent Legal Information Systems: Problems and Prospects”.
In: Rutgers Computer and Technology Law Journal 9.2, pp. 265–294.

McCarty, L. (2007). “Deep semantic interpretations of legal texts”. In: proceeding of
ICAIL, pp. 217–224.

McDermott, J. (1993). “Readings in knowledge acquisition and learning”. In: Mor-
gan Kaufmann Publishers Inc. Chap. Preliminary steps toward a taxonomy of
problem-solving methods, pp. 149–169.

Miller, G. (1995). “WordNet: A lexical database for english”. In: Communications of
the ACM 38, pp. 39–41.

Mizoguchi, R. (2004). “Tutorial on ontological engineering: part 3: Advanced course
of ontological engineering”. In: New Generation Computing - Grid systems for life
sciences 22.2, pp. 198–220.

Mizoguchi, R. and Ikeda, M. (1997). “Towards Ontology Engineering”. In: Proc. of
The Joint 1997 Pacific Asian Conference on Expert systems / Singapore International
Conference on Intelligent Systems. Singapore: Nanyang Tech. University, pp. 259–
266.

BIBLIOGRAPHY 257

Mizoguchi, R. and Kozaki, K. (2009). “Handbook on Ontologies. International
Handbooks on Information Systems”. In: ed. by S. Staab and R. Studer. Springer,
Berlin, Heidelberg. Chap. Ontology Engineering Environments, pp. 315–336.

Mizoguchi, R., Vanwelkenhuysen, J., and Ikeda, M. (1995). “Task Ontology for
Reuse of Problem Solving Knowledge”. In: Towards Very Large Knowledge Bases:
Knowledge Building & Knowledge Sharing, pp. 46–59.

Mommers, L. (2003). “Application of a knowledge-based ontology of the legal do-
main in collaborative workspaces”. In: ICAIL 03 Proceedings of the 9th international
conference on Artificial intelligence and law. UK, pp. 70–76.

Mommers, L. (2010). “Theory and Applications of Ontology: Philosophical Perspec-
tives”. In: ed. by R. Poli and J. Seibt. Springer. Chap. Ontologies in the Legal
Domain, pp. 265–276.

Moreira, J. et al. (2016). “Menthor Editor: An Ontology-Driven Conceptual Modeling
Platform”. In: JOWO@FOIS.

Morik, K. (1993). “Balanced cooperative modeling”. In: Machine Learning 11.1,
pp. 217–235.

Motik, B., Sattler, U., and Studer, R. (2005). “Query answering for owl-dl with rules”.
In: Journal of Web Semantics: Science, Services and Agents on the World Wide Web 3.1,
pp. 41–60.

Motik, M., Patel-Schneider, P., and Parsia, B. (2009). OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax. Tech. rep. W3C Recommenda-
tion.

Musen, M. and Schreiber, A. (1995). “Architectures for intelligent systems based on
reusable components”. In: Artificial Intelligence in Medicine.

Mylopoulos, J. (1992). “Conceptual Modelling, Databases and CASE: An Integrated
View of Information Systems Development”. In: ed. by P. Loucopoulos and R.
Zicari. Wiley. Chap. Conceptual modeling and telos, pp. 49–68.

Nardi, J. et al. (2016). “A commitment-based reference ontology for services”. In:
Information Systems 56, pp. 133–134. DOI: https://doi.org/10.1016/j.is.2015.
01.012.

Neches, R. et al. (1991a). “Enabling Technology for Knowledge Sharing”. In: AI
Magazine, pp. 36–56.

Neches, R. et al. (1991b). “Enabling Technology for Knowledge Sharing”. In: AI
Magazine 12.3, pp. 36–56.

Negnevitsky, M. (2002). Artificial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, Harlow.

Negnevitsky, M. (2005). Artificial Intelligence A Guide to Intelligent Systems. Pearson
Education Canada.

Noy, N. and McGuinness, D. (2001). Ontology development 101: A guide to creating
your first ontology. Tech. rep. Stanford University School of Medicine.

https://doi.org/https://doi.org/10.1016/j.is.2015.01.012
https://doi.org/https://doi.org/10.1016/j.is.2015.01.012

258 BIBLIOGRAPHY

Nute, D. (1994). “Handbook of Logic for Artificial Intelligence and Logic Program-
ming”. In: ed. by D. Gabbay and C. Hogger. Vol. III. Oxford University Press.
Chap. Defeasible logic, pp. 353–395.

Obrst, L. et al. (2007). “Semantic Web”. In: ed. by C. Baker and K. Cheung. Springer.
Chap. The Evaluation of Ontologies, pp. 139–158.

O’Connor, M. et al. (2005). “Supporting Rule System Interoperability on the Se-
mantic Web with SWRL”. In: ISWC 2005: The Semantic Web-ISWC 2005. Vol. 3729.
LNCS, pp. 974–986.

O’Connor, M. et al. (2008). “Developing a Web-Based Application using OWL and
SWRL”. In: AAAI Spring Symposium. Stanford, CA, USA.

Ouksel, A. and Sheth, A. (1999). “Semantic interoperability in global information
systems”. In: ACM SIGMOD Record. Vol. 28, pp. 5–12.

Palmirani, M., Contissa, G., and Rubino, R. (2009). “Fill the Gap in the Legal Knowl-
edge Modelling”. In: RuleML 2009.

Palmirani, M., Ognibene, T., and Cervone, L. (2012). “Legal rules, text, and ontolo-
gies over time”. In: RuleML@ECAI 2012.

Palmirani, M. et al. (2011). “LegalRuleML: XML-Based Rules and Norms”. In:
RuleML America 2011. Ed. by F. Olken, M. Palmirani, and D. Sottara. Vol. 7018.
Lecture Notes in Computer Science. Springer, pp. 298–312.

Palmirani, M. et al. (2013). RAWE: A Web Editor for Rule Markup in LegalRuleML.
Pantel, P. and Lin, D. (2001). “A Statistical Corpus-Based Term Extractor”. In: Con-

ference of the Canadian Society for Computational Studies of Intelligence. AI 2001:
Advances in Artificial Intelligence. Vol. 2056. Lecture Notes in Computer Science,
pp. 36–46.

Parsia, B. and Sirin, E. (2004). “Pellet: An OWL-DL Reasoner”. In: The 3rd Int.
Semantic Web Conference (ISWC 2004).

Paschke, A. (2014). “Rules on the Web. From Theory to Applications. RuleML
2014”. In: ed. by A. Bikakis, P. Fodor, and D. Roman. Vol. 8620. Lecture Notes in
Computer Science. Springer. Chap. Reaction RuleML 1.0 for Rules, Events and
Actions in Semantic Complex Event Processing, pp. 1–21.

Patel, C. et al. (2003). “OntoKhoj: A Semantic Web Portal for Ontology Searching,
Ranking and Classification”. In: 5th ACM Int. Workshop on Web Information and
Data Management, pp. 58–61.

Patel, M. et al. (2005). Semantic Interoperability in Digital Library Systems. Tech. rep.
UKOLN, University of Bath.

Pathak, J., Johnson, T., and Chute, C. (2009). “Modular ontology techniques and their
applica-tions in the biomedical domain”. In: Integrated Computer-Aided Engineering
16.3, pp. 225–242.

Pinto, S., Gomez-Perez, A., and Martins, J. (1999). “Some Issues on Ontology Inte-
gration”. In: IJCAI-99 Workshop on Ontologies and Problem-Solving Methods(KRR5).

BIBLIOGRAPHY 259

Piovesan, L., Molino, G., and Terenziani, P. (2014). “An ontological knowledge and
multiple abstraction level decision support system in healthcare”. In: Decision
Analytics 1.8.

Popp, W. and Schlink, B. (1975). “JUDITH, A COMPUTER PROGRAM TO ADVISE
LAWYERS IN REASONING A CASE”. In: Jurimetrics Journal 15.9, pp. 303–314.

Popple, J. (1990). “Legal expert systems: The inadequacy of a rule-based approach”.
In: Thirteenth Australian Computer Science Conference (ACSC-13).

Popple, J. (1993). “SHYSTER: A Pragmatic Legal Expert System”. PhD thesis. Aus-
tralian National University.

Popple, J. (1996). A pragmatic legal expert system. Dartmouth Publishing Company.
Porzel, R. and Malaka, R. (2004). “A task-based approach for ontology evaluation”.

In: ECAI 2004 Workshop Ont. Learning and Population.
Prakken, H. and Sartor, G. (1996). “A dialectical model of assessing conflicting

argument in legal reasoning”. In: Artificial Intelligence and Law 4.3-4, pp. 331–368.
Puerta, A. et al. (1992). “A multiple-method knowledge-acquisition shell for the

automatic generation of knowledge-acquisition tools”. In: Knowledge Acquisition
4.2, pp. 171–196.

Rho, S. et al. (2009). “COMUS: Ontological and Rule-Based Reasoning for Music
Recommendation System”. In: PAKDD 2009: Advances in Knowledge Discovery and
Data Mining, pp. 859–866.

Rodrigues, C., Freitas, F., and Azevedo, R. (2016). “An Ontology for Property Crime
based on Events from UFO-B Foundational Ontology”. In: 2016 5th Brazilian
Conference on Intelligent Systems (BRACIS). IEEE.

Rogger, M. and Thaler, S. (2010). Ontology Learning. Seminar paper, Applied Ontol-
ogy Engineering. University Innsbruck.

Rosa, D. et al. (2012). “Using events from UFO-B in an ontology collaborative
construction environment.” In: CEUR-WSX 938, pp. 278–283.

Rosati, R. (2006a). “DL+log: Tight Integration of Description Logics and Disjunctive
Datalog”. In: The 10th International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR 2006). Ed. by P. Doherty, J. Mylopoulos, and C. Welty.
AAAI Press, pp. 68–78.

Rosati, R. (2006b). “Reasoning Web, Second International Summer School 2006, Tu-
torial Lectures”. In: ed. by P. Barahona et al. Vol. 4126. Lecture Notes in Computer
Science (LNCS). Springer. Chap. Integrating Ontologies and Rules: Semantic and
Computational Issues, pp. 128–151.

Rossello-Busquet, A., Brewka, J., and Dittman, L. (2011). “OWL ontologies and
SWRL rules applied to energy management”. In: International Conference on Mod-
elling and Simulation.

Roussey, C. et al. (2011). “Advanced Information and Knowledge Processing”. In:
Springer. Chap. An Introduction to Ontologies and Ontology Engineering, pp. 9–
38.

260 BIBLIOGRAPHY

Rudolph, S., Volker, J., and Hitzler, P. (2007). “Supporting lexical ontology learning
by relational exploration”. In: Proceeding of ICCS, pp. 488–491.

Sabou, M. et al. (2005). “Learning Domain Ontologies for Web Service Descriptions:
an Experiment in Bioinformatics”. In: Proceedings of the 14th International World
Wide Web Conference (WWW2005).

Saghafi, A. and Wand, Y. (2014). “Do Ontological Guidelines Improve Understand-
ability of Conceptual Models? A Metaanalysis of Empirical Work”. In: In System
Sciences (HICSS), pp. 4609–4618.

Sagri, M., Tiscornia, D., and Bertagna, F. (2004). Jur-WordNet.
Saias, J. and Quaresma, P. (2003). “Using NLP techniques to create legal ontologies

in a logic programming based web information retrieval system”. In: ICAIL 2003
Workshop on Legal Ontologies & Web based legal information management.

Saias, J. and Quaresma, P. (2005). “Law and the Semantic Web”. In: vol. 3369. Lecture
Notes in Computer Science. Springer, Verlag. Chap. A Methodology to Create
Legal Ontologies in a Logic Programming Information Retrieval System, pp. 185–
200.

Salton, G. and Buckley, C. (1988). “Term-weighting approaches in automatic text
retrieval”. In: Information Processing and Management: an International Journal 24.5,
pp. 513–523.

Sanderson, M. and Croft, B. (1999). “Deriving concept hierarchies from text”. In:
SIGIR 99 Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval.

Sartor, G. (2006). “Fundamental Legal Concepts: A Formal and Teleological Charac-
terisation.” In: Artificial Intelligence and Law 14.1-2, pp. 101–142.

Sartor, G. (2009). “Legal Concepts as Inferential Nodes and Ontological Categories”.
In: Artif. Intell. Law 17.3, pp. 217–251.

Sartor, S. and Branting, L. (1998). “Introduction: Judicial Applications of Artificial
Intelligence”. In: Artificial Intelligence and Law.

Sattler, U., Schneider, T., and Zakharyaschev, M. (2009). “Which Kind of Module
Should I Extract?” In: Proc. of DL.

Savini, M. (2011). JOHANNES CLAUBERG METHODUS CARTESIANA ET ON-
TOLOGIE. VRIN.

Schlicht, A. and Stuckenschmidt, J. (2007). “Criteria-based partitioning of large
ontologies”. In: Proceedings of the 4th International Conference on Knowledge Capture
(K-CAP 2007). Ed. by D. H. S. K̃. Barker, pp. 171–172.

Schreiber, A., Wielinga, B., and Breuker, J., eds. (1993). KADS. A Principled Approach to
Knowledge-Based System Development, Knowledge-Based Systems. Vol. 11. Academic
Press, London.

Schreiber, G. and Akkermans, H. (2000). Knowledge engineering and management: the
CommonKADS methodology. MIT Press.

Schubert, R. (2001). Bones, Holes, and Scales - on the Need for a Spatial Ontology for
Anatomy.

BIBLIOGRAPHY 261

Shamsfard, M. and Barforoush, A. (2004). “Learning ontologies from natural lan-
guage texts”. In: International Journal of Human-Computer Studies 60.1, pp. 17–
63.

Simperl, E. and Rosch, M. (2013). “Collaborative ontology engineering: a survey”.
In: The Knowledge Engineering Review 29.1, pp. 101–131.

Sirin, E. and Parsia, B. (2007a). “SPARQL-DL: SPARQL Query for OWL-DL”. In: 3rd
OWL Experiences and Directions Workshop (OWLED-2007).

Sirin, E. et al. (2005). Pellet: A practical OWL-DL reasoner. Tech. rep. 68. UMIACS,
University of Maryland.

Sirin, E. et al. (2007b). “Pellet: A practical OWL-DL reasoner”. In: Web Semantics 5.2,
pp. 51–53.

Skuce, D. (1995). “Conventions for reaching agreement on shared ontologies”. In:
Know ledge Acquisition for Knowledge Based Systems Workshop.

Smith, M., Welty, C., and McGuinness, D. (2004). OWL Web Ontology Language Guide.
Tech. rep. W3C Recommendation 10 February 2004.

Sowa, J. (1984). Conceptual Structures. Information Processing in Mind and Machine
Reading. MA: Addison Wesley.

Steels, L. (1990). “Components of Expertise”. In: AI Magazine 11.2, pp. 29–49.
Steve, G., Gangemi, A., and Pisanelli, D. (1997). “Integrating medical terminologies

with ONIONS methodology”. In: Information Modelling and Knowledge Bases VIII.
Stuckenschmidt, H. and Klein, M. (2003). “Integrity and Change in Modular On-

tologies”. In: 18th International Joint Conference on Artificial Intelligence, pp. 900–
905.

Stuckenschmidt, H. and Klein, M. (2007). “Reasoning and change management in
modular ontologies”. In: Data Knowledge Eng. 63.2, pp. 200–223.

Stuckenschmidt, H., Parent, C., and Spaccapietra, S., eds. (2009). Modular Ontologies
- Concepts, Theories and Techniques for Knowledge Modularization. Springer.

Studer, S., Benjamins, V., and Fensel, D. (1998). “Knowledge engineering: Principles
and methods”. In: Data & Knowledge Engineering 25, pp. 161–197.

Sure, Y., Staab, S., and Studer, R. (2003). “Handbook on Ontologies”. In: ed. by S.
Staab and R. Studer. Springer-Verlag, Berlin Heidelberg New York. Chap. On-To-
Knowledge methodology, pp. 117–132.

Sure, Y. and Studer, R. (2002a). On-to-knowledge methodology - final version. Project
Deliverable D. 18. Tech. rep. Institute AIFB, University of Karlsruhe.

Sure, Y. et al. (2002b). “OntoEdit: collaborative ontology engineering for the se-
mantic web”. In: First International Semantic Web Conference (ISWC’02). Vol. 2342.
Lecture Notes in Computer Science. Springer, Berlin, pp. 221–235.

Sure, Y. et al. (2004). D.7.1.1 sekt methodology: Survey and initial framework. SEKT IST-
2003-506826 Deliverable 7.1.1, SEKT, EU-IST Project IST-2003-506826, Institute
AIFB, University of Karlsruhe.

Susskind, R. (1986). “Expert Systems in Law: A Jurisprudential Approach to Artifi-
cial Intelligence and Legal Reasoning”. In: Modern Law Review.

262 BIBLIOGRAPHY

Swartout, B. et al. (1997). “Toward Distributed Use of Large-Scale Ontologies”. In:
Ontological Engineering, pp. 138–148.

Tartir, S., Arpinar, I., and Sheth, A. (2010). “Theory and Applications of Ontology:
Computer Applications”. In: ed. by R. Poli, M. Healy, and A. Kameas. Springer.
Chap. Ontological Evaluation and Validation, pp. 115–130.

Teixeira, M., Falbo, R., and Guizzardi, G. (2014). “Analyzing the Behavior of Model-
ers in Interpreting Relationships in Conceptual Models: An Empirical Study”. In:
ONTO.COM/ODISE@FOIS 2014.

Tiscornia, D. (2005). “Multilingual Semantic Metadata for Law”. In: In Quaderni
CNIPA, 2005, 3rd Workshop on Legislative XML.

Tudorache, T. (2007). Collaborative Ontology Development in Protégé. Ontolog forum
invited talk. URL: http://ontolog.cim3.net/file/resource/presentation/
TaniaTudorache _ 20071004 / CollaborativeProtege -- TaniaTudorahce _

20071004.pdf.
Turlapati, V. and Puligundla, S. (2013). “Knowledge Engineering and the Seman-

tic Web”. In: vol. 394. Communications in Computer and Information Science.
Springer Berlin Heidelberg. Chap. Efficient module extraction for large ontologies.
Pp. 162–176.

Uschold, M. (1996). “Building Ontologies: Towards a Unified Methodology”. In:
16th Annual Conf. of the British Computer Society Specialist Group on Expert Systems.

Uschold, M. and Gruninger, M. (1996). “Ontologies : Principles, methods and
applications”. In: Knowledge Engineering Review 11.2.

Uschold, M. and King, M. (1995). “Towards a Methodology for Building Ontologies”.
In: IJCAI 95 Workshop on Basic Ontological Issues in Knowledge Sharing, pp. 6.1–6.10.

Valente, A. (1995). Legal Knowledge Engineering: A Modelling Approach. IOS Press.
Valente, A. (2005). “Law and the Semantic Web”. In: vol. 3369. LNCS. Springer.

Chap. Types and Roles of Legal Ontologies, pp. 65–76.
Valente, A. and Breuker, J. (1991). “Law functions: Modeling principles in legal

reasoning”. In: Legal Knowledge Based Systems, Model-based legal reasoning, JURIX
91.

Valente, A. and Breuker, J. (1992). “A MODEL-BASED APPROACH TO LEGAL
KNOWLEDGE ENGINEERING”. In: Legal knowledge based systems JURIX 92
Information Technology and Law.

Valente, A. and Breuker, J. (1994a). “Ontologies: the Missing Link Between Legal
Theory and AI & Law”. In: Jurix 94 Proceedings, pp. 138–149.

Valente, A. and Breuker, J. (1994b). “Towards a global expert system in law”. In: ed.
by G. Bargellini and S. Binazzi. CEDAM Publishers. Chap. A functional ontology
of law.

Valente, A. and Breuker, J. (1996). “Towards Principled Core Ontologies”. In: Tenth
Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW 96). Ed. by B.
Gaines and M. Musen, pp. 33/1–33/20.

http://ontolog.cim3.net/file/resource/presentation/TaniaTudorache_20071004/CollaborativeProtege--TaniaTudorahce_20071004.pdf
http://ontolog.cim3.net/file/resource/presentation/TaniaTudorache_20071004/CollaborativeProtege--TaniaTudorahce_20071004.pdf
http://ontolog.cim3.net/file/resource/presentation/TaniaTudorache_20071004/CollaborativeProtege--TaniaTudorahce_20071004.pdf

BIBLIOGRAPHY 263

Valente, A. and Breuker, J. (1999a). “Legal modeling and automated reasoning with
on-line”. In: International Journal of Human-Computer Studies 51.6, pp. 1079–1125.

Valente, A. et al. (1999b). “Building, Using and Reusing an Ontology of Air Cam-
paign Planning”. In: IEEE Intelligent Systems 14.1, pp. 27–36.

Van Gog, R. and Van Engers, T. (2001). “Modelling Legislation Using Natural
Language”. In: 2001 IEEE Systems Proceedings, Man and Cybernetics Conference.

Van Kralingen, R. (1995). Frame-based Conceptual Models of Statute Law. Com-
puter/Law. Kluwer Law International.

Van Kralingen, R., Visser, P., and Bench-Capon, T. (1999). “A principled approach
to developing legal knowledge systems”. In: Int. J. Human-Computer Studies,
pp. 1127–1154.

Velardi, P. et al. (2005). “Ontology Learning from Texts: Methods, Applications
and Evaluation”. In: Frontiers in Artificial Itelligence and Applications 123. IOS
Press. Chap. Evaluation of OntoLearn, a metodology for automatic population of
domain ontologies, pp. 92–106.

Ven, S. et al. (2008). “Automated Legal Assessment in OWL 2”. In: Proceedings of
Jurix 2008. Ed. by E. Francesconi, G. Sartor, and D. Tiscorina. IOS Press, pp. 170–
175.

Verdonck, M. (2014). “Providing guidance for conceptual modelling using core
ontologies”. In: PhD symposium in 33rd International on Conceptual Modeling Con-
ference (ER).

Visser, P. (1995). Knowledge Specification for Multiple Legal Tasks; A Case Study of
the Interaction Problem in the Legal Domain, Computer/Law Series. Kluwer Law
International.

Vitali, F. and Zeni, F. (2007). “Towards a Country-Independent Data Format: The
Akoma Ntoso Experience”. In: Proceedings of the V Legislative XML Workshop, 6786.
European Press Academic Publishing.

Von Wright, G. (1963). Norm and Action. Routledge, London.
Vrandecic, D. (2009). “Handbook on Ontologies”. In: ed. by A. Staab and R. Studer.

Springer Berlin Heidelberg. Chap. Ontology Evaluation, pp. 293–313.
Vrandecic, D. et al. (2005). “The diligent knowledge process”. In: Journal of Knowledge

Management 9.5, pp. 85–96.
Wache, H. et al. (2001). “Ontology-Based Integration of Information - A Survey of

Existing Approaches”. In: IJCAI-01 Workshop: Ontologies and Information Sharing.
Ed. by H. Stuckenschmidt, pp. 108–117.

Wagner, G. et al. (2004). “The abstract syntax of RuleML - towards a general web
rule language framework”. In: Proc. Web Intelligence 2004. IEEE, pp. 628–631.

Wand, Y. (1996). “Ontology as a foundation for meta-modelling and method engi-
neering”. In: Information and Software Technology 38.4, pp. 281–287.

Wang, Y., Liu, W., and Bell, D. (2010). “A Concept Hierarchy Based Ontology
Mapping Approach”. In: KSEM, pp. 101–113.

264 BIBLIOGRAPHY

Waterman, D. and Peterson, M. (1980). “Rule-Based Models of Legal Expertise”. In:
Proc. First Nat’1 Conf. Artificial Intelligence, AAAI.

White, M. (1992). “Legal Complexity and Lawyers’ Benefit from Litigation”. In:
International Review of Law and Economics 12, pp. 381–395.

Wyner, A. (2008). “An ontology in OWL for legal case-based reasoning”. In: Artificial
Intelligence and Law 16.4, pp. 361–387.

Wyner, A. (2009). “An OWL Ontology for Legal Cases with an instantiaiton of
Popov v. Hayashi”. In: Pre-conference workshop on Modelling Legal Cases at the 12th
International Conference on AI and Law (ICAIL 2009).

Wyner, A. and Governatori, G. (2013). “A Study on Translating Regulatory Rules
from Natural Language to Defeasible Logic”. In: Proceedings of RuleML 2013.
Seattle, WA.

Wyner, A. and Hoekstra, R. (2010). “A Legal Case OWL Ontology with an Instan-
tiation of Popov v. Hayashi”. In: The Knowledge Engineering Review 14.2, pp. 1–
24.

Wyner, A. and Peters, W. (2011). “On Rule Extraction from Regulations”. In: JURIX
2011.

Yang, D. et al. (2008). “Product configuration knowledge using ontology web lan-
guage”. In: Journal of Expert Systems with Applications 40, pp. 863–878.

Zamborlini, V., Goncalves, B., and Guizzardi, G. (2008). “Codification and Applica-
tion of a Well-Founded Heart-ECG Ontology”. In: Third Workshop on Ontologies
and Metamodeling in Software and Data Engineering - WOMSDE 2008.

Zeleznikow, J. and Hunter, D. (1992). “Rationales for the Continued Development
of Legal Expert Systems”. In: Journal of Law and Information Science.

Zeleznikow, J. and Stranieri, A. (2001). “An Ontology for the Construction of Legal
Decision Support Systems”. In: Second International Workshop on Legal Ontologies.

Zeng, Y. et al. (2005). “Knowledge Representation for the Intelligent Legal Case Re-
trieval”. In: International Conference on Knowledge-Based and Intelligent Information
and Engineering Systems KES 2005, Lecture Notes in Computer Science book series
(LNCS, volume 3681).

Zhang, X. et al. (2011). “Emotiono: An Ontology with Rule-Based Reasoning for
Emotion Recognition”. In: ICONIP 2011: Neural Information Processing, pp. 89–98.

Zhao, W. and Liu, J. (2008). “OWL/SWRL representation methodology for EXPRESS-
driven product information model”. In: Computers in industry 59, pp. 580–589.

	List of Figures
	List of Tables
	Introduction
	Overview
	Thesis Context
	Interest of AI in Law
	Artificial Intelligence and Law
	Legal Knowledge Based Systems (LKBS)
	Role of Ontologies in the Automation of Legal Reasoning
	The Semantic Web and Law

	Problem Statement
	Difficulty and Complexity of Well-founded Ontology Building Process
	Lack of Definition of Rule-based Legal Reasoning Models based on Domain Ontologies

	Limitations of Existent Approaches
	Thesis Objectives
	Thesis Contributions
	Structure of the Thesis

	Background
	Overview
	Ontology Engineering
	Ontologies
	From Philosophy to AI
	Conceptualization and Ontologies
	Definitions of Ontologies
	Classifications of Ontologies
	Criteria of Ontologies
	Components of Ontologies

	Foundational Ontologies
	The Unified Foundational Ontology UFO

	Ontologies in the legal Domain
	The Functional Ontology of Law (FOLaw)
	LRI-Core
	Ontology of Criminal Law (OCL.NL)
	LKIF-Core
	DALOS Domain Ontology
	Ontology of Professional Judicial Knowledge (OPJK)
	UFO-L

	Roles and Uses of Legal Ontologies
	Ontology Engineering Methodologies
	Uschold and colleagues
	CommonKADS
	Methontology
	Ontology Development 101
	ON-TO-KNOWLEDGE Methodology (OTKM)
	SABiO: Systematic Approach for Building Ontologies

	Ontology Engineering Tools and Environments
	Ontology Languages and Formalisms
	RDF
	RDF Schema
	OWL
	OWL 2
	Description Logics (DL)

	Ontology Engineering Support Processes
	Ontology Learning
	Ontology Reuse
	Ontology Modularization
	Ontology Evaluation

	Knowledge Engineering
	Modeling Principles in Knowledge Engineering
	Knowledge Engineering Approaches
	CommonKADS
	MIKE
	PROTÉGÉ-II

	Legal Knowledge Engineering Approaches
	Rule-Based Approach
	Model-Based Approach

	Legal Rule-Based Systems
	Evaluation of Rule-Based Systems
	Methods of Reasoning in Rule-Based Systems
	Forward Chaining
	Backward Chaining

	Existent Rules Interchange Languages
	RuleML
	SBVR
	SWRL
	RIF
	LKIF
	LegalRuleML

	Conclusion

	MIROCL: A Modular Middle-Out Collaborative Approach for Building Well-Founded Domain Ontologies
	Overview
	Problems Facing Ontology Building Process
	Well-founded Domain Ontologies
	Ontology-Driven Conceptual Modeling
	ONTOUML: Conceptual Modeling via UFO

	Middle-out Ontology Engineering
	Collaborative Ontology Engineering
	Data Heterogeneity
	Ontology-based Approaches for Resolving Data Heterogeneity

	MIROCL Motivations
	Heterogeneity of Data sources in MIROCL
	Ontology Modularization in MIROCL
	Ontology Reuse in MIROCL
	Ontology Reuse for Building Ontology Modules
	Ontology Reuse for Grounding Ontologies

	Ontology Learning from Textual Resource in MIROCL
	Ontology Integration in MIROCL

	MIROCL Aspects
	Middle-out Aspect of MIROCL
	Collaborative Aspect of MIROCL

	Life-Cycle of MIROCL
	Conclusion

	CriMOnto: A Criminal Ontology for Modeling Legal Norms
	Overview
	Modeling Legal Norms
	Approaches for Modeling Legal Norms
	Ontology-based Approach for Modeling Legal Norms
	Phase1: Advantages of Using MIROCL for Modeling the Content of Legal Norms
	Phase1: The Building Process of CriMOnto
	Identification of Data sources in CriMOnto
	Textual Resources in CriMOnto
	Existent Validated Ontologies in CriMOnto

	Building of Ontology Modules in CriMOnto
	Top-down: ODCM and Reuse
	Bottom-up: Ontology Learning Process

	The modules of CriMOnto
	Upper Ontology Module (UOM)
	Core Ontology Module (COM)
	Domain Ontology Module (DOM)
	Domain-specific Ontology Module

	Integration of CriMOnto Modules
	Example of Upper and Core modules mapping
	Example of Core and Domain modules mapping
	Example of Domain and Domain-specific modules mapping

	CriMOnto Evaluation

	Similar Works
	Discussion

	Conclusion

	Modeling and Formalizing the Procedural Aspect of Legal Norms
	Overview
	Ontology-Based Approach for Modeling and Formalizing Legal Norms
	Integration of Rules and Ontologies
	Formalizing Legal Rules
	Selection of a Rule Language for Modeling Legal Norms
	Rule Reasoners for SWRL

	Case Study: Modeling and Formalizing the Legal Norms of the Lebanese Criminal Code
	Application of the Ontology-based Approach using Protégé

	Similar Works
	Conclusion

	CORBS: Rule-Based System Grounded on CriMOnto
	Overview
	CORBS
	Hybrid Approach for Building CORBS
	Reasoning Model of CORBS
	User Interface
	Knowledge Base
	Inference Engine

	Tasks of CORBS
	Implementation of CORBS
	Loading CriMOnto
	Semantic Search and Queries Executing
	Rules Executing

	Similar Works
	COMUS: Context-Based Music Recommendation Ontology for Rule-Based Reasoning
	Emotiono: Ontology for Rule-Based Reasoning for Emotion Recognition
	Rule-Based Reasoning in Emotiono

	Conclusion

	Conclusion
	Thesis Overview
	Future Directions

