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Résumé en Français

Le développement fulgurant de réseaux informatiques, a entraîné l’apparition de
diverses applications multimédia qui emploient des données 3D dans des multiples
contextes. Si la majorité des travaux de recherche sur ces données s’est appuyées sur
les modèles statiques, c’est à présent vers Les modèles dynamiques de maillages qu’il
faut se tourner. Les séquences de maillages variant au cours de temps représentent
un nouvel axe de recherche où leur analyse joue un rôle incontournable, tel que la
compression, l’indexation ou encore l’extraction des squelettes.

Les formes dynamiques 3D sont généralement représentées par une séquence
de maillages 3D avec une connectivité constante et une information temporelle
fournie par une géométrie variable dans le temps. Cette représentation est soumise
à une grande variété d’opérations de traitement telles que l’indexation, la segmen-
tation et la compression. Cependant, le maillage triangulaire est une représentation
extrinsèque, sensible face aux différentes transformations affines et isométriques.
Par conséquent, il a besoin d’un descripteur structurel intrinsèque avant d’être
traité par l’une des opérations de traitement mentionnées ci-dessus. Pour relever ces
défis, nous nous concentrons sur la modélisation topologique intrinsèque basée sur
les graphes de Reeb. Un graphe de Reeb est une représentation graphique, de type
squelette, décrivant la structure topologique du modèle 3D. Leurs constructions
reposent sur la théorie de Morse, qui définit une fonction continue sur la surface
fermée de l’objet. Cette fonction continue permet la segmentation de la surface de
l’objet en régions, chaque région est représentée par un nœud. Les nœuds dont les
régions associées sont connexes sont liés par une arête. Il existe différentes fonctions
continues qui peuvent être utilisées pour la construction du graphe de Reeb des
maillages triangulaires.

Représentation par graph de Reeb basée sur la diffusion de la chaleur

Dans le cadre de notre travail, notre principale contribution consiste à définir
une nouvelle fonction continue basée sur les propriétés de diffusion de la chaleur.
Ce dernier est calculé comme la distance de diffusion d’un point de la surface
aux points localisés aux extrémités du modèle 3D qui représentent l’extremum
locales de l’objet (points caractéristiques) qui sont détectés en utilisant la notion
de propagation de la chaleur. La restriction du noyau de la chaleur au domaine
temporel rend la fonction proposée intrinsèque et stable contre les perturbations.

Les résultats expérimentaux obtenus sur des modèles 3D dynamiques ont dé-
montré la robustesse et l’efficacité de la fonction scalaire proposée. Cette approche
de construction de graph de Reeb peut être extrêmement utile comme descripteur
de forme locale pour la reconnaissance de forme 3D. Il peut également être introduit
dans un système de compression dynamique basée sur la segmentation. Dans ce
contexte, nous exploitons les graphes de Reeb dans deux applications largement
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utilisées qui sont la reconnaissance des formes et la compression dynamique 3D.

Application à la reconnaissance de forme 3D

Dans une deuxième partie, nous avons proposé d’exploiter la méthode de
construction de graphe de Reeb dans un système de reconnaissance de formes 3D
non rigides. L’objectif consiste à segmenter le graphe de Reeb en cartes de Reeb
définis comme cartes de topologie contrôlée. Chaque carte de Reeb est projetée vers
le domaine planaire canonique qui peut être soit un disque unitaire ou un anneau
unitaire selon le type de la carte. Ce dépliage dans le domaine planaire canonique
introduit des distorsions d’aire et d’angle. En se basant sur une estimation de
distorsion, l’extraction de vecteur caractéristique est effectuée. Nous calculons
pour chaque carte un couple de signatures, qui sera utilisé par la suite pour faire
l’appariement entre les cartes de Reeb. Pour évaluer l’efficacité de la fonction
scalaire utilisée et les signatures proposées, nous avons testé cette méthode sur la
base de données la plus connue SHREC 2012 contenant 1200 modèles 3D répartis
en 60 classes. Les performances de notre technique ont été évaluées par le calcul
de cinq scores : First Tiers, Second Tiers, Les k-meilleurs scores, la mesure E et
le gain cumulé. La courbe précision/rappel a montré la capacité de la méthode à
retrouver les classes d’objets, il s’agit d’un calcul statistique sur la base de données.
Pour effectuer une comparaison fidèle avec d’autres méthodes de l’état de l’art,
nous avons testé notre technique de reconnaissance de forme sur plusieurs bases
de données tels que : SHREC 2010, SHREC 2011 et MCGill. D’après l’étude
expérimentale sur ces bases de données, il a été montré que notre technique donne
des résultats satisfaisants du point de vue compromis efficacité et rapidité par
rapport aux techniques de l’état de l’art.

Applications à la compression dynamique basée sur la segmenta-
tion

Dans une troisième partie, nous avons proposé de concevoir une technique de
segmentation, des maillages dynamiques 3D. Cette technique de segmentation est
basée sur la même notion de théorie de Morse et de graphe de Reeb. L’idée princi-
pale est de détecter les nœuds critiques, en appliquant une analyse topologique des
fonctions lisses définies sur la surface de maillage 3D. Le processus de segmentation
est effectué en fonction des valeurs de la fonction scalaire proposée dans la première
partie. Le principe consiste à dériver une segmentation purement topologique qui
vise à partitionner le maillage en des régions rigides tout en estimant le mouvement
de chaque région au cours du temps. Pour obtenir une bonne répartition des
sommets situés sur les frontières des régions, nous avons proposé d’ajouter une
étape de raffinement basée sur l’information de la courbure. Chaque limite de
région est associée à une valeur de la fonction qui correspond à un point critique.
La valeur optimale de la faction scalaire doit déterminer une limite qui correspond
à un profil de profondeur de concavité sur la surface de l’objet. Il devrait être
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proche de la valeur critique de cette fonction scalaire qui correspond au point
critique le plus proche. L’objectif visé est de trouver la valeur optimale de cette
fonction qui détermine le profil des limites. Cela revient à résoudre un problème
d’optimisation qui consiste à minimiser la fonction de concavité. Les résultats
expérimentaux effectués sur des maillages 3D dynamiques montrent l’efficacité de
notre technique en termes de précision et stabilité contre diverses perturbations y
compris les changements topologiques.

La technique de segmentation développée est exploitée dans un système de
compression sans perte des maillages dynamiques 3D. Il s’agit de partitionner la
première trame de la séquence, considérée comme trame de référence. Chaque
région est modélisée par une transformée affine et leurs poids d’animation associés.
En combinant linéairement les transformées affines des différentes régions avec
les poids d’animation appropriés, nous obtenons le champ de mouvement sur
l’ensemble du maillage. Le vecteur partition, associant à chaque sommet l’index
de la région auquel il appartient, est compressé par un codeur arithmétique. Les
deux ensembles des transformées affines et des poids d’animation sont quantifiés
uniformément et compressés par un codeur arithmétique. La première trame de
la séquence est compressée en appliquant un codeur de maillage statique. Nous
avons proposé de coder les erreurs de prédiction, calculées exclusivement à partir
de la première trame de l’animation, en appliquant directement une méthode de
compression sans perte des valeurs prédites à virgules flottantes.

Nous avons évalués le système de compression basée sur la segmentation, en
effectuant une comparaison avec d’autres méthodes très connues de l’état de l’art.
D’après l’étude expérimentale, nous remarquons que notre technique donne des
résultats satisfaisants du point de vue compromis débit/distorsion par rapport aux
techniques de l’état de l’art.

La suite du travail se concentre sur l’optimisation de notre système de com-
pression en ajoutant une stratégie d’allocation binaire. Afin d’améliorer les
performances de notre codeur, la quantification de l’erreur de prédiction temporelle
est optimisée en minimisant l’erreur de reconstruction. Ce processus est effectué sur
les données de l’erreur de prédiction, qui est divisé en 3 sous-bandes correspondant
aux erreurs de prédiction des 3 coordonnées x, y et z. Le taux de distorsion intro-
duit est déterminé en calculant le pas de quantification, pour chaque sous-bande,
afin d’atteindre le débit binaire cible. L’évaluation des performances a démontré
l’amélioration du compromis débit/distorsion en utilisant le processus d’allocation
binaire. L’étude expérimentale a montré que notre approche conduit à des résultats
satisfaisants par rapport à l’état de l’art.
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P icture concept did not starts only with the advent of first computer, camera
or scanner. The language of the image is reproduced since ancient times, with

the beginning of this life. Where humans, in a long time ago, communicate among
themselves via sign language and graphics. Up to now archaeologists are trying to
decode their manuscripts to learn the secrets of the various people lives. But with
the invention of the computer, the scanner or any image capture equipments, it has
become necessary to look at ways to analyze and process this kind of digital data.

1.1 Field applications of 3D shapes

In the last decade, the technological progress in telecommunication, hardware
design and multimedia, allows access to an ever finer three-dimensional (3-D)
modeling of the world. Nowadays, this kind of 3D contents is commonly used in
several domain applications (see Fig.1.1) including digital entertainment and scien-
tific simulation. The critical challenges with 3D models lie in their visualization,
rendering, protection or transmission over channels with limited bandwidth and
storage on media with low capacity.

In order to ensure interoperability exchanges and the interpretation of these par-
ticular data, 3D objects must be represented according to standard formats. There
exists many 3-D representations such as implicit surface, NURBS or voxel. But the
most widely used representation of 3D shapes is the triangular surface mesh. This
representation, consisting of vertices, edges and faces, is very widespread due to
its simplicity. It contains geometrical information representing vertex coordinates
in 3D space and topological information describing the incidence and adjacency
relationship between vertices. In addition to its algebraic simplicity and high
usability, 3D mesh representation is considered as an effective low-level model.
Indeed, any kind of 3D models can be easily converted to 3D mesh representation.
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Figure 1.1: The various fields of applications where 3D objects occupies an indis-
pensable role.

While most researchers have focused on the field of 3D objects, now it is
necessary to turn to 3D time domain (3D+t). 3D dynamic meshes are becoming a
media of increasing importance. A 3D dynamic shape is usually represented by a se-
quence of 3D meshes with constant connectivity and temporal information provided
by time-varying geometry, only the vertex positions changes over time (see Fig. 1.2).

Similar to pixel grid representation, this 3D content is subject to various
processing operations such as indexation, segmentation or compression. However,
surface mesh is an extrinsic shape representation. Therefore, it suffers from impor-
tant variability under different sampling strategies and canonical shape-non-altering
surface transformations, such as affine or isometric transformations. Consequently
it needs an intrinsic structural descriptor before being processed by one of the
aforementioned processing operations.

To meet these challenges, in this thesis, we focus to the intrinsic topological
modeling based on Reeb graph and we intend to extend this principle for dynamic
models.

- t

Figure 1.2: Time-varying geometry on the cat sequence.
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1.2 Objectives and contributions

The research topic of this thesis work is the topological modeling based on Reeb
graphs. Specifically, we focus on 3D shapes represented by triangulated surfaces.
Our objective is to propose a new approach, of Reeb graph construction, which
exploits the temporal information. The main contribution consists in defining a
new continuous function based on the heat diffusion properties. The latter is com-
puted from the discrete representation of the shape to obtain a topological structure.

The restriction of the heat kernel to temporal domain makes the proposed
function intrinsic and stable against transformation. Due to the presence of neigh-
borhood information in the heat kernel, the proposed Reeb Graph construction
approach can be extremely useful as local shape descriptor for non-rigid shape
retrieval. It can also be introduced into a segmentation-based dynamic compression
scheme in order to infer the functional parts of a 3D shape by decomposing it into
parts of uniform motion. In this context, we apply the concept of Reeb graph in
two widely used applications which are pattern recognition and compression.

Application to pattern recognition

Reeb graph has been known as an interesting candidate for 3D shape intrin-
sic structural representation. we propose a 3D non rigid shape recognition
approach. The main contribution consists in defining a new scalar function to
construct the Reeb graph. This function is computed based on the diffusion
distance. For matching purpose, the constructed Reeb graph is segmented into
Reeb charts, which are associated with a couple of geometrical signatures. The
matching between two Reeb charts is performed based on the distances between
their corresponding signatures. As a result, the global similarity is estimated based
on the minimum distance between Reeb chart pairs.

Application to segmentation-based dynamic Compression

Skeletonisation and segmentation tasks are closely related. Mesh segmentation
can be formulated as graph clustering. First we propose an implicit segmentation
method which consists in partitioning mesh sequences, with constant connectivity,
based on the Reeb graph construction method. Regions are separated according
to the values of the proposed continuous function while adding a refinement step
based on curvature and boundary information.

Intrinsic mesh surface segmentation has been studied in the field of com-
puter vision, especially for compression and simplification purposes. Therefore
we present a segmentation-based compression scheme for animated sequences of
meshes with constant connectivity. The proposed method exploits the temporal
coherence of the geometry component by using the heat diffusion properties
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during the segmentation process. The motion of the resulting regions is accurately
described by 3D affine transforms. These transforms are computed at the first
frame to match the subsequent ones. In order to improve the performance of our
coding scheme, the quantization of temporal prediction errors is optimized by using
a bit allocation procedure. The objective aimed at is to control the compression
rate while minimizing the reconstruction error.

1.3 Outline

The remainder of this manuscript is laid out as follows :

Chapter 2 presents a classification of different 3D object representations
focusing on triangular 3D surface models. the fields and the area applications
of 3D object are represented first. Then it reviews the different representations
of three-dimensional objects regrouped in three main categories: surface models,
volume models and linear models, specifically polygonal meshes while focusing on
3D shapes represented by surface meshes.

Chapter 3 introduces the different modeling 3D meshes specifying the bene-
fits of using the topological modeling based on Reeb graphs. The final part defines
the differential topology modeling by introducing the morse theory notion and
giving a survey on Reeb Graph extraction methods.

Chapter 4 proposes a new Reeb graph construction approach which exploits
the temporal information. The main contribution consists in defining a new scalar
function. In this chapter, we introduce the heat diffusion principle, adapted to
Riemannian manifolds, which is the core of the proposed scalar function. Then we
describe our Reeb Graph construction method in detail. Finally we investigate the
performance of our approach in terms of accuracy and robustness.

Chapter 5 presents a 3D non rigid shape recognition approach that uses the
Reeb graph representation as local shape descriptor. We start by providing a brief
overview of the most relevant work in the field of 3D pattern recognition. Then,
we describe the proposed approach in detail. Finally, we evaluate the performance
of our system by conducting a fair comparison with previous approaches from the
state-of-the-art.

Chapter 6 proposes another application of Reeb graph representation in the
context of dynamic mesh partitioning. First, we provide an overview of the various
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existing work in the field of segmentation and compression of 3D mesh sequences.
Second, we describe the proposed segmentation-based dynamic compression scheme.
In order to examine the effectiveness of our compression system, we report the
compression results and compare them to other 3D dynamic coding techniques
from the state-of-the-art.

Finally, Chapter 7 concludes this manuscript. It provides a summary of contri-
butions and presents directions of future work and open problems.
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3D shapes modeling
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2.1 Introduction

3D objets are commonly used in several domain applications, in this chapter we
highlight the fields where 3D modeling is considered as an important issue. In addi-
tion to the area applications of these data, we are also interested to their hardware
and software generation which is addressed in the second part of this chapter. After
being created, 3D objects are modeled according to standard formats, in order to
ensure their interoperability exchanges and their interpretation. In the last part of
this chapter, we review the modeling of three-dimensional objects. We distinguish
three main categories: surface models, volume models and linear models, specifi-
cally polygonal meshes. We focus in this thesis on 3D shapes represented by surface
meshes.

2.2 Field applications of 3D shapes

The recent technological progresses in the fields of telecommunication, com-
puter graphics and multimedia allow access to an ever finer three Dimensional
modeling of the world. 3D shape modeling occupies a very important place in
the computer graphics world. It is used in areas as diverse as medicine, video
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games, computer-aided design... It is very interesting to 3D objects whenever
we want to make virtual tours of museums or to model real and/or virtual 3D
scenes. Today with the technological advances in the medical field, 3D objects are
integrated in computer-aided diagnosis through CT (Computerized Tomography)
and MRI (Magnetic Resonance Imaging) scans. Furthermore, they are used in
computer-assisted surgeries. Furthermore, it is worth mentioning that 3D objects
play an unavoidable role in geographic information systems such as astronomy,
geology, and mapping.

Obviously, we cannot evoke all of the application areas. However, it is im-
portant to cite the studies and simulations of physical phenomena around us. This
area is based on the numerical simulation by using finite element analysis methods
and by solving differential equations. By this way, it is possible to study the
propagation of electromagnetic waves through the human body, and consequently
evaluate their dangerousness.

In what follows, before we turn to the modeling of 3D objects, we briefly
back on methods of creating the underlying 3D models.

2.3 Creation of 3D shapes

There are specialized 3D CAD (Computer-Aided Design) software (AutoCAD,
Autodesk Maya, Autodesk 3ds autodesk inventor ...) and geometric modelers that
are generally used to obtain a geometric and topological representation of virtual
3D object or scene.

The representation of a real 3D object can be obtained by using special hardware
devices called range scanners. The scanning devices can produce data (range
images or point clouds) which is very dense without necessarily reflecting the
curvature of the object. Indeed, these devices produce a highly redundancy data,
especially on smooth areas of the mesh, which is difficult to process. To alleviate
this problem it is possible to reduce the redundancy through simplification methods.

After the data acquisition phase, several modeling types can be used to rep-
resent these 3D-data in order to ensure their interoperability exchanges and
interpretation. Among these 3D modeling types, we can cite: surface representa-
tion, volume representation, and linear representation.

2.4 3D shape modeling

2.4.1 Linear Representations (Polygonal Meshes)

Linear models are widely used thank’s to their simplicity. They are characterized
by a very understood modeling ability, which allows them to represent any complex
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topology object. Among the linear representation, we distinguish polygonal meshes,
which are represented by a set of vertices connected by edges forming facets. The
most commonly used geometric forms to represent these facets are triangles (3-D
triangular meshes) that will be used in the context of our studies. 3D meshes belong
into the surface modeling class that provides roughly a representation of an object,
which is very complex and adapted to the shape design. This kind of representation
is defined by a geometric information represented by the vertex coordinates in 3D
space and topological information describing the incidence and adjacency relation-
ships between vertices, edges and faces. The topological information includes the
degree of a face which means the number of edges which it compose (in the case of
triangular mesh, the degree of faces is equal to 3) and the vertex valence, which is
the number of its incident edges. These two pieces of information are explained in
Fig. 2.1.

Figure 2.1: Triangular mesh illustrating the topological information.

2.4.1.1 Topological properties of 3D surfaces

The key concept when studying the topological properties of surfaces, is the
notion of homeomorphic topological spaces. Properties of figures unchanged by
homeomorphisms are called topological properties, or topological invariants.

Homeomorphism: Two 3D topological surfaces S and S′ are homeomor-
phic only if there is a continuous bijection φ between the two surfaces φ: S → S′
such as the inverse function φ−1 is also continuous. Intuitively, S and S′ are called
homeomorphic if the surface S can be stretched and bent without breaking to fit
the shape of S′. The notion of homeomorphism allows defining equivalence classes
in the surface spaces. In particular, it allows introducing the varieties, defined as
follows: A triangle mesh can be 2-manifold if it satisfies the following properties:

• Property local disk: if there is on each point of the surface a neighborhood
homeomorphic to an open disk or an open semi-disk.

• Property scheduling edges: the adjacent edges of each vertex must be arranged
in a circular fashion.

• Neighborhood Property face: each edge of the mesh must have exactly two
adjacent faces if it is an inside edge to the mesh and only one face if it is an
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boundary edge.

To test whether a mesh is a manifold or not, it is important to introduce the concepts
of regular vertex and regular edge.

• Regular vertex : all its neighbors can be rearranged to define a unique path.

• Regular edge: it is shared by a maximum of two triangles.

According to the aforementioned definitions, we can demonstrate the following
property: a triangular mesh is manifold only if all its vertices and edges are regular.
A mesh is called non-manifold if it has at least one edge connected with at least
three sides, so it will be impossible to differentiate the inside and the outside
without ambiguity.

Neighborhood regularity, depends on the valence of the vertices, is also a
very important property for triangular meshes. It depends on the valence of the
vertices, As illustrated in Fig.2.2, we distinguish three mesh structures:

• Irregular mesh: all vertices have different valence values due to the the lack of
consistency in how to connect the vertices

• Regular mesh: all vertices have the same valence.

• Semi-regular mesh: a small number of vertices are irregular and the remains
have the same valence.

Figure 2.2: From left to right: an irregular mesh, semi-regular mesh and regular
mesh.

It is also possible to distinguish other types of meshes such as:

• Conform mesh: it has all geometric elements of non zero areas and the inter-
section of two geometric elements of the mesh is either empty or reduced to a
vertex or an entire edge. Connecting the middle of a ridge and a summit will,
for example prohibited.
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• Multi-resolution mesh: it offers several levels of information and good support
for progressive rendering, scalable compression, and data transmission. The
aim is to represent the surface at different levels of detail. The decomposition
process of the original mesh into intermediate meshes is reversible. From the
coarser mesh it is possible to reconstruct all levels of approximations until
reaching the fine one (coarse to fine). Or, conversely, simplifying a fine mesh
to obtain a coarser approximation (fine to coarse). Fig. 2.3 (a) and (b) show
the simplification and the reconstruction stages. It is important to note that
the hierarchical decomposition techniques depend on the mesh connectivity
constraints, while the simplification approaches are applicable on any mesh
connectivity.

→ → → ... →
(a)

→ → → ... →
(b)

Figure 2.3:

Some triangular meshes respect the Delaunay criterion. In this case, the
circumscribed circles of triangles forming the mesh are do not contain any vertex.

Euler′s characteristic: Let M be a manifold mesh, oriented and without
board, composed of F triangles, E edges and V vertices. Let G be the genus of
the mesh M , which corresponds to the maximum number of closed curves without
common points that can be drawn inside this surface without disconnecting it. The
Euler’s formula [Coxeter 1989]is given by:

χ = V − E + F. (2.1)

This Euler’s characteristic χ is related to the genus G of the surface. Indeed, the
genus is a global topological feature that allows to determine equivalence classes
in the varieties of space. It reflects more or less its topological complexity and
is intuitively equal to the number of handles in the shape (see Fig.2.4). More
specifically, the genus G of a 3-D object can be expressed by the following equation:

G =
2c− b− χ

2
, (2.2)

where c is the number of connected components and b is the number of edges of
the surface. In practice, a small number of meshes satisfies the regularity property.
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(a) (b) (c)

Figure 2.4: A sphere (a) is of genus 0, a torus (b) is of genus 1 and a 2-torus is of
genus 2.

However, under certain assumptions, we can demonstrate that the average valence
of the vertices is 6. This result is a direct consequence of the Euler’s characteristic.

The orientation of a face is defined according to the cyclic order of vertices
and the right-hand rule. There are two possibilities: the orientations of two
adjacent faces are compatible if there exist two vertices shared across commands in
both sides. So the complete mesh is called orientable if we can find a combination
of orientations in all sides such that each pair of adjacent faces in the mesh is
compatible.

2.4.1.2 Standard formats of representation

Various standard formats use the naive representation of polygonal meshes. Most
of these file formats are represented in an ASCII form such as the Virtual Reality
Modeling Language (VRML), the 3D Object File Format OFF, the Wavefront OB-
Ject format OBJ, the Stanford University PoLYgon format PLY, ... . The storage
strategies of these file formats are very similar. The geometry is generally repre-
sented by an indexed list of vertex coordinates and the connectivity is composed
of a list of faces, where each face is represented by the indices of its vertices. The
global file consists of the geometrical information followed by the topological one as
shown in Fig.2.5 The principle is to encode the mesh geometry by using a matrix G

Figure 2.5: Naive representation of a triangular mesh.
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with V rows and 3 columns, with V being the number of vertices:

G =



Xx
1 Xy

1 Xz
1

Xx
2 Xy

2 Xz
2

Xx
3 Xy

3 Xz
3

. . .

. . .

. . .

Xx
V Xy

V Xz
V


(2.3)

where Xx
l , Xy

l and Xz
l are the cartesian coordinates of the vertex indexed by l in

the surface mesh M . The mesh connectivity is also represented by a matrix denoted
by Γ of size F × 3 (where F is the number of faces).

Γ =



v11 v21 v31
v12 v22 v32
v13 v23 v33
. . .

. . .

. . .

v1V v2V v3V


(2.4)

where v1i , v
2
i and v3i are the integer indices of three vertices forming the ith triangle

of M .

2.4.1.3 From 3D to 3D+t domain

Technological progress in the field of multimedia and computer vision has led to
the exploitation of the time factor t to process 3D objects. While the majority of
research in this area was based on 3D objects, now, it is necessary to turn to 3D
time domain (3D+t). Indeed, dynamic3D shapes are becoming a media of increas-
ing importance used mainly in the field of video games, movies, computer-aided
design, and medical imaging. This kind of data is usually represented by key-frame
sequences of 3D triangular meshes sharing the same connectivity and temporal
information provided by time-varying geometry. Only the vertices position changes
over time. As for static models, dynamic models can be formalized mathematically
as follows: Let’s designate by (Mt)t∈{1,...,T} a sequence of 3D meshes (where T is
the number of frames). Under the hypothesis of a fixed connectivity, by considering
Γ (given by eq. 5.3), the mesh geometry at time t is represented by a matrix Gt of
dimension 3× V (where V is the number of vertices) defined by:
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Gt =



Xt
1,x Xt

1,y Xt
1,z

Xt
2,x Xt

2,y Xt
2,z

Xt
3,x Xt

3,y Xt
3,z

. . .

. . .

. . .

Xt
V,x Xt

V,y Xt
V,z


(2.5)

where Xt
l,x, X

t
l,y and Xt

l,z are the cartesian coordinates of the vertex indexed by l

at time t Mt. Fig.2.6 shows some key-frame sequences of 3D triangular meshes.
Animate a 3D object consists to describe the motion and/or the deformation that it

Figure 2.6: Some examples of dynamic 3D meshes.

undergoes during a specified time period. Most often this amount of data, needed
to generate a dynamic 3D object represented by key-frame sequences, describes
the time evolution of a 3D surface (i.e change of the vertex positions, normals,
colors ...). The first approach that has been adopted to generate animated content
specifies the properties of the 3D object as a function of time. Obviously, such
approach (heavy and non-intuitive) is not usable in practice, even in the case
of simple 3D models. To simplify the task of animated content generation, the
majority of animation techniques proposed to describe the animation operator
according to the motion patterns and / or deformation.

In general, the creators of 3D animated objects can be classified into two
main categories: animation using descriptive models and procedural animation.
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The first category is based on an explicit representation of the animation that
describes, for each key frame, the motion field parameters or associated deforma-
tion. This type of animated 3D objects creation allows designers to accurately
control the progress of the animation. However, it requires a significant volume of
user interaction for the specification of key-frames. On the other hand, the second
category is primarily based on a set of physical, mathematical or behavioral laws.
It generates dynamically and automatically realistic animations and high quality
while taking into account the interaction with user or changes in the environment.
The disadvantage is that the control of the time flow of the animation is limited. To
store these animated models, there are various standards of representation formats
such as:

• The standard VRML Virtual Reality Modeling Language (WRL file exten-
sions), developed by the Web3D Consortium is a description language for
interactive 3D virtual universe. It represents a 3D scene as a hierarchical tree
whose nodes describe objects or scene properties (3D meshes, basic shapes,
sounds, light sources, colors ...).

• The standard X3D eXtensible 3D extends the VRML standard by introducing
new features and a description format. This representation allows to describe
the animated humanoid, physical interactions between solids, and particle
systems necessary for modeling elements such as fire, smoke, snow ...

• The H-Anim standard is another description language for character anima-
tions articulated human model. H-Anim representation allows modeling the
anatomical skeleton of a 3D articulated character by a hierarchical tree struc-
ture.

2.4.2 Surface representations

Surface models are composed of k-simplices which may be the vertices (0-simplex),
the edges (1-simplex) or triangles (2-simplices). The polygonal mesh belongs to
this type of modeling, the object is represented by several polygonal elements and
the surface will be built by assembling its elements. This representation model is
classified into three types of surfaces: parametric, implicit, and subdivision surfaces.

2.4.2.1 Parametric surfaces

The parametric representation is characterized by the definition of each surface point
by a equation with two parameters η and µ represents the application of a region
of the plane (η, µ) in three dimensional space. Fig. 2.7 shown an example of a
parametric surface.

S(η, µ) =

fx(η, µ)fy(η, µ)

fz(η, µ)
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It is preferable that the functions fx, fy and fz are polynomial functions to obtain
an accurate approximation of the surface and a simple geometric interpretation of
their coefficients. This type of surfaces is obviously used to interpolate or approach
a set of points. These points are usually organized in a matrix form. These para-

Figure 2.7: A parametric surface example.

metric models include a large family of surfaces. We can distinguish primarily the
sub family of curves and Bezier surfaces (area B-Splines / NURBS) that are char-
acterized by a set of points called control points forming a grid. The disadvantage
lies in the movement of a control point which affects the entire object.

2.4.2.2 Implicit surfaces

Contrary to parametric models that explain the point coordinates, the im-
plicit formalism id defined defined according to a particular mathematical form
[Bloomenthal 1997]. It consists at representing a surface as a set of points in space
checking a property which is generally related to the value taken at these points.

An implicit surface S is defined as the set of zeros of a function f in R3 in
R. The set of points P = (x, y, z) of the implicit surface S defined by f is one that
satisfies the following equation:

f(x, y, z) = 0. (2.6)

From this formulation and using the sign of the function we can directly concluded
the information about the relationship between all points in three-dimensional
space:

• if f(x, y, z) < 0; p will be on the outside of the object to be modeled.

• if f(x, y, z) > 0; p will be inside the object to be modeled.

• if f(x, y, z) = 0; p will be on the surface of the object to be modeled.

The advantage is to separate the space into two components: inside and outside the
area. So one can easily determine the position of a point relative to the boundary
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Figure 2.8: Example of an implicit surface.

surface. This representation model can be considered as the surface model or
volume model because otherwise described the volume defined by the surface.
This type of representation allows modeling of rounded shapes. It is best suited
for medical imaging, physical processes [Terzopoulos 1987], human modeling and
modeling smooth objects [Turk 1999].

Implicit surfaces are divided into two categories: algebraic surface that is
mathematically defined as the set of roots of a polynomial function more or less
degree of complex (2, 3or4). Non algebraic surface that serves to model an object
by a set of particles. Fig. 2.8 shows an example of implicit algebraic surface defined
by the equation: x4 − 5x2 + y4 − 5y2 + z4 + 5z2 + 11.8 = 0.

2.4.2.3 Subdivision surfaces

A subdivision surface [D. Zorin 2000] is a smooth surface defined as the limit of a
sequence of refinements, applied to a control mesh. Fig.2.9 describes the hierarchical
aspect of the subdivision. These refinements include modifying connectivity and

Figure 2.9: Illustration of the hierarchical aspect of the subdivision.

geometry by adding, moving vertices to obtain a mesh that tends toward a smooth
boundary.

In general, a subdivision scheme is described by:

• A topological component: all subdivision schemes are changing the initial mesh
connectivity, then we can distinguish two types of schemes: primal patterns
that retain the old highs, and dual patterns that suppress.
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• A geometric component: the vertices position change can be interpreted as a
smoothing of the original mesh. One can also distinguish two types of schemes:
the interpolating patterns that keep the position of initial vertices and non-
interpolating schemes that change their positions by moving them.

We distinguish several subdivision schemes differentiated according to the type of
polygons treated and the type of operation performed subdivision. We quote as well
the nature of schemes approximating where the control points are not located on
the boundary surface. It is difficult to estimate the resulting surface. Meanwhile,
we find the nature of interpolating subdivision schemes in which all control points
lie on the boundary surface, since the movement includes only the newly inserted
vertices.

2.4.3 Volume representations

3D volume representations are particularly suited for medical imaging (3D Volume
Representation of tumor through the use of Magnetic Resonant Imaging) ref(3D
Volume Representation of brain tumor using image processing). 3D volumetric
medical images are usually analyzed as a sequence of 2D image slices [Shen 2008]
due to concerns over the exponential increase in computational cost in 3D. These
kind of representations allow structural modeling objects by one or serval primitives
of volume nature, generally ordered in graph form. There are different types of
primitives such as cylinders, superquadrics the hyperquadrics and other implicit
polynomial. Thus we can classify these models into two groups:

• Quantitative models having a great modeling power.

• Qualitative models for symbolic modeling.

2.4.3.1 Superquadrics

The superquadric model is an extension of quadric, this primitive has the capability
to admit an implicit and a parametric forms, the most commonly used are the
super-ellipsoid. The high description capability is one of the advantages of this
model despite the small number of parameters. These models are well suited to
the field of medical imaging. They provide an efficient modeling, in both space and
time, of certain organs such as the heart.

2.4.3.2 Hyperquadrics

The hyperquadric model is a general case of superquadric, but it only makes an im-
plicit representation compared to superquadric model. It differs from superquadric
model by the non symmetry of its representation and its descriptive power. De-
spite the high description power of hyperquadric model, its use remains marginal
compared to that of superquadric. As a result, the complexity and the lack of para-
metric formulations of hyperquadric primitives make them less reliable. Similarly to
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superquadrics, these primitives are used mainly for the reconstruction and modeling
of 3D objects in the medical field.

Table 2.1: A Comparison between 3D shape modeling techniques.

Model advantages disadvantages

3D Mesh
algebraic simplicity lack of continuity
high usability scale dependence
arbitrary topology

Parametric surfaces

high continuity no arbitrary topology
mathematically defined complex handling
compactness
local control

Implicit surfaces

compactness complex handling
descriptive ability limited
to organic forms
complexity sampling

Subdivision surfaces

high continuity no defined mathematically
arbitrary topology
algebraic simplicity
compactness
multiresolution
local control

Volume Representations compactness limited descriptive ability

Discrete Model
high usability scale dependence

size memory

fractal Model
descriptive ability restricted
to natural objects

Constructive Model complex rendering

2.4.4 Discrete models

By using a discrete model, an object is represented by the set of spatial cells occupied
by the volume of the object in space. This representation is obtained using a three-
dimensional array consisting of fixed-size cubes called voxels. The discrete models
are very simple however, they are very expensive in terms of memory, and they are
often used in the medical field.

2.4.5 Fractal models

The objective is to represent a curve or an irregular shaped surface by an iterative
method. This kind of representation was used for 2D image compression and has
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been extended to 3D object compression. It is used only to represent natural objects
such as mountains and clouds... It can represent repeated patterns many times.
These are usually recursive functions using an initial pattern and a replacement
pattern. For surfaces, the objective is to divide each segment in half, from an initial
triangle, and change the height of the midpoint of each segment randomly

2.4.6 Constructive models

These models are widely used in computer-aided design (CAD) applications. They
represent an object by a tree called build tree whose leaves are the objects and the
non-terminal nodes are considered as operators.

2.5 Conclusion

Table 5.1 summarizes the main advantages and drawbacks of each model repre-
sentation categories described in this chapter. For a larger survey of 3D surface
representations, the interested reader should refer to additional reference on polyg-
onal meshes and their applications in geometry processing [Botsch 2007]. In the
context of our work, we focus on the 3D triangular surface meshes, which have a
fairly wide descriptive power allows them to manipulate in a simple way the objects
of arbitrary topology. However this representation is extrinsic, it suffers from high
sensibility against affine and isometric transformations. Therefore to overcome this
problem it seems necessary to look for defining computational intrinsic modeling
which will be addressed in the next chapter.
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3.1 Introduction

In the previous chapter, we mentioned that the 3D triangular meshes are frequently
used to represent 3D objects, thanks to their algebraic simplicity and high usabil-
ity. However, their only downside lies in the fact that a 3D triangular mesh is an
extrinsic modeling, and any applied topological, affine or isometric transformation
may affect this representation. For this reason, we need to go through an intrinsic
modeling before processing this kind of 3D data. In this chapter, we review the
intrinsic modeling of three-dimensional objects. In particular we distinguish two
categories: geometry and topology based modeling. For each category, we describe
three representative classes of approaches. Finally, we give some theoretical prelim-
inaries and existing work about Reeb graph based modeling which is the core of our
research.

3.2 Geometry modeling

The surface geometry is often referred to as its shape. It is primarily defined by
the set of its intrinsic characteristics varying under smooth transformations. In the
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following, we present three classes of geometry based modeling methods for surface
mesh intrinsic description.

3.2.1 Spectral and Laplacian based modeling

Before beginning this section, let us answer the question: what defines spectral
modeling? If we suppose a closed system of basic equations and introduce into
this system a finite expansion of dependent variables by means of functions such
as Fourier. Thus we obtain, for these function coefficients, series of coupled
non linear differential equations, due to the orthogonality properties of the
used spatial functions. By using the Fourier transform, the horizontal spatial
dependence is removed. These function coefficients depend only on the time
and the vertical coordinate. To solve the coupled non linear differential equa-
tions, a simple time-differencing and a vertical finite differencing are mostly applied.

Spectral modeling can be considered as spectral modeling synthesis, noted
SMS, which is an acoustic modeling technique adapted to any signals including
speech. It allows to replace the portions of the time-domain signal by their
short-time Fourier transforms. This principle ensures that the sound representation
is very similar to the perception of sound by the brain. This allows to reduce the
calculation complexity based on perceptual modeling, and more fundamental data
structures perception. Thank’s to the short-time Fourier transforms, the famous
MP3 audio compression format can reach an order of magnitude information
reduction with little or no loss. That is also due to the fact that it prioritizes the
conserved data in each spectral frame based on psychoacoustic principles.

In the case of manifolds, various existing work used the spectral transform
by putting the given surface into one-to-one correspondence with a simpler do-
main [Zhou 2004], or to segment the surface into a set of simpler domains
[Lee 1998, Pauly 2001]. Therefore, it is possible to define a frequency space in these
simpler domains. Authors in [Sokrine 2005] proposed calculating geometry aware
basis functions, defined as solutions of some least-squares problems.

3.2.1.1 Spectral mesh processing

Spectral mesh processing implies the use of eigenvalues, eigenvectors, or eigenspace
projections from suitably defined mesh operators to perform appropriate tasks.
The basic idea consists in constructing a matrix, based on the topological and/or
geometrical information of the input mesh. This matrix representing a discrete
linear operator can be considered as an incorporating pairwise incidence or
adjacency relationships between vertices, edges and faces in the mesh. Once the
matrix is constructed, an eigen-decomposition is then performed by computing the
set of it eigenvalues and eigenvectors. Based on the resulting structures from the
decomposition, which is used in a problem specific manner, the solution is obtained.
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The primary motivation for proposing spectral mesh processing approaches is
the pursuit of Fourier analysis in the manifold setting. Methods applied in the
spectral domain, project the signal in a transformed space. They propose concepts
specially adapted to the underlying irregular three-dimensional meshes. The
objective is to infer intrinsic geometrical surface characteristics by computing its
spectral transform.

Fourier analysis

In order to define the concept of the Fourier transform, we begin by intro-
ducing the case of a closed curve in the continuous setting. Supposing a square
integrable periodic function notes f : x ∈ [0, 1] 7→ f(x), with f a function defined on
a closed curve parameterized by normalized arc-length [Levy 2006]. This function,
f , is decomposed into an infinite series of sinus and cosine of increasing frequencies:

f(x) =

∞∑
k=0

f̄kH
k(x);


H0 = 1

H2k+1 = cos(2kπx)

H2k+2 = sin(2kπx)

(3.1)

being f̄k the decomposition coefficients calculated according to equation 4.4, the set
of these coefficients are called the Fourier Transform (FT) coefficients of the function
f .

f̄k =< f,Hk >=

∫ 1

0
f(x)Hk(x)dx, (3.2)

where < ., . > denotes the inner product (i.e. the dot product for functions defined
on in interval of [0, 1]).

The study of a periodic function by Fourier series has two components: analysis
and synthesis. During the analysis, the Fourier coefficients are determined. The
synthesis allows to reconstruct the function f using the resulting coefficients f̄k by
applying the inverse Fourier Transform FT−1.

Now let’s generalizing these notions to arbitrary manifolds. We suppose the
function Hk of the Fourier basis is the eigenfunctions of ∂2/∂x2:

− ∂2H2k+1(x)

∂x2
= (2kπ)2 cos(2kπx) = (2kπ)2H2k+1(x). (3.3)

The eigenfunctions H2k+1 are associated with the eigenvalues (2kπ)2. To under-
stand the geometric significance of the eigenfunction, in the next section, we study
the discrete setting by considering the eigenfunctions as orthogonal non- distorting
1D parametrization of the shape. In the next sections, we focus on the Laplacian
operator in the discrete and continuous settings and present its utility for 3D shape
modeling.

Graph Laplacian: discrete setting
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Among the early work in this field, we cited the original method proposed
by Taubin [Taubin 1995b]. He demonstrated that the signal processing formalism
could be applied correctly to geometry processing. The similarity between the
eigenvectors of the graph Laplacian and the basis functions used in the discrete
Fourier transform is the base of the proposed method in [Taubin 1995b]. The used
Fourier function basis allows decomposing a given signal into a sum of sine waves
of increasing frequencies.

Figure 3.1: The Fielder vector gives a natural ordering of the nodes of a graph. The
displayed contours show that it naturally follows the shape of the dragon.

Authors in [Isenburg 2009] have employed the spectral graph theory to calcu-
late an ordering of mesh vertices in order to simplify the processing. Fig. 3.1
shows what it looks like for a snake-like mesh (it naturally follows the shape of the
mesh)[Levy 2006]. The Graph Laplacian denoted L = (ai,j) is a matrix defined as
follow:

ai,j = wi,j > 0 if(i, j) is an edge

ai,i = −
∑

j wi,j

ai,j = 0 otherwise

(3.4)

being wi,j the weights associated with the graph edges. The interested reader
should refer to [Lévy 2009] for more details and explanations.

Laplacian Beltrami : continuous setting

In the continuous setting, the laplacian operator called also laplace operator
is extremely important in mechanics, electromagnetic, wave theory, and quantum
mechanics. The laplacian operator is defined as the divergence of the gradient given
by the following expression :

∆ = divgrad = ∇.∇ =
∑
i

∂2

∂x2i
. (3.5)

It is important to note that the eigenfunctions of the Laplace Beltrami (Manifold
harmonics) define basic functions. However, the problem occurs in the calculation
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of eigenvectors for large mesh size. Considering discrete meshes, many cotangent
schemes have been proposed to estimate the Laplace-Beltrami operator [Meyer 2002,
Reuter 2006, BelkiIn 2008] in order to overcomes the current limits.

3.2.1.2 Applications

Spectral modeling in the case of 3D shape, consists in computing the eigenvalues
and eigenvectors of a discrete laplace operator. This eigen-decomposition is applied
in various applications to achieve different tasks. Furthermore, a signal defined
on a triangle mesh can be projected into the eigenvectors taken as a basis. The
obtained coefficients of spectral transform can be analyzed or processed further. In
this paragraph we present the applications which used the spectral transform or
the eigenvectors of mesh Laplace. This king of modeling occupies a very important
position in various fields. Among these, Karni and Gaustman’s work [Karni 2000]
which consists in realizing a 3D shape compression scheme based on a spectral
decomposition method. The main idea is to project the mesh geometry on the
eigenvectors of the Laplacian matrix associated to the object. Thus, a spectrum
(see Fig. 3.2) represented by geometrical coefficients (spectral coefficients) is then
quantized and transmitted in ascending order of the frequency associated with each
coefficient. This spectral analysis is considered as a generalization of the cosine
transform on irregular surface meshes.

Figure 3.2: Geometric spectrum of simplified Bunny mesh (100 vertices).

In the literature, there are several watermarking techniques applied in the
spectral domain to improve the robustness and imperceptibility tasks. To obtain
a frequency representation of the mesh, they use the Laplacian matrix of size D
(N × N). The obtained N eigenvalues and N eigenvectors are standardized and
sorted in ascending order according to their associated frequencies. The N spectral
components are calculated respectively by projecting the cartesian coordinates
(x, y, z) on the normalized and stored eigenvectors. Liu et al. [Lui 2013] have
used the classical spectral analysis to insert the watermark into 3D meshes. Their
method consists in devising the low frequency part of the spectrum in 5 mesh
patches. A bit is then inserted in each patch by changing the relative relationship
between a certain selected spectral amplitude and the average of the different
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spectral amplitudes in the same patch.

In the context of mesh parameterizations and remeshing, approaches using
the spectral domain have the interesting property of connecting local entities
in a way that lets a global behavior emerge. A spectral technique presented in
[Mullen 2004] consists in computing the first solution orthogonal to the trivial one,
that is to say, the eigenvector associated with the first non-zero eigenvalue.

In the segmentation and clustering field, Huang et al. [Huang 2009] devel-
oped an hierarchical shape segmentation method using spectral analysis. The aim
is to detect shape parts which would remain rigid over the deformations. Authors
used an operator that encapsules shape geometry over the static setting. The
objective aimed at defining a certain deformation energy and use the eigenvectors
of the Hessian in order to characterize the space of possible deformations of an
input mesh. The optimal computed partition is the one whose optimal articulated
deformation, defined on the parts of the decomposition, conforms the best to the
basis vectors of the space of typical deformations.

Spectral based modeling is also used as a local descriptor into 3D shape re-
trieval scheme. In [Sun 2009], authors present a concise and informative multi-scale
signature based on heat kernel properties. The latter is calculated by restricting the
well-known heat kernel to the temporal domain. The heat kernel does not admit an
explicit function; it can be calculated using the Laplace-Beltrami operator. Authors
in [Sun 2009], propose to use the cotangent scheme proposed in [BelkiIn 2008] to
approximate the Laplace-Beltrami operator and calculate the set of eigenvalues and
eigenfunctions.

3.2.2 Conformal geometry based modeling

Conformal geometry based modeling has been used in various applications of
computer vision and graphics. In the literature, several studies have been made
on conformal geometry mapping in surface parametrization analysis. This concept
can be considered as an embedding procedure, which maps a 3D surface with disk
topology to a planar domain D. In fact, conformal geometry theory supposes that
each 3D shape with disk topology can be mapped to 2D domain using a global
optimization [Wanf 2007].

Conformal map is a map which only scales the first fundamental forms pre-
serving angles. It is one of mathematical tool in conformal geometry theory, which
does not require to specify the boundary condition reverse unlike harmonics map.
The latter are simple and easy to compute. However, the need to satisfy boundary
condition makes them unreliable especially when the input data has occlusions.
Therefore it is necessary to approximate the missing boundaries.



3.2. Geometry modeling 33

A conformal map is characterized by important properties:

• its connection to complex function theory.

• the surface S is determined by the mean curvature and the area stretching
factor defined on the parameter domain.

• only two corresponding points may determine a conformal parametrization.

• conformal parametrization does not depend on the connectivity of surfaces,
only the geometry is concerned.

3.2.2.1 Conformal geometry theoretical background

Looking for mapping the surface S to the planar domain D. Let’s designate by U
a conformal map from S to D (d = U(s)), and (u, v) are the coordinates on the
planar domain D. A conformal mapping U satisfies the Gauchy-Riemann equations
given by:

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂y
. (3.6)

d = u+ iv , s = x+ iy (3.7)

The two Laplacian equations listed in equation eq 6.3, are obtained by differentiating
those of eq6.2

∆u = 0 , ∆v = 0

∆ = ∂2

∂x2 + ∂2

∂y2
.

(3.8)

In the case of discrete meshes, the existing work, on conformal parametrization, are
based on: harmonic energy minimization, Laplacian operator linearization, angle
based flattening method, Cauchy-Riemann,... Riemann’s theorem demonstrates
that it is possible to find for each surface S, homeomerphic to disc, a parametriza-
tion of the surface while satisfying eq.5.3. This conformal parametrization is
determined using only two corresponding points on the surface S. Fig.3.3 illustrates
a conformal map from a original real human face (a) to a square (b) while preserving
the angles on the surface.

The Least Squares Conformal Map (LSCM) parametrization algorithm gen-
erates a discrete approximation of a conformal map by adding a constraint
[Wanf 2007]. So that, 3D surface can be mapped to 2D domain using the LSCM
method by considering the multiple correspondence as constraints.

3.2.2.2 Applications

Conformal geometric maps have been used in several applications dealing with
surface characterization, thank’s to their interesting properties. To compute
conformal parametrization, Gul et al. [Gu 2003, Gu 2004] proposed using
harmonic energy minimization with holomorphic 1-forms. These approaches
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Figure 3.3: Conformal mapping of an original real female face (a) to a square (b).
A checker board texture (c) mapped back to the face preserving the right angles on
(d) from [Gu 2003].

Figure 3.4: Conformal parameterization of an original brain mesh (a) in a rect-
angular conformal parameter domain (b). In (c) the brain is textured using the
parameterization obtained from (b). (d) and (e) show the conformal factor and the
mean curvature of the brain surface respectively, tired from [Lam 2014].

are used for brain human surface registration. In [Gu 2003, Gu 2004] a confor-
mal parametrization approach is proposed based on the least-square conformal map.

In the field of 3D shape matching, various works use 2D image-matching so-
lutions. Indeed, 3D surfaces have an inherent 2D structure since they are manifolds.
As a result, the problem will be more tractable using conformal geometry theory.
Based on conformal map, the authors in [Lam 2014] proposed a face and brain
surface matching scheme. Wang et al. [Wanf 2007] presented a 3D face recognition
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and 3D non rigid surface alignment based on harmonic maps, conformal maps and
least-squared conformal maps.

3D surface classification is closely related to 3D shape retrieval fundamental
problem. A surface can be classified based on different transformation groups as
topological or Euclidean transformation groups. Gu and Yau [Gu 2003] proposed
to classify surface by using conformal transformation groups. They assume that
the conformal equivalent class is finer compared to the topological one. Hence, it is
suitable for particle classification purposes.

In [Lam 2014], two algorithms have been proposed, according to the confor-
mal geometry, for surface morphine and multi-scale representation. The main
objective of these algorithms is to represent the 3D surface by a its means curvature
and conformal factor functions. The geometry is then determined according to
Riemann surface theory using these two functions. These algorithms were tested
on 3D human face models and MRI-derived brain surfaces. Fig. 3.4 presents the
obtained results of the conformal parametrization with the means curvature and
conformal factor computation.

3.2.3 Riemannian geometry based modeling

In the field of shape analysis, various work use Riemannian geometry modeling,
which is definitively the most abstract geometry modeling paradigm discussed so
far. In this context, objects are represented by a finite number of salient points or
landmarks (point in an Euclidean space R2 or R3) called shape space, representing
all the possible prolongments of the original input object. An equivalence is estab-
lished regarding transformations that will not affect the shape such as rotation,
translation and uniform scaling. The finite-dimensional Riemmannian manifold
(shape manifold) is represented by the obtained quotient space. Approaches that
use Riemmannian metric on the shape space lead to well defined statistics such as
means and covariance on shape spaces.

In the next section we introduce the Riemannian manifold notion noted (M, g). M
designs the smooth manifold and the metric g defines a distance function which is
usually used to compute angles and lengths of curves in the shape. This metric
provides an inner product on each tangent space.

3.2.3.1 Riemannian manifold notion

In the case of differentiable manifold, the Riemannian paradigm is an interesting
example of the tensor field notion. For a smooth manifold M , the commutation ring
of smooth functions on M and the set of smooth vector fields on M are denoted by
C∞(M) and C∞(TM), respectively. The smooth vector field sets C∞(TM) forms
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a module over C∞(M):
C∞
0 (TM) = C∞(M). (3.9)

For each positive integer number n, let C∞
n (TM), given by equation 6.9, be the

n-fold tensor product of C∞(TM) over C∞(M).

C∞
n (TM) = C∞(TM)⊗ ...⊗ C∞(TM). (3.10)

In what follows, we present most important properties of the Riemmanian manifold
notion.

Definition 1. A smooth tensor field, noted by A, of a differentiable manifold M of
type (n, s) is defined as a map A : C∞

n (TM) → C∞
s (TM). The map A is multi-

linear over C∞(M) such that:

A(X1 ⊗ ...⊗Xk−1 ⊗ (f.Y + g.Z)⊗Xk+1 ⊗ ...⊗Xn)

= f.A(X1 ⊗ ...⊗Xk−1 ⊗ Y ⊗Xk+1 ⊗ ...⊗Xn)

+ g.A(X1 ⊗ ...⊗Xk−1 ⊗ Z ⊗Xk+1 ⊗ ...⊗Xn)

(3.11)

where X,Y, Z ∈ C∞(TM), f, g ∈ C∞(M) and k = 1, ..., n. The most important
property is that the A(X1 ⊗ ... ⊗Xn value at a point p ∈ M depends only on the
vector fields values.

Definition 2. A Riemannian metric g on a smooth manifold M is a tensor field g

: C∞
2 (TM) → C∞

0 (TM) such that for each point p ∈ M the restriction gp of g to
TpM ⊗ TpM is an inner product on the tangent space TpM .

gp : (Xp, Yp) 7→ g(X,Y )(p). (3.12)

The Riemannian manifold study is called Riemannian geometry and we note
Riemannian manifold the pair (M, g).

Definition 3. Two Remannian manifold (M, g) and N,h. A map ϕ : (M, g) →
(N,h) is called conformal if there exists function λ: M → R such that for each
X,Y ∈ C∞(TM) :

eλ(p)gp(Xp, Yp) = hϕ(p)(dϕp(Xp), dϕp(Yp)), (3.13)

where p ∈ M . The exponential function eλ is the conformal factor of the
tensor field ϕ. If (λ = 0) the conformal map is said to be isometric.

Definition 4. We denote by I(M) the set of all isometries of a Riemannian man-
ifold (M, g). If ϕ, ψ ∈ I(M), so the composition ψoϕ and ϕ−1 are isometries.
(I(M), o) is called the isometry group of the Riemannian manifold (M, g)

Definition 5. The pair (I(M), o) called isometry group of (M, g) is also said tran-
sitive if ∃ϕpq : M → M for all p, q ∈ M such that ϕpq(p) = q, where ϕpq is an
isometry. Consequently the Riemannian manifold (M, g) is called Riemannian
homogeneous space.



3.2. Geometry modeling 37

3.2.3.2 Applications

As we have shown previously, working in a Riemmannian manifolds gives nice
properties, which solves many geometry processing tasks and various geometric
modeling by endowing the set of closed orientable manifolds. Riemmannian
geometry based modeling has been applied in various applications include shape
morphing, shape deformation, intuitive shape exploration and so many other
applications, we discuss some of them, the most studied in the literature, in the
next section.

In the context of matching 3D facial surface. Bronstein et al.[Bronstein 2006]
study the matching and deformation points in an isometric way based on lengths
of geodesic paths. In the same concept Charpiat et al.[Charpiat 2005] proposed
a Riemannian framework using the Gromov-Hausdroff distance instead of the
geodesic one. To address non rigid face matching, Lu et al.[Lu 2005, Lu 2006] have
propose to use thin plate splines.

3D face surface comparison is another widely studied application. In [A. 2009], Sri-
vastava et al. proposed to compute geodesics between pairs of faces by considering
geodesic’s lengths as the geometrical distances between the faces. In another hand,
Samir et al. [Samir 2006] used the level curves of the height function to define and
study shapes of facial curves.

Recently many research work have focused on deforming 3D facial surface.
The main objective of these work is to chose a certain criterion. In order to study
shapes of anatomical parts in the medical domain, Grenander’s deformable template
theory [Grenander 2010] consists in subdivided the set of non-rigid deformations
into linear and nonlinear deformations. Kilian et al. et al. [Kilian 2007] proposed
a numerical approach to calculate geodesic conductivities between triangulated
surfaces using Euclidean metrics. This approach does not address the invariance to
arbitrary parameterizations of surfaces.

Shape exploration is another important application used Remanning geome-
try modeling. In [Kilian 2007], authors proposed a new framework to analysis
shapes. The main objective consists in exploring the space of isometric deformations
of an input object. After a preprocessing step, the input shape is mapped to a
set of 2D point. A Delaunay triangulation of this point set is then constructed.
Two scalar function based on the geodesic distance and the length of the curves
obtained by linear interpolation, respectively, are assigned with each edge of this
triangulation. Finally a refinement step is added only if the difference between the
two scalar function is greater than a defined threshold.

Fig. 3.5, taken from [Kilian 2007], shows the planar triangulation obtained
from some selected poses of the Armadillo shape after adding two refinement steps.
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We also see in the same figure a curve drawn during the exploration phase.

Figure 3.5: The top row shows the five input poses of the armadillo shape. The bot-
tom row (left) shows the 2D planar triangulation obtained by adding two refinement
steps. The bottom row (right) shows the curve drawn in the exploration phase.

3.3 Topology modeling

The surface topology is defined by the set of its characteristics, which are invariant
to smoothing transformations. Thus, this intrinsic representation is very interesting
for various shape modeling applications.

3.3.1 Curve skeletons

Curve skeleton extraction is fundamental shape feature tasks in 3D digital geometry
processing and shape retrieval. This kind of representation provide an intrinsic
structural shape description, which will be very useful in the field of 3D shape
modeling applications.

This compact representation is a modern variant of shape skeletons based on
the axe median transformation. In the past, it has been extensively studied in
the case of 2D planar contours. Using the axe median transformation, makes this
structural descriptor very sensitive against local distortions. In addition, the axe
median transformation is very complex, in the case of 3D objects, which makes the
skeleton extraction is very costly in terms of time.

The axe median of an object is defined by Blum in 1967 as the set of the
centers of maximal disks included in the object [Blum 1967]. A disk is maximum
if it is not included in any other record in the object. As is shown in Fig. 3.6, the
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obtained result is a line graph in 2D. Each arc of the graph is the median, that is
to say, it is in the middle of some part of the form and acts as an axis of symmetry.

Figure 3.6: A linear 2-D graph obtained after applied the axe median transformation
with the central axis (a). (b) shows the graph of the sensitivity to artifacts.

The skeleton model is initially defined as a collection of the center of the
largest inscribed sphere. Commonly, curve-skeleton based methods can be roughly
classified into three categories: semantic oriented segmentations, distance transform
based (ridge detection) and general field functions based.

Authors in [Sun 2010] proposed a new geometric approach to extract skele-
ton based on feature points and core extraction by applying the multidimensional
scaling (MDS) transformation. Using MDS allows to decompose the mesh into
several prominent branch components and a core component to extract the skeleton.

In the literature, there is an important number of skeleton based topological
approaches that study the properties of continuous functions computed over
triangulated surface. The defined mapping function must be, all the time, invariant
to shape deformations and different transformations. In the same context, Tierny
et al. [Tierny 2006a] proposed a 3D mesh skeleton extraction approach based on
geometrical analysis. The main purpose of this method consists in detecting feature
points located on the shape extremities. Than, considering the set of extracted
feature points, a mapping function based on the geodesic distance is defined on each
vertex in the mesh. Thus allows to construct the Reeb graph of the mesh. Finally,
a constriction approximation is applied in order to enable Reeb graph refinement
into more enhanced topological skeleton. The different stages of this algorithm are
illustrated in the Fig. 3.7.

While the majority of research in this area lies on 3D objects, now the trend is
to turn to the 3D time domain (3D+t). 3D dynamic meshes are becoming a media
of increasing importance. They constitute a fundamental and time consuming task
in 3D animation systems. The issue of kinematic structural representation has
rapidly gained the interest of the scientific community in recent years. Few existing
work in the literature have been proposed to extract kinematic skeletons for 3D
dynamic meshes [Aguiar 2008, Schaefer 2007].

Recently Tierny et al. [Tierny 2008a] proposed a new approach to precisely
extract the kinematic skeleton for a given 3D dynamic mesh based on Reeb graph
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(a) (b) (c) (d) (e)

Figure 3.7: Main stages of Tierny et al.[Tierny 2006a] proposed enhanced topological
skeleton approach. (a) Feature points extraction, (b) Mapping function definition,
(c) Reeb graph construction, (d) Constriction approximation and (e) Enhanced
skeleton construction.

construction. The 3D shape is represented by a set of level lines which depend on
the edge-length deviation induced by the 3D shape transformation over the time.
Tierny et al. [Tierny 2008a] algorithm allows detecting the shape articulations.
However, in same cases, it fails to detect these articulations when the edges located
on those articulations remain immobile through time. To overcome this problem,
more recently Lavoué et al. [Benhabiles 2012] developed a precise kinematic
skeleton extraction method for 3D dynamic meshes. The objective aimed at was to
detect all the boundaries, including the immobile parts connected to the shape’s
articulations. Authors in [Benhabiles 2012] proposed to separately compute a set
of regions of interest for each mesh in the sequence. A unique segmentation is then
performed for the whole sequence by linking all the interest regions obtained from
each mesh to extract the kinematic skeleton.

Topological skeletons have shown to be higher level shape descriptions, They
are widely used in divers field applications such as shape metamorphosis, deforma-
tion, 3D shape retrieval and texture mapping.

Within the framework of pattern recognition, skeleton based descriptor allow
conserving the high-level information that corresponds to the intuitive description
of the 3D shape. Nevertheless, graph representation based on the construction
of the skeleton which may encounter some difficulties like high computation
cost, sensitivity to noise on the shape surface, and/or the need of predefined
control points. Li et al. [Li 2014] applied a skeleton-based approach in a non
rigid 3D shapes matching scheme. The extracted skeleton integrate both ge-
ometrical and topological features of 3D object. The main objective of there
algorithm is to compare geodesic paths between skeleton graphs. In order to
measure the similarity between 3D object, authors in [Angela 2004] proposed to
use internal skeleton graphs. The latter is generated using a progressive mesh
technique. The obtained skeleton graphs is than simplified by removing insignif-
icant nodes of degree two. Finally the similarity is computed based on backtracking.

Skeleton graphs are also good supports for shape deformation. To show the usability
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of the enhancing 3D mesh topological skeleton, Tierny et al. [Tierny 2006a] used
this approach for shape deformation. Each skeleton node references each mesh
sub-component vertex. Thus it is easy to apply deformations on selected parts
of the shape. In this work, authors applied simple rotation to components on
the shape. Then, they compute a rotation matrix using an angle and an axis of
rotation. Finally, the obtained matrix will be applied to each vertex of the selected
node. Thus producing nice-looking deformations as showing in Fig. 3.8 .

(a) (b)

Figure 3.8: Example of application: mesh deformation. (a) Enhancing 3D mesh
topological skeleton, (b) Its application to deformation.

3.3.2 Segmentation

Segmentation and skeletonisation are two closely related tasks. One being the
driver to the other. Mesh segmentation is often formulated as graph clustering. It
has been studied in computer vision, especially for compression and simplification
purposes. It consists in partitioning mesh elements (vertices, edges and faces) into
disjoint sets according to certain criterion which can be grouped into trois classes.
The first one is defined as a feature of the mesh such as area, size or length. The
second class is defined as differential property such as curvature, normal direction.
The third class is defined as distance measures such as geodesic distance, distance
to the medial axis, or the shape diameter. These surface measures are generally
extracted prior to the segmentation of the mesh.

Existing segmentation approaches can be roughly classified into five categories:
region growing, hierarchical segmentation, iterative segmentation, spectral analysis
based methods and graph-cut approaches.

Choosing the segmentation category and/or the criterion function used for
the optimization are released specially to the field of applications and the seg-
mentation objectives (surface-type and part-type segmentations). For example,
surface-type segmentation is mostly used for texture mapping, parametrization,
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building charts and geometry-image creation. These kind of applications require
the topologically equivalence of the sub-mesh patch to a disk. Remeshing and
simplification are also two important applications that use surface-type segmen-
tation. The main idea is to replace each cluster either by one or set of planar polygon.

Furthermore, part-type segmentation is used for 3D shape recognition and
understanding based on structural decomposition. It is also used for modeling by
assembling parts of shape and reforming new objets from these parts.

The criterion choice, used to decompose shape into parts, can affect directly
the segmentation results. The main idea is to extract attributes from the surface
mesh. According to the desired application, there is different attributes such as:
planarity of forms, geodesic distance, curvature information, medial axis, shape
diameter function, difference in normals of vertices or dihedral angle between faces
and other geometric proxies (spheres, cylinders, developable, surfaces).

The most useful attributes are based on surface properties of the mesh. We
note the differential property curvature and the averages geodesic distances. In
[Sokrine 2005] another related attributes is defined as the shape diameter function
(SDF). The latter measures the local diameter of the shape at the points located
on its boundary. In Fig. 3.9, authors in [Shamir 2006] compare three attributes,
minimum curvature, average geodesic distance and shape diameter function. We
can notice that compared to the minimum curvature attribute, using geodesic
distance and SDF allow partitioning the mesh into clusters consisting of topologi-
cally connected vertices. Furthermore, the SDF attribute allows detecting all the
boundaries, including the immobile parts connected to the shape’s articulations.

(a) (b) (c)

Figure 3.9: Example of mesh attributes used for segmentation. (a): Minimum
curvature, (b): Average geodesic distance and (c) Shape diameter function.

In [Shapira 2008], authors proposed to use volume-based shape-function usually
called the shape diameter function (SDF) in order to partition articulated objects
to parts. The definition of the SDF is invariant to rigid body transformations and
to pose changes of the shape and maintains similar values in analogue parts of
different shapes. It is defined on the mesh faces as scalar function. It consists in
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computing the diameter of the object’s volume in the neighborhood of each vertex
on the shape. Thus, SDF, allows us to explore the connection from the mesh to the
shape volume instead of the surface attributes.

Recently, the issue of 3D static mesh segmentation has rapidly
gained the interest of the scientific community. However, few work
have dealt with motion based segmentation for 3D dynamic meshes
[Lengyel 1999, Amjoun 2006, Boulfani-Cuisinaud 2007]. The pioneer method
developed by Lengyel [Lengyel 1999] proposes to partition the mesh into com-
ponents, whose motion can be accurately described by a 3D affine transform.
This heuristic approach select randomly 10% of triangles in mesh. The remaining
vertices are classified according to the motion of these triangles. The drawback of
this approach resides in the large number of clusters which is independent of the
motion.

Amjoun et al. [Amjoun 2006] extended this approach, to develop region growing
segmentation algorithm. The authors propose to search the N farthest triangles
in geodetic sense. The choice of triangles germs is based only on the geometry
of the first frame. This may justify the lack of efficiency of the segmentation
approach. The authors of [Boulfani-Cuisinaud 2007] propose another alternative
of [Lengyel 1999]. The main idea consists on calculating, for each vertex v, the
affine transform that optimally describes the motion of his neighborhood. All the
vertices whose motion can be described by the same affine transform with respect
to a minimum error motion compensation are grouped in the same cluster. The
sub-optimal selection of vertices leads to a misclassification of the ones located on
the borders between clusters.

More recently Rosman et al. [Rosman 2012, Rosman 2013] developed a motion-
based segmentation technique to partition an articulated 3D shape into rigid
parts. The proposed approach is rebuilt on the Ambrosio-Tortorelli scheme for
Mumford-Shah segmentation [Mumford 1989]. The latter establishes an optimality
criterion to segment the 3D shape into sub-regions. The technique presented in
[Rosman 2013] consists on performing a segmentation by resolving a piecewise-
smooth regularization problem.

Mamou et al. [K. Mamou 2006] proposed a 3D mesh compression scheme,
based on a skinning animation technique. The segmentation process is based on
3D affine transforms in order to obtain the frame-wise motion of each region by
weighting previous affine transforms. Motion compensation is then performed
followed by Discrete Cosine Transform (DCT) applied on residual errors.

3D mesh segmentation has emerged as an important issue because of the
multitude of related applications. A shape can be considered from a purely
geometrical point of view or a more semantically oriented. The manner in which
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a mesh is interpreted depends on the intended application and leads to a surface
patch segmentation or partitioning in significant parts. In the first case, the
mesh is partitioned into patches which characteristics can meet the constraints
on curvatures border flatness, convexity, etc. In the second case, the objective
is to detect significant parts of the object. It is worth noting that segmentation
surface patches are often used in the texture mapping, mesh parametrization,
re-meshing and simplification, pattern recognition, compression and so many other
applications.

3.3.3 Differential topology based modeling (Reeb Graph)

The notion of Reeb graph has been introduced in 1946 by Georges Reeb [G. 1946].
It is a topological structure determined using a continuous scalar function defined
on an object of arbitrary dimension. Reeb graphs allow obtaining a skeleton type of
representation preserving the 3D object topological structure of objects [G. 1946].
More specifically, a Reeb graph is a data structure that represents the evolutions
of the level lines of a scalar function over a mesh. According to the Morse theory,
a Reeb graph can be obtained assuming a continuous function µ calculated over
the 3D object surface [T. 2008]. Indeed, their construction allows characterizing
the closed surface topologies. It is noted that the number of cycles in the graphs
depends on the number of holes in the objects.

3.3.3.1 Morse theory

Reeb graph representation is based mainly on Morse theory, which allows to study
the relationship between functions defined in a space and its shape. In the context
of 3D triangular meshes, considered spaces of 2-manifold. Its worthily to note that
Morse theory uses variational calculation to establish relationship between critical
points (minimum, maximum and reflection point) of a differentiable function
defined on a differentiable manifold and overall surface topology.

In order to study the critical points, let’s designate by f a function with a
unique variable, denoted by f(x) = y. The critical points of f are the set of points
{x0} satisfied f ′(x0) = 0 where f ′ is the primitive of f . In the case of a function
with 2 variables noted f(x, y) = z, the critical points are null gradient points
(∇f = 0; whether ∂f

∂x = ∂f
∂y = 0).

3.3.3.2 Reeb graph definition

In the following we only consider objects which are closed 2-manifold triangular
meshes with vertices located in a Cartesian frame R(x; y; z). Given a surface S of a
3D object and a real continuous function µ : S 7→ R, the Reeb graph is the quotient
space of the graph of µ in S × R by the equivalence relation “∼” between X ∈ S
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and Y ∈ S:

X ∼ Y ⇐⇒
{

µ(X) = µ(Y )

X,Y ∈ µ−1(µ(X)).
(3.14)

For two nodes vi, vj :
(vi, µ(vi)) ∼ (vj , µ(vj)),

if and only if µ(vi) = µ(vj) and vi, vj belong to the same connected component of
µ−1(µ(vj)).

Two points belonging to the same equivalence class, only if they have the
same scalar function value and they belong to the same connected component. As
a result, the triangular mesh M is divided into regions depending on the values of
µ. A node is then associated to each region and the graph structure is obtained
by linking the nodes of the connected regions. Fig.3.10 shows the Reeb graph of a
torus using the height function.

Figure 3.10: The Reeb graph of a 3D torus object using the height function.

The principal advantage of the Reeb graph representation relies on its ability to
easily represent the shape topological structure. Various scalar functions have been
proposed by the computer graphics community to construct Reeb graphs. According
the desired applications, the choice of the scalar function µ can effect directly the
stability properties of the topological structure. In the next section, we present some
of these continuous scalar functions.

3.3.3.3 Scalar functions

We note that the obtained Reeb graph aspect is closely related to the chosen scalar
function. Various continuous scalar functions, having different properties, allow
to construct the Reeb graph for 3D triangular meshes. The most commonly used are:

Height function: given a point v(x, y, z) on the surface S, the height func-
tion is defined by µ(v(x, y, z)) = z. Experiments have shown that this function is
well suited for human representation, which privileging the vertical [Hilaga 2001].
Despite its simplicity and its low computation cost, this function penalized by the
fact that it is totally dependent on the object orientation. In particular, its use
is inappropriate for objects whose points are mainly dispersed in the directions
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perpendicular to the z axis.

Barycenter function: given a point v on the surface S, the centroid function
(or barycenter) is defined as the distance between v and the barycenter B of the
object (µ(v) = d(B, v)) where d is the Euclidean distance. This function is well
known by its simplicity and stability to small perturbations.

Geodesic function: the geodesic distance between two vertices is the length
of the shortest path between them along the mesh, according to a given metric.
It is based on region growths from local Gaussian curvatures of vertices (germs).
The obtained result usually depends on germ positions and require the calculation
of local curvatures which is not always realistic, especially for objects with bad
geometric quality.

Hilaga et al. [Hilaga 2001] proposed a new form of scalar function based on
the geodesic distance. The main idea consists in computing the integral of the
geodesic distances g(v, p) between a given point v and all the other points of the
whole surface S:

µ(v) =

∫
p∈S

g(v, p)dS. (3.15)

According to [Hilaga 2001], through the integral form, the µ function is in-
variant to rotation and stable against different local modifications in the shape.
Applying the integral on the whole surface allows to measure the eccentricity of the
surface points. The high eccentricity is driven by high value of µ and conversely
the point having a minimum value of µ has a central portion of the object. Indeed,
when a point is eccentric, its distance to the other points is large and therefore the
integral geodesic distance is higher. Thus, this property characterizes intuitively
the object topologies compared to the centroid function. Fig. 3.11 depicts the
distribution of the µ function using the height, the barycenter, and the geodesic
distance, on armadillo object.

(a) (b) (c) (d)

Figure 3.11: Example of different scalar function distribution in armadillo object.
(a) Height function, (b) Using barycenter function and (c) Using geodesic function.
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3.3.3.4 Applications

The Reeb graph can be used in a very wide range of applications; it can be
extremely useful as local shape descriptor for 3D pattern recognition. In the
medical field, it can be used for the segmentation of 3D scanner of human body. It
is also exploited in the cartography field for terrain modeling.

In the context of 3-D model retrieval, Biasotti et al. [Biasotti 2003] compare
Reeb graphs obtained by different functions µ and study their impact on the match-
ing accuracy. From this study, the authors demonstrate that the integral geodesic
distance [Mitchell 1987, Kanai 2000] is particularly adapted for articulated objects,
whereas the distance to the barycenter may be favored if the distinction of different
poses of an articulated object is required. The height function is characterized by
its simplicity but it varies under isometric and affine transformations and thus it is
not intrinsic to the surface.

Reeb graph driven segmentation, in fact mesh segmentation and Reeb graph
representation have a close link. From a Reeb graph, we can perform segmentation
and inversely. In [Tierny 2008b], Tierny et al. proposed automatic algorithm
for Reeb graph construction based on geodesic distance. This approach consists
in detecting the set of feature points (significant features) in the mesh that will
be used to compute a mapping function in each vertex. Then, a segmentation
process is driven used high level shape information. The segmentation algorithm is
summarized in two steps based on [Berreti 2006]. First, they reduce the number of
clusters by merging adjacent nodes having a degree greater than 2. Than, authors
selected the most concave boundaries.

3.4 Conclusion

In this chapter we presented different modeling types. For each category, we dis-
cussed the advantages, the drawbacks, and the main applications. In general, the
researchers chose the appropriate modeling strategy depending on the required ap-
plication. For example, in the case of 3D shape retrieval, the shape descriptor used
to extract the signature must be robust to various transformations and deforma-
tions. If the database contains only 3D rigid meshes, the robustness to non-rigid
transformations may not be considered. Topological representation can be used
for various applications in computer vision. In our work, we focus on the use of
Reeb graph representation in 3D non rigid shape retrieval and segmentation-based
compression for 3D dynamic triangular meshes.
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4.1 Introduction

In this Chapter, we describe the heat diffusion principle, adapted to Riemannian
manifolds which is the base of Reeb graph construction approach. Thereafter, we
present the principal contribution, which is the core of our research. It is a novel
approach to construct Kinematic Reeb Graph by exploiting the temporal informa-
tion. The main contribution consists in defining a new scalar function, based on the
eccentricity in term of diffusion distance. The latter is computed from the discrete
representation of the shape. To compute the scalar function, we propose extracting
the set of feature vertices in the shape. This crossed analysis is based on two dif-
fusion distance functions. Thank’s to the important properties of the heat kernel,
the obtained Kinematic Reeb graph is invariant to isometric , affine and non rigid
transformations.
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4.2 Heat diffusion

The heat diffusion on a given surface M is fully described by the heat kernel as-
sociated with the Laplace-Beltrami operator ∆M . In this section, we give a brief
overview of the heat diffusion on Riemannian manifolds. It is worth mentioning that
the proposed Reeb graph construction approach is rebuilt on defining a new scalar
function. The latter is based on this concept of heat diffusion on 3D shape surface,
which is fully described by the heat kernel associated with the laplace Beltrami.

4.2.1 Heat kernel

Let’s denote by M a Riemannian manifold, the heat diffusion for x ∈ ∂(M) is given
by the following expression:

∆x,t
M = −∂u(x, t)

∂t
, (4.1)

where u being a function that satisfies the Dirichlet boundary condition u(x, t) = 0.
Considering the initial heat distribution given by f : M → R; the heat diffusion,
denoted by Ht(f), satisfies the heat constrain: limt→0Ht(f) = f , where Ht is called
the heat operator, Ht and ∆M are two operators that map one real function defined
on M with respect to the following equality: Ht = e−t∆M . Thus if we designate
∆M eigenvalue by λ, the eigenvalue that corresponds to Ht will be expressed by
e−tλ. Authors in [Hsu 2002] claimed that for each Riemannian manifolds M , we
can define a heat kernel function denoted by Kt(x, y). This function represents the
amount of the heat transmitted from x to y at t.

The heat kernel is called also the Gaussian transition density function. It is
the basic analytic object associated with the Brownian motion on the manifold Rn.
This explains that for any Borel subset C ⊆M :∫

C
Kt(x, y)dy = P (Xx

t ∈ C), (4.2)

where P is the probability of Brownian motion displacement from a point x to C
over t.

The function of the heat kernel is characterized by important properties:

Intrinsic property

The following proposition demonstrate the heat kernel invariance under iso-
metric deformations. This is a direct consequence of the invariance of the Laplace
Beltrami operator. The equation of the heat kernel involves intrinsic properties
of the manifold. Thus it can be extremely used to process and analyze 3D object
under different isometric deformation.

Proposition 1. We define an isometry noted T between two Riemmanian manifolds
M and N . For any x, y ∈M and any T > 0:



4.2. Heat diffusion 51

ifT :M → N ,

thenKM
t (x, y) = KN

t (T (x), T (y)).

Informative property

The heat kernel contains all the information about the geometry of the ob-
ject. Thus it characterizes completely the shapes up to isometry as demonstrated
in the following proposition:

Proposition 2. We define a subjective map T between two Riemmanian manifolds
M and N . For any x, y ∈M and any T > 0:

if KN
t (T (x), T (y)) = KM

t (x, y),

then T :M → N is an isometry.

This proposition is demonstrated by the following equation eq.4.3:

lim
t→0

t log kt(x, y) =
−1
4
d2(x, y), (4.3)

where d(x, y) designs the geodesic distance between two points x and y on a
manifold M .

Multi scale property

Another important property; the heat kernel function is determined by the
neighborhoods of a point i on a manifold M . for small values of t, these neighbor-
hoods are small, and grow bigger as t increases. Consequently, we can notice that
the heat kernel function Kt(i, .) only reflects local properties of the object in the
neighborhoods of i, for small values of t. While, increasing t, Kt(i, .) reflects global
properties of M around i.

For more explanation, we consider the heat diffusion paradigm on a subset
of M , D denotes a compact and smooth domain on M . HD

t is the heat operator
associated with D satisfies the direchlet-boundary conditions. KD

t is a local amount
depends just on D. In the following proposition , we demonstrate that the heat
kernel function KD

t (x, y) is a good approximation of kt(x, y) even when the values
of t are large as long as D is big.

Proposition 3.

For any compact and smooth domain D ⊆M : limt→0K
D
t (x, y) = kt(x, y).

D1, and D2 denote two compact and smooth domains on M . For any x, y ∈ D1 and
any t ∈ R+: if D1 ⊆ D2 then KD1

t (x, y) = KD2
t (x, y).

If {Dn} is an expanding compact domain sequences, then limn→∞KDn
t (x, y) =

kt(x, y).
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Stability property

The heat kernel is stable against perturbations on deformable models. This
important property comes from the heat kernel interpretation as the transition
probability of the Brownian motion on M . The latter is a basic continuous time
Markov process with continuous sample paths. Its probabilistic behavior is only
defined by its transition density function GaussianHeatkernel. This means that
the heat kernel function between two points x and y is obtained by the weighted
average over all possible euclidean paths between x and y at t. Which should not
be significantly affected by local perturbations of deformable surface. For example,
if we suppose a Brownian motion on a manifold M and we introduce a perturbation
on a subset D ⊂M , then only the paths in D will be affected.

4.2.2 Laplace-Beltrami operator

The heat kernel has nice properties which makes it very suitable in various ap-
plications. However it does not admit an explicit function; it can be obtained as
the fundamental solution of the heat equation associated with the Laplace-Beltrami
operator, given by the following expression:

kt(x, y) =
∞∑
i=0

e−λitϕi(x)ϕi(y), (4.4)

With λi and ϕi are respectively the ith eigenvalues and eigenfunctions of the
Laplace-Beltrami.

The laplace-Beltami operator serves as the infinitesimal generator for Brown-
ian motion on a manifold. We can briefly defined this operator by the following
definition:

Definition 6. Let’s denotes by < ., . >, a Riemannian metric. The gradient gradf
of a function f on a manifold M is a vector field defined by:

ForanyX ∈ Γ(M), < gradf,X >= X(f), (4.5)

where Γ(M) is the space of smooth vector field. The laplace-Beltrami operator ∆Mf

is given by:
∆Mf = div(gradf). (4.6)

We observe that, in the theory (eq. 4.4), the heat kernel is related only on
the eigenvalues and eigenfuctions of the Laplace-Beltrami operator. Thus this
fundamental can be exploited in the pattern recognition field to compare shapes in
different representations especially in the internet application.

In this work, we suggest to use the solution proposed in [BelkiIn 2008] to
approximate the Laplace-Beltrami operator and calculate the set of eigenvalues
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and eigenfunctions. For a given Mesh M , the Laplacian operator matrix L can
be established as L = A−1W , with W is an adjacency matrix and A is a positive
diagonal matrix. A(i, i) represents the area associated with the corresponding
vertex i. The objective is to solve the equation Wϕ = λAϕ. Consequently L can be
written by L = Φ ∧ ΦTA, where ∧ denotes the diagonal matrix of eigenvalues and
Φ designates the matrix whose columns correspond to the right eigenvectors of L.

In the case of discrete setting, equ. (4.12) is replaced by Lut = ∂ut
∂t . The

solution of this equation takes the following form ut = e−tLu0 , where u0 is an
arbitrary vector which represents the distribution of the initial heat, and e−tL is an
exponential matrix given by equ. (5.2):

e−tL =
∞∑
i=0

(−tL)i

i!
. (4.7)

Based on equ. (4.4), the exponential matrix can be written as: e−tL = Φe−t∧ΦT
A =

ktA. Therefore, in the discrete setting, the heat kernel matrix kt is given by:

kt = e(−tL)A(−1). (4.8)

4.2.3 Diffusion distance

The diffusion distance is closely related to the heat kernel. It measures the connec-
tivity path between two points x, y ∈ M at the given time t. It is defined by the
following equation:

d2t (x, y) = kt(x, x) + kt(y, y)− 2kt(x, y)

=
∑∞

i e(λit)(ϕi(x)− ϕi(y))2.
(4.9)

The heat kernel kt(x, x) is represented by the average behavior of the heat dissipation
in the neighborhood determined at a given time t. The average behavior in a
small neighborhood is sensitive to changes in the temporal domain. Conversely,
the average behavior in a large neighborhood is resistant. Therefore, the diffusion
distance depends on local information when the variable t is small. This is due
to the lack of significant distribution spread. The eccentricity of x in term of the
diffusion distance denoted by ecct(x) is defined as the mean square of the diffusion
distance on the whole surface of M :

ecct(x) = 1
AM

∫
M d2t (x, y)dy

= kt(x, x) +HM (t)− 2
AM

,
(4.10)

being AM the surface area of M and HM (t) its heat trace. At the given time t,
HM (t) is defined by:

HM (t) =
∑
i

e−λit. (4.11)
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4.3 Survey on Reeb graph extraction

Reeb graph is an interesting candidate for 3D shape intrinsic structural represen-
tation. Several works have been developed to propose a Reeb graph construction
for rigid models [Hilaga 2001, Tung 2005a]. The proposed approaches have been
later extended to non-rigid models [Tierny 2006b, Gal ]. In particular, the pioneer
method developed by Hilaga et al. [Hilaga 2001] proposes to calculate a scalar
function based on geodesic distance. Gal et al. [Gal ] extended this context for
non-rigid models. Nevertheless, scalar function based on geodesic distance is
penalized by its sensitivity to topology changes.

Based on Hilaga et al. [Hilaga 2001] scheme, for a given point v(x, y, z) on
the object surface S, the function µ(v(x, y, z)) is defined as the integral of the
geodesic distance g(v, p) from v to the other points p of the surface:

µ(v) =

∫
p∈S

g(v, p)dS. (4.12)

For a practical implementation, the function µ is computed using a discrete
formulation. Assuming that the surface S is approximated through a discrete
mesh M represented by a triangulation of vertices. For each vertex v ∈ M ,
µ(v) =

∑
p∈M g(v, p).area(p), with area(p) is the area that p occupies, and∑

v∈M area(v) is the area(M). Since it is computationally expensive to compute
all geodesic distances, Hilaga et al. propose to compute the function µ by
approximating the geodesic distance with the length of the shortest piecewise linear
path on mesh vertices, according to the Dijkstra’s algorithm. During the Reeb
graph construction, the geodesic distances are not calculated from all the surface
vertices, but rather from a small number of evenly spaced vertices. The latter are
taken away from a distance d = 2

√
0.005.area(S), with area(S) represents the

whole area of the surface S. Even so, this alternative is still diminished by high
computational cost.

Hilaga et al. [Hilaga 2001] introduced the concept of multi-resolution Reeb
graph (MRG), which is a hierarchy of dichotomies of µ base domain. Each node of
a MRG corresponds to a connected set of a pre-image by µ of a given interval of R.
As a result, one can study the geometry of these connected sets. However, MRG
does not distinguish the important critical vertices of µ from the insignificant ones.
Consequently, it may comprises many insignificant branches and could thus make
the definition of a simplification strategy difficult in the smooth case.

To overcome this problem, Ni et al. [Ni 2004] suggested to compute fair
Morse functions with a minimum number of critical vertices. However, this
alternative reduces the number of critical points based on a user-controlled process,
which prevents its application in automatic Reeb graph extraction contexts.
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Biasotti et al. [Biasotti 2006] proposed an extended Reeb graph construc-
tion, using a finite set of contour levels, and spherical harmonics sub-parts
signatures. The obtained Reeb graph is robust to isometric transformations.

Tierny et al. [Tierny 2009] proposed an automatic technique for the compu-
tation of function µ which is intrinsic to the surface, and whose critical vertex set
depicts the most important geometrical features of the surface. Their approach
consists in taking µ(v) = g(v, vf ), where g(v, vf ) stands for the geodesic distance
and vf for the closest feature point (point located on the extremity of the mesh)
from v. Authors in [Tierny 2009] have shown that their approach gives better
emphasis on local shape features thanks to the feature points. However, the Reeb
graph construction may be discriminated by the use of the only closest feature
points in the geodesic scalar function formulation. Steered by the outcome of this
analysis, we present a novel Reeb graph construction strategy, which forms the core
of the proposed 3D-shape matching system.

In [Aouada 2010], authors developed a new topological shape skeleton repre-
sentation called suigraph based on Morse theory. This proposed geometric
modeling approach consists in embedding, in Euclidean space, a manifold of new
characteristic iso-geodesic curves. Recently, authors in [Mohamed 2012] proposed
an invariant Reeb graph algorithm based on normalized mixture distance function.

More recently, El Khoury et al. [El Khoury 2012] proposed a 3D-model re-
trieval scheme based on indexed closed curves. To construct the Reeb graph, the
authors have defined a mapping function using commute-time distance which is
proved to be robust to isometric transformations as well as non rigid ones.
In the last decade, with technological progress in telecommunication, hardware
design and multimedia, 3D dynamic content are becoming a media of increasing
importance. It is subject to a wide variety of processing operations such as
segmentation, compression and indexation. Consequently it needs an intrinsic
structural descriptor before being processed by one of the aforementioned oper-
ations. The issue of kinematic structural representation has rapidly gained the
interest of the scientific community in recent years. Few existing work in the
literature have been proposed to extract kinematic skeletons for 3D dynamic
meshes [Aguiar 2008, Schaefer 2007]. 3D dynamic shapes are usually represented
by a sequence of 3D meshes with constant connectivity and temporal information
provided by time-varying geometry (only the vertices position changes over time).

Recently Tierny et al. [Tierny 2008a] proposed a new approach to precisely
extract the kinematic skeleton for a given 3D dynamic mesh based on Reeb graph
construction. The 3D shape is represented by a set of level lines which depend on the
edge-length deviation induced by the 3D shape transformation over the time. Tierny
et al. [Tierny 2008a] algorithm allows detecting the shape articulations. However,
in same cases, it fails to detect these articulations. Principally, this phenomenon
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occurs when the edges located on those articulations remain immobile through
time. To overcome this problem, more recently Lavoué et al. [Benhabiles 2012]
developed a precise kinematic skeleton extraction method for 3D dynamic meshes.
The objective aimed at was to detect all the boundaries, including the immo-
bile parts connected to the shape’s articulations. Authors in [Benhabiles 2012]
proposed to separately compute a set of regions of interest for each mesh in the se-
quence. A unique segmentation is then performed for the whole sequence by linking
all the regions of interest obtained from each mesh to extract the kinematic skeleton.

Reeb graph is an interesting candidate for 3D shape intrinsic structural rep-
resentation. Several works have been developed to propose a Reeb graph
construction for rigid models [Hilaga 2001, Tung 2005a]. The proposed approaches
have been later extended to non-rigid models [Tierny 2006b, Gal ]. In particular,
the pioneer method developed by Hilaga et al. [Hilaga 2001] proposes to calculate a
scalar function based on geodesic distance. Gal et al. [Gal ] extended this context
for non-rigid models. Nevertheless, scalar function based on geodesic distance is
penalized by its sensitivity to topology changes.
In our work, we propose a kinematic Reeb graph extraction approach which
exploits the temporal information. The main contribution consists in defining a
new scalar function, based on the eccentricity in term of diffusion distance. The
latter is computed from the discrete representation of the shape. To extract the
feature points, we propose to run a crossed analysis using two diffusion distance
functions, based on the farthest vertices. Non-isolated extrema are then purged by
intersecting the set of local extremities of both diffusion distance functions.

4.4 Proposed method

A Reeb graph is a structure that represents the evolutions of the level lines of
a given continuous function, defined over objects of any dimension (k-manifolds)
[Biasotti 2008]. The proposed approach for Reeb graph construction is performed
in two steps. First, we extract the feature points based on the diffusion distance.
Then, the set of these feature points is taken as the initial data to compute the
continuous function µ based on the eccentricity in term of the diffusion distance.

4.4.1 Feature points extraction

Vertices located on the extremities of the mesh, representing the local extremum,
are considered as feature points. In the literature, many approaches were pro-
posed to extract feature points for rigid and non rigid models. Tierny et al.
[Tierny 2008b] proposed to detect the local extremum using two functions based
on geodesic distances. The algorithm starts with the search of the two farthest
points in the geodetic sense. Eventually, the authors defined two geodesic functions
that correspond to extremity regions in order to extract two local proprieties
groups. The intersection of these two groups provides the set of feature points.
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(a) (b)

Figure 4.1: Feature points detection. Fig (a) shows the two farthest points v1 and v2
and Fig (b) shows the two sets of local minima of f(v, v1) and f(v, v2) corresponding
to v1 and v2 respectively

This approach produces a set of well- localized points. But they are very sensitive
against topological changes.

In the case of 3D dynamic Meshes, we propose to proceed in the same way
for better accuracy. To ensure stability under eventual perturbations over time,
we propose to use the diffusion distance instead of geodesic distance. It consists
to determine the connectivity paths between two points x, y ∈ M at the given
time t. In Section 4.2 we showed the important properties of heat diffusion
on manifolds. For this reason, we want to take advantage of its benefits to
propose a new strategy to well detecting feature points, on 3D mesh sequences
sharing the same connectivity. Our proposition is inspired principally from the
famous Tierny’s[Tierny 2008b] algorithm. Global properties of the shape in large
neighborhoods are detected through the behavior of heat diffusion over longer
time, while local properties are detected through the behavior of heat diffusion
over short time. In addition, for small t, the variation of the heat kernel function is
large but decays as t increases. This is explained by the fact that the heat kernel
function is defined by the average behavior of heat dissipation in the neighborhood
determined at the given time t. In a small neighborhood, the average behavior is
sensitive to temporal changes, while average behavior in a large neighborhood is
more stable. Therefore, to ensure an accurate detection of feature points which are
stable over time, we scale the temporal domain logarithmically. This gives a more
faithful approximation of local shape properties at the choosing time range [t1, t2].
In the following equations we define two function fv1 , fv2 : M → R, which allow
to calculate the scaled diffusion distance between each vertex on M and the two
farthest points (v1 and v2 respectively).

fv1 = df2t (v, v1) =

∫ t2

t1
kt(v, v) + kt(v1, v1)− 2kt(v, v1)d log t.

fv2 = df2t (v, v2) =

∫ t2

t1
kt(v, v) + kt(v2, v2)− 2kt(v, v2)d log t.
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Let v1 and v2 be the most distance vertices, in the geodetic sense, of an given closed
connected triangulated surface M .

we denote by vi the vertex that maximizes fv1 on M . For each vertex on
M , fvi = df2t (v, vi). The best approximation is given by df2t (v2, vi). The ensemble
of feature points, F , is the intersection of the two sets fv2 and fvi , which contain
the detected points. Thus, F = fv2 ∩ fvi will be used as origin to compute the
scalar function defined in the next subsection.

v ∈ F = fv2 ∩ fvi ⇐⇒


∃vfv2 ∈ fv2 df2t (v, vfv2 ) < ε

∃vfvi ∈ fvi df2t (v, vfvi ) < ε

df2t (v, vfvn ) > ε ∀vn ∈ F
ε, df2t ∈ [0, 1].

(4.13)

Fig. 4.1(a) shows the two farthest vertices v1 and v2 illustrates with two different
colors. In Fig. 1.1(b), the vertices in subsets F1 and F2 have been displayed in blue
and in magenta respectively. The feature points extraction procedure is summarized
in Algorithm 1.

Algorithm 1 Feature points extraction
Require: a discrete triangular surface S.
Require: two farthest points v1 and v2.
Ensure: a set of feature points F .
1: ε = 0.074

2: Two collections of feature points F1 and F2

3: for all v ∈ S do
4: while f(v; v1) < ε do
5: F1 ← v

6: update(F1)
7: end while
8: while f(v; v2) < ε do
9: F2 ← v

10: update(F2)
11: end while
12: end for
13: F ← F1 ∪ F2..

4.4.2 Reeb graph construction

According to the Morse theory, a continuous function defined on a closed surface
characterizes the topology of the surface on its critical points. Thus, a Reeb
graph can be obtained assuming a continuous function µ calculated over the 3D
object surface [T. 2008]. In the following we only consider objects which are closed
2-manifold meshes of triangles with vertices located in a Cartesian frame R(x; y; z).
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Several studies have been carried out in order to define the scalar function
for Reeb graph construction. A non pertinent function entails an important number
of critical points. As a result, the associated Reeb graph will be made up of a
large number of nodes and will not offer a meaningful description of the model.
Furthermore, depending on the application needs, the scalar function must verify
the stability invariance properties of the topological structure.

To guarantee invariance and stability of the graph structure we propose to
define an appropriate continuous scalar function based on diffusion distance.
Since the diffusion distance preserve all the geometric information about the
neighborhoods of a given point over the time. The proposed continuous function is
concise and preserve almost all of the information contained in the heat kernel. In
section 4.2 we have shown that there is a lot of redundant information in the heat
kernel. That is means that the proposed scalar function is informative if we only
consider its restriction to the temporal domain. This scalar function based on dif-
fusion distance is easily commensurable since it defined over the common temporal
domain. It can be computed faithfully from the discrete representation of the shape.

As the diffusion distance does not admit an implicit expression, it can be
calculated by using a cotangent scheme called mesh Laplace operator. For an input
closed connected and orientable triangulated mesh M containing n vertices, the
mesh Laplace operator L is a sparse matrix of n× n size. This matrix is given by:
L = A−1W with A is a positive diagonal matrix whose element A(i, j) = A(j, i) = 0

and A(i, i) defines the area associated with vertex i. W is a symmetric matrix.
To calculate the diffusion distance, we must simply solved the following problem
Wϕ = λAϕ and therefore computed the set of eigenvalues λ and eigenvectors ϕ.
The mesh Laplace operator matrix can be writhen as L = ΦΛΦTA, where Λ and Φ

are two matrix of eigenvalues and eigenvectors of L respectively.

Previously in Section 4.2, we have demonstrate that the heat kernel is sta-
ble in the smooth case. In the discrete case, estimating the heat kernel through the
eigen-decomposition of the mesh Laplace operator is still also stable against noise.
In the following proposition, we demonstrate this property.

Proposition 4. Let L = A−1W be the mesh laplace operator of a given mesh M , if
we introduce a noise on M we obtain M ′ noisy mesh with L′ = A′−1W ′. A′ = A+E

and W ′ = W + F where ∥E∥ < ε and ∥F∥ < δ. If Kt and K ′
t are the induced heat

kernels computed from L and L′, then the difference ||Kt −K ′
t|| = O(

√
ε+ δ).

After the feature points extraction, we define the continuous function µ which
will be used for the Reeb graph construction. Hence, for a given vertex v we propose
to compute µ(v) based on its eccentricity, given by equation 6.3. The continuous
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Figure 4.2: The stability of the scalar function over time on the horse model, red to
blue colors express the increasing values of the scalar function.

function µ is then defined as follows:

µ(v) =
1

area(S)

∫
p∈S

d2t (v, p)dp (4.14)

being area(S) the area of the surface S. For a practical implementation the µ

function is computed, using discrete formulation, as the sum of the eccentricity
from v to each one of the feature points. Assuming that the surface S is then
approximated through a discrete triangular mesh M , for each vertex v ∈ M , µ(v)
is established as follows:

µ(v) =
1

area(M)

∑
p∈F

d2t (v, p)area(p). (4.15)

where area(M) is the surface area of M , F represent the set of feature points which
are extracted in the first step and area(p) is the area that p occupies. The defined µ
function has the advantage to be invariant to isometric transformations. Due to the
integral form over M , the µ function is more stable in the case of local modifications.
Indeed, the integral of the diffusion distance over the mesh surface allows measuring
the eccentricity of surface points. More the value of µ is high at a point, more this
point is eccentric. Conversely, the point having a minimum value of µ occupies a
central portion of the object, which make it a centered point. If a point is judged to
be eccentric, this means that its distance to the other points is greater, and therefore
the integral of geodesic distances is higher. Then, we can argue that compared to
the the geodesic distance, the proposed function characterizes intuitively the shape
topologies. Fig. 4.2 shows the distribution of scalar function on the horse sequence.
The function values increase as the color goes from blue to green and to red, with
the mapping consistent across the shapes. From Fig. 4.2 we can notice that the
colors remain the same on each frame, which clearly highlight the high stability
of the proposed scalar function over time. Finally, the Reeb graph is obtained by
iteratively partitioning the triangular mesh M into regular intervals depending on
the values of µn. A node is then associated to each region and the graph structure
is obtained by linking the nodes of the connected regions. The proposed strategy of
Reeb graph construction is summarized in Algorithm 2.
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Figure 4.3: Feature points extraction in the reference frame of the different se-
quences.

Algorithm 2 Discrete Reeb graph computation algorithm.
Require: a discrete triangular surface M .
Require: a set of feature points F .
Ensure: the discrete Reeb graph R.
1: Surface scalar Field T
2: Number of Tuples n in T ← number of vertices in M
3: for all v ∈M do
4: for all vf ∈ F do
5: µ(v)+ = g(v; vf ).area(vf )

6: end for 1
area(M)

∑
p∈F d

2
t (v, p)area(p).

7: T ← Tuple (v, µ(v)).
8: free(v).
9: end for

10: µ−1(µ(v)) ← connected set of T containing v.
11: update(R).

Figure 4.4: Kinematic Reeb Graph of different 3D mesh sequences.
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4.5 Experimental results

The simulations were conducted for some 3D dynamic meshes characterized by their
constant connectivity. Moreover, they offer a good variability in terms of spatial and
temporal sizes. As an additional set of experiments, we tested the proposed Reeb
graph extraction approach on 3D non rigid meshes. Table 4.1 summarizes the 3D
dynamic sequence properties, expressed in terms of number of vertices, number of
faces and the average running time of the feature points extraction and Reeb graph
construction for each frame.

(a)

(b)

(c)

Figure 4.5: Visual comparison between Lavoué et al. [Benhabiles 2012] algorithm
(b), Tierny et al. [Tierny 2008a] algorithm (c) and our method (a).
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Table 4.1: Properties and computation time of the tested dynamic meshes.
Vertices Faces Feature points extraction (s) KRG extraction(s)

Horse 8431 16843 2.475 4.311
Cat 1297 2576 0.059 2.017
Lion 5000 9996 0.929 2.726
Camel 4307 8850 0.574 2.052
Dance 7061 14118 1.993 3.817

4.5.1 Parameter setting

Two parameters intervene in the proposed kinematic Reeb graph construction ap-
proach. The first one is the ε parameter, which is used during the feature points
detection stage. For faithful and accurate detection, we choose an intermediate value
of ε = 0.075, which performs better compared to all others in terms of detected ver-
tices number. The second parameter is the time range parameter [t1, t2], t1 and t2 are
computed using the eigen-decomposition of Laplacian matrix. They are expressed
based on the eigenvalues and eigenvectors (λi, ϕi) of the Laplace-Beltrami operator.
In our implementation, we used the solver proposed in [BelkiIn 2008]. To ensure an
accurate detection of feature points, we scale the temporal domain logarithmically
at the choosing time range [t1 = 1

2λ1

Avi
AM

, t2 = 1
2λ2

Avi
AM

]. Where Avi/i = 1, 2 denotes
the area associated with the vertices v1 or v2 and AM is the global area of M . Here,
we exploit the fact that larger areas may contain more global structures. Finally,
during the scalar function computation, we choose a time parameter t = 1

2λ1
, that

makes the time selection invariant to the scale of the processed mesh M .
In order to assess the performance of our approach, we conducted a visual com-

parison between our algorithm and the kinematic skeleton extraction methods from
[Aguiar 2008] and [Benhabiles 2012]. To examine the effectiveness of our method
we used two analysis criteria: accuracy of Reeb graph construction, and robustness
under various perturbations through time.

4.5.2 Accuracy assessment

To evaluate the execution-time, the tests were conducted on a laptop with an Intel
Core 3 CPU M350 at 2.23 GHz, and operating system Windows 7 SP 1. The source
code was written in C++ and the executables were generated by Visual Studio 9.0
operating in release mode. From Table 4.1 one can notice that the running time
is smaller when the number of vertices decreases. This is due to the Laplacian
construction and the computation of the eigenvalues vector and the eigenvector
matrix. The computation process is performed independently for each frame of
the tested model. Table 5.3 lists the running times for all frames while comparing
our results to those obtained by the algorithms presented in [Benhabiles 2012] and
[Tierny 2008a]. From the results listed in Table 5.3, we can deduce that the entire
process for computing the kinematic Reeb Graph runs at a reasonable time (few
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seconds) and faster than the algorithm developed by Lavoué et al. [Benhabiles 2012].
On the other side, the algorithm developed by Tierny et al. [Tierny 2008a] runs
faster. Fig. 4.3 shows the effectiveness of our feature point extraction method. Fig.

Table 4.2: Computation times for the tested dynamic meshes.
Extraction time (s) Horse Cat Lion Dance
Our algorithm 173 11 23 187
Lavoué [Benhabiles 2012] 204 37 28 411
Tierny [Tierny 2008a] 12.7 9.6 6 21.2

5641 vertices 5676 vertices 5691 vertices vertices

Figure 4.6: Kinematic Reeb Graph of women 3D sequence with variable connectivity.

4.3 presents reference frames corresponding to five 3D dynamic meshes (cat, horse,
lion, camel and flamingo). Using a fixed ε = 0.075 parameter ensures obtaining a
reduced number of well-localized feature points.

Fig. 4.4 illustrates the tested models, represented by a set of selected frames and
their extracted kinematic Reeb graph. From Fig. 4.4 we can clearly see that the
proposed approach detects a set of extremum local points (red nodes) located on the
object boundary. For each tested model, we observe that the obtained Reeb graph
preserves the object topology thank’s to the extracted feature vertices. Indeed each
node correspond to an rigid parts and each edge correspond to an articulation of
the objects. Moreover the rigid parts are easily captured and the nodes maintain
the same position over time, since we use a concise and provably informative scalar
function based on the properties of the heat diffusion process on a shape. In Fig.
4.5, we make a visual comparison with two kinematic skeleton extraction methods
[Tierny 2008a] and [Benhabiles 2012]. In [Tierny 2008a], Tierny et al. developed a
new algorithm to precisely extract kinematic skeleton, for 3D animated sequences,
using a Reeb graph construction approach. The latter is based on the edge-length
deviation induced by the 3D shape transformation over the time. This approach
allows detecting shape articulations (mobile parts). However, when the edges
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null model affine isometry

noise partial scale

Figure 4.7: Robustness of the feature vertices detection against various transforma-
tions.

located on those articulations remain immobile through time, it fails to detect
these articulations. In [Benhabiles 2012], Lavoué et al. developed a new precise
kinematic skeleton extraction method for 3D dynamic meshes. The objective is to
detect all the boundaries, including the immobile parts connected to the shape’s
articulations. Authors in [Benhabiles 2012] proposed to separately compute a set
of regions of interest for each mesh in the sequence. A unique segmentation is then
performed for the whole sequence by linking all the interest regions obtained from
each mesh to extract the kinematic skeleton. This method allows detecting of the
shape articulations in both mobile parts and immobile parts.

Notice that the red nodes in Fig. 4.5(a) are the extracted feature points
and the red nodes in Fig. 4.5(b) and (c) are the motion nodes that correspond to
articulations of the object. Fig. 1.2(c) clearly shows that the algorithm from Tierny
et al. [Tierny 2008a] allows to detect different articulations of non rigid parts but
it fails to detect the articulations of immobile parts. Thanks to the boundary edge
function, in Fig. 1.2(b) Lavoué et al. [Benhabiles 2012] algorithm is able to detect
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null model affine isometry

noise partial scale

Figure 4.8: Robustness of the Reeb graph construction against various transforma-
tions.

rigid and non rigid parts, while the motion nodes are well localized. However it
fails to detect the local feature points. Our method overcomes this drawback and
allows to detect a well localized feature vertices and nodes. Computing the scalar
function by restricting the diffusion distance to the temporal domain, captures
global information contained in the heat kernel and characterized the dynamic
mesh up to isometry. To prove the accuracy of our method and its applicative
interest, we propose to extract the Reeb graphs associated to a sequence of 3D
meshes which have variable connectivity. Fig. 4.6 shows a sequence of 3D woman
meshes, the number of vertices varies from one frame to another. From Fig. 4.6
we can notice that despite the connectivity change, the feature point extraction
still unchanged when varying the vertices number from one frame to another. This
another advantage of our proposed scalar function, which is defined canonically.
Thus allows to identify and differentiate between feature vertices on shapes. Our
algorithm can be applied to both dynamic and static 3D shapes. Consequently, it
is considered as a hybrid (static/dynamic) shape structural descriptor.
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4.5.3 Robustness evaluation

In order to assess the robustness of the proposed scalar function, which is the central
core of the Reeb graph construction, we applied some transformations like affine
transformation Fig. 4.7.b, isometry Fig. 4.7.c, noise addition Fig. 4.7.c, missing
parts Fig. 4.7.e and scale Fig. 2.1.f. These transformations were performed to a
null model Fig. 4.7.a. From Fig. 4.7 we can observe that our algorithm produces
well-localized feature points, which are stable against the tested transformations.
That’s a direct consequence of using the heat kernel properties, in particular,
the stability under perturbations of the shape and the invariance under isometric
deformations.

In Fig 4.8, we compare the extracted Reeb graphs under the tested transfor-
mations. From Fig. 4.8 we can notice that the obtained Reeb graphs are stable
and invariant against the tested transformations. The nodes maintains the same
positions. This proves the high stability of the proposed scalar function under
almost all transformations, notably through the eccentricity in term of diffusion
distance.

4.5.4 discussion

The reconstructed Reeb graph is extremely useful in various applications including
full and partial shape comparison, structure detection, partial matching, shape
classification and retrieval. In these applications, shapes or parts of shapes
are considered to be similar if there exist rigid or isometric transformations
between them. Thus, using the diffusion distance to measure the scalar function
allows to detect faithfully and efficiently the set of feature vertices which leads
to a concise and invariant Reeb graph that focus on most significant shape
features. It also captures all information about the neighborhood of a given ver-
tex by following the heat dissipation from a vertex to the rest of the shape over time.

The scalar time parameter provides a natural motion of scale to describe the
shape around a vertex because heat diffuses progressively to large neighborhoods.
That means, in particular, that local shape features are detected through the
behavior of heat diffusion over short time, while the summaries of the shape in
large neighborhoods are observed through the behavior of heat diffusion over large
time.

Beside the proposed scalar function is invariant under isometric deformations,
therefore it can be used in applications needing high level shape representations.
This representation allow to perform Multi scale matching between nodes in
Reeb graph by comparing their signatures and has the potential to benefit many
applications such as robust discovery of correspondence, shape registration and
partial matching especially in the context of deformable models. To demonstrate
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the particle relevance of the proposed Reeb graph algorithm, we propose a new
global 3D retrieval approach for non rigid shapes. So our reconstructed Reeb graph
will be amalgamated into global signatures that can be used for non rigid shape
retrieval system presented in the next chapter.

4.6 Conclusion

In this chapter, we presented a novel approach of Reeb graph construction for 3D
dynamic triangular Meshes. Our main contribution consists in defining an efficient
and stable continuous function based on heat diffusion properties to construct
kinematic Reeb graphs for 3D models with constant and variable connectivity. The
proposed scalar function is concise and provably informative. Experimental results
have shown the high accuracy of the feature point detection over time, which is
a direct consequence of the heat kernel invariance. Moreover, the constructed
kinematic Reeb graphs preserve the topology of the tested 3D models despite the
perturbations occurred over time.

In the next chapter, we plan to investigate the proposed approach and inte-
grate it in a partial matching scheme, which can be used for non-rigid 3D shape
retrieval by associated with each node, in the Reeb graph, two signatures.
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5.1 Introduction

This chapter presents a 3D shape retrieval method which is based on Reeb graph
(RG) representation, described in previous chapter. First, we review some exist-
ing work about 3D shape retrieval. Then, we describe The central contribution of
this work which consists to reinforce the topological consistency conditions of the
graph-based description. The generated Reeb graph, based on the heat diffusion
properties, is segmented into Reeb charts having a controlled topology. Each Reeb
chart is mapped to its canonical planar domain. Two stretching signatures, cor-
responding to the area and angle distortion, are then determined. The set of all
the pairs of stretching signatures is taken as 3D-shape descriptor. The similarity
estimation is performed in two steps. The first one consists in forming the pairs of
similar Reeb charts, according to the minimal distance between their corresponding
signatures. The second step is to measure the global similarity which quantifies the
similitude degree between all the matched Reeb charts. Finally, we provides experi-
ment results and empirical comparison to demonstrate that our method provides an
overall retrieval efficiency gain compared to very recent state-of-the-art methods.



70 Chapter 5. Application to 3D pattern recognition

5.2 Previous work

Nowadays, 3D-models constitute a crucial multimedia data type that involves a
large number of applications in different domains. The blossoming demand of large
3D object repositories has triggered the need of efficient 3D search and retrieval
techniques. 3D shape retrieval is the mechanism which allows users to find similar
3D objects from a database in a ranked order. The higher the ranking of an
object the better the match to the query shape is by using a measure of similarity.
The definition of an appropriate similarity measure is a crucial task in order to
automatically and accurately evaluate the correspondence between any pair of
3D objects. For this purpose, various research studies have been investigated
to define intrinsic shape descriptors. Indeed, the computed descriptor should be
compact, able to perfectly discriminate 3D shapes, invariant to rigid and non-rigid
transformations, and robust to any shape modifications.

Various research studies have been investigated to define 3D shape de-
scriptors, as similarity metrics, for the purpose of 3D object retrieval
[Tangelder 2008, Osada 2002, Lian 2013, Dutagaci 2012]. The earlier approaches
are based on global shape representation [Chen 2003, Osada 2002, Ohbuchi 2003],
whereas recent works have focused on local approaches.

The 3D shape retrieval methods, based on global shape descriptors are divided
into three main categories consisting in the use of: (i) model based approaches,
(ii) 2D projections of the 3D model (view based) [Chen 2003, Daoudi 2007],
and (iii) shape distributions [Osada 2002, Ohbuchi 2003]. These “first gen-
eration” techniques are characterized by their compactness and ease of im-
plementation. Nevertheless, they are not discriminative enough to resist to
non-rigid deformations and articulations. To overcome these limitations, some
researchers paid attention to non-rigid 3D shape matching techniques, which
are based on: topology approaches [Hilaga 2001, Biasotti 2006, Dey 2006],
low dimensional embedding [Reuter 2009, Jain 2007], distance over 3D model
[Bronstein 2009, Smeets 2010, Sun 2010], or set of local features. The last
alternative uses local descriptors (Bag of Words) to represent the 3D model
[Dutagaci 2012, Lavoué 2011, Furuya 2009, Li 2012].

Local feature matching methods based on graph representation have also
been investigated. Particularly, the Reeb Graph (RG) has been a very popular
shape abstraction for several computer graphical tasks, especially for 3D model
retrieval [Hilaga 2001, Tung 2005b, Biasotti 2008, Tierny 2009]. Its popularity
is mainly due to the fact that it forms a high-level skeletal representation that
corresponds to the intuitive description of the 3D shape. However, the graph
construction exhibits weaknesses such as high computation cost, sensitivity to noise
on the shape surface, and/or the need of predefined control points.
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The concept of multi-resolution Reeb graph (MRG) in the context of global
shape retrieval and indexing has been initiated by Hilaga et al. [Hilaga 2001].
Tung and Schmitt [T. 2008] proposed the augmented multiresolution Reeb graph
(aMRG) algorithm which enhances the matching of the original MRG scheme by
adding geometrical and colorimetric attributes to the topological criteria. Tierny
et al. [Tierny 2007], developed the RCU (Reeb Chart Unfolding) scheme which
estimates global shape similarity using a set of geometrical signatures. The input
3D shape is segmented into charts of controlled topology based on the constructed
Reeb graph. To compare two models, the authors use the bi-parts matching
algorithm presented in [Tam 2007].

Reeb graph representation has also been investigated for partial 3D-model
retrieval. In this case, the 3D-model is segmented to sub-parts in order to
retrieve objects that have similar sub-shapes even if they visually differ globally.
Biasotti et al. [Biasotti 2006] proposed an extended Reeb graph construction,
using a finite set of contour levels, and spherical harmonics sub-parts signatures.
Experiments have shown that the Reeb graph computation is robust to isometric
transformations, but sub-parts signatures (spherical harmonics) are not. Tierny et
al. [Tierny 2009] extended the matching scheme based on Reeb chart unfolding
signatures [Tierny 2007] to address the partial shape retrieval problem. The partial
similarity framework presented in [Tierny 2009] consistently outperforms competing
approaches for 3D shape retrieval. Nevertheless, shape topological description
might be too discriminate which penalizes partial similarity.

Authors in [Aouada 2010] used the constructed suigraphs to quantify the dis-
similarity between 3D shapes. Recently, authors in [Mohamed 2012] proposed an
invariant Reeb graph algorithm based on normalized mixture distance function.
This skeletal graph is used as a shape descriptor in a 3D shape retrieval scheme.
The similarity is computed by comparing the relative shortest paths between
the Reeb graph nodes. The authors [Mohamed 2012] assume the feasibility of
the computed signature based on the proposed Reeb graph. Recently, Li et al.
[Li 2013] proposed an efficient shape descriptor for non rigid 3D shape retrieval
based on spectral graph wavelet analysis. The multiresolution aspect allows to
compute the shape signature using a cubic spline wavelet generating kernel, in
order to capture both local and global geometry of 3D shape. Experimental results
on two standard 3D shape datasets demonstrate the high retrieval accuracy of this
approach [Li 2013] in comparison with other state-of-the-art methods.

More recently, El Khoury et al. [El Khoury 2012] proposed a 3D-model retrieval
scheme based on indexed closed curves. To construct the Reeb graph, the authors
have defined a mapping function using commute-time distance. The proposed
mapping function is proved to be robust to isometric transformations as well as non
rigid ones. However, it is penalized by its low accuracy regarding 3D-model retrieval.
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The Reeb graph concept has been shown to be an effective tool in 3D matching
systems. Its main limitation stems from generating a graph with many insignificant
branches, which may hamper the definition of global description. It is also note-
worthy that the similarity calculation is a crucial task in the context of 3D-model
retrieval.

In chapter we propose a 3D-shape retrieval technique based on graph repre-
sentation and local feature extraction. First, an enhanced topological skeleton of
the input surface is determined by defining a new scalar function. The latter is
computed based on the eccentricity in term of diffusion distance. Second, a simi-
larity measure is defined by exploiting global and local properties simultaneously.
Indeed, the shape description is performed by segmenting the 3D model, denoted
by Reeb charts, using its Reeb graph. A pair of geometrical signatures is then
computed for each Reeb chart based on parametrization techniques. Finally, a
concise global similarity measure is determined relatively to the pairs of signatures
associated to all the Reeb charts in the query model. Retrieval accuracies were
assessed based on commonly used performance measures. Experiments have shown
that our matching method provides quite good results. It outperforms the existing
3D shape-based matching techniques in the majority of cases while ensuring high
robustness to rigid transformations as well as non rigid transformations.

5.3 3D shape retrieval system

The comparison between two 3D models entails two main steps: the signature ex-
traction (or feature vector), and similarity measure. The proposed 3D-shape match-
ing method is based on Reeb graph construction and computation of global shape
similarity. It can be subdivided into three stages:

1. shape description (Reeb graph construction),

2. signatures extraction,

3. computation of similarity between signatures.

In the following, we will describe in detail the proposed signatures and global simi-
larity measure.

5.3.1 Signatures computation

The retrieval scheme presented in [Tierny 2009] uses a Reeb graph based seg-
mentation to compute a concise sub-part geometrical signature which rebuilt on
parameterization techniques. The input triangulated surface M is segmented into
a set of Reeb charts of controlled topology, which have either disk or annulus
topology. An unfolding signature is then associated to each chart, by measuring
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the distortion of its mapping to the canonical planar domain D. Particularly, the
authors in [Tierny 2009, Tierny 2007] use an unfolding signature of the canonical
mapping, based on the evaluation of an area distortion.

In this work, we extend Tierny et al.’s approach by using a pair of geomet-
ric signatures which correspond to the area and angle distortion introduced by the
mapping of Reeb chart to its canonical planar domain. As a result, our matching
scheme uses a pair of unfolding signatures associated to each Reeb chart, unlike
Tierny et al.’s algorithm which uses only one unfolding signature, relative to
the area distortion. Another fundamental difference between the work of Tierny
et al. [Tierny 2009] and our proposed method is that the matching system in
[Tierny 2009] uses the geometrical signature as attribute to identify a partial shape
similarity, whereas our approach handle global and local properties simultaneously
by defining a global shape similarity measure.

In what follows, we explain the principle of computing area and angle distor-
tions, according to the surface parametrization study presented in [Floater 2005].

Let Ψ :M −→ R(µ) map each point p ∈M to its equivalence class in the Reeb
graph R and Ei be an edge of the same Reeb graph. Ci = Ψ−1(Ei) is defined as
a Reeb chart, which corresponds to a surface segment. Thus, each Reeb chart Ci

is parameterized by its mapping ψi to its canonical planar domain D. Owing to
Reeb graph properties, the Reeb charts have either disk or annulus topology. Each
edge Ei, of the Reeb graph, has two extremities whose pre-images by Ψ are circles.
The latter form the two boundary components of the closure of the chart Ci having
genus zero. Therefore, Reeb charts have the topology of an open annulus. Disk-like
Reeb charts constitute a particular case. Indeed, a Reeb chart is mapped to a disk
if it is adjacent to only one local extremum of the function µ.

In the case of annulus topology, let’s designate by B1 the boundary compo-
nent of the shortest perimeter that corresponds to the annulus-like chart Ci and by
B2 the other one. As depicted in Figure 1.1, ψi maps B1 to the inner boundary
component of the unit planar annulus DA and B2 to its outer boundary component.
Being ρ(v) ∈ (0, 1] the normalized absolute difference of µ values between B1 and a
vertex v ∈ Ci, from Figure 5.1, we can notice that the sub-level set of ρ have also
annulus topology. Specifically, the increase of ρ parameter varies the geometry of
the sub-level sets, and thus, intensifies the distortion introduced by their mapping
to DA.

Consequently, to capture the evolution of Reeb charts’ area variation, the un-
folding signature λai of ψi mapping can be expressed by (1 is the inner radius of the
unit annulus):

λai =
area(Ci)

area(DA)
=

area(Ci(ρ))

π(ρ+ 1)2 + π
. (5.1)

For a given disk-like chart Ci, the mapping ψi, associates the local extremum O of
the function µ to the center of the unit planar disk DD (the canonical domain of
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Figure 5.1: Unfolding signature computation relative to the area distortion for a
Disk-like chart (a) and Annulus-like chart (b) from [Tierny 2007] .

disk-like surfaces), B to its boundary and µ level lines to concentric circles. Let
ρ(p) ∈]0, 1[ be the normalized absolute difference of µ values between O and a point
p ∈ Ci, the unfolding signature λai, relative to the area distortion, of Ci according
to the mapping ψi is given by:

λai =
area(Ci)

area(DD)
=
area(Ci(ρ))

πρ2
, (5.2)

where area(Ci) stands for the area of the sub-level set for parameter ρ on the
original surface Ci and area(DD) stands for the area of the sub-level set on the unit
planar disk DD.

It is noteworthy, that the mapping procedure introduces distortion in both angle
and area. Consequently, an analog reasoning can be applied by computing the
unfolding signature with regard to the angle distortion introduced by the mapping
ψi of Ci to its canonical planar domain [Floater 2005, Floater 2002, Wang 2006].

Let us denote by θci(ρ) the angles of the sub-level set for parameter ρ on
the original surface segment Ci. θD(ρ) stands for the angles of the sub-level set on
the canonical planar domain D (either the unit disk or the unit annulus). θci(ρ)

is approximated by the sum of the angles around ρ. Being θk one of these angles,
θci(ρ) is calculated as follows:

θci(ρ) =
∑
k

θk.

It is important to note that for any anterior node v ∈ D, the planar angles θD(ρ)
sum up to 2π, whereas those associated to the Reeb chart Ci generally do not. As
a result, the angular deformation due to the planar mapping is distributed evenly
around the ρ parameter. Thus, by taking into account the angle distortion, the
unfolding signature is defined by:

λθi =
2π

θCi(ρ)
. (5.3)
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Figure 5.2: Example of stretching signatures for altered versions of primitive charts.

Figure 5.2 shows the area and the angle signatures of a specific point (green) on
various disk-like primitives. From this figure we can see that these two signatures
are close for small values of ρ. Furthermore, we can notice that for the 3 depicted
shapes, the angular signature remains unchanged when increasing the ρ parameter.
This is confirmed by equation 5.3. Indeed, the angular signature is insensitive to
the variation of ρ since it is measured as a function of the sum of the angles around ρ.

To summarize, the query mesh model Mq is represented by a Reeb graph Rq

which is partitioned in Reeb charts. An attribute is then associated to each Reeb
chart Ci. In concrete terms, the pair of signatures (λθi , λai) is taken as attribute
in the global similarity measure. The signature of the whole considered mesh
model consists of its dual Reeb graph, denoted by ξq, associated with the pairs of
unfolding signatures of all the Reeb charts. A full explanation of how the global
similarity measure is derived is provided in the following subsection.

5.3.2 Global shape similarity calculation

At this stage, the two mesh models Mq and Mc to be compared are represented by
their Reeb graphs Rq and Rc. The similarity between two Reeb charts Ci ∈ Rq

and Cj ∈ Rc is defined as the similarity between their attributes: sim(Ci, Cj).
Specifically, the similarity SIM(Rq, Rc) between the two Reeb graphs Rq and Rc is
given by the sum of the similarities between each pair of Reeb charts. One of the
most critical tasks is how to find the Reeb chart pairs to be matched.

In our work, we propose to match each Reeb chart Ci ∈ Rq to the most
similar one C∗

j ∈ Rc which provides the highest value of the similarity function
sim. The latter is defined by:

sim(Ci, Cj) = 1− LN1(Ci, Cj),

with LN1 denotes the normalized L1 distance between the signatures of Ci and Cj .
The L1 distance is determined using the pair of λa and λθ signatures which are
calculated as above in equations 5.2, 5.1, and 5.3. On the other hand, the LN1

distance is determined as weighted sum (linear combination) of L1 distance between
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the area and angle signatures of both Reeb charts. As result, the similarity measure
between Ci and the most similar charts C∗

j is given by:

sim(Ci, C
∗
j ) = 1− α · LN1(λai , λaj )

−(1− α) · LN1(λθi , λθj ),

where (0 < α < 1) controls the weighting of the area and angle signatures in the
sim(Ci, C

∗
j ) computation. The global similarity is then defined as follows:

SIM(Rq, Rc) =

∑
Ci∈Rq ,C∗

j ∈Rc
sim(Ci, C

∗
j )

|Rq|
,

(5.4)

being |Rq| the number of Reeb charts in the Reeb graph Rq that corresponds to the
query model. The overall matching scheme is summarized in Algorithm 3.

Figure 5.3: Chart similarity matchings between a query model and the top 4 re-
trieved objects.

Figure 5.3 shows a horse query model and the the first five results retrieved by
our method. The matched charts have been displayed with the same color. From
this Figure, we can observe that exceptionally for the last two retrieved models, the
Reeb chart that corresponds to the leg and the neck (blue color) does not fit with
the one of the query model. From this, we conclude that the hybrid signature is
pose-insensitive.

5.4 Experimental results

5.4.1 Experimental setup

5.4.1.1 Data set

Three databases were used to evaluate the performance of our system.
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Algorithm 3 Proposed 3D shape retrieval algorithm
Require: a collection V of vectors containing the set of charts Cj ; V = C1; . . . ;Cn.
1: Compute the Reeb graph Rq of the query model Mq.
2: for all Ci ∈ Rq do
3: Compute the pair of unfolding signatures λai and λθi .
4: for all Rc in the collection index do
5: for all Cj ∈ V do
6: Compute sim(Ci, Cj).
7: end for
8: Select C∗

j = argminCj∈Rc
(sim(Ci, Cj)).

9: Remove C∗
j from V .

10: end for
11: Calculate SIM(Rq, Rc) as the global similarity using sim(Ci, C

∗
j ) for each

Ci ∈ Rq.
12: end for
13: Sort the collection entries according to the decreasing order of SIM(Rq, Rc)

values.

• The McGill Database1. It contains a rich variety of highly articulated, water-
tight 3D objects. Specifically, it comprises 25 objects divided into 10 classes
(Ants, Crabs, Hands, Humans, Octopuses, Pliers, Snakes, spectacles, Spiders
and Teddy-bears).

• SHREC 2007 - Watertight Models2. This data set consists of 400 3D watertight
models. It contains 20 categories, each one is composed of 20 object models
represented by seamless surfaces without defective holes or gaps.

• SHREC 2010 - Shape Retrieval Contest of Non-rigid 3D Models3. This data
set contains 10 categories, each one is composed of 20 non-rigid objects chosen
from the McGill Articulated Shape Benchmark database. The objective of
this 3D Shape Retrieval Contest is to evaluate the effectiveness of 3D shape
retrieval methods for non rigidly deformed 3D models.

• SHREC 2011 - Shape Retrieval Contest of Non-rigid 3D Watertight Meshes
4. This data set contains 30 categories, each one is composed of 20 non-rigid
3D objects. The objective of this 3D Shape Retrieval Contest is to evaluate
the effectiveness of 3D shape retrieval methods on a large-scale database of
non-rigid 3D watertight meshes.

• SHREC 2012 - Generic 3D Model Retrieval5. The data set contains different
categories of 3D-models based on the combination of models from previous

1http://http://www.cim.mcgill.ca/
2http://watertight.ge.imati.cnr.it/
3http://www.itl.nist.gov/iad/vug/sharp/contest/2010/NonRigidShapes
4http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
5http://www.itl.nist.gov/iad/vug/sharp/contest/2012/Generic3D
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generic 3D benchmarks. It consists of 1200 3D models, classified into 60
object categories based mainly on visual similarity. The collection we used
comprises 12 watertight models classes (ants, humans, Tables, Sharks, Pliers,
Planes, Hands, Glasses, Cups, Chairs, Bunnies, and Birds) with 10 3D-models
each.

5.4.1.2 Evaluation criteria

Different performance measures can be used to evaluate retrieval methods. In gen-
eral, evaluation over the data set is performed by leaving out one model to act as
the query, and ranking the remaining models from most similar to least similar.
This ranked list can be evaluated in different manners. Performance for a particular
method is given by averaging the performance over all query models. In our work
we retain the following measures:

• Nearest Neighbor (NN): The percentage of closest matches that are in the
same class as the query.

• First Tier (FT): The ratio of models in the query’s class that appear within
the top NC − 1 matches, where NC the cardinality of the query’s class.

• Second Tier (ST): The ratio of models in the query’s class that appear within
the top 2(NC − 1) matches.

• Precision vs Recall plot: A curve illustrating the relationship between the
precision and recall of a retrieval method. Precision measures the ability
to retrieve all models that are relevant, while recall measures the ability to
retrieve only models that are relevant.

The Precision vs Recall are defined as follow:

Precision =
N

A
and Recall =

N

R
,

where N is the number of relevant models correctly retrieved in the top A

retrievals. R is the number of all relevant models in the collection, which is
the number of models to which the query belongs to.

• E-measure (E) is a combined measure of the precision and recall for a fixed
number of results. The E-Measure is given by:

E =
2

1
P + 1

R

,

where P and R are the precision and recall, respectively, computed for the top
retrieved models.

• Discounted Cumulative Gain (DCG): A statistic that measures the gain of a
matched model based on its position in the ranked list. The gain is accumu-
lated from the top of the ranked list to the bottom with the gain of each result
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reduced logarithmically proportional to the position of the result. The main
idea is to reflect how well the overall retrieval would be viewed by a human.

For more details about definitions of the aforementioned performance measures, the
interested reader is directed to the reference [Shilane 2004].

5.4.2 Efficacy evaluation

To evaluate the performance of our matching method, retrieval experiments were
carried out from SHREC 2012 database, using the five quantitative measures:
Nearest Neighbor, First Tier, Second Tier, E-measure, and Discounted Cumulative
Gain. The E-measure only considers the first 10 retrieved models for each query
and calculates the precision and recall values over those results since the user is
more interested in the very first retrieved results than in the later ones.

Table 5.1 lists the (NN, FT, ST, E, and DCG) scores, for the whole SHREC
2012 data set trained and for some selected classes. These scores reveal the
excellent results of our method for the majority of classes like Planes, Ants, Pliers,
Hands, Teddies but lower accuracy for shapes as Glasses and Birds, in terms of FT
and DCG scores. These limitations stem from the fact that models like Glasses
and Birds have a few number of feature points, which explicitly affects the hole
matching system. The results, given in Table 5.1, also indicate that our method
is particularly suited for nearest neighbor classification since its NN value attains
100% for 7 categories. Line 2 of Table 5.1 shows the performance results without
considering the angular measure proposed in subsection 5.3.1. From these reported
results, we can notice that the additional angular measure slightly improves the
retrieval accuracy in terms of ST, NN, E and DCG scores.

Figure 5.4 illustrates the precision-recall plots of our method, for the whole data
set and each category from the selected collection. From this figure we can notice
that all the precision-recall curves are in the top right parts. Particularly, from all
the depicted curves, we observe that our method owns a high precision for low recall
values, which proves that it yields to satisfactory results on all of classes.

5.4.3 Robustness assessment

Using the eccentricity of the diffusion distance, for the purpose of Reeb graph
construction, ensures robustness against rigid transformation. Furthermore, the
integral calculation from a finite set of feature points provides stability in the case
of local deformation. Consequently, topological skeletons, computed with regard to
the proposed function µ, benefit from the invariance and robustness properties of
µ against affine and isometric transformations.

From a qualitative point of view, in order to prove the robustness of our
matching method, different modifications have been made to a neutral pose null
model. These modifications include topology change, isometric transformation
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Table 5.1: Retrieval performance of our method evaluated using five standard mea-
sures on the whole collection selected from SHREC 2012 data set and for each
category.

Class FT (%) ST (%) NN (%) E-M (%) DCG (%)
All classes 92 94 86 91 85

Cups 85 82 72 67 74
Ants 92 100 100 89 92

Tables 82 85 100 77 85
Teddies 87 91 100 78 88
Birds 76 74 96 89 91

Glasses 76 82 69 59 87
Planes 87 93 100 95 88
Pliers 99 100 100 97 95

Humans 83 79 100 84 89
Sharks 79 83 99 71 84
Chairs 88 93 98 86 88
Hands 89 100 98 69 74

(triangulation and distance-preserving deformation), scaling, affine transformation,
random noise, simplification and partiality missing parts. Some modified models
are shown in Table 5.4.I. Performance measures, in terms of similarity distance,
are listed in Table 5.4.B. From these measures, we can see that our method is
able to identify objects correctly even after further modifications. Particularly,
the proposed matching scheme shows strong resistance when the models undergo
non-rigid deformations like isometric and scale changes. Regarding the other
modifications like random noise and topology change, our method gives very
satisfactory results for low to medium strength perturbations.

5.4.4 Comparison with previous methods

As an additional set of experiments, we compared the proposed 3D matching method
against previous approaches from the state-of-the-art:

• The MR-BF-DSIFT-E based technique from Furuya and Ohbuchi
[Furuya 2009]: The BF-DSIFT-E (Bag-of-Feature Dense-SIFT with ERC-
Tree) algorithm consists on rendering a 3D model into a set of depth images.
Local visual features are then extracted from each image, using the Scale In-
variant Feature Transform (SIFT) algorithm [Lowe 2004]. To efficiently com-
pare among large sets of local features, the algorithm employs bag-of-features
approach. As an extension to BF-DSIFT-E algorithm, MR-BF-DSIFT-E uses
a distance-metric learning approach named Manifold Ranking (MR) to derive
ranked list of retrieval results given a query model.
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A

B

Figure 5.4: Precision-recall curves for: (A) the whole collection selected from
SHREC 2012 data set and (B) each category.

• The Matching technique based on Kernels from Barra et al. [Barra 2013]:
This method is based on Extended Reeb Graphs (ERG) description using
Kernels. The similarity measure is computed through kernels adapted to the
ERG description and the 3D model is represented as bags of shortest paths
defined over the ERG.

• DMEVD based technique from Smeets et al. [Smeets 2010]: The proposed
retrieval approach is based on two invariant matrices for inelastic deformation
invariant object recognition. 3D objects are represented by diffusion distance
tensors (DDT). In addition to DDT, geodesic distance matrices (GDM) are
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Table 5.2: (I) Screen shots of the null model (a) after different transformations:
random noise (b), isometry (c), affine transformation (d), partiality (e), sampling
(f), scale (g), topology (h). (II) Similarity results of the matching experiments.

(I.)
(a) (b) (c) (d)

(e) (f) (g) (h)

(II.)

a b c d e f g h
a 1 0.71 0.92 0.61 0.73 0.79 0.85 0.64
b 0.71 1 0.75 0.47 0.61 0.69 0.76 0.55
c 0.92 0.75 1 0.58 0.75 0.87 0.91 0.65
d 0.61 0.47 0.58 1 0.47 0.51 0.53 0.47
e 0.73 0.61 0.75 0.47 1 0.54 0.56 0.47
f 0.79 0.69 0.87 0.51 0.54 1 0.89 0.68
g 0.85 0.76 0.91 0.53 0.56 0.89 1 0.67
h 0.64 0.55 0.65 0.47 0.47 0.68 0.67 1

also used to represent the 3D objects independent of the reference frame. The
final object pair dissimilarity is given by the sum or product of dissimilarities
determined by model representations of the GDM and DDT.

• The BOF based technique from El Khoury et al. [El Khoury 2012]: This
method uses a commute time mapping function to create index of closed curves
generated from the center of a 3D model. To describe all the mesh, a set of
indexed closed curves is computed. The distance between models is then
calculated by comparing the indexed curves.
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• The BOW-LSD method from Lavoué [Lavoué 2011] : This method is based
on the Bag of Words with Local Spectral Descriptors. For a given 3D shape,
the proposed approach considers a set of feature points uniformly sampled on
the surface and associated with local Fourier descriptors. In a pre-processing
stage, a visual dictionary is constructed by clustering a large set of feature
descriptors, then each 3D model is described by a histogram of occurrences of
these visual words.

• The EMD-PPPT method from Agathos et al. [Agathos 2009] : This retrieval
technique is based on the construction of attributed relation graph combined to
graph matching algorithm. The latter is based on the Earth Movers Distance
(EMD) similarity measure.

• The RPU method from Tierny et al. [Tierny 2009]

First, we compare results obtained with our method with those obtained with
Barra et al. method [Barra 2013] using the aggregation process on SHREC 2011
database. The performance is evaluated in terms of the quantitative measures (i.e.,
FT, ST, NN, E-M, and DCG) for the complete SHREC 2011 database. From the
results reported in Table 5.3 we can see that our method achieves the best per-
formance in terms of FT, and E-measure scores. However, the reference algorithm
performs better in terms of ST, NN and DCG. This may be explained by the fact
that Barra et al.’s approach, uses a gaussian kernel similarity measure.

Table 5.3: Comparison of similarity estimation scores on the SHREC 2011 data set
obtained by our method and the method proposed in [Barra 2013].

Method FT (%) ST (%) NN (%) E-M (%) DCG (%)

Aggregation[Barra 2013] 88.6 95.2 100 70.46 97.46
Our method 90.36 93.86 98.62 74.63 96.23

We have also tested our method on the SHREC 2010 data set and compared it
with three recent methods in the state-of-the-art: MR-BF-DSIFT-E [Furuya 2009],
DMEVD [Smeets 2010], and BOF [El Khoury 2012]. We conducted our tests on the
average performance of the whole database. Table 5.4 shows the retrieval accuracies
in terms of (NN, FT, ST, Measure and DCG) scores. For BOF method, it was not
possible to make comparison in terms of the DCG score due to a lack of availability.
Table 5.5 clearly indicates that compared with DMEVD and BOF algorithms, MR-
BF-DSIFT-E system achieves the best performance in terms of ST, and E-measure
scores. Considering the values of NN, BOF method gets better performance than
MR-BF-DSIFT-E and DMEVD. But if we base the evaluation on FT and DCG,
DMEVD outperforms MR-BF-DSIFT-E. We also notice that our method performs
the best for all scores. For instance, our 3D shape retrieval scheme leads to a ST
score of 92.72%, which outperforms the one obtained by MR-BF-DSIFT-E algo-
rithm (with a FT score of 90.92%). With E-measure, the gain on MR-BF-DSIFT-E
method is of 12.71. Furthermore, compared to BOF method the gain in NN is of
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1.31. Considering the precision-recall curves, Figure 5.5 clearly demonstrates that

Table 5.4: Similarity estimation scores on the SHREC 2010 data set.
Method FT (%) ST (%) NN (%) E-M (%) DCG (%)

MR-BF-DSIFT-E [Furuya 2009] 98.5 90.92 96.32 70.55 97.63
DMEVD [Smeets 2010] 100 86.11 95.71 70.12 97.73
BOF [El Khoury 2012] 88 82.40 96.80 64.53 –
Our method 100 92.72 98.11 83.26 97.83

Figure 5.5: Precision-recall curves of the tested methods for the SHREC 2010
database.

our method outperforms MR-BF-DSIFT-E [Furuya 2009], DMEVD [Smeets 2010]
and BOF [El Khoury 2012] algorithms. One may also notice that our retrieval
scheme and DMEVD algorithm perform very similarly for low recall values. For
high recall values, MR-BF-DSIFT-E owns a better precision compared to DMEVD
[Smeets 2010] and BOF [El Khoury 2012] method, but our algorithm still possess
higher precision. It is important to mention that in Figure 5.5, the recall values
were bounded by 0.95. The main reason for doing so was to enable a direct
comparison with DMEVD and MR-BF-DSIFT-E. Indeed, for both methods, we
used the results which have been made publicly available on SHREC 2010 web site
6. From the results reported in this benchmark, the recall values are lower than 0.95.

We have also tested our method on the SHREC 2007 data set and compared
it with RPU method developed by Tierny et al.’s [Tierny 2009]. Figure 5.6 shows
two queries and their corresponding top 7 retrieved objects from SHREC 2007
database using our algorithm (a) and RPU method (b). As we can see from this

6http://control.nist.gov/sharp/SHREC10/Non-Rigid/SHREC.html
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figure, the retrieved 3D objects in the top 7 positions of the rank lists belong to the
same categories as their corresponding queries, which again verifies the effectiveness
of our matching scheme in 3D shape retrieval applications.

Query 1 SIM = 0.317 SIM = 0.302 SIM = 0.297 SIM = 0.284 SIM = 0.272 SIM = 0.265 SIM = 0.226

(a)

SIM = 0.284 SIM = 0.276 SIM = 0.247 SIM = 0.239 SIM = 0.227 SIM = 0.226 SIM = 0.225

(b)

Query 2 SIM = 0.283 SIM = 0.271 SIM = 0.264 SIM = 0.257 SIM = 0.234 SIM = 0.192 SIM = 0.174

(a)

SIM = 0.265 SIM = 0.235 SIM = 0.231 SIM = 0.211 SIM = 0.198 SIM = 0.178 SIM = 0.159

(b)

Figure 5.6: Examples of query objects from the SHREC 2007 query-set and the
top-7 retrieved models.

From a more quantitative point of view, we compared the average Normalized
Discounted Cumulative Gain NDCG vector of our approach and Tierny et al.’s
competing method [Tierny 2009]. Figure 5.7 shows the curves corresponding to
these NDCG vectors. From this figure, we can observe that the curve obtained by
our method is situated above the two reference ones.

The last comparison has been made with two algorithms on the McGill
database: the Bag of Words (BoW) based global shape retrieval algorithm from
Lavoué [Lavoué 2011] and the graph-based approach (EMD-PPPT) from Agathos
et al. [Agathos 2009]. We carried out evaluations on the average performance of
the whole database, as well as the result corresponding to each specific class.
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Table 5.5: Retrieval performance for the McGill database.

Class method NN (%) FT (%) ST (%) DCG (%)
Our method 98.3 78.6 92.8 94.3

Whole BoW [Lavoué 2011] 94.5 62.9 77.6 88.1
EMD-PPPT [Agathos 2009] 97.6 74.1 91.1 93.3

Our method 100 64.7 91.3 91.1
Ants BoW [Lavoué 2011] 96.7 58.3 86.7 89.1

EMD-PPPT [Agathos 2009] 96.7 54.9 79.7 88.4
Our method 100 94.7 99.4 99.7

Crabs BoW [Lavoué 2011] 100 61.1 73.9 91.4
EMD-PPPT [Agathos 2009] 100 98.2 99.8 99.9

Our method 100 86.4 93.3 96.4
Spectacles BoW [Lavoué 2011] 100 54.5 69.7 87.8

EMD-PPPT [Agathos 2009] 95 83.9 88.9 95.2
Our method 100 93.1 96.6 97.6

Hands BoW [Lavoué 2011] 100 68.2 96.4 98.1
EMD-PPPT [Agathos 2009] 96.6 93.5 88.8 93.4

Our method 91.6 100 83.2 89.7
Humans BoW [Lavoué 2011] 66 24.7 38.2 64.2

EMD-PPPT [Agathos 2009] 88 58.8 81.8 88.1
Our method 100 97.8 99.3 99.8

Octopuses BoW [Lavoué 2011] 100 92.1 98.4 99.2
EMD-PPPT [Agathos 2009] 100 100 100 100

Our method 100 47.3 94.7 85.2
Pliers BoW [Lavoué 2011] 88 20.8 25 64.3

EMD-PPPT [Agathos 2009] 100 43.2 95.2 84.7
Our method 100 94.1 100 99.2

Snakes BoW [Lavoué 2011] 100 90.2 98.7 99
EMD-PPPT [Agathos 2009] 100 70.3 99.8 94

Our method 100 93.1 100 96.7
Spiders BoW [Lavoué 2011] 100 71.6 96 93.6

EMD-PPPT [Agathos 2009] 100 87.2 100 98.4
Our method 100 97.1 100 99.7

Teddy BoW [Lavoué 2011] 100 96.6 100 99.9
EMD-PPPT [Agathos 2009] 100 45.3 63.2 83.9
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Figure 5.7: Average Normalized Discounted Cumulated Gain (NDCG) vectors for
Our method and Reeb pattern unfolding RPU [Tierny 2009] on the SHREC 2007
data-set.

In Table 5.5 the four scores (i.e., NN, FT, ST, and DCG) for each of the re-
trieval methodologies for each class of the McGill database as well as the average
scores for the complete databases are shown. From the results provided in Table
5.5, we observe that our matching scheme performs better in total. One may
also notice that our method has better results in most of the classes except for
Crabs and Octopuses classes where the EMD-PPPT method slightly outperforms
our technique. This may be explained by the fact that both models possess high
skeletal articulation deformations and then, may be well categorized by the entire
graph-based representation used in EMD-PPPT. For teddies class, BoW method
slightly outperforms our technique if we base the evaluation on FT and DCG scores.

In Figure 5.8, precision-recall curves show the performance of EMD-PPPT
retrieval algorithm against the proposed method for the whole McGill database.
From the depicted curves it is shown that our retrieval scheme outperforms the
EMD-PPPT scheme for all the recall values.

5.4.5 Computation times

In order to assess the time complexity of the proposed matching algorithm,
execution-time tests were conducted employing executables generated by Visual
Studio 9.0 operating in release mode. The source code was written in C++. All
tests were conducted on a laptop with an Intel Core 3 CPU M350 at 2.23 GHz,
and operating system Windows 7 SP 1. Table 5.6 presents the average processing
time for the whole indexing of a model in each tested database. From the reported
results, we can deduce that our matching system is computationally efficient. De-
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Figure 5.8: Precision-recall curves, of our method and the EMD-PPPT algorithm
[Agathos 2009] for the McGill database.

pending on the number of vertices in the query model and the number of models in
the database, the full processing time of a query varies from 11.2 to 17.3 seconds.
For instance, for the SHREK 2010 data set where the average model size is 13.65K
vertices, the whole indexing of a model takes an average of 11.2 seconds.

Table 5.6: Average execution times searching 3D models in McGill, SHREC 2010
and SHREC 2012 data sets.

Data set
Average model

size (K vertices)
Average execution

time (seconds)
McGill (255 objets) 13.59 17.3
SHREC2010 (200 objets) 13.65 11.2
SHREC2012 (1200 objets) 8.8 16.4

5.5 Conclusion

In this chapter, we presented a novel technique for content-based 3D model retrieval.
Our contribution was to exploit the Reeb graph concept to define an efficient local
shape descriptor. In our matching framework, the query mesh model is represented
by its Reeb graph that is partitioned in Reeb charts. Each Reeb chart is associ-
ated with its pair of signatures which is encoded as an attribute in the similarly
measure. A thorough experimental evaluation has shown that our method achieves
excellent performance in terms of both accuracy and efficiency. Experimental as-
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sessments also indicate that the proposed retrieval scheme exhibits substantial per-
formance improvements over state-of-the-art algorithms on various shape retrieval
benchmarks. We have to specify moreover that our algorithm is computationally
efficient. Depending on the number of vertices in the query model, the average
processing time of a query varies from 11.2 to 17.3 seconds.
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6.1 Introduction

The main purpose of this chapter is to propose a new compression method based
on motion estimation of successive frames. Intrinsic mesh surface segmentation
has been studied in the field of computer vision, especially for compression and
simplification purposes. Therefore we use a segmentation-based compression scheme
for animated 3D meshes with constant connectivity. The proposed segmentation
method exploits the temporal coherence of the geometry information by using the
heat diffusion properties. The motion of the resulting regions is accurately described
by 3D affine transforms. These transforms are computed according to the first
frame to match the subsequent ones. In order to improve the performance of our
encoder, the quantization of the temporal prediction errors is optimized by using a
bit allocation procedure. The objective aimed at is to optimize the quantization of
the mesh geometry by minimizing the reconstruction error. We will experimentally
show that compared to the reference methods, the proposed coding scheme offers
good compression performance. Furthermore, the rate control mechanism, allows
supporting archiving and transmission needs.
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6.2 Survey on 3D dynamic compression

The recent technological advances in the fields of telecommunication, computer
graphics and multimedia allow access to an ever finer 3D dynamic modeling of
the world. The critical challenges with 3D animated models lie in their rendering,
storage and speed transmission over channels with limited bandwidth. In this
context, the need for efficient compression techniques is crucial. A 3D dynamic
model is commonly represented by a sequence of 3D triangular meshes, with
constant connectivity and temporal information provided by time-varying geometry
(only the vertices position changes over time).

Similar to static 3D mesh compression, spatial coherence can also be exploited
in dynamic 3D mesh compression. As a result, each frame of the sequence, can
be independently encoded using conventional static geometry and/or connectivity
compression techniques [Guskov 2004a, K. Mamou 2006, Payan 2007, Cho 2010].
As an example, MPEG-4 Part-2 video coding standard has included a tool named
3D mesh compression (3DMC), for static meshes exploiting spatial dependencies of
adjacent polygons.

Despite their efficiency, such static methods are still limited in terms of com-
pression ratio since they do not exploit the dependencies across the temporal scale.
To increase the compression performances, it is important to exploit statistical
redundancies in both spatial and temporal directions. Indeed, it is desirable
to use inter-frame coding by employing temporal prediction. In [Lengyel 1999],
Lengyel proposed to model the temporal mesh deformation by special animation
parameters, corresponding to affine motion. The main idea consists in splitting
a mesh into several sub-meshes, and estimating a rigid-body motion for each
sub-mesh. The difference between the real mesh deformation and the estimated
one is then coded and saved.

Other compression systems based on predictive coding have been developed
in order to exploit the temporal and spatial correlations of mesh sequences
[Ahn 2011, Yang 2002, Ibarria 2003]. The main idea of all these methods is to
predict the displacements of the vertices along the sequence and then to encode the
residual errors.

In [Alexa 2000, Karni 2004, Lee 2007], the authors introduced three coding
methods, for animated 3D meshes, based on the principal of component analysis
(PCA). These techniques exploit only the temporal coherence of the geometry
component instead of focusing on both spatial and temporal coherence. Another
alternative developed by [Briceno 2003] proposed to project each frame of the se-
quence onto a 2D image, and then compress the resulting sequence of bi-dimensional
images with some conventional video coding techniques. In this coding method,
sophisticated mesh cutting needs to be performed to find a suitable mesh-to-image
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mapping.

Similar to the motion compensated temporal filtering (MCTF) based video
coding, relevant work were conducted recently on temporal wavelet-based coders
for animated 3D meshes [Guskov 2004a, Yang 2004, Payan 2007].

The developed coders focus on an analysis step that transforms the geome-
try information to reduce the signal amount of data, and then a differential coding
strategy is applied on the resulting details to exploit the temporal dependencies
between successive frames.

The first animated compression algorithm, proposed by Lengyel, is based on
the affine transformations [Lengyel 1999]. A mesh is partitioned into different
regions, and a rigid-body motion is computed for each region. Doing so, the defor-
mation in a region is only represented by a set of affine transformations, instead
of the displacements of all the vertices in the same region. Later, [Shamir 2001]
have extended Lengyel’s coding scheme by introducing a multi-resolution coding
approach for temporal deformation. Affine transformations have also been used by
[K. Mamou 2006]. The authors proposed a 3D mesh compression scheme, based on
a skinning animation technique. The segmentation process is based on 3D affine
transforms in order to obtain the frame-wise motion of each region by weighting
previous affine transforms. Motion compensation is then performed followed by
Discrete Cosine Transform (DCT) of residual errors.

Other compression techniques, of dynamic 3D meshes, have been developed
[Guskov 2004b, K. Mamou 2006, Payan 2007, Cho 2010]. The overall idea of all
these methods is to reduce temporal redundancy by estimating the temporal
coherence between rigid meshes."

A relevant compression method, proposed by [Alexa 2000], performs the PCA
of geometry covariance matrix to reduce spatial correlation. [Karni 2004] have
extended this technique by applying a second-order linear predictive coding (LPC)
on PCA components, to exploit the temporal coherence. This algorithm has been
shown to be efficient only for sequences with few global motion. In addition, its
is penalized by its high time and memory complexity. More recently, [Lee 2007]
proposed to improve Alexa and Müller’s compression algorithm by optimizing the
number of key-frames. The drawback of these methods is that the number of
key-frames may be quite high. Consequently, their effectiveness is diminished when
applied to dense meshes with high number of vertices.

In [Müller 2006], authors introduced a dynamic 3D mesh coder based on
rate-distortion optimization. Both of the spatial partition and the prediction mode
are determined using the Lagrangian cost function. A rate-distortion optimization
model has been also used by [Payan 2007]. To exploit temporal coherence, the
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authors proposed to use a temporal wavelet filtering. During the encoding step,
the quantization of the wavelet coefficients is optimized by a temporal model based
on bit allocation mechanism. In the same context, [Cho 2010] proposed a wavelet
based compression scheme, for 3D mesh sequences, using integer analysis and
synthesis filter bank.

Recently, Bici et al. [Bici 2011] proposed three predictive coding approaches
based on weighted spatial prediction. The authors introduced a weighted spatial
prediction scheme in the first contribution. Then, in the second one, they integrated
a refinement step. Finally, they introduced an angle based predictor. The proposed
structures achieve a significant improvement in the prediction error accuracy and
the compression rate. Particularly, Bici et al.’s coding method [Bici 2011] is suitable
for low-delay streaming scenarios.

More Recently, [Váša 2014] proposed a compression system, for dynamic 3D
meshes that exploits geometric laplacian. The main contribution consists in calcu-
lating, for the entire sequence, an average mesh. The latter is used, by applying a
discrete geometric Laplacian, to encode the coefficients describing the mesh vertex
trajectories, using a static mesh compression method. In order to improve the
compression performance, the authors have integrated a spatio-temporel predictor.

The issue of 3D dynamic mesh compression has rapidly gained the interest
of the scientific community in recent years. However few existing work have been
investigated on motion-based segmentation for dynamic 3D mesh compression
[Lengyel 1999, Amjoun 2006, Boulfani-Cuisinaud 2007].

Although various researches have been conducted in the area of an-
imation compression, however, few work have been done regard-
ing the segmentation based motion estimation of dynamic 3D meshes
[Lengyel 1999, Amjoun 2006, Boulfani-Cuisinaud 2007].

The segmentation algorithm developed by [Lengyel 1999] partitions the mesh
into sub-meshes, whose motion can be accurately described by 3D affine transforms.
Lengyel’s segmentation method is based on heuristic approach that selects randomly
10% of triangles to represent the motion information. The remaining vertices are
classified according to the motion of these triangles. Lengyel’s method has been
shown to be quite effective. However, its is hindered by the use of large number of
clusters independently from the motion nature. [Amjoun 2006] have extended this
approach, to develop region growing segmentation algorithm. The main idea was
to search the N farthest triangles in geodetic sense. The choice of triangle germs is
based only on the geometry of the first frame in the mesh sequence, causing a lack
of segmentation efficiency. [Boulfani-Cuisinaud 2007] proposed another alternative
which represents each vertex by an affine transform that optimally describes the
motion of its neighborhood. The vertices whose motions are described by the same
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affine transform, with respect to a minimum prediction error, are grouped in the
same cluster. Due to the sub-optimal selection, the vertices located on the cluster
borders are misclassified, which in turns affects the segmentation accuracy. More
Recently [Rosman 2012, Rosman 2013] developed a motion-based segmentation
technique that partitions an articulated 3D shape into rigid parts by resolving a
piecewise-smooth regularization problem [Mumford 1989].

In the rest of this chapter, we propose a segmentation based compression scheme.
Our contributions are twofold. First, we introduce a novel segmentation scheme,
based upon ideas from Morse theory, to partition the first mesh of the sequence
into sub-meshes having independent deformations. The best affine transformations,
that represent the displacements of the sub-meshes over the subsequent frames,
are then computed and encoded. Second, we propose to increase the compression
performance by using a bit allocation mechanism that optimizes the selection of
quantizer step sizes to be applied on the affine transform coefficients.

6.3 Proposed 3D segmentation-based compression
scheme

This section describes our coding system, which is illustrated in the block diagram of
Fig. 6.1. We assume that the input data is a sequence of triangular meshes (frames)
sharing the same connectivity. In what follows, we present the overall compression
scheme, then we introduce the segmentation process, and finally, we describe the
bit allocation strategy, which is based on rate-distortion models.

Figure 6.1: Block diagram of the proposed coding scheme.
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6.3.1 Proposed Segmentation approach

In this work we propose an implicit segmentation method which exploits the
temporal information of dynamic 3D meshes. The main contribution consists in
partitioning dynamic meshes into segments of homogeneous properties, based on
kinematic Reeb graph (KRG) representation presented in Chapter 3. Particularly,
a new scalar function, based on the eccentricity in term of diffusion distance, has
been created to compute the Reeb graphs.

Curvature information is exploited to refine boundaries between object parts
in accordance to the minima rule. Thus, the boundaries of the regions automat-
ically follow the most concave parts of the surface. Vertices are distributed into
regions according to the value of the continuous function µ computed in section 6.3.
Contiguous regions with the same number of connected components are merged
into a single interval. Each interval is characterized by its scalar function value
and the number of its connected components. This process is repeated iteratively
in order to reduce the number of regions (clusters). The iterative loop stops when
each region admits a different number of connected components. Consequently,
each vertex of the mesh is marked based on the region to which it belongs. Its
worth mentioning that the obtained partition of vertices, located on the boundary
regions, may be slightly corrected by exploiting the curvature information. The
aforementioned segmentation approach is summarized in Algorithm 4.

Figure 6.2: Match region boundaries with deep surface concavities.

A refinement step has been integrated in our segmentation scheme in order to
improve the mesh decomposition. This is done by adjusting the region boundaries
according to curvature information.

Each region boundary is considered as a level set and is thus associated with
a value of µ that corresponds to a critical point. In our case, the proposed µ func-
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Algorithm 4 3D mesh segmentation algorithm.
Require: a discrete triangular surface S.
Ensure: initial partition P (S).
1: Interval collection I
2: Number of Tuples k in I ← number of vertices in M
3: for all vk ∈M do
4: Compute the scalar function µ(vk)
5: Number of connected components N(µ(vk)) associated with µ(vk)
6: Ik ← ( µ(vk), N(µ(vk)))
7: end for
8: Sort I according to the increasing order of µ(v)
9: while ∃ adjacent intervals have the same N(µ(v)) do

10: for all Ik ∈ I do
11: find the interval Ij adjacent to Ik
12: if N(µ(vk)) = N(µ(vj)) then
13: merge the two intervals Ij and Ik together
14: end if
15: Update(I)
16: end for
17: end while
18: for all vk ∈M do
19: vk is labeled based on the interval it maps to
20: end for
21: Update P (S)
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tion is stable against perturbations and invariant under isometric transformations.
Thus, we have overcome the locality problem. During the refinement step, to define
a perceptually salient decomposition, we only consider the concavity problem. The
optimal value of µopt should determine a boundary that matches a deep concavity
profile on the object surface. Implicitly, µopt is close to µc that corresponds to the
closest critical point as shown in Fig. 6.2.

The objective aimed at is to find the optimal value µopt that determines the
boundary profile. The issue can be considered as an optimization problem, which
consists in minimizing the concavity function Econcave(µ′) of each region boundary
associated with a value of µ′. Econcave(µ′) is defined by:

Econcave(µ′) = min
µ′

(Kmin(c(µ′),R(t))⊗Gσ(t)), (6.1)

with Kmin(.) being a function returning the sequence of Kmin curvature values,
computed according to [Taubin 1995a] along the boundary profile, and c(µ′)R(t) the
curve-parameterized with respect to the normalized arc-length t. c(µ′)R(t) represents
the set of µ values corresponding to the boundary of region R. The convolution
with a Gaussian kernel Gσ(t) leads to smoothing values of Kmin. Consequently,
the minimum identification will be more efficient and stable. In addition, curvature
information is exploited to refine the segmentation and adjust region boundaries in
order to match deep surface concavities.

6.3.2 Compression scheme

As illustrated in Fig. 6.1, our approach consists in representing the geometry of the
mesh sequence by a piecewise affine geometry predictor minimizing the prediction
errors. This is accomplished by exploiting the partition obtained by a segmentation
algorithm, which is applied only on the reference frame. The obtained key-vector
π = {1, .., V } associates each of the mesh vertices to the index k of the cluster
to which it belongs. This key-vector is coded using the lossless arithmetic coder.
The connectivity information is coded only once, together with the geometry
information of the reference frame. The latter is compressed using a static 3D mesh
encoder. We privilege using the progressive lossless mesh encoder of [Valette 2009],
which is based on Incremental Parametric Refinement (IPR). In our setting, the
vertex coordinates are quantized to 12 bits per coordinate. Experiments have
shown that the IPR method provides very competitive results compared to previous
work in terms of rate/distortion trade-off [Valette 2009].

During the prediction procedure, the first mesh of the sequence is taken as a
reference frame. The motion estimation consists in describing the affine motion of
clusters k ∈ {1, ..,K} at frames i ∈ {1, .., F} by an affine transforms AT k

i . The
latter is computed as follow with respect to the reference frame:

AT k
i = argmin

A
(
∑
v∈π
∥Aχ0

v
− χv

1∥2), (6.2)
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where A is 4×4 matrix representing an affine transform, and χv
i is a 4D vector that

designates the homogeneous coordinates of the vertex v at frame i. The piecewise
affine predictor of the frame i from the reference frame (frame 0) is expressed as
follows:

χ̂v
i =

K∑
k=1

W v
kAT

k
i χ

v
0, (6.3)

where W v
k , defined in (6.3), is the optimal weight vector that controls the motion

influence of all the clusters k ∈ {1, ..,K} over the vertex v. The motion of the vertices
in each cluster are obtained by weighting the corresponding affine transforms. The
homogeneous estimated coordinates of the vertex v at frame i are provided from the
set AT k

i and W v
k :

W v
k = argmin

A

F−1∑
i=0

∥
K∑
k=1

AT k
i χ

v
0 − χv

i ∥. (6.4)

The two matrices AT k
i and W v

k are quantized and encoded by using the entropy
arithmetic coder. It is worth noting that these two matrices represent the motion
information which highly influences the motion compensation accuracy, and
consequently the reconstruction quality. For this reason, we proposed to use a
rate control mechanism to efficiently calculate the quantizer step sizes during the
quantization stage. The proposed bit allocation procedure is reviewed in Section
6.3.3 in more detail.

The residual error is calculated as a simple difference between the original
4D vector, representing the homogeneous coordinates of the vertex v at frame i,
and the estimated one. We note that the prediction error vector, relative to each
vertex v, is represented by floating point components with low-magnitudes (that
tend to zero). We proposed using the normalized scientific notation of the floating
point components, to encode separately the signs, exponents and mantissas of
the original vertex and the estimated one. This process allows realizing lossless
compression with high precision.

The overall compressed file is composed of two types of data:

• inside information, which contains the partition, affine transforms and anima-
tion weights,

• outside information, that comprises the geometry and the connectivity of the
reference frame as well as the prediction errors.

6.3.3 Rate control

The rate control (or the rate-distortion optimization) mechanism is the core of our
compression scheme. For a target bit-rate Rbudget, our rate control process allows
to minimize the distortion of the final code-stream produced by the coding system.
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As cited earlier, this process is performed on the prediction error data, which is
split into 3 subbands corresponding to the prediction errors of the 3 coordinates x,
y, and z. The rate-distortion trade-off is determined by calculating the adequate
quantizer step size, for each subband, in order to attain the target bit-rate. For
a given subband Si and a quantizer step size q, Di(q), the contribution to total
distortion from subband Si, is defined by the mean square error, given by:

Di(q) =
1

3
Mean{(Si − ((Si/q)× q))2}, (6.5)

where the mean is taken over all the coefficients in Si, and “/ ” denotes division
followed by rounding to the nearest integer. Similarly, define Ri(q), the bit-rate
contribution as:

Ri(q) =
1

3
Entropy{(Si/q)}, (6.6)

where the entropy is calculated over all the components in Si using statistical
models. Inspired by the theoretical models proposed in [Payan 2005] and from
results provided in appendix .1, we assume that the probability density functions
of the prediction error coordinates can be modeled by Generalized Gaussian
Distributions (GGD). More details about the used distribution modeling approach
are provided in appendix .1.

It is worthy to mention that the side information is encoded without loss.
Consequently, it does not intervene in the quality degradation. The total distortion
is then calculated by considering only the distortion due to the quantization of
the three coordinate subbands. On the other hand, the total bit-rate is calculated
using both of side and outside information.

Considering that the total distortion is an additive metric, calculated as D =
3∑

i=1
Di,

and that the total bit-rate of the code-stream is given by R =
3∑

i=1
Ri, the rate-

distortion problem can be formulated as follows. Given an input 3 subbands with
a target bit-rate Rbudget, one wants to select the set of quantization step sizes
Q = {qi : i = 1, . . . , 3} to minimize the total distortion D:

D(Q) =
3∑

i=1

Di(qi), (6.7)

subject to the bit-rate constraint:

R(Q) =

3∑
i=1

Ri(qi) ≤ Rbudget −Rs −Rff , (6.8)

with Rs and Rff are the bit-rates of the side information and the reference frame,
respectively. Using Lagrange multiplier, equations 6.7 and 6.8 are equivalent to the
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following unconstrained problem:

min
Q

J(λ) = D(Q) + λ((R(Q) +Rs +Rff )−Rbudget), (6.9)

where λ being the Lagrangian multiplier, and J(λ) is the Lagrangian cost. For a
fixed λ, J(λ) is minimized when

∂J(λ)

∂D(Q)
= 0 (6.10)

∂J(λ)

∂R(Q)
= 0. (6.11)

It is important to note that for a given Lagrange multiplier, the resulted λ and
J(λ) might not meet the overall rate constraint. Therefore, we should find the
optimal Lagrange multiplier λopt such that the total bit-rate would be equal to
Rbudget. In our work, λopt is obtained by using the bisection method described in
[Krongold 1998].

Fig. 6.3 shows the obtained rate/distortion curve for a set of bit-rates. This
figure represents an instance of the problem given by eq. 6.9 where the bit-rate
has to be allocated in order to correspond to the target bit-rate. Empty circles
in Fig. 6.3 represent the points that are located over the convex hull. These
points should be rearranged in order to be located on the convex hull (red circles).
Minimizing the Lagrangian cost J(λ), for λ = 0, is analogous to minimizing the
distortion, i.e, finding the point closest to the distortion-axis in Fig. 6.3. On the
contrary, minimizing the Lagrangian cost J(λ), for high values of λ, is equivalent
to minimizing the bit-rate and thus selecting the point closest to the rate-axis in
Fig. 2.1.

6.4 Experimental results

In order to evaluate the proposed segmentation approach, we consider some 3D
dynamic meshes named: Dance, Chicken, Cow, and Snake. These models are char-
acterized by their various motions and complexities. Moreover, they offer a good
variability in terms of spatial and temporal sizes. Table 6.1 summarizes their prop-
erties, expressed in terms of numbers of vertices, number of frames, and number of
connected components.

6.4.1 Evaluation criteria

To evaluate the performance of the proposed segmentation method, we choose the
mean square error, introduced by the motion compensation procedure. The objec-
tive aimed at is to obtain a partition Π = (πk)k∈1,..,K of the whole mesh into K
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Figure 6.3: Rate/distortion characteristic using Lagrangian optimization.

Table 6.1: Properties of the tested dynamic meshes.
Vertices Frames Connected Components

Cow 2904 204 1
Dance 7061 201 1
Chicken 3030 400 41
Snake 9179 134 1

regions. The mean square error denoted by E(Π) is defined by:

E(Π) =
1

V × T ×D2

T∑
i=1

K∑
k=1

∑
v∈πk

∥χv
i −Ak

i χ
v
1∥2,

where V and T denote the number of vertices and the number of frames of the
mesh sequences, respectively. D is the bounding box diagonal of the first frame.
Ak

i is the 3D affine transform associated with the region (πk) at frame i, and
χv
i is a vector that consists of the homogeneous coordinates of the vertex v at frame i.

To assess the performances of our proposed compression scheme, we evaluate
the introduced distortion as a function of the attained bit-rates. The quality
degradation is assessed using two error metrics:

• The KG error introduced by [Karni 2004]. The latter, expressed in percent,
corresponds to the relative discrete L2-norm both in time and space. It is
defined by:

KG = 100
∥G− Ĝ∥
∥G− E(G)∥

,
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where G and Ĝ are two matrices containing the (3-D) coordinates of the
original sequence and the reconstructed one, respectively. E(G) is an average
matrix containing the mean values of the coordinate sets of each frame.

• The root mean square error RMSE between original and decoded meshes. The
RMSE distortion is defined as the mean value of the frame to frame, computed
over all the frames of the sequence. This metric is computed by the METRO
tool [Cignoni 1998].

The bit-rates are expressed in terms of bits per vertex per frame (bpvf). The
reported bit-rates include the rate needed to encode both of side and outside infor-
mation.

6.4.2 Performance results

In this section we start by analyzing the accuracy of the proposed segmentation
method. Then, we evaluate the compression performance of our coding scheme.

6.4.2.1 Segmentation accuracy

Fig. 6.4 depicts some segmentation results for Dance and Snake sequences. From
this figure we can see that the segmentation process allows to partition the mesh into
rigid clusters consisting of topologically connected vertices which are characterized
by similar motion properties.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4: Segmentation results on four selected frames, extracted from (a-b-c-d)
Dance, and (e-f-g-h) Snake sequences.

The results reported in Table 6.2 present the values of the squared error E(.)

before and after the refinement step. The number of iterations has also been pro-
vided in order to evaluate the convergence rate. From these results, we can notice
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Table 6.2: Evaluation of the mean square error of the motion compensation E(Π).
E(Π0) Nb iterations E(Π)

dance 0.0023 19 0.0012
Cow 0.0028 16 0.0016
Snake 0.0024 25 0.0014

that, on average, the refinement step converges after 20 iterations. The motion
estimation error obtained using the refinement step is about 0.0014 against 0.0025
without. Thus we conclude that, the refinement post-processing stage allows to
increase, significantly, the motion estimation accuracy.

6.4.2.2 Compression performance

In order to assess the performance of our compression scheme, we conduct some com-
parisons with previous methods from the state-of-the-art. For a fair comparison, we
divided our tests on two sets according the used distortion metric. In the first set
of comparisons, we retain the KG error as a quality metric. To perform the com-
parisons, WSP[Bici 2011] and FAMC[Mamou 2008, N. Stefanoski 2008] algorithms
are used as references:

• The Weighted spatial prediction (WSP)[Bici 2011] algorithm, described earlier
in Section 6.2, integrates three prediction structures,

• Frame-based Animated Mesh Compression (MPEG-4 FAMC)[Mamou 2008,
N. Stefanoski 2008], based on skinning approach [K. Mamou 2006] and
Context-Adaptive Binary Arithmetic coding [Marpe 2003].

In the second set of comparisons, the RMSE is used as distortion metric, whereas
RT[Collins 2005], D3DMC[Müeller 2005], GV[Briceno 2003], and skinning algo-
rithms are taken as references:

• The RT clustering-based approach [Collins 2005], consists in splitting the mesh
into sub-parts whose motion is expressed only in terms of Rigid Transforms
(RT). The object’s motion is described by a set of rigid motion parameters
associated with each cluster.

• Dynamic 3D Mesh Coder D3DMC [Müeller 2005] is a clustering-based method,
where the motion field is described by a set of motion vectors represented by
an octree structure.

• The Geometry Video (GV) [Briceno 2003] algorithm applies a global affine
motion compensation procedure. It uses a stretch minimizing parametriza-
tion and a conventional video encoding approach to encode a geometry image
sequences. The latter is obtained by applying a uniform sampling on the
parametric domain.
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• The skinning [K. Mamou 2006] algorithm, described earlier in Section 6.2, is a
piecewise affine predictor coupled with a DCT representation of the prediction
errors.

Fig. 6.5 illustrates the rate/distortion curves obtained by using WSP [Bici 2011],
FAMC [Mamou 2008, N. Stefanoski 2008], and our method for Cow, Chicken, and
Dance sequences. From Fig. 6.5 (a)-(c), we can see that, on average, our coding
scheme systematically yield superior compression performance when compared to
WSP and FAMC reference codecs. Furthermore, the rate/distortion curves show
that the FAMC offers the worst results, except for Chicken sequence, which seems
to be better compressed by FAMC.

Fig. 6.6(a) illustrates the rate/distortion results obtained by D3DMC
[Müeller 2005], skinning [K. Mamou 2006] and our method for Chicken sequence.
From this figure, we can notice that D3DMC codec leads to the best performances.
For all the tested bit-rates, our codec slightly outperforms the skinning algorithm.
The gap between the bit-rate-distortion curves representing our method and the
skinning algorithm may be explained by the fact, that our segmentation approach
exploits the temporal coherence of the geometry component based on heat diffusion
properties. Additionally, the accuracy of the vertices distribution on the border
between clusters has been enhanced by exploiting the curvature information.

Fig. 6.6(b) depicts the plots of RMSE variation as a function of bit-rates
for Snake sequence. The RMSE curves in 6.6(b) clearly show that the proposed
codec outperforms the state-of-the-art for low bit-rates. Specifically, at 2.7 bpvf,
our codec achieves around 70% lower distortion than RT method.

The compression results of our codec, GV, and skinning for Dance sequence
are illustrated in Fig. 6.6(c). When examining the figure in its whole, it very clear
that the proposed coding scheme surpasses the state-of-the-art at low bit-rates (less
than 3 bpvf).

Finally in Fig. 6.7, we provide the RMSE distortion values individually for each
frame of the tested sequence Cow and Snake. In our simulation we fixed the number
of clusters K to 30. Examining the results shown in Fig. 6.7(a) and (b), we notice
that for Cow sequence, our codec yields a very low distortion spatially for bit-rate
of 7 bpvf. For Snake sequence, the lowest RMSE values attained at bit-rate of 4
bpvf. Specifically, the RMSE varies in the range of [6.8× (10−5), 9.4× (10−5)] and
[4.6× (10−5), 13.7× (10−5)] for the Cow and Snake models, respectively.

Fig. 6.8 shows five key-frames, extracted from Cow model, coded on different
bitrates. From this figure, we can clearly observe that our codec provides superior
visual quality even at low bit-rates (2 bpvf).

6.4.2.3 Complexity evaluation

In order to assess the time complexity of the proposed coding scheme, execution-
time tests were conducted employing executables generated by Visual Studio 9.0
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(a)

(b)

(c)

Figure 6.5: Rate/distortion performances for Cow (a), Chicken (b) and Dance (c)
sequences.
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(a)

(b)

(c)

Figure 6.6: Rate/distortion performances for Chicken (a), Snake (b) and Dance(c)
sequences.
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(a)

(b)

Figure 6.7: RMSE as a function of the frame index for cow and snake sequences.

(a) (b) (c) (d) (e)

Figure 6.8: Key-frames extracted from the Cow sequence, (a) frame decoded at
2bpvf , (b) frame decoded at 3.5bpvf , (c) frame decoded at 4.7bpvf , (d) frame
decoded at 5.5bpvf , (d) frame decoded at 6.8bpvf .

operating in release mode. The source code was written in C++. The tests were
conducted on a laptop with an Intel Core 7- 4720HQ at 2.6 GHz, and operating
system Windows 8.1. Table 6.3 illustrate the processing time for each test model.
From the reported results, we can deduce that our coding scheme is computationally
efficient. Depending on the number of vertices in the 3D mesh and the number of
frames in the sequence, the full processing time varies from 726 to 9823 ms. Note
that it was not possible to compare the processing time of our method with the



6.5. Conclusion 109

FAMC [Mamou 2008] and WSP [Bici 2011] algorithms, since its authors do not
publish any timings.

Table 6.3: Average execution times for Cow, Dance and Chicken models.
Average execution

time (ms)
Cow 726
Dance 9823
Chicken 3712

6.4.2.4 Discussions

To reduce the motion estimation error, our coder uses a faithful segmentation tech-
nique based on heat diffusion properties. Also the accuracy of the vertices distribu-
tion, on the border between clusters, has been enhanced by exploiting the curvature
information. We notice that the refinement post processing stage used by our seg-
mentation algorithm converges on average 20 iterations. This refinement process
allows to reduce the motion estimation error. All this reasons justify the good re-
sults, for our coder, obtained in terms of distortion when comparing our method to
the reference one.

Additionally, computing a piecewise affine predictor allows to minimize the tem-
poral prediction errors. Their quantification is subsequently optimized using the bit
allocation strategy, which allows to obtain the best results in terms of bitrates and
introduced distortion.

The final code-stream produced by our coding system includes the compressed
reference frame, the partition, the affine transforms and the animation weights ma-
trices and the set of prediction errors separately for each frame. All of this com-
pressed data penalized the coding efficiency of our method at low bitrates..

6.5 Conclusion

In this chapter, we presented a hybrid coding system adapted to dynamic 3D meshes.
In order to perform accurately the motion estimation we integrated a segmentation
process that allows to partition the 3D model according to the heat diffusion proper-
ties by exploiting the temporal and curvature information. The obtained partition is
used in order to compute a piecewise affine predictor which minimizes the prediction
errors. The rate/distorsion performance of our encoder is improved by optimizing
the quantization of the temporal prediction errors using a rate control mechanism.
Preliminary experimental results have shown that our approach leads to a satisfac-
tory performance. Compared to the state of the art, our compression results are
very promising.
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7.1 Summary of contribution

In this thesis, we have presented our research study on topology modeling of 3D
object based on Reeb graph representation. As part of our work, our main contri-
bution is to define a new function based on the continuous heat diffusion properties.
This Reeb graph construction approach can be extremely helpful as a local shape
descriptor for recognition of 3D shape. It can also be introduced into a dynamic
compression system based on the segmentation. In this context, we exploit Reeb
graphs concept into two applications that are widely used: pattern recognition and
3D dynamic segmentation-compression.

First, we highlight in chapter 2 the notion of 3D shape its field applications and
creations. Furthermore we review the modeling of three-dimensional objects. In
particular, we focused on 3D triangular meshes that are frequently used to repre-
sent 3D objects. Despite its simplicity of use, this representation suffers from its
sensitivity against topological, affine or isometric transformation. This motivates
research for intrinsic shape modeling techniques before processing this kind of 3D
data.

In chapter 3, we introduce the notion of intrinsic shape modeling. In particu-
lar we describe two categories: geometry and topology based modeling. Finally, we
focused on topological modeling existing work and specially Reeb graph based repre-
sentation which is the core of our research. Theoretically Reeb graph representation
appears an an interesting object abstraction. It captures efficiently the topology of
the object which leads to a complete topology control for more geometry modeling.

The contributions of this thesis can be summarized as follows.
Reeb Graph extraction based on Heat Diffusion Properties
In chapter 4, we proposed a new Reeb graph construction algorithm adapted for

3D dynamic meshes. The main contribution consists in defining a new continuous
function based on Morse Theory. The latter is calculated as the eccentricity in term
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of diffusion distance from a given point on the surface to feature points located on
the extremity of the 3D shape. Feature points are first detected using the heat
diffusion notion. They are calculated from the two farthest points in the geodesic
sense. In each one we defined a function based on the diffusion distance in order to
extract two local proprieties groups. The intersection of these two groups provides
the set of feature points. This approach produces a set of well- localized points
which are stable against topological changes. The restriction of the heat kernel to
the time domain makes the proposed scalar function intrinsic and stable against
disturbances. The experimental results on dynamic 3D models demonstrated the
robustness and effectiveness of the proposed scalar function.

Application to non-rigid 3D shape retrieval In chapter 5, we proposed to
exploit the Reeb graph construction as a local descriptor in a non-rigid 3D pattern
recognition system. The objective is to segment the Reeb graph into a set of Reeb
charts of controlled topology. Each one is projected to the canonical planar domain
which have either disk or annulus topology. This unfolding in the canonical planar
domain introduces area and angle distortions. Based on that, a couple of signatures
is calculated, which will be used later for matching pairs of Reeb charts. To assess
the effectiveness of our proposed 3D shape retrieval method, we used SHREC 2012,
SHREC 2011, and MCGill databases. According to the experimental study, it has
been shown that our method gives satisfactory results with regards to the state-of-
the-art methods.

Applications to the dynamic compression based on segmentation In
chapter 6, we proposed a 3D dynamic compression scheme based on a segmentation
approach. This latter is based upon idea from Morse theory. The main idea is
to exploit the Reeb graph representation proposed previously. The segmentation
process is performed based on the values of the scalar function which allows to
partition the mesh into rigid parts while considering the motion of each region
over time. A refinement step is added based on the curvature information in order
to improve the vertex distributions on the borders of the regions. The developed
segmentation technique is exploited in a compression system. The first frame of
the sequence, considered as reference frame is partitioned. Then, each region is
modeled by an affine transform and its associated animation weight. The motion
of the vertices in each cluster are obtained by weighting the corresponding affine
transforms. The obtained key-vector, associates each vertex to the index of the
cluster to which it belongs, is compressed by an arithmetic encoder. The two sets of
affine transforms and animation weights are uniformly quantized and compressed by
an arithmetic encoder. The first frame of the sequence is compressed using a static
mesh encoder. Finally, the residual error is calculated as a simple difference between
the original coordinates of a vertex, and the estimated one at each frame. In order to
improve the performance of our encoder, the quantization of the temporal prediction
errors is optimized by using a bit allocation procedure. Performance evaluation has
shown that our proposed coding scheme offers good compression performance in
terms of Bitrates and distortion. The experimental study showed that our approach
leads to satisfactory results with respect to the state of the art.
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7.2 Open problems and Perspectives

In this thesis, we presented a new topological modeling approach based on Reeb
graphs. The latter is exploited in two widely used applications which are pattern
recognition and compression.

From Reeb graphs to concise skeletons

We proposed to incorporate the morse theory motion to rebuilt concise skeleton
representation for 3D dynamic meshes. This structural description offers an
expressive representation of the global surface structure. We are thinking of the
information on the objet contours instead of feature vertex to define a new scalar
function. The feature points may not contain all information about the topology
of the object while the contours described with more implicit manner the shape.
The question that arises is how the articulations can be detected using this kind
of information. Since we we handle dynamic objects, our interest is to obtain a
faithful representation with respect to the motions over time.

Toward a partial 3D shape retrieval based on Heat kernel We plan
to investigate the proposed 3D shape retrieval approach and integrate it in a
partial matching scheme, which can be used for non-rigid 3D shape retrieval.
Instead of segmented the Reeb graph into a set of Reeb charts to compute a pair
of signature. We proposed calculated a multi scale signature based on the heat
diffusion properties. This allows to match most similar shape parts without using
the whole objet. Consequently, reduce the computing time while ensuring better
accuracy.

Towards anatomically precise segmentation We plan to investigate how
to automatically selected to number of clusters and iterations taking into account
the introduced motion compensation error. That leads to improve the performance
of the proposed compression based segmentation scheme in terms of reconstruction
quality. The main idea consists in automatically select the number of clusters and
iterations that provides a lower quality degradation distortion.
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.1 Appendix A

The prediction errors are calculated as a simple difference between the original
coordinates of the vertex v at frame i, and the estimated one. In this appendix,
we demonstrate that the difference between the coordinates allows to concentrate
the energy around zero. Thus each empirical probability density function, of the
prediction error coordinates, fits to a generalized gaussian distribution.

To validate this hypothesis, a χ2 test was conducted between the components
of three subbands, and the probability density functions (pdf) of a Generalized
Gaussian Distribution (GGD), given by:

p(x) = a exp−|bx|α , (1)

with b = 1
σ

√
Γ(3/α)
Γ(1/α) and a = bα

2Γ(1/α) . The parameter α is calculated using the
variance σ2 and the fourth-order moment of each subband.

The χ2 test allows to verify whether each probability density function of three
subbands can be modeled by a Generalized Gaussian Distribution (GGD). The χ2

value is computed using the following expression:

χ2
k−1 =

k∑
v=1

(nv − npv)2

npv
, (2)

• k is the number of cells,

• nv is the median value of the cell v,

• n is the number of samples present in the cell v,

• pv is the expected theoretical frequency given by Eq. 1.

The χ2 statistic is a measure of the difference between the expected theoretical
numbers and those observed in the sample. When the value of χ2

k−1 test increases,
the disagreement will be more important. The coincidence is perfect if χ2 = 0.
Subsequently, we compare χ2

k−1 to the set of values χ2
k−1,β with β represents the

tolerance. If χ2
k−1 > χ2

k−1,β and if it is large enough, then the assumption of actually
dealing with the necessary theoretical distribution is to be rejected with an error
probability of at most β.

We provide a Chi-Square distribution table (Table 1) for some values of k − 1

and β, since the cell number k is, usually, in the range of [6, 30].
Fig. 1 shows the empirical and theoretical probability density functions (pdf)

of the three subbands for Cow model. From this figure, we can clearly observe that
the energy is concentrated around zero.

The different values of χ2
k−1 are illustrated in Table 2. All the obtained values

of χ2
k−1 are strictly less than χ2

k−1,0.995 (see Table 1). From these results, we can
notice that the probability density function of the three subbands can be modeled
by a Generalized Gaussian Distribution (GGD) which gives good estimates with a
high level of reliability surpassing 99.5%. This is to say that the GGD is well suited
to model the empirical distribution of the prediction error coordinates.
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Table 1: Chi-Square distribution table.
0.995 0.99 0.95 0.9 0.1 0.05 0.01

5 0.412 0.554 1.145 1.610 9.236 11.070 15.086
6 0.676 0.872 1.635 2.204 10.645 12.592 16.812
7 0.989 1.239 2.167 2.833 12.017 14.067 18.475
8 1.344 1.646 2.733 3.490 13.362 15.507 20.090
9 1.735 2.088 3.325 4.168 14.684 16.919 21.666
10 2.156 2.588 3.940 4.865 15.987 18.307 23.209
11 2.656 3.053 4.575 5.578 17.275 19.675 24.725
12 3.074 3.571 5.226 6.304 18.549 21.026 26.217
13 3.565 4.107 5.892 7.042 19.812 23.362 27.688
14 4.075 4.660 6.571 7.790 21.064 23.685 29.141
15 4.601 5.229 7.261 8.547 22.307 24.996 30.378
16 5.142 5.812 7.962 9.312 23.542 26.296 32.000
17 5.697 6.408 8.672 10.085 24.769 27.587 33.409
18 6.265 7.015 9.390 10.865 25.989 28.869 34.805
19 6.844 7.633 10.117 11.651 27.204 30.144 36.191
20 7.434 8.260 10.851 12.443 28.412 31.410 37.566
21 8.034 8.897 11.591 13.240 29.615 32.671 38.932
22 8.643 9.542 12.338 14.041 30.813 33.924 40.289
23 9.260 10.196 13.091 14.848 32.007 35.172 41.638
24 9.886 10.856 13.848 15.659 33.196 36.415 42.980
25 10.520 11.524 14.611 16.473 34.382 37.652 44.314
26 11.160 12.198 15.379 17.292 35.563 38.885 45.642
27 11.808 12.879 16.151 18.114 36.741 40.113 46.963
28 12.461 13.565 16.928 18.939 37.916 41.337 48.278
29 13.121 14.256 17.708 19.768 39.087 42.557 49.588

Table 2: χ2 test for Cow model, with k ∈ 6, 16, 26.

x coordinates y coordinates z coordinates
k = 6 χ2

5 = 0.031 < χ2
5,0.995 χ2

5 = 0.067 < χ2
5,0.995 χ2

5 = 0.034 < χ2
5,0.995

k = 16 χ2
15 = 3.127 < χ2

15,0.995 χ2
15 = 4.879 < χ2

15,0.995 χ2
15 = 3.967 < χ2

15,0.995

k = 26 χ2
25 = 8.745 < χ2

25,0.995 χ2
25 = 10.232 < χ2

25,0.995 χ2
25 = 9.315 < χ2

25,0.995
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(a) (b) (c)

Figure 1: Probability density functions of the predicted coefficient coordinates for
the Cow model: (a) X-coordinates, (b) Y-coordinates, (c) Z-coordinates. The blue
and red curves represent the real distribution and the approximated one respectively.
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