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RÉSUMÉ DES RÉSULTATS

CE manuscrit présente des travaux effectués autour de la problématique de syn-

chronisation en phase de deux lasers. Plus précisément, est étudiée une méthode

appelée réinjection décalée en fréquence, qui vise à obtenir le verrouillage sur une

référence de la différence de fréquence entre deux lasers. En pratique, cette différence

de fréquence se situant dans le domaine micro-onde, ces travaux sont à l’intersection

de la dynamique des lasers et de la photonique micro-onde.

LE PREMIER CHAPITRE est introductif et vise à rappeler les principes fondamentaux

et les équations de base régissant la dynamique de lasers de classe B. Une dérivation

des “rate equations” standards est proposée. Une partie est consacrée plus précisé-

ment au facteur de Henry (α), en raison de sa grande influence lors de l’étude de

dynamiques sous injection. Sa définition est rappelée, et est poursuivie par une brève

revue des différentes méthodes permettant de le mesurer. Disposant de ces éléments,

quelques résultats élémentaires sont rappelés pour le cas d’un laser injecté, et d’un

laser soumis à une rétroaction (feedback). Les concepts de bifurcations, de plage

d’accrochage, de modes de cavité externe sont présentés. La suite du chapitre permet

de présenter le contexte de la photonique micro-onde, et notamment la technique

de génération hétérodyne, c’est-à-dire utilisant le battement entre deux fréquences

optiques comme source de fréquence dans le domaine micro-onde. Les avantages de

cette approche et les difficultés rencontrées sont énumérés, en aboutissant au besoin

d’une stabilisation supplémentaire du battement. Une revue des techniques existantes

est présentée, en insistant particulièrement sur le fort intérêt qu’il y a à générer les

deux fréquences optiques dans un unique laser. Une option, le laser bipolarisation

bifréquence, utilise la levée de dégénérescence des modes de polarisation d’une cavité

laser pour générer deux modes orthogonaux de fréquences différentes. Les résultats

existants sur ce type de configuration sont rappelés.

LE SECOND CHAPITRE porte sur l’application de la méthode de stabilisation par

réinjection décalée en fréquence à un laser bipolarisation à état solide Nd:YAG. Il

s’agit de réaliser une injection optique d’un mode de polarisation du laser sur l’autre.

Or, une injection résonante n’est possible que pour un faible désaccord de fréquence

entre le champ injecteur et celui de la cavité. Une étape de décalage en fréquence,

utilisant ici un modulateur acousto-optique est donc utilisée. De plus, la séparation en

polarisation des deux modes permet une injection unidirectionnelle.

Lorsque le désaccord de fréquence est faible, ou que l’injection est forte, un
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verrouillage de phase entre les modes est observé. Il correspond à un report complet

de la stabilité de la référence (ici, le signal de décalage) sur le battement laser. Un

modèle basé sur des rates equations est présenté, incluant les termes d’injection et

de saturation croisée liés au fonctionnement bipolarisation. Ce modèle, sous une

forme normalisée, est à la base de l’étude numérique. L’étude des bifurcations de

l’état stationnaire permet en effet d’identifier, outre la zone d’accrochage de phase,

une zone de verrouillage partiel. Dans cette région, un régime de phase bornée est

observé numériquement et expérimentalement. Il correspond à un verrouillage de

la fréquence moyenne, malgré des oscillations d’amplitude et de phase. Une étude

numérique plus exhaustive est menée pour les cas de faible injection, pour lesquels de

nombreux régimes chaotiques existent. On peut ainsi mettre en évidence un régime

particulier, combinant des propriétés de phase bornée et des fluctuations chaotiques.

Ce régime dit de chaos borné est également observé expérimentalement. L’étude du

bruit de phase montre qu’il s’agit toujours d’un régime de synchronisation moyenne

forte.

D’autres études sont menées autour de ces zones de faible injection. Première-

ment, un retard est ajouté dans le bras de réinjection sous la forme d’une bobine

de fibre. On montre que pour des retards correspondant à quelques périodes des

oscillations de relaxation, une réduction de la plage d’accrochage est observée, ainsi

qu’une dégradation du bruit de phase. D’autre part, un mécanisme de type excitabilité

est mis en évidence sur les bords de la plage d’accrochage. On peut en particulier

conserver le caractère borné de la phase pendant le déclenchement d’un événement.

Enfin, les études précédentes ont été reproduites pour plusieurs valeurs du coefficient

de saturation croisée β et du facteur de Henry α.

Ce dernier facteur, rarement pris en compte dans les lasers à état solide, a en

effet été ajouté dans le modèle pour rendre compte d’observations expérimentales.

Les asymétries observées sur la plage d’accrochage, et notamment la différence de

type de décrochage observé en fonction du signe du désaccord, sont en effet un

marqueur typique d’un facteur α non nul. Une méthode de mesure ad-hoc de ce

coefficient a été développée, en tirant partie d’une légère modification du dispositif

expérimental. L’introduction d’une perturbation de phase par injection optique se

reporte sur l’intensité de sortie via le couplage phase-amplitude lié à α. Or, il existe

une valeur critique du désaccord pour laquelle ce n’est pas le cas. La mesure de celle-

ci permet de remonter à α. La mise en œuvre de cette méthode «FM/AM» se réduit

dans notre cas à introduire une modulation de fréquence sur le signal de référence. À

l’aide du modèle, on obtient ainsi une mesure précise et originale α= 0.28±0.04.

Finalement, cette méthode de stabilisation par réinjection décalée en fréquence

a aussi été appliquée à un autre type de laser bipolarisation, un laser fibré de type
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DFB. Dans ce début d’étude, nous avons constaté que le verrouillage est possible et

robuste, mais que le facteur de Henry probablement plus élevé mène à des formes

plus complexes de la plage d’accrochage.

LE CHAPITRE III est consacré à la transposition de cette méthode de réinjection

décalée en fréquence à un système plus proche des applications potentielles. Il s’agit

cette fois de deux lasers semi-conducteurs distincts, de type DFB, situés sur une même

puce. Ces composants originaux sont développés et produits par le III-V Lab, en tant

que générateurs hétérodyne pour des applications télécom, radar, etc. Dans cette

optique, ils présentent une faible largeur de raie, autour de 300 kHz ainsi qu’une large

bande passante de modulation. Leur accordabilité est large, et dans notre cas, nous

utilisons un battement de 10 GHz entre les deux lasers.

Afin de verrouiller en phase ces deux lasers, une boucle fibrée de réinjection

décalée en fréquence est réalisée, incluant un modulateur d’intensité. L’utilisation

de ce dernier, motivée par les hautes fréquences à atteindre, a pour conséquence un

mécanisme de couplage plus complexe que précédemment entre les deux lasers. En

effet, chaque laser est injecté optiquement par l’autre laser, mais il subit aussi son

propre feedback. De plus, ces lasers ayant des temps caractéristiques rapides (de

l’ordre de la nanoseconde), le temps de parcours dans la boucle de feedback ne peut

être négligé, ce qui nous met en présence de dynamiques à retard long. Néanmoins,

nous montrons expérimentalement, mais aussi numériquement que le verrouillage de

phase est possible. Un modèle numérique basé de type “rate equations” a en effet été

développé pour décrire le couplage retardé entre les lasers. À cette fin, une bonne

connaissance des paramètres du système est nécessaire. Ainsi une caractérisation

poussée des lasers a-t-elle été réalisée, notamment les différents temps de vie (obtenus

par l’intermédiaire d’une mesure de la fonction de transfert en modulation) et le

facteur de Henry (obtenu par une méthode d’injection optique statique).

Outre le régime de verrouillage de phase, qui permet, comme dans le cas du laser

bipolarisation, de transférer la pureté spectrale de la référence vers le battement, des

régimes de synchronisation partielle sont observés expérimentalement et numérique-

ment. À la différence du cas bipolarisation, on observe un morcellement de la zone

de stabilité en fonction du désaccord, qui forme des « bandes d’accrochage ». La

périodicité de ces bandes est reliée à la fréquence de la cavité externe, c’est-à-dire au

retard. Cette alternance de zone de verrouillage, avec des zones de décrochage ou de

synchronisation partielle, type phase bornée, a pu être observée très nettement que ce

soit expérimentalement et numériquement.

Parmi les nombreux paramètres présents dans ce système, les phases optiques liées

à chaque terme de couplage ont fait l’objet d’une attention particulière. En effet, ces

paramètres sont mal contrôlés expérimentalement, et peuvent être sujets à de fortes
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dérives. Or leur valeur peut changer de façon importante l’état stationnaire atteint

par le système. C’est pourquoi nous avons étudié numériquement l’influence de ces

phases optiques sur l’état final du système, et ce en fonction des différents taux de

couplage, ainsi que pour différents retard. Il apparaît qu’il est possible de minimiser

l’influence de ces paramètres sur le régime verrouillé en privilégiant l’injection croisée

entre les lasers et en minimisant le feedback pour chacun d’entre eux. D’autre part, il

semble que la présence d’un retard long permette également de diminuer l’influence

de ces phases.

DANS LE CHAPITRE IV, le système précédent est réutilisé, mais dans une configu-

ration « boucle fermée », c’est-à-dire en s’affranchissant de la référence externe. Un

retard, sous la forme d’une bobine de fibre, est utilisé pour verrouiller le battement sur

lui-même. En ajoutant un filtre passe-bande électrique dans cette boucle résonante,

on obtient une configuration assez similaire ce qui est couramment connu sous le

nom d’oscillateur opto-électronique (OEO). À la différence de ces montages, qui se

basent habituellement sur un modulateur d’intensité, notre signal de sortie contient

uniquement les deux fréquences optiques associées à chaque laser. Cette propriété,

dite de bande latérale unique, rend le taux de modulation du signal insensible à la

dispersion chromatique, et donc approprié à la transmission dans une longue liaison

fibrée.

Ce montage expérimental, réalisé sans grande isolation de l’environnement, per-

met d’obtenir de bonnes performance de bruit de phase, jusqu’à −95 dBc/Hz à 10 kHz

de la porteuse à 10 GHz. Le bruit de phase présente les caractéristiques typiques

d’un OEO : décroissance en basse fréquence relative, puis pics de résonances liés au

retard utilisé. Ces derniers peuvent être réduits en utilisant des techniques issues des

développements sur les OEO. Par exemple, nous avons montré l’efficacité d’un schéma

basé sur deux retards différents formant un interféromètre dans le domaine micro-

onde.

Finalement, la présence d’une longue cavité externe dans le système de réinjection

décalée en fréquence impose l’usage d’un filtre RF sur-mesure, avec une bande

passante particulièrement faible. Cette contrainte peut être levée en réduisant la cavité

externe. Nous avons développé un système beaucoup plus compact, qui utilise une

simple réflexion comme cavité externe, et une faible modulation directe du courant de

pompe d’un des lasers comme mécanisme de décalage en fréquence. On peut dès lors

utiliser un filtre RF beaucoup plus standard, et obtenir, avec un montage très simple,

un signal optique micro-onde quasiment à bande latérale unique.

Dès lors, de nombreuses perspectives apparaissent, comme l’intégration du mod-

ulateur, voire du retard sur le composant, chose qui a déjà été réalisée au III-V Lab.

Enfin, l’utilisation du modèle développé au chapitre III peut permettre de réaliser une
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analyse plus quantitative du système pour guider son amélioration.

EN CONCLUSION, cette étude de la réinjection décalée en fréquence dans deux

cas différents permet de mettre en avant les propriétés globales de cette méthode de

couplage entre deux lasers, ou deux modes du même laser. L’influence d’un grand

nombre de paramètres a été étudiée, que ce soit pour le régime de verrouillage, ou

pour des régimes de synchronisation partielle. La combinaison d’études expérimen-

tales et numériques a permis de garder une perspective résolument tournée vers les

applications et la caractérisation des performances, sans pour autant négliger l’étude

de la dynamique et des régimes instables. La versatilité de cette technique et la

bonne compréhension de son fonctionnement amène finalement à envisager des

développements futurs pour d’autres types de lasers, que ce soit dans des milieux actifs

différents (Erbium, fibre, semiconducteurs multifonctionnalités) ou encore pour des

fonctionnements multimodes.
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TABLE OF SYMBOLS

Through this work, for a variable x, x̂ denotes the associated steady-state value. The

symbol i is used for the imaginary unit without exception, while j is used for indexing.

The following global notations are used in different places through the document.

The more local notations, used a few times in a single section, are not included in this

table.

c Speed of light in the vacuum.

E Complex amplitude of the slowly-varying electric field.

Einj Complex amplitude of the injected field.

E j Complex electric field.

f0 Reference microwave frequency.

fAO Driving frequency for the acousto-optic modulator.

fM Frequency modulation frequency.

f ( j )
R Relaxation oscillations frequency (possibly of laser j ).

g Normalized laser gain.

G Amplifier gain.

I Optical intensity (Chapter I) or power (Chapters II to IV).

I ,Q In-phase and quadrature components of a demodulated signal.

K Feedback or injection strength.

` Cavity length.

L Phase noise (in dBc/Hz).

L Feedback length (Chapter II and III). Fiber coil length (Chapter IV).

m Modulation ratio associated to the Mach-Zehnder modulator.

n Optical index of the active medium (Chapter I), or of the fiber (Chapter II to IV).

N Difference of population inversion density from the threshold level.

N Population inversion density.

Nth Population inversion density at laser threshold.

P Pump term. In the case of semiconductor lasers, pump current.

P Electric polarization of the active medium.

q Ratio of the field transmissions of the output coupler.
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r Pumping ratio.

Rp Pumping rate.

Rp,th Pumping rate at laser threshold.

s Normalized time, related to the relaxation oscillations pulsation.

Sϕ Phase noise (in dBrad2/Hz).

t0 Field transmission coefficient for the modulator.

t1,2,C Field transmission of the output coupler for each laser, or for one of them.

T Feedback delay.

X Demodulated beatnote amplitude.

α Linewidth enhancement factor.

β Cross-saturation coefficient.

Γ Normalized injection rate.

∆,δ Normalized frequency detuning.

∆0 Mean detuning (Chapter II). Half-width of locking range (Chapter III)

∆m Mean detuning of minimal amplitude response (Chapter II).

Detuning of unchanged intensity output (Chapter III).

δν Frequency detuning.

∆+,− Normalized locking range boundaries.

ε Damping coefficient.

η Effective pumping ratio.

θ Angle of a quarter-wave plate, either in the cavity or for the pump (Chapter I).

Phase difference between the two lasers (Chapter III).

κ Normalized feedback strength.

λ Laser wavelength.

νx,y,1,2 Optical frequency of mode x/y , or of laser 1/2.

τ Normalized feedback delay (Chapters I, II and III). Opto-electronic delay, unnor-

malized (Chapter IV).

τc Carrier lifetime (even for solid-state lasers), related to the decay of population

inversion.

τp Photon lifetime, related to cavity losses.

χ,χr ,χi Electric susceptibility of the active medium, and its real and imaginary part

respectively.

ϕ Phase of the electric field under injection (Chapter I).

Phase difference between the two modes (Chapter II).

ϕ1,2,x Optical feedback phases (Chapter III).

φ Output phase of the microwave signal (Chapter IV).

ψ Phase of the injected field.

ω Pulsation of the monochromatic field under study.

ω0 Resonant optical pulsation of the cavity.

Ω Pulsation of the external cavity mode (except in IV.1c).
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GENERAL INTRODUCTION

THE first lasers appeared in the early 60s, from a series of experimental and

theoretical advances. While the theoretical background was already there, most

notably due to Einstein [Einstein17], the experimental breakthrough came from first

realization of microwave-domain masers by Gordon, Zeiger and Townes [Gordon55].

The latter, along with Schawlow, then predicted that a similar device, but operating

in the visible spectrum could be made [Schawlow58]. The same suggestions were

made by Basov and Prokhorov [Prokhorov58], and it was not long since the first laser

was indeed realized by Maiman using a crystal of ruby [Maiman60]. At that time,

the booming of researches on semiconductors and the premises of the associated

industry quickly allowed the fabrication of semiconductor-based lasers [Basov61;

Hall62; Nathan62]. Ever since then, they have become ubiquitous, and an integral part

of many consumer systems or research equipment.

While lasers have completely revolutionized optics, they also made their way

into almost every field of science and technology. To illustrate this, we will cite

only two very different examples. First, we cannot but admire the success of fiber-

optics communication networks, which use laser diodes as transmitters, and allow for

ever-rising transfer speed and volumes [Agrawal02]. Second, the recent detection of

gravitational wave signals with the LIGO and VIRGO detectors [Abbott16] has been

made possible also thanks to the ultrastable solid-state lasers at the core of the giant

interferometers [Bondu96; Acernese09].

While these two examples seem quite remote from each other, they were chosen

to illustrate the vast area in which this thesis takes places, namely the stabilization

of lasers, or even more generically the dynamics of lasers. Indeed, the evolution of

telecommunication systems or the increasingly finer metrology experiments require

even more stable lasers, or lasers with particular behaviors.

This very wide problem has attracted a lot of attention and generated countless

developments. Putting aside pulsed regimes such as mode-locked lasers, for which

considerable efforts have been made [Udem02], and focusing only on continuous-

wave lasers, many solutions have been proposed and successfully applied. For inten-
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sity stabilization, the most common are based on “noise-eating” electronic feedback

loops, which use a measurement on the laser’s output and a counter-reaction on one of

its parameter, such as pump or temperature. For frequency stabilization, it is common

to use the interaction with a frequency etalon, such as the absorption by a molecular

transition in a gas cell, or the reflection from a Fabry-Perot cavity. The most prominent

example of this is the Pound-Drever-Hall method and its variations [Drever83]. A

different scheme uses the optical locking of the laser on an external cavity, such as a

Fabry-Perot resonator [Salomon88] or a long fiber [Kéfélian09]. This is usually obtained

by allowing a certain level of feedback from the external resonator into the laser.

In this work, we will focus on a subset of laser stability problem: rather than

the absolute stabilization of a laser, we will study a method that allows to stabilize

the frequency difference between two lasers. This frequency difference corresponds

to a beatnote usually falling in the microwave domain. Thus, our work falls at the

intersection between optics and the high-frequency electronics needed to process

these beatnotes. This quite new domain called microwave photonics, arises partly from

the fact that large microwave frequencies, i.e. over 10 GHz, are sometimes much easier

to handle, generate, transport or process when placed on an optical carrier, rather than

on a coaxial cable [Yao09].

Among the most obvious problems addressed by microwave photonics are the

“radio-over-fiber” cases, for instance in high-speed telecommunications, or antenna

remoting for wireless systems such as radar [Xu14] or radioastronomy [Montebug-

noli05].

The generation of microwave signals can also benefit from interactions with optics.

Indeed, it is well known that the higher the frequency, the harder it is to generate it

with conventional methods. This applies in terms of complexity, cost, and output

signal quality [Rohde14]. For all these points, the use of optical beatnotes shines as an

attractive alternative. Indeed, such heterodyne methods are conceptually simple and

inherently widely tunable with few frequency-dependent noise.

To illustrate this, one of the main interests of such heterodyne methods is that

very high frequencies, often barely reachable with all-electronic techniques can be

obtained [Rolland14]. For instance, fast progresses in the the field of terahertz

waves [Tonouchi07] and their potential applications in biology [Pickwell06], de-

fense [Davies08], chemistry [Mouret13] or wireless communications [Federici10] drive

the search for tunable and high-quality sources.

However, heterodyne methods suffer from the fact the fluctuations of each laser’s

wavelength and amplitude are reported on the beatnote. Thus, stabilization tech-

niques have to be applied, and no standard, widely usable method has arisen yet.
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Methods derived from the stabilization of a single laser can be used, by applying them

on the two sources [Day92; Hallal16]. Otherwise, sole stabilization of the beatnote

can be obtained using similar methods, based on feedback loops and locking on an

external reference [Alouini01; Rolland11b].

The optical frequencies involved in the generation of the beatnote can be obtained

from either two different lasers, or from multiple modes of a laser. For instance,

optical frequency combs are commonly used [Fortier11]. In our lab, we develop

and propose another approach: we generate the two frequencies from a single laser,

that functions on its two orthogonal polarization axes. Such dual-polarization dual-

frequency lasers [Bretenaker90] have interesting properties in terms of tunability and

free-running stability, that led to some achievements in terms of THz beatnote gen-

eration [Alouini98; Brunel04; Danion14] and optically-carried high-purity microwave

signals [Pillet08]. Stabilization techniques have been developed for these lasers, with

extensions towards very high frequency beatnotes [Rolland11a]. More details on the

properties of dual-polarization lasers, along with a quantitative description of some

realizations will be given in Chapter I.3b.

We see here that a lot of stabilization techniques are based on a mechanism of con-

trolled optical feedback or injection. However, in the history of the laser, injection and

feedback have not always been seen as stabilizing features. On the contrary, feedback is

often seen as destabilizing [Henry86], and so can be an external injection [Tredicce85].

The experimental observations, combined with numerical models of such phenomena

form the raw material of a field known as laser dynamics. The viewpoint here is

to consider lasers under different couplings as dynamical systems. How they react

under variations of their parameters is studied, and a wide range of effects are found,

from self-sustained oscillations, to chaotic behavior, or synchronization mechanisms

between multiple lasers [Erneux10; Sciamanna15].

In this thesis, we will study in more depth an injection-based method called

frequency-shifted feedback (FSF). This technique is based on the resonant injection

from one laser into the other, and allows to synchronize their phase. In turn, the

difference between the frequencies of the two lasers produces a much more stable

beatnote. It was originally proposed a few years ago [Kervevan07], and has shown

promising results when applied to the two modes of a dual-frequency solid-state

laser [Thévenin12c]. Here, we will continue this study, and also try to adapt the

technique to separate semiconductor lasers. All this will be done from a twofold point

of view: first, the applicative microwave photonics viewpoint of beatnote stabilization,

and second also the more fundamental framework of the study of coupled laser

dynamics.
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Outline

This manuscript is structured in four chapters. The first one will be devoted to a short

and simplified recall of the rate equations theory, and how they can be used to describe

the dynamics of a class-B laser. Namely, they can be successfully applied to the case

of lasers subjected to the optical injection from another laser, or to feedback from

themselves. The microwave photonics framework of this work will be also presented,

and specifically the heterodyne generation of microwave signals. With respect to that

challenge, we will see that dual-polarization dual-frequency lasers are particularly fit

for the task but require stabilization mechanisms.

In the second chapter, we will focus on a form of stabilization using frequency-

shifted feedback, applied to a solid-state dual-frequency dual-polarization Nd:YAG

laser. Building on previous results from our lab, we will show experimentally and

numerically that depending on a number of parameters, different types of synchro-

nization regime between the two polarization modes can be obtained. We will also

measure the value of the often ignored linewidth enhancement factor, and highlight

its influence in the reinjection dynamics.

Chapter III will be devoted to another type of beatnote-generating device. This

time, two separate semiconductor lasers provided by III-V Lab will be used, with the

particularity of being located on a single semiconductor component. We will see

that FSF can still be applied, but that more complex phenomena take place, namely

because of the higher number of couplings between the lasers, and the fact they are

ruled by delayed dynamics. Nevertheless, thanks to a careful characterization of the

components, we will develop a numerical model and see that its results compare well

with experimental observations.

Theses results will be used in Chapter IV in order to build a proof-of-concept of

a self-referenced heterodyne oscillator. By combining FSF and the concept of the

opto-electronic oscillator (OEO), we will show that microwave signals over optical

carriers can be obtained with good phase noise performances. Perspectives, among

which integration on photonic components and precise model-driven design will be

discussed.

A short conclusive section will summarize the different achievements, and discuss

the horizon of perspectives, suggesting future work to be done.
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CHAPTER I

INTRODUCTION TO INJECTION AND

FEEDBACK IN LASERS, AND TO MICROWAVE

PHOTONICS

1 Dynamical modeling of class-B lasers

In this thesis, one of our task will involve modeling of lasers. Thus, in this first part, we

will recall some standard concepts, results and make a brief derivation of the tools that

will be extensively used afterwards.

1a The laser rate equations

THE principle of the laser emission is well described by the original meaning of

the acronym LASER, namely “Light Amplification by Stimulated Emission of

Radiation”. Indeed, it is based on a light-matter interaction process called stimulated

emission, where the deexcitation of elements in an active medium allows to coherently

amplify a light field. This process can be summarized as the effective duplication

of an incident photon, accomplished during this deexcitation. The energy of the

supplementary photon corresponds to the difference between the upper, excited

level and the lower level after the transition. This is sketched on Fig. I.1. While

the principle is the same for all lasers, widely different active media exist, from gas

molecules, ions trapped in crystalline, glass matrices or fibers, to semiconductor lasers

where laser emission relies on electron-hole recombination. Alongside, the process

of pre-excitation of the active medium, called pumping, can differ a lot, and can

be provided for instance by another light source, an electric spark, or an electric

current [Verdeyen95; Svelto10]. Having realized a “light amplifier”, it is placed in

an optical cavity, schematically two face-to-face mirrors, so that each photon makes
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multiple round-trips, and has multiple chance to trigger stimulated emission. When

the gain of the amplification compensates the losses in the cavity or at its ends, the

laser threshold is reached, and the laser phenomenon begins.

νlaserνpump

fast

Nd3+ excited state

Nd3+ ground state
fast

νlaser

pu
m

p 
cu

rre
nt

conduction band
(electrons)

(holes)
valence band

Figure I.1: Principle of stimulated emission amplification, in a four-level solid state
medium, such as Nd:YAG (left) and in a semiconductor (right).

The fact that some elements of the active medium are being pumped into an

excited level comes unavoidably with the fact that they may randomly decay into a

state of lower energy. By doing so, they will generate non-coherent light, composed

of photons with random direction, polarization and wavelength. This phenomenon,

called spontaneous emission, is one of the main sources of noise in lasers. However,

in all the following, we will not be interested in the intrinsic noise of our lasers,

so this phenomenon will be neglected in all our models. This approximation is

justified for solid-state lasers, which have a low level of spontaneous emission above

threshold [Koechner06]. This is not the case in many types of semiconductor lasers,

but we will only be interested in models that have a sufficiently low noise levels, and

used way above threshold, so that spontaneous emission can be neglected.

Evolution of the field

First modeling of the laser phenomenon was done almost as soon as the first ob-

servation of the effect, and was built upon the previous model of the MASER, the

microwave domain predecessor of the laser [Schawlow58; Lamb64]. Afterwards,

numerous approaches to describe the laser phenomenon have been developed with

varying complexity. A semi-classical treatment uses the density matrix formalism

and leads to the Maxwell-Bloch equations, that may also be designated as Arecchi-

Bonifaccio equations after their discoverers [Arecchi65; McNeil15]. Other approaches,

either generic or more specifically applied to certain types of lasers, are also common

and lead to similar results in the usual cases [Agrawal86; Tartwijk95; Petermann88;

Lugiato15; Ōtsubo17]. The semi-classical treatment of the laser phenomenon takes
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schematically this form:

field E 1©−→
acts on

ions, atoms, electrons, etc.
2©−→

generate
polarizationP 3©−→

drives
field E

Here the electric field in the cavity E interacts with the active medium (step 1©).

The interaction process can be rather complex, and its accurate description is often

only possible using a quantum mechanics point of view. However, ultimately, it will

lead to an electric polarization P of the medium (step 2©) so that it is possible to

phenomenologically account for this response. Conversely, the response can be simply

experimentally measured. Finally, this electric polarization acts as a driving force for

the electric field (step 3©), and the loop is repeated again [Sargent74]. We will present

here a simplified derivation of the laser equations, based on this principle.

Wave equation. We will assume that the laser cavity selects an axis z, and will

neglect any transverse aspect of the field. Also, the model will be scalar, and will

not take polarization effect into account, although this can be done in extensive

models [Chartier00]. We will not make any assumption on the shape of the active

medium, or on whether it occupies the whole cavity or not. Starting from the Maxwell

equations, and with all these assumptions, we can write the following wave equation

for the time evolution of the cavity field E along the cavity axis z:

∂2E
∂z2

− n2

c2

∂2E
∂t 2

− n2

c2τp

∂E
∂t

=µ0
∂2P
∂t 2

(I.1)

There, c is the speed of light in vacuum, n is the index in the cavity. Here we

consider a non-magnetic medium, so that µ0 is the vacuum magnetic permittivity.

We have introduced phenomenologically a decay term with time scale τp , that cor-

responds to the distributed losses along the cavity, including what is due to output

mirrors, optical elements, conductivity of the medium, etc. This quantity is often called

the “photon lifetime”. Finally, the right-hand side is a driving term, that corresponds

to the interaction of the field with the gain medium. This produces an electric

polarizationP , which in turn drives the evolution of the field.

We consider a monochromatic field with an arbitrary pulsation ω, E(z, t ) =
E(t )e iωt−i kz + c.c., and are only interested in its complex amplitude E(t ). Here k is

the wavenumber corresponding to the resonant mode of the cavity, so that k = nω0/c

where ω0 is the resonant pulsation. We note here a first approximation, that is that

the intensity |E |2 of the field does not vary appreciably along the cavity. This is

obviously true for cavities with good mirrors, but may not be correct for some long
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semiconductor lasers. However, we will only be interested in distributed feedback

semiconductors (DFB), which have low photon lifetimes. This gives the following time

and space derivatives:

∂E
∂t

=
(

dE

dt
+ iωE

)
e iωt−i kz +c.c. (I.2a)

∂2E
∂t 2

=
(
2iω

dE

dt
−ω2E + d2E

dt 2

)
e iωt−i kz +c.c. (I.2b)

n2c2∂
2E
∂z2

=−n2c2k2Ee iωt−i kz +c.c. =−ω2
0Ee iωt−i kz +c.c. (I.2c)

We suppose that the rotating frame pulsation ω is close to the resonant frequency

ω0, so that
ω2−ω2

0
ω ≈ 2(ω−ω0). This will add a frequency detuning term in the final wave

equation.

Slowly Varying Envelope Approximation (SVEA). As we suppose that the complex

amplitude E varies slowly compared to the optical frequencies, we can remove most

terms of the previous derivatives using what is often called the slowly variable envelope

approximation (sometimes abridged as SVEA), which is applicable when
∣∣dE

dt

∣∣ ¿ ω|E |
and

∣∣∣d2E
dt 2

∣∣∣ ¿ ω
∣∣dE

dt

∣∣ [Butcher98]. These condition hold as long as we do not deal with

ultrashort pulses or very intense fields [Sanborn03], or when we are not interested in

boundaries effects in the laser [Dumont14].

Linear response. Finally the lasers we are interested in, solid-state lasers and semi-

conductor lasers, are class-B lasers. This means that their polarization density P
adjusts to the cavity field much faster than the variations of the field itself, or than

the lasing transitions in the active medium. Thus, it can be described proportional

to the electric field in the frequency domain: P = εχ(ω,N )E , where χ is the electric

susceptibility. Lasers in which it is not the case are called class-C lasers (often operating

in far-infrared), and show more complex dynamics on three different time scales.1 As

χ contains the information on the stimulated emission process, it will also depend on

the state of the active medium through the quantityN , described shortly after.

Eventually, we obtain the evolution equation for the complex amplitude E :

dE

dt
+ i (ω−ω0)E + 1

2τp
E =− iω

2
χE (I.3)

1On the contrary, class-A lasers such as VCSELs, dye or He-Ne lasers, have even simpler one-variable
dynamics because the population also has a much faster dynamics than the intracavity field, and can be
adiabatically removed.
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Population inversion

We now have to model the evolution of the active elements, and we will try to do so

in a quite general approach, that can be later used for the two types of lasers we will

study. In the case of the solid-state Nd:YAG laser, we will consider a population of ions

with different possible energy levels. In the second case of the DFB semiconductor, it

will be a population of electrons, either in the valence or conduction band. While the

complete description of the transition processes is indeed quite complex, and involves

different cascades of level changes, we will here make a simple “two-levels” model,

such as the ones of Fig. I.1. We consider that the stimulated emission occurs between

level 2 and 1, that are described by the densities N1 and N2. The higher level 2 is

continuously populated by the pumping mechanism, at a rate Rp . Finally, each of

these level experiences various losses to lower levels, so that the population inversion

N =N2 −N1 decays with rate 1/τc [Erneux10].

Finally, as the stimulated emission process depends on the intensity of the field,

the evolution equation forN can only depend on the optical intensity I = 1
2ε0nc|E |2:

dN
dt

+ 1

τc
N =−G (ω,N , I )+Rp (I.4)

The term G quantifies the rate of decay of the population inversion caused by the

stimulated emission. From Eq. (I.3), if we write the evolution of the optical intensity I ,

we obtain:

dI

dt
+ 1

τp
I =ωIm(χ)I (I.5)

The energy of a photon being ħω, we can deduce that the stimulated emission

process generates ωIm(χ)
ħω I photon per second, per arbitrary surface unit. In a four-level

system, this corresponds to the same amount of decrease for the population2. The gain

term G is thus proportional to the imaginary part of the susceptibility, and we have:

dN
dt

+ 1

τc
N =−ε0nc

2ħ Im
(
χ(ω,N )

) |E |2 +Rp (I.6)

2In a three-level system, such as a ruby laser, it only corresponds to half the decrease, because the
stimulated emission is not followed by another fast transition, as the lower level already corresponds
to the ground level. This situation, and more complex intermediary cases, are often accounted for by a
constant coefficient with the notation “2∗”.
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Rate equations and their properties

What remains to be expressed is the susceptibility χ = χr + iχi . Without making any

assumption on the physical phenomena involved, we can proceed to a linearization

around the level of population inversion Nth so that ωχi (Nth) = 1
τp

. This means that

for this value, the gain in the medium compensates the losses in the cavity. This is

called the threshold level. Some authors such as [Agrawal93] choose to rather develop

around a “transparency level” for which χi = 0, but this does not correspond well to the

case we will study, and lead to atypical definitions of parameters. Finally, we will ignore

the dispersion term χr (Nth) as it will only shift the resonant frequency of the cavityω0.

χ(ω,N ) ≈ i

ωτp
+

(
∂χr

∂N + i
∂χi

∂N

)
(N −Nth) (I.7)

We define the gain g =ω ∂χi
∂N and the coefficientα=−∂χr /∂N

∂χi /∂N . This last term is called

the linewidth enhancement factor [Henry82], a name that will be explained in the next

section. There seems to be some dispersion in the literature on the choice of its sign.

We have chosen it so that it appears as (1+ iα) in the gain term of the rate equations.

The two equations write:

dE

dt
=−i (ω−ω0)E + 1

2
g (1+ iα) (N −Nth)E (I.8a)

dN
dt

=− 1

τc
N +Rp − ε0nc

2ħω

(
g (N −Nth)+ 1

τp

)
|E |2 (I.8b)

If we define N =N−Nth, and the pump term P = τc (Rp−Rp,th) where Rp,th =Nth/τc

is the threshold pumping rate, we obtain:

dE

dt
=− i (ω−ω0)E + 1

2
g (1+ iα)N E (I.9a)

dN

dt
=− 1

τc
N − ε0nc

2ħω

(
g N + 1

τp

)
|E |2 + 1

τc
P (I.9b)

It is very common to use alternate units for electric field, so that the complex

amplitude |E |2 corresponds to the number of photon per surface unit. This can be

done by doing the following scale change E →
√

2ħω
ε0nc E , which we will do in all the

following equations. This leads to the following usual equations:
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dE

dt
=− i (ω−ω0)E + 1

2
g (1+ iα)N E (I.10a)

dN

dt
=− 1

τc
N −

(
g N + 1

τp

)
|E |2 + 1

τc
P (I.10b)

This important set of equations are the class-B laser rate equations, and are

sometimes called the Statz and de Mars after their purely phenomenological deriva-

tion [Statz60]. They are the foundation of many numerical and theoretical studies of

laser dynamics. For instance, they can be used to estimate the influence of noises

on the intensity output and on the frequency of the laser [Sargent74]. The latter is

described at the first order by the linewidth∆ν of the laser, given by Schawlow-Townes

formula [Schawlow58], which reads:

∆ν= (
1+α2) hc

4πλIoutτ
2
p

(I.11)

Here Iout is the output power of the laser, assuming that the cavity losses are

only due to the output coupling. Note that this is only a coarse order-of-magnitude

estimation obtained from Eqs. (I.10), and that some refinements may be needed,

for instance when dealing with semi-conductor lasers. Yet, this allows to see for

instance that solid-state lasers, where τp is usually in the microseconds range produce

a much sharper linewidth than semiconductor lasers, for which a value of τp in the

picoseconds region is often found.

Equations (I.10) can be further simplified by choosing the optical frequency as the

resonant frequency of the cavity so that ω−ω0 = 0. In that case, only three physical

parameters are involved. One is the ratio of the photon and population lifetimes τc /τp ,

the other quantifies the pumping, and is often written in terms of the pumping ratio

r = τp g P+1, and finally the linewidth enhancement factorα, that quantifies the phase

drift.

The rate equations present two steady states, one with no field in the cavity, so that

|E | = 0 and N = P is often called the “off” state. Once the pump P crosses the threshold

Pth (i.e. for r ≥ 1) it becomes unstable and the other steady state, called the “on” state

as |E | 6= 0, becomes stable.

An important feature of these equations, and a characteristic of the class-B lasers,

is that small oscillations can happen around this steady state. Indeed, as two different

time scales exist, two-way exchanges of energy between the field and the population

can take place. This results in a phenomenon called the relaxation oscillations. Their

frequency fR can be obtained by linearizing around the steady state, and is:
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fR = 1

2π

√
r −1

τcτp
−

(
r

2τc

)
≈ 1

2π

√
r −1

τcτp
(I.12)

The last expression is obtained for class-B lasers, thanks to the fact that in most of

them τp < τc by a factor of at least ten [Siegman86]. This will be the case for the Nd:YAG

and semiconductor lasers we will be brought to study.

These relaxation oscillations create sidebands around the optical frequency, so

they appear as a beatnote on the intensity noise of the laser and can be observed

on the power spectral density of the photocurrent delivered by a photodiode. This

appears clearly on the simulated intensity noise spectrum presented on Fig. I.2. These

oscillations may be detrimental in certain use cases such as noise reduction, and way

to avoid them are often looked after [Audo18].
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Figure I.2: Example of computed reduced intensity noise (RIN) for two lasers, assuming
only spontaneous emission (Schawlow-Townes) noise. First a solid-state 1.06µm
Nd:YAG laser from Chapter II (τc = 230µs, τp = 4.3ns, Iout = 1mW, r = 1.2), second the
1.55µm DFB semiconductor laser from Chapter III (τc = 60ps, τp = 8ps, Iout = 1mW,
r = 3).

It is usual to proceed to more normalizations of these equations, and various

conventions exist in the literature. One of the most common is to use an alternate time

scale t/τp . However, by doing so, the equations for the field and for the population

still evolve on quite different time scales. The system of equation is then called “stiff”,

and is not well suited to numerical integration. As we will heavily resort on numerical

integration in the following, we will adopt another time scale based on the relaxation

oscillation s = 2π fR t [Erneux10]. This, along with normalizations e = 1
2π fR

√
g
τp

E and

n = g
2π fR

N , and with the definition of the damping coefficient ε=
√

τp /τc

r−1 and pumping

ratio r = τp g P +1, gives the following reduced equations:
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de

ds
=1

2
(1+ iα)ne (I.13a)

dn

ds
=1−|e|2 −εn

(
1+ (r −1)|e|2) (I.13b)

1b The linewidth enhancement factor α

Definition, consequences and typical values

In the previous section, we derived the rate equations governing the time evolution of

the field amplitude and of the population inversion. They depend on a certain number

of parameters, the value of which will alter the possible dynamics. Thus, a way to

measure each of them is needed. Here, we will focus particularly on the linewidth

enhancement factor α, that was previously introduced when linearly expanding the

electric susceptibility. The approximation of a constant coefficient for the ratio of

the imaginary and real parts of the first order term is justified as long as we are

not dealing with ultrashort pulses in mode-locked lasers, or very fast carrier density

oscillation [Agrawal93]. This factor is defined as

α≡−∂χr /∂N

∂χi /∂N
= 1

λ

∂n/∂N

∂G/∂N
(I.14)

We see that it can be rewritten as the ratio of the variation of optical index with

respect to the population inversion, on the gain variation. The term ∂G/∂N is linked

to the laser gain curve by ∂G/∂N = λσ(λ) where σ is the cross-section of stimulated

emission. The other term ∂n/∂N quantifies the variation of optical index caused by the

population inversion. As the susceptibility χ is supposed to be an analytical complex

function of the frequency, its imaginary and real parts are linked by the Kramers-Kronig

relation, so they are not independent [de L Kronig26]. More details on this can be found

in Annex B. Notably, this means that theα coefficient depends on the asymmetry of the

gain curve with respect to the operating frequency of the laser. If the laser operates

at the maximum of its gain curve, an asymmetric gain, frequently encountered in

semiconductor lasers, corresponds to α 6= 0. Conversely, a symmetric gain as found

in most gas or solid-state lasers means that α ≈ 0. This explains why this terms only

appeared in laser models with the advent of semiconductor lasers [Haug67; Lax67].

Indeed, this α factor is sometimes also named Henry factor after [Henry82],

who popularized it as a way to explain the observed linewidth of semiconductor

lasers, which is quite higher than what would be expected from Schawlow-Townes

estimations [Schawlow58]. Namely, it was shown that the linewidth is larger by a factor
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(1+α2). It was quickly discovered that this α factor also played a key role in the phase

dynamics of semiconductor lasers. This becomes apparent when an external field

is injected into the laser, be it another laser [Chow83], or a partial reflection of the

output [Lang80]. This will be particularly discussed in the following sections.

As can be seen in the rate equations, the α factor introduces an effective phase-

amplitude coupling for the field, so that it is also sometimes called the phase-

amplitude coupling coefficient. Thus, it follows that the laser cannot be purely

modulated in amplitude by varying its pumping rate: an amplitude modulation is

necessarily accompanied by a phase –or frequency– modulation. This phenomenon

of optical frequency chirp under current modulation is rather detrimental to high-

speed communications systems, so that an external modulation of the light is often

used above 10 GHz. This motivates the search for laser sources with low α for

communications purposes.

Typical values in semiconductor lasers range from 0 to 15, and depend on the

geometry of the active medium, and ultimately on the gap of the semiconductor [West-

brook87]. In practice, this full range of values is addressed by different active medium.

Low values can be found in certain quantum dot lasers, for instance α < 1 in 1.22µm

lasers [Newell99], or α ≈ 1 in dash-in-a-well structures [Moreau06]. Standard DFB

lasers, such as the quantum-well-based commercially available for telecommunica-

tion applications often featureα in the range 2–3 [Kikuchi85; Osinski87]. Higher values

have been observed in certain quantum well-based VCSEL lasers [Moller94] or other

kind of quantum dot lasers [Dagens05].

Moreover, theα coefficient can also depend on other parameters of the laser, either

directly, or indirectly through its dependency on the operating frequency. Obviously,

in most lasers, different values of α can be measured when varying the pumping ratio,

but temperature may also have a strong influence through thermo-optical effect. More

surprisingly, it has been reported that an external injected field can alter the linewidth

enhancement factor in some lasers [Naderi09; Chuang14].

How to measure it?

Very extensive literature exist on α-factor measurements performed in all main types

of semiconductor lasers, i.e., quantum wells, dots, quantum cascade lasers, VCSELs

and so forth. An extensive, although a bit outdated review can be found in [Osinski87].

The oldest measurement methods include direct estimation of the gain asymme-

try [Hakki75]. However, this can only be done under the laser threshold by measuring

the optical spectrum of the amplified spontaneous emission, and the resulting α value

can differ strongly from the actual one above threshold, which is often the only one of
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interest.

Another straightforward measurement is the direct estimation from the optical

linewidth, and a fit with the predicted model [Toffano92]. However, this method

assumes a very good knowledge of all the other parameters involved in the linewidth,

so that it is seldom usable in practice.

The most popular measurement method is based on an amplitude modulation of

the pump. A non-zero linewidth enhancement factor will turn this amplitude per-

turbation into an optical phase perturbation. This kind of method, often nicknamed

“AM/FM”, is of practical interest because it corresponds to the situation for telecom-

munications, where the laser is used as a data transmitter [Harder83; Kikuchi85].

There is various ways of measuring the output optical phase perturbation. This

can be done using heterodyne methods [Harder83] or Mach-Zehnder interferometry

[Provost11]. Also, chromatic dispersion in a long fiber provides a simple way to do this

measurement, and has the advantage of being even closer to a real data transmission

situation [Royset94]. These modulation methods are interesting from an applicative

point of view, however changes in the pump current often induce important thermal

fluctuations, which can in turn change the refractive index through the thermo-optic

effect. To compensate, either faster modulation is needed, but the required bandwidth,

often of more than a few GHz, is not always available, or subsequent processing must

be done to account for this thermal amplitude-phase coupling. To sum up, it is

sometimes not so clear what is measured using these methods, and some care should

be given to the precise measurement parameters.

Finally, the last class of measurement methods is based on the laser’s behavior

under optical injection or feedback, which usually show a strong dependency on α.

Such effects will be discussed in more details in the next section, but clever methods of

measuring α have been suggested, including the monitoring of the output amplitude

while varying the frequency detuning between a master laser and the one under

study [Hui90; Iiyama92]. Variations of the relaxation oscillation frequency during

optical injection experiments [Szwaj04], or asymmetry of the locking range [Fordell05]

have been used. More complex methods have also been proposed, for instance

based on the master-slave optical frequency detuning for which an instability ap-

pears [Chlouverakis03]. Finally, optical feedback with a varying or modulated delay has

been used, using an effect known as self-mixing [Yu04]. All these methods, that we can

classify as based on the injection or feedback dynamics, are interesting because they

give access to the value of α in the operating conditions, hopefully without affecting

significantly the other parameters of the laser, and namely with few thermal changes.

To sum up on the different measurement methods of α, it should be noted that
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it remains an active research domain, with sometimes controversial results. Indeed,

what is actually measured often depends on the measurement method, on the operat-

ing conditions, and on the type of laser under study. This fact has been illustrated by

a 2007 round-robin study, where different labs were asked to measure α on the same

lasers, using different methods. The results gave a clear advantage to the fiber disper-

sion, optical injection and feedback methods for physically meaningful, reproducible

above-threshold measurements of commercial DFB lasers [Villafranca07].

2 Interaction dynamics and their usages

Now that we have recalled the main concepts around laser modeling and rate equa-

tions, we will add new ingredients to the mix, and do a brief review on how the

dynamics of a laser are altered by the interaction with an external field, either from

a completely different source, or by a reflection of its own output.

2a Injection and synchronization

The idea of injecting an external light beam into an operating laser is almost as old

as the laser itself [Pantell65; Stover66]. At first, it was observed that the laser would

amplify the injected light, as long as its wavelength was kept in the gain region. This

phenomenon was called regenerative power amplification [Buczek73]. As the wave-

length of the injected field gets closer to the wavelength of the laser, the amplification

phenomenon gets stronger, up to the point where most of the available gain is used to

regenerate the injected field. When it happens, the cavity mode cannot be sustained

anymore, and the output of the laser becomes a single wavelength, controlled by the

injected field. The span of frequency difference in which this happens is called the

locking range. Indeed, this can be also understood as a synchronization (or locking)

phenomenon, i.e. the optical frequency of the laser synchronized with the input

frequency [Sargent74]. In that, the laser, as an optical oscillator, inherits of the same

property than many other types of oscillators: the ability to synchronize to a driving

frequency. Indeed, this phenomenon has been widely observed, for instance from the

pendulums of Huygens [Huygens90] to the electronic circuits of Van der Pol [van der

Pol27].

One of the most prominent usages of optical injection is the stabilization of power

lasers. Indeed, a low-power, but highly stabilized laser can be injected into a much

more powerful laser in order to lock its wavelength, reduce its amplitude noise,

slightly tune its frequency or induce a modulation. One spectacular achievement

of this principle are the ultra-stable Nd:YAG source lasers used in gravitational wave
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detectors [Barillet96], which played indeed a key role in the recent successful detec-

tions [Abbott16].

Indeed, changes in the intensity and frequency noise of a laser when it is subjected

to injection has been widely studied [Farinas95]. However, optical injection can also

be used to induce instabilities in a laser, so that it is interesting from the point of view

of the non-linear dynamics [Tredicce85].

The Adler equation

Going back to the model, a term accounting for the injected field is added to the

normalized rate equation (I.13a) for the complex amplitude. It is composed of the

field Einj, and of an injection rate Γ. This coefficient depends on the transmission of

the output mirror, and of geometric parameters that quantify the overlap between

the injected field and the intracavity mode. The frequency difference δν = ν− νinj

between them, called frequency detuning, appears as a normalized term quantified

by ∆= δν/ fR .

dE

ds
= 1

2
(1+ iα)N E + i∆E +ΓEinj (I.15)

If we split the phase and amplitude as E = |E |e iϕ this corresponds to:

d|E |
ds

= 1

2
N |E |+ΓEinj cosϕ (I.16a)

dϕ

ds
= 1

2
αN +∆−ΓEinj

|E | sinϕ (I.16b)

Combining the two equations (I.16), and recalling that sinϕ + αcosϕ =p
1+α2 sinϕ′ where ϕ′ = ϕ+ arctanα, we obtain the following equation for the time

evolution of the phase:

d

ds

(
ϕ′−α ln |E |)=∆−Γ

√
1+α2

Einj

|E | sinϕ′ (I.17)

For simplicity, we will then suppose that the amplitude |E | does not vary much. In

practice, this hypothesis is equivalent to a low injection rate ΓEinj/|E |¿ 1. We obtain:

dϕ′

ds
≈∆−Γ

√
1+α2

Einj

|E | sinϕ′ (I.18)

This equation is called the Adler equation, and it is the first order model for any
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problem of synchronizing oscillators [Adler46]. The main lesson it teaches is that two

regimes are possible: for |∆| <
p

1+α2ΓEinj/|E |, the system converges toward a steady

state, called a phase locked solution. In this region, named the locking range, the

frequencies of the two oscillators are the same. In our case, the output of the laser

consists in a single wavelength, controlled by the injected field. Here we see clearly

that as announced in the previous section, the linewidth enhancement factor plays a

key role, as it widens the locking range by a factor
p

1+α2. Now, when leaving the

locking region, the steady state disappears in what is called a saddle-node bifurcation,

and the phase starts to experience a monotonous drift. For our laser, there are two

different wavelengths in the output, the one of the injected signal, and the one of the

laser, which will be slightly pulled toward the injected wavelength because of the phase

drift [Armand69; Blin00].

Beyond the Adler equation

However, this analysis is only valid in the very particular situation of low injection, and

considerably different behaviors can be obtained when a stronger field is injected into

a laser. Indeed, the shape of the locking range becomes more complex, the unlocking

may be different, and peculiar spectral properties can appear [Blin03; Wieczorek05].

For instance, unlocking can happen through a Hopf bifurcation, which consists in

growing oscillations around the now unstable equilibrium point [Simpson97]. It has

been proposed to use these oscillations, sometimes referred as "period-one" (or P1) as

source of easily tunable microwave signal [Zhuang13; Hung15]. Indeed, their period

depends on the injection rate and frequency detuning. More complex outputs may

include spiking regimes with short pulses, and this has been proposed as an alternate

way to enforce mode-locking in diode lasers [Moses76].

Also, chaotic regimes exist outside of the locking region, so that the injected

semiconductor laser is a convenient device for the generation of wide-band chaotic

spectrums. Furthermore, it has been shown that the chaotic regimes of two identical

lasers can be synchronized using injection of light from one to the other [Murakami03;

Kim06]. This phenomenon of chaotic synchronization is widespread in dynamical

systems [Pikovsky97], but particularly interesting in semiconductor lasers, as it has

potential uses in secure chaotic communications [Sciamanna15].

One important tool in the theoretical study of the possible behaviors are the

bifurcation diagrams, which show the locus and type of the relevant bifurcations of

the equilibrium with respect to the parameters of the system. They are often produced

using numerical methods based on continuation algorithms. They allow to follow an

equilibrium of the system while varying a parameter, but can also be used to follow
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a bifurcation while varying two parameters at once [Kuznetsov04]. Some examples

of such diagrams for an injected semiconductor laser have been produced using the

venerable AUTO program3 [Doedel12], and are shown on Fig. I.3. There we clearly see

the locking range, and the complex shape it can take for strong injection and higher

values of α. What is not shown on these diagrams are the different behaviors outside

the locking range, which can go from oscillations to chaotic regimes.

Figure I.3: Bifurcation diagram of an injected laser, for ε = 0.2, r = 1.5, and various
values of α.

It should be noted that advanced usages of continuation algorithm are possible,

for instance they can be used to follow limit cycle oscillations and study their stability.

Such instances of a precise study of cycles, along with more bifurcation diagrams

and discussions of available dynamic regimes can be found in [Wieczorek05], which

3http://indy.cs.concordia.ca/auto

http://indy.cs.concordia.ca/auto
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presents an extensive study of the injected semiconductor laser.

2b Feedback in lasers

A subtly different case of the interaction of a laser with an external field is the reflection

of the output light itself into the laser. It is a very obvious observation for anyone who

has worked with lasers that even a very small reflection can lead to dramatic changes in

the stability of the output. This fact was first precisely described in He-Ne lasers, where

a modulation of the output intensity was observed as the position of the feedback

mirror changed [Hilsum63]. This behavior, which experimentally does not look unlike

an interferometric effect, was later called self-mixing interferometry [Wang94]. While

in some cases it is only detrimental to the stability of the laser output, it has also

been proposed to take profit of it for telemetry and Doppler velocimetry applica-

tions [Scalise04].

Since then, many additional effects of feedback have been identified, depend-

ing on its intensity and on the time delay T between the injected and the cavity

field [Tkach86b]. Another viewpoint is that feedback corresponds to an external

cavity of length c/T coupled to the laser and that the fields of the two cavities

interact. For instance, self-modulation has been observed in diode laser subjected

to feedback, and relaxation oscillations have been shown to lock on the external

cavity frequency [Broom70]. This concept has been extended so that “compound

cavity” lasers use feedback to induce single mode operation [Bogatov73]. A short

external cavity, using a close mirror (at less than 0.3–2 cm from the output) can be very

effective at suppressing the relaxation oscillations, and damping much of the noise in

a laser [Chinone78]. Appending an external cavity on lasers has since then become

common practice. For instance, in telecommunication applications, it can be used

to widen the modulation bandwidth. For instance, a short external cavity was used

in [Radziunas07] to enlarge the current modulation bandwidth from 10 to 40 GHz.

As previously mentioned, the effect of feedback depends strongly on the time delay

T introduced by the external cavity, on the injection ratio and other parameters of

the laser. Indeed, with different values, effects on the optical linewidth can range

from a narrowing [Agrawal84] to a broadening [Miles80]. Using a “short” feedback, for

instance in the 10 cm range for semiconductor lasers often results in chaotic regimes.

The experimental simplicity of such a setup, compared to other chaos-generating

devices opens interesting perspectives, as it can be used for instance as a random

number generator [Uchida08], or as a source for chaotic communications [Rogister01].

Some authors have also proposed semiconductor lasers with feedback as a non-

linear building block for the physical implementation of machine learning algorithms,
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such as reservoir computing [Bueno17].

Finally, using a particular form of feedback, namely including a frequency-shifting

element in the optical path, it is possible to greatly favor the sensibility to the reflected

power. This has been suggested as a novel imaging technique, called Laser Optical

Feedback Imaging (LOFI), with potential applications in microscopy [Hugon11].

Note that a review of the different use cases of feedback in semiconductor lasers

can be found in [Kane05].

Lang-Kobayashi equation and external cavity modes

Similarly to the case of externally injected light, the rate equations can be modified to

include a feedback term, that takes into account the time delay T between the output

field from the laser, and the feedback field that is injected back. Neglecting the higher-

order successive reflections in either cavity, we obtain the following equation for the

cavity field, which along with the unchanged equation for the population inversion are

called the Lang-Kobayashi equations [Lang80].

dE

ds
= 1

2
(1+ iα)N E +κe iψE(s −τ) (I.19)

The injection rateκ is now called the feedback rate but has the same definition than

in the injection case. The delay appears in its normalized form τ= 2π fR T . The optical

phase acquired by the field during its travel outside the laser is ψ.

If one tries to find the steady states of the previous equation, it will soon be-

come clear that there are none. Instead, solutions with constant amplitude |E | and

population inversion N , but with rotating phase exist. These solutions, sometimes

called rotating waves, but most often referred as external cavity modes take the form

E(t ) = Ec e iΩt , where Ec and Ω are the complex amplitude and pulsation of the mode.

Thus, it is current practice to modify the equation so that it directly describes the

evolution of these external cavity modes. We define Ec (t ) = E(t )e−iΩt and obtain:

dEc

ds
= 1

2
(1+ iα)N Ec − iΩEc +κe iψ−iΩτEc (s −τ) (I.20)

This equation presents usual steady states, but only for certain values of Ω. The

corresponding external cavity modes frequencies can be obtained by solving the steady

state equations for the three unknown parameters |Ec |, Ω, N . An additional condition

on the phase, which is physically irrelevant in the steady state, has to be set, such as

Im(Ec ) = 0. Note that the number of possible external cavity modes and their stability

depends on the parameters in a non straightforward way [Haegeman02].
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Figure I.4: Bifurcation diagram for feedback, for τ= 100, ε= 0.2, r = 1.5, and different
values of α. The filled region represent the domain of stability of the steady state.

As for the injection case, we have computed some bifurcation diagrams for a

laser subjected to optical feedback. However, as the rate equations are now delayed

differential equations (DDE), specific continuation algorithms are needed. Here, we

used the Matlab/Octave package “ddebiftool” [Engelborghs02]4. Fig. I.4 shows some

bifurcation diagrams for parameters κ and ψ. We see that a strong dependence on

these parameters is to be expected, and that except in the case of very low feedback,

stable regions alternate with unstable ones depending on the phase ψ. More details,

and a thorough study of the bifurcations in the Lang-Kobayashi model can be found

in [Green10].

Finally, simultaneous optical injection and feedback has also been widely studied,

4http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml

http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml
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and can indeed combine the complexity of the two mechanisms. For instance one

can look at the theoretical study from [Nizette04a] and the experimental counterparts

from [Liao13; Song15]. In this situation, reproduced in Fig. I.5, a piecewise locking

range can appear, separated by Hopf or saddle-node bifurcations. Other phenomena,

such as damping of the transients have been reported [Dellunde95].
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Figure I.5: Typical shape of the computed bifurcation diagram for an injected laser,
also subjected to an optical feedback. From [Nizette04b]. H and H’ refers to Hopf
bifurcations, and LP to Limit Point (saddle-node). From (a) to (c), with growing
feedback level κ.

3 Microwave photonics

The ease of use and the mass production of diode lasers, along with the flexibility

and impressively low losses in optical fiber systems, led the combination of these two

elements to the core of telecommunication systems. Schematically, their goal is to

use light in order to carry a certain signal, with the fastest possible data rate. The

object it manipulates is then an optical wavelength, which carries a modulation in the

microwave domain. The set of techniques that are used to carry, process, amplify, filter

or generate these signals is gathered under the term of microwave photonics. In this

work, we will focus on this last item, the generation of optically-carried microwave

signals.
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Characteristics of a microwave signal

In this introductory section, we will recall some properties of microwave signals, that

allow for quantitative comparison of their quality between different sources. The

following notions will be used through the rest of this work. In the time domain, a real-

world noisy signal at frequency f0 can be represented as x(t ) = A(t )sin
(
2π f0t +ϕ(t )

)
,

where A(t ) is a slower varying amplitude and ϕ(t ) a slower varying phase, as depicted

on Fig. I.6. This means that the signal is amplitude modulated, and phase modulated,

so that its power spectral density is more complex than just a single peak at f0. This

modulation accounts for the noise superimposed on the signal, and A and ϕ usually

show erratic variations. However, their power spectral density will depend greatly on

the process used in the signal generation. These power spectral densities S A( f ) and

Sϕ( f ) are called the amplitude and phase noise respectively [Rubiola08].
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Figure I.6: Sinusoidal signal x(t ) with phase and amplitude noise.

If we inspect this signal on an electrical spectrum analyzer, the linewidth of the

signal, related to the power spectral density Sx( f ) around f0 will be a combination of

the phase and amplitude noise, that cannot be easily disentangled.

In order to measure the two different noises, complex methods and devices exist,

but they share the same principle and goal: to obtain the in-phase signal I(t ) and its

quadrature counterpart Q(t ) using a demodulation process. The signal of interest x(t )

is multiplied twice by a local reference at frequency f0, with a π
2 phase difference each

time. The result is low-pass filtered, so that we obtain:

I(t ) =2x(t )sin(2π f0t ) = A(t )cos
(
ϕ(t )

)+ (higher frequency term, filtered) (I.21a)

Q(t ) =2x(t )cos(2π f0t ) = A(t )sin
(
ϕ(t )

)+ (higher frequency term, filtered) (I.21b)
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Then the amplitude of the signal is extracted as A(t ) =
√
I(t )2 +Q(t )2 and its phase

as ϕ(t ) = arctan Q(t )
I(t ) . This process can either be done in software or by a dedicated

hardware. The latter usually also computes the power spectral density of the phase

Sϕ( f ), and is thus called a phase noise analyzer. Assuming the usual hypothesis of

ergodicity and stationarity of the signal, and using the Kramers-Kronig theorem, Sϕ( f )

can be defined as:

Sϕ( f ) =
∫ +∞

−∞

〈
ϕ(t )ϕ(t +τ)

〉
e−2iπ f τdτ (I.22)

where the mean value 〈〉̇ is taken over a large number of samples, effectively

corresponding to the statistical expected value.

Alternately, when the phase has been recorded, the power spectral density can be

computed numerically, using Fourier transform, or more precisely using a multitaper

spectral method that relies on Slepian sequences [Thomson82]. In this work, we used

the implementation5 [Prieto09] and its Python wrapper6. As it was defined before,

and because it is often expressed in a logarithmic scale, the unit of phase noise is

dBrad2/Hz. On that topic it must be noted that most measurement devices use a

slightly different quantity, that reflects the fact that only one side of the noise around

the carrier is considered. Though also called phase noise, it is noted L( f ). The

relationship between the two is simply L( f ) = 1
2 Sϕ( f ), or a 3 dB offset in logarithmic

scale. The two quantities can be safely distinguished by their unit, as L is given in

dBc/Hz. As the latter seems to be more common, we will only useL and its unit dBc/Hz

in this work.

Finally, it is sometime useful to think in terms of frequency noise rather than phase

noise, but as ν = f0 + 1
2π

dϕ
dt , the conversion between them is straightforwardly Sν( f ) =

f 2Sϕ( f )/(4π2).

When one considers a standard electronic synthetizer in the microwave domain,

the amplitude noise is often not the main concern, because feedback loops can be

used to efficiently regulate the amplitude of the output. However, the stabilization

of the frequency, and hence the phase noise, is a core issue. Indeed, Fig. I.7 shows

the problem with standard electronic oscillators, that are based on the multiplication

of a crystal resonance and a phase-locked loop. It is clear that with this technique

the phase noise rises steadily with the output frequency f0, approximately by 20 dB

by decade. Many clever mitigations have been developed and proposed over the

years [Rohde14; Leeson16], but ultimately the problem of phase noise degradation as

the carrier frequency rises remains.

5http://wwwprof.uniandes.edu.co/~gprieto/software/mwlib.html
6http://github.com/krischer/mtspec

http://wwwprof.uniandes.edu.co/~gprieto/software/mwlib.html
http://github.com/krischer/mtspec
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Figure I.7: Phase noise of an electronic commercial synthesizer, the National Instru-
ment FSW-0010, for various use frequencies. Reproduced from constructor website:
http://ni-microwavecomponents.com/quicksyn-full (July 2018).

Applications such as telecommunications, radar, or metrology being evermore

demanding on phase noise quality, the development of very different approaches is

required. With respect to this urge, hybrid techniques, combining optical elements

with electronic parts, have been showing very good results for the past twenty years.

Perhaps the most prominent concept, the opto-electronic oscillator, will be discussed

in more details in Chapter IV, section 1.

3b Dual-frequency lasers

Heterodyne microwave generation

We saw previously than most microwave generating techniques face the problem of a

growing phase noise as the frequency rises. This is why we will focus on a completely

different principle, that consists in generating a microwave signal from a beatnote

between two optical frequencies. The basic principle of such heterodyne methods is

shown on Fig. I.8.

The most prominent feature of heterodyne methods is that the output noise do not

depend on the microwave frequency f0. Another interesting feature is that the optical

output contains only two wavelengths, contrary to the carrier plus two sidebands of the

modulation scenario. We will see in Chapter IV that this makes the signal insensitive

to chromatic dispersion in fibers, which can be a relief for long-distance applications.

Finally, and contrary to most other generation techniques, arbitrary high microwave

frequencies can be obtained, often with continuous tuning.

http://ni-microwavecomponents.com/quicksyn-full
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Figure I.8: Generation of a microwave-over-optical signal, the common modulation
method, for instance using an amplitude Mach-Zehnder Modulator (MZM) (a), versus
the heterodyne method (b).

However, heterodyne methods suffer from stability and low frequency noise prob-

lems, as the two lasers are subject to environmental noises, fluctuations and drift

of their wavelength. Indeed, the large scale factor between optical frequencies and

microwave frequencies will turn even a small relative optical noise into a large, usually

unacceptable relative noise in the microwave domain. This brings up the need of

some kind of stabilization mechanism, either for the two lasers’ wavelengths, or for

their difference. For the first case, standard methods of frequency stabilization can

be applied on each laser [Drever83; Hallal16], but at the cost of some complexity. The

second idea, which is the stabilization of the frequency difference can be implemented

using a feedback loop, such as an optical phase-locked loop [Gliese92].

Dual-polarization lasers

 νy

νx

 M2
M1

pump

activemedium
phase

anisotropy

etalon

δφ

Figure I.9: Principle of the dual-polarization dual-frequency laser.

Having two separate lasers means that each of them experiences different and

often uncorrelated fluctuations and drifts. Hence, it is interesting to seek ways to

combine the generation of the two wavelengths on a single device, i.e. to look

for a dual-frequency laser. A first option would be to let the laser operate on two

different longitudinal modes. While this approach is promising and has been heavily

investigated [Wake95; Gu98; Grillot11], the tuning of the frequency difference can be

quite inconvenient, and the two output modes cannot be easily separated. This can

be a problem for stabilization mechanism or data transfer. A comparable alternative,
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which has seen recent developments is the use of two transverse modes [Paquet16;

Blin17]. A second choice, on which we will focus, is to use a single longitudinal

mode but with a different frequency for each polarization axis of the cavity. By doing

this, we create a dual polarization dual-frequency laser, that outputs slightly different

optical frequencies on its two orthogonal polarization axes [Bretenaker90]. This can be

achieved simply by altering the effective optical length of the cavity depending on the

polarization, i.e. by inserting a phase anisotropy δϕ in the cavity, as shown on Fig. I.9.

This creates two polarization modes, which are orthogonal at each end of the cavity.

See Annex A for more details. The difference between their frequencies νx and νy can

be computed in this simple case and is:

νy −νx = FSR× δϕ

2π
(I.23)

where FSR is the free spectral range of the cavity. This also fixes a limitation on the

maximum reachable frequency difference, given by half the free spectral range of the

cavity.

Since its introduction, this compact dual-polarization dual-frequency source has

been the subject of quite a number of researches, and has made a few steps toward a

commercial product. Early prototypes at Thales Research and Technology of an Er:Yb

laser with an opto-electronic phase-locked loop stabilization showed the generation

of a tunable beatnote in the 2–6 GHz range, with a phase noise down to −117 dBc/Hz

at 10 kHz from the carrier [Pillet08]. Later, an enhanced version was able to reach

100 GHz, while keeping a good phase noise level of −90 dBc/Hz at 10 kHz offset from

the carrier [Pillet14]. However, the frequency rigidity of the stabilization loop limited

the tunability to a 3 GHz range.

 M2M1
pump

activemedium

birefringentelement

νx control

νy

νx
etalon

νy control

Figure I.10: Principle of the dual-polarization dual-frequency laser with a separated
states cavity. The path of the two modes are split by a birefringent element.

One of the main drawbacks of this setup is the frequency limitation, and the

relative inability to individually act on each polarization mode. Indeed, they share

exactly the same cavity, and are furthermore coupled in the gain medium. A slightly
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different scheme was developed to address this problem. Shown on Fig. I.10, it uses

birefringent element inserted in the cavity to split the optical path depending on the

polarization [Brunel97a]. This approach has two advantages: first, it allows to lift the

constraint on the reachable beatnote frequencies, so it can reach the THz domain

seamlessly [Alouini98]; second, each polarization mode can be controlled individu-

ally, for instance by inserting an electro-optic modulator on each path. Impressive

performances were reached using this scheme, for instance a Er:Yb:glass laser reached

−150 dBc/Hz at 1 MHz from the carrier. As this was obtained without any stabi-

lization loop, the beatnote tuning from 0 to 900 GHz remained possible [Danion14].

Other achievements in the realm of the THz beatnote include the use of the biaxial

Yb:KGd(WO4)2 active medium for high power output, around 120 mW [Czarny04].

Note that several steps have already been made to turn a dual-frequency source into a

useful proof-of-concept of a THz communication system [Rolland14].

Declinations of the dual-frequency dual-polarization laser have been made in the

microchip format, that allows for more compact and robust design, at the cost of a

more noisy output. Different teams were able to reach a 100 GHz with good power

outputs. For instance in [Brunel05], a continuously tunable Er,Yb:glass laser including

an intracavity birefringent LiTaO3 could generate a continuously tunable beatnote up

to 60 GHz. Slightly later, [McKay09] reached 150 GHz using glued quarter-wave plates.

Among the other usages of dual-polarization dual-frequency lasers, proposals have

been done in the domain of metrology, for instance for atomic clock distribution over

fiber links [Dumont14]. Using second harmonic generation, green dual-frequency

light has been investigated for underwater LIDAR-RADAR applications [Morvan02;

Vallet13]. Also, in imaging, the frequency difference between the two modes has been

used to probe polarization features [Fade12].

While mainly Nd:YAG and Er:glass were mentioned, it must be noted that different

active media can be used, and a wide panel of wavelengths can be addressed. For

instance, Ti:Sa at 780 nm [Loas14], fiber lasers in DFB [Li14; RotaRodrigo14; Loh97] or

ring configuration [Li97], vertically-external cavity surface-emitting semiconductors

(VECSELS) [Baili09]. For the latter, we can note that they have class-A dynamics, and

thus do not feature relaxation oscillations, which is an advantage in terms of amplitude

and phase noise.

For completeness, it must be noted that dual-frequency laser can be operated not

only in a continuous regime, but also in pulsed regimes, for instance Q-switch, by

inserting a saturable absorber such as Cr:YAG in the cavity [Lai03], or in mode-locked

solid-state [Thévenin12c] or semiconductor lasers [Pelusi97]. They can also be used to

produce optical combs on orthogonal polarization axes [Link17].



46
CHAPTER I. INTRODUCTION TO INJECTION AND FEEDBACK IN LASERS, AND TO

MICROWAVE PHOTONICS

Dual-frequency lasers also present interesting properties when subjected to feed-

back. Without going into much details, as this will precisely be the topic of the next

chapter, we can say that the fact that two laser modes coexist can turn an optical

feedback into a sort of external coupling between them. Thus, different regimes

of synchronization, or of externally-driven oscillations are possible. This has been

described under the label “self-mixing” in the works [Nerin97; Tan07].

The topic of the next chapter will be the study of a method based on a feedback

coupling between the modes, that allows to synchronize their phase and stabilize

their frequency difference. This technique of frequency-shifted feedback relies on the

resonant injection of one mode onto the other, and has shown interesting results

before [Kervevan07; Thévenin11a].

4 Conclusions

In this introductory chapter, we have recalled the basic principles of the laser phe-

nomenon, and have derived the rate equations governing the electric field amplitude,

phase, and the population inversion for a class-B laser. We presented the parameters

involved, with a sharp focus on the linewidth enhancement factor, that will be of a

certain interest in the next chapter. We showed that these rate equations can be used to

describe the dynamics of a laser subjected to an injected field from another laser, or to

feedback from itself. The next chapter will present more complex situations, where rate

equation analysis will be applied to the case of dual-frequency lasers, that were also

presented here. Finally, a brief domain overview of microwave photonics was made, as

this will be the context and motivation behind most of this work.
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CHAPTER II

FREQUENCY-SHIFTED FEEDBACK IN

DUAL-FREQUENCY SOLID STATE LASERS

STARTING from the fact that frequency-shifted feedback is an interesting and quite

general synchronization mechanism for two lasers, and building up on the

good knowledge we have of the Nd:YAG dual-frequency dual-polarization laser [Ro-

manelli14], we will try to dive deeper into the synchronization dynamics it presents.

This will be done with two goals in mind. On the one hand, a better understanding

and a good model-experiment agreement is likely to provide a sturdy foundation for

the development of more complex stabilization mechanisms. Also, this can facilitate

the transposition of this technique to other kind of lasers, that may not be as well

controlled and characterized as the one we study. On the other hand, from a more

fundamental point of view, we are interested in exploring the different regimes and

instabilities that appear in this system. Using the good stability of the experiment and

the fine control we have on the different parameters, we can use it as a testbed of some

regimes.

1 Dual-frequency dual-polarization laser

As already explained, lasers can be made to oscillate simultaneously on the two

polarization modes of their cavity. Then, by inserting a phase anisotropy in this cavity,

the frequency of the two modes can be split, so that a dual-polarization dual-frequency

laser is obtained [Brunel16]. In the following, we will consider a free-space laser,

composed of a plano-concave cavity and of a Nd:YAG crystal as a gain medium. As

a reminder, a Nd:YAG laser operates at 1064 nm when pumped with a 808 nm beam.

It is a four-level system, with two fast non-radiative decays (with durations around

0.1 ns) surrounding a slower transition in the 230µs range, that provides stimulated

emission (see Fig. I.1, p. 22). For that reason, when studying the dynamics of the field
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and population, it can be considered as a two-level system [Siegman86].

Our dual-frequency laser is composed of a � = 65mm-long cavity, pumped by a

focalised beam from a laser diode. At one end of the cavity is the active medium, a

2%-doped Nd:YAG crystal whose outside face is also the input mirror. This crystal is

5 mm long, and is cut along its (111) crystallographic axis, so that it is isotropic and

only has a low residual birefringence of ∆n ≈ 7×10−6. At other end of the cavity, the

output mirror has a radius of curvature 10 cm and a transmission of 1% at 1064 nm.

This setup, shown on Fig. II.1, defines a resonant Gaussian mode that has a waist of

130µm in the active medium, and a divergence of 2.6 mrad.
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Figure II.1: Dual-frequency laser used through this chapter.

Inside the cavity, two quarter-wave plates (QWP) have been inserted, placed on

rotating mounts. The first one has been aligned so that its principal axis forms a 45°

angle with the axis associated with the small birefringence of the crystal. The second

wave plate is tilted by an angle θ from the previous one, and is used to tune the

difference of optical phase experienced by the two polarization modes of the cavity.

Finally, a 1 mm silica etalon with a 40% reflection is added in the cavity, close to the

active medium, so that only one longitudinal mode is selected for each polarization

state. The full setup is summarized on Fig. II.1, and a photograph can be seen on

Fig. II.2.

Frequency separation

The detailed computation of the polarization states in the laser involves the Jones

matrix formalism [Jones41; Bretenaker91]. In our case, we would have to consider the

matrices of the two rotated QWP (see Annex A). The main result is that the resonant

frequency ν is different for the two polarization axes x and y , and that their difference

is directly related to the angle between the waveplates. Similarly to Eq. (I.23), we have:

νy −νx = c

2�
× 2θ

π
(II.1)
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Figure II.2: Photograph of the dual-frequency laser used.

Note that in the following, we will stick to the convention that the axes x and y are

chosen so that νy > νx . The maximum frequency difference is thus limited to c/4`,

obtained for θ = π/4, which is directly related to the free spectral range of the cavity.

For instance, in our setup, this corresponds to a maximum frequency separation of

roughly 1 GHz. However, this will not be a problem for now: as other discussed in

subsection 2a, we will use a rather low frequency difference of 180 MHz. The beatnote

associated with this frequency difference can be transformed into an electrical signal

in the RF domain, by mixing the two polarizations using a polarizer at angle 45°, and

recording it on a photodiode.

Pump diode

Two pigtailed pump diodes at 808 nm have been used: first, a multimode laser diode

from Opto Power with a maximum output of 2 W. It is connected to a multimode fiber,

whose core diameter is 130µm. In the pumping layout, two identical lenses of focal

5 cm have been used, so that the pump spot diameter on the active medium was also

130µm.

We later replaced it by a single mode laser diode, model LU0808M250, delivering

up to 250 mW of continuous wave light at 808 nm. The model we used was followed by

a fiber Bragg grating (FBG), which allows to reach a spectral width of 0.2 nm. As shown

of Fig. II.1, a QWP inserted between the focalising lenses allowed to change the pump

polarization, as described in Section 2c. We decided to keep a pump spot diameter

identical to the previous multimode pumping, so we calculated the configuration of
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two lenses needed to focus the output of the fiber using Gaussian beam formalism,

often expressed in terms of “ABCD” matrices [Kogelnik66]. The fiber core is 6µm, a

short-focal lens of 4 mm is placed close to the output of the fiber, and a larger lens of

focal 10 cm is placed 4 cm after (Fig. II.1). This allows the waist of the pumping beam to

be 130µm at 8 cm of the second lens, which is where we place the active medium. The

use of this new pump diode permitted a better stability of the dual-polarization state,

eliminating the need for daily adjustments of the etalon.

The characteristic curve on Fig. II.3 shows that with all the intracavity elements, the

output power can be go up to 6 mW, with a different efficiency and threshold for the

different pumps, nearly 200 mW for the multimode pump, against 80 mW for the single

mode pump.
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Figure II.3: Output power for dual-polarization Nd:YAG laser, versus pump power for
the two different pumps used.

Frequency difference locking using feedback

As highlighted in Chapter I, the goal we would like to achieve is the stabilization of

the output beatnote. In particular, in order to keep the good spectral quality of the

laser, we would like to do so without any modification to the laser itself. This rules

out methods based on phase-locked loops, because they require a way to directly alter

the frequencies of the modes. Although this can be done, for instance by inserting

an internal actuator such as an electro-optic element (see I.3b), it is at the cost of

a modification of the laser, and enhanced complexity. Thus, we will rather try to

introduce some kind of controlled coupling between the modes, that we will use to

achieve synchronization between them. In the rest of this chapter, we will investigate

how this can be done by optically injecting one mode on the other one, and how it

affects the dynamics of the laser.
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Figure II.4: Frequency-shifted feedback applied to a dual-frequency Nd:YAG laser.

Experimental setup

Starting from the dual-frequency laser described in previous section, we add a feed-

back arm, as presented on Fig. II.4. At the output of the laser, the light goes through

a TeO2 Bragg cell, acting as an acousto-optic modulator (model AA MT80). A piezo-

electric element is used to create an acoustic wave in the crystal. It is driven by a

sinusoidal voltage at frequency fAO, generated by a reference synthetizer (Adret 740A),

and amplified to a maximum of +30 dBm using a MHW592 amplifier. The standing

acoustic wave creates a grating, which causes the modulator crystal to deflect the

input light by 7 mrad, and to shift its frequency by + fAO. The deviated beam goes

through a quarter-wave plate, whose neutral axes are oriented at 45° with respect to

the polarization direction. Then, the beam ends on a mirror which is adjusted to make

it go back on itself, so that it passes through the waveplate, and through the modulator

again. To sum up, before being injected back into the laser, the frequency of each mode

has been shifted by +2 fAO and its polarization rotated by 90°, so that x and y have been

exchanged.

δν

νx νx+2fAO νy

+2fAO +2fAfAf O

Figure II.5: Principle of the polarization-rotated frequency-shifted feedback. The color
denotes the polarization. The dashed frequencies are the output of the laser, while the
solid one is the resonant injected signal.
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The coupling principle is summarized on Fig. II.5. The driving frequency fAO is

chosen so that its double 2 fAO is close to the frequency separation of the two modes

νy −νx . This makes the frequency of the field that is reinjected on the y axis (νx +2 fAO)

nearly resonant with the intracavity field on that axis at frequency νy . The remaining

frequency difference νy−νx−2 fAO will be referred to as the frequency detuning δν, and

will be kept below a few MHz. As the acousto-optic modulator is a resonant element,

the range of available shifting frequencies is only 80–100 MHz, and we had to choose

fAO ≈ 90MHz. In order for the reinjected light to be resonant, the frequency difference

νy −νx between the modes has thus to be set to 2 fAO ≈ 180MHz. These values will be

used in all the following experiments.

The output of this system is the beatnote between the polarization modes, and can

be observed on a photodiode after having been projected by a polarizer at 45°. The

resulting RF signal is amplified, and monitored on a Rohde&Schwarz FSV electrical

spectrum analyzer, that also acts as a real-time demodulator at 2 fAO. Its 10 MHz

reference is phase-locked to the one of the reference synthetizer, so that it is able to

compute not only the beatnote amplitude X , but also the phase difference ϕ between

the beatnote and the reference.

2b Rate equations model

In solid-state lasers, the optical gain comes from the interaction of the field with the

doping ions in the crystalline matrix. The “population” that will be taken into account

in the laser rate equations is the number of ions in the excited state. However, it is clear

that the interaction between the laser field and the ions’ dipoles is going to depend on

the polarization of the field. This can lead to separate the active ions into three distinct

populations, aligned along orthogonal axes [Schwartz09]. However, considering only

two populations, each associated with a polarization mode, has been shown to be a

sufficient description of the system [Zeghlache95a; Chartier00]. Thus, the following

model, introduced in [Bielawski92] and previously studied by [Thévenin12c], describes

the evolution of the two polarizations of the electric field Ex and Ey , and the corre-

sponding normalized population inversion densities Nx and Ny . We recall that, as in

Chapter I, the units for electrical field are chosen so that |E |2 is a density of photons.
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dEx

dt
=g (1+ iα)

(
Nx +βNy

)Ex +2iπνxEx (II.2a)

dEy

dt
=g (1+ iα)

(
Ny +βNx

)Ey +2iπνyEy +K e iψEx(t −T )e4iπ fAOt (II.2b)

dNx,y

dt
=− Nx,y

τc
−

(
1

τp
+ g Nx,y

)(|Ex,y |2 +β|Ey,x |2
)+ 1

τc
P (II.2c)

Similarly to Chapter I, the lifetime of the photons in the cavity is τp , while the

lifetime of the excited level of the ions population is τc . These notations, more

usually found in the domain of semiconductor lasers, are chosen for coherence with

Chapter III. The factor g quantifies the laser gain. Here we notice that the linear gain

includes an imaginary part quantified by the linewidth enhancement factor α. While

this is unusual for a solid-state laser, the reasons for its inclusion will be discussed af-

terwards (Section 4c, p. 77), and its value precisely measured in Section 5 (p.82). Finally,

P quantifies the density of pumping, assumed to be equal for both polarizations.

A particularity of this model is the presence of a coupling factor β, that quantifies

the interplay between the two populations, and highlights the fact that they are not

actually two separated populations. More details on this cross-saturation coefficient

will be found in Section 2c (p. 55). Finally, T is the time delay of the reinjected field,

which corresponds to the round-trip time in the feedback arm. In our experiment,

the length of the feedback arm is L = 75cm, so that T = c/2L = 5ns. This means that

unless otherwise stated, this delay can be safely ignored, as it is much shorter than the

characteristic time scale of the laser, i.e. its oscillation relaxation time, in the tens of

microseconds range.

We will now proceed to some normalizations on the model, in order to identify the

relevant parameters. When injection is off, the frequency of the relaxation oscillations

for the dual-polarization laser is fR = 1
2π

√
2g P (1+β)−1

τc
. As this frequency corresponds

to the characteristic time scale of the laser’s dynamics, we choose accordingly to use

a normalized time s = 2π fR t . Numerically, this allows to make the equation non-stiff,

i.e. all the variables evolve more or less with the same time scales [Erneux10]. This

is known to make numerical simulations much faster and reliable. Also, the reference

frequencies for the fields are chosen so that no explicitly time-dependent term appears

in the equation. By setting ex = 1
2π fR

√
g
τp
Exe2iπνx t−iψ, ey = 1

2π fR

√
g
τp
Ey e2iπ(νx+2 fAO)t

and mx,y = g (1+β)
2π fR

Nx,y , Eqs. II.2 become:
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dex

ds
= (1+ iα)

mx +βmy

1+β
ex

2
(II.3a)

dey

ds
= (1+ iα)

my +βmx

1+β
ey

2
+ i∆ey +Γex(s −τ) (II.3b)

dmx,y

ds
=1− (|ex,y |2 +β|ey,x |2)−εmx,y [1+ (η−1)(|ex,y |2 +β|ey,x |2)] (II.3c)

There, we have introduced the following reduced parameters. The factor η = 1+
gτp P (1+β) is the effective pumping ratio, meaning that η= 1 corresponds to the laser

threshold, i.e. that the lasing starts as soon as η ≥ 1. Then we define the normalized

injection delay τ= 2π fR T , for which we have τ¿ 1, so that it will be neglected (except

in subsection 4a). Finally, we define the normalized injection strength Γ = K /2π fR ,

detuning ∆= (νy −νx −2 fAO)/ fR and damping coefficient ε=
√

τp /τc

η−1 .

Analytical study

These rate equations can be rewritten in a slightly simpler form if we write ex = |ex |e iϕx ,

we obtain from first equation dϕx
ds = α 1

|ex |
d|ex |

ds . This can be integrated so that ϕx =
α ln |ex |+const. at any time. This last integrating constant can be arbitrarily set to zero,

because the equations are unchanged by the transformation ex → exe iψ for any ψ.

d|ex |
ds

= mx +βmy

1+β
|ex |

2
(II.4a)

dey

ds
= (1+ iα)

my +βmx

1+β
ey

2
+ i∆ey +Γ|ex(s −τ)|e iα ln |ex (s−τ)| (II.4b)

dmx,y

ds
=1− (|ex,y |2 +β|ey,x |2)−εmx,y [1+ (η−1)(|ex,y |2 +β|ey,x |2)] (II.4c)

This transformation is necessary if one wishes to study the bifurcations using

the numerical continuation tools introduced in Section I. 2a. Also, this reduces the

number of equations for the real variables from 6 to 5, which allows for faster numerical

integration. Finally, the equations can be rewritten in terms of phase and amplitude

by letting ey = |ey |e iϕ. Here ϕ is, up to an additive constant, the phase difference

between the two modes. Thus, it also corresponds to the difference of microwave

phase between the output beatnote and the reference, that we observe experimentally.

Neglecting the time delay τ, Eq. (II.4b) writes:
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d|ey |
ds

= my +βmx

1+β
|ey |

2
+Γ|ex |cos

(
ϕ−α ln |ex |

)
(II.5a)

dϕ

ds
= α

2

my +βmx

1+β +∆+Γ
√

|ex |
|ey |

sin
(
ϕ−α ln |ex |

)
(II.5b)

If we consider the steady state of this system, we find that it corresponds to a fourth

order polynomial, that can be written for instance in terms of m̂y :

0 =−βε2x
(
α2 +1

)(
β−1

)3 m̂y
4 +ε(β−1)2 (

4αβε∆x − (
α2 +1

)(
β2 +2βx +1

))
m̂y

3

+ (β−1)
(
4αε∆

(
β2 +2βx +1

)− (
α2 +1

)
(β−1)2 −4β

(
∆2 −Γ2)xε2)m̂y

2

−4
(
ε∆2(β+1)2(x +1)−α∆(β−1)2 −ε(

∆2 −Γ2)(β2x −2β−x
))

m̂y −4
(
∆2 −Γ2) (β−1)

(II.6)

with x = η−1. Each steady state corresponds to a root of this polynomial, so this

shows that there are either four, two, or zero steady states. Yet, usually at most two

of them have physically reasonable values and only one is stable. When we consider

ε = 0, the degree of equations (II.6) falls to 2, and steady states can be expressed as

m̂y = −2α∆±
p

(1+α2)Γ2−∆2

(1+α2)(1−β)
. The discriminant being proportional to (α2 +1)Γ2 −∆2, we

notice that the steady states merge, then disappear in a saddle-node bifurcation when

|∆| =
p

1+α2Γ (see I.2a). This usual result in injection-locked system [Wieczorek05;

Erneux10] gives the maximum size of the locking range1. However, the approximation

ε = 0 does not allow to compute the stability of this steady state, as the real part of

the eigenvalues depends on ε. In particular it cannot be used to locate eventual Hopf

bifurcations that could shorten the stable region. In the following we will see that this

is indeed the case, and that Hopf bifurcations play an important role.

2c Coupling coefficient β

As noted when introducing the model (Section II.31, p. 52), it includes a coupling

between each field and the opposite population and vice-versa. This coupling term,

that reflects how the light-matter interaction depends on the polarization of the

field, has already been introduced by Lamb for gas and solid-state lasers [Sargent74;

Brunel97b]. It is commonly quantified in the literature by a factor C, and defined as

1We point out that at the first order in ε, the positions of these saddle-node bifurcation are slightly

modified, at ∆=±
p

1+α2Γ−αεηΓ2
(

1+β
1−β

)2
, but the maximum size of the locking range is not.
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C =
dIx
dγy

∣∣∣
eq

× dIy

dγx

∣∣∣
eq

dIx
dγx

∣∣∣
eq

× dIy

dγy

∣∣∣
eq

(II.7)

Here, x|eq denotes variations of x around the steady state. Ix,y being the intensity

of the modes, and γx,y the corresponding laser gain.

In our model, we have γx,y = Nx,y +βNy,x in the ε≈ 0 approximation. In the steady

state, Nx,y ≈ r (1− Ix,y −βIy,x), so that γx y = r
(
(1+β)− (1+β2)Ix y −2βIy x

)
. We obtain

the following correspondences between the notations:

C =
(

2β

1+β2

)2

(II.8)

β= 1p
C

(
1−

p
1−C

)
(II.9)

If we consider the steady state of the non-injected system (Γ = 0), and linearize

around it, we find that it displays two eigenvalues, which correspond to frequencies of

small oscillations. One is the usual relaxation oscillation at fR , and the corresponding

eigenvector shows that the oscillations are in phase on each polarization mode.

The other, called antiphase oscillation, has a lower frequency f A, and the property

that the corresponding oscillations are on the contrary in phase opposition on each

polarization mode [Otsuka92; Lacot96]. Their frequencies are related by the following

relationship:

f A

fR
= 1−β

1+β (II.10)

This means namely that the measurement of these two frequencies can be used

to retrieve the coupling coefficient. As the oscillations at f A are in phase opposition,

they cannot be seen as sidebands of the beatnote produced after mixing the two

polarization modes with a polarizer at 45° from the two polarization axes. However,

they can be observed on each polarization’s intensity noise. As explained in Section I.1,

this can be done by measuring the electrical spectrum of the photocurrent at low

frequencies. As this noise is very low, for this measurement, we use a 50 dB amplifier.

A typical spectrum is shown on Fig. II.6.

In that case we obtain β= 0.20±0.05. While we will particularly focus on this value

in the following, we happened to also measure another value β = 0.6 in a different

pump configuration. The reason for this is still under study, and may for instance

be due to residual intracavity birefringences, that would result in variations of the

mode overlapping in the active medium [Pal10]. Section 4d will be dedicated to results

obtained with β= 0.6.

The measurement in Fig. II.6 was obtained with a symmetric pumping. By that,
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Figure II.6: Intensity noise of the dual-polarization laser, i.e. low-frequency electrical
spectrum of the beat-note, showing relaxation and antiphase oscillations.

we mean either an unpolarized beam from a multimode source, or a circularly

polarized monochromatic beam with the same diameter. Other cases have been briefly

investigated, for instance linearly polarized or elliptic pumping. In such cases, it

is expected that the coupling depends strongly on the orientation of the pumping

polarization [Schwartz09]. For instance, Fig. II.7 shows the dependence of the coupling

on the angle of the pump quarter-wave plate (see Fig. II.1). From this result it is clear

that β depends on the ellipticity of the pump polarization. Yet, this result could not be

fully explained using a model based on dipoles orientation (see Annex C). Interestingly,

the interplay between the polarization of the pump and the light-matter interaction

has already been observed before and seem to be a common feature [Zeghlache95b;

Verschaffelt08]. Therefore, this topic would indeed benefit from further investigation

in future work.
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Figure II.7: Coupling factor, in function of the angle of the pump quarter wave plate θ.
Dashed curve is the best fit β= 0.77−0.6sin(2(θ+0.08))
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3 Results

Being familiarized with the model and its parameters, we will now compare experi-

mental and numerical results obtained on this setup, with a focus on the particular

dynamics, and on the stability of the beat-note. Namely, the interesting and measur-

able outputs of the system that will be studied are the RF amplitude X = |e1e2| and

phase ϕ = argexe∗
y of the beatnote |e1 + e2|2. The influence of most of the parameters

are studied, but when not otherwise stated the parameters from the following table will

be used:

Pump rate η= Ppump/Pthreshold 1.2
Photon (or cavity) lifetime τp (sometimes referred as 1/γ) 4.3 ns
Population inversion lifetime τc (sometimes referred as 1/γ∥) 230 µs

Damping factor ε=
√

τc /τp

r (1+β)−1 0.01

Coupling factor β 0.20±0.05
Linewidth enhancement factor α 0.28±0.04
Relaxation oscillations frequency fR ≈ 70 kHz

Table II.1: Summary of parameters

The linewidth enhancement factor α was only precisely measured after some of

the following studies were made, so that in many of them, a less precise value α = 0.2

has been used. We do not expect this to greatly alter the results. Also, in the thesis

from J. Thévenin that preceded this work [Thévenin12c], and in some previous studies

such as [Thorette16; Romanelli14; Romanelli16; Thévenin12a], the coupling factor β

has been measured to be 0.6 and the linewidth enhancement factor was not identified

(α= 0) so these values are of a particular interest.

3a Locked state, bounded phase

Steady state and bifurcation diagram

Experiments have shown that frequency-shifted feedback allows to lock the frequency

difference on the external RF reference [Thévenin11b]. In the terms of our model,

this means that the phase of the beatnote ϕ is kept constant, along with the output

intensities of each mode. This corresponds to a stable steady state of the rate

equations. In the previous section it was shown that this can be only achieved for

|∆| <
p

1+α2Γ, i.e. that there is a locking range in which phase locking can happen.

The range of existence and stability of this steady state can be studied when varying

parameters of the model. In a similar process to the example of Section I.??. The
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corresponding bifurcation diagrams, showing the location of bifurcations, have been

computed using the AUTO program, with fixed parameters from Table II.1 and varying

∆ and Γ. The result is shown on Fig. II.8.
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Figure II.8: Bifurcation diagram, showing the range of existence of a stable equilibrium.
Green: Supercritical Hopf bifurcation, dark blue: subcritical Hopf bifurcation, red:
saddle-node bifurcation. The dotted red line is a saddle-node bifurcation of the
unstable equilibrium. GH: Generalized Hopf point, i.e. change of criticality of the Hopf
bifurcation.

We first notice that the bifurcation diagram is asymmetric with respect to the

detuning ∆. As said in Chapter 1, this is a consequence of a non-zero α factor. Yet,

as long as α � 1 the unlocking happens roughly for |∆| ≈ Γ on each side of the

locking range. We will see that this is partly due to the internal coupling β �= 0. The

asymmetry with respect to ∆ concerns the unlocking process, that depends on the sign

of the detuning, and on the injection rate Γ. According to the bifurcation diagram, for

∆ < 0, the steady state meets a Hopf bifurcation. For high injection, when Γ > 1, this

bifurcation is what is called a supercritical Hopf bifurcation. This means that crossing

the bifurcation line leads to small oscillations around the now unstable equilibrium

point, and that this limit cycle grows with the detuning ∆. When Γ < 1, there is a also

small region in which the Hopf bifurcation is on the contrary subcritical. This means

that the limit cycle is unstable, and that the change at the border of the locking range is

not smooth [Strogatz01]. This is seen in the inset of the diagram, between the two GH

(Generalized Hopf) points, that correspond to a change of the criticality of the Hopf

bifurcation. For ∆> 0, the equilibrium first encounters a saddle-node bifurcation, i.e.

it simply vanishes. The system then jumps on another attractor. A Hopf bifurcation

still exists, but it concerns the remaining unstable equilibrium, and happens slightly

after.
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Bounded phase oscillations

While the bifurcation diagram gives information on the steady states, and thus on the

locking range, it doesn’t say much on what happens outside of it. Thus, we resort

on numerical integration of the equations, and compute “numerical” bifurcation

diagrams, by time integrating the model for various parameters. Some results for large

values of Γ can bee seen on Fig. II.9. The rate equations are integrated for ∆= 0 until a

stationary regime is reached, and the extrema values for ϕ and ex are plotted. Then the

detuning value ∆ is slightly changed, and the simulation is restarted from the previous

values. This has been done for ∆> 0 and ∆< 0.
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Figure II.9: Numerical bifurcation diagrams, obtained by integration of the rate
equations. Green square: Hopf bifurcation, red circle: saddle-node bifurcation.

Once the system leaves the locking range, one possibility is that it goes through a

smooth bifurcation (supercritical Hopf) and a limit cycle appears. This oscillation has

initially a small amplitude, and grows as |∆|moves farther from the locking point. What

is interesting is that as the oscillation is initially small, the phase difference ϕ between

the beatnote and the reference remains in the [−π,π] range for values of the absolute

detuning not too far from Γ. The bounded phase region corresponds to the range in

which it happens [Braza90; Kelleher10; Thévenin11a]. At high injection rates (Γ� 1),

it is located near the boundaries of the locking range, even for ∆ > 0. Indeed, as seen

on the right panel of Fig. II.9, for positive detuning values, the first bifurcation of the

steady state is a saddle-node. Yet, after a very short chaotic span, the system will settle

again on a limit cycle. Note that this is not the case for lower values of Γ, as seen on the
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left panel of the same figure. The “threshold” value depends on α, and allows a rough

estimation of its value.

0 10 20 30 40 50
Time (µs)

−π
0

π

P
h

as
e
ϕ

0

1

2

A
m

p
lit

u
d

e
X

(a
rb

.u
n

it
s)

−600
−400

−200 0
200

400
600

Rel. frequency (kHz)

−100

−80

−60

−40

−20

0

B
ea

tn
o

te
P

SD
(d

B
m

)

−1
.0

−0
.5 0.
0

0.
5

1.
0

1.
5

I (arb. units)

0.0

0.5

1.0

1.5

2.0

2.5

Q
(a

rb
.u

n
it

s)

Figure II.10: Experimental observation of the bounded phase regime, using IQ demod-
ulation with a bandpass of 10 MHz around 2 fAO. The slight changes in amplitude at
each cycle, visible on the right panel is due to experimental drifts.

Bounded phase regimes are a common feature in a lot of dynamical systems and

various fields of science, from simple optically injected lasers [Kelleher12], to cavity

solitons [Vahed11], electronic oscillators [Chakraborty88], biological systems [Kro-

nauer82], hydrodynamics [Li13], or nanomechanics [Barois14]. Each time, they

are intimately linked to the presence of a Hopf bifurcation. In such regimes, the

mean value of the phase taken on the time scales of a few oscillations remains

constant. This signifies that the mean output frequency is constant and thus that

the beatnote frequency can be said to remain effectively locked on the reference.

This is why this phenomenon has been dubbed “frequency locking without phase

locking” [Thévenin11a]. Indeed, on the electrical spectrum of Fig. II.10, we see a

sharp peak at the reference frequency 2 fAO, that does not drift and remains very stable.

But it features harmonic sidebands that correspond to the bounded phase oscillation,

as seen on the other panels of the figure. This will be confirmed by phase noise

measurements and simulations, which will be presented on Fig. II.19 and Fig. II.20 in

Section 4. There we will see that the long-term stability of the reference is still present

on the beatnote, as the phase noise remains as close to the one of the reference as for

the locked regime [Romanelli14].

Exhaustive mapping for Γ� 1

Until now, we have mostly considered the case of large injection Γ > 1. This would

allow large locking ranges |∆| > 1, and an extended partial synchronization region,

where bounded phase is observed. However, it is known that if the detuning is close
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to or lower than the relaxation oscillation frequency, the system can become very

sensitive to the changes of its parameters, and that chaotic dynamics are commonly

found [Hugon11; Thévenin12a]. Thus, we have investigated precisely the different

behaviors outside the locking range, particularly in the domain Γ� 1.

−1.0 −0.5 0.0 0.5 1.0

Detuning ∆

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
ei

n
je

ct
io

n
Γ

Phase locking

Figure II.11: Map of the different regimes for β = 0.2 and α = 0.28. � White: locking
range, ■� gray: unbounded, ■� light gray: bounded phase (existence of at least a stable
limit cycle for which ϕ is bounded), ■ black: existence of at least one unbounded
chaotic attractor, ■� red: existence of bounded chaos.

The mapping of all the available regimes in this region of interest ∆,Γ � 1 is

shown on Fig. II.11. Some considerations on how it has been obtained are necessary.

Namely, it has been produced using the following steps. For each point (∆,Γ),

numerical integrations have been performed starting from 100 random initial values,

taken arbitrarily in the range [0,3] for |ex,y |, [−π,π] for ϕ and [−6,6] for mx,y . Then,

the resulting asymptotic states for s > 40000, that are called attractors, have been

studied and compared to each other using the Hausdorff distance2. As a criterion to

discriminate identical attractors from different ones, we found that an arbitrary chosen

threshold of 1 on their Hausdorff distance would give good results. This allowed us to

group them by similarity, and to obtain a list of attractors, including chaotic ones, for

each (∆,Γ) point.

Then, we would like to classify each attractor according to two properties: (i) is it

2The Hausdorff distance is often used as a measure of the similarity of two sets of points X and
Y . It is defined for finite sets as max

(
maxy∈Y d(y, X ),maxx∈X d(x,Y )

)
where d(x,Y ) is the distance

between the point x from the set X and the set y . Here we have used Euclidean distance, so that

d(x,Y ) =
√

miny∈Y
∑

k (xk − yk )2 where
∑

k is a sum on the components of the points. By doing so, we

compare the geometrical likeness of the two attractors, not taking in account the time evolution.
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For the ordinary differential equation ẏ = f (y), where y is a vector of N rows,
we define a perturbed trajectory vector ε, initialized with εk = |ε0|/

p
N . We

have taken |ε0| = 10−6. The first Lyapunov exponent is initially λ1 = 0, and we
compute it by steps using the following algorithm:

1. Integrate the equations dy/dt = f (y) from time t to t +θ. We used θ = 1.

2. Integrate the same equation on the same time span, but with perturbed
initial conditions equations y ′(t ) = y(t )+ε.

3. Compute the norm of the final perturbation ε = y ′(t + θ) − y(t +
θ): |ε| =

√∑
k ε

2
k . The first Lyapunov exponent λ1 is increased by

1
θ log |ε|/|ε0|.

4. Scale down the perturbation to ε |ε0|
|ε| , and integrate again, starting at t +θ

(step 1). Repeat while t < T (we used T = 10000).

Figure II.12: Algorithm used for the computation of Lyapunov exponents.

chaotic ? (ii) does it features bounded or unbounded oscillations of the phases ? The

second property is trivially obtained from the integrated solution, and the first one

can be answered by computing the first Lyapunov exponent λ1 of the solution. This

number quantifies the convergence or divergence of very close trajectories in phase

space. While a non-chaotic attractor will show a convergence of infinitesimally spaced

trajectories, a characteristic feature of chaotic evolution is that two initially different

trajectories will ultimately diverge. Thus, it is quite common to consider the sign of

the largest Lyapunov exponent as a criterion for deciding whether a trajectory can be

considered as chaotic or not [Skokos10]. It was computed using a simple method,

described in [Sprott94], that consists in studying the evolution of a small perturbation

along the trajectory. We have summarized the corresponding algorithm in Fig. II.12.

Note that we tried other methods, such as the Cayley decomposition method, or QR

decomposition method, but they were not found as effective in our case [Skokos10].

Finally, we combined the data on Lyapunov exponents, multistability, and phase

extrema on the map shown on Fig. II.11.

As it appears, various attractors exist and co-exist. They are of different kinds, for

instance some feature periodic oscillations, either with a single period (limit cycles)

or with two periods (limit torus). The oscillations of the phase ϕ can be bounded or

unbounded. With respect to this fact, we note that the loss of frequency locking is not

a strict bifurcation of the system, as it does not correspond to a change in the topology

of the attractor.
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Chaotic attractors can also be found, sometimes in combination with the other

ones. The associated time dynamics are often a kind of quasi-periodic spiking

behavior, with chaotic intensity and slight variations of the period.

A regime of particular interest is highlighted on this mapping in red, and corre-

sponds to chaotic attractors for which the phase excursion never exceeds 2π. This

means that while the time evolution is chaotic, the phase remains bounded, and the

frequency locking is maintained. We named this regime “bounded phase chaos”, and

will study it in details in the next section.

To conclude with Fig. II.11, note that it is often possible to get different results if

different initial conditions are used. This phenomenon, called multistability, corre-

sponds to the coexistence of multiple attractors. For instance, Fig. II.13 shows how the

choice of different initial values for |ex | and mx affects the final attractor reached by

the system. In that case, they are very different indeed, as one is chaotic, and the other

is not. As seen of the figure, there is no simple pattern, and a zoom on the map shows

ever finer details, a feature which could point to a fractal nature of theses attraction

basins.
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Figure II.13: White: non-chaotic limit torus. Dark: chaotic attractor. Parameters are
∆= 0.6, Γ= 0.5, β= 0.6 and α= 0. Other initial conditions are ey = 0 and my = 0.
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Bounded phase chaos

Numerical prediction

The chaotic regime with bounded phase oscillations we have observed on the previous

mapping is quite unique, because it combines chaotic oscillations of the beatnote am-

plitude and phase, while keeping the mean frequency synchronized on the reference.

Another viewpoint is that it is a regime of chaotic synchronization between the two

polarization modes, and that this synchronization is strong enough to keep the phase

difference under 2π. We will present here some results obtained for α �= 0. It should

be noted that the same results were also obtained for α = 0 and β = 0.6 when it was

not known that a linewidth enhancement factor had to be included, and have been

published in [Thorette16].
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Figure II.14: Numerical time series in the bounded chaos regime, for Γ = 0.85 and
different values of the detuning: (B)∆=−1, (C)∆=−0.9, (T)∆=−0.95, (BC)∆=−0.87.
Solid blue line corresponds to 200 time units, and light blue to 50000.

Fig. II.14 shows some regimes that can be obtained for an identical value of the

injection Γ = 0.85, and different values of the detuning. What we can see ranges from

complex bounded phase cycles with two peaks, plain chaotic regimes, and bounded

phase oscillations with two periods (two-torus). Finally, close to the locking range,

we encounter the bounded chaos regime, which combines chaotic oscillations and a
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bounded phase property. Fig. II.15 shows more clearly the evolution of the amplitude

and phase in this regime. It is a regime of spiking with pseudo-period of approximately

120 normalized units, modulated by roughly 20 faster oscillations with quite variable

amplitudes.

Figure II.15: Computed amplitude (blue) and phase (red) of the beatnote for the
bounded phase chaotic regime, at Γ= 0.85 and ∆=−0.87.

Figure II.16: Experimental time series in the bounded chaos regime.

Experimental observation

The particular bounded phase chaotic regime is located in quite small regions of the

parameter space, so that fine control of the experimental parameters is needed if

one hopes to observe it. Unfortunately, the injection strength Γ depends on a lot of
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Figure II.17: Simulated bifurcation diagram of phase extrema for Γ = 0.85. Final state
at each point is taken as the initial conditions for the next point, as ∆ is decreased. The
largest Lyapunov exponent is computed for each point and plotted as the solid black
line. The B, T, C, and BC labels correspond to the ones from Fig. II.14

parameters, such the mode matching between the cavity and injected fields, so that its

absolute value cannot be measured easily. However, there is a range 0.8 < Γ < 1.1 for

which chaotic bounded phase is predicted on the border of the locking range. This is

highlighted on Fig. II.17, which shows the superposition of the numerical bifurcation

diagram with the value of the largest Lyapunov exponent. As the free-running beatnote

frequency is quite stable thanks to the single-mode pump diode, the detuning can be

controlled precisely. The injection rate is set to a value in the correct region, using the

fact that the half locking range is Γ fR . Then the detuning is slowly changed until the

system leaves the locking range. This method allows to observe experimentally this

peculiar regime. However, the system usually remains in this regime for less than a

minute, because the drift of the injection rate and detuning will slowly drag it out of

the bounded phase region, or back into the locking range.

Fig. II.16 show the demodulated time evolution we observed, and Fig. II.18 its

complex plane counterpart. As anticipated, the phase features small chaotic oscil-

lations, with amplitude less than 1 rad. On a time scale of 250µs, the phase rises,

and then drops to its start value again. These pseudo-cycle have varying periods

and amplitudes, and are associated with amplitude bursts, modulated with faster

oscillations.

Phase noise properties

When the phase difference between the modes is constant or bounded, we can

consider that the frequency difference is locked on the reference. On the electrical
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Figure II.18: Complex plane visualization of the experimental time series from
Fig. II.16, showing bounded phase chaos. Light blue region corresponds to a recording
of 100 ms, while dark blue is 4 ms.

spectrum, this corresponds to a sharp stable peak at 2 fAO. But if we look more closely,

the reference signal is transfered to the output beatnote by a non-linear coupling inside

the laser. Consequently, additional noise coming from other sources, may very well be

superimposed on the output frequency. This can be quantified experimentally and

numerically in terms of phase noise of the output, as defined in Section 3a.

Experimentally, the phase noise was measured in the different regimes using the

recorded demodulated phase from the Rohde&Schwarz FSV. The demodulation has a

maximum bandwidth of 30 MHz. Then, the phase noise was computed from the power

spectral density of the phase ϕ using a multitaper method [Prieto09]. At low offset

frequencies, we see here that frequency-shifted feedback effectively transfers the long-

term stability of the reference to the beatnote, either in the locked or bounded phase

regimes, as the phase noise level is at least 30 dB below the free-running level. This

feature seem to be generic in system with Hopf bifurcations, and subsists on simpler

models [Romanelli14]. Even in the chaotic bounded phase regime, the phase noise

at 100 Hz from the carrier is reduced by the same amount. However, either periodic

bounded phase oscillations, or chaotic ones add their footprint on the phase noise:

sharp peaks at the cycle frequency for the first ones, and a continuous spectrum for

the second. For the latter, broad peaks at harmonics of 5 kHz are seen, and they indeed

correspond to the pseudo-frequency of the chaotic spikes.

As a test of the accuracy of the numerical model, phase noise was also computed

numerically, by introducing Gaussian white noise on η, ∆ and Γ. A few methods were
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Figure II.19: Phase noise in different regimes, measured by demodulating the output
beatnote, and calculated from the phase with a multitaper method. Legend: Free
running, locked, bounded phase, chaotic bounded phase. Gray dotted line:
reference oscillator.

used, but did not seem to give very different results (see Annex D). Fig II.20 shows

the simulated phase noise in the different regimes: locked, unlocked, bounded, and

bounded chaotic. It is qualitatively similar to the experimental observations, and leads

to the same conclusions. Quantitative agreement was not sought, as it would require a

more precise characterization of the relevant experimental noise sources to be inserted

in the model.

Influence of the feedback delay

Until now, we have neglected the time lag associated with the reinjected field. Indeed,

this time was very small compared to the response time of the laser. However, the goal

of Chapter III will be to apply a similar synchronization mechanism to semiconductor

lasers for which the intrinsic time dynamics are much faster, so that this delay will

likely become a key component in the observed behaviors. In order to make a first step

toward this, we added an artificial delay in our setup, in the form of a fiber coil inserted

in the feedback arm. The modification of the setup is shown on Fig. II.21. The quarter

wave plate and the mirror have been removed, and the light is now injected into a

single-mode Hi-1060 fiber. We then add a coil of fiber in order to delay the signal,

and finish with a fibered Faraday mirror. This component associates a polarization-

rotating device (Faraday rotator) and a mirror, so that the two polarization modes

are correctly swapped before being sent back to the laser. This setup is particularly
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Figure II.20: Simulated phase noise in different regimes, for Γ = 0.9. Legend:
Free running (∆ = 1.8), locked (∆ = 0.8), bounded phase (∆ = 1.1), chaotic
bounded phase (∆= 0.91).
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Figure II.21: Experimental setup with fibered end of feedback arm, including a fiber
coil as an artificial delay.

interesting, because it also allows to compensate the birefringence of the fiber. Indeed,

the effects of the birefringence on the way to the mirror are compensated by the same

effects on the way back, so that after the round-trip the polarization state are still

aligned with those of the input.

Three fiber lengths have been used: 10 m, 30 m and 100 m. They correspond to

time delays of respectively 0.1µs, 0.3µs and 1µs, which, normalized to the oscillation

relaxation time scale give τ values of 0.05, 0.15 and 0.5. A 5 km fiber coil was available

in the lab. Its use was planned, as it would have created a delay of 50µs (or 25 in

normalized units).
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and τ.

Introducing a time delay τ �= 0 turns the rate equations II.4 into delayed differential

equations (DDE). The RADAR5 code, a numerical integrator specifically designed

for such equations was used to integrate them. It relies on an implicit Runge-

Kutta method, using collocations based on Radau nodes, and is well adapted to stiff

equations [Guglielmi05]. As it is an old FORTRAN program, a Python wrapper was

specifically developed (see Annex E). Mappings of the dynamics were computed for

varying ∆ and Γ in the resonant injection regime. For each point of parameters, the

stationary phase difference ϕ was recorded, and plotted in Fig. II.22. As can be seen in

these maps, the primary effect of a non-zero delay is to dramatically reduce the locking

range as soon as the injection level Γ exceeds 0.5. This effect can already be seen for

quite small delays, here τ= 0.4, and indeed for larger delays, such as τ= 22.

Experimentally, a reduced locking range has been also observed for large delays.

While the 10 m and 30 m fiber coils (τ = 0.05 and 0.15 respectively) barely affect the

dynamics, using a 100 m coil (τ = 0.5) results in a reduction of the locking range for

small injection rates, and in its disappearance for larger values of Γ. This can be

seen on Fig. II.23, where the maximum amplitude of the beatnote has been recorded

while the detuning was swept, and the injection rate kept constant. The smallest

amplitude corresponds to the locked state, where the beatnote is not modulated by

the dynamical output of the laser. While the locking range does not vary appreciably
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Figure II.23: Maximum amplitude of the beatnote during a detuning sweep, for Γ= 1.2.
The feedback delay was varied using different fiber lengths.

for the two first fiber length, we see that it has disappeared when the feedback time

is further increased. This is confirmed by Fig. II.24, where the 100 m coil was used,

and the feedback strength Γ was changed. While for lower Γ we still notice a locking

range, it vanishes for higher values. These observations match correctly the numerical

predictions from Fig. II.22
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Figure II.24: Maximum amplitude of the beatnote during a detuning sweep, for a fixed
fiber length of 100 m, corresponding to a normalized delay τ = 0.5. The feedback
strength is changed from Γ< 1.2 to Γ> 1.2.

Experimentally, we observed another effect of the delay on the stability of the

beatnote, that is not accounted for in the model. Indeed, as the light travels in the fiber,

it accumulates an optical phase 2πνx,y
n f L

c where n f is the optical index of the fiber.

This index is prone to slow thermal and mechanical drifts, may be slightly modified by

acoustic noise, and can also include a dependency on the optical frequency. This phase

adds to the optical feedback phase ψ included in the model in Eq. II.2b. While this

feedback phase could be removed from the rate equations by selecting an appropriate
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phase reference in the normalization of Ex , it is nevertheless reported on the output RF

phase of the beatnoteϕ=ϕx −ϕy . In short, even though it can not affect the dynamics

of the laser, it is still present in the RF output phase. While this goes unnoticed

when this term is constant, this means that any perturbation of the feedback phase is

reported on the RF phase of the beatnote. Experimentally, this means that for the 100 m

coil, the synchronized state will nevertheless feature a slow phase drift, depending

on the temperature, acoustic noise, etc. Countermeasures were investigated, such as

sealing the fiber coil in a vacuum chamber in order to reduce the acoustic and thermal

fluctuations, but no significant enhancement could be noticed up to a surrounding

pressure of 1×10−2 mbar. This actually prevented us from using any delay longer than

100 m. Namely, the planned 5 km coil could not be used, because it would result in an

excessive phase drift, and in the inability to observe the locked state anymore.

In order to see if this low-frequency phase noise is indeed reported from the optical

feedback phase, or if there is also an additional noise of intrinsic dynamical origin,

we computed numerically the phase noise for various values of α, β and τ. This is

summarized in Fig. II.25. If one look at the experimental values α= 0.2 and β= 0.2 in

the rightmost panel of the second line, we can see that the phase noise is 20 to 30 dB

higher at low offset frequencies when the delay is not zero. We can thus expect that the

observed phase noise comes not only from the optical phase variations, but also from

the fact that the synchronization quality is degraded by the delay. We note that the

added phase noise at low offset frequencies does not grow monotonously with delay,

as τ= 0.4 has a higher noise than τ= 22. Also, this degradation completely disappears

for other values of α and β, for which the phase noise appears to be insensitive to the

delay.

To sum up the study on the delay, we notice again a good model-experiment

agreement. The main consequence of the delay, in the range of values we could

explore, is a disappearance of the locking range in favor of phase drift or chaotic

oscillations. In this region, we have observed that it is much easier to obtain a stable

regime combining chaotic spiking and bounded phase. This was not investigated in

depth, but was thought to be a good candidate as a signal generator for chaotic LIDAR-

RADAR applications [Lin04a; Lin04b]

4b Bounded chaotic “spike triggering” (excitable-like)

As could be seen in the previous results, in the resonant injection regime (Γ . 1),

our system features sharp transitions when leaving the locking region. When the

detuning crosses a threshold value, the system jumps to an attractor which creates

spiking dynamics, often with chaotic amplitude and pseudo-period. This effect of a
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Figure II.25: Computed phase noise of the output beatnote for various parameters in
the low injection regime (∆ = 0.01, Γ = 0.2). Only pump noise has been considered as
the noise source.

spiking behavior, triggered by a small change in a parameter, resembles interestingly to

a phenomenon known as excitability. This term was originally introduced to describe

biological phenomena, namely those happening in particular neurons [Hodgkin52].

Afterwards, a similar behaviors has been reported numerous times in all kind of dy-

namical systems, from optically injected semiconductor lasers [Turconi13], to optical

torque wrenches [Pedaci10]. The perturbation can come from an external source, but

can also be driven by noise [Lindner04]. While the exact definition of an excitable

phenomenon may sometimes be a matter of debate, we will here retain two of the

main characteristics, which are (i) the existence of a threshold on the perturbation of

the parameters needed to trigger the event; (ii) this response does not depend on the

amplitude of the perturbation [Izhikevich07].

In our case, the attractor associated with the event is chaotic, so that we have to

dismiss a third condition in the definition of an excitable phenomenon, that is required

by some authors for the usage of the term excitable, and that is that the event has

to follow a reproducible, always identical trajectory. This is not strictly true in our
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case, although the events are indeed similar, and most importantly their characteristics

(amplitude and duration) do not depend on the excitation. For that reason, we will

refer to this perturbation-induced spiking phenomenon as “excitable-like”. The fact

that it happens on a bounded phase chaotic attractor gives another unique property

to this phenomenon: indeed, the beatnote phase will remain bounded during the

event, which is a very unusual feature for an excitable system, where the event is on

the contrary often characterized by a phase jump [Kelleher09].

A numerical study was carried out in the case β = 0.6 and α = 0 in [Romanelli16].

The main results are reproduced here in Fig. II.26 and Fig. II.27. The first one shows

the threshold value, and is obtained by doing multiple numerical experiments of a

detuning “kick”. Also highlighted is the fact that the amplitude of the response does not

vary appreciably with the amplitude of the perturbation. The second figure concerns

the existence of a refractory time, i.e. a time after a trigger during which the system

cannot be excited again, that is often found in excitable systems [Garbin17]. The figure

has been produced by changing the delay between two consecutive perturbations.

Normalized time s Amplitude A

Figure II.26: (a) Numerical response to a perturbation of a detuning, showing the
spiking effect on the amplitude (b) Maximum amplitude response for different per-
turbations. The points correspond to the mean value over slightly different initial
conditions.

Experimental evidences of the features (i, threshold) and (ii, independence of

response to the amplitude of the perturbation) of excitability were clearly observed.

For the observation of the threshold, the detuning was set close to the border of the

locking range, and was modulated with an amplitude of ±0.6. The output beatnote

intensity was recorded along with the modulating signal, and the results in Fig. II.28

show clearly that the spiking is only triggered when the perturbation crosses a certain

threshold value. However, this threshold value varies slightly at each cycle of the

modulation, because of the unavoidable experimental drift of the mean detuning and

injection rate.
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Figure II.27: (a) Response to two consecutive excitations separated by delay D . (b)
Maximum amplitude observed after the second perturbation, for different values of D .
Black lines: single realization; red line: mean value. ARP stands for absolute refractory
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Figure II.28: Experimental manifestation of the excitable threshold. The detuning is
changed periodically, and the beatnote is recorded.

For the refractory time, an example is shown on Fig. II.29. The system was excited

by a sharp change in the detuning, then a second excitation was made after a given

time. When the delay between the two kicks is too small, for instance on the upper

panel, the second excitation is ignored, the cycle ends and the system goes back to

its quiescent state. However, when the time between the two kicks is greater than the

refractory time, another event is correctly triggered (lower panel).

To sum up, as this system features a threshold between a steady state region and

an attractor, the observation of an excitable-like phenomenon is rather unsurprising.

However, what we observe is quite unique, as the attractor is of chaotic nature. The

result is that the event spikes, while very similar, each differs in shape, amplitude and
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Figure II.29: Experimental observation of the refractory time, by exciting the system
with two steps of detuning, separated by a different delay.

duration. Yet, it succeeds in maintaining the main properties of an excitable system,

thus proving their robustness even in presence of chaos. On a side note, given the

ubiquitous character of excitable behaviors, we expect this phenomenon to be found

in other systems.
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Figure II.30: Experimental recording the beatnote while varying the detuning ∆ with
a triangle modulation, across and outside of the locking range. The trace width
corresponds to the unresolved oscillations at 2 fAO

We have yet to explain the reason why a non-zero linewidth enhancement factor

has been included in the model. Indeed, it is very uncommon in solid-state lasers and

there is only a few references of it in the literature. The study which resembles the most
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with our setup has been undertaken for a Nd:YVO4 solid-state laser [Fordell05]. Its

authors used a pump modulation method to obtain a value of α= 0.25±0.13. They also

proceeded to an experimental mapping of the dynamics under injection [Valling05],

which showed clearly a locking range asymmetry, well explained by a non-zero α. Also,

an unexpectedly high value of α ≈ 1 has been reported in a microchip Nd:YAG laser.

In that case, it has been measured using an injection method based on the change in

relaxation oscillation frequency [Szwaj04].
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Figure II.31: Computed values of the beatnote intensity for varying detuning ∆, with a
zero and non-zero value of α.

In our case, the first experimental hint of a non-zero α factor was the observation

of an asymmetry of the unlocking mechanism with respect to the detuning. This is

shown on Fig. II.30, where the detuning has been swept across the locking range and

outside of it, and the beatnote amplitude has been recorded. It is clear that while

for ∆ > 0 a smooth bifurcation is observed, it is not the case for ∆ < 0, for which a

more complicated transition happens. This asymmetry is a clear evidence of a non-

zero linewidth enhancement factor. Indeed, if one looks again at the model II.4, we

see that for α = 0, a change ∆ → −∆ is equivalent to taking the complex conjugate

of the equation of ey . This is not the case anymore for α �= 0, and in that case,

the observed asymmetry appears, as already noticed on Fig. II.11, for instance. The

previous experimental figure can be compared to Fig. II.8 and Fig. II.31, which is its

numerical counterpart, and replicates quite well the observed features.

For a more detailed insight, a complete mapping of the stationary phase extrema

for various values of α and β has been calculated and is shown on Fig. II.32. Using

these, we found other clues pointing toward a non-zero value of α, such as the shape

of the bounded phase regions, that were also observed experimentally.
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Alternate results for α= 0 and β= 0.6

As it was initially not known that a linewidth enhancement factor had to be included

in order to account for the precise phenomena under frequency-shifted feedback, it

had been ignored in preliminary simulations and previous works [Thévenin12c]. Also,

in these studies, the coupling factor β was measured to be 0.6. This is likely due to a

different setup of the pump, but the exact reason is not known yet. In any case, many

investigations were made upon this assumption. We reproduce here some results

obtained with these parameters, because they provide valuable informations, namely

for different values of β factor, or assuming the linewidth enhancement factor α is

neglected. For instance, Fig. II.33 is the counterpart of Fig. II.11, which shows the

different regimes obtained in the resonant injection region (Γ < 1). Here, only ∆ > 0

is shown, as α= 0 induces a symmetry with respect to the detuning. We notice that the

same regimes, bounded phase, chaos, and the combination of the two, are similarly
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found, but in different regions.
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Figure II.34: Simulated bifurcation diagram of phase extrema for β = 0.6, α = 0 and
Γ= 0.91. Final state at each point is taken as the initial conditions for the next point, as
∆ is increased. The largest Lyapunov exponent is computed for each point and plotted
as the solid black line.

Finally, Fig. II.35 includes maps from Fig. II.32 and Fig. II.22, and shows the effect of

a larger delay for different values of β. The conclusions obtained for α �= 0 still apply. All

in all, these results also demonstrate a general reassuring feature of this system: even

with slightly different parameters of the laser, nearly identical regimes can be found,

although in slightly different locations of the (∆,Γ) space.
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5 Application to the measurement of the small linewidth

enhancement factor

In the previous section, we pointed out that experimental observations led to the

inclusion of a non-zero α factor in the model. Qualitative observations showed that

it should be in the 0.1–0.3 range for our Nd:YAG laser. But as we would like that the

model matches as closely as possible the observations, a more precise measurement is

needed.

However, it is quite clear that standard measurement techniques described in

Section I.1b cannot be easily applied in this case. First, we expect a very low value

of α and most methods have large uncertainties that would lead to a very high relative

error. Second, we would like to avoid any changes of the intracavity power, so that we

can safely rule out thermally-induced modifications in the optical index as the origin

of the observed amplitude-phase coupling. Also, we would like to take advantage of

our frequency-shifted feedback setup, and see whether it can be used to easily recover

the linewidth enhancement factor.

With that in mind, several options were considered. The first one was to study how

the antiphase oscillations frequency depends on α. Using computer algebra on the

rate equations, it was found that it indeed depends strongly on α, but only within the

locking range. This makes the measurement unusable, as when the beatnote is locked

on the external reference, antiphase oscillations are only very weakly excited, and thus

cannot be seen on the electrical spectrum.

Secondly, the frequency of the Hopf oscillations that appear when leaving the

locking range were suspected to depend on α, but in fact we discovered that they did

not (see Fig. II.36).

Finally, we derived a method based on the modulation of the detuning, that will be

presented here, along with results obtained on the Nd:YAG laser. This method was also

presented in [Thorette17].

5a Theory

As one of the main constraints was that the intracavity power should remain as

constant as possible, we ruled out pump modulation, but also injection strength

modulation. What remains is the frequency detuning that can be easily modulated

as ∆=∆0 +a cos(2π fM t ) around a mean value ∆0, effectively inserting a phase pertur-

bation in the laser with amplitude a and frequency fM . Intuitively, as the linewidth

enhancement factor introduces a coupling between the amplitude and phase of the
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Figure II.36: Normalized frequency of the cycle oscillations when leaving the locking
range, obtained numerically for Γ= 1.5, ∆> 0, and various values of α.

optical field, we expected that a modulation of the detuning would have an effect on

the output intensity if and only if α �= 0, and that this could be used to retrieve the value

of α.

We recall the normalized rate equations with optical injection I.15, already pre-

sented in Chapter I.

dE

ds
= 1

2
(1+ iα)N E + i∆E +ΓEinj (II.11)

Here, E is the normalized intracavity field, N the active medium gain, ∆ is the

detuning between the injected field and the free-running laser frequency, Γ is the

injection efficiency, and Einj the injected field, whose frequency and phase are taken

as reference. Separating phase and amplitude as E = |E |eiϕ leads to:

d|E |
ds

= 1

2
N |E |+ΓEinj cosϕ (II.12a)

dϕ

ds
= 1

2
αN +∆−Γ

Einj

|E | sinϕ (II.12b)

We consider small perturbations of the injection-locked, steady state regime. Thus,

we write x = x̂ +δx, where x stands for |E |,ϕ, N . x̂ denotes the steady state value of x

and δx the small perturbation. Linearization of equation (II.12a) leads to:

dδ|E |
ds

= 1

2

(|̂E |δN + N̂δ|E |)−ΓEinj sinϕ̂δϕ (II.13)

This shows clearly that amplitude response to a phase perturbation δϕ depends on



84
CHAPTER II. FREQUENCY-SHIFTED FEEDBACK IN DUAL-FREQUENCY SOLID

STATE LASERS

the quantity sinϕ̂. In particular, a zero response is expected when sinϕ̂= 0. Using the

steady state of equation (II.12b), this condition becomes αN̂ /2 =−∆, which we can be

transformed using (II.12a) to the more useful expression:

∆=αΓEinj

|̂E |
≡∆m (II.14)

This means that there is a particular value of the detuning, which we will now call

∆m , that corresponds to a minimal amplitude response to a perturbation of the phase.

This value, as expected, depends directly on α, so that is is zero when α = 0. This

confirms the fact that the linewidth enhancement factor is responsible for the phase to

amplitude coupling. This detuning of minimal response ∆m can surely be measured,

so that to calculate α, it remains to measure the normalized injection rate ΓEinj/|̂E |.
Luckily, this value can be indirectly obtained, because it is closely related to the width

of the locking region. Generally speaking, for the “semiconductor” model (II.11), the

locking range in the low injection regime corresponds to |∆| <
p

1+α2Γ, as explained

in I.2a and we obtain:
αp

1+α2
= ∆+−∆−

2∆m
(II.15)

where ∆+ and ∆− are the upper and lower boundaries of the locking range.

Clearly this can be used to relate two simple experimental values to α, yet we see

that the left-hand side of the equation grows as α−2 for large values of α. This makes

any precise measurement impossible as soon as α > 1. On the other hand, for low

values, it scales asα, which makes this method well adapted to the low values expected

for solid-state lasers.

5b Dual-frequency laser

This method, being based on injection, relies on a very stable master laser, all

the more so because it uses precise frequency measurements. Interestingly, in our

dual-frequency case we can bypass this requirement, and use the frequency-shifted

feedback mechanism to inject one mode onto the other. This allows to have a very

stable injection, with a stable and controllable detuning at the kHz scale. However,

the coupling between the modes inside the gain medium makes the analysis slightly

different from the simple injection case, and a more complex relation than Eq. II.15

has to be expected.

Starting from the FSF model (II.4), we linearize it around its steady state, insert a

phase perturbation, and obtain the transfer function A for the output amplitude of the

beatnote signal presented on Fig. II.37. There we can clearly see that its magnitude |A|
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shows an unsurprising peak at the frequency of the relaxation oscillations. Therefore,

we will use fM = fR as the modulating frequency in order to maximize the observed

response. Then, we notice that the whole amplitude of the transfer function depends

on the mean detuning ∆0. This can be more clearly seen on Fig. II.38, which shows

the value of the transfer function for the chosen modulation frequency. As expected,

it exists a minimal value of the detuning ∆m which corresponds to a canceling of the

amplitude response. We note that it is also associated with a −π phase shift of the

response.
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Figure II.38: Computed amplitude and phase of the transfer function, for a modulation
at the relaxation oscillation frequency fR , for varying values of the mean detuning ∆0,
and different values of α.
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In order to compute an expression for this minimal detuning ∆m , we can solve the

equation obtained for the transfer function, which has a quite complicated expression,

but is proportional to 2∆−α(β+1)m̂y . Thus, we obtain the following conditions on the

detuning, which can be made to look very similar to Eq. (II.15) obtained in the simple

injection case.

∆m = αm̂y

2(β−1)
=αΓ

∣∣∣∣
êx

êy

∣∣∣∣ (II.16)

For low injection level, one can consider that êx,y do not differ appreciably from

their equilibrium values in the free-running regime, so that equation (II.16) further

simplifies to ∆m = αΓ. In the general case êx,y has to be computed from the system

equations (II.4a-c), and inserted into equation (II.16). This procedure leads to a 4th

degree polynomial for x =∆m/α, as follows.

Γ2ε2 (
Ω2 −1

)
(η−1)x4 +Γε(ηΩ2 −η−2Ω2)x3+

(
Γ2ε2 (

Ω2 −1
)

(η−1)−Ω2)x2 +Γε(−ηΩ2 −η+2Ω2)x +Ω2 = 0
(II.17)

Here Ω= 1−β
1+β . This equation can be solved for a single real value. As we know that

∆≈ Γα, we can set y = 1+x and solve the previous equation at the order 2, so that:

∆m =αΓ(1+ f (εΓ,β,η)) (II.18)

where f is a “correction function” containing the needed terms for the dual-

polarization case. It cancels for Γ = 0, and has the rather cumbersome expression to

the first order in εΓ:

f (εΓ,Ω,η) =
{
Γε(ηΩ2 −2η−2Ω2)−Ω2 +

(
−2Γ2ε2(−η2Ω4/2−η2Ω2 +η2 +3ηΩ4 +ηΩ2

−3Ω4 +Ω2)+2ΓεΩ2(−ηΩ2 +η+2Ω2)+Ω4
) 1

2
}/(

3Γε(−ηΩ2 +η+2Ω2)+Ω2
)

(II.19)

A plot of this correction function is shown on Fig. II.39, along with the exact result

obtained from the roots of the 4th order polynomial.

This shows that for higher injection level, the minimal response detuning is not

simply αΓ, but also depends on other parameters of the model. These corrections will

be taken into account in our measurements.
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kept at 1.2 and ε at 0.01. Solid curves correspond to the approximate expression (II.19),
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Result for Nd:YAG bulk laser

We applied the method to our laser, simply by frequency-modulating the acousto-

optic signal fAO at the frequency of the relaxation oscillations 65 kHz, with a small

excursion of 10 kHz, so that 2 fAO = f0 + f1 cos(2π fM t )). We monitored the electrical

spectrum and the time evolution of the beatnote. The results can be seen on Fig. II.40,

and the existence of a detuning of minimal response ∆m is clearly highlighted on the

time series, where the beatnote has a constant intensity, and is almost uncorrelated

with the modulation signal. The phase shift that happens when the mean detuning

crosses ∆m , expected from Fig. II.38 is also clearly seen. On the electrical spectrum,

the effect of the modulation are the sharp sidebands at± fR around the beatnote. These

sidebands have the smallest height when ∆ = ∆m . In the experiments, we also notice

that interestingly, these sidebands are not symmetric, as we would expect them to be.

They are slightly unbalanced, and they only balance at their minimum level, i.e. when

∆0 =∆m . While we do not find this asymmetry in our model, it proved to be quite useful

in order to precisely locate the minimal response point, and thus to measure ∆m .

Using this method, the value of ∆m was measured for different values of the

injection rate. The power applied on the acousto-optic modulator was changed, and

each time, the detuning was varied so that we could locate the two borders of the

locking range and the minimal response frequency. This measurement was repeated

multiple times, and the results are shown on Fig. II.41.

Then, equation (II.18) allow to extract an estimation of α from the measured values.

From each point of the Fig II.41, a value of α can be estimated, so that the final result
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Figure II.40: Experimental electrical spectrum of the beatnote, for different values of
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can be obtained simply by averaging.

α=
〈

∆m

Γ(1+ f (εΓ,β,η))

〉
(II.20)

As the uncertainty on a single measurement δα is higher for low values of Γ, we

have to use a weighted average with weights 1/δα, and we find a value of

α= 0.28±0.04 (II.21)

The uncertainty is computed from the precision of the frequency measurements,

which we estimate to be around 8kHz, and also includes the uncertainties on β and η.

This leads to a satisfying reduced chi-squared value of 1.15. We can note here that this

measurement achieves very good relative precision of 14%, better than other similar

measurement [Fordell05; Villafranca07].

This value can be compared to the one found in a Nd:YVO4 laser in [Fordell05],

α = 0.24 ± 0.13, with which it seems compatible. Although these are only two

measurements, this might suggest a weak influence of the crystalline matrix on the

linewidth enhancement factor. We have not found yet the physical origin of this phase-

amplitude coupling. In semiconductor mediums, it can be linked to an asymmetry of

the gain curve. This hypothesis is tested for a Nd:YAG laser in Annex. B, but it does not

allow to reproduce our quite high value of α.

Other hypotheses have been suggested, but they could not be investigated during

this work. For instance, it could be related to some unnoticed thermal effects, although

the fact that the effect has the same scale in the much more thermally unstable

Nd:YVO4 makes this doubtful. A longitudinal unhomogeneity of the population of ions

in the crystal would probably induce a coupling between the phase of the field and

the gain, so this could also be investigated. Other authors have suggested an acoustic

coupling in the crystal, namely with standing acoustic waves [Fordell05]. This would

probably suggest a dependence on the geometry of the crystal.

6 Fiber laser

Fiber lasers, while being more compact and practical, do not differ strongly from solid-

state lasers in their principle, and we expect that many of the previously developed

concepts can be reused on them quite easily. Indeed, dual-frequency dual-polarization

lasers have been observed in fibered form for a few years [Loh97], and have been

studied for applications in heterodyne microwave generation [Leng06; Maxin11]. In

that case, simple forms of stabilization techniques based on feedback have also been
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proposed [Liang14]. In our lab, dual-frequency fiber lasers are studied for their

potential use in optically-carried microwave signal generation. We thus are interested

in applying the FSF method to these lasers in order to stabilize their output beatnote.

We can also expect to do a measurement of the linewidth enhancement factor.
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Figure II.42: Frequency-shifted feedback applied to a dual-polarization dual-frequency
fiber laser. Colors on arrows indicate the two orthogonal polarizations.

The laser under consideration is a 33 mm-long Erbium-doped fiber, on which a

Bragg grating is photo-induced using an UV interference pattern. It has been provided

by the iXblue society3 in the framework of the EDA contract EOFIL. A π phase shift

in the motif of optical index creates a cavity with an estimated effective length of

2.6 mm, enclosed between very efficients “mirrors” of transmission −35 dB on pump

side (co-propagating output), and −51 and the other side (co-propagating output).

The process of engraving leaves a residual birefringence in the fiber, that induces a

frequency separation between the two orthogonal modes of polarization, allowing

dual-frequency dual-polarization output. Thus, the frequency of the beatnote depends

mostly on the manufacturing process. For now, beatnotes up to 3 GHz have been

obtained, and a 1 GHz beatnote will be used in the following. These lasers are pumped

using a 980 nm laser diode and outputs at 1532 nm, typically in the power range of

100µW on the contra-propagating side. More technical details on these lasers can be

found in [Guionie18a].

We applied a frequency-shifted feedback scheme similar to the one of Fig. II.5, but

in an all-fibered setup, presented on Fig. II.42. While the laser itself sits on a SMF fiber,

the feedback loop uses polarization-maintaining (PM) fiber. This is why a polarization

controller had to be added at the contra-propagating output, and before the first PM

component: a polarization beam splitter/combiner (PBS/C) that redirects the two

polarization modes x and y on each of its outputs. One of them, here x, goes through

3https://photonics.ixblue.com/

https://photonics.ixblue.com/
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an amplitude modulator (MZM)4 driven by the reference synthetizer at f0, that creates

sidebands at νx ± f0, then through an amplifier (EDFA) that also contains an isolator.

This allows to create a one-way loop, as it blocks the other polarization y , coming from

the other port of the PBS/C. The modulated and amplified signal then enters the other

port of the PBS/C, so that it is reinjected into the laser, with orthogonal polarization y .

Three frequencies are injected on the mode y : two non-resonants νx and νx − f0, and a

resonant one νx + f0, with a remaining detuning δν= νy −νx − f0. We see here that the

only difference with the previous setup (Fig. II.5) is the presence of two non-resonant

frequencies in the injection.
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Figure II.43: Measured locking range with FSF applied on an Erbium fiber laser.

While this is preliminary work, the results are good, and a locking range is observed,

that grows with injected power, as shown on Fig. II.43. Locking does not start as soon as

the gain of the amplifier is non-zero, because some losses in the feedback loop have to

be compensated before. After that, a linear rise of the locking range with the total loop

gain is observed. Very interestingly, we see that if a wide locking range is not needed,

the loop can be made even simpler by replacing the amplifier by an isolator. Indeed,

we still observe 50 kHz of locking range for a gain of 1.

Phase noise measurements show the very good transfer of spectral purity from the

reference to the beatnote. For instance, levels of −104 dBc/Hz at 1 kHz offset from

the carrier have been obtained, as can be seen on Fig. II.44. As a comparisons, other

stabilization methods based on a phase-locked loop using changes in the pump power

work very well and provide a wider locking range, but currently reach a limit on phase

noise at −75 dBc/Hz for the same 1 kHz offset [Guionie18a].

If we dive deeper in the details of the FSF, we notice that there are strong differences

4Fibered acousto-optic modulators barely go beyond 1 GHz, and such high-frequency models were
not available in our lab. Instead, we used an amplitude modulator. While it does not only shift the
frequency of the signal, but rather creates sidebands around it, we will see that it is not a problem in our
case.
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Figure II.44: Phase noise measured on the locked fiber laser. Dotted curve is the free-
running phase noise, obtained by an indirect method (see [Guionie18a]).
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Figure II.45: Asymmetry of the locking range for the fiber laser, with a gain of ≈ 5 in the
feedback loop.

between this laser and the previous Nd:YAG solid-state case. One of the obvious

feature is the strong asymmetry of the locking range, that can be noticed as soon as

we leave the very low injection regime Γ� 1. Fig. II.45 shows an example of a typical

spectrogram, recorded during a sweep of the detuning, where the asymmetry can be

clearly observed.

Some of these features could be explained by a large value of α. A rough estimate,

based on locking range asymmetry and bifurcation diagrams (see Fig. II.46) is that α is

in the range 2–3 [Guionie18b]. This preliminary result seem to agree well with previous

suggestions in the literature for such lasers [Rønnekleiv01], although some debate and
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Figure II.46: Bifurcation diagram showing the influence of α on the locking range, for
Γ= 0.5. Other parameters have been measured for the fiber laser, and are ε= 1×10−4,
β= 0.65 and η= 1.2.

contradictory measurement exist [Foster07]. This means that the method proposed

in Section 5 cannot be applied. It has been attempted with poor results. While the

minimal response detuning ∆m could indeed be located (see Fig. II.47), how it relates

to α is a more complex problem, and is under study in the lab. Also, here we have

used the same equations that we derived for the four-level Nd:YAG, but Er:glass is a

three-level system, so slight changes should be taken into account [Kervevan07].
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7 Conclusions

In this chapter, we have explored many of the different behaviors offered by a

frequency-shifted feedback mechanism in a dual-polarization dual-frequency laser.

By seeking an excellent agreement with a rate equation model even in the complex

resonant regions, we were brought to make precise measurements of the parameters

of the laser. This allowed us to identify the existence of an unexpected linewidth

enhancement factor, that plays an important role in the injection dynamics.

We have seen that experimental observation of full synchronization (locking),

partial synchronization (bounded phase), and chaotic synchronization (bounded

chaos) could be fully reproduced with the rate equations model, and that conversely

the model could be used to predict new regimes, which were then experimentally

observed. Namely, we report the unique bounded phase chaotic regime, which com-

bines chaotic oscillations, and very good stability, as the phase noise measurements

did show. On the verge of the locking range, we also observed an excitable-like

phenomenon with unique synchronization properties.

The measurement method that was developed for α could be applied to other

solid-state lasers using different gain mediums. We tried to use it on a Er3+-doped

laser, developed in the framework of the COMTONIQ project [Danion14], but it was

not stable enough to measure precisely locking ranges and the minimal detuning.

Similarly, it was tried on a Erbium-doped DFB fiber laser, for which it was found

unsuited as α was estimated to be above 1. Nevertheless, this study should be

continued, as it may give clues to the potential contribution of α to the AM/FM noise

conversion process during low phase noise microwave or THz generation [Quinlan11;

Rolland14].

Finally, this study proved that this system is very versatile and can be used in a

number of ways, from synchronization to chaotic dynamics, and even as a measure-

ment tool for α and maybe other parameters. As it is quite simple, we expect it to be

further studied and that the principle can inspire other designs, with the benefit of

building on a well-studied reference experiment.
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CHAPTER III

SYNCHRONIZATION AND COMPLEX

DYNAMICS OF TWO COUPLED

SEMICONDUCTOR LASERS

WHILE the previous chapter has been devoted to the study of FSF in solid-state

lasers, we will now make a step toward applications, and try to apply FSF to

semiconductor lasers. Indeed, when it comes to practical uses, semiconductor lasers

are the first choice in a number of domains, from telecommunications [Agrawal02]

to spectroscopy [Sasada88]. Among their advantages are an easy frequency tuning

through the pump current, integration with electronics, telecommunication wave-

lengths and facilitated mass production. We will also see that their dynamics under

injection are more complex, and that the use of two separated lasers makes the FSF

scheme less straightforward. In contrast with the previous chapter, we will not be

able to delve into particular instabilities or dynamical regimes, nor will we attempt

to obtain a strong quantitative model-experiment agreement. We will rather focus on

some particular cases, with a focus on the influence of various parameters.

1 The dual-DFB component

A wide variety of active medium structures exist in the field of semiconductor lasers:

from the double heterostructures of the first lasers, to the nanoscale arrangements

that confine electrons and holes in the more recent devices. Two-dimensional con-

finement is obtained by using large inclusions called quantum wells, one-dimensional

confinement using elongated structures known as quantum wires, and the more

recent quantum dots, as punctual structures, provide “zero-dimensional” confine-

ment [Arakawa82]. Quantum confinement is the use of structures at the nanometer

scale that allow to finely control the quantum density of states. The global idea is that
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the shape of these structures can force them to act as similarly as possible to a single

“artificial atom”. This can help inducing desirable properties in terms of wavelength

control, temperature sensitivity, low threshold current, high efficiency, low linewidth,

etc. Recently, intermediate structures, such as quantum dashes have been used. Being

slightly elongated, they combine feature from quantum wire and quantum dots, and

may be easier to grow on substrates [Wang01].

In the microwave photonics and telecommunications domains, a key requirement

is current modulation efficiency, as high modulation bandwidths allow fast data

exchange. The component on which we will focus, being developed in this framework,

was specifically engineered so that it can reach a larger than 10 GHz modulation

bandwidth, while also keeping a sub-MHz linewidth, and a high output power (in the

10 mW range).

Dot/dash-in-a-well

Cross-sectional
TEM image

Planar TEM image
6 layers

PolymerPolymer

Figure III.1: Description of the DWELL active medium used, and transmission
electronic microscope (TEM) pictures. Adapted from [Lelarge07] and [Dagens08].
SCH: Separated confinement heterostructure.

The active medium, designed by the III-V Lab1, is of quantum dash-in-a-well

(DWELL) type (Fig. III.1). This type of active medium strives to combine the foremen-

tioned advantages of quantum dots, while overcoming their well-known limitation

in modulation bandwidth [Kamath97]. As the performances of quantum-dots-based

heterostructure strongly depends on the geometry of the confining nanostructures,

it was proposed to insert the quantum dots in a supplementary well. This allows to

enhance the confinement to approximately 0.15% per layer, as compared to the usual

1a joint lab between Thales Research and Technology France, Nokia Bell Labs France and CEA-Leti, 1
Avenue Augustin Fresnel, Campus Polytechnique, Palaiseau CEDEX
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1% per well in quantum wells structures.

Our active medium, grown on a S-doped (001) InP substrate is based on six layers

of 170 nm×15 nm InAs quantum dashes, each embedded in an InGaAsP quantum well

of gap wavelength λg = 1.45µm. These layers contain a high density of dashes, around

2×1010 cm2, and are separated by InGaAsP barriers of different gap λg = 1.17µm. This

medium is described in more details in [Lelarge07]. Transverse optical confinement is

obtained by using a separated confinement heterostructure (SCH) whose p-side and n-

side are 20 nm and 70 nm respectively. This particular type of active medium showed

good performances in direct pump current modulation, with bandwiths larger than

10 GHz [Dagens08]. Finally, the need for a small microwave linewidth, and thus a small

optical linewidth, translates to a good quality factor of the cavity. This has driven the

choice of DFB lasers with quite long (2.5 mm) cavities [Kogelnik72].

DFB1

DFB2

520 µm
(ours is 2500µm)

2
0

 µ
m

−3 dB coupler

7°
outputlight

Figure III.2: Microscope photograph of a dual-DFB component, provided by III-V Lab.
Here is a picture of a 520µm long component. Our 2500µm structure is similar.

The special components we used have been obtained in the framework of the

EDA contract MINOTOR. They have been fabricated using gas source molecular beam

epitaxy by III-V Lab in Palaiseau (France), and contain two DFB lasers, as described in

the publication [van Dijk11] and pictured on Fig. III.2. They operate at wavelength

around 1550 nm, and their cavities are separated by 20µm in order to avoid direct

coupling. The output light from each laser is combined by an on-chip −3 dB coupler.

Pump current is provided on each laser independently. Additionally, one of them

(DFB2) is driven by symmetrical electrical tracks, so that it can be modulated by an RF

signal with correct impedance matching. For that reason it will sometimes be referred

as the “RF” laser. The characteristic curve, showing the output power collected in the

fiber in function of the pump current for each laser is shown on Fig. III.3. We see that

they feature a threshold at ∼ 80mA, which is quite high for this kind of laser. The

discrepancy between the curve of each laser is not a consequence of the design, nor a

signature of the difference between the lasers, as both of them have the same threshold

current. It rather reflects the fact that for aging reasons or due to fabrication issues, the

on-chip coupler suffer from losses and is clearly asymmetric.
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Evolutions of this type of component already exist, and the following versions

tend to include more and more features, becoming full-fledged photonic integrated

components (PIC). They include semiconductor optical amplifiers (SOA), electro-

absorption modulators (EAM), and photodiodes [Kervella14]. The long-term objective

of these developments is to have a compact heterodyne source of microwaves on

an optical carrier, with a high stability and spectral purity, all integrated on a single

component.
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Figure III.3: Optical power collected in the fiber in function of the applied pump
current for each laser of the component.
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The output wavelengths ν1 and ν2 of each laser are greatly dependent on the

pump current [Agrawal86], as clearly shown on Fig. III.4. Namely, we measured typical

variations of the wavelength of 2.4 pm/mA (or in terms of frequency, 300 MHz/mA).

Furthermore, the wavelength also depends on the temperature. In our setup, the

mean temperature of the chip is stabilized by a Peltier element and a controller.

This allowed us to measure variations of 0.1 nm/K, or equivalently for the frequency

13 GHz/K. These results are in agreement with values found in the literature for DFB

lasers [Akiba82]. Note that in our device, the two effects are coupled. Indeed, the pump

current applied to each laser locally heats the semiconductor. Given the proximity of

the two lasers, mutual heating is unavoidable, so that changing the pump current of

one laser affects both wavelengths.

Yet, we can still use the pump current of one laser to adjust their frequency

difference. Fig. III.5 shows that a wide range of frequency differences ν1 − ν2, from

nearly DC up to 14 GHz, can be obtained using this chip. In fact, similar components

have been used to reach beatnote frequencies up to 100 GHz [van Dijk14].
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Figure III.5: Beatnote frequency measurement for different pumping currents of DFB2,
while DFB1 is kept at P1 = 200mA.

On a small range of pump currents where the frequencies of the two lasers are

closer to each other than 250 kHz, the beatnote disappears. This means that the

frequency difference between the lasers have become so small that phase locking

happened between them. This phenomenon can be explained by an unwanted small

mutual injection, most probably in the optical coupler or at the output facet.

Frequency stability

One of the main interest of these dual-DFB components is that, being located on the

same chip, the two lasers experience similar environmental noises and drifts. This
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makes their frequency difference quite robust on long time scales. In order to quantify

this, we used a high-precision heterodyne optical spectrum analyzer (Apex 2083A)

to record the optical spectrum every ten seconds during a few hours. The results,

including the evolution of the two peak frequencies and of their difference, are shown

on Fig. III.6.
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Figure III.6: Long-term natural drift of the optical frequencies of the two DFB. Lower
panel show the drift of their difference, which starts around 10 GHz. This corresponds
to the actual drift of the beatnote.

In this measurement, the drift of optical frequencies is monotonous, and quite

stable at 5 MHz/min, or 80 kHz/s. However, we notice that the variations in frequency

for the two lasers are strongly correlated, so that the frequency difference around

10 GHz vary as slowly as 80 kHz/min, for a maximum excursion of 50 MHz on a two

hours scale. This confirms the gain in stability obtained by placing the two lasers close

to each other on the chip.

Linewidth

The free-running linewidth of the lasers has been measured using an auto-heterodyne

setup, shown on Fig. III.7. The output light is split by a coupler, and on one of its arm it

is frequency-shifted by 80 MHz by an acousto-optic modulator, while on the other arm

it is delayed by a 700 m fiber coil. The two paths are coupled again, and the whole setup

forms an unbalanced Mach-Zehnder modulator. Then, observation on a photodiode

gives a single peak in the electrical spectrum at 80 MHz. The optical linewidth of

the laser can be deduced from the electrical linewidth of this 80 MHz beatnote. In

our case, it was measured to be around 300 kHz [van Dijk11]. We can compare the
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Figure III.7: Autoheterodyne measurement of the optical linewidth of the two lasers.

measured value with the standard Schawlow-Townes formula (I.11) for the full width

at half maximum [Schawlow58]: ∆ν = (
1+α2

) hc
4πλIoutτ

2
p

. Here Iout is the output power,

supposing that all the cavity losses are caused by the output mirror (which is clearly not

the case). If we use the value τp = 8ps measured in III.1d, α= 1 from 1e and an output

power of 1 mW, we obtain a rough estimation of 320 kHz, which is in the correct order

of magnitude. This low linewidth, which corresponds to a large coherence length in

fiber of 600 m, will allow coherent injection and feedback experiments for the lasers.

If the two lasers are independent, we expect the linewidth of the microwave

beatnote to be the double of this value. This is confirmed by Fig. III.8, which shows

the microwave beatnote and the associated Lorentzian fit with an electrical linewidth

of 600 kHz. This confirms that the environmental noises experienced by the two lasers

are strongly correlated, so that their contribution to the noise of the beatnote is greatly

reduced.
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Figure III.8: Measurement and Lorentzian fit of the electrical linewidth of the beatnote.
Obtained FWHM is 600 kHz.

As can be seen on Fig. III.9, we checked that this value does not significantly

depends on the selected beatnote frequency, except for the expected decrease with

pump power, and some experimental dispersion. These values are already on the very
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lower end for semiconductor DFB lasers, where linewidth much larger than 1 MHz

are common [Tkach86a]2. Here the frequency quality comes from a combination of

the particular active medium [Takano89; Lelarge07] and the long cavity design [Kogel-

nik72]. However, this linewidth still reflects a certain level of amplitude and phase

noise which may be too high for critical applications, and justifies the need for a

stabilization mechanism.
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Figure III.9: Full-width at half maximum electric linewidth of the beatnote, for varying
pump current of DFB2, while DFB1 is kept at P1 = 200mA. Red dot corresponds to
Fig. III.8. Dashed line in the best fit excluding points near the self-locking region.

Lifetimes measurements

As we are interested in precise numerical simulations of the dynamics under FSF, we

need to characterize the time scales of the lasers, namely the lifetime of the carriers τc ,

and the lifetime of the photons in the laser cavity τp .

Principle

It appears that measuring the output intensity response to a modulation of the pump

current is an efficient way to retrieve these two parameters. This can be seen from the

following calculations. We start with a standard rate equations model for the optical

intensity I and the normalized population inversion N , similarly to Eqs. (I.10) from

Chapter I:

2See examples for commercial products:

•
•
•

http://www.lightwavestore.com/product_datasheet/OSC-LDPM-C-011D_pdf1.pdf
http://www.optilab.com/images/datasheets/DFB-1550-PM_09022016_v3.pdf
https://www.furukawa.co.jp/fitel/english/active/pdf/signal/ODC-7R001G_FRL15DCWx-A8x-xxxxx-x.pdf
https://www.furukawa.co.jp/fitel/english/active/pdf/signal/ODC-7R001G_FRL15DCWx-A8x-xxxxx-x.pdf
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dI

dt
=− I

τp
+2g N I (III.1a)

dN

dt
=− N

τc
−2g N I + 1

τc
P (III.1b)

Here P is the pump current and g the laser gain. The lasing steady-state solution

is N̂ = Pth = 1/(2gτp ) and Î = (τp P −1/2g )/τc = τp

τc
(P −Pth), where Pth is the threshold

current. We are interested in the deviations from this steady state when the pump is

modulated so that P = P̂ +δP . We introduce I = Î +δI and N = N̂ +δN , and at the first

perturbation order we obtain:

τc

P̂
Pth

−1

d2

dt 2
δI +

P̂
Pth

P̂
Pth

−1

d

dt
δI + 1

τp
δI = 1

τc
δP (III.2)

From this the frequency domain transfer function H(ω) = δ̃I /δ̃P is obtained by

letting δP = δ̃Pe iωt and δI = δ̃I e iωt .

H(ω) =
τp

τc

1−τcτp
Pth

P̂−Pth
ω2 + i P̂

P̂−Pth
τpω

(III.3)

We defineω2
R =

(
P̂

Pth
−1

)
/τcτp , which corresponds to the pulsation of the relaxation

oscillations, and to the cutoff frequency of the transfer function. Then, we let ωR /2ζ=
(P̂ −Pth)/(τp P̂ ) in order to obtain a second order low-pass filter.

H(ω) = τp /τc

1+2iζ ω
ωR

−
(
ω
ωR

)2 (III.4)

The corresponding gain |H(ω)| can be shown to reach its maximum for

ω2
max =ω2

R (1−2ζ2).

ω2
max =

1

τcτp

(
P̂

Pth
−1− 1

2

τp

τc

(
P̂

Pth

)2)
=− 1

2τ2
c P 2

th︸ ︷︷ ︸
a

P̂ 2 + 1

τcτp Pth︸ ︷︷ ︸
b

P̂ − 1

τcτp︸ ︷︷ ︸
c

= aP̂ 2 +bP̂ + c

(III.5)

This shows that if this maximum is measured for different values of the mean

pump current P̂ , all parameters can be retrieved using an order 2 polynomial fit on

experimental data: Pth =−c/b, τc =
p
−b2/2ac2 et τp =

p
−2a/b2.
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Results

Figure III.10: Experimental setup used to measure the transfer function H of Eq. (III.3).
The RF signal is superimposed to the pump current using a bias T, and the output signal
is monitored on a Discovery 401HG photodiode, with a 20 GHz bandwidth.

Transfer functions for different pump currents have been measured by modulating

it in the 1–12 GHz range using a bias T, as shown on Fig. III.10. Some results are shown

on Fig. III.11. For each measurement, the maximum has been located, and reported

on Fig. III.12. We notice that this setup measures the transfer function not only of

the laser, but of the whole chain, from synthetizer to the ESA. We supposed that other

components had weak influence on the result, mostly because we are interested only

in the frequency of the maximum of the transfer function. However, this may explain

the spurious oscillations observed on the results.

The least-square curve fit according to Eq. III.5 give τc = 60±18ps for carriers, τp =
8±1ps for photons and Pth = 82±14mA for the threshold current. The lifetime of the

carriers is relatively small for a DFB laser, and can be related to the particular "quantum

dashes" structure of the active medium. Finally, the ratio of the lifetimes is τp /τc =
0.14±0.07.

1e Linewidth enhancement factor

When studying the behavior of semiconductor lasers under injection and feedback,

the linewidth enhancement factorα is a key parameter. Therefore, we have to measure

it beforehand. However, we are only interested in the intrinsic part of the phase-

amplitude coupling, excluding any temperature effect. This excludes a large number

of "AM/FM" methods based on pump current modulation. As we expect values α& 1,

the method developed in the previous chapter (II.5) is not suited here. We settled on

another injection method, described in [Hui90]. We first recall the principle here.
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Figure III.11: Examples of measured transfer functions, for different pump currents.
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Figure III.12: Frequency of the transfer function maximum, for different values of the
pump current. The blue curve is the best second-order polynomial fit, according to
Eq. (III.5).

Principle

We start with already normalized rate equations (I.13) for an injected semiconductor

laser, including the linewidth enhancement factor α. Here ∆ quantifies the frequency

detuning between the injected field Einj and the cavity field E . The time scale is set to
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match the relaxation oscillation with s = 2π fR t .

dE

ds
= 1

2
(1+ iα)N E − i∆E +κEinj (III.6a)

dN

ds
= 1−|E |2 −εN

(
1+ (r −1)|E |2) (III.6b)

Here we defined the pump factor r = P/Pth and the damping coefficient ε=
√

τp /τc

r−1 .

If we separate amplitude and phase by letting E = Ae iϕ, we obtain:

dA

ds
= 1

2
N A+κEinj cosϕ (III.7a)

dϕ

ds
= 1

2
αN −∆−κEinj

A
sinϕ (III.7b)

dN

ds
= 1− A2 −εN

(
1+ (r −1)A2) (III.7c)

These equations give the following steady state:

1

2
N̂ Â =−κEinj cosϕ (III.8a)

1

2
αN̂ =∆+κEinj

Â
sinϕ (III.8b)

Â2 = 1−εN̂

1+ε(r −1)N̂
(III.8c)

If the injection is turned off, with Einj = 0, then N̂ = 0 and Â = 1. We notice that

the same result is obtained in the case where ϕ=π/2. This corresponds to a particular

value of the detuning ∆m , for which we have:

∆m +κEinj = 0 (III.9)

This means that when the detuning matches this particular value ∆m , the output

power from the laser is exactly the same as would have been observed without any

injection. Then, combining equation (III.8a-b), we can also express ϕ:

∆=−κEinj

Â

(
sinϕ+αcosϕ

)
(III.10)

This means that the maximum value that |∆| can take is given for cosϕ−αsinϕ= 0,
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i.e. tanϕ = 1/α. This corresponds to sinϕ+αcosϕ =
p

1+α2. In the low injection

regime, it can be shown that this condition actually matches with the stable locking

range [Mogensen85]. Furthermore, using Eq. (III.8c), we can show that Â ≈ 1 +
rεκEinj cosϕ to the first order in εκ, so that we have a locking range of:

|∆| <∆0 ≈ κEinj

√
1+α2 (III.11)

This allows to easily measure
p

1+α2 = −∆0/∆m and eventually we obtain the

following formula:

α=
√(

∆0

∆m

)2

−1 (III.12)

In the case of a stronger injection, the relation between Einj, ∆0 and α becomes

more complicated and has no analytical expression. It could nonetheless be computed

numerically to extend the method. In the following measurement, we have ensured

that we stayed in the weak injection regime by checking that the locking range

remained roughly symmetric with respect to the detuning (see I.2a).

Experimental realization

Injection control

voltage
reference

slave
DFB

Powermeter

current
source

Figure III.13: Experimental setup used for measuring the linewidth enhancement
factor.

We have to measure precisely the output power of the laser, in order to compare its

level with and without injection. Unfortunately, the coupling from the output of the

chip into the fiber is not very stable, so that the power measured in the fiber is not a

reliable measurement.

It appears that the same information can be obtained by measuring the variations

of the tension on the terminals of the laser diode, as it is proportional to the variation
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of carrier density [Kazarinov74; Hui90]. However, the differences we want to measure

around the 1 V mean value are weak, in the mV range. For that purpose, we used a

differential amplifier (the 7A22 rack of a Tektronix 7603 analog oscilloscope) and a

voltage reference set on the mean value (Adret voltage etalon, with voltage precision

∆V /V ≈ 2×10−5). The whole setup is shown on Fig. III.13. To avoid any noise from the

50 Hz AC power supply, we set the oscilloscope’s trigger on the "Line" option, use the

shortest time scale possible, and read the useful value right after the triggering.

The master laser was a Tunics, with wavelength setting precision down to 0.01 nm,

and a fine tuning capability of 2 GHz. The frequency detuning between master and

slave lasers is controlled using the "TUNE" input of the Tunics laser. It has an effect of

roughly 400±10 MHz/V in the ±7 V range3. An external amplifier (EDFA) was also used

to control the injected power. Monitoring of the state laser is done by an heterodyne

setup. Its output is mixed with the output of the master laser, and the observation of the

electrical spectrum of their beatnote allows to discriminate locking from unlocking.

Finally, we see that the injection, even non-resonant (i.e. with a very large detuning

compared to relaxation oscillations), leads to a small offset in the output frequency of

the DFB of roughly 30MHz×Pin/Pout. This is probably due to a thermal effect, and was

accounted for in the results, by subtracting this value from the measured frequencies.

Results

Measurements have been performed on each DFB laser. The frequencies have not

been measured directly, but rather deduced from the control voltage V applied to the

master laser. The measurement protocol is as follows:

1. Without injection (EDFA off), the master laser is tuned in order to observe a null

beanote frequency on the spectrum analyser. The control voltage is stored as V0,

and the oscilloscope is adjusted to show a zero voltage.

2. Injection is turned on, and control voltage is varied until it reaches Vm , where a

null voltage is observed again on the oscilloscope. This corresponds to an output

power that is identical to the non-injected case.

3. Boundaries of the locking range are located by varying the detuning. Unlocking

can be seen on the electrical spectrum. Thus V+ and V− are found.

4. Ultimately, we have ∆0
∆m

= V+−V−
2(Vm−V0) , from which α is deduced.

3Specifications are ±10 V, but we noticed that it is not linear anymore when the voltage is too high.
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Results are shown on Fig. III.14. As a comparison, this protocol has also been

applied to a a commercial telecommunication DFB laser. This was done in order to

validate the protocol, as expected values for this kind of laser is α ≈ 2−3. We used an

Alcatel A1905 LMI 3CN00386NUAA laser diode, from which we had previously removed

the integrated isolator. The estimated value of α≈ 2.4 seems to be in good agreement

with the literature for this type of DFB laser diodes [Kikuchi85; Osinski87]. This allows

to put a high trust level on our measurement.
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DFB1(DC), P = 260 mA →α= 1.3
DFB2(RF), P = 260 mA →α= 1.2
DFB2(RF), P = 160 mA →α= 1.1
DFB2(RF), P = 220 mA →α= 0.8
DFB2(RF), P = 300 mA →α= 0.69
Alcatel LMI, P = 90 mA →α= 2.4
Mean for DFB1/2 : α= 1.0±0.3

Figure III.14: Summary of the linewidth enhancement factor measurements. Points
show measured values for different lasers and parameters. Dotted lines show the best
fit for each set of measurement, while the solid line show the best fit taking in account
every measurement on our lasers. Light gray region materializes the estimated error
on the final value.

For the two lasers from the component under study, a value of α close to 1 is

found for any injection rate and pump current. The mean value of all measurements,

along with a coarse estimation of the error including measurement precision, dis-

persion and systematic error, lead to α = 1.0 ± 0.3. This surprisingly low value can

be explained by the very particular QDash layer structure of the lasers, which was

developed with a low linewidth in mind. This has already been observed in dot-in-

a-well structures [Newell99] and also in dash-in-a-well in very similar configuration

to ours [Moreau06]. A better correction of systematic errors, notably on frequency

measurements could allow a more precise result. Yet, this is sufficient for our needs.
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2 Setup and model for frequency-shifted feedback

With these precisely characterized components at hand, we subjected them to an

optical feedback loop including an amplitude modulator, in an attempt to stabilize

the frequency difference between the two lasers. This method is directly derived from

the one we applied on solid-state lasers in the previous chapter. However, contrary to

the dual-polarization solid-state lasers, the two different wavelengths have the same

polarization, and thus cannot be easily separated. Also, non-resonant modulators at

microwave frequencies (here we use 10 GHz) are Mach-Zehnder modulators (MZM),

and do not allow pure frequency shifting. Instead, they create sidebands around the

input frequency. All these constraints do not allow us to create a one-way injection

from one laser to the other. We will have to take into account cross-injection and self-

feedback for the two lasers. A fair part of this work corresponds to [Thorette19].

2a Experimental setup

The output light from the PIC is collected by a single-mode anti-reflection coated

microlensed fiber. It is precisely placed in front of the output coupler by an XYZ

micropositioner.

MZM

EDFA

Dual-DFB laser
10GHz beatnote

ν2 ν1

f0 
= ν1

 
− ν2

 
+ δν

DFB1
DFB2

P1

P2

RF beatnote output

RF synthetizer

Photodiode

Polarization
controller

Circulator

Figure III.15: Experimental setup of a fibered FSF scheme applied to the dual-DFB
component. See text for details.

Once the light enters the fiber, it travels through an all-fibered polarization-

maintaining (PM) loop, shown on Fig. III.15. A polarization controller is placed before

the first PM element, in order to adjust the polarization axis and minimize the losses.

The loop is formed by a circulator, of which two ports are linked by a Mach-Zehnder

amplitude modulator (MZM, model Photline MX-LN-10 with 12 GHz bandpass) and

a home-made Erbium-Doped Fiber Amplifier (EDFA). This last component was built
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using a single stage of amplification, with the shortest possible length of doped fiber,

here 1.5 m. This leads to a fiber length in the amplifier of only 5 m. Its optical gain

for 100µW of input power can reach 14 dB, and it can be used to completely block the

signal when not pumped. The total length of fiber in the feedback loop is thus L = 16m.

The amplitude modulator is fed with a tunable microwave signal at frequency f0,

generated by a low-noise synthetizer (Rohde&Schwarz SMF100A). It creates sidebands

around each laser’s optical frequency. When f0 is close to the free-running frequency

difference ν1 −ν2, one of the sidebands becomes resonant for the other laser, which

leads to cross-injection between the lasers. The cross-injection strength is quantified

by the modulation rate m, that we choose to define as:

Eout = t0Ein

[p
1−m +

√
m
2

(
e2iπ f0t +e−2iπ f0t

)
+ ...

]
(III.13)

where Ein and Eout are the input and output fields of the modulator, respectively. This

convention was chosen so that for an optical input power I0, the optical intensities

after the modulator are t0(1−m)I0 for the carrier and t0
m
2 I0 for the main sidebands.

For reasons that will be explained shortly after, we are not interested in the harmonics

of the modulation, and they are accounted for in the transmission coefficient t0. As

m ≤ 1, unmodulated light usually remains at the output, so that self-feedback is also

present for each laser.

Finally, a part of the output light is also routed to a 20 GHz photodiode, which

records the beatnote between the different optical frequencies. This output signal in

the microwave domain is then monitored on an electrical spectrum analyzer (ESA) and

on a fast 11 GHz oscilloscope (LeCroy SDA11000). In order to keep the signal in the

bandwidth of the oscilloscope, the 10 GHz beatnote is down-converted by multiplying

it with a fixed signal at 9 GHz.

2b Delayed rate equations

Resonant approximation and the relevant terms

The setup on Fig. III.15 includes a large number of coupling and feedback between

the lasers. Indeed, the amplitude modulator in the feedback loop creates sidebands

around the optical frequency of each laser, so that the two original carriers, the four

first-order sidebands, and also their possible harmonics are injected back into the

cavity of the two lasers. However, as shown on Fig. III.16, the frequency driving the

modulator f0 is chosen close to the frequency difference of the lasers ν1 −ν2 ≈ 10GHz.

The remaining frequency difference δν = ν1 − ν2 − f0, called frequency detuning is

always less than 500 MHz. This is why we are allowed to make the approximation that
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only the two “quasi-resonant” injected fields for each laser contribute significantly to

the dynamics.

ν2 ν1 ν2 ν1
injected

into DFB2
injected

into DFB1

neglected
(non-resonant)neglected

(non-resonant)

from
DFB2

from
DFB1

Amplitude
modulation

at ±f0

δν

Figure III.16: Depiction of the different frequencies generated by the amplitude
modulator, which are injected back into the lasers.

This hypothesis, which will be checked afterwards (see 3a), allows us to compare

our setup to the more general problem of two coupled lasers, as depicted on Fig. III.17.

Now, each laser experiences self-feedback, and also cross-injection from the other.

We can notice here that the role of the frequency-shifting by ± f0 is only to make the

frequency of each injecting field closer to the optical frequency of the injected laser.

It creates a controllable frequency detuning ±δν in the mutual injection, that is small

compared to the frequency difference.

Laser 1
(ν1)

K21eiψ21

Frequency
shifting

K12eiψ12

K11eiψ11 K22eiψ22

ν1 → ν2 +δν

ν1 −δν← ν2

Laser 2
(ν2)

Figure III.17: Coupling mechanisms between the two lasers.

Rate equations and normalization

We can now use standard rate equations for class-B lasers [Erneux10; Siegman86] and

include for each laser the appropriate delayed self-feedback and cross-feedback terms.

Given the low linewidth of the lasers, we can still consider only coherent injection. The

equations for the intracavity fields E j and normalized population inversions N j are:
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dE1

dt
=(1+ iα)g N1E1 +2iπν1E1 +K11E1(t −T11)+K12E2(t −T12)cos(2π f0t ) (III.14a)

dE2

dt
=(1+ iα)g N2E2 +2iπν2E2 +K22E2(t −T22)+K21E1(t −T21)cos(2π f0t ) (III.14b)

dN1

dt
=− N1

τc
−

(
1

τp
+2g N1

)
|E1|2 +

1

τc
P1 (III.14c)

dN2

dt
=− N2

τc
−

(
1

τp
+2g N2

)
|E2|2 +

1

τc
P2 (III.14d)

The measurement of all the parameters having confirmed that we have two

“identical” lasers, we consider the lifetimes, gain, linewidth enhancement factor and

threshold current to be the same for both lasers. As the lasers we consider have a high

pumping current, we can safely ignore any spontaneous emission term.

However, we allow the lasers to have different frequencies ν j and pumping currents

P j . The Ki j =
∣∣Ki j

∣∣e iψi j are complex coefficients quantifying the injection strengths,

and Ti j is the time delay between the cavity field and injected field for each compo-

nent. At the first order, they are just T = nL/c with n the mean optical index of the fiber,

but we allow them to be slightly offset from this mean value, so that Ti j = T +δTi j . This

permits to take into account unwanted effects such as frequency drifts of the lasers,

variation of the fiber length and index, dispersion, additional phase shifts, etc.

We consider our fields to be monochromatic, and are only interested in their

complex amplitude, so we place ourselves in the rotating frames E1 = E1e iξe2iπν1t

and E2 = E2e2iπ(ν1− f0)t . We introduced a constant phase ξ, which will be chosen later

for convenience. Then, as the complex amplitudes are expected to vary slowly in

comparison with the optical phases, we make the assumption that E(t −Ti j ) ≈ E(t −T )

for each field. This is very convenient, as the system now features a single constant

delay.

We can also proceed to further normalizations e j = 1
2π fR

√
g
τp
E j and m j = g

2π fR
N j .

We also introduce the pumping ratios r j = τp g P j and normalized damping coefficient

ε =
√

τp

τc (r1−1) . In order to obtain non-stiff equations, we also choose a time scale s =
2π f (1)

R t , which is normalized to the frequency of the relaxation oscillations of the first

and less pumped laser f (1)
R = 1

2π

√
r1−1
τcτp

. This leads to normalized delay τ = 2π f (1)
R T ,

detuning δ = (ν1 − ν2 − f0)/ f (1)
R , and injection strengths κi j =

∣∣Ki j
∣∣/2π f (1)

R . Starting

from the two field equations (III.14a–b) and neglecting the non-resonant sidebands of
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the modulation, we obtain:

de1

ds
=(1+ iα)

m1e1

2
+κ11

eiϕ1︷ ︸︸ ︷
e−2iπν1T11+iψ11 e1(s −τ)+κ12

eiϕx
︷ ︸︸ ︷
e−2iπ(ν1− f0)T12+iψ12−iξ e2(s −τ)

(III.15a)

de2

ds
=(1+ iα)

m2e2

2
− iδe2 +κ22

eiϕ2 e−iδτ

︷ ︸︸ ︷
e−2iπ(ν1− f0)T22+iψ22 e2(s −τ)+κ21

eiϕx e−iδτ

︷ ︸︸ ︷
e−2iπν1T21+iψ21+iξ e1(s −τ)

(III.15b)

Here, we have defined three phases of physical significance ϕ1, ϕ2 and ϕx that

do not depend on the detuning. In equation (III.15b), we also notice a phase term

e−iδτ that does depend on the detuning. This was obtained using an approximation,

namely that δν× Ti j ≈ δν× T , i.e. we neglected the second-order terms δν× δTi j

that represent the variations of the microwave phase due to the small difference of

delay in the different injected fields. Finally, for symmetry reasons, we have chosen

ξ so that the same phase e iϕx appears in both mutual injection terms. This cross-

injection phase reads ϕx = 2π
(
ν1−ν2

2 T12 +ν1
T12+T21

2

)
+ ψ12+ψ21

2 . In contrast with the

model from Chapter II, this means that we can no longer ignore the optical phase

differences between the injected fields and the cavity fields. By comparing with the

simple feedback case, i.e. the Lang-Kobayashi model (Section I.2b), we can even expect

these phase parameters ϕ j to play a key role in the dynamics. Finally, we obtain the

following normalized model of rate equations:

de1

ds
=(1+ iα)

m1e1

2
+κ11e iϕ1 e1(s −τ)+κ12e iϕx e2(s −τ) (III.16a)

de2

ds
=(1+ iα)

m2e2

2
− iδe2 +κ22e iϕ2 e−iδτe2(s −τ)+κ21e iϕx e−iδτe1(s −τ) (III.16b)

dm1

ds
=1−|e1|2 −εm1

(
1+ (r1 −1)|e1|2

)
(III.16c)

dm2

ds
=r2 −1

r1 −1
−|e2|2 −εm2

(
1+ (r1 −1)|e2|2

)
(III.16d)

Injection rates

The setup described in Fig. III.15 corresponds to a particular form of the κi j coeffi-

cients, on which we will focus now. First, they have to take into account the asymmetric

transmission t j of the output mirrors and on-chip coupler between the two lasers,

already mentioned and visible on Fig. III.3. It can be estimated when the two lasers are
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pumped identically, and their output powers differ by q = t2/t1 = I2/I1 = 0.25. Second,

it must include the modulation ratio m and the amplifier gain G . We add a parameter κ

which account for the overall coupling efficiency between injected fields and the cavity

of the lasers. This leads to:

ıκ=
(
κ11 κ12

κ21 κ22

)
=Gκt0

(
t1
p

1−m
p

t1t2
p

m/2p
t1t2

p
m/2 t2

p
1−m

)
= κ0

(p
1−m

√
qm/2√

qm/2 q
p

1−m

)
(III.17)

with κ0 = κGt0t1 being an injection strength parameter. It can be controlled

through the gain of the in-loop amplifier. However its absolute value depends on

losses in the coupler and in the fiber injection, and cannot be measured precisely in

our setup. Still, we will see in Section 2d that it can be estimated using an auxiliary

experiment.

Summary of the parameters

Among the system’s parameters, we will particularly focus on the influence of detuning

δ, modulation ratio m, injection strength κ0, and delay τ. The other parameters have

been carefully measured in sections 1d and 1e for the DFB lasers and are kept fixed

through the numerical study.

Relaxations oscillations of the least pumped laser are f (1)
R ≈ 8GHz. In order to

obtain a frequency difference ν1 −ν2 around 10 GHz, we used r1 = 3 and r2 = 4. The

fiber length of the whole feedback loop was L ≈ 16m, which gives a large normalized

delay τ= 4000. All these parameters are summarized in Table III.14.

One must note that this kind of model has already been studied in the context

of two semiconductor lasers, placed in front of each other and separated by a semi-

reflecting mirror [Flunkert11; Wünsche05]. These dynamical studies focused on

particular points, for instance the detrimental influence of noise on the synchroniza-

tion stability, with the presence of a noise-induced on-off intermittency known as

bubbling [Flunkert09]. Partial studies of the stability of the external cavity modes have

also been done numerically [Hicke11].

4In the actual simulations we have taken ε ≈ 0.4. This value is based on a previous measurement of
τc /τp = 0.3, a value which differs slightly from the one found in Section 1d. However, it remains within
the uncertainty range of the measurement, so the correction did not motivate a complete redo of the
numerical simulations. The same thing happened for the linewidth enhancement factor, which was
initially believed to be α= 1.2, so this value is used in many following results.
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Pumping ratio of laser 1 r1 = P1/Pth 3
Pumping ratio of laser 2 r2 = P2/Pth 4
Photon ("cavity") lifetime τc 60±18ps
Population inversion lifetime τp 8±1ps

Normalized damping factor ε=
√

τp

τc (r1−1) 0.2 (see footnote 4)

Linewidth enhancement factor α 1.0±0.3 (see footnote 4)

Relaxation oscillations frequency of laser 1 f (1)
R ≈ 8GHz

Output asymmetry q 0.5
Normalized injection rate κ0 < 0.1
Normalized delay τ 4000

Table III.1: Summary of parameters measured, and subsequently used for the following
simulations.

Estimating the drift of the feedback phases

A rough estimate of the drift of the optical phases ϕ j can be made from the drift of the

lasers. As can be seen from Fig. III.6, the optical frequencies exhibit strongly correlated

drifts of about 80 kHz/s. Recalling the definition of the optical feedback phases, we get

for instance a variation of the self-feedback phase ϕ1 for the first mode of 50mrad/s.

This means that a 2π variation of ϕ1 takes approximately 2 min. However, we have

to realize that ϕ2 and ϕx will experience very similar drifts, as their variations are

correlated to those of ϕ1. Indeed, ϕ2 can be written as:

ϕ2 =ϕ1 +2π
(ν1 −ν2)nL

c
+ψ22 −ψ21 (III.18)

Thus, if we ignore the phases ψi j for now, the variation of ϕ2 with respect to ϕ1 is

ruled by the drift of the frequency difference ν1 −ν2 , which, according to Fig. III.6, is

ten times slower than the optical frequency drift, corresponding roughly to 60 MHz in

two hours. This means that δϕ2 −δϕ1 takes around 20 min to make a 2π excursion.

Uncorrelated drifts between the phases ϕ j can also happen, but are much slower,

as the main contribution would be phase dispersion in the used SMF-28 fiber, which

is roughly 15 ps/nm/km for our wavelength of 1550 nm. For our 17 m loop, and a

frequency drift of 80 kHz/s, this corresponds to a phase difference drift of 0.2 mrad/s.

However other perturbations can contribute and are difficult to quantify, for instance

acoustic noise, thermal changes, phase shift in the output coupler, during the insertion

in the microlensed fiber or in the modulator.
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2c Analytical considerations

Analytical study of the system (III.16) is complicated in the general case. A few attempts

have been made, for instance in [Flunkert11], but without the detuning term −iδe2.

Even so, only necessary conditions for the existence of a steady state could be found.

Sufficient conditions, or arguments about the stability of the locking state do not exist

to our knowledge. We present here the very beginning of a study, which allows to obtain

an equation for the external cavity modes frequencies (see I.2b).

We start from a rotating steady state of Eqs. (III.16a-b) that corresponds to an

external cavity mode (ECM). This means that the two fields have a constant amplitude

but a rotating phase, so that e j = ê j e iΩs . Here, we require the external cavity mode

pulsation Ω to be the same for the two fields, which is a necessary condition for a

synchronized state. If we also define γ = arctanα so that we can rewrite 1 + iα =p
1+α2e iγ, we obtain the following complex equations:

iΩ=
√

1+α2e iγm1

2
+κ11e iϕ1 e−Ωτ+κ12e iϕx e−Ωτ ê2

ê1
(III.19a)

iΩ=
√

1+α2e iγm2

2
− iδe2 +κ22e iϕ2 e−iδτe−Ωτ+κ21e iϕx e−iδτe−iΩτ ê1

ê2
(III.19b)

If we define ê2/ê1 = ρe iφ, multiply both sides by e−iγ, and keep only the imaginary

part of these equations, we have:

Ωcosγ=κ11 sin(ϕ1 −Ωτ−γ)+κ12ρ sin(ϕx −ωτ+φ−γ) (III.20a)

(δ+Ω)cosγ=κ22 sin
(
ϕ2 − (δ+Ω)τ−γ)+κ21

1

ρ
sin

(
ϕx − (δ+Ω)τ−φ−γ)

(III.20b)

From Eqs. (III.16c-d), we can estimate that for small ε, ρ2 ≈ (r2 − 1)/(r1 − 1), so

that we have two equations for two unknowns φ and Ω. If we change the variables to

x =ϕx −γ−Ωτ−δτ/2 and y =φ+δτ/2, then:

−
(

x −ϕx +γ
τ

+ δ

2

)
cosγ=κ11 sin

(
ϕ1 +x −ϕx +

δτ

2

)
+κ12ρ sin(x + y) (III.21a)

−
(

x −ϕx +γ
τ

− δ

2

)
cosγ=κ22 sin

(
ϕ2 +x −ϕx −

δτ

2

)
+κ21

1

ρ
sin(x − y) (III.21b)

With these expressions, cos y and sin y can be expressed in terms of x, so that we
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obtain a complicated equation for x governing the external cavity modes. It includes

polynomial and trigonometric terms, so that even the number of solutions is not easily

found.

Further simplification is obtained by defining τ′ = τ/cosγ, δ′ = δcosγ, Φ1 = ϕ1 −
ϕx +δτ/2 andΦ2 =ϕ2 −ϕx −δτ/2.

0 =x −ϕx +γ
τ′

+ δ′

2
+κ11 sin(Φ1 +x)+κ12ρ sin(x + y) (III.22a)

0 =x −ϕx +γ
τ′

+ δ′

2
+κ22 sin(Φ2 +x)+κ21

1

ρ
sin(x − y) (III.22b)

For instance, if we set κ12 = κ21 and ρ = 1, we obtain the following transcendental

equation for x, i.e. for the frequencies of the external cavity modes.

4κ2
12 sin2(x)cos2(x)+ (

κ11 sin(Φ1 +x)−κ22 sin(Φ2 +x)+δ′
)2 sin2(x)

+
(
κ11 sin(Φ1 +x)+κ22 sin(Φ2 +x)+2

x −ϕx +γ
τ′

)2
cos2(x) = 0 (III.23)

and y can be recovered using tan y = κ11 sin(Φ1+x)−κ22 sin(Φ2+x)+δ′
κ11 sin(Φ1+x)+κ22 sin(Φ2+x)+2(x−ϕx+γ)/τ′ tan x.

While these relationships do not give great insight on the physics at play, they

have been used numerically, for instance in continuation algorithm, or more simply

to compute initial values for faster time integration of the equations.

2d Injection rate estimation

When defining the κi j (p. 114), we stressed that the absolute injection rate cannot be

measured, as it depends on a number of unknown parameters. However, its value is

the same in every injection experiment, so that we can estimate it by doing a simple

injection experiment for which the behavior of the laser is well known.

Indeed, from equation (III.10), we see that injection rate can be related to the

locking range:

|∆| <
√

1+α2κ

∣∣Einj
∣∣

|E | (III.24)

However |E | cannot be measured, and we can only monitor the optical power in

the output fiber I (fiber)
out = tC |E |2, where tC is the transmission of the coupler. In the

same way, the injected field can be only measured before entering the component, as
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tC I (fiber)
inj = |Einj|2.

If we recall that ∆= δν/ fR , we have:

|δν| <
√

1+α2κ fR tC

√√√√ I (fiber)
inj

I (fiber)
out

(III.25)

Thus, κtC can be estimated from the width of the locking range if we measure the

injected and output power in the fiber.
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Figure III.18: Locking range boundaries in a simple injection experiment, with varying
ratio of the power sent to the slave laser on the power collected in the fiber. The two
lasers have been tested with different pumping rates. Dotted line is a rough fit of δν=
±100MHz×

√
Iin

/
Iout.

We performed a simple injection experiment (such as the one in Fig. III.13), where

we varied the frequency of the master laser while monitoring the output beat-note

spectrum. A simple criterion was used for discriminating the unlocked state from

the locked regime. In the locking range, no beatnote can be seen on the electrical

spectrum, so that only measurement noise is observed. Using this criterion, the

boundaries of the locking range were precisely located by a dichotomic search.

This was performed for 100 values of the injection levels, obtained by varying the

pump current of an EDFA placed between the master and slave laser. Output and input

power Iin and Iout in the fiber were recorded at each point. The results are shown in

Fig. III.18 and confirm that we mostly stay in the weak injection regime. Indeed, the

locking boundaries are the same for either sign of the frequency detuning, and the

dependency on
√

Iin
/

Iout is roughly linear.
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From the results, we obtain |δν| = 100MHz ×
√

I (fiber)
inj

/
I (fiber)

out for the two lasers,

which in turn leads to an estimation of κtC = 8×10−3. If we come back to the physical

units, and suppose the injection rate is only determined by the coupler and the lasers’

output mirror transmission, we have κ = K /2π fR with K = 1/τp and we can estimate

that tC = (κtC )×2π fRτp ≈ 1.7×10−2.

For our setup, we considered κ0 = GκtC . We include in G all the losses in the

loop, due to the couplers and also polarization losses due to the PM fiber. From a

measurement we obtained GdB =−10dB+GdB
EDFA, so that finally κ0 =GEDFA ×8×10−4.

Modulation ratio

The Mach-Zehnder modulator was calibrated with respect to its RF input power and

DC bias, as shown on Fig. III.19. While the dependence on DC bias is expected to

fluctuate, we can find the maximum modulation rate expected for a given RF input

signal. We notice that every modulation rate up to 0.95 can be obtained by selecting

the correct DC bias and input power. In our experiment, this will allow high levels of

cross-injection with low self-feedback for each lasers.
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Figure III.19: Right panel: modulation ratio (as defined in Eq. (III.13)) of the MZM
for varying RF power and DC bias. This was experimentally measured using a
high-resolution optical spectrum analyzer (Apex 2083A). Left panel: maximum value
obtained for each RF power.

Comparison of numerical and experimental results

In the following section, we will study the outcome of the FSF mechanism for varying

parameters. The experimental observables are related to the microwave beatnote,

namely its amplitude X = |e1e2| and its relative phase with respect to the synthetizer
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reference θ = arg
(
e1e∗

2

)
. Namely, in dynamical regimes, the criterion maxθ−minθ will

often be used to separate “locked” and “bounded” states from “phase drift” regimes.

Observed regimes

Experiments

fit
ref. f0

beatnote

secondary ref. 10 GHz
scope

I

Q
low-pass

mixer numerical processing

f0−1 GHz

A

B

×
×

×
×

A

B

π
2

Figure III.20: Experimental setup used for the demodulation. The beatnote and
reference signal are both down-converted at 1 GHz by mixing them with a synthetizer
at 9 GHz. The time series are recorded by a fast oscilloscope, then numerically
processed. First, the reference is fitted with a sinusoidal waveform to remove noise.
It is then used to obtain the signal quadratures I and Q, which in turn allow to retrieve
the amplitude X and phase θ.

In all the study, the free-running beat-note is set at 10 GHz, and the relaxation

oscillations of the least pumped laser are f (1)
R = 8 GHz. If we set m = 0.8 and vary

the frequency detuning, very different regimes can be experimentally observed, as

shown on Fig. III.21. The amplitude and phase time series have been obtained from

the oscilloscope traces, and numerically demodulated at the frequency f0, according

to the scheme described in Fig. III.20. However, only a weak signal was obtained

after the down-mixing process, so the amplitude signal is very weak and show mostly

measurement noise.

One of the main results is that despite the complex injection scheme, this setup

can be used to lock the frequency difference of the lasers on the external synthetizer.

In that case, the output beatnote is a single tone of frequency f0. This locked state will

be further studied in section 3f.

As seen on Fig. III.21, other regime are observed. In the unlocked case, different

periodic or quasi-periodic amplitude and phase modulation can be seen. This kind

of features, with a period (or pseudo-period) of 2τ, is common in delayed sys-

tems [Dong17]. Finally, as in the case of solid-state lasers, there is also an intermediary

bounded phase regime, where the RF phase θ oscillates in the [−π,π] range.
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Figure III.21: Experimental time series and electrical spectrums, when the detuning
ν1 −ν2 − f0 are respectively 123 MHz, 29 MHz, −26 MHz and 174 MHz.

Simulations

Numerical simulations of Eqs. (III.16) have been made, again using the RADAR5

code [Guglielmi05] through a Python wrapper (see Annex. E). The large delay (τ= 4000)

forces us to run the integration for long times before reaching a stationary regime, to

the point that in some cases, as long as s > 107 is needed.

Equations (III.16) and (III.19) show that the three optical phases ϕ j play a role in

the dynamics of the locking, a property also shown in Section I.2b for a system with

a single self-feedback [Green10]. Indeed, performing numerical integrations of the

model with the same parameter set except for feedback phases already leads to a wide

variety of results, as shown on Fig. III.22. We notice that at least four different regimes

can be obtained only by varying the feedback phases, and that they roughly match

experimentally observed regimes.
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Figure III.22: Example of very different long-term phase and beatnote intensity be-
haviors obtained by choosing different feedback phases. In the three cases δ = 0.002,
κ0 = 0.01, m = 0.8. Locked: ϕ1,2,x = 0,0,0. Unlocked ϕ1,2,x = 0,−1.3,2. Bounded phase
ϕ1,2,x =−2,−2.16,1 (all phases in radians).

“Full” model simulations

If we recall the first paragraph of Section 2b, the simulated model arises from an

approximation made on the setup from Fig. III.15. Indeed, we supposed that the only

terms relevant to the dynamics are the “resonant” fields, i.e. those injected with a small

frequency detuning, either 0 or ±δν. In the previous sections, and in the following,

we confirm that they are indeed sufficient to reproduce the observed behaviors. Yet,

as an extra check, numerical simulations have also been made including all the non-

resonant terms. This full system of delayed differential equations, which cannot

be made autonomous, is noticeably slower to integrate, by a factor of ten. For a

comparison, Fig. III.22 has been reproduced, as the equivalent result is shown on

Fig. III.23.

From this figure, it is clear that the only effect of the extra terms, which all have a

detuning larger that f (1)
R , is to add a very small overmodulation (see inset in top-left

panel). This confirms that the non-resonant contributions can be safely neglected, at

least if we avoid particular cases that may present strong resonances, such as f0 ≈ f (1)
R .

For such cases, we did not check numerically or experimentally if the hypothesis could

still hold.
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Figure III.23: Duplicate of Fig. III.22, calculated including all the non-resonant terms
necessary to the full description of the setup from Fig. III.15.
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Figure III.24: Time evolution for the same set of parameter but different initial
conditions, showing that the system is multistable.

In the previous chapter, at II.3b we have already encountered multistability. As it

is also very common in semiconductor lasers under optical injection [Wieczorek05] or

feedback [Lenstra91], it is not surprising that it is present in our particular case. For a

given set of parameters, it is possible that more than one stable orbit exist. An example

is shown on Fig. III.24, where we have chosen δ = −0.008, κ0 = 0.04, m = 0.8 and

ϕ1,2,x = −0.79,−1.63,−1.75. Then numerical integration has been performed, starting
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from two different initial conditions for s ≤ 0. In the first case (a): e1 = 0.01,e2 = 0,m j =
0, and in the second case (b): e1 = 0.01,e2 = 0.01i ,m j = 0. Two different oscillating

regimes, one of bounded phase, and one unbounded with sharper oscillations are

seen.

−π 0 π

Initial value of arg(e1)

−π

0

π

In
it

ia
lv

al
u

e
o

fa
rg

(e
2
)

0

π

2π

Figure III.25: Final value of maxθ−minθ for 400×400 different initial values of e1 and
e2, showing a cut through the attraction basins for the two final states.

Attraction basins, i.e. the sets of initial conditions leading to each final state, often

take very complicated shapes in such systems (see Fig. II.13). Here Fig. III.25 show a

cut through the attraction basin for the two previous states. We have fixed the initial

amplitude |e j | = 1 and varied the initial phase of each field. The difference of phase

extrema maxθ − minθ was recorded. The resulting picture show that the frontier

between the two attraction basins is very complex, and looks fractal.

Phase dependency

We already saw in Fig. III.22 that very different regimes could be obtained only by

changing the feedback phases ϕ1,2,x . However, these parameters are difficult to control

experimentally, and will experience drifts over time due to drift of the optical frequency

of the lasers (see Section 1b), and to the fibered nature of the feedback loop. Yet a

stable locking over long periods may be desired for applications such as a low noise

microwave photonics oscillator. For that purpose, a high sensitivity on feedback

phases may be detrimental. Thus, it becomes interesting to investigate how sensitive

the system is to these parameters.

However, the parameter space to explore is the [−π,π]3 cube, which is quite large
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as each individual integration time is in the few minutes range. To address this

problem, a Monte-Carlo method has been employed: we have performed numerical

integrations with 50 different feedback phase values, taken from Halton sequences5.

Multistability was accounted for by taking 5 different initial conditions for each phase

triplet. These initial conditions were taken close to estimated external cavity mode,

which were computed using Eq. III.23, so that the integration of lengthy transitory

regimes could be avoided. For each integration, the phase difference in the steady state

(for s > 107) was computed from e1e∗
2 , and its extrema were recorded. The mean value

of maxθ−minθ for different values of m, κ0 and τ is shown on the maps in Fig. III.26.
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Figure III.26: Mean value of the difference on phase extrema maxθ−minθ, averaged
on 50 different feedback phases values ϕ1,2,x . Here we have taken δ= 0.

We notice that the mean value never reaches zero, which means there always

exists a non-empty subset of the (ϕ1,ϕ2,ϕx)-space that leads to an unlocked regime.

However, the volume of this subset becomes very small, down to about 3% of the

feedback phase space when using a high modulation ratio m ≈ 0.8. For τ= 400 a higher

injection level κ0 is needed to mitigate phase dependency. When the delay becomes

smaller, for τ = 10, a very high modulation rate m ≈ 0.9 is needed to reach the same

levels. This suggests that the system becomes very sensitive to self-feedback, and this

should obviously be avoided. Surprisingly, in that aspect, a large delay seems to have a

stabilizing effect. We also notice that the influence of κ0 seems to be quite weak in the

5Halton sequences come from an algorithm generating pseudo-random points on any set, with low
discrepancy, i.e. they are "evenly" distributed, and thus well suited for integrating a function over a large
set [Halton64].
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10−2–10−1 range.
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Figure III.27: Examples of the difference of phase extrema maxθ−minθ in the steady
state. Integrations were performed for κ0 = 0.01, ignoring the e−iδτ in Eqs. (III.16).
This highlights the effect of pure detuning, i.e. without its consequence in the
feedback phases. Feedback phases are (a) ϕ1,2,x = 0.12,−2.72,0.65 and (b) ϕ1,2,x =
2.35,3.33,−0.5.

The feedback phases also interact with other parameters. For instance, Fig. III.27

shows that different steady states are obtained for varying detuning and modulation

ratio, but that the picture is greatly modified if one selects another set of feedback

phases.

Influence of frequency detuning: locking range

In injection-locking systems including a frequency detuning, one expects the presence

of a limited locking range. It usually grows with injection level, but is largely dependent

on the linewidth enhancement factor α. In our case, and as already seen in Fig. III.27,

we expect the locking range to also depend on the three feedback phases. This

complicates the definition and observation of the locking region. Integrating over the

feedback phase space, or in other terms computing a mean value over all possible

feedback phases, similarly to what had been done for Fig. III.26 allows to overcome

this problem.

With κ0 = 0.04 and τ = 4000, numerical integrations were performed for different

values of the detuning. For each value of δ, 50 triplets of feedback phases were used,

and for each triplet multiple initial conditions were tried. The results are seen on

Fig. III.28. As in the previous section, we notice that the dependency on the feedback

phases is greatly reduced for higher m, but also that the region for which locking is
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Figure III.28: Numerical integrations with varying detuning δ. Each × point cor-
responds to different feedback phases ϕ j and different initial conditions, and the
reported value is the stationary difference of output phase extrema maxθ−minθ. Solid
line shows the corresponding mean value for each δ, and filled region helps seeing the
range where there is at least one phase combination that makes locking possible.

possible is enhanced. We stress that this happens at constant κ0, which means that the

total injected intensity is the same, but is more balanced toward cross-injection than

self-feedback.

This figure also shows that while there is indeed a maximal locking range, there is

no minimal locking range. This fact, highlighted by the solid line, which corresponds

to the mean value and never reaches zero, can be related to Fig. III.26. It reflects the

fact for any frequency detuning, there is always one combination of feedback phases

that forbid stable locking.

Finally it can be noted that a lot of points do not lie on the 0 or 2π line. They

correspond to an oscillating output phase θ that remains bounded in the [0,2π]

interval, that is bounded phase dynamics, already seen on Fig. III.22. Here we see

that this feature is more prominent with high modulation rates m > 0.5, and for lower

values of the absolute detuning δ, i.e. near the center of the locking region.
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Figure III.29: Difference of phase extrema maxθ − minθ in the stationary regime
for varying parameters. Locking bands appear when detuning changes on a short
time scale so that feedback phases can be considered constant. Other parameters
are m = 0.8 and τ = 4000. The three panels show different behaviors for different
feedback phases: ϕ1,2,x = (−1.77,−0.97,0.68) for (a), (0.88,−0.74,−0.075) for (b) and
(−0.69,1.36,1.18) for (c).

Locking bands

Previous computations with random ϕ j (Fig. III.28) intended to stress the fact that

optical feedback phases, that may not be controlled precisely, can alter the stability of

the locking. Conversely, we can assume fixed ϕ j , and see how the locking changes with

the detuning δ. Indeed, we see in equation (III.16b) that the two injected terms include

an additional detuning-dependent phase e−iδτ. As seen on Fig. III.29, this effective

feedback phase variation breaks the locking range into periodic locking bands, with

periodicity 2π/τ. However, the shape of the bands, and how they vary with κ0 still

depends on the optical phases ϕ j . Between the stable bands, and depending on

the other phases, we observe either complete unlocking or bounded phase with 2τ-

periodic output.

These locking bands are also observed experimentally. We have varied the detuning

in small steps, and recorded the electrical spectrum of the beatnote as well as time

series at each step. On Fig. III.30, the locking bands expected from the numerical

simulations appear clearly. This alone is an interesting result, as it confirms that the

feedback phases ϕ j vary on slower time scales than the measurement time, i.e. a
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Figure III.30: Experimental spectrograms as a function of the detuning. Modulation
ratio is set to maximum m ≈ 0.9. For different injection strength κ0, the control
frequency f0 is swept around the free-running beatnoteν1−ν2. The electrical spectrum
is recorded at each point, and plotted vertically.

few minutes. Indeed, if they were to vary faster, the locking bands would blurred or

erratically spaced, as we previously noticed on Fig. III.29 that their shape depends

on the feedback phases. Locking regions, where the electrical spectrum features only

one peak at f0, alternate with unlocking zones, where a wider spectrum can be seen.

The spacing of 1/T = 12.5 MHz between the locking bands is also observed. As in

Fig. III.28, the locking range depends on the injection strength κ0, and can reach

roughly 800 MHz.

Although electrical spectrums allow to discriminate between locked and non-

locked regions, it does not give any information about the phase dynamics between

the locking range. A more detailed view of the beatnote phase extrema can be seen on

Fig. III.31 for κ0 = 0.04. We clearly see locking bands where maxθ−minθ = 0, bounded

phase regions, and an example of an unbounded zone at δ≈ 0.

Overall stability and phase noise

In spite of the feedback phase dependency predicted before, the locked state proves to

be very robust in our experimental conditions, with no other isolation scheme than
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Figure III.31: Phase extrema with varying detuning, for κ0 = 0.04 and m = 0.8. The
phase does not go to zero because of experimental noise.
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Figure III.32: Long-term spectrograms of the beatnote, showing the stability for two
values of m.

a pressured-air table and a closed box above the setup. For different values of the

modulation rate, we recorded the beatnote spectrum every ten seconds for several

hours, and as shown on Fig. III.32, it remains locked on the reference. This locking

has been observed for more than 12 hours with m ≈ 0.8, and surprisingly more than

4 hours with m ≈ 0.5. This suggests that the optical feedback phases vary very slowly,

leading to a sturdy stabilization scheme.

On the short time scale, measurements of the electrical phase noise of the output

beatnote have been performed in different regimes, as seen in Fig. III.33. They prove

that the stability of the reference is almost completely transfered on the frequency

difference of the lasers (the 3 dB difference is not significant, and could be due to

elements of the detection chain).
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Figure III.33: Phase noise of the output beatnote, measured on a PN9000 phase noise
analyzer.

Conclusions

We applied a method derived from frequency-shifted feedback to two semiconductor

lasers contained on a single component. It allowed the successful stabilization of the

frequency difference between the lasers on a microwave synthetizer at 10 GHz. The

particular constraints associated with the components led to the fact that both cross-

injection and self-feedback had to be applied on the lasers.

Observed experimental features, from stable locking, to bounded phase oscilla-

tions, 2τ-periodic motifs, or locking bands have been correctly obtained in numerical

simulations. The influence of the injection rate, modulation ratio and detuning have

been studied, with an emphasis on how they contribute to the sensitivity to the optical

feedback phases. We showed that a high modulation ratio has to be preferred for

non phase-dependent stabilization, and it slightly enlarges the locking range. This

means that cross-feedback is the main stabilizing mechanism in that case, while the

remaining self-feedback has a destabilizing effect. We also showed briefly that the

feedback length, or delay, is not the most prominent parameter. This opens the way

to similar, yet more compact schemes. This study is not exhaustive, and interesting

comparisons could be made using a higher linewidth enhancement factor, or slightly

different modulation mechanism. For instance, even though it was not developed

in this chapter, we have spent some time experimenting with the replacement of

the modulator by a resonant frequency shifter at 12 GHz provided by the Leonardo

company (Italy) in the framework of the EDA contract HIPPOMOS. The observed

behaviors are remarkably similar, and allow for a successful locking.
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Even though the stabilization technique was applied to a particular dual-DFB

component, the numerical model is very generic, and applies to two more separated

lasers as well. With this viewpoint, we prove here that frequency-shifted feedback

is an effective way to stabilize the frequency difference of two semiconductor lasers.

Furthermore, it could be tightly integrated on a single component containing the

feedback loop itself. The development of stabilization techniques being a central point

for future heterodyne microwave generators, we expect this method to be very relevant.

To illustrate this, a step toward a useful use case will be made in the next chapter.
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CHAPTER IV

HYBRID OPTO-ELECTRONIC

OSCILLATOR

IN the previous chapter, we developed a method that allows to synchronize the

frequency difference of two lasers on a reference oscillator. However, as frequency

rises, electronic oscillators of good quality may not be available, or may become too

expensive, too large, or very sensitive to noises (see Fig. I.7). This motivates the search

for self-referenced microwave oscillators using optical components.

1 The opto-electronic oscillator

1a Principle

In the framework of microwave signal generation, it is usual to use electronic synthetiz-

ers. However, they are most commonly based on a frequency multiplication cascade,

which means that the phase noise will tend to degrade as the frequency rises. Starting

on a different ground, the opto-electronic oscillator was developed on the idea of

generating a microwave frequency using a highly selective resonant loop the combines

optical and electronic elements. The most common setup uses an optical resonator as

a very sharp frequency filter. However, this resonator, either a long fiber coil [Yao96]

or a specially engineered micro-resonator [Ilchenko08], usually has a large number of

harmonic resonances. Thus an electronic microwave filter of larger bandwidth is also

used in order to select a single resonance of the optical filter. This is summarized on

the principle setup, shown in Fig. IV.1.

This kind of device is very mature, and it provides almost unmatched performances

when it comes to very low phase noises even for high frequency carriers. For instance,

a table-top realization with off-the-shelf components allowed us to reach −125 dBc/Hz
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Figure IV.1: Principle of an opto-electronic oscillator.

at 10 kHz from the carrier as can be seen on Fig. IV.2. Then, the output microwave fre-

quency is only limited by the capabilities of the modulator, photodiode and electrical

filter. Current technology make it possible to build a robust OEO that operates up to

100 GHz. Furthermore, this can be done in extremely compact systems, down to chip-

scale components [Maleki11]. Typical performances in miniaturized commercialized

devices (µOEO from OEwaves) include a phase noise of −108 dBc/Hz for an offset

frequency of 10 kHz from a 35 GHz carrier1. The main drawback of this kind of setup is

that frequency tuning is often poor or non-existent. Indeed, the oscillation loop relies

on two filtering elements, the resonator and a microwave filter. This makes continuous

frequency tuning a complex problem. Tunability in steps has been achieved using

special electric filters [Eliyahu03], optical filters [Xie13] or Brillouin scattering [Peng15].
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Figure IV.2: Phase noise measured on a simple 10 GHz opto-electronic oscillator we
realized with a 1.55µm laser source, a MZM modulator, and different fiber lengths.

1

http://www.oewaves.com/micro-oeo
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1b Phase noise

The phase noise of an opto-electronic oscillator can be computed using models with

growing complexity. However, a first order approach is the feedback oscillator model

developed by Leeson [Leeson66]. In this model, adapted on Fig. IV.3 to the case of an

OEO, we consider that the only noise source enters the system in the amplification

stage. Then, by applying a standard linear analysis of feedback systems, we can

compute the transfer function for this phase noise [Rubiola08].

Laser

Gϕ( f ) 1+if/ffilt

1

MZM

+

ψ( f ) Noise (input)

e2iπfτ

Output

A

B

Figure IV.3: The Leeson model of an OEO, including amplifier noise, a filter and a delay
line.

Here, the microwave bandpass filter centered on f0 corresponds for the phase ϕ to

a low-pass filter with a cutoff at half the bandwidth. If we suppose that it is a first-order

filter, its transfer function is simply 1
1+i f / ffilt

, where f is the offset frequency, and ffilt the

cutoff frequency, i.e the half-bandwidth of the bandpass filter. The amplifier is linear,

and appears as a single constant G . Finally, the delay due to the fiber coil corresponds

to ϕ(t −τ), with τ = nL/c the time delay. In the frequency domain, this reads e2iπ f τ.

The transfer function from the noise input ψ before the amplifier to the output phase

φ reads:

H( f ) = ϕ( f )

ψ( f )
= A

1− AB
=G

1+ i f
ffilt

1+ i f
ffilt

−Ge−2iπ f τ
(IV.1)

The amplitude of this transfer function is plotted on Fig. IV.4. This shape is typical

of an opto-electronic oscillator, and very similar to the measurement of Fig. IV.2.

At lower frequency, we see a decrease with slope −20 dB/decade. Then it reaches

a minimum, and what follows are sharp harmonic peaks that correspond to the

resonances of the delay line. The cutoff frequency, corresponding to the first minimum

before the delay resonances is sometimes called the Leeson frequency fL = 1/(2τ). This

simple model teaches us that the typical phase noise of an opto-electronic oscillator

features two distinctive traits: a first-order low-pass filtering with cutoff frequency fL

all the smaller if the delay is long, and sharp peaks at each harmonic resonance of the
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delay. The latter are indeed unwanted, and methods to mitigate this extra noise will be

discussed in Section 2c.

1k 10k 100k 1M 10M

Offset frequency (Hz)

−10

0

10

20

30

40

50

Tr
an

sf
er

fu
n

ct
io

n
(d

B
) 5km

1km
100m

Figure IV.4: Transfer function for the phase noise in the Leeson model. Here we have
taken G = 1, a filter bandwidth of 5 MHz and various fiber lengths.

Dispersion losses in long fiber links

Even though opto-electronic oscillator can generate microwave signals of very high

purity over optical carriers, their output is not well suited as a carrier for transmission

in fiber links. Indeed, as the microwave signal is contained in two sidebands at ± f0

created by a MZM around the main carrier, it is very sensitive to chromatic dispersion

in fibers [Smith97]. The following simple calculation highlights the process.

If the input signal of the MZM has a pulsation Ω, the electrical field contains three

pulsations ω, ω±Ω. After propagation in a fiber, the amplitudes E j and phases φ j may

be different for each, so that the total field writes:

E = E0eiωt +E1eiφ1 ei (ω+Ω)t +E2e−iφ2 ei (ω−Ω)t (IV.2)

Observed on a photodiode, the intensity is as follows.

I = |E |2 = E 2
0 +E 2

1 +E 2
2 +E0E1eiφ1 eiΩt +E0E2e−iφ2 e−iΩt +E1E2ei (φ1+φ2)e2iΩt +c.c. (IV.3)

We are only interested in the microwave signal at frequency Ω, which is:
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X (t ) = E0

[
E1e iφ1 e iΩt +E2e−iφ2 e−iΩt +c.c.

]
= 2E0

[
E1 cos(Ωt +φ1)+E2 cos(Ωt +φ2)

]

(IV.4)

Finally its power spectral density is:

|X̃ (Ω)| = 2E0

∣∣∣E1e iφ1 +E2e iφ2

∣∣∣= 2E0

√
E 2

1 +E 2
2 +2E1E2 cos(φ1 −φ2) (IV.5)

Which allows the following extrema:

∣∣X̃max
∣∣= 2E0(E1 +E2)

∣∣X̃min
∣∣= 2E0 |E1 −E2| (IV.6)

Thus, the ratio describing the maximum signal losses caused by the dispersion in

the fiber is:

∣∣∣∣
X̃min

X̃max

∣∣∣∣=
|E1 −E2|
E1 +E2

(IV.7)

Dual sidebands setup, such as any modulator-based oscillator, correspond to E1 ≈
E2 because the chromatic losses are very low in a fiber. This means that they are

very sensitive to dispersion and that very high modulation losses are to be expected

after being propagated in a fiber. On the contrary, a true single-sideband setup, i.e.

with E2 = 0, cannot experience dispersion losses. In these particular use cases, this

is a clear advantage of heterodyne-bases oscillators over other methods. We will see

later that our modulation scheme may rather generate a weakly dual sideband signal,

where E2 ¿ E1. This lead to quite low maximum losses, around 1−E2/E1, or in term of

intensities 1−p
I2/I1.

2 Long-delay setup

Building on the stabilization scheme developed in Chapter III, we will show that it

can be turned into a standalone oscillator, by inserting it in an opto-electronic loop

inspired by the OEO principle. However, as what we have developed is a method

of stabilizing the frequency difference between the two lasers, we expect to keep the

property that the output signal is composed only of the two optical wavelengths.

Hence, in contrast with standard OEO, the output will be nearly single-sideband

microwave signal over an optical carrier.
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Setup
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Figure IV.5: Hybrid opto-electronic oscillator, directly derived from the FSF technique.

The setup presented in Fig. IV.5 (and photographed on Fig. IV.6) is directly derived

from the one shown in Fig. III.15. In fact, we can consider it to be the closed-loop

form of the previous one, where the output goes through a feedback branch, and then

back into the input, i.e. the microwave reference fed into the modulator [Vallet16]. For

convenience, we will keep the frequency difference tuned at 10 GHz.

Figure IV.6: Photograph of the setup described on Fig. IV.5.

After leaving the dual-DFB chip, the light goes through a 80/20% fiber coupler.

The smallest fraction goes into the optical frequency-shifted feedback arm, where it

experiences amplitude modulation and amplification before being directed back into

the PIC. The other fraction is delayed by a 5 km SMF fiber coil (corresponding to

a Leeson frequency fL = 7kHz), and reaches a fast photodiode (Discovery 401HG),
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from which the microwave signal is obtained. It is filtered by a custom-made2 very

sharp RF bandpass filter, centered around 10 GHz and with a bandwith of 3.8 MHz, the

characteristics of which are shown on Fig. IV.7. Finally, building on the knowledge from

the open-loop system, we know that a high modulation rate in the MZM in beneficial,

so an amplification stage is added in order to reach around +20 dBm level on the

modulator.

Figure IV.7: Characteristic of the custom-made narrow bandpass filter. Here, the useful
transmission is the S21 curve between the two ports of the filter.

Performances and challenges

When the free-running beatnote of the lasers is set close to the resonant frequency

of the filter, stable oscillation occurs, as seen on the electrical spectra of Fig. IV.8. A

rejection of 40 dB between the main peak and the spurious sidebands can be observed.

Before reaching this result, several lengths of fiber have been tested, as it is known that

this length, that determines the width of the resonances, is a crucial parameter in OEO

designs [Zhang15]. The different attempts have been reported on Fig. IV.9, and one can

see that while 0 m and 700 m are clearly insufficient, no difference can be seen between

5 km and 20 km. This means that the phase noise is not limited anymore by the quality

of the resonator, but by other noises in the system. We noticed that the optimum sits

between 5 km and 10 km, so this first value has been used.

2Designed and realized by O. Llopis, LAAS Laboratory, Toulouse, France, in the framework of the EDA
contract HIPPOMOS.
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Phase noise of the beatnote has been measured using an Aeroflex 3254 ESA

(Fig. IV.10, next page). At 10 kHz offset from the carrier, the value of −95 dBc/Hz

is a good step toward the typical requirement of −110 dBc/Hz in radar systems, for

instance. However at high offset frequencies, we clearly see spurious resonances as

high as −70 dBc/Hz at multiples of 40 kHz that directly come from the delay element,

here the 5 km-long fiber coil. Also found in standard OEO, this feature limits the phase

noise performances of the oscillator. Furthermore, in our case, the long-term stability

is altered by mode hopping between these resonances.
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Figure IV.8: Electrical spectrum of the output beatnote. Relative bandwidth is 1 MHz
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Figure IV.10: Phase noise around the 10 GHz carrier in the long feedback setup.

Dual-loop

In order to remove these unwanted phase noise peaks, several solutions have been

proposed for OEO engineering. The most complex of them include the usage of two

injection-locked oscillators, for instance two OEO with different characteristics, in

what is called a Dual Injection-Locked (DIL) OEO setup [Zhou05]. Also, a coupled

combination of an OEO and an electronic oscillator has been proposed [Lee08]. But

the simplest solution is to reduce the periodicity of the phase filter, by using two

different delays, and combining their output. This produces a RF interferometer, and

can be done either electronically, by using two photodiodes [Yao98], or with all-optical

means [Yang07].
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Figure IV.11: Dual-delay setup, using two fiber coils to create a RF interferometer and
reduce the number of resonant modes.

Here we implement the simple dual-delay solution from [Yao98] by using two

SMF28 fiber coils of length L1 = 5km and L2 = 1km, that end on two Nortel PP-10G

photodiodes. Each output goes through a microwave phase shifter, which can be used
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to adjust the relative phase of the two arms, and they are summed by a RF mixer. The

optical feedback loop is unchanged, as seen on Fig. IV.11. The optical intensities on

the two photodiodes, initially unbalanced because of the different fiber lengths, were

adjusted using a slightly lossy connector.
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Figure IV.12: Electrical spectrum with the two-coil setup. Relative bandwidth is
0.3 MHz for (a) and 0.2 kHz for (b).

Beatnote spectrum and phase noise have been measured using a

Rohde&Schwarz FSW, and what can be seen on Fig. IV.12 and Fig. IV.13 is a clear

reduction of the parasitic resonances caused by the delay line. For instance, the first

phase noise resonance has been damped by 30 dB, the second by 10 dB, and the third

has completely disappeared. On the electrical spectrum, the sidebands due to the

delay line have also been widely reduced, with a minimum rejection of 60 dB. On the

larger span of the electrical spectrum, we note that external cavity modes of the FSF

loop, spaced by 1/T = 12.5MHz are much more visible, not being drowned in delay

resonances anymore.

It should be noted that the length of the two fibers have been chosen quite arbi-

trarily. Indeed, precise tuning of the setup is possible, but highly depends on the noise

sources, and requires their characterization. That next step is out of the scope of this

work, but would allow to precisely reduce a larger number of harmonics of the delay

resonances. For instance, in standard OEOs it has allowed reduction of the maximum

level of spurious resonances from −90 dBc/Hz down to −120 dBc/Hz [Lelievre17].
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Figure IV.13: Reduction of the spurious high-frequency phase noise resonances using
a dual-loop scheme (light blue curve). The phase noise for the single-loop scheme is
recalled for comparison (dark blue curve).

Shorter delays, towards integration

As can be seen on Fig. IV.12, peaks due to the external cavity modes appear on the

electrical spectrum. However, as they are located outside of the bandpass of the RF

filter, they cannot resonate. But they prevent us to use a filter with a larger bandwidth,

otherwise the frequency locking becomes very sensitive to unwanted “mode hops”,

where the resonant frequency jumps from one external cavity mode to another one.

Yet, we would like to use a RF filter as wide as possible, for tunability reasons, but also

because the use of a custom-made very sharp filter makes the setup very specific. We

will see here that another possibility is to move away the external cavity resonances, by

shortening the optical feedback loop.

Straight feedback and direct modulation

If we consider the optical feedback loop from Fig. IV.11, it contains a large number

of elements, namely an optical coupler, a polarization controller, a circulator, a

modulator and an amplifier. This puts a lower limit on the length that can be reached

for this system.

However, a slight modification of the setup allows for a much shorter feedback.

Indeed, sidebands around the optical carrier can also be generated by using direct

modulation of the laser’s pump current. Then a simple reflection can be used to

generate a frequency-shifted feedback. This is particularly tempting on our kind of
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Figure IV.14: Short-loop hybrid opto-electronic oscillator, where direct modulation is
used to create the injection sidebands.

components, because they have been specifically engineered for data transmission,

and their modulation bandwidth has a 14 GHz cutoff frequency. In practice, only one

of the two lasers has been connected with tracks that allow to feed it with a microwave

signal. We have combined the DC pump current with the microwave signal using a

bias T. Using a synthetizer, we checked that the modulation is indeed linear for our

range of powers, as shown on Fig. IV.15
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Figure IV.15: Pump modulation efficiency of DFB2, measured as the ratio of the
sidebands at 10±2 GHz over the carrying beatnote at 10 GHz.

The full setup, shown on Fig. IV.14, differs from all the previous ones because the

coupling mechanism is not exactly the same. Indeed, there is no resonant injection

from the unmodulated laser (DFB1) into the modulated one (DFB2). In terms of

Eq. (III.16), this corresponds to κ21 = 0. However, we noticed that stable phase locking

is still possible and very stable in this configuration. With this setup, all fibered

components are removed, allowing an optical feedback path as short as wanted. We

choose not to cut our microlensed fiber, and connected it to a FC/PC connector which

generates a 4% reflection, so that the round-trip feedback length is roughly L f ≈ 2m.
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This corresponds to a much smaller delay T = 10ns (τ= 500 in the normalized units of

previous chapter), and to an external cavity frequency of ν f = 100MHz.

This wider spacing of the external cavity modes allows to release the constraint

on the RF filter, so we settle on a more standard filter, model Lorch CF7 with a −3 dB

bandwidth of 80 MHz.

An extra EDFA with a low gain of 6 dB was added in front of the OEO part, so that

the two OEO photodiodes, model Nortel PP-10G, receive 1 mW each. The rest of the

OEO loop is nearly the same, with length L1 = 5km. For the second coil, the length was

slightly modified to L2 = 1.1km, as it was noticed that it allowed for better results.

The power on the output photodiode, on which the phase noise and spectrum are

measured is 200µW. The results, obtained using a Rohde&Schwarz FSWP phase noise

analyzer, are shown on Fig. IV.16 and IV.17.
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Figure IV.16: Spectrum in the short feedback setup. Relative bandwidth is 1 MHz for (a)
and 10 kHz for (b).

On the electrical spectrum (Fig. IV.16), and in strong contrast with Fig. IV.12,

external cavity modes can hardly been seen. No mode hops are observed, and

the system remains stable for days. The smaller span shows similar performances

compared to the long-feedback setup.

On the phase noise measurement (Fig. IV.17), one can notice that a low level

of −70 dBc/Hz is reached at an offset frequency of 1 kHz from the carrier, and

−100 dBc/Hz at 10 kHz. This compares well with the long delay setup (Fig. IV.10). At

higher offset frequencies, the benefit of the dual-loop OEO is still present, with results

similar to those from Fig. IV.13. However, these performances are now obtained with a

much simpler setup, using standard components except for the PIC.

However, compared to the previous setups with an external modulator, it may seem
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Figure IV.17: Phase noise around the 10 GHz carrier in the short feedback setup.

that the output from this configuration is not a true dual-frequency signal, because it

contains the two sidebands around ν2 created by the pump current modulation. Still,

if we look at Fig. IV.18, which shows the output optical spectrum, we see that this extra

sideband at λ3 is 15 dB below the level of λ1. If this signal were to be submitted to

dispersion fading in a fiber link, the calculations from Section 1c show that the losses of

modulation depth would be less than 1.6 dB. To sum up, the sidebands created for the

purpose of stabilization mechanism are very small, and do not affect the output signal,

which remains nearly single-sideband. This particular work has been published more

concisely in [Thorette18].
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Figure IV.18: Output optical spectrum in the short feedback setup. The residual
peaks under 50 dBm are either higher-order harmonics or parasitic, caused by the
heterodyne scheme inside the high-resolution OSA (Apex 2083A).
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Transfer functions: towards a full model of the hybrid

OEO.

Characteristics of opto-electronic oscillator can be computed using simple models,

such as [Yao96] or more complex ones [Levy09]. They are often linear models, similar

to the one presented in 1b, that use transfer functions for the small variations of the

microwave phase. They involve the characterization of the components and noise

sources, and allow to predict the output phase noise of the oscillator. This process is

very useful in OEO design, because it can be used to determine the desired features of

the components, and guide the engineering when precise performances are required.

In our case, a non-linear element is at the center of the setup, namely the combi-

nation of the two injected lasers. However, when a stable regime has been reached,

it can be considered that the two lasers and their optical injection loop will act as a

linear filter for the microwave phase. This is shown on Fig. IV.19, where the dashed box

containing the FSF mechanism can be considered as a replacement for the modulating

part of an OEO.
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Figure IV.19: Dual-DFB with frequency-shifted feedback, seen as the modulating
element of an OEO loop.

Then, the transfer function of this element for the microwave phase can indeed be

computed using the model of Eqs. (III.16) presented in the previous chapter. Indeed,

a perturbation δφ of the RF phase, reaching the input of the modulator, is included in

the change ψ12 = ψ̂12 +δφ, ψ21 = ψ̂21 +δφ. In the normalized model, this corresponds

to a detuning perturbation so that ϕx = ϕ̂x +δφ.

In a small signal regime, we can proceed to a linearization of the model around

the external cavity mode with frequency Ω. We define e j = (ê j + δe j )eiωs and

m j = m̂ j + δm j . If we notate all variables as a vector u = (e1,e2,m1,m2) and δu =
(δe1,δe2,δm1,δm2), so that the full evolution is described by du/ds = f (u(s),u(s −τ)),

we obtain the following time evolution equation:
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d

ds
δu = Jδu + Jτ δu(s −τ)+b

dδφ

ds
(IV.8)

with the matrix J = d f
du(s) , Jτ = d f

du(s−τ) and the vector b = d f
dϕx

. If we further define

δu = δ̃uei xs and δφ= δ̃φei xs , we obtain the following linear system:

(
i x − J− Jτe−i xτ

)
δ̃u = i xbδ̃φ (IV.9)

This can be solved to obtain the frequency-dependent response δ̃u = r (x)δ̃φ. From

this quantity, the output phase θ = arg(e1e∗
2 ) can be recovered, as θ = θ0+g (u0)δu with

the line vector g (u0) = darg(e1e∗2 )
du (u0).

Ultimately, the transfer function for the microwave phase is obtained as H(x) =
dθ̃/dδ̃φ= g r (x). With physical units, we have H( f ) = g r ( f / fR ).
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Figure IV.20: Computed transfer functions for the open-loop model.

The result for δ= 0, and typical experimental values m = 0.8, κ0 = 0.04 and τ= 4000

is shown on Fig. IV.20. Except for small oscillations, with an amplitude less than 3 dB,

and for spurious peaks at f > 0.15 fR , the transfer function is rather flat, from the

viewpoint of its contribution to the output phase noise. The resonances at higher offset

frequencies are not fully understood, and their amplitude and position seem to depend

on the parameters of the model. However, in an OEO configuration, they would in

any case be filtered by the microwave filter of the loop. Even more so, the relevant

offset frequencies for phase noise are usually less than 1 GHz, which corresponds to

the non-resonant region of the transfer function. This tells us that the input phase

noiseφ is transparently transferred on the output microwave phase θ by the frequency-

shifted feedback mechanism. This may not be necessarily true for other values of
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the parameters, but then the model can be used to compute the effect. We note that

this transfer function could also be measured experimentally using a vectorial network

analyzer, but this was left out of the scope of this work.

On-chip feedback

As shortening the feedback arm is a valuable option to suppress external cavity modes,

it is natural to consider placing it on the laser component itself. While we saw in

Fig. III.26 that a very short feedback is not necessarily the best choice, feedback

integration is nevertheless an interesting option when it comes to robustness and

reproducibility of the setup.

Such experiments have already been done by P. Primiani and colleagues from

III-V Lab, using the next generation of dual-DFB components. These PIC include

a lot more features than only two DFB lasers. Indeed, the 4.4 mm×700µm wafer

includes, besides the two lasers, multiple semiconductor amplifiers (SOA), two electro-

absorption modulators (EAM), and two uni-travelling carrier (UTC) photodiodes [van

Dijk14]. These components are intended to be used as high-power and large band-

width heterodyne transmitters. However, a preliminary experiment to use these

components in a hybrid OEO configuration, similar to what we presented before. We

report here the principle on Fig. IV.21 and their main results that are also described

in [Primiani16].

7 m

OEO

Optical feedback

EAM input

RF filter
+30dB

single-sideband
optical output

UTC photodiodes

dual-DFB

Bias T
DC

Lf = 2.5mm

Figure IV.21: Very short feedback experiment, with integrated modulator.

One of the internal photodiode has been diverted from its usage, and was used

as a reflector. This creates a feedback into the lasers, with a total length roundtrip

length of 2.5 mm. This corresponds to a delay T ≈ 50ps, so that external cavity modes

are ν f ≈ 20GHz apart and only one is allowed to oscillate. The setup has been closed

with an OEO loop including a 7 m-long fiber as a delay element and a filter around

20 GHz. It successfully allow a self-stabilization of the beatnote, and the corresponding
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output spectrum and phase noise are shown in Fig. IV.22. At 10 kHz offset from the

carrier the phase noise level is −85 dBc/Hz and we notice a low level of −120 dBc/Hz at

1 MHz from carrier. These preliminary results are encouraging, as they show that the

FSF principle can be deployed on-chip, with no other frequency limitation than that

of the integrated modulator. With very few modification, an self-stabilized heterodyne

source at 40 GHz could be built.
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Figure IV.22: Spectrum and phase noise in the integrated exploratory experiment.
Results reproduced from colleagues [Primiani16].
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5 Perspectives

In this chapter, we showed a few proof-of-concept setups that allowed us to combine

our beatnote locking method with opto-electronic resonant loops. Indeed, using the

fact that frequency-shifted feedback allows to stabilize the beatnote on a reference

signal, we used an optical delay and an electronic filter to stabilize it on a delayed

version on itself, or equivalently, on a resonance peak of an optical resonator. This

creates a hybrid opto-electronic oscillator, which generates its microwave signal using

a heterodyne combination rather than with a modulator. Consequently, the optical

output signal contains mainly two optical frequencies, and can be used for single-

sideband modulation. This is an advantage as it exhibits a full modulation depth, and

is insensitive to chromatic dispersion when traveling in fibers.

We then showed that various modifications to this principle can be made, for

instance by using standard OEO techniques for enhancing the phase noise. On

that topic, several other improvements based on other OEO could be used, such as

dual-injected OEO, usage of high-quality factor, thermally stabilized microresonator

instead of fiber coils. Additionally, we showed that a more optimized frequency-

shifted feedback scheme (here, a shorter one) could help achieving better stability.

Good prospects of integration can also be made, as photonic integrated components

including modulating elements and feedback have already been made. Finally, using

the model from Chapter III, and adding complementary experimental measurements

of the transfer functions, we would have all the ingredients for a careful and precise

engineering of a injection-based heterodyne opto-electronic oscillator up to 100 GHz.
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CONCLUSIONS AND PERSPECTIVES

ALTHOUGH this work did venture in the quite different areas of dual-polarization

solid-state lasers and semiconductor lasers, the unifying thread has been the

quest for a nearly all-optical beatnote stabilization method. Indeed, the capability

to control precisely optical beatnotes is part of the current endeavor in microwave

photonics, that strives toward hybrid opto-electronic methods of very high quality

microwave signal generation and transportation over fibered networks. In this frame-

work, the current study focused on two cases, with the will to combine precise results

and in-depth investigation with the outlining of general behaviors. This was done in

the hope that the developed methods will be modified and adapted to practical cases

where they could prove their usefulness in potentially very different forms from the

models found in this work.

While hidden between the same term “frequency-shifted feedback”, the method

developed for the dual-polarization dual-frequency lasers of Chapter II shows many

differences compared to the one applied to the dual-DFB semiconductor component

from Chapter III. In the first case, the good theoretical and experimental knowledge of

the Nd:YAG dual-mode lasers allowed for fine measurement and control of the param-

eters. Furthermore, the low frequency difference and the fact that the two frequencies

are produced on orthogonal polarizations allowed to inject exactly one mode into the

other to provoke phase synchronization. The relative simplicity of the setup allowed

a very good agreement between the experimental study and the numerical model,

and comparisons between the two viewpoints allowed for interesting findings. One

of the main results is that there is a locking region of the parameters in which phase

synchronization happens, and the frequency difference can be externally controlled.

Furthermore, phase noise measurements show that in this case the stability of the

reference is well transposed on the beatnote.

Outside of this locking regions, bounded phase phenomenon are found, that allow

for a kind of frequency locking with phase oscillations. Also, chaotic dynamics are

frequent, and we have shown that the combination of bounded phase regimes and

chaos exist. In this unique kind of regime, frequency locking is strongly maintained,
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as seen on the phase noise measurements, but small chaotic oscillations of the phase

and amplitude of the beatnote are present. An interesting use case of such regimes

would be telemetric applications, with what is called chaotic detection. Such systems

use chaotic signals to achieve non-ambiguous cross-correlation between an emitted

and a reflected wave [Lin04b]. Here, we combine a chaotic regime with a very stable

RF-over-optical carrier, so it could be used as a source for a chaotic LIDAR-RADAR.

Preliminary work is in progress on this topic in the lab.

In this FSF setup, we have explored the influence of various parameters, most

notably the frequency detuning and injection strength, but also the potential time

delay in the feedback arm, the coupling between modes in the gain medium, and the

linewidth enhancement factor α. For the latter, whose presence was an unexpected

surprise along the road, we showed that our setup could be used to make a very

precise measurement of its value. Yet, the question of its physical origin remains,

and more investigation on this topic is needed. For instance, we planned a similar

measurement in other types of rare-earth doped materials, which we expect to unveil

interesting physics in solid-state active media. Similarly, some questions on the

coupling coefficientβ between the polarization modes remain to be answered, namely

its dependence on the pump polarization and beam geometry. These problems are

currently under study.

Finally, while this study for a low frequency beatnote in a table-top setup has few

direct applications, we saw recently that it may advantageously be applied to very

similar while much more convenient and versatile dual-frequency fiber lasers. This

topic is an important part of an ongoing PhD within the EOFIL project [Guionie18b].

Long-term perspectives include the possibility to transpose this technique to

multimode lasers, as mode-locked dual-polarization sources are currently meeting

a particular interest in spectroscopy applications [Thévenin12b; Link16]. We also

wonder how it could apply on spatially multimode lasers, such as ones using conical

refraction phenomenon [Abdolvand10].

The transposition to the semiconductor chip, with separated lasers, came in as a

more industry-driven case. Indeed, these unique components including two DFB had

been specifically designed for heterodyne microwave generation and data communi-

cation. They came with the constraint of combined outputs on a single polarization,

and their use case with the need of a beatnote in the tenth of GHz. It was quickly

discovered that frequency-shifted feedback could be very successfully applied to this

system as well, but the analysis of the outcome and synchronization conditions proved

to be much more complicated. Indeed, instead of a one-direction coupling between

the two modes, we now had a bidirectional and strongly delayed coupling between

the lasers, along with feedback for each of them. Each of these four interactions has
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a different strength, and comes with a dependency on the optical phases, that are not

controlled and drift in time. Yet, the rate equation models allowed us to replicate the

observed breaking of the locking range into bands, and most of the dynamical regimes.

Importantly, it also showed that the dependency on the uncontrolled feedback optical

phases could be lessened by reducing the amount of self-feedback for each laser.

Taking this into account, very good stability of the synchronization could be obtained.

From a laser dynamics point of view, it would be interesting to explore the insta-

bilities found in this system, notably because it is driven by a long delay. Indeed, such

large-delay systems are known to present very rich dynamics [Barland16; Yanchuk17].

Also, it is known that some instabilities can be used in microwave applications, such as

period-one-based microwave oscillation, signal regeneration, modulation bandwidth

enhancement, etc. so this area could be explored.

Going a step further into practical usage, we proposed in Chapter IV an architec-

ture derived of an opto-electronic oscillator (OEO) that relies on frequency-shifted

feedback instead of on a straight modulator for the generation and control of the

microwave phase. We showed that while keeping most of the advantages of the

OEO, this could be used to directly generate a nearly single-sideband microwave

signal over an optical carrier. Moreover, this system has good potentiality for direct

on-chip inclusion in photonic integrated components. Work in this direction is in

under progress, and a complete integration of the OEO, using a for instance ring

resonators as an integrated delay line is the next milestone. This could be achieved

thanks to an emerging technology combining silicium and InP wafers, developed at

III-V Lab [Primiani15]. Further design of hybrid OEOs will also benefit from our good

knowledge of the frequency-shifted feedback system.

To sum up in a sentence, we have explored the technique of frequency shifted

feedback in its various displays, and found it is quite robust and that it can be applied

in a vast panel of cases. Building on this ground, we hope that in a not too distant

future it can be modified, adapted, and transposed to other systems.
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ANNEXES

Eigenstates of a cavity with two quarter-wave plates

In this annex we will recall some results on the polarization eigenmodes for a laser

cavity containing (i) a phase anisotropy, (ii) two quarter-wave plates. For this, we

will resort on the standard Jones matrix formalism [Jones41] to describe the change

in polarization associated to optical elements.

Arbitrary phase anisotropy

 νy

νx

 M2
M1

pump

activemedium
phase

anisotropy

etalon

δφ

Figure A.1: Cavity including an arbitrary phase anisotropy δϕ.

We first consider a cavity of length L containing an arbitrary phase anisotropy δϕ,

as pictured on Fig. A.1. The anisotropic element can be described by the following

Jones matrix:

M =
(

eiδϕ/2 0

0 e−iδϕ/2

)
(IV.10)

We want to determine the polarization eigenstates of the cavity, i.e. the polar-

ization state of the field that remains unchanged after a round-trip in the cavity.

For a monochromatic wave of frequency ν, the corresponding matrix is simply M =
M1

2e2iπνL/c . Note that here we have ignored the changes of the field amplitude, and

more generally the effect of the active medium. The corresponding eigenmodes of
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the field are simply E+ =
(

1

0

)
and E− =

(
0

1

)
, and the associated eigenvalues are

λ± = 2πν±L/c ±δϕ. As one requires that λ± = 2kπ with k an integer. This gives us

the two main properties of such cavity, which are:

E+ ⊥ E− → the two polarization modes are orthogonal (IV.11a)

ν+−ν− = c

2L
× δϕ

2π
= FSR× δϕ

2π
(IV.11b)

Two quarter-wave plate

 νy

νx

 M2
M1

pump

activemedium 2 QWPs

etalon θ

Figure A.2: Cavity including two quarter-wave plates, with an angle θ between them.

Let us consider a cavity including two quarter-wave plates between two mirrors Ma

and Mb as in Fig. A.2 [Kastler70; Le Floch73]. There is an angle θ between the optical

axes of the two plates. We want to determine the polarization eigenstates of the cavity,

i.e. the polarization state of the field that remains unchanged after a round-trip in the

cavity. Starting from active medium (left mirror) and moving from left to right, the

Jones matrix of a cavity round-trip reads:

M = M1M2
2M1, (IV.12)

where M1 and M2 are the Jones matrices of the two QWPs. We can choose the optical

axis of the first one as the x-axis, so M1 =
(

eiφ/2 0

0 e−iφ/2

)
, with φ = π/2. In order to

write M2, we must apply a rotation of an angle θ:

M2 =
(

cosθ sinθ

−sinθ cosθ

)(
eiφ/2 0

0 e−iφ/2

)(
cosθ −sinθ

sinθ cosθ

)

=
(

1+ i (1−2sin2θ) −2i sinθcosθ

−2i sinθcosθ 1− i (1−2sin2θ)

)
,

(IV.13)

and then

M2
2 = 2i

(
1−2sin2θ −2sinθcosθ

−2sinθcosθ −(1−2sin2θ)

)
. (IV.14)
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We can now compute the Jones matrix of the cavity round-trip (IV.12):

M = M1M2
2M1 = 2i

(
1−2sin2θ 2i sinθcosθ

2i sinθcosθ 1−2sin2θ

)
, (IV.15)

We can compute the eigenvalues λ± of M by solving det(M−λ) = 0:

λ± = 1−2sin2θ±2i sinθcosθ = cos2θ± i sin2θ = e±i 2θ. (IV.16)

By solving Mv± =λ±v±, one has the polarization eigenvectors v±:

v± =
(

1

±1

)
(IV.17)

It is seen that, at point A, the field is linearly polarized, at ±45◦ with respect to the

optical axis of QWP1. A field propagating from left to right, having a polarization state

corresponding to v± at point A, acquires a circular polarization between the two QWPs,

and is again linearly polarized after the QWP2, at ±45◦ with respect to the optical axis

of QWP2. If the mirror M2 plays the role of the output coupler of the cavity, the output

field is linearly polarized and its polarization direction depends on the angle θ.

Between the QWPs, each mode features a slightly more complicated polarization.

Indeed, the two circularly polarized waves in each direction have an opposite rota-

tion. This stationary structure of helicoidal polarization is often referred as “twisted

modes” [Kastler70].

A monochromatic wave of frequency ν bouncing between the mirrors of the cavity

accumulates a phase ϕ= 2πν/c2L ±2θ. If one requires ϕ= 2πk with k an integer, one

gets the cavity eigenfrequencies ν±:

ν± = c

2L

(
k ± θ

π

)
(IV.18)

One can see from the previous equations that the cavity eigenstates have a fre-

quency splitting

ν+−ν− = c

2L

2θ

π
(IV.19)

In particular, this frequency difference can be tuned mechanically, by rotating one

of the quarter wave plates (usually one choses not to rotate the QWP close to the output

mirror, in order not to change the polarization state of the output field).
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B Estimation of α from gain asymmetry

The aim of this section is to examinate whether the low asymmetry of the Nd:YAG gain

curve is sufficient to explain the value α = 0.28 of the linewidth enhancement factor

measured in II.5c. Indeed, if we recall Section 1b, the linewidth enhancement factor is

defined as:

α≡−∂χr /∂N

∂χi /∂N
= 1

λ

∂n/∂N

∂G/∂N
(IV.20)

with ∂G
∂N = λσ(λ). As the electric susceptibility χ = χr + iχi is supposed to be

an analytical function, its real and imaginary parts are linked by the Kramers-Kronig

formula, so that:

∂χr

∂N
= 1

π

∫ ∞

−∞

∂χi

∂N
(k ′)× dk ′

k ′−k
(IV.21)

where k = 1/λ is the wave number. If the integral does not converge, we will take

the principal Cauchy value.

Thus, knowing the gain curve σ(λ), we can estime α for a given value of the lasing

wavelength λ.

α(λ) = 1

λσ(λ)
× 1

π

∫ ∞

−∞

k ′σ(k ′)dk ′

k ′−k
= 1

σ(λ)
× 1

π

∫ ∞

−∞

σ(λ′)dλ′

λ′−λ (IV.22)

We now have to compute the real part f1(λ) of an analytical function whose

imaginary part f2(λ) has a Lorentzian shape:

f2(λ) = 1

1+
(
λ−λ0
µ

)2 (IV.23)

We know that:

f1(λ) = 1

π

∫ ∞

−∞

1

1+
(
λ′−λ0
µ

)2 × dλ′

λ′−λ (IV.24)

We start by using the offset u =λ′−λ, and introduce ∆=λ−λ0.

f1(λ) = µ2

π

∫ ∞

−∞

1

µ2 + (u −∆)2
× du

u
(IV.25)
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This can be rewritten as:

f1(λ) = 1

π

µ2

∆2 +µ2

∫ ∞

−∞

1

u
+ 2∆−u

u2 −2∆u +∆2 +µ2
du (IV.26)

The first term
∫ ∞
−∞ du/u has a principal value of zero, as it is an odd function

integrated on a symmetric interval, and can be eliminated. For the second term, let

us defined the translation x = u −∆. Then:

f1(λ) = 1

π

µ2

∆2 +µ2

∫ ∞

−∞

∆−x

x2 +µ2
d x (IV.27)

Again, the term
∫ ∞
−∞ x/(x2 +µ2)d x has a principal value of zero, and there remains:

f1(λ) = 1

π

∆µ2

∆2 +µ2

∫ ∞

−∞

d x

x2 +µ2
= 1

π

∆µ2

∆2 +µ2
× π

µ
= ∆µ

∆2 +µ2
(IV.28)

Eventually:

f1(λ) = (λ−λ0)/µ

1+
(
λ′−λ0
µ

)2 = λ′−λ0

µ
× f2(λ) (IV.29)

We will now use the data on the gain of Nd:YAG, taken from the article [Kushida68],

and summarized in the following table:

Level R1 R2

Wavelength λ1 = 1064.5nm λ2 = 1064.1nm

FWHW µ1 = 0.238nm µ1 = 0.294nm

Intensity (cross-section) σ1 = 1.7×10−19 cm−2 σ2 = 8.0×10−19 cm−2
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On Fig. B.1, we plotted the gain curve for clarity, and the estimated value of α in

function of the lasing wavelength. If the laser operates on the maximum of the gain

curve, the value for the linewidth enhancement factor is α= 0.06. This does not agree

with the measured values in Chapter II, so that two hypothesis have to be considered.

Either the laser does not operate at the maximum of gain, or another mechanism is at

the root of the observed linewidth enhancement factor. It could go from subtle thermal

effects, to acoustic effects in the crystal, as suggested in [Fordell05]. More investigation

is needed to understand the origin of this non-zero Henry factor.
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Figure B.1: Estimation of α using a Kramers-Kronig method.
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C Coupling factor β for an non-isotropic pumping

Calculations for the coupling factorβbetween the different populations in a solid-state

laser have been already made in [Schwartz09], and they allow to estimate the coupling

in the case of a (111) or (100)-cut crystal, taking in account a slight ellipticity of the

dipole interaction. However, it relies on the assumption that the pumping is the same

for all populations. While this appears reasonable for the case of an unpolarized pump,

and maybe for a circular pump, this becomes questionable for a linearly or elliptically

polarized pump.

The population of active dipoles involved into the laser gain can be split into

three groups according to their orientation, so that each of them associated with

a polarization direction. The following calculations attempt to take in account a

different pumping rate for each of theses 3 populations Ni in the (111)-cut case, which

corresponds to our laser from Chapter II.

We define a 2 × 3 matrix C = ci j as the interaction matrix between each each

polarization of the field, and each population. At the first order, the dipole interaction

gives ci j = cos2( �x j ,ui ). Then, let the diagonal 3× 3 matrix W represent the different

pumping rates Wk associated with each polarization.

With these notations, Equations (5) and (6) from [Schwartz09], describing the

populations N and laser gain γ at equilibrium, become:

N = Wτc (1−CJ) with Ji = Ii /I s
i (IV.30a)

γ=σcCT N (IV.30b)

Here Ii is the intensity of the mode i , while I s
i is the corresponding saturated

intensity. σ is the cross-section of the interaction. The coupling coefficient C is defined

with respect to the small variation of intensity and gain around the equilibrium:

C =
∆Ix
∆γy

× ∆Iy

∆γx

∆Ix
∆γx

× ∆Iy

∆γy

(IV.31)
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If we study the small variations of Eqs. IV.30, we obtain

∆N = Wτc C∆J (IV.32a)

∆γ=σcCT∆N (IV.32b)

Thus, ∆γ=σcτc CT WC∆J where A =σcτc CT WC is a square matrix. This gives ∆J =
A−1∆γ.

The terms appearing in th expression of C can be written:

∆Ii
∆γ j

= I s
i
∆Ji
∆γ j

= I s
i

(A−1∆γ)i
∆γ j

= I s
i (A−1)i j car a priori, ∆γi

∆γk
= δi k .

If we define B = A−1, the coupling coefficient is:

C = B12B21

B11B22
(IV.33)

We can express the terms by computing A.

A =
[

W0c2
00 +W1c2

01 +W2c2
02 W0c00c10 +W1c01c11 +W2c02c12

W0c00c10 +W1c01c11 +W2c02c12 W0c2
10 +W1c2

11 +W2c2
12

]
(IV.34)

Then its inverse is straightforwardly:

B = 1

detA

[
W0c2

10 +W1c2
11 +W2c2

12 −W0c00c10 +W1c01c11 +W2c02c12

−W0c00c10 +W1c01c11 +W2c02c12 W0c2
00 +W1c2

01 +W2c2
02

]

(IV.35)

We obtain this expression of C in function of the pumping rates and the light-matter

interaction terms.

C = (W0c00c10 +W1c01c11 +W2c02c12)2

(
W0c2

00 +W1c2
01 +W2c2

02

)(
W0c2

10 +W1c2
11 +W2c2

12

) (IV.36)

We note that for the isotropic case Wk = 1, the expression from [Schwartz09] is

found again:

Cisotropic =
(c00c10 + c01c11 + c02c12)2

(
c2

00 + c2
01 + c2

02

)(
c2

10 + c2
11 + c2

12

) (IV.37)



C. COUPLING FACTOR β FOR AN NON-ISOTROPIC PUMPING 167

We will now choose a basis for the modes Ex = Ex ux et Ey = Ey uy in the cavity. As we

are in a (111)-cut crystal, the angle around the axis u1 +u2 +u3 is irrelevant. We follow

Eq. 9 from [Schwartz09], and choose the same x1 = 1p
2




1

−1

0


 and x2 = 1p

6




1

1

−2


. This

gives the following values for the interaction coefficients:

C =




(
1p
2

cosα+ 1p
6

sinα
)2 (

1p
6

cosα− 1p
2

sinα
)2

(
− 1p

2
cosα+ 1p

6
sinα

)2 (
1p
6

cosα+ 1p
2

sinα
)2

1
3 sinα2 1

3 cosα2


 (IV.38)

We now have to choose an expression for the pumping rates. We suppose that

the pump beam is centered, so that its polarization is orthogonal to the (111) axis, i.e.

parallel to x1.

We can reasonably choose Wk = cos2(àxθ,uk) where xθ = cosθx1 + sinθx2, θ being

the angle between Ex and the pump polarization.

We check that indeed
∑

k Wk = 1. Then,

Which finally leads to a complicated expression for C, which, contrary to the

symmetric case, depends on both α and θ, and not only on their difference. Some

curves are shown on Fig. C.1. We note that there are some symmetries C (
α+ π

4

) =
C (

π
4 −α)

, but also C(−α,θ) = C(α,−θ). As the dependency on α is maintained, the

angle between the axes of the crystal and the cavity field is relevant, and care should be

taken in the experiments. This preliminary study should be continued, for instance by

a proper comparison with more measurements, or by considering an elliptical pump

polarization.
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Figure C.1: Coupling coefficient for varying angle between the cavity and the linear
pump polarization axis.
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D Comparison of integrators for phase noise calculation

Numerical computation of the phase noise can be done from the rate equations

using different methods. First, an “analytical” phase noise could be obtained from

a linearization around the steady state. Alternatively, a “Langevin” approach can be

used, that consist in adding noise terms to the equations, and proceeding to their

time integration. Such equations are called stochastic differential equations (SDE),

and the different process for their integration has been the topic of a substantial

literature [Honeycutt92]. In our case, we compared four methods listed here. The

results, shown on Fig. D.1 seem to indicate that they all have similar outcome in our

case, so that the fastest one (precomputed noise) has been used.

• Milstein method. This technique is the only one that guarantees convergence,

as long as the step is kept low.

• Runge-Kutta, order 4, with same noise for all stages.

• Runge-Kutta, order 4, with different noise at each stage. A different value of the

noise terms was drawn at each substage of the RK method.

• Higher order method (RADAR5), with precomputed noise. Finally, our usual

integrator is used, with noise added as a precomputed time-dependent function

containing Gaussian noise with the desired bandwidth.



170 ANNEXES

102 103 104 105
106

140

120

100

80

60

40

RK4, different for all stages
Milstein σ

RK4, same for all stages
Precomputed noise (dt=0.1)

~10

Offset frequency (Hz)

P
h

as
e 

n
o

is
e 

(d
B

c/
H

z)

100                          1k                         10k                      100k                      1M

-40

-60

-80

-100

-120

-140

Figure D.1: Comparison of calculated phase noise for different SDE integration meth-
ods.
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E A Python wrapper for the DDE integrator RADAR5

Available solutions

The integration of delayed differential equations (DDE) has an extra level of complexity

compared to ordinary differential equations (ODE). Indeed, it is not sufficient to

integrate the evolution at given times. The integrator must also have a way to compute

past values at arbitrary times. Indeed, these values are needed to estimate the delayed

terms. Thus, at least an interpolation mechanism is needed, but more complex

schemes can also be developed.

The most common integrator appears to be the “dde23” included in Matlab. As

we use Python for numerical computations and treatments, and even though Python-

Matlab bridges exist, this would have been a cumbersome solution. The available

Python solution seem to be the following:

• PyDDE (https://github.com/hensing/PyDDE): only accepts Python functions

for right-hand side, so slow performances are to be expected.

• pydelay (http://pydelay.sourceforge.net/): has been considered, but as a

code generator, it involves lengthy compilation phases at runtime.

• jitcdde (https://github.com/neurophysik/jitcdde): looks promising, but

only appeared recently. It was not available at the beginning of this work.

We note that all these solvers are based on Bogacki-Shampine method [Shampine01].

Another integration method, based on collocation points and Radau nodes exist, and

is particularly well adapted to stiff problems. This is interesting, as we can expect

some stiffness in our models. The only implementation seem to be the FORTRAN

code RADAR5 [Guglielmi05], which can be found on http://www.unige.ch/~hairer/

software.html.

Features

A Python wrapper was written in C, in order to encapsulate the call to the main

integration routine, and the different user-provided callbacks it uses. Compared to

most other solutions, it was written with execution speed in mind. Thus, it can accept

as right-hand side callback either a Python function, but also compiled code, or C

code, which will be compiled internally using the tcc embedded compiler (https:

//bellard.org/tcc/).

Please note that all the capabilities of the FORTRAN code are not wrapped yet. Here

is what is currently available:

https://github.com/hensing/PyDDE
http://pydelay.sourceforge.net/
https://github.com/neurophysik/jitcdde
http://www.unige.ch/~hairer/software.html
http://www.unige.ch/~hairer/software.html
https://bellard.org/tcc/
https://bellard.org/tcc/
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• Integration of DDE specified by Python function or runtime-compiled C code.

• Constant or time-dependant initial conditions, with interpolation if needed.

• Constant, variable-dependant, or time-dependant delay.

Here is what is not implemented:

• User-specified Jacobian, and delay-components Jacobian.

• Implicit systems and mass matrix

• Advanced breakpoints detection

Installation

The code was published under the name radar5 version 0.1 on the official PyPi repos-

itory: https://pypi.org/project/radar5/. This makes easy installation possible

using the command “pip install radar5”.

On Windows, this will install binary packages, which have been compiled for

Python 2.7 and 3.6, in 32 and 64 bits declinations. Please note that they have been

built against a recent version of numpy. Updating your version of numpy can be

required if you run into the error “RuntimeError: module compiled against API

version 0xc but this version of numpy is 0x9”. If you have installed Python

using Anaconda, you can do this by running the “conda upgrade numpy” command.

If you have only used pip, run “pip install ��upgrade numpy”.

On Linux systems, no binary package are provided, but building is easy as long as

you have a FORTRAN compiler. It can be usually obtained under the name gfortran

on your package manager. Be careful if you have installed numpy by your own means

(probably through the system package manager). In that case it is strongly suggested

that you do not install a concurrent version through pip. This can be avoided using

the following command: “pip install ��no�-deps radar5”. This will build the

package against the systemwide version of numpy version.

Please note that this program has not been tested on OSX yet.

A very simple example can be run straight away to check if the installation went

well:

import radar5

radar5.test()

If you have matplotlib installed, a window with two oscillating curves should pop

up.

https://pypi.org/project/radar5/
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Title:

Keywords: laser dynamics, microwave photonics, injection-locking, synchronization
Abstract: The control of the frequency difference 
between two lasers is a cross-cutting challenge 
in many fields of photonics, either for the 
heterodyne generation of high-purity microwave 
beatnotes, or in metrology and telecom 
experiments. The comprehension of laser 
dynamics under various couplings has allowed to 
develop stabilization methods based on optical 
injection. In this work we study theoretically and 
experimentally a mechanism called frequency-
shifted feedback, which allows to precisely lock 
the frequency difference between two lasers.
  First, it is applied to a dual-frequency dual-
polarization solid-state Nd:YAG laser, in order to 
lock the phases of its two orthogonal polarization 
modes. A model of rate equations is used to 
precisely describe the experiment, and allows to 
highlight partial "bounded phase" 
synchronization regimes. Furthermore, we show 
that in some cases this synchronization can 
subsist even with chaotic oscillations of the 
intensity and phase. The behavior is studied for
varying values of the frequency detuning, 

injection rate, possible injection delay, and mode 
coupling in the active medium. We find that the a 
non-zero phase-amplitude coupling (linewidth 
enhancement factor) is needed in the model to 
account for experimental observation. This leads 
to the use of an ad-hoc technique to measure the 
low value of this usually neglected factor.
  We then turn to a custom semiconductor 
component embedding two DFB  lasers. In spite 
of a more complex coupling scheme and the 
large effective delays into play, phase locking of 
the two lasers is possible. Locking bands appear 
when the detuning changes, and this behavior 
can be replicated using a numerical model. This 
model also permit to determine working 
conditions minimizing the influence of 
uncontrolled  optical feedback phases.
  Finally, we demonstrate that this system can be 
integrated in a resonant loop not unlike an opto-
electronic oscillator (OEO), that outputs a self-
referenced, single sideband microwave signal 
over an optical carrier, with encouraging phase 
noise performances.

Titre :

Mots-clés : dynamique des lasers, photonique micro-onde, verrouillage par injection, synchronisation

Synchronization dynamics of dual-mode solid-state and semiconductor DFB lasers
under frequency-shifted feedback.Applications to microwave photonics.

Dynamiques de synchronisation de lasers bifréquence à état solide et DFB soumis à une 
réinjection décalée en fréquence.Applications en photonique micro-onde.

Résumé : Le contrôle de la différence de 
fréquence entre deux lasers est un défi 
transversal pour la photonique, que ce soit dans 
un but de génération hétérodyne d'un battement 
micro-onde de grande pureté, ou pour des 
expériences de métrologie ou télécom. 
L'avancée des connaissances sur la dynamique 
des lasers soumis à divers couplages a permis 
le développement de méthodes de stabilisation 
basées sur l'injection optique. Nous étudions ici 
théoriquement et expérimentalement un 
mécanisme de réinjection décalée en fréquence, 
qui permet de verrouiller la différence de 
fréquence entre deux lasers.
   Il est d'abord appliqué à un laser à état solide 
bi-polarisation bi-fréquence Nd:YAG afin de 
verrouiller en phase ses deux modes de 
polarisation orthogonaux. Un modèle type «rate 
equations» en bonne adéquation avec les 
expériences permet de mettre en lumière un 
certain nombre de régimes de synchronisation 
partielle dits de phase bornée. De plus, nous 
montrons que cet état peut subsister en 
présence d'oscillations chaotiques de l'intensité 

et de la phase. Le comportement est étudié pour 
différentes valeurs du désaccord de fréquence, 
du taux d'injection, du retard éventuel, et du 
couplage inter-modes. Enfin, la nécessité 
d'inclure un couplage phase-amplitude (facteur 
de Henry non-nul) dans le modèle a mené au 
développement d'une méthode pour mesurer ce 
coefficient habituellement négligé.
  Nous nous tournons ensuite vers un 
composant semiconducteur original contenant 
deux lasers DFB. Malgré une plus grande 
complexité du couplage et des retards effectifs 
importants, il reste possible de synchroniser en 
phase ces lasers. Des bandes d'accrochages 
liées au retard sont observées, et reproduites à 
l'aide d'un modèle numérique, qui permet aussi 
de déterminer les conditions minimisant 
l'influence de phases optiques non maîtrisées.
   Enfin, ce système peut être intégré dans une 
boucle résonante de type oscillateur opto-
électronique (OEO) produisant un signal micro-
onde auto-référencé à bande latérale unique sur 
porteuse optique, avec des bruits de phase 
encourageants.
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