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RESUME

Les nanoparticules (NPs) hybrides peuvent combiner les propriétés physiques uniques des
¢léments inorganiques pour des applications en imagerie et en thérapeutique avec la
biocompatibilité des structures organiques. Cependant, leur utilisation en médecine est encore
limitée par des risques potentiels de toxicité a long terme. Dans ce contexte, des NPs hybrides
ultrafines pouvant étre ¢liminées rapidement par la voie rénale apparaissent comme de bonnes
candidates pour la nanomédicine. La NP a base de silice contenant des chélates du gadolinium
appelée AGulX (Activation et Guidage de I’Irradiation par rayon-X) a été développée avec un
diameétre hydrodynamique de moins de 5 nm qui lui permet d’étre éliminée rapidement via
I’'urine apres injection intraveineuse. Cette NP s’est révélée étre une sonde efficace en
imagerie multimodale et un amplificateur local en radiothérapie pour le diagnostic et le
traitement du cancer. Elle est en train d’étre évaluée dans un essai clinique de phase I par
radiothérapie des métastases cérébrales (NANO-RAD, NCT02820454). Néanmoins, la
syntheése d’AGulX est un procédé multi-étapes qui est difficilement modulable.

Ce manuscrit rapporte, pour la premiere fois, le développement d’un protocole « one-pot »
direct pour des nanoparticules de silice ultrafines (USNP) contenant des chélateurs complexés
ou non a partir des précurseurs silanes chélatants moléculaires. Dans ce nouveau protocole, la
taille des particules et les types des métaux chélatés peuvent étre contrélés facilement.
Certaines des propriétés chimiques des USNP ont été clarifiées davantage pendant ce travail
exploratoire. Les particules élaborées ont ¢été caractérisées par différentes techniques
analytiques complémentaires. Ces nouvelles nanoparticules USNPs présentent des
caractéristiques similaires aux AGulX en terms de propriétes biologiques et de biodistribution.

Dans un second temps, un nouveau protocole de fonctionnalisation d’USNP par des
précurseurs silanes chélatants a ét¢ développé. Ces chélatants libres fonctionnalisés sur la
particule peuvent étre alors utilisés afin de complexer des radiométaux pour I’imagerie
bimodale. Enfin, d’autres stratégies de fonctionnalisation sont aussi décrites. La nouvelle
sonde (17VTh031) combinant un petit chélateur cyclique (NODA) et un fluorophore proche-
infrarouge tumeur ciblant (IR783) ainsi que le pyridinium quaternaire ont été greffés sur
I’AGuIX pour créer une nouvelle sonde en imagerie multimodale et cibler des tumeurs
chondrosarcomes respectivement.

Mots-clés : nanoparticule de silice ultrafine, cancer, sonde en imagerie multimodale,
radiosensibilisateur

i



ABSTRACT

Hybrid nanoparticles (NPs) can combine unique physical properties for imaging and
therapeutic applications of inorganic elements in bio-friendly organic structures. However,
their uses in medicine are limited by the potential risks of long-term toxicities. In this context,
ultrasmall renal clearable NPs appear as novel solutions. Silica based NP displaying
gadolinium chelates named AGulX (Activation and Guidance for Irradiation by X-ray) has
been developed to have hydrodynamic diameter less than 5 nm which allows rapid
elimination through urine after intravenous injection. This NP has been demonstrated as an
efficient multimodal imaging probe and a local enhancer for radiotherapy for cancer
diagnostics and treatment. It is now being evaluated in a phase I clinical trial by radiotherapy
of cerebral metastases (NANO-RAD NCT02820454). Nevertheless, the synthesis of AGulX
implies a multisteps process that can be further improved.

This manuscript shows, for the first time, the development of a straightforward one-pot
protocol for ultrasmall silica nanoparticles (USNP) containing complexed or non-complexed
chelators from molecular chelating silane precursors. In this new protocol, the size of particle
and types of metals can be easily tuned. The chemical properties of USNP have been further
clarified during this exploratory work. The produced particles have been characterized by
different complimentary analytical techniques. These new nanoparticles USNPs show similar
characteristics to AGulX in terms of biological properties and biodistribution.

Secondly, a new protocol of functionalization for USNP by chelating silane precursors has
been developed. These functionalized free chelators on the particle can be used then to
complex radiometals for bimodal imaging applications. Finally, other functionalization
strategies have also been described. New probe (17VTh031) combining small cyclic chelator
(NODA) and tumor targeting near-infrared fluorophore (IR783) as well as quaternary
pyridinium have been grafted on AGulX for creating new multimodal imaging probe and
targeting chondrosarcoma tumors respectively.

Keywords: ultrasmall silica nanoparticle, cancer, multimodal imaging probe, radiosensitizer
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General introduction

GENERAL INTRODUCTION

Nanoparticles (NPs) for medical applications are exciting research topics. They are objects in
the range of 1 nm — 1 um that have different physical, chemical or biological properties from
single, small molecules or bulk materials. Over the last three decades, some NPs have been
translated from laboratory researches to real clinical applications. Few have even successfully
reached the market, for example, DOXIL liposome.' Among different types of NPs that have
been studied, hybrid NPs containing both inorganic and organic materials are often of
particular interest. They allow exploiting unique physical properties of inorganic materials in
optics, magnetism, electronics etc. while avoiding the potential toxicity of these materials
towards biological objects thanks to biocompatibility and versatility of organic materials.>’
One of novel properties of hybrid NPs that recently attracted much attention is the
radiosensitizing (RS) effect.*” This is the ability of NPs containing heavy inorganic elements
to increase locally the dose of radiotherapy, one of main pillars of standard cancer treatment
along with surgery and chemotherapy.®® One of the most successful examples might be
hafnium oxide NPs (NBTXR3) which is now under clinical investiga‘[ion.l’9 This concept can
become the basis for a new generation of radiotherapy with higher specificity and efficacy.
Nevertheless, such NPs are still mainly introduced by local injection to the tumors.
Meanwhile, the intravenous administration of hybrid NPs into human body as a systemic
treatment is still challenging because they tend to be trapped inside critical organs and imply
potential long term toxicity. Researchers have shown that in order for the particles to fully
escape this phenomenon, they need to have an ultrasmall hydrodynamic diameter (Dy < 10
nm) without interaction with biomolecules to pass freely through renal membrane.'®™"> This
criterion opens a very new field of designing ultrasmall, renal clearable NPs.*'> This task is
not easy to achieve since very few methods and materials have been reported to give such
range of Dy (1 — 10 nm). For the last ten years, our team has developed a top-down method to
synthesize ultrasmall (3 — 5 nm) silica NPs, AGulX, containing gadolinium (Gd) chelates.
This NP has been demonstrated as a good sensitizing agent for radiotherapy and imaging
agent for multimodal imaging combining magnetic resonance imaging (MRI), radioimaging
or optical imaging. However, the synthesis of AGulX implies a complicated multi-step
process that does not allow free control over the particle composition. In this thesis, we
explored, for the first time, the feasibility of obtaining ultrasmall silica NPs containing free
chelators with one-pot bottom-up method. We have shown that a bulky chelating silane is a
key component for this type of synthesis. This method can be easily tuned to produce NPs
having different Dy from 3 to 14 nm which are able to chelate different metals at will after
being formed. Sophisticated analytical techniques such as small angle X-ray scattering
(SAXS), nuclear magnetic resonance (NMR), mass spectrometry (MS) etc. have also been
adapted to study the nanostructure of AGulX and/or new NPs. The possibility of achieving
intermediate NPs having only free chelators allowed unprecedented direct investigations by
NMR. New particle complexing Gd has been demonstrated as a good contrast agent for
magnetic resonance imaging (MRI) in in vivo colorectal cancer model. It appeared to maintain
favorable biodistribution profile of AGulX: sufficiently accumulate in the tumors, rapidly
escape liver entrapment and efficiently clear out of animal bodies through kidneys.. In the
second part of the thesis, different functionalization strategies have been performed on
AGulX to obtain additional properties. First, we have shown that by using chelating silane we
can easily functionalize AGulX with different chelators which are suitable for different metals.
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These functionalized NPs can be used as multimodal imaging agent combining MRI with
radioimaging by complexing different radionuclides. This possibility has been demonstrated
by functionalizing AGuIX with a NODAGA-silane in order to complex specifically **Cu for
positron emission tomography (PET). The new radiolabeled NP is being evaluated by both
MRI and PET for their biodistribution in biological cancer models. This method is easy to
perform without the need of any additional agents. The chelating silane is also much more
stable than classical bioconjugating agents which are often susceptible to hydrolysis over time.
Second, AGuIX has been functionalized with a bimodal agent containing NODAGA chelator
and a novel near infrared tumor targeting fluorophore (IR783 derivative) to produce a
trimodal imaging agent which can be visualized in both MRI, PET and optical imaging. Last
but not least, a new strategy for functionalizing quaternary pyridinium on AGulX has been
realized to target tissues rich in extracellular matrix such as cartilages or chondrosarcoma
tumors. In vitro and in vivo experiments are being conducted to evaluate the biodistribution of
the '''In labeled functionalized AGuIX by single photon emission tomography (SPECT) and
its RS property in chondrosarcoma tumor bearing mice. In conclusion, this thesis contributed
to the understanding of nanochemistry underlying ultrasmall silica NPs such as AGulX,
facilitate the future mass production and provide unprecedented structural information of the
particle. Our works also elaborate a high flexibility of AGulX for functionalizing different
modalities for cancer imaging and treatment. Especially, the possibility of using silanes for
functionalization is an original and direct strategy that can be further developed for other
types of ligands.
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Chapter 1. Ultrasmall hybrid (inorganic/organic) nanoparticles for
improving radiotherapy

1.1. Hybrid nanoparticles (NPs) in cancerology

1.1.1. Advantages of NPs over molecular agents

In the last two decades, the achievements in nanotechnology allow the fabrication and
characterization of a lot of nanostructures having the size in nanometric scale (10 m). They
are commonly referred as nanoparticles. These nanostructures become great research topics

for future medicine as they can offer several original advantages compared to molecular
1,16,

agents ’
- The ability to protect, deliver and release a large amount of active molecules to some

specific sites based on the chemical design of the nanoparticles;

- The possibility of combining different elements, such as active molecules, functionalized

groups or imaging probes, in only one object;

- The ability to target specifically the cancerous tumors thanks to the EPR effect “Enhanced
Permeability and Retention”, which is the tendency of nanoparticles to accumulate in the

. . 1
tumors rather than in normal tissues'’;

- The optical, thermal, magnetic and electronic properties of nanomaterials induced by their
nanometric sizes.

1.1.2. Special properties of hybrid NPs

NPs can be constructed from a wide variety of materials and have a wide range of size (Figure
1-1-A). Among different types of particles, hybrid NPs attract a lot of interests by combining
the properties of organic and inorganic materials. Organic materials are certainly important
for creating biocompatible interface and chemical versatility but it is the inorganic materials
in hybrid NPs which provide unique physical properties for biomedical applications. Some
typical examples can be pointed out below (Figure 1-1-B).

A). . T i B)

X-ray absorption r G 62 (%) \ Magnetic properties

Inorganic core - Metal ¢
biocompatible shell functionalized polymer

g

Block copolymer micelles

Nanocrystals
& ¥ Metal nanoparticles
“:..+* Polymer therapeutics

Dendrimers A
R Metal clilelales
. : sinhliiebs Optical properties
nm 10 nm 100 nm 1000 nm
Nanoscale

Figure 1-1. A) Different types of nanomedicines and their approximate ranges of sizes. Image taken from
www.britishsocietynanomedicine.org; B) Common hybrid nanostructures and their main physical properties.
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1.1.2.1. X-ray absorption

Elements with high Z numbers i.e. Au (Z=79), Pt (Z="78), Hf (Z=72), Gd (Z=64),1 (Z =
53), Ba (Z = 56), Bi (Z = 83) etc. are known for their high X-ray attenuation coefficients. This
is the basic rationale for their uses as sensitizers for radiotherapy or contrast agents in X-ray
computed tomography (CT).'*?

1.1.2.2. Magnetic property

Paramagnetic metals such as Gd or Mn can work as efficient positive contrast agents for
magnetic resonance imaging (MRI). On the other hand, iron oxide NPs under certain size are
found to have superparamagnetic property which can be exploited as negative contrast agents
for MRI, targeted drug carriers or heat source for magnetic hyperthermal therapy as a new
cancer treatment.”*

1.1.2.3. Optical property

Lanthanide metals i.e. Eu, Tb etc. are extensively studied as imaging probes thanks to their
persistent luminescence. Gold nanoclusters also have special luminescent property that could
be used for detecting them. Surface plasmon resonance induced on gold NPs after being
excited by laser is another interesting heat source for photothermal therapy. Semiconducting
NPs made from elements such as Cd, Se, Zn, S etc. (quantum dots) have persistent
fluorescence with different wavelengths depending on their sizes. Complexes of
macromolecules with metals such as Ru, Pd etc. have been investigated as photosensitizers for
photodynamic therapy in cancer treatment.>> 2’

1.1.2.4. Radioactivity

Another interesting property that inorganic materials can offer is radioactivity that is
extremely useful for both imaging and therapeutic purposes. In complement with common
organic compounds containing '°F, '*I, "*'T or ''C, inorganic elements provide more options
with different emitted particles meaning different energies and penetration lengths as well as
different half-lifes which are suitable for a wide range of applications (

Table 1-1). For example, ®*Ga, **Cu, *Zr, *™Tc, '''In, “’Ga are some typical radioisotopes for
radioimaging while *°Y, '"Lu and **’Ra are among mostly used radiopharmaceuticals for

. . 28,29
different diseases.”™
Table 1-1. Common radionuclides used in medicine.
Type of Main emitted . Percentage of o
chemistry Isotope particle Penetration length Emax (keV) emission (%) Tin Application
Organic c B+ (then ) No limit 385 99.8 20 min PET
3 B+ (then vy) No limit 250 97 1.83h PET
121 Y No limit 159 84 132h SPECT
11y B- Few mm 606 90 od SP Eﬂ; thifirapy
y No limit 364 82 ays thyro
diseases
Inorganic el B+ (then ) No limit 653 17.8 12.7h PET
185 21
Ga Y No limit 93 39 78 h SPECT
9 55
%Ga B+ (then ) No limit 1920 89 68 min PET
¥7r B+ (then vy) No limit 396 23 78.4h PET
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1.1.3. Some examples of hybrid NPs used for cancerology in clinics

Until now, some hybrid NPs have been approved for being used in clinics or being tested in
ongoing clinical trials (Table 1-2). Iron oxide nanoparticles (Fe,OyNPs) are the earliest
candidates that were translated to clinical uses. Ferristene and Ferumoxsil are approved as
oral contrast agents for imaging gastrointestinal tract. Ferumoxtran-10 (different phase III
clinical trials) and Sienna+ (approved in Europe, different phase III trials in the US are being
planned) are being developed as intravenous contrast agents for lymph node imaging in
cancer diagnoses. MFL AS1 is being tested in a phase II trial in Germany as intravenous agent
for hyperthermia therapy in glioblastoma. Gold nanoparticles (AuNPs) have also been
extensively studied. Two AuNPs are being investigated in clinical trials for cancer treatments.
CYT-6091 has completed phase I trial and is being planned for a phase II trial as a nanocarrier
of biopharmaceutics such as tumor necrosis factor a (TNFa) while Auroshell is being
investigated in different phase I and II studies as a hyperthermia agent for tumor destruction
by laser ablation. Hafnium oxide (HfO,NP) is another material that is under development for
clinical application. NBTXR3 or PEP503 is being studied as RS agent for radiotherapy in
several different phase I-II trials. Finally, silica represents another highly potential type of
NPs. Among them, C-dot silica NP is under investigation in a phase [ study as an
intraoperative imaging agent.

Table 1-2. Summary of hybrid NPs used in clinics or under clinical development

Type of NP Structure Brandname Mechanism of action Indication Status Ref.
10 — 20 nm iron Ferumoxtran- Lymph node imaging in Phase III: recruiting 0
Iron oxide oxide core with 10 Contrast agent prostate cancer NCT03223064
dextran coating (Combidex®) Or rectal and breast cancer NCT02751606
Lymph node imaging Europe: approved 313
Iron oxide core with Sienna+® Similar USA: investigational
dextran coating use only (FDA-
approved IDE)
12 nm iron oxide MFL AS1 Hyperthermia based on Recurrent glioblastoma Phase II: (MF1001) 34
core with Nanotherm® superparamagnetism multiforme DRKS00005476
aminosilane coating AS1 (magnetic ablation) (German Clinical Trial)
300 nm aggregate of AML121 Imaging of upper FDA approval 35,36
10 nm iron oxide q | gastrointestinal tract
crystals with siloxane Ferumoxsi Oral contrast agent Imaging of rectum and pelvic Phase I1I: completed
Ty . Gastromark® ’
coating organs
300 nm of iron oxide Ferri Imaging of gastrointestinal Approved in Sweden 3739
. erristene . . ‘
NPs coated with Oral contrast agent tract and pelvic organs Discontinued
. Abdoscan®
polystyrene resin
20 — 30 nm of iron Parenteral injection for FDA approval 40743
oxide NPs coated Ferumoxytol Carrier of supplemental chronic anemia in patients EMA approval
with polyglucose Feraheme®, P gp with chronic kidney disease
sorbitol Rienso® ©
carboxymethyl ether
30 nm Au core with Advanced solid tumors Phase I: completed 4446
Gold PEG-SH and TNF. CYT-6091 Delivery of Patients undergoing surgery NCT00356980
. (Aurimune®) cytotoxic agent TNFa for primary or metastatic NCT00436410
coating ) .
cancers Phase II: planning
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120 nm silica core

Hyperthermia based on

Refractory and/or Recurrent

Phase I-1I: completed

with 10 —20 nm gold Auroshell® surface plasmon resonance Tumors of the Head and Neck NCT908480.4.2
coating (laser ablation) MRUI/US guided laser therapy Phase [: recruiting
for prostate neoplasm NCT02680535
Soft tissue sarcoma Phase II-I1I: recruiting
NCT02379845
Head and neck cancer Phase I: recruiting
NCT01946867
Head and neck cancer in Phase I-1I: recruiting
Hafnium 50 nm HfO; crystals NBTXR3® Intrat_um_or_al or intra- combina_tion with cisplatin NCT0290148.3.
oxide . coated by PEP503® arter'lal inj E?C.tIOI'.l for Liver cancer Phase I-1I: recruiting
trimetaphosphate radiosensitization NCT02721056
Prostate Cancer Phase I-1I: recruiting
NCT02805894
Rectal cancer in combination Phase I-1I: recruiting
with 5-fluorouracil and NCT02465593
capecitabine
7 nm silica core Image-Guided Intraoperative Phase I: recruiting
contained Cy5.5 . . Sentinel Lymph Node NCT02106598
Silica functionalized by C-dot Blmgdal (PET/optlcal) Mapping in Head and Neck,
PEG silane and Imaging agent Melanoma, Breast and
cRGDY peptide Gynecologic Malignancies

7790

9,50-52

53-55

1.1.4. Current limitations and directions for development of hybrid NPs for cancerology
1.1.4.1. Biocompatibility requirement of hybrid NPs

There is clearly a gap between the number of publications in hybrid nanoparticle research and
the number of particles that are really transferred to clinical phase of development. This can
be easily understood as due to the concerns regarding to the potential toxicity of inorganic
materials which are not usually present in human body. Therefore, the first and foremost
criteria for translatable hybrid NPs must be their biocompatibility. That explains why only
NPs made from iron oxide, gold, hafnium oxide and silica are among the first to be accepted.
Iron is present abundantly in human body and its metabolism is guaranteed by different
mechanisms. Meanwhile, silica, gold and hafnium oxide are proven as inert and
biocompatible in different #2136 Otherwise, inorganic materials require a
biocompatible and stable coating. This can be achieved by the development of novel chelators
and surface chemistry. In in vitro tests, these solutions have proven to be efficient.
Nevertheless, in living animals, the difference in intravenous pharmacokinetics of

studies.

nanomaterials compared to molecular agents creates another barrier for using NPs in the
clinics.

1.1.4.2. Pharmacokinetic requirements of hybrid NPs

Intravenous injection appears to be the first ideal route to introduce a medicine in human body
since it allows systemic distribution and deep penetration to most of disease sites. However, it
also implies numerous potential interactions between medicines with biological species in
human body. Thus, thorough pharmacokinetic studies of intravenous medicine are usually
required to understand carefully their behaviors in in vivo and in patients before they can be
accepted.

It was demonstrated that the pharmacokinetic profiles of nanomaterials are quite different
from traditional small molecules. From the 1990s, during the development of very first
generation of nanomedicine i.e. liposomal and protein drug carriers such as Doxil or
Abraxane, researchers have started to realize the difference in pharmacokinetic behaviors of
NPs. Since then, more and more researches have been conducted to further explain the
interaction between nanomaterials and biological species in human body. Now, it is well
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known that most NPs are highly prone to be captured in liver, spleen, lung, lymph nodes or
bone marrows. These NPs will be excreted mainly through liver, then bile and then feces.
This situation implies two main disadvantages: 1) the risks of long-term toxicity and 2) the
interference with other diagnoses and treatments.>' %'

Long-term toxicity of NPs can appear when the coating layers lose their stability gradually.
This is firstly because of longer residence time of the particles in an organ. Secondly, particles
will have to go through the intracellular enzymatic degradation inside hepatocytes which can
possibly dissolves or fractures their biocompatible coatings or chelators and releases the toxic
metals such as Cd, Se in quantum dots; Gd, Mn in MRI nano contrast agents or other
lanthanides in luminescent NPs.

Hepatobiliary excretion also possibly affects the results of other biomedical tests or slows
down the re-administration of the next dose of NPs. This is because hepatic clearance is a
very slow process combining several complicated metabolic sub-processes.

To overcome this problem, it is necessary to design renally excretable NPs since renal
clearance seems to be the most efficient mechanism to quickly and completely eliminate NPs
from human body. Studies conducted on the physiology of kidney and renal clearance of
macromolecules show that glomerular basement membrane in the kidneys only allows
molecules under certain size to pass. Molecules with Dy < 6 nm might be filtered rapidly
without depending on their charges, while molecules with Dy > 8 nm have the tendency to
remain in the circulation. Finally, molecules with Dy in the range of 6 — 8 nm might also be
filtered, but their rates of filtration are dependent on their surface charges. Negative molecules
in this size range tend to stay longer compared to positive counterparts due to electrostatic
repulsion of glomerular basement membrane (Figure 1-2).°”>® This is recently confirmed in a
study carried out by Choi et al. They have shown that quantum dot particles having an
average in vivo hydrodynamic diameter (Dy) less than 6 nm can be quickly and effectively
eliminated via renal clearance.'® It is worth noting that the diameters of particles in these
studies can vary slightly depending on the methods and instruments that have been used to
measure them. Besides size threshold, opsonization of serum proteins on the surface of the
particles is also an important factor. NPs either too positively or too negatively charged can
induce severe serum proteins adsorption which would eventually make the physiological size
of the particles well above the threshold of the renal clearance and facilitate the subsequent
capture by mononuclear phagocytic system (MPS).*>*%

All of these studies point out the criteria to obtain renal clearable NPs: 1) they should be
ultrasmall (the limit of Dy can vary depending on each study but, as a rule of thumb, a Dy <
10 nm 1is usually accepted) and 2) they should be able to avoid serum protein adsorption. For
the latter, even though ultrasmall NPs have been demonstrated as having much less
interaction with serum proteins, appropriate coatings are still necessary. Researchers have
introduced different types of biocompatible coatings to prevent the opsonization. The two
strategies that provide most promising results are to coat NPs by very hydrophilic ligands or
zwitterionic ligands. The former has been mostly done by the introduction of medium size
polyethylene glycol (PEG) polymer chains to create an adsorbed water layer preventing
protein contacts (stealth effect). The zwitterionic coating has been realized by using amino
acids or a combination of positive and negative ligands to distribute charges homogenously on
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the surface of the particles. This surface design somehow also efficiently prevents the
opsonization.'*'**""* Zwitterionic coatings seem to even show more advantages compared to
PEGylated coatings since it does not increase significantly the size of the particles and the
viscosity of the colloidal solutions. Hence, it allows deeper and more homogeneous tissue
penetration.' >

On the other hand, ultrasmall nanoparticles (UNPs) seem to be better choices compared to
bigger counterparts for imaging applications. This is due to their fast accumulation in tumor
sites; deeper and more homogenous tissue penetration and rapid escape from non-targeted
tissues. All of these properties enable a faster imaging time point after the injection of probes
and higher signal-to-background ratio.”

In the next part, different examples of hybrid UNPs will be introduced. The focus will be on
NPs used to improve radiotherapy in cancer treatment.
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Figure 1-2. Schematic representation of renal clearance of ultrasmall NPs. Yellow spheres are NPs with Dy < 6 nm, green ones are
NPs with Dy in 6 — 8 nm and red ones are NPs with Dy; > 8 nm.?

1.2. Hybrid NPs for improving radiotherapy (RT)

1.2.1. Hybrid NPs as radiosensitizers
1.2.1.1. RT in cancerology

Cancer is one of the most challenging health problems in our time. It accounts for more than 8
million deaths, 14 million new cases globally in 2013 and enormous social and economic
burden for modern society. More importantly, the trend is still going up as predicted by many
reports.”> " Among different treatment options of cancer today, radiotherapy remains a
principal modality that is used in 50 — 60% of cancer patients as single treatment or most
often in combination with other treatments. Radiotherapy implies the use of ionizing
radiations to destroy the cancerous cells in the tumors. However, the irradiation can also
damage the normal tissues surrounding the tumors. In recent years, technological
advancement has been made in the design of instrumentations to improve beam shaping. The

10
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appearance of 3D conformal RT techniques such as intensity modulated RT (IMRT), image-
guided RT (IGRT), stereotactic RT (SRT) or robotic RT allow more and more precise dose
delivery. However, side effects still limits the therapeutic windows of RT.®*7° Two of latest
strategies that have been introduced to overcome the side effects include 1) using hadrons i.e.
protons, neutrons... or heavy ions e.g. carbon, helium... instead of conventional photons or 2)
using radiosensitizers to enhance locally the delivered dose within the tumors.*%""

In this context, ARGENT, which stands for Advanced Radiotherapy Generated by Exploiting
Nanoprocesses and Technologies, was initiated as a Marie Curie European project in 2014 to
coordinate international efforts in this two research directions (Figure 1-3).”* The study
carried out in this thesis is also part of this consortium. Our laboratory and other members of
ARGENT have designed different highly promising UNPs for this application which will be
discussed along with other NPs in the next sections.

Advanced Radiotherapy, Generated by Sclentlfic toplcs Investigated In ARGENT

Explmhng Nanoprocesses and Technologies
Nanoparticle enhanced

érgent radiotherapy Hadron therapy
_____________ "
g I
Official logo W M.\:\r .0 %W

High energy photons | 1%‘ 17’!«. l -Sé Heavy ions

X-ray, gamma ray H*, C%*, He?...
1 nanoparticles

(&

|
Cancer cells death
L

Group meeting in Paris 2015
Figure 1-3. Some information about FP7 ITN ARGENT Marie Curie project.

1.2.1.2. Principles of radiosensitization (RS) using heavy metals

Starting from the pioneering work of Hainfeld J.F. et al. and Sanche L. et al. using gold
nanoparticles,” many researches have reported the enhancement effect of metals with high Z
number in nanoparticle form for both conventional X-ray radiotherapy and hadron/heavy ions
therapy. The mechanism of action of these high-Z metal based nanomaterials is still not well
understood. However, there are at least three main explanations for physical, chemical and
biological aspects respectively. In physical point of view, the first attempt to explain the
radiosensitization effect of heavy metals focuses on their high attenuation coefficient for
ionizing irradiations compared to normal tissues. For example, Figure 1-4 shows the
attenuation coefficient for photons of gadolinium and water.”” Similar graphs can also be
found with other high-Z elements. This implies that more energy will be retained by heavy
metals after an irradiation compared to normal tissues that contain mainly water.

11
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Figure 1-4. Comparison of the photon mass attenuation coefficients of gadolinium and soft tissue. Data taken
from Hubbell and Seltzer.”

Afterwards, the energy will be released in different forms (Figure 1-5-A) in which the most
relevant for the enhancement of ionizing effect are Compton and Auger electrons due to their
ionizing power.’ Nevertheless, this disparity of total absorption can only be observed in the
range of few to hundreds keV of energy. So this fails to explain the RS effects of NPs
reported sometimes at MeV with clinical accelerators. Hence, Mc Mahon ef al. came up with
another model suggesting a super high local amplification of energy around the NPs created
by a cascade of Auger electrons started from the excited NPs (Figure 1-5-B). They reasoned
that the ultrasmall size of a NP might be a critical parameter because the very first Auger
electrons ejected from an ionizing event cannot travel further than tens of nanometers. Hence,
more Auger electrons will be released if the sizes of the particles are smaller.””’*"
Furthermore, some authors have also shown that a thick organic coating layer can also absorb

more these photoelectrons.?’
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Figure 1-5. A) Different events that can occur after the irradiation of high-Z material nanoparticles by X-ray.® B) Simulation of
average energy deposit in the vicinity of a 20 nm gold NP after a single ionising event by a 40 keV photon.*

In chemical point of view, the formation of reactive oxygen species (ROS) can also play a
very important role in killing effect of irradiation. Some studies have shown the significance
of this process to the RS efficiency of gadolinium based NPs.”*”” Meanwhile, in biological
point of view, the radiation induced bystander effect (RIBE) could be another explanation.

12
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This is the indirect effects of irradiation to different cellular signaling pathways which
somehow lead to cell death in even non-irradiated regions.”™” To certain extents, all of these
mechanisms may contribute to the observed RS effect of high-Z metal NPs.

1.2.1.3. Some promising hybrid nanosensitizers

Numerous NPs have been studied for RS property in the last couple of decades. The purpose
of this section will be only to introduce some of the most high-profile candidates in this field
which might be translated to clinical uses in a near future or have a game-changing potential.

1.2.1.3.1. Gold NPs

Owing to many exciting characteristics, gold NPs (AuNPs) always appear as one of the best
examples for RS applications. Obviously, Au has a very high Z number (Z = 79) which
guarantees a significant enhancement effect upon interacting with ionizing sources.
Furthermore, gold has high biocompatibility and AuNPs can be synthesized with the tunable
sizes from 2 — 200 nm as well as stably functionalized with a wide variety of commercially
available thiolated ligands.ZI’SO However, despite the fact that, most of in vitro and in vivo
researches on NP-enhanced radiotherapy were conducted using AuNPs, no clinical test has
been carried out or planned for this application.' But at least some AuNPs i.e. CYT-6091
(Aurimune) or AuroShell have proceeded to clinical trials as a drug nanocarrier or
hyperthermia agent respectively as we have seen previously (Table 1-2). This shows the high
potential of clinical translation for AuNPs.***' The main hindrance is still the possible toxicity
of AuNPs even though gold was shown to be an inert material. Indeed, some studies have
shown toxic behaviors of AuNPs depending on their physical size, coating and interaction
with biological objects in the bodies of humans or animals.”"** Nevertheless, some promising
ultrasmall AuNPs have shown encouraging results in in vivo studies. Roux S. et al. have
developed a series of ultrasmall AuNPs coated by chelators such as thiol derivatives of DTPA
or DOTA with average hydrodynamic size (Dy) around 6 — 8 nm. The layers of chelators
were used not only to stabilize AuNPs but also to complex with gadolinium or radioisotopes
later on for imaging purposes with MRI or radioimaging. These formulations showed quite
favorable renal clearance and significant enhancement of radiotherapy which promise their
potential use (Figure 1-6-A).>** Recently, Grellet S. e al. have used AuNP functionalized
with different types of sugars and PEG amine (Dy ~ 4 — 7 nm) produced by Midatech Pharma
(Oxford, UK) to show selective cytotoxicity and RS effects on a variety of cancer cell lines.*
In vivo experiments have not been done to show their biodistribution or therapeutic properties.
The researches conducted with these two above ultrasmall AuNPs were supported in the
framework of ARGENT project. In another study done by Xie J. et al., gold nanoclusters
coated by glutathione (GSH) were synthesized with a reported average Dy around 3 nm. This
formulation was shown to be quickly eliminated via mainly renal clearance and have a high
RS effect.*® Meanwhile, Liu J. et al. have synthesized a targeting-peptide functionalized gold
nanocluster with Dy ~ 3 nm to target specifically mitochondria in breast cancer cells MCF7
and demonstrate stronger RS effect compared to control-peptide functionalized cluster.”’” In
vivo studies have not been reported yet for this NP.
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Figure 1-6. Schematic representations of A) ultrasmall AuNP coated by
chelators* and B) Au nanocluster coated by targeting peptides.®’

L

1.2.1.3.2. Hafnium oxide NPs

One of the earliest players in the field of nanosensitizers is actually hafnium oxide (HfO,) NP.
This NP was developed and commercialized by Nanobiotix (Paris, France) under brandname
NBTXR3. This is a 50 nm NPs physically coated by trimetaphosphate and injected
intratumorally or intra-arterially (Figure 1-7). The strong point of this NP is its
biocompatibility, which has been demonstrated by a safe profile in preclinical and clinical
studies, and high RS efficiency. NBTXR3 is a rare case of metal-based NPs which is
proposed to clinical trials.”*® A series of clinical trials of NBTXR3 for different indications in
cancer treatment has been currently carried out (Table 1-2). Nevertheless, due to their
relatively big size, it is not intended to be used intravenously. The company is currently
developing an intravenous formulation of HfO, NP, NBTX-IV, in preclinical stage, but no
scientific publication has been released to update the progress.

D) Free radicals (ROS) generated
will be responsible for DNA
damage, leading to subsequent
celldeath

A) X-ray photon

with energy hv(X)

interacting withthe .4 ~ o

nanoparticle b Hafnium C) Multiple electrons will
- element travel in water medium within and

outside the cell and will lose their

Negatively R’ energy by interaction mainly with

functionalized hafnium water creating abundant

oxide nanoparticle .0\? ROS

B) Creation of electrons
and secondary photons
that will have lower energy
thanincidentphotons

Figure 1-7. Schematic representation of HfO, nanoparticle and the proposed radiosensitization mechanism.*'

1.2.1.3.3. Gadolinium NPs

Gadolinium (Gd) is another attractive element for radiosensitization application. The
advantage of Gd does not lie in its Z number (Z = 64), which is usually surpassed by other
elements, but in its paramagnetic property which is the most valuable for MRI. Indeed, with
seven unpaired electrons in their 4f orbitals, it is the most paramagnetic stable metal ion. In
addition, its symmetric S-state ensures a long electronic relaxation time.*” These features
make Gd a very good candidate to realize image-guided and theranostic strategies in cancer
treatment which imply the combination of personalized and/or online imaging/diagnostic right
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before or at the same time with the irradiation. Furthermore, the increasing use of MRI for
anatomical diagnosis and tumor mapping instead of ionizing X-ray CT scan points out the
relevance of this combination.””' Hence, many NPs have been designed to contain Gd in
chelated form, coated oxide, fluoride or carbonate forms or ionic form doped in other crystals.
These particles have been extensively analyzed in a recent review.”' However, the most
difficult aspect in the translation of Gd to clinical application is how to avoid the eventual
release of free Gd** which is known as an inducer of nephrogenic systemic fibrosis (NSF).”
Some authors coated gadolinium oxide (Gd;Os) ultrasmall core with a stable and

9093 Besides, numerous nanoplatforms have been used to graft Gd
94-96

biocompatible layer.
chelates on. Some structures have indeed ultrasmall hydrodynamic diameters (1 — 10 nm).
Many of these GANP have been studied for RS property. For example, Townley H.E. et al.
have shown that their 65 nm titania NPs which have been doped with rare earth metals
including Gd can improve the effect of radiotherapy in killing cancer cells (in vitro spheroids
model of hepatocellular carcinoma HepG2) and suppressing tumor growth (in vivo xenograft
model of lung adenocarcinoma A549).°" The team of Fukumori Y., meanwhile, has shown
that their 200 or 400 nm chitosan NPs incorporating Gd-DTPA complexes can enhance the
effect of neutron irradiation in suppressing BI6F10 melanoma tumors in mice model.”**"
Recently, Ghaemi B. et al. have demonstrated their ZnO NPs doped with Gd (or Eu) as a
theranostic agent for enhancing both MRI/CT contrast and X-ray irradiation. Their particles
have 9 nm diameter measured by electronic microscopy (TEM) but the Dy should
significantly exceed this value and no biodistribution or in vivo result has been shown.'” On
the other hand, almost no ultrasmall NP (Dy < 10 nm) of Gd has been demonstrated as
effective radiosensitizers. Recently, an interesting study has been reported by Yong Y. et al.
where they used polytungstate gadolinium nanoclusters (GdW () coated with bovine serum
albumin (BSA) (Figure 1-8) as a theranostic agent to improve the contrast of MRI/CT images
and the effect of photothermal and X-ray therapy. Dy of these clusters was reported to be
around 3.5 nm and renal excretion has been demonstrated with favorable biodistribution
results.'"! However, the reliability of DLS measurement remains under question since the Dy
of BSA alone normally is around 7 nm. Besides these candidates, ultrasmall silica gadolinium
platform, AGulX, developed in our laboratory is a highly promising NP for this application. It
will be described later in the next part of this chapter.

Figure 1-8. Schematic representation of GAW,,
nanocluster non-coated and coated with BSA'"

1.2.1.3.4. Bismuth NPs

One interesting element that should be mentioned is bismuth which is also the stable element
with highest atomic mass existing in periodic table. NPs containing Bi have been synthesized
and studied for enhancing radiotherapy by some groups. Algathami et al. has shown RS effect
of Bi;Os NP in in vitro. Song et al. has demonstrated the use of a core-shell NP

15



Chapter 1 — Ultrasmall hybrid nanoparticles for improving radiotherapy

. . .. . . . . . .. . 102.1
MnSe@Bi,Se; as radiosensitizer in in vivo experiment after intratumoral injection. 02,103

These studies showed great potential of Bi as sensitizer for radiotherapy. However, these NPs
were far bigger than the threshold of renal clearance. This would make their clinical
translation as a systemic intravenously injected nanomedicine difficult. Although Bi*" usually
shows much lower toxicity compared to other heavy metals, long exposure to this element can
still induce severe toxicity.'® Recently, Bi'* has been added to our ultrasmall silica platform
for an in vivo study using clinical MeV X-ray source. We will also look through this later in
this chapter.

1.2.1.3.5. Platinum NPs

Finally, the list of promising UNP for enhancing radiotherapy might extend to platinum NPs
(PtNPs). Due to an almost similar Z number as gold (Z = 78) and less well developed
synthesis and functionalization methods, platinum attracts very few attention. Recently,
Porcel et al. has shown that ultrasmall PtNP with diameter measured by TEM around 3 nm
can enhance the DNA double strand breaks caused by proton or C° ion beam.'®'%
Nevertheless, in vivo studies have not been conducted yet with this formulation. Recently, Liu
X. et al. have used a 30 nm NPs with Au core coated with Pt-PEGylated branches to enhance
the contrast in CT imaging and tumor suppression effect of photothermal and/or X-ray
radiotherapy. They hypothesized that the combination of two elements in a single NP can give
synergistic effects for these therapies. However, no equivalent single-element NP has been
tested to compare the effects.'”’

1.2.2. Hybrid NPs as MRI contrast probes
1.2.2.1. The role of medical imaging in cancerology and RT

Another prerequisite in the battle against cancer is to precisely localize the tumors. This is
extremely important and realized by modern medical imaging techniques. In fact, imaging has
coexisted with radiotherapy (RT) from the very beginning and now has been developed into a
so called image-guided radiotherapy (IGRT). This is nothing but the routine practices of
physicians to perform target delineation for treatment planning and treatment delivery for
real-time readjustment. The role of imaging becomes more and more important in
radiotherapy due to the widespread use of intensity modulated radiotherapy (IMRT) and
stereotactic body radiotherapy (SBRT) where highly precise treatment planning and delivery
need to be done to ensure steep dose gradients of IMRT or multiple-angle irradiation of SBRT
will not cause more harm than good.” Besides, imaging techniques would be definitely useful
tools to monitor the progress of treatment. Finally, the advancement in functional imaging
which allows the recognition of genetic biomarkers of tumors is fundamental for realizing the
concept of future personalized medicine.'™

1.2.2.2. Common imaging techniques and their molecular probes for cancerology

Currently, there are several imaging techniques that can be used for diagnosis in cancerology
including ultrasonography (US), X-ray computed tomography (CT), magnetic resonance
imaging (MRI), modern radioimaging (it is mainly comprised of single photon emission
computed tomography (SPECT) and positron emission tomography (PET)) and optical
imaging (OI).
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1.2.2.2.1. Ultrasonography

This technique is based on the difference between reflected signals of acoustic waves from
different tissues and their boundaries. This can be seen as the earliest imaging technique and it
is still widely used today in clinics. The advantages of US are high safety, no use of
electromagnetic radiation, low-cost operation, speed, well-established know-hows, quite high
spatial resolution (< 0.05 mm) and temporal resolution (< 10 ms). However, it implies several
limitations such as the use of handheld probe which means high operator dependency,
difficulty to perform whole-body scan and quantify, inability to detect disease sites behind
bone or air structures. Moreover, the resolution can be significantly reduced for the sake of
penetrability if low frequencies need to be used. Finally, the choice of contrast agents is
limited to micro-bubbles of air which remain mostly inside the blood circulation. US used to
be a common technique in cancerology in the past but it was replaced after the appearance of
X-ray CT scan in the 1970s.'*%°

1.2.2.2.2. X-ray computed tomography

X-ray CT scan uses ionizing X-ray to irradiate the tissues and record the difference in the X-
ray absorption of different tissues. The absorption coefficient depends mainly on Z number of
elements made up of tissues. Hence, the magnitude of signal increase in the order of air (Z~0)
< fatty tissues (Z~6) < normal tissues (Z~8) < bones (Z~15, 20). The advantages of CT
include relatively cheap price (compared to MRI), extremely high spatial and temporal
resolution (even relatively better than MRI), very high contrast for bone tissues, very fast
acquisition time which allows complete elimination of physiologic motion, decent contrast for
soft tissues if appropriate contrast agents are used and an ability to be used as quantification
tool in some cases. However, CT scan still has several drawbacks such as the use of ionizing
radiation, relatively low sensitivity which limits its applications in quantification and
biodistribution studies, the need for high doses of contrast agents and the potential toxicities
relating to contrast agents since they use heavy elements for this purpose. Nowadays, X-ray
CT is the most common technique used for treatment planning and delivery partly due to the
compatibility of the equipment used for CT scan and RT. Common contrast agents used in CT
are molecules with high-Z elements such as iodine or barium. Gold and other elements e.g.
bismuth are also attracting more attention recently.'®

1.2.2.2.3. Magnetic resonance imaging MRI Scanner Cutaway

From its discovery in the 1980s, MRI is
gaining more and more popularity in
hospitals. MRI shares the same physical
principle as NMR used by chemist to
elucidate chemical structures (Figure 1-9).
Patients were also placed in a giant magnet
like chemical samples in NMR. But this
magnet is equipped with a sophisticated
spatially encoded magnetic field gradient.
Most of the time, protons of water are the

Figure 1-9. Schematic representation of a MRI setup. Image taken
nuclei to be observed in MRI. Larmor from https://pancreaticcanceraction.org/

resonating frequency of proton depends on
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the magnetic field. So, by creating magnetic field gradient, protons at different positions in the
patient will resonate at different frequencies. By applying different exciting magnetic pulses
through the radiofrequency coil and record the radiofrequency energy emitted from protons at
different positions in the body when they relax to normal stage, MRI can give very
informative structural images in very different ways. Numerous of pulse sequences have been
developed for MRI to exploit subtle differences in proton density or proton relaxation times
relating to structural differences of tissues even if they are very close geometrically or
physiologically. First of all, this technique is widely considered as very safe since it uses only
low-frequency electromagnetic waves. It usually shows very good spatial resolution and
therefore is as suitable for anatomical imaging as CT. Moreover, it is ideal for imaging soft
tissues where CT scan can hardly detect any differences since X-ray attenuations are almost
the same. Most importantly, it can offer a great variety of contrast mechanisms based on
endogenous differences or the introduction of exogenous agents. Nevertheless, MRI has a
relatively longer acquisition time compared to CT. Therefore, it is not an ideal solution for
imaging regions with rapid physiological motions i.e. heart or lung. MRI also has a relatively
low sensitivity and complicated procedure for quantification. To overcome the weakness in
sensitivity, MRI images are often superimposed with images from other more sensitive
techniques especially radioimaging.'®°

Molecular contrast agents used in MRI are mostly comprised of Gd even if Mn complexes
have also been developed. Gd complexes are more widely used for clinical imaging because
Mn complexes in general have lower relaxivities and stability constants.'” """ There are at
least nine Gd complexes (and one Mn complex whose the production has already been
stopped) that have been approved for human uses. Gd*" and Mn®" are used as contrast agent
thanks to its paramagnetic property induced by 7 (Gd) or 5 (Mn) unpaired electrons in their 4f
(Gd) or 3d (Mn) orbitals and a slow electronic relaxation rate.''® Gd>" and Mn*" both have
very short magnetic longitudinal and transverse relaxation times. So while being in contact
with water molecules, they will speed up the relaxation process of protons in surrounding
medium during MRI measurements. In this way, they create zones of stronger signals
appearing as white spots in T1-weighted MR images. Table 1-3 shows the characteristics of
nine commercialized Gd complexes in which the structure of four most common ones are
shown in Figure 1-10. As discussed previously, one of the most difficult tasks in developing
Gd contrast agents is to prevent the side effect (NSF) associated to free Gd*" ions. Hence, the
stability of these complexes in vivo has to be very high and the clearance needs to be as quick
as possible. To fulfil these criteria, not only their thermodynamic stability constants need to
be high but also the dissociation kinetics need to be extremely slow to allow enough time for
the clearance.''? That explains why even though the thermodynamic stability of Gd-DTPA
(pKa = 22.1) is not that much lower than Gd-DOTA (pKa = 25.6) or Gd-HP-DO3A (pKa =
23.8) and a bit higher than Gd-BT-DO3A (pKa = 21.8), so far the incidences of NSF were
only reported in patients who have used Gd complexes of DTPA and its derivatives. This is
due to an extremely slow dissociation kinetics of macrocyclic chelators such as DOTA
(dissociation half-life at pH 1, Ty, ~ 338 h) or DO3A (T ~ 3.9 h or 43 h) compared to
DTPA (T, < 5 s) (Table 1-3).7>!1%113
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Table 1-3. Characteristics of nine approved Gd chelates'

Linear Macrocyclic
lonic Nonionic lonic Nonionic
Acronym Trade Gd-DTPA Gd-BOPTA Gd-EOB-DTPA MS-325 Gd-DTPA-BMA  Gd-DTPA-BMEA Gd-DOTA Gd-HP-DO3A Gd-BT-DO3A
name Magnevist MultiHance Primovist/Eovist Vasovist/Ablavar Omniscan OptiMARK Dotarem ProHance Gadovist/Gadavist
Excess ligand® 0.1% 0% 0.5% 0.1% 5% 10% 0% 0.1% 0.1%
Osmolality 1960 1970 688 825 789 1110 1350 830 1603
(mQsm/kg H;0, 37°C)
Viscosity (mPa.s, 37°C) 29 53 12 2.1 1.4 20 20 13 50
L0g Kinerm® 221 226 235 221 16.9 16.6 256 238 218
L0g Keond® 17.7 18.4 18.7 18.9 14.9 15.0 193 17.1 14.7
Tod <55 <5s <55 <5s <5s <5s 338 h 39h 43h
Relaxivity (r1/r2, 1.5T)" 3.9-4.3/3.8-5.4 6.0-6.6/7.8-9.6 6.5-7.3/7.8-9.6 18.0-20.0/32.0-36.0 4.0-4.6/4.2-6.2 4.4-5.0/4.3-6.1 3.4-3.8/34-52 3.9-4.3/4.2-58 4.9-5.5/5.2-7.0
Relaxivity (r1/r2, 3T)® 3.5-3.9/4.3-6.1 5.2-5.8/10.0-12.0 5.9-6.510.0-12.0 9.4-10.4/56.0-64.0 3.8-4.2/4.7-6.5 4.2-4.8/5.0-6.8 3.3-3.7/40-58 3.5-3.9/4.8-6.6 4.7-5.3/6.2-8.0
Clearance Renal 96% renal 50% renal 79-94% (mean 84%) renal Renal Renal Renal Renal Renal
4% hepatic 50% hepatic ~5% hepatic

“Excess ligand in percentage of the molar concentration of the Gd contrast agent (at pH 7.4) (26).
PKinerm = Thermodynamic stability constant (10,27).

“Keend = Conditional stability constant (10,27).

“T,» = Dissociation half-life at pH 1.0 and 25°C (11).

“Values in L mmol~' s~' (plasma, 37°C) (28).

o _

o= e o o o"'i/ \_<o

o OH,
[DTPA(Gd*H)* [DOTA(Gd™)|
Magnevist, Bayer Schering Pharma Dotarem, Guerbet

[HP-DO3A(Gd*")] [BT-DO3A(Gd™)]
Prohance, Bracco Gadovist, Bayer Schering Pharma

Figure 1-10. Chemical structures of some most common Gd chelates.

1.2.2.2.4. Radioimaging

Two main methods in modern radioimaging are single photon emission computed
tomography (SPECT) and positron emission tomography (PET).

1.2.2.2.4.a. SPECT

SPECT requires the administration of a gamma particle emitting radionuclide inside the body.
These radioisotopes will emit gamma particles that will be detected by a gamma camera from
different angles. 3-D images will be reconstructed by tomographic algorithm just like X-ray
CT. One of its advantages over PET is the possible detection of different energies and so of
different isotopes allowing multiple tracers imaging. Among different modern imaging
modalities, it has the worst spatial resolution. Additionally, compared to PET, its sensitivity is
one order of magnitude lower.

Most commonly used radioisotopes in SPECT are *™Tc¢ (t;, ~ 6 h), "''In (t;,, ~ 2.8 day) or
21 (ty» ~ 13 h). The two formers are metals and can be stably complexed in a chelate.
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1.2.2.2.4.b. PET

PET is based on the use of positron emitting radionuclides. While traveling in the body, these
radioisotopes will emit positron particles which
will be almost immediately annihilated by an
electron nearby to emit two opposite gamma
particles at a precise energy of 511 keV (Figure "y

1-11). The photons will be detected similarly Q—’?‘Elcct(on
with gamma cameras. Since the two
coincidental photons will arrive at almost the
same time to the opposite detectors, algorithms PET scan detector
can be applied to remove random noises. The
collimator is not needed which means less
photons will be wasted in PET. These properties
explain its higher sensitivity compared to
SPECT. In addition, the fact that two photons
created from an event of annihilation separate

oppositely allows a more precise localization  Figure 1-11. Schematic representation of PET mechanism.
Image taken from ref [114].

and therefore increases the resolution of PET
compared to SPECT.

Most commonly used radioisotopes in PET are '*F (t;, ~ 110 min), **Cu (t;» ~ 13 h), ®*Ga
(ty2 ~ 68 min) or ¥7r (ti2 ~ 78 h). The three latter are metals and can be stably complexed in
a chelate.

The advantages of both SPECT and PET are their much higher sensitivity and highly
quantitative results compared to CT or MRI and deeper penetration compared to optical
imaging. Since they have high sensitivity, they can be used to couple with biomarkers to
detect molecular activities and give extremely useful biological and genetic information about
the tumors. These characteristics are brought into thanks to the use of radioisotopes and the
gamma particles that they emit. However, the use of radioactive materials is also a
disadvantage not only because of safety concerns but also due to the scarce availability and
short shelf-lives of radiomaterials. The cost of operation is also very high for using these
techniques especially in the case of PET. Finally, the resolution of these techniques is

generally poor and they require complementary information from images of CT or MRIL'®

20,28,108,114

1.2.2.2.5. Optical imaging

Optical imaging is another major technique which is increasingly used but most often in
preclinical researches. This technique exploits the use of a fluorophore as a probe like the use
of a radioisotope in radioimaging. Its strengths are excellent sensitivities and relative stability
(much higher than radioisotopes) of fluorescence probes, the ease of use, the possibility for
semi-quantification applications and multiple fluorophores for different targets in the same
object as well as the suitability for microscopic studies. However, the clinical use of OI is still
very limited due to the high absorption, autofluorescence and diffusive scattering of biological
tissues. Even though the fluorophores might be chosen to be excited and emit at the
physiological window from 650 to 900 nm to avoid as much as possible the absorption of
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5 these artifacts are still

normal tissues and other biological components such as hemoglobin,
pronounced. These problems also lead to a poor penetrability which limits OI as a technique
to detect superficial lesions (< 2 mm from the surface) or requires the use of an optical fiber
for endoscopy. As radioimaging, OI generally gives a poor resolution and needs
complimentary information from CT or MRI for anatomical construction of the object.
Because of these advantages and limitations, OI is rather more useful for studies in small

animals.'®"

1.2.2.2.6. Multimodal imaging

Since each technique has its own advantages and drawbacks (Table 1-4), the combination of
complementary techniques, which is the so called multimodal imaging, to achieve both high
resolution and sensitivity is an active research field. More and more commercial apparatus
have been designed to allow CT-SPECT, MRI-SPECT, CT-PET or MRI-PET imaging
protocols (Figure 1-12).**'% Similarly, demand for multimodal imaging probes is also
increasing. This opens more opportunities for researchers working on nanoparticles which can
potentially combine different imaging probes in the same platform. A tremendous amount of
nanoparticles has been proposed in the literature. We will only focus on promising NPs used
in MRI and their combinations with other modalities. Furthermore, as shown previously, NPs
with high potential for clinical translation need to be totally biocompatible and renally
clearable meaning being either ultrasmall and/or completely degradable.
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Figure 1-12. Examples of multimodal imaging. A) T1-weighted MRI image (left) and ''C-methionine PET (right) of a p:iiient with

PET

brain tumor after resection. Image taken from ref [20]. B) CT/ *F-FDG-PET in a patient with a recent diagnosis of small cell lung
carcinoma. Image taken from ref [108].
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Table 1-4. Pros and cons of each imaging technique

Modalities Advantages Disadvantages
Ultrasonography Low cost Operator dependency
No ionizing radiation Difficult to do whole body scan
High spatial resolution Difficult to quantify
Fast acquisition Shadows close to bone or air structures
Limited contrast agents
Penetrability limited by resolution
X-ray CT Relatively low cost lonizing radiation
Very high spatial resolution Low sensitivity
Very fast acquisition High doses of contrast agents
Elimination of physiologic motions Toxicities of contrast agents
High contrast for bone tissues
Relatively quantifiable
MRI No ionizing radiation Relatively expensive
Very high spatial resolution Long acquisition time
Great variety of contrast mechanisms Low sensitivity
especially for different soft tissues Difficult to quantify
SPECT High sensitivity Ionizing radiation
High penetrability Low resolution
Highly quantifiable Availability of radioisotopes
Multiple probes High cost
PET Very high sensitivity Ionizing radiation
High penetrability Relatively low resolution
Highly quantifiable Availability of radioisotopes

Very high cost
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Optical imaging No ionizing radiation High background signals
Relatively low cost Poor penetrability
High sensitivity Poor resolution
Easy access Poorly implanted in clinic
Semi-quantifiable (Not widely used for deep organs or
Multiple probes tissues)

Suitable for microscopic study

1.2.2.3. Some promising hybrid MRI contrast nanoprobes
1.2.2.3.1. Gadolinium based NPs

As have been shown previously, GANPs can be designed in the form of oxides, fluorides,
carbonates, Gd-doped crystals or Gd** chelates and until now the chelates seem to show more
potential thanks to better toxicity profiles. Roux S. ef al. have grafted thiolated chelators on an
ultrasmall core of AuNP to obtain NPs with total Dy in the range of 6 — 8 nm intended for RS
applications. These NPs have been complexed with Gd or radioisotopes i.e. *Tc and '''In to
study their biodistribution in in vivo models using MRI or SPECT. The results show rapid
clearance through kidney which justifies further clinical translation of these NPs.**™ Besides,
some very promising GdNPs have been developed as imaging agents although they have not
been tested for radiosensitization property. Moriggi L. et al has synthesized a similar
structure with an ultrasmall Au core (~2-3 nm) covered by a layer of thiolated DTNP(Gd)
complexes (~1-2 nm). At first sight, this structure seems to fulfil the criteria and show high
relaxivities but more efforts need to be done to elucidate their behaviors in animal models.
Ferreira M. F. et al. continued this line of research and synthesize AuNP functionalized by
different type of thiolated Gd chelates. The Dy of these NPs were in the range of 4 — 6 nm
which fall very well in the range of renal clearable NPs. However, while AuNP functionalized
with monothiolated DOTA(Gd) showed a rapid renal clearance followed by MRI, the
radiolabeling biodistribution study carried out with AuNP functionalized with dithiolated
DOTA(Gd) showed a high uptake by liver. Though, further optimization needs to be done for
these formulations, the results were very promising for clinical translation. In another study,
Endres P. J. et al. have functionalized DOTA(Gd) on a titan dioxide (TiO,) UNP (~3-5 nm).
Although in vivo studies have not been conducted yet, this UNP seems to have a high
potential since TiO, is also considered as highly biocompatible.”® Micelle is another nano-
object which size can be controlled down to sub 5 nm. Gianolio E. ef al. have conjugated a
new chelator AAZTA with a lipophilic C17 chain which formed a self-assembly micelle
system with Dy ~ 6 nm. Due to its highly negative charge, it interacted with albumin and
induced a bigger hydrodynamic size Dy ~ 12 nm."'® With new knowledge about the ability of
preventing protein adsorption by neutral and zwitterionic coatings, we might hope to see more
optimizations conducted along this line of research. As have been shown in previous part,
polytungstate gadolinium nanoclusters synthesized by Yong Y. ef al. is also an interesting
contrast agent for both MRI and CT. Its potential has been demonstrated in in vitro and in
vivo models.'”" In another study, Zhou Z. et al. developed a gadolinium iron co-oxide NP
coated with zwitterionic dopamine sulfonate as a T1 contrast agent (Figure 1-13). The size of
such NP can be tuned from 3 to 5 nm. Although the relaxivity was not highly enhanced
(staying from 3 to 8 mM™.s™), clear contrasted images were still obtained. Renal clearance
was demonstrated to be more favorable than hepatobiliary clearance by some preliminary
qualitative tests. Zwitterionic coating was proven to be more effective than negative coating
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in preventing protein adsorption and eventually liver uptake.''” These results were very
promising for clinical translation but it would be expected to have more quantitative
biodistribution data and the evaluation of Gd®* leaking. The latter might be the major
hindrance for this type of NP. Among different GANPs investigated for MRI contrast
enhancement, ultrasmall silica NP, AGulX, is a very successful example. Further details
about this NP will be described later in this chapter.

Figure 1-13. Gadolinium iron co-oxide NP coated by zwitterionic dopamine
sulfonate (GAIO@ZDS). Image taken from ref[117].

1.2.2.3.2. Manganese based NPs

Manganese (Mn) is the second most studied element as positive contrast agent. The clinical
use of Mn salts is also plagued by its neurotoxicity and limited in oral form. Thus, intravenous
use of Mn also requires suitable chelators. The only one Mn complex that has been approved
so far is Mn-DPDP (Teslascan, GE Healthcare) which more favorably retains in the liver.'"” It
was withdrawn from US and European markets for commercial reasons. Ca®" salt of that
complex found application in preventing nerve damages in patients suffered from
chemotherapy and was commercialized under the name PledOx (Pledpharma). The compound
has completed phase II multicenter clinical trial in US and Europe (ClinicalTrials.gov
Identifier: NCTO01619423). In NP form, an exciting one has been developed and
commercialized as SpagoPix by Spago Nanomedical AB. Details of physicochemical
characterization were not revealed. However, it was described as having Dy ~ 5 nm, almost
neutral zeta potential and high relaxivity r; ~ 30 mM™.s".'"® We might hope to see more
preclinical and clinical data in the future for this NP.

1.2.2.3.3. Iron oxide based NPs

Besides Gd or Mn, iron oxide nanoparticles (IONPs) have also attracted much attention in the
last couple of decades. When IONPs obtain sizes below a critical size, they become one single
domain and their magnetic moments will be aligned with an applied magnetic field. They will
exhibit superparamagnetism. Their effect in MRI is to shorten mostly the transverse relaxation
time (T,) and to a lesser extent longitudinal relaxation time (T,;). Therefore, MRI images
performed with IONPs will give a dark spot at their locations. This is less desirable than T
contrast agents since the boundary of targets can be difficult to perceive. However this is still
valuable when images are taken in a bright background e.g. in an organ like liver. More
importantly, IONPs are appealing because of not only their magnetic property but also their
biocompatibility given that iron is present abundantly in human body and their metabolism in
liver and spleen is pretty quick.”*'"” That explains why a large number of IONP formulations
have been approved and commercialized (Table 1-2). However, most of them are still limited
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as gastrointestinal tract or liver targeted agents because of their big sizes. In addition, normal
IONPs can be retained in liver or spleen for a long period of time.'" Although, this might not
be lethal, the surplus level of iron could hamper the re-administration of NPs or the results of
other diagnostic tests. Some iron oxide NPs have been reported to have smaller Dy and so
more probably rapid clearance through kidney. Even though synthesizing ultrasmall renal
clearable iron oxide NPs seems to be an appealing strategy, different studies have reported
that IONP with diameter less than approximately 5 nm exhibits significant decrease in
magnetic moment and surface spin order which lead to higher r; but much lower r, As a
consequence, they are less efficient as a T, contrast agent. Many authors suggest using them
as T, contrast agent, unfortunately, their r; values are not really high in most of the cases. For
example, very small iron oxide NPs (VSOP) coated by citrate have been developed by
Pilgrimm H. with a claimed Dy ~ 7 - 8 nm."*® Not many physicochemical characterizations
have been revealed but preclinical and clinical studies show favorable results.'*''** However,
there were no full biodistribution data to evaluate the clearance pathway. As expected,
relaxivities of VSOP at 1.4 T in water were r; = 13.97 (mM'l.s'l) and rp/r; = 2.39. The same
values at 7 T in water were r; = 3.48 (mM™'.s™) and r,/r; = 9.82. These values made it difficult
to classify VSOP as positive or negative contrast agent. The authors have decided to test it as
a T; enhanced blood pool contrast agent in these studies. Similarly, Kim B.H. et al. have
synthesized extremely small iron oxide NPs (ESIONs) with diameter measured by TEM from
2 — 4 nm. The particles were capped with PEG-derivatized phosphine oxide to obtain aqueous
colloidal stability. Relaxivities at 3 T in water of ESION with diameter at 2.2 nm and 3 nm
and the ones of normal IONP with diameter at 12 nm were r; = 4.78, 4.77 and 2.37 (mM™.s™),
and rp/r; = 3.67, 6.12 and 24.8 respectively. ESION was also tested as a T; enhanced blood
pool contrast agent in rats.'** Zeng L. et al. have fabricated pure, zinc doped and nickel doped
IONPs at 4 nm, 4 nm and 5 nm (measured by TEM) repspectively. They had relaxivities at
0.5 T in water as r; = 5.99, 7.93 and 6.85 (mM".s™), and 1/r; = 15.5, 14.6 and 12.9
respectively. In vitro MRI experiment showed their efficiency to enhance the contrast of T-
weighted images.'”> Shen L. ef al. showed a facile one-pot synthesis of IONPs in diethylene
glycol. This method produced ultrasmall cores from 2 — 14 nm (measured by TEM) in the
presence of sodium citrate as reducing and capping agent. Relaxivities of particles at 1.9 nm,
3.1 nm and 4.2 nm at 7 T were r; = 1.41, 0.84 and 0.33 (mM".s™), and ro/r; = 2.0, 13.6 and
111.6 respectively. Particle with 3.1 nm core had a Dy ~ 8 nm that was stable in a wide range
of pH. The ones at 1.9 nm and 3.1 nm appeared to be promising T, contrast agents in vitro.'**
More in vivo and biodistribution data are expected to demonstrate the ability to be rapidly
cleared through kidney of these NPs.

Since the hepatobiliary clearance of IONPs is much faster and assured than other particles,
other researchers also investigated the combination of renal clearance and hepato clearance of
moderately small IONPs. This strategy seems to be more advantageous if a powerful T,
contrast agent is the goal to be obtained. For example, Bégin-Colin S. et al. have
functionalized a 10 nm IO core with different phosphonates ranging from linear
octaethylenglycol carboxylic acid (OEGCA) to dendrons of 1, 2 and 3 generations of OEGCA
to create at the end particles with Dy at around 15, 20, 20 and 30 nm respectively. The
dendronized particles seemed to have higher colloidal stability in solutions at high ionic
strengths. They also grafted a fluorophore (Alexa647) on these particles and evaluated their
bioelimination in mice after IV injection. IONP functionalized with linear phosphonates
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seemed to be cleared completely 4 h after injection whereas IONP functionalized with
dendrons of generation 1 and especially of generation 2 seems to persistently stay in kidneys,
liver and bladder 6 h after injection.'?’ In another study, similar IONPs functionalized with
biphosphonates of linear OEGCA or monophosphonates of dendrons of OEGCA at Dy = 14
and 16 nm respectively were grafted with Alexa647. They were intravenously injected to
mice bearing human hepatocarcinoma tumor (Huh-7-Luc). Rapid renal clearance was
observed with IONPs functionalized with bisphosphonates of linear OEGCA while renal
clearance and complementary hepatobiliary clearance were observed with IONPs
functionalized with monophosphonates of dendrons of OEGCA. Even though no tumor
accumulation was observed for both particles, this result represents a promising design of
intravenous clearable IONPs.'” Probably, the combinations of positively charged ligands
and/or active targeting ligands might improve the tumor uptake of these particles in future
studies.

1.2.3. Promising nanotheranostic agents for RT

An even more advanced idea of designing NP is to combine imaging and therapy in a single
platform which is so called theranostics. This is extremely useful in the case of radiotherapy
since the combination with imaging is indispensable. In this way, the distribution of
nanomedicine can really be monitored. In addition, this concept reduces the cost of
development of nanomedicine and the medication burden of cancer patients. Nevertheless, as
we have seen, the criterion of being renal clearable really narrows down the playing ground to
a couple of highly promising nanomedicine for this purpose. The first candidate can be AuNP
functionalized with Gd chelates of Roux’s team. This NP can be imaged by CT, MRI and
radioimaging as well as shows a remarkable RS effect. Second, GSH-coated AuNP of Xie’s
group can also be classified in the list as it works as a CT contrast agent and can enhance
radiotherapy. Polytungstate-Gd cluster of Zhao’s group is another candidate which improves
both MRI/CT contrast and photothermal/radiotherapy.

1.2.4. AGulX nanoparticle
1.2.4.1. Physicochemical properties of AGulX

As mentioned above, AGulX is a unique NP with many distinct properties suitable for
theranostic application. AGulX is an ultrasmall NP with a silica core whose surface is covered
by aminosilanes. Approximately half of surface aminosilanes were coupled with DOTAGA
and > 97% of these DOTAGA was complexed with Gd** (Figure 1-14).

AGulX has characteristics that fulfil the requirement of a potential nanomedicine (Table 1-5).
First of all, the basic components that made up this particle i.e. silanes and Gd chelates are
well accepted clinically. Silane has been intensively used as the core or the coating layer in
many types of nanocarriers for metals or other different active compounds due to many of its
favorable properties. Silane precursors and silica NPs are normally well tolerated in humans
and animals with high biocompatibility.'*’
developed in recent years to meet the demands in different fields i.e. electronics, adhesives,
medical devices, optics etc. and so a wide range of different functional groups might be
grafted on silica structures.”” In most of the cases, they are quite inert and do not interfere

with the interaction between external stimuli, e.g. irradiation, optical beams etc., and the
129

In addition, the chemistry of silanes was quite

active compounds/metals.
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Regarding its nanostructure, it has an ultrasmall Dy (3 — 5 nm) and a surface zeta potential (0
— 9 mV) balanced by two opposite functional groups i.e. [-NH3;]" ammoniums and [-
DOTA(GA )] chelates at physiological pH. These properties make AGuIX readily eliminated
through kidney while reducing the adsorption of blood proteins and so evade the capture of
mononuclear phagocytes system (MPS). The rapid renal excretion of AGulX was extensively
demonstrated in different in vivo studies carried out on both rodents and non-human
BLI2 Degpite its small size, it showed a sufficient retention in tumor by only relying

133-135 - . . :
Moreover, it can degrade in physiological
136

primates.
on passive targeting thanks to EPR effect.
condition by the hydrolysis of siloxane bonds to give smaller non-toxic silane fragments.

On the other hand, AGuIX can offer several imaging modalities as well as therapeutic effect
based on RS property.
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Figure 1-14. Schematic representation of AGulX nanoparticle with all potential modalities. Radioisotopes, fluorophores and biologics
are optionally added after the synthesis to obtain additional functionalities if necessary.

Table 1-5. Main characteristics of AGulX

Properties Method(s) Values
Dy (nm) DLS, NMR DOSY 3-5
. . 0-9
Zeta potential (mV) Zeta potentiometry (pH 7.4)
Gd : Si:N: C (% mass) Elemental analysis 14:10:26.5:74
Gd : A-D : A : T (molar ratio) 1.0:1.0:1.0:2.0
Molar mass (kDa) ESI-MS ~8-10
r (mM s
(37°C, 60 MHz) Relaxometry 13-14
1o/11 (37°C, 60 MHz) 13-14

*4-D: APTES-DOTAGA, A: APTES, T: TEOS

1.2.4.2. Imaging properties of AGulX

Firstly, the presence of DOTA(Gd®") on the surface makes AGulX a paramagnetic structure.
Moreover, nanometric size of AGulX enhance the longitudinal relaxivity of the system (r; ~
13— 14 mM™.s™) to 3 times higher compared to molecular DOTA(Gd®") (r; ~ 3.5 mM.s™) at
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1.4 T, 37°C. Second, thanks to the presence of amine groups, other functions such as different
fluorophores (Cyanine5.5, RhodamineB, and Fluorescein) or chelators (DOTA, NODAGA,
DFO) can be potentially grafted. With the latter, a wide variety of radioisotopes ('''In, ®*Ga,

97r) can also be complexed on AGuIX to offer different types of radioimaging (Figure
-14),131135.137-139

The multimodality of AGulX was exploited, first of all, to evaluate its biodistribution. Some
typical images are presented in Figure 1-15. Figure 1-15-A shows MRI images of a mouse
injected with AGuIX. Figure 1-15-B shows CT/SPECT images of a mouse injected with '''I
radiolabeled AGulX. Figure 1-15-C shows fluorescence images of a mouse injected with
rhodamine conjugated AGuIX."”” And, Figure 1-15-D shows MRI and CT/PET images of the
same mouse treated with AGuIX conjugated to NODAGA and labeled with ®*Ga."*® These
examples illustrate a wide variety of imaging modalities that can be introduced on AGulX.
They were used to demonstrate the favorable renal excretion pathway of AGulX since it was
clear that the signals from kidney, bladder and urine are always predominant compared to

n

other organs.
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Figure 1-15. Multimodal imaging to evaluate biodistribution of AGulX.
A) T1-weighted images of a slice including one kidney (K) and the bladder (B) of a mouse before and after iv injection of AGuIX.
B) In vivo SPECT/CT imaging of a mouse after iv injection of AGuIX radiolabeled with '"'In.
C) Fluorescence imaging of a mouse after iv injection of AGulX conjugated to cyanine5.5.
D) MRI image of (a) a non-treated mouse, (b-c) a treated mouse after iv injection of AGuIX@NODAGA-*Ga and CT/PET image (d) of
the treated mouse. Images taken from refs [137, 138].

More importantly, AGulX was a very effective multimodal agent for detecting tumors. Figure
1-16 shows some examples of what have been done with AGulX for this purpose. Figure
1-16-A shows MRI images taken in the brain of a rat bearing glioblastoma tumor. The clear
white region in right hemisphere was the location of the tumor visualized thanks to the
presence of AGulX. The signal reduced over time indicating the wash-out of AGulX but the
retention was still remarkable since the difference with normal tissue was still recognizable.'*
In another study (Figure 1-16-B, C), glioblastoma tumor was subcutaneously inoculated in
mice before NODAGA conjugated **Ga labeled AGuIX was injected. The location of tumor
was shown clearly in MRI and CT/PET images. The signals remain strong at least after 1h.
This allows a suitable window for carrying out subsequent radiotherapy if necessary.'*!
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Figure 1-16. Multimodal imaging to localize tumors using AGulX.
A) T2- and T1-weighted MR images of 9L-ESRF-bearing rats after iv injection of AGuIX.
B) T1-weighted magnetic resonance images and C) PET images of a U§7MG tumor-bearing after iv injection of
AGuUIX@NODAGA-68Ga. Images taken from refs [140, 141].

Besides these macroscopic techniques, fluorophore conjugated AGulX was indispensable for
microscopic observations. Figure 1-17 shows some typical examples of using fluorescence
microscopy for investigating AGulX. In Figure 1-17-A, RhodamineB-AGulIX was used to
assess the elimination of AGuIX in kidney tissues of mice."*' After 4h, the kidney’s cells were
surrounded by intensive signal from rhodamineB. However, after 2 weeks, almost no
fluorescence of rhodamineB could be detected anymore. This indicates an almost complete
elimination of AGulX through renal clearance. In Figure 1-17-B, Fluorescein-AGulX was
used to show the uptake of the particles by cancer cells.'*” The merged image shows that the
particles have been well taken into cytoplasm of the cells. These techniques allow precise
localization of the particles among microstructures inside tissues and cells.
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Figure 1-17. Microscopic images of AGulX grafted with fluorophores.
A) Two-photon microscopy of mice kidneys after a single injection of RhodamineB-AGulX (red).
B) Fluorescence image of B16F10 cells obtained by confocal microscopy 1 hour after the addition of
AGuIX-Fluorescein, the plasma membranes were labeled with Alexa Fluor 594 (a) at Aex/Aem =
499/520 nm (Fluorescein), (b) at Aex/Aem = 592/620 nm (Alexa Fluor) and (c) the merged image.

Images taken from refs [131,135].

1.2.4.3. Radiosensitizing property of AGulX

AGulIX is one of very rare Gd contained NPs that have been tested for RS property. Its effect
has been demonstrated in many studies. A list of in vitro experiments that have been
conducted is presented in Table 1-6. Briefly, AGulX has shown the RS effect to different
extent in cervical carcinoma (HELA) cells, head and neck carcinoma (SQ20B) cells,
glioblastoma (U-87MG@G), Chinese hamster ovary carcinoma (CHO), pancreatic normal cells
(Panc 1) and pancreatic adenocarcinoma cells (Capan-1) using different radiation sources

from preclinical to clinical X-ray, heavy ions beam (Cc*, Hez+) or gamma ray (60Co).

Table 1-6. Radiosensitizing effect of AGulX in in vitro experiments. DEF: dose enhancement factor, SER: sensitizing enhancement ratio,

SF: survival fraction, D**: dose corresponding to 50% cell survival, EF: enhancing factor.

Investigator Radiation energy Cell line [NP]/Incubation time Biological effect
220 kVp X-ray Cervical carcinoma (HELA) 5 il SEIE%GY::I 1534
Luchette M. et al.'* 05mM/ 1h SERue. = 1 8
. . . 4Gy = L.
6 MV Cervical carcinoma (HELA) DEF = 1.15
0.4mM/ 1h SFagy = 0.60 vs 0.72
o 143 Head and neck carcinoma SER;6y = 1.20
MiladiI. ez al™. 250kV (SQ20B) 0.6 mM/ 1h SFagy = 0.35 vs 0.72
SERZ(;y = 20
.3 mM/ 1h ERygy = 1.
Rodriguez L. et al. LET =33.6 KeV/um Head and neck carcinoma 0.3 mM/ SERzy 33
(unpublished data) (C™ (SQ20B) 0.6 mM/ 1h SERgy = 1.59
220 kVp Pancreatic normal cell 0.5mM/ 1h SER4Gy_: 1.41
DctappcA etal 144 (Panc 1) DEF = 1.46
) ’ 6 MV Pancreatic normal cell 0.5mM/ 1h SER4gy = 1.12
(Panc 1) DEF = 1.19
145 Pancreatic adenocarcinoma 0.43 g/l/15 min DEF = 1.36 (6 MV-FFF)
Detappe A. et al. 6 MV el DEF = 1.22 (6 MV)
Detappe A. et al.'* 6 MV Pancreatic adenocarcinoma 0.43 g/I/15 min DEF =1.37
(Capan-1)
LET = 13 KeV/um 1 mM / 6h D> (Gy) = 1.90 vs 2.33
76 (C* Chinese hamster ovary cell EF=18.5%
e e LET = 2.33 KeV/pm (CHO) D (Gy) = 2.19 vs 2.47
(He*) EF=113%
. 147 1.25 MeV y-ray . ) 0.5 mM / 6h SFogy =0.24 vs 0.31
Stefancikova L. et al. (GOCO) Glioblastoma (U-87 MG) SERsq, = 1.29
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148 1.25 MeV y-ray . : 1 mM/1 h SFigy = 0.55 vs. 0.81
1. (6°Co) Glioblastoma (U-87 MG) SFgy = 0.37 vs 0.42

Stefancikova L. et a

AGulX has been tested in several in vivo models. Only some studies will be presented here as
typical examples. Briefly speaking, AGulX has shown the RS effect in gliosarcoma brain
cancer models**'*’, non-small-cell lung cancer models'®, pancreatic adenocarcinoma
models'**'*® and melanoma brain metastases model.">> Among many types of cancers that
have been tested we will only present the results for brain cancer either in glioma primary
tumor or metastases form which is the first target of the group. This is one of the most
challenging cancers since it is very aggressive and the prognosis of this disease is usually very
poor while surgical resection is normally very difficult. In a recent study, our group has
shown that AGulIX can improve the survival time of mice bearing orthotopic melanoma brain
metastases after a 7 Gy X-ray irradiation compared to control group and irradiated alone

group (Figure 1-18-B). In this study, MRI was used to find the peak accumulation time of
AGuIX for irradiation planning (Figure 1-18-A)."*’

A) B) 100
\_ —Control
80 —7Gy
=10 mg + 7 Gy

60
40 _ll_—
20

0 I
10 12 14 16 18
Days after implantation

% Survival

baseline

Figure 1-18. In vivo radiosensitizing effect of AGuIX in melanoma brain metastases model.
A) T1 -weighted images of the brain of B16F10-bearing mouse after iv injection of AGulX.
B) Survival curve obtained for brain B16F10 metastases-bearing mice.

Images taken from ref [135].

In another study, AGulX has been shown to be effective in a rat glioblastoma model with
clinical 6 MV beam (Figure 1-19). Average tumor volume measured by MRI was smaller in
the case of irradiation after treated with AGulX indicating that the combination can actually
slow down the tumor growth more efficiently compared to irradiation alone.'*® These
promising results encourage the launching of on-going phase I clinical trial for the treatment
of brain metastases using AGulX along with whole brain radiation therapy (NANO-RAD;
ClinicalTrials.gov Identifier: NCT02820454).
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Figure 1-19. In vivo radiosensitizing effect of AGulX 'f
in glioblastoma model. x
A) Diagram of the imaging and radiotherapy experimental protocol 3
B) MR images of 9L-ESRF-bearing rats after iv injection of AGuIX. The <

anatomical views (T2-weighted images) allowed the localization of the D17
tumors. The T1-weighted images illustrated the tumor contrast
enhancement after the injection of AGulX.
C) Tumor volume measured at D10 and D17, just before each RT session
for non-irradiated animals, irradiated animals without particle and
irradiated animals after NPs’ injection.
Images taken from refs [140].

1.2.4.4. Active targeting strategies performed on AGulX

Besides relying only on EPR effect, AGulX has also been grafted with different targeting
ligands to improve their accumulation in disease sites. These ligands range from small organic
molecules to biologics i.e. peptides or antibodies (Figure 1-20). Morlieras J. et al. have used
quaternary pyridinium to enhance the affinity of AGuIX to proteoglycans abundant in
cartilages and chondrosarcoma tumors. This is highly relevant for clinical context since
chondrosarcoma is a very stubborn cancer form that is resistant to most of radiotherapy and
chemotherapy treatments. The functionalized particle has been shown to effectively
accumulate and retain in cartilage and chondrosarcoma tumor longer than the non-
functionalized one.”””"! She and colleagues also used quinoxaline derivative to target
melanin which is overexpressed in melanoma tumors.'>* Several peptides have also been
conjugated to AGulX to add more modalities. Morlieras J. et al. has also grafted cyclic form
of RGD peptide (cRGDfK) that is well known as having a high affinity to o,fs-integrins
overexpressed in a wide range of cancer cell lines. She has shown the effective targeting
'35 Dentamaro M. et al. has
used TLVSSL (E3) peptide which has a high affinity to phosphatidylserine externalized on
apoptotic cells. This peptide can be used to monitor the treatment efficiency by quantifying
the radiation-induced apoptosis.'>* Apart from cancerology, early detection of Alzheimer’s
disease is also a recent research topic in our group. Plissonneau M. et al. has shown in her
papers the ability to conjugate AGulX with LPFFD and KLVFF peptides, Pittsburgh
compound B or nanobody that have high affinity towards B-amyloid fibrils, one of the main
established causes of the Alzheimer’s disease.'”>"'>°

enhancement of functionalized NP in in vitro and in vivo models.
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Figure 1-20. Some targeting ligands that have been grafted on AGulX.

1.2.4.5. Technical difficulty in synthesizing ultrasmall silica NPs

We have seen many of valuable properties of AGulX NP. However, the synthesis of AGulX
is not straightforward because there are very few or almost no well-documented techniques
that allow the fabrication of such small-size silica NPs.

1.2.4.5.1. Classical synthesis methods in the literature

Silica nanoparticle (SNP) can be synthesized by conventional sol-gel method first described
by Stober et al. and later optimized by several authors where silane precursors were
hydrolyzed and condensed in a mixture of water/ethanol at certain ratio catalyzed by ammonia
or amino acids.””’ "% This method can be easily performed at large scale to obtain
homogenous particles with the diameter down to tens of nanometres. However, producing
homogenous silica NPs with Dy < 10 nm was still challenging.

Recently, Wiesner U. et al. modified Stober

method to synthesize ultrasmall silica NP with Nearlh
Dy ~ 7 nm (C dot). This SNP showed a high |
versatility since it can incorporate various
active components i.e. near infra-red dyes, '**I
radioisotope, anticancer drugs and targeting
peptides. It has obtained the approval from
FDA for a phase I clinical trial in human as an
intraoperative bimodal (PET/OI) probe for
lymph node metastases.’>>*!%160

<10nm

Recently, C’ Dots
they turned the whole synthesis into pigure 1-21. C dot ultrasmall SiNP. Image taken from ref [167].
completely water-based (C’ dot) (Figure 1-21).

17 They were able to tune the size of the final particles in the range of 4 — 8 nm. This
synthesis comprises at least 3 steps. First, it relies on the fast hydrolysis and slow
condensation in water of methyl orthosilicate, including fluorescent dyes conjugated
organosilane i.e. 3-mercaptopropyl trimethoxysilane (MPTMS) and network-forming silane
i.e. trimethoxy orthosilicate (TMOS) to form ultrasmall silica cores. Second, another layer of
polysiloxane is formed by the slower hydrolysis and condensation of tetraecthyl orthosilicate

(TEOS) to protect the dyes from the environment. Finally, the growth of the polysiloxane
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layer is terminated by methoxy(polyethyleneoxy)propyl-trimethoxysilane (PEG-silane, 0.5
kDa). This layer protects the coalescence between particles and prevents the adsorption of
protein when the particles are used in vivo.

Another method which allows synthesizing rather small (down to 10 nm) and more
homogenous silica NPs is inverse micro emulsion. This method requires using an emulsion
system comprising of oil and surfactants to create micro reactors for the hydrolysis and
condensation of silanes.'® Our lab has used this method to coat 5 nm gold cores to obtain
total 50 nm core-shell NPs.'®'"”" Recently, Wiesner U. et al. have filed a patent claiming the
synthesis of a mesoporous silica NP with average Dy less than 15 nm.'”" However, the effect
of oil and surfactants on other active components in the formula needs to be taken into
account. In addition, this implies a more complicated procedure of purification to remove
these reactants.

1.2.4.5.2. AGulX’s top-down synthesis

AGulIX was discovered accidentally in an experiment designed to reduce the coating
thickness of a more classical ultrasmall Gd,O3 core — silica shell structure (Gd>O35Si10y)
(Figure 1-22)."° The initial Gd,03SiOy ultrasmall NP surprisingly fragmented in water to
produce a highly colloidally stable ultrasmall structure with silica core on which
organosilanes containing amine groups and Gd chelates were exposed. This is how the final
structure of AGulX has been obtained.

> §
v
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mﬂh:; % 1%’3 NH @ . % H{ép
Chelation S ‘ N, & %“‘LE'LLL?VV
Fragmentation ’ W,J; S 51%%
Dol w88 e
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‘vm)_l" "L‘/V\NH,*
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Figure 1-22. Simplistic representation of the innovative fragmentation step during the top-down synthesis.

This top-down method for synthesizing AGulX is, even though highly innovative, still quite
time and material consuming. The construction of classical Gd,035S104 platform before the
fragmentation already requires tremendous efforts. The final product also requires a long
purification process to remove reagents and the organic solvent used in previous steps.
Besides, it implies the difficulty to change or add different metals post-synthetically.

1.3. The aims of my thesis

Therefore, the main aim of this thesis is to explore novel synthetic approach that can
overcome the above limitations. Such a method when being realized will allow not only
saving production cost of the product but also offering an unprecedented flexibility and
gaining substantial knowledge in the fundamental nanochemistry of AGulX particle. The fact
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that different metals can be easily added on the new particle would lead to many more
potential applications in diagnostic and therapeutic applications in cancerology. In the second
part of the thesis, different functionalization strategies have also been realized on AGulX for
different purposes. Firstly, chelating silanes have been synthesized and grafted on AGulX
through silane chemistry to introduce more free chelators for radioimaging. This strategy
presents an unusual but very effective way of functionalization on siloxane particles such as
AGulIX without compromising their nanostructures. Second, a multifunctional chelate
containing specific chelator for small ions and a tumor-targeting near-infrared (NIR)
fluorophore was grafted on AGulX to potentially give a trimodal targeting nanoprobe
combining MRI, radioimaging and optical imaging in a single platform. Finally, a new
strategy was realized to graft quaternary ammonium on AGulX for further in vivo
experiments demonstrating its active targeting and superior RS effect in chondrosarcoma. All
of these projects further strengthen our knowledge in molecular engineering of ultrasmall
nanoparticles such as AGulX.
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Chapter 2. The development of one-pot bottom up synthesis of ultrasmall
silica nanoparticles (USNP)

2.1. Synthesis and characterization of current USNP (AGulX)

Before going to the new synthesis protocol, it is necessary to briefly recapitulate in details
what have been done so far to synthesize and characterize AGulX NP. During my thesis, I
have participated to the development of different complementary characterization methods to
further clarify the structure of AGulX.

2.1.1. Current top-down synthesis of AGulX

As have been discussed previously, the current synthesis of AGulX is done via an original
top-down process. A more detailed scheme is presented in Figure 2-1. First, a small, 1 to 3 nm,
gadolinium oxide core was synthesized in diethylene glycol (DEG). This process is called
polyol method taking advantage of high viscosity and boiling temperature of DEG to produce
small oxide particles.'”” Then, this core was coated with a thin layer of polyorganosiloxane by
hydrolysis and condensation reaction of alkoxysilanes. Next, this layer was functionalized
with DOTAGA anhydride. After that, the nanoparticle was transferred to water for biological
application. Unexpectedly, this process dissolved the core and released Gd*" ions, which were
chelated gradually by DOTAGA. The polysiloxane coating layer which did not have an
internal support anymore collapsed and fragmented to form ultrasmall colloidally stable
nanoparticles. These nanostructures are what we called AGuIX.'**!*’

Q
GdCl; DEG TEOS
NaOH @ -—

Transfer to H,0

Figure 2-1. Scheme of top-down synthesis of AGuIlX

During the development of AGulX, many physico-chemical studies have been done to
characterize this ultrasmall NP. Table 2-1 summarizes the results obtained so far for AGulX
in different studies and the respective references.
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Table 2-1. Physico-chemical characterization of AGuIX

Properties Method(s) Results Reference(s)

Dy (nm) DLS 3-5 Quality control (QC) data
NMR DOSY 3-5 Truillet et al.”>'”

. . 0-9
Zeta potential (mV) Zeta potentiometry (pH 7.4) QC data
Retention time (min) HPLC (295 nm) 13 =15 (depends on column, QC data
solvent program)

Peak shape HPLC (295 nm) Symmetrical QC data

Purity (%) HPLC (295 nm) >90 % QC data

Gd:Si:N:C (% mass) Elemental analysis 14:12:27.1:7.5 QC data

Gd:A-D:A:T (Calculation) 10:1.0:1.0:3.0 ;

(molar ratio)

Gd content (pmol/mg) Elemental analysis 0.89 QC data

r(mM' s -

(37°C, 60 MHz) Relaxometry 13-14 QC data

/1 (37°C, 60 MHz) 13-14 QC data

Gd,O; remnants SQUID No Mignot et al 133174
EPRS No Mignot et al.'*>!7*

Gd,O; crystallinity TEM No Mignot et al. '

Complexation constant . 24.78 . 133,174
Potent i M tetal. >

(logPi10) . (logBi10 porarem = 25.58) e

Molar mass (kDa) ESI-MS 8.5and 9.7 Truillet et al.”"'™

Free DOTAGA Eu titration 1 Thomas et al.'”
Xylenol orange titration 1.5 Thomas et al.'”
HPLC with Cu* 2 Thomas et al.'™

. . DLS, Rel try, Le Duc, Marais, Truillet et
Degradation t, (min) HPLC (f[:ﬁ;()ome y 18-20 o '411.2215"132'l76rul o

*4-D: APTES-DOTAGA, A: APTES, T: TEOS

2.1.2. Characterization of the top-down mechanism

First, to prove the dissolution of the initial Gd,0; core, the final particle was carefully verified
by SQUID (superconducting quantum interference device), electron paramagnetic resonance
spectroscopy (EPRS) and transmission electron microsopy (TEM).

In SQUID, Neel temperature of AGulX (0.11 K) is comparable to the value of DOTA(Gd)
chelates (0.13 K) and significantly lower than the one of Gd,O3;@PEG NP (1.72 K) and bulk
Gd,0O3 (17-18 K). This showed the absence of magnetic interaction between Gd atoms. In

other word, Gd ions are well separated by the chelates.

In EPRS, typical X-band spectrum of Gd>* complex with clear signal at around 3200 G (0.32

T) was obtained instead of nearly zero signal of Gd,O; (Figure 2-2).'7
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Figure 2-2. EPRS spectra of Gd,0; (black), GAd-DOTA chelate (red) and
AGulIX (referred as SRP) (blue) at 2.4 mM in Gd.'™

EPR signal intensity (a. u.)

Meanwhile, in high resolution TEM, crystallinity pattern of Gd,O3; was no longer observed in
the sample of AGulX after DOTAGA was added (Figure 2-3).17
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Figure 2-3. DLS measurement (left) and high resolution TEM image (right)
of A) the core-shell particle before DOTAGA was added and B) the
fragmented particle after DOTAGA was added.'”

These results proved that Gd,O3; no longer remains but all chelated by DOTAGA during the
fragmentation. This is also important for safety reason since an uncoated Gd oxide core can
act as a reservoir to gradually release toxic free Gd*".

2.1.3. Characterization of the final product
2.1.3.1. Previous results

As we have seen before, some properties such as Dy, zeta potential, retention time in
chromatography, homogeneity and purity, elemental composition and relaxivity have been
regularly verified by DLS, zeta potentiometry, HPLC, elemental analysis and relaxometry for
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each produced batch as a part of quality control (QC) requirements. Average results have been
shown in Table 2-1.

Besides, some complementary characterizations have been done to further elucidate the
structure of this NP. For example, complexation constant of DOTAGA on AGulX towards
Gd*" was proven to be equivalent to the value of commercial DOTA (logBi1oacux) = 24.78 vs.
logBiiomora-Ga) = 25.58).133 This ensures the stability of the complex in in vivo condition.

Free DOTAGA on the particle has been determined by different assays (Eu titration, Xylenol
orange titration or HPLC probed with Cu®"). The results in all cases are from 1 to 2 % of total
amount of DOTAGA.

Diffusion ordered spectroscopy using nuclear magnetic resonance (NMR-DOSY) has been
carried out to not only confirm ultrasmall Dy (3 — 5 nm) of AGulX but also to show the
presence and integrity of organic groups on the particle (Figure 2-4).
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Figure 2-4. 1TH NMR-DOSY spectrum of AGulX in D,O at 30 g/l (diffusion
delay 100 ms, gradient pulse length 2.75 ms)'*

Molar mass of a single particle was measured by electrospray ionization mass spectrometry
(ESI-MS) and deconvoluted by a multiplicative correlation algorithm (MCA) to give a main
value around 8.5 kDa and another smaller population at 9.7 kDa (Figure 2-5).

Although these results show a quite extensive level of characterization for this NP, some
aspects still need to be clarified in the structure of AGulX. Therefore, we decided to conduct
some complementary studies using small angle X-ray scattering (SAXS), NMR-DOSY (data
processed by a more suitable software) and ESI-MS (using a more adapted apparatus).
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Figure 2-5. ESI-MS spectrum (left) and corresponding deconvoluted spectrum (right) of AGuIX.”

2.1.3.2. Complementary characterizations conducted during my thesis
2.1.3.2.1. Radius of gyration of AGulX by SAXS

As shown above, the size of AGulX has been determined by different techniques. However,
each of them presents some limitations.

Hydrodynamic diameter of the particle has been measured using DLS (photon correlation
spectroscopy) and NMR-DOSY. DLS showed values in the range of 3 — 5 nm which is very
close to the limit of detection for this method. NMR-DOSY, on the other hand, requires
replacing paramagnetic Gd*" with a diamagnetic equivalent (Lutetium or Yttrium).

Physical size of the particle could be determined by electron microscopy. However, the
contrast of the silica matrix of AGulX is not high enough to allow quantitative measurement.

Hence, we propose here to use SAXS to measure the radius of gyration (Ry) of AGuIX. R, is
defined as average of square distances from center-of-mass to every element in the object
weighted by the scattering length density which is proportional to the mass of the
corresponding element (Equation 2-1). This parameter is similar to the physical size measured
by electron microscopy. Given to the poor contrast obtained in our previous experiments with
electron microscopy techniques, SAXS can be considered as a good alternative.

Equation 2-1

Where
m;: mass of an element i
r;: distance from element I to the center-of-mass

Another minor strong point of SAXS is wider range of concentration of samples that can be
measured. In DLS, AGulX is normally diluted to a moderate concentration (~ 10 g/l) in order
to avoid high absorption and high viscosity of the sample. However, as shown in many
studies, polysiloxane backbone of AGulX might start to degrade at this concentration and

19 In SAXS, a synchrotron X-ray was used as the light source. Thus, even

give wrong results.
if the signal is reduced by the absorption at high concentration, there should be enough
scattering light for measuring. In addition, this method is not based on diffusion physics so

the result is independent on viscosity of the sample.
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2.1.3.2.1.a. Principle of SAXS

In SAXS, X-ray source irradiated a solution sample. Figure 2-6 briefly shows the principle of
SAXS. The incident light was collimated to be a monochromatic plane wave with wave vector
ko = 2m/A (A is the wavelength of the X-ray beam). Atoms in the objects interact with the
incident radiation and become secondary wave sources. The scattering light waves from them
interfere with each other to create different patterns on a detector. Each pattern represents the
resulting scattering wave vector k;. By applying a Fourier transform, data can be converted
from real space of laboratory coordinate (r) to reciprocal space of scattering vector q (or s,
depending on the annotation system) = k; — ko. The scattering intensity I will be in a function
of the scattering vector q. This function has different form depending on the structure of the
objects in the solution and their interactions. There are different mathematical models to
exploit this scattering function. The most often used is the Guinier’s approximation. At very
small g, I(q) is proportional to q” (Equation 2-2). This parabolic equation can be easily fitted
to give radius of gyration (R,). If we assume the particles are homogeneous spheres, then the
hydrodynamic diameter can be easily calculated from R, (Equation 2-3) 180182

1
I(q) =~ I(O)GXp(— § Réqz) Equation 2-2

Where

1(q): light intensity at wave vector q
1(0): incident light intensity

Rg: radius of gyration
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Figure 2-6. A) Schematic representation of the principle of SAXS; B) A real example of scattering patterns obtained on the detector.
Image taken from ref [181].

2.1.3.2.1.b. Results

The experiments were conducted at European Synchrotron Radiation Facility (ESRF) in
Grenoble under the main instruction of Dr. Guillaume Sudre and Prof. Laurent David
(Ingénierie des Matériaux Polymeres, UCBL I). Data were treated by Dr. Sudre G. using an
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in-house program compiled on IGOR Pro. The measurements for normal AGulX samples
synthesized in the laboratory and clinical AGulX samples synthesized in a GMP factory were
shown in Figure 2-7. The Guinier’s equation was nicely fitted with the real data. The Dy
values inferred from the radii of gyration of two batches were in accordance with the results
obtained directly from DLS. This result confirms the validity of DLS measurement.
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Samples Rg Dyear Duors)
AGulX (100mM) 1.36 3.51 3.06
Clinical AGuIX (50mM) 1.46 3.77 3.96

Figure 2-7. A) Real data obtained from normal AGulIX sample (left) and clinical AGulX sample (right) (blue
circles) and respective Guinier’s fits (red lines). B) Radiation of gyration (Ry) and hydrodynamic diameters
(Dy) calculated from R, or measured by DLS.

2.1.3.2.2. Hydrodynamic diameter and structure of AGulX by NMR and NMR-DOSY

The NMR-DOSY measurement carried out previously used a conventional Topspin
processing software which might not give a perfect result for samples with several species
having very different diffusion coefficients as AGulX. Therefore, it is necessary to redo the
experiment while using a more adapted software, NMRNotebook, developed by NMRTEC. '™
Furthermore, besides diffusion coefficient, more advanced structural information can also be
withdrawn from NMR spectra.

But as briefly mentioned above, this technique cannot be used directly on Gd contained
particles such as AGulX. Paramagnetic ions can hardly be studied in NMR since they can
shorten the relaxation times and so broaden the peaks in the spectrum.'®* Short relaxation time
will also disable the pulse sequence designed for DOSY measurement. Gd* is the most
paramagnetic ion in the periodic table, thus, the NMR spectrum of Gd>* containing species is
disastrous with almost only one huge peak of proton residue of solvent. Therefore, to
investigate the structure of AGulX using NMR, it is obligatory to replace Gd*>" by a
diamagnetic ion. In this thesis, we replaced Gd®" in the synthesis by diamagnetic metals such
as Lu’" or Y?* for NMR experiments. Lu is chosen since it is another member of lanthanide
group which is well known for similar chemical properties, while Y has the same atomic
radius (180 pm) as Gd and has very similar electronic configuration as well as chemical
property as lanthanides'®. For this particular experiment, we used Y* since the NP obtained
after the synthesis showed more similar physicochemical properties to AGulX NP.

2.1.3.2.2.a. Principle of NMR-DOSY

In 1965, Tanner J. E. and Stejskal E. O. introduced for the first time the use of NMR to
distinguish the diffusion coefficients of different molecules in a solution. This discovery
opened a new and important branch of NMR technique, diffusion ordered spectroscopy or
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DOSY.'"® Simplistically, in a DOSY experiment, pulsed field gradients (G) are applied along
the z-axis. Figure 2-8-A shows the pulse sequences normally designed for DOSY experiment.
The very first DOSY experiments employed pulsed field gradient (PFG) spin-echo sequence.
Nowadays, PFG stimulated-echo sequence is more commonly used. The latter enables longer
delay time for measuring macromolecules. Nevertheless, the basic principle remains the same.
Basically, the first gradient pulse (G;) will impose a spatially dependent phase on the
magnetization vectors. There will be another 180° pulse (PFG spin-echo) or two 90° pulses
(PFG stimulated-echo) which are applied before a second gradient pulse of equal duration and
magnitude is sent to refocus the magnetization vectors’ phase. However, during this process,
molecules in the solution will diffuse away and so the refocusing process will not be
completely efficient. Figure 2-8-B shows an example of two molecules (A, B) with two
different diffusion rates. They will “feel” different field strengths before the second gradient
pulse is applied. This leads to an attenuation in the obtained magnetic signal intensity and the
extent of the attenuation depends on the diffusion rate of each molecule. Tanner J. E. and
Stejskal E. O. discovered an exponential relation between the observed signal intensity,
gradient strength and diffusion coefficient of the molecule (Equation 2-4, Figure 2-8-C). So
by measuring the attenuated intensity at different gradient strength and fitting to this equation,

. . . . 187.1
we will be able to find out the diffusion coefficient.'®”!%
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Figure 2-8. Principle of NMR-DOSY. A) Pulse sequences for measuring molecular diffusion based on (a) the PFG spin-echo and (b)
the PFG stimulated-echo; B) A schematic representation of signal attenuation through molecular diffusion; C) Regression analysis
to obtain the diffusion coefficient by fitting of linear decay (In(I¢/I o) vs G?). Images taken from ref [187].

)
I = Ioexp [—]/20252 (A - 5) D] Equation 2-4

Where

I: signal intensity at a certain G

Iy: signal intensity in the absence of the gradient
v: magnetogyric ratio of the observed nuclei

G: gradient strength

d: gradient pulse duration

A: diffusion delay

D: diffusion coefficient

2.1.3.2.2.b. Treatment of DOSY data

So far, we are only able to achieve total diffusion coefficient curve of each chemical shift
which might be composed of different diffusion coefficients from different species. Another
complicated step is to make a deconvolution from this curve to find out how many species are
behind each chemical shift and what their respective diffusion coefficients are. The very first
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graphs were obtained using DOSY module integrated in conventional Topspin software
(Bruker, Germany). However, the results were not satisfactory with low resolution and
strange, unfinished shapes of the peaks (data not shown). The reason might be the incapability
of this software to solve the equation of a complex sample containing different species with
very different coefficients. Hence, we decided to use DOSY module of NMRNotebook
(NMRTEC, France) to treat the data due to its potential higher capacity to deal with complex
systems.183

2.1.3.2.2.c. Synthesis of diamagnetic ultrasmall silica yttrium nanoparticle USNP(Y)

The particle (Figure 2-9-A) was synthesized according to the top-down protocol of AGulX
with some modifications. First, YCl5.6H,O was used instead of GdCl;.6H,0O. Second, as the
solubility of YCl; in DEG is limited, a small amount of water was added to help dissolve YCl;.
The product was characterized by DLS, HPLC and elemental analysis (Table 2-2 and Figure
2-9-B, C). The HPLC program used for this NP will be repeated for other samples if nothing
is specified. The results suggest a highly similar structure to AGulX. The particles have an
average Dy = 5.2 nm with a homogeneous population revealed by HPLC chromatogram.
Elemental analysis indicates a very similar composition of USNP(Y) compared to AGulX
with an approximated molecular formula (TEOS);o(APTES)oo(APTES-DOTAGA); o(Y)o.9
assuming that APTES-DOTAGA, APTES and TEOS after condensed implies the molecular
structure as Si01,5(CH2)3NH—DOTAGA(2'), SiOl,s(CHz)gNH3+ and SiO, respectively.
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Figure 2-9. Characterization of USNP(Y). A) Schematic representation of USNP(Y); B) DLS diagram at 25 mM in Y; C)
Chromatograms at 295 nm of AGulX at 5 mM in Gd (dashed line) and USNP(Y) after purification diluted 4 times (solid line).
HPLC condition:

Injection volume: 20 pl

Column: Jupiter C4 column (150 mm x 4.60 mm, 5 um, 300 A, Phenomenex)

Flow rate: 1 ml/min

Detector: UV at 295 nm

Oven temperature: 30°C

Solventgradient: mixture of A: H2O/TFA (99.9:0.1) and B: Acetonitrile (ACN)/TFA (99.9:0.1)

1 —7 min: 1% B; 7 — 22 min: to 90% B; 22 — 29 min: 90% B; 29 — 30 min: to 1% B ; 30 —38 min: 1% B

Table 2-2. Characterization of USNP(Y)

Properties Method(s) Results
Dy (nm) DLS (25 mM) 52+14
NMR DOSY (60 mM) 43
Retention time (min) HPLC (295 nm) (vs. 14 Ol;r‘l'; ‘g;‘ AGuIX)
. 85.5%
Purity (%) HPLC (295 nm) (vs. 92.1% f0r° AGUIX)
Y :Si:N:C (% mass) Elemental analysis 74:14:273:7.6
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Y : A-D: A : T (molar ratio) (Calculation) 1.0:1.1:1.0:3.9
A/A-D (Calculation) 0.92
A/A-D 'HNMR 1.54
Y content (Lmol/mg) Elemental analysis 0.83

*4-D: APTES-DOTAGA, A: APTES, T: TEOS

2.1.3.2.2.d. NMR characterization of USNP(Y)

Measurements were performed by Ms. Baudouin A. and Mr. Fenet B., Common Center for
NMR, University Claude Bernard Lyon I. Experiments were carried out at 298 K, without
spinning, on a Bruker Avance IIl 500 MHz spectrometer (Bruker, Germany) equipped with 5
mm PABBI probe. For '"H NMR diffusion experiments, the standard ledbpgp2s sequences
were used. The diffusion delay d20 were set to 100 ms, and the bipolar pulses p30 were
adjusted to obtain a 95% attenuation at full strength, typically in the range of 2 to 4 ms. 64
points of 32 scans each were acquired in the diffusion dimension, with 5s relaxation delay
allowing full relaxation of protons, giving a total experiment time of 3 h..

Figure 2-10 shows the results of NMR characterization for USNP(Y). First, 'H spectrum has
been obtained (Figure 2-10-A). Due to faster relaxtion time induced by slower stumbling rate
of NPs, all proton peaks have been more or less widened. 2D correlation spectroscopies
including heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond
correlation (HMBC) between 'H and "°C nuclei were also performed. HSQC spectroscopy
shows the correlation between C and H directly bonded. A simple scheme is presented to
show an example of this type of correlation (Figure 2-10-C, top). Meanwhile, HMBC
spectroscopy shows the correlation between C and H indirectly bonded. Similarly, a simple
scheme (Figure 2-10-D, top) shows an example of HMBC correlation. The results from two
techniques show a strong direct correlation between 'H-">C couples at 0.63 — 8.9 ppm, 1.70 —
20.3 ppm and 2.93 — 41.7 ppm respectively and indirect correlations between them (Figure
2-10-C, D). Lehman S. E. et al. have shown that, in the structure of APTES, 'H peaks at
around 0.6, 1.7 and 2.9 ppm are from protons attached to the first, second and third carbon
calculated from the silicon atoms.'®® Furthermore, Brambilla R. ef al. have shown that Bc
peaks at around 9.4, 21.2 and 42.9 ppm are from those carbons respectively.'® Combining
these results, we can undoubtedly assign the peaks at 0.63, 1.70 and 2.93 in the 'H spectrum
of USNP(Y) for hydrogens that bind to the first, second and third carbon closest to silicon
atom of APTES and APTES-DOTAGA functions grafted on the particles. Fortunately, despite
its complicated spectrum, DOTAGA has no 'H peak at higher field than 1 ppm'*® where the
protons at carbon 1 (H1) can be found. The area of this peak is the sum of contributions from
2 protons of APTES and 2 protons of APTES-DOTAGA, whereas the total area of all of
peaks is the sum of 6 protons of APTES and 33 protons of APTES-DOTAGA (only non-
exchangeable protons were counted). Presumably, NP solution was free from other organic
impurities. Solving this two-variable linear equation system will give the ratio between the
amount of APTES over the amount of APTES-DOTAGA in the sample. In this case, the
result was 1.54, while the value deduced from elemental analysis was 0.92.
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Figure 2-10. NMR results of USNP(Y). A) 'H NMR spectrum, B) NMR-DOSY spectrum, C) HSQC 13C/1H spectrum (with
an illustration (on top) of an example of HSQC correlation, the arrow shows the carbon which is in direct correlation with the
example proton) and D) HMBC 13C/1H spectrum (with an illustration (on top) of an example of HMBC correlation, the arrow
shows the carbons which are in indirect correlation with the example proton) of USNP(Y) at 60 mM in Y.

Then, DOSY experiment has been conducted to obtain the diffusion coefficients (D) of
different species in the 'H spectrum (Figure 2-10-B). At least, three populations have been
identified with D as 83, 227 and 446 pm?/s respectively. Obviously, the species with lowest D
are the intact NPs, and the two others are smaller fragments issued from the hydrolysis of the
particles. The intact particles have spots with all chemical shifts of 'H spectrum indicating the
presence of both types of functional groups APTES (-(CH,);NH;") and APTES-DOTAGA (-
(CH,);sNH-DOTAGA®)). The lack of some spots in the chemical shift of protons on
DOTAGA in the smallest species (446 um?/s) implies fragments without DOTAGA. This
explains their smaller size compared to the other fragments (227 pm?/s). The deconvolution of
diffusion coefficient curves with several species is not an easy task so the results can hardly
be considered as a precise quantification method. If we assume the particles have spherical
shapes, Stokes-Einstein’s equation (Equation 2-5) can be applied to speculate the
hydrodynamic diameter of the main NP which was 4.3 nm. This result corresponds well with
Dy obtained by DLS. These are interesting methods that will be applied to other NMR-
friendly samples in the subsequent sections.
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_ kBT Equation 2-5
" 3nnD

Where

Dy hydrodynamic diameter
kg: Boltzmann constant

T: absolute temperature

n: viscosity

D: diffusion coefficient

2.1.3.2.3. Molar mass of AGulX by ESI-MS-QTOF

Even though, ESI-MS has been performed previously to estimate the molecular mass of
AGuIX"*'  this technique can still be further improved. In my studies, the experiments
were performed with micrOTOF-Q II from Bruker Daltonik, Germany. Compared to the
previous system, linear quadrupole ion trap mass spectrometer (LTQ, Thermo Fisher
Scientific, USA), this system offers a softer ionization condition and a wider range of value
up to 10000 Th (vs. 4000 Th in LTQ). The higher range of m/z also allows tuning to even
softer ionization condition without losing data in the high end of the spectrum. These
characteristics of the system leads to better preservation of the macrostructure of AGulX and
reflect better its molar mass. The measurements were performed with technical assistance of
Ms. Zerbino C.C. and Dr. Antoine. R., team Spectrobio, Institute of Light and Mater,
University Claude Bernard Lyon I.

2.1.3.2.3.a. Principle of ESI-QTOF

A micrOTOF-Q-II system consists of electrospray ionization source, ion transfer system,
quadrupole system and a time-of-flight (TOF) detector. As other ESI systems, sample solution
will be sprayed into a capillary on which a high electric tension is applied to create at the
other end of the capillary microdroplets of solution. These droplets are transferred to vacuum
chambers. Solvent will be evaporated gradually and the droplets shrink until their charge
densities become too high so that they will burst into smaller units. These events continue
until only gas-phase ions remain and fly through the quadrupole and collision cell. In our case,
only single MS was performed, so quadrupole will only work as an ion transmitter. In
collision cell, they can be broken down for fragmentation analysis (MS/MS). In our case,
fragmentation was rather minimized to preserve the integrity of the particle. Finally, the ions
are analyzed by a reflector TOF analyzer based on their differences in arrival time to a

detector which is proportional to their differences in m/z (Equation 2-6).'""'%?

t = s Equation 2-6
vielU
Where

t: arrival time to detector

s: travelling distance to detector
e: charge of an electron

U: applied voltage

m;: mass of ion i

z;: charge of ion i

2.1.3.2.3.b. Deconvolution algorithm

A typical m/z spectrum of a macromolecule generated by an ESI-MS system contains an
envelope of peaks due to the multiplicity of charge states. Therefore, it is obligatory to
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process the data through a deconvolution algorithm to extract a useful mass-only spectrum.
An in-house software was developed based on multiplicative correlation algorithm
(MCA)**"* to achieve this task. This approach is summarized in Equation 2-7.

Z1

I
— m/z Equation 2-7

]rms
Z=Zg

Where

I: calculated intensity in the deconvoluted spectrum
I, measured intensities in the original m/z spectrum
Z,: minimum charge state

z;: maximum charge state

I;mg: TOOt-mean-square of the measured intensities

2.1.3.2.3.c. Results

Figure 2-11-A shows the MS spectra of AGulX particles synthesized in GMP condition. The
black one was obtained by LTQ apparatus and the violet one was obtained by micrOTOF-Q II
apparatus. They are averaged from different spectra acquired in different ESI-MS conditions
to collect all charge states of this NP. As reported previously, this type of NP usually gives a
complex and unresolved spectrum due to the presence of multiple ionizable functional groups
i.e. carboxylic acids, amines, silanols."*” Despite this complex appearance, the position of the
peaks in the spectrum is quite stable, although the relative abundance of the different peaks is
found to be slightly dependent on the ESI-MS conditions.

As we expected, the spectrum obtained with micrOTOF-Q II seems to have lower resolution
but contains more species probably due to a softer ionization condition. The QTOF spectrum
seems also to contain fewer and lower peaks at the low end of the spectrum which correspond
to the small fragments of the particles. Nevertheless, the positions of the peak in both spectra
seem not to be significantly different from each other.

These spectra can be deconvoluted by using multiplicative correlation algorithm. The
deconvoluted spectrum was shown in Figure 2-11-B. They give at least five broad peaks at
around 6.2 kDa, 7.6 kDa, 8.9 kDa, 10.2 kDa and 11.5 kDa for spectrum from micrOTOFQ-II
and six peaks at around 6.2 kDa, 7.0 kDa, 7.8 kDa, 8.5 kDa, 9.9 kDA and 11.0 kDa for
spectrum from LTQ. It is worth to mention that these results were obtained if the charge states
of the species were supposed to be from +4 to +8.
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Figure 2-11. A) Mass spectra of AGulX obtained with LTQ apparatus (black) and micrOTOF-Q II (violet)
and B) Deconvoluted spectra from raw spectra obtained with LTQ (red) and micrOTOF-Q II (blue).
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2.1.4. The equilibrium between degradation and reconstruction
2.1.4.1. Degradability of AGulX

In previous studies, it was clearly shown that AGulX can degrade in aqueous solution in
different conditions due to the hydrolysis of the siloxane network.?”'*!7® The half-life of the
degradation was once determined by DLS or relaxometry at 2.5 mM in Gd, pH 7.4, 37°C in
simulated physiological salt solution or bovine serum as around 18 — 20 minutes.'* Although,
this value can vary according to each synthesis batch however in all studies some common
factors such as concentration and pH have been pointed out to affect its degradation. For
example, Marais A. has used relaxometry to follow the longitudinal relaxivity (r) of AGulX
in pH 7 at different concentration from 50 mM to 0.5 mM in Gd (Figure 2-12-A).""® As
mentioned previously, the r; of Gd chelates increases when they are grafted on a
nanostructure such as AGuIX’s polysiloxane core.”” Hence, a decrease of r; signifies the
detachment of Gd chelates through the dissociation of siloxane bonds in the matrix. In other
words, the decrease of r; reflects the degradation of the particles. From the results, a clear
dependence of degradation on concentration was marked. Over time, r; of all samples reduce
but to different extents depending on the concentration of the sample. Moreover, after
sometime, 1; value of each sample seems to obtain a plateau without further reducing. This
implies the existence of a thermodynamic equilibrium between the free degraded silanes and
grafted silanes on the particles. The amount of silanes remain grafted seems to be in direct
proportion to the total concentration of silanes.

Recently, I have used NMR-DOSY to measure size distribution of yttrium equivalent of
AGulIX (USNP(Y)) in aqueous solutions at different concentration 60 mM, 24 mM and 6 mM
(Figure 2-12-C). The solutions were diluted from a stocksolution at 100 mM and left at room
temperature overnight to obtain equilibria before measurement. As we have discussed above,
DOSY measurement gives the distribution of diffusion coefficients (D) over chemical shift of
protons. A lower D indicates a slower stumbling rate or a bigger hydrodynamic diameter of an
object. As it can be seen from the results, there are at least three populations with different D
in each sample. On the right side of the graphs, we have a spectrum reflecting the mean
abundance of signal from certain diffusion coefficients over the whole range of chemical shift.
When concentration decreases, the population with lower D (~83 pm?/s) tends to reduce in its
contribution to the signal and then disappear nearly completely. The values of D of the other
two populations (~446 and 227 ;,Lmz/s) also slightly increase (~504 and 292 pmz/s). This
result might indicate the dissolution of the particles to produce smaller fragments. Unlike
relaxometry, the disadvantage of NMR-DOSY is that it needs a long acquisition time, so the
real time measurement for kinetics study cannot be reproduced.

Another factor that affects the degradation of AGulX is pH. To investigate this parameter,
samples at 100 mM in different pH from 1 to 7 (adjusted by adding appropriate amounts of
HCI or NaOH solutions) was prepared and diluted to 5 mM with aqueous solutions in
different pH from 1 to 7 immediately before being measured in relaxometry (Figure 2-12-B).
The results show that the rate and extent of the degradation were much lower when pH was
decreased.

This property is an advantage of AGulX compared to other nanoplatforms because the
degradation can facilitate the renal elimination of the particles over time.
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Figure 2-12. Degradation of AGulIX: followed by relaxometry (1.4 T, 37°C) A) at different concentration from 50 to
0.5 mM, pH 7; B) at different pH from 7 to 1, 5 mM and C) NMR-DOSY spectra of USNP(Y) at 60 mM (top), 24
mM (middle) and 6 mM (bottom) (Spectra were obtained with samples prepared overnight from a stock solution at
100 mM).

2.1.4.2. Reconstructability of AGulX

One peculiar property of AGulX that we have observed was its ability to reform after being
degraded. This phenomenon has been preliminarily described by Marais. A. in his M2
internship report.'”® This property has been re-verified by an experiment carried out with
relaxometry and chromatography. A solution of AGulX has been diluted to 0.5 mM in
ultrapure water and left at 37°C overnight to dissolve the particles as much as possible. After
that, the solution was evaporated in a rotary evaporator at around 40°C under reduced pressure
in four steps to theoretical concentrations at 1.9 mM, 6.3 mM, 9.3 mM and finally 31.4 mM.
At each step, sample was taken for analysis by relaxometry and HPLC. In relaxometry, we
observed a gradual increase in relaxivity indicating a reformation of nanoobjects containing
Gd chelates in the solution (Figure 2-13-A). This is also confirmed by HPLC analysis (Figure
2-13-B). In the chromatograms, the first eluted group of peaks with retention time (tr) from 2
to 5 min might be assigned to the unreacted precursors and the second wider peak (tg ~ 13 -
17 min) can be assigned to the produced NPs. This chromatographic behavior has been well
studied previously for similar nanoparticles.'”
gradually while the concentration increases.

The area of the particles’ peak increases

From these experiments, it seems there is an equilibrium between the degraded products
(molecules) and the initial NPs depending on the concentration of the particle. This
phenomenon is not common among other types of NPs such as polymeric or metallic ones.
However, this is well reported for siloxane materials. Since the formation of NPs is based on
the condensation of silanol groups to form siloxane bonds by removing water, the hydrolysis
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of siloxane bonds to give back free silanols should also occur simultaneously (Equation 2-8).
Some reports have shown that the extent of the hydrolysis reaction in this equilibrium
depends on (i) the pH of the aqueous solution, (ii) the steric hindrance of the silane and (iii)
the number of siloxane bonds the silane can make. The lower pH, the longer and bulkier

silanes as well as the more the siloxane bonds, the lesser the hydrolysis.'”"7%1%3

[= Si — OH (silanol) <& = Si — O — Si = (siloxane) + H,O] Equation 2-8
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Figure 2-13. Reconstruction of AGuIX. A) Longitudinal relaxivty (1.4 T, 37°C) of reconcentrated solutions of AGulX at different
concentrations; B) Chromatograms of respective solutions at 295 nm normalized to an equivalent to 10 mM of AGuIX.

Another important spin-off idea from this observation is that it should be highly possible to
synthesize such ultrasmall nanoparticles following a bottom-up approach which starts directly
from molecular precursors rather than the current indirect top-down method. In the next parts,
we will see that this idea can turn into a full-fledged applicable synthesis protocol.

2.2.New one-pot synthesis of USNPs and their characterizations

As we have seen before, a bottom-up synthesis would be extremely desirable for the synthesis
of multifunctional ultrasmall silica NPs such as AGulX to increase the yields and reduce the
number of synthesis steps. Detailed structural information can be studied by NMR techniques
applied on empty intermediate silica NP or diamagnetic metal complexed NP. Finally, a wide
variety of metals can be easily complexed to exploit new physical properties such as optical
imaging and RS potential of different elements. In this part, we will explore this synthetic
strategy using different silane precursors (Figure 2-14).
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Figure 2-14. Different silanes used in this study: their chemical name (acronym, code used in this study). A)
Tetraethyl orthosilicate (TEOS, T); B) Aminopropyltriethoxysilane (APTES, A); C) APTES-DOTAGA conjugate
(A-D); D) Sodium salt of triacetic acid N-(trimethoxysilylpropyl)ethylenediamine (TANED, TN); E) Sodium salt
of carboxyethylsilanetriol (CEST, C).

O

The most direct approach would be to start with TEOS and APTES (Figure 2-14-A, B), two
silanes that have been used during the top-down synthesis of AGulX (Figure 2-1). This was
carried out in the work of Marais A.'”® However, this system somehow failed to provide
stable particles smaller than 10 nm (data not shown). Therefore, during my thesis, we
hypothesized that the presence of bulky chelates grafted silanes (APTES-DOTAGA) (Figure
2-14-C), which were created before the formation of ultrasmall particles, might be essential
for this process.

We first used a commercialized chelating silane TANED (abcr GmbH, Germany) (Figure
2-14-D) along with APTES and TEOS to explore this synthetic strategy. TANED was chosen
due to its similar structure compared to APTES-DOTAGA and its availability. Besides, we
also replaced positively charged APTES by a negatively charged silane, CEST (abcr GmbH,
Germany) (Figure 2-14-E) to see if the stability can be influenced. The particles synthesized
by these silanes will be referred as USNP@TANED.

In the second part, we synthesized APTES-DOTAGA and used it along with APTES and
TEOS for synthesizing the polysiloxane particles based on the experience gained from
working with TANED. A reliable protocol starting from this ready-to-use powder of APTES-
DOTAGA was optimized to produce ultrasmall silica NPs which have very similar
characteristics to AGulX. These particles will be referred as USNP@DOTA. Finally, a
protocol where APTES-DOTAGA is formed in-situ was proposed to further speed up the
procedure. The products of this process will be coded USNP@DOTA .

2.2.1. Screening conditions with an alternative commercialized organosilane

As mentioned above, we first tested some preliminary formulas using TANED, the available
commercialized chelating silane. The synthesis scheme is summarized in Figure 2-15. The
formulas that have been tested and their characteristics are summarized in Table 2-3.
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Figure 2-15. The synthesis scheme of USNP@TANED

Table 2-3. Properties of USNPs made from TANED (USNP@TANED)

Properties Method(s) USNP@TANED-1 USNP@TANED-2  USNP@TANED-3 USNP@TANED-3*
Starting ratio . . . . . . .
TN : A/C - T* - ITN:1A:2T ITN:3T ITN:1C:2T ITN:1C:2T

Total silane

concentration (mM) 400 400 400 400
Dy (nm) DLS 44+18 46+15 3.8+2.0 46+1.1
NMR DOSY - - 4.7 5.0
Zeta full curve
Zeta potential (mV) N - - - -25.8
p try (pH 7.0)
Retention time (min) HPLC (295 nm) 11.4 11.6 12.2 12.1
Peak shape” HPLC (295 nm) D D S S
FWHM (min) HPLC (295 nm) 1.3417 1.0667 1.0250 1.0333
Purity (%) HPLC (295 nm) - - 99.8 92.4
Chelator content EBT titration - - - 85.5
(umol/mg)
C/TN IH NMR - - 1.44 1.30
Si:N: C (% mass) Elemental ] ; ; 270:37:226
analysis
TN : C: T (molar ratio) Elemeptal - - - 1.0:1.1:52
analysis
Yield (%) (in TANED) - - - - 22.6

*TN: TANED, A: APTES, C : CEST, T: TEOS, *S: symmetrical, D : distorted, *+: scaled up batch

Since previous works have pointed out the degradation of AGulX through the hydrolysis of
siloxane bonds at concentration lower than 50 mM'’®, we first tried to keep the concentration
of TANED at 100 mM. To resemble the ratio of silanes in AGulX (APTES-DOTAGA :
APTES : TEOS ~ 1 :1:2 —3), APTES and TEOS were added at 100 mM and 200 mM
respectively. The rest of the formula was only water (USNP@TANED-1). TANED, stored as
45 % solution in water, was added first. pH of the solution was around 10.5. APTES and
TEOS were added one by one to the solution of TANED. APTES was soluble in water and
hydrolyze within minutes. TEOS was not soluble in water but created another oily phase.
Therefore, this mixture was left stirring at 25°C overnight until a homogenous solution was
obtained. Afterwards, pH of the solution was adjusted to 4.5 by adding hydrochloric acid
solutions under vigorous stirring. This pH was chosen because at this pH, 1) silanol groups
and carboxyl groups on DOTAGA were (partially) protonated, thereby reducing the
electrostatic repulsion between the precursors and facilitating their assembling'*® 2) siloxane
bonds seem to be more stable and 3) at this pH, AGulX was synthesized in the top-down
protocol. At this stage, probably, most of precursors especially organosilane precursors i.e.
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TANED and APTES were held together by hydrogen bonds between silanol groups. So the
solution was stirred during 1 h more before being heated in an oil bath at 80°C for 18 h to
complete the condensation. i.e. the formation of covalent bonds between precursors.'*” This
process also assured the thermodynamic equilibrium between silanes and particles was
reached. Two other syntheses without APTES, one with more TEOS (USNP@TANED-2),
the other with CEST instead of APTES (USNP@TANED-3), were also tested following the
same protocol.

These solutions were analyzed by DLS and HPLC (Figure 2-16-A). DLS diagrams of three
samples were satisfactory with Dy at around ~ 4.4, 4.6 and 3.8 nm respectively. However, in
HPLC, they showed different results. It is necessary to mention that, among these silanes,
only TANED absorbs significantly at 295 nm. Therefore, the peaks appeared in the
chromatograms are more likely from grafted TANED or scattering light of the particles.
While USNP@TANED-3 showed a symmetrical and quite intensive peak of NP at 13 min
(compared to precursors’ peak at the beginning), USNP@TANED-1 and 2 showed a distorted
and very weak NP’s peak. These solutions were purified by tangential filtration (Vivaspin, 3
kDa) for several cycles using HCl 10 M to maintain the pH. With USNP@TANED-3, the
particles were purified 256 purification factor (purification factor = starting volume/end
volume) to make at the end a golden solution. This solution was analyzed by HPLC and
showed a high purity (Figure 2-16-B). With USNP@TANED-1 and 2, golden solutions of the
particles continuously passed through the membranes. These solutions turned transparent after
the purification. These results suggest that the NPs made from TANED are not stable enough
at this concentration, and the presence of CEST probably stabilizes the grafting of TANED.

_ USNP@TANED-1 (TN :A:T=1:1:2) = USNP@TANED-3 before purified
A) — USNP@TANED-2 (TN : Tf 1i3). _ B) — USNP@TANED-3 after purified 32 factors
USNP@TANED-3 (TN:C:T=1:1:2) = USNP@TANED-3 after purified 256 factors
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Figure 2-16. Characterization of simulating formulas of ultrasmall silica NP. A) DLS diagrams (left) and chromatograms of
USNP@TANED-1 (green), USNP@TANED-2 (blue), USNP@TANED-3 (red) (Note: chromatograms were normalized to the same height
of precursor’s peak; B) Chromatograms of USNP@TANED-3 before purified (green), after purified 32 factors and after purified 256
factors.

Even though CEST is not a component in AGulX, since this result is quite interesting, we
decided to reproduce this formula in a medium scale (~ 2 grams) and further characterize it
with different techniques (Figure 2-17). DLS and HPLC showed similar results with Dy ~ 4.6
nm and a symmetrical peak in chromatogram (Figure 2-17-A, C). Zeta potentials of the
particles were well negative as expected (Figure 2-17-B). Proton NMR spectra of CEST,
TANED and USNP@TANED-3 were recorded (Figure 2-17-E) along with NMR-DOSY
spectrum of USNP@TANED-3 (Figure 2-17-F). 'H spectrum of USNP@TANED-3
contained all the peaks that might come from CEST or TANED. Most of these protons have
the same diffusion coefficients at 77 um?/s corresponding to a Dy ~ 5.0 nm. These results
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indicate the presence of both silanes on the particles. Few protons have diffusion coefficients
at 479 and 305 pm?/s which correspond to the free silanes presenting in the equilibrium with
the particles. 'H spectrum of CEST showed two main peaks at 2.35 and 0.91 ppm which were
not overlapped by any peaks in the spectrum of TANED. By integrating the area of these
peaks and comparing with the total area of all protons’ peaks, we can determine the ratio
CEST/TANED which was, in this case, 1.30.

¥Si solid state NMR spectrum was also recorded and deconvoluted by Ms. Lorentz C. at
Institut de recherches sur la catalyse et I’environnement (IRCE, Lyon) (Figure 2-17-D and
Table 2-4). The interpretation of the spectrum can be found in the previous publication.'
From this result, we can calculate the percentage of organosiloxane (T2 and T3 species, from
CEST and TANED) over pure siloxane (Q2, Q3 and Q4 species, from TEOS) which was
45/55. This is slightly lower than what we have seen in AGulX (3 T/>YQ =62/ 38).133 This
result is in accordance with the results of the elemental analysis that showed a higher ratio of
TEOS in USNP@TANED-3 i.e. TANED : CEST : TEOS ~ 1 : 1 : 5 (Table 2-3) compared to
the values in AGulIX i.e. APTES-DOTAGA : APTES : TEOS ~ 1 : 1 : 3 (Table 2-1). The
higher ratio of TEOS in USNP@TANED-3 might also explain a slightly bigger
hydrodynamic diameter Dy = 4.6 nm vs. Dyagux) ~ 3 nm.
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Figure 2-17. Characterization of scaled up USNP@TANED-3. A) DLS diagram; B) Zeta potential curve; C) HPLC chromatogram after
purified > 10k factors; D) *Si solid state NMR; E) 1H NMR spectra of CEST (red), TANED (green) and USNP@TANED-3 (black)
solutions; F) NMR-DOSY spectrum of USNP@TANED-3 at 48 g/, pH 4.5 (red C marks the peaks from functional groups of CEST).

Table 2-4. Deconvolution results of *’Si solid state NMR for USNP@TANED-3

Species Amplitude Position (ppm) Width (Hz) Peak area (%) Absolute area
T2 3.66 -57.6 679.7 10.5 2646
T3 11.11 -66.8 740.8 34.7 8764
Q2 0.81 -91.1 693.1 2.4 595
Q3 6.84 -100.5 634.1 18.3 4617
Q4 10.03 -110.5 812.0 34.3 8668
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In conclusion, it is possible to use this direct mixing protocol to produce ultrasmall silica
nanoparticles. Unfortunately, the simulating silane (TANED) failed to provide enough
hydrolytic stability to the polysiloxane system, especially while being combined with APTES.
This is not surprising given that APTES was well documented as an intramolecular catalyzer
for siloxane hydrolysis'"®'7*'?® and was used often to speed up the dissolution of polysiloxane
network in mesoporous silica NP.'”” Interestingly, carboxylsilanes such as CEST help
stabilize TANED on the siloxane surface. It is probably due to the formation of an acidic
microenvironment around the surface of the particles which maintains the stability of the
siloxane bonds from the hydrolysis of water. Nevertheless, this result should not be
necessarily extrapolated to the case of APTES-DOTAGA which is much bulkier and more
efficient as a protective layer compared to TANED. Moreover, the replacement of APTES by
CEST can compromise the total neutral zeta potential of the particles which is more desirable
to prevent protein adsorption. In the next part, we will see the results obtained with APTES-
DOTAGA.

2.2.2. One-pot synthesis of USNP@DOTA (AGulX like particle)

In this part, first of all, APTES-DOTAGA was synthesized and isolated as ready-to-use
powder. Then, this powder was utilized to synthesize USNP with a similar protocol to the one
used for USNP@TANED. Finally, we further shorten the protocol by combining the synthesis
of APTES-DOTAGA within the synthesis of USNP in a single step to speed up and increase
the yield of the procedure.

2.2.2.1. The synthesis of APTES-DOTAGA

APTES-DOTAGA can be synthesized from 2 different methods through the reaction between
APTES and 1) the activated carboxyl group on butyl protected DOTAGA by HBTU (2-(1H-
benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) (Figure 2-18-A) or 2)
DOTAGA anhydride (Figure 2-18-B). The former was performed by our collaborator Thakare
V. et al in Chematech, Dijon while the latter was carried out in our own laboratory. The two
types of products can be used interchangeably as APTES-DOTAGA sources. The advantage
of scheme A is the specificity of the reaction and the purity of the product. This is thanks to
the hydrophobicity of the butyl protected DOTAGA-APTES that allows it to be separated
from the butyl protected DOTAGA by liquid extraction at basic pH. Nevertheless, scheme A
is limited by the availability of butyl protected DOTAGA produced scarcely in Chematech.
Meanwhile, scheme B is simple and straightforward. However, it is difficult to obtain pure
APTES-DOTAGA since the main product and by-product hydrolyzed DOTAGA have very
close solubility. Therefore, it requires a quantification method to determine the amount of
APTES-DOTAGA in the final mixture.
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Figure 2-18. The reaction schemes of the synthesis of APTES-DOTAGA A) from DOTAGA anhydride or
B) from t-butyl protected DOTAGA.

2.2.2.1.1. Synthesis of APTES-DOTAGA from butyl protected DOTAGA
2.2.2.1.1.a. Synthesis protocol

APTES-DOTAGA can be synthesized starting from the t-butyl protected DOTAGA which
was coupled to APTES through peptide coupling. This was followed by the deprotection of
the intermediate to get the final compound. The reaction scheme is
presented in (Figure 2-18-A).

DOTAGA(tBu)s (Chematech) (0.9g, 1.284 mmol) was weighed in 100 mL round bottom flask
and was dissolved in 20 mL of DCM (dichloromethane, VWR) under the hood with stirring.
DIPEA (N, N-diisopropylethylamine, Alfa Aesar) (1.14 mL, 6.55 mmol) was added into
above solution followed by coupling agents namely HBTU (0.52 g, 1.37 mmol) and HOBt
(Hydroxybenzotriazole, Fluorochem) (0.18 g, 1.37 mmol) and the solution was left for stirring
at rt (room temperature) for 15 min. APTES (0.3 g 1.37 mmol) was added to the above
solution directly using the ImL syringe and solution was stirred further at rt for 60 min after
which the product formation was confirmed through MS. The above solution was mixed with
50 mL of citric acid solution (pH:2.5-3) in a separating funnel and the organic layer was
recovered. The organic layer was further mixed with 50 mL of 5% NaHCOs; in a separating
funnel and the organic layer was recovered. The DCM solution was stirred with 5 g of MgSOj4
for 10 min and filtered using sintered funnel to receive the dry and clear DCM solution.
Organic phase was evaporated under vacuum at 30°C to get a viscous brownish residue, as an
intermediate product (1.05 g, 78%). The intermediate formation was verified using HRMS, 'H,
C NMR and elemental analysis.

DOTAGA(tBu)4-APTES (1 g) was weighed into a 100 mL round bottom flask and was mixed
with SmL of concentrated HCI and stirred for 10min. Later, the acid was evaporated under
vacuum at 35°C in 5-15min to get a dried residue. The above dried residue was dissolved in
10mL of water and lyophilized to get a light brown colored powder (850 mg, 81%). The
product was verified using HRMS, '"H NMR and elemental analysis.
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2.2.2.1.1.b. Characterization
Methods

ESI (Electro Spray lonisation), High resolution and accurate mass measurements (HRMS)
were carried out using a Bruker microTOF-Q™ ESI-TOF mass spectrometer (Germany).

The 'H and >C NMR spectra were recorded at RT or at 330K. NMR spectra were run on
Bruker Avance 300 and/or 500 spectrometers (Germany) using pre-deuterated solvents as
internal standard.

Elemental analyses were obtained on EA 1108 CHNS Fisons Instrument.
Characterization of butyl protected APTES-DOTAGA

HRMS: Calculated for C44HgsNsO1,Si: 926.585 [M+Na]"; Obtained: m/z = 926.584 [M+Na]"
(Figure 2-19)

'"H NMR (500 MHz, CDCl3) & 0.4 — 0.7 (m, 2H), 0.7 — 0.8 (m, 1H), 1.0 (dd, J = 9.0, 6.7 Hz,
1H), 1.1 — 1.2 (m, 9H), 1.3 — 1.5 (m, 32H), 1.5 (p, J = 7.8 Hz, 2H), 1.7 (d, 1H), 1.9 — 2.1 (m,
1H), 2.1 - 2.3 (m, 1H), 2.4 — 3.4 (m, 29H), 3.5 — 3.7 (m, 1H), 3.7 — 3.8 (m, 4H).

PC NMR (126 MHz, CDCl3) & 7.5, 7.8, 18.3, 20.4, 23.5, 25.9, 26.8, 27.8, 27.8, 27.9, 27.9,
27.9,28.2,28.3,29.7,33.0, 38.6,42.1,47.6, 49.8, 58.4, 63.6, 80.8, 82.3, 171.1, 173.2.

Elemental Analysis: Calculated for C44HgsNsO,Si. 0.9HPFg (%): C: 51.03, H:8.36, N:6.76.
Observed (%): C: 51.86, H: 8.91, N: 8.38.
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Figure 2-19. Mass spectra of butyl protected APTES-DOTAGA: A) experimental spectrum, B) simulated spectrum
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Characterization of deprotected APTES-DOTAGA

HRMS: Calculated for C,,H41N5O;,S1: 596.259 [M+H]+; Obtained: m/z = 596.261 [M+H]+;
618.242 [M+Na]" (Figure 2-20).

'H NMR (500 MHz, Deuterium Oxide) & 0.5 — 0.8 (m, 2H), 1.2 — 1.3 (m, 1H), 1.4 — 1.6 (m,
1H), 1.6 — 1.8 (m, 1H), 1.8 — 2.2 (m, 1H), 2.3 — 4.5 (m, 26H).

Elemental Analysis:
Calculated for C;;H41N50O1,S1. HPFg. 2HCI (%): C: 32.44, H:5.44, N:8.60.

Observed (%): C: 32.17, H: 6.54, N: 9.39.
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Figure 2-20. Mass spectra of deprotected APTES-DOTAGA: A) experimental spectrum, B) simulated spectrum

2.2.2.1.2. Synthesis of APTES-DOTAGA from DOTAGA anhydride
2.2.2.1.2.a. Synthesis protocol

10.0 g (17.45 mmol) of DOTAGA anhydride (Chematech) was put in a 1 L round flask. Then,
530 ml of anhydrous DMSO (SigmaAldrich) and 2.062 ml (8.72 mmol) of APTES
(SigmaAldrich) were added quickly. DOTAGA anhydride was used in excess to make sure all
APTES will react (Figure 2-18-B). This allows the precise control of the composition of the
final particles in the next step. The reaction was put under Argon atmosphere and heated to
75°C overnight (18 h). The product formed as white precipitate. The product was fully
precipitated by transferring to 5 L of acetone and kept at 4°C for 18 h. The precipitate was
filtered through filter paper grade 42. Around 2.5 L of acetone was used to wash the
precipitate and remove DMSO. The remaining acetone was removed by evaporating at 37°C
overnight.
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2.2.2.1.2.b. Characterization

IR spectra

DOTAGA and the mixture of APTES-DOTAGA were dissolved in water and adjusted to pH
2 to protonate carboxyl groups. This makes the peak at 1677 cm™ of C=0 amide distinguished
from the one at 1713 cm™ of C=0 carboxyl. The 2 solutions were dried at 80°C for 4 days. IR
spectra were acquired with dry powder.

Figure 2-21 shows the IR spectrum of DOTAGA powder and APTES-DOTAGA synthesis
mixture. The assignment for some important peaks is shown in the Annexes-4.”° The
appearance of peak at 1677.0 cm™, and the decrease of peak intensity at 1712.7 cm™
indication of the formation of the amide bond.">
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Figure 2-21. Infrared spectra of DOTAGA powder (A) and APTES-DOTAGA synthesis mixture (B)

Mass spectrometry

MS spectrum was obtained in negative mode at the concentration of total DOTAGA around
0.1 mM. Figure 2-22 shows the overall spectrum which has 4 main peaks at 594, 475, 296.5
and 237 m/z. Figure 2-23 to Figure 2-26 show the zoomed region of each of the peak along
with the proposed molecular formula and simulated spectrum. The agreement between the
real spectra and simulated spectra as well as the co-presence of singly charged ions and
doubly charged ions confirm the reliability of the proposed structures.
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Determination of the total contents of (reacted and unreacted) DOTAGA

The first method to determine the contents of DOTAGA is colorimetric titration with Ca*"
using EBT (Eriochrome® Black T) as color indicator in ammonia buffer solution at pH 10.
The test gives a value around 1.70 umol/mg. This result might be slightly overestimated due
to the difficulty of recognizing the equivalent point indicated by the color change from pale
blue to violet. However, it gives an approximate idea about the real value (Figure 2-27).

EBT  EBT(Ca%")
at pH 10 at pH 10

Figure 2-27. Titrating samples of EBT colorimetry
before and after the equivalent point.

The second method is complexometric titration with europium salt (EuCl;) (Figure 2-28). A
series of samples containing a fixed amount of APTES-DOTAGA powder and an increasing
amount of EuCl; was prepared. Eu’" has two specific phosphorescence emission peaks at 594
nm (°Dy > "F)) and 616 nm (°Dy > 'F,) when being excited at 395 nm (Figure 2-28-A)."”2%
The intensity of these two peaks can be strongly enhanced when Eu’* was complexed due to
the protective effect of DOTAGA ligand from the quenching effect of O-H oscillator of water
on Eu’" phosphorescence. Upon the addition of increasing amount of Eu’®, the
phosphorescence intensity increases sharply until no DOTAGA is available for chelating.
After this point, the intensity obtains a plateau or increases slowly due only to the
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phosphorescence of free Eu®".'** Figure 2-28-B shows the titration curve of the sample with
the equivalent point at around 1.47 = 0.11 pmol/mg for the content of DOTAGA. This result
can be considered more precise and will be used for further calculation.

(A) 594 nm (B) 24
5D — 7F . ©594 nm I
~ 6 ° 1 2 20{ we16nm !
= =
5 51 616 nm S 16 ]
g 4 D,—7F, & |
3 3] 2 121
c 0 |
@ c g . |
o 2- [T}
8 k= 1
iy o -
w pd ]
e e e eep— 0 : : ' : : ' ,
560 580 600 620 640 0 0.5 1 1.5 2 25 3 35
Emission wavelength (nm) Content of DOTAGA (umol/mg)

Figure 2-28. (A) Emission spectrum of a mixture of 40 pM EuCl; and 100 pM DOTAGA excited at 395 nm,
(B) Titration curve of APTES-DOTAGA synthesis mixture at 594 nm (red) and 616 nm (blue)

Determination of the content of APTES-DOTAGA

Now, the next task is to determine the content of APTES-DOTAGA. Due to the similarity in
chemical properties of DOTAGA and APTES-DOTAGA, it is difficult to determine their
contents in a mixture. Therefore, a HPLC method was developed to separate them. Since
silanes can react with the residual silanols on the surface of silica chromatographic columns
when they are concentrated enough, in order to keep the surface of the column intact, the
concentration of silanes should be kept as low as possible. We label DOTAGA with Gd®" and
detect the fluorescent emission at 312 nm (Aex = 274 nm). In our case, the total concentration
of silanes was kept lower than 0.2 mM without any observable distortions in peak shape or
gradual increase of pressure.

HPLC setup:

The same system was used to analyze this sample with some modification (Figure 2-29). Only
isocratic elution was used since no NP is present. A longer C18 column (250 mm) was used to
offer higher separation capability. The flow was maintained for 15 min to elute all the
expected peaks. After that, acetonitrile was raised to 90 % gradually to clean the column from
unexpected organic impurities. Then, the system was re-equilibrated to the initial condition
before a new analysis. Before the measurement of each sample, a baseline was obtained in the
same manner by injecting Milli-Q water.

Calibration standards preparation: a 10 ml solution of 0.375 pmol GdCl; and 0.450 pmol
DOTAGA was prepared from GdCl;.6H,0 salt and DOTAGA anhydride. pH was kept below
4 before mixing and adjusted at 5.5 after mixing by addition of NaOH solutions. The solution
was incubated at 80°C during 48 h to allow the complexation to complete. Final pH is verified
at the end. Solution was filled to 25 ml in a volumetric flask and the final concentrations of
GdCl; and DOTAGA were 15 mM and 18 mM respectively. From this stock solution, a series
of samples with DOTAGA(Gd*") concentration from 0.01 mM to 0.15 mM were prepared by
dilution in water. The calibration curve is fitted from the concentrations of DOTAGA(Gd®")

solutions and the areas under the curve of their peaks.
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Sample preparation: The dried powder was dissolved in water. This solution was mixed with
an excess amount of GdCl; to achieve final concentration of 57.8 mg/L for the synthesis
mixture and 0.2 mM Gd*". The pH is adjusted to around 5 and incubated at 80°C during 48 h
to allow the complexation to complete. Final pH is verified at the end. The area of the
DOTAGA(Gd®") peak was fitted to the calibration curve to give the concentration of
unreacted DOTAGA in the sample and the content of APTES-DOTAGA in the powder was
then deduced.

Figure 2-29-A shows the chromatograms of the analytes. By superimposing the
chromatogram of the synthesis mixture (red) with the one of GdCl; (black) and
DOTAGA(Gd®") (blue), we can identify the expected peaks. The first peak corresponds to
free Gd*". The third peak should correspond to DOTAGA(Gd®"). Finally, the second peak
should correspond to the product of the reaction APTES-DOTAGA(GA™). So, the
chromatography aided in clearly separating 3 components from each other. Using a
calibration curve of the peak area and concentration of DOTAGA(Gd’") (Figure 2-29-B), we
can determine the concentration of DOTAGA(Gd®) in the sample and then determine its
initial contents in the powder which is around 0.74 pmol/mg.

— Gd*1mMpH4

A) ——  DOTAGA(GA*) 0.05 mM pH 5.7
——— Mixture of step 1 57.8 mg/l + Gd** 0.2 mM pH 5
B
lea APTES-DOTAGA (Gd*) )
1.95 4 free Gd3+ 1000000 7y = o83 5;:;“200;;9': 853.3673
T \ DOTAGA(Gd™) ™
= 1.45 4 £ 00000 e
£ d 3 -
3 o 400000 ".
§ 095 i 200000 .
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Figure 2-29. A) Chromatograms of the GdCl; 1mM solution (black), DOTAGA(Gd) 0.05 mM solution (blue) and
products after the reaction betwen DOTAGA anhydride and APTES (red)
B) Calibration curve of DOTAGA(Gd*")

HPLC condition:

Injection volume: 20 pl

Column: BDS-HYPERSIL-C18 (250 mm x 4.60 mm, 5 um, 130 A, ThermoFisher Scientific)

Flow rate: 1 ml/min

Detector: fluorescence (hex = 274 nm, Aoy = 312 nm)

Oven temperature: 30°C

Solvent: isocratic mixture of 99% A: H,O/TFA (99.9:0.1) and 1% B: Acetonitrile (ACN)/TFA (99.9:0.1)

Table 2-5 shows the summary of the above results. IR and MS spectra as well as HPLC
chromatograms show that the precursor has been formed after the reaction. The
quantifications proved that the reaction was complete and half of the DOTAGA anhydride has
reacted with APTES. After the whole process, we obtained the yield of 37 % of APTES-
DOTAGA compared to the introduced DOTAGA anhydride or 74 % compared to the
expected amount of APTES-DOTAGA. It is worth reminding that, in this case, the starting
molar ratio DOTAGA :APTES was 2 : 1.
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Table 2-5. Characterizations of APTES-DOTAGA precursor synthesized from DOTAGA anhydride

Features Method(s) Result

Amide bond formation IR Appearance of C=0 amide peak
at 1677 cm’™

Molecular weight Mass spectrometry Peaks at 594 and 296.5 m/z of
APTES-DOTAGA

Content of total DOTAGA Colorimetry with NET ~ 1.73 pmol/mg

Titration with Eu’* 1.47 £0.11 pmol/mg
Content of unreacted DOTAGA HPLC (C18 column, Gd**) 0.74 pmol/mg
Yield APTES-DOTAGA 74.15 %

2.2.2.2. Protocol optimization with APTES-DOTAGA

With the new molecule, APTES-DOTAGA, we tried first to repeat the conditions that we
have used with TANED. It means fixed concentrations of APTES-DOTAGA, APTES/CEST
and TEOS have been introduced during the synthesis. These syntheses were called
USNP@DOTA-pre 1, 2, 3, 4. In USNP@DOTA-prel, APTES-DOTAGA, APTES and TEOS
were introduced at 50 mM, 50 mM and 100 mM respectively. In USNP@DOTA-pre2,
APTES was removed when APTES-DOTAGA and TEOS were kept at the same
concentrations. In USNP@DOTA-pre3, CEST was used to replace APTES at exactly 50 mM.
Finally, in USNP@DOTA-pre4, concentrations of APTES-DOTAGA, APTES and TEOS
were increased 4 times to 200 mM, 200 mM and 400 mM respectively to stabilize the
particles after the synthesis.

As we have found that the homogeneity of the samples was not satisfactory, we came up with
a more non-conventional gradient-silane-concentrations approach where the concentrations of
APTES-DOTAGA, APTES and TEOS were kept 5 times lower at 10 mM, 10 mM and 20
mM respectively during the synthesis to produce homogeneous sample. Then, the solution
was concentrated to a 5 times higher concentration to stabilize the particles during the
purification. This synthesis was cited as USNP@DOTA. For this non-conventional method,
another protocol, where APTES-DOTAGA was first complexed with Gd*" before being used
in the condensation process, was also tested to produce slightly smaller particle
(USNP@DOTAGA*). These strategies were simply presented in Figure 2-30. The formulas
and characterization results are summarized in Table 2-6. We will go into details during the
next paragraphs.
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Figure 2-30. The synthesis scheme of USNP@DOTA (black arrows) or USNP@DOTAGA* (violet arrows)
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2.2.2.2.1. Fixed silane concentration protocols

Three first syntheses i.e. USNP@DOTA-prel, 2, 3 were designed with the concentration of
APTES-DOTAGA (from Chematech) at 50 mM. In the first synthesis, the ratio of APTES-
DOTAGA : APTES : TEOS was kept at 1 : 1 : 2 (USNP@DOTA-prel). Syntheses without
APTES (USNP@DOTA-pre2) and with CEST as a replacement of APTES (USNP@DOTA-
pre3) were also conducted for comparison. To begin the synthesis, APTES-DOTAGA was
dissolved in water and pH of the solution was adjusted to 9 before APTES (or CEST) and
TEOS was added. This pH is probably high enough to facilitate the hydrolysis of silanes but
low enough not to hydrolyze amide bonds of APTES-DOTAGA. The rest of the protocol was
similar to the case of TANED.

All three samples demonstrate satisfactory hydrodynamic diameter i.e. 4.9, 6.3 and 5.2 nm
respectively (Figure 2-31-A). The difference was again only revealed with HPLC (Figure
2-31-B). Formula with carboxylsilane, USNP@DOTA-pre3, showed a more intense and
symmetrical NP’s peak compared to the other two, when samples at the same concentration
were injected to HPLC.

= USNP@DOTA-prel (A-D:A:T=1:1:2)
= USNP@DOTA-pre2 (A-D:T=1:2)
= USNP@DOTA-pre3 (A-D:C:T=1:1:2)
led
A) B)
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30 g
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Figure 2-31. The effects of silane composition on three initial formulas of USNP@DOTA (USNP@DOTA-prel, 2 and 3).
A) DLS diagrams; B) HPLC chromatograms before purification.

USNP@DOTA-pre3 was also purified by tangential filtration and re-analyzed by HPLC and
NMR-DOSY (Figure 2-32-A, B). As the chromatograms and DOSY spectrum have shown,
the purified sample presented a homogeneous and stable population of NP with D ~ 71 pm?/s
corresponding to a Dy ~ 5.5 nm. Until now, the tendency was very similar to what happened
with TANED. What make APTES-DOTAGA different were the results of USNP@DOTA-
prel and USNP@DOTA-pre2. These particles actually remain stable during the purification
process. The chromatograms and DOSY spectrum of USNP@DOTA-pre2 were actually very
similar to the ones of USNP@DOTA-pre3. Another point to be noticed is that these DOSY
spectra were recorded at 10 and 15 g/l of USNP@DOTA-pre2 and 3 respectively. These
concentrations are quite low compared to the ones that have been used previously. These data
show a much higher level of stability of APTES-DOTAGA compared to TANED in the same
conditions of synthesis. This might be due to a bulkier structure of APTES-DOTAGA
compared to TANED. Hence, APTES-DOTAGA might be more efficient than TANED in
protecting the polysiloxane network from being hydrolyzed. The effect of bulkiness of
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organosilanes has been used to explain the greater hydrolytic stability of 11-
aminoundecyltriethoxysilane (AUTES) or N-(6-aminohexyl)aminomethyltriethoxysilane
(AHAMTES) compared to APTES'”"%?! or the greater hydrolytic stability of long chain
C18 functionalized silica HPLC reversed phase column compared to short chain C4
functionalized silica.”** "
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Figure 2-32. A) Chromatograms before and after purified of USNP@DOTA-pre3; B) NMR-DOSY spectrum of
USNP@DOTA-pre3 after purified at 15 g/l pH 4.5. C) Chromatograms before and after purified of USNP@DOTA -pre2;
B) NMR-DOSY spectrum of USNP@DOTA-pre2 after purified at 10 g/l pH 4.5.

For USNP@DOTA-prel, the real composition of AGulX that we would like to achieve,
although, the particles were stable during the purification, chromatogram of purified sample
showed a distorted NP’s peak with at least two populations underneath (Figure 2-33-A). It
was speculated that since the efficiency of the reaction was low (probably ~ 20 — 30% based
on the mass collected after lyophilization), the concentration of the silane after purification
probably reduced to around 10 — 15 mM which might be too low to keep the particles remain
intact. Hence, the produced particles might have degraded during the purification to show
inhomogeneous population.

The first solution that we proposed to overcome this phenomenon was to increase the silane
concentrations in the formula to four times higher than the initial one (800 mM vs. 200 mM)
to maintain a high concentration at the end of the process after all the purification steps (Table
2-6). The new formula (USNP@DOTA-pre4) has been prepared with a similar protocol to
USNP@DOTA-prel. Though the symmetry of the particle’s peak after purification seemed a
bit improved, there were still evidences indicating the presence of two populations (Figure
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2-33-B). The peak width of the chromatogram was still too wide (FWHMuysnp@poTa-pres =
1.6833 vs. FWHMusne@pota-pres = 0.6083). DOSY spectrum also showed a little bit sign of
non-symmetrical distribution of diffusion coefficients at the value of the particles (~70 pm?/s)
(Figure 2-33-C). The most obvious evidence was the chromatogram of the particles after
complexed with Cu®" (Figure 2-33-D). The chromatogram was recorded at 700 nm where
Cu”" complexes absorb specifically. We can see clearly a shoulder appearing before the main
particle peak.
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Figure 2-33. The effect of concentration on USNP@DOTA (USNP@DOTA-prel vs. USNP@DOTA-pre4). A) Chromatograms of
USNP@DOTA-prel before and after purified; B) Chromatograms of USNP@DOTA-pre4 before and after purified; C) NMR-DOSY
spectrum of USNP@DOTA-pre4 after purified at 80 g/l pH 4.5 and D) Chromatogram at 700 nm of USNP@DOTA-pre4 after
complexed with Cu®* (red) (chromatograms of CuSO4 (blue) and DOTAGA(Cu2+) solution (violet) were added for comparison)

Possibly, the reason for this inhomogeneity was not only due to a low final concentration but
also a too high initial concentration of silanes. At the beginning of the reaction, too high
concentration of silanes might make the reaction happen too quickly. Plus, due to stronger
basicity of APTES compared to CEST, APTES condensed and catalyzed the condensation of
other silanes more quickly.

Therefore, we decided to propose another solution, gradient silane concentration protocol,
where the initial concentration of silanes will be kept as low as 40 mM. After incubated, the
solution will be first concentrated to a five times smaller volume and then purified at this
concentration to maintain the integrity of the produced particles.
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2.2.2.2.2. Gradient silane concentration protocols
2.2.2.2.2.a. Synthesis of USNP@DOTA

200 ml of water was added to an amount of powder containing 2.228 mmol of APTES-
DOTAGA. The pH of the solution is adjusted to 9 by adding NaOH solutions. The solution
was stirred for 1 — 2 h to to hydrolyze any preformed siloxane bonds between APTES-
DOTAGA and homogenize its distribution in the solution. Then TEOS (1015 pl, 4.457 mmol)
and APTES (527 ul, 2.228 mmol) were added one by one to the above solution. pH of the
solution was readjusted to 9 by adding HCI solutions. Water was added to obtain the final
concentrations of APTES-DOTAGA, TEOS and APTES around 10 mM, 20 mM and 10 mM
respectively. In this condition including slightly basic pH, relatively low concentrations of
silanes and high concentration of water, the hydrolysis of silane precursors happens very
rapidly. Meanwhile the condensation, which produces water as a byproduct took place very
slowly. This allows them to be in the forms of monomers or small oligomers and distributed
evenly.'®” The mixture was stirred at 25°C for 18 h to let the solution become homogeneous
which implies that all ethoxysilanes were hydrolyzed. HCl was added gradually under
vigorous stirring to bring the pH to 4.5. The solution was stirred during 1 h more before being
heated in an oil bath at 80°C for 18 h to complete the condensation and reach thermodynamic
equilibrium.

The solution was then concentrated to 10 ml by tangential filtration through Vivaspin™
(MWCO = 3 kDa). Then the solution was further purified with tangential filtration. The pH of
the solution should be adjusted to 2 by adding HCI solutions before the purification to reduce
the electrostatic affinity of free chelators towards amine groups of NPs. The solution was
purified for 1024 purification factor using HCI solution 102 M as washing solvent. Then, the
solution was filtered through 0.2 um membrane to remove dust and large impurities. Finally,
the solution was freeze dried for long term storage. 706 mg of lyophilized powder was
obtained.

2.2.2.2.2.b. Characterization of USNP@DOTA

1 ml of solution before being concentrated was filtered through 0.2 um membrane and
analyzed by DLS and HPLC. For HPLC, 2 samples were prepared: 1) The filtered solution
was diluted 2 times to reach a theoretical concentration of APTES-DOTAGA equivalent to 5
mM before being injected to the column, The absorption was followed at 295 nm. 2) 200 pl of
this solution was mixed with 5 pL. of CuSO4 506 mM, an excess amount compared to the
theoretical concentration of chelating agents in the solution at pH 3, 80°C for 2 h. The product
was diluted to a theoretical concentration of 5 g/L right before being injected to HPLC system.
The absorption was followed at 700 nm. Solutions after concentration and purification were
also analyzed similarly by HPLC.

Figure 2-34-G shows the size distribution of the solution after the synthesis measured by DLS
with average Dy = 4.6 = 1.6 nm. The zeta potential of the particle was — 21.4 and — 27.1 mV
at pH 6.6 and 7.4 respectively. Figure 2-34-A, B, C show the chromatograms at 295 nm of the
solution before concentration, after concentration and after purification. Among compounds
present in the synthesis mixture, APTES-DOTAGA and DOTAGA (remaining reactant)
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absorb more significantly in UV due to their bulkier structures. Meanwhile, APTES and
TEOS are known for their UV transparency. Chromatograms at 700 nm of the NPs after
complexed with CuSO,4 were also recorded to visualize specifically the eluates containing
DOTAGA (Figure 2-34-D, E, F). As discussed previously, the first eluted group of peaks with
retention time (tg) from 2 to 5 min might be assigned to the unreacted precursors and the
second wider peak (tg ~ 13 min) can be assigned to the produced NPs. The results show that
by concentrating and purifying, we were able to obtain a homogeneous population of NPs
with high purity (> 90%).
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To evaluate the diameter of USNP@DOTA, the presence and the ratio of APTES-DOTAGA
and APTES on its surface, 'H NMR and NMR DOSY spectra were collected. Figure 2-35-A
shows a 2D NMR-DOSY spectrum of USNP@DOTA in D,O. Most of protons seem to have
the same diffusion coefficient (D) at 54.4 umz/s. The result indicates that expected organic
groups i.e. APTES-DOTAGA and APTES were grafted on the same particles. Second, there
are some free hydrolyzed silanes which have much faster coefficient (194.5 pum?s).
Hydrodynamic diameter of the main particles can be calculated from Einstein equation which
is around 7.0 = 2.5 nm. The viscosity of the solution was unknown and might be considerably
higher than pure D,O at this concentration (127 g/l). Therefore, the calculated Dy might be a
bit overestimated compared to the value measured from DLS (4.6 £ 1.6 nm, Table 2-6).
Nevertheless, it stayed less than 10 nm and was in accordance with the DLS result. Figure
2-35-B shows the peak integration of 'H spectrum of the USNP@DOTA. The ratio APTES
over APTES-DOTAGA in the sample was found as 1.35.
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Figure 2-35. NMR study of USNP@DOTA: A) NMR-DOSY spectrum and B) The positions of H1, H2 and H3 on the APTES and
APTES-DOTAGA functional groups on the particle and '"H NMR spectrum of USNP@DOTA at 127 g/l in D,0.

Elemental analysis revealed the contents of USNP@DOTA in Si, C and N (Table 2-8). From
these results, we can calculate the contribution of each species i.e. APTES-DOTAGA,
APTES and TEOS if we assume that after the condensation, each molecule of APTES-
DOTAGA, APTES and TEOS implies the molecular structure as SiO;s(CH;);NH-
DOTAGA(Z'), SiOl,s(CH2)3NH3+ and SiO, respectively. As the results suggest, the ratio of
APTES-DOTAGA: APTES : TEOS in USNP@DOTA is 1 : 1 :5.1.

To obtain the average chemical formula of a single USNP@DOTA, the mass of the particle
should be determined. For this purpose, ESI-MS was performed taking its advantage as a soft
ionization method which is suitable for studying nano assemblies. Figure 2-36 (left) shows the
MS spectrum of USNP@DOTA averaged from 5 different spectra acquired in different ESI-
MS conditions to collect all charge states of this NP. The deconvoluted spectrum was shown
in Figure 2-36 (right). A main peak at around 12.5 kDa and two other peaks at around 10.9
kDa and 14.3 kDa were observed. Combining with the ratio of species deduced from
elemental analysis, this result corresponds with the chemical formula APTES-
DOTAGA]QﬁAPTES12.5TE0864 for the main peak and APTES-DOTAGA]1APTESHTEOS56,
APTES-DOTAGA 145APTES 4 sTEOS4 for two otherpeaks.

Arb. Units
Arb.Units

1000 2000 - 3000 4000 8000 12000 16000
Mass (Da)
Figure 2-36. ESI-MS spectrum (left) and deconvoluted spectra (right) of USNP@DOTA.

71



Chapter 2 — The development of one-pot bottom up synthesis of USNP

2.2.2.2.2.c. Quantification of DOTAGA on USNP@DOTA

The content of DOTAGA on the particle was also determined by two other methods: 1) HPLC
analysis with copper (Cu”") and 2) titration with Eu®" phosphorescence.

HPLC analysis with Cu*":

A small amount of USNP@DOTA was complexed with an excess of CuSO4and analyzed by
HPLC (Figure 2-37-A). The chromatograms of the solution at 700 nm was superimposed with
the ones of CuSO4 and DOTAGA(Cu®"). The assignment of the peaks in the chromatogram of
USNP@DOTA(Cu®") becomes straightforward. The first peak, the second peak and the third
peak correspond to free copper ions, (APTES-)DOTAGA(Cu*") and USNP@DOTA(Cu*")
respectively. More importantly, the shape of nanoparticles peak shows a homogenous
distribution after the complexation. The calibration curves and the detailed results can be
found in Figure 2-37-B and Table 2-7. From the results, we can find out the total
concentration of DOTAGA in the sample and deduce its content which was about 0.72
umol/mg.

Phosphorescence titration with Eu’':

The principle of the titration was exactly the same as described in 2.2.2.1.2.b. Figure 2-37-C
shows the titration curve of the sample with the equivalent point at around 0.79 pmol/mg.

In addition, it is also possible to come up with the contents of each species based on the result
of the elemental analysis. The content of APTES-DOTAGA was calculated as 0.95 pmol/mg
(Table 2-8). The three methods show more or less similar results. However, HPLC analysis
using Cu’" is limited by a low level of signal/noise at 700 nm with our detector, the small
volume of sample taken and the possible lack of access of some chelators on the particle in a
highly concentrated solution. Meanwhile, the results from elemental analysis was based on
several indirect calculations that imply accumulating subtle errors. These left Eu®" titration as
probably the most precise method. Thus, its result (0.79 umol/mg) will be used for the next
steps.
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Table 2-7. Summarized table of peak areas in the chromatogram of USNP@DOTA complexed with Cu**
Peak Area Concentration (mM) %
Cu™’ 44342 4.92
Silane-DOTAGA(Cu%) 53630 0.51 9.94
NP—DOTAGA(CuN) 441283 4.60 90.06
Total 10.03
2.2.2.2.2.d. Synthesis of USNP@DOTAGd*

To verify whether the structural difference between uncomplexed and complexed APTES-
DOTAGA can affect the silane chemistry, APTES-DOTAGA was first complexed with Gd**
before being added in the synthesis of the silica particles.

200 ml of water was added to an amount of powder containing 2.333 mmol of APTES-
DOTAGA. The pH of the solution is adjusted to 4 by adding NaOH solutions. 1.938 mL of
GdCls solution at 2.188 M (molar ratio (APTES-DOTAGA+DOTAGA) : Gd =1 : 0.9) was
added in 3 times. Between each time, pH was carefully increased to 4 — 5 by adding NaOH
solution with appropriate concentrations before adding the next one. After 3 additions, pH
was at 5. This solution was incubated at 80°C. pH was verified and re-adjusted to 5 after each
24 h. After 48 h of incubation, pH stayed at 5 steadily.

The pH of the above solution was adjusted to 9. Then the solution was stirred for 1 h to
hydrolyze preformed siloxane bonds between APTES-DOTAGA(Gd*"). Then TEOS (1063 pl,
4.666 mmol) and APTES (551 pl, 2.333 mmol) were added to the above solution. pH of the
solution was readjusted to 9 by adding HCI solutions before water was added to obtain the
final concentrations of APTES-DOTAGA(Gd®"), APTES-DOTAGA, TEOS and APTES at 9
mM, 1 mM, 20 mM and 10 mM respectively. The rest of the protocol followed the same steps
as described for USNP@DOTA. 716 mg of powder of USNP@DOTAGd* was obtained.
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2.2.2.2.2.e. Characterization of USNP@DOTAGd*

DLS and HPLC analyses were performed with solution before being concentrated, after being
concentrated and after purification in similar manners. For HPLC, the analyses with Cu®'-
complexed samples could not be performed, due to the absence of free chelates. Instead,
fluorescence detector (Aex = 274 nm, Aen = 312 nm) was used to qualitatively detect the
presence of Gd complexes.

Figure 2-38-G shows the size distribution measured by DLS of the particles after purification
with average Dy = 2.8 + 0.7 nm. This measurement was repeated 2 more times while giving
similar values around 3 nm. This result can be explained by a less charged state and/or a more
compact configuration of Gd-complexed DOTAGA compared to free DOTAGA. This
structural difference might allow a neater assembling of silanes which led to the formation of
smaller particles. Figure 2-38-A, B, C shows the chromatograms at 295 nm of solutions at
different steps of the synthesis. The same elutions were also followed by fluorescence
detector (Figure 2-38-D, E, F). These chromatograms show similar results as observed for
USNP@DOTA. Finally after concentrating and purifying, we were also able to obtain a
homogeneous population of NPs with high purity (> 90%). Its zeta potential was -35.6 mV at
pH 7.4 (Table 2-6).
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According to the elemental analysis, the ratio of Gd : APTES-DOTAGA : APTES : TEOS in
USNP@DOTAGA* can be estimated as 0.7 : 1 : 0.3 : 5.1 (Table 2-8). USNP@DOTAGd* has
less amine (condensed APTES) and slightly more free DOTAGA in its structure which
explains a more negative zeta potential compared to USNP@DOTAGd. The reason for the
difference between the two particles is totally understood. Probably, the complexed chelating
silane (APTES-DOTAGA(Gd*")) somehow affect differently on the condensation and silane
distribution compared to the free chelating silane (APTES-DOTAGA). This might be because
the former has a fixed charge -1 and a more compact configuration whereas the latter has
varied negative charges depending on the pH of the solution and a more flexible configuration.
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Table 2-8. Elemental analysis of USNP@DOTA

Batch USNP@DOTA USNP@DOTAGd USNP@DOTAGd*

%mass Gd 0.0000 9.5000 9.9000

relative mol Gd 0.0000 1.0000 1.0000

%omass Si 19.0000 18.0000 17.0000

relative mol Si 1.1845 10.6069 9.6129

%%omass C 28.6000 24.1000 25.9000

relative mol C 4.1703 33.2155 34.2541

omass N 8.0000 6.8000 7.0000

relative mol N 10000 Ratio oM™ | 0341 Ratio | COMM | 70363 Rao | Coment
(umol/mg) (umol/mg) (umol/mg)

relative mol Gd 0.0000 0.0000 1.0000 0.7681 0.6041 1.0000 0.6702 0.6296

relative mol A-D* 0.1672  1.0000  0.9547 1.3019 1.0000 0.7865 1.4922 1.0000 0.9394

relative mol A 0.1640 09812 0.9367 1.5247 1.1711 0.9211 0.4753 0.3185 0.2992

relative mol T 0.8533 5.1038 4.8725 7.7803 5.9762 4.7003 7.6454 5.1236 4.8133

free chelators 0.1824 0.3099

% free chelators 23.1883 32.9844

*4-D: APTES-DOTAGA, A: APTES, T: TEOS

In conclusion, the synthesis of USNP@DOTA™* could interestingly produce slightly smaller
particles. On the other hand, the synthesis of USNP@DOTA produced relatively small (< 7
nm), non-metal NPs. This feature makes it possible to thoroughly investigate the structure of
the particle using NMR. In addition, this strategy can also prevent a significant waste of Gd
during the purification.

2.2.3. One-pot synthesis of USNP using in situ formed chelating silanes

In order to propose an even simpler protocol, we combined the reaction of APTES and
DOTAGA anhydride with the hydrolysis and condensation to produce the NPs into a single
continuous process while reducing the cost and experimental time. In addition, by changing
the ratio of silane precursors in the formula, we can control the size of the particles (Figure
2-39). The starting ratio of componentns and characterization results are summarized in Table
2-9. We will go over the details in the next parts.
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Figure 2-39. The synthesis of USNP using in situ formed chelating silane (USNP@DOTA s) and metal
complexations (M" = Gd**, Lu*, Eu®** Tb*, Ho**, Cu*", Bi*")
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Chapter 2 — The development of one-pot bottom up synthesis of USNP

2.2.3.1. Synthesis of USNP@DOTA|s in DMSO/H,0O

For the first series of samples (USNP@DOTAs-1, 2, 3, 4), 8 g of DOTAGA anhydride (13.96
mmol) was put in a 100 ml round flask to which 31.6 ml of DMSO anhydrous and 3.300 ml
of APTES (13.96 mmol) was quickly added. DMSO was chosen since it is an aprotic solvent
and cannot hydrolyze anhydride. This will assure a high yield of this coupling reaction. The
reaction was stirred under argon atmosphere and heated to 75°C for 18 h. The product was a
golden solution. The mixture was let to cool down to room temperature before 663 ml of
ultrapure water was added to dilute DMSO to less than 5% in order not to dissolve the
tangential filtration membrane used in the next step.

The pH of the solution was adjusted to 9 by adding NaOH solutions and the mixture was
stirred for 1h. Then the solution was separated in 4 volumes. 0, 1.814, 3.466, 5.199 mmol of
TEOS and 0.819, 91, 173, 260 ml of water were added to each volume of sample to obtain
increasing concentrations of TEOS and keep total silane concentrations in all samples at 20
mM. The samples were named as USNP@DOTA s -1, 2, 3, 4 accordingly. The ratio of each
component can be found in Table 2-9. The pHs of the final solutions were verified and re-
adjusted to 9 if necessary. These solutions were stirred at 25°C overnight to completely
hydrolyze TEOS.

The day after, pH of the 4 solutions were readjusted to 4.5. The solutions were stirred for
another hour before being heated to 40°C overnight.

These solutions were concentrated by Vivaspin (MWCO = 3 kDa) to appropriate volumes in
which the theoretical concentration of APTES-DOTAGA reaches 200 mM. Then the pHs of
the solutions were adjusted to 2. Solutions were purified at this pH by Vivaspin for 64
purification factors using HC1 10 M as washing solvent. After the purification, the solutions
were filtered through 0.2 um membrane and freeze-dried for long term storage.

2.2.3.2. Synthesis of USNP@DOTA|s in DEG/H,O

To demonstrate the possibility of scaling up this process, a larger batch has been synthesized
(USNP@DOTAs-5). 6.187 ml of APTES (26.17 mmol) was added in a 200 ml glass bottle
containing 90 ml of diethylene glycol (DEG). The solution was stirred at rt for 1h before 10 g
of DOTAGA anhydride (17.45 mmol) was added.

DEG, previously used in our top-down synthesis, was used as a replacement for DMSO. DEG
as other ethylene glycols can be added up to 10% in the aqueous mixture without damaging
the filtration membrane used in the purification step. Subsequently, the total silane
concentration could be raised to ca. 60 mM. The equilibrium between siloxane bond
formation and dissociation depends very much on the concentration.*®!7*!"1% g by
increasing moderately the total silane concentration, the yield in DOTAGA of the reaction
was expected to significantly increase. A predicted difficulty of this protocol was the
solubility of DOTAGA anhydride in DEG which could hamper the coupling reaction with
APTES. Unlike the reaction in DMSO, heating, which could increase the solubility of
DOTAGA anhydride, was not applied in this case due to the possibility of uncontrolled
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reaction of DOTAGA anhydride with alcohol groups of DEG which can probably reduce the
yield of the reaction with amine groups. Instead, the mixture was kept stirring at room
temperature for a long period of time (5 days).

The starting ratio of APTES and DOTAGA anhydride was increased to 3 : 2 to obtain a more
balanced ratio of APTES and APTES-DOTAGA at the end. 7.952 ml of TEOS (34.90 mmol)
was added to the suspension. This mixture was stirred for 1h. Then 900 ml of ultrapure water

was added. pH during the hydrolysis process was maintained at 4 instead of being adjusted to
9.

Since pH was kept at 4, two processes of hydrolysis and heating to complete the condensation
was combined into a single one. The mixture was heated to 50°C and kept stirring for 18 h to
allow a complete hydrolysis of TEOS. The solution was concentrated by Vivaflow cassette
(MWCO = 5 kDa) to 200 mL. Then the pH of the solution was adjusted to 2. Solution was
purified at this pH by Vivaflow for 50 purification factor with water as washing solvent (200
ml—1L—-200ml—1L - 100 ml). After the purification, the solution was neutralized to pH
7.4 by adding drops of NaOH 1 M solution, filtered through 0.2 um membrane and freeze-
dried for long term storage.

2.2.3.3. Characterization of USNP@DOTA s

Different samples of USNP@DOTAs-1 (after the reaction between APTES and DOTAGA
anhydride and after being exposed at pH 9 overnight) and USNP@DOTAs-5 (after the
reaction between APTES and DOTAGA anhydride) were taken to quantify the amount of
produced APTES-DOTAGA by the combination of Eu titration and HPLC probed by Gd*". It
is worth to mention that, USNP@DOTAs-2, 3 and 4 were prepared from the same solution of
USNP@DOTA;s-1 by adding different amounts of TEOS. Hence, there was no interest to
repeat these analyses with those samples.

The results for USNP@DOTAs-1 show that the exposure to pH 9 affects neither the
DOTAGA structure nor the amide bond of APTES-DOTAGA (Figure 2-40, Table 2-10
(USNP@DOTAs-1)). According to the result, around 70% of DOTAGA anhydride has
reacted. Since the same amount of APTES and DOTAGA anhydride was introduced, the ratio
between APTES-DOTAGA and APTES before the condensation was 7 : 3. And the ratio of
TEOS/(APTES-DOTAGA+APTES) was increased gradually 0 : 1,0.5:1,1:1to 1.5: 1 1in
USNP@DOTAs-1, 2, 3, 4 respectively (Table 2-9).
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Figure 2-40. Quantification of produced APTES-DOTAGA in one-pot synthesis (USNP@DOTAs-1, 2, 3, 4):
A) Quantification of total DOTAGA by Eu titration: titration curve at 594 nm (circles) and 616 nm (squares) of mixture after the
reaction between APTES and DOTAGA anhydride (upper) and the same mixture exposed at pH 9 overnight (lower).
B) Quantification of unreacted DOTAGA by HPLC probed by Gd**: chromatograms of Gd** 1 mM solution (black),
DOTAGA(Gd*) solution (violet) and reacted mixture at around 0.1 mM in DOTAGA complexed with 0.2 mM Gd**(blue) and the
same mixture exposed at pH 9 overnight (red).

Sample of USNP@DOTAs-5 was first diluted 10 times in water to obtain a clear solution
instead of the initial suspension before being analyzed. Unexpectedly, despite appearing
initially as an insoluble suspension after the synthesis, the produced mixture showed a
reaction yield effectively equivalent to the one carried out in DMSO in the case of
USNP@DOTAs-1 (70%) (Figure 2-41 and Table 2-10 (USNP@DOTAs-5)). Since 70% of
DOTAGA anhydride has reacted, the ratio between APTES-DOTAGA, APTES and TEOS
before the condensation was 7 : 8 : 20 (Table 2-9).
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Figure 2-41. Quantification of produced APTES-DOTAGA in scaled up batch USNP@DOTAs-5:
A) Quantification of total DOTAGA by Eu titration: titration curve at 594 nm (circles) and 616 nm (squares)
B) Quantification of unreacted DOTAGA by HPLC probed by Gd**: chromatograms of Gd** 1 mM solution (black),
DOTAGA(Gd*) solution (blue) and reacted mixture at around 0.1 mM in DOTAGA complexed with 0.2 mM Gd**(red)
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Table 2-10. Summary of the result of the total DOTAGA and unreacted DOTAGA concentration

Samples Measured time [DOTAGA = | (mM) [DOTAGA =~ |(mM) % DOTAGAunreactea
After the reaction 20 6.21 30.9

USNP@DOTA-1 In pH 9 overnight 20 5.91 29.4

USNP@DOTA-5 After the reaction 16 4.68 29.5

Four samples of USNP@DOTAi-1, 2, 3, 4 after purification and lyophilized were
redispersed in water at 100 g/l. These stock solutions were quickly diluted to 10 g/l with HCI
102 M for DLS measurements. Another series of samples was redispersed at 150 g/L. NaOH
solution was added to neutralize samples to pH 7 before water was added to obtain the final
concentration around 80 — 100 g/L. Similarly, these stock solutions were quickly diluted to 10
g/L with water before being measured in DLS. Figure 2-42-A, B, C show the diameter
diagrams in DLS of samples of the first series (USNP@DOTAs-1, 2, 3, 4) right after the
synthesis, after being redispersed at pH 2 and after being redispersed at pH 7. The results
showed a clear dependence of NP size and the added amount of TEOS as expected. Dy of
USNP@DOTAs-1, 2, 3, 4 at pH 7 were 2.8, 4.3, 7.6 and 14.4 nm respectively. Similar
tendency was observed with the same samples after the synthesis and after being redispersed
at pH 2. Except the weak signal from USNP@DOTA-1 after the synthesis and the
precipitation of USNP@DOTAs-4 at pH 2, the other measurements reflect similar results. In
the first exception, signal was too weak to have a reliable value implying the creation of very
small nanoparticles and/or a diluted concentration of NPs. In the second case, the fact that
USNP@DOTAs-4 could not be redispersed at pH 2 might be due to its lower colloidal
stability explained by a bigger size, higher ratio of TEOS and lower density of protective
layer of APTES-DOTAGA and APTES around it.

Chromatography was also performed with these four particles and confirmed the DLS results
(Figure 2-42-D). A small sample of each purified solution was diluted 40 times in HC1 102 M
right before being injected to HPLC for analysis at 295 nm. The more TEOS added in the
formula, the slower the retention time of NPs. This indirectly shows the dependence of NP
size on the amount of TEOS since a higher tg usually implies a bigger NP.
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— USNP@DOTA;s-1 (A-D:A:T=7:3:0)
= USNP@DOTA;s-2 (A-D:A:T=7:3:5)
= USNP@DOTA-3 (A-D:A:T=7:3:10)
= USNP@DOTA;s-4 (A-D:A:T=7:3:15)
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Figure 2-42. Size evolution of USNP@DOTAs: A) DLS diagrams of USNP@DOTAs-1 (black), USNP@DOTAs-2
(blue), USNP@DOTAs-3 (green), USNP@DOTAs-4 (red) A) right after the synthesis, B) ) after being lyophilized and
being redispersed at pH 2 C) being redispersed at pH 7; D) Chromatograms at 295 nm (normalized to the same height)
of the same samples with respective color code (A-D: APTES-DOTAGA, A: APTES, T: TEOS).

Another indirect method to evaluate the size of the particles is to look at their relaxivities after
being complexed with Gd. The bigger the particles are, the lower their rotational correlation
times and so the higher their relaxivities are.* For this experiment, a small quantity of 3
samples was redispersed in water at 150 - 200 g/l or 120 — 150 mM in DOTAGA according to
the results found by Eu titration. Their pHs were adjusted to 5.5. Then a small amount of
GdCl; 50 mM in HCI 0.1 mM (molar ratio DOTAGA : Gd = 10 : 1) was added to have a
quick and complete complexation without the need of purification. Their pHs were readjusted
to 5.5 before being incubated at 80°C for 2 nights. Water was filled to achieve 50 mM in
DOTAGA, 5 mM in Gd for each sample right before their relaxation times were measured.
The amount of Gd in the samples were quantified precisely again with ICP-OES. Their
relaxivities were calculated from relaxation time and Gd concentration and shown in Table
2-11. As expected, r; (and also rp/1}) increases in the order of USNP@DOTAs-2 (r; = 16.9
mM's!, r/rp = 1.53) < USNP@DOTAi-3 (rp = 192 mM's', n/r; = 1.80)
<USNP@DOTAg-4 (r; = 19.8 mM's”, ro/r; = 2.04) (Table 2-11). (Due to insufficient
reaction yield, USNP@DOTA s-1 could not be extensively characterized)

In short, these results show that by varying the starting ratio of siloxane network creating
precursor, TEOS, and organosilanes, APTES-DOTAGA and APTES, the size of the NPs can
be tuned.
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Table 2-11. Relaxivities of USNP@DOTAs-2, 3, 4

r; (mM'l.s'l) r,/1y
USNP@DOTAIS-2 (10% Gd) 16.92 1.53
USNP@DOTAIS-3 (10% Gd) 19.21 1.80
USNP@DOTAIS-4 (10% Gd) 19.79 2.04

The elemental analyses also showed an increase of the molar ratio of Si over N or C in the
order of USNP@DOTA 5-2<USNP@DOTA s-3<USNP@DOTAs-4 in accordance with the
amount of added TEOS (Table 2-14).

For the scaled up batch (USNP@DOTAs-5), the DLS diagrams at different steps during the
synthesis show that before H,O was added, no stable particle was created yet indicating by
small values of Dy (~ 1 nm). After the hydrolysis and condensation of silanes, stable particles
started to form. The final particle after lyophilized has Dnaround 5.2 nm (Figure 2-43 and
Table 2-12). Chromatography was also performed to verify the purity of the particle after the
purification process (Figure 2-44 and Table 2-12). Its chromatogram showed a symmetrical
peak demonstrating a homogenous NP distribution.
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Figure 2-43. DLS diagrams of USNP@DOTA s-5: A) at different step during the synthesis: APTES + DOTAGA anhydride

in DEG (pink), APTES + DOTAGA anhydride + TEOS in DEG (green), APTES + DOTAGA + TEOS in H,O (blue), APTES +
DOTAGA + TEOS in H,O filtered through 0.2 um membrane (red); B) After being purified (black) and lyophilized (red).
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Figure 2-44. Chromatograms of USNP@DOTA s-5 at 295 nm: as A) originally acquired or B) normalized to
the same height (dashed line: before purified, solide line: after purified)
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Table 2-12. Summary of DLS and HPLC results of USNP@DOTAs-5 in different step during the synthesis

Samples D, (nm) tg (min) FWHM (min) Purity (%)
DOTAGA + APTES in DEG 09+04 - - -
DOTAGA + APTES + TEOS in DEG 1.1+04 - - -
DOTAGA + APTES + TEOS in H,O 47+1.7&0.8+0.2 - - -
DOTAGA + APTES + TEOS in H,O filtered 41+£19&0.8+0.2 12.63 1.1333 68.6
USNP@DOTAs-5 after purification 41+1.0 12.76 0.8583 98.3
USNP@DOTAs-5 redispersed after lyophilized 52+2.0

Since the amount of material in this batch is more sufficient. More elaborate experiments
were performed to further investigate the structure of USNP@DOTA s-5. Zeta potential of the
particle at pH 7.3 was -32.6 mV. The isoelectric point (pI) of the particle was around 4.24
(Figure 2-45 and Table 2-13) which seems reasonable given that at this pH DOTA
predominantly has minus one or two charge (second and third protonation constants, pKmar
and pKysr, of DOTA are 9.67 and 4.68 respectively’””) and the starting ratio of APTES-
DOTAGA/APTES was almost 1 : 1.
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Figure 2-45. Zeta potentials of USNP@DOTAIS-S at different
pHs. (Each point was measured 3 times)

Table 2-13. Zeta potential of empty USNP@DOTA -5 at different pHs

pH Zeta potential (mV)
2.21 37.2

3.23 17.3

4.21 0.558

5.25 -19.9

6.22 -26

6.75 -27.1

7.27 -32.6

7.78 -31.5

8.26 -32.4

USNP@DOTAs-5 lyophilized powder was redispersed in D,O for NMR analysis. DOSY
spectrum shows that the diffusion coefficient of USNP@DOTAs-5 was around 55 pum?/s
(Figure 2-46-A). Dy of USNP@DOTA s-5 calculated from Einstein equation was 7.0 + 2.5
nm. This result was very similar to the value of USNP@DOTA. Except two multiplets at 3.52
and 3.62 indicating a small remaining amount of DEG, the 'H spectrum of USNP@DOTA s-5
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was also very similar to that of USNP@DOTA (Figure 2-46-B and Figure 2-35-B). The
integration of 'H peaks excluding the ones from DEG showed that the ratio APTES/APTES-
DOTAGA in this case was 1.26. The ratio of DEG/APTES-DOTAGA can also be calculated

by this technique as 0.33.
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Figure 2-46. NMR spectra of USNP@DOTA s-5 at 100 g/I: A) NMR-DOSY spectrum; B) "H NMR spectrum.

From elemental anlysis, the ratio of APTES-DOTAGA : APTES : TEOS was calculated as
1.0 : 1.0 : 4.7 taking into account the amount of DEG calculated from NMR experiment

(Table 2-14).

Finally, Figure 2-47 shows the original MS spectrum and the deconvoluted spectrum of
USNP@DOTAs-5. They were very similar to USNP@DOTA with a main peak at around
11.5 kDa and two minor peaks at around 10.2 kDa and 13.5 kDa. This result was combined
with the ratio of species inferred from elemental analysis to give the chemical formula of the
main peak as APTES-DOTAGA,APTES|,TEOSss and the ones of two minor peaks as
APTES-DOTAGA (sAPTES (sTEOSs) and APTES-DOTAGA 14APTES 4, TEOSgs.
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Figure 2-47. ESI-MS spectrum (left) and deconvoluted spectra (right) of USNP@DOTAIS-5.

2.2.3.4. Quantification of DOTAGA on USNP@DOTA g

The DOTAGA content of each sample was determined by Eu titration. For the first series of
samples, USNP@DOTAs-1, 2, 3, 4, we see clearly a decrease of DOTAGA content from 1.1
pumol/mg to 0.7 umol/mg when TEOS was increased in the formula as expected (Figure 2-48).
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Combining this result with the total weight of produced particle, the yield of the process can
be determined. Interestingly, the more TEOS we put, the higher the yield of APTES-
DOTAGA at the end from 1.15% to 15.41% (Table 2-9). Presumably, the siloxane bond
between silicic acid and organosilanol might be stronger than the siloxane bond between the
organosilanols themselves. In addition, aminosilanes, especially the ones with short carbon
chain such as APTES, are known as having quite low hydrolytic stability.'””'"*!*® Another
possible explanation might be due to the presence of flatter surface curvature on bigger
particles which allow the formation of all three siloxane bonds per each organosilane i.e.
APTES-DOTAGA and APTES. This feature makes organosilanes stick more stably on the
surface of the particles and have higher resistance to water hydrolysis. On the contrary,
smaller particles might have higher surface curvature which imposes more steric constraint on
the formation of all three siloxane bonds per each organosilane. The relationship between
surface curvature and particle stability has been studied before in the case of thiol ligands
functionalized on gold NPs. Mei B.C. et al. have shown that 15 nm AuNP functionalized with
thiol terminated PEGs has higher resistance to the digestion assay induced by sodium cyanide
compared to the 5 nm counterpart.”” It seems the thermodynamic equilibrium was driven
more and more towards the creation and maintaining of the particle when more TEOS was
added, while the mixture of APTES and APTES-DOTAGA alone cannot make up stable
particles. This is the reason why pH was not necessarily adjusted to 9 before adding TEOS
anymore in the case of USNP@DOTAs-5 to simplify the protocol. In fact, pH 4 was shown
in some studies is where the condensation happens the most slowly.””’ Hence, this would
actually facilitate the equilibrium towards keeping the NPs at ultrasmall size.
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Figure 2-48. Eu titration curves of A) USNP@DOTAs-1, B) USNP@DOTAs-2, C) USNP@DOTAs-3 and D) USNP@DOTA s-4

The DOTAGA content of USNP@DOTA -5 was determined as ~ 0.8 pmol/mg (Figure 2-49).
The yield was 24.7% compared to the introduced quantity of DOTAGA (Table 2-9). This
result was 3 times higher than the yield obtained in DMSO/H,0 system for the NP with an
equivalent Dy (e.g. 7.9% for USNP@DOTA5-3).
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Figure 2-49. Eu titration curve of USNP@DOTA -5
Table 2-14. Elemental analysis of USNP@DOTA s
Batch USNP@DOTA 5-2 USNP@DOTAs-3 USNP@DOTA s-4 USNP@DOTAs-5
%mass Gd 0.0000 0.0000 0.0000 0.0000
relative mol Gd 0.0000 0.0000 0.0000 0.0000
%mass Si 15.900 19.900 23.700 16.700
relative mol Si 0.9554 1.3596 1.8185 1.1256
%mass C 27.300 23.800 22.000 27.900
relative mol C 3.8369 3.8032 3.9482 4.3981
%mass N 8.3000 7.3000 6.5000 7.4000
relative mol N 10000 Ratio O™ | 10000 Ratio |, COMO™ | 10000  Ratio oMM | 10000 Ratio , COMOM
(umol/mg), (umol/mg) (umol/mg) (umol/mg)

relative mol Gd 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000
relative mol A-D*| 0.1196  1.0000 0.7083 0.1147  1.0000  0.6798 0.1355  1.0000  0.8025 | 0.1683 1.0000 0.8889
relative mol A 0.4022  3.3643 2.3829 04263  3.7151  2.5255 0.3227  2.3820 19117 | 0.1586 0.9422 0.8375
relative mol T 0.4337  3.6273 2.5692 0.8186  7.1341  4.8496 1.3604  10.0424 8.0594 | 0.7987 4.7461 4.2188
relative mol DEG 0.0550 0.3270  0.2907
free chelators
% free chelators

*4-D: APTES-DOTAGA, A: APTES, T: TEOS

2.2.4. USNP as a flexible platform for complexing different metals

Different metals were used to complex with USNP@DOTA or USNP@DOTA;s to
demonstrate their flexibility and help study their nanostructures. First of all, as we have seen
above, Eu’" was introduced on every particle and Cu*" was complexed with USNP@DOTA
to quantify the amount of free DOTAGA. This implies the possibility of using USNP for
optical imaging while exploiting luminescence property of Eu’" and/or radioimaging using
radioactivity of **Cu isotope.”**® On the other hand, samples were complexed with Gd*" to
exploit its magnetic property as positive contrast agent in MRI. For example, USNP@DOTA
and USNP@DOTAs-5 were complexed with Gd®” to produce USNP@DOTAGd and
USNP@DOTA s-5-Gd respectively. USNP@DOTA was also complexed with a diamagnetic
lanthanide ion ie. Lu’~ (USNP@DOTALu) for NMR experiments. Besides,
USNP@DOTAis-5 was complexed with Tb*", Ho’" and Bi’" to give respective complexed
particles i.e. USNP@DOTA-5-Tb/Ho/Bi. These metals have potentials for different
biomedical applications. Tb>" as Eu’™ has been used frequently as a luminescence probe.””
Natural isotope of Bi*" has been reported recently along with our previously developed USNP
as a promising RS agen‘[.210 On the other hand, the chelation of Lu, Tb, Ho and Bi here can
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imply the potential of USNP as a nanocarrier for '"'Lu, '"*'Tb, '®*Ho radioisotopes as beta-
particle-emitters and/or 2'*Bi, *'*Bi as alpha-particle-emitters for therapeutic applications.*® In
all cases, the amounts of metals were kept at 90% to 95% compared to the amount of
DOTAGA to make sure no free metal was left in the solution.

Table 2-15 summarized the compositions and properties of USNP@DOTAs-5 after being
complexed with different metals.
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2.2.4.1. Complexation of Gd on USNP@DOTA to create USNP@DOTAGd

333 mg of USNP lyophilized powder was redispersed in ultrapure water to obtain a solution
of 200 g/l1. 36 ul of GdCl; 2.2 M solution at pH 4 (molar ratio DOTAGA : Gd =1 : 0.9) was
added slowly to the solution of USNP in three times. The pH of the solution was adjusted to
around 4 during each addition of GdCl; solution by adding NaOH solutions. The solution was
incubated at 80°C. Each 6 h (or 18h), pH was verified and readjusted to around 5. After 48 h,
pH of the solution was stable at around 5. Water was added to obtain a final concentration of
127 g/l or 100 mM in DOTAGA of USNP@DOTA and 90 mM in Gd*". The solution was
further purified through Vivaspin™ 3 kDa for 32 purification factor in case some free Gd*"
might remain. The pH of the solution was adjusted to 7.4 by adding NaOH solutions. Then,
the solution was filtered through 0.2 pm membrane and freeze-dried for long term storage.

2.2.4.2. Complexation of USNP@DOTAs-5 with different metals (Gd, Ho, Tb and Bi)

283 mg of lyophilized powder of USNP@DOTA;s-5 containing 227 pmol DOTAGA,
was redispersed in water to have a concentration around 200 mM of DOTAGA. pH of
the solution was adjusted to 5.5 by adding NaOH solutions. To produce Gd particle, 98.5 ul of
GdCls solution at 2.188 M (molar ratio DOTAGA : Gd =1 : 0.95) was added slowly in 3
times while the solution was heated and stirred on a heat plate at 70°C to speed up the
complexation. Between each time, pH was carefully increased to 5.5 by adding slowly NaOH
solutions before adding the next one. After 3 additions, water was added to obtain a
concentration of 100 mM of DOTAGA and a pH around 5.5. This solution was stirred in an
oil bath at 80°C for 18 h. After the incubation, pH stayed at around 5.5. This solution was
purified with water as solvent by tangential filtration (MWCO = 3kDa) with 16 purification
factor to get rid of any free Gd*". Finally, the solution was neutralized to pH 7 by adding few
drops of NaOH solutions and filtered through 0.2 um membrane and freeze-dried for long
term storage. Small samples of purified solution were analyzed by DLS.

Similar protocols were applied using 431 ul of HoCl; or TbClj solutions at 500 mM instead to
produce Ho and Tb particles respectively.

For Bi particles, due to a very limited solubility of bismuth hydroxide, 817 pl of
BiCl; solutions at 250 mM in HCl 6 M was used. The nanoparticles solution had to be
heated at 70°C before any addition was carried out. Otherwise, bismuth hydroxide would form
as white precipitates. NaOH solution at 10 M was needed to neutralize the solution to pH 5.5
and solution was heated in an oil bath at 80°C for 1 h between each step of addition. The
molar ratio DOTAGA : Bi=1:0.9 was used. The rest of the protocol was similar.

2.2.4.3. Characterization of complexed USNP@DOTA s,

Hydrodynamic diameters measured by DLS of USNP@DOTA-Gd, USNP@DOTAs-5-Gd,
USNP@DOTAs-5-Tb/Ho/Bi were 5.7 nm, 6.3 nm, 6.1 nm, 5.8 nm and 6.0 nm respectively
(Figure 2-52-A, Figure 2-53-A and Table 2-15). These results show a high level of the
colloidal stability of USNP platform and the repetitiveness of the protocol.

Zeta potentials of these samples at pH 6.6 were - 5.8, - 6.9, - 7.9, - 12.0 and 2.3 mV (Figure
2-50) and at pH 7.4 were -8.2, -21.8, -19.3, -19.8, -3.4 mV respectively. Though, we were not
afford enough materials to run more pH points for establishing the isoelectric point (pl) of
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every sample, these values suggest decreases of zeta potential values. This indicates the
presence of metals in the chelators which reduces the negative charges of chelators at neutral
pH (Table 2-9 and Table 2-15). Bi complexed particle had higher zeta potentials compared to
other lanthanides complexed particles at respective pH. This might be due to different
chemical properties and lower signals in ICP-OES of Bi compared to lanthanides. The former
might influence the silane distribution and activity which probably change the species ratio
after the purification while the latter might lead to an underestimation of Bi content.
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Figure 2-50. Zeta potential graphs at pH 6.6 of empty USNP@DOTAIS-5 (black) and
the same NP after complexed with metals: Gd (blue), Tb (green), Ho (violet), Bi (red)

The presence of metals was further confirmed by their IR spectra (Figure 2-51). Solutions
after DLS measurement were adjusted to pH 2 (to reveal the typical C=0 stretching vibration
band of free carboxylic acid at 1720 cm™ from the overlapping bands of amides)*'**'! before

being lyophilized for FTIR measurements. The disappearance/decrease of the peak at 1720
cm” indicated the complexation of metals in DOTA.

—— USNP@DOTAs-5 pH 2
—— USNP@DOTAs-5-Gd pH 2
—— USNP@DOTAs-5-Tb pH 2
—— USNP@DOTAs-5-Ho pH 2
—— USNP@DOTAs-5-Bi pH 2

Transmittance

4000 3500 3000 2500 2000 1500 1000

Wavenumber (cm ')
Figure 2-51. Infrared spectra of empty and metals-complexed USNP@DOTAIS-5

The purity and homogeneity of the particles were determined by HPLC analysis. The
lyophilized powders of these NPs was redispersed in water and diluted to 5 g/l in aqueous
solution of TFA 0.1% right before being injected to the column. Chromatograms of these
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samples indicated homogeneous populations of particles with high purities (> 90%). All

samples have a very similar tg at around 16 min (Figure 2-52-B, C, Figure 2-53-B and Table
2-15).
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Figure 2-52. Characterizations of USNP@DOTAGd: A) DLS diagram of USNP@DOTAGd and Chromatograms after
complexed with Gd** B) at 295 nm C) detected by fluorescence (Aex =274 nm, Aem = 312 nm).
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Figure 2-53. A) DLS diagrams of USNP@DOTAs-5 complexed with: Gd (black), Tb (green), Ho (blue), Bi (red);

B) Chromatograms at 295 nm (normalized to the same height) of the same samples with respective color code.
The relaxivities of USNP@DOTAGd, USNP@DOTAGd* and USNP@DOTAs-5-Gd were
shown in Table 2-16. High longitudinal relaxivity (r;) (21.4 mM".s”, 18.5 mM™.s" and 23.2

mM.s™") combining with a low ratio ro/r; (1.59, 1.55 and 1.65) indicating their potential as
good positive contrast agents for MRI.

Table 2-16. Relaxivities of USNP@DOTA@Gd and USNP@DOTA s-5-Gd

Sample r; (mM".s") ry/r;
USNP@DOTAGd 21.40 1.59
USNP@DOTAGd* 18.51 1.55
USNP@DOTA|5-5-Gd 23.23 1.65

To futher investigate the structure of metal complexed particles by NMR, Lu was introduced
in USNP@DOTA (molar ratio DOTAGA : Lu = 1 : 0.9) with similar protocol used for
USNP@DOTAGd. After complexation, particle was lyophilized and redispersed in D,O for
the measurement. Lu was chosen for NMR studies because of its diamagnetic nature and its
similarities in terms of chemical properties to other lanthanides. Other paramagnetic
lanthanides i.e. Gd, Eu, Tb, Ho will detrimentally broaden the peaks in NMR spectra and
unable the signal acquisition process of DOSY technique. Bi as a diamagnetic element can
also be used for NMR experiments. However, since this study focuses more on lanthanides,
Lu represents as the best candidate. In the future, different diamagnetic metals can also be
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tested to verify their structural differences. NMR-DOSY spectrum of USNP@DOTALu is
shown in Figure 2-54-A. It shows a similar result to that of USNP@DOTA. The main
products still had D around 56 um?/s. They coexisted with some other smaller species which
have faster D (410 and 214 pm?/s). Dy of the main particles calculated from Einstein equation
was 6.8 + 2.4 nm. 'H spectrum of USNP@DOTALu (Figure 2-54-B) was not exactly similar
to the one of USNP@DOTA (Figure 2-35-B) since the complexation changed significantly
the configuration of DOTAGA.'" However, still no 'H of DOTAGA showed a peak at the
region smaller than 1 ppm. So the integration method described above for USNP@DOTA can
still be applied and give the ratio APTES/APTES-DOTAGA as 0.87. Hence, the size and the
ratio of functional groups were rather maintained during the complexation.
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4 | M A < OJ:f/H B

8 = I l ‘ i e ) . 410 pm?/s || ﬂ“l\"”ll Hl

Figure 2-54. NMR study of USNP@DOTALu: A) NMR-DOSY spectrum and B) The positions of HI, H2 and H3 on the APTES and
APTES-DOTAGA functional groups on the particle and "H NMR spectrum at 127 g/ in D,0.

To determine specifically the presence and the contents of metals in USNP@DOTAGA,
USNP@DOTAs-5-Gd/Tb/Ho/Bi, ICP-OES measurements were conducted. This is a reliable
method to specifically demonstrate the presence of metals. Signals were detected at typical
atomic emission wavelengths of each metal i.e. 342.246, 335.048, 336.224 nm for Gd,
350.914, 367.636, 387.417 nm for Tb; 345.600, 339.895, 341.644 nm for Ho and 223.061 nm
for Bi. The results were 0.604, 0.654, 0.558, 0.625 and 0.442 pmol/mg for USNP@DOTAGd
and USNP@DOTAs-5-Gd/Tb/Ho/Bi respectively (Table 2-15).

The ratio of each species in USNP@DOTAGd was calculated from the elemental ratio of Gd,
Si, C and N as (GdyosAPTES-DOTAGA;APTES;,TEOS¢)x (Table 2-8) which is in
accordance with non-complexed USNP@DOTA. Si, C and N in metal-complexed
USNP@DOTAs-5 were not analyzed. However, if we assume, after the complexation and
purification, the ratio of elements remain the same, DEG have been washed completely and
each molecule of APTES-DOTAGA, APTES and TEOS still implies the molecular structure
as Si01,5(CH2)3NH-DOTAGA(2'), SiOl‘s(CH2)3NH3+ and SiO, respectively, then we can
propose the molecular structures of USNP@DOTAs-5-Gd/Tb/Ho/Bi as (Gdy70APTES-
DOTAGA[,00APTESQ95TEOS4,75)X, (Tbo‘sgAPTES—DOTAGAl,00APTESQ95TEOS4,75)X,
(H0067APTES—DOTAGA1 ,00APTESQ95TEOS4.75)X and (B1047APTES—
DOTAGA | ooAPTES9sTEOS, 75)x respectively (Table 2-15). It is worth noting that the ratio
of elements remain unchanged is a strong assumption because the purification process can
predominantly remove less-stable, smaller particles compared to other ones and modify this
ratio.
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To complement the results of ICP-OES, UV-vis and phosphorescence spectra of metals
complexed USNP were recorded to show the photophysical imprints of respective metals. The
UV-vis spectra of USNP@DOTAs-5 and different metals-complexed particles were recorded
at the same concentration. Sample of USNP@DOTAs-5-Bi showed an intense peak at 309
nm which is typical for DOTA(Bi®") complex (Figure 2-55-A).2'* This result was also

demonstrated by a more intense NP peak of the chromatogram of USNP@DOTA s-5-Bi
(Figure 2-55-B).

= USNP@DOTAs-5-Tb 5g/l in TFA 0.1%
= USNP@DOTAs-5-Gd 5g/I in TFA 0.1%
—— USNP@DOTAs-5-Ho 5g/l in TFA 0.1%
—— USNP@DOTAs-5-Bi 5¢/l in TFA 0.1%
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Figure 2-55. The presence of Bi in USNP@DOTA s-5-Bi:
A) Absorption spectra of empty (black), Gd (blue), Tb (red), Ho (green), Bi (violet) NP at 0.06 g/l
B) Chromatograms at 295 nm as originally acquired of USNP@DOTAs-5 complexed with metals: Tb, Gd, Ho, Bi with
the same color code at 5 g/l. Spectra and chromatograms of Gd, Tb, Ho complexed particles were put for comparison.

Meanwhile, UV-vis spectrum of USNP@DOTA s-5-Ho shows several absorption peaks of
Ho" (Figure 2-56). Figure 2-57-A shows the excitation and emission spectra of
USNP@DOTAs-5-Gd with typical excitation peak and emission peak for Gd at 273 nm and
313 nm respectively.””> Figure 2-57-B shows those spectra of USNP@DOTA s-5-Tb with
typical emission peaks at 489, 546, 586, 622 nm for Tb.**

295 nm
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Figure 2-56. Absorption spectra of empty (black) and Ho (red) NP at 5 g/l as well as
solution of HoCl; 50 mM in HC1 0.1 mM (blue). Insets: zoomed ROI of the spectrum of
the empty (orange) and Ho complexed NP (green)
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Figure 2-57. A) Excitation spectrum (blue, Aem = 313 nm) and emission spectrum (red, Aex = 273 nm) of
USNP@DOTAIS-5-Gd at 0.06 g/1; B) Excitation spectrum (blue, Aem = 546 nm) and emission spectrum (red, Aex
=221 nm) of USNP@DOTAIS-5-Tb at 0.06 g/1.

2.2.5. Behaviors of USNP in human serum

The non-specific adsorption of protein on NPs is an important aspect for evaluating a
nanomedicine. Physical, chemical and biological properties of NPs can be greatly affected if
they have strong interactions with blood proteins. Such interactions can increase the
hydrodynamic diameter and prevent renal clearance of ultrasmall NPs. In some cases, the
recognition of targeting ligands on the surface of the particle can also be affected by the steric
hindrance created by protein adsorption. 12,62

The interactions between blood proteins and ultrasmall NPs are attracting more and more
interests. Different analytical techniques have been developed to investigate these interactions
such as circular dichroism, gel electrophoresis, size exclusion chromatography etc.'%*'#2!>

The choice of methods depends on the properties of the NPs. In the case of Gd-containing
NPs, relaxometry is a simple method that might be used to assess strong bindings of proteins

on particles. Several authors have reported the increase of longitudinal relaxivity of Gd
complexes when being electrostatically attached or covalently bound to a protein. Giardiello

M. et al. have reported an increase of relaxivity from 7.6 mM™.s” to 11.7 mM™.s™ or from
73 mMs? to 16.0 mM™Ts? (at pH 7.4, 298 K, 20 MHz) of their DOTA derivatives Gd
complexes in the presence of human serum albumin (HSA).?'® Gianolio E. ef al. have shown
that their Gd complexes based micelle can possess a two times higher relaxivity (30 mM™.s™

vs. 84 mM".s™ at 298 K, 20 MHz) while being interacted by HSA."'® Vandesquille M. et al.

have observed an increase of 10 times both longitudinal (3.0 mM s vs. 29.7 mM'l.s'l) and
transverse relaxivity (3.5 mM s vs. 33.9 mM™.s) (in water, 298 K, 60 MHz) of DOTA(Gd)
grafted on a single-domain antibody-fragment having a very small hydrodynamic diameter
(Dy ~ 4 — 5 nm).>"”

As a preliminary attempt to evaluate the interaction between USNP and blood proteins, we
measured the relaxation times of concentrated solutions of Gd complexed USNP@DOTA s-5
in water and human serum. Then, we also follow the degradation of diluted samples reflected
by the relaxation times in respective media.

For this experiment, Gd was complexed with USNP@DOTA s-5 to produce a second batch of
USNP@DOTAs-5-Gd  with exactly the same parameters used previously. The
characterization of this batch is shown in more details in the Annex-5. Dy of the particle and
the retention time in chromatogram was maintained at 5.5 £ 1.3 nm and 16.4 min which were
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similar to the first batch. The ratio of particle peak over fragment peaks was 87.5% which was
lower than the first batch (96.6%). Phosphorescence emission spectra of filtrates have been
recorded and they prove that, after 150 purification factor, the particle solution has reached
the maximum purity at the equilibrium of that concentration (140 g/l) and could not be further
purified. But this detail should not significantly affect the measurement.

2.2.5.1. Evaluation of non-specific protein adsorption on USNP

Experimental protocol:

Two lyophilized samples of USNP@DOTA s-5-Gd were dispersed in water at 94 g/l (or 56.3

mM, or 56.3 mmol in Gd/100 g of water, pH 7.3) and in human serum (H4522, SigmaAldrich)
at 88 g/l (or 56.5 mmol in Gd of NP/100 g of water, pH 7.7). Samples were left at room

temperature for 30 min to completely disperse. Relaxation times (at 37°C, 1.4 T/60 MHz)

were measured at this point. Then samples were incubated at 37°C for 1 h before relaxation

times were measured again to verify if any changes could happen.

Results and discussion:

There are two reasons for using the mass concentration of water in serum rather than using
volume concentration of the whole serum. First, Toth E. et al. have shown that the linear
relationship between relaxation time and concentration is more precise when the relaxivity
was normalized with the mass of solvent instead of the volume of solution especially in
concentrated solutions.® Second, 1 L of human serum contains approximately 45 g to 99 g
solutes i.e. proteins, lipids, glucoses, salts which is a considerable amount especially at low
concentrations. Relaxation times of serum sample prepared by volume concentration were
also recorded but the values during the kinetics measurement were not reasonable with much
higher plateau values at the end of the curve than the ones of the sample in water (Annex-5).
Probably, the equilibrium of grafted silanes and free silanes depends more precisely on the
ratio water/silane in the sample than on the volume concentrations of silanes. Therefore, we
choose to present the data of the solutions prepared in the same mass of water for the sake of
consistency. We used an average value of 72 g solutes in 1 L of serum to estimate the amount
of water.

Table 2-17 shows the relaxation velocities normalized by the amount of NP and the amount of
water (100 g of water is equivalent to 1 L in the presentation of conventional molar relaxivity)
of USNP@DOTAs-5-Gd in water and human serum at the concentration 94 g particle (56.3
mmol in Gd) per 100 g water. The longitudinal and transverse relaxation velocities in this
case are referred to as r;* and r* to distinguish with the conventional molar relaxivity. The
results show that r1* and r,* of sample in water and in human serum are similar even after 1 h
of incubation at 37°C. This preliminary result might indicate that no strong binding (‘“hard”
corona) of biological macromolecules especially proteins happened to USNP@DOTA s-5-Gd.
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Table 2-17. Longitudinal (r;*) and transverse (r,*) relaxation velocities normalized by the amount of Gd in NP and water in the
sample of the second batch of USNP@DOTA s-5-Gd in water (56.3 mmol in Gd /100 g of water) and in human serum (56.5 mmol in
Gd g/ 108 ml of human serum containing ~ 100 g of water) (37°C, 60 MHz).

r *
((mmol/100 1g water)”.s™) r/re
USNP@DOTA;5-5-Gd in water 20.7 1.69
USNP@DOTAs-5-Gd (37°C, 1 h) 320.4 1.70
USNP@DOTA5-5-Gd in human serum 19.8 1.68
USNP@DOTAs-5-Gd in human serum (37°C, 1 h) 19.6 1.67

2.2.5.2. Degradation of USNP in human serum

Experimental protocol:

The two samples above were quickly diluted in water and in human serum respectively to a
concentration of 1 g particle (0.60 mmol in Gd) per 100 g of water. This concentration was
chosen since it corresponds with the dose used in clinical trials (ca. 100 g/kg) and the blood
volume of an average human (5 — 6 L). The relaxation times (37°C, 1.4 T/60 MHz) were
followed during one day to find out the degradation kinetics in two different media.

Results and discussion:

The results are shown in Figure 2-58 and Table 2-18. The relaxation velocity gradually
decreased in both water and human serum to almost the same plateau values. It might justify
the use of mass concentration of water in serum for calculation. This indicates that the
equilibrium of grafted silanes and free silanes is actually in correlation with the ratio of
silane/water in the sample rather than volume concentration of silanes. These curves were
fitted to a single exponential decay function to give the half-life (t;,) in water and in human
serum in terms of r;* as 94 min and 53 min respectively and in terms of r,* as 83 min and 49
min respectively. These decreases in relaxation velocities might reflect the detachment of
Silane-DOTAGA(Gd) from the polysiloxane network due to water hydrolysis as we have seen
previously in the case of AGulX. The degradation happened more slowly in water since after
being diluted pH of particle solution in water went to 6.6, whereas human serum acted as a
buffer to keep the pH always at 7.7 for the other sample. Hence, similar to AGulX particle,
whether in intact state or during the degradation, USNP@DOTAs-5-Gd did not show any
significant increase in relaxation velocity which may be the indication of the lack of strong
interactions with blood proteins. The degradability of such polysiloxane system as USNP is
also considered as an advantage for a renal clearable NP.
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Figure 2-58. Kinetics of degradation measured by relaxometry of the second batch of USNP@DOTA ;5-5-Gd in water
(solid symbols) and in human serum (open symbols) at 1 g particle (0.60 mmol in Gd)/100 g water (37°C, 60 MHz): A)
longitudinal and B) transverse relaxation velocities over time. The results were normalized with mmol of Gd in NP and the
mass of water in the samples.

Table 2-18. Half-life of longitudinal (r;*) and transverse (r,*) relaxation velocities normalized by the amount of NP and water in the
samples of the second batch of USNP@DOTA s-5-Gd in water (0.60 mmol in Gd/100 g of water) and in human serum (0.60 mmol in
Gd/ 108 ml of human serum containing ~ 100 g of water) (37°C, 60 MHz).

ti, (min) of ri*  ty, (min) of ry*
USNP@DOTAs-5-Gd in water 53 49
USNP@DOTA5-5-Gd in human serum 94 83

2.2.6. Cytotoxicity of USNP@DOTAGd

The toxicity of USNP@DOTAGAd on prostate cancer cells (PC3) was evaluated rapidly with
XCelligence apparatus (ACEA Biosciences, USA). This experiment was conducted with the
technical assistance of our collaborator Rosa S., Centre for Cancer Research and Cell Biology
Queen’s University, Belfast, Northern Ireland.

2.2.6.1. Working principle of XCelligence

XCelligence is an apparatus that allows evaluating the proliferation of cells on a gold
electrode (Figure 2-59). The electrodes are located at the bottom of cell culture wells.
Normally, there is always a current running through the electrode. When we perform cell
culture in these wells, the cells will start to stick on, grow and cover the whole surface. This
creates impedance preventing the electric current. Depending on the extent of cell
proliferation on the electrode, the impedance will increase correspondingly. The apparatus
will show the cell index (CI) value which is the difference between the impedance at a certain
time point after cells are cultured and the impedance at the beginning where only medium but
no cell is present normalized by the impedance of the electrode alone (Equation 2-9). If the
cells are exposed to a toxic compound, they will lose their normal capacity to adhere and
spread on the surface of the well. The impedance of poisoned cells will, therefore, decrease
compared to normal cells.”"®

. _Zun —Zy
Cell index (C]) = —— Equation 2-9

nominal

Where

Z,,: impedance at a certain time point t; (in the presence of cells)
Z,: impedance at t, (only medium, absence of cells)

Zominal: impedance of the electrode alone (no medium or cells)
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Figure 2-59. XCelligence set up and working mechanism.”'®

2.2.6.2. Results

0.2 ml of prostate cancer cells (PC3) medium containing approximately 3000 cells was
cultured on 4 wells of XCelligence setup. These cells were allowed to grow overnight. After
24h, media in 4 wells were aspirated to add 0.2 ml of fresh medium, or solutions at 0.5 mM in
Gd of USNP@DOTAGd, AGulX synthesized in the lab or AGulX synthesized in GMP
condition respectively. These wells were let untouched and the impedance were followed by
XCelligence during 7 days (Figure 2-60). As the results have shown, there is almost no
difference in the impedance of PC3 cells alone or cells in the presence of USNP@DOTAGd
or AGulX. In conclusion, similar to AGulX, USNP@DOTAGd seems to have no inherent
effect on the proliferation of PC3 cancer cells.
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Figure 2-60. Cell index measured by XCelligence during 7 days of PC3 cells alone (blue) or in the presence of 0.5 mM in Gd of
USNP@DOTAGdA (red), AGulX synthesized in the lab (green) or AGulX synthesized in GMP condition (violet).

2.2.7. The application of USNP@DOTAGAd* in in vivo MRI imaging

As an illustration of the potential for biomedical applications of these ultrasmall NPs,
USNP@DOTAGAd* was chosen for studying the contrast-enhancing property in MRI of new
Gd complexed particles. The solution of particle was intravenously injected in mice bearing
ectopically induced colorectal tumors. MRI images over time were acquired to observe the
circulation of the particle.

This work has been carried out by Dr. Grégory Ramniceanu and Dr. Bich-Thuy Doan (Team
“Synthese, Electrochimie, Imagerie et Systémes Analytiques pour le Diagnostic” (SEISAD))
and Dr. Nathalie Mignet (Team “Vecteurs pour I’'Imagerie moléculaire et le Ciblage
Thérapeutique” (VICT)) from University Paris Descartes.

2.2.7.1. Experimental protocol

Three BALB/c mice were inoculated subcutaneously with colon carcinoma (CT26) cells on
both flanks.

USNP@DOTAGd* lyophilized powder was dispersed in physiological serum at 100 mM (in
Gd). Solution was diluted to 20 mM in serum before being injected intravenously to three
mice at the dose of 200 pmol (in Gd) per kg.

Images were acquired before (pre-contrast) and after injection (post-contrast) using a 7 T MRI
system 300WB micro imaging spectrometer, with a 1H 40 mm coil, Paravision 5.11 software
(Bruker, Germany). The respiratory rate was continuously monitored by adjusting isoflurane
concentration (1.5 %). Dynamic contrast enhanced (DCE) sequence was recorded using
Intragate Flash multislices for motion free artifacts with TR = 100 ms, TE =4 ms, flip angle =
80°. The repetition number was set to 15 and a number of time frames to reconstruct was 1. A
field-of-view (FOV) of 3 cm x 3 c¢cm and a matrix of 256 x 256, 4 slices with a thickness of 1
mm were chosen, giving a spatial resolution of 117 um x 117 um in plane. The total scan time
was in the order of 3 min 14 sec. Finally, an elongated version of the Intragate Flash
multislices sequence was used for the dynamic follow-up to obtain the same temporal
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resolution in a scan time of 40 min. 2 — 3 min scans were perfomed 3 — 6 hours post-contrast
as follow up.

Several regions of interest (ROI) in tumors and liver were monitored and the MRI intensities
of ROIs were plotted pre- and post-injection of the particle. Tissue enhancement level of the
signal in each tissue area was calculated as (S; — S¢)/Sop, where S; was the signal intensity
measured at each time point after injection, and Sy was the signal intensity before injection.

Of three mice injected with USNP@DOTAGdAd*, only one showed clear enough images for
assessing hepatic accumulation and clearance due to the difficulty in positioning the animals.
In fact, they were positioned rather to reveal better the tumors than the other organs.

The data obtained with USNP@DOTAGd* was compared relatively with the one obtained
previously with classical AGulX particle. AGulX was also prepared and injected similarly at
the same concentration and dose of Gd in three healthy female BALB/c mice. These mice
were positioned to reveal better the livers and allow obtaining full data for hepatic clearance.

2.2.7.2. Results

Figure 2-61-A shows MRI cross-sections before and after injection of USNP@DOTAGd*
where the tumor regions are highlighted as expected. Comparison of the pre- and post-
contrast images clearly reveals the higher brightness at the tumor regions caused by the
particle. Contrast enhancement was expressed as percentage of enhancement compared to the
pre-contrast image. In the tumor tissue, USNP@DOTAGd* showed an intake phase with a
maximal enhancement 30 minutes post injection (35 % of signal increase) and a prolonged
clearance phase, with a half-time of 3 hours, demonstrating the EPR effect (Figure 2-61-B). In
the liver, peak of enhancement (90 % increase of signal) was observed at 6 minutes post-
injection of USNP@DOTAGd* followed by a clearance phase (Figure 2-61-C, triangles
curve). After 40 min post-injection, the signal was at half of maximal intensity, indicating a
hepatic half-time of 30 minutes. The data obtained previously with AGulX show relatively
comparable hepatic clearance kinetics (Figure 2-61-C, circles curve). After bloodstream
circulation with a complementary transitory visualization through the vascular network in the
liver, particles were excreted from the kidney cortex to the bladder as previously shown with
AGuIX."”!

This imaging study evidences that USNP@DOTAGd* displays contrast enhancement in both
the tumors and hepatic tissues over the full observation period, without the typical liver
accumulation observed for macromolecular agents.”’’ Thus, they improve the imaging
properties without undesired liver uptake. Meanwhile, the relatively long retention time in the
tumors opens the perspective for vectorization towards tumor tissues.
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Figure 2-61. In vivo MRI contrast enhancement of USNP@DOTAGd*: A) MRI cross-sections of the tumor tissues
(white arrows) pre- (left) and post-injection (right, up to 6 h) of USNP@DOTAGd*; B) Dynamic MRI signal enhancement
in tumor tissues after injection of USNP@DOTAGd* and C) Dynamic MRI signal enhancement in the liver after injection
of USNP@DOTAGAd* (black curve, triangles) (The data obtained previously with AGulX is presented for relative
comparison (gray curve, circles)).

2.3. Conclusion and perspectives

In this chapter, we have 1) revised the synthesis, structure and properties of standard AGulX
nanoparticle; 2) explored the nanochemistry of polysiloxane structures; 3) established a
straightforward protocol for synthesizing ultrasmall silica nanoparticles displaying metal
chelates as well as 4) characterized them in terms of physicochemical properties, interaction
with biomolecules and pharmacokinetic behaviors in mice bearing tumors. Indeed, new
products showed promising results in these aspects. This new synthesis pathway will allow
easy tailoring of USNP structure and composition for different applications in the future.
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Chapter 3. Functionalization of AGulX nanoparticle

3.1. Functionalization of AGulX with chelating silanes for bimodal imaging
3.1.1. Introduction

As we have seen previously, each medical imaging technique has different drawbacks
alongside with advantages. Among them, MRI is gaining more and more popularity in
hospitals for precise imaging thanks to the easy access, high spatial resolution and non-
radiative nature. Nevertheless, MRI is plagued by its low sensitivity and contrast which makes
it not ideal for quantification purposes. On the other hand, radioimaging, more specifically,
single photon emission computed tomography (SPECT) or positron emission tomography
(PET), offers precise quantification without being limited by penetrability issue as optical
imaging. Hence, more and more researches have been dedicated to the combination of MRI
contrast agents and radioisotopes in one single object to correlate the images obtained by MRI
and the ones acquired by radioimaging.'® In this context, a bimodal probe which allows the
localization of disease sites by both techniques should be highly desirable. AGulX
nanoparticle or its derivatives can be one of such multifunctional nanoprobes. While being an
effective contrast agent for MRI, they can also complex different isotopes e.g. '''In, **Ga, *Zr
used for radioimaging thanks to the free chelators that existed on its surface from the
beginning or being added post-synthetically.'*®!?%!!

Common methods for adding free chelators on AGulX were to use NHS (M-
hydroxysuccinimide) esters'***'° or SCN (isothiocyanate) derivatives'*® of chelators to react
with amine groups on the surface of the particles. The materials required for these strategies
have been well developed and commercialized. Moreover, these reactions are quite fast,
straightforward and well known. Nevertheless, there are still some limitations for these
strategies. First of all, NHS esters and SCN are prone to be deactivated by hydrolysis. Hence,
they cannot be stored for a long period of time even at low temperature in desiccated
condition. Second, these activated species can cross-react with amines present in targeting
ligands that we want to functionalize, for example, amines of positively charged amino acids
1.e. lysine, arginine or histidine of a peptide. This implies complicated protecting/unprotecting
strategies such as using tert-butyloxycarbonyl (Boc) or 9H-fluoren-9-ylmethoxycarbonyl
(Fmoc) protecting groups.”” In this part, a new functionalization strategy based on silane
chemistry was proposed. DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-
triacetic acid) and NODAGA (1,4,7-triazacyclononane, 1-glutaric acid-4,7-diacetic acid) were
coupled with APTES (Figure 3-1-A). These species were then used to functionalize AGulX
by reacting specifically with available silanol groups, Si-OH, on the surface of the particle in
a single step without the presence of any other reactants (Figure 3-1-B). This strategy has
been used by Ciccione ef al. to successfully graft precisely certain ratios of fluorophores and
different targeting peptides on a 80 nm silica nanoparticle to actively increase the
internalization of particles in cancer cells.”?' The activities of silanes are not affected by
hydrolysis. Hence, it can be stored and used for a long period of time. In addition, the
unreacted silanes are highly soluble so that they should be removed easily by filtration. The
functionalized particles were characterized with different analytical methods to prove the
presence of free chelators on the particles. By increasing the introduced quantity of chelating
silane precursors, the amount of free chelators can be increased proportionally. Finally,
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bimodal MRI/PET imaging experiments were performed on mice to demonstrate the potential
of this type of NPs. ®*Cu was chosen as positron emitters for PET imaging. This radioisotope
has a reasonable half-life (13 h) for pharmacokinetic study of AGulX which has a 1 h half-life
in patients’ blood (phase I trial NANO-RAD; ClinicalTrials.gov Identifier: NCT02820454).
Regarding the choice of chelator, although the thermodynamic stability constant of NOTA
(original structure of NODAGA) is comparable to the one of DOTA (logKnora = 21.6 vs.
logKpora = 22.2)*%, different studies have shown higher in vivo stability of copper complexes
of NOTA, NODAGA and their derivatives compared to the ones of DOTAGA and their
derivatives.””> **® Therefore, NODAGA functionalized particle was chosen to be radiolabeled
with ®Cu for biodistribution study.
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Figure 3-1. A) The reaction scheme of the synthesis of APTES-DOTAGA (upper) and APTES-NODAGA (lower); B) The reaction
scheme of the functionalization of APTES-DOTAGA and APTES-NODAGA on AGulX.

3.1.2. Experimental protocol
3.1.2.1. Synthesis of chelating silanes

Two types of chelating silanes ie. APTES-DOTAGA and APTES-NODAGA were
synthesized from the reaction between APTES and either t-butyl protected DOTAGA ((t-
bu)sDOTAGA) or t-butyl protected NODAGA ((t-bu)sNODAGA) (Figure 3-1-A). The
peptide bond was formed by wusing HBTU ((2-(1H-benzotriazol-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate) as coupling agent. After purification, APTES-(t-
bu)sDOTAGA and APTES-(t-bu);NODAGA were deprotected by concentrated hydrochloric
acid to obtain final products. The excess of acid was removed by evaporation. Solutions were
lyophilized for storage.
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3.1.2.1.1. Synthesis of APTES-DOTAGA
See Chapter 2.

3.1.2.1.2. Synthesis of APTES-NODAGA

This work was carried out by Thakare V. in Chematech, Dijon.

NODAGA(tBu); (1.0 g, 1.84 mmol) was weighed in 100 mL round bottom flask and was
dissolved in 20 mL of DCM under the hood with stirring. DIPEA (1.3 mL, 7.5 mmol) was
added into above solution followed by coupling agents viz. HBTU (1.0 g, 1.95 mmol) and
HOBt (1.0 g, 1.95 mmol) and the solution was left for stirring at rt for 15 min. APTES (0.43 g,
1.95 mmol) was added to the above solution directly using the 1 mL syringe and solution was
stirred further at rt for 60 min after which the product formation was confirmed through MS.
The above solution was mixed with 50 mL of citric acid solution (pH 2.5 - 3) in a separating
funnel and the organic layer was recovered. The organic layer was further mixed with 50 mL
of 5% NaHCO; in a separating funnel and the organic layer was recovered. The DCM
solution was stirred with 5 g of MgSOj for 10 min and filtered using sintered funnel to receive
the dry and clear DCM solution. Organic phase was evaporated under vacuum at 30°C to get
a viscous brownish residue, as an intermediate product (1.5 g, 99%). The intermediate
formation was verified using HRMS, 'H, >C NMR and elemental analysis.

NODAGA(tBu);-APTES was weighed into a 100 mL round bottom flask and was mixed with
5 mL of conc. HCI and stirred for 10 min. Later, the acid was evaporated under vacuum at
35°C in 5-15 min to get a dried residue. The above dried residue was dissolved in 10 mL of
water and lyophilized to get a light brown colored powder (1.2 g, 96%). The product was
verified using HRMS, '"H NMR and elemental analysis.

3.1.2.2. Characterization of the intermediate product and APTES-NODAGA
3.1.2.2.1. Methods

See Chapter 2 (methods for -characterizing APTES-DOTAGA synthesized from
(tBu)sDOTAGA).

3.1.2.2.2. The results for intermediate product (NODAGA (tBu)s~-APTES)
HRMS: Calculated for C3sH7oN4010Si: 747.493 [M+H]"; Obtained: m/z = 747.493 [M+Na]"
(Figure 3-2)

'"H NMR (500 MHz, CDCl3) § 0.5 — 0.6 (m, 2H), 1.0 — 1.1 (m, 1H), 1.1 — 1.2 (m, 7H), 1.4 (d,
J=17.2Hz, 25H), 1.5 — 1.6 (m, 2H), 1.8 (d, /= 8.8 Hz, 1H), 1.9 — 2.1 (m, 1H), 2.2 — 2.5 (m,
2H), 2.6 — 3.3 (m, 22H), 3.7 — 3.8 (m, 4H), 6.2 (d, 1H).

>C NMR (126 MHz, CDCl3) § 7.8, 18.3, 18.4, 23.1, 26.2, 28.1, 28.2, 28.3, 29.7, 33.4, 38.6,
42.0,53.7,55.9,58.4,80.8,165.7, 171.7, 172.8.

Elemental Analysis: Calculated for C36H70N4O;0S1.0.6HPF¢ (%): C: 51.81, H: 8.53, N: 6.71.
Observed (%): C: 52.58, H: 9.13, N: 8.85.
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Figure 3-2. Mass spectra of butyl protected APTES-NODAGA: A) experimental spectrum, B) simulated spectrum

3.1.2.2.3. The results for APTES-NODAGA

HRMS: Calculated for C;gH34N40;0S1: 495.211 [M+H]+; Obtained: m/z = 495.212 [M+H]+;
517.191 [M+Na]" (Figure 3-3).

'"H NMR (500 MHz, D,0) & 0.41 — 0.80 (m, 2H), 0.93 — 1.28 (m, 2H), 1.39 — 1.59 (m, 2H),
1.84 — 2.18 (m, 2H), 2.27 — 2.46 (m, 2H), 2.73 (s, 5H), 2.97 — 3.18 (m, 5H), 3.19 — 3.45 (m,
7H), 3.48 — 3.75 (m, 1H), 3.79 — 4.10 (m, 4H).

Elemental Analysis:
Calculated for C;sH34N40;0S1.HPF¢.HCI (%): C: 31.93, H: 5.36, N: 8.28.

Observed (%): C: 31.74, H: 6.64, N: 8.81.
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Figure 3-3. Mass spectra of deprotected APTES-NODAGA: A) experimental spectrum, B) simulated spectrum

3.1.2.3. Grafting of APTES-DOTAGA or APTES-NODAGA on AGulX

First, each type of silanes was mixed with NP in molar ratio Gd : chelator = 10 : 1.5
(AGuIX@D-1 (for DOTAGA functionalized particle) and AGulX@N-1 (for NODAGA
functionalized particle). 250 pmol in Gd of AGuIX were dispersed in water to obtain [Gd*'] =
200 mM for 1 h. pH of the solution was 7.4. 29.8 mg (40 pumol) of APTES-DOTAGA or 24.7
mg (40 umol) of APTES-NODAGA was dissolved in water. pH of the solution was adjusted
to 9 by adding NaOH solutions with appropriate concentrations. This solution was left under
stirring for 1 h before water was filled to obtain [chelating silane] = 100 mM. It was then
gradually added to the AGuIX solution under stirring at room temperature before water was
added to obtain [Gd*"] = 100 mM and [chelating silane] = 15 mM. The mixture was left
stirring for 1 h before pH was adjusted to 4.5. It was heated at 80°C and left under stirring
overnight.

Secondly, lower temperature (40°C instead of 80°C) and lower total silane concentration (ca.
58 mM instead of ca. 115 mM) were applied to see the effects on the homogeneity of the final
NPs (AGulX@D-2 and AGulX@N-2). A series of samples with increasing amount of
APTES-DOTAGA (Gd/chelator = 10/1.5, 10/2 and 10/4 respectively) (AGulX@D-2, 3, 4)
was prepared to test the possibility of tailoring the amount of free chelators at the surface of
the nanoparticle. Similar protocol was applied for these formulas with some modifications:
[Gd**] was decreased to 100 mM. 29.8 mg (40 pmol) or 37.2 mg (50 umol) or 74.5 mg (100
umol) of APTES-DOTAGA or 24.7 mg (40 umol) of APTES-NODAGA was used for
AGulX@D-2, AGulX@D-3, AGulX@D-4 and AGulX@N-2, respectively. The
concentration of chelating silane solutions before being added in NP solutions was decreased
to 50 mM. At the end, they were heated at 40°C overnight.
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Then each solution was purified with tangential filtration through Vivaspin membranes
(MWCO = 3 kDa). The pH of the solution should be adjusted to 2 by adding HCI solutions
before the purification. The solution was centrifuged until half of the volume remains. This
step was repeated by filling the tubes with hydrochloric acid (HCl) solution 10? M and
centrifuging again for at least 50 purification factor (purification factor = starting volume/end
volume). Then, the solution was filtered through 0.2 um membrane to remove dust and large
impurities. Finally, the solution was freeze dried for long term storage.

Different syntheses with their respective experimental conditions were summarized in Table
3-1.
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3.1.3. Characterization of the functionalized particles

Table 3-1 also shows different characterization results of the NP before and after
functionalization by chelating silanes.

First attempts were to functionalize AGulX with 15% of DOTAGA (AGulX@D-1) and
NODAGA (AGuIX@N-1) using 80°C incubation. Dy of the particles which only slightly
increased from 4.2 + 0.8 nm for AGulX to 4.5 £ 0.9 nm for AGulX@D-1 and AGulX@N-1
indicated that the size was maintained ultrasmall (Figure 3-4 and Table 3-1).

— AGuIX
= AGulX@D-1
35, — AGuIX@N-1
304
& 259
© 20]
£ 15
S 10
54
0= . .
1 10 100

Diameter (nm)

Figure 3-4. DLS diagrams of:
AGuIX (black), AGuIX@D-1 (DOTAGA, 80°C) (blue) and AGuIX@N-1 (NODAGA, 80°C) (red)

In addition, many features proved the presence of free chelators on the particles after the
reaction. First of all, the zeta potentials at pH 7.0 decreased from + 8.2 mV for AGulX to - 8.3
mV for AGuIX@D-1 or - 13.7 mV for AGuIX@N-1 (Table 3-1). Vibration band at 1730 cm™
in IR spectra, corresponding to C=0O stretching vibration band of free carboxylic acid, was
detected (Figure 3-5). The retention time (tg) in chromatograms increased from 13.6 min for
AGulX to 15.3 min for AGulX@D-1 or 14.7 min for AGulX@N-1 (Figure 3-6-A, B). The
content of free chelators quantified by Eu titration increased from 0.025 pmol/mg for AGulX
to 0.1 umol/mg for AGulIX@D-1 and AGulX@N-1 (Figure 3-7-A, B, C). The content of Gd
measured by ICP-OES decreased from 0.89 umol/mg for AGulX to 0.76 pumol/mg for
AGuIX@D-1 and AGuIX@N-1. The longitudinal relaxivity (r;) increased from 14.3 for
AGuIX to 18.0 mM™ s for AGuIX@D-1 or 18.2 mM s for AGUIX@N-1 (Table 3-1). This
might be due to an increase in rotational correlation time resulting from the grafting of a
ligand and/or simply the removal of small fragments in the starting material. Meanwhile the
ratio 1,/r; slightly increased but stayed around 1.4 indicating that the efficiency of the NPs as
positive contrast agents was maintained. Results from elemental analysis also confirmed the
increases of other elements i.e. Si, N and C compared to Gd (Table 3-1).
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Figure 3-5. Infrared spectra of:
A) AGuIX before functionalized (blue) and AGulX@D-1 (after functionalized with DOTAGA) (red);
B) AGulX before functionalized (blue) and AGuIX@N-1 (after functionalized with NODAGA) (red).
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Figure 3-6. HPLC chromatograms of:
A) AGuIX (black); AGuIX@D-1 (DOTAGA, 80°C) (red);
B) AGuIX (black); AGuIX@N-1 (NODAGA, 80°C) (red).
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Figure 3-7. Eu titration curves A, = 395 nm, Aem = 594 nm of: A) AGulX; B) AGulX@D-1; C) AGuIX@N-1.

Two other formulas (AGulX@D-2, AGulX@N-2) with the same ratio of NP and free silanes
were conducted at lower initial concentrations of reactants (50 mM in Gd of AGuIX and 8
mM of chelating silanes) and lower incubating temperature (40°C). All characteristics were
more or less similar to the previous formulas (Figure 3-8, Figure 3-9, Figure 3-10 and Table
3-1) except the homogeneities of the particles which were improved as indicated by full width
at half maximum (FWHM) of NP peaks on chromatograms. This was especially true for
NODAGA functionalized particles where FWHM of AGuIX@N-1 and AGulX@N-2 were
3.3833 min and 2.5250 min respectively (Table 3-1 and Figure 3-9-B). But these subtle
differences are not anticipated to change significantly the properties of the particles.
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Figure 3-8. DLS diagrams of:
A) AGuIX@D-1 (DOTAGA, 80°C) (dash-dotted line) and AGulX@D-2 (DOTAGA, 40°C) (solid line);
B) AGuIX@N-1 (NODAGA, 80°C) (dash-dotted line) and AGuIX@N-2 (NODAGA, 40°C) (solid line);
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Figure 3-10. Eu titration curves A, = 395 nm, Aem = 594 nm of: A) AGulX@N-1 and B) AGuIX@N-2.

Two more other formulas with higher ratio of APTES-DOTAGA (AGulX@D-3 and
AGuIX@D-4) were tested. The result of Eu titration showed that the amount of grafted free
chelators was increased as more chelating silanes were added (Figure 3-11). The
chromatograms of these samples do not show any changes in the NP peaks indicating the
preservation of homogeneous populations of NPs (Figure 3-12). The relaxivities of these

samples were very similar to each other and similar to other samples (r; ~ 16 — 17 mM™ s
/1) ~ 1.4) (Table 3-1).
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Figure 3-11. Eu titration curves ke, = 395 nm, Aem = 594 nm of: A) AGuIX@D-2, B) AGuIX@D-3 and C) AGuIX@D-4.
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Figure 3-12. A) DLS diagrams and B) HPLC chromatograms of: AGulX@D-2 (DOTAGA,
40°C, DOTAGA:Gd = 1.5 :10) (black), AGuIX@D-3 (DOTAGA, 40°C, DOTAGA:Gd =2 :10)
(blue), AGuIX@D-4 (DOTAGA, 40°C, DOTAGA:Gd =4 :10) (red).

3.1.4. Conclusion and perspectives

We have described a straightforward and simple approach to functionalize AGulX along with
the physico-chemical characterization of the products. Macrocyclic chelating silane
precursors have been synthesized by peptide coupling. They can be simply redispersed and
grafted on AGulX through siloxane bonds formation. The amount of free chelators can be
tailored according to the starting ratio of precursors. The influence of reaction conditions i.e.
temperature and initial silane concentration on the homogeneity of the particle was studied.

NODAGA functionalized particle, AGuIX@N-1, will be used for bimodal MRI/PET imaging
experiments due to the presence of NODAGA on its surface which can complex **Cu more
efficiently. The radiolabeling, in vivo imaging and biodistribution studies in mice bearing
TSA breast cancer tumors are being conducted in Dijon by our collaborator Thakare V.
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3.2. Functionalization of AGulX with a multifunctional chelate
3.2.1. Introduction

As we have seen above, multimodal imaging probes are highly demanded and AGulIX can
offer a versatile platform on which different modalities can be easily added. As an illustrating
example, we have tried to functionalize AGulX with an innovating bimodal probe 17VTh031
synthesized by Thakare V. (Chematech, Dijon) (Figure 3-13-A). This probe contains both
NODAGA and a derivative of IR783, a novel near infra-red fluorophore which possesses both
excellent photophysical and tumor targeting properties.

IR783 belongs to a heptamethyl carbocyanine family of fluorophore commercialized by
Sigma-Aldrich. The chemical structure of IR783 resembles a more conventional fluorophore,
cyanine 5.5. However, it has a seven-carbon methine chain, a cyclohexenyl ring and a central
chlorine atom located in the middle of the chain (Figure 3-13-B). These modifications shift
the excitation and emission peak of IR783 further to near infra-red (NIR) region (Aex/emjr7g3
= 783/840 nm vs. Aex/emcyss = 675/694 nm) which is more desirable for in vivo imaging
applications. Besides its photophysical characteristics, it has been discovered to be actively
taken up by cancer cells in the laboratory of Prof. Chung L. W. K. in Cedars-Sinai Medical
Center, USA.**” The range of cancer cells and tumors that have affinity to IR783 and its
derivatives covers kidney, prostate, breast, lung etc.”?%23! Most recently, IR783 has been
demonstrated as having a potential to penetrate blood-brain barrier and blood-tumor barrier to
target specifically primary and metastasis brain tumors.”” Its cellular uptake is possibly
mediated by organic anion-transporting polypeptides (OATPs), a family of solute carrier
transporter, and induced by tumor hypoxia.

IR-783

O=5—¢
I
o Ho Figure 3-13. A) Chemical formula,
IR783 derivative molecular weight and elemental analysis of

17VTh031 (IR783 derivative-NODAGA)

O

N,
o and B) Structure of IR-783.2

Chemical Formula: C77H;;;N;0O;5S;"
Exact Mass: 1559.72
Molecular Weight: 1560.97
Elemental Analvsis: C. 59.25: H. 7.17: N. 8.97: 0. 18.45: S. 6.16

By combining 17VTh031 into AGulX, we hope to obtain a trimodal imaging nanoparticle that
works as both a contrast agent for MRI, radio probe for PET and NIR fluorophore for optical
imaging thanks to the presence of Gd chelates, free NODAGA (for grafting small
radioisotopes such as ®*Cu, ®*Ga) and IR783 respectively. The combination of a NIR
fluorophore i.e. IR783 derivative makes it possible to use AGulX platform as a real-time
intraoperative probe for mapping lesions, for example, tumors or sentinel lymph nodes
metastates during surgeries.'® This might allow a complimentary combination of pre-
operative precise diagnosis and tumor mapping by sophisticated MRI/PET imaging and
image-guidance during operation thanks to optical imaging. In addition, this NP might

122



Chapter 3 — Functionalization of AGulX nanoparticle

actively target cancer tumors thanks to the affinity of IR783 derivative and improve the tumor

retention as well as cellular internationalization of AGulX.

3.2.2. Characterization of bimodal probe

17VThO031 was characterized by Thakare V. (Chematech, Dijon) using high resolution ESI-
MS, elemental analysis and fluorescence spectroscopy. Its mother ion M+ (m/z = 1560) and
daughter ion [M-H+Na]+ (m/z = 1582) were well detected in ESI-HRMS (Figure 3-14). The
results of elemental analysis correspond very well with proposed chemical formula (Table
3-2). Absorption and emission spectra of 17VTh031 showed absorption peak at 780 nm and
emission peak at 820 nm (Figure 3-15-A) with high molar attenuation coefficient € = 178500
M".cm™ at 785 nm (Figure 3-15-B). Hence, the photophysical properties of IR783 were well

preserved in 17VThO31.
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Figure 3-14. Mass spectra of 177VTh031: A) experimental spectrum, B) simulated spectrum
of mother ion M* and C) simulated spectrum of [M-H+Na]"

Table 3-2. Result of elemental analysis of 17VTh031

Element C H N (0] S
Theoretical relative mol 77 111 10 18 3

% mass 59.25 7.17 8.97 18.45 6.16
Calculated relative mol 77.03 111.95 10.00 18.00 3.00
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Figure 3-15. A) Absorption spectrum (blue) and fluorescence emission spectrum (red) (A = 780 nm) and
B) Calibration curve at 785 nm of 17VTh031.

3.2.3. Functionalization strategy and protocol

For conjugation purposes, 17VTh031 contains a maleimide group which can readily react
with thiols. We will simply introduce thiol groups on AGulX by using the Traut’s reagent.
Thiolated AGulX will be quantified for the ratio of thiols/Gd and mixed immediately with
17VThO31 to create a new nanoconstruct, AGulX-I-N (AGulIX-IR783-NODAGA) (Figure
3-16).

Experimental protocol:

Step 1: thiolation of AGulX

100 pmol in Gd of AGulX was redispersed in PBS buffer pH 8 at 200 mM. T;, T, and
hydrodynamic diameter of the sample were measured by relaxometry and DLS. Small sample
was taken for HPLC analysis. 100 umol of 2-iminothiolane (Traut’s reagent) was dissolved in
PBS buffer pH 8 at 300 g/l. 2-iminothiolane solution was added gradually under vigorous
stirring to AGulX solution to produce a transparent solution. 100 ul PBS was added to have
enough volume for pH measurement. pH of the mixture was around 6.4 due to acidic nature
of Traut’s reagent. pH was adjusted rapidly to 8 where the reaction happens the most
efficiently”” by adding NaOH solutions. Solution was stirred 1 h at room temperature. PBS
buffer was added to have a mixture of AGulX and Traut’s reagent both at 100 mM. pH did
not change after the reaction. pH was adjusted to 7.3 by adding HCI solutions. Thiolated
AGulIX (AGulIX-SH) was purified by tangential filtration for 64 purification factor using PBS
pH 7 as washing solvent to remove unreacted 2-iminothiolane and its hydrolyzed product. T,
T, and Dy of the sample were again measured. Concentration of purified sample in Gd was re-
adjusted using the result of T; while assuming longitudinal relaxivity did not change during
the thiolation. Sample was quickly titrated with Ellman’s reagent to quantify the amount of
grafted thiols.

Step 2: conjugation of 17VTh031 to AGulX-SH

266 pl of AGulX-SH purified solution (approx. 45 umol in Gd) was taken to a bottle. 9 mg of
17VThO031 (4.5 umol) was dissolved in 50 ul PBS pH 7. Few drops of NaOH 1M was added
to adjust pH to 6.5 to fully dissolve the fluorophore. Solution of fluorophore was transferred
to AGuIX-SH solution gradually under vigorous stirring. 50 ul PBS was used to rinse the
fluorophore’s container. pH of the solution was verified and stayed at 7.2. The mixture was
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left stirring for 2 h at room temperature. Final concentrations of AGuIX-SH and 17VTh031
were 58.5 mM and 5.85 mM respectively. pH was not changed after the reaction. Solution
was purified by tangential filtration for 256 purification factors to remove unreacted
fluorophores. Absorption of filtrates was measured to verify the efficiency of purification
process. Ty, T, and Dy of the sample were again measured. Small sample of purified particle
was taken for UV-vis spectroscopy and HPLC analysis.
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Figure 3-16. Reaction scheme of trimodal MRI/PET/OI AGulIX (AGulX-I-N): A) step 1: thiolation of AGulX; B) step 2:
functionalization with bimodal probe 17VTh031 (IR783-NODAGA).

3.2.4. Characterization of the functionalized particle

The results from different characterizations during this synthesis were summarized in Table
3-3.

Table 3-3. Characterization of AGulX-I-N in comparison with non-functionalized AGuIX

Features Methods AGulIX AGuIX-SH AGuIX-I-N
Dy (nm) DLS 4.6+0.9 45+09 12.1+3.0
Relative quantification of SH  Ellman’s assay - Gd:SH~10:2.5 -

r (mM s Relaxometry 13.5 16.8 16.9
/1) 1.35 1.39 1.83
Retention time (min) HPLC 13.4 - 17.7
Purity (%) 80.2 95.7
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Gd : 17VTh031 UV spectroscopy - - 10:0.8
Content of Gd (pmol/mg) ICP-OES 0.8903 - 0.3185
Yield in Gd (%) - - 51.6
Yield in 17VTh031 (%) - - 24.5

After the thiolation step, Ellman’s assay”> and ICP-OES were performed to determine the
ratio of SH and Gd in the solution (Figure 3-17). In Ellman’s assay, DTNB (5,5’s-dithiobis-
(2-nitro benzoic acid), which absorbs at 330 nm, will react with thiol groups to release TNB
(5-thio-2-nitro benzoic acid), which absorbs at 412 nm.”** Hence, a saturated absorption at
412 nm and a sudden increase of absorption at 330 nm indicate the equivalent point of the
titration. By correlating the result of Ellman’s assay, which gave the amount of thiols in the
solution, and the result of ICP-OES, which gave the amount of Gd in the solution, we were
able to determine the ratio SH : Gd (equivalent to DTNB : Gd) as 0.25 : 1.0. Assuming there

i . 141331 .
are approximately 10 Gd chelates on each particle'**'”, there would be 2.5 thiol groups on
each thiolated particle.
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Figure 3-17. Result of Ellman’s assay for AGulX-SH: A) UV spectra of samples; B) Titration curves at 412
nm (red) and 330nm (blue).

Meanwhile, the Dy of AGulX-SH remained the same (4.5 = 0.9 nm) as non-functionalized
particle (4.6 = 0.9 nm) (Figure 3-18). Longitudinal relaxivity r;, however, increased from 13.5
to 16.8 mM.s™ while the ratio ro/r; did not change significantly (1.35 vs. 1.39). This was
probably only due to the removal by tangential filtration of smaller, less stable particles and
free Gd chelates fragments which were already present in AGulX solution or degraded from
the initial particles during the reaction and purification processes. After grafting 17VTh031 on
AGulX-SH, Dy of the particle increased to 12.1 nm due to the bulkiness of the bimodal probe
(Figure 3-18). Both DLS apparatuses with different laser sources i.e. 633 nm (red) and 532
nm (green) gave the same value. HPLC chromatograms confirm DLS results since the
retention time of AGulIX-I-N was much higher (17.7 min) compared to the initial AGulX
(13.4 min) (Figure 3-19). Surprisingly, r; did not increase significantly (16.9 mM™".s™ vs. 16.8
mM'l.s'l) while r, seems to enhance substantially (r,/r; = 1.83 vs. 1.39).
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Figure 3-18. DLS diagrams of AGulX (black), AGuIX-SH (blue)
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Figure 3-19. A) Comparison of chromatograms at 295 nm of AGulIX (black) and AGuIX-I-N
(red); B) Comparison of chromatograms of AGuIX-I-N at 295 nm (red) and 700 nm (green).

The absorption spectra of filtrates and chromatogram at 700 nm demonstrated that most of
free fluorophores have been removed (Figure 3-19-B, Figure 3-20), although, some strange
peaks have appeared at 295 nm or 700 nm. They might be some unknown impurities that
stuck stubbornly on the particle or populations of ungrafted AGulX. Nevertheless, for a
preliminary test, this result was quite satisfying. The content of Gd determined by ICP-OES
decreased from 0.8903 pmol/mg (AGuIX) to 0.3185 umol/mg (AGuIX-I-N) indicating a
higher percentage of organic groups in functionalized particle. By combining the Gd
concentration determined by ICP-OES and 17VTh031 concentration determined by UV
absorption, we can find out the ratio 17VThO031 : Gd as 0.8 : 10.
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Figure 3-20. UV spectra of A) filtrates of AGulX-I-N during the purification; B) purified AGuIX-I-N

(subtracted to pure water).
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3.2.5. Conclusion and perspectives

A new probe has been grafted on AGulX to produce a trimodal imaging (MRI/PET/OI)
nanoagent. We have characterized the product by different analytical techniques to prove the
grafting of new species on AGulX. This new NP will be tested in in vitro and in vivo models
in Dijon to evaluate its efficiency to increase cellular uptake and selectively target cancer
tumors.

For further development, it would be interesting to develop a silane of IR783 separately for
grafting on AGulX. Combining this silane-IR783 with APTES-NODAGA introduced in the
previous section, we can easily graft the two probes on AGulX, instead of a cumbersome
IR783-NODAGA conjugate, without compromising too much the ultrasmall diameter of the
particle. It will also simplify the conjugation protocol and storage condition. Depending on
the preliminary biological results, larger-scale production and more thorough studies should
also be designed to optimize this NP.
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3.3. Functionalization of AGulX with quaternary ammonium for targeting the
proteoglycans (PGs)

3.3.1. Introduction

3.3.1.1. Molecular structure and location of PGs

Proteoglycans are the hybrid Vorereanve
molecules of i
glycosaminoglycans (GAG) and ' '

. . Aggrecan Versican V1
certain proteins. Many types of 08080 e © Acd
prOteOglyc ans eXiSt, They are i :. @ N-acetylgalactosamine ©@0@0@~ Keratan Sulfate

. . . . @0®0@~ Chondroitin Sulfate Q 1gG
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extracellular PGs. These types
of PGs are one of main
structural components in tissue
organization. They made up
most of the extracellular matrix
(ECM) of the tissues. The two
most common extracellular PGs structural components of ECM of many tissues especially cartillages.

Figure 3-21. Schematic representation of the hyalectans, the PGs acting as key
236

are hyalectans and small leucine rich PGs (SLRPs).”>* Figure 3-21 shows a simple
schematic representation of the structures of hyalectans. Figure 3-22 shows the macroscopic
structure of an example of hyalectan and its location in ECM. The common GAG found in
both hyalectans and SLRPs include hyaluronan/hyaluronic acid, chondroitin sulfate, keratan
sulfate and dermatan sulfate. Figure 3-23 shows the molecular structures of these GAGs.
Hyaluronan is made of several units (up to ~ 50000) of disaccharides combining D-glucuronic
acid (GlcA) and N-acetylglucosamine (GlcNAc). The other three are much shorter with less
than hundreds of disaccharides units. Chondroitin sulfate contains units of GIcA linked to N-
acetylgalactosamine sulfate (GalNAcS). Meanwhile, keratan sulfate is made from units of
galactose (Gal) and GIcNAc sulfate (GIcNAcS). The structure of dermatan sulfate is very
similar to chondroitin sulfate but many glucoronate units are replaced by a-L-iduronate
(IdoA). These molecules contain numerous carboxylate and sulfonate groups that make them
highly negatively charged. Extracellular PGs are abundantly present in lubricants in the
synovial fluid of joints, vitreous humor of eyes and ECM-rich tissues such as cartilages,
tendons, ligaments, walls of aorta, skin, blood vessels, heart valves, cornea, bones, hairs and
nails.>’
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Figure 3-22. Macrostructure and location of proteoglycans: A) schematic representation of a proteoglycan with many aggrecan
molecules; B) Proteoglycans in the extracellular matrix.”’
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Figure 3-23. Molecular components of proteoglycan: A) 1 unit of hyaluronan; B) 1 unit of chondroitin-4-sulfate; C)
1 unit of keratan-sulfate and D) IdoA, one saccharide in the repeating units of dermatan sulfate.”’

3.3.1.2. The use of quaternary ammonium as a targeting ligand for cartilaginous tissues
and chondrosarcoma

Since 2000, aromatic (pyridinium) and aliphatic ammonium (triethylammonium), due to their
positive charges, have been proven to have a strong affinity to PGs, more specifically
speaking, carbonates and sulfonates groups on their structures.”***** Based on this result, the
research team led by Prof. Chezal J-M. and Dr. Miot-Noirault E. in Clermont-Ferrand has
developed different molecular probes for nuclear imaging and therapy targeting cartilaginous
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tissues where ECM and more specifically PGs make up a large proportion. Agents that have
been incorporated with ammonium expanded from radionuclides, inflammatory drugs,
metalloproteinase inhibitors and cytotoxic drugs.*****' This targeting strategy is especially
interesting for developing alternative treatments for chondrosarcoma. The latter is the second
most common primary cancer of the skeleton characterized by a high production of ECM by
the tumors in cartilage, low percentage of dividing cells, poor vascularity, low pH and high
interstitial pressure. These features make chondrosarcoma tumors highly resistant to
radiotherapy or chemotherapy. This left surgery as the main option despite the fact that, in
many serious cases, the removal of a large part of the body can even decrease the survival
chance, cripple the patients or require another large reconstruction surgery. Furthermore, in
some cases, tumors can be found in some inoperable locations where vital organs or principal
bones are located. In the last few decades, although significant progresses have been obtained
for other sarcomas, the prognosis for patients with high grade chondrosarcoma remains almost
unchanged.mz’243 These facts point out the need for an innovative treatment to overcome this
form of cancer. In the framework of French national project CHONDRAD
(http://www.agence-nationale-recherche.fr/?Projet=ANR-14-CE16-0021), we have
collaborated with the teams of Prof. Chezal J-M. and Dr. Miot-Noirault E. as well as other
scientists in Lyon and Clermont-Ferrand to conjugate quaternary pyridinium on AGulX
platform in the hope of improving the effect of radiotherapy for the treatment of
chondrosarcoma. This type of functionalized particle has been shown to have a superior
accumulation in cartilage and chondrosarcoma in in vivo models.””"”' These promising
results call for further experiments to evaluate the RS effect of the platform. During my thesis,
we have modified the functionalization strategy to adapt with the structure of current AGulX.

3.3.2. Strategy and protocol
New strategy:

Previously, quaternary ammonium (QA) or pyridinium, more precisely, was grafted on
AGuIX by forming a peptide bond with a carboxyl group on free DOTAGA (Figure 3-24-
B)."*® However, this method reduces the complexing constant of grafted free DOTAGAs and
makes their metal complexes less stable, especially for in vivo and clinical applications.
Moreover, the current generation of AGulX developed in the lab contains very little amount
of free DOTAGA (1 — 3 % compared to total DOTAGA) to increase the loading ratio of Gd.
Therefore, it is necessary to develop a new strategy to introduce QA on AGuIX for further
experiments. In this study, the amine group of QA was converted to carboxyl group and
activated by NHS. This work was carried out by the team of Prof. Chezal J-M. This NHS
ester of QA was simply mixed with AGulX to react with amine groups present on the
particles (Figure 3-24-A). The product was purified by tangential filtration and characterized
by DLS, HPLC and UV spectroscopy.
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Figure 3-24. A) Functionalization protocol for QA on AGulX; B) Position of grafted QA in previous studies.

Experimental protocol:

347 pmol in Gd of AGulX was dispersed in water to have a solution of 200 mM [Gd*'T].
Solution was left at rt for 30 min to allow a complete dispersion of NPs. 52.2 mg of NHS
ester of QA (QA-NHS) (molar ratio Gd : QA = 10 : 4) was dissolved in 500 pl of water and
transferred drop by drop to AGulX solution under stirring. The container of QA-NHS was
rinsed 2 times with 250 pl of water. Water was filled to obtain final concentrations of AGulX
and QA-NHS as 100 mM (in Gd) and 40 mM respectively. pH of the solution was maintained
in the range of 7.0 — 7.4 by constantly adding NaOH 1M solution. The solution was stirred for
2h at RT. At the end of the reaction, the solution was purified by tangential filtration through
Vivaspin (MWCO = 5 kDa). pH of the solution was adjusted to 2 by adding HCI solutions
before the purification. The solution was purified for 1000 purification factor, using HCI 107
M as washing solvent. At the end, pH of the final product was adjusted to 7. Then, the
solution was filtered through 0.2 pm membrane to remove the large impurities. Finally, the
solution was freeze dried for long term storage.

3.3.3. Characterization of the functionalized particle

The characterization results are summarized in Table 3-4. Hydrodynamic diameter (Dy) of
functionalized particles (AGuIX@QA) only slightly increases to around 3.9 nm compared to
3.4 nm of the initial particles (Figure 3-25-A). This was confirmed by a minor increase in
retention time in HPLC chromatogram i.e. 14.0 min (AGuIX@QA) vs. 13.6 min (AGulX)
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(Figure 3-26). The zeta potential curves of AGulX and AGulX@QA are presented in Figure
3-25-B. The isoelectric point of AGuIX(@QA is very similar to the non-functionalized AGulX
(around 8.5) indicating very similar proportions between positively charged groups i.e.
primary amine, pyridinium and negatively charged groups i.e. DOTAGA(Gd) chelates of
functionalized and non-functionalized particles. This is reasonable since the reaction only
converted a positive amine into another positive pyridinium. The differences in the absolute
values of potentials between two particles might be due to different numbers of particles in
solutions. The measured samples were prepared at the same molar concentration (10 mM in
Gd) but the content of Gd in functionalized particles were lower than the one in non-
functionalized particles and led to higher numbers of particles in AGulX@QA sample. This
made the ionic strengths in AGulX@QA samples higher and slightly decreased the absolute
values of zeta potentials. This phenomenon was reported before in literature for protein
samples at different ionic strengths.?****

Table 3-4. Characterization of AGuIX@QA in comparison with non-functionalized AGulX

Features Method(s) AGulX AGulX@QA
Dy (nm) DLS 34+0.8 3.9+0.9
Zeta potential (mV) Zeta potentiometry + 8.7 +6.3
(pH 7.43) (pH 7.34)

Retention time, tg (min) HPLC (295 nm) 13.6 14.0
Purity (%) 85.1 97.8
r; (mM s Relaxometry 14.3 19.2
/1 1.36 1.37
Gd: QA UV-vis spectroscopy - 10: 4.6
Content of Gd (umol/mg) ICP-OES 0.890 0.627
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Figure 3-25. A) DLS diagram of AGulX (red column) and AGuIX@QA (blue line); B) Zeta potential curves
of non-functionalized AGulX (dashed line, triangles) and functionalized AGulIX@QA (straight line, circles).
All samples were measured at 10 mM in Gd.
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Figure 3-26. Chromatograms of AGulIX (blue) and AGulIX@QA (red) detected at A) 295 nm or B) 259 nm

Longitudinal relaxivity (r;) increases from 14.3 to 19.2 mM™.s™ but ro/r| remains similar. It
might be because fragments and smaller, unstable particles have been washed out during the
purification leaving behind whole intact, slightly bigger particles. Those results show that the
functionalization took place without affecting significantly the ultrasmall size and magnetic
property of the particle.

The presence of QA on the particle was proven and quantified by its strong UV absorption

due to the 7 — 7* transition of the pyridine which was reported previously.'>***¢

Even though
the structure has been changed, UV spectrum of QA remains very similar with a prominent
peak at 259 nm (molar attenuation coefficient ¢ = 4000 M'.cm™). By subtracting the
contribution from AGulX (a peak at ~ 295 nm) and comparing with a reference solution of
QA-NHS ester, the concentration of QA in AGuIX@QA solution can be determined (Figure

3-27).
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Figure 3-27. UV-vis spectra of AGulIX@QA solution after purified dilute 200 times (red), reference solution of QANHS at
0.1 mM (blue) and AGulX solution at 0.87 mM in Gd (black): A) before the subtraction; B) after the subtraction.

Combining this result with the precise concentration of Gd determined by ICP-OES, the ratio
Gd : QA can be calculated as 10 : 4.6. This is in accordance with the starting ratio in the
formula and indicates a high yield of the reaction between QA-NHS and amine groups. The
final ratio Gd : QA is even slightly higher than the starting ratio due probably to the fact that
the purity of the starting particles was only 85%. The grafting of QA on the particles was also
proven by the chromatograms of functionalized particles (Figure 3-26). At the same
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concentration of Gd, the NP peak (tg ~ 14.0 min) was much more intense after functionalized
especially at 259 nm.

3.3.4. Biodistribution study by radiolabeling
3.3.4.1. Experimental protocols

Heterotopic tumors were induced on rats by inoculating SWARM chondrosarcoma cells.

AGuIX and AGuIX@QA were radiolabeld with " (Figure 3-28-A). AGulX or
AGuIX@QA was dissolved in citrate buffer 50 mM, pH 5. Then the solution was mixed with
"nCl; (in the ratio Gd : ''In ~ 1 pmol : 10 MBq) and incubated at 38 °C for 30 min. The
radiochemical purities of the labeled particles were verified by Thin Layer Chromatography
(TLC) (Figure 3-28-B). Free '''In isotope was eluted by citrate buffer and migrated to the top
of the silica layer, whereas the labeled particles remained at the introduced position. The
amounts of free '''In and grafted '''In were measured by gamma counter. The radiochemical
purity was determined as % of free "n/(free ''In + grafted "n). In case the purity was
lower than 95 %, free '''In** would be removed by size exclusion chromatography (SEC)
through a PD-10 Sephadex™ column. Otherwise, labeled particles would be used directly
without purification.

Radiolabeled particles were injected intratumorally (IT) or intravenously (IV) into tumor
bearing rats. Each treated groups contained 20 to 24 rats. After a certain period of time (5 min
—20or 30 min — 1 h —2 h (- 4 h) — 24 h), 4 rats were sacrificed and their organs were
collected, weighed and measured for radioactivity in a gamma counter. The results were
corrected by radioactive decay of '''In and expressed as the percentage of the total injected
dose per organ (% ID/organ) and per gram of organ (% ID/g).

The radiolabeling experiment and biodistribution study after IT injection were conducted in
Lyon by the team of Dr. Kryza D., Dr. Sidi-Boumedine J. and Prof. Janier M. while the ones
for IV injection were carried out in Clermont-Ferrand by the team of Prof. Chezal J.M. and Dr.
Miot-Noirault E.

3.3.4.2. Results

Regarding the radiolabeling procedure, the radiochemical purities of (purified) particles
before being injected were > 99 % (Figure 3-28-B).

Figure 3-29 and Figure 3-30 show the total radioactivity and radioactivity normalized by mass
of different organs after certain periods of time post IT injection of AGulX and AGuIX@QA.
Figure 3-31-A-D shows zooms at the data for kidneys and tumors. From as early as 5 min
after IT injection, both particles appeared to clear from the animals through kidneys and
showed no or very low retention in other organs especially in liver and spleen. This was
demonstrated by much higher radioactivities per gram in kidneys compared to other tissues
(Figure 3-29 and Figure 3-30). More importantly, the functionalized particle seemed to retain
longer in the tumor compared to the non-functionalized particle (Figure 3-31-C vs. Figure
3-31-A). After 1 h post-injection (pi), the radioactivity at the tumor treated with AGuIX@QA
(~ 13 % ID/g) were still two times higher than the one treated with the original AGulX (~ 5 %
ID/g.
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The full data after IV injection of AGulX and AGuIX@QA are still under investigation.
However, we have received some preliminary data especially for kidneys and tumors after
injection of AGuIX@QA (Figure 3-31-E, F). The results were also interesting but less
promising. The particles were still cleared mainly from kidneys and avoided the entrapment in
liver and spleen. Starting from 4 h, particles seemed to be completely removed through urine
(Figure 3-31-F). Nevertheless, only maximum less than 0.12 % of ID/g could penetrate and
accumulate in the tumor 1 h pi (Figure 3-31-E). This poor result can be explained by the
resistant physiology of chondrosarcoma tumor characterized by a dense ECM and high
interstitial pressure.

"InCly
Citrate buffer 50 mM pH 5
38°C, 30 min
AGUIX@QA AGUIX@QA(""'In)
1
InCI
ﬁ } < ﬁ
J
} S ‘ 8 s
11 ]
In-NP .

ALY

Figure 3-28. Scheme of radiolabeling procedure of AGuIX/AGuIX@QA with '"'InCl;:
A) Radiolabeling condition and B) Purification by SEC (scheme taken from Prof. Chezal IM).
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Figure 3-29. Global biodistribution data in mice in %ID/organ after IT injection of
A) AGuIX and B) AGuIX@QA.
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Figure 3-30. Global biodistribution data in mice in %ID/g of organ after IT injection of
A) AGuIX and B) AGuIX@QA.
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Figure 3-31. Closer look at biodistribution data in %ID/g of organ in tumors (blue columns) and kidneys (orange columns)
after IT injection of A-B) AGulX; C-D) AGuIX@QA and E-F) data after IV injection of AGuIX@QA.

3.3.5. Conclusion and perspectives

Quaternary pyridinium ligand has been successfully grafted on AGulX wusing a
straightforward strategy without compromising the favorable physical properties of the
original particle i.e. ultrasmall size and nearly neutral surface charge. The functionalized
particle has been thoroughly characterized to show the presence of pyridinium and quantify its
amount in the sample. Biodistribution studies carried out with ''"'In labeled AGuIX and
AGuIX@QA have been conducted. After IT injection, both functionalized and non-
functionalized particles seemed to show renal clearability. In addition, AGuIX@QA appeared
to show longer retention in the tumor than the normal AGulX. However, if being IV injected,
it seems, functionalized particle still could not improve substantially the delivery of
radioisotopes in the chondrosarcoma tumor which is notorious as a very challenging form of
cancer. Besides biodistribution study, functionalized and non-functionalized particles are also
being tested in vitro and in vivo to evaluate their radiosensitizing properties. The full dataset
will be released in the coming months. A publication highlighting the achievements of this
work will be submitted at the end of the project.
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GENERAL CONCLUSION AND PERSPECTIVES

This thesis investigated the synthesis, characterization and functionalization of ultrasmall
silica nanoparticles displaying chelators for complexation of different metals. These NPs can
be used for detecting disease sites i.e. cancer tumors by complementary imaging techniques,
delivering radiopharmaceuticals or enhancing locally the effect of radiotherapy.

In the first part, different analytical techniques have been used to further elucidate the peculiar
structure and properties of precedent ultrasmall silica based NP, AGulX, which was already
developed in the lab. SAXS results confirmed the ultrasmall diameter of AGulX which has
radius of gyration around 1.4 nm and inferred average hydrodynamic diameter around 3 — 4
nm. NMR-DOSY studies performed on a diamagnetic yttrium equivalent of AGulX proved
the presence of expected organic groups i.e. DOTAGA and amines functionalized on the
particle. The hydrodynamic diameter of the particle was estimated from the diffusion
coefficients and gave ultrasmall value (4 — 5 nm). 2D "“C/'H NMR also provided
unambiguous assignment of three proton peaks from aminosilanes which paved the way to an
estimation of APTES-DOTAGA/APTES ratio (i.e ~ 1 — 1.5) from peaks integration. ESI-MS
was performed in a highly adapted instrument for macromolecules to show a more complete
m/z spectrum. Deconvolution algorithm was applied to give an estimation of mass distribution
of the particle which was around 6 to 12 kDa. The equilibrium between functionalized silanes
and free silanes during the degradation was studied using relaxometry, NMR-DOSY and
HPLC. The results showed that the equilibrium directly depends on the concentration of
silanes and pH of the solution.

In the second part, we have explored a new strategy to synthesize ultrasmall silica NPs from
the molecular silane precursors. Using a commercialized chelating silane, we have shown the
possibility of constructing such ultrasmall nanostructures by a simple one-pot bottom-up
approach. The stability of USNP has also been demonstrated to depend on the structure of
functionalized organosilanes. The carboxysilane (CEST) seems to give higher stability to the
particle compared to aminosilane (APTES). This type of USNP has been thoroughly analyzed
using different analytical methods to confirm its structure. Next, we have synthesized and
characterized a non-commercially-available chelating silane, APTES-DOTAGA, to
investigate the bottom-up synthesis of AGulX-like USNP. The one-pot bottom-up synthesis
has been successfully adapted to the new chelating silane to produce stable USNPs even in the
presence of aminosilane. The bulkiness of APTES-DOTAGA seems to be the key parameter
to provide a high stability to USNP. The difference between the configuration of complexed
and non-complexed chelating silanes might also slightly affect the size of produced USNP.
We have also succeeded to control the size of the particle from 3 to 14 nm by changing the
ratio between TEOS, the polysiloxane network creating precursor, and the organosilanes i.e.
APTES-DOTAGA and APTES. Last, we have modified the synthesis into a simple
continuous process that would facilitate the scale-up synthesis in the future. Different
analytical techniques have been used to confirm the structure of new USNPs. Besides
proposing a novel simple synthesis of USNP, these studies also provided -clearer
understandings of nanochemistry behind polysiloxane structures. This type of NP has been
shown to be a flexible platform to incorporate different metals at will. To illustrate the
potential use of metal complexed USNP in biomedical applications, one of new Gd
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complexed particles was injected in mice bearing colorectal tumors (CT26) and followed by
MRI. It effectively showed sufficient retention in tumor tissues, no accumulation in liver and
rapid clearance through kidney.

In the third part of this work, different functionalizations have been realized on AGulX
particle to provide additional functionalities. First, two types of chelating silanes (APTES-
DOTAGA and APTES-NODAGA) have been synthesized and functionalized on AGulX
using a simple protocol without adding any other reactants. The NODAGA-functionalized
AGuIX will be used for radiolabeling with **Cu for PET/MRI bimodal imaging application.
Interestingly, silanes are more stable and easier to use compared to other conjugation
reactants. Secondly, a new bimodal probe combining NODAGA and a tumor targeting NIR
fluorophore (IR783 derivative) has been grafted on AGulX. This new hybrid structure will be
tested for its use as a trimodal imaging probe (MRI/PET/OI) probably in the field of
intraoperative detection with the possibility of improving cancer cellular internationalization
of AGulX. Last but not least, a new strategy has been used to introduce quaternary pyridinium
on current AGulX. This functionalized NP is being tested for its ability to target
chondrosarcoma tumors and improve efficacy of radiotherapy towards this resistant type of
tumor. Preliminary biodistribution results showed that AGuIX@QA was also mainly
eliminated through kidneys while avoiding being trapped in liver or spleen. Ammonium
functionalized particle seemed to be retained longer in tumor after IT injection than normal
AGulIX. Biodistribution results after IV injection and the radiosensitization effect of the
functionalized particle are still under investigation.

For future perspectives, first of all, efforts should be made to investigate the scaling-up of this
new one-pot protocol. Even though, the strategy is quite straightforward, every detail should
be considered to successfully translate it to industrial scale. Regarding the nanostructure
designing, a systematic study could be considered to correlate the size of USNPs, which
determines the surface curvature and ligand density, with their hydrolytic stability to find out
an optimal size of USNP. Similarly, a systematic comparison between the degradability of
conventional top-down AGulX and the one of bottom-up USNPs should be designed. Another
possibility to tailor the degradability of USNP for the applications in which higher stability is
required is to use long chain aminosilanes e.g. aminoundecyltriethoxysilane (AUTES) or N-
(6-aminohexyl)aminomethyltriethoxysilane (AHAMTES) to replace APTES. In this way, the
small size and low viscosity of the particle will not be compromised (compared to the use of
PEG chains) and the particle can still avoid non-specific protein adsorption.

Since intermediate non-chelated USNPs can be produced by new synthesis protocol, different
metallic compositions can be tested to provide different potential applications ranging from in
vitro/in ~ vivo  imaging (MRI, radioimaging, luminescence) to  therapeutics
(radiopharmaceuticals, radiosensitizers). Novel physical properties could also be discovered
by combining different elements in a nanosystem.

For further characterizing AGulX, a more direct method based on either MALDI (matrix
assisted laser desorption ionization) mass spectrometry, size exclusion chromatography or gel
electrophoresis should be developed for AGulX to verify the mass of particle obtained by
ESI-MS which utilizes mathematical treatments. A new ICP-MS detector coupled with a
HPLC system will soon arrive in our laboratory and analyzing methods will be developed.
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This new detector will allow observing specifically the presence of different elements such as
Gd, Si, C, N during the chromatographic elution of AGulX particles. Signals from this
detector can be correlated with signals from conventional UV detector to precisely identify
and quantify different peaks in the chromatogram.

In terms of particle functionalization, silane chemistry can be further exploited to develop
facile functionalization strategy for AGulX. Different ligands can be silanized for long-term
preservation. In particular, targeting and therapeutic peptides or other ligands containing
amine groups can be synthesized by conventional solid-phase method and silanized later on
for functionalizing AGuIX. In this way, harsh deprotection strategy would not be required to
be performed in the presence of the particle and exclude the possibility of compromising
nanostructure of AGulX.
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ANNEXES

Al. Principle of NMR

NMR shares fundamental principle with MRI. Figure A1-A shows the setup of a classical
NMR spectrometer. The sample tube was put in the center of an electric magnet with a
magnetic field B,. The magnetic field can be adjusted by a sweep generator. Another essential
component is a coil surrounding the sample holder that transmits the radio frequency
generated to excite the sample. The magnetic signal generated from the sample will be
measured by a receiver and transferred to a computer to generate the spectrum. Figure A1-B
shows the principle of excitation and relaxation in NMR which is essential for signal
generation. Simplistically, when the sample was put in the magnet, the spins of all atoms in
the sample will be aligned parallel or antiparallel to vector B,. The sum will be a vector M,
which always heads to the direction of B,. It should be mentioned that the summed spin
vector is not totally parallel to B, but make a slight precessional motion around the B,
direction with a certain frequency depending on the type of nucleus (e.g. 'H, "*C). This
frequency is called Larmor frequency. Each nucleus of a certain type in a molecule will have
a slight shift of Larmor frequency compared to the general value depending on their
surrounding chemical environments. To excite a certain nucleus in the sample, a short radio
frequency pulse will be sent through the coil. This pulse contains a wide range of frequencies
that cover the whole range of Larmor frequencies of the targeted nucleus type. If one
frequency in the pulse corresponds exactly to a Larmor frequency of a nucleus, it will excite
that nucleus to give the signal for that specific nucleus. It flips its magnetization vector out of
z-axis to a certain angle depending on the strength and duration of the sent radio frequency
pulse. In a typical example, let us say the pulse is 90° which means the magnetization will be
flipped to align with y-axis (My). This vector will relax to normal state (My) by making a
spiral movement around z-axis. If we introduce a rotating coordinate system (x’, y’, z)
spinning around z-axis with the same speed as the rotating speed of the magnetization vector
(Larmor frequency), we will only have a normal exponential decay of M,. The signal decays
in y-axis and z-axis are described by two similar but different exponential equations (Equation
A 1). In these equations, T, is called longitudinal relaxation time and T, is called transverse
relaxation time. These parameters are similar to what we mentioned in MRI. Back to NMR
experiment, as we can see in Figure Al1-C, the decay along y-axis creates a sinusoidal-
exponential signal dependent on time which is called free induction decay (FID). By applying
Fourier’s transform on this spectrum (Equation A 2), the computer will release a spectrum
which is only dependent on frequency. Before the experiment, a standard molecule will be
analyzed to establish a zero-point frequency. Then signals from the sample will be normalized
relatively to this frequency to give what we usually see on x-axis of a modern NMR spectrum:
chemical shift in ppm unit.'®*
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Figure Al. Basic principle of NMR. A) Schematic diagram of a NMR spectrometer; B) Diagram of relaxation process; C)
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and C taken from ref [184].

A2. Schematic diagram of micrOTOF-Q-II

. P
A) SChematIC of the —
- _—
micrOTOF-Q-II oed
Reflector
Source lon Transfer Stage Q-g-Stage TOF
Spray chamber Funnel 1 Hexapole Collision
Capillary Funnel 2 Quadrupole Cell
. = oZy . othogonal
Funonl1RF r' unnet 2 ;us_km - s Accelerator Detector
\ e _’3‘ "H e R ""““'ET..,
Plate

w\ '-||||||“|l}n||| : L”rh'.( { clos T
I

il b 11} _)H
il u..-a«s-,-p umz \m lnw
Funnel 1 Base s.u*

Cofision Extraction

Figure A2. Schematic diagram of micrOTOF-Q II

148



Annexes

A3. USNPPt(IV): a new nanocarrier for Pt(IV) anticancer agents
A3.1. Introduction

One spin-off idea came out from the development of one-pot synthesis of USNP was to apply
the same protocol for other existing organosilanes. This new structure can also be used as a
nanocarrier for small anticancer agents. Among different cytotoxic drugs used in the clinics,
Pt complexes were widely used as potent treatments for many types of cancers. Their working
mechanism is well studied. Pt complexes normally consist of Pt(II) coordinated by 2 amine
groups which are stable during the process and 2 others “leaving groups” that will be
hydrolyzed before binding to N7 atoms of purine residues in DNA to form cross-links inside
or between DNA molecules. These cross-links distort permanently the structure of DNAs and
lead to cell death (Figure A3-B).**’ However, Pt complexes like other classical non-specific
cytotoxic agents usually come along with several serious side effects. For example, cisplatin
causes nephrotoxicity, nausea, neurotoxicity and ototoxicity, while carboplatin causes
myelosuppression and nausea with lower nephrotoxicity and ototoxicity.”*® Many synthetic
strategies have been applied to improve the activity and toxicology of platinum complexes.
The main modifications that are currently being pursued are 1) to modify the leaving ligands
with slower leaving kinetics such as dicarboxylato groups and/or 2) convert Pt(I) into Pt(IV)
and modify the axial groups by different structures. The latter creates another barrier to delay
the cytotoxic activity of the complexes: Pt(IV) needs to be reduced to Pt(Il) before the latter
can take action. This process can only be done intracellularly by endogenous reducing agents
like ascorbic acid, glutathione or cysteine (Figure A3-B).>*"** The rate of reduction depends
on the nature of the axial groups. Recently, Pichler V. et al. reported that the most simple
dihydroxo Pt(IV) has the longest reduction half-life (> 15h).>" In fact, at least two other
research groups have used polysiloxane structures to conjugate Pt(IV) complexes. However,
the size of their particles were > 40 nm and the conjugate strategies were quite
complicated.”"*** Hence, the idea of this part is to introduce a simple one-pot protocol to
create USNPs that can be complexed covalently with Pt(IV). Thanks to the favorable
biodistribution of ultrasmall particles, Pt(IV) will be delivered specifically to the tumors and
eliminated through urine without staying long in other organs. Due to the kinetic inertness of
Pt(IV) and the covalent links between them and the particles, only the ones that remain in the
tumor during a certain time after the injection will be activated inside the cancer cells. This
will increase the specificity of the treatment and limit the side effects.
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Figure A3. Schematic representation of A) The strategy for the synthesis of USNPPt(IV) and B) The expected working mechanism”*’

A3.2. Synthesis strategy

The synthesis were described schematically in Figure A3-A. Since amine groups can form
very strong bonds with Pt and inactivate it, carboxyl groups were preferred to graft Pt on
USNPs. Therefore, APTES were dropped out from the formula and replaced by a
dicarboxylate silane, (3-triethoxysilyl)propylsuccinic anhydride (TESPSA, abcr GmbH,
Germany). A similar one-pot protocol was applied to synthesize USNP. Then, cisplatin was
added to react with dicarboxylate functions.”>**** Afterwards, hydrogen peroxide was added
to oxidize Pt(IT) into Pt(IV).>>> Unexpectedly, the viscosity of the new particles was quite high
and made the concentration step by the tangential filtration too slow. Therefore, the product
was lyophilized instead to remove the most part of water (90%). Then, the particles was
purified by tangential filtration in NaCl 1 M to remove physically adsorbed cisplatin and re-
purified in water to remove the excess of NaCl.

A3.3. Experimental protocol

To 60 ml of water were added 410 pl (1.8 mmol) of TEOS and 540 pl (1.8 mmol) of TESPSA
so that the total concentration of silane stayed at 60 mM. The solution was stirred and heated
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at 40°C overnight to hydrolyze the silanes and form the particles. Then, 180 mg of cisplatin
(cis-diamineplatinum(II) dichloride, Sigma-Aldrich, France) was poured directly to the
solution. The solution was kept stirring at 40°C for 3h until a clear yellow solution was
obtained. The solution was cooled down to room temperature before 3 ml of hydrogen
peroxide was added. The solution was kept stirring for 2h and appeared as a pale blue solution.
Solution was lyophilized 2 days until ~ 6 ml remained. This solution was purified by
tangential filtration with NaCl 1M as washing solvent for 100 purification factor and re-
purified with water for another 100 purification factor.

A3.4. Characterization of USNPPt(1V)

Due to limited amount of time, only some preliminary characterizations have been conducted.
The results were summarized in Table Al.

Table Al. Characterization of USNPPt(IV)

Properties Method(s) USNPPt(IV)
Dy before lyophilized (nm) DLS 32+1.0
Dy after lyophilized (nm) DLS 38+1.2
Retention time (min) HPLC (305 nm) 15.9

HPLC (255 nm) 159
FWHM (min) HPLC (305 nm) 2.425

HPLC (255 nm) 2.425
Purity (%) HPLC (305 nm) 94.5

HPLC (255 nm) 96.4
Presence of Pt(IV) OPDA colorimetry ~ Peak at 428 nm
Pt content (umol/g) OPDA colorimetry 9.80

DLS results show a Dy around 3.8 nm of particles after lyophilized which demonstrates that
USNP was created and maintained during the process. Chromatograms show a quite
symmetrical peak around 15.9 min that can be assigned to the USNP accompanied by a small
peak at the beginning (< 5%) that can be assigned to free silanes coexisting in an equilibrium
with the particles. The chromatograms were recorded at 305 nm as specific absorption region
of Pt(IV)*° and 255 nm as UV cutoff of acetonitrile (Figure A4-A, B).

The content of Pt in USNP can be determined by colorimetry. Pt(II) and Pt(IV) can react with
OPDA (o-phenylenediamine) to give a complex that absorb strongly at around 706 nm. By
simply establishing a calibration curve at 706 nm of a series of cisplatin samples with
increasing concentrations, the amount of Pt complexes in a solution can be determined.””**
According to this method, the content of Pt in USNPPt(IV) was 9.8 umol/g. Moreover, when
Pt(IV) is present in the solution, it will be reduced first by OPDA before being complexed.
The appearance of a peak at 428 nm in USNPPt(IV) sample signified the presence of oxidized
product of OPDA which implies the presence of Pt(IV) in the solution (Figure A4-C, D).*’
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Figure A4. Characterization of USNPPt(IV): A) DLS diagrams of particle before lyophilized (dash-dotted line) and after
lyophilized (solid line); B) Chromatograms of particle after lyophilized at 255 nm (dotted line) and 305 nm (solid line); C)
Absorption spectra of calibrating samples of cisplatin at different concentration after complexed with OPDA, inset: calibration
curve and equation; D) Absorption spectra of diluted USNPPt(IV) sample after complexed with OPDA (solid line), calibrating
sample at 15 pM cisplatin was added for comparison (dashed line).

A3.5. Conclusion

This small experiment demonstrates the possibility of using different types of silanes apart
from chelating ones in the one-pot synthesis to create ultrasmall particles. However, there are
still several things to be done such as to improve the loading ratio, the yield in Pt and to test
the release profile under normal and reducing conditions. Moreover, eventually, aminosilanes
should be introduced somehow to the surface of the particle to neutralize the surface zeta

potential and prevent proteins adsorption on the particles before this particle can be used for
any biological experiments.
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A4. Assignment of infra-red spectra of DOTAGA and APTES-DOTAGA

Table A2. Assignment of the main peaks in infra-red spectra of DOTAGA and APTES-DOTAGA

Wave number (cm™)

Assignment

33853
3238.7
3079.2
2932.6
2885.2
1712.7
1677.0
1622.2
1385.1
12213
1122.1
1087.6

Si-OH stretching or primary amine N-H stretching

Si-OH stretching or secondary amide N-H stretching or carboxylic O-H stretching
Secondary amide IT overtone or carboxylic O-H stretching
Methylene asymmetric C-H stretching

Methylene symmetric C-H stretching

Carboxylic acid C=0 stretching

Secondary amide C=O stretching

Amine NH, scissoring, N-H bending

Carboxylic acid C-O-H in-plane bending

Carboxylic acid C-O stretching or Aliphatic C-N stretching
Si-O-Si asymmetric stretching or Aliphatic C-N stretching
Si-O-C stretching

AS. Behaviors of USNP in human serum (supplementary information)

AS.1. Characterization of the second batch of USNP@DOTAs-5-Gd

-
o O o O

Volume (%)

N
o

N
o

] A) '?1000- B)

5 800-
2

% 600 -
e

s 400
o

. . 8 2001
1 10 <

Diameter (nm) 0

R 0 5 10 15 20 25 30
)] — 146 P Time (min)

N
a

(3]

Fluorescence (arb. unit)
—
o

o

——203PF

—— 586 PF

—— 1172 PF (the day aft
(the day afien Figure AS5. Characterization of the second batch of

USNP@DOTAs-5-Gd: A) DLS diagram; B) HPLC
chromatogram of solution dispersed at 100 g/I diluted to
5 g/l immediately before analyzed and C)
Phosphorescence emission spectra of different filtrates
collected during the purification, each filtrate was
diluted 10 times before measurement, the same

300

310 320 330 340 parameters used previously were applied.
Wavelength (nm)

153



Annexes

AS.2. Relaxation velocities of concentrated sample and Kinetics measurement of diluted
sample of USNP@DOTAs-5-Gd in human serum normalized by the volume of

solution

Table A3. Longitudinal (r;*) and transverse (r,*) relaxation velocities normalized by the amount of Gd in NP and the volume of
solution of the second batch of USNP@DOTA s-5-Gd in human serum (94 g/L or 56.3 mM) (37°C, 60 MHz).
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Figure A6. Kinetics of degradation measured by relaxometry of the second batch of USNP@DOTA s-5-Gd in water
(solid symbols) and in human serum (open symbols) at 1 g/L (or 0.6 mM) (37°C, 60 MHz): A) longitudinal and B)
transverse relaxation velocities. The results were normalized with mmol of Gd in NP in the samples and the volume of

solutions.
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Abstract

Nanoparticles containing high-Z elements are known to boost the efficacy of radiation therapy.
Gadolinium (Gd) is particularly attractive because this element is also a positive contrast agent for
MRI, which allows for the simultaneous use of imaging to guide the irradiation and to delineate the
tumor. In this study, we used the Gd-based nanoparticles, AGulX®. After intravenous injection
into animals bearing BI 6F10 tumors, some nanoparticles remained inside the tumor cells for more
than 24 hours, indicating that a single administration of nanoparticles might be sufficient for several
irradiations. Combining AGulX® with radiation therapy increases tumor cell death, and improves
the life spans of animals bearing multiple brain melanoma metastases. These results provide pre-

clinical proof-of-concept for a phase | clinical trial.

Key words: AGulIX, radiosensitizer, radiation therapy, brain metastases, nanoparticles, imaged-guided therapy,

personalized medicine

Introduction

Despite recent outcome progress,[1-3] melanoma
is still difficult to treat due to multidrug- and ra-
dio-resistance and high metastatic capacity.[4] In ap-
proximately 80% of cases, malignant melanomas tend
to metastasize into the central nervous system;[5] this
specific dissemination has a considerable effect on
overall patient survival. Neurosurgeons and neu-
ro-oncologists have attained limited success using
conventional treatments such as surgical resection[6,
7] when possible, and radiation therapy with local
approach,[8] stereotactic radiosurgery,[9] or in toto
radiation with whole-brain radiotherapy (WBRT).[10]

One method for enhancing the effect of radio-
therapy is to combine X-ray radiation exposure with
metallic nanoparticles containing high-Z atoms. This
approach has been known for at least 10 years,[11]
and is based on the interaction of low-energy photons
with these elements.[12-14] During this interaction,
photons are absorbed by the nanoparticles, which
subsequently release photoelectrons and Auger elec-
trons, leading to a local dose enhancement and the
creation of reactive oxygen species (ROS), damaging
the neighboring cells.[15] After IV injection, the parti-
cles can reach the tumor site through the passive en-

http:/fwww.thno.org
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A6.4. Co-authored book chapter: New research in ionizing radiation and nanoparticles:
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the ARGENT project in Nanoscale Insights into Ion-Beam Cancer Therapy,
Springer 2017.

New Research in Ionizing Radiation
and Nanoparticles: The ARGENT Project
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Andrey V. Solov’yov and Sandrine Lacombe

Abstract This chapter gives an overview of “ARGENT" (“Advanced Radiother-
apy, Generated by Exploiting Nanoprocesses and Technologies™), an ongoing inter-
national Initial Training Network project, supported by the European Commission.
The project, bringing together world-leading researchers in physics, medical physics,
chemistry, and biology, aims to train 13 Early Stage Researchers (ESRs) whose
research activities are linked to understanding and exploiting the nanoscale processes
that drive physical, chemical, and biological effects induced by ionizing radiation
in the presence of radiosensitizing nanoparticles. This research is at the forefront
of current practices and involves many experts from the respective scientific disci-
plines. In this chapter, we overview research topics covered by ARGENT and briefly
describe the research projects of each ESR.
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RESUME

Les nanoparticules (NPs) hybrides peuvent combiner les propriétés physiques uniques des éléments
inorganiques pour des applications en imagerie et en thérapeutique avec la biocompatibilité des structures
organiques. Cependant, leur utilisation en médecine est encore limitée par des risques potentiels de toxicité
a long terme. Dans ce contexte, des NPs hybrides ultrafines pouvant étre éliminées rapidement par la voie
rénale apparaissent comme de bonnes candidates pour la nanomédicine. La NP a base de silice contenant
des chélates du gadolinium appelée AGUIX (Activation et Guidage de ITrradiation par rayon-X) a été
développée avec un diameétre hydrodynamique de moins de 5 nm qui lui permet d'étre éliminée rapidement
via l'urine aprés injection intraveineuse. Cette NP s'est révélée étre une sonde efficace en imagerie
multimodale et un amplificateur local en radiothérapie pour le diagnostic et le traitement du cancer. Elle est
en train d’étre évaluée dans un essai clinique de phase I par radiothérapie des métastases cérébrales
(NANO-RAD, NCT02820454). Néanmoins, la synthése d’AGuIX est un procédé multi-étapes qui est

difficilement modulable.

Ce manuscrit rapporte, pour la premiére fois, le développement d’un protocole « one-pot » direct pour des
nanoparticules de silice ultrafines (USNP) contenant des chélateurs complexés ou non a partir des
précurseurs silanes chélatants moléculaires. Dans ce nouveau protocole, la taille des particules et les types
des métaux chélatés peuvent étre controlés facilement. Certaines des propriétés chimiques des USNP ont été
clarifiées davantage pendant ce travail exploratoire. Les particules élaborées ont été caractérisées par
différentes techniques analytiques complémentaires. Ces nouvelles nanoparticules USNPs présentent des

caractéristiques similaires aux AGUIX en terms de propriétes biologiques et de biodistribution.

Dans un second temps, un nouveau protocole de fonctionnalisation d’'USNP par des précurseurs silanes
chélatants a été développé. Ces chélatants libres fonctionnalisés sur la particule peuvent étre alors utilisés
afin de complexer des radiométaux pour I'imagerie bimodale. Enfin, d'autres stratégies de fonctionnalisation
sont aussi décrites. La nouvelle sonde (17VTh031) combinant un petit chélateur cyclique (NODA) et un
fluorophore proche-infrarouge tumeur ciblant (IR783) ainsi que le pyridinium quaternaire ont été greffés sur
I’AGUIX pour créer une nouvelle sonde en imagerie multimodale et cibler des tumeurs chondrosarcomes

respectivement.

Mots-clés : nanoparticule de silice ultrafine, cancer, sonde en imagerie multimodale, radiosensibilisateur
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