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Abstract

Although vibration-based rolling element bearing diagnostics is a very well-developed field,
the research on sparse representations of vibration signals is yet new and challenging for
machine diagnosis. As a desired property – representation of a signal in highly organized
structure – sparsity enables us to reveal the natural signature of singular events embedded in
a signal so as to reduce the demand on the user’s expertise, even though it involves advanced
theory of stochastic processes. In this thesis, several novel methods have been developed, by
means of different stochastic models, associated with their effective algorithms so as to serve
the industry in rolling element bearing diagnostics.

First, the sparsity-based model (sparse code, in natural image processing) is investigated
based on the current literature. By summarizing its successful reasons from three points,
the historical background of sparse representations has been inquired in the field of natural
scenes. Along such three aspects, its mathematical model with corresponding algorithms has
been categorized and presented as a fundamental premise; the main publications are therefore
surveyed in the literature on machinery fault diagnosis; finally, by discussing the pros and
cons of sparse representations, an interpretation of sparse structure in the Bayesian viewpoint
is proposed which then gives rise to two novel models for machinery fault diagnosis.

Second, a new stochastic model is introduced to address this issue: it introduces a hidden
variable to indicate the occurrence of the impacts and estimates the spectral content of the
corresponding transients together with the spectrum of background noise. This gives rise to
an automatic detection algorithm – with no need of manual prefiltering as is the case with
the envelope spectrum – from which fault frequencies can be revealed. The same algorithm
also makes possible to filter out the fault signal in a very efficient way as compared to other
approaches based on the stationary assumption. The performance is investigated on synthetic
signals with a high noise-to-signal ratio and also in the case of a mixture of two independent
transients. The effectiveness and robustness of the method are also verified on vibration
signals measured on a test-bench (gears and bearings). Results are found superior or at least
equivalent to those of conventional envelope analysis and fast kurtogram.

Third, a novel scheme for extracting cyclostationary (CS) signals is proposed. It in-
troduces a periodic-variance based stochastic model to recover the CS component in the
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masking of interfering signals. This proceeds from the property that, for a CS signal, the
STFT evidences periodic flows of energy in and across its frequency bins. By considering the
periodic variance as hidden variables, a time-varying filter is designed so as to achieve the
full-band reconstruction of CS signals characterized by some pre-set characteristic frequency,
which can be obtained by the prior knowledge or the estimator of Spectral Correlation. The
performance of the proposed scheme has been demonstrated on synthetic and experimental
cases. Of particular interest is the robustness on experimental data sets and superior extraction
capability over the conventional Wiener filter. It not only deals with the bearing fault at an
incipient stage, but it even works for the installation problem and the case of two sources,
i.e. bearing and gear faults together. Eventually, these experimental examples evidence its
versatile usage on diagnostic analysis of compound signals.

Fourth, a benchmark analysis by using the fast computation of the spectral correlation
is provided. This study benefits from a big data set – which is publicly available and
widely used – supplied by the Case Western Reserve University (CWRU) Bearing Data
Center. Particularly, it contains plenty of cases ranges from very easily diagnosable to not
diagnosable; while some signals are showing the typical harmonic structure of bearing fault
signatures, others are quite blurry or even display other fault symptoms. This is one crucial
point that makes this work challenging and charming – moving forward the benchmark study
of the CWRU data set – by uncovering its own unique characteristics.
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Résumé

Bien que le diagnostic des roulements par analyse vibratoire soit un domaine très développé,
la recherche sur les représentations parcimonieuses des signaux de vibration est encore nou-
velle et difficile pour le diagnostic des machines tournantes. En tant que propriété souhaitée –
la représentation d’un signal dans une structure hautement organisée – la parcimonie nous
permet de révéler la signature naturelle d’événements singuliers intégrés dans un signal
afin de réduire la demande sur l’ expertise de l’ utilisateur, même si elle implique une
théorie avancée des processus stochastiques. Dans cette thèse, de méthodes nouvelles ont
été développées, au moyen de différents modèles stochastiques, associées à des algorithmes
efficaces afin de servir l’industrie dans le diagnostic des roulements.

Tout d’abord, les modèles parcimonieux présentés dans la littérature sont revus. En
résumant leurs avantages en trois points, le contexte historique des représentations parci-
monieuses a été examiné, notamment dans le domaine des scènes naturelles. En suivant ces
trois aspects, les modèles mathématiques ainsi que les algorithmes associés ont été classés
et présentés comme une prémisse fondamentale. Les principales publications concernant
le diagnostic des machines tournantes ont également été considérées. Enfin, en discutant
des avantages et des inconvénients des représentations parcimonieuses, une interprétation
des structures creuses d’un point de vue Bayésien est proposée, ce qui donne lieu à deux
nouveaux modèles de diagnostic des machines tournantes.

Dans un second temps, un nouveau modèle stochastique est proposé : il introduit une
variable cachée relative à l’apparition d’impacts et estime le contenu spectral des transitoires
correspondants ainsi que le spectre du bruit de fond. Cela donne lieu à un algorithme de
détection automatique - sans besoin de pré-filtrage manuel comme c’est le cas avec le spectre
d’enveloppe - à partir duquel les fréquences de défaut peuvent être révélées. Le même
algorithme permet également de filtrer le signal de défaut de manière très efficace par rapport
à d’autres approches basées sur l’hypothèse stationnaire. La performance de l’algorithme
est étudiée sur des signaux synthétiques avec un rapport signal à bruit faible et également
dans le cas d’un mélange de deux transitoires indépendants. L’efficacité et la robustesse
de la méthode sont également vérifiées sur les signaux de vibration mesurés sur un banc
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d’essai (engrenages et paliers). Les résultats sont meilleurs ou au moins équivalents à ceux
de l’analyse d’enveloppes classique et du kurtogramme rapide.

Dans un troisième temps, un nouveau schéma pour l’extraction de signaux cyclo-
stationnaires (CS) est proposé. Il introduit un modèle stochastique basé sur la variance
périodique pour récupérer la composante CS masquée par des signaux parasites. Cela dé-
coule de la propriété statuant que, pour un signal CS, la transformée de Fourier à court
terme met en évidence des flux d’énergie temporellement périodiques. En considérant la
variance périodique en tant que variable cachée, un filtre temporel est conçu de manière à
obtenir la reconstruction intégrale des signaux CS caractérisés par une fréquence cyclique
préétablie, qui peut être connue à priori ou estimée à partir de la corrélation spectrale. La
performance du schéma proposé a été évaluée sur des cas synthétiques et expérimentaux. Un
intérêt particulier de la méthode est sa robustesse lorsqu’elle est appliquée sur des données
expérimentales ainsi qu’une capacité d’extraction supérieure par rapport au filtre de Wiener
conventionnel. Cette approche se révèle efficace non seulement sur des défauts de roulement
à des stades précoces, mais également sur des problèmes de montage dans le cas où plusieurs
sources sont présentes (par exemple les engrenages et les roulements ensemble). Finalement,
ces exemples expérimentaux témoignent de l’utilisation polyvalente de la méthode à des fins
de diagnostic de signaux composés.

Pour finir, une analyse comparée utilisant le calcul rapide de la corrélation spectrale est
réalisée sur une base de données publiquement disponible et largement utilisée. Cette base
bénéficie d’un grand ensemble de données fournies par le centre de données de l’Université
Case Western Reserve (CWRU). En particulier, elle contient de nombreux cas d’étude, allant
de diagnostics simples aux plus complexes. Tandis que certains signaux présentent une
structure harmonique typique des signatures de défauts de roulement, d’autres sont assez
ambigües ou présentent d’autres symptômes inattendus de défaut. C’est un point crucial qui
fixe un défis non-trivial à resoudre.
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[0]
xxx (red line

and blue asteriks) and (b) estimated ones from EM (diagonals of covariance
matrices ĈCC
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Chapter 1

Introduction

From a general perspective, information is most often conveyed by singular events embedded
in a signal. In this thesis, the “signal” refers to a possible physical quantity of interest, such
as vibration-based measurement – acceleration; and the “information” refers to human’s prior
knowledge desire to explore on the object – from bearings or rolling element bearings. As
an intermediate bridging the previous two, the hidden “singular events” probably will be
captured through complex stochastic models and advanced signal processing techeniques.
Particularly, this thesis aims to address such issue from the view of “sparse structure”.

1.1 Context

Rolling element bearings are not only common components used in various types of mechan-
ical systems, but they are also crucial due to the foremost cause of machinery breakdown.
Such rotating or reciprocating machine includes engines of aircraft or automobile, compres-
sors, turbines and pumps, which typically have a variety of mechanical parts such as the
shaft, bearing, gearbox, blade, coupling and belt. For these reasons, vibration signals in
practice usually consist of very many frequencies occurring simultaneously produced by
some periodic mechanisms and no matter which sort of operating conditions – e.g. healthy,
misalignment, damage on bearing or gear, etc. – it undergoes.

For the failure of bearings, typical defects are caused by crack, breakage, spall or uneven
wear (pitting, scuffing, abrasion, erosion), often located on the matting surface of the inner
race, the outer race or the rolling elements. As the rolling element strikes a defect, ensuing
vibration transients occur at a specific rate called “bearing characteristic frequencies”. Since
the bearing fault signatures have been well-investigated [2], its characteristic frequencies can
be estimated with some kinematic and geometric parameters as presented in Table 1.1. At
the incipient stage, each transient resembles a damped impulse response with high frequency
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2 Introduction

Fig. 1.1 Typical fault signals in rolling element bearings.

content corresponding to the excited structural resonances. Due to the load distribution, the
series of impulse responses are simultaneously amplitude modulated by the passing period
into and out of the load zone.

Figure 1.1 shows three typical fault signals with their corresponding “bearing characteris-
tic frequencies”, which can directly reveal the occurrence and location of the bearing fault.
In the case of stationary outer race defect, as the damage occurs on the surface of stator and
in the presence of radial load, there exists uniform amplitude modulation. In the case of inner
race defect, as the damage movement coincides to the shaft speed and the load distribution, it
is amplitude modulated by the inner race rotation. In the case of rolling element defect, as
the damaged rollers are guided by the cage, it experiences a periodic amplitude modulation
at the cage speed; additionally, due to the double shock (inner and outer race) in each cycle,
the even multiples of BSF are therefore dominant which will be further demonstrated by real
data later.
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1.2 Problem statement 3

Table 1.1 Bearing characteristic frequencies (d = bearing roller diameter; D = pitch circle
diameter; n = number of rolling elements; θ = contact angle.)

Ballpass frequency, outer race (BPFO) n
2Ω(1− d

D cosθ)

Ballpass frequency, inner race (BPFI) n
2Ω(1+ d

D cosθ)

Ball (roller) spin frequency (BSF) Ωd
D (1− ( d

D cosθ)2)

Shaft rotation speed ( frot) Ω

Fundamental train frequency (FTF) Ω

2 (1− d
D cosθ)

It is noteworthy that there exist two practical tips (invariant relations): BPFO = FTF × n;
BPFI = n × ( frot−FTF), resulting in the sum of BPFO and BPFI always equal to n × frot ,
regardless of the level of slip.

1.2 Problem statement

Based on the description above, a well-known and simple harmonic model for bearing signal
(i.e. as can be seen in Fig. 1.2 (a)) is obtained by [3]:

y(t) =
+∞

∑
i=−∞

h(t− iT )q(iT )+n(t) (1.1)

where h(t) represents the impulse response of system, q(t) = q(t +P) indicates the periodic
modulation of period P due to load distribution; T means the inter-arrival time between two
consecutive impacts on the fault, index i denotes the occurrence of the i th impact and n(t)
accounts for an additive backgroud noise that embodies all other vibration sources.

Hence the power spectral density of the fault signal in Eq. (1.1) results in discrete
spectrum series as seen in Fig. 1.2 (b) whose fault signature is distinctly carried in high
frequency region of resonances excited by the internal impacts. Next, a conventional and
popular method – squared envelope spectrum (SES) – is further executed to reveal the
modulation frequency in order to obtain typical harmonic structure of fault signature in Fig.
1.2 (c). Unfortunately, it is merely an ideal model of the real world, and obviously limited for
engineering applications. First, the transients produced by impacts are not strictly periodic
due to random slips, possibly caused by speed fluctuations and variations of the axial to
radial load ratio; second, the magnitudes of impacts are not uniform because of the random
fluctuations, such as tiny changes in load and contact angle with time; third, the fault-induced
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transients are often immerged in strong background noise which possibly derives from other
rotating components. More precisely, two dominant challenges are highlighted:

• The masking effect from external sources (i.e. n(t) in Eq. 1.1) due to the complex
operating environment (i.e. bearings are most often associated with gears). Although
the repetitive transients are usually carried in high frequency bands due to the high
stiffness of bearings, they are fairly weak compared with surrounding noise or even
completely submerged in other interfering signals (e.g. the deterministic components
of other rotating parts such as gears);

• Uncertainties in the internal excitation mechanism (i.e. transients in Eq. 1.1). Even
if the operating speed is controlled, there exists some kind of slight variations (i.e.
random slips and fluctuations corresponding to intervals and magnitude of transients,
respectively) caused by clearance and lubrication in actual operation, as illustrated in
Fig. 1.2. It is proven that a small slip would completely destroy the harmonic structure
of fault frequencies beyond the cut-off frequency; particularly at high speeds and light
loads, slip may be as high as 50% [4–6].

Fig. 1.2 Illustration of the influence of random slips and fluctuations: (a) and (d) stand
for synthetic signals in time domain; (b) and (e) for raw spectra calculated by the Fourier
transform; (c) and (f) for squared envelope spectra.
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1.3 State of the art 5

To see these clearly, a more realistic model for bearing signal is presented below:

y(t) =
+∞

∑
i=−∞

h(t− iT − τi)q(iT )Ai +n(t) (1.2)

where τi and Ai accounts for the uncertainties on the arrival time and on the magnitude of the
i th impact, respectively. Without loss of generality, {τi}∞

−∞ and {Ai}∞
−∞ are modelled as two

random sequences τi ∼NNN (µτ = 0,στ = 0.02T ) and Ai ∼NNN (µA = 0,σA = 0.1) in Fig.1.2
(d).

For all these reasons, the purpose of this thesis is to develop novel stochastic models
whereby the topic involves the feature extraction, fault detection and identification, severity
assessment and full-band time signal recovery in the field of machine condition monitoring
and fault diagnostics.

1.3 State of the art

According to aforementioned mechanism – on operating bearings, feature extraction of
fault-induced transients is an essential and crucial task for the following, i.e. fault detection
and identification, particularly for precise identification of damage such as in inner race,
outer race or rolling element. This is especially true in the incipient stage, so that various
diagnostic algorithms have been proposed for decades [2, 7–16].

Traditionally, they can be divided into three categories: time-domain, frequency-domain
and time-frequency domain. In particular, the characteristic features of time waveforms are
rather visible and intuitive, because they are directly obtained from the acquired measurement,
such as the Time Synchronous Average (TSA) [7], Autoregressive Model (AM) [8], Matching
Pursuit (MP) [9] and so on [10]. In the time domain, fault detection mainly involves scalar
quantities, i.e. variance, skewness, kurtosis, or some complex combination or variation of
them – commonly used statistical quantities are shown in Table A.2. In addition, vibration
signal can be decomposed into the spectral content so as to reveal its sinusoidal composition,
whereby one can see the bearing fault signature from the vector quantities such as power
spectral density, envelope analysis or cepstrum prewhitening [2, 4, 11]. More recently,
various time-frequency analysis methods have been developed and applied to machinery
fault diagnosis, such as the Short-Time Fourier Transform (STFT) [12, 13], Wigner-Ville
distribution [17, 18], Wavelet Transform (WT) [19–21] and high–order spectral analysis
[22]. All of them can benefit from the time-frequency framework that reveals the spectral
features while identifying their variant occurrences in time, especially for representations of
non-stationary signals. Although they have proven to succeed in many specified situations,
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6 Introduction

in the field of bearing fault diagnosis, it still requires ongoing developments for addressing a
more general issue: spectrum feature extraction, automatic fault detection, full-band time
signal recovery to reduce the demand on the user’s expertise.

So far the discussion has primarily focused on the physical quantity or phenomenon
that derives from tailored transforms (i.e. Fourier basis, Gabor transform, various types of
wavelets or frames) in the analytic route. Such frame usually indicates significant physical
meaning so as to lead to fast and effective algorithms, but lack adaptability and flexibility,
i.e. they can not properly match the structure of the analyzed data in general. Nowadays,
numerous signal analysis methods for machinery fault diagnosis have been investigated and
used in the learning-based route [9, 10, 14–16], which infers the data-driven transforms
obtained from signal realizations via machine-learning techniques [23] or advanced theory
of stochastic processes [6]. Contrary to the analytic way, the learning-based route driven by
observed data undergoes a high computational cost, but enjoys a better degree of freedom
for signal representations, such as the shift-invariant sparse coding (SISC) model [24],
group-sparsity model [25] and so on [26, 27].

This thesis thereby investigates both analytic and learing-based routes on sparse rep-
resentations of vibration signal. Chapter 2 intends to share and merge the information on
observations and prior knowledge in the general sense. With the idea of decomposing signals
into some “sparse structure”, novel stochastic models are explored and applied in Chapter 3
and Chapter 4 for rolling element bearing diagnostics.

1.4 Focus and Contribution

This thesis focuses on sparse representations of vibration signal which aims to explore intelli-
gent methods in rolling element bearing diagnostics; and it mainly makes four contributions
as following:

• This thesis presents a literature survey on sparse representations of vibration-based
signals for machinery fault diagnosis. First, an appealing study on primary visual cortex
is investigated, of particular interest is the success of applying sparse coding model;
and its contributions are further summarized by three aspects relative to vibration
signals. The sparsity-based models are therefore studied with two crucial topics: on
one hand, the sparse coding process that involves how to measure the sparsity of
signal of interest; on the other hand, the dictionary designing process which can be
divided into analytic and learning-based route. By following the review of sparse
representations in machinery fault diagnosis, the conclusion on using “sparsity” is
drawn with three crucial points.
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1.4 Focus and Contribution 7

• A new stochastic model is introduced to address this issue: it introduces a hidden
variable to indicate the occurrence of the impacts and estimates the spectral content
of the corresponding transients together with the spectrum of background noise. This
gives rise to an automatic detection algorithm – with no need of manual prefiltering
as is the case with the envelope spectrum – from which fault frequencies can be
revealed. The same algorithm also makes possible to filter out the fault signal in a
very efficient way as compared to other approaches based on the stationary assumption.
The performance is investigated on synthetic signals with a high noise-to-signal ratio
and also in the case of a mixture of two independent transients. The effectiveness
and robustness of the method are also verified on vibration signals measured on a
test-bench (gears and bearings). Results are found superior or at least equivalent to
those of conventional envelope analysis and fast kurtogram.

• A new method is proposed to extract cyclostationary (CS) signals masked by interfer-
ing signals. First, it introduces a stochastic model that regularizes the second-order
statistical descriptors as hidden variables so as to recover the CS component character-
ized by pre-set cyclic frequency. Meanwhile, it provides a CS indicator to assess the
level of CS components along carrier frequency. The validity of the proposed scheme
has been demonstrated on synthetic and experimental cases. Of particular interest
is the robustness on experimental dataset and superior extraction capability over the
conventional Wiener filter. It not only deals with the bearing fault at an incipient
stage, but it even works for the installation problem and in the case of two sources, i.e.
bearing and gear faults. Eventually, these experimental examples evidence its versatile
usage on diagnostic analysis of compound signals.

• A benchmark study on proposed fast estimator of the spectral correlation, the Fast
Spectral Correlation (Fast-SC), has been proposed and applied to a big data set. It
contains plenty of experimental situations that ranges from very easily diagnosable to
not diagnosable. Of particular interest is the cases that display unexpected mechan-
ical symptoms, where the conventional methods (e.g. envelope analysis, cepstrum
prewhitening and benchmark method in Ref. [11]) are obviously deficient. Finally
the proposed Fast-SC is systematically tested in all the cases and its robustness and
practicality have therefore been validated by the given result tables. The improved
results therefore demonstrate more details on the CWRU data set so as to make the
Fast-SC a more widely spread tool in condition monitoring. Another contribution of
this work is to move forward the benchmark study of public and commonly used data
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8 Introduction

set – Case Western Reserve University (CWRU) Bearing Data Center – by uncovering
its own unique characteristics.

1.5 Outline

The relevant works of this thesis are divided into six chapters:
Chapter 1 provides an overview of the issue with the research background, problem

statement and the state-of-the-art in machinery fault diagnosis. It also highlights some
interesting points to develop in the following contents.

Chapter 2 concerns the literature review on sparse representations of vibration signals.
With the idea of decomposing signals with a “sparse structure”, a historical background on
sparse coding is first provided. Next, a literature survey leads to the state-of-the-art on sparse
representations particularly for vibration signals. Eventually, a few crucial points are drawn
for its applications on machinery diagnostics – an interpretation on the Bayesian viewpoint
is given so as to illuminate the following explorations.

Chapter 3 exploits a novel stochastic model that works under the assumption of non-
stationary regime. It allows automatic detection of bearing faults without need of manual
prefiltering. In addition, it also makes possible a full-band reconstruction of repetitive
transients in the time domain. By discussing the initialization and parameter selection, its
effectiveness and robustness are verified on vibration signals measured on a test-bench (gears
and bearings).

Chapter 4 proposes an extraction scheme for CS signals particularly in the presence of
competing sources. It first introduces a periodic-variance based stochastic model to extract
the feature, recover the time signal, and detect the fault. The performance of the proposed
scheme is demonstrated on synthetic and experimental cases.

Chapter 5 gives the benchmark survey on using the fast computation of the spectral
correlation. It aims to make the spectral correlation a more widely spread tool in condition
monitoring, thereby it has selected a big data set and tested all the cases. The performance of
proposed Fast-SC is therefore assessed by the partial or non-diagnosable cases in Ref. [11].
In addition, the validating experiment is also demonstrated on non trivial vibration signals
(very weak bearing signatures).

Chapter 6 gives the conclusion of the thesis and discusses the perspectives of future work.
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Chapter 2

Literature review on sparse
representations of vibration signal

Representing signals compactly with overcomplete dictionary has proven to be advatageous
for many applications such as pattern recognition, image processing, machine learning, signal
processing, and computer vision, etc [28–33]. Sparsity is a desired property that gives rise
to an efficient representation for uncovering the intrinsic structure in signals, because it
possesses a higher degree of statistical independence among its outputs. For machinery
fault diagnosis, sparse representations of vibration signal is still a new and challenging topic
[23, 26]. Hence, in this chapter, a literature review on this topic has been investigated based
on current literature and furthermore a preliminary conclusion concerning its application is
drawn for machinery fault diagnosis.

2.1 Derivation of sparse code

Sparse representation was originally inspired by the research on primary visual cortex (area
V1) which uses a sparse code to efficiently represent natural scenes (Olshausen and Field,
1996) [34–36]. Here, their works are briefly summarized and categorized into three points:

• First, it was found that the spatial receptive fields of simple cells in the human vi-
sion system can be characterized as being localized, oriented, and band pass; and
these response properties of visual neurons can be accounted for producing a sparse
distribution of output activity in response to natural images.

• Second, a statistical model, named sparse code, was built to capture the “sparse
structure” in terms of a collection of statistically independent events; and furthermore
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10 Literature review on sparse representations of vibration signal

a coding strategy was investigated by maximizing sparseness which proves to be
sufficient to account for all three of the above properties.

• Third, of particular case of interest is when the code is overcomplete, an unsupervised
learning algorithm was studied for training the basis functions.

Interestingly, these points happen to answer the three relevant questions to sparse repre-
sentations of vibration signals: a) WHY does the sparse code for natural images succeed in
the field of cortical simple cells; b) WHAT is the sparse model and c) HOW to solve it. With
these questions, the rest of this chapter will explore the current literature in order to find a
proper way of sparsely representing vibration-based signals for machinery fault diagnosis.

Along such lines, it is reminded that the goal of efficient coding is to find a set of subcodes
that forms a complete code (that is, spans the image space) and results in the coefficient
values being as statistically independent as possible over an ensemble of natural images.
The reasons for desiring statistical independence have been summarized in [34], but can
be re-emphasized by taking into account higher-order statistical structure in the data. The
appropriate form for this structure is that it is “sparse”, meaning that only a few subcodes can
be “active” out of a very large set, as illustrated in Fig. 2.1 (Fig. 1 in Ref. [35]). It was shown
in [34] that when such a code is sought for natural images, the basis functions that emerge
are qualitatively similar in form to simple cell receptive fields and also the basis functions of
certain wavelet transforms.

Fig. 2.1 (Fig.1 in Ref. [35]) Sparse coding. (a) An image is represented by a small number
of “active” code elements, ai, out of a large set. Which elements are active varies from one
image to the next. (b) Since a given element in a sparse code will most of the time be inactive,
the probability distribution of its activity will be highly peaked around zero with heavy tails.
This is in contrast to a code where the probability distribution of activity is spread more
evenly among a range of values (such as a Gaussian).
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2.2 Sparsity-based models 11

In summary, this strategy, referred to as “sparse coding”, could possibly confer several
advantages. First, it allows for increased storage capacity in associative memories; second, it
makes the structure in natural signals explicit; third, it represents complex data in a way that
is easier to read out at subsequent levels of processing; and fourth, it saves energy [36].

2.2 Sparsity-based models

Signal models are a cornerstone of contemporary signal processing, because they are a
fundamental tool for facilitating this distinctiveness of the interesting signals. A good
signal model formulates a mathematical description of the family of interesting signals,
Ω ∈RN , which allows to distinguish them from the rest of the signal space. There are various
mathematical forms of signal models, one of the simplest and most common forms is as a
penalty function

R(x) : RN → R+ (2.1)

which assigns smaller penalties to signals more likely to belong to Ω. It is preferable to
identify signal models with the definition in Eq. 2.1, which allows more general constructions.
In statistical theory, such a penalty function gives rise to some a-priori probability distribution
assumed on the signal space,

P(x) =
1
Z
· e−R(x) (2.2)

where the penalty function R determines the shape of the distribution and Z is a normalizing
constant. For instance, choosing R(x) = log(1+ x2) corresponds to specifying a Cauchy
distribution for the prior, which has the desired sparse shape as well as these will be later
discussed in Table 2.2 (Table 1.1 in [37]).

Let return back to the realistic model for the vibration signal in Eq. 1.2, reforming it as

y(t) = x(t)+n(t) (2.3)

where x(t) indicates the fault-induced transients which is of particular interest for fault
detection. Separating it from measurement y(t) – contaminated by strong background noise
– is an impossible task without further assumptions on x(t). Hence it introduces another
important use of signal models – denoising problem regularization – by which the missing
information can be filled in, such as the prior knowledge of “sparse structure” on the signal
of interest x(t). Specifically, by penalizing undesired signals, the penalty function R(x) gives
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12 Literature review on sparse representations of vibration signal

rise to the following cost function:

x̂ = argmin
x̂

1
2
∥y− x̂∥2

2 +λR(x̂) (2.4)

where λ > 0 is a regularization parameter balancing the fidelity and regularity terms. The
first term measures how well this model describes the signal, and it is selected to be the
mean square of the error between the measurement and the reconstructed signal. The second
term assesses the sparseness of the reconstructed signal by assigning a penalty function
depending on how activity is distributed (i.e. two common routes: synthesis model penalizes
the coefficients of the reconstructed signal; analysis model penalizes inner products of the
dictionary atoms and the reconstructed signal). In terms of Bayesian statistics, considering Eq.
2.2 as a prior probability distribution, the optimization process in Eq. 2.4 can be interpreted
as a maximum-a-posterior (MAP) estimator of x(t) [38, 39]. As can be seen, R(x) in the
above expresses all our knowledge about the set Ω, and its accuracy directly determines the
success of the model.

To motivate the definition of the penalty function R(x), let consider the desired property –
sparse representation – which has proven to be of wide existence in natural images. All the
notion focuses on the assumption of a higher degree of statistical independence of the desired
signal, which gives to filter out the other statistical sources, such as the background noise n(t).
In other words, the sparsity-based model imposes a “sparse structure” through a sparsifying
transform x→ γ(x), where γ(x) ∈RL may have a different length than x (specifically, L≫ N
in image processing). For signals in Ω, the representation γ(x) is expected to be sparse, in
the sense that its sorted coefficients decay rapidly; for signals not in Ω, the representation
vectors should become denser. Concerning the sparsifying transform γ(x), there are mainly
two ways to understand the sparsity: synthesis and analysis model, which will be further
introduced in the following content.

Given the transform γ(x), the sparsity of γ describes the estimated likelihood of x(t)
belonging to Ω. Now let consider the measure of sparseness C(γ), which penalizes denser
representations:

R(x) =C(γ(x)). (2.5)

The purpose of regularizing the sparse signal is to approach the heavy-tailed probability
distribution as displayed in Fig. 2.1 (b). Therefore it penalizes more the non-vanishing
small coeffcients, while tolerating a limited number of large ones. Such examples of robust
functions include the Huber, Cauchy, and Tukey functions, as well as the family of lp cost
function with 0 6 p 6 1, as shown in Table 2.2 (Table 1.1 in [37]). It is notice that the l1

norm is an exception, which equally penalizes all magnitudes of coefficients. As such, it
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2.2 Sparsity-based models 13

Fig. 2.2 (Table 1.1 in [37]) Some robust penalty functions. For all cases, C(γ) = ∑i ρ(γi).

establishes the boundary between robust and non-robust sparsity measures, which has been
widely applied in image processing [40, 33].

In terms of the sparsifying transform γ(x), the literature splits into two routes as follows:
synthesis and analysis model which probably give rise to different physical or geometric
meanings quite depending on applications.

2.2.1 Synthesis model

Over the past two decades, various models have been proposed and investigated to improve
the solution of sparse representations [29–31, 40]. The synthesis model is one of the most
common descriptions of signals, in which the signal x is represented as a linear combination
of the atoms of dictionary D:

x = Dγs, (2.6)

where the coefficients γs are assumed to be sparse.

A graphical illustration of the synthesis model is presented in Fig.2.3, which provides a
preliminary result for sparse representation of vibration signals1. There are many studies and
appealing applications based on this model due to its more intuitive and versatile structure
[29–31, 40], it is a mature and stable field with clear theoretical foundations.

1In the case of strong background noise, none of unsupervised learning algorithms can avoid extracting
features of interfering signals. In other words, the trained dictionary probably contains some atoms from
background noise n(t).
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Fig. 2.3 Graphical illustration of the synthesis model, which represents a sparse vibration
signal as a linear combination of three actived atoms in Dictionary. As can be seen, noisy
measurements in blue, reconstructed signal in red, reference signal in green, actived atoms in
black. It is notice that not all the atoms are displayed in the block of Dictionary, alternatively,
only ten identifiable waveforms of trained atoms are displayed.

2.2.2 Analysis model

Interestingly, the synthesis model has a “twin” that takes an “analysis” point of view. This
alternative describes the signal x via its inner products with the dictionary atoms Ω,

γa = Ωx, (2.7)

where the analyzed vector γa is expected to be sparse. There are also many successful
applications based on this model [28, 38, 41–43]. Particularly, the superiority of the analysis
model in signal denoising was demonstrated in [38].

2.2.3 Comparison and evolution

There are some papers on the comparison between the two models [38], which indicate that
for a square and invertible dictionary, the synthesis and the analysis models are equivalent
with D = Ω−1. When the dictionary forms a basis, it is said to be complete in linear algebra
theory. In this case every signal has a unique representation, such that in synthesis model
x = Dγs, where γs(x) = D−1x can be equivalently viewed as the inner products of x and the
atoms of Ω=D−1, known as the bi-orthogonal dictionary [37]. A conclusion was drawn that
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2.3 Algorithms for sparse representation 15

although when reducing to be complete and under-complete formulations the two models
become equivalent, in their more interesting overcomplete formulation they are different
[38].

For instance, in image processing, of great interest is the case when the dictionary is
overcomplete (L > N) [35, 38, 41–43]. As it was explained in [35], the reason why it is
more pertinent is that an overcomplete dictionary will allow greater flexibility in matching
the generative model to the input structure. This is especially important for images, because
there is little reason to believe a priori that images are composed of N discrete independent
causes (where N is the dimensionality of the input). Hence, it allows for smooth interpolation
along this continuum. Concerning the denoising problem, using a sparse and redundant
representation as driving forces has drawn a lot of research attention in the past dacade
[37, 38, 40], such as the sparseland model in [40]. In the following contents, unless
otherwise mentioned, the overcomplete dictioanry will been exclusively investigated.

It is worthy to mention that there are also some other appealing models, such as double-
sparse model, which employs a pair of analysis and synthesis dictionaries for thresholding-
based image recovery [44]; structured sparse model, which is based on Gaussian mixture
models, estimated via a computationally efficient MAP-EM algorithm [45]; shift-invariant
sparse coding model, which allows a sparse representation using basis atoms in all possible
time shifts [46, 47]; group-sparsity model, which addresses signal denoising when large-
amplitude coefficients form clusters (groups) [48, 49]; convolutional sparse coding model,
which provides a multi-layer model by imposing a special structure – a union of banded and
circulant matrices – on the involved dictionary [50].

2.3 Algorithms for sparse representation

With prespecified models, the success of applications is dependent on the designed transform
which gives rise to a sparse distribution. In particular, it primarily depends on the designed
set of basis atoms, which is the so-called dictionary in machine learning. The dictionary is
arranged as a matrix, with the atoms constituting its columns or rows (synthesis or analysis
model, respectively), i.e. D = [a1 a2 . . . aL] ∈ RN×L or Ω = [a1 a2 . . . aL]

T ∈ RL×N . Both
are composed of L atoms, wherein each atom of the dictionary is noted as al ∈ RN×1.

There are two routes for designing a sparse transform, either a prespecified set of functions
or trained set of functions driven by a given set of signal examples. In this thesis, let
take analytic dictionary and learning-based dictionary for notation. Choosing an analytic
dictionary is appealing because in many cases it leads to simple and fast algorithms for the
estimation of sparse representations. In addition, a prespecified transform also specifies a
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16 Literature review on sparse representations of vibration signal

clear physical meaning or typical waveforms that closely associates with signal analysis. This
is indeed the case for overcomplete wavelets [51], curvelets [52], contourlets [53], short-time
Fourier transforms [54], and so on. However, on the other hand, the learning-based route
also gives rise to some interesting properties such as an explicit expression, flexibility and
adaptability to the data itself. There are also some algorithms for this type, such as Principle
Component Analysis (PCA) [55], Generalized PCA [56], the K-SVD [33], and others. No
matter which route is chosen, there exists one important criterion to validate its performance
– by which giving rise to a “sparse structure”. To reduce the demand on the user’s expertise,
the learning-based route is one hot and challenging choice, which has attracted a lot of
researches and led to the state-of-the-art [23, 33, 38, 40, 43–45]. In this work, it is preferable
to exploit the learning-based dictionary as the focus of the following contents.

Concerning the optimization problem in Eq. 2.4, it is not jointly convex, but convex with
respect to one variable while holding the other one fixed. Thus, it can be iteratively solved by
two convex optimization problems: regularizing the coefficients γ with the dictionary fixed,
and solving the atoms of the dictionary with the given coefficients γ . Especially, both of them
are key topics in sparse representations which will be further investigated in the following
contents.

2.3.1 Sparse coding

Given the overcomplete dictioanry D, if it is a full-rank matrix, there will be infinite solutions
with respect to x=Dγs. Therefore the sparsity measure C(γ) must be set to pursue the sparsest
possible representation which gives rise to the objective function

γs = argmin
γs

C(γs) Subject To x = Dγs. (2.8)

This process corresponds to the so-called sparse coding step and is related to pursuit al-
gorithms [32, 57, 58]. Of specific interest is the l 0 case, which leads to a strict sparse
distribution by counting the number of non-zeros in the representation. Nevertheless, the l 0

minimization proves to be an NP-hard problem and sparsest representations is intractable
in practice [59]. Many approximate solutions are therefore considered instead, such as the
orthogonal matching puisuit (OMP) algorithms [57], basis pursuit (BP) [32], focal underde-
termined system solver (FOCUSS) [58] and so on2. A common and efficient way to penalize
denser representations is the l 1 norm, which provides a powerful combination of robustness
and convexity. It is also a stable approximation of the l 0 case, which leads to

2There are also some other ways to approximate the sparseness, e.g. to promote sparsity more strongly;
some works employ non-convex regularization term, more details can be found in [49].
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2.3 Algorithms for sparse representation 17

γs = argmin
γs
∥γs∥1 Subject To x = Dγs. (2.9)

As mentioned before, this approximate solution establishes the boundary between robust
and non-robust sparsity measures, which leads to wide applications in image processing
[33, 40]. The sparse coding algorithms provide not only a good approximation to the “sparse
structure”, but a crucial step to the interactive procedure of dictionary learning.

2.3.2 Learning-based dictionary

More generally, the sparse coding gives rise to the following optimization problem,

argmin
γ, D

1
2
∥yyy−

L

∑
l=1

alγl∥2
2 +λ

L

∑
l=1
∥γl∥1 s.t. ∥al∥2

2 ≤ c, 1≤ l≤ L. (2.10)

The normalization constraint c3 prevents trivial solutions where γl becomes very small
and al becomes very large. To solve the objective function in Eq. 2.104, the first step
is to compute the maximum-a-posteriori (MAP) estimates of the hidden coefficients γ =

[γ1 γ2 . . . γL]
T ∈ RL×1 and then estimate the learing-based dictionary D = [a1 a2 . . . aL] ∈

RN×L by maximizing the complete likelihood function. This problem is convex in either γ1

or al (though not jointly convex in both). Hence it can be alternatingly solved by two convex
optimization problems: 1) sparse coding to solve γ , which is a L1 regularized least squares
problem as shown in Eq. 2.9 and 2) redundant dictionary design to update D, which reduces
the objective function 2.10 to a L2 constrained optimization problem as demonstrated below:

argmin
D
∥yyy−

L

∑
l=1

alγl∥2
2 s.t. ∥al∥2

2 ≤ c, 1≤ l≤ L. (2.11)

An intuitive way of understanding the algorithm is that it is seeking a set of γl for which
the al can tolerate “sparsification” with minimum reconstruction error.

Concerning the learning-based dictionary, it will be referred, as expeditiously as possible,
to the conventional algorithms: K-SVD [33] and analysis K-SVD [43], based on synthesis
and analysis model respectively. The K-SVD is an iterative method for the synthesis model
that alternates between sparse coding of the examples based on the current dictionary and an

3Norm constraints are important since there always exists a linear transformation of γl and al which keeps
∑

L
l=1 alγl invariant while allowing γl to approach zero. Another consideration is the comparison among the

sparse coefficients, which accounts for the energy of each components.
4Rigorously speaking, it is just an intermediate of the complete process, which corresponds to maximizing

the average log-likelihood of target signals P(y | D) (more details to follow).
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18 Literature review on sparse representations of vibration signal

update process for the dictionary atoms so as to better fit the data. Particularly, it is flexible
and can work with any pursuit method (e.g., basis pursuit, FOCUSS, or matching pursuit)
[33]. The analysis K-SVD is parallel and similar to the previous one, it provides a training
algorithm for the analysis dictionary – multiplies the signal, leading to a sparse outcome [43].
It is noteworthy that there are also some efficient algorithms to address the sparse coding,
such as the feature-sign search algorithm [60] and CoefROMP algorithm [61].

2.4 Applications on rolling element bearing diagnostics

In recent years, the idea of sparsely representing vibration signals with pre-trained redundant
dictionary has grabbed a lot of attention in machinery fault diagnosis [9, 10, 14–16, 23–
27, 62, 63]. The procedure of fault diagnosis starts with data acquisition, followed by feature
extraction, fault detection and identification as shown in Fig.2.4. As can be seen, feature
extraction has the responsibility of extracting characteristic waveforms from the aquired
measurement, which motivates the following classifier to recognize the type of fault.

Fig. 2.4 General vibration fault diagnosis procedure.

Concerning the route of feature extraction, the current literature mainly consists of
analytic and learning-based methods as mentioned in Section 1.3. In terms of analytic
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2.4 Applications on rolling element bearing diagnostics 19

method, the wavelet-based methods have been widely studied for decades and have made
great progress in fault diagnosis. In particular, reviews of the wavelet-based methods were
presented and various applications have been proposed in Ref. [19–21]. These proposed
models match the vibration signals of bearing faults to some degree, but a one-to-one
correspondence between the parameters in the models and the parameters and operational
status of the analyzed bearing is nearly impossible. Especially in engineering applications,
such methods are limited in their abilities to adapt to different types of data. In other
words, special cares must be taken in choosing the basis functions, and the success of such
dictionaries in applications depends on how suitable they are to describe target signals.
To reduce the demand on the user’s expertise, the learning-based route is one promising
and challenging choice. Hence the sparsity-based feature extraction techniques – often
associating with novel models – are investigated which can enable the following step to
achieve the machinery fault diagnosis.

Along these lines, a number of studies have attempted to train unsupervised learning
dictionary on vibration signals which derived from real data instead of predefined transform
– in the hope of extracting the feature of fault-induced signals [9, 14, 15, 23]. The sparse
representation was first illustrated in [14], which exploited the sparsity of vibration signals
in the time-frequency domain in order to detect and extract fault features. For extracting
the impulse features of damaged gear vibration, four sparse representation algorithms have
been compared to analyze the vibration signals of both healthy and faulty gearboxes [15].
According to the characteristics of bearing faults, an adaptive matching pursuit method using
an adaptive impulse dictionary is presented [9]. Based on the sparse model of compressed
sensing, a sparse extraction of impulses by an adaptive dictionary scheme has been proposed
to detect gearbox fault [23]. More recently, an on-line dictionary learning and sparse
approximation denoising algorithm (ODL-SAD) has been proposed that intends to replace
the traditional wavelet transform-based methods in which the performance is greatly impacted
by the mother wavelet [16].

Another interest in research focuses on developing novel models – by imposing constraints
or assumptions on vibration signals to achieve a good result of fault detection [10, 24–
27, 62, 63]. The driving force behind different models is sparsity – the rapid decay of the
representation coefficients over the dictionary – which results in a more efficient structure
motivated by the higher-level of statistical independence of target signals as follows.

Of special interest is the shift-invariant sparse coding (SISC) model [24], which was
originally applied to model the underlying principle of the mammalian auditory system in
coding natural sounds. In particular, it allows a sparse representation using basis atoms in all
possible time so that it matches well with the fact – when the fault-induced contact occurs,
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20 Literature review on sparse representations of vibration signal

then the characteristic pattern would be excited at any time-location which is expected to be
the impulse response of the system. With the help of shift-invariant sparse coding, the same
defective impulse at different time locations can be represented by just one basis function
which is used for vibration analysis. In particular, a redundant dictionary is successfully
built by merging all sub-dictionary learning from one class of bearings data [10]. Following
the SISC model, a sparse representation based latent components decomposition method
is proposed [27]. The main differences are that the fault feature is selected by the latent
component without requiring any prior knowledge and a more efficient algorithms is applied –
the feature-sign search algorithm [60]. After the property of shift-invariance has proven to be
suitable to extract periodic impulses, the shift-invariant dictionary learning (SIDL) method is
introduced as an adaptive feature extraction technique, which can extract a double-impulse in
real data [26]. Then a signal can be decomposed into a collection of latent components, each
of which is reconstructed by one basis atom and its corresponding time-shifts. The energy
of each latent component is computed to form a sparse feature set, and finally the hidden
Markov model (HMM) is used to identify the bearing fault type.

Another interesting work is based on the mentioned group-sparsity model [48], which
aims to capture the signals where the variables (signal/coefficients) are not only sparse but also
exhibit a clustering or grouping property. Then this model was initially improved by utilizing
a non-convex regularization term to denoise group-sparse signals in speech enhancement [49].
By modeling vibration signals as only one repetitive group-sparse component, its potential
for extracting periodic transient pulses is demonstrated in [25]. The periodicity-induced
overlapping group shrinkage (POGS) approach is developed for rotating machinery fault
diagnosis based on a periodic group-sparse signal representation. More recently, it has been
generalized to extract multiple components which have different periods of the repetitive
transient pulses corresponding to different fault frequencies [62]. In a similar work [63],
the oscillatory fault features are extracted as periodically structured groups of coefficients
in the time–frequency domain. The proposed algorithm allows non-convex regularization
to promote the resulting sparsity, and it is guaranteed to converge to a local minimum even
though the objective function is not convex.

In summary, the success of sparse representation in applications depends on how suitable
it is to sparsely describe the vibration signals of interest, such as the localized faults of
the gear teeth and bearing components in rotating machinery. Recently, the sparsity-based
feature extraction techniques have been developed for machinery fault diagnosis and have
demonstrated its potential in the learning-based route. According to prior knowledge about
the signal behavior, different structures (models) have been applied in sparse representations
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2.5 Discussion and conclusion 21

of vibration signals. However, in the perspective of applying it in the real world, it still
requires further discussion as follows.

2.5 Discussion and conclusion

Concerning the sparse representation of vibration signals, it imposes a prior knowledge or
inherent property aiming to activate the high-level structure of some periodic mechanisms. In
addition, the desired “sparse structure” in vibration signals has proved to exist as illustrated
in section 2.4. For instance, a series of transients can be effectively represented by impulsive
activated coefficients based on a proper dictionary, thus yielding a sparse representation, as
illustrated in Fig.2.3. These mechanical features are not limited to the oscillating, reciprocat-
ing, or other periodic waveforms, which sparsify uniformly smooth signals. Particularlly, for
such vibration signals, the Fourier and DCT transforms have proved good performances, as
well as the wavelet transforms which sparsifies piecewise-smooth 1-D signals with a finite
number of discontinuities [51].

Of particular interest is the learning-based dictionary insteads of the analytic dictionary.
Unlike the decomposition based on a predefined dictionary, each atom of the learning-based
one is tailored to the data which leads to a high adaptability. Since this framework does not
impose too many additional constraints or assumptions, it allows more flexibility to adapt the
representation to target signals. For instance, the conventional sparsity-based model assumes
that all the segments for training are independently distributed and the prior distribution of
the coefficient γs is assumed to be a super-Gaussian (i.i.d.) distribution that favors sparsity.
However, there are no further considerations on the structure (assumption) of dictionary or
coefficients, e.g. some intrinsic coherence among dictionary elements or the periodic or
repetitive patterns along time series, etc. With such a large degree of freedom, the sparse
model seems more like a black-box, which may cause artifacts and loss of information, such
as classifying some unwanted signals as sparse, or misclassify some signals in Ω as dense.

In rolling element bearing diagnostics, in the author’s viewpoint, there exists few crucial
points that affect the success of its application:

• Can the signal of interest be characterized by the “sparse structure”? If it were a positive
answer, then which model is more suitable (i.e. additive assumption or constraint in
the specified structure) and how to measure the sparseness of vibration signals (i.e.
penalty function or probability distribution)?

• If the signal of interest was sparse, then what is the sparsifying transform best adapted
to vibrations (i.e. sparsity-based feature extraction: analytic or learning-based route)
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and how to obtain it (i.e. for a predefined transform, it needs to specify the sparse
transforms; for a learning-based transform, does it require more constraints to promote
the sparsity)?

• Concerning the current literature, most of the researches focus on a redundant dictio-
nary to extract features derived from the fault-induced transients; is it the only way
to enforce a sparse representation of vibration signals? Or alternatively, is there some
more efficient way to represent vibration signals, such as complete formulation.

In summary, sparse representation is a general principle for finding statistically indepen-
dent components in vibration signals rather than a special and formulaic model for matching
more physical characteristics. As a versatile model with a high degree of freedom, it embod-
ies an interesting potential to deal with multi-component signals; however, the effectiveness
of the technique is subjected to the ratio between impulses and other interference in training
examples, especially when training examples are generated under complex mechanisms.

In the Bayesian viewpoint, the optimization problem in Eq. 2.8 results from a maximum-
a-posteriori (MAP) estimation. The unknown coefficients of each sample are estimated
as hidden variables by maximizing the posterior P(γs | x,D) ∝ P(x | D,γs)P(γs), i.e. two
well-known pursuit algorithms: basis pursuit (BP) and focal underdetermined system solver
(FOCUSS) [32, 58]. In order to calculate the probability of target signals arising from the
sparsity-based model, P(y | D), it requires to specify the prior probability distribution over
the coefficients, P(γs), as well as the probability of observations arising from a certain state
of the coefficients in the model, P(y | D,γs). Once these two distributions are specified, then
the probability of the observations arising from the model is given by:

P(y | D) =
∫

P(y | D,γs)P(γs)dγs, (2.12)

which assesses how closely the model matches the observations in the real world. Alter-
natively, it is related to the maximum likelihood estimation (MLE) of the dictionary D. In
particular, the probability of an observation arising from a particular choice of coefficients,
P(y |D,γs), expresses the level of noise or uncertainty during the aquisition process. Without
loss of generality, let assume n(t) obeys a zero-mean Gaussian distribution, NNN (0,σn

2), then
it comes:

P(y | D,γs) =
1

σn
√

2π
e
− ∥y−Dγs∥22

2σ2n . (2.13)

Hence, the goal of dictionary learning will be to find a set D that maximizes the average
log-likelihood of target signals under a sparse prior distribution as in formula 2.10.
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Along these lines, let remind WHY sparseness in vibration signals? One can see evidence
for sparse structure in vibration signals by filtering y(t) with filterbanks and selecting the
best frequency band which maximizes the impulsive signal x(t) with respect to background
noise n(t). The resulting output distribution of band-pass filtered signal typically shows
high kurtosis (spectral kurtosis) – an effective measure of the “impulsiveness” hidden in the
signal – which is indicative of sparse structure. In other words, the selected band specifies the
impulsive component (super-Gaussian distribution) – composition of a mixture x(t) and n(t)
– with high signal-to-noise ratio; inversely, the residual component (Gaussian distribution)
only contains n(t) as illustrated in Fig. 2.5.

Fig. 2.5 Illustration of Spectral Kurtosis analysis: the repetitive series of transients passes
a filter-bank analysis implemented by the STFT; as can be seen in Ky( fb), there exist two
different distributions which indicate the fault component (centered at frequency f1) and the
noisy component (centered at frequency f0), respectively. It is highlighted that along the
time instant the occurrence of transients can be characterized by means of a latent variable
(i.e. the spectral mixture model in Chapter 3). In particular, for cyclostationary singals, its
energy flow displays a periodical variation which indicates cyclostationarity in second-order
statistics (i.e. the periodic-variance based model in Chapter 4).

However, the spectral kurtosis analysis provides a band-pass filter of repetitive transients,
rather than a full-band one that contains all spectral contents. In addition, although the
fault signatures are usually carried in high frequency bands because of the high stiffness of
bearings, they are fairly weak compared with surrounding noise. In fact, the shown “sparse
structure” (super-Gaussian distribution) is consisting of a mixture of the spectra of x(t) and
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n(t). Hence the “impulsiveness” is actually hidden in vibration signals with respect to a
linear mixture of two different distributions5; then seeking the fault-induced signal can be
viewed as a sparse representation motivated by the analysis model.

This thesis addresses the issue by proposing novel stochastic models in the following
Chapter 3 and 4; and by means of a new fast estimator of the spectral correlation in Chapter 5.
It is noteworthy that all of them are rooted on the Short-Time-Fourier-Transform (STFT). One
important reason, which arises in practical applications, is that the STFT of cyclostatioanry
signals evidences periodic flows of energy in and across the frequency bins which promotes
the way of sparsely representing vibration signals.

5It is proved that a linear mixture of two Gaussian random variables gives rise to a super-Gaussian random
variable, more details are provided in Appendix B.
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Chapter 3

Automatic Spectrum Matching of
Repetitive Transients Based on Hidden
Markov Model

Hidden Markov Models (HMMs) have been proposed in 1970s as statistical models for time
series and so far they have been applied in a wide range of fields including speech recognition,
computer vision, pattern recognition and many other areas. Numerous works based on HMM
have been reported in fault diagnosis during the last decade [64–71]. However, they are
mainly concerned with the use of HMMs as classifiers for fault or condition recognition
[64, 65] [66, 67], which is different from the objective of modelling the vibration signal
itself.

This chapter aims to introduce a HMM as a flexible stochastic model of some types of
non-stationary signals. In particular, it will allow the automatic identification of a mixture
of transients and of stationary background noise. In addition, it will make possible to filter
out the fault signal by means of a time-varying filter and to estimate its full-band spectral
content. The proposed model only assumes that each state obeys a stationary condition and
relaxes the assumption of cyclostationarity used in other approaches [6, 72, 73]. It is also
shown that it can deal with non-stationary regimes.

3.1 Spectral mixture model

This section begins with a presentation of the stochastic model and its corresponding assump-
tions. Then the HMM is introduced and its parameters are estimated by the Expectation-
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26Automatic Spectrum Matching of Repetitive Transients Based on Hidden Markov Model

Maximization (EM) algorithm. The reconstruction of the fault signal is addressed in section
3.2.

3.1.1 Model and assumption

The objective is to detect the informative signal x(t) – which contains the fault – when it
is contaminated by additive background stationary noise n(t) which comprises all other
vibration sources. Let denote the noisy measurement y(t) as

y(t) = x(t)+n(t). (3.1)

In the following, sampled signals with sampling frequency Fs and n temporal index will be
considered as x(n/Fs)→ x[n].

The STFT is used hereafter to decompose the vibration signal in the time-frequency plane.
The STFT of signal x(t) over a time interval of length Nw is defined as

ST FTx(i, fb) =
Nw−1

∑
m=0

w[m] · x[iR+m] · e− j2π fb m
Fs (3.2)

where {w[m]} denotes a positive and smooth Nw-long data-window which truncates a segment
of the L-long signal x(t) at time datum i (i = 1, . . . , N, N = f loor[(L−Nw)/R+1]) with
window shift R (1 < R < Nw) and where fb = b ·∆ f denotes the frequency (from 0 to Fs/2)
with frequency resolution ∆ f = Fs/Nw and bin index b = 1, . . . , N f with N f = Nw/2+1.

In the proposed stochastic model, the phase information will play a significant role.
Hence it is required to phase all the segments to zero at the beginning of the signal, at time
instant t = 0. This phase correction can also be interpreted as the Gabor transform

X(i, fb) =
L−1

∑
n=0

w[n− iR] · x[n] · e− j2π fb n
Fs = ST FTx(i, fb) · e− j2π fb iR

Fs . (3.3)

It is noteworthy that X(i, fb) is related to the “instantaneous complex envelope” of the
signal of interest x[n] described in both time and frequency. More precisely, its squared
magnitude reflects the energy flow which is mapped by time index i and frequency fb centered
in a narrow frequency band ∆ f [74].

It is reminded at this juncture that a fault signal in its early stage is well modeled as
a series of impacts that repetitively excite resonances of the bearing and of its receiving
structure, in relatively high frequencies, and leading to damped impulse responses. It is
assumed that transients can be well captured in segments of the STFT. Their rate of repetition
is expected to embody the fault information. On the contrary, other vibration components
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3.1 Spectral mixture model 27

will be modeled as stationary noise spread all over the time-frequency plane. The following
subsection introduces a two-state HMM to account for the different probability distributions
of the transients and of the noise.

3.1.2 Hidden Markov model

A HMM is a probabilistic model of the joint probability distribution of random variables
which depend on some hidden states. Hereafter, the measurement Y (i, fb) is merged along
the spectral contents with respect to the ith time instant and denoted by a vector, Y(i) =
[Y (i, f1) . . . Y (i, fN f )]

T . Next, vector Y(i) is further represented by a linear combination
of K components – whose events are assumed mutually exclusive – denoted by Xk(i) =
[Xk(i, f1) . . . Xk(i, fN f )]

T ) and contaminated by a noisy component N(i). All components
in the model are allowed to have different probability distributions and are controlled by a
vector of latent variables, ζζζ (i) = [ζ 1(i) . . . ζ K(i)]T , each of which acting as a switch taking
only values 0 or 1. Thus, the proposed model reads

YYY (i) = XXX(i)ζζζ (i)+NNN(i) (3.4)

where XXX(i) = [XXX1(i) . . . XXXK(i)] is a matrix consisting of K column vectors XXXk(i) and NNN(i) =
[N(i, f1) . . . N(i, fN f )]

T .

a) One component model

In order to start simple, let us first consider from now on the model with only one
component of interest, that is

YYY (i) = ζ (i)XXX(i)+NNN(i). (3.5)

Since the latent variable ζ (i) can take only two values, it is assumed to follow a Bernouilli
distribution, ζ (i)∼ Bernouilli(π):

{
p(ζ (i) = 0 | π) = 1−π

p(ζ (i) = 1 | π) = π
. (3.6)

Here ζ (i) = 0 means the presence of noise only, i.e. “State 0: YYY (i) = NNN(i)”, whereas ζ (i) = 1
indicates the presence of noise and the signal of interest, i.e. “State 1: YYY (i) = XXX(i)+NNN(i)”.
Let us introduce the likelihood function:

p(YYY (i) | ζ (i),CCCnnn,CCCxxx)∼C NC NC N (YYY (i); 0,CCCnnn +ζ (i)CCCxxx) (3.7)
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28Automatic Spectrum Matching of Repetitive Transients Based on Hidden Markov Model

where C NC NC N (YYY ; µ,CCC) denotes the circularly-symmetric complex normal distribution with
mean µµµ and covariance matrix CCC applied to variable YYY . Without loss of generality, it is
assumed that µµµ = 0 (as obtained after first centering the signal).

Meanwhile, all the unknown parameters of the proposed model are denoted as θθθ =

{CCCnnn,CCCxxx, ζ (i), π}. It is highlighted that the latent variables ζζζ (i) are hidden in the sense
that they are not observed directly. This is what will make the estimation of parameters
difficult. Assuming independent segments in the STFT, the complete log-likelihood function
is evaluated from Eq. 3.7 as

logLC(θθθ) =
N

∑
i=1

log(p(YYY (i) | θθθ)). (3.8)

Developing further, one has

N

∑
i=1

log(p(YYY (i) | ζ (i) = 0,CCCnnn)p(ζ (i) = 0 | π)+ p(YYY (i) | ζ (i) = 1,CCCnnn,CCCxxx)p(ζ (i) = 1 | π))
(3.9)

=
N

∑
i=1

log((1−π)×C NC NC N (0,CCCnnn)+π×C NC NC N (0,CCCxxx+++nnn)) (3.10)

where it has been assumed that all states are apriori equally probable.

The parameters θθθ are estimated by maximizing the above likelihood function. In theory,
this completely solves the problem since the estimated latent variable ζζζ (i) will then return
the times of occurrence of the impacts on the faults and therefore the bearing characteristic
frequency. Since it is difficult to find a closed-form solution, the EM algorithm [75] is used
as an iterative method to find the maximum likelihood estimates. The EM algorithm makes
use of the following quantities.

First, the posteriori probability distribution of the latent variable is formed as

p(ζ (i) | YYY (i),CCCnnn,CCC1
xxx, π) =

p(YYY (i) | ζ (i),CCCnnn,CCC1
xxx)p(ζ (i) | π)

p(YYY (i) |CCCnnn,CCC1
xxx, π)

(3.11)

where CCC1
xxx denotes the covariance matrix of the 1st component. According to Eq. 3.11, the

expectation of the latent variable ζ (i) given the measurement is then computed as

EEE{ζ (i) | YYY (i),CCCnnn,CCC1
xxx, π}= π C NC NC N (0,CCCxxx+++nnn)

(1−π)C NC NC N (0,CCCnnn)+π C NC NC N (0,CCCxxx+++nnn)
(3.12)
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where CCCxxx+++nnn denotes CCCnnn +CCC1
xxx. After simple arrangement, this is expressed as

EEE{ζ (i) | YYY (i),CCCnnn,CCC1
xxx, π}= 1

1+ 1−π

π
× eLLR

(3.13)

where LLR denotes the natural logarithm of the likelihood ratio between the noise and the
component of interest as calculated by

LLR = log
|CCCxxx+++nnn|
|CCCnnn|

e−YYY (i)H(CCC−1
nnn −CCC−1

xxx+++nnn)YYY (i). (3.14)

As a useful intermediate, the LLR may be interpreted as the likelihood that a transient is
present at any time datum i. Therefore, it will be demonstrated as a powerful indicator for
fault detection in section 3.3. Its Fourier transform will turn out a valid alternative to the SES
to evidence bearing characteristic frequencies.

The EM algorithm is summarized in Fig. 3.1. It is noted that there are two factors to
set: kmax indicates the maximum number of iterations and STOP-CRIT means the expected

relative tolerance between ĈCC
[k+1]
nnn and ĈCC

[k]
nnn . The estimation of the covariance of the signal

of interest is finally obtained as ĈCC
1
xxx = (ĈCCxxx+++nnn−ĈCCnnn)+ where operator (. . . )+ keeps only the

positive eigenvalues of a matrix.
With these estimated parameters, an automatic fault detection scheme and a time-varying

filter for filtering out the signal of interest are proposed in the following sections.
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Input: y(t) ∈ RL, Nw, R, N = floor[(L−Nw)/R + 1];

Input: Fs, kmax, STOP-CRIT.

Initialization: Y (i, fb) ∈ RN×Nf ;

Initialization: Ĉn
[0], Ĉx+n

[0], π̂[0], see Eqs.3.29 ∼ 3.32;

Initialization: k ←− 0.

Repeat: STOP-CRIT or (k < kmax)

E-step: For each i, set

LLR[k+1] := log
|Ĉx+n

[k]|
|Ĉn

[k]|
e−Y (i)H(Ĉ −1

n
[k]−Ĉ −1

x+n
[k])Y (i);

ζ̂(i)[k+1] := 1

1+ 1−π̂[k]

π̂[k]
×eLLR[k+1]

;

M-step: Update the parameters:

π̂[k+1] := 1
N

∑N
i=1 ζ̂(i)

[k+1];

Ĉn
[k+1] :=

∑N
i=1 (1−ζ̂(i)[k+1])Y (i)HY (i)

∑N
i=1 (1−ζ̂(i)}[k+1])

;

Ĉx+n
[k+1] :=

∑N
i=1 ζ̂(i)

[k+1]Y (i)HY (i)
∑N
i=1 ζ̂(i)

[k+1] ;

k ←− k + 1.

Until convergence

Output: Ĉn
[k+1], Ĉx+n

[k+1], π̂[k+1], ζ̂(i)[k+1], LLR[k+1],

Output: see Eqs.3.12 ∼ 3.14.

Fig. 3.1 Explicit steps of the EM algorithm to infer the parameters in the HMM.
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b) K component model
Let us now consider the general case with K > 1 signals of interest, XXXk(i), k = 1, . . . , K.

In this case, the probability that two (or more) components occur together will be assumed
so small that such events will be disregarded (this may be seen as an extreme sparse repre-
sentation where only one state is allowed at a time). Therefore, under the mutually exclusive
assumption, the occurrence of the kth state is defined as

Ak = {ζ k(i) = 1; ζ
l(i) = 0 | 1 6 l 6 K; l ̸= k} (3.15)

where ζ k(i) = 1 indicates the presence of the kth signal XXXk(i). The pure noise case – i.e.
AK+1 = {ζζζ (i) = 0} – is denoted as the (K +1)th state. Thus, there is a total of K+1 possible
states in the model. Therefore, the marginal probability distribution reads

p(YYY (i) |CCCnnn,CCCk
xxx, π

k, k = 1, . . . , K) =
K+1

∑
k=1

p(YYY (i) | Ak,CCCnnn,CCCk
xxx)p(Ak | πk) (3.16)

where the kth latent variable is assumed to follow a Bernouilli distribution, ζ k(i)∼Bernouilli(π k):

{
p(ζ k(i) = 0) = 1−π k

p(ζ k(i) = 1) = π k . (3.17)

The posteriori probability distribution then reads

p(ζζζ (i) | YYY (i),CCCnnn,CCCk
xxx, π

k, k = 1, . . . , K) =
p(YYY (i) | ζζζ (i),CCCnnn,CCCk

xxx)p(ζζζ (i) | π k)

p(YYY (i) |CCCnnn,CCCk
xxx, π k)

. (3.18)

Assuming mutually exclusive states, the expectation of the kth latent variable is thus

EEE{ζ k(i) |YYY (i),CCCnnn,CCCk
xxx, π

k, k= 1, . . . , K}= π kC NC NC N (0,CCCnnn +CCCk
xxx)

C NC NC N (0,CCCnnn)∏
K
k=1(1−π k)+∑

K
k=1 π kC NC NC N (0,CCCnnn +CCCk

xxx)
.

(3.19)
Figure 3.2 illustrates the situation with K = 2, which involves three states.
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Fig. 3.2 Graphical model in the case K = 2.

3.1.3 Structured covariance matrix

The proposed model assign to the signal of interest a specific probability distribution with a
given covariance matrix. For the sake of generality, five different structures of covariance
matrices are investigated hereafter and tested on simulated signal. More details and further
comparison among them will be demonstrated in subsection 3.3.3. It is noteworthy that our
goal is to simplify the model and achieve as low computational cost as possible.

First, since the frequency components of a stationary process are uncorrelated, the covari-
ance matrix of stationary background noise is diagonal, i.e. CCCnnn = diag(Cn( f1) . . . Cn( fN f )).

On the other hand, several assumptions are possible for the transient part of the signal.
Five possible structures are considered: full matrix, diagonal matrix, tridiagonal matrix, low
rank matrix, Toeplitz matrix.

The first model is a full covariance matrix. This is obviously the most general assumption,
yet not the easiest one to estimate due to the high number of free parameters. The other
assumptions listed hereafter aim to simplify the model by imposing a given structure.

The second model is returned by a diagonal covariance matrix, i.e. C1
xxx = diag(CCC1

xxx), which
only considers the auto-spectrum of the transients. This means that there is no correlation
between different frequency components. Thus, this simple structure is expected to be the
easiest to estimate.
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3.2 Reconstruction scheme for repetitive transients 33

The third model considers possible correlation between spectral components spaced apart
by one frequency bin. This corresponds to a tridiagonal matrix, i.e. C1

xxx = tridiag(CCC1
xxx). It

enlarges a little bit the concerned range of relevant spectral correlation as compared with the
previous diagonal structure.

The fourth model is a low rank structure C1
xxx = lowr(CCC1

xxx, r). It allows full correlation
between frequency components while still imposing a constraint on the complexity of the
model that fits the data.

The fifth model is inspired by the covariance of stochastic processes modeled as the
response of a causal linear time invariant filter to stationary white noise. This corresponds
to a Toeplitz matrix with a constant diagonal structure in the time domain that leads to
only 2n− 1 degrees of freedom instead of n2. In the frequency domain, this reads C1

xxx =

2FFF{toep(2FFF−1{CCC1
xxx})}, where 2FFF and 2FFF−1 stand for the 2D Discrete Fourier Transform

and its inverse and toep(A) for the operator that imposes a Toeplitz structure, i.e. Ai, j =

Ai+1, j+1 = ai− j.

In all cases, the structured covariance matrices are estimated by systematically imposing
the required constraints (i.e. operators diag, tridiag, lowr or toep) in the iterations of the
EM algorithm in Fig. 3.1.

The five aforementioned structures will be discussed and compared in subsection 3.3.3.

3.2 Reconstruction scheme for repetitive transients

The HMM provides a versatile tool for characterizing the non-stationarity of a signal from its
second-order statistics only, regardless of the operating speed. With the estimated parameters

θ̂θθ
k

of the HMM, the fault signal can be reconstructed in full band based on the latent variable
vector ζζζ (i) and the covariance matrix CCCk

xxx of transients.

First, let introduce the posterior probability distribution of the kth signal of interest XXXk(i)
as

p(XXXk(i) | YYY (i), θ̂θθ
k
)∝ p(YYY (i) | XXXk(i), θ̂θθ

k
)p(XXXk(i) | θ̂θθ k

) (3.20)

where µµµk
xxx = [µk

x ( f1) . . . µk
x (N f )]

T denotes the N f -dimensional mean vector and CCCk
xxx the co-

variance matrix.

Next, for simplicity, let us assume that the covariance matrix ĈCC
k
xxx is diagonal. Therefore,

the problem decouples for each frequency bin. The posterior probability density at a given
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frequency then reads

p(Xk(i, fb) | Y (i, fb), θ̂θθ
k
) =

e
−|Y (i, fb)−ζ k(i)Xk(i, fb)|2

Ĉk
n( fb) e

−|Xk(i, fb)|2
Ĉk

x ( fb)

π2Ĉk
n( fb)Ĉk

x( fb)
(3.21)

where Ĉk
n( fb) and Ĉk

x( fb) stand for the diagonal element of ĈCC
k
nnn and ĈCC

k
xxx related to frequency

fb, respectively. After some manipulations, Eq. 3.21 can be expressed as

p(Xk(i, fb) | Y (i, fb), θ̂θθ
k
) =

e

−|Xk(i, fb)−µk
x|y( fb)|2

Ck
x|y( fb)

πCk
x|y( fb)

=C NC NC N (Xk(i, fb); µ
k
x|y( fb),Ck

x|y( fb)) (3.22)

with 



Ck
x|y( fb) = ( ζ k(i)2

Ĉk
n( fb)

+ 1
Ĉk

x( fb)
)−1

µk
x|y( fb) =

Ck
x|y( fb)

Ĉk
n( fb)

ζ k(i)Y (i, fb)
. (3.23)

Therefore the expectation of the kth signal of interest Xk(i, fb) is estimated as

EEE{Xk(i, fb) | Y (i, fb), θ̂θθ
k}= µ

k
x|y( fb) =

ζ k(i)

ζ k(i)2 +
Ĉk

n( fb)
Ĉk

x( fb)

Y (i, fb). (3.24)

Finally, the time signal x̂k[n] is obtained from Eq. 3.24 by using the inverse STFT.

Two remarks are noteworthy. First, it is seen that Eq. 3.24 corresponds to a time-varying
filter from which superior performance is expected than from a conventional time-invariant
filter. Second, the standard Wiener filter appears as a particular case under the assumption of
stationarity, that is

EEE{Xk(i, fb) | Y (i, fb)}=
1

1+ Ck
n( fb)

Ck
x( fb)

Y (i, fb), (3.25)

where the latent variable ζ (i) = 1 for all time instants. In other words, Eq. 3.25 then
corresponds to the case where “State 1: YYY (i) = XXX(i)+NNN(i)” only occurs.

The performance of the proposed reconstruction filter will be demonstrated and further
compared with the fast kurtogram in section 3.4.
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3.3 Parameter selection

This section discusses the initialization and setting of the HMM parameters introduced in
the previous section. Thereby an effective data-driven initialization for the EM algorithm is
proposed. Meanwhile several synthetic signals are generated and analyzed for demonstration.
The performance of different covariance structures is also investigated in order to retain the
best model in term of compromise between simplicity and efficiency. To demonstrate the
potential of the proposed HMM, an extended case is eventually tested with two simultaneous
components of interest.

Before proceeding further, let remind and summarize the proposed fault detection scheme.
The detailed steps are presented as follows:

1. Transform the raw signal into the time-frequency domain using the phase-corrected
STFT (see Eq. 4.3) which reflects the “instantaneous complex envelope” of the signal
x(t) in a narrow frequency band ∆ f centered on fb and sampled at time instant i.

2. Represent the noisy measurement YYY (i) as a linear combination of K components of
interest contaminated by a noisy component NNN(i) with different covariance matrices
(see Eq. 3.4 and 3.5) by introducing a predefined latent variable vector ζζζ (i) as a switch
to indicate the presence of transients or not.

3. Initialize the parameters of the EM algorithm (see Eqs. 3.29-3.32) and estimate the
required latent variables ζ (i), the LLR and others parameters (CCCnnn, CCC1

xxx, π) as seen in
Eqs. 3.12-3.14.

4. The estimated ζζζ (i) indicates the presence of underlying fault occurrences and the
Fourier transform of the LLR is calculated to find the bearing characteristic frequencies.

3.3.1 Initial settings

The basic idea of the proposed scheme is to model the signal of interest by means of a latent
random variable which reflects the presence or not of a transient due to an impact on the
fault. This is achieved in the domain of the STFT. Therefore, the first required parameters to
tune are the window length Nw and the window shift R.

Selecting the window length Nw

The selected value of Nw directly controls the frequency resolution,

∆ f = Fs/Nw, (3.26)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI051/these.pdf 
© [G. Xin], [2017], INSA Lyon, tous droits réservés



36Automatic Spectrum Matching of Repetitive Transients Based on Hidden Markov Model

which characterizes the carrier frequency. It is required to cover at least the duration TI of a
transient, which implies the condition

∆ f < 1/TI. (3.27)

As the STFT is subjected to the uncertainty principle, ∆t∆ f > 1, the highest switching
frequency of the latent variable, α = 1/∆t, is bounded upward by ∆ f [74]. Therefore the
available range of the latent variable is limited by

α 6 ∆ f . (3.28)

Therefore, Nw should be taken short to allow a high switching rate in Eq. 3.28, but long
enough to satisfy Eq. 3.27, i.e. Fs ·TI < Nw 6 Fs ·∆t as illustrated in Fig. 3.3.

0 R 2R 3R iR

t

Nw

TI∆t

Fig. 3.3 Illustration of how to select the window length Nw and shift R with respect to transient
durations TI and cycle ∆t.

Other reasons for taking Nw small is to reduce the computation time required by the STFT
and also to ensure sufficient segments for accurate parameter estimation.

It is noticed here that the rule for setting Nw also works in the special case where the
interval ∆t between adjacent transients is close to the impulse duration TI . In other words,
it is robust enough to balance the trade-off between a fine resolution and a high switching
frequency of the latent variable. These facts will be experimentally verified in subsection
3.3.2.

Selecting the window shift R

There are two considerations for the window shift R:
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• firstly, for reconstructing the fault signal, the phase-corrected STFT is required to be
invertible, therefore it is recommended to take 75% overlap with a Hanning window,

• secondly, if the first item is not necessary, R should be taken sufficiently small to keep
more information while not increasing too much computational cost and dependence
between segments, such as 50% or 75% overlap with a Hanning window.

Initializing parameters for the EM algorithm

The EM algorithm generally requires a good initialization step. A simple solution is given
hereafter to obtain initial values for the covariance matrices of the two states in the HMM.

The initial diagonal of the covariance matrix of noise, ĈCC
[0]
nnn , is obtained by taking the

median value of the natural logarithm of the squared magnitude of measurement YYY (i) with
respect to time instant i,

ĈCC
[0]
nnn = exp(median{log|YYY (i)|2}). (3.29)

This approximation is based on the fact that State 0 is characterized by a high probability π

so that the median in the above equation is almost unaffected by the occurrence of the fault.
Besides, the initialization of the covariance matrix in State 1 makes use of extreme values
that exceeds a threshold. Specifically, a sample set I(1) for State 1 is obtained from collecting
all indices of the STFT such that the quantity

Indicator(i) =
1

N f

N f

∑
fb=1

log |Y (i, fb)|2−
1

N f

N f

∑
fb=1

log Ĉn( fb)
[0] (3.30)

is found greater than a given threshold. Therefore the initial diagonal of the covariance matrix
in State 1 is calculated as

ĈCC
[0]
xxx+++nnn =

1
N1

∑
i∈I(1)
|YYY (i)|2 (3.31)

where N1 is the cardinal of set I(1), from which ĈCC
[0]
xxx is obtained as (ĈCC

[0]
xxx+++nnn− ĈCC

[0]
xxx )+. The

corresponding probability is initialized to

π̂
[0] =

N−N1

N
. (3.32)

It has been observed in numerous experiments that the proposed initializations are often quite
close to the maximum likelihood estimates.
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3.3.2 Cases 1 & 2: demonstration of parameter selection

To demonstrate the performance of the proposed algorithm and initialization, a synthetic
signal is generated with a resonance frequency f0 = 0.15 Hz, which is further modulated
by a relatively high fault frequency α0 = 1.25×10−3 Hz (T = 1/α0 = 800 s, the sampling
frequency is normalized to Fs = 1 Hz). More precisely, the produced signal is described as:

y(t) =
+∞

∑
j=−∞

h(t− jT − τ j)A j +n(t) (3.33)

H(z) =
b1 +b2 · z−1

a1 +a2 · z−1 +a3 · z−2 (3.34)

where τ j ∼NNN (µτ = 0,στ = 0.02T ) and A j ∼NNN (µA = 0,σA = 0.1) account for the uncer-
tainties on the arrival time and on the magnitude of the jth transient, respectively. The white
noise n(t) is set to a noise-to-signal-ratio of 6 dB and the signal length is L = 105 samples. A
second-order system is defined by Eq. 3.34, whose numerator and denominator coefficients
are bbb = [−1, 1] and aaa = [1,−2cos(2π f0)r, r2] with r = 0.95, respectively. Fig. 3.4 shows
the spectrogram (magnitude of the STFT) of the raw signal whose record in time is displayed
in Fig. 3.5 (a).

Fig. 3.4 Spectrogram of the signal simulated in Case 1 with resonance frequency f0 = 0.15
Hz, r = 0.95 and fault frequency α0 = 1.25× 10−3 Hz (T = 1/α0 = 800 s, Nw = 27 and
R = 20).
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Fig. 3.5 (a) Synthetic signal of Case 1 with white noise (noise-to-signal-ratio= 6 dB. (b)
Synthetic repetitive transients. (c) Initialized latent variable ζ̂ (i)[0] (black line) with threshold
(red dotted line) set to 0.01max(ζ̂ (i)[0]) with π̂ [0] = 0.112. (d) Estimated latent variable ζ̂ (i).

For simplicity, a diagonal covariance matrix is assumed. Following Eqs. 3.29-3.32, one
can initialize the parameters ĈCC

[0]
nnn , ĈCC

[0]
xxx , ζ̂ (i)[0] and π̂ [0] as shown in Fig. 3.6 (a) and Fig.

3.5 (c). It is seen that the proposed initialization is simple and effective, even though the
estimated spectrum of the signal of interest still contains a significant contribution from noise
especially below 0.08 Hz. After convergence of the EM algorithm, the estimation of the
signal and noise spectra are close to the real values as can be seen in Fig. 3.6 (b). The very
good estimation of the latent variable is verified in Fig. 3.5 (d).

In order to demonstrate the performance when dealing with a coarse frequency resolution,
a second synthetic signal is generated with a resonance frequency f0 = 6×10−3 Hz and a
fault frequency α0 = 1.25×10−3 Hz. All the other parameters are as in Case 1. Figure 3.8
shows the spectrogram of the raw signal.

Since the modulation frequency is now close to the resonance one, this case encounters a
trade-off between a fine spectral content and a large fault frequency range. A coarse resolution
is chosen as Nw = 27 (∆ f = 7.8× 10−3 Hz), although it cannot resolve the resonance
frequency f0 = 6×10−3 Hz, embodies at least 6 integer multiples of α0 = 1.25×10−3 Hz.
The corresponding limit on the detection of the fault frequency is αmax 6 ∆ f = 7.8×10−3

Hz.
Figure 3.7 (a) displays the LLR, which accurately localizes the fault occurrences: the

function sharply goes to negative infinity when it identifies an impulse. Besides, the estimated
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Fig. 3.6 (a) Initialized spectra (diagonals of covariance matrices ĈCC
[0]
nnn and ĈCC

[0]
xxx (red line and

blue asteriks) and (b) estimated ones from EM (diagonals of covariance matrices ĈCC
[k+1]
nnn and

ĈCC
[k+1]
xxx (red lines) together with the theoretical frequency response H(z) (black dashed line

and blue asteriks).

Fig. 3.7 (a) LLR and (b) latent variable ζ̂ (i) in the time domain.

latent variable ζ̂ (i) locates exactly all the STFT segments that contain a fault occurrence, as
shown in Fig. 3.7 (b). To further identify the fault type, the spectra of the LLR and of the
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Fig. 3.8 Spectrogram of the signal simulated in Case 2 with resonance frequency f0 =
6×10−3 Hz, r = 0.9 and fault frequency α0 = 1.25×10−3 Hz.

Fig. 3.9 Spectra of the LLR (a) and of the latent variable (b) presented in Fig. 3.7 together
with the SES of actual fault signal (red dotted line). The limit αmax = 7.8× 10−3 Hz is
indicted by a vertical black dotted line (Normalization to unit maximum value).
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latent variable together with the SES of the actual fault signal are displayed in Fig. 3.9 (note
that all spectra have been normalized to unit maximum), with the limit αmax indicted by a
vertical black dotted line. It is noteworthy that the spectrum of the LLR (Fig. 3.9 (a)) shows
the largest number of harmonics due to the fact that the LLR has sharper peaks at the position
of the impulses. This superiority will be further verified in the following section.

Despite the coarse frequency resolution used in this case, it has been demonstrated that
the proposed scheme can still detect the expected fault frequency with very good accuracy.

3.3.3 Case 3: Comparison of different spectral correlation assump-
tions

This subsection now investigates the different possible structures of the covariance matrix
previously listed in subsection 3.1.3, i.e. a full matrix, a diagonal matrix, a tridiagonal matrix,
a low rank matrix, a Toeplitz matrix.

A synthetic signal with resonance frequency f0 = 0.2 Hz is employed as shown in Fig.
3.10. All parameters are set as in Case 1.

Fig. 3.10 Spectrogram of the signal simulated in Case 3 with resonance frequency f0 = 0.2
Hz, r = 0.9 and fault frequency α0 = 1.25×10−3 Hz.

The spectra of the LLR and of the latent variable ζ̂ (i) for the five different structures
of covariance matrices are displayed in Figs. 3.11-3.12, respectively, together with the
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Fig. 3.11 Spectra of the LLR together with the theoretical SES (red dotted line) (a) full
matrix, (b) diagonal matrix, (c) tridiagonal matrix, (d) low rank matrix, (e) Toeplitz matrix
(normalization to unit maximum value).

Fig. 3.12 Spectra of the latent variable ζ̂ (i) together with the theoretical SES (red dotted line)
(a) full matrix, (b) diagonal matrix, (c) tridiagonal matrix, (d) low rank matrix, (e) Toeplitz
matrix (normalization to unit maximum value).
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theoretical SES. Meanwhile, the five different structures of covariance matrices are estimated
and demonstrated separately in Fig. 3.13-3.17. As far as the latent variable is concerned, it
is seen that there is no significant difference between the five structures. As for the LLR, it
seems that the diagonal and low rank structures return slightly superior results to the others.

As a conclusion, it seems that the simplest structure based on a diagonal covariance
matrix should be retained. This has a further advantage since it corresponds to accounting
only for the spectrum of the transients when constructing the covariance matrix.

Fig. 3.13 Full matrix: (a) diagonals (the spectrum of the fault signal is indicated by a red solid
line and that of the noise by blue asterisks); (b) absolute value; (c) real part; (d) imaginary
part of the estimated covariance matrix.
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Fig. 3.14 Diagonal matrix: (a) diagonals (the spectrum of the fault signal is indicated by a
red solid line and that of the noise by blue asterisks); (b) absolute value; (c) real part; (d)
imaginary part of the estimated covariance matrix.

Fig. 3.15 Tridiagonal matrix: (a) diagonals (the spectrum of the fault signal is indicated by
a red solid line and that of the noise by blue asterisks); (b) absolute value; (c) real part; (d)
imaginary part of the estimated covariance matrix.
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Fig. 3.16 Low rank matrix: (a) diagonals (the spectrum of the fault signal is indicated by a
red solid line and that of the noise by blue asterisks); (b) absolute value; (c) real part; (d)
imaginary part of the estimated covariance matrix.

Fig. 3.17 Toeplitz matrix: (a) diagonals (the spectrum of the fault signal is indicated by a
red solid line and that of the noise by blue asterisks); (b) absolute value; (c) real part; (d)
imaginary part of the estimated covariance matrix.
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3.3.4 Case 4: diagnostics and separation of a mixture of independent
transients

This subsection intends to demonstrate the potential of proposed HMM to deal with K =

2 simultaneous components in background noise. A synthetic signal with two different
components is generated as shown in Fig. 3.18. The first component XXX1(i) has a resonance
frequency f 1

0 = 0.25 Hz with r = 0.9 and its cyclic frequency is α 1
0 = 1.9× 10−3 Hz

(T1 = 1/α 1
0 = 530 samples), whereas the second one XXX2(i) has a resonance frequency

f 2
0 = 0.35 Hz with r = 0.7 and cyclic frequency α 2

0 = 2.1× 10−3 Hz (T2 = 1/α 2
0 = 470

samples) – see Fig. 3.18 (a) and (b), respectively. All other parameters are set as in Case 1,
with σ

1,2
τ = 0.02T1,2 and σ

1,2
A = 0.1. The noise-to-signal ratio is 0 dB.

Fig. 3.18 (a) Component XXX1(i) with period T1 = 530 samples (σ1
τ = 0.02T1 and σ1

A = 0.1).
(b) Component XXX2(i) with period T2 = 470 samples (σ2

τ = 0.02T2 and σ2
A = 0.1). (c) Noisy

measurement (noise-to-signal ratio = 0 dB).

The spectrogram of the measurement is computed with Nw = 26 and R = 23 (overlapping
ratio R/Nw = 0.359) is shown in Fig. 3.19.

The estimated diagonals of the three covariance matrices are displayed in Fig. 3.20. It
is seen that the spectra of all components are correctly identified. The corresponding latent
variables ζ 1(i) and ζ 2(i) are displayed in Fig. 3.21. Compared with the reference signals, it
is obvious that all the times of occurrence of each component have been correctly located.
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Fig. 3.19 Spectrogram of the signal simulated in Case 4 with two components (T1 = 530
samples and T2 = 470 samples respectively).

Fig. 3.20 Estimated spectra of component XXX1(i) (red solid line), component XXX2(i) (green
solid line) and noise (blue dashed line). The two theoretical frequency responses of H(z) are
indicated by black dashed lines.
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Fig. 3.21 (a) Estimated latent variable ζ 1(i) (red solid line) together with the actual first
component (black solid line). (b) Estimated latent variable ζ 2(i) (green solid line) together
with the actual second component (black solid line).

The spectra of the latent variables in Fig. 3.22 further reveal the fault characteristic
frequencies at α1

0 = 1.9×10−3 Hz and α2
0 = 2.1×10−3 Hz. Finally, Fig. 3.23 displays the

reconstructed repetitive transients XXX1(i) and XXX2(i) as well as their summation. Very good
reconstruction is obtained, which demonstrates the performance of the proposed algorithm.
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Fig. 3.22 Spectra of the estimated latent variable (a) ζ 1(i) and (b) ζ 2(i) (normalized to unit
maximum value).

Fig. 3.23 Reconstructed repetitive transients corresponding to (a) the first component XXX1(i)
with period T1 = 530 samples and (b) the second component XXX2(i) with period T2 = 470
samples. (c) Summation of two components XXX1(i) and XXX2(i).
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3.4 Validation on vibration signals

This section illustrates the application of the proposed scheme on actual vibration signals for
the detection of incipient bearing faults. Intended to be an automatic detection, its superior
performance is first demonstrated as compared to classical envelope analysis. Furthermore,
compared with the fast kurtogram, similar results are achieved by the spectrum of the LLR
regarding the identification of the bearing fault frequency. Besides, the reconstruction of
repetitive transients is achieved by a time-varying filter controlled by the latent variable
ζ (i). Finally the feasibility of extending the proposed method to non-stationary regime is
demonstrated on data captured during a run-up. It is important to notice that all the validation
is based on the proposed simple model (see Eq. 3.5). The multiple-component model (see
Eq. 3.4 and subsection 3.3.4) is also verified by real data.

3.4.1 Case 5: diagnosis of a ball fault

To demonstrate the effectiveness of the proposed scheme on real data, three typical types of
fault (i.e. inner race, outer race and ball fault) are investigated in a dataset from the Vibrations
and Acoustics Laboratory of the University of New South Wales (Sydney) [76]. The test-rig
is a one-stage gearbox with primary and secondary shafts supported by ball bearings. Since
it is often more difficult to identify a ball defect, particularly at incipient stage, this case is
tested here. The parameter settings are listed in Table 3.1.

Table 3.1 Parameter settings in Case 5.

Sampling frequency Fs (Hz) 48000

Duration (s) 1.365

Nw 27

R 20

Rotation frequency – frot (Hz) 10

Ball spin frequency - BSF (Hz) 26.11

Fundamental train frequency - FTF (Hz) 4.08
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Fig. 3.24 Spectrogram (logarithmic scale) of signal of Case 5 (frequency resolution ∆ f = 375
Hz).

The spectrogram of the raw signal is displayed in Fig. 3.24. It is seen that there exists
a non-stationary component in the high frequency band above 10 kHz, whereas the low
frequency range is dominated by high energy components related to the gearbox vibrations.

Comparison with classical envelope analysis

Next, the SES of the raw signal is displayed in Fig. 3.25. It is noted that there exists a
relatively high value at fg = 319.7 Hz surrounded by shaft speed sidebands ( frot = 10 Hz)
which originates from the gearbox. Clearly, the information of the bearing fault is completely
masked by high-energy components from the gearbox in the SES of the full-band signal. At
this point, it is important to resort to methods that optimally and automatically select the
frequency bands in the signal where the signal-to-noise ratio is maximum.

Figure 3.26 displays the diagonals of the covariance matrices ĈCCnnn and ĈCC
1
xxx. It is noteworthy

that there is a crossing of the two spectra around 8 kHz which is consistent with the two
frequency bands identified in Fig. 3.24. This reflects the fact that the fault signal and
surrounding noise belong to different probability distributions. More precisely, the high
energy vibrations of the gearbox dominates below the crossing frequency, whereas the
repetitive transients dominate above the crossing frequency. The spectrum of the LLR is
displayed in Fig. 3.27. It is noted that for the ball fault case there are harmonics of BSF
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Fig. 3.25 SES of the raw signal (normalized to unit maximum value).

Fig. 3.26 Diagonals of covariance matrices (frequency resolution ∆ f = 375 Hz); the spectrum
of the fault signal is indicated by a red solid line and that of the noise by a blue dashed line.

(with dominant even harmonics of BSF) surrounded by modulation sidebands at the cage
speed (FTF). The superior performance as compared to full-band SES is also verified, which
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Fig. 3.27 Spectrum of the LLR with markers at the theoretical fault frequency and harmonics;
the limit αmax = 375 Hz is indicted by a vertical black dotted line (normalization to unit
maximum value).

confirms the capability of the method to defect the fault without manual pre-processing such
as band-pass filtering.

Comparison with the fast kurtogram

As stated in Ref. [76], the fast kurtogram has proved a powerful fourth-order spectral analysis
tool for detecting and characterizing impulses in a signal. The fast kurtogram is applied
to the signal of Case 5 with K = 7 decomposition levels in a 1/3-binary tree. As seen in
Fig. 3.28, there exists several local maxima in the kurtogram. They are coherent with the
spectrogram of Fig. 3.24 which evidences a clear non-stationary activity above 10 kHz.
All the dyads with very high kurtosis values have been checked to have similar complex
envelopes. Therefore one relevant maximum is taken at 71.83 whose corresponding dyad is
{ f10; (∆ f )4}= {14250; 1500} Hz compared to the frequency band [13500; 15000] Hz. The
SES in that band is displayed in Fig. 3.29. It clearly reveals the even BSF surrounded by
modulation sidebands at cage speed (FTF). Comparing Fig. 3.29 with Fig. 3.27, there exists
no major difference between the two results, except for the better enhancement of the odd
harmonics of BSF in Fig. 3.27. Therefore, the conclusion in that case is that the proposed
method achieved a detection as good as the fast kurtogram followed by standard envelope
analysis. One advantage, however, is that it returns the full spectral content of the fault signal
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and possibly allows its complete reconstruction in time (and not only in a pass-band). This is
further investigated in the next subsection.

Fig. 3.28 Kurtogram of signal of Case 5 computed over K = 7 levels with a 1/3-binary
tree and an 8 coefficient prototype filter. Several local maxima are presented. One relevant
maximum is found at dyad { f10; (∆ f )4}= {14250; 1500} Hz.

Fig. 3.29 SES in frequency band [13500; 15000] Hz returned by the kurtogram (normalization
to unit maximum value).
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Full-band reconstruction of the fault signal

The capability of the proposed HMM method to reconstruct the full-band fault signal is now
demonstrated and compared with the band-pass results obtained from the kurtogram.

Figure 3.30 (a) displays 1.36 s of the analyzed vibration signal of Case 5 and Fig. 3.31
(a) and an enlarged view in the vicinity of a transient. The band-pass filtered signal in band
[13500; 15000] Hz obtained from the kurtogram dyad { f10; (∆ f )4}= {14250; 1500} Hz is
displayed in Fig. 3.30 (b) and its enlarged view in Fig. 3.31 (b); it clearly evidences the
presence of transients with maximum signal-to-noise ratio. The reconstructed signal from the
proposed HMM-based time-varying filter is displayed in Fig. 3.30 (c) and its enlarged view
in Fig. 3.31 (c). As compated to the filtered signal based on the kurtogram, the reconstructed
signal achieves an exact location of the transients with their full-band spectral content and
is therefore closer to the actual fault signal. This may be used advantageously to better
characterize the fault signature, infer the fault dimension and spectral content, and possibly
update trend models for prognostics.

Fig. 3.30 (a) Vibration signal of Case 5 and (b) its band-pass filtered version in the frequency
band [13500; 15000] Hz. (c) Full-band reconstructed fault signal from the proposed HMM-
based time-varying filter.
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Fig. 3.31 (a) Enlarged view of vibration signal of Case 5 (with indication of the period corre-
sponding to the peak fg in Fig. 3.25) and (b) enlarged view of its band-pass filtered version
in the frequency band [13500; 15000] Hz. (c) Enlarged view of the full-band reconstructed
fault signal from the proposed HMM-based time-varying filter.

3.4.2 Cases 6 & 7: diagnostics of bearing and gears

Signal recorded on a test rig are now considered. The test rig shown in Fig. 5.2 has been
designed by company DYNAE. It mainly consists of an electric asynchronous motor, a rotary
encoder, 4 accelerometer sensors, a speed variator, a driving gear with 45 teeth, four bearings
(3 healthy and 1 outer race fault) and two pinions (healthy and broken).

The test rig has been used to produce two types of fault: Case 6 relates to an outer race
fault of the bearing and Case 7 to the combination of an outer race fault and a broken pinion
connected to the driving gear. The parameter settings are listed in Table 3.2.
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Fig. 3.32 Test rig setup.

Table 3.2 Parameter settings in Case 6 and Case 7.

Case 6 Case 7

Sampling frequency Fs (Hz) 51200

Duration (s) 10

Nw 27

R 45

Main shaft rotation

frequency – frot,1 (Hz)
15.3-16.4 22.2-24.5

Secondary shaft rotation

frequency – frot,2 (Hz)

1.875× frot,1

(28.7-30.8)

1.875× frot,1

(41.6-45.9)
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a) Analysiso f Case6
Figure 3.33 shows the spectrum of the LLR which is to be compared with the results

of the Fast kurtogram displayed in Figs. 3.34-3.35. The maximum of the Fast kurtogram
takes value 46 in dyad { f13; (∆ f )4} = {20k; 1600} Hz corresponding to frequency band
[18400; 21600] Hz. The SES in this band is displayed in Fig. 3.35.

Fig. 3.33 Spectrum of the LLR with markers at the suspected fault frequency BPFO and its
harmonics (normalization to unit maximum value).

Further comparison are now carried on in the time domain. Figure 3.36 a) displays
the original signal which clearly shows the presence of transients out of background noise.
Figure 3.36 b) displays the signal filtered in band [18400; 21600] Hz selected from the
kurtogram, which maximizes the signal-to-noise ratio. Finally, Fig. 3.36 c) displays the
signal reconstructed from the HMM-based time-varying filter with full-band content. The
latter seems slightly richer than the former.
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Fig. 3.34 Fast kurtogram of signal of Case 6 computed over K = 7 levels with a 1/3-
binary tree and an 8 coefficient prototype filter. One relevant maximum is found at dyad
{ f13; (∆ f )4}= {20k; 1600} Hz.

Fig. 3.35 SES of complex envelope in dyad { f13; (∆ f )4}= {20k; 1600} Hz corresponding
to the frequency band [18400; 21600] Hz with markers at the suspected fault frequency BPFO
and its harmonics (normalization to unit maximum value).
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Fig. 3.36 (a) Vibration signal of Case 6 in time interval [1.9 2.3] s and (b) its band-pass
filtered version in frequency band [18400; 21600] Hz. (c) Reconstructed transients from the
HMM-based time-varying filter.
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b) Analysiso f Case7
Using the same test rig and the same parameter settings, a compound source of vibration

that contains gear and bearing fault together is diagnosed in Case 7. Figure 3.37 shows the
spectrum of the LLR which reveals the harmonics of BPFO and f(rot,2), thus demonstrating
the presence of the outer race defect and of the secondary gear defect.

Fig. 3.37 Spectrum of the LLR with markers at the suspected fault frequencies BPFO, its
harmonics and f(rot,2) (normalization to unit maximum value).

3.4.3 Case 8: diagnostics of bearing in nonstationary regime

This subsection intends to illustrate the potential of the proposed model in variable operating
conditions. A runup of 15 s from 2 Hz to 25 Hz has been manually produced with the test
rig of Fig. 5.2. The instantaneous speed is displayed in Fig. 3.38 (a) and the corresponding
acceleration signal in Fig. 3.38 (b). The latter undergoes speed-dependent variations in
magnitude and phase. Since there is no constraint on the distribution of the time instants
of the impacts, the proposed model can be freely extended to deal with machine signals
recorded in time varying regimes. However, there may exist speed-dependent variations
of the probability distribution of the states which should be taken into account. Hence the
whole signal is divided into consecutive speed segments of 12 rotations as suggested in Ref.
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[77] – see Fig. 3.38 (c). Then, the parameters of the HMM are estimated separately on each
segment. The probability of State 1 in the five regimes is estimated to π̂ = 0.28, 0.30, 0.30,
0.33 and 0.37.

Fig. 3.38 (a) Estimated instantaneous speed of signal in Case 8 and (b) its corresponding
acceleration signal which undergoes speed-dependent magnitude modulation. (c) Division of
the estimated instantaneous speed in 5 regimes.

Figs. 3.39-3.43 display the raw signal on each segment together with the corresponding
reconstructed transients. It is seen that the transients are all well identified, although their
behavior slightly changes with rotational speed: the 4th segment corresponding to a speed
around 20Hz exhibits the cleanest signature of the fault.

The detection of the fault characteristic frequency requires some specific processing
under a nonstationary regime. Since the defect impacts occur periodically with respect to
the angular position, its frequency is to be computed in the order domain. Therefore, the
phase-corrected STFT in Eq. 4.3 has been resampled (using cubic splines interpolation) from
the time to the angular domain, while maintaining a constant spectral bandwidth. The order
spectrum of the LLR has then been computed on the resampled data. As seen in Fig. 3.44, it
clearly reveals the presence of the Ball Pass Order on the Outer race (BPOO).
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Fig. 3.39 (a) Raw signal in regime No. 1 and (b) the corresponding reconstructed transients
from the HMM-based time-varying filter.

Fig. 3.40 (a) Raw signal in regime No. 2 and (b) the corresponding reconstructed transients
from the HMM-based time-varying filter.
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Fig. 3.41 (a) Raw signal in regime No. 3 and (b) the corresponding reconstructed transients
from the HMM-based time-varying filter.

Fig. 3.42 (a) Raw signal in regime No. 4 and (b) the corresponding reconstructed transients
from the HMM-based time-varying filter.
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Fig. 3.43 (a) Raw signal in regime No. 5 and (b) the corresponding reconstructed transients
from the HMM-based time-varying filter.

Fig. 3.44 Order spectrum of the LLR with markers at the suspected fault frequency BPOO
and its harmonics (normalization to unit maximum value).
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3.4.4 Case 9: diagnosis in the presence of multiple components

In order to demonstrate the performance of the HMM in the case of multiple-components,
the dataset supported by the Department of Mechanical Engineering of Curtin Univer-
sity (Bentley) and made available online (http://data-acoustics.com/measurements/bearing-
faults/bearing-1/) has been used. It corresponds to radial vibration measurements taken on
the bearing housing of the SpectraQuest Machinery Fault Simulator test rig with a known
outer race bearing fault. This case is interesting since there exist two different probabilities
of states, as shown in Fig. 3.45. Their corresponding spectrograms are displayed in Fig. 3.46.
Table 3.3 presents the parameter settings used in Case 9.

Table 3.3 Parameter settings in Case 9.

Sampling frequency Fs (Hz) 51200

Duration (s) 10

Nw 27

R 45

Rotation frequency – frot (Hz) 29

Ballpass frequency, outer race - BPFO (Hz) 103.6

Ballpass frequency, inner race - BPFI (Hz) 157.4

Fundamental train frequency – FTF (Hz) 11.5

Ball (roller) spin frequency – BSF (Hz) 67.3

It is seen that two families of transients occur with different frequency contents. The
proposed multiple-component model introduced in Section 3.1.2 has thus been used with
K = 2. The estimated probabilities are π̂3 = 0.634 (noise only), π̂1 = 0.029 and π̂2 = 0.337
for States 0, 1 and 2. Figure 3.47 displays the estimated diagonals of the corresponding
covariance matrices. The noise spectrum is found fairly flat, whereas the first component has
a high energy around [1.8 3.8] kHz and [9 11] kHz and the second component has its energy
concentrated around [1.8 3.8] kHz. The spectrum of the second latent variable ζ̂ 2(i) reveals
the BPFO of a bearing fault, while that of the first latent variable ζ̂ 1(i) shows some smeared
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Fig. 3.45 Measured signal (a) from 0 to 2.5 s and (b) from 2.5 to 5 s which evidence of
instantaneous interfering component in time interval [3.4 4] s.

component in the low frequency, around f1 = 22.86 and f2 = 124.4 Hz (see Fig. 3.48) with
their counterparts T1 and T2 showed in Fig. 3.49 (b).

The reconstructed components are displayed in Fig. 3.49 and 3.50 in intervals [3.45 3.85]
s and [1.9 2.3] s. The first interval contains the interfering component already noticeable in
Figs. 3.45 (b) and 3.46 (b), whereas the second one contains only the uniformly distributed
fault signature as shown in Figs. 3.45 (a) and 3.46 (a). From Fig. 3.50 (b), it can be seen that
the first component XXX1(i) is an instantaneous interference which may be caused by structural
looseness or clearance. Since frequency f1 happens to be twice the cage speed, it might
indicate that the bearing is misaligned.
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Fig. 3.46 Spectrogram (logarithmic scale) of signal in time intervals (a) [1.9 2.3] s and (b)
[3.45 3.85] s of Case 9 with evidence of two states: a global distribution with spectral content
in band [1.8 3.8] kHz and a local distribution with spectral content in band [1.8 3.8] kHz and
[9 11] kHz.

Fig. 3.47 Diagonals of the covariance matrices of the three components, XXX1(i) (red solid
line), XXX2(i) (green solid line) and noise (blue dashed line).
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Fig. 3.48 Spectra of the estimated latent variable (a) ζ 1(i) and (b) ζ 2(i), respectively (nor-
malization to unit maximum value).

Fig. 3.49 (a) Measured signal from 3.45 to 3.85 s. Reconstructed components (b) XXX1(i) and
(c) XXX2(i) from the HMM-based time-varying filter.
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Fig. 3.50 (a) Measured signal from 1.9 to 2.3 s. Reconstructed components (b) XXX1(i) and (c)
XXX2(i) from the HMM-based time-varying filter.
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3.5 Conclusion

This chapter has introduced a new stochastic model for representing weak repetitive tran-
sients hidden in stationary noise, such as encountered with incipient faults in rolling element
bearings. By using a HMM, the proposed method can detect transients in the time-frequency
plane as well as estimating accurately their instants of occurrence and their spectral con-
tent. One advantage is to provide an automatic method without requirement for signal
pre-processing. Another advantage it to allow the full-band reconstruction of the fault signal
in the time domain. The performance of the proposed method has been demonstrated on
several vibration signals from test rigs (gear and bearing). Superior or equivalent results
to conventional envelope analysis and fast kurtogram have been observed in terms of fault
detection. Results are clearly superior in terms of reconstruction of the fault signal when
compared to band-pass filtering as achieved with the fast kurtogram. The proposed model
also deals with the case where there exists multiple components and to signals which have
been acquired under non-stationary regimes of the machine.
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Chapter 4

Extraction of cyclostationary signals

In rotating machines, vibration-based signals primarily consist of periodic and random com-
ponents (e.g. periodic signals, stationary signals, periodically-modulated signals, repetitive
transients, etc). Due to the cyclic collision on the surface of defects, a series of impulses
is periodically produced (i.e. each impact independently introduces a transient retuned in
both the amplitude and the phase). Hence the diagnostic information – particularly for
bearing’s fault frequencies – are often carried in the random part and further characterized as
cyclostationary processes. In particular, one can find that second-order statistics (e.g. the
auto-correlation function) varies periodically as a function of time. Derived from such a
statistical behavior, a novel stochastic model is proposed whose goal is to detect and recover
the desired signals (i.e. cyclostationary (CS) signals on the second-order) in the presence of
competing sources (background noise and interfering signals).

4.1 Periodic-variance based model

This section begins with a description of the proposed model with its corresponding as-
sumptions. Since the model highly depends on unobserved latent variables, an expectation-
maximization (EM) algorithm is introduced for finding maximum-a-posteriori (MAP) esti-
mates of parameters in the proposed statistical model; meanwhile an extraction scheme is
also inserted inside the iterative steps of the EM algorithm so as to improve the convergence
as presented in section 4.2.

4.1.1 Model and assumptions

The idea of modelling the vibration signal y(t) – which contains the fault component x(t)
immerged in background noise n(t) – as a CS signal is motivated by the physical display
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of some hidden repetitiveness of its energy flow, which has been illustrated in Fig. 2.5.
Hereafter x(t) is assumed to be a second-order CS signal and n(t) a stationary signal; thereby
the measurement y(t) is constituted by the linear combination

y(t) = x(t)+n(t). (4.1)

In particular, the repetitive transients are characterized by resonances of the bearing and
of their receiving structure, which are often in relatively high frequencies. Therefore it is
assumed that such transients can be well captured in segments of the STFT of x(t):

ST FTx(i, fb) =
Nw−1

∑
m=0

w[m] · x[iR+m] · e− j2π fb m
Fs (4.2)

where {w[m]} denotes a positive and smooth Nw-long data-window which truncates a segment
of the L-long signal x(t) at time datum i (i = 1, . . . , N, N = f loor[(L−Nw)/R+1]) with
window shift R (1 < R < Nw) and where fb = b ·∆ f denotes the frequency (from 0 to Fs/2)
with frequency resolution ∆ f = Fs/Nw and bin index b = 1, . . . , N f with N f = Nw/2+1.

Hereafter the vibration signal is first decomposed in the time-frequency plane. Then it is
required to phase all the segments to zero at the beginning of the signal, at time instant t = 0.
This phase correction can also be interpreted as the Gabor transform

Y (i, fb) =
L−1

∑
n=0

w[n− iR] · y[n] · e− j2π fb n
Fs = ST FTy(i, fb) · e− j2π fb iR

Fs . (4.3)

Let us consider fb corresponding to the carrier frequency under the assumption of
stationarity over a time interval of length Nw/Fs. The interpretation of Y (i, fb) is the “complex
envelope” of signal y[n] in a narrow frequency band of bandwidth ∆ f centered on fb and
sampled at time instant iR/Fs. It is reminded that its second-order statistics are expected to
embody the cyclic frequency which corresponds to bearing fault signatures. The following
subsection introduces a periodic-variance based model to extract the CS signal from the
background noise with respect to different probabilistic properties.

4.1.2 Periodic-variance based model

As opposed to stationary signals, CS signals contain extra information due to their hidden
periodicities. In the time domain, such extra information is carried by the periodic variations
of statistical descriptors such as the instantaneous auto-correlation function and its related
quantities (instantaneous power, the envelope function, etc.)[73, 78]. This means that the
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Wigner-Ville spectrum,

W V XX [i, fb) = E
{

F
τ→ fb
{X [i+ τ/2]X [i− τ/2]∗}

}
, (4.4)

(where i and τ stand for the instantaneous time sampling and the time-lag, E for the ensemble
average operator, F for “Fourier transform” and ∗ for the complex conjugate) is a periodic
function of time instant i with some period T ; therefore it can also be expressed by a Fourier
series

W V 2X [i, fb) = W V 2X [i+T, fb) = ∑
α j∈A

S2X( fb;α j)e j2πα jiR/Fs (4.5)

over the spectrum A = {α j} of cyclic frequencies α j associated with the non-zero Fourier
coefficients, S2X( fb;α j), which denotes the cyclic power spectrum (units = power/Hz) [73].

The interpretation of W V 2X [i, fb) is an instantaneous power spectrum at time instant
i which reflects a joint time-frequency energy distribution. Different from the current
statistical descriptors, the proposed model recognizes the non-stationarity of signal y(t) as
a time-dependent distribution over time index i. From now on, the “complex envelope” of
measurement y(t), Y (i, fb), is assumed to be a function of the time datum i only and to be
indexed by frequency fb which follows a time-dependent complex normal distribution

Y (i, fb)∼ C N (0, σ
2
y (i); fb) (4.6)

where C N (µ, σ2(i); fb) denotes the circular-symmetric complex normal distribution with
mean µ and instantaneous variance σ2(i) applied to frequency fb. Without loss of generality,
it is assumed that µ = 0 (as obtained after first centering the signal). It is hereby reminded
that in this chapter the proposed model will consider the frequency fb as a parameter rather
than a variable1.

Now let us consider the unknown time-dependent variance σ2(i) as hidden variables,
which is further regularized by the inverse gamma distribution

σ
2(i)∼ Inv−Gamma(α, β ) (4.7)

with shape parameter α and scale parameter β . For instance, σ2
x (i)∼ Inv−Gamma(αx, βx)

and σ2
n (i) ∼ Inv−Gamma(αn, βn) stand for the time-dependent variance of x(t) and n(t),

respectively.

1This means that the frequency fb is separable and nondistinctive from other frequencies. For notational
simplicity, it will be dropped off in cases wherein it will not cause any confusion.
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In the case of CS signals, σ2
x (i; fb) reflects the hidden repetitiveness of the energy flow

in the frequency band fb. Then the time-dependent variance of Y (i, fb) reads

σ
2
y (i; fb) = σ

2
x (i; fb)+σ

2
n ( fb) (4.8)

where i = i+ j×T (T ×R/Fs is the periodic time of impacts and j is the integer) and σ2
n ( fb)

denotes the variance of N(i, fb) which is assumed time-invariant for simplicity.
Meanwhile, all the unknown parameters of the proposed model are denoted as θθθ =

{σ2
x (i), σ2

n , T, αx, βx, αn, βn}. It is highlighted that the periodic-variance based model em-
bodies hidden probability distributions varying periodically with time index i, i.e. σ2

x (i) are
hidden in the sense that they are not observed directly. This is what will make the estimation
of parameters difficult. Hence the hidden period T is considered as the prior knowledge2 that
corresponds to “bearing characteristic frequencies” as presented in Table 1.1. In addition, the
unknown shape and scale parameters {αx, βx, αn, βn} will be estimated and kept constant in
the procedure of data-driven initialization. The following section provides the inference of
the parameters as well as the extraction of the CS signal.

4.2 Extraction scheme for cyclostationary signals

Now, let introduce the posterior probability distribution of the CS signal X(i, fb) and of the
unknown parameters θθθ given the measurement Y (i, fb) as

p(X(i, fb), θθθ | Y (i, fb)). (4.9)

Since it is a possible task to extract X(i, fb) and estimate θθθ together, it will be useful to
consider the following conditional

p(X(i, fb), θθθ | Y (i, fb))∝

{
p(X(i, fb) | Y (i, fb), θθθ); knowing : θθθ

p(θθθ | Y (i, fb), X(i, fb)); knowing : X(i, fb)
. (4.10)

Since it is difficult to find a closed-form solution, the EM algorithm [75] is used as an
iterative method to find the maximum posterior estimates. In particular, the EM iteration
alternates between performing an expectation (E) step and a maximization (M) step as shown
in Eq. 4.10. The EM algorithm makes use of the following quantities.

2To quickly fix the hidden period, we strongly recommend the Fast Spectral Correlation (Fast-SC) which
provides a fast computation of the Spectral Correlation [79]. Especially in practical applications, it illuminates
the performance of extraction scheme as demonstrated in section 4.4.
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(a) Expectation step : extraction o f the CS signal
First, let introduce the posterior probability distribution of the signal of interest X(i, fb)

with the current θ̂θθ as

p(X(i, fb) | Y (i, fb), θ̂θθ)∝ p(Y (i, fb) | X(i, fb), θ̂θθ)p(X(i, fb) | θ̂θθ) (4.11)

where µµµx(i) = [µx(i; f1) . . . µx(i; fN f )]
T denotes the N f -dimensional mean vector at time

index i, and µµµx = [µµµx(1) . . . µµµx(N)]T denotes the N ×N f time-dependent mean matrix;
σσσ x(i) = [σx(i; f1) . . . σx(i; fN f )]

T denotes the N f -dimensional variance vector at time index
i, and σσσ x = [σσσ x(1) . . . σσσ x(N)]T denotes the N×N f time-dependent variance matrix.

Then the posterior probability density at a given frequency fb reads

p(X(i, fb) | Y (i, fb), θ̂θθ) =
exp{−|Y (i, fb)−X(i, fb)|2

σ̂2
n ( fb)

}exp{−|X(i, fb)|2
σ̂2

x (i; fb)
}

π2σ̂2
n ( fb)σ̂2

x (i; fb)
. (4.12)

After some manipulations, Eq. 4.12 can be expressed as

p(X(i, fb) | Y (i, fb), θ̂θθ) =
exp{−|X(i, fb)−µx(i; fb)|2

σ2
x (i; fb)

}
πσ2

x (i; fb)
= C N (X(i, fb); µx(i; fb), σx(i; fb))

(4.13)
with 




σ2
x (i; fb) = ( 1

σ̂2
n ( fb)

+ 1
σ̂2

x (i; fb)
)−1

µx(i; fb) =
σ2

x (i; fb)
σ̂2

n ( fb)
Y (i, fb)

. (4.14)

Therefore the expectation of the signal of interest X(i, fb) reads

E{X(i, fb) | Y (i, fb), θ̂θθ}= µx(i; fb) =
1

1+H(i; fb)
Y (i, fb) (4.15)

where H(i; fb) denotes the time-dependent variance ratio between the noise and the CS signal
in the frequency band fb calculated by

H(i; fb) =
σ̂2

n ( fb)

σ̂2
x (i; fb)

. (4.16)

Finally, the time signal x̂[n] is obtained from Eq. 4.15 by using the inverse STFT and this is
also the end of the E step.

Three remarks are noteworthy. First, it is seen that Eq. 4.15 corresponds to a periodic
time-varying filter from which superior performance is expected than from a conventional
time-invariant filter. Second, the standard Wiener filter appears as a particular case under the
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assumption of stationarity, that is

E{X(i, fb) | Y (i, fb)}=
1

1+ σ̂2
n ( fb)

σ̂2
x ( fb)

Y (i, fb), (4.17)

where the time index i of the time-dependent variance σ̂2
x (i; fb) stays constant for all time

instants. In other words, Eq. 4.17 then corresponds to the case where σ2
y = σ2

x +σ2
n instead

of Eq. 4.8. Last but not least, Eq. 4.15 can be seen as an analogue to Eq. 3.24 (in the case
where the covariance ĈCC

k
x is diagonal), however, the latent variable ζ k(i) is replaced by a

periodic-variance based variable σ̂2
x (i; fb).

(b) Maximization step : estimation o f unknown parameters

Next, let introduce the posterior probability distribution of the unknown parameters θθθ

with the current X̂(i, fb) as

p(θθθ | Y (i, fb), X̂(i, fb))∝ p(Y (i, fb) | X̂(i, fb), θθθ)p(θθθ | X̂(i, fb)) (4.18)

where θθθ consists of such unknown parameters {σ2
x (i), σ2

n}. As mentioned above, the
estimation of the shape and scale parameters {αx, βx, αn, βn} will be introduced in the
procedure of data-driven initialization for the EM algorithm in section 4.3.

In the proposed stochastic model, let us further assume that σ2
x (i) and σ2

n are assigned
informative priors3 in the form of analytically tractable conjugate distributions4

p(σ2
x (i; fb) |Y (i, fb), X̂(i, fb))∼ Inv−Gamma(αx+

N
2
, βx+

N
2 ∑

α j∈A
S2X( fb;α j)e j2πα jiR/Fs)

(4.19)
where S2X( fb;α j) denotes the cyclic power spectrum with known spectrum A = {α j} of
cyclic frequencies α j, as calculated by

S2X( fb;α j) = lim
N→∞

1
N

N

∑
i=1

(X̂(i, fb))
2e− j2πα jiR/Fs. (4.20)

It is highlighted that for the CS stochastic process the non-zero Fourier coefficients only
appear on a countable set of frequencies, which are relative to the hidden periodicities of

3This expresses specific, definite information about a variable that is determined largely by pre-existing
evidence rather than any original assumption; the terms “prior” and “posterior” are generally relative to a
specific datum or observation. A reasonable approach is to make the prior parametrization with expected value
and variance value as schemed in Eq. 4.21.

4It is proved that the inverse gamma distribution is a conjugate prior of the complex normal distribution
where p(σ2 | y[n], µ)∼ Inv−Gamma(α + n

2 , β +∑
n
i=1
|yi−µ|2

2 ), more details are shown in Appendix C.
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impacts corresponding to the characteristic frequencies in Table 1.1. This is important for the
CS signal spectral contents to be estimated and recovered by the proposed model provided
that the prior assumption of known hidden period T applies to all frequency bins fb.

Now let us remind the property of Inv−Gamma(α, β ) parametrization with

{
E{σ2}= β

α−1 for α > 1

Var{σ2}= β 2

(α−1)2(α−2) for α > 2
. (4.21)

Therefore the expectation of the hidden time-dependent variance σ2
x (i; fb) reads

E{σ2
x (i; fb)}=

βx +
N
2 ∑α j∈A S2X( fb;α j)e j2πα jiR/Fs

αx +
N
2 −1

. (4.22)

Likewise, the expectation of the time-invariant variance σ2
n ( fb) is

E{σ2
n ( fb)}=

βn +∑
N
i=1
|Y (i, fb)−X̂(i, fb)|2

2

αn +
N
2 −1

(4.23)

which appears as a particular case under the stationary assumption of the noise.

By now, the M step is completely introduced and it will alternate with the E step in
the iterative process, thus driving the convergence of the proposed EM algorithm. The
performance of the proposed reconstruction scheme of CS signals will be demonstrated on
the synthetic and experimental signals of sections 4.3 and 4.4, respectively.

4.3 Parameter selection

This section discusses the initialization and setting of the periodic-variance based model.
Thereby an effective data-driven initialization for the EM algorithm is proposed. Meanwhile
several synthetic signals of interest (modulated white noise, modulated narrow-band noise,
the transient signal) are generated and analyzed for demonstration. To demonstrate the
potential of the proposed scheme, an extended case (repetitive transient signal) is eventually
tested with two random variables on the arrival time and the magnitude of transients.

4.3.1 Initial settings

The basic idea of the proposed scheme is to model the contaminated signal of interest (i.e.
CS signals on the second-order) by means of latent stochastic variables, which reflects the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI051/these.pdf 
© [G. Xin], [2017], INSA Lyon, tous droits réservés



80 Extraction of cyclostationary signals

periodic variations on its energy distribution applied to the full-band spectra; in addition,
by maximizing the posterior probability distribution of the CS signal, it enables the hidden
variations to recover the desired signal with its full-band spectral content. This is achieved
in the domain of the STFT. Therefore, the first required parameters to tune are the window
length Nw and the window shift R. Since they have been discussed in subsection 3.3.1, let us
continue with the procedure of initialization of the EM algorithm.

Initializing parameters of the EM algorithm

The EM algorithm generally requires a good initialization step. A simple solution is given
hereafter to obtain initial values one-by-one along the frequency indexes fb. In the periodic-
variance based model, let start with the first spectral content of the unknown variance
{σ2

x (i; f1), σ2
n ( f1)}.

a) First f requency initialization

The initial variance of noise, E{σ2
n ( f1)}[0], is obtained by taking the mean value of the

squared magnitude of measurement Y (i, f1) with respect to time instant i,

E{σ2
n ( f1)}[0] =

1
N

N

∑
i=1
|Y (i, f1)|2. (4.24)

Then the initial time-dependent variance of the CS signal, E{σ2
x (i; f1)}[0], is obtained by

the subtraction

E{σ2
x (i; f1)}[0]=( ∑

α j∈A
(

1
N

N

∑
i=1
|Y (i, f1)|2e− j2πα jiR/Fs)e j2πα jiR/Fs−E{σ2

n ( f1)}[0])+ (4.25)

where operator (. . . )+ keeps only the positive values of a vector. This approximation is
based on the assumption that the measurement Y (i, f1) embodies the CS signal X(i, f1) in
the presence of stationary noise N( f1).

Next, according to Eq. 4.21, one can estimate the shape and scale parameters of noise
from {

α̂n( f1) =
(E{σ2

n ( f1)}[0])2

Var{σ2
n ( f1)}[0]

+2

β̂n( f1) = (α̂n( f1)−1)×E{σ2
n ( f1)}[0]

(4.26)

where the initial variance of σ2
n ( f1) can be taken as large as possible to achieve a wide

dispersion e.g. Var{σ2
n ( f1)}[0] = 10×E{σ2

n ( f1)}[0]. This estimation also works for the
shape and scale parameters of the CS signal at frequency fb, wherein the parameters are
taken as α̂x( f1) = 0 and β̂x( f1) = 0 to avoid the risk of overfitting.
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b) Spectral components initialization : iterative procedure

The initialization of spectral components is implemented by means of iterative way, i.e.
fb−1→ fb (bin index b = 2, . . . , N f ), so as to start with the initial variance of noise

E{σ2
n ( fb)}[0] =

1
N

N

∑
i=1
|Y (i, fb−1)− X̂(i, fb−1)|2. (4.27)

Then the initial time-dependent variance of the CS signal reads

E{σ2
x (i; fb)}[0] = ∑

α j∈A
(

1
N

N

∑
i=1
|Y (i, fb)|2e− j2πα jiR/Fs)e j2πα jiR/Fs−E{σ2

n ( fb)}[0]. (4.28)

Next, the shape and scale parameters of noise are initialized as

{
α̂n( fb) =

(E{σ2
n ( fb)}[0])2

Var{σ2
n ( fb)}[0]

+2

β̂n( fb) = (α̂n( fb)−1)×E{σ2
n ( fb)}[0]

(4.29)

where the initial variance of σ2
n ( fb) can be taken as Var{σ2

n ( fb)}[0] = 10×E{σ2
n ( fb)}[0].

Similarly, for the CS signal,

{
α̂x( fb) =

(E{σ2
x ( fb)}[0])2

Var{σ2
x ( fb)}[0]

+2

β̂x( fb) = (α̂x( fb)−1)×E{σ2
x ( fb)}[0]

(4.30)

where the initial variance of σ2
x ( fb) can be taken as Var{σ2

x ( fb)}[0] = 10×E{σ2
x ( fb)}[0] and

the initial expectation of σ2
x ( fb) as E{σ2

x ( fb)}[0] = 1
N ∑

N
i=1E{σ2

x (i; fb)}[0].
It has been observed in numerous experiments that the proposed initializations are often

quite close to the maximum a posteriori estimates.

4.3.2 Cases 1 & 2: demonstration of parameter selection

To demonstrate the performance of the proposed algorithm, a synthetic signal is generated
with a resonance frequency f0 = 0.1 Hz which is further modulated by a relatively high fault
frequency α0 = 5×10−3 Hz (T = 1/α0 = 200 s, the sampling frequency is normalized to
Fs = 1 Hz). More precisely, the produced signal is described as:

y(t) =
+∞

∑
j=−∞

h(t− jT )+n(t) (4.31)
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H(z) =
b1

a1 +a2 · z−1 +a3 · z−2 (4.32)

where n(t) denotes white noise that achieves a noise-to-signal-ratio of 6 dB and the signal
length is L = 104 samples. A second-order system is defined by Eq. 4.32, whose numera-
tor and denominator coefficients are bbb = [1] and aaa = [1,−2cos(2π f0)r, r2] with r = 0.95,
respectively. Fig. 4.1 shows the spectrogram (magnitude of the STFT) of the raw signal, with
its periodic energy flow, with period T (dashed line in red). The time record is displayed in
Fig. 4.2 (a).

Fig. 4.1 Spectrogram of the signal simulated in Case 1 with resonance frequency f0 = 0.1 Hz,
r = 0.95 and fault frequency α0 = 5×10−3 Hz (T = 1/α0 = 000 s, Nw = 25 and R = 4).
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Fig. 4.2 (a) Synthetic signal of Case 1 with white noise (noise-to-signal-ratio= 6 dB. (b)
Synthetic transient signal. (c) Recovered time signal x̂[n].

Fig. 4.3 (a) Initialized time-dependent variance of the CS signal, σ̂2
x (i; fb)

[0], and (b) the
estimated σ̂2

x (i; fb)
[k+1] from the EM algorithm. (c) Spectrogram of the estimated CS signal,

X̂(i, fb), with (d) its periodic time-varying filter 1/(1+H(i; fb)) as defined in Eqs. 4.15-4.16.
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Fig. 4.4 (a) Initialized spectra (variance of noise and CS signals σ̂2
n ( fb)

[0] and σ̂2
x ( fb)

[0], in
blue dotted line and red line, respectively) and (b) estimated spectra from the EM algorithm,
(σ̂2

n ( fb)
[k+1] and σ̂2

x ( fb)
[k+1], in blue dotted line and red line, respectively) together with the

theoretical squared magnitude frequency response |H(z)|2 (black dashed line).

Following Eqs. 4.24-4.30, one can initialize the parameters σ̂2
x (i; fb)

[0], σ̂2
x ( fb)

[0] and
σ̂2

n ( fb)
[0] as shown in Fig. 4.3 (a) and Fig. 4.4 (a). It is seen that the proposed initialization is

simple and effective, even though the estimated spectrum of the signal of interest still contains
a significant contribution from noise especially beyond 0.18 Hz as seen in Fig. 4.4 (a). After
convergence of the EM algorithm, the estimation of the signal and noise spectra, σ̂x( fb)

[k+1]

and σ̂n( fb)
[k+1] are close to the real values as can be seen in Fig. 4.4 (b). Particularly, the

very good estimation of the hidden variance σ̂x(i; fb)
[k+1] is displayed in Fig. 4.3 (b) and

further verified by the cyclostationary index in Fig. 4.5.

Finally, the recovered time signal x̂[n] is displayed in Fig. 4.2 (c) and obtained by using
the inverse STFT of the estimated CS signal, X̂(i, fb), which passes a time-varying filter over
the full-band spectrum as shown in Fig. 4.3 (c) and (d), respectively.

To highlight and summarize the performance of proposed extraction scheme, Fig. 4.6
(a) shows a better view of the recovered time signal x̂[n] associated with synthetic transient
signal. It illustrates that although the proposed scheme addresses the extraction of the CS
signal with the full-band spectrum, its output can independently and adaptively recognize the
weight along its frequency fb with regards to the CS index. This property also can be verified
by the initialized parameter σ̂2

x (i; fb)
[0], even though it still embodies some marginal spectral
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Fig. 4.5 Cyclostationary index: function of the frequency fb by means of taking the standard
deviation of σ̂2

x (i; fb)
[k+1] over the time instant i.

Fig. 4.6 (a) Enlarged view of the recovered time signal x̂[n] of Fig. 4.2 (b) and (c). (b)
Initialized time-dependent variance of the CS signal, σ̂2

x (i; fb)
[0], and (c) the estimated

σ̂2
x (i; fb)

[k+1] from the EM algorithm.

contents in Fig. 4.6 (b). After the iterative steps of the EM algorithm, there exist only the
components from the CS signal as can be seen in Fig. 4.6 (c) associated with Fig. 4.5.

It is well known that in rotating machines various rotations of mechanical components are
likely to produce periodic modulations of vibration signals. Besides the transient signal, the
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periodically-modulated signals (modulated white noise and modulated narrow-band noise)
are also tested so that as good performances are achieved as in Case 1.

In order to demonstrate the potential of the proposed scheme, Case 2 (repetitive transient
signal) is generated by means of considering two random variables described as:

y(t) =
+∞

∑
j=−∞

h(t− jT − τ j)A j +n(t) (4.33)

H(z) =
b1

a1 +a2 · z−1 +a3 · z−2 (4.34)

where τ j ∼NNN (µτ = 0,στ = 0.05T ) and A j ∼NNN (µA = 0,σA = 0.1) account for the uncer-
tainties on the arrival time and on the magnitude of the jth transient, respectively. The white
noise n(t) is set to a noise-to-signal-ratio of 6 dB and the signal length is L = 104 samples. A
second-order system is defined by Eq. 4.34, whose numerator and denominator coefficients
are bbb = [1] and aaa = [1,−2cos(2π f0)r, r2] with r = 0.95, respectively.

Fig. 4.7 (a) Synthetic signal of Case 2 with white noise (noise-to-signal-ratio= 6 dB. (b)
Synthetic repetitive transient signal. (c) Recovered time signal x̂[n].

Fig. 4.7 (a) and (b) show the record of the raw signal and synthetic repetitive transient
signal in time. It is highlighted that although these transients are not exactly periodic because
the rolling elements experience some random slips, its corresponding parameters σ̂2

x (i; fb)
[0]

and σ̂2
x (i; fb)

[k+1] both provide good performances as displayed in Fig. 4.8 (a) and (b). In
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Fig. 4.8 (a) Initialized time-dependent variance of the CS signal, σ̂2
x (i; fb)

[0], and (b) the
estimated σ̂2

x (i; fb)
[k+1] from the EM algorithm. (c) Spectrogram of the estimated CS signal,

X̂(i, fb), with (d) its periodic time-varying filter 1/(1+H(i; fb)) as defined in Eqs. 4.15-4.16.

addition, the spectrogram of the estimated CS signal X̂(i, fb) still reveals distinct spectral
contents with its periodic time-varying filter as seen in Fig. 4.8 (c) and (d), which are further
verified by the recovered time signal x̂[n] in Fig. 4.7 (c). It is seen from the enlarged view of
x̂[n] in Fig. 4.9 (a) that the transients are close to the reference, even though the frequency
of these modulations are not integrally related to the mean transient repetition rate5. The
corresponding parameters σ̂2

x (i; fb)
[0] and σ̂2

x (i; fb)
[k+1] are estimated as well as those of

Case 1 but considerably wider as marked in Fig. 4.9 (b) and (c).

5This is also called a quasi-cyclostationary signal to be more precise.
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Fig. 4.9 (a) Enlarged view of the recovered time signal x̂[n] of Fig. 4.7 (b) and (c). (b)
Initialized time-dependent variance of the CS signal, σ̂2

x (i; fb)
[0], and (c) the estimated

σ̂2
x (i; fb)

[k+1] from the EM algorithm.
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4.4 Validation on experimental examples

This section proposes two experimental examples for a validation of the proposed technique
and a visual illustration of the benefits introduced by the periodic-variance based model. The
first example is recorded on a test rig designed by company DYNAE, while the second one
derives from a dataset offered by the Vibrations and Acoustics Laboratory of the University
of New South Wales (Sydney) [76] and addresses the particular case of two sources with
bearing and gear signals. It is important to notice that all validations are based on the prior
knowledge of the characteristic frequencies as obtained from the Spectral Correlation (e.g.
the Cyclic Modulation Spectrum or the Fast Spectral Correlation [79]).

4.4.1 Example 1: extraction of bearing signals with good gears

Signals recorded on a test rig are now considered. The test rig shown in Fig. 4.10 has been
designed by company DYNAE. It mainly consists of an electric asynchronous motor, a rotary
encoder, 4 accelerometer sensors, a speed variator, a driving gear with 45 teeth, four bearings
(3 healthy and 1 outer race fault) and two pinions (healthy and broken). In addition, the
first experiment involves almost new gears; therefore it is only expected to recover the CS2
components related to the bearings.

Fig. 4.10 Test rig setup of Example 1.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI051/these.pdf 
© [G. Xin], [2017], INSA Lyon, tous droits réservés



90 Extraction of cyclostationary signals

The test rig has been used to produce three types of machine condition: Case 3 relates
to very weak bearing signatures (or to very early stage of a fault); Case 4 corresponds to an
outer race fault of the bearing and Case 5 to the effect of “load”. The parameter settings used
in the experiment are listed in Table 4.1.

Table 4.1 Parameter settings in Case 3, Case 4 and Case 5.

Case 3 Case 4 Case 5

Sampling frequency Fs (Hz) 51200

Duration (s) 10

Nw 26

R 8

Main shaft rotation

frequency — frot,1 (Hz)
15.5-16.5 15.4-16.3 16.8-18.6

Secondary shaft rotation

frequency — frot,2 (Hz)

1.875× frot,1

(29.1-30.9)

1.875× frot,1

(28.9-30.6)

Case 3: healthy bearings

To demonstrate the effectiveness of the proposed scheme on real data, the first test is
executed on almost new bearings, in normal condition, which perhaps corresponds to some
very incipient signatures. The hidden period T = 1/ frot,1 = 1/16 s is found from the
corresponding Spectral Coherence and Enhanced Envelope Spectrum (EES)6 in Fig. 4.11.
It indicates the harmonic structure of the main shaft speed with sidebands at an unknown
frequency of 2 Hz. In addition, they spread the full-band in [0; 25.6] kHz.

Inspection of the vibration signal in Case 3 shows that it undergoes a strong amplitude
modulation located at 2 Hz as indicated in Fig. 4.12 (a). This effect is more distinct in

6In this work, the cyclic spectral analysis is executed by the Fast-SC which benefits from increased
computational efficiency while still maintaining a very fine carrier frequency resolution [79]. In addition, the
Spectral Coherence and the Enhanced Envelope Spectrum are displayed so as to directly assess the “depth” of a
modulation with frequency α and carrier f and better enhance non-zero cyclic components than the Squared
Envelope Spectrum.
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Fig. 4.11 (a) Spectral Coherence based on the Fast-SC, SFast
y (α, f ), of signal of Case 3

(∆ f = 800 Hz, ∆α = 0.1 Hz). (b) Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) in

full band [0; 25.6] kHz.

Fig. 4.12 (a) Vibration signal of Case 3 divided into (b) the recovered time signal x̂[n]
characterized by 1/T = frot,1 = 16 Hz and (c) the noise (residual) signal (= y[n]− x̂[n]).
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the recovered time signal x̂[n], which is characterized by 1/T = frot,1 = 16 Hz, than that
in the noise (residual) signal displayed in Fig. 4.12 (b) and Fig. 4.12 (c). Furthermore,
one can read more details from their spectrograms in Fig. 4.13, i.e. |Y (i, fb)|, |X̂(i, fb)|,
|Y (i, fb)− X̂(i, fb)|, which reflect the energy distributions in the time-frequency plane. The
spectrum (energy distribution) of the CS signal is obtained by integrating its variance along
the time instants as displayed in black dash-dot line in Fig. 4.13 (c). Compared with the
spectra of the noise signal (black dash-dot line in Fig. 4.13 (b)), one can see that the CS
signal dominates the frequency domain in [3; 11] kHz and the noise signal in [0; 1] kHz.
Fig. 4.13 (d), the periodic time-dependent variance, also provides the evidence of energy
distributions characterized by 1/T = frot,1 = 16 Hz.

Of particular interest, from the closer inspection of Fig. 4.12, is the repetitive transients
(relatively sharp damping) in Fig. 4.14 (b) that are characterized by twice of the main shaft
speed. Even though the CS component has been removed, the noise (residual) signal is still
characterized by the main shaft speed with the carrier frequency of 1.11 kHz in Fig. 4.14 (c).

Finally, the squared envelope spectra (SES) are shown in Fig. 4.15. They evidence two
points: 1) the CS signal is successfully extracted by means of the proposed model (see Fig.
4.11 (b) and Fig. 4.15 (b)); 2) the noise (residual) signal is mainly characterized by the
unknown frequency of 2 Hz.
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Fig. 4.13 (a) Spectrogram (magnitude of the STFT) of the raw signal, |Y (i, fb)|. (b) Spec-
trogram of the estimated noise signal, |Y (i, fb)− X̂(i, fb)|, and (c) that of the estimated CS
signal |X̂(i, fb)| with their spectra (σ̂2

n ( fb)
[k+1] and σ̂2

x ( fb)
[k+1]) in black dash-dot lines. (d)

The estimated time-dependent variance σ̂2
x (i; fb)

[k+1] from the EM algorithm.

Fig. 4.14 Enlarged view of (a) the vibration signal of Case 3, (b) the recovered time signal
x̂[n] characterized by 1/T = frot,1 = 16 Hz and (c) the noise (residual) signal (= y[n]− x̂[n]).
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Fig. 4.15 Squared Envelope Spectrum of (a) the vibration signal of Case 3: SSES
y (α), (b) the

recovered time signal: SSES
x̂ (α) and (c) the noise (residual) signal: SSES

n̂ (α).
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Case 4: an outer race fault

In the following case, a defect (indentation) is introduced on the outer race of one of the
bearing as installed in Fig. 4.10. First, the Spectral Correlation of Case 4 is calculated
and shows a clear presence of BPFO in Fig. 4.16. In addition, it spreads almost the full-
band and dominates the high frequency in [7.6; 25.6] kHz. Therefore, the hidden period
T = 1/BPFO = 1/48 s is selected.

Fig. 4.16 (a) Spectral Coherence based on the Fast-SC, SFast
y (α, f ), of the signal of Case 4

(∆ f = 800 Hz, ∆α = 0.1 Hz). (b) Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) in

full band [0; 25.6] kHz.

From careful inspection of the time record, one can see the weak amplitude modulation
of 2 Hz due to the heavy shocks in Fig. 4.17. In order to display more details, their
spectrograms are shown in Fig. 4.18, which demonstrates the energy distributions in the time-
frequency domain. It is noted that the CS component (characterized by 1/T = BPFO = 48
Hz) dominates the high frequency above 7.6 kHz, even if there exists a strong noise (residual)
component in the low frequency. More evidence is provided by the further analysis in Fig.
4.19 and Fig. 4.20. Hereby, one conclusion is first drawn that the CS signal (characterized by
1/T = BPFO = 48 Hz) is recovered with its full-band spectral content (see Fig. 4.19 (b) and
4.20 (b)).

Based on these analyses, one can draw a preliminary conclusion that the tested rig under-
goes an amplitude modulation (unknown frequency at 2 Hz) and contains a CS component
characterized by 1/T = frot,1 = 16 Hz. In addition, such a CS signal has a wide spectral
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Fig. 4.17 (a) Vibration signal of Case 4 divided into (b) the recovered time signal x̂[n]
characterized by 1/T = BPFO = 48 Hz and (c) the noise (residual) signal (= y[n]− x̂[n]).

content (relatively fast damping in time) which is characterized by the main shaft speed with
enhancement at even harmonics. This effect probably corresponds to the misalignment of
the bearing7, mechanical looseness, etc. Another suspected source, particularly in complex
machines, is the torque loads applied by the brake as indicated in Fig. 4.10. Since the two
parallel shafts are connected by the driving gear and the driven pinion, the torque load is
converted to the radial contact (gear and pinion). And the last but not least possibility is that
the resulting harmonics of rotation speed may be generated by tooth faults at a very early
stage (wear, pitting, etc.). To find the answer, the following test is designed.

7Its vibration symptoms is similar to angular misalignment, i.e. it attempts to realign coupling or to balance
the shaft by which the problem will be alleviated. Such self-regulation will cause a twisting motion, with
approximate 180 degree phase, shifts from side to side or top to bottom.
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Fig. 4.18 (a) Spectrogram (magnitude of the STFT) of the raw signal, |Y (i, fb)|. (b) Spec-
trogram of the estimated noise signal, |Y (i, fb)− X̂(i, fb)|, and (c) that of the estimated CS
signal, |X̂(i, fb)|, with their spectra (σ̂2

n ( fb)
[k+1] and σ̂2

x ( fb)
[k+1]) in black dash-dot lines. (d)

The estimated time-dependent variance σ̂2
x (i; fb)

[k+1] from the EM algorithm.

Fig. 4.19 Enlarged view of (a) the vibration signal of Case 4, (b) the recovered time signal x̂[n]
characterized by 1/T = BPFO = 48 Hz and (c) the noise (residual) signal (= y[n]− x̂[n]).
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Fig. 4.20 Squared Envelope Spectrum of (a) the vibration signal of Case 4: SSES
y (α), (b) the

recovered time signal: SSES
x̂ (α) and (c) the noise (residual) signal: SSES

n̂ (α).
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Case 5: an outer race fault under no load condition

In this case, the test is executed in the condition of no load to demonstrate the robustness of
the proposed scheme. To achieve zero-load, the driven pinion is decoupled with the driving
gear. It is noteworthy that without the connection from the secondary shaft there is neither
the dynamic load (torque force) nor the effect from the acting force. Different from previous
cases, there is only (in theory) static gravitational load from the weight of the shaft and
related components. Hence it rotates relatively faster as seen in Table 4.1 and the no force
condition brings a relatively light damping (narrow spectral content) while undergoing the
damage of bearing. Compared with Case 4, it presents very distinct harmonics of the main
shaft speed (relatively strong), whereas the harmonics of the BPFO is relatively weak in Fig.
4.21. Through the Enhanced Envelope Spectrum in Fig. 4.21 (b) and Fig. 4.21 (c), one can
fix them in the band [7.6; 25.6] kHz and [3.6; 7.6] kHz, respectively.

Fig. 4.21 (a) Spectral Coherence based on the Fast-SC, SFast
y (α, f ), of the signal of Case 5

(∆ f = 800 Hz, ∆α = 0.1 Hz). Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) (b) in

the band [7.6; 25.6] kHz and (c) in the band [3.6; 7.6] kHz.

In the record of Case 5, one can see heavy shocks with wide spectral contents by
inspecting Fig. 4.22 (a). Then the raw signal is further separated into the CS component
(characterized by 1/T = BPFO = 52 Hz) and the noise (residual) component as displayed
in Fig. 4.22 (b) and Fig. 4.22 (c). It is seen that they are characterized by different damping
ratio, light for x̂[n] and heavy for n̂[n], which can also be verified by their spectrograms in
Fig. 4.23. By inspecting the recovered time signal, Fig. 4.24 (b) shows more details on the
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transients with a random period8. For the noise (residual) part, the transients (characterized
by frot,1 = 16 Hz) are indicated in 4.24 (c).

Fig. 4.22 (a) Vibration signal of Case 5 divided into (b) the recovered time signal x̂[n]
characterized by 1/T = BPFO = 52 Hz and (c) the noise (residual) signal (= y[n]− x̂[n]).

Finally, their squared envelope spectrum is displayed in Fig. 4.25. One can see the
CS component (characterized by 1/T = BPFO = 52 Hz) shows the same harmonics as in
Fig. 4.21 (b), but it is reconstructed in full-band content as seen in Fig. 4.23 (d). It also
indicates that the amplitude modulation (suspected frequency at 2 Hz) disappears completely
(see Fig. 4.22 (b)) which comes from the connection with the driven pinion. For the CS
component (characterized by 1/T = frot,1 = 16 Hz), it derives from the installation problem
of the driving gear, i.e. misalignment of bearing.

8This means that the repetition of these shocks is not integrally related to the hidden period T , i.e. it should
be modelled as variable [6]. Especially in Case 5, there is no acting force to reduce variations of speed while
rotating relatively faster than Case 4. This is the reason why this case presents relatively weak harmonics of the
BPFO.
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Fig. 4.23 (a) Spectrogram (magnitude of the STFT) of the raw signal, |Y (i, fb)|. (b) Spec-
trogram of the estimated noise signal, |Y (i, fb)− X̂(i, fb)|, and (c) that of the estimated CS
signal, |X̂(i, fb)|, with their spectra (σ̂2

n ( fb)
[k+1] and σ̂2

x ( fb)
[k+1]) in black dash-dot lines. (d)

The estimated time-dependent variance σ̂2
x (i; fb)

[k+1] from the EM algorithm.

Fig. 4.24 Enlarged view of (a) the vibration signal of Case 5, (b) the recovered time signal x̂[n]
characterized by 1/T = BPFO = 52 Hz and (c) the noise (residual) signal (= y[n]− x̂[n]).
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Fig. 4.25 Squared Envelope Spectrum of (a) the vibration signal of Case 5: SSES
y (α), (b) the

recovered time signal: SSES
x̂ (α) and (c) the noise (residual) signal: SSES

n̂ (α).
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4.4.2 Example 2: separation of bearing signals with broken gears

The test-rig is a one-stage gearbox with primary and secondary shafts supported by ball
bearings. In addition, this experiment corresponds to broken gears; it is therefore expected
to recover the CS2 components related to the bearings in the presence of strong interfering
components. The parameter settings used in the experiment are listed in Table 4.2 for Case 6
and Case 7.

Table 4.2 Parameter settings used in Case 6 and Case 7.

Case 6 Case 7

Sampling frequency Fs (kHz) 48

Duration (s) 1.365

Nw 26

R 8

Rotation frequency — frot (Hz) 10

Ballpass frequency, outer race – BPFO (Hz) 48.9

Ballpass frequency, inner race – BPFI (Hz) 71.1

Fundamental train frequency — FTF (Hz) 4.1

Ball (roller) spin frequency — BSF (Hz) 26.1

Case 6: healthy bearings

To demonstrate the robustness of the proposed scheme on real data, the first test is executed
on almost new bearings. Therefore no CS2 components related to the damage are expected
in Case 6. Since it is indeed difficult to identify the damage at incipient stage, particularly in
the case (gears and bearings), this test is designed to detect and extract very weak bearing
signatures at the possible characteristic frequencies listed in Table 4.2.

The time record is shown in Fig. 4.26 (a), which is divided into the CS component
(characterized by one possible fault frequency 1/T = BPFO = 48.9 Hz) and the noise
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(residual) component in Fig. 4.26 (b) and Fig. 4.26 (c), respectively. It is noted that the
recovered time signal is always null for all the characteristic frequencies, as can be seen in
Fig. 4.27.

Fig. 4.26 (a) Vibration signal of Case 6 divided into (b) the recovered time signal x̂[n]
characterized by 1/T = BPFO = 48.9 Hz and (c) the noise (residual) signal (= y[n]− x̂[n]).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI051/these.pdf 
© [G. Xin], [2017], INSA Lyon, tous droits réservés



4.4 Validation on experimental examples 105

Fig. 4.27 (a) Spectrogram (magnitude of the STFT) of the raw signal, |Y (i, fb)|. (b) Spec-
trogram of the estimated noise signal, |Y (i, fb)− X̂(i, fb)|, and (c) that of the estimated CS
signal, |X̂(i, fb)|, with their spectra (σ̂2

n ( fb)
[k+1] and σ̂2

x ( fb)
[k+1]) in black dash-dot lines. (d)

The estimated time-dependent variance σ̂2
x (i; fb)

[k+1] from the EM algorithm.
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Case 7: an incipient ball fault

The second test is executed on the same test-rig with three typical types of fault (i.e. inner
race, outer race and ball fault) to demonstrate the effectiveness of the proposed scheme. Case
7 analyzes an incipient damage of bearings in the presence of strong gear vibrations and
extracts a CS signal related to a ball defect.

Fig. 4.28 shows the spectrogram (logarithmic scale) of the raw signal with evidence
of periodic energy flow (1/T = 2×BSF , dashed line in red). Its time record is displayed
in Fig. 4.29 (a) which is then divided into the recovered time signal x̂[t] characterized by
1/T = 2×BSF = 51.29 Hz and the noise (residual) part in Fig. 4.29 (b) and Fig. 4.29 (c). It
is seen that the CS component is heavily smeared in the low frequency, especially below 5
kHz, as demonstrated in Fig. 4.30. By zooming its time record, more details can be seen in
Fig. 4.31. Of particular interest is the distinct amplitude modulation in the noise (residual)
component which is carried by the low frequency (below 5 kHz). Then it is verified to be the
gear mesh frequency ( fg = frot×No.of teeth = 10×32 = 320 Hz) which originates from the
gearbox. Due to such effect in relatively heavy energy, the classic envelope analysis (SES) of
the raw signal presents only the fault signatures of the gearbox, whereas the recovered signal
purely reveals the characteristic frequency of the ball fault in Fig. 4.32.

Fig. 4.28 Spectrogram (logarithmic scale) of the signal of Case 7 (frequency resolution
∆ f = 750 Hz) with evidence of spectral content in band [9.75; 23.25] kHz.
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Fig. 4.29 (a) Vibration signal of Case 7 divided into (b) the recovered time signal x̂[n]
characterized by 1/T = 2×BSF = 51.29 Hz and (c) the noise (residual) signal (= y[n]− x̂[n]).

Fig. 4.30 (a) Spectrogram (magnitude of the STFT) of the raw signal, |Y (i, fb)|. (b) Spec-
trogram of the estimated noise signal, |Y (i, fb)− X̂(i, fb)|, and (c) that of the estimated CS
signal, |X̂(i, fb)|, with their spectra (σ̂2

n ( fb)
[k+1] and σ̂2

x ( fb)
[k+1]) in black dash-dot lines. (d)

The estimated time-dependent variance σ̂2
x (i; fb)

[k+1] from the EM algorithm.
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Fig. 4.31 Enlarged view of (a) the vibration signal of Case 7, (b) the recovered time signal x̂[n]
characterized by 1/T = 2×BSF = 51.29 Hz and (c) the noise (residual) signal (= y[n]− x̂[n]).

Fig. 4.32 Squared Envelope Spectrum of (a) the vibration signal of Case 7: SSES
y (α), (b) the

recovered time signal: SSES
x̂ (α) and (c) the noise (residual) signal: SSES

n̂ (α).
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Cases 8: separation of bearing and gear signals

Although gearboxes9 are often common and critical equipment of machines (e.g. milling
machines, wind turbines, automobiles, etc.), their analysis in condition monitoring is still
complex and complicated, especially for industrial applications. This is because there can
be many possible sources of vibration signals, e.g. bearings and gears meshing, and some
of them are related to the fault signatures. In order to identify them at an early stage, it is
essential to first separate them according to their relevant characteristic frequency. Hereafter,
Case 8 provides an example that separately extracts two CS signals corresponding to bearings
and gears, respectively. The parameter settings used in Case 8 are listed in Table 4.3.

Table 4.3 Parameter settings used in Case 8.

Sampling frequency Fs (kHz) 48

Duration (s) 2.082

Nw 27

R 16

Rotation frequency — frot (Hz) 6

Ballpass frequency, inner race – BPFI (Hz) 42.77

Gear mesh frequency – fg (Hz) 192

From the time record, one can first identify the bearing characteristic frequency 1/T1 =

BPFI = 42.77 Hz. The corresponding reconstruction of transients is displayed in Fig. 4.33
(b). Next, the gear signal characterized by 1/T2 = fg = frot ×No.of teeth = 192.2 Hz is
shown in Fig. 4.33 (c).

Furthermore, Fig. 4.34 shows the illustration of extracting two sources (characterized by
different characteristic signatures) in the time-frequency plane. As it is highlighted above,
the extraction of the CS signals is achieved by the full-band filter associated with the CS
indexes of two sources shown in Fig. 4.35.

9It is an assembly of gears, shafts, bearings, keys, bearing covers, oil rings/oil seals and a causing to house
all these machines elements.
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Finally, an enlarged view of Fig. 4.33 and the envelope analysis (SES) are displayed in
Fig. 4.36 and Fig. 4.37, respectively. Both of them prove a good performance in extracting
the CS signals.

Fig. 4.33 (a) Vibration signal of Case 8 divided into (b) the recovered time signal of source 1:
x̂1[n] characterized by 1/T1 = BPFI = 42.77 Hz and (c) that of source 2: x̂2[n] characterized
by 1/T2 = fg = frot×No.of teeth = 192.2 Hz.
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Fig. 4.34 (a) Spectrogram (magnitude of the STFT) of the raw signal, |Y (i, fb)|. (b) Spec-
trogram of the estimated CS signal from source 1: |X̂1(i, fb)| and (c) that from source 2:
|X̂2(i, fb)| with their related spectra (variance of the CS signal σ̂2

x ( fb)
[k+1]) in black dash-

dot lines. (d) The estimated spectra from the EM algorithm (variance of the CS signal
σ̂2

x ( fb)
[k+1]).

Fig. 4.35 Cyclostationary indexes of (a) source 1 and (b) source 2: function of the frequency
fb by means of taking the standard deviation of σ̂2

x (i; fb)
[k+1] over the time instant i.
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Fig. 4.36 Enlarged view of (a) the vibration signal of Case 8, (b) the recovered time signal
of source 1: x̂1[n] characterized by 1/T1 = BPFI = 42.77 Hz and (c) that of source 2: x̂2[n]
characterized by 1/T2 = fg = frot×No.of teeth = 192.2 Hz.

Fig. 4.37 Squared Envelope Spectrum of (a) the vibration signal of Case 8: SSES
y (α), the

recovered time signal of (b) source 1: SSES
x̂1 (α) and (c) that of source 2: SSES

x̂2 (α).
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4.5 Conclusion

This chapter has proposed a novel periodic-variance based stochastic model to extract a
cyclostationary signal in the masking of other interfering signals. It proceeds from the
property that, for a CS signal, the STFT evidences periodic flows of energy in and across its
frequency bins. By characterizing the periodic variance as hidden variables, a time-varying
filter is designed so as to achieve the full-band reconstruction of the CS signals characterized
by some pre-set characteristic frequencies, which can be obtained by prior knowledge or by
the Spectral Correlation. Meanwhile, it provides a CS indicator to assess the level of CS
components along the carrier frequency. The performance of the proposed scheme has been
demonstrated on synthetic and experimental cases. Of particular interest is the robustness on
experimental datasets and superior extraction capability over the conventional Wiener filter.
It not only deals with the bearing fault at an incipient stage, but even works for the relevant
problems to the bearings (such as the misalignment, the mechanical looseness, etc.) and the
case of two sources, i.e. bearing and gear signal. Eventually, these experimental examples
evidence its versatile usage on diagnostic analysis of compound signals.
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Chapter 5

Benchmark survey on using the fast
spectral correlation

Since the cyclostationary (CS) framework is actually rather large and includes many types of
signals produced by periodic mechanisms, it has indeed become a very valuable and standard
tool in practice. Although the Spectral Correlation (SC) is one of the most versatile spectral
tools to analyze CS signals (i.e. signals comprising hidden periodicities or repetitive patterns),
its use in condition monitoring has so far been hindered by its high computational cost. Most
recently, this situation has been fixed by a new fast estimator of the SC, the Fast Spectral
Correlation (Fast-SC), rooted on the short-time Fourier transform (STFT) [79]. In particular,
it not only makes considerable the gain in computational cost, but it makes possible the
analysis of long CS signals over a wide cyclic frequency range. To see this, the CWRU data
sets have been entirely tested and the highlight is dealing with the more challenging cases.
By means of systematic experiments and analyses, this chapter proposes a benchmark study
on the Fast-SC and demonstrates the improvement on the Enhanced Envelope Spectrum
(EES) through the comparison with three diagnostic methods. Finally, a whole picture to
assess the performance of the Fast-SC is drawn in the form of tables while intending to make
the SC a more widely spread tool in condition monitoring.

5.1 Background on applied diagnostic methods

According to the aforementioned description in Section 1.2, the fault detection can be
intuitively addressed as a process of signal demodulation. As a very popular method, the
envelope spectrum is a mean to demodulate high carrier frequencies and detect periodic
modulations associated with the bearing characteristic frequencies [2, 4, 80, 81]. In its most
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frequent version, the envelope is estimated by squaring the signal – or better, the analytical
signal – and its spectrum is then computed [82]. This is called the squared envelope spectrum
(SES). However, the SES of the raw signal is often not a good diagnostic indicator because
several vibration components (categorized as background noise) are likely to mask the fault
signature [5, 6, 83]. In addition, it can be greatly improved by pre-filtering the signal, hence
the SES is applied as the fundamental diagnostic tool1 in this chapter.

In order to reduce or remove the effect of masking sources, such as strong determin-
istic components, the benchmark study in Ref. [11] employs two practical and effective
preprocessing steps to improve the performance of the SES.

• On the one hand, it sets all frequency components to the same magnitude, by using the
Cepstrum Prewhitening method, so as to highlight only the pure random part whose
phase information is initialized by pseudo-periodic impacts. In other words, both
discrete frequencies and resonances will be removed together, no matter whether fault
signature are present or not. Such an approach was first proposed in Ref. [84] and has
been applied to variable speed applications in Ref. [85]. In particular, this method
is easily implemented by setting the whole real cepstrum to zero, except for the zero
frequency; the zeroed cepstrum is then transformed back to the time domain.

• On the other hand, it determines the best frequency band which maximizes the energy
of the impulses with respect to the background noise. In other words, the band-pass
filtered signal reduces spurious components while increasing the pure CS part. This
issue has been well addressed and led to the use of indicators such as the kurtosis, which
is viewed as an effective measure of the “impulsiveness” hidden in a signal [2, 13, 86].
In particular, the spectral kurtosis and its computation by the fast kurtogram provide
a robust way to design almost optimal band-pass filters for incipient fault detection
even in the presence of strong masking noise [86, 76]. Interestingly the kurtosis has
been demonstrated to be equivalent to the sum of the peaks in the SES divided by the
zero-frequency SES [87].

Another powerful tool for rolling element bearing diagnostic is based on the SC which
proceeds from the CS property of rolling element bearing signals as demonstrated by Randall
et al. [5] and further developed by Antoni [6, 72]. The SC ideally decomposes the signal in
terms of modulation and carrier frequencies, which makes easy the detection of repetitive
transients [6, 72, 88, 89]. Note that the SES has been demonstrated to be related to the SC –
its integral over frequency – in Ref. [6]. Whereas the SC Sx(α, f ) is a theoretical quantity,

1For instance, in Ref. [11] three diagnostic techniques have been applied based on the SES, the differences
between them being the preprocessing steps applied, as discussed in detail later.
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the ACP SACP
x (α, f ), the CMS SCMS

x (α, f ), and the Fast-SC SFast
x (α, f ) are three different

estimators of the SC. As it is demonstrated in Ref. [79], the connections between the spectral
quantities are schemed in Fig. 5.1.

(STFTX i, f )

Short-Time Fourier 
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Cyclic Modulation 
Spectrum
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xS fα

( , )Fast
xS fα

estimates of the 
Spectral Correlation

(SC)
( , )xS fα

Fig. 5.1 Connections between the spectral quantities handled in the paper [78].

A popular estimator of the SC is obtained from the so-called “time-smoothed cyclic
periodogram” [89][90] or, equivalentely, the Averaged Cyclic Periodogram (ACP) [73]
which is an extension of Welch’s method (also known in spectral analysis as the “Weighted-
Overlapped-Segment-Averaging” method) to CS signals. Particular advantage of the ACP
estimator is to achieve a high-resolution version of the envelope spectrum – arbitrary measure
of cross-correlation between spectral components2. However, to see the relatively fast
periodic modulations, its usage may be hindered by the high computational cost that mainly
consumed in the loop over cyclic frequencies αk = k∆α . In practice such problem is quite
common and troublesome, especially for naive users, while roughly selecting a large cyclic
frequency range.

The Cyclic Modulation Spectrum (CMS) [91], being essentially a waterfall of envelope
spectra at the output of a filterbank, stands as a much faster alternative, yet it suffers from
the uncertainty principle and is thus limited to detect relatively slow periodic modulations.
While the CMS is simply interpreted as the detection of periodic flows of energy in frequency
bands, the Fast-SC extends it to the detection of periodic flows across different frequency
bands [79]. In addition, the Fast-SC may be seen as a correction of the CMS such as to
make it approach the ideal SC3. For practical considerations, its main advantage is that the
computational effort is considerably alleviated as compared to the ACP since it essentially

2By synchronously recruiting the spectral components at frequencies f and f −α , the available range of
cyclic frequency – “modulation frequency” α that can shift apart away from the “carrier frequency” f – is
therefore possible as high as the Nyquist frequency Fs/2 with a very fine resolution ∆α = Fs/L [79].

3It is proved in [79] that the Fast-SC is an asymptotically convergent (unbiased and nil variance) estimator
of the SC with similar statistical performance as the ACP.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI051/these.pdf 
© [G. Xin], [2017], INSA Lyon, tous droits réservés



118 Benchmark survey on using the fast spectral correlation

relies on calculating the FFT of STFT products. Particularly, in terms of computational gains,
their connections can be roughly summarized as [79]

CFast

CCMS
∼ P+1, and

CACP

CFast
∼ L

2R
(5.1)

where P denotes the maximum value of p obtained by taking the nearest whole number
rounded down to Nw/(2R), L stands for the signal length and R for block shift in STFT when
L≫ R.

This chapter aims to entirely assess the performance of the Fast-SC so that the CWRU
data sets are tested and its results are then compared with benchmark results (the three
diagnostic methods as mentioned in [11]). To see the “depth” of a modulation with frequency
α and carrier f , the Spectral Coherence (SC)4 will serve as a basis to define the Squared
Envelope Spectrum (SES) [5],

SSES
x (α) =

∣∣∣∣
∫ f2

f1
γx(α, f )d f

∣∣∣∣ , (5.2)

measured in a given frequency band [ f1; f2] and, a newly proposed spectral quantity, the
“Enhanced Envelope Spectrum” (EES)

SEES
x (α) =

∫ f2

f1
|γx(α, f )|d f . (5.3)

It is noteworthy that SSES
x (α) ≤ SEES

x (α) in general. The EES is expected to better
enhance non-zero cyclic components than the SES because the latter integrates complex
values, a process which may possibly a convergence towards zero in the case of fast rotating
phases [79].

5.2 Case Western Reserve University data

For the last decade, the data set provided by the Case Western Reserve University (CWRU)
Bearing Data Center [1] has been widely used as a standard reference in the bearing di-
agnostics field, e.g. Smith et al. [11] counted its use in 41 papers in Mechanical System
and Signal Processing between 2004 and early 2015. To be a famous and standard data set,
it indeed provides plenty of practical cases, with the author counting 161 test cases5 are

4It may also be interpreted as the SC of the whitened signal, which tends to equalize regions with very
different energy levels and thus to magnify weak CS signals.

5The CWRU data set provides a number of bearing faults, i.e. seeded faults for Inner, Outer and Ball
damage with various loading conditions (0-3 horsepower, approximate motor speeds of 1797-1720 rmp) and
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Fig. 5.2 CWRU bearing test rig [1].

publicly available online. Reference [11] provides a valuable description of the vibration
signals found in the database together with the identification of the difficult cases which
are worth consideration when trying to improve upon results obtained from state-of-the-art
methods, such as the SES with possible prewhitening [85] and optimal prefiltering with the
kurtogram [76]. The Fast-SC and the EES have been systematically computed for all cases
investigated in Ref. [11]. The conclusion was that the Fast-SC never performed worse than
the reference methods, but could improve the diagnosis outcomes6 in some difficult cases.

damgage severity (faults ranging in diameter from 0.007 to 0.028 in. corresponding to 0.18-0.71 mm). For each
test case, the measurement was possibly taken in the vertical direction on the housing of the drive-end bearing
(DE), on the fan-end bearing housing (FE) and on the motor supporting base plate (BA) as indicated in Fig. 5.2.
This means the entire data set contains more than 161 cells. Further details can be found at the CWRU Bearing
Data Center website [1].

6The criteria for categorizing the diagnosis outcomes are outlined in Table 5.1 [11].
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Table 5.1 Criteria for categorizing the diagnosis outcomes.

Diagnostic result Category Rules and details

Data clearly diagnosable

Y1
Evidence of classic characteristics for the given

bearing fault in both the time and frequency domains

Y2
Evidence of non-classic characteristics in either

or both of the time and frequency domains

Data probably diagnosable P1
Evidence of discrete components at the expected fault

frequencies but they are not dominant in the spectrum

Data potentially diagnosable P2
Evidence of smeared components that appear to

coincide with the expected fault frequencies

Data not diagnosable

N1
Evidence of nothing for the specified bearing fault

but with other identifiable problems (e.g.,looseness)

N2
Evidence of nothing for the specified bearing fault

with the possible exception of shaft harmonics
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5.2.1 Experimental set-up

The basic layout of the test rig is shown in Fig. 5.2. It consists of a 2 horsepower Reliance
Electric motor driving a shaft on which a torque transducer and encoder are mounted. The
torque is applied to the shaft via a dynamometer and electronic control system. Since there is
no mechanism (e.g. gears) to convert such torque to the radial axis, the effect of ‘load’ here is
almost inconsiderable for diagnosis outcomes as mentioned in Ref. [11]. It means that there
is no radial load (in theory) borne by the bearings except the static graviational load (6.00
o’clock position) from the weight of the shaft and any attached components. To see these,
the tests for Outer damage are further grouped into three categories according to the fault
position relative to the load zone: ‘centred’ (fault in the 6.00 o’clock position), ‘orthogonal’
(3.00 o’clock) and ‘opposite’ (12.00 o’clock).

For the tests, faults were seeded on the drive- and fan-end bearings (SKF deep-groove ball
bearings: 6205-2RS JEM and 6203-2RS JEM, respectively) of the motor using electrodis-
charge machining (EDM). Table 5.2 shows the relevant bearing details and fault frequencies.
The sample rates used were 12 kHz for some tests and 48 kHz for others. Information for
all 161 test cases is divided into four categories – 48k baseline, 12k drive-end fault, 48k
drive-end fault, and 12k fan-end fault – according to the sample rate and fault location.

Table 5.2 Bearing details and fault frequencies.

Position on rig Model number
Fault frequencies (multiple of shaft speed)

BPFI BPFO FTF BSF

Drive-end SKF 6205-2RS JEM 5.415 3.585 0.3983 2.357

Fan-end SKF 6203-2RS JEM 4.947 3.053 0.3816 1.994

Note: an equivalent NTN bearing, relative to the SKF 6205-2RS JEM, with the same fault
frequencies was used for the 0.028 in. drive-end faults.

5.2.2 Examples and discussion

This section illustrates the use of the Fast-SC in combination with several examples while
intending to move forward the benchmark study on the CWRU data set – uncovering its own
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unique characteristics. Particularly, it has mainly investigated the “benchmark data set”7 in
order to assess the newly proposed diagnostic algorithm, i.e. the Fast-SC [79]. And therein
lie the reported 6 examples, marked in red (see Table D.2 and D.3) which illustrate quite well
the general observation.

The parameter settings are given in Table 5.3 for record 125DE, 203DE, 275DE and
Table 5.4 for record 277DE, 282DE, 290DE.

Table 5.3 Parameter settings used in the experiment of record 125DE, 203DE, 275DE.

Data Set 125DE 203DE 275DE

Sampling frequency Fs (kHz) 48 12

Duration (s) 10

αmax (Hz) 300 500 600

Nw in Fast-SC 25 210

R in Fast-SC 8 48 10

Rotation frequency frot (Hz) 28.68 29.15 29.63

Fundamental train frequency — FTF (Hz) 11.42

Ball (roller) spin frequency — BSF (Hz) 67.61

Ballpass frequency, outer race – BPFO (Hz) 104.5

Ballpass frequency, inner race – BPFI (Hz) 145.8

First, one example connected with the ball fault is presented which relates to record
125DE. It was categorised as “unsuccessful diagnoses” for all the 3 benchmark methods.
As summarized in Ref. [11], the ball fault cases are certainly the most difficult to diagnose.
Such phenomena are especially evident in some consecutive cases, e.g. 122DE, 123DE,
124DE, 125DE – with the smallest fault width (0.007 in.). For instance, all of their diagnosis

7It consists of the more challenging data sets, whose diagnosis outcomes are categorised by “partially
successful” or even worse in Ref. [11], under the criteria in Table 5.1. Particularly, all the 68 cases were
selected and divided into 3 tables in Appendix D.
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5.2 Case Western Reserve University data 123

Fig. 5.3 (a) Spectral Coherence based on the Fast-SC, SFast
y (α, f ), of record 125DE (∆ f =

1500 Hz, ∆α = 0.1 Hz). (b) Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) in the

band [750; 5250] Hz.

outcomes were “not diagnosable” with any of the techniques used in benchmark study (see
Table D.2).

Figure 5.3 (a) displays the Spectral Coherence based on the Fast-SC in the full band
[0; 24] kHz. Clearly, it reveals the harmonic structure of the shaft speed, particularly in the
high “carrier frequency” of about [5; 20] kHz. Although this component dominates nearly the
full band and strongly masks the fault signature, the smeared information has been found in
the band [750; 5250] Hz. The Enhanced Envelope Spectrum is next computed by integrating
the Spectral Coherence according to formula 5.3 in the latter band with maximal signal-to-
noise ratio (SNR) as shown in Fig. 5.3 (b). The harmonics of BSF surrounded by modulation
sidebands at the cage speed (FTF) are therefore verified for a ball damage. Since they are not
dominant in the spectrum, the case is categorised by “partially successful”. Specially, for the
consecutive 4 cases, they were measured under the same operating conditions except the loads.
As explained above, the effect of ‘load’ is primarily on the shaft speed, which is reduced
by almost 4% in the maximum load case. Hence the same phenomena – fault signature in
[750; 5250] Hz – have also been found for the other cases with 0.007 in. fault width. The
presented example – record 125DE – illustrates quite well the evident improvement in the
consecutive cases, i.e. 122DE, 123DE, 124DE, 125DE in connection with ball faults.
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124 Benchmark survey on using the fast spectral correlation

The second example relates to record 203DE in connection with an outer-race fault, which
was categorised as “P2” for all the 3 benchmark methods. As mentioned in Ref. [11], it shows
impulse responses subject to impulsive amplitude modulation which gives rise to smearing
effects in the envelope spectrum (see Fig. 26 therein). Figure 5.4 (a) shows the Spectral
Coherence based on the Fast-SC with ∆ f = 46.88 Hz. It is noted that the aforementioned
smeared components are dominant in the band of about [2; 5] kHz. The Enhanced Envelope
Spectrum is then computed by integrating the Spectral Coherence in the band [500; 1500]
Hz with maximal SNR in Fig. 5.4 (b).

Fig. 5.4 (a) Spectral Coherence based on the Fast-SC, SFast
y (α, f ), of record 203DE (∆ f =

46.88 Hz, ∆α = 0.1 Hz). (b) Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) in the

band [500; 1500] Hz.

Of particular interest is the 12k fan-end bearing faults (see Table D.3). For such fan-end
bearings (SKF type 6203-2RS JEM deep groove in Table 5.2), it is noteworthy that three
of the bearing characteristic frequencies are close to integer multiples of shaft speed, with
values of 4.947, 3.053, 1.994 (× frot) for BPFI, BPFO and BSF, respectively. As mentioned
in Ref. [11], in some of the results, the bearing frequencies appear to lock onto these shaft
harmonices, making it difficult to establish a definite diagnosis, though in others there is a
small difference. Another interesting thing (cf. Table D.3) is that the accelerometric sensor is
located on the drive-end bearing and is therefore far from the faulty bearing located on the
fan-end, on the other side of a large – and possibly noisy – electrical motor. Above all, some
of the data sets are dominated by non-classical features, especially for the cases with its own
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unique characteristics. The following examples therefore demonstrate some typical cases
contained therein.

Fig. 5.5 (a) Spectral Coherence based on the Fast-SC, SFast
y (α, f ), of record 275DE (∆ f =

11.72 Hz, ∆α = 0.1 Hz). (b) Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) in full

band [0; Fs/2] Hz.

The third example derives from an inner-race fault, 275DE, whose measurement position
is located on the drive-end bearing. As mentioned in Ref. [11], a small number of cases
(275-277, drive-end measurements) are difficult to diagnose with any of the methods. For
instance, they were categorised as P1 or N1 (see Table D.3).

Figure 5.5 (a) and (b) display the Fast-SC-based Spectral Coherence and Enhanced
Envelope Spectrum in the full band [0; 6] kHz. On closer inspection, the shaft harmonics
are found and vanish rapidly after the fourth order, as marked by red arrows in Fig. 5.5
(b). It is also noted that the shaft-speed sidebands from BPFI (= 4.947× frot) can be
distinguished therein (see black double-arrow). Concerning the small difference between
BPFI and 5× frot , Ref. [11] gives a physical interpretation on beat-type effect and provides a
valuable description associated with the fan-end measurement (270FE, see Fig. 30 therein).
In addition, it noted that such phenomenon – beating effect – was found to be clearest on
the fan-end measurements and least clear on the base measurements. Hereafter, with the
improvement of Fast-SC, it proves that the BPFI (= 4.947× frot) is not locking onto 5× frot

in all the records (observed throughout the inner-race fault cases), and on closer inspection
such two components are indeed distinguishable (see in Table D.3).
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Table 5.4 Parameter settings used in the experiment of record 277DE, 282DE, 290DE.

Data Set 277DE 282DE 290DE

Sampling frequency Fs (kHz) 12

Duration (s) 10

αmax (Hz) 600 400

Nw in Fast-SC 28 211 28

R in Fast-SC 10 15

Rotation frequency frot (Hz) 28.88 29.95 29.92

Ballpass frequency, inner race (fan end) – BPFI (Hz) 142.3

Ballpass frequency, inner race (drive end) – BPFI (Hz) 156.3

Fundamental train frequency — FTF (Hz) 12 11.7

Ball (roller) spin frequency — BSF (Hz) 59.88 59.83

Another interesting example is one which illustrates quite atypical observation. It relates
to record 277DE, a case with an inner-race fault, denoted as “partially successful” for all
the 3 methods tested in Ref. [11] (see Table B4 therein). This is a difficult case because the
accelerometric sensor is located on the drive-end bearing and is therefore far from the faulty
bearing located on the fan-end, on the other side of a large – and possibly noisy – electrical
motor.

Figure 5.6 (a) displays the Spectral Coherence based on the Fast-SC in the full band [0; 6]
kHz. As demonstrated in Ref. [79], it seems to maximize the SNR in the band [4.3; 5.5] kHz.
Next, the detection of the fault is further demonstrated by means of the EES computed in
the band in Fig. 5.6 (b). The Fast-SC-based EES clearly evidences the dominant harmonics
of the BPFI (= 4.947× frot) with sidebands at the shaft rotation. Here, the very fine cyclic
frequency resolution ∆α = 0.1 Hz in addition to the detection of higher order harmonics of
the fault prevent us from such a confusion – beating effect.
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Fig. 5.6 (a) Spectral Coherence based on the Fast-SC, SFast
y (α, f ), of record 277DE (∆ f =

46.88 Hz, ∆α = 0.1 Hz). (b) Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) in the

band [4.3; 5.5] kHz.

Fig. 5.7 Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) in selected band [2.3; 3.7]

kHz with ∆α = 0.1 Hz.
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Incidentally, the Spectral Coherence in Fig. 5.6 (a) also shows a high interference at
α = 156.3 Hz which dominates in the band [2.3;3.7] kHz. The Fast-SC-based EES computed
in this band is shown in Fig. 5.7. It displays the signature of an inner-race fault in the drive-
end bearing with marked side-bands at twice the rotation speed. Although no such fault
is reported in the literature for the configuration relating to record 277DE, it is believed
that the accelerometric sensor (which is close to drive-end bearing) sees a misalignment
of the drive-end bearing due to the numerous dismantling operations carried out in the
experiment – a loose misaligned inner-race would then have a potential signature at the BPFI
with modulations at twice the rotation speed.

As aforementioned for the drive-end bearings, the ball faults are quite often connected
with the most difficult cases for diagnostics. Here, this situation is further complicated by the
fact that the BSF (= 1.994× frot) is really close to the second multiple of the shaft speed,
which might be troublesome for fault identification. The following two examples intend to
illustrate how the Fast-SC can improve the results and deepen user’s understanding of the
CWRU data sets.

Fig. 5.8 (a) Spectral Coherence based on the Fast-SC, SFast
y (α, f ), of record 282DE (∆ f =

5.86 Hz, ∆α = 0.1 Hz). (b) Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) in the

band [4.1; 4.3] kHz.

The fifth example relates to record 282DE, a case with a ball fault, denoted as “partially
successful” or even worse for the benchmark result in Ref. [11] (see Table D.3). Fig.
5.8 (a) displays the Spectral Coherence based on the Fast-SC in the full band [0; 6] kHz
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(∆ f = 5.86 Hz, ∆α = 0.1 Hz). It is evident that smeared components are observed over a
narrow frequency range of about [1.5; 2] kHz. This phenomenon is possibly attributable to
two separate reasons, one mechanical looseness and one electro-magnetic interference (EMI).
The interference was first thought to have been caused by EMI, but closer inspection on its
time record revealed that it contains seemingly random pulses8, again perhaps attributable to
mechanical looseness.

Particularly, the Spectral Coherence in Fig. 5.8 (a) also shows a clear harmonic of 59.88
Hz which dominates in the band [4.1; 4.3] kHz. Next, the Fast-SC-based EES computed
in such band is displayed in Fig. 5.8 (b). It reveals the harmonic structure of BSF (with
dominant even multiples thereof) surrounded by twice the cage speed. As will be seen in the
next example, such side-bands at twice the cage speed are also present and possibly caused
by mechanical looseness.

Fig. 5.9 (a) Spectral Coherence based on the Fast-SC, SFast
y (α, f ), of record 290DE (∆ f =

46.88 Hz, ∆α = 0.1 Hz). (b) Fast-SC-based Enhanced Envelope Spectrum SEES
y (α) in the

band [3.9; 4.4] kHz.

The sixth example is also a ball fault case with deeper fault width (0.021 in.) – 290DE. It
was categorised as “N1” for all the 3 benchmark methods (see in Table D.3). Fig. 5.9 (a)
displays the Spectral Coherence based on the Fast-SC in the full band [0; 6] kHz (∆ f = 46.88
Hz, ∆α = 0.1 Hz). It shows clear harmonics of the shaft speed which dominates a low

8As discussed in Ref. [11], it is suspected to be a result of mechanical looseness, causing impulsive
modulation of random amplitude at intervals of one revolution, but not necessarily phase-locked to the rotation.
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frequency range from 0 Hz up to 3 kHz. Such harmonics are not unfamiliar, especially in
connection with the discussion above regarding the effect of mechanical looseness.

In addition, closer inspection on the Spectral Coherence also reveals a distinct harmonic
of 59.83 Hz carried in the band [3.9; 4.4] kHz. The Fast-SC-based EES is next computed in
such band with maximal SNR as shown in Fig. 5.9 (b). It displays the typical signature of a
ball fault – with twice the cage speed (2×FTF) as the previous case – possibly caused by
mechanical looseness.

5.3 Result tables and conclusion

It was mentioned in Section 5.1 that the Fast-SC has been selected as an ideal tool for
condition monitoring. This is because of its high capability to unwrap complicated signals
onto a two-dimensional map that clearly reveals the presence of modulations and makes
easy the identification of fault frequencies. In addition, the Fast-SC-based EES computed in
selected bands provides an improved version of the SES and gives a versatile tool especially
for complicated cases.

Fig. 5.10 Method comparison: diagnosis outcomes for the “benchmark data set” (Method
1-3 are outlined in Section 5.1; Y = successful, P = partially successful, N = not successful,
more details can be found in Table 5.1.).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI051/these.pdf 
© [G. Xin], [2017], INSA Lyon, tous droits réservés



5.3 Result tables and conclusion 131

As for the tested CWRU data sets, many of the consecutive cases exhibit similar char-
acteristics and in particular for some challenging ones, they have their own unique fault
signatures. To examine the newly proposed Fast-SC, the “benchmark data set” is built and
therein lies the 6 examples which result in a more comprehensive diagnosis of data sets in
the P categories or in a successful diagnosis for data sets in the N categories.

Fig. 5.11 Pie charts of diagnosis outcomes for the “benchmark data set”: (a)-(c) respectively
corresponded to benchmark method 1-3 and (d) to tested method Fast-SC (Method 1-3 are
outlined in Section 5.1; Y = successful, P = partially successful, N = not successful, more
details can be found in Table 5.1.).

In addition, the tables in Appendix D (Table D.1-D.3) gives a whole picture of the
diagnostic performance of the techniques of Section 5.1. Figure 5.10 draws the bar chart on
diagnosis outcomes for the “benchmark data set” by counting the number of cases categorised
as ‘Y’, ‘P1’, ‘P2’, ‘N’. In the figure, the ‘N1’ and ‘N2’ categories have been merged into the
‘N’ for not diagnosable; the ‘Y1’ and ‘Y2’ into the ‘Y’ for successfully diagnosable. It can
be seen that the tested method achieves at least as twice the number of successful diagnosis
as the benchmark methods; inversely, for the ‘N’ diganosis, it is less than the half of any
other methods. Furthermore, the pie charts give more details for quantitatively assessing
their performances.

This chapter has given the benchmark survey on using the fast computation of the spectral
correlation. It has benefited from a big data set – which is publicly available and widely
used – supplied by the Case Western Reserve University (CWRU) Bearing Data Center.
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Particularly, it contains plenty cases ranged from very easily diagnosable to not diagnosable,
while some signals show the typical harmonic structure of bearing fault signature, others are
quite blurry or even display other fault symptoms. This study aims to make the Faset-SC a
more widely spread tool in condition monitoring, thereby it has selected a big data set and
tested all the cases. The performance of proposed Fast-SC has therefore been assessed by
the partial or non-diagnosable cases for the benchmark result. Another contribution of this
work has been to move forward the benchmark study of public and commonly used data set –
Case Western Reserve University (CWRU) Bearing Data Center – by uncovering its own
unique characteristics.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

In this PhD work, we investigated vibration-based rolling element bearing diagnostics via
stochastic models that exploit sparse representations of vibration signals. Sparsity is a
property that enables us to reveal the natural signature of sigular events embedded in a signal
so as to reduce the demand on the user’s expertise. It is noteworthy that sparse representations
is a general principle for finding statistically independent components in vibration signals,
rather than a special and formulaic model for matching more physical characteristics. It is
demanding of an appropriate transform that promotes the sparsity, rather than a redundant
and complicated basis function. A literature survey on sparse representations of vibration
signals has been proposed and few crucial points were drawn for its applications in machinery
diagnostics.

This thesis mainly studied two stochastic models – one is based on the hidden Markov
model and the other is periodic-variance based model – and a fast estimator of the spectral
correlation which proceeds from the fact that the STFT evidences time-dependent flows of
energy in and across its frequency bins. As a consequence, all of them benefit from the
computational advantage of the Short-Time-Fourier-Transform. This is the reason why the
Fast-SC can offer a substantial computational gain which makes it very practical when it
comes to analyse long records over a wide cyclic frequency range. Furthermore, it helped
to move forward the benchmark survey on the CWRU data set – by cuncovering its own
unique characteristics. Of particular interest is that the proposed periodic-variance based
model can be intuitively viewed as a special case – under periodic assumptions instead of
non-stationarity – of the hidden Markov model. Whereas they have an alike interpretation
from the Bayesian viewpoint, yet they were illuminated by different properties.
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The hidden Markov model introduces a hidden variable to indicate the occurrence of
the impacts and estimates the spectral content of the corresponding transients together with
the spectrum of background noise. This gives rise to an automatic detection algorithm –
with no need of manual prefiltering as is the case with the envelope spectrum – from which
fault frequencies can be revealed. The same algorithm also makes possible to filter out the
fault signal in a very efficient way as compared to other approaches based on the stationary
assumption. The performance is investigated on synthetic signals with a high noise-to-signal
ratio and also in the case of a mixture of two independent transients. The effectiveness and
robustness of the method are also verified on vibration signals measured on a test-bench
(gears and bearings). Results are found superior or at least equivalent to those of conventional
envelope analysis and fast kurtogram.

The periodic-variance based model aims to extract cyclostationary (CS) signals in the
masking of interfering signals. First, it introduces a stochastic model that characterizes the
second-order statistical descriptors as hidden variables so as to recover the CS component
characterized by pre-set cyclic frequency. Meanwhile, it provides a CS indicator to assess
the level of the CS components along carrier frequency. The validity of the proposed scheme
has been demonstrated on synthetic and experimental cases. Of particular interest is the
robustness on experimental datasets and superior extraction capability over the conventional
Wiener filter. It not only deals with the bearing fault at an incipient stage, but even works for
the relevant problems to the bearings (such as the misalignment, the mechanical looseness,
etc.) and the case of two sources, i.e. bearing and gear signal. Eventually, these experimental
examples evidence its versatile usage on diagnostic analysis of compound signals.

In summary, by discussing the pros and cons of sparse representations, this thesis thereby
investigated both analytic and learing-based routes in the Bayesian viewpoint to promote
the “hidden” sparsity of vibration signals. It intends to share and merge the information on
observations and prior knowledge in the general sense so as to reduce the demand on the
user’s expertise. With the idea of decomposing signals into some “sparse structure”, novel
stochastic models have been explored and applied for rolling element bearing diagnostics.

6.2 Perspectives

Due to limited time, many further works have remained open and should be considered in
the future.

• We have proposed an automatic detection algorithm – with no need of manual pre-
filtering as is the case with the envelope spectrum – from which fault frequencies
can be revealed. In addition, we also discussed the initialization and setting of the
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required parameters, i.e. the window length Nw and the window shift R. However,
in terms of Nw, it still depends on manual tuning. To achieve an intelligent method,
it needs to be solved. Another interesting point to develop is related to proposed
model. It only assumes that each state obeys a stationary condition which relaxes the
assumption of cyclostationarity for a wider application. Nevertheless in consideration
of cyclostationary signals (i.e. signals comprising hidden periodicities or repetitive
patterns), its performance can still be improved by recognizing hidden variables as
periodic variation so as to promote the accuracy for capturing repetitive transients.

• In recent decades, more and more interesting studies have been reported on sparsely
representing rotating machines signals. Some promising successes will keep its devel-
opments growing in this area. Exploitation of dictionary learning in vibration signals is
valuable and promising, yet too much interest is payed into overcomplete for training
the basis functions. As discussed in Chapter 2, the application of sparsity in machine
diagnosis still has to consider a few crucial points. Particularly, for the learning-based
route, with such a large degree of freedom, it seems more like a black-box, which
possibly causes artifacts and loss of information, such as wrong classification of some
unwanted signals as sparse, or misclassification of some signals in Ω as dense. Anyway,
the exploratory study – learning-based dictionary algorithm – of sparse representa-
tions of vibration signals is still going on. The notion focuses on the assumption of
a higher degree of statistical independence of the desired signal, which gives rises to
filtering out the other statistical structures, such as background noise n(t).
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Appendix A

Commonly used symbols and statistical
quantities

Table A.1 List of symbols

CS Cyclostationary

HMM Hidden Markov Model

MLE Maximum Likelihood Estimation

MAP Maximum A Posteriori

EM Expectation Maximization

LLR Natural Logarithm of the Likelihood Ratio

NNN Normal Distribution

C NC NC N Circularly-Symmetric Complex Normal Distribution

SC Spectral Correlation

CMS Cyclic Modulation Spectrum

Fast-SC Fast Spectral Correlation
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146 Commonly used symbols and statistical quantities

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

STFT Short-Time Fourier Transform

SES Squared Envelope Spectrum

EES Enhanced Envelope Spectrum

x(tn) signal of interest

w[n] data window (function of time index n)

Xw(i, f ) Gabor coefficient at time index i and frequency f

XST FT (i, f ) STFT coefficient at time index i and frequency f

L signal length

Nw window length in STFT

N0 central time index of window

R window shift in STFT

K total number of blocks used in spectral estimates

Fs sampling frequency

tn n-th discrete time instant (in s)

τ time-lag (in s)

T cyclic period of a cyclostationary signal (in s)

α cyclic (or modulation) frequency (in Hz)

αmax maximum scrutinizable cyclic frequency (in Hz)

f spectral (or carrier) frequency (in Hz)
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fk k-th discrete frequency (in Hz)

∆α cyclic frequency resolution in α (in Hz)

∆ f frequency resolution in f (in Hz)

p index of STFT frequency closest to a given cyclic frequency α

P index of STFT frequency closest to αmax

Rx(tn,τ) instantaneous autocorrelation function of signal x

Rw(α) discrete Fourier transform of |w[n]|2

Sx(α, f ) Spectral Correlation of signal x

γx(α, f ) Spectral Coherence of signal x

SCMS
x (α, f ) Cyclic Modulation Spectrum of signal x

Sx(α, f ; p) Scanning Spectral Correlation of signal x

SFast
x (α, f ) Fast Spectral Correlation of signal x

γFast
x (α, f ) Fast Spectral Coherence of signal x

SSES
x (α) Squared Envelope Spectrum of signal x

SEES
x (α) Enhanced Envelope Spectrum of signal x

BPFO Ballpass frequency, outer race

BPFI Ballpass frequency, inner race

BSF Ball (roller) spin frequency

frot Shaft rotation speed

FTF Fundamental train frequency
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148 Commonly used symbols and statistical quantities

Table A.2 Commonly used statistical quantities

Moment (central) Estimator Measures

2nd moment:

σ2
x = E

[
|X−µx|2

]
m2 =

∑
N
i=1|xi−x̄|2

N−1 Variance (spread or dispersion)

3rd moment:

M3 = E
[
|X−µx|3

]
m3 =

∑
N
i=1|xi−x|3
(N−1)σ3

x
Skewness (degree of asymmetry)

4th moment:

M4 = E
[
|X−µx|4

]
m4 =

∑
N
i=1|xi−x|4
(N−1)σ4

x
Kurtosis (degree of flattening)

where xi denotes the ith sample, from 1 to N; x̄ denotes the sample mean (which estimates
the arithmetic mean, µx).
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Appendix B

Proof of the mixture distribution with
two Gaussian distributions giving rise to
a super-Gaussian distribution

Let start by expressing the probability distribution of observation y(t) as a linear mixture
of two different Gaussian distributions: x1(t)∼NNN (µ1,σ

2
1 ) and x2(t)∼NNN (µ2,σ

2
2 ). Hence,

the mixture distribution reads

f (y) = π f1(y)+(1−π) f2(y), (B.1)

where π and (1−π) denote the mixture weights (probabilities) corresponding to x1(t) and
x2(t), respectively.

Without loss of generality, it is assumed that µ1 = µ2 = 0 (as obtained after first centering
the signal). In addition, one can obtain the second and fourth central moment of xi(t) as
E{X2

i (t)}= σ2
i and E{X4

i (t)}= 3σ4
i (i = 1,2). Then the fourth central moment of y(t) is

estimated by the following:

E{Y 4(t)}=
∫

y4 f (y)dy = π

∫
y4 f1(y)dy+(1−π)

∫
y4 f2(y)dy = 3(πσ

4
1 +(1−π)σ4

2 ).

(B.2)
The second central moment of y(t) is

E{Y 2(t)}=
∫

y2 f (y)dy = π

∫
y2 f1(y)dy+(1−π)

∫
y2 f2(y)dy = πσ

2
1 +(1−π)σ2

2 .

(B.3)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI051/these.pdf 
© [G. Xin], [2017], INSA Lyon, tous droits réservés



150
Proof of the mixture distribution with two Gaussian distributions giving rise to a

super-Gaussian distribution

Therefore the kurtosis of Y (t) is calculated by

Kurt[Y (t)] =
E{Y 4(t)}

(E{Y 2(t)})2 −3 = 3
πσ4

1 +(1−π)σ4
2

(πσ2
1 +(1−π)σ2

2 )
2 −3. (B.4)

Let further prove the following inequality:

πσ
4
1 +(1−π)σ4

2 > (πσ
2
1 +(1−π)σ2

2 )
2. (B.5)

Next, let remind the Lemma of Minkowski’s inequality:
Lemma 2 (Hölder) If p > 1 and q > 1 are such that

1
p
+

1
q
= 1 (B.6)

then for all xxx and yyy ∈ Rn we have

n

∑
i=1
∥xiyi∥6

(
n

∑
i=1
∥xi∥p

)1/p( n

∑
i=1
∥yi∥q

)1/q

. (B.7)

Now, let take the n = p = q = 2, y1 =
√

π , y2 =
√

1−π , x1 = σ2
1
√

π and x2 = σ2
2
√

1−π ,
then one can obtain

(πσ
2
1 +(1−π)σ2

2 )
2 6 (πσ

4
1 +(1−π)σ4

2 )(π +(1−π)). (B.8)

Since the kurtosis of Y (t) in Eq. B.4 is greater or equal to 0, the mixture distribution with
two Gaussian distributions gives rise to a super-Gaussian distribution.
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Appendix C

Proof of the inverse gamma distribution
giving rise to a conjugate prior for the
variance

This is a demonstration of the inverse gamma distribution arising as a conjugate prior for the
variance σ2 of a normal distribution N (µ, σ2) with known mean µ . It is noteworthy that
this property is under the assumption of an informative prior, as mentioned in footnote 3 in
subsection 4.2.

Let start by expressing the likelihood function of observation y[n] as

p(y[n] | µ, σ
2) = p(y1, . . . yn | µ, σ

2) =
n

∏
i=1

1√
2πσ2

exp{−(yi−µ)2

2σ2 } (C.1)

where σ2 denotes the unknown variance of the normal distribution, and it is assumed to
follow an inverse gamma distribution

σ
2 ∼ Inv−Gamma(α, β ) (C.2)

with shape parameter α and scale parameter β as the prior. Next, let introduce the posterior
probability distribution of the unknown variance σ2 as

p(σ2 | y[n], µ)∝ p(y[n] | µ, σ
2)p(σ2 | µ). (C.3)
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152Proof of the inverse gamma distribution giving rise to a conjugate prior for the variance

Then the poseterior probability density reads

p(σ2 | y[n], µ) = (2πσ
2)−n/2exp{− 1

σ2

n

∑
i=1

(yi−µ)2

2
}× β α

Γ(α)
(σ2)−(α+1)exp{− β

σ2}
(C.4)

where Γ(·) denotes the gamma function. Let us ignore constant terms in the prior β α

Γ(α) and in

the likelihood 1
(2π)n/2 . After some manipulations, Eq. C.4 can be expressed as

p(σ2 | y[n], µ) = constant× (σ2)−(α+ n
2+1)exp{− 1

σ2 (β +
n

∑
i=1

(yi−µ)2

2
}, (C.5)

alternatively, the posterior probability distribution of the unknown variance σ2 is proportional
to

p(σ2 | y[n], µ) =
(β +∑

n
i=1

(yi−µ)2

2 )α+ n
2

Γ(α + n
2)

(σ2)−(α+ n
2+1)exp{− 1

σ2 (β +
n

∑
i=1

(yi−µ)2

2
)}
(C.6)

that arises as an inverse gamma distribution, Inv−Gamma(αpos, βpos), with parameters

{
αpos = α + n

2

βpos = β +∑
n
i=1

(yi−µ)2

2

. (C.7)
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Appendix D

Tables of results

Table D.1 12 k drive-end bearing fault analysis results; benchmark data sets: P and N
categorise only; measurement position: DE only.

Benchmark data set Fast-SC-based EES Benchmark Result (M1, M2, M3)

Inner race faults

171 Y2 P1 / Y2 / Y2

3001 N1 N1 / N1 / N1

3002 N1 N1 / N1 / N1

3003 N1 N1 / N1 / N1

3004 N1 N1 / N1 / N1

Ball faults

118 N1 N1 / N1 / N1

119 N1 N1 / N2 / N1

120 N1 N1 / N2 / N1

121 N1 N1 / N1 / Y2

185 P2 P2 / P2 / N1

186 P2 P2 / P2 / P2
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154 Tables of results

Benchmark data set Fast-SC-based EES Benchmark Result (M1, M2, M3)

Ball faults

187 P2 N1 / P2 / N1

188 P2 P2 / P2 / P2

222 Y2 P1 / Y2 / Y2

223 Y2 Y2 / Y2 / P2

224 N1 N1 / N1 / N1

225 N1 N1 / N1 / N1

Outer race faults

197 Y2 N1 / N1 / Y2

198 P1 P2 / N2 / N2

199 Y2 P1 / N2 / N2

200 P2 N1 / N1 / N1

DE = drive end acceleration; M1-3 = Method 1-3; diagnosis categories: Y = successful, P =
partially successful, N = not successful, more details can be found in Table 5.1.

Table D.2 48 k drive-end bearing fault analysis results; benchmark data sets: P and N
categorise only; measurement position: DE only.

Benchmark data set Fast-SC-based EES Benchmark Result (M1, M2, M3)

Inner race faults

174 N1 N1 / N1 / N1

175 Y2 P1 / Y2 / Y2

176 Y2 P1 / Y2 / P1

177 Y2 P1 / Y2 / N1
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Benchmark data set Fast-SC-based EES Benchmark Result (M1, M2, M3)

Ball faults

122 P1 N1 / N2 / N1

123 P1 N1 / N2 / N1

124 P1 N1 / N2 / N1

125 P1 N1 / N2 / N1

189 P2 N1 / P2 / P2

190 P2 N1 / P2 / N1

191 P2 N1 / P2 / N1

192 P2 N1 / N1 / N1

226 P1 N1 / P1 / N1

227 P1 P2 / P1 / P2

228 P2 N1 / N1 / N1

229 P2 N1 / N1 / N1

Outer race faults

202 Y2 P1 / N1 / P1

203 Y2 P2 / P2 / P2

204 Y2 Y2 / N2 / Y2

262 Y2 P1 / Y2 / Y2

264 Y2 P1 / Y2 / P1

DE = drive end acceleration; M1-3 = Method 1-3; diagnosis categories: Y = successful, P =
partially successful, N = not successful, more details can be found in Table 5.1.
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156 Tables of results

Table D.3 12 k fan-end bearing fault analysis results; benchmark data sets: P and N categorise
only; measurement position: DE only.

Benchmark data set Fast-SC-based EES Benchmark Result (M1, M2, M3)

Inner race faults

275 Y2 P1 / P1 / N1

276 Y2 P1 / P1 / N1

277 Y2 P1 / P1 / P1

270 Y2 P1 / Y2 / Y2

271 Y1 P1 / Y1 / Y2

273 Y1 P1 / Y1 / Y1

Ball faults

282 Y2 P1 / P2 / N1

283 Y2 P2 / P2 / N1

284 Y2 N1 / Y2 / P2

285 Y2 P1 / N1 / P1

286 P1 P2 / P2 / P2

287 P1 P2 / P2 / P2

288 P1 P2 / P1 / P2

289 P2 P2 / P2 / P2

290 Y2 N1 / N1 / N1

291 Y2 P2 / N1 / P2

292 Y2 N1 / P2 / N1

293 Y2 N1 / N1 / N1
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Benchmark data set Fast-SC-based EES Benchmark Result (M1, M2, M3)

Outer race faults

298 P2 N1 / N2 / P2

299 P1 P2 / P1 / N1

300 P2 P2 / P2 / N2

301 P2 N1 / P2 / N1

302 N1 N1 / N2 / N1

305 P2 P2 / N1 / N1

306 N1 N1 / N1 / N1

307 N1 N1 / N2 / N1

DE = drive end acceleration; M1-3 = Method 1-3; diagnosis categories: Y = successful, P =
partially successful, N = not successful, more details can be found in Table 5.1.
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