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CentraleSupélec, Université Paris-Saclay Examinateur



Abstract

This thesis aims to uncover the underlying causality structure of financial mar-

kets by focusing on the inference of investor causal networks at multiple timescales

in two trader-resolved datasets.

The first part of this thesis is devoted to the causal strength of Hawkes pro-

cesses. These processes describe in a clearly causal way how the activity rate

of e.g. an investor depends on his past activity rate; its multivariate version

also makes it possible to include the interactions between the agents, at all time

scales. The main result of this part is that the classical MLE estimation of the

process parameters does not vary significantly if the arrow of time is reversed in

the univariate and symmetric multivariate case. This means that blindly trust-

ing univariate and symmetric multivariate Hawkes processes to infer causality

from data is problematic. In addition, we find a dependency between the level

of causality in the process and its endogeneity. For long time series of synthetic

data, one can discriminate between the forward and backward arrows of time

by performing rigorous statistical tests on the processes, but for empirical data

the situation is much more ambiguous, as it is entirely possible to find a better

Hawkes process fit when time runs backwards compared to forwards.

Asymmetric Hawkes processes do not suffer from very weak causality. Fit-

ting them to the individual traders’ actions found in our datasets is unfortu-

nately not very successful for two reasons. We carefully checked that traders

actions in both datasets are highly non-stationary, and that local stationarity

cannot be assumed to hold as there is simply not enough data, even if each

dataset contains about one million trades. This is also compounded by the fact

that Hawkes processes encode the pairwise influence of traders for all timescales

simultaneously.

In order to alleviate this problem, the second part of this thesis focuses on

causality between specific pairs of timescales. Further filtering is achieved by

reducing the effective number of investors; Statistically Validated Networks are

applied to cluster investors into groups based on the statistically high synchroni-

sation of their actions (buy, sell or neutral) in time intervals of a given timescale.

This part then generalizes single-timescale lead-lag SVNs to lead-lag networks

between two timescales and introduces three slightly different methods

These methods make it possible to characterize causality in a novel way. We

are able to compare the time reversal asymmetry of trader activity and that of



price volatility, and conclude that the causal structure of trader activity is consid-

erably more complex than that of the volatility for a given category of traders.

Expectedly, institutional traders, whose impact on prices is much larger than

that of retail clients, have a causality structure that is closer to that of volatility.

This is because volatility, being a macroscopic quantity, aggregates the behaviour

of all types of traders, thereby hiding the causality structure of minor players.
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Résumé

Cette thèse a pour but d’explorer la structure de causalité qui sous-tend les

marchés financiers. Elle se concentre sur l’inférence multi-échelle de réseaux de

causalité entre investisseurs dans deux bases de données contenant les identifi-

ants des investisseurs.

La première partie de cette thèse est consacrée à l’étude de la causalité

dans les processus de Hawkes. Ces derniers définissent la façon dont l’activité

d’un investisseur (par exemple) dépend du passé; sa version multivariée in-

clut l’interaction entre séries temporelles, à toutes les échelles. Les résultats

principaux de cette partie est que l’estimation avec le maximum de vraisem-

blance des paramètres du processus changent remarquablement peu lorsque la

direction du temps est inversée, tant pour les processus univariés que pour les

processus multivariés avec noyaux d’influence mutuelle symétriques, et que la

causalité effective de ces processus dépend de leur endogénéité. Cela implique

qu’on ne peut pas utiliser ce type de processus pour l’inférence de causalité sans

précautions. L’utilisation de tests statistiques permet la différentiation des direc-

tions du temps pour des longues données synthétiques. Par contre, l’analyse de

données empiriques est plus problématique: il est tout à fait possible de trou-

ver des données financières pour lesquelles la vraisemblance des processus de

Hawkes est plus grande si le temps s’écoule en sens inverse.

Les processus de Hawkes multivariés avec noyaux d’influence asymétriques

ne sont pas affectés par une faible causalité. Il est malheureusement difficile de

les calibrer aux actions individuelles des investisseurs présents dans nos bases

de données, pour deux raisons. Nous avons soigneusement vérifié que l’activité

des investisseurs est hautement non-stationaire et qu’on ne peut pas supposer

que leur activité est localement stationaire, faute de données en nombre suff-

isant, bien que nos bases de données contiennent chacune plus de 1 million de

transactions. Ces problèmes sont renforcés par le fait que les noyaux dans les

processus de Hawkes codent l’influence mutuelle des investisseurs pour toutes

les échelles de temps simultanément.

Afin de pallier ce problème, la deuxième partie de cette thèse se concentre sur

la causalité entre des échelles de temps spécifiques. Un filtrage supplémentaire

est obtenu en réduisant le nombre effectif d’investisseurs grâce aux Réseaux

Statistiquement Validés. Ces derniers sont utilisés pour catégoriser les investis-

seurs, qui sont groupés selon leur degré de la synchronisation de leurs actions

(achat, vente, neutre) dans des intervalles déterminés à une échelle temporelle

donnée. Cette partie propose une méthode pour l’inférence de réseaux de
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meneurs et suiveurs déterminés à une échelle de temps donnée dans le passé

et à une autre dans le futur. Trois variations de cette méthode sont étudiées.

Cette méthode permet de caractériser la causalité d’une façon novatrice.

Nous avons comparé l’asymétrie temporelle des actions des investisseurs et celle

de la volatilité des prix, et conclure que la structure de causalité des investisseurs

est considérablement plus complexe que celle de la volatilité. De façon attendue,

les investisseurs institutionnels, dont l’impact sur l’évolution des prix est beau-

coup plus grand que celui des clients privés, ont une structure causale proche

de celle de la volatilité: en effet, la volatilité, étant une quantité macroscopique,

est le résultat d’une aggrégation des comportements de tous les investisseurs,

qui fait disparaı̂tre la structure causale des investisseurs privés.
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Chapter 1

Introduction

1.1 Context

The main goal of this thesis is to determine investor causality networks in finan-

cial markets and to link them to price dynamics.

Causality is a fundamental concept in Science: do the actions of agent A affect

the actions of agent B, are their actions simply correlated or are the actions of

agents A and B actually influenced by the actions of a completely different agent

C? A particularly useful framework to encode and visualize causality is directed

networks whose nodes are agents and directed edges are causal relationships.

Thus this thesis contributes to the financial network literature.

Correlation is frequently used to discern statistical relationships between var-

ious observed variables, but what we are often looking for, from a practical point

of view, is causal dependencies. The famous lesson ”correlation does not imply

causation” that most students of statistics have heard is as ever relevant in this

context.

Causality is a rather interesting concept, both from a philosophical and method-

ological perspective. How do we define causality? How do we go about if we

want to detect it? These are old questions debated in philosophy, for example

by Hume (2016) and Kant (1999), and the intuitive notion we have of causality

is surprisingly difficult to define in a mathematically precise way (Chattopad-

hyay, 2014). These questions become of course immensely more difficult in a

time dependent complex network with many interacting units, such as financial

networks.

As an example of the difficulties in distinguishing causality from correla-

tion, Fig. 1.1 displays two pairs of stochastic processes, where for one pair the

processes are only negatively correlated, whereas for the other pair the pro-
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Figure 1.1: Illustration of causality and correlation. In plate A the two stochastic pro-
cesses A and B are negatively correlated, but there is no discernable causal dependence.
In plate B, on the other hand, the two stochastic processes X′ and Y′ are causally related
(in the sense of Granger causality) from Y′ to X′ (taken from Chattopadhyay (2014)).

cesses are causally related in the sense that one of the processes carries unique

information that improves future prediction of the other process, even though

the two processes themselves are negatively correlated (Chattopadhyay, 2014).

In this specific instance, the definition of causality used here is referred to as

’Granger causality’ (or ’Wiener-Granger causality’), and is based on an idea in-

troduced by Norbert Wiener which states that one variable, or time series, could

be considered ’causal’ with regards to another if the predictability of the sec-

ond variable is improved if information from the first variable is incorporated

(Wiener, 1956). Wiener did not, however, have a practical implementation of his

idea (Bressler and Seth, 2011). In the context of linear autoregressive models of

stochastic processes, such an implementation was introduced by Granger (1963,

1969). This definition of causality might not however necessarily mean true

causality, since the Granger causality test only fulfils the Humean definition of

causality (Maziarz, 2015). A clear limitation of the practical implementation to

test if Granger causality is present between time series is that since it is based on

linear correlation it does not take into account non-linear causal relationships,

and is therefore best suited for ’non-wild’ (Gaussian) variables.

There are of course other ways of mathematically defining causality between

time series, for example transfer entropy, where one studies the amount of di-

rected transfer of information, by using Shannon’s entropy, between two stochas-

tic processes (Schreiber, 2000). Transfer entropy reduces to Granger causality for

vector auto-regressive processes (Barnett et al., 2009), and can thus be useful

when the assumptions for Granger causality are not valid (e.g. non-linearity).

Another method, which has been used extensively in this thesis work, is the

method of Statistically Validated Networks (SVNs), which is an unsupervised
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method used to validate links in complex networks with heterogeneous ele-

ments, against a null hypothesis that takes into account spurious relationships

found simply because of the heterogeneity of the system. Using this method we

thus have an implicit (or underlying) causality structure, but we only observe

the outcome of it.

As previously mentioned, correlation should not be confused with causation.

However, lagged correlation (between two variables) can be useful to provide us

with information about the predictability of the system, even though it does

not reveal completely and definitively the causal structure. Another important

aspect to take into account is that one needs to go beyond lagged correlation

defined at equal time intervals, i.e. the time slices used to determine the shifted

correlations are of equal length. This is related to the length of the typical time

scales, which will be discussed later.

We will now present some examples from the literature where lagged corre-

lation has been used to study causal relationships in financial markets.

A common phenomena, especially in economics, is the so-called lead-lag

effect, where one (leading) variable is cross-correlated with another (lagging)

variable at later times. Even though the question of causality still remains, it

might still be, from a practical point of view, valuable to establish these lead-

lag relationships. Many different forms of the lead-lag effect in economic data

have been studied extensively, but the results, as we will see, depend on the

tools used and their continual improvement. The results also change because

the market dynamics are non-static over time, it has been claimed, for example,

that the market has become more efficient1, and this would partly be due to

technological progress, e.g. Moore’s law (Present, 2000)2.

An example of the lead-lag effect phenomena is the cross-correlation of stock

returns, studied by Tóth and Kertész (2006). More specifically, the cross-correlations

C(τ) of stock returns with a time shift τ between the pairs’ price return time

series. In Fig. 1.2 some example plots are displayed, for high-frequency data

obtained from two different years, and in Fig. 1.3 the evolution over eleven years

of the average time shift which has the maximum estimated correlation, is dis-

played. The authors report that lead-lag relationships between returns of stock

have significantly decreased over the years, which they interpret as a sign that

1The efficient market hypothesis (EMH) (Tobin, 1969; Malkiel and Fama, 1970) states that all
available information is already reflected in the current price, which means it is not possible to predict
future prices based on past records.

2See Hardiman et al. (2013) for an example of how market dynamics have changed because of
Moore’s law and the emergence of high-frequency trading.
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Figure 1.2: Example plots of the changes in the cross-correlation for the years 1993
(solid) and 2003 (dashed) (taken from Tóth and Kertész (2006))

the market is becoming increasingly efficient.

Trading is however asynchronous, something that the estimator used by Tóth

and Kertész (2006) does not completely take into account. In order to fairly

compare two assets, especially at high-frequency trading, another estimator is

needed, and a more suitable estimator is the Hayashi-Yoshida estimator (Hayashi

et al., 2005), which deals with the issue of asynchronicity and makes use of all

available tick-by-tick data. Huth and Abergel (2014) exploit this estimator and

use tick-by-tick data to show that some assets follow the path of others with a

small time lag (no more than five minutes), by observing strongly asymmetric

cross-correlation functions. In order to determine which one is the leading and

which one is the lagging asset, the Lead-Lag Ratio LLR between two assets,

defined as

LLR =

T∫
0

C(τ)2dτ

T∫
0

C(−τ)2dτ

(1.1)

is used, and where C(τ) here corresponds to the Hayashi-Yoshida cross correla-

tion estimator. In Fig. 1.4 the clearly asymmetric correlation structure between

CAC40 future (FCE) and Total (TOTF.PA) is displayed, and in Fig. 1.5 the lead-

lag network of stocks in the CAC40 is obtained by considering the LLR between

stocks.

9



Figure 1.3: Average time shift τ which yields the maximum estimated correlation (taken
from Tóth and Kertész (2006))

Figure 1.4: Example of a tick time cross-correlation function with the Hayashi-Yoshida
cross-correlation estimator for asynchronous data (taken from Huth and Abergel (2014))
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Figure 1.5: Lead-lag network on the CAC40 (taken from Huth and Abergel (2014))

Curme et al. (2015) introduce a statistical validation of the lead-lag relation-

ships with a multiple hypothesis testing correction (Bonferroni and False Dis-

covery Rate (FDR)). Specifically, the links are filtered according to a threshold of

statistical significance by using a shuffling technique introduced by Efron and

Tibshirani (1994). The lead-lag links are established at different time horizons h,

and the resulting networks at different h are presented in Fig. 1.6. It is worth

noting that links may represent a positive or negative correlation. In Fig. 1.7 the

number of validated links are plotted for two different dataset, one for the years

2002-2003 and one for the years 2011-2012. For a given time horizon h more links

are usually validated in the 2002-2003 dataset than in the 2011-2012 dataset. The

authors suggest that this might be an indication that there has been an increase

in market efficiency over this decade.

A final example of a lead-lag relationship in financial data is the so called

’leverage effect’, which refers to the observed tendency of an asset’s volatility

to be negatively correlated with its returns (Ait-Sahalia et al., 2013)3. If Si(t)

3The term ’leverage’ refers to a possible economic interpretation of this phenomenon, namely that
as the price of an asset declines, companies become more leveraged since the relative value of their
debt rises relative to their equity. Therefore, it would be natural to assume that their stock becomes
riskier (more volatile) (Black, 1976; Christie, 1982).
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Figure 1.6: Networks of statistically validated (Bonferroni) lagged correlations for vari-
ous time horizons h, with data from large market-capitalization companies on the NYSE
in 2011-2012. Blue links represent positive correlations and red links negative correlations
(taken from (Curme et al., 2015)).
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Figure 1.7: Number of positive and negative statistically validated link for both Bonfer-
roni and FDR lagged correlations networks,for both datasets of 2002-2003 and 2011-2012
(taken from (Curme et al., 2015)).

denotes the price of stock i at time t, and δSi(t) = Si(t + 1) − Si(t) the daily

price change, then δxi(t) =
δSi(t)
Si(t)

denotes the relative price change. The leverage

correlation function, calculated over a time horizon T, may then be defined as

Li(τ) =
1

Z

〈
[δxi(t + τ)]2 δxi(t)

〉
, (1.2)

where Z =
〈
δxi(t)

2
〉2

is a normalization. In other words, Li(τ) measures the

correlation between the price change at time t and the square volatility at time

t + τ.

In Fig. 1.8 the (mostly) negative correlation between return and volatility

for some US stocks is displayed. For the sake of our general discussion, it is

interesting to note that the causality of the effect has been debated (Bekaert and

Wu, 2000); is the volatility increase caused by the price drop, or do prices tend

to fall when volatility increases?

The notion of causality is intimately tied to the concept of the arrow of time,

i.e. the one-way direction or asymmetry of time. A cause always precedes its

effect, which means that the causal event occurs before the event it affects. If we

take a sequence of events, and then view this sequence from the end, i.e. with

the arrow of time reversed, are we able to measure a significant difference com-

13



Figure 1.8: Empirical correlation between return and volatility, averaged over 437 US
stocks with an exponential fit (taken from (Bouchaud et al., 2001)).

pared with the actual series of events? If we do observe a noticeable difference,

then we can be quite sure that there is some kind of underlying causality in the

time series (but we do not know necessarily know why or how). In physics,

many basic laws display what is referred to as Time Reversal Invariance (TRI),

e.g. the laws of Newtonian mechanics, Maxwell’s equations of electromagnetism

and the Dirac equation for quantum mechanics. Formally speaking, this means

that the transformation t → −t produces an exact symmetry of the system in

question. It is, however, apparent that the real world offers many examples

where the direction of the arrow of time matters significantly; the process of an

ice-cube melting into water is very different from a puddle of water turning into

ice (Taleb, 2007)! A solution to this problem was eventually found in thermo-

dynamics, with the introduction of entropy - the entropy of an isolated system

never decreases and moves towards thermodynamic equilibrium, i.e. the state

with maximum entropy.

Time series involving financial data, much like thermodynamic systems, do

display Time Reversal Asymmetry (TRA), i.e. the direction of the arrow of time

does indeed matter. If one only stays at the level of prices or returns it might

seem difficult to notice a difference between the directions, due to the (appar-

ently) highly random and complex nature of many financial times series. The

objective is then to develop a method to spot the difference, or, using the ter-

minology employed by Lynch et al. (2003), to find the ’mugshots’ which im-

mediately tell us, simply with the naked eye, if TRI or TRA is present. Many

models do not incorporate this empirical phenomenon (e.g. Brownian motion,

GARCH, Heston stochastic volatility model etc.), and the challenge is then to

14



(a) (b)

Figure 1.9: Correlation between past historical volatilities (horizontal axis) and future
realized volatilities (vertical axis) for (a) the USD/CHF foreign exchange and (b) a
theoretical volatility cascade with Ornstein-Uhlenbeck partial log volatilities (taken from
Borland et al. (2005)). Note that the asymmetry in (a) with regards to the diagonal
indicates TRA, whereas the symmetry found in (b) indicates TRI.

develop models which do. As an example of these mugshots, in Fig. 1.9 two

of these mugshots are displayed. These mugshots show how past volatilities

affect future volatilities on different timescales. In the mugshot of the empirical

data, one clearly sees a strong asymmetry (thus the presence of TRA), and in the

mugshot of the theoretical process an almost perfect symmetry (thus the pres-

ence of TRI). Recently, models have been proposed which do account for these

kinds of asymmetries, see for example Borland and Bouchaud (2005), Zumbach

et al. (2014), Blanc et al. (2017) and Euch et al. (2018).

The fact that financial time series often display TRA leads us to another im-

portant aspect of financial networks, namely, timescales. It should come as no

surprise that participants in financial markets have vastly different time hori-

zons. Previous work has mainly considered this fact at a meta level, for example

by studying the price dynamics. Parallels have been drawn between turbulence

and financial markets (Ghashghaie et al., 1996), because of the highly complex

interplay over a wide range of length and time scales witnessed in turbulence

(it has been shown however that there are certain limits in the analogies, see

for example Arneodo et al. (1996); Lynch et al. (2003)). This thesis work pro-

vides a new approach, where the interactions between timescales are defined at

a very detailed level (individual traders), and this unveils a new structure of the

causality. In order to take into account the various time scales that are present,

we consider quantities, e.g. correlation, determined between time slices which

are not (necessarily) of equal length.
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The Hawkes process (HP hereafter) provides a first promising approach to

the modelling of the (causal) interactions of agents in networks. An HP is, at

its core, a modified Poisson process with self-excitation. In other words, given

that an event has occurred, it is more likely (temporarily) that another event will

occur. This characteristic behaviour is provided by a kernel which may assume

many different kinds of shapes (exponential, power-law, combination of the two

etc.). This should, in theory, be suitable to model the behaviour of an agent active

in the financial market. The HP may also be multivariate, with cross-excitation

between the different subprocesses, i.e. in our setting between different agents.

The fact that these processes are self-excited encodes a causality into them, but

as we will see, this is not always completely obvious empirically.

The second approach is based on the method of Statistically Validated Net-

works (SVNs), which assumes that investors can be clustered into a finite (and

relatively small) number of groups and that investment fluxes at time t + 1 de-

pend on the activity or inactivity of these groups at time t. The fundamental

premise here is the idea to group investors according to the similitude of their

activity patterns: for each period (5 minutes, 1 hour, one day), one assigns a tag

to each investor (e.g. net buy, net sell, neutral, no activity). One then computes

the probability that a given pair of traders act in a synchronized way and es-

tablish a link if the probability is high enough (with multiple-hypothesis testing

correction). Then, community detection algorithms are applied to the resulting

network. Existing work has shown that lead-lag links may be established be-

tween these groups when they are defined at one timescale. Our contribution

here has been to provide a general method to establish lead-lag links between

groups defined at different timescales. The results provide us with new insights

into the structure of markets at a very detailed level.

1.2 Outline

This thesis is divided as follows:

In Chapter 2 the HP is formally introduced and applied to some data. Certain

limitations of the HP related to its TRI and its capacity to model causality are

discussed.

In Chapter 3 the SVN method is extended to incorporate interactions between

different time scales, and the new method developed is applied to some data.

Thanks to this method, new results related to the TRA of financial markets are

obtained.
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In Chapter 4 the results obtained in previous parts are summarised, and an

outlook for future research is provided.
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Chapter 2

Hawkes Processes

2.1 General introduction to Hawkes processes

A fundamental question when investigating investor interaction networks is:

what determines the activity of agents in financial markets? There are numerous

potential factors. The first, and perhaps the most obvious one, is the price itself.

Another important factor is the arrival of news. Furthermore, the trader may also

follow certain strategies which dictate his activity, and finally the activity of other

traders may have an influence (explicitly or implicitly) on his activity. The factors

mentioned above may be considered as either exogenous or endogenous, i.e.

they are either events (actions) which are generated outside the ’system’ (loosely

speaking) or they are internal in the sense that they are triggered by the system

itself (i.e. the agents themselves). The first two factors may be considered as

exogenous, whereas the the two last factors could be considered as endogenous.

As mentioned previously, Hawkes processes (HPs) provide us with a promis-

ing theoretical framework that should, at least in theory, be useful to study these

types of investor interaction networks.

The HP may be formulated in several different ways. The easiest way is to

start with the one-dimensional case, where we let {ti}i≥1 be a univariate simple

point process, ti be the time of event i, and Nt = ∑i≥1 θ(t− ti) be the associated

counting process, where θ(t) is the Heaviside function. (Nt)t is then a univariate

HP if it has the conditional intensity

λ(t) = λ0(t) +

t∫

−∞

K(t− s)dNs = λ0(t) + ∑
ti<t

K(t− ti), (2.1)

where K(t) is the kernel which models the self-excitation, or the ’memory’, of
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the process.

Using this formulation of the HP, λ0(t), the baseline intensity, models the

arrival of exogenous (or external) events 1, (akin to a Poisson process) and

∑
ti<t

K(t− ti) models the arrival of endogenous events, i.e. events that are gener-

ated in a self-excited fashion, or, one might say, events generated by themselves

in a cluster-like way. Certain strategies of the agents may thus (assumedly) be

modelled by this kind of self-excited behaviour. Due to the branching struc-

ture of HPs one may also disentangle these different kinds of events, i.e. sepa-

rate exogenous events from endogenous ones (Zhuang et al., 2002; Marsan and

Lengline, 2008).

A popular choice of kernel is the exponential one, consisting of a sum of a

variable number of exponentials, i.e

K(t) =
P

∑
j=1

αje
−β jt. (2.2)

This kind of kernel offers much flexibility in the sense that it can mimic the

properties of other kernels with other kinds of decay, for example power-law

decay, by using several exponentials, and thus introducing more degrees of free-

dom. As we will see later, the flexibility offered by this choice of kernel may be

somewhat problematic for the (presumed) inherent causality of the process that

is modelled. This is especially apparent when non-simulated real-world data is

modelled.

Another limitation with kernels of this type is that it is assumed that the

maximal impact (
P

∑
j=1

αj) of an event of the conditional intensity is immediate,

when in fact it might be more likely that there is a certain delay (latency) of the

maximal impact. In Achab et al. (2018), which we will refer to later, the authors

address this issue by developing a useful non-parametric method that estimates

the integrated kernel instead.

A scenario one might imagine where HPs could be useful to model the be-

haviour of agents is when the agents employ the strategy of moving averages.

One basic strategy is to use fixed length moving average (FLMA) filters (Gu-

nasekarage and Power, 2001). Two moving averages, one short-run and one

long-run, are calculated, and when they cross a buy or sell signal is generated.

Specifically, a buy (sell) signal is generated when the short moving average cuts

the long moving average from below (above). It would thus seem reasonable

1The exogenous baseline intensity may be non-stationary.
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to assume that the actions of an agent using this kind of strategy will follow a

certain time scale, dictated by his choice of parameters, and this may then be

captured by the HP.

It is fairly straightforward to extend the HP to the multidimensional case.

If we let {(tm
i )}m=1,...,M be an M-dimensional (M components) point process,

and Nt = (Nt
1, . . . , NM

t ) the associated counting process, then the conditional

intensity λm, m = 1, . . . , M is given by

λm(t) = λm
0 (t) +

M

∑
n=1

t∫

0

Kmn(t− s)dNn
s = λm

0 (t) +
M

∑
n=1

∑
tn
i <t

Kmn(t− tn
i ), (2.3)

where, if we assume, typically, that the kernel is a sum of exponentials and that

the shape of the kernel is identical for all self and cross-excitation terms, i.e.

Kmn(t) =
P

∑
j=1

αmn
j e
−βmn

j t
. In vector form, we may write

λ(t) = λ0 +

t∫

0

K(t− s)dNs. (2.4)

The influence of different agents on each other, in this formulation, can thus be

modelled as cross-excitation between different components of the process.

A crucial element of the HP, which distinguishes it from the Poisson process,

is the causality it models, even in the one-dimensional case. The direction of

the arrow of time is thus important in this case, and depending on the kernel

we use, the ’memory’ of the process may assume different timescales, and thus

imply different levels of causality.

Furthermore, there is also a causality structure between components, i.e.

which component triggers the activity of another component, and this might

not be completely evident when a high-dimensional system is modelled (see

Bacry et al. (2016) for a fast and efficient estimation method of the parameters of

a high-dimensional HP exploiting a mean-field approximation). Xu et al. (2016)

develop a method for learning the Granger causality of an HP by considering

the relationship between the impact function of the HP and its causality graph.

Achab et al. (2018) use a more direct and powerful approach, where the ma-

trix of the integrated kernels are estimated, without any parametric modelling

and estimation of the kernels themselves, by introducing a moment matching

method that fits the second-order and third-order cumulants.

During the course of our work, we found that there were certain properties
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that had not apparently been explored, namely the (variable) inherent causality

of some of the more basic formulations of the HP. This became apparent when

we noticed that the parameter estimations of the process did not differ signif-

icantly when the arrow of time was reversed for the HP, which thus provided

the impetus to the article ’Testing the causality of Hawkes processes with time

reversal’.

2.2 Testing the causality of Hawkes processes with

time reversal

Note: This section is published in ’Journal of Statistical Mechanics’.

2.2.1 Introduction

Hawkes processes (HPs hereafter) extend Poisson processes by allowing a mod-

ulation of the current event rate as a function of the past events. Such processes

are causal and thus provide a simple way to introduce time-reversal asymmetry

and self-excitation in the modelling of discrete events. This makes HPs invalu-

able in the modelling of physical, economic and social phenomena in which

the occurrence of one event increases for some time the probability of another

event. Examples may be found in seismology, where an earthquake typically

is followed by aftershocks (Ogata, 1988; Gardner and Knopoff, 1974; Zhuang

et al., 2002; Marsan and Lengline, 2008), criminology, where a fight between rival

gangs may trigger various criminal retaliations (Mohler et al., 2011), neurology,

where the spiking activity of individual neurons may depend on the neuron’s

own spiking history (Truccolo et al., 2005; Pillow et al., 2008; London et al., 2010),

and credit risk, where the default of one company in a portfolio may lead to the

default of other companies (Dassios and Zhao, 2017). Since HPs are causal, one

may infer the extent to which a phenomenon is not time-reversible by fitting

such processes to some data. However, the strength of the causality of HPs, i.e.

the extent to which they allow to discriminate both arrows of time, while being

of fundamental importance, is as of yet unexplored. This paper attempts to fill

this gap, both for pure HPs and fits of HPs to real data.

HPs are causal by construction. Let {ti}i≥1 be a univariate simple point pro-

cess, ti being the time of event i. Let Nt = ∑i≥1 θ(t− ti), where θ is the Heaviside

function, be the associated counting process. (Nt)t is called a univariate HP if it
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admits the conditional intensity

λ(t) = λ0(t) +

t∫

−∞

K(t− s)dNs = λ0(t) + ∑
ti<t

K(t− ti), (2.5)

where λ0(t) is the baseline intensity (hereafter we will assume constant baseline

intensity, i.e. λ0(t) = λ0), K(t) is the kernel of the process and ti the time of event

i: λ is defined in a causal way from past events, hence the direction of time is

well-defined. It would thus seem foolish to fit an HP to the reverted vector of

events, i.e. to the events taken in the backward direction. Accordingly, the belief

that a time series of events with an inverted arrow of time cannot possibly be

mistaken for an HP is widely established (see for example Kirchner (2017)).

We show here that the extent to which true HPs are distinctively causal de-

pends on the method used to assess the fitted model and, when fitting them

to data, on the nature of the data. Indeed, a parametric kernel estimation of

univariate and symmetric multivariate HPs on synthetic data leads on average to

almost the same values for both time arrows. Why this may be the case is best

gathered from a classic plot that superposes the activity rate λ(t) with the event

times (Fig. 2.1). The twist is to plot the activity rate from the same sets of events,

and to let time run backwards: the activity rate and the clustering of events are

visually plausible for both directions of the time arrow.

More often than not in the literature, the goodness of fit of Hawkes processes

is not quantitatively assessed, but only qualitatively with Q-Q plots (which often

look good), probably because HPs are assumed to be useful extensions of Poisson

processes that are either totally adequate or cannot possibly describe precisely

the data, which amounts to making unverified assumptions about the goodness

of fits in either case. However, recent results show that parametric fits of HPs to

high-frequency financial data do pass goodness of fit tests provided that a multi-

timescale kernel is used and the non-stationary baseline intensity is properly

accounted for (Lallouache and Challet, 2016; Omi et al., 2017). Starting from this

positive results, we investigate here to what extent goodness of fit tests are able

to discriminate between a forward and a backward arrow of time for synthetic

data (i.e. in an ideal setting), the latter being very often detected as not HPs.

A related issue is found when one infers kernel with time-reversal symmetric

quantities, which by definition yield exactly the same kernel for both arrows of

time. For example, the non-parametric kernel inference of Bacry et al. (2012) is

based on the covariance of event rates, which is symmetric with respect to time
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reversal. We show here that such kernels only rarely pass tests of goodness of

fit. However, we point out that this method provides a useful approximation of

the true kernel shape precisely when causality is weak (i.e. in the limit of small

endogeneity), which may then help choosing a parameteric kernel family.

Fitting HPs to real data is more troublesome. For example, data collection

may further degrade causality if the time resolution is too coarse. However, the

main problem, by far, is that one does not know the shape of the kernel. We

show that the more flexible the kernel, the harder it becomes for tests of good-

ness of fit to discriminate between the forward and backward arrows of time,

sometimes yielding statistically significant fits for both time directions of the

same set of events. In financial data, fits usually (and reassuringly) favour the

forward arrow of time. This in itself complements previous works that quan-

tify the asymmetry of price volatility with respect to time reversal of financial

markets (Lynch et al., 2003; Zumbach, 2009; Blanc et al., 2017). However, there

are cases when the backward arrow of time yields better fits than the forward

one. This is at odds with the reality of financial markets, which shows that a

significant fit of a weakly causal HP does not necessarily correspond to physical

causality. By extension, inferring from a fit that a system is causal because of the

success of a fit of a weakly causal HP should rest on a comparison with a fit of

the reverse arrow of time.

2.2.2 Univariate processes

We performed extensive numerical simulations by generating HPs with a single

exponential kernel

K(t) = αe−βt (2.6)

and constant baseline intensity for a variety of parameters with the Ogata thin-

ning method (Ogata, 1981); results for a power-law kernel are reported in Ap-

pendix 2.2.6 and are similar to those obtained with a single exponential.

Let us define

n =

∞∫

0

K(s)ds. (2.7)

The exponential kernel (2.6) defines a stationary HP if n = α
β < 1. With this

condition, and recalling E[dNs] = E[λ(s)ds], the expected intensity satisfies

E [λ(t)] = λ0 +
∫ t

−∞
K(t− s)E [λ(s)]ds = λ0 + E [λ(t)] n,
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Figure 2.1: Intensity as a function of time of an HP with an exponential kernel K(t) =
αe−βt and λ0 = 0.3, α = 0.8 and β = 1.2 for the true (top) and the time-reversed
sequence of events (bottom). The red points indicate events.

hence

E[Nt − N0] = E

[∫ t

0
λ(s)ds

]
=

λ0t

1− n
. (2.8)

Detailed mathematical treatment of point processes and their intensities can be

found in e.g. Brémaud (1981); Daley and Vere-Jones (2003). In our tests data

points will be grouped according to the variable n, often called endogeneity of

the process (or reflexivity as it might be referred to in the field of finance (Soros,

2003)). The endogeneity quantifies the level of the relative self-excitement of the

process (Filimonov and Sornette, 2012).

We have adjusted the time horizon T so that all the simulations have the same

expected number of events in order to allow a proper comparison between all

the results obtained with different values of n.

In order to avoid calibration issues, we first of all remove (”burn”) the non-

stationary part of all simulations. The time of stationarity t0 is defined as the

first time the instantaneous intensity is greater or equal to the average (expected)

intensity, i.e.

t0 = inf{t ∈ {ti}i=1,...,n : λ(t) ≥ µ}, (2.9)

where µ = E[λ(t)]. The process is then shifted: t′i = ti − t0, ti > t0 and T′ =
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Figure 2.2: Relative difference of the log-likelihood between forward and backward
time arrows for an HP with an exponential kernel. All possible permutations of λ0 =
{0.001, 0.0025, 0.0050, 0.0075, 0.0100} and α = {0.010, 0.025, 0.050, 0.075, 0.100},
with β chosen according to the desired endogeneity n, are considered. The data points
are grouped according to their endogeneity and averaged over 100 runs for each param-
eter permutation. The expected number of events is set to 106.

T − t0. This requires us to modify the usual likelihood estimation, as explained

below. We shall henceforth drop the prime symbols for the sake of readability.

The vector of event times obtained from the simulations (or data) correspond

by definition to the forward arrow of time and will be denoted henceforth by

{t
( f )
i }i=1,...,n. The events in the backward arrow of time simply correspond to

taking the last event of the forward time arrow as the first one in the backward

arrow of time, the second last event as the second one and so on; mathematically,

t
(b)
i = T − t

( f )
n+1−i.

We compare the adequacy of HPs to both forward and backward event time

series with three methods: the likelihood function calculated with the true pa-

rameters, Maximum Likelihood Estimation (MLE hereafter) and goodness of fit.

Log-likelihood

The idea here is to compare the true log-likelihood, i.e. computed with the true

kernel, of simulations of HPs for the real (forward) and reversed (backward)

event time vectors. The log-likelihood of a univariate point process Nt with
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Figure 2.3: Difference of the log-likelihood scaled by T between forward
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intensity λ(t) is written as

lnL
(
(Nt)t∈[0,T]

)
= −

T∫

0

λ(s)ds +

T∫

0

ln λ(s)dNs. (2.10)

In the case of an HP with an exponential kernel and a constant baseline intensity,

the log-likelihood is

lnL
(
{ti}i=1,...,n

)
= −λ0T −

n

∑
i=1

α

β

(
1− e−β(T−ti)

)

+
n

∑
i=1

ln

[
λ0 +

i−1

∑
k=1

αe−β(ti−tk)

]
.

(2.11)

This expression, however, takes into account the initial non-stationary part

of the process. A fair comparison between the forward and backward processes

requires the removal of the non-stationary part of the process, which leads to

small modifications of the above mathematical expression.

The general idea behind the modification is that if the simulation has al-

ready reached a stationary state, then the (constant) baseline intensity λ0 should

be replaced by a time-dependent baseline intensity λ′0(t), which is given by n-

stationary

λ′0(t) = λ0 +

(
λ0

1− n
− λ0

)
K(t)

K(0)
. (2.12)

A similar procedure is developed in Roueff et al. (2016). In the case of the

exponential kernel we obtain

lnL
(
{ti}i=1,...,n

)
= −λ0T −

(
λ0

1− α
β

− λ0

)
1− e−βT

β

−
n

∑
i=1

α

β

(
1− e−β(T−ti)

)

+
n

∑
i=1

ln

[
λ0 +

(
λ0

1− α
β

− λ0

)
e−βti +

i−1

∑
k=1

αe−β(ti−tk)

]
.

(2.13)

In order to assess the performance of this correction we content ourselves

with comparing the average difference between the MLE estimates and the true

values (see Table 2.1), and see that the modified log-likelihood does indeed gen-

erally perform slightly better than the standard log-likelihood on truncated HPs.

Fig. 2.2 displays the average relative difference of the log-likelihood calcu-
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Table 2.1: Average difference between the true parameter values and the estimations
obtained via MLE for the forward (top) and backward process (bottom)) with the stan-
dard log-likelihood function (SLL) and the modified log-likelihood function (MLL) for a
truncated HP (the same parameter choice as used in Figs. 2.2, 2.3 and 2.4, except the
variable number of expected events).

Forward λ
( f )
0 α( f ) β( f )

SLL. E [NT] = 104 9.901% 2.496% 2.751%

MLL E [NT] = 104 5.497% 2.294% 2.192%

SLL E [NT] = 105 1.205% 0.692% 0.687%

MLL E [NT] = 105 1.056% 0.661% 0.656%

SLL E [NT] = 106 0.332% 0.220% 0.217%

MLL E [NT] = 106 0.328% 0.213% 0.210%

Backward λ
(b)
0 α(b) β(b)

SLL E [NT] = 104 10.476% 2.674% 2.886%

MLL E [NT] = 104 6.100% 2.450% 2.461%

SLL E [NT] = 105 1.637% 0.849% 1.020%

MLL E [NT] = 105 1.496% 0.817% 0.988%

SLL E [NT] = 106 1.088% 0.552% 0.797%

MLL E [NT] = 106 1.083% 0.544% 0.790%

lated with the true parameters for both time arrows. It turns out that it is sur-

prisingly small, typically 0.2% on average for a very large number of events,

except for near-critical (n ≃ 1) processes. Here we see that, as one would expect,

the likelihood of the forward event time series is consistently larger than that of

the backward event time series.

On average, a lower baseline intensity λ0 implies a larger difference in the

log-likelihood, as one might expect since the Poissonian properties of the process

are less prominent. Similarly, a larger α also implies a larger difference because

each event carries with it a larger impact on the intensity. The difference of the

forward and backward log-likelihood scaled by T has a similar behaviour (see

Fig. 2.3).

We have checked the fraction of the simulations for which the true likelihood

of the backward process is larger than that of the forward process. Expectedly,

since we compute the likelihood with the true kernel, we found 8 · 10−6, which is

to say none. One should however keep in mind that when dealing with empiri-

cal data, one faces three additional problems that may change this rosy outcome,

as indeed the above situation is an ideal case. First, one does not know the true

kernel shape nor its parameters. Second, the number of events in the above

simulations is much larger than those of the typical dataset. Third, the question

of how to deal with a non-constant baseline intensity is fundamental, but still

under active investigation; the issue here is to properly discriminate between ex-

ogenous and endogenous events, i.e. to attribute time variations of the intensity

to the kernel or to the baseline intensity. Another possibility might be that the

kernel itself could be non-stationary, as developed for example in Kobayashi and

Lambiotte (2016).
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Parameter estimation

The small difference found in the log-likelihood suggests that the estimation of

the parameters based on maximum likelihood leads to fairly similar parameter

values. We thus perform MLE on synthetic data; we impose that α < β in

order to fulfil the requirement for a stationary process, both for the original and

the time-reversed sequence of events. The few non-convergent estimations were

excluded from the analysis. Since we choose as initial points the true parameter

values, the optimisation is typically not required to be bound constrained and

an algorithm by Nelder and Mead (1965) is used. When working with real-

world data as in Section 2.2.4, however, there is a need for a bound constrained

optimisation and the L-BFGS-B algorithm (Byrd et al., 1995) is used.

Unsurprisingly, Fig. 2.4 reveals that the estimated parameters only weakly

depend on the direction of the time arrow of the event time series. One notes that

the baseline intensity is somewhat overestimated for the time-reversed process.

One interpretation is that since causality is lost, the fitting process must attribute

more events to the Poisson process.

Similarly, the estimates of α, in conjunction with the estimates of β, for the

backward process are overestimated. This also suggests that for the backward

process too much importance is given to the short term effect or impact of the

previous events, and that the memory extends less into the history of the pro-

cess. It is worth noting that since the estimations of α and β are similarly overes-

timated, the resulting estimates of the endogeneity n is relatively close to the true

value. Finally, closer to criticality there is an apparent tendency of the estimates

for both arrows of time to converge.

It is also worth mentioning here that if we compare the forward and back-

ward likelihood calculated with the MLE parameters for medium-size data sets

(around 104 events) we see that in 1.3% of the cases that the backward likeli-

hood actually is larger, and for even smaller data sets (around 500 events) it is

16%. In practice, available data sets are typically quite small, and therefore the

log-likelihood is not a guaranteed way to distinguish between the two arrows of

time.
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Figure 2.4: Relative difference in the estimation of λ0, α, β and n in the MLE
of the exponential HP for the forward (blue) and the backward process (red). All
possible permutations of λ0 = {0.001, 0.0025, 0.0050, 0.0075, 0.0100} and α =
{0.010, 0.025, 0.050, 0.075, 0.100}, with β chosen according to the desired endogeneity
n, are considered. The data points are grouped according to their endogeneity and av-
eraged over 100 runs for each parameter permutation. The expected number of events
is set to 106.
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Goodness of fit test

For a given kernel K, baseline intensity λ0 and a time series {ti}i=1,...,n one de-

fines the compensators

Λ(ti−1, ti) =

ti∫

ti−1

λ(s)ds =

ti∫

ti−1

(λ0 + ∑
tk<s

K(s− tk))ds (2.14)

which are exponentially distributed with an average rate of 1 if the data comes

from an HP (Papangelou, 1972). Thus we choose here the Kolmogorov-Smirnov

test (KS test hereafter) to test the equality between the distribution of the com-

pensators and the exponential distribution. The same test was used to find

statistically valid fits of HP to high frequency data both in the foreign exchange

market (Lallouache and Challet, 2016) and in the equity market (Omi et al., 2017).

Let us start with parametric estimation. We first test if the estimated kernel

corresponds to the true one, i.e. the kernel obtained with the a priori known

true parameter values (µ∗, α∗ and β∗). Fig. 2.5 displays the histogram of the

p-values corresponding to this hypothesis. As expected for the forward case

(upper plot), a uniform distribution is obtained since the null hypothesis holds.

In the backward case, most fits are rejected. In a real-life situation, however,

one does not know the true kernel. In this case, as shown by Fig. 2.6 where

the parameters obtained via MLE are used (µ̂ML, α̂ML and β̂ML), the test accepts

more samples as being HPs processes, for both arrows of time. This is due to

the additional freedom one has to find slightly over-fitting parameters.

Thus, we see that the KS-test performs satisfactorily in the sense that it is

clearly able to distinguish between the forward and backward process both for

the MLE parameters (where in a sense the MLE ”overfits” the parameters to the

underlying data) and the true parameters. This emphasizes the need to assess

the goodness of fits when fitting HPs to data.

The fact that the KS test is able to discriminate between the two arrows of

time has a clear implication for the non-parametric kernel estimation method

introduced by Bacry et al. (2012); since it is based on the auto-covariance of

the event rate, which is time-symmetric by definition, this methods yields the

same kernel for both directions of time. As a consequence, in view of the power

of the KS test in that respect, it is understandable that this method does not

yield kernels that may be deemed statistically significant, as shown by Fig. 2.7,

where the parameters used (µ̂NP, α̂NP and β̂NP) are estimated from the non-

parametrically obtained kernels by linear interpolation. More specifically, by
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Figure 2.5: Histogram of the p-values from the KS-test obtained for the forward (upper)
and backward (lower) exponential HP with the true parameter values. The parameters
used for the simulations are fixed to λ0 = 0.001 and α = 0.01, with β chosen to the
desired endogeneity n = {0.50, 0.75, 0.90, 0.95, 0.99}. The data is collected over 100
runs for each parameter permutation and the expected number of events is set to 106.
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Figure 2.6: Histogram of the p-values from the KS-test obtained for the forward (upper)
and backward (lower) exponential HP with the MLE parameter values. The parameters
are fixed to λ0 = 0.001 and α = 0.01, with β chosen to the desired endogeneity
n = {0.50, 0.75, 0.90, 0.95, 0.99}. 100 runs for each parameter combination; expected
number of events set to 106.
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Figure 2.7: Histogram of the p-values from the KS-test obtained for the forward
(upper) and backward (lower) exponential HP with parameters extracted from the non-
parametrically estimated kernels. The parameters are fixed to λ0 = 0.001 and α = 0.01,
with β chosen to the desired endogeneity n = {0.50, 0.75, 0.90, 0.95, 0.99}. 100 runs
for each parameter combination; expected number of events set to 106.

taking the logarithm of the non-negative kernel estimate, estimates of α̂NP and

β̂NP are obtained by linear regression, and by Eq. 2.8 we may obtain an estimate

of µ̂NP. It is worth noting here that this method, which is quite crude, produces

a considerable amount of invalid results for the higher endogeneities (hence the

smaller sample in Fig. 2.7).

We stress nevertheless that the non-parametric method is an invaluable tool

to assess the global shape of HPs in a preliminary exploration, and to choose a

suitable parametric family which itself may pass goodness of fit tests.

2.2.3 Multivariate processes

The above findings generalize to multivariate HPs, in which several univariate

HPs may also mutually excite each other. More precisely, an M-dimensional (M

components) HP is defined as

λ(t) = λ0 +

t∫

0

K(t− s)dNs (2.15)
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where the (exponential) kernel is given by

Kmn(t) =
(

αmne−βmn(t−s)
)

m,n=1,...,M
. (2.16)

The intensity may thus be written as (with a constant baseline intensity)

λm(t) = λm
0 +

M

∑
n=1

∑
tn
i <t

αmne−βmn(t−tn
i ). (2.17)

The expected number of events is

E [N(t)] = µt, (2.18)

where

µ =


I −

∞∫

0

K(u)du



−1

λ0. (2.19)

Here we define Nt =
M

∑
m=1

Nm
t .

For the multidimensional HP, denoting {ti}i=1,...,N the ordered pool of all

events {{tm
i }m=1,...,M}, the log-likelihood can be computed as the sum of the

likelihood of each coordinate, namely

lnL ({ti}i=1,...,N) =
M

∑
m=1

lnLm ({ti}) , (2.20)

where

lnLm ({ti}) = −

T∫

0

λm(s)ds +

T∫

0

ln λm(s)dNm
s . (2.21)

Equation (2.21) may be written as

lnLm ({ti}) = −λm
0 T −

M

∑
n=1

∑
tn
i

αmn

βmn

(
1− e−βmn(T−tn

i )
)

+∑
tm
i

ln


λm

0 +
M

∑
n=1

∑
tn
k<tm

i

αmne−βmn(ti−tn
k )


 .

(2.22)

If we, as in the one-dimensional case, remove the non-stationary part of the
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process, we obtain

lnLm ({ti}) = −λm
0 T +

µm − λm
0

M

∑
n=1

αmn

M

∑
n=1

αmn

βmn

(
e−βmnT − 1

)

−
M

∑
n=1

∑
tn
i

αmn

βmn

(
1− e−βmn(T−ti)

)

+∑
tm
i

ln


λm

0 + (µm − λm
0 )

M

∑
n=1

αmne−βmnti

M

∑
n=1

αmn

+
M

∑
n=1

∑
tn
k<ti

αmne−βmn(ti−tn
k )


 ,

(2.23)

Analogously to the univariate case, we can find an appropriate limit to the

non-stationary period by considering

tb = inf

{
t ∈ {ti}i=1,...,N :

M

∑
m=1

λm(t) ≥
M

∑
m=1

µm

}
. (2.24)

The process is then shifted tm′

i = tm
i − tb, tm

i > tb and T′ = T − tb.

A sufficient condition for stationarity is

ρ(Γ) = max
a∈S(Γ)

|a| < 1, (2.25)

where S(Γ) denotes the set of all eigenvalues of Γ and

Γ =

∞∫

0

K(u)du =

(
αmn

βmn

)

m,n=1...,M

(2.26)

Here we focus on symmetric multivariate HPs, where the mutual excitation

matrix can be written as

α =

(
α0 αm

αm α0

)
.

For the sake of simplicity, we fix the baseline intensities and timescales to the

same values for both components of the process, i.e. λ0 = (λ0, λ0) and β =

(β, β).

In the symmetric case ρ(Γ) = α0+αm
β . For the presentation of the results in
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Figure 2.8: Relative difference of the log-likelihood between forward and backward
time arrows (top) and difference of the log-likelihood between forward and backward time
arrows with regards to T (bottom) for a multidimensional HP with a symmetric excitation
kernel. All possible permutations of λ0 = {0.0010, 0.0025, 0.005, 0.0075, 0.0100}, α0 =
{0.049}, with αm chosen according to the desired maximum eigenvalue ρ(Γ), and β =
0.1 are considered. The data points are grouped according to maximum eigenvalue and
averaged over 100 runs for each parameter permutation. The expected total number of
events is set to 106.

the multivariate setting, the largest eigenvalue ρ(Γ) was chosen as the control

parameter instead of the endogeneity n since it is directly linked to the expected

total number of events in the process (i.e. summed over all components).

Figs. 2.8, 2.9, and 2.10 show that the results for symmetric multidimensional

HP are in many ways analogous to those of the univariate HP, i.e. the log-

likelihood plots display a similar behaviour and the parametric estimations do

not deviate significantly from each other in the forward and backward case. Our

remarks regarding the non-parametric method of Bacry et al. (2012), which is

only valid for symmetric HPs, still hold.

The above findings are however not true for asymmetric multivariate HPs,

in which changing the direction of time leads to clearly different log-likelihoods

and parameters (see Appendix 2.2.8), hence significantly increases the effective

causality of such processes.
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Figure 2.9: Relative difference in the estimation of the various parameters in the
MLE of the multidimensional HP with a symmetric excitation matrix for the for-
ward (blue) and the backward process (red). All possible permutations of λ0 =
{0.0010, 0.0025, 0.005, 0.0075, 0.0100}, α0 = {0.049}, with αm chosen according to
the desired maximum eigenvalue ρ(Γ), and β = 0.1 are considered. The data points
are grouped according to maximum eigenvalue and averaged over 100 runs for each
parameter permutation. The expected total number of events is set to 106.
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Figure 2.10: (Continued) Relative difference in the estimation of the various parameters
in the MLE of the multidimensional HP with a symmetric excitation matrix for the
forward (blue) and the backward process (red). All possible permutations of λ0 =
{0.0010, 0.0025, 0.005, 0.0075, 0.0100}, α0 = {0.049}, with αm chosen according to
the desired maximum eigenvalue ρ(Γ), and β = 0.1 are considered. The data points
are grouped according to maximum eigenvalue and averaged over 100 runs for each
parameter permutation. The expected total number of events is set to 106.

2.2.4 Application to Data

Since the difference between forward and backward estimates is related to the

endogeneity of the process, it is worth discussing some typical values found

empirically. As an example of an application of the HP, we studied some fits of

the HP to price data of the Exchange-Traded Fund SPDR S&P 500 ETF. We follow

largely the methods developed in Lallouache and Challet (2016), and we focus

on shorter time intervals where the authors find that the HP excel at fitting (one

hour or less), i.e. time-intervals where we may assume that the baseline intensity

is constant.

The data set encompasses price data over one day, 15-12-2015 from 9:30 to

16:00, and consists of approximately 950 000 data points. We tried the same fit-

ting procedure for 23 other days and the results are consistent. We focus on bid

prices and only consider changes in the bid price, which effectively reduces the

dataset to only 33 000 data points. The coarse nature of the time has the inter-

esting consequence that several bid price changes may occur during the same

millisecond (the temporal resolution of the data). In order to address this is-

sue, we assume that the order in which the price changes is correct and draw at

random the times of the event within the same millisecond with a uniform distri-

bution. One thus expects to lose some causality because of the coarse temporal

resolution.

The fits are done with constant baseline intensity λ0 and a kernel defined as
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a sum of exponentials, i.e. K(t) =
P

∑
j=1

αje
−β jt, where P = 1, 2, 3. This kind of

kernel offers a lot of flexibility in terms of fitting. P = 2 has been found to be

a suitable choice for shorter time scales. We compare the results for both the

non-stationary and stationary assumption (see Appendix 2.2.7 for details), with,

of course, a particular emphasis on what happens when the process is reversed.

Unlike the case with the synthetic data, the time horizon is not known in the

empirical data. It is thus assumed that the last event in the calibrated data set is

the time horizon.

The goodness of fits is not only assessed with KS test, but also with the

Ljung-Box test (LB test), which checks if the compensators of HPs introduced

in Eq. (2.14) are not auto-correlated. We use the slight modification of the test

introduced in Lallouache and Challet (2016) in order to take into account the

data cleaning procedure. The Aikaike Information Criterion (AIC) is also used

to compare the merit of different kernels. The results for P = 1, 2, 3 are presented

in Table 2.2.

It is clear that assuming that the process is stationary, and using the slightly

modified methods, does not significantly improve the fits, and does not merit

much attention. However, if we compare the forward and backward cases, we

see that unlike when the synthetic data was considered, it is is not as clear

cut and it is not sufficient to consider just the p-value obtained in the KS test to

determine the arrow of time. The forward case does indeed consistently perform

better than the backward case but the values obtained for the backward case are

still acceptable, and when the degrees of freedom in the model are increased, we

generally get a better p-value.

If we turn our attention to the LB test the situation is similar, but here the

difference between the two cases is even smaller. In fact, we sometimes see that

the backward process occasionally, when P = 3, performs better than the the

forward process. On the other hand the log-likelihood is consistently larger for

the forward case, but not significantly. Finally, the AIC favours a kernel with a

larger number of degrees of freedom.

The whole picture makes sense in the light of the results on synthetic data:

the estimated endogeneity n depends on the kernel and time window chosen

and varies between approximately 0.30 and 0.70, hence far from criticality, a

region in which the difference between forward and backward results is small,

hence causality is weak.
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Table 2.2: Comparison of the ability of the exponential HP with P = 1, 2, 3 to fit the
empirical data (forward and backward) with different time windows. n is the estimated
endogeneity, pKS and pLB are the Kolmogorov-Smirnov and Ljung-Box test p-values,
log(L) is the log-likelihood, AIC is the Akaike Information Criterion and N is the
average number of events in a time window. Results obtained where the process is
assumed to be stationary from the start are put in parenthesis. Values are averaged over
all non-overlapping windows with more than 150 events.

P = 1 (forward)

n( f ) pKS( f ) pLB( f ) logL( f ) AIC( f N

1h 0.33 (0.33) 6.2e-6 (6.2e-6) 8.3e-7 (8.3e-7) 2282.04 (2282.08) -4558.08 (-4558.15) 4675

30m 0.32 (0.32) 1.3e-3 (1.3e-3) 0.03 (0.03) 1237.49 (1237.52) -2468.99 (-2469.03) 2518

15m 0.32 (0.32) 0.02 (0.02) 0.06 (0.06) 628.29 (628.31) -1250.59 (-1250.61) 1259

10m 0.32 (0.32) 0.07 (0.07) 0.15 (0.15) 420.01 (420.02) -834.02 (-834.04) 839

5m 0.32 (0.32) 0.24 (0.24) 0.30 (0.30) 212.95 (212.95) -419.90 (-419.91) 420

P = 1 (backward)

n(b) pKS(b) pLB(b) logL(b) AIC(b) N

1h 0.32 (0.32) 2.6e-7 (2.6e-7) 2.6e-6 (2.6e-6) 2262.78 (2262.78) -4519.55 (-4519.57) 4675

30m 0.32 (0.32) 3.9e-4 (3.9e-4) 0.03 (0.03) 1227.17 (1227.17) -2448.35 (-2448.35) 2518

15m 0.31 (0.31) 0.01 (0.01) 0.05 (0.05) 623.29 (623.28) -1240.57 (-1240.57) 1259

10m 0.31 (0.31) 0.04 (0.04) 0.16 (0.16) 416.61 (416.60) -827.22 (-827.21) 839

5m 0.31 (0.31) 0.19 (0.19) 0.30 (0.30) 211.29 (211.29) -416.59 (-416.58) 420

P = 2 (forward)

n( f ) pKS( f ) pLB( f ) logL( f ) AIC( f N

1h 0.59 (0.59) 0.02 (0.02) 0.17 (0.17) 2438.63 (2438.69) -4867.26 (-4867.38) 4675

30m 0.57 (0.57) 0.17 (0.17) 0.34 (0.34) 1317.87 (1317.92) -2625.75 (-2625.85) 2518

15m 0.53 (0.53) 0.40 (0.40) 0.35 (0.35) 665.25 (665.28) -1320.51 (-1320.56) 1259

10m 0.54 (0.54) 0.47 (0.47) 0.38 (0.37) 444.61 (444.58) -879.22 (-879.16) 840

5m 0.51 (0.51) 0.64 (0.63) 0.43 (0.44) 225.42 (224.72) -440.83(-439.43) 420

P = 2 (backward)

n(b) pKS(b) pLB(b) logL(b) AIC(b) N

1h 0.59 (0.59) 3.8e-4 (3.9e-4) 0.18 (0.18) 2386.57 (2386.59) -4763.14 (-4763.18) 4675

30m 0.55 (0.55) 0.03 (0.03) 0.32 (0.32) 1290.59 (1290.60) -2571.18 (-2571.21) 2518

15m 0.49 (0.49) 0.16 (0.17) 0.31 (0.30) 651.78 (652.14) -1293.56 (-1294.27) 1259

10m 0.50 (0.50) 0.26 (0.26) 0.36 (0.36) 435.90 (436.16) -861.80 (-862.32) 840

5m 0.47 (0.47) 0.48 (0.48) 0.40 (0.41) 220.40 (220.37) -430.79 (-430.73) 420

P = 3 (forward)

n( f ) pKS( f ) pLB( f ) logL( f ) AIC( f N

1h 0.69 (0.69) 0.01 (0.03) 0.22 (0.21) 2468.46 (2480.59) -4922.92 (-4947.19) 4675

30m 0.67 (0.66) 0.15 (0.15) 0.38 (0.38) 1333.28 (1339.70) -2652.57 (-2665.41) 2518

15m 0.60 (0.59) 0.40 (0.39) 0.40 (0.40) 674.12 (674.11) -1334.25 (-1334.22) 1259

10m 0.60 (0.61) 0.50 (0.49) 0.44 (0.44) 449.38 (448.05) -884.77 (-882.09) 839

5m 0.55 (0.55) 0.72 (0.71) 0.46 (0.46) 227.80 (227.80) -441.59 (-441.60) 419

P = 3 (backward)

n(b) pKS(b) pLB(b) logL(b) AIC(b) N

1h 0.67 (0.67) 4.4e-03 (0.01) 0.29 (0.28) 2412.88 (2412.51) -4811.76 (-4811.03) 4675

30m 0.64 (0.63) 0.07 (0.05) 0.40 (0.41) 1303.68 (1302.34) -2593.35 (-2590.68) 2518

15m 0.57 (0.57) 0.20 (0.20) 0.39 (0.38) 658.42 (658.41) -1302.85 (-1302.82) 1259

10m 0.55 (0.55) 0.30 (0.31) 0.40 (0.42) 438.79 (439.00) -863.58 (-863.99) 839

5m 0.52 (0.52) 0.54 (0.53) 0.44 (0.44) 222.10 (222.15) -430.20 (-430.30) 419
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2.2.5 Discussion

The above findings for both the univariate and symmetric multivariate cases

have several consequences. First, their causality is much weaker than previously

implicitly assumed, even with synthetic data whose kernel family is known.

This in turn makes it sometimes difficult to distinguish between the forward

and backward event time vectors and thus strongly emphasises the importance

of using goodness of fit tests, even for synthetic data. Since the kernel is the only

causal term in HPs, weak causality contributes to the difficulties in fitting HPs,

especially when the baseline intensity varies with time. This is one of the reasons

why we have accounted for the potential lack of initial non-stationary part when

calibrating HPs in some cases with a modified log-likelihood function, such as

the one we propose, a point which has received little attention to our knowledge.

A practical consequence of this work is that fitting weakly causal HPs to

real data rests on even shallower ground because of data imperfection, for two

main reasons. First, data cannot be assumed to be perfect; for example the time

resolution of the data may be coarse enough to allow several events to take

place during the same data time and the event times may be affected by non-

negligible noise, as it happens sometimes in financial tick-by-tick data. These

two time-related problems further weaken the causality of HPs. Second, the

shape of the kernel is a priori unknown.

This raises an important issue: simple kernels with very few degrees of free-

dom are seldom satisfactory, thus more complex models with more degrees of

freedom are introduced until satisfactory results are achieved. The same is true

for the backward arrow of time, and reassuringly, the results are often worse,

but not systematically and certainly not in a manner as convincing as when one

knows the kernel shape. In other words, the larger the number of degrees of

freedom of a kernel, the more successful the fits, but at the cost of weakening

the difference between forward and backward arrows of time because more de-

grees of freedom also allow a more precise fit of the backward event times vector.

At all rates, our results suggest an additional test for HPs: one should reject the

hypothesis that HPs describe the data if the forward event time vector leads to

worse goodness of fit tests than the backward event time vector. Indeed, in such

cases, it makes little sense to trust the causality that HPs introduce.
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2.2.6 Appendix: Univariate Hawkes processes with power-law

kernels

A power-law kernel for the univariate HP may be defined as

K(t) = u(t + v)w. (2.27)

The endogeneity thus equals

n = −
u

w + 1
vw+1 (2.28)

and the log-likelihood is given by

lnL
(
{ti}i=1,...,n

)
= −λ0T

−
n

∑
i=1

u

w + 1

(
(T − ti + v)w+1 − vw+1

)

+
n

∑
i=1

ln

[
λ0 +

i−1

∑
k=1

u(ti − tk + v)w

]
.

. (2.29)

If the initial non-stationary part of the process is removed, the mathematical

expression above must be modified;

lnL
(
{ti}i=1,...,n

)
= −λ0T

−
v

w + 1

(
λ0

1 + u
w+1 vw+1

− λ0

)(
(

T

v
+ 1)w+1 − 1

)

−
n

∑
i=1

u

w + 1

(
(T − ti + v)w+1 − vw+1

)

+
n

∑
i=1

ln

[
λ0 +

(
λ0

1 + u
w+1 vw+1

− λ0

)(
ti

v
+ 1

)w

+
i−1

∑
k=1

u(ti − tk + v)w

]
.

(2.30)

Fig. 2.11 displays the relative difference of the log-likelihood as a function of the

endogeneity.
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Figure 2.11: Relative difference of the log-likelihood with regards to T (the time horizon
of the simulations) between forward and backward time arrows for an HP with a power-
law kernel. The selection of parameters is limited to λ0 = 0.05, u = 0.06,w = −2.5
and with a varying v chosen according to the desired endogeneity n. The data points
are grouped according to their endogeneity and averaged over 100 runs. The expected
number of events is set to 105.

2.2.7 Appendix: Log-likelihood of the univariate HP with a sum

of exponentials

If the HP kernel consists of a sum of P exponentials, i.e.

K(t) =
P

∑
j=1

αje
−β jt, (2.31)

then the associated log-likelihood is given by

lnL
(
{ti}i=1,...,n

)
= −λ0T −

n

∑
i=1

P

∑
j=1

αj

β j

(
1− eβ j(T−ti)

)

+
n

∑
i=1

ln

[
λ0 +

i−1

∑
k=1

P

∑
j=1

αje
−β j(ti−tk)

]
.

(2.32)
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Consequently, the modified log-likelihood, where it is assumed that there is no

initial non-stationary part, is given by

lnL
(
{ti}i=1,...,n

)
=

−λ0T +

(
λ0

1−n − λ0

)

P

∑
j=1

αj

(
P

∑
j=1

αj

β j

(
e−β jT − 1

))

−
n

∑
i=1

P

∑
j=1

αj

β j

(
1− eβ j(T−ti)

)

+
n

∑
i=1

ln


λ0 +

(
λ0

1− n
− λ0

)



P

∑
j=1

αje
−β jti

P

∑
j=1

αj




+
i−1

∑
k=1

P

∑
j=1

αje
−β j(ti−tk)

]
.

(2.33)

2.2.8 Appendix: Asymmetric multivariate case

The mutual influence in the asymmetric case is defined as

α =

(
α0 α1

m

α2
m α0

)
,

where α1
m 6= α2

m (specifically α1
m < α2

m by convention here). The largest eigen-

value is now given by

ρ(Γ) =
α0 +

√
α1

mα2
m

β
. (2.34)

In the asymmetric case, we see that the parameter estimates of the backward

arrow of time are very significantly different from those of the forward arrow

of time. Even more, in about 75% cases the backward-arrow fits produce almost

nonsensical results or simply do not converge. When these runs are removed,

there is a bias towards keeping the runs which are significantly longer than the

desired number of events, which might help explain the misestimation of certain

parameters.
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Figure 2.12: Relative difference of the log-likelihood between forward and backward
time arrows (top) and difference of the log-likelihood between forward and backward time
arrows with regards to T (bottom) for a multidimensional HP with an asymmetric excita-
tion kernel. All possible permutations of λ0 = {0.0010, 0.0025, 0.0050, 0.0075, 0.100},
α1

m = {0.049}, with α2
m chosen according to the desired maximum eigenvalue ρ(Γ)

and α1
m < α2

m, and β = 0.1 are considered. The data points are grouped according to
maximum eigenvalue and averaged over 100 runs for each parameter permutation. The
expected total number of events is set to 106.
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Figure 2.13: Relative difference in the estimation of the various parameters in the
MLE of the multidimensional HP with an asymmetric excitation matrix for the for-
ward (blue) and the backward process (red). All possible permutations of λ0 =
{0.0010, 0.0025, 0.0050, 0.0075, 0.100}, α1

m = {0.049}, with α2
m chosen according to

the desired maximum eigenvalue ρ(Γ) and α1
m < α2

m, and β = 0.1 are considered. The
data points are grouped according to maximum eigenvalue and averaged over 100 runs
for each parameter permutation. The expected total number of events is set to 106.
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Figure 2.14: (Continued) Relative difference in the estimation of the various parameters
in the MLE of the multidimensional HP with an asymmetric excitation matrix for the
forward (blue) and the backward process (red). All possible permutations of λ0 =
{0.0010, 0.0025, 0.0050, 0.0075, 0.100}, α1

m = {0.049}, with α2
m chosen according to

the desired maximum eigenvalue ρ(Γ) and α1
m < α2

m, and β = 0.1 are considered. The
data points are grouped according to maximum eigenvalue and averaged over 100 runs
for each parameter permutation. The expected total number of events is set to 106.
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2.3 Application of Hawkes processes to the inference

of investor activity interaction networks

The causality of asymmetric multivariate Hawkes processes makes it in principle

possible to infer causal networks between the actions of investors. In an ideal

case, the influence kernel will not only reveal the strength of the influence of

the actions of a given investor on another one, but also contain the timescales

of influence. In practice, two important problems arise. First, fitting even a

univariate Hawkes process requires a fair amount of data, hence fitting a multi-

variate Hawkes processes to many traders requires even more data. Second, the

computation time is likely prohibitive.

Achab et al. (2018) introduce a non-parametric method, the Non-Parametric

Hawkes Cumulant (NPHC) which does not require to fit all self and mutual

influence kernels to infer causality networks between trader activity. The idea is

to estimate the matrix of integrated kernels in a multivariate HP from a small

set of moments. In other words, unlike many other available methods, the aim

is not not to estimate the kernels associated with each component (i.e. the nodes

or the agents in the framework of an investor interaction network), but to take a

shortcut by directly estimating the integrated kernels. In this way, one can infer

what underlying causality structure HPs can capture. Specifically, one estimates

the matrix G of the integrated kernels, i.e.

Gij =

∞∫

0

Kij(s)ds (2.35)

Element Gij encodes the mean total number of events of type i directly triggered

by an event of type j. Therefore matrix G encodes the causality that HPs can

infer. Eichler et al. (2017) show indeed that for the multivariate HP Nt, N
j
t does

not Granger cause Ni
t if and only if Kij(u) = 0 for u ∈ R

+, which is equivalent

to Gij = 0. It is thus straightforward to observe the causal relationships between

different components in the multivariate HP if the elements in G are significantly

different from zero.

The goal of the NPHC method is to estimate the matrix G using a matching

cumulants (or moments) method. More precisely, this method is based on the

first three integrated cumulants, and if 1 ≤ i, j, k,≤ d, where d is the dimension

of the HP, and one assumes that the process is stationary (i.e. the spectral norm
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||G|| satisfies ||G|| < 1), one has

Λidt = E(dNi
t) (2.36)

Cijdt =
∫

τ∈R

(
E(dNi

tdN
j
t+τ)−E(dNi

t)E(dN
j
t+τ)

)
(2.37)

Γijkdt =
∫∫

τ,τ′∈R2

(
E(dNi

tdN
j
t+τdNk

t+τ′) + 2E(dNi
t)E(dN

j
t+τ)E(dNk

t+τ′)

−E(dNi
tdN

j
t+τ)E(dNk

t+τ′)−E(dNi
tdNk

t+τ′)E(dN
j
t+τ)−E(dN

j
t+τdNk

t+τ′)E(dNi
t)
)

,

(2.38)

where Eq.(2.36) is the mean intensity of the HP, Eq.(2.37) is the integrated co-

variance density matrix and Eq.(2.38) is a measure of the skewness of N t.

In order to fix the matrix G uniquely, one needs the third cumulant since the

integrated covariance only contains symmetric information, and thus no causal-

ity, whereas the skewness provided by the third cumulant breaks the symmetry

between past and future information.

One thus, first of all, computes an estimation M̂ of these centered moments

M(G), and then we look for a matrix G that minimizes the L2 error ||M(Ĝ)||2.

If one sets R = (Id −G)−1, we obtain the following identities

Λi =
d

∑
m=1

Rimµm (2.39)

Cij =
d

∑
m=1

ΛmRimRjm (2.40)

Γijk =
d

∑
m=1

(
RimRjmCkm + RimCjmRkm + CimRjmRkm − 2ΛmRimRjmRkm

)
. (2.41)

Achab et al. (2018) derive an estimator of R and thus of G and use this

method to analyse the mutual influence of the various types of events that may

occur in best prices of order book data (new limit order, new market order,

cancellation that changes or does not change the best price). Rambaldi et al.

(2018) study labelled orders on the CAC40 index future, and can thus explore

how the 16 most active market participants contribute to price volatility. A large-

dimensional HP is introduced where eight different kinds of actions for each

agent: orders which immediately move the mid-price up (down), aggressive

orders which are executed immediately at the best ask (bid) price and do not

move the mid-price, new limit orders which arrive at the best ask (bid) price
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and do not move the mid-price and cancellations of orders at the best ask (bid)

price which do not empty the queue and do not move the mid-price.

Specifically, if A denotes a set of M agents and if one considers the eight

different kinds of orders as a set T , the counting process Ni,α(t) is associated

with agent i ∈ A and orders of type α ∈ T . In total, in the HP, one therefore

has 8×M components, which means that the conditional intensity of Ni,α may

be defined as

λi,α
t = λi,α

0 + ∑
j∈A

∑
β∈T

t∫

0

Ki,α;j,β(t− s)dN
j,β
s , (2.42)

where λi,α
0 is the baseline intensity and the interaction kernel Ki,α;j,β(s) represents

the impact of an event of type α of agent j on the occurrence likelihood of an

event of type α of agent i. Eq.(2.42) is then parametrized as

Ki,α;j,β(s) =
L

∑
l=1

θ
i,α;j,β
l gl(s), (2.43)

where L is set to L = 10.

An important assumption made in this model is that the way agent i reacts

to the action β of agent j does not depend on j unless i = j, which amounts to

θ
i,α;j,β
l =





α
i,α;β
l , if i = j

β
i,α;β
l , otherwise.

(2.44)

This is motivated by the argument that any agent perceives the activity of other

agents only through their anonymous orders in the book (the data is labelled,

but the real-time feed is not).

Instead of labelled orders, we have comprehensive datasets detailing the ac-

tions of all the clients on the foreign exchange market of two types of brokers,

one with retail clients and one with institutional clients only (see Table 3.1 on

p. 63). Whereas there are O(104) clients in each dataset, the activity rate is very

heterogeneous and best described as a power-law (see Challet et al. (2018)). In

addition, most clients are not active every day, or not during the same typi-

cal time window, and some of them act by bursts and then stay quiet for a long

while. In other words, our datasets are less amenable to the above method. Nev-

ertheless, we used the tick package (Bacry et al., 2017) and applied it to the

30 most active clients of our institutional dataset over the whole period. Their

kernel norms determined by NPHC method are reported in Fig. 2.15, which
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must be read as follows: Gi←j is the average number of trades of trader i caused

by trader j. One sees that the self-excitation (diagonal) is typically larger than

mutual influence, but is clearly larger for some traders than others at the chosen

timescales. More interestingly, there are also horizontal lines for traders 9, 17,

21, and 26. This means that these traders are influenced by other traders and it

is a good indication of the causality in this population. This is already known

from Lead-Lag Statistically Validated Networks (LL-SVNs) determined with an-

other method (Challet et al., 2018), which is more appropriate than HPs for the

trader-resolved datasets we have.

In principle, having access to the full mutual excitation kernels makes it pos-

sible to have a very minute understanding of the timescales at which one trader,

say i, exerts his influence on trader j. The point is that nothing prevents trader

j to extert its influence on trader i at different timescales. Timescales are lost

when computing the norms of kernels (although time still has to be discretized).

Assuming sparse mutual excitation kernels and using a Gaussian basis is an

alternative way to infer causal activity networks and the timescales at which

causality acts (Zhou et al., 2013). The next chapter introduces a much simpler

method, better adapted to the non-stationarity of our data and the fact that the

activity of the traders in our datasets is very irregular.
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Figure 2.15: Kernel norms Gi←j, determined by the NPHC method, of institutional
traders of the 30 most active traders. Time slices of 30s, kernel integrated over 4 hours.
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Chapter 3

Lead-Lag Statistically Validated

Networks

Note: This chapter is submitted to ’Quantitative Finance’ under the title of

’Multi-timescale lead-lag networks and the market nanostructure origin of as-

set price time reversal asymmetry’.

3.1 Introduction

The collective behaviour of investors in financial markets plays a major part in

shaping the complexity of price dynamics. A major challenge in the analysis

and modelling of market dynamics comes from the very large heterogeneity of

market participants, particularly with respect to their activity rate and feedback

speed. Most agent-based models of financial markets omit timescale heterogene-

ity, usually focusing on strategy heterogeneity (fundamentalists, trend-followers

or noise traders) and the way they learn to use them (see Hommes (2006) for a

review; see however Marsili and Piai (2002); Mosetti et al. (2006); Kroujiline et al.

(2016)).

The typical time-horizon of trader activity ranges from a fraction of a second

to a few months (Dacorogna et al., 1998; Zumbach, 2009). A fundamental ques-

tion is thus how to characterize the causal structure of market activity across

timescales. In other words, is there a hierarchical (or more complex) structure

in which activity propagates? Since trader-resolved data is hard to obtain, past

works focused on price dynamics and volatility propagation. Intuitively, the

price dynamics should reflect in some way heterogeneous trader time horizons

(see e.g. Müller et al. (1993)). Early works exploit the intuitive analogy between

turbulent flows and price changes (Ghashghaie et al., 1996), and simple cascade
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models of the price dynamics have been proposed (Lux et al., 2001). Heteroge-

neous trader timescales may also explain why multi-scale GARCH models are

generally much better than plain GARCH ones (see e.g. Lynch et al. (2003); Bor-

land and Bouchaud (2005); Chicheportiche and Bouchaud (2014)). In particular,

Müller et al. (1997) argue that since coarsely-defined volatility predicts finely-

defined volatility significantly better than the other way around, the behaviour

of long-term traders should influence the behaviour of short-term traders.

The above discussion implicitly assumes that prices are time reversal asym-

metric (TRA). Zumbach and Lynch (2001), and Zumbach (2009) show indeed that

financial time series are significantly asymmetric with respect to the reversal of

the arrow of time. While classical models of price and volatility dynamics are

not TRA, GARCH processes that incorporate price returns defined over several

time scales are TRA (Zumbach and Lynch, 2001; Zumbach, 2009; Chicheportiche

and Bouchaud, 2014). The same holds for Hawkes processes, which are causal

processes by definition and hence ideal candidates for financial modelling (Bacry

et al., 2015), although their univariate and symmetric multivariate versions are

surprisingly weakly TRA (Blanc et al., 2017; Cordi et al., 2018).

While there are many ways to define the timescale of a given agent, we take

a more global approach here and rely instead on the notion of groups of agents

determined at various timescales (seconds, minutes, hours, etc.), and investigate

how the activity of one group at a given timescale influences the activity of

some other group at another timescale. This opens up the possibility of inferring

multi-timescale causal networks of trader activity directly instead of relying on

analogies. Note that the framework which we introduce here is generic and

applies to any system in which the state of one of its elements over a given time

window may be summarized by a discrete state, from a small set of possible

states.

Groups of traders are determined with Statistically Validated Networks (SVNs);

SVNs were introduced by Tumminello et al. (2011) and have been applied to e.g.

mobile communication networks (Li et al., 2014), clusters of orthologous genes,

and the relationship between actors and movies (Tumminello et al., 2011). They

were then used to cluster Finnish investors (Tumminello et al., 2012) and more

recently to understand their long-term ecology (Musciotto et al., 2018). The

main idea is that a group of similar traders should act in a similar way. The

trick is to define networks of interaction according to the degree of pairwise

synchronization between the actions of traders and use community detection of

the resulting network to define groups of traders. Crucially, since the actions
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of all the members of a group are remarkably similar, the action of the group

is representative of the action of each of its members, which is very helpful to

reduce the dimension of trader datasets.

SVNs rely on time coarsening at a given timescale (e.g. 1 day, the best avail-

able resolution of the dataset analyzed in Tumminello et al. (2012), or 1 hour in

Challet et al. (2018)). Which timescale to choose is not obvious, all the more since

traders have widely different activity rates. As we shall see below, the answer

depends on the type of traders (retail or institutional) and most probably on the

clientele composition of a broker.

Recently, Challet et al. (2018) introduced Lead-Lag SVNs (LL-SVNs) to infer

lead-lag networks between the states of agents in complex systems and applied

them to trader-resolved data. The persistence in LL-SVNs is large enough to

make it possible to predict the sign of the order flow and the VWAP of a bro-

ker clients over the next hour. A reason why these lead-lag networks exist and

persist is that investors consistently react with different speeds to common in-

formation (Boudoukh et al., 1994; Jegadeesh and Titman, 1995).

Here, we extend the LL-SVN method to lead-lag networks between states

determined at two different timescales. This is needed to infer how informa-

tion flows from one timescale to another and to find asymmetric reciprocal in-

fluence, as is the case in trader-resolved data. Causality with respect to these

two timescales is then well defined, and the ensemble of causality relationships

between many pairs of timescales provides a fine picture of how information

propagates in a complex system. We also discuss how the TRA of the activity of

the two types of traders in our dataset compares with that of the volatility, i.e.

to relate macroscopic price properties to nanoscopic decisions1.

3.2 Method

3.2.1 SVNs and LL-SVNs

Assume that one has N time series, e.g. the transaction history of N traders. The

SVN method works as follows: one first chooses a time resolution ∆t and splits

the time into slices of length ∆t. Here, (t, ∆t) denotes the timeslice [t, t + ∆t[,

and for the sake of simplicity, we shall write it as t when no ambiguity arises.

For each timeslice, one summarizes the activity of each time series by a dis-

crete state taken from a small number of possible states. For traders, it is natural

1Market microstructure focuses on price formation from anonymous orders sent by traders.
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to define four different states: mostly buying (+1), mostly selling (-1), neutral (0)

and inactive (NA). The imbalance ratio of time series i for each timeslice t is then

ρi(t) =
vi(t)

ai(t)
(3.1)

where vi(t) = vi(t, ∆t) is the total signed transaction volume of trader i during

timeslice t, and, similarly, ai(t) is the sum of the absolute trading volume during

this timeslice t. The state of agent i during timeslice t is

σi(t) =





1 if ρi(t) > ρ0

−1 if ρi(t) < −ρ0

0 if ρi(t) < |ρ0|

NA if vi(t) = ai(t) = 0.

, (3.2)

As in previous works, we use ρ0 = 0.01, but the specific choice of this parameter

does not have much influence on the results provided that it is small.

The level of synchronicity between two given states of two given traders is

determined by assuming that the occurrence of each state follows a Poissonian

process in discrete time (the timeslices). Then, using an exact expression for the

probability of synchronicity of two independent process, it is straightforward to

compute the p-value of these states for these traders. The computation is per-

formed for all possible pairs of traders and all allowed pairs of states. Here, since

one wishes to group traders, the set of allowed pairs is ({(1, 1), (−1,−1), (0, 0)};

we drop the inactive state by focusing on the most active traders. Testing all the

pairs of traders for each possible state pair yields a large number of tests, thus

multiple hypothesis testing correction is needed: we use the False Discovery

Rate (FDR) (Benjamini and Hochberg, 1995), with an FDR rate set to p0 = 0.05.

An SVN network is obtained by keeping links whose p-values are smaller than

the FDR-adjusted threshold (see Tumminello et al. (2012) for more details).

The resulting network may then be decomposed into groups (communities)

by using the InfoMap method (Rosvall and Bergstrom, 2008), which is one of the

most efficient methods of community detection in networks (Lancichinetti and

Fortunato, 2009). The multi-links are converted into weighted links by assigning

a weight equal to the number of validated links between two traders. Since links

are only allowed between traders who take similar actions, the state of each

group of traders is well defined and mirrors those of the traders that it includes.

Let us introduce some more mathematical notations. Mathematically, one
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can define the state of group g ∈ G, where G is the set of all groups, during

timeslice t, by

σg(t) =





1 if ρg(t) > ρ0

−1 if ρg(t) < −ρ0

0 if ρg(t) < |ρ0|

NA if Vg(t) = 0,

(3.3)

where ρg(t) =
Vg(t)

|Vg(t)|
and Vg(t) = ∑

i∈g
vi(t) is the aggregate signed volume of the

traders belonging to group g during timeslice t. We also define Ag(t) = ∑
i∈g

ai(t)

as the aggregate absolute volume of the traders belonging to group g during

timeslice t. Grouping traders is surprisingly efficient and significantly decreases

the dimensionality of the problem, i.e. the effective number of time series to

track in a population of clients of a broker. As it reduces the dimension of

the data set, using groups tremendously helps to simplify and speed up the

determination of lead-lag networks, and we shall keep this procedure.

The easiest case is of course when the states of traders who lead and who lag

are determined with the same coarse resolution ∆t, as in Challet et al. (2018).

3.2.2 LL-SVNs with two timescales

The main methodological contribution of our work is to introduce a general

framework to infer lead-lag relationships between groups whose states are de-

termined at two (possibly) different timescales.

The general principle is simple (see Fig. 3.1 for a graphical illustration):

1. Let ∆t1 and ∆t2 be two timeslice durations.

2. Apply the SVN method to both ∆ts in order to determine two sets of

groups G1 and G2 (optional but recommended)2.

3. Find SVNs between the suitably lagged values of group (or agent) states.

By convention, in the following, ∆t1 is the timescale at which the leading

states of agents are determined and ∆t2 the timescale of the lagging states of

agents. When ∆t1 = ∆t2, the segmentations of a time series for both the leading

and lagging states coincide and no special caution regarding their alignment

is needed. However, when ∆t1 6= ∆t2, for a given time t = k1∆t1, k1 ∈ N,

2When the number of agents is not too large, this step may be skipped.
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Figure 3.1: Schematic diagram showing how lead-lag links are established when (a)
∆t1 > ∆t2 and (b) ∆t1 < ∆t2. The dotted lines indicate that the state of the group
has been recalculated if t/∆t2 is not an integer, which corresponds to a time-shift with
regards to the time-interval where the groups were determined.

the boundaries of timeslices for both timescales are generally not aligned, i.e.

there is generally no integer k2 such that k2∆t2 = k1∆t1. This is a problem

when inferring LL-SVNs, as non-aligned slices induce a lag between the end of

the leading slice and the lagging one, which would then reduce the strength of

causality relationships. In addition, one needs to avoid computing the states of

agents or groups on partially overlapping timeslices for the longest timescale.

This is why we align the computation of the states at times t = k max(∆t1, ∆t2),

k ∈ N (see Fig. 3.1).

This alignment problem suggests several possible variations, both in terms

of how and when groups and their states are determined. Methods I, II, and III

introduced below each define a set of lead-lag links.

Method I

This method only uses a single grouping of agents, and is thus both faster and

simpler. While agent grouping (clustering) is done with respect to one of the

two timescales (see below), the state of each group is computed in timeslices

of length ∆t1 and ∆t2 which are aligned as in Fig. 3.1. Only clustering with
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respect to a single timescale may sometimes miss subtle differences of group

membership, especially if the timescales are very different.

Method I works as follows when ∆t1 > ∆t2 (it is assumed here that t = k∆t1,

where k = 0, 1, 2, . . . ):

1. Time is discretized at timescale ∆t1 in order to obtain the group set G.

2. For each group g ∈ G and timeslices (t, ∆t1), the states σg(t, ∆t1) = σ
(1)
g (t)

are determined.

3. For each group h ∈ G and timeslices (t, ∆t2), the states σh(t, ∆t2) = σ
(2)
h (t)

are determined.

4. For each possible pair (g, h), g and h ∈ G, the p-value of the synchronicity

between σ
(1)
g (t) and σ

(2)
h (t + ∆t1) is calculated.

When ∆t1 < ∆t2, one needs to consider t = k∆t2, where k = 0, 1, 2, . . . :

1. Time is discretized at timescale ∆t2 in order to obtain the group set G.

2. For each group g ∈ G and timeslices (t, ∆t2), the states σg(t, ∆t2) = σ
(2)
g (t)

are determined.

3. For each group h ∈ G and timeslices (t−∆t1, ∆t1), the states σh(t−∆t1, ∆t1) =

σ
(1)
h (t− ∆t1) are determined.

4. For each possible pair (g, h), g and h ∈ G, the p-value of the synchronicity

between σ
(2)
g (t) and σ

(1)
h (t− ∆t1) is calculated.

Since there is only one set of groups, defining self-referential lead-lag links (from

one group to itself) is straightforward.

In the implementation of the method above it is clear that the time discretiza-

tion used for the group classification is always based on the longer timescale, re-

gardless of whether it acts as lead or lag. We have also implemented the method

above with the shorter timescale as basis for time discretization used for the

group classification, and we checked that the results did not differ significantly.

Method II

This method defines two groups, one for each time scale, over the whole cal-

ibration window, denoted by G1 and G2. Method II works as follows when

∆t1 > ∆t2, assuming that t = k∆t1, where k = 0, 1, 2, . . . :
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1. Time is discretized at timescale ∆t1 and ∆t2 in order to obtain G1 and G2.

2. For each group g ∈ G1 and timeslices (t, ∆t1), the states σg(t, ∆t1) = σ
(1)
g (t)

are determined.

3. For each group h ∈ G2 and timeslices (t, ∆t2), the states σh(t, ∆t2) = σ
(2)
h (t)

are determined.

4. For each possible pair (g, h), g ∈ G1 and h ∈ G2, the p-value of the syn-

chronicity between σ
(1)
g (t) and σ

(2)
h (t + ∆t1) is calculated.

When ∆t1 < ∆t2 the method works as follows, assuming that t = k∆t2, where

k = 0, 1, 2, . . . :

1. Time is discretized at timescale ∆t1 and ∆t2 in order to obtain G1 and G2.

2. For each group g ∈ G2 and timeslices (t, ∆t2), the states σg(t, ∆t2) = σ
(2)
g (t)

are determined;

3. For each group h ∈ G1 and timeslices (t − ∆t1, ∆t1), the states σh(t −

∆t1, ∆t1) = σ
(1)
h (t− ∆t1) are determined.

4. For each possible pair (g, h), g ∈ G2 and h ∈ G1, the p-value of the syn-

chronicity between σ
(2)
g (t) and σ

(1)
h (t− ∆t1) is calculated.

Since the alignment follows the time slices of the longer timescale, we avoid any

overlap (and thus unnecessary correlation) between two adjacent time slices.

Method III

Finally, we introduce Method III which ensures that group inference and group

states are computed in the same time slices. More specifically, what is different

in this method is that the groups for the shorter time-interval are determined ’in

place’ with regards to how their trade volumes are aggregated, depending on

if the shorter timescale acts as lead or lag. We therefore have two different sets

of groups for the shorter timescale in order to avoid overlap. The advantage of

this method is thus that we avoid the re-calculation of the group states (which

is necessary in the other two methods) and that clustering fully corresponds to

the states used to determine the LL-SVN. The disadvantage is that clustering is

performed with fewer events for the shorter timescale.

The method works as follows when ∆t1 > ∆t2 assuming that t = k∆t1, where

k = 0, 1, 2, . . . :
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1. Time is discretized at timescale ∆t1 in order to obtain G1.

2. Time is discretized as [t, t + ∆t2[ in order to obtain G2.

3. For each group g ∈ G1, the states σg(t, ∆t1) = σ
(1)
g (t) are determined.

4. For each group h ∈ G2, the states σh(t, ∆t2) = σ
(2)
h (t) are determined.

5. For each possible pair (g, h), g ∈ G1 and h ∈ G2, the p-value of the syn-

chronicity between σ
(1)
g (t) and σ

(2)
h (t + ∆t1) is calculated.

When ∆t1 < ∆t2 the method works as follows assuming that t = k∆t2, where

k = 0, 1, 2, . . . :

1. Time is discretized at timescale ∆t2 in order to obtain G2.

2. Time is discretized as [t− ∆t1, t[ in order to obtain G1.

3. For each group g ∈ G2, the states σg(t, ∆t2) = σ
(2)
g (t) are determined.

4. For each group h ∈ G1, the states σh(t− ∆t1, ∆t1) = σ
(1)
h (t− ∆t1) are deter-

mined.

5. For each possible pair (g, h), g ∈ G2 and h ∈ G1, the p-value of the syn-

chronicity between σ
(2)
g (t) and σ

(1)
h (t− ∆t1) is calculated.

3.3 Dataset

Our datasets contain trader-resolved transactions of the EUR/USD currency pair

and come from two independent sources: Swissquote Bank SA (SQ hereafter),

a Swiss broker-dealer with a large market share in foreign exchange (FX) trans-

actions in Switzerland, and a large anonymous dealer bank which serves ma-

jor institutional clients. Both datasets list all the trades of their clients: traded

currency pair, anonymous client identification number, trade time (at a millisec-

ond resolution), signed volume, and the FX transaction rate. We focus on the

EUR/USD pair as it is one of the most traded pairs in both datasets. A summary

of the datasets structure and contents is provided in Table 3.1.

While FX markets never close, transactions are quite rare during nights and

weekends. We thus focus on active hours, i.e. from 9:00 to 17:00 on weekdays.

We only look for links between adjacent timeslices on the same day in order to

avoid spurious boundary effects or overnight lead-lag links.
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Dataset Timespan Traders Trades

LB 01 Jan. 2013 - 15 Sep. 2014 > 103
> 105

SQ 01 Jan. 2014 - 30 Jun. 2014 > 103
> 105

Table 3.1: Basic statistics of the datasets studied for EUR/USD currency pair

3.4 Results

Since the active population in both datasets evolves much faster than the total

duration of the datasets, one cannot use the whole datasets to infer lead-lag net-

works. We use here rolling calibration time windows of Tin = {30, 60, 90, 120}

business days3. For each time window, we apply Methods I, II, and III to each

pair of timescales ∆t1 and ∆t2 belonging to the arithmetic sequence from 5 min-

utes to 240 minutes (4 hours) with a step of 5 minutes (which corresponds to

1176 unique pairs of timescales). Computations over the whole length of a sin-

gle dataset last for about a day for each Tin and each dataset using 72 cores, for

all pairs of timescales. In order to speed-up computations, we only keep the 500

most active traders in each calibration windows.

3.4.1 ∆t1 = ∆t2
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Figure 3.2: Average number of groups as a function of ∆t and Tin. ∆t = ∆t1 = ∆t2.

We first focus on the diagonal ∆t1 = ∆t2 = ∆t. In this case, determining lead-

lag networks does not require any special care and indeed the three methods

defined above are identical and correspond to the single-timescale method of

Challet et al. (2018). A systematic investigation of global properties of lead-

3We have also used Tin = 15 for the SQ dataset.
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Figure 3.3: Average fraction of traders grouped by SVNs as a function of ∆t and Tin.
∆t = ∆t1 = ∆t2.
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Figure 3.4: Average size of groups as a function of ∆t and Tin. ∆t = ∆t1 = ∆t2.

lag networks as a function of ∆t and the window calibration length Tin in our

datasets is necessary, as it indeed reveals fundamental differences between retail

and institutional clients (at least in our datasets), which in turn will help to

understand the results with two different timescales.

Fig. 3.2 plots the number of groups averaged over all calibration windows

as a function of ∆t for all Tin, for both LB and SQ. The number of groups found

by the LL-SVNs and InfoMap is a measure of the statistically validated diversity

of behaviour and of the potential richness of connectivity. For example, only a

few groups of LB clients for Tin = 30 and large ∆t are detected, while the largest

value of Tin = 120 yields the most groups for LB. One also sees a sudden drop

of the number of groups for ∆t = 14400s = 4h, which is likely a by-product of

the fact that we keep 8 hours of trading each day.

The number of groups of SQ retail clients behaves in the exactly opposite

way unless Tin is small: the smaller Tin, the larger the number of groups. The
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Figure 3.5: Average median size of groups as a function of ∆t and Tin (points represent
the first quartile and third quartile). ∆t = ∆t1 = ∆t2.

case Tin = 15 for SQ shows that the effective number of points, proportional to

Tin/∆t, must be large enough for the method to be powerful enough.

The group size distribution is very skewed: Fig. 3.5 plots the median size of

the groups as a function of ∆t, which is much smaller that the average group

size. In fact, one often sees the emergence of a very large group for small ∆t,

while other groups are typically very small. We will thus focus on Tin = 120 for

LB and Tin = 30 for SQ4.

The raison d’être of calibration in sliding windows is a priori the non-stationarity

not only of the population of traders, but also of their behaviour. If both are

roughly stationary, a longer Tin, at fixed ∆t, should give more precise and richer

results, and inversely. This is likely a major cause of the difference between SQ

and LB traders, the latter behaving in a much more stationary manner.

Let us now turn to the links themselves. Since we deal with lead-lag net-

works, they are directed. Links can be of two types: either from one group to

another one, or to the same group, which we call a self-referential link. Occa-

sionally, some groups only link to themselves, which would happen if they use

an effective strategy whose activity does not systematically lead another one,

but whose activity, on average, occurs at a scale comparable to ∆t.

Fig. 3.7 plots the average total number of lead-lag links, and distinguishes

within these links the average number of self-referential and ’only’ self-referential

lead-lag links. The lead-lag networks of the two types of traders are clearly dif-

ferent: the typical fraction of groups with only self links is small for LB traders,

but much larger for SQ traders. The timeslice length ∆t influences the number of

non-self-referential links for both populations: their number decreases sharply

4Additional figures, for other values of Tin, are provided in Appendix 3.6
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(a) LB & Tin = 120
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(b) SQ & Tin = 30
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(c) LB & Tin = 120
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Figure 3.6: Fraction of traders grouped by SVNs, average size of groups and median
size of groups as a function of time for LB and SQ. ∆t = ∆t1 = ∆t2.
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(a) LB & Tin = 30
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(c) SQ & Tin = 30
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Figure 3.7: Total number of links as a function of the timeslice duration (in seconds)
∆t = ∆t1 = ∆t2, for groups with only self-referential links, self-referential links and links
to other groups and only links to other groups.
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when ∆t > 1 hour and are negligible at resolutions coarser than 2 hours for SQ

and 3 hours for LB.

3.4.2 ∆t1 6= ∆t2

Links

When ∆t1 6= ∆t2, both timescales may influence each other in an asymmetric

way. Our strategy is to capture such an asymmetry by using several quantities

related to both the directed network structure and the rate of trading. Each

quantity is estimated for each pair (∆t1, ∆t2), each of them ranging from 5 min-

utes to 4 hours (14440 seconds) by steps of 5 minutes, which gives 1176 unique

pairs. Since we measure these quantities over many calibration windows, we

obtain a time series for each quantity and for each pair.

Let us first start with the number of links. The left hand side plots of Figs. 3.8

and 3.9 show the average number of links for each pair of timescales. Let us

clarify the convention: ∆t1 (on the x-axis) leads on ∆t2 (on the y-axis): as a con-

sequence, points above the y = x line correspond to smaller timescales leading

on longer timescales, and inversely. It is useful to keep in mind that on the di-

agonal ∆t1 = ∆t2 (Fig. 3.7) the number of links is maximal for small values of

∆t for both LB and SQ.

The three methods give qualitatively similar results, although it is more dif-

ficult for Method III to detect links for timescales very far from the diagonal for

LB. In accordance with Fig. 3.7, there are more links for smaller values of ∆t1

and ∆t2 around the diagonal. In addition, one generally finds that the number

of links has a local maximum on the diagonal. There are also more links for

some particular values of either ∆t1 or ∆t2, e.g. multiples of full hours. This

may indicate that some traders have a typical activity change over 1 hour, e.g. a

trading strategy that depends on the time of the day, or that they trade between,

say, 9:00 and 10:00, 10:00 and 11:00, and so on.

At least for LB, it is obvious that there are more links above than below

the diagonal, which implies that there are on average more links from shorter

timescales to longer timescales. The statistical significance of this difference is

assessed in the following way: let us denote the number of links of the pair

(∆t1, ∆t2), the first timescale of the pair leading on the second one, in calibration

window i by Wi(∆t1, ∆t2). One then applies a t-statistics to the time series of

the difference δWi(∆t1, ∆t2) = Wi(∆t1, ∆t2)−Wi(∆t2, ∆t1), In order to avoid too

many false positives, we use a false discovery rate (FDR) correction for multiple
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(a) Method I: number of links
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Figure 3.8: Left hand-side plots: average number of lead-lag links for LB (∆t1 leads on
∆t2). Right hand-side plots: t-statistics of the difference between the number of links
of the pairs (∆t1, ∆t2) and (∆t2, ∆t1); negative values indicate that shorter timescales
link significantly more to longer timescales. Tin = 120
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(a) Method I: number of links
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(b) Method I: t-stat
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Figure 3.9: Left hand-side plots: average number of lead-lag links for SQ (∆t1 leads on
∆t2). Right hand-side plots: t-statistics of the difference between the number of links
of the pairs (∆t1, ∆t2) and (∆t2, ∆t1); negative values indicate that shorter timescales
link significantly more to longer timescales. Tin = 30.
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hypotheses made in this plot, setting the rate at 0.2. Right columns of Figs

3.8 and 3.9 plots the selected t-stats of δWi(∆t1, ∆t2: blue zones correspond to

lead-lag links from shorter to longer timescales, and reversely for red zones.

The plots for LB are overwhelmingly blue: there are more links from short

timescales to long timescales, for the three methods. There is a clear exception

for ∆t1 = 4h, which once again is probably a by-product of keeping exactly 8

hours of data each day. One notes however small red regions when two groups

of traders are used (Methods II and III): at around (3h, 2h) for Method II and III,

for relatively small values of the lagging timescales for Method III, and (1h, 5m)

and (2h, 5m) for Method II.

For the SQ traders, the link structure is much more complex. Focusing on

the common results between the three methods, one finds a zone where longer

timescales have more links to shorter timescales when ∆t1 < 1h, and also around

(3h, 1.5h). One also notes an alternance of positive and negative vertical stripes.

The number of links themselves are not sufficient to characterize the lead-lag

between timescales for traders. For example, how a given group links to other

ones may also be surprising. Indeed, it is quite possible that a group has more

than one link to another group, even for the same initial state. For example,

group 1 may have links +1 → +1 and +1 → −1 with group 2. This happens

quite often but is not as strange as it may appear at first: such dual links mean,

in this case, that the mostly buying activity of group 1 triggers either +1 or

−1 in group 2. In other words, it triggers a directional activity of group 2,

whose sign is undetermined. In a prediction setting, dual links of course reduce

the prediction power, but as long as enough single links do exist, order flow

prediction is possible, as shown by Challet et al. (2018).

Activity

Being able to account for two timescales makes it possible to connect Time Rever-

sal Asymmetry (TRA) at the level of trader behaviour to that of the price itself.

TRA of prices, while being totally intuitive in financial markets, is not totally

trivial to measure owing to the amount of noise in financial data. Zumbach and

Lynch (2001) proposed to measure the asymmetry between historical volatility

measured over ∆th in the past and realized volatily, estimated over ∆tr. More

precisely, for a given t, one estimates the historical volatility vh(t) in the interval

]t− ∆th, t] and the realized volatility vr(t) in the interval [t, t + ∆tr[; then one es-

timates the correlation of vh and vr for all chosen ts, denoted by ρ(∆th, ∆tr). This

results in volatility correlation mugshots in which one clearly sees the asym-
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metry of ρv(∆th, ∆tr) with respect to the diagonal ∆tr = ∆th. Zumbach (2009)

investigates further the TRA of volatility and proposes two more measures of

TRA by noticing that the price returns in the time intervals over which volatil-

ity is estimated can be defined according to their own timescale, whose fine

structure is investigated, e.g. in Chicheportiche and Bouchaud (2014).

Connecting agent activity and volatility is natural if time subordination holds

(Clark, 1973). In other words, if the volatility per trade is locally constant, then

the volatility in a time interval depends on the number of trades occurring in that

period of time assuming that prices are diffusive. While this neglects jumps of

various origins, e.g. microstructural noise due to heavy-tailed distribution gaps

in limit order books (Gillemot et al., 2006), we only need to assume that there

is a monotonic average relation between the number of trades and volatility to

connect trader activity and volatility.

Therefore, we can estimate the correlation between the activity rate of traders

in leading groups and lagging groups, determined at two different timescales,

as above. Let us therefore denote the total number of trades of agents in group

g during timeslice (t, ∆t) by N(g)(t, ∆t); in addition, we denote by

N1(t) = ∑
g∈G1

N(g)(t,−∆t1)

the total activity of the leading groups at time t, and similarly

N2(t) = ∑
g′∈G2

N(g′)(t, ∆t2)

the total activity of the agents in the lagging groups (note that with Method I,

G1 = G2). We then can compute the correlation between activity rates N1(t)/∆t1

and N2(t)/∆t2, denoted by ρ(∆t1, ∆t2).

Figs. 3.10 and 3.11 plot ρ(∆t1, ∆t2 for the LB and SQ datasets respectively

(left-hand side plots), and correspond to the mugshots of Zumbach and Lynch

(2001) but for activity rates. In the case of LB, the asymmetry is clear and is con-

firmed by the right-hand side plots which report the t-statistics of δρ(∆t1, ∆t2) =

ρ(∆t1, ∆t2)− ρ(∆t2, ∆t1); only the values validated by FDR are in color, the un-

validated ones being reported in gray. As the three methods point to the same

conclusion: activity on shorter timescales in the past is more correlated with

future activity on longer timescales than the opposite (blue zone), this globally

mirrors the dependence between the number of links and the correlation. Note

that this is an anti-Zumbach effet. Methods I and II however suggest a subtler
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Figure 3.10: Left hand-side plots: average correlation between the leading (at timescale
∆t1) and lagging (at timescale ∆t2) activity rates, ρ(∆t1, ∆t2). Right hand-side plots:
t-statistics of the difference ρ(∆t1, ∆t2) − ρ(∆t2, ∆t1); negative value correspond to
activity at small timescales being more correlated to future activity at larger timescale
than reversely. LB dataset.
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(a) Method I: correlation
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(b) Method I: t-stat
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Figure 3.11: Left hand-side plots: average correlation between the leading (at timescale
∆t1) and lagging (at timescale ∆t2) activity rates, ρ(∆t1, ∆t2). Right hand-side plots:
t-statistics of the difference ρ(∆t1, ∆t2) − ρ(∆t2, ∆t1); negative values correspond to
activity at small timescales being more correlated to future activity at larger timescale
than reversely. SQ dataset.
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picture: Zumbach effect emerges (red zone) when ∆t2 > 2hours. Our dataset is

not sufficiently long to report results for ∆t1 or ∆t2 > 4hours. The SQ dataset

only leads to statistically validated TRA in a few vertical stripes.

Our results on trader activity TRA suggest a quite more complex picture of

the interaction between timescales than that of volatility TRA, as reported in

Zumbach and Lynch (2001) and Zumbach (2009). Volatility TRA in FX mar-

kets is the result of the interaction between all the categories of traders from

all brokers-dealers, and seems to be always in the same direction, from large to

small timescales (the red areas in Figs. 3.10 and 3.11). At a more detailed level,

which requires trader-resolved data, and which we here call market nanostruc-

ture, the sign of TRA is not unique and is trader and timescale dependent. We

also note that in the kernel estimates of Chicheportiche and Bouchaud (2014) on

daily equity data, the sign of influence of some timescales may have either sign,

while fitting ZHawkes processes to intraday equity data yields only coefficients

of the same sign (Blanc et al., 2017).

3.5 Conclusions

Extending the SVNs to two timescales opens up the possibility of accessing a

much finer picture of the causal structure of activity in complex systems. Be-

yond the structure of the inferred networks, it also allows one to quantify the

time reversal asymmetry of the system, which leads to some surprises, and

which underlines the fundamental greater phenomenological richness brought

by agent-resolved data.

First, we found that the causal structure of activity of institutional traders

is best investigated over longer periods in comparison to retail traders, which

points to a greater stability of institutional traders in their behaviour. Then, the

direction of the asymmetric influence of timescale on activity depends on the

timescales and may have a sign opposite to that of volatility TRA.

Since the latter is measured on anonymous data that encompasses a much

greater variety of traders and broker-dealers than our datasets do, we can only

speculate at the moment that a more complete dataset, e.g. for equities, will

reveal how these various trader activity TRAs, once combined, yield that of the

volatility.
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3.6 Appendix: Additional figures
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(c) SQ & Tin = 60
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Figure 3.12: Total number of links as a function of the timeslice duration (in seconds)
∆t = ∆t1 = ∆t2, for groups with only self-referential links, self-referential links and links
to other groups and only links to other groups.
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(a) Method I: number of links
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Figure 3.13: Left hand-side plots: average number of lead-lag links for LB (∆t1 leads
on ∆t2). Right hand-side plots: t-statistics of the difference between the number of links
of the pairs (∆t1, ∆t2) and (∆t2, ∆t1); negative values indicate that shorter timescales
link significantly more to longer timescales. Tin = 30

77



(a) Method I: number of links
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(b) Method I: t-stat
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Figure 3.14: Left hand-side plots: average number of lead-lag links for LB (∆t1 leads
on ∆t2). Right hand-side plots: t-statistics of the difference between the number of links
of the pairs (∆t1, ∆t2) and (∆t2, ∆t1); negative values indicate that shorter timescales
link significantly more to longer timescales. Tin = 60
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(a) Method I: number of links
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Figure 3.15: Left hand-side plots: average number of lead-lag links for LB (∆t1 leads
on ∆t2). Right hand-side plots: t-statistics of the difference between the number of links
of the pairs (∆t1, ∆t2) and (∆t2, ∆t1); negative values indicate that shorter timescales
link significantly more to longer timescales. Tin = 90
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Figure 3.16: Left hand-side plots: average number of lead-lag links for SQ (∆t1 leads
on ∆t2). Right hand-side plots: t-statistics of the difference between the number of links
of the pairs (∆t1, ∆t2) and (∆t2, ∆t1); negative values indicate that shorter timescales
link significantly more to longer timescales. Tin = 15
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(b) Method I: t-stat
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Figure 3.17: Left hand-side plots: average number of lead-lag links for SQ (∆t1 leads
on ∆t2). Right hand-side plots: t-statistics of the difference between the number of links
of the pairs (∆t1, ∆t2) and (∆t2, ∆t1); negative values indicate that shorter timescales
link significantly more to longer timescales. Tin = 60
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(b) Method I: t-stat
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(d) Method II: t-stat
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(f) Method III: t-stat
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Figure 3.18: Left hand-side plots: average number of lead-lag links for SQ (∆t1 leads
on ∆t2). Right hand-side plots: t-statistics of the difference between the number of links
of the pairs (∆t1, ∆t2) and (∆t2, ∆t1); negative values indicate that shorter timescales
link significantly more to longer timescales. Tin = 90
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(b) Method I: t-stat
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(d) Method II: t-stat
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(f) Method III: t-stat
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Figure 3.19: Left hand-side plots: average number of lead-lag links for SQ (∆t1 leads
on ∆t2). Right hand-side plots: t-statistics of the difference between the number of links
of the pairs (∆t1, ∆t2) and (∆t2, ∆t1); negative values indicate that shorter timescales
link significantly more to longer timescales. Tin = 120
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(b) Method I: t-stat
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(c) Method II: correlation
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(d) Method II: t-stat
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(e) Method III: correlation
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(f) Method III: t-stat

0

3600

7200

10800

14400

0 3600 7200 10800 14400
∆t1

∆
t

2

−100
−50
0
50
100

Figure 3.20: Left hand-side plots: average correlation between the leading (at timescale
∆t1) and lagging (at timescale ∆t2) activity rates, ρ(∆t1, ∆t2). Right hand-side plots:
t-statistics of the difference ρ(∆t1, ∆t2) − ρ(∆t2, ∆t1); negative value correspond to
activity at small timescales being more correlated to future activity at larger timescale
than reversely. LB dataset, Tin = 30.

84



(a) Method I: correlation

0

3600

7200

10800

14400

0 3600 7200 10800 14400
∆t1

∆
t

2

−1.0
−0.5
0.0
0.5
1.0
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(c) Method II: correlation
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(e) Method III: correlation

0

3600

7200

10800

14400

0 3600 7200 10800 14400
∆t1

∆
t

2

−1.0
−0.5
0.0
0.5
1.0

(f) Method III: t-stat
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Figure 3.21: Left hand-side plots: average correlation between the leading (at timescale
∆t1) and lagging (at timescale ∆t2) activity rates, ρ(∆t1, ∆t2). Right hand-side plots:
t-statistics of the difference ρ(∆t1, ∆t2) − ρ(∆t2, ∆t1); negative value correspond to
activity at small timescales being more correlated to future activity at larger timescale
than reversely. LB dataset, Tin = 60.
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(c) Method II: correlation
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(e) Method III: correlation
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(f) Method III: t-stat

0

3600

7200

10800

14400

0 3600 7200 10800 14400
∆t1

∆
t

2

−100
−50
0
50
100

Figure 3.22: Left hand-side plots: average correlation between the leading (at timescale
∆t1) and lagging (at timescale ∆t2) activity rates, ρ(∆t1, ∆t2). Right hand-side plots:
t-statistics of the difference ρ(∆t1, ∆t2) − ρ(∆t2, ∆t1); negative value correspond to
activity at small timescales being more correlated to future activity at larger timescale
than reversely. LB dataset, Tin = 90.
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(c) Method II: correlation

0

3600

7200

10800

14400

0 3600 7200 10800 14400
∆t1

∆
t

2

−1.0
−0.5
0.0
0.5
1.0

(d) Method II: t-stat

0

3600

7200

10800

14400

0 3600 7200 10800 14400
∆t1

∆
t

2

−100
−50
0
50
100

(e) Method III: correlation
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Figure 3.23: Left hand-side plots: average correlation between the leading (at timescale
∆t1) and lagging (at timescale ∆t2) activity rates, ρ(∆t1, ∆t2). Right hand-side plots:
t-statistics of the difference ρ(∆t1, ∆t2) − ρ(∆t2, ∆t1); negative values correspond to
activity at small timescales being more correlated to future activity at larger timescale
than reversely. SQ dataset, Tin = 15.
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(c) Method II: correlation
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(e) Method III: correlation
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Figure 3.24: Left hand-side plots: average correlation between the leading (at timescale
∆t1) and lagging (at timescale ∆t2) activity rates, ρ(∆t1, ∆t2). Right hand-side plots:
t-statistics of the difference ρ(∆t1, ∆t2) − ρ(∆t2, ∆t1); negative values correspond to
activity at small timescales being more correlated to future activity at larger timescale
than reversely. SQ dataset, Tin = 60.
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Figure 3.25: Left hand-side plots: average correlation between the leading (at timescale
∆t1) and lagging (at timescale ∆t2) activity rates, ρ(∆t1, ∆t2). Right hand-side plots:
t-statistics of the difference ρ(∆t1, ∆t2) − ρ(∆t2, ∆t1); negative values correspond to
activity at small timescales being more correlated to future activity at larger timescale
than reversely. SQ dataset, Tin = 90.
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Figure 3.26: Left hand-side plots: average correlation between the leading (at timescale
∆t1) and lagging (at timescale ∆t2) activity rates, ρ(∆t1, ∆t2). Right hand-side plots:
t-statistics of the difference ρ(∆t1, ∆t2) − ρ(∆t2, ∆t1); negative values correspond to
activity at small timescales being more correlated to future activity at larger timescale
than reversely. SQ dataset, Tin = 120.
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Chapter 4

Conclusions and Outlook

This thesis has focused on how to determine causality in financial markets from

trader-resolved data. In other words, how the macroscopic dynamics of prices is

shaped by the decisions of traders (which we have referred to as the nanoscopic

level).

The dynamics of causal systems depends on whether time runs forward or

backward. As a consequence, the system is asymmetric with respect to the

inversion of the arrow of time (TRA). This implies that a method used to capture

causality must also be sensitive to the inversion of the time arrow t → −t. The

large heterogeneity of the timescales of market participants raises the fascinating

question of how these timescales interact, or, if one can analyse trader-resolved

data, how agents operating at different timescales interact.

An a priori ideal method to determine causality and the mutual influence

of all timescales at once is to fit Hawkes processes (HPs hereafter) to trader-

resolved data. A meticulous investigation of the most active traders in our data,

one by one, showed that their activity patterns are too non-stationary, irregular,

and globally too rare for HPs to produce meaningful fits.

Working with HP with that purpose in mind lead to quantifying the effective

causal strength of the simplest HPs (univariate and multivariate with symmetric

mutual influence kernels). Fitting causal models on the data whose arrow of

time has been inverted, i.e. changing the index of the N events from {1, · · · , N}

to {N, · · · , 1}, is a deceptively simple, yet efficient, method to assess the intrinsic

ability of a model to infer TRA. It turns out that the estimated parameters of the

simplest HPs vary remarkably little when the arrow of time is inverted. Unless

one has sufficiently long time series and one performs proper statistical tests, it is

difficult to distinguish the arrow of time in the estimations in the univariate and

symmetric multivariate case, whereas it is clearly apparent in the asymmetric
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multivariate case.

The situation with empirical data is worse, first of all because there is no

proof that they have been generated by an HP, and also because data collection

does not guarantee the precision of timestamps. These results emphasize the

fact that fits of HPs to financial data must be backed up by proper statistical

tests. We have also found that fits of HPs are more likely to be significant when

the level of endogeneity is high.

Grouping traders and considering the group-level activity solved both the

lack of data for a given trader and the irregular behavior of traders. Using

sliding windows solved another problem, namely that the population of active

traders is not stationary even for a single year. The method known as Statistically

Validated Networks (SVNs) groups traders in a pairwise way according to the

statistically proven (and surprising) coordination between them. Crucially, it

requires choosing a timescale at which the activity of agents is summarized. It

was known that SVNs provide an effective and robust way to cluster agents. A

systematic investigation shows that the most meaningful timescale depends on

the type of investors (retail or institutional), the behaviour of the latter being

better captured by longer timescales (at least in our datasets).

We then introduced a method (with three variants) to infer the lead-lag struc-

ture of trader activity when the activity in the past is determined at one timescale

and the activity in the future at another. It was shown to be effective to infer

strong asymmetries between timescales for institutional FX traders, and much

weaker ones for retail clients. This is yet another proof of the very strong hetero-

geneity of market participants and of the amount of detail lost in the aggregation

process that determines the price evolution.

Possible extensions to and applications of the methods and results of this

thesis include:

1. Is prediction of agent-behaviour improved by feeding machine learning

methods with states of groups which are determined at several timescales?

What does one learn about causality from the respective importance of

each timescale? For example, is there a relationship between the timescales

of the most relevant predictors and the pair of timescales which display

significant asymmetric mutual influence?

2. The fact that clustering with SVNs consistently produces a large group may

be detrimental to the determination of lead-lag links. Lead-lag relation-

ships could be investigated directly from agent to agent, if computational

resources are sufficient.
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3. Larger and longer datasets would be a boost to extend the time-domain in

which TRA can be detected.

4. Finally, the domain of application of the multi-scale lead-lag inference

method introduced here is not limited to traders. Applying it to other

types of datasets, e.g. of consumer behaviour, is a natural extension, and

could be used e.g. to determine which early adopters of new products are

influential.
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Résumé: Cette thèse a pour but d’explorer la structure de

causalité qui sous-tend les marchés financiers. Elle se con-

centre sur l’inférence multi-échelle de réseaux de causalité

entre investisseurs dans deux bases de données contenant

les identifiants des investisseurs.

La première partie de cette thèse est consacrée à l’étude de

la causalité dans les processus de Hawkes. Ces derniers

définissent la façon dont l’activité d’un investisseur (par

exemple) dépend du passé; sa version multivariée inclut

l’interaction entre séries temporelles, à toutes les échelles.

Les résultats principaux de cette partie est que l’estimation

avec le maximum de vraisemblance des paramètres du

processus changent remarquablement peu lorsque la di-

rection du temps est inversée, tant pour les processus

univariés que pour les processus multivariés avec noyaux

d’influence mutuelle symétriques, et que la causalité ef-

fective de ces processus dépend de leur endogénéité. Cela

implique qu’on ne peut pas utiliser ce type de processus

pour l’inférence de causalité sans précautions. L’utilisation

de tests statistiques permet la différentiation des direc-

tions du temps pour des longues données synthétiques.

Par contre, l’analyse de données empiriques est plus

problématique: il est tout à fait possible de trouver des

données financières pour lesquelles la vraisemblance des

processus de Hawkes est plus grande si le temps s’écoule

en sens inverse.

Les processus de Hawkes multivariés avec noyaux

d’influence asymétriques ne sont pas affectés par une

faible causalité. Il est malheureusement difficile de les cal-

ibrer aux actions individuelles des investisseurs présents

dans nos bases de données, pour deux raisons. Nous

avons soigneusement vérifié que l’activité des investis-

seurs est hautement non-stationaire et qu’on ne peut pas

supposer que leur activité est localement stationaire, faute

de données en nombre suffisant, bien que nos bases de

données contiennent chacune plus de 1 million de trans-

actions. Ces problèmes sont renforcés par le fait que les

noyaux dans les processus de Hawkes codent l’influence

mutuelle des investisseurs pour toutes les échelles de

temps simultanément.

Afin de pallier ce problème, la deuxième partie de cette

thèse se concentre sur la causalité entre des échelles

de temps spécifiques. Un filtrage supplémentaire est

obtenu en réduisant le nombre effectif d’investisseurs

grâce aux Réseaux Statistiquement Validés. Ces derniers

sont utilisés pour catégoriser les investisseurs, qui sont

groupés selon leur degré de la synchronisation de leurs ac-

tions (achat, vente, neutre) dans des intervalles déterminés

à une échelle temporelle donnée. Cette partie propose

une méthode pour l’inférence de réseaux de meneurs et

suiveurs déterminés à une échelle de temps donnée dans

le passé et à une autre dans le futur. Trois variations de

cette méthode sont étudiées.

Cette méthode permet de caractériser la causalité d’une

façon novatrice. Nous avons comparé l’asymétrie tem-

porelle des actions des investisseurs et celle de la volatilité

des prix, et conclure que la structure de causalité des in-

vestisseurs est considérablement plus complexe que celle

de la volatilité. De façon attendue, les investisseurs insti-

tutionnels, dont l’impact sur l’évolution des prix est beau-

coup plus grand que celui des clients privés, ont une struc-

ture causale proche de celle de la volatilité: en effet, la

volatilité, étant une quantité macroscopique, est le résultat

d’une aggrégation des comportements de tous les investis-

seurs, qui fait disparaı̂tre la structure causale des investis-

seurs privés.



Title: Causality in Financial Markets: Time Reversal Asymmetry and Multi-Scale Lead-Lag Networks

Keywords: Hawkes process, time reversal asymmetry, statistically validated networks, lead-lag networks

Abstract: This thesis aims to uncover the underlying

causality structure of financial markets by focusing on

the inference of investor causal networks at multiple

timescales in two trader-resolved datasets.

The first part of this thesis is devoted to the causal strength

of Hawkes processes. These processes describe in a clearly

causal way how the activity rate of e.g. an investor de-

pends on his past activity rate; its multivariate version also

makes it possible to include the interactions between the

agents, at all time scales. The main result of this part is

that the classical MLE estimation of the process parame-

ters does not vary significantly if the arrow of time is re-

versed in the univariate and symmetric multivariate case.

This means that blindly trusting univariate and symmetric

multivariate Hawkes processes to infer causality from data

is problematic. In addition, we find a dependency between

the level of causality in the process and its endogeneity.

For long time series of synthetic data, one can discrimi-

nate between the forward and backward arrows of time by

performing rigorous statistical tests on the processes, but

for empirical data the situation is much more ambiguous,

as it is entirely possible to find a better Hawkes process fit

when time runs backwards compared to forwards.

Asymmetric Hawkes processes do not suffer from very

weak causality. Fitting them to the individual traders’ ac-

tions found in our datasets is unfortunately not very suc-

cessful for two reasons. We carefully checked that traders

actions in both datasets are highly non-stationary, and

that local stationarity cannot be assumed to hold as there

is simply not enough data, even if each dataset contains

about one million trades. This is also compounded by the

fact that Hawkes processes encode the pairwise influence

of traders for all timescales simultaneously.

In order to alleviate this problem, the second part of

this thesis focuses on causality between specific pairs of

timescales. Further filtering is achieved by reducing the

effective number of investors; Statistically Validated Net-

works are applied to cluster investors into groups based

on the statistically high synchronisation of their actions

(buy, sell or neutral) in time intervals of a given timescale.

This part then generalizes single-timescale lead-lag SVNs

to lead-lag networks between two timescales and intro-

duces three slightly different methods

These methods make it possible to characterize causality

in a novel way. We are able to compare the time reversal

asymmetry of trader activity and that of price volatility,

and conclude that the causal structure of trader activity is

considerably more complex than that of the volatility for a

given category of traders. Expectedly, institutional traders,

whose impact on prices is much larger than that of retail

clients, have a causality structure that is closer to that of

volatility. This is because volatility, being a macroscopic

quantity, aggregates the behaviour of all types of traders,

thereby hiding the causality structure of minor players.
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