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Abstract
Nowadays, the scientific community has at its disposal gravity and gravity gradient

datasets with unprecedented accuracy and spatial resolution that enhances our knowl-
edge of Earth gravitational field at various scales and wavelengths, obtained from ground
to satellite measurements. In parallel with gravimetry, the advancement of satellite ob-
servations provides the community with more detailed digital elevation models to reflect
the Earth’s structure geometry. Together, these novel datasets provide a great oppor-
tunity to better understand the Earth’s structures and dynamics at local, regional, and
global scales. The use and interpretation of these high-quality data require refinement
of standard approaches in gravity-related data processing and analysis. This thesis con-
sists of a series of studies aiming to improve the precision in the chain of gravity and
gravity gradient data processing for geodynamic studies. To that aim, we develop a tool,
named GEEC (Gal Eötvös Earth Calculator) to compute precisely the gravity and gravity
gradients effects due to any mass body regardless of its geometry and its distance from
measurements (Saraswati et al, submitted). The gravity and gravity gradients effects are
computed analytically using the line integral solution of an irregular polyhedron. The
validations at local, regional, and global scales confirm the robustness of GEEC’s perfor-
mance, where the resolution of the model, that depends on both size of the body mass
and its distance from the measurement point, control strongly the accuracy of the results.
We present an application for assessing the optimum parameters in the computation of
gravity and gravity gradients due to topography variations. Topography has a major
contribution in Earth gravitational attraction, therefore the estimation of topography ef-
fects must be carefully considered in the processing of gravity data, especially in areas of
rugged topography or in large-scale studies. For high-accuracy gravity studies at a global
scale, the topography correction process must consider the topography effect of the entire
Earth. But for local to regional applications based on relative variations within the zone,
we show that truncated topography at a specific distance can be adequate. When using
a truncation distance that equals with the dimension of the study area, errors 1-10 mGal
are obtained. The use of 15° ensure a precision of 1 mGal. For gravity gradient, to
obtain 1 E of precision, a truncation distance of 8.5° is required. To obtain 0.01 E of
precision, the truncation distance must be set at 40°. Lastly, we approach the issue: Are
GOCE measurements relevant to obtain a detailed image of the structure of a subduct-
ing plate, including its geometry and lateral variation? The results of gravity gradients
forward modelling using synthetic slab models demonstrate that the detailed structures
of slab geometry are detectable by gravity gradients at GOCE mean altitude (255 km).
However, in the application to the real case of Izu-Bonin-Mariana subduction zone, the
second-order geometric features of the subducting plate (e.g., slab tear) are difficult to
be detected due to poor spatial resolution and accuracy of the currently available global
crustal model. We show that to be able to assess the geometry of a slab in the second-
order, the estimation of crustal effect using a global crustal model with an accuracy better
than 1 km is mandatory.
Keywords: gravity field, space gradiometry (GOCE), numerical development, forward
modelling, optimization, geodynamics
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Résumé
La communauté scientifique dispose aujourd’hui de jeux de données gravimétriques et

gradiométriques d’une précision et d’une résolution spatiale sans précédent. Ces données
obtenues à partir de mesures au sol, d’acquisitions aériennes et d’observations satelli-
taires permettent d’améliorer notre connaissance du champ gravitationnel de la Terre à
diverses échelles et longueurs d’onde. Les observations satellitaires fournissent également
à la communauté des modèles numériques de terrain globaux de plus en plus détaillés qui
permettent une meilleure prise en compte de la géométrie fine des structures géologiques.
Ensemble, ces nouveaux jeux de données offrent une opportunité unique de mieux com-
prendre les structures et la dynamique terrestre aux échelles locale, régionale et glob-
ale. L’utilisation et l’interprétation de ces données de haute qualité nécessitent d’aller
au-delà des approches standards en matière de traitement et d’analyse des données grav-
imétriques et gradiométriques. Focalisée sur des applications géodynamiques, cette thèse
consiste en une série d’études visant à améliorer la précision dans la chaine de traitement
et d’interprétation de ces données. Pour cela, un nouvel outil a été développé. Intitulé
GEEC (Gal Eötvös Earth Calculator), il permet de calculer précisément les effets grav-
imétriques et gradiométriques dus à un corps massique, quelles que soient sa géométrie
et sa distance aux mesures (Saraswati et al, submitted). Ces effets sont calculés analy-
tiquement en utilisant la solution intégrale le long des arrêtes d’un polyèdre irrégulier.
Les validations aux échelles locale, régionale et globale ont permis de quantifier les perfor-
mances et la robustesse de GEEC. Nous montrons qu’il est possible de définir une emprise
optimale assurant rapidité de calcul et précision des résultats, qui dépend à la fois de la
taille du corps massique et de sa distance aux points de mesure. L’estimation de l’effet
de la topographie doit être soigneusement pris en compte dans le traitement des données
gravimétriques et gradiométriques, en particulier dans les zones de topographie accidentée
ou dans les études à grande échelle. Dans un premier temps, nous montrons que, pour les
études gravimétriques de haute précision, la correction des effets topographiques sur les
données satellitaires nécessite d’utiliser une emprise globale. A l’inverse, une topographie
tronquée sur une distance égale à la dimension de la zone étudiée peut être adéquate dans
l’analyse de variations relatives à des échelles locales et régionales, générant des erreurs
de 1 à 10 mGal sur les mesures relatives. Plus généralement, une distance de troncature
de 15° assure une précision de 1 mGal. Dans le cas de données de gradient de gravité,
une distance de troncature de 8,5° (resp. 40 °) est requise pour obtenir une précision rel-
ative d’environ 1 E (resp. 0,01 E). Dans la troisième partie de cette thèse, nous abordons
le problème suivant : les données du satellite GOCE sont-elles pertinentes pour obtenir
une image détaillée de la structure d’une plaque de subduction (slab), y compris de sa
géométrie et des variations latérales ? L’analyse d’une série de modèles synthétiques de
slab montre que les structures détaillées de la géométrie sont détectables par les données
de gradient de gravité à l’altitude moyenne de GOCE (255 km). Cependant, l’application
au cas réel de la zone de subduction d’Izu-Bonin-Mariannes montre que la détection des
caractéristiques géométriques de second ordre (par ex. déchirure de slab) reste difficile, en
raison de la faible résolution spatiale des données et, principalement, de la mauvaise qual-
ité des modèles d’épaisseur de croûte actuellement disponible. Nous montrons que, pour
pouvoir étudier les détails de géométrie d’un slab, modèle régional ou global d’épaisseur
de croûte est nécessaire avec une précision supérieure à environ 1 km.
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Mots-clefs : champ de pesanteur, gradiométrie spatiale (GOCE), développement numérique,
modèle directe, optimisation, géodynamique
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Introduction

The figure and the gravity field of the Earth

The question of the figure of the Earth was pondered in antiquity. The first conception
of the figure of the Earth is Earth’s shape as a planar disk. This concept was believed in
many ancient cultures. However, with advancements in geodesy together with astronomy
and geography, the definition of the figure of the Earth progressed.

The concept of a spherical shape of the Earth was firstly proposed by Pythagoras
around 500 B.C. This spherical concept was accepted in the time of Aristotle (around
300 B.C.) and reinforced by astronomical observations of the round shadow of the Earth
during lunar eclipses and the noticeable rising of an approaching ship on the horizon.
Around 240 B.C., Eratosthenes calculated the radius of the Earth using the principle
of the arc-measurement method by measuring the angle of the sunrays in Syene and
Alexandria and obtained about 10% of error.

In the XVIth and XVIIth centuries, new observations and ideas from physics and
astronomy resulted in new ideas about the figure of the Earth, starting with the ellipsoidal
Earth model. In 1666, J. D. Cassini observed the flattening of the poles of Jupiter.
Later, the astronomer J. Richer discovered that a one-second pendulum regulated in Paris
had to be shortened to regain oscillations of one-second for measurements in Cayenne
(1672-1673). This observation was confirmed by E. Halley when comparing pendulum
measurements in St. Helena to those taken in London (1677-1678). Based on the law of
gravitation, Isaac Newton proposed a rotational ellipsoid as the equilibrium figure for a
homogeneous, fluid, rotating Earth with a flattening f . This result by Newton was also
confirmed by other astronomers and physicists, such as C. Huygens, Maupertuis, and
Clairaut.

In the end of XIXth century, P. S. Laplace, C. F. Gauss, and others recognized that
the assumption of an ellipsoidal Earth model was no longer tenable at a high level of
accuracy. The deflection of the vertical, to which new measurements referred, from the
ellipsoidal normal could no longer be ignored. This led Gauss to improve the definition
of the figure of the Earth and propose the definition of the geoid as the mathematical
surface of the Earth that corresponds to the surface of gravity equipotential.
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Nowadays, the concept of planar approximation of the Earth surface is still utilized.
For example in plane surveying (e.g., cadastral survey, engineering survey, topography sur-
vey), the details of the Earth’s surface are determined at a local scale, thus the curvature
of the Earth can be generally ignored. For precise geodetic and global-scale applications,
a geodetic reference Earth (normal Earth model, geoid, mean-Earth ellipsoid) is required.

The Earth gravity field for Earth dynamics studies

Figure 1: Major dynamic processes in solid Earth studies and layers in which the Earth
is differentiated, extracted from Johannessen (1999).

The gravity field of the Earth is an essential quantity for probing the interior structure
of the Earth and for modelling its dynamical behaviour under various circumstances from
the core up to the outer lithosphere layer. Understanding the Earth gravity field also
provides information about the interior structure of the Earth (Figure 1). For example,
understanding the geoid at a large scale has brought important constraints on the viscosity
of the mantle (Hager et al., 1985; Forte and Mitrovica, 2001). In this case, density
anomalies in the mantle deform its upper and lower interfaces as a function of the viscosity
in the middle, and the related geoid is sensitive to this effect. Additional examples
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are the joint analysis with seismic tomograph, topography, and analytical models that
allows a better characterization of the origin of intraplate volcanism (Panet et al., 2006;
Cadio et al., 2012; Adam et al., 2014). The relationship between gravity and topography
can also highlight the properties of convection in the upper mantle (Morgan, 1972) and
mechanisms of swell support (Cadio et al., 2012). Joint analysis of the gravitational field
with topography and other geophysical information is also capable of constraining the
thermo-mechanical behavior of the lithosphere (Burov and Diament, 1995, 1996; Cattin
et al., 2001; Berthet et al., 2013). The sensibility of the gravity field to the mass variations
also allows to study mass redistribution at depth (Tiberi et al., 2003; Panet et al., 2014)
and at the surface (Ramillien et al., 2004; Kusche and Schrama, 2005; Chanard et al.,
2014).

Accurate determination of the Earth’s gravity field over wide spatial scales is of funda-
mental importance for understanding the structure and dynamics of the Earth, including
to resolve the compositional, mechanical, or thermal structure of the deep crust and upper
mantle, and to explain the fundamental aspects of tectonic processes (Figure 1). Together
with the accuracy of gravity datasets, the spatial resolution of the gravity field is also a
key to better understand those geodynamical processes.

In solid-Earth physics, the gravity field model is utilized to elucidate mass variations
in several domains, such as in oceanic and continental lithosphere, ice, and mantle. These
variations can be well-constrained by knowledge of the gravity field that potentially have
significant contributions to the understanding of the occurrence of tectonic motions or
quantification of seismic hazards (Johannessen, 1999). This type of application can be
achieved with adequate accuracy and spatial resolution. The requirements for measuring
the static gravity field as it relates to understanding the solid Earth are schematically
illustrated in Figure 2. For example, in order to observe the mechanical and properties of
a swell, we require gravity data with a precision better than 5 mGal and a spatial accuracy
that is higher than ∼200 km. This necessity can be fulfilled by using the GOCE (Gravity
field and steady-state Ocean Circulation Explorer) dataset. In contrast, mapping bedrock
layers in deep oceanic basins, where the reliefs remain unmapped due to thick sediment
cover, is difficult using satellite data resolution; it requires a spatial resolution higher
than today’s highest resolution of satellite gravimetry data, but it is still observable
using airborne surveys. As an alternative to gravimetry measurement, Sandwell et al.
(2014) constructed a marine gravity model from satellite altimetry datasets (Jason-1 and
Cryosat-2).

Unprecedented measurement techniques in gravimetry, from ground to airborne and
satellite acquisitions, have significantly improved the accuracy, spatial resolution, and
spatial scale of gravity-related datasets. The local gravity field is normally determined
with ground surveys, where the accuracy can reach up to 1 µgal (e.g., Niebauer, 2015).
Regional-scale gravity measurements are mostly accomplished by airborne gravity surveys
that can reach an accuracy up to 1 mGal and a spatial resolution up to 2 km (Lane, 2004).
The Earth’s gravity field at a global scale is commonly acquired by satellite measurements.
Starting with the launch of Sputnik in 1957, the techniques of gravity data acquisition
from space are continuously enhanced. The GRACE (Gravity Recovery and Climate
Experiment) mission, continued by GRACE Follow-On, is capable of measuring the Earth
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Figure 2: Summary of accuracy requirements for gravity measurements to study divers
geodynamical processes as function of wavelength, modified from NASA (1987) and Jo-
hannessen (1999). Red lines indicate the maximum gravity accuracy and spatial resolution
that can be attained by recent gravimetry advances at satellite and airborne acquisition
altitudes.

gravity field with an accuracy of 5 mGal with spatial resolution of 300-400 km. Satellite
data accuracy and spatial resolution were improved by the launch of the GOCE mission in
2009. Placed on a lower orbit, it enhanced the spatial resolution of satellite measurement
up to ∼100 km (Rummel et al., 2011) with an accuracy up to ∼1 mGal and 10 mE.

In the solid Earth, gravity is commonly used in combination with topography at a
commensurate resolution to elucidate the structures and dynamics of the Earth at depth.
Topography effect estimation in gravity data processing is thus essential because of its
major effect in the Earth’s gravity field. Traditionally, gravitational contribution of the
topography at local and regional scales is calculated using the Bullard (1936) approach,
firstly initiated by Hayford and Bowie (1912), where the topography effect is calculated
using a Hammer (1939) template mass subdivision (Figure 3). It takes into account the
effect of local topography within a distance of 1.5° (∼167 km) from measurements, and
the topography masses in the vicinity are approximated in the planar field. However,
for regional and global scale applications, topography masses have to be considered to
distances larger than 1.5° (cf. Mikuška et al., 2006; Szwillus et al., 2016) and the sphericity
of the Earth must be taken into account in order to obtain a high precision (not less than
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the accuracy of the gravity measurements).
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Figure 3: Hammer (1939) template for mass subdivision to estimate the gravity signature
of the surrounding topography. Topography masses around the observation point P are
divided into several mass compartments q by concentric circles of increasing radii.

The availability of satellite imagery, such as the one associated with the Pléiades
mission, allows obtaining Digital Elevation Models (DEM) and Digital Terrain Models
(DTM) at a very high resolution. For example, these DEMs are used for morpho-tectonic
studies that allow constraining slip rates along seismogenic faults or to define erosion
and fluvial incision by mapping river terraces (e.g., Berthet et al., 2014; Ferry et al.,
2014). Although such high-precision data have not been used to calculate the gravitational
effect of topography, it opens a possibility to improve the accuracy of topography effect
estimations, notably for microgravity studies or other precise analyses of ground gravity
surveys.

Figure 4 illustrates the typical workflow of gravity-related data processing from the
data collection to data processing and interpretation. The use of gravity-related data at
a high accuracy must be followed by meticulous data processing in order to maintain the
precision of the results. These processes consist in gravity corrections and, if required,
gravity reductions of known sources. This requires definition of the normal figure of
the Earth, the topography, as well as other known sources with a high accuracy and an
adequate spatial resolution. In parallel, these high-quality datasets must be processed
by effective and precise approaches and computation tools. Such computation tools that
allow gravity forward modelling are also needed in the interpretation steps, for example
in performing stochastic analysis, and, when the gravity residual is properly extracted,
to obtain well-constrained information on the geometry and dynamics of anomalous deep
masses.

The availability of these new datasets, i.e. gravity-field related data and Earth to-
pography model, provides a better spatial coverage and more accurate observations of
the gravity field. The use and the interpretation of these higher quality data require re-
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Figure 4: Gravity-related data processing workflow. The blue box indicates the data
acquisition process, yellow boxes are related to the data correction and reduction, and
green box is related to the interpretation process. The major part of work during this
thesis is marked with the red box.

finements of the standard approaches. In particular, joint approaches combining ground,
airborne, and satellite measurements are now needed to tackle many open questions, such
as:

• What is the most efficient approach to estimate the gravitational attraction of a
known mass body at multi-scale applications and for multi-altitude gravity obser-
vations?

• In the topography correction, how far must topography be taken into account, as
a function of the dimension of the study zone and the altitude of the gravity and
gravity gradients used in the study?

• Can the sensibility of satellite gravity gradient data allow the detection of second-
order geometrical properties of subducting plates, i.e., more detailed geometry prop-
erties, for geodynamic application at a regional scale?

In this thesis, my work is focused on the development of a new computation tool
that is adaptable for processing of all gravity datasets, including gravity reductions and
forward modeling as a part of interpretation. This tool development is followed by an ap-
plication on the analysis of the optimum topography truncation distance, as an important
factor in topography correction and assessment. Next, in a second application, I attempt



Introduction 21

to understand and evaluate GOCE gravity gradients in relation with the second-order
geometry properties of subducting plates, i.e. the lateral variations of subduction angles.

Structure of the manuscript

In this thesis manuscript, the first chapter presents the state of the art and basic
theories of gravity field of the Earth that are used during this thesis. In this chapter, a
review of the advancements in gravimetry and gradiometry up to today is also included.

The developed tool to calculate the gravity and gravity gradient effect of a mass body is
presented in Chapter 2. This section is mostly presented in a scientific article submitted
to Journal of Geodesy. Complementary information about the tool development and
additional information that are not reported in the submitted paper are also presented.

Thereafter, this tool development is followed by the application on topography cor-
rection that is presented in Chapter 3. In this section, we quantify the relative error
produced by variations in the topography truncation distance. We discuss the optimum
truncation distance for local- and regional-scale applications to obtain a given precision in
relative gravity and gravity gradient surveys. To highlight the importance of the precision
in topography effect estimation and its implication to assess the compensation degree of
topography in continental domain, I include the scientific paper by Cadio et al. (2016)
(published in GJI) to which I participated during my thesis. This paper can be found in
Appendix A.

Chapter 4 presents an application of GOCE gravity gradients to estimate the geom-
etry of a subducting plate, including lateral variations of the subduction angle and its
border. A preliminary analysis using synthetic slab models is presented, followed by an
application to the Izu-Bonin-Mariana subduction zone. Finally, I conclude the work in
this thesis by summarizing the results and proposing some perspectives for improvements
in future works.
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Chapter 1

Gravity and the Earth’s Shape

La gravité est un mystère du corps inventé pour cacher les défauts de l’ésprit.
[Gravity is a mystery of the body invented to conceal the defects of the mind.]

— La Rochefoucauld

The purpose of this chapter is to present the fundamentals of geopotential theory,
including its spatial derivations, in sufficient details to assure a full understanding of the
later chapters. Summaries about current gravity data acquisitions are also presented in
this chapter. A simple forward modelling in gravity and gravity gradients is presented as
a guide to interpret the gravity and gravity gradients distributions on the later chapters.
Solutions to estimate the normal gravity field and its spatial derivations are presented
in the end of this chapter, that is used later in the gravity and gravity gradients data
processing.

1.1. Gravity

A mass rotating with Earth experiences the gravitational force of the Earth’s masses
and the centrifugal force due to the Earth’s rotation. The sum of these forces is called
gravity. If the Earth is a sphere, non rotational, and only consists of a homogeneous
density, the gravitational acceleration will be constant on its surface. However, due to
the rotation, the Earth topography, and lateral variations of density, the gravitational
acceleration varies. As a result, the rotation deforms the Earth: it is flattened on the
poles and bulged on the equator. It implies to the variation of gravitational as a function of
latitude, where it is more important on the poles than along the equator. The gravitational
field of this spheroid (or ellipsoid of revolution) is called the reference of gravitational field.
Consequently, the local variations of the gravitational field produced by the topography
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and the density heterogeneities inside the Earth constitute gravimetric anomalies with
respect to this model.

1.1.1. Gravitational Potential and Its Spatial Derivations

According to Newton’s gravitational law, two point masses m1 and m2 separated by
a distance r attract each other with an attractive force

~F = −Gm1m2

~r2 (1.1)

where G is the gravitational constant,

G = 6.67408× 10−11m3kg−1s−2 (1.2)

The minus sign in the force equation indicates that the force is attractive.
The masses m1 and m2 attract each other in a symmetrical way. However, it is

convenient to call one of them as the attracting mass and the attracted mass for the
other. Where the attracted mass is equal to unity and denote the attracting mass by m,
the Eq. (1.1) becomes

F = −Gm
r2 (1.3)

This force is derived from a scalar gravitational potential function V , such as F =
−∇V , where

V = G
m

r
(1.4)

If we have a system of several point masses m1,m2, . . . ,mn instead of only one mass
m, the potential of the system is the sum of the individual contributions

V = G
n∑

i=1

mi

ri

(1.5)

The gravitational acceleration ~a may be presented as the gradient of the potential V ,

~a = −∇V =
[

∂V
∂x
, ∂V

∂y
, ∂V

∂z

]
(1.6)

and the magnitude of the gravitational acceleration a can be defined as

a = G
n∑

i=1

mi

r2
i

(1.7)

1.1.2. Centrifugal Attraction

The centrifugal force arises as a result of the Earth’s rotation about its axis. This
force acts on an object that is affected by the rotation. In the case of satellite gravimetry,
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the satellite does not rotate with the Earth, thus only gravitation acts on the satellite
(Torge, 2001).

Assuming a rotation of constant angular velocity ω around the fixed rotational axis.
The centrifugal acceleration on a unit mass is given by

~z = ω2~p (1.8)

where p is the distance from the axis of rotation. With the geocentric latitude ϕ, we have

p = r cosϕ (1.9)

thus the magnitude of the centrifugal acceleration is

z = ω2r cosϕ (1.10)

With
~z = ∇Z (1.11)

and Z, the centrifugal potential can be obtained with

Z = 1
2ω

2 (r cosϕ)2 (1.12)

x

y

z
ω

Pp

r

φ

Figure 1.1: The centrifugal force of the point P that is located on the (r, ϕ) with the
angular velocity ω. ~p is the direction vector of the point P from the centrifugal axis z.

1.1.3. Gravity Attraction

The gravity acceleration, or gravity ~g, is the result of gravitation ~a and centrifugal
acceleration ~z,

~g = ~a+ ~z (1.13)
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Similar with the gravity acceleration, the gravity potential W is also the sum if the
potential gravitational V and centrifugal Z

W = V + Z (1.14)

and thus the gravity acceleration also can be derived from the potential

~g = ∇W (1.15)

The magnitude g is simply called gravity. The direction of gravity vector ~g is parallel to
the plumb line, and hence defined the local vertical direction.

1.1.4. Second Spatial Potential Derivation and Its mathematical
Properties

The acceleration is the first spatial derivative of the potential in three independent
orthogonal axes. The second order partial derivatives of the potential, which is also the
first order spatial derivatives of the acceleration, is called gravity gradients, denoted as ~T .
In vector notation, it can be written as

~T = ∇~g = ∇∇W (1.16)

For example, in a Cartesian coordinate system x, y, z, the tensor components of ~T
can be written as

~T =

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

 =



∂2W

∂x2
∂2W

∂x∂y

∂2W

∂x∂z
∂2W

∂y∂x

∂2W

∂y2
∂2W

∂y∂z
∂2W

∂z∂x

∂2W

∂z∂y

∂2W

∂z2


(1.17)

In SI unit (Système International d’unités), the acceleration is expressed in m.s−2

and the gravity gradient is in s−2. Other accepted and more convenient units for these
parameters are:

- for the gravity g, in milligal or mGal, where 1 mGal = 10−5 m s−2,
- for the gravity gradients, in Eötvös, where 1 E = 10−9 s−2,
- thus, 1 E = 10−4 mGal m−1.

The gravity acceleration has property

curl ~g = curl∇W = 0 (1.18)
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follows from the corresponding properties of gravitation and centrifugal acceleration. In
other words, ~g is an irrotational field. Therefore, for any orthogonal coordinate system,
the operator of bi-gradient ∇∇ is symmetric, thus

Tij = Tji ∀(i, j) ⊂ {x, y, z} (1.19)

Outside the attracting bodies, the gravitational potential satisfies Laplace’s equation
(Blakely, 1996),

∆V = ∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 = 0 (1.20)

This solution is called harmonic functions (Hofmann-Wellenhof and Moritz, 2005). For
the gravity potential outside the attracting bodies, there is the influence of the centrifugal
force. As consequence,

∆W = 2ω2 (1.21)

In this study, we are only interested in the gravitational part. Therefore, the gravity
gradients that will be discussed in this study is the result of the spatial derivative of the
gravitational potential. According to Eq. 1.20, the trace of gravity gradients ~T in the
orthogonal coordinate system becomes

tr(~T ) =
∑

Tii = 0 ∀i ⊂ x, y, z (1.22)

In consequence of the Eq. (1.19) and (1.22), has only five independent components at
any observation point.

1.2. Gravity Data Acquisition

Gravimetry deals with the measurement of the gravity acceleration (hereinafter called
gravity) and the gravity gradients. In general, gravimetry is divided into two type of
measurements, absolute and relative measurements. While absolute gravimeters measure
the absolute gravity, relative type of gravimeters measure the variations of the gravity
field with time and space. A global gravity reference system is required to refer local and
regional gravity network to a common standard (Torge, 2001).

Mass density inhomogeneities as well as mass displacement over time causes spatial and
temporal variations on the gravitational attraction measured by the gravimeter or gravity
gradiometer. In this context, gravity observations can be used to derive information in
various domains, including mineral exploration, solid earth applications, water storage
estimation, or global water current mapping.

Nowadays, the advancement of technologies allows us to measure the gravity field
with unprecedented accuracy at various levels of measurement. Currently, gravity mea-
surements are performed using terrestrial, airborne, or satellite platforms (Figure 1.2).
Those levels of measurements provide different spatial resolutions of gravity attractions,
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the further from the Earth surface, a lower spatial resolution it gives. From the point of
view of the survey coverage, ground surveys normally performed in a relatively smaller
network than airborne and satellite missions due to the limitation of terrain accessibil-
ity. The combination of those three level datasets can be useful for the construction
of Earth gravity field models, e.g. Earth Gravitational Model 1996 (EGM96) (Lemoine
et al., 1997), EGM2008 (Pavlis et al., 2008), and Word Gravity Map 2012 (WGM2012)
(Balmino et al., 2012). Together, these datasets can also be used to build global gravity
field models and to assess mass distributions at depth in order to provide information at
various scales from regional lithospheric structures to a very local and shallow anomalous
bodies.

Satellite Missions

Airborne surveys

Ground Surveys

22
5 

- 5
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m
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- Global scale mapping
- Long wavelengths (> 80 km)

- Regional scale mapping
-  Intermediate wavelengths (50 m - 10 km)

- Local to regional scale mapping
- Short wavelengths (< 200 m)

Figure 1.2: A simplified scheme showing the present-day available gravity data-sets, which
include measurements from satellite missions as well as airborne or ground surveys.

Recent conventional gravimeters provide the measurement of the vertical component
of gravity (gz). Yet the use of accelerometers, especially on the moving platforms like
airborne of satellite, provide us with gravity in three directions in orthogonal system
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(gx, gy, gz).
When measuring the gravity gradients, the gradients are obtained by calculating the

difference between pairs of measured accelerations that are separated by a known distance.
It can be written in a mathematical notation,

Tij = ∂gi

∂j
= lim

dj→0

gi

(
j + dj

2

)
− gi

(
j − dj

2

)
dj

(1.23)

where gi is the gravity acceleration in the i-direction, dj is the distance in the axes j, and
i, j ⊂ x, y, z (cf. Figure 1.5 that visualize the gradiometer configuration of GOCE as an
example).

1.2.1. Terrestrial Gravity Measurements

The first terrestrial gravity measurement was performed by using the pendulummethod,
that is based on the measurement of the period and the length of a freely swinging pen-
dulum (Torge, 2001). However, this method is no longer used due to its limitation in
accuracy. Nowadays, gravity instrumentation has been driven by the need of a better
precision, shorter time for each measurement, and the ease of use (Torge, 1989; Dubois
et al., 2011; Crossley et al., 2013). In terrestrial gravimetry, there are two domains of
measurement type that are widely used, absolute and relative measurements.

Absolute gravimeters are based on the measure of time and distance of a free-falling
object, as conceptualized by Galileo Galilei. To obtain a high precision, the time and
distance measurements of the free fall object should be done in a very accurate way (Van
Camp et al., 2017). Essentially, recent absolute gravimeters are equipped with an atomic
clock to measure the time precisely, a laser interferometer to measure the distance, a
vacuum chamber where the tested mass travels vertically, and computing unit for data
acquisition and the calculation of gravity. The absolute gravimeter, such as Micro-g
LaCoste FG5, can obtain an accuracy of 1-2 µgal (Sasagawa et al., 1995; Niebauer et al.,
1995). The A10 portable absolute gravimeter, which is smaller than an FG5 is 10 times
less precise and accurate than an FG5 gravimeter (Van Camp et al., 2017). Beside those
classical free-fall gravimeters, quantum free-fall gravimeters are recently developed (Debs
et al., 2013; Bonvalot et al., 2016). One of them is the Absolute Quatum Gravimeter
(AQG), developed by Muquans. In this type of instrument, the classical free-fall mass
is replaced by cold atoms where the position and the time of their motions are observed
precisely. Absolute gravimeters are widely used for measuring temporal variations of
gravity field, for example for observing postglacial rebound and tectonic activities (e.g.,
Larson and Van Dam, 2000; Francis et al., 2004) and hydrological variations (Jacob et al.,
2008).

For relative gravimeters, there are two instrument types that are widely used, spring
gravimeters and superconducting gravimeters. In spring gravimeters, a proof mass is
suspended by using a mechanical spring. Some widely used instruments such as Micro-g
LaCoste gPhone, Scintrex CG-5, and recent Scintrex CG-6 Autograph with an accuracy
up to 5 µgal (Niebauer, 2015). When gravity changes, the force acting on the proof mass
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Figure 1.3: FG5 (a) Micro-g LaCoste absolute gravimeters, the Absolute Quantum
Gravimetry (AQG) from Muquans (b), Scintrex CG-6 Autograph (c) by Scintrex Ltd.,
and iGrav superconducting gravimeter (d) (Hinderer et al., 2015).

will change, and it affects in a change in the length of the supporting spring. Because it
is easy to transport, the spring instruments are mostly used for regional gravity mapping.

Superconducting gravimeter is the most precise relative instrument, approximately
0.01 µgal (Hinderer et al., 2015). Instead of a mechanical spring, it consists of a hollow
superconducting sphere as a proof mass that levitates in a constant magnetic field gen-
erated by currents in a pair of superconducting coils (Hinderer et al., 2015; Van Camp
et al., 2017). Because of its complexity of the supporting instruments and materials, this
superconducting gravimeter is not easily moved. It is mostly used to measure temporal
variations.

To obtain the related absolute gravity value from relative measurements, the stations
of the relative measurements should be tied into one or more absolute gravity bases (Torge,
1989; Seigel, 1995).

1.2.2. Airborne

Located in the mid-altitude (Figure 1.2), airborne gravimeters bring valuable infor-
mation on static and dynamic geophysical phenomena and bridge the gap between ter-
restrial and satellite measurements of the static gravity field. Airborne systems became
an alternative for a rapid regional gravity mapping for several applications, especially for
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exploration reconnaissance and geodetic applications.
Since the first era of airborne gravimetry, gravimeters and also gradiometers have

been developed in various measurement techniques, such as using zero-spring length (e.g.
LaCoste Romberg and TAGS-7 dynamic gravimeter from Micro-g LaCoste, GT-1A and
GT-2A by Gravimetric Technologies) and using accelerometer measurement (e.g. Air-
Grav System by Sander Geophysics Ltd. (Sander et al., 2005), Falcon Airborne Gravime-
ter (AG) and Airborne Gravity Gradiometer (AGG) by CGG). The instrument is gyro-
stabilized gimbals platform to maintain direction in space and to provide vertical stability.

The precision of recent airborne surveys datasets varies between 0.1 - 5 mGal in term
of gravity acceleration and 3 - 6 E in term of gravity gradient. The spatial resolution of
airborne surveys also varies depending of the survey altitude, varies from 500 m up to 6.5
km above sea level with the resulting spatial resolution approximately 5 - 10 km (Forsberg
and Olesen, 2007) and can reach up to 50 m in Helifalcon system (Chen and Dransfield,
2016). Some reports and evaluations about previous airborne survey can be found in
Christensen et al. (2015); Chen and Dransfield (2016); Dransfield (2010); Dransfield and
Lee (2004); H. P. Elieff and Sander (2015); Damiani and Youngman (2011); Forsberg and
Olesen (2007); Hannah (2001); Sander et al. (2005); Seigel (1995); Verdun et al. (2003).

1.2.3. Satellite Mission

Since the launch of Sputnik I in 1957, artificial satellites have been used for geodetic
purposes, including the determination of Earth’s gravity field and rotation parameters.
In the beginning of satellite launch, the knowledge of the very long-wavelength of gravity
signal was obtained by the analysis of the orbit perturbations of the artificial satellite,
which is caused by the flattening of the Earth and also the irregular distribution of masses
inside and on the Earth. By accurately measuring the deviations of the satellite track
from its designed orbit, it can be used to compute the forces it undergoes, among them is
the gravity force. For this purpose, the satellites are equipped with rectoflectors to obtain
telemetric data for positioning. Some examples of the satellites built for this purpose are
Starlette (1975) and LAGEOS (1976).

On higher resolution, gravity field over oceanic domain also can be obtained from
satellites altimetry, among them are Topex-Poseidon, Jason, Geosat, ERS, and Cryosat
(Sandwell and Smith, 1997; Andersen and Knudsen, 1997; Sandwell and Smith, 2009).
Satellite altimetry measures the altitude of the satellite above the closest point of sea
surface, which is the approximation of the geoid surface, using a pulse-limited radar
(Sandwell and Smith, 1997). Global precise tracking along with orbit dynamic calculations
allow to obtain the geoid with an accuracy of tens of centimeters. The geoid obtained
from this measurement then is processed using Meinesz (1928) or Stokes (1849) method
to obtain gravity anomaly.

The advancement of the gravity field measurement on global scale coverage with an un-
precedented accuracy was importantly improved after the launch of satellite gravimetry
missions CHAMP (CHAllenging Minisatellite Payload, 2000 to 2010), GRACE (Grav-
ity Recovery and Climate Experiment, launched 2002) and GOCE (Gravity Field and
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CHAMP - Credit: Astrium GmbH GRACE- Credit: NASA/JPL-Caltech GOCE - Credit: ESA /AOES Medialab

Figure 1.4: CHAMP, GRACE, and GOCE satellite missions.

Steady-State Ocean Circulation Explorer, 2009 to 2013) (Figure 1.4). Satellite gravime-
try normally occupies the low Earth orbit (LOE) (Hofmann-Wellenhof and Moritz, 2005),
with altitude is lower than 2000 km.

One of the objectives of the CHAMP mission was to accurately determine the long-
wavelength features of the static Earth gravity field. It flied at the altitude of 400 km in
average. The gravity field is also deducted from the analysis of the orbit perturbation,
but this time it was measured continuously and accurately using Global Navigational
Satellite System (GNSS) and it was completed with the measurements of a three-axial
accelerometer at the center of mass of CHAMP. It allowed to separate the forces acting
on the satellite surface (e.g. satellite drag or radiation pressure) from the gravitational
forces (Barthelmes, 2018; Hofmann-Wellenhof and Moritz, 2005). The best global gravity
field model (GGM) from CHAMP spatial datasets has a precision up to 0.5 mGal in term
of gravity anomaly and 5 cm in term of geoid with a spatial resolution of 400 km (Reigber
et al., 2005).

After CHAMP, there was GRACE, the twin satellite mission. The main objectives
of GRACE are to determine the global high-resolution of the Earth gravity field in tem-
poral variations. The initial altitude of this mission is between 485 and 500 km with
a track repetition is approximately 15 days. Because GRACE measures continuously,
GRACE datasets are widely used for spatio-temporal variations in global scale. The two
GRACE satellites are separated on 220 km apart. The satellites are equipped with GNSS
receivers and accelerometers to track the orbit and measure the non-gravitational forces.
The spatio-temporal variations of the gravity modify the distance between the satellites,
measured by the microwave K-band range system between the tandem satellites. The
GRACE concept can be regarded as a one-dimensional gradiometer with a very long dis-
tance (Seeber, 2003). The geoid precision from GRACE is about 2-3 mm with 300-400 km
of spatial resolution (Tapley et al., 2004). GRACE mission orbited Earth from 2002-2017.
At May 22, 2018, GRACE-Follow On (GRACE-FO) was launched to continue the work
of GRACE to monitor hydrological changes of the Earth.

GOCE mission becomes the first satellite mission that uses a gravity gradiometer to
obtain the gravity field in a high-resolution and accuracy (Rummel et al., 2011; Drinkwa-
ter et al., 2003). It flied at ∼255 km of altitude height, the lowest altitude satellite
gravimetry ever launched .The gradiometer is mounted in the satellite, composed with
six accelerometers that were put in three spatial orthogonal axis, where the baseline
between accelerometers at each axes is 50 cm. The scheme of the GOCE’s gravity gra-
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diometer construction can be seen on Figure 1.5. The mathematical principle to obtain
the gravity gradient observed by GOCE is explained in the Eq. (1.23).
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Figure 1.5: A simplified scheme of a gradiometer embarked in GOCE satellite. It consists
of three pairs of accelerometers mounted orthogonaly, separated with certain 50 cm length
of baseline on each axes. Each accelerometer measures the gravitational acceleration in
three orthogonal axis, therefore this gradiometer construction allows in providing gravity
gradients in full tensors.

GOCE datasets has enhanced the determination of the global gravity field model
(Gruber et al., 2011). The mean global accuracy achieved by GOCE observation in
EGM_TIM_RL05 Earth gravity model is 2.4 cm in terms of geoid heights, 0.7 mGal for
gravity anomalies with 100 km of spatial resolution (Brockmann et al., 2014). In GOCE
level 2 datasets, the accuracy in gravity gradients term is better than 10 mE. Various
types of GOCE datasets can be downloaded in GOCE virtual online archive (http://eo-
virtual-archive1.esa.int/Index.html).

1.3. Gravity Forward Modeling

Gravity Forward Modeling (GFM) denotes the computation of the gravitational field
generated by any given mass distribution (Hirt, 2016). The basic technique of GFM
refers to Newton’s law of universal gravitation (see Section 1.1.1.). GFM is relevant for the
context of geoid determination (Sansò and Sideris, 2013), gravity prediction, interpolation,
and reduction, and for the investigation of the interior structure of the Earth (Álvarez
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et al., 2012).
The Earth’s topography, given in form of Digital Terrain Model (DTM), is the most

frequently used mass distribution in GFM (Grombein et al., 2014; Hirt et al., 2012). The
details for the estimation of topography effect will be discussed in the Chapter 3.

Several solutions exists to calculate the gravitational effect associated to specific simple
source mass, among them are point source (cf. Blakely, 1996) and prism (cf. Mader, 1951).
However, the implementation of GFM in the real geophysical or geodetic case normally
involves a complicated geometry of source mass. Decomposing such geometry into smaller
simple bodies and sum their contributions could be a solution (Barnett, 1976; Singh and
Guptasarma, 2001). But using a GFM method that can better approach the modelled
mass geometry can be an ideal one. This method is further discussed in the Chapter 2.

For the further discussion in this dissertation report, the acceleration will be simply
called gravity and its gradient will be called gravity gradients.

1.3.1. Understanding Gravity and Gravity Gradient of a Simple
Body Mass

The gravity field of the Earth is resulted from the integration of various sources,
including topography, volcanoes, mantle plume, etc. Moreover, almost all of those ef-
fecting mass are irregularly shaped. Therefore, sometimes it is difficult to interpret the
corresponding gravity field signal.

To better understand the gravity field signal, it is better to start from the gravity
field signal associated to a simple geometry. In this part, a cube with a dimension of 100
m×100 m×100 m is used as the source mass, with a tested density of 300 kg m−3. The
calculation is performed at 5 m above the prism.

The spatial derivative of gravitational potential in three orthogonal directions result
the gravity in three directions (Figure 1.6). The resulted gravity fields are different among
those directions,

- gx, is the gravity attraction in the direction x. The corresponding signal is sensitive
on the x direction, with a pair of positive-negative signal at the mass borders along
the x axes, located at the border of the mass.

- gy, is the gravity attraction in the direction y, sensitive on the direction y. Like
gx, a pair of positive-negative signal are located at the mass’ borders along the y
direction.

- gz, is the gravity attraction in vertical direction (z). This is the direction of the
gravity that is used in most at geophysical related applications.The highest magni-
tude of the signal is located at the center of the mass. In this case, the direction of
z-axis is upward, thus it produces a negative sign in the gz.
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gy gzgx

Figure 1.6: Gravity signal of a cube (in mGal) in three spatial directions. For the scheme
of the cube, see Figure 1.7.
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Figure 1.7: Gravity gradient signal of a cube (in E). The scheme of the cube and the
orientation of x, y, z-axes of gravity gradients are shown on the bottom-left.

The gravity gradient components are computed by deriving each of three gravity
components on the x, y, and z directions (see Section 1.1.4.). Figure 1.7 shows six tensors
of gravity gradients of a prism. As seen on Figure 1.7, the wavelength of gravity gradient
signals are shorter and more constrained than gravity.
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For each component of gravity gradients,

- Txx is the derivative of gx in the x direction (cf. Figure 1.6), resulting into a "positive-
negative-positive" anomaly along the x-axes for an anomaly with positive density
and inversely for a negative one. The borders of the prism along the x direction are
close to the zero.

- Tyy has a same characteristic as Txx but along the y direction.
- Tzz is the most used component other than other gravity gradient tensors. It has
a similar characteristic with gz, yet the signal is more constrained following the
geometry of the mass. The highest magnitude of the signal is located at the center
of the mass, positive for a positive anomalous mass body and inversely.

- Txy is computed by taking the derivative of the gx in the y direction or by taking the
derivative of the gy in the x direction. This results a "negative-positive-negative-
positive" pair. The peaks of those signals are located on the approximately corners
of the anomalous mass.

- Txz is sensitive to the mass variation along x axes, resulting in a positive-negative
anomalies. It has a similar signal pattern as the gx yet it is more constrained.

- Tyz is sensitive to the mass variation along y axes. Like Txz, it results in a positive-
negative anomalies on the y direction. The resulted signal is more constrained than
the horizontal gravity gy.

The magnitude and the wavelength of the signal depend strongly on the size of the
anomalous mass, its density, and also its distance to the measurement point. Beside the
magnitude, the noise in the measured signal could be also augmented due to the decrease
of the distance between the measurement point and the mass source.

In general, the tensors of gravity gradient in horizontal directions are helpful to detect
the lateral variation of the observed mass. Nevertheless, they are less used than the
vertical tensor due to the difficulties in the signal interpretation. This simple example
illustrates the complementary of gravity and gravity gradients datatasets to better assess
geometry of body mass at depth.

1.4. Normal Gravity

The observed gravity and gravity gradients is the total attraction of the gravitational
and the centrifugal force of the Earth (see Section 1.1.). The magnitude of the observed
gravity and gravity gradient is thus very large (cf. Figure 1.8). The majority part of
the measured gravity signal is due to the shape of the Earth. This large signal tends to
"conceal" the detectable anomalous gravity due to the anomalous mass. To handle this,
the signal due to the "normal" shape of the Earth is normally removed.

Approximation to obtain the disturbing potential (or also anomalous potential) A at
the point P is

AP = WP − UP (1.24)
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Figure 1.8: The constituents that make up the force of gravitational acceleration g at
Earth’s surface (ESA, 2008).

where WP is the actual gravity potential and UP is the normal gravity potential. The
method to obtain the normal potential is described in this section.

In geodesy, the best representative of the Earth shape is the geoid (Figure 1.9), which
is an equipotential surface of the Earth’s gravity field, that coincides with the steady sea
level. However, due to its irregularity, it is not straightforward to handle this geoid form
mathematically.

Figure 1.9: Geoid as the "true" shape of the Earth. The color scale represents the geoid
height. Source: (unavco.org)

As the first estimation, the Earth is a sphere. As a further approximation, the normal
figure of the Earth can be considered as an ellipsoid of revolution, a geometric surface
produced by rotating an ellipse about its rotation axis.

The normal gravity potential is resulted from the gravitational potential of the normal
reference, here is ellipsoid of revolution, and the centrifugal potential around its rotation
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axis. Hence, the normal potential function is determined by the shape of the ellipsoid
of revolution, the total Earth mass M , and the angular velocity ω. Mathematically, the
normal gravity potential U at the radius r from the center of the Earth and latitude ϕ
and can be written as following,

U(r, ϕ) = Vu(r, ϕ) + Z(r, ϕ) (1.25)

where Vu is the gravitational potential due to the Earth model geometry and Z is the
potential due to the Earth rotation (cf. Eq. (1.12)).

Due to the ellipticity of the Earth, the magnitude of the normal gravitational potential
Vu strongly depends on the geocentric radius and latitude of the measurement, r and ϕ
respectively. Replacing t = sinϕ and u = cosϕ, the Clairaut’s theorem to obtain the
normal gravitational potential Vu can be written as following,

Vu(r, ϕ) = GM

r

(
1− J2

(
a

r

)2
P2(t)− J4

(
a

r

)4
P4(t)

)
(1.26)

where a is the length of the semi-major axis of the Earth. Jn is the dynamic form factor of
the normal ellipsoid which is related to the flattening of the Earth geometry at the poles.
Pn are the Legendre polynomia of degree n, that is (Hofmann-Wellenhof and Moritz,
2005),

P2(t) = 1
23t2 − 1 (1.27)

and
P4(t) = 1

8
(
35t4 − 30t2 + 3

)
(1.28)

One of the known reference ellipsoid that is widely used is Geodetic Reference System
1980 (GRS80). It is defined based on the theory of the geocentric equipotential ellipsoid
The constants that define this ellipsoid of revolution are written in Table 1.1 (Moritz,
1980).

Table 1.1: Numerical Parameters of the GRS 1980

Parameter Value Unit
a : equatorial radius of the Earth 6378137 m
1/f : invers flattening 298.257222101
GM : geocentric gravitational constant of the
earth (including the atmosphere) 398 600.5×109 m3 s−2

J2 : dynamical form factor of the Earth 1 082.63×10−6 -
J4 : dynamical form factor of the Earth (higher
degree)

-
2.37091222×10−6 -

ω : angular velocity of the Earth 7.29211501×10−5 rad s−1
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Spatial Derivative of The Normal Gravity

For various purposes, partial derivatives of the normal potential U are required. This
potential is resulted as a function of the variables r and t, where t = sinϕ. Since the
equipotential ellipsoid is rotationally symmetric, there would be no derivatives with re-
spect to longitude λ. From the Eq. (1.25), the partial derivatives of the normal potential
with the respect to polar coordinates are

∂U

∂i
= ∂Vu

∂i
+ ∂Z

∂i
and ∂

2U

∂i∂j
= ∂2Vu

∂i∂j
+ ∂2Z

∂i∂j
(1.29)

where ∀(i, j) ⊂ {r, t}.
The following partial derivatives of the normal gravitational potential Vu are obtained

by differenting Eq. (1.26),

∂Vu

∂r
= −GM

r2

(
1− 3J2

(
a

r

)2
P2(t)− 5J4

(
a

r

)4
P4(t)

)
(1.30)

∂Vu

∂t
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r

)2 ∂P2(t)
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)4 ∂P4(t)
∂t

)
(1.31)

∂2Vu

∂r2 = 2GM
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)
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)
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∂2Vu

∂r∂t
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)2 ∂P2(t)
∂t
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(
a

r

)4 ∂P4(t)
∂t

)
(1.34)

where the partial derivatives of the Legendre polynomia of the Eq. (1.27) and (1.28) are

∂P2(t)
∂t

= 3t (1.35)

∂2P2(t)
∂t2

= 3 (1.36)

∂P4(t)
∂t

= 1
2
(
35t3 − 15t

)
(1.37)

∂P 2
4 (t)
∂t2

= 1
2
(
105t2 − 15

)
(1.38)

The partial derivatives of the centrifugal potential Z are obtained by differenting Eq.
(1.12). Remembering that t = sinϕ, and u = cosϕ =

√
1− t2, the spatial derivatives of

Z with respect to polar coordinates can be written as
∂Z

∂r
= ω2 r u2 (1.39)
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∂Z

∂t
= −ω2 r2 t (1.40)

∂2Z

∂r2 = ω2 u2 (1.41)

∂2Z

∂t2
= −ω2 r2 (1.42)

∂2Z

∂r∂t
= −2ω2 r t (1.43)

1.5. Derivatives of the Potentials with Re-
spect to the Local Cartesian Coordi-
nates

The origin of polar coordinates latitude, longitude, and geocentric radius (ϕ, λ, r) lies
at the center of the reference ellipsoid. While the origin of a local Cartesian coodinates
x, y, z lies at the point P0(ϕ0, λ0, r0). The positive z-axis direction is in the direction of
increasing geocentric radius r (up), the x − z plane lies in the meridian passing though
P0 with the positive x-axis pointing north, and the positive y-axis pointing west.

Defining the Cartesian component xi = [x, y, z], transforming the first-order spatial
derivatives from polar coordinates to the local Cartesian of the Eq. (1.30) until (1.43)
can be done using following matrix (Tscherning, 1976)
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∂xi
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(1.44)

The symmetric matrix of second-order derivatives is
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(1.45)
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By replacing V in Eq. (1.44) and (1.45) with Vu or Z in Eq. (1.30) - (1.43), the partial
derivatives of the normal potential U can be obtained. This process can be applied to
derivatives of other potential, e.g. W or A which may be useful for other applications.
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Chapter 2

GEEC: An Effective Tool for Gravity
and Gravity Gradients Forward Mod-
elling

2.1. Introduction

As described in the Chapter 1, gravity and gravity gradients datasets are nowadays
available in various altitudes of acquisition, from ground measurements to airborne sur-
veys, and satellite missions. The joint interpretation of these datasets will lead to a better
image of the geometry of a body mass in depth. To bring the observation data into a
state where we can characterize the geometry of a body mass, we have to pass trough the
step of the computation of specific masses which geometry is well known, e.g. topography
and bathymetry, or partially known, i.e. the expected mass in depth.

Various approaches and codes to calculate the gravity or gravity gradients effect of
a body mass have been developed, including the solution using spherical harmonic de-
composition (Lee and Kaula, 1967; Balmino et al., 2012; Hirt et al., 2012) and wavelet
decomposition (Chambodut et al., 2005; Panet et al., 2011), thin spherical layer (Tsoulis
and Stary, 2005), rectangular prisms (Mader, 1951), tesseroids (Grombein et al., 2013;
Uieda et al., 2016), or polyhedron (cf. Okabe, 1979; Singh and Guptasarma, 2001; Cattin
et al., 2015; Tsoulis, 2012). However, most of the available approaches are made for a very
specific spatial scale and application, hence it could encounter limitations if it is used for
other application, for example:

• The spherical harmonic method is very efficient for calculation of a uniform and
global data coverage but becomes ineffective when measurements are not regularly
distributed. This method is widely used for application of satellite gravimetry, how-

43
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ever for terrestrial gravimetry, this method suffers from omission error, i.e., because
the spherical harmonic coefficients cannot represent short-scale gravity effects (Hirt
et al., 2012).

• The prism approach is very effective for a local application with planar approxi-
mation but not for a global one where the curvature of the Earth has to be taken
into account. This method is also reported in Grombein et al. (2013) as a method
that is time consuming due to the logarithmic and arctan functions that must be
evaluated during the process.

• In the tesseroid approach, mass body has to be given in a uniform geographical grid.
The precision of tesseroid approach decreases towards the poles due to tesseroids
degenerating into an approximately triangular shape at the poles (Uieda et al., 2016;
Grombein et al., 2013). In this method, the Newton’s integral can not be solved
analytically, instead of that, approximation solutions are applied. This leads to the
occurrence of errors in the use of tesseroids solution in the very near zone around the
computation point (Heck and Seitz, 2007; Grombein et al., 2013), therefore it is less
convenient to be utilized for local application with that demand a high precision.

As mentioned, most of the existing methods demand a gridded model dataset in geo-
graphical coordinates. It could cause difficulties in combining several datasets as the in-
put mass geometry, for example in combining a detailed local terrain model from ground
measurement in the vicinity of gravity station and an available global DTM. Besides those
limitations, some of those tools are not freely available for the public.

In order to address those problems, we need a all-in-one tool that is free and open
source to forward model gravity and gravity gradients that is (1) suitable to compute
gravitational attraction of various scales or size of a body mass, from the small scale up
to the scale of a planet, (2) capable to calculate any geometry of a body mass and preserve
the complexity of its geometry, (3) adaptable for the computation at any measurement
points regardless of the extent, the altitude, and the irregularity of its spatial distribution,
(4) robust, and (5) time-saving. The compliance to those mentioned points allow us to use
one single tool for the processing of all available gravity and gravity gradients datasets.

In this chapter, I present an open-source code named GEEC (Gal Eötvös Earth Cal-
culator) which has been developed during this thesis to do those tasks mentioned above.
It is Matlab-based tool and user friendly, from the computation process to the visualiza-
tion of the result. With a high numerical precision of Matlab, the tool is robust. The
integration of the Matlab Parallel Toolbox allows us to do the computation in parallel,
thus the computation time can become more efficient.

This chapter will present the following items:

• The modifications made during the creation and the development of GEEC during
this dissertation.

• The submitted paper containing the description and implementation of GEEC, the
new developed analytical solution to obtain gravity gradients, and the validation
and results comparison.

• Some additional information about GEEC that is not included in the submitted
paper.
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2.2. GEEC Publication
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Key Points: 7 

• We report a novel method using polyhedron approach to compute gravity gradients due 8 

to a body mass with an arbitrary shape. 9 

• We validate this method using applications from a very local ground survey to global 10 

satellite missions. 11 

• We assess the optimum resolution of global model for satellite missions and airborne 12 

surveys.  13 

Abstract 14 

We present GEEC (Gal Eötvös Earth Calculator), a set of Matlab routines to compute both 15 

gravity and gravity gradients due to a body mass of uniform density with arbitrary geometry. 16 

This software is based on polyhedron modelling, for which the surface integral over each 17 

polygonal facet is converted into line integrals around its boundaries. We give new formulas 18 

for gravity gradients and show that they can be computed using the same simple procedure as 19 

the gravity. We perform a case study for various measurement heights and body mass sizes 20 

from local geophysical prospecting applications to global topographic effect on satellite data. 21 

Compared to existing methods, we show that our approach provides high accuracy and great 22 

computational efficiency. GEEC is thus well suited to jointly interpret all types of gravity 23 

measurements regardless of the extent and irregularity of their spatial distribution.  24 

 25 

1. Introduction 26 

Nowadays, the availability of gravity and gravity gradient datasets from ground measurements, 27 

airborne surveys and satellite missions allows the study of many phenomena such as water 28 



resource availability (Van Camp et al., 2017), volcanic activity (Jousset et al., 2003) or 29 

lithosphere dynamics (Cadio et al., 2016). Due to their different measurement heights (Fig. 1), 30 

these various datasets are commonly interpreted separately: the higher the measurement 31 

altitude, the larger the spatial scale and the deeper the sources. On local and regional scales, 32 

ground gravity measurements are typically used to assess the geometry of subsurface bodies 33 

(less than a few hundred meter depth) and crustal structures whereas, on global scales, satellite 34 

data give information for lithosphere processes. 35 

A joint interpretation of these datasets requires modelling taking into account the complex 36 

geometry of body masses, the curvature of the Earth and calculating gravity and gravity 37 

gradients from local to global scales. Several methods exist. At a global scale, spectral analysis 38 

is classically performed using spherical decomposition (Lee & Kaula, 1967). This method is 39 

very efficient for uniform and global data coverage but becomes ineffective when 40 

measurements are not regularly distributed or for regional application. These shortcomings can 41 

partly be overcome using wavelet decomposition, although it still requires refinements at 42 

resolution below 15 km (Chambodut et al., 2005; Panet et al., 2011). A second set of methods 43 

consists in dividing the anomalous body masses into a succession of thin spherical layers 44 

(Tsoulis & Stary, 2005) or a distribution of simple volume elements such as rectangular prisms 45 

or tesseroids (Uieda et al., 2016). Analytical solutions exist for rectangular prisms (Mader, 46 

1951; Nagy et al., 2000) and can be used to calculate near-field gravity, whereas, due to the 47 

Earth’s curvature, tesseroidal modelling is more suitable for larger scales. Combined models of 48 

prismatic and tesseroidal methods are also developed to take advantage of these two approaches 49 

(e.g. Tsoulis et al., 2009). 50 

Here, we investigate a third approach based on polyhedron modelling that allows computing 51 

gravity and gravity gradients due an arbitrary body mass at any point of measurement, at local 52 

to global scales, and at ground to satellite heights. Since the pioneer approaches developed by 53 

Hubbert (1948) or Talwani & Ewing (1960), many workers have proposed formulations to 54 

calculate the gravity field due to an arbitrary polyhedron of uniform density (e.g. Okabe, 1979; 55 

Pohanka, 1988; Tsoulis, 2012). Among them Singh & Guptasarma (2001) developed optimized 56 

formulation for the gravitational field of a polyhedron using Stoke’s theorem, in which the 57 

surface integral over each polygonal facet of the polyhedron is converted into line integrals 58 

around its boundaries. Compared to previous approaches, these formulas are faster to compute 59 



because they do not require coordinate transformations and avoid the need to discriminate 60 

between observation points located outside, on the surface, and inside the solid body. 61 

We expand the approach of the Singh & Guptasarma (2001) in the open-source code GEEC 62 

(Gal Eötvös Earth Calculator) extending the line-integral formulations to compute gravity and 63 

gravity gradients at the same time. After a reminder of this previous work, we present the new 64 

formulations to compute the gravity gradients. Next we describe the software design and we 65 

validate our approach by comparing our results with simple analytical solutions and those 66 

obtained from tesseroid modelling (Uieda et al., 2016). We present a numerical investigation 67 

of the errors due to a body mass discretization and assess the dependency between optimum 68 

mesh size and the height of measurements.   69 

 70 

2. Theory 71 

GEEC carries out the calculation of gravity 𝒈𝜶	𝐰𝐢𝐭𝐡	𝜶 ∈ {𝒙, 𝒚, 𝒛} and gravity gradients 𝑻𝜶𝜷 =72 
𝝏𝒈𝜶
𝝏𝜷
	𝐰𝐢𝐭𝐡	𝜷 ∈ {𝒙, 𝒚, 𝒛}	due to an irregular polyhedron body in a right-handed 3-D Cartesian 73 

system. The computation process uses analytical solutions that are described in details in the 74 

two following sections. The first one is a reminder of the main formulations obtained by Singh 75 

and Guptasarma (2001) to calculate the gravity field. The second one is an extension of this 76 

previous work, in which we present formulas providing a new technique for computing all the 77 

components of both gravity and gravity gradient at the same time. 78 

1.1. Line-integral approach to calculate gravity from a polyhedron 79 

The component of gravitational field �⃗� in the given direction 𝛼 ∈ {𝑥, 𝑦, 𝑧} due to an arbitrary 80 

polyhedron with constant density can be written as the surface integral (Singh & Guptasarma, 81 

2001)  82 

 𝒈𝜶 = 𝑮𝝆;
𝜶
𝒓𝟑
𝒓>⃗ . 𝒖𝒏>>>>>⃗

𝑺

𝒅𝒔, (1) 

where G is the gravitational constant, 𝜌 is the density of the body, 𝑟 is the Euclidean distance 83 

from the observation point 𝑃 to a surface element of area 𝑑𝑠 on the surface of the body, 𝑟 is the 84 

vector from 𝑃 to 𝑑𝑠, and uK>>>>⃗  is the unit outward normal vector at the surface element 𝑑𝑠 (Fig. 85 

2). 86 



The polyhedron is bounded by a number of plane facets, thus the integration can be done 87 

separately on each facets. Summing the integration result over all the facets to obtain the 88 

attraction of the whole body, we get 89 

 𝒈𝜶 = 𝑮𝝆L�⃗� ∙ 𝐮P>>>⃗
𝒊

R
𝜶
𝒓𝟑

𝑺𝒊

𝒅𝒔 (2) 

where uS>>>⃗  is the outward normal vector of the 𝑖-th facet. It can be obtained by, 90 

 𝐮P>>>⃗ =
𝐧P>>>⃗
‖𝐧P>>>⃗ ‖

 (3) 

where nS>>>⃗ = SYSZ>>>>>>>>⃗ × SY𝑆]>>>>>>>>⃗  as illustrated in figure 2. 91 

As described in Guptasarma & Singh (1999), the surface integrals in equation (2) can be 92 

evaluated for each facet by converting them into line integrals of the edges that construct that 93 

facet. The approach is done by comparing the solution for the magnetic field from a polyhedron. 94 

Using the fact that, for the unit pole density, the solid angle Ω subtended at the computation 95 

point by that facet is numerically equal to the component of the magnetic field 𝐻` parallel to 96 

the outward normal uS>>>⃗ , we have 97 

 𝛀 = 𝒍𝑯𝒙 +𝒎𝑯𝒚 + 𝒏𝑯𝒛 (4) 

where (𝑙,𝑚, 𝑛) are the Cartesian coordinates of uS>>>⃗ . For a positive pole density, the field normal 98 

to the facet is away from the facet. As a consequence, the sign of Ω would be the opposite of 99 

the sign of the scalar product of the outward vector uS>>>⃗  and the vector position r⃗ of any corner 100 

of the polygon (𝑒Y>>>⃗  to 𝑒]>>>⃗  , Fig. 2). 101 

For unit pole density on the surface, the scalar integrals of the Cartesian component of the field 102 

over the polygon can be written as 103 

 𝑯𝜶 =R−
𝜶
𝒓𝟑
𝒅𝒔

𝑺

 (5) 

Note that the surface integrals of the outward normal components of the curl are linearly related 104 

to the component of the field at the computation point. Taking the each component of the unit 105 

vector 𝑒n>>>⃗ , 𝑒o>>>>⃗ , 𝑒p>>>⃗  in the 𝑥, 𝑦, 𝑧 directions, we have 106 



 

𝐮P>>>⃗ ⋅ 𝐜𝐮𝐫𝐥>>>>>>>>⃗ t
𝐞𝐱>>>>⃗
𝒓
w =

𝒏𝒚 −𝒎𝒛
𝒓𝟑

,

𝐮P>>>⃗ ⋅ 𝐜𝐮𝐫𝐥>>>>>>>>⃗ t
𝐞𝐲>>>>⃗
𝒓
w =

𝒍𝒛 − 𝒏𝒙
𝒓𝟑

,

𝐮P>>>⃗ ⋅ 𝐜𝐮𝐫𝐥>>>>>>>>⃗ t
𝐞𝐳>>>⃗
𝒓
w = 𝒎𝒙−
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𝒓𝟑

 (6) 

Integrating these equations over the surface and combining with equations (5), we get 107 

 

𝑷 =R𝐮P>>>⃗ ⋅ 𝐜𝐮𝐫𝐥>>>>>>>>⃗ (𝐞𝐱>>>>⃗ /𝒓)	𝒅𝒔 = 𝒏𝑯𝒚 −𝒎𝑯𝒛
𝑺

,

𝑸 =R𝐮P>>>⃗ ⋅ 𝐜𝐮𝐫𝐥>>>>>>>>⃗ }𝐞𝐲>>>>⃗ /𝒓~	𝒅𝒔 = 𝒍𝑯𝒛 − 𝒏𝑯𝒙
𝑺

,

𝑹 =R𝐮P>>>⃗ ⋅ 𝐜𝐮𝐫𝐥>>>>>>>>⃗ (𝐞𝐳>>>⃗ /𝒓)	𝒅𝒔 = 𝒎𝑯𝒙 − 𝒍𝑯𝒚
𝑺

 (7) 

By combining equations (7) and equation (4) and notice that 𝑙Z + 𝑚Z + 𝑛Z = 1, we obtain 108 

 
𝑯𝒙 = 𝒍𝛀+ 𝒏𝑸−𝒎𝑹,
𝑯𝒚 = 𝒎𝛀+ 𝒍𝑹 − 𝒏𝑷,
𝑯𝒛 = 𝒏𝛀+𝒎𝑷− 𝒍𝑸

 (8) 

Inserting the combination of equation (5) and (8) into equation (2), the solution of gravitational 109 

field using line integrals can be written 110 

 

𝒈𝒙 = −𝑮𝝆L�⃗� ∙ 𝐮P>>>⃗ 	(𝒍𝒊𝛀𝐢 + 𝒏𝒊𝑸𝒊 −𝒎𝒊𝑹𝒊)
𝒊

,

𝒈𝒚 = −𝑮𝝆L�⃗� ∙ 𝐮P>>>⃗ 	(𝒎𝒊𝛀𝒊 + 𝒍𝒊𝑹𝒊 − 𝒏𝒊𝑷𝒊)
𝒊

,

𝒈𝒛 = −𝑮𝝆L�⃗� ∙ 𝐮P>>>⃗ 	(𝒏𝒊𝛀𝒊 + 𝒎𝒊𝑷𝒊 − 𝒍𝒊𝑸𝒊)
𝒊

.

 (9) 

According to Stokes’ theorem, the surface integral of the normal component of 𝑐𝑢𝑟𝑙>>>>>>>>⃗ (𝑒n>>>⃗ /𝑟), 111 

𝑐𝑢𝑟𝑙>>>>>>>>⃗ (𝑒o>>>>⃗ /𝑟), 𝑐𝑢𝑟𝑙>>>>>>>>⃗ (𝑒p>>>⃗ /𝑟) are equal to the line integral of vector (e�>>>⃗ /𝑟), }e�>>>⃗ /𝑟~, and (e�>>>⃗ /𝑟), 112 

taken along the edges of the surface polygon in a counterclockwise direction as seen from the 113 

outside of the polyhedron. The detail of the integration of the line integrals of (e�>>>⃗ /𝑟), }e�>>>⃗ /𝑟~, 114 

and (e�>>>⃗ /𝑟) of each edge of a polygon is described in Guptasarma & Singh (1999). 115 

In the solution using line integrals, the contributions of the 𝑗-th edge 𝑃��, 𝑄��, 𝑅�� for the 116 

integration along the 𝑗-th edge of the 𝑖-th facet can be obtained from 117 



 𝑷𝒊𝒋 = }𝑰𝒋𝑳𝒋𝒙~𝒊,𝑸𝒊𝒋 = }𝑰𝒋𝑳𝒋𝒚~𝒊, 𝐚𝐧𝐝		𝑹𝒊𝒋 = }𝑰𝒋𝑳𝒋𝒛~𝒊 (10) 

where }𝐿�n, 𝐿�o, 𝐿�p~ are the Cartesian coordinates of the vector L�>>>⃗  along the 𝑗-th edge. The 118 

length of the 𝑗-th edge is 𝐿� = �L�>>>⃗ �. The line integral along edge 𝐼� can be written as 119 

 
𝑰𝒋 = t

𝟏
𝑳𝒋
w 𝐥𝐧

⎣
⎢
⎢
⎡��𝐋𝒋𝟐 + 𝒃𝒋 + 𝒓𝟏𝒋𝟐 + 𝑳𝒋 +

𝒃𝒋
𝟐𝑳𝒋

�

�𝒓𝟏𝒋 +
𝒃𝒋
𝟐𝑳𝒋

�
⎦
⎥
⎥
⎤
, 𝐢𝐟	 t𝒓𝟏𝒋 +

𝒃𝒋
𝟐𝑳𝒋

w ≠ 𝟎

𝐚𝐧𝐝	𝑰𝒋 = t
𝟏
𝑳𝒋
w 𝐥𝐧 ¦

§𝑳𝒋 − 𝒓𝟏𝒋§
𝒓𝟏𝒋

¨ , 𝐢𝐟	 t𝒓𝟏𝒋 +
𝒃𝒋
𝟐𝑳𝒋

w = 𝟎.

 (11) 

where 120 

 𝒃𝒋 = 𝟐}𝐫𝟏©>>>>>⃗ ⋅ 𝐋©>>>⃗ ~ (12) 

and 𝑟1� is the Euclidean distance from the computation point to the beginning of 𝑗-th edge. r1�>>>>>⃗  121 

is the position vector of the beginning of the 𝑗-th edge from the computation point 𝑃, thus 122 

}𝑟1�n, 𝑟1�o, 𝑟1�p~ are the Cartesian coordinates of the vector r1�>>>>>⃗ . The beginning and the end of 123 

each edge is evaluated in a counter-clockwise direction, seen from the point of observation as 124 

the origin point. 125 

Thus, the total boundary contribution for each facet is the sum of the integral contribution of its 126 

edges 127 

 𝑷𝒊 =L𝑷𝒊𝒋
𝒋

, 𝑸𝒊 =L𝑸𝒊𝒋
𝒋

, 𝑹𝒊 =L𝑹𝒊𝒋
𝒋

 (13) 

The solid angle Ωª subtended by the computation point as the apex and each surface of the 128 

polygon is negative (−Ωª) if it is seen from the inside of the polyhedron. To make it seen from 129 

the outside, we have to inverse the order of the vertices that construct that facet. 130 

The solid angle of each facet can be obtained by 131 

 𝛀𝐢 = «L𝝍𝒌
𝒌

® − (𝒏 − 𝟐)𝝅 (14) 

where 𝜓±  is the angle between the planes forming the adjacent edge of the pyramid and 𝑛 is the 132 

number of the side of the 𝑖-the facet. Using the position vector of each corner of the facet to the 133 

computation point, 134 



 𝐧𝐧𝟏>>>>>>>⃗ =
𝐯𝟏>>>>⃗
‖𝐯𝟏>>>>⃗ ‖

	𝐚𝐧𝐝	𝐧𝐧𝟐>>>>>>>⃗ =
𝐯𝟐>>>>⃗
‖𝐯𝟐>>>>⃗ ‖

 (15) 

where vY>>>⃗ = e±>>>>⃗ × e±´Y>>>>>>>>⃗  and vZ>>>⃗ = e±µY>>>>>>>>⃗ × e±>>>>⃗ . e¶>>>⃗ = PS¶>>>>>>⃗  is the position vector of the corner of the 135 

polygon from the computation point P. Thus we have 136 

 ¸ 𝝍𝒌 = 𝐜𝐨𝐬´𝟏(𝐧𝐧𝟏>>>>>>>⃗ ⋅ 𝐧𝐧𝟐>>>>>>>⃗ )	𝐢𝐟	𝐞𝒌µ𝟏>>>>>>>>>⃗ ⋅ 𝐧𝐧𝟏>>>>>>>⃗ > 𝟎	
𝝍𝒌 = 𝟐𝝅− 𝐜𝐨𝐬´𝟏(𝐧𝐧𝟏>>>>>>>⃗ ⋅ 𝐧𝐧𝟐>>>>>>>⃗ ) 	𝐢𝐟	𝐞𝒌µ𝟏>>>>>>>>>⃗ ⋅ 𝐧𝐧𝟏>>>>>>>⃗ < 𝟎

 (16) 

 137 

The sign of e±µY>>>>>>>>⃗ ⋅ nnY>>>>>>>⃗  can indicate whether this internal angle exceeds 𝜋 or not. If the sign is 138 

negative, the internal angle at the 𝑗-th corner exceeds 𝜋. 139 

1.2. Analytical solution for the gravity gradients due to an arbitrary polyhedron 140 

Following the approach described in the previous paragraph, here we extent the Guptasarma & 141 

Singh (1999)’s formulations to calculate all components of the gravity gradients. The partial 142 

derivatives of the gravity 𝑔`, known as the gravitational gradients, in direction 𝛽 ∈ {𝑥, 𝑦, 𝑧} can 143 

be written as 144 

 𝑻𝜶𝜷 =
𝝏𝒈𝜶
𝝏𝜷

 (17) 

Thus, the partial derivatives of the equation (9) are 145 

 

𝝏𝒈𝒙
𝝏𝜷

= −𝑮𝝆L
𝝏
𝝏𝜷

{�⃗� ∙ 𝐮P>>>⃗ 	(𝒍𝒊𝜴𝒊 + 𝒏𝒊𝑸𝒊 − 𝒎𝒊𝑹𝒊)},
𝒊

𝝏𝒈𝒚
𝝏𝜷

= −𝑮𝝆L
𝝏
𝝏𝜷

{�⃗� ∙ 𝐮P>>>⃗ 	(𝒎𝒊𝛀𝒊 + 𝒍𝒊𝑹𝒊 − 𝒏𝒊𝑷𝒊)},
𝒊

𝝏𝒈𝒛
𝝏𝜷

= −𝑮𝝆L
𝝏
𝝏𝜷

{�⃗� ∙ 𝐮P>>>⃗ 	(𝒏𝒊𝛀𝒊 +𝒎𝒊𝑷𝒊 − 𝒍𝒊𝑸𝒊)}.
𝒊

 (18) 

The results of the partial derivative of the scalar product r⃗ and uS>>>⃗  is 146 

 
𝝏
𝝏𝜷

(�⃗� ∙ 𝐮P>>>⃗ ) = −𝒖𝒊𝜷 (19) 

where 𝑢�À  is the scalar of the outward vector uS>>>⃗  in the coordinate 𝛽. Combined with equation 147 

(19), the equation (18) can be therefore expanded into 148 



 

𝝏𝒈𝒙
𝝏𝜷

= −𝑮𝝆LÁÂ�⃗� ∙ 𝐮P>>>⃗ 	�𝒍𝒊
𝝏𝛀𝐢
𝝏𝜷

+ 𝒏𝒊
𝝏𝑸𝒊
𝝏𝜷

−𝒎𝒊
𝝏𝑹𝒊
𝝏𝜷

�Ã − Ä𝒖𝒊𝜷(𝒍𝒊𝛀𝐢 + 𝒏𝒊𝑸𝒊 − 𝒎𝒊𝑹𝒊)ÅÆ
𝒊

𝝏𝒈𝒚
𝝏𝜷

= −𝑮𝝆LÁÂ�⃗� ∙ 𝐮P>>>⃗ 	�𝒎𝒊
𝝏𝛀𝐢
𝝏𝜷

+ 𝒍𝒊
𝝏𝑹𝒊
𝝏𝜷

− 𝒏𝒊
𝝏𝑷𝒊
𝝏𝜷

�Ã − Ä𝒖𝒊𝜷(𝒎𝒊𝛀𝒊 + 𝒍𝒊𝑹𝒊 − 𝒏𝒊𝑷𝒊)ÅÆ
𝒊

𝝏𝒈𝒛
𝝏𝜷

= −𝑮𝝆LÁÂ�⃗� ∙ 𝐮P>>>⃗ 	�𝒏𝒊
𝝏𝛀𝐢
𝝏𝜷

+𝒎𝒊
𝝏𝑷𝒊
𝝏𝜷

− 𝒍𝒊
𝝏𝑸𝒊
𝝏𝜷

�Ã + Ä𝒖𝒊𝜷(𝒏𝒊𝛀𝒊 +𝒎𝒊𝑷𝒊 − 𝒍𝒊𝑸𝒊)ÅÆ
𝒊

 (20) 

The partial derivatives of 𝑃,𝑄, 𝑅 and the solid angle Ω are expanded in the two following 149 

steps. 150 

 151 

Partial derivative of the solution of the line integral 152 

Replacing 𝑡 = ��L�Z + 𝑏� + 𝑟1�Z + 𝐿� +
ÉÊ
ZËÊ
� / �𝑟1� +

ÉÊ
ZËÊ
� for �𝑟1� +

ÉÊ
ZËÊ
� ≠ 0 and 𝑡 =153 

§𝐿� − 𝑟1�§/𝑟1� for �𝑟1� +
ÉÊ
ZËÊ
� = 0 of the equation (11), the partial derivatives of the solution 154 

of the line integral 𝑃,𝑄, 𝑅 on each polygon edge of the equation (10) are 155 

 

𝝏𝑷𝒋
𝝏𝜷

=
𝑳𝒋𝒙
𝑳𝒋
𝟏
𝒕
𝝏𝒕
𝝏𝜷

𝝏𝑸𝒋
𝝏𝜷

=
𝑳𝒋𝒚
𝑳𝒋
𝟏
𝒕
𝝏𝒕
𝝏𝜷

𝝏𝑹𝒋
𝝏𝜷

=
𝑳𝒋𝒛
𝑳𝒋
𝟏
𝒕
𝝏𝒕
𝝏𝜷

 (21) 

To obtain ÎÏ
ÎÀ
	, we use the product rule 156 

 𝝏𝒕
𝝏𝜷

=
�𝝏𝒖𝝏𝜷𝒗 − 𝒖

𝝏𝒗
𝝏𝜷�

𝒗𝟐
 (22) 

with 𝑢 = �L�Z + 𝑏� + 𝑟1�Z + 𝐿� +
ÉÊ
ZËÊ

 and 𝑣 = 𝑟1� +
ÉÊ
ZËÊ

 for �𝑟1� +
ÉÊ
ZËÊ
� ≠ 0. We have 157 

 
𝝏𝒖
𝝏𝜷

=
𝟏
𝟐

𝟏

�𝑳𝒋𝟐 + 𝒃𝒋 + 𝒓𝟏𝒋𝟐

𝝏
𝝏𝜷

}𝑳𝒋𝟐 + 𝒃𝒋 + 𝒓𝟏𝒋𝟐~ +
𝟏
𝟐𝑳

𝝏𝒃
𝝏𝜷

 (23) 

and 158 

 
𝝏𝒗
𝝏𝜷

=
𝝏𝒓𝟏𝒋
𝝏𝜷

+
𝟏
𝟐𝑳

𝝏𝒃𝒋
𝝏𝜷

 (24) 

 159 



The derivative of 𝑏� in equation (12) is 160 

 
𝝏𝒃
𝝏𝜷

=
𝝏
𝝏𝜷

Ò𝟐}𝐫𝟏©>>>>>⃗ ⋅ 𝐋©>>>⃗ ~Ó = −𝟐𝑳𝒋𝜷 (25) 

and the derivative of 𝑟1� is 161 

 
𝝏𝒓𝟏𝒋
𝝏𝜷

=
𝝏
𝝏𝜷

��𝒓𝟏𝒋𝒙𝟐 + 𝒓𝟏𝒋𝒚𝟐 + 𝒓𝟏𝒋𝒛𝟐 � =
𝟏
𝟐
𝟏
𝒓𝟏𝒋

}−𝟐𝒓𝟏𝒋𝜷~ = −
𝒓𝟏𝒋𝜷
𝒓𝟏𝒋

 (26) 

thus we have 162 

 
𝝏𝒓𝟏𝒋𝟐

𝝏𝜷
= 𝟐𝒓𝟏𝒋

𝝏𝒓𝟏𝒋
𝝏𝜷

= −𝟐	𝒓𝟏𝒋𝜷 (27) 

Substituting equation (25), (26), and (27) in equations (23) and (24), 163 

 
𝝏𝒖
𝝏𝜷

= −

⎝

⎛ 𝑳𝒋𝜷 + 𝒓𝟏𝒋𝜷

�𝐋𝒋𝟐 + 𝒃𝒋 + 𝒓𝟏𝒋𝟐
+
𝑳𝒋𝜷
𝑳𝒋
⎠

⎞ 

(28) 

and 164 

 𝝏𝒗
𝝏𝜷

= −t
𝒓𝟏𝒋𝜷
𝒓𝟏𝒋

+
𝑳𝒋𝜷
𝑳𝒋
w 

(29) 

While if �𝑟1� +
ÉÊ
ZËÊ
� = 0, we substitute 𝑢 = §𝐿� − 𝑟1�§ and 𝑣 = 𝑟1�, thus we obtain 165 

 𝝏𝒖
𝝏𝜷

=
}𝑳𝒋 − 𝒓𝟏𝒋~
§𝑳𝒋 − 𝒓𝟏𝒋§

𝝏
𝝏𝜷

}𝑳𝒋 − 𝒓𝟏𝒋~ =
}𝑳𝒋 − 𝒓𝟏𝒋~
§𝑳𝒋 − 𝒓𝟏𝒋§

𝑳𝒋𝜷
𝑳𝒋

 (30) 

and 166 

 𝝏𝒗
𝝏𝜷

= −
𝒓𝟏𝒋𝜷
𝒓𝟏𝒋

 (31) 

 167 

Partial derivative of the solid angle 168 

Replacing nnY>>>>>>>⃗ ⋅ nnZ>>>>>>>⃗  with 𝑎 of the equation (16), the derivative of the angle at the adjacent 169 

edge can be written 170 



 

⎩
⎪
⎨

⎪
⎧𝝏𝝍𝒌

𝝏𝜷
=

𝝏
𝝏𝜷

𝐜𝐨𝐬´𝟏 𝒂 = −
𝟏

√𝟏 − 𝒂𝟐
𝝏𝒂
𝝏𝜷

	𝐢𝐟	𝐞𝒌µ𝟏>>>>>>>>>⃗ ⋅ 𝐧𝐧𝟏>>>>>>>⃗ > 𝟎

𝝏𝝍𝒌

𝝏𝜷
=

𝟏
√𝟏 − 𝒂𝟐

𝝏𝒂
𝝏𝜷

			𝐢𝐟	𝒆𝒌µ𝟏>>>>>>>>>⃗ ⋅ 𝒏𝒏𝟏>>>>>>>>⃗ < 𝟎
 (32) 

where 171 

 𝝏𝒂
𝝏𝜷

= t
𝛛𝐧𝐧𝟏>>>>>>>⃗
𝝏𝜷

⋅ 𝐧𝐧𝟐>>>>>>>⃗ w + t𝐧𝐧𝟏>>>>>>>⃗ ⋅
𝛛𝐧𝐧𝟐>>>>>>>⃗
𝝏𝜷

w (33) 

To obtain the derivative of nnY>>>>>>>⃗  and nnZ>>>>>>>⃗ , first we calculate the derivative of vY>>>⃗ , vZ>>>⃗  and its 172 

magnitude ‖vY>>>⃗ ‖, ‖vZ>>>⃗ ‖. 173 

 

𝐯𝟏>>>>⃗ ⋅

⎩
⎪⎪
⎨

⎪⎪
⎧
𝝏
𝝏𝒙
𝝏
𝝏𝒚
𝝏
𝝏𝒛⎭
⎪⎪
⎬

⎪⎪
⎫

= ä
å𝟎 −(𝒆𝒌𝒛 − 𝒆𝒌´𝟏𝒛) }𝒆𝒌𝒚 − 𝒆𝒌´𝟏𝒚~æ
[(𝒆𝒌𝒛 − 𝒆𝒌´𝟏𝒛) 𝟎 −(𝒆𝒌𝒙 − 𝒆𝒌´𝟏𝒙)]
å−}𝒆𝒌𝒚 − 𝒆𝒌´𝟏𝒚~ (𝒆𝒌𝒙 − 𝒆𝒌´𝟏𝒙) 𝟎æ

é (34) 

 174 

 

𝐯𝟐>>>>⃗ ⋅

⎩
⎪⎪
⎨

⎪⎪
⎧
𝝏
𝝏𝒙
𝝏
𝝏𝒚
𝝏
𝝏𝒛⎭
⎪⎪
⎬

⎪⎪
⎫

= ä
å𝟎 −(𝒆𝒌µ𝟏𝒛 − 𝒆𝒌𝒛) }𝒆𝒌µ𝟏𝒚 − 𝒆𝒌𝒚~æ
[(𝒆𝒌µ𝟏𝒛 − 𝒆𝒌𝒛) 𝟎 −(𝒆𝒌µ𝟏𝒙 − 𝒆𝒌𝒙)]
å−}𝒆𝒌µ𝟏𝒚 − 𝒆𝒌𝒚~ (𝒆𝒌µ𝟏𝒙 − 𝒆𝒌𝒙) 𝟎æ

é (35) 

and 175 

 
𝜕
𝜕𝛽

‖vY>>>⃗ ‖ =
𝜕
𝜕𝛽

��𝑣YnZ + 𝑣YoZ + 𝑣YpZ �	

=
1
2

1

�𝑣YnZ + 𝑣YoZ + 𝑣YpZ

𝜕
𝜕𝛽

}𝑣YnZ + 𝑣YoZ + 𝑣YpZ ~	

=
1
2

1
‖vY>>>⃗ ‖

t2𝑣Yn
𝜕𝑣Yn
𝜕𝛽

+ 2𝑣Yo
𝜕𝑣Yo
𝜕𝛽

+ 2𝑣Yp
𝜕𝑣Yp
𝜕𝛽

w	

=
1

‖vY>>>⃗ ‖
tvY>>>⃗ ⋅

𝜕vY>>>⃗
𝜕𝛽

w  

 

(36) 

Similarly for the derivative of ‖vZ>>>⃗ ‖ 176 



 
𝜕
𝜕𝛽

‖vZ>>>>⃗ ‖ =
𝜕
𝜕𝛽

��𝑣ZnZ + 𝑣ZoZ + 𝑣ZpZ � =
1

‖vZ>>>>⃗ ‖
tvZ>>>>⃗ ⋅

𝜕vZ>>>>⃗
𝜕𝛽

w (37) 

Using equations (34) to (37) to obtain the derivatives of nnY>>>>>>>⃗  and nnZ>>>>>>>⃗ , we have 177 

 𝛛𝐧𝐧𝟏>>>>>>>⃗
𝝏𝜷

=
𝝏
𝝏𝜷

t
𝐯𝟏>>>>⃗
‖𝐯𝟏>>>>⃗ ‖

w =
𝟏

‖𝐯𝟏>>>>⃗ ‖𝟐
t
𝝏𝐯𝟏>>>>⃗
𝝏𝜷

‖𝐯𝟏>>>>⃗ ‖ − 𝐯𝟏>>>>⃗
𝝏
𝝏𝜷

‖𝐯𝟏>>>>⃗ ‖w (38) 

and 178 

 𝛛𝐧𝐧𝟐>>>>>>>⃗
𝝏𝜷

=
𝝏
𝝏𝜷

t
𝐯𝟐>>>>⃗
‖𝐯𝟐>>>>⃗ ‖

w =
𝟏

‖𝐯𝟐>>>>⃗ ‖𝟐
t
𝝏𝐯𝟐>>>>⃗
𝝏𝜷

‖𝐯𝟐>>>>⃗ ‖ − 𝐯𝟐>>>>⃗
𝝏
𝝏𝜷

‖𝐯𝟐>>>>⃗ ‖w (39) 

Finally, using the result of equation (32), the derivative of the solid angle of the 𝑖-th edge can 179 

be obtain with 180 

 𝝏𝛀𝒊
𝝏𝜷

=L
𝝏𝝍𝒌

𝝏𝜷
 (40) 

3. Implementation 181 

Based on the formulas given in the previous section, we have implemented the line-integral 182 

approach to compute both the gravity and gravity gradients in the open-source software GEEC. 183 

It is freely available online on the web page of Geosciences Montpellier laboratory 184 

(http://www.gm.univ-montp2.fr). An archived version of the source code is also available as 185 

part of this paper. 186 

GEEC is written in Matlab version 2014, but can be also used with a more recent version. 187 

Taking advantage of the Matlab Parallel Computing Toolbox, this software includes programs 188 

developed to enhance the computation time. The main program “launch_geec.m” manages 189 

input and output files and launches the function “geec.m” with correct variable formats. Input 190 

files include (1) the locations, i.e. longitude, latitude and altitude (in meters), of measurement 191 

points, which can be distributed non-uniformly, (2) the geometry of the body mass, i.e. 192 

longitude, latitude and altitude (in meters) of the polyhedron corners and their counter 193 

clockwise triangulation. 194 

Commonly, ground gravity measurements as well as satellite and airborne observation track 195 

points are spatially unevenly distributed. We allow for this type of data in GEEC with 196 

computation points that can be defined at any location without any interpolation in the 197 

calculation process. Computation points can be defined either as gridded or scattered locations 198 



given in a geographic coordinate system (longitude, latitude, and altitude) that are transformed 199 

in the local ENU (East, North, and Up) Cartesian coordinate system using a predefined 200 

reference ellipsoid (major axis and eccentricity). The body mass is modelled using polyhedra 201 

with triangular facets. This enables a robust representation of any specific geometry. 202 

Additional information has to be given, such as the density of the body mass in kg.m-3 and the 203 

type of computation, i.e. either gravity only or both gravity and gravity gradients. An ellipsoidal 204 

approximation is used to avoid any unacceptable error due to the neglected Earth’s curvature 205 

(Tsoulis et al., 2009). An option to define the vertical datum, geoid or ellipsoid reference, is 206 

also provided in order to avoid the indirect effect caused by different vertical reference level 207 

(Talwani, 1998). All computation results are saved in an output file, which includes longitude, 208 

latitude and altitude (in meters) of measurement points, the three components of gravity in mGal 209 

(10-5 m.s-2) and the nine components of gravity gradient in Eötvös (10-9 s-2). The combined 210 

effect of several bodies is simply the sum of gravity and gradients due to each polyhedron. 211 

 212 

4. Applications 213 

4.1. Anomaly due to a buried sphere 214 

A first application of the developed polyhedron approach consists in modelling the gravity and 215 

gravity gradients due to a buried body. Such a computation is very common to interpret gravity 216 

anomalies in geophysical prospecting, which requires forward modelling to image oil pockets, 217 

ore veins or water reservoirs. The scale associated with these local studies is often small, less 218 



than a few kilometres. Here, to validate our approach we compare the computed GEEC gravity 219 

and gravity gradients due to a buried sphere (Fig. 3) with the classical analytical solution  220 

 						

𝒈𝒙 =
𝜶𝒙

(𝒙𝟐 + 𝒛𝟐)
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𝟑
,

 (41) 

and 221 
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,

 (42) 

where 𝒙 and 𝒛 are the horizontal and vertical distance from the sphere centre. 𝒛 is positive 222 

upward. G = 6.67408 x 10-11 m3.kg−1.s−2, 𝑹 is the sphere radius and 𝚫	𝝆 the density contrast. 223 

We assume a sphere with a radius of 10 m, a density contrast of -200 km/m3, centred at 20 m 224 

depth. For the GEEC computation, the surface of the sphere is discretized using a mesh size of 225 

0.3 m. 226 

Compared with the standard deviations of both ground gravity and gravity gradient 227 

measurements (Van Camp et al., 2017), our computation results are in very good agreement 228 

with the theoretical values obtained along a surface profile (Fig. 3). The maximum differences 229 

are less than 7.5 x 10-5 mGal and 0.06 E for the gravity and gravity gradients, respectively. This 230 

very simple application demonstrates the robustness of our approach at a local scale and its 231 

relevance to assess the geometry and density contrast of a buried body using forward modelling. 232 

In the following application, we test our approach at a global scale, for which the curvature of 233 

Earth must be taken into account. 234 

 235 



4.2.  Effect of a superficial Earth’s shell at various measurement heights 236 

In the previous application, the mesh size is small enough to ensure the robustness of the results, 237 

but is not optimal for large computations due to time and memory limitations. Since the 238 

computation is performed using planar facets to discretise the surface of the arbitrary mass 239 

body, the smaller the mesh size, the better the geometry, but the longer the computation time 240 

and memory requirements, preventing calculations at too high a resolution. To overcome this 241 

limitation, one can define an optimum mesh size as the model resolution required to achieve a 242 

given accuracy. This optimum mesh size depends on both the size of the body mass and its 243 

distance to the measurement points (ground, airborne or satellite surveys). 244 

To evaluate the relationship between model resolution, computation time and height of 245 

measurements, we compute the gravity due to a spherical shell with a mass density ρ = 2670 246 

kg m-3 and a constant thickness of 1 km above a reference sphere with a mean radius R = 247 

6378.137 km.  This simple example represents a test case of a standard Bouguer Plateau 248 

correction of the topography in gravity studies. We test heights of observation points between 249 

the ground surface and 255 km of altitude. The accuracy of GEEC results is defined as the 250 

absolute difference with the theoretical values obtained from equations (41) and (42) for two 251 

concentric spheres of differing radii: 252 

 
Â
𝚫𝒈𝒊 = 𝒈𝒊(𝑹 + 𝟏𝒌𝒎) − 𝒈𝒊(𝑹)
𝑻𝒊𝒋 = 𝑻𝒊𝒋(𝑹 + 𝟏𝒌𝒎)− 𝑻𝒊𝒋(𝑹)

 (43) 

where 𝒊 ∈ {𝒙, 𝒚, 𝒛} and 𝒋 ∈ {𝒙, 𝒚, 𝒛}. 253 

Here, we only compute the vertical attractions 𝒈𝒛 and 𝑻𝒛𝒛. The reference values for the 254 

spherical shell at each computation altitude 𝒉  are indicated in Table 1. As expected, for any 255 

computation altitude, our results show that the error is inversely proportional to the resolution 256 

of the model (Table 1 and Figure 4). For instance, the ground-based 𝒈𝒛 errors are 15 µGal and 257 

859 µGal for a mesh size of 5 km and 150 km, respectively. The error also depends on the 258 

considered altitude (Figure 4). Assuming a low-resolution sphere model (i.e. mesh size of 150 259 

km), the 𝒈𝒛 error decreases from 859 µGal to 47 µGal with an increase of altitude from 0 km 260 

to 255 km (Table 1). 261 

In order to achieve an accuracy (approximation of the exact analytical values) of 99.9%, a 262 

resolution ca. 35 km is required for near surface gravity calculations, whereas a resolution ca. 263 



80 km is sufficient at 10 km altitude, and all tested resolutions (up to 150 km) are adequate for 264 

satellite altitude (Figure 4a). For the gravity gradient signal (Figure 4b), an accuracy of 99.9% 265 

requires a minimum resolution ca. 15 km for airborne surveys (10 km altitude) and is always 266 

achieved for satellite altitudes. In contrast with the gravity signal, a 99.9% accuracy error in the 267 

gradient is not achieved using any tested resolution for any altitude below 10 km. These results 268 

are consistent with those obtained by Uieda et al. (2016) showing that 𝑻𝒁𝒁 requires higher 269 

surface resolution than 𝒈𝒛 to obtain the same percentage of error. 270 

The detail of the computational effort can be found in table 2 and figure 5. Computation time 271 

increases very strongly from 20 seconds to 9 minutes for tested mesh sizes ranging between 25 272 

km and 5 km. These results demonstrate the efficiency of GEEC to compute both gravity and 273 

gravity gradients at 255 km, allowing a comparison with the dense and global GOCE dataset. 274 

The presented approach is also suitable for studying regional airborne surveys (5-10 km 275 

altitude). In contrast, ground or low altitude airborne surveys (<2 km) require the use of a mode 276 

resolution higher than ca. 5 km, for which a global-scale computation can be impractical. If the 277 

extent of surveys is local (few 10s km), our approach remains relevant. As the previous buried 278 

sphere application, a small network extent makes it possible to improve the resolution without 279 

increasing computing times too much. For larger extent, we have developed an adaptive 280 

discretization, in which the surface of mass bodies is meshed into triangles with higher density 281 

near the measurement points. This local grid refinement improves the computation accuracy, 282 

without a large increase in computation resources and time. 283 

 284 

4.3. Global and regional topographic effect 285 

The last presented application consists in the computation of the topography contribution in the 286 

gravity field, which is an important step to assess deep sources from gravitational data. We 287 

compare the computed GEEC gravity and gravity gradients due to topography and bathymetry 288 

with results obtained from the software Tesseroids (Uieda et al., 2016), in which the Earth 289 

topography is discretized in tesseroids. 290 

We use the DTM2006.0 topographic data defined on a grid of 5' × 5' (Pavlis et al., 2007). Based 291 

on the results obtained in the previous section, we recompose DTM2006.0 in a 10 km 292 

equidistant mesh, providing a uniform resolution over the entire Earth. For the computation 293 

using Tesseroids, we deactivate the adaptive discretization to keep the original grid size. In both 294 



cases, we decompose the topographic model in two parts: a rock layer for masses above sea 295 

level with a density 𝝆𝒄=2670 kg.m-3, and a water layer for masses below sea level with a density 296 

𝝆𝒘=1000 kg.m-3. Using the crustal density as the reference density, this gives a density contrast 297 

for the ocean of -1670 kg.m-3. For simplicity, the ice layer above sea level is considered as a 298 

rock layer. We set the computation points at 255 km of ellipsoid height, which corresponds to 299 

the mean altitude of the GOCE mission (Rummel et al., 2011). 300 

Figure 6 shows the gravity 𝒈𝒛 and gradient 𝑻𝒛𝒛 topographic effects computed with GEEC (Fig. 301 

6a and 6c) and their respective differences with the Tesseroids computation (Fig. 6b and 6d). 302 

GEEC and Tesseroids give very consistent results. Their differences are in the range of GOCE 303 

measurements uncertainties, i.e. 1 mGal and 10-60 mE for gravity and gravity gradient, 304 

respectively (Brusima et al., 2014; Panet et al., 2014). For 𝒈𝒛, maximum differences are ca. 305 

±1.3 mGal, less than 0.25% of the topographic effect. For 𝑻𝒁𝒁, the maximum differences are 306 

±21 mE with an overall standard deviation of 3.6 mE. Considering all components of both 307 

gravity and gravity gradients, 90% of the differences between GEEC and Tesseroids are below 308 

±0.38 mGal and ±4.5 mE, respectively (Fig. 7). 309 

Most of the large discrepancies are located in high latitudes areas, such as Antarctica and 310 

Greenland. The first reason is the difference between the meshing techniques used in the two 311 

softwares. In GEEC, we use a homogeneous topography model with a resolution of 10 km, 312 

while for Tesseroids, the topography is modelled on a geographical grid where the grid size 313 

varies with the latitude. This leads to distortions of the tesseroid shapes from nearly rectangular 314 

at the equator to nearly triangular at the poles, which results in an inaccurate computation in 315 

the tesseroid approach (Grombein et al., 2013). Second, the geometry of the mass distribution 316 

and the computation points are on the sphere in the Tesseroids software, whereas they are given 317 

on the ellipsoid in GEEC. This results in larger differences in the mass-measurement distance 318 

at high latitudes. The high topographies in Antarctica and Greenland amplify these factors. 319 

Beyond these differences due to global meshing, the discrepancy between GEEC and 320 

Tesseroids results can also be associated with the two different techniques used to model the 321 

local topography surface. To highlight this point, we compare the polyhedron and tesseroid 322 

approaches at a regional scale over the Himalaya of eastern Nepal for a computation height of 323 

10 km (Fig. 8). We obtain local deviations up to 20 mGal and 60 E in high slope areas. 324 

Unsurprisingly, GEEC is more suitable to model a rugged topography: the GEEC triangular 325 



shape discretization results in smaller deviations from the actual geometry and less computation 326 

biases, compared to the rectangular shape discretization in Tesseroids. 327 

This application validates the use of GEEC to compute gravity and gravity gradients at regional 328 

and global scales. Compared to rectangular prism and tesseroid approaches, GEEC gives 329 

consistent results but provides a more flexible way to preserve the roughness of the Earth’s 330 

surface in topography modelling. 331 

 332 

5. Conclusion 333 

We present a new open-source tool GEEC (Gal Eötvös Earth Calculator) to perform forward 334 

modelling of gravitaty and gravity gradients of an irregular body mass discretized in polyhedra. 335 

Following Singh and Guptasarma (2001), we give new formulas for gravity gradients based on 336 

the analytical solutions of the expansion of the line integrals of a constant-density polyhedron 337 

body. GEEC applies triangle meshes as facets to compose the polyhedra. 338 

This new Matlab-based software allows a detailed modelling of bodies with complex surfaces 339 

at any input model resolution. Several tests are performed to validate GEEC for various 340 

measurement heights and body mass sizes. They include (1) a local ground survey as typically 341 

performed for geophysical prospecting, (2) a global analysis of a spherical shell taking into 342 

account the curvature of the Earth and (3) an assessment of global and regional topography 343 

effects on satellite and airborne measurements. The results demonstrate the robustness of our 344 

approach and confirm that the mesh size required to achieve a targeted accuracy depends on 345 

both the size of the body mass and its distance to the measurement points. Although a regular 346 

meshing is suitable for high measurements heights (> 5 km) such as airborne surveys and 347 

satellite data, grid refinement is needed for low altitude measurements in the immediate vicinity 348 

of the computation point. 349 

Compared to alternative approaches, the two main advantages of GEEC lie in the capacity (1) 350 

to preserve the complexity of the body mass geometries at all scales and (2) to compute gravity 351 

and gravity gradients for any measurement points regardless of the extent and irregularity of 352 

their spatial distribution, including varying altitudes. GEEC is then a well-suited method to 353 



develop in future works joint inversions of all type of gravity measurements from ground and 354 

airborne surveys as well as from satellite missions.  355 
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Tables 417 

 418 

Table 1. Gravity 𝑔p and gravity gradient 𝑇pp due to a 1 km thick spherical shell with a constant 419 

density ρ = 2670 kg m-3 above a reference sphere with a mean radius R = 6378.137 km. 420 

Analytical and numerical GEEC results are calculated at various computation altitude h ranging 421 

from 0 to 255 km.  GEEC computation is performed with a mesh size of 5 and 150 km (see 422 

figure 7). 423 

 424 

h (km) 
Analytical Solution 

GEEC solution 
High Resolution (5 km) Low Resolution (150 km) 

𝑔p (mGal) 𝑇pp (mE) 𝑔p (mGal) 𝑇pp (mE) 𝑔p (mGal) 𝑇pp (mE) 
On surface 223.895 701.960 223.880 494.187 223.036 358.943 

2 223.825 701.630 223.821 649.811 222.999 369.583 
5 223.615 700.641 223.614 699.869 222.884 401.080 
10 223.265 698.998 223.265 698.996 222.670 450.898 

255 207.076 624.369 207.076 624.369 207.029 624.230 
 425 

  426 



Table 2.  Computation time as a function of model resolution (see figure 8). The number of 427 

vertex of each model is included. All of the simulations in this study are performed using a 428 

computer with CPU Intel Xeon Processor E5, 3.20 GHz processor base frequency, with 8 cores. 429 

  430 
Resolution 

(km) 
Number of 

point 
CPU time 

(s) 
5 23611683 560.4783 

10 5902922 142.8204 
15 2623522 65.5157 
20 1475732 33.2904 
25 944469 20.5205 
30 655882 12.5056 
35 481873 8.4574 
40 368935 6.5717 
45 291504 4.8327 
50 236119 3.9219 
55 195140 3.0618 
60 163972 2.6336 
65 139716 2.2824 
70 120470 1.9610 
75 104943 1.6734 
80 92235 1.3990 
85 81703 1.2719 
90 72878 1.1223 
95 65408 1.0331 
100 59031 1.0316 
105 53543 0.8780 
110 48786 0.7806 
115 44637 0.7215 
120 40995 0.6747 
125 37781 0.6198 
130 34931 0.5547 
135 32391 0.5910 
140 30119 0.5319 
145 28078 0.4740 
150 26237 0.4542 

 431 
  432 



Figure 433 

 434 

Figure 1. Classical gravity datasets from satellite missions, such as GOCE, to airborne and 435 

ground surveys. Together, these datasets can be used to assess density contrasts at depth and 436 

provide information at various scales from lithospheric structures to very local and shallow 437 

bodies. 438 

  439 



 440 

 441 

Figure 2. Polygonal surface in a right-handed Cartesian coordinate system and the scheme of 442 

the surface contribution computation. 𝑟 is the distance between the observation point 𝑃 and the 443 

element center. 𝑈õ is the unit outward normal vector of the surface element 𝑑𝑆. The small solid 444 

arrows show the direction of the line integration around the edges, counter-clockwise from the 445 

outside. 446 
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 448 

Figure 3. GEEC vs. theoretical analytical solutions for surface gravity and gravity gradients 449 

due to a buried sphere of anomalous density. (a) Gravity gradients from the theoretical (solid 450 

line) and GEEC (circles) solutions. (b) Gravity from the theoretical (solid line) and GEEC 451 

(circles) solutions. (c) Body mass geometry. 452 

 453 



 454 

Figure 4. Relationship between height of gravity measurements and optimum mesh size (model 455 

resolution). Inset: Diagram of the model geometry used in GEEC to compute the gravity effect 456 

of a spherical shell with a constant density of 2670 kg.m-3 and a thickness of 1 km, 457 

corresponding to a plateau covering the whole Earth. (a) Error in 𝑔p by GEEC computation 458 

relative to the analytical solution, as a function of the model resolution and the measurements 459 

height. (b) same as (a) for  𝑇pp error. 460 

  461 



 462 

Figure 5. Relationship between CPU computation time, model resolution and measurement 463 

heights. Black circles are related to simulations performed using a computer with CPU Intel 464 

Xeon Processor E5, 3.20 GHz processor base frequency, with 8 cores and 16 threads per core 465 

(see table 2). Vertical color lines are associated with optimum model resolutions assuming an 466 

accuracy of 99.9% for the calculated gravity and gravity gradients. Color text gives 467 

measurement heights. Note that ground and low altitude airborne surveys require mesh 468 

resolutions smaller than 5 km. 469 

  470 



 471 

 472 

Figure 6. Comparison between GEEC and Tesseroids softwares. (a) and (b) Calculated 𝑔p and 473 

𝑇pp due to global topography effect using GEEC at 255 km computation height with a model 474 

resolution of 10 km. Note that a positive mass contrast has a negative effect in vertical gravity 475 

in the ENU system. (c) and (d) Differences between GEEC and Tesseroids computations. Note 476 

the color scale, which represents 1 % of the color scale in (a) and (b). 477 
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 480 

Figure 7. Cumulative frequency of the difference between GEEC and Tesseroids calculations 481 

of topography attraction in all gravity (a) and gravity gradients (b) components. 482 
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Figure 8. Effect of the discretization method in a rugged topographic surface, such as in the 486 

Himalayas of eastern Nepal. We consider an airborne survey at a constant altitude of 10 km . 487 

(a) Topographic surface discretization using prisms or tesseroids elements. (b) Same as (a) with 488 

a polyhedrons approach. (c) and (d) Difference in  𝑔p and  𝑇pp calculated from these two 489 

methods. 490 
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2.3. From GravProcess to GEEC

The first step of GEEC development is based on GravProcess, created by Cattin et al.
(2015). GravProcess is a software that is dedicated to the processing of relative gravity
measurements, including data corrections and network adjustments. One of its modules is
aimed to perform terrain correction to estimate complete Bouguer anomaly. In the process
of the creation and development of GEEC, we encountered some problems that made us
enhance the code for a better and optimum computation of gravity and gravity gradients.
A simplified scheme of the GEEC’s evolutions from the beginning of the creation until
the recent version is portrayed in Figure 2.1. This section is dedicated to describing the
major improvements that have been made during the development of GEEC.

Figure 2.1: Flowchart of the improvements that have been made during GEEC develop-
ment process.

2.3.1. From a Planar Approximation to the Ellipsoidal Model
of the Earth

GEEC is developed by adapting the gravity forward modelling approach by Singh and
Guptasarma (2001) to compute the gravity attraction of an irregular polyhedron with a
uniform density. The geometry of a body mass is defined in a Cartesian coordinate system
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and carried out in the planar approximation. Dedicated to small-regional scale studies,
the computation process to estimate the gravity field in GravProcess (Cattin et al., 2015)
and thus in the very first version of GEEC was done in the planar field approximation.

However, for a large-regional study scale, the curvature of the Earth cannot be ne-
glected, that is related to the unrealistic mass geometry (Figure 2.2) and its associated
gravitational attractions. This problem has been addressed in the Hayford and Bowie
(1912) system. For example, at a distance 22 km from the gravity station, the surface
of the Earth drops 38 below tangent of the station (see Hammer (1939) table in Nowell
(1999)), where the effect in the precision depends on the height variation. At this point,
the use of spherical approximation in the gravity and gravity gradient forward modelling
is a must.

P Pa) b)

Figure 2.2: The comparison of the planar (a) and the spherical (b) approximation of a
synthetic topography surface. The dashed lines represent real surface and the solid lines
represent the modelled surface.

To deal with this problem, the geometry of the Earth-related mass model in GEEC is
modelled in the ellipsoidal approximation. The computation in GEEC is executed in the
local ENU (East, North, Up) Cartesian coordinate system. The available models of the
Earth-related structure as well as the computation points that are normally defined in a
geographic coordinate system are therefore transformed to the local ENU coordinate as
well. The following sections will explain the processes in the coordinate transformations
that are used in GEEC.

2.3.1.1. Geographic to 3D Cartesian Coordinates Transforma-
tion (and Inversely)

Digital terrain model, as an example of an Earth-related mass model, is usually defined
in Geographic coordinate, where the position of the points is defined in longitude λ, lati-
tude φ, and elevation h. In the GEEC computation process, these geographic coordinates
must to be transformed into local ENU coordinates. To perform this transformation,
firstly, the coordinates have to be transformed into a global 3D Cartesian system. The
global 3D Cartesian coordinate system is defined with the origin located at the center
of the Earth, the X-axis pointing the prime meridian, and the Z-axis pointing the North
Pole (see Figure 2.3).

To transform the coordinate from geographic to 3D Cartesian system (X, Y, Z), the
semi-major axis of the Earth a and its eccentricity e must be defined. The process to
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transform this coordinate is done by the following steps
X = (N + h)(cosϕ cosλ)
Y = (N + h)(cosϕ sin λ)
Z = (N(1− e2) + h) sinϕ

(2.1)

where N is obtained by
N = a√

1− e2 sin2 ϕ
(2.2)
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Figure 2.3: Cartesian (black axis) and local East-North-Up (blue axis) coordinate system.

This conversion from geographic to Cartesian coordinates is provided in GEEC in the
function ell2cart.

Following Bowring (1976), the inverse coordinate transformation, from Cartesian to
geographic coordinates, is given by

λ = tan−1 Y

X

ϕ = tan−1 Z + e′2b sin3 µ

p− e2a cos3 µ

h = p

cosλ −
a√

1− e2 sin2 ϕ

(2.3)

where b is the semi-minor axis of the ellipsoid model and
p =
√
X2 + Y 2 (2.4)

µ = tan−1 aZ

bp
(2.5)

e′2 = e2

1− e2 (2.6)

The transformation from Cartesian to geographic coordinates is provided in GEEC in
the function cart2ell.
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2.3.1.2. Geographic to Local Cartesian East-North-Up Coordi-
nates Transformation

Like has been mentioned, the calculation in GEEC is performed using the Earth model
as an ellipsoid model to calculate gravity and gravity gradients in the local ENU Cartesian
system. In the local ENU Cartesian system, the point of origin is defined at a local point
P0 (see Figure 2.3), commonly is set at the measurement, with three Cartesian axes in
the local East, North, and Up (ENU) directions. To transform the input coordinate from
Geographic to local ENU coordinates, it can be done as following:EN

U

 = M ×

dXdY
dZ

 (2.7)

where M is the rotation matrix of the point of origin (λ0, ϕ0)

M =

 sin λ0 cosλ0 0
− sinϕ0 cosλ0 − sinϕ0 cosλ0 cosϕ0
cosϕ0 cosλ0 cosϕ0 sin λ0 sinϕ0

 (2.8)

and
dX = X −X0

dY = Y − Y0

dZ = Z − Z0

(2.9)

(X, Y, Z) is the coordinate of the transformed point in the global 3D Cartesian coordinate
system and (X0, Y0, Z0) the 3D Cartesian coordinate of the point of origin in the ENU
system using eq. (2.1). This function is provided in GEEC in ell2enu.

2.3.2. The Use of Equidistant Point Distribution

The coordinate of the existing global Earth models, e.g. Digital Terrain Model (DTM),
crust model, are normally defined in a gridded dataset where the resolution is uniform
in its longitudinal and latitudinal spacing. However, the actual size of a grid cell varies
with the latitude and the shape of the grid is distorted from nearly rectangle to a nearly
triangle as a function of the latitude (Figure 2.4). The tesseroid and prism approaches
suffer from those problems that leads to the increase of the computation error on the
near-pole zone (cf. Grombein et al., 2013; Uieda et al., 2016).

To deal with these problems, a triangle mesh with an uniform metric resolution can be
a solution. From Figure 2.4, it can be seen that the distribution of the points all over the
sphere surface is nearly uniform. This regularity in the resolution leads to the uniformity
of the calculation precision. Although GEEC allows the computation using any point
distribution, I suggest to use an iso-distance points dataset rather than a geographically
gridded one.

In GEEC, the process to produce the iso-distance point distribution of a sphere utilizes
the concept of the golden ratio and the golden angle that I adapt from Carlson (2011).
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a) b)

Figure 2.4: Gridded (a) and equidistant (b) point distribution.

The golden ratio and the golden angle can be obtained by

golden ratio = 1 +
√

5
2 (2.10)

golden angle = 2π
(

1− 1
golden ratio

)
(2.11)

To discretize the surface of a sphere, I need to define the resolution of the mesh to
obtain the number of the points n. For each point i, the longitude λ and the latitude ϕ,
in radian, is obtained as following

λi = (i− 1)× golden angle

ϕi = π

2 − cos−1 1− 2(i− 1)
n− 1 , i ∈ {1, 2, 3, ..., n}

(2.12)

The point with i=1 is the point located at the North Pole. The elevation of these points
is obtained by interpolating the input grid, e.g. DTM. GEEC provides the creation of
this equidistant mesh in the routine createequidistanttopo.m.

2.3.3. Making GEEC Faster

The original algorithm of GEEC, based on the algorithm by Singh and Guptasarma
(2001) included numerous iterations during the computation. This made the computation
process demanding high resources of CPU, which implies to the inefficient computation
time. Many improvements had been applied to GEEC to be more time and resource
saving, including

• Transforming the replaceable looping parts into the form of matrix operation that
is well suited for Matlab programming language.

• Adapting the computation algorithm to be specified for the computation using the
triangle mesh as the representation of the geometry of the mass.



80

For comparison, Figure 2.5 shows the evolution of the computation process required by
GEEC as a function of the resolution of the mass model from the first version (v.2016) to
the latest version (v.2018). The size of the model is as large as the Earth, with a radius of
6 378.137 km. For the first version, an extravagant demand of the memory resource during
the computation prevented the calculation over a whole globe, thus the mass model was
limited with a spherical cap of 60°. After improvements and modifications of the code,
the second and the latest versions of GEEC are enable to compute a whole Earth with
reasonable time versus memory requirements, e.g., a computation of gravity and gravity
gradient effects a whole Earth with a resolution of 20 km is done in 30 seconds.

2016 2017 2018

Figure 2.5: The evolution of the CPU time that is required in GEEC computation as a
function of the model resolution. In the first version (made in 2016) (a), the spherical
cap is limited at 60° due to the huge resource requirement in the computation. For the
second (v.2017) (b) and the last (v.2018)(c) version, the calculation are performed using
a whole sphere with the same size as the Earth.

2.3.4. Analytical Solution to Obtain the Gravity Gradients of
an Irregular Polyhedron

As explained in the Chapter 1, gravity gradients may be obtained by dividing the
difference of a pair of gravity values with the same vector direction by the distance between
those observation points along a i-axis, like has been expressed in eq. (1.23). This method
is valid if the distance between those points is small (d→ 0).

To evaluate this approach, I compute the gravity gradients of a spherical shell with a
mass density ρ = 2,670 kg m−3 with a constant thickness 1 km above a reference sphere
with a mean radius a = 6 378.137 km. The altitude of the computation varies between the
surface (h = 1 km) and 255 km. The error is approximated using the difference between
the GEEC’s results and the analytical solution for a spherical shell (cf. Grombein et al.,
2013).

This method is robust and applicable, but it still produces a remarkable noise (Figure
2.6a), especially at the satellite altitude (starry-green line). This noise is produced because
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the smaller the distance between points, the better approximation of the derivative, but
the higher noise due to the computing precision.

To avoid this noise and make the computation more precise, I then enhanced the
computation process by developing the gravity solution using the line-integral approach
by Singh and Guptasarma (2001) to produce an analytical solution to calculate the gravity
gradients of a polyhedron. The details of the formula are described in the associated paper
(included in the end of this chapter).

This novel solution results in a better accuracy and stability in the computation es-
pecially at the satellite altitude (see Figure 2.6). The noise for the test at the altitude
of satellite is no longer exist. It is because the noise which is larger than the precision is
successfully removed by the novel analytical solution of gravity gradients. This improved
algorithm is also more time-saving than the previous solution, e.g. for a computation
using a resolution of 10 km, the latest version is ∼300 seconds faster than the second
version (compare the CPU time of Figure 2.5c and 2.5b).
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Figure 2.6: Comparison of the vertical gravity gradient by GEEC of the previous version
(a) and the recent version (b). The use of eq. (1.23) to obtain gravity gradients in the
previous version causes a larger noise, notably for the results at satellite altitude, than
the use of the analytical solution.

2.4. Additional Information for the Imple-
mentation of GEEC

2.4.1. Technical Specification

All of the creation, development, running, and debugging process of GEEC is per-
formed on a workstation with a Intel Xeon CPU E5-1680 v3 @ 3.20 GHz, containing 8
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cores with 16 threads per core, 128 GB of RAM, and 500 GB of SSD in a UNIX operating
system.

GEEC is written in the Matlab 2014b version. Because GEEC works under the Matlab
environment, GEEC can be run on any operating system as long as a Matlab with the same
or newer version is installed in the system. By taking advantage of the Matlab Parallel
Toolbox, the computation time of GEEC can be enhanced, especially where GEEC is
installed in a workstation or a cluster with a plenty amount of cores and threads.

2.4.2. Additional Functions in GEEC

The main function of this software is called geec. The details of the geec function
and the required input and the output are given in the associated article.

Throughout the process, GEEC is developed to be adaptable for various applications,
from the computation of a simple to a more complex mass geometry, from the ground to
the satellite altitude of computation points, and from local to global scales of applications.
To fulfill those necessities, beside the main function geec, GEEC also provides several
functions depending to the type of application,

1. Functions geec_topo and geec_topo_io are the functions that are dedicated
specifically to the computation of the topography effect. The computation is done
in the ellipsoidal approximation. An option to set the extent of the computed
topography is provided in these functions. In the geec_topo_io, GEEC introduces
a scheme using two domains defined by two angles ψi and ψo, which correspond
to the inner and outer spherical distance limit, respectively. User can combine
two DTMs with different resolution and define the inner and the outer extent of
each DTM, illustrated in Figure 2.7. The program to launch these functions are
launch_topo and launch_topo_io.

2. For a simple geometry or a small size of the mass in the planar field, the function
geec_flat is provided. An example to launch this function and to manage the
input and output files is also provided in launc_geec_flat.m script.

2.4.2.1. Underdeveloped function

An underdeveloped function to perform a computation of a body mass with a lateral
density variation is in the current process of development. Some objects that can be
computed using this function such as a subducting slab and mantle layer below oceanic
crust.
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Figure 2.7: (a) Scheme of inner and outer domains in geec_topo_io around computation
point P limited with the inner extent and outer extent, ψi and ψo, respectively, to optimize
the use of high topography resolution within the near zone and less for the distant one.
(b) The mesh illustration of inner and outer domains.

2.5. Conclusion

This chapter presents the development of GEEC (Gal Eötvös Earth Calculator), a
Matlab-based computation tool to perform gravity and gravity forward modeling of an
irregular shape body mass. Following Singh and Guptasarma (2001), new analytical
formulas to calculate gravity gradients in the line-integral solutions have been developed.

GEEC applies triangle mesh as facets to compose the geometry of a polyhedra, which
allows us to model in detail a body mass with a complex geometry regardless of its
coordinates spatial distribution.

The use of GEEC for gravity and gravity gradient forward modelling offers the fol-
lowing advantages:

• Easy to use.
• Robust.
• Suitable for the computation effect of any mass geometry regardless of the scale of

the object and the spatial distribution of the mass model.
• Supports the computation at any altitude and any spatial distribution regardless

of the extent of the measurements points. This allows joint approaches combining
satellite, airborne, and ground gravity and gravity gradients datasets.

• Its flexibility with any scale and spatial distribution of the measurement points as
well as the geometry of the body mass makes GEEC as a all-in-one tool that allows
whole processing, from the computation to the visualization in a single application.

• The use of parallel computation allows time-saving. GEEC is also ready to be
launched in a large cluster for a better performance of computation.



84

Many applications can be realized by using GEEC. In this thesis, presented in the
Chapter 3, GEEC is used to test the role of the spherical truncation distance ψ in the
topographic correction of ground measurements, airborne surveys, and satellite missions
for regional geodynamic application. In the Chapter 4, GEEC is used to calculate the
synthetic models of a subducting slab and also the topography correction of the GOCE
observation datasets on the Izu-Bonin-Mariana subduction zone.



Chapter 3

Optimum Topographic Gravity and Grav-
ity Gradients Reduction for Regional
Geodynamical Studies

3.1. Introduction

In the solid Earth, gravity is commonly used in combination with topography at com-
mensurate resolution to elucidate the structures and dynamics of the Earth at depth.
Estimation of the topography contribution in the gravity-related field is an important
step in the analysis of gravitational data (Lemoine et al., 1997), in particular to de-
velop topography-gravity transfer functions for the studies of isostasy (Watts, 2001) and
dynamic topography (Burov and Diament, 1995; Cadio et al., 2016) or to perform topo-
graphic reductions as the first order correction to decipher the residual signal due crustal
or lithospheric structures (Álvarez et al., 2012; Bouman et al., 2016). Since topography
has a major effect in the Earth’s total gravity field, the estimation of topography effect
must be done carefully.

Concurrently with the availability of gravity and gravity gradient measurements with
unprecedented resolution (cf. Chapter 1), high-resolution topography data also become
available on global and regional scales from satellite missions (e.g., ETOPO01, GEBCO,
SRTM, ALOS or Pléiades) with a spatial resolution up to ∼0.5 m as well as ground-based
and airborne LiDAR (cf. Vaze and Teng, 2007). These new gravity, gravity gradient,
and topography datasets require optimum topography modelling technique in order to
preserve the data accuracy and precision, and to open the door for new global and regional
geodynamic applications (e.g., Cadio et al., 2016; Panet et al., 2014).

Several methods exist to determine the topography gravitational effect, that can be
classified in frequency domain technique (spherical harmonic modelling (e.g., Lee and

85
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Kaula, 1967; Balmino et al., 2012; Hirt et al., 2012)) and space domains technique (in-
cluding rectangular spherical prisms or tesseroids (Grombein et al., 2013; Uieda et al.,
2016) approach, analytical solutions for rectangular prisms approach (Mader, 1951; Nagy
et al., 2000), and polyhedron approach (cf. Okabe, 1979; Singh and Guptasarma, 2001)).
In this study, I use the approach of gravity and gravity gradients forward modelling using
the method of irregular polyhedron that has been implemented in GEEC (Gal Eötvös
Earth Calculator) (Chapter 2). Beside its advantages about the flexibility with the mass
model and the spatial distribution of the measurement points, it allows us to model the
variations of topography surface in detail.

The Importance of Distant Topography

The entire Earth topography contributes to the gravitational attraction in gravity or
gravity gradient measurements. The distance over which the topography effect must be
considered, i.e. the topography truncation distance, in the gravity analysis remains de-
bated (Talwani, 1998; Szwillus et al., 2016). To show how the topography effect varies
as a function of the truncation distance, we calculate the gravity value due to the to-
pography masses located within truncation distances 0° < ψ < 180° and compare them
with the absolute value of Earth topography effect (i.e. the value where the entire Earth
topography is considered). The computation is performed on a 10°×10° global grid at
altitudes of 0, 10 and 255 km using the DTM2006.0 global topography model (Pavlis
et al., 2007). Figure 3.1 shows the average value of gravity as a function of truncation
distance ψ at each altitude.

For studies that consider the gravity variation in absolute value, topography must
be included to a distance of ∼110° in order to reach 90% of the global value (Figure
3.1a). However, the irregularities of the Earth surface lead to a strong dispersion of the
ψ distribution to obtain 90% of accuracy (Figure 3.1b). For applications that require a
high accuracy (≤ 1 mGal), a distance ψ > 170° is necessary, which in practice nearly
corresponds to a global (ψ=180°) computation.

Computation of the effect of global topography can easily be performed at satellite
altitudes (higher than 255 km), for which a relatively low topography resolution can
be used (see Chapter 2). In contrast, computation of topography effect at near Earth
surface (such as ground and airborne survey altitudes) requires the use of a high-resolution
topography. Moreover, the ground and airborne surveys are usually applied for studies
at local or regional scale, for which a global-scale computation can be impractical.

Geodynamic studies at local and regional scales are commonly based on the analysis
of relative spatial variations in the gravity anomalies, i.e. only differences between values
across the region matter, while the absolute value is ignored. The distance between
stations is then a key parameter that controls the optimal truncation distance to perform
the topography correction (Talwani, 1998). For measurements at the same location, the
truncation errors cancel each other regardless of the truncation distance. Beyond this
obvious case, when the survey stations are close together, the relative measurements are
mostly sensitive to topography irregularities surrounding each station because the errors
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Figure 3.1: a) Average gravity effect of the topography masses located at a distance ψ
of the computation point, at various altitudes (colors). Values at ψ = 180° represent the
effect of the global topography. The percentage of the gravity with topography extent
ψ compared to the global effect (ψ=180°, true total contribution) is mentioned in the
figure. (b) Distribution of the minimum distance ψt necessary to achieve 90% of the
global topography effect (i.e., 90% accuracy) for all computation points.
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caused by ignoring distant topography are similar.
The determination of the topography truncation distance depends on:

1. the altitude of the survey,
2. the size of survey area,
3. the roughness of regional topography, and
4. the organization of topography masses around the survey area.

Nowadays, several methods used to define the truncation distance for topographic
corrections are usually based on:

1. an "empirical" distance of 1.5° (ca. 167 km) around the measurement point (Hayford
and Bowie, 1912; Bullard, 1936) that is widely used for topographic correction
of ground gravity surveys, notably for local to regional applications. However,
this traditional method could be inappropriate for current developments of gravity
surveys, particularly for the application on a large scale with high precision and
for topography effect estimation at higher measurement altitude (e.g. airborne
and satellite measurement) (Szwillus et al., 2016). This Bullard’s distance is also
reported to be too small for the application on a zone with a strong variation of
topography roughness (Talwani, 1998; Mikuška et al., 2006)

2. at larger scales, set of trials and estimations of the obtained errors compared to
the signal of interest. This method demands plenty of trials, thus it is very time
consuming.

3. spectral analysis based on Parker (1973)’s frequency domain formulation in Kass
and Li (2008), that is applicable for airborne gradiometry only. This method is
rather simplistic because it does not account for the full range of spectral content
in the topography and because it was tested on a very few specific area.

4. geostatistical analysis of local topography by Jekeli (2013). But this method is only
valid for vertical gravity gradient.

To sum up, the existing methods to determine the truncation distance are developed for
specific applications and do not answer to the question of the optimal distance for regional
geodynamical studies.

This study is focused on the following questions: what is the optimum truncation
distance to obtain the desired accuracy for application of ground, airborne, and satellite
gravity and gravity gradient measurements at local and regional scales? And is it possible
to define a systematic approach?

To answer those questions, I quantify the errors caused by neglecting distant topog-
raphy masses on end-members region in terms of topography variation, which include
(1) the Himalaya (with strong topography variation), (2) the Pacific region (with smooth
topography (bathymetry) variation, and (3) the Southeast Pacific region with smooth
topography variation within the zone and the presence of major topography around the
zone (i.e. Andes Cordillera). This quantification of errors is applied for ground, airborne,
and satellite altitudes of measurements.
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This chapter starts with the presentation of the method that we use to evaluate the
errors due to neglecting the topography beyond a given distance. The variation of relative
errors in gravity and gravity gradients due to the variation of global topography will
be demonstrated. Although the results exhibit a complex pattern due to the irregular
distribution of Earth major topography structures, a straightforward relationship between
truncation distance and the dimension of the zone is successfully extracted for application
at regional scale. A guideline about of how far the truncation distance which must
be considered to obtain the standard precision in geodynamic applications at local and
regional scale is also presented.

Using a specific application on a gravity measurement profile across Eastern Nepal,
this study illustrates the importance of an optimum truncation distance for geodynamical
study to avoid any misinterpretation. Comparison of the results from this study with the
previous study by Jekeli (2013) is also discussed in the end of the discussion.
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3.2. Method

We investigate the relationship between the truncation distance ψt and the distance
d between two stations P and Q (Figure 3.2) by calculating the relative difference in
truncation errors between each station:

σg(ψt, d) =
∣∣∣[gtopo(ψ = 180°)− gtopo(ψ = ψt)]P − [gtopo(ψ = 180°)− gtopo(ψ = ψt)]Q

∣∣∣
(3.1)

where [gtopo(ψ = 180°)− gtopo(ψ = ψt)] is the difference in vertical attraction between the
global topography effect (ψ = 180°) and the truncated topography effect (ψ = ψt). This
difference thus represents the attraction due to masses beyond the truncation distance ψt

, i.e. the error of ignoring topography beyond this distance. The difference in truncation
errors between stations P and Q (σg(ψt, d)) is a measure of the precision in the relative
gravity anomalies between these points.

Figure 3.2: Scheme to evaluate the optimal truncation distance ψ to perform topography
correction for a regional application. P and Q are two gravity stations (black dots) located
at the limits of the survey area and separated by a distance d.

This approach is applied on three regions; The first region (77°-97°E, 18°-38°N) in-
cludes the Tibetan Plateau, the Himalayan belt and northern India. It is characterized
by major variations in the topography elevation profile. The second one (105°- 125°W,
15°- 35°N) is in the Pacific Ocean, with smoother surface (bathymetry) variations. And
the third one (95°-75°W, 15°-35°S) is in the south-eastern Pacific Ocean with a smooth
surface (bathymetry) variation but with the existence of the Andes Cordillera as a major
structure nearby. For those area, I calculate the gravity and gravity gradients effect of
topography masses in continental and oceanic domains varying the truncation distance
ψt from 0.1° to 180°.
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a)

b)

c)

Figure 3.3: The test regions in the Himalaya (a), mid-Pacific (b), and southeastern Pacific
(c) (red squares). White lines represent iso-distances from the tested regions.
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The calculations are performed by using the DTM2006.0 topographic data (Pavlis
et al., 2007) with a resolution of 10 km. The topography model is decomposed in two
bodies: a rock layer for masses above sea level with a density ρc = 2670 kg m−3 and a
water layer for masses below sea level with a density ρw = 1000 kg m−3. Using the crustal
density as the reference density, it gives a density contrast for the ocean of -1670 kg
m−3. The measurement points are set on the ground (altitude h+20 cm on the continents
and h=20 cm on the oceans to ensure that the measurements for gravity gradient are
outside the source), at mid altitude (10 km), and satellite altitude (255 km). The spatial
distribution of measurement points is set with a spacing grid 0.2°×0.2°.

The pairs of stations are constructed by performing 2-combination among the existing
points within the regions. To ensure the representativeness of the results, I select the
combinations of ψt and d that contain more than 100 pairs, thus the pairs with d > 21°
are excluded from the later procedures and analysis in this study (Figure 3.4).

Figure 3.4: The number of pairs as a function of interstation distance d. To provide
representative results, I select the d with n-pairs > 100. From the histrogram, the inter-
station distance d in this study is d ≤ 21° (in blue bars) and the data beyond d = 21° are
excluded (in red bars).

We want to provide a truncation value that is representative of an order of magni-
tude in the precision of the correction. Figure 3.5 demonstrates that the distribution of
σg(ψt, d) at each combination of truncation distance ψ and interstation distance d does
not extend very far to the high value (standard deviation or 90th percentile is close to the
mean). Although the distributions are not perfectly Gaussian, they are not extremely
skewed, i.e. the mean and median are very close and the distributions are not far from
being symmetrical. Therefore, the mean of the distribution is a good first-order estimator
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to represent the results.

a) b)
mean=4.12
median=4
std=1.84

mean=0.46
median=0.44
std=0.27

Figure 3.5: Histogram of σg(ψt, d) distribution at (d = 2°, ψt = 15°) (a) and (d = 15°, ψt =
30°) on Himalaya case as the sample points to view the distribution of σg(ψt, d).

3.3. Results

3.3.1. Gravity relative error due to global topography variation

Figure 3.6 shows the relative truncation error σg(ψt, d) as a function of interstation
distance d and truncation distance ψt, calculated on topography surface on Himalaya
(a), Pacific Ocean (b), and southeast Pacific Ocean close to Andes Cordillera (c). The
results at other computation altitudes, 10 km and 255 km, can be found in Appendix
B. The relative truncation error σg(ψt, d) exhibits a complex pattern for all three areas,
that is associated to the topography variation within the zone and the irregularities of
topography variation beyond the survey zones.

As expected, the maximum errors (over 10 mGal) are associated with small truncation
distance (ψt ≤ 10°) and large interstation distances (d ≥ 5°). Errors for small truncation
distances are larger for the Himalaya area (over 50 mGal), confirming the major effects
of the topography roughness in local and regional corrections, which is not for the Pacific
Ocean cases with a smoother topography (bathymetry) (with errors σg(ψt, d) around 5-10
mGal).

For pairs of stations that are separated by a large interstation distance (d > 5°)
suffer from the topography variation in far-field. For example, the effect of Greenland
for the Himalaya case results the errors with σg(ψt, d) > 5 mGal (Figure 3.6). The effect
of Greenland is weaker on the Pacific zone because the distance of Greenland from the
tested zone in Pacific is further than the one on Himalaya.
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Figure 3.6: The difference in topography correction (differential error) σg(ψt, d) between
to two points in the region, as a function of their distance d and the topography correc-
tion truncation ψ (cf. Figure 3.2), for Himalaya (a), Pacific (b), and Southeast Pacific
(c) zones, respectively. The dashed grey line marks the ψ=1.5°, corresponding to the
standard truncation distance (Bullard, 1936). The differential effect of major continental
and oceanic masses are labeled (see Figure 3.3).

3.3.2. Gravity gradient relative error due to global topography
variation

To investigate the relative truncation errors in gravity gradient, I use the same eval-
uation method, as written in eq. (3.1), by replacing the vertical gravity with vertical
gravity gradient and implement it on the same areas (Figure 3.3). The results for ground
measurement are illustrated in Figure 3.7. For the results at other computation altitudes,
10 km and 255 km, it can be found in Appendix B.

As expected, errors for Himalaya region for small truncation distance (ψt ≤ 5°) are



Chapter 3. Optimum Topographic Gravity and Gravity Gradients Reduction for Regional
Geodynamical Studies 95

10 -4

10 -3

10 -2

0.1

1

10 100

5.10 -4

5.10 -3

5.10 -20.5

5

50

400

10 -3

10 -3

10 -3

5.10 -3

5.10 -3

10 -2

1

5.10 -4

5.1
0

-4

10 -4

10 -4

5.10 -4

10 -4

10

5

100

50

σT
zz

 (E
)

σT
zz

 (E
)

d 
(°

)

G
re

en
la

nd

N
or

th
 A

m
er

ic
an

Co
rd

ill
er

a

Asia, Africa, Australia Continents South America

So
ut

w
es

t P
ac

i�
c

Ba
si

n

Pa
ci

�c
 O

ce
an

South America

Ea
st

er
n 

Pa
ci

�c
 B

as
in

Ph
ili

pp
in

e
Ba

si
n

Africa, Asia, Australia Continents

10 -3

10 -2

5.10 -3

5.10 -2

50

5.1
0

-4

10 -4

10 10 -3

10 -3

5.10 -4

10 -4

5.10 -3

10 -3

10 -3

5.10 -3

10 -2

5.1
0

-2

0.1

0.5

5

1

0.1

50

1

5

10

σT
zz

 (E
)

Ea
st

 M
ar

ia
na

 B
as

in

H
im

al
ay

a

A
nd

es
 C

or
di

lle
ra

G
re

en
la

nd

Africa, Asia, Australia Continents

South America

σT
zz

 (E
)

d 
(°

)

c)

σT
zz

 (E
)

d 
(°

)

South America

Ce
nt

ra
l P

ac
i�

c 
Ba

si
n

H
im

al
ay

a

A
nd

es
 C

or
di

lle
ra

Ph
ili

pp
in

e 
Ba

si
n

Africa, Asia, Australia Continents
Ja

pa
n

a)

b)

Figure 3.7: The difference in topography correction (differential error) in gravity gradient
σT (ψt, d) (in Eötvös) between two points in the region, as a function of their distance d
and the topography correction truncation ψ (cf. Figure 3.2), for Himalaya (a), Pacific (b),
and Southeast Pacific (c) zones, respectively. The differential effect of major continental
and oceanic masses are labeled (see Figure 3.3).

larger than in the Pacific regions, with relative truncation errors (σT (ψt, d)) up to 100 E
for the Himalaya area (Figure 3.7a) and up to 10 E for both Pacific cases (Figure 3.7b and
c), confirming the major effect of topography variation within the zone. The variation
of relative gravity gradient truncation errors associated with small truncation distance
(ψt ≤ 10°) decrease more steeply than the relative gravity truncation error in Figure 3.6.
The gravity gradient errors σT (ψt, d) produced by distant major structures is better than
5 mE, thus represents a smaller error percentage than gravity errors σg(ψt, d) (see Figure
3.6 and Figure 3.7 for comparison). It confirms that gravity gradient is less sensitive to
the far-field variation than gravity.

From those explanations above, there is a complex interaction between truncation
distance ψ, scale of the zone (that is interpreted as the interstation distance d in this
study), and spatial distribution of Earth topography to estimate the relative gravity and
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gravity gradient truncation errors, σg(ψt, d) and σT (ψt, d) respectively, that is mainly
due to the variation of Earth topography around the globe and its relative distance to
the zone of interests.

3.3.3. Topography effect at local and regional scale

3.3.3.1. Relative gravity truncation error

For this part of application, we are interested for the application in local and regional
scale. Let us assume that for a geodynamic application at local scale, the dimension of
the zone d does not exceed 2° and the required precision is 1 mGal. For application at
regional scale, it is defined with a maximum dimension of 20° and a required precision
of 10 mGal (e.g., Cattin et al., 2001). The standard precision of each scale of application
is considered based on the spatial variation of gravity within the zone; for a local scale,
normally the gravity is not highly varied (not exceeding hundreds mGal), thus it requires
a higher precision that the one at regional scale (where the gravity variation can be more
than hundreds mGal). By using this condition, we can magnify Figure 3.6 and focus on
ψ ≤ 30°.

At the first order of approximation, the results in Figure 3.8 exhibit a common char-
acteristic: by applying ψt = d, the precision obtained ranges between 1-10 mGal, with
values around 5 mGal. Surely, the variations of errors are specific for each zone and at
each altitude of computation, for example for the result on Himalaya at satellite altitude
where errors reach 30 mGal at d ≤ 8°. But this relation between ψ and d is representative
enough to be applied as a general idea.

As shown in the previous section, this condition depends strongly to the detail of the
topography variation within and around the zone and also the altitude of the computation.
In more detail, our results suggest three types of distributions for the relative truncation
error at local scale (Figure 3.8),

• For Himalaya, errors σg(ψt, d) ≥ 30 mGal at satellite altitude and σg(ψt, d) ≥ 5
mGal for ground and airborne surveys are associated with truncation distances ψt ≤
2°, mainly caused by the variation of the regional topography. To reduce this error,
the truncation distance must be larger than the interstation distance (ψt > d).

• For the Pacific Ocean example, the smooth topography (bathymetry) surface results
in relative truncation errors lower than 1 mGal with ψt ≤ 2°. An exception for the
result at satellite altitude, where the required truncation distance is 6.5° to ensure
this precision.

• For the Southeast Pacific case, the presence of major structure in the vicinity (i.e.
Andes Cordillera) obliges us to set apply the truncation distances ψt larger than 12°,
13°, and 15° to obtain errors ≤1 mGal for ground, airborne, and satellite surveys,
respectively.

For applications at local scale, to make sure that the errors are less than 1 mGal, we
suggest to use a truncation distance of 15°.
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Figure 3.8: The difference in topography correction (differential error) σg(ψt, d) between
to two points in the region, as a function of their distance d and the topography correction
truncation ψ (cf. Figure 3.2), for Himalaya (left), Pacific (middle), and Southeast Pacific
(left) zones at different altitude of acquisition, on the topography surface (top), at altitude
10 km (middle), and at altitude 255 km (bottom). The red line indicates a linear function
ψt = d.

The effect of ignoring topography beyond a truncation distance ψt is more important
as the increase of survey altitude, which demonstrates that far-field effects have a stronger
influence on satellite altitude than on ground or airborne altitude (Szwillus et al., 2016).
For example, Himalaya case requires a minimum truncation distance of 8.5°, 8.8°, and
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12.5° to obtain errors ≤10 mGal at ground, mid-altitude, and satellite altitude, respec-
tively. The presence of long topography wavelength around the Southern Pacific case
necessitate to extent the minimum truncation distance to 8°, 8.5°, and 13° for ground,
mid-altitude, and satellite altitude of surveys, respectively, to obtain 10 mGal of relative
truncation errors. The required truncation distance to obtain 10 mGal of precision is
summarized in Table 3.1. Errors of 10 mGal follow a quasi-linear combinations between
d and ψt for all tested areas and at all tested altitudes.

The cases above are fixed with a precision of 10 mGal for regional case. We can expand
the truncation distance ψt that have been mentioned above if we want to have a better
precision. If the expected precision is few mGal, it will be necessary to include a whole
global topography (ψt = 180°).

3.3.3.2. Relative gravity gradient truncation error

For relative gravity gradient truncation errors, the evaluation is done by using the
precision of gradiometry at each measurement altitude as the threshold: 1 E for ground
and mid-altitude surveys (see Chapter 1, Lane (2004),Jekeli (2013)) and 10 mE at satellite
altitude (Rummel et al., 2011). The errors are decreasing as the measurement altitude
increases since the observed gravity gradient is also decreasing as the increase of the
measurement altitude (see Chapter 2 and Bouman et al. (2013)). The majority of errors
variation for truncation distance ψt ≤40° is following a quasi-linear combinations between
d and ψt (Figure 3.9).

The results in Figure 3.9 shows remarkable outcomes; for the estimation of topography
effect in term of gravity gradient at ground and airborne altitudes with 1 E of precision,
it can be fulfilled using ψt ≥ 8.5°. For the estimation at satellite altitude, a precision of
10 mE can be achieved by using ψt ≥ 40°.

The details of the minimum truncation distance ψt that is required for geodynamic
applications at local and regional scale for all acquisition altitudes are given in Table 3.1.

Table 3.1: Estimated minimum truncation distance ψt in the assessment of topography
contribution for geodynamic application at local and regional scales.

Scale Region
Gravity Gravity Gradient

Ground Airborne Satellite Ground Airborne Satellite
(1 E) (1 E) (10 mE)

Local
(1 mGal)

d = 2°

Himalaya 7° 7° 12.5° 2.75° 3° 4.5°
Pacific 0.4° 1° 6.5° 0.75° 0.8° 9°

Southeast Pacific 12.5° 13° 15° 0.8° 0.85° 17.5°
Regional
(10 mGal)

d = 20°

Himalaya 8.5° 8.8° 12.5° 7.5° 8.5° 40°
Pacific 0.2° 0.5° 6° 1.6° 1.75° 39°

Southeast Pacific 8° 8.5° 13° 6.5° 7° 35°
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Figure 3.9: The difference in topography correction (differential error) σT (ψt, d) (in
Eoẗvos̈) between two points in the region, as a function of their distance d and the
topography correction truncation ψ (cf. Figure 3.2), for Himalaya (left), Pacific (middle),
and Southeast Pacific (left) zones at different altitude of acquisition, on the topography
surface (top), at altitude 10 km (middle), and at altitude 255 km (bottom).
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3.4. Discussion

The topographic contribution on ground surveys is classically calculated using the
Bullard (1936) approach, that takes into account the effect of topography within a distance
of 1.5° from measurements. However, as demonstrated in the previous section, this
truncation distance is not adequate to be applied for current developments of gravity
surveys, particularly for the application on a rugged region and/or at a large dimension
of study area (larger than several tens of kilometers). Moreover, with the high accuracy
of present gravimeters, it should be better if it is followed by a commensurate precision
in gravity data processing. Like has been mentioned in the previous section, the results
exhibit that a truncation distance ψt of 15° is suggested to ensure the relative truncation
error is less than 1 mGal.

a)

b)

Figure 3.10: Differential error in the topography gravity corrections (σg(ψt, d)) as a func-
tion of the extent of the survey zone (d) for topography corrections truncated at ψt = 1.5°
(a) and ψt = 15° (b) for the Himalayan (red dots), Pacific (blue dots), and Southeast Pa-
cific (yellow dots) regions.



Chapter 3. Optimum Topographic Gravity and Gravity Gradients Reduction for Regional
Geodynamical Studies 101

Figure 3.10a shows the relative truncation error as a function of the interstation dis-
tance for the standard truncation distance of 1.5°. In the case of the Himalayan strong
topography variations, the average error quickly rises above a few mGal for relatively
short interstation distances (ca. 1° or 111 km). Average errors up to 40 mGal can be
reached for interstation distances over ca. 15°. The smooth topography of the Pacific
zone gives lower errors from 0.06 mGal to 10 mGal. The Southeast Pacific case with the
presence of major structure in the vicinity of the zone gives errors from 0.1 mGal to 22
mGal. In comparison with the standard 1.5°, a truncation distance of ψt = 15° signifi-
cantly reduces the relative truncation errors in three example regions (Figure 3.10b). The
average errors remain below ca. 10 mGal for all distances, and drop to less than 1 mGal
for the common dimension of local ground-based surveys (d ≤ 2°).
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Figure 3.11: Example of the effect of the topography correction truncation along an India
- Himalaya - Tibet profile (Berthet et al., 2013). (a) Topography along the profile (cf.
insert). (b) Bouguer anomaly, relative to the point at distance 0 km, after terrain correc-
tions with truncation distances ψt = 1.5° (red), ψt = 15° (blue), and ψt = 180° (global
topography, yellow). (c) Differences in Bouguer anomaly (i.e., differences in topography
corrections) between ψt = 1.5° and ψt = 180° (red dots) and ψt = 15° and ψt = 180°
(blue dots).
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Figure 3.12: The variation of Bouguer anomaly (top) and its associated Moho geometries
model (bottom), extracted from Berthet et al. (2013) as an example of the misinterpre-
tation due to the relative errors in terrain corrections.

This effect is illustrated on a gravity anomaly profile across India - eastern Nepal -
China used to assess the Indian Plate geometry beneath the Himalayas (Berthet et al.,
2013). We use uncorrected gravity data (Bureau Gravimétrique International - BGI
database, Sun, 1989; Cattin et al., 2001; Tiwari et al., 2006; Berthet et al., 2013) to com-
pute Bouguer anomalies for three truncation distances of 1.5° (standard correction), 15°,
and 180° (global correction). The Bouguer anomalies are translated to an arbitrary ref-
erence at the profile origin to analyse the relative variations (Figure 3.11b). Compared to
the global correction, Bouguer anomalies based on the standard ψt = 1.5° show deviations
up to 45 mGal over the profile length (1700 km). Such long wavelength error can result in
misinterpretation of about ten of kilometres in the geometry of the underthrusted Indian
Plate and its effective elastic thickness (see Berthet et al., 2013) (Figure 3.12). In con-
trast, the topography reduction using a truncation distance of 15° yields relative errors
smaller than 1 mGal along the whole profile (Figure 3.11c).
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Our results demonstrate that a global correction of the topography effect is not re-
quired for ground-based relative gravity surveys for local and regional geodynamic appli-
cations, but the standard correction distance of 1.5° can lead to significant errors and
misinterpretations. We then favour the use of a truncation distance ψt = 15° to ensure a
precision of 1 mGal in relative regional studies.

Considering that the roughness of topography is not homogeneous over the Earth’s
surface, it seems difficult to define a general solution to deal with the topography trunca-
tion distance. For gravity gradiometry, an algorithm based on a geostatistical analysis of
the local topography by Jekeli (2013) could be an interesting method to tackle this prob-
lem. Nevertheless, this method seems to underestimate the far-field topographic effect.
For example, on a rugged topography zone with the points separated at 50 km, Jekeli
(2013) suggests ψt ≥ 0.43° to obtain a relative error less than 1 E, which is much smaller
than the ψt derived from this study (ψt ≥ 1.5°). For our result in the Pacific region, a
truncation distance of 0.4° (∼44 km) is needed to obtain the same relative error.

3.5. Conclusion and Perspective

Estimation of gravitational effects due to the variation of Earth topography is essential
in gravity data analysis. This chapter underlines the importance of the optimum topogra-
phy truncation distance as an essential parameter to assess topography effect for gravity
and gravity gradient application in geodynamics at local, regional, and global scale.

This study confirmed that the precision in estimating the gravitational effect of Earth
topography is mostly controlled by the truncation distance over which the topography
is considered. The relation among relative errors, dimension of a study area, and the
extent of topography is complex due to the irregularities of topography variations on
the Earth surface. But by quantifying the relative truncation errors from end-members
regions in terms of topography roughness: the Himalaya region with strong topography
roughness and the Pacific region with smooth topography roughness and also a region on
the Southeast Pacific that represents a zone with smooth topography within the zone but
is completed with major topography structures in the vicinity, this study allows to create
a guideline to determine the optimal truncation distance as a function of study scale.

From the tests that have been performed in this study, we show that:

• For the application of gravity or gravity gradients using the absolute value of
gravity-related field variation that require a high precision (i.e. better than
1 mGal), the estimation of topography must be done using global topography
(ψt = 180°). This type of application is widely used in the application of satellite
gravity field observations.

• For the application at global scale, the computation of topography effect must be
done by considering the global topography.

• In general, the use of truncation distance that is equal with the dimension of a zone
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(ψt = d) ensures precision in the range of 1-10 mGal (Figure 3.13). It is sure that the
variations of errors are specific for each zone and at each altitude of computation.
But this relation is representative enough to be applied as a general idea.

• At regional scale of gravity application (d ≤ 20°), the use of ψt = 15° ensure the
gravity relative error less than 1 mGal at all tested altitudes.

• For topography effect in term of gravity gradient at regional scale, using the accuracy
of the instruments as the threshold (1 E for the measurement on ground and airborne
surveys and 0.01 E for satellite observations), the precision of 1 E on ground and
airborne survey altitude can be obtained by using a truncation distance ψt = 8.5°.
Whilst for topography effect at satellite altitude with a precision of 0.01 E, it can
be obtained using ψt = 40°.
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Figure 3.13: Distribution of relative gravity errors σg due to neglecting the effect of
topography beyond truncation distance ψ as a function of dimension of the zone d. The
use of ψ = d ensure the precision between 1 and 10 mGal for application at regional scale.

The roughness of local topography and the presence of major structures around the
zone play a major effect to define the optimum topography extent. A systematic study
to estimate the optimum topography extent as a function of topography roughness seems
to be important to be developed. By using a synthetic topography with a controlled
topography roughness, a direct relation among the scale of study, topography roughness,
and altitude of measurement and the associate relative errors could be obtained.



Chapter 4

Detailed Subduction Slab Geometry,
What is Really Constrained from GOCE
Observations?

4.1. Introduction

Subduction zone is one of the most interesting geological objects in our planet where
intensives geodynamic process occur. Over the past decades, tremendous advances to
explain the structures at depth have been gained from seismological, geochemical and
geological data interpretation, mineral physics experiments and numerical modelling. The
seismic tomography provides an image of the global three-dimensional internal structure
through maps of fast and slow seismic anomalies, which delineate the geometry of plates
sinking into the mantle (cf. Obayashi et al., 2009; Koulakov et al., 2011; Zhao et al., 2012).
However, converting seismic velocities into densities is not straightforward, as it depends
on temperature and chemical composition and are strongly affected by phase changes that
influencing each other (Karato and Karki, 2001). Hence, we need further information to
interpret the seismic signal in terms of density variations versus other physical processes.

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) aimed to
determine the static gravity field of the Earth (Rummel et al., 2002; Johannessen et al.,
2003). GOCE gravity gradients have already been used for various regional applications
(cf. Fuchs et al., 2013; Bouman et al., 2014; Alvarez et al., 2015; Cadio et al., 2016) as
well as in global scale (cf. Panet et al., 2014). Since GOCE gravity gradients is sensitive
to mass variation in 3D, it can be an efficient tool to characterize the geometry of a slab
that can provide new insights with respect to traditional seismic and tomographic models.

One of the major challenges of modern Earth sciences is the understanding the ge-
ometry of the subduction, that is important in the studies of seismic hazard (e.g., Zhao
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et al., 2017; Gao, 2018). GOCE have been successfully used to illustrate the presence
subducting lithosphere, like have been presented by Panet et al. (2014). Beyond detect-
ing the presence of a slab, there is an open question about whether GOCE observations
are capable of explaining the geometry of a slab in more detailed.

This study is performed to investigate the degree of constraint that can be brought
by GOCE observations on the geometry of a subducting slab, including its density dis-
tribution, borders, dip angle, its lateral variation, and the evidence of slab tear. The in-
vestigations are started using synthetic models to provide preliminary insights for further
investigations in the Izu-Bonin-Mariana (IBM) zone as the study area. All calculations
in this investigation are performed using GEEC.

This chapter presents as the following:

• First, I present the processes in the first approach using synthetic slab models
to give preliminary insights about the gravity gradients signatures related to the
detailed structure of a slab, seen at satellite altitude. I apply GEEC to calculate the
gravity gradient effects of given mass bodies that contain specific imposed geometry
properties, including the variations on density distribution, dip angle, and its lateral
variation. The gravity gradients due to the variation of slab dimensions and the
modelled slab tear are also assessed.

• Then, the obtained results using synthetic models are presented. The estimations
of which properties of detailed slab geometry that are theoretically detectable by
GOCE observations are described. These results are used as the benchmark for the
analysis of the real GOCE observations on the IBM zone.

• The properties of the used datasets, including the GOCE observations and the
bathymetry as well as the crustal model, are presented. Details about GOCE data
corrections applied in this study are also described.

• The confrontations of the results from synthetic modelling and the others obtained
from GOCE data processing on the IBM case are then explained.

• The discussion about the detailed properties of slab geometry that can be con-
strained by GOCE observations are presented. It is then followed by the discussion
about the requirement in global crustal dataset that can be used to assess properly
the detailed structure of slab geometry.

4.2. Synthetic modeling

Gravity gradients signal over a subduction zone is often not straightforward to be
deciphered. The existence of various structures in the zone together may create an intri-
cate spatial distribution of gravity gradients within the zone. Therefore, before applying
into a real subduction case as IBM, some test scenarios using several synthetic models of
slab are performed to provide preliminary insights into the gravity gradients signal due
to the slab’s excess weight and to evaluate the associated signals to the geometry of the
slab: its borders and the variation of the subduction angle. The computations using these



Chapter 4. Detailed Subduction Slab Geometry, What is Really Constrained from GOCE
Observations? 107

synthetic models are performed at the altitude of 255 km, similar to the mean altitude of
GOCE (Rummel et al., 2011).

As explained above, the Izu-Bonin-Mariana (IBM) subduction system will be used
as a study case. Therefore, in the followings, the dimension of the synthetic slab model
is adapted to the dimension of the IBM subduction. The dimension of the subducting
slab (Figure 4.1) is extending 10° from X = 0° to to the south and 45° to the north to
simulate the continuation of the subduction to the Kuril-Kamchatka subduction system
in the north.
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Figure 4.1: Reference for the dimensions of the synthetic slab adapted to the IBM case,
with 10° on the south part and 45° on the north part (from X=0°). The contours in the
left figure show the depth of the slab interface, after Hayes et al. (2012). The trench is
marked with triangled line and the border of the slab is shown with the dashed line. The
direction of gravity gradients is shown in the right figure.

Before I present the results from synthetic modelling, please note that the x-direction
is positive to the north, which is parallel to the modelled trench. The y-direction is
positive westward, which is perpendicular to the modelled trench. The z-direction is
upward. In general, each component of gravity gradients is unique and sensitive to:

• Txx is sensitive to west-east structure orientation
• Txy is sensitive to the corners of structures
• Txz is sensitive to lateral variations of structures with west-east orientation
• Tyyis sensitive to north-south structure orientation
• Txz is sensitive to lateral variations of structures with north-south orientation
• Tzz is sensitive to radial variations

The details of each component’s characteristics can be found in Chapter 1 Section 1.3.



108

4.2.1. Density Distributions of Slab Model

The interface of the slab models lies in a depth of 3 km below the surface (depth =
0 km) with 100 km thick and 700 km long. The slab as the source of the anomaly is
divided into several finite mass bodies, including lithospheric mantle in the asthenosphere
layer, oceanic crust body in the lithospheric mantle, and a chunk of oceanic crust in
the asthenosphere layer, symbolized as A, B, and C in the Figure 4.2, respectively. The
applied density anomaly ∆ρ is ∆ρA = +80 kg m−3 for the layer A, ∆ρB = −500 kg m−3

for the layer B, and ∆ρC = −420 kg m−3 for the layer C. Those bodies are integrated
differently on each model. On the first model, the simplest model, the only source of the
anomaly is the subducting lithospheric mantle in the asthenosphere layer (Figure 4.2a).
The presence of the oceanic crust with a thickness of 7 km in the lithospheric mantle as
a source of anomaly is integrated in the second model (Figure 4.2b). In the third model,
the subducting oceanic crust is assumed to dive into the asthenospheric layer (Figure
4.2c). Those models are performed to find the closest "naive" slab model for later than
be adapted into the real case. All calculations of slab synthetic models are performed
using GEEC. The parameters for spherical approximation is following GOCE’s reference
ellipsoid (see Section 4.3.2. and Table 1.1 in Chapter 1).
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Figure 4.2: Schematic representation of the "naive models" of subducting plate. The small
triangle indicates approximately the location of the trench.

Here, I assume a slab geometry with a constant dip θ of 55°, applies to all three
models (Figure 4.2). The obtained gravity gradients are shown in Figure 4.3 (Slab model
1 - Figure 4.3 left, model 2 - Figure 4.3 middle, and model 3 - Figure 4.3 right).

According to the models considered, the calculated of gravity gradients show large
differences. Unsurprisingly the highest amplitudes of gravity gradients in all components
are obtained with model 1, because only a positive density contrast that is considered
(Table 4.1). The integration of oceanic crust layer(s) with negative density contrast in
the model 2 and 3 causes the diminution of the signal. The presence of oceanic crust in
the lithospheric layer reduce the Tyy and Tzz signal up to ∼650 mE (compare result from
model 1 and model 2). The presence of oceanic crust in the asthenospheric layer adds the
diminution up to ∼600 mE also in Tyy and Tzz. More interestingly are the results show
that negative density contrast that is related for oceanic crust generates short wavelength
signals on the both sides of the trench (Figure 4.3, model 2 and 3).
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The anomalies in Txy and Txz components could be related to the southern border of
the slab. The signal due to the slab edge is described in more detail in Section 4.2.4.
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Model 1 Model 2 Model 3

Figure 4.3: Gravity gradients response (in mE) of the synthetic slab model 1 (left), model
2 (middle), and model 3 (right) at 255 km of altitude. The triangle-line indicates the
location of the trench. The dashed line show the border of the slab.
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In in Figure 4.4, I present the value of components Tzz, Tyy, and Tyz of Figure 4.3
along a profile perpendicular to the trench (along the Y axis) (gray line in Figure 4.3)
that exhibit the most remarkable signal variation comparing to the other components.
The position of the peak in Tzz and Tyy may indicate the position of the center of the
mass. Whilst in Tyz, the peaks may indicate the termination of a slab. However, it is quite
difficult to be deduced. The termination of the slab is located at hundreds of kilometers
depth, hence the wavelength of the resulted signal too long to be interpreted.
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Figure 4.4: Variation of Tzz, Tyy, and Tyz of a profile perpendicular to the trench (along
Y-axis) of different slab models (see Figure 4.2). The location of the profile is indicated
with gray line in Figure 4.3.

As shown in Figure 4.4, the first model results in a single positive peak along the
profile of Tzz and a negative trough for Tyy. When crustal layer is taken into account as
in the case of the model 2 and model 3, its negative effect creates a through along the
profile of Tzz and a crest for Tyy with a wavelength ∼4°with ∼250-300 mE of amplitude.
These wavelength and amplitude of the oscillation are superior to the highest spatial
resolution and precision of GOCE, 100 km and 10 mE, respectively. Therefore, these
signal properties are theoretically detectable by GOCE. Since the location of the center
of the anomalous mass is shifted, the location of the crest on Tzz profile (the trough for
Tyy) is also shifted ∼1° away from the trench.
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Table 4.1: Extremity of signal amplitude of each slab model of the profiles in Figure 4.4.

Component Max. Amplitude (mE)
Model 1 Model 2 Model 3

Tzz 1673 1100 499
Tyy -1448 -943 -425
Tyz 916 602 260

For Tyz, the slab model 1 creates a simple long wavelength along the profile perpendic-
ular to the trench. While for the model 2 and model 3, the variation from a positive to a
negative anomalous mass along the profile leads to a double oscillations with a wavelength
of ∼4°and ∼250-300 mE of amplitude in Tzz and Tyy. The maximum amplitude along the
profiles of each component in Figure 4.4 are given in Table 4.1.

In the following, we assume that model 1 is too simple to mimic the reality properly.
Thus we only consider models 2 and 3 to study the effect of slab geometry that is reflected
in gravity gradients.

Summary:
• The excess mass related to a slab produces a positive signal in Tzz and negative in Tyy

with a magnitude greater than 500 mE and a total wavelength of ∼8° perpendicular
to the trench. Thus, the presence of the slab is detectable by GOCE.

• Gravity gradients are sensitive enough to the distribution of anomalous density in
the slab. The oscillation is produced due to the presence of negative anomalous
body, that is related to the oceanic crust in the upper mantle, with a wavelength
∼4°. The presence of negative density contrast in the astenopheric layer reduces
Tzz up to 600 mE.

4.2.2. Gravity gradients response to the dip variation

The variation of subduction angle or dip of the slab can lead to signal variations, both
in the spatial distribution and its amplitude. For the comparison, here I calculate the
gravity gradients correspond to the effect of a slab with a constant dip 45°, 55°, 60°, 80°,
and 85°. Figure 4.5 shows the variation of Tzz, Tyy, and Tyz along the same profile. The
results from each tested dip are displayed with different line colors.

Our results suggest that a dip angle variation from 45° to 85° can lead to a gradient
change up to ∼200 mE in Tzz and Tyy components. A steeper slab produces weaker
gravity gradients (see Table 4.2). It could be related to the position of the anomalous
mass, a slab with a small dip is located closer to the surface. This can also be explained
by the distance between the slab with respect to the measurement position.

However, it is difficult if we estimate a small dip variation. For example, with 5° of
variation, the variation produced in Tzz is "only" ∼30 mE. By considering the noise in the
observation, this signal variation can be in the limit of detection. However, if we have a
larger dip variation, e.g. 10°, the variation in Tzz can reach ∼75 mE, that has a bigger
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Figure 4.5: Profile as a function of the subduction angle, shown by the different colors,
in Tzz, Tyy, and Tyz along the profile at X=0 of the slab model 2 (a) and model 3 (b).

chance to be detected in GOCE observations.
The variation of the dip also affects the geometry of the anomalous mass; the steeper

the dip of a slab is, the closer the termination of a slab is to the trench. This observation
is illustrated by the shift of the positive peak of Tyz toward the trench. However, this
shift is small enough (∼ 0.5°), even with a comparison between angle dip 45°and 85°.

Summary:
• The variation of gravity gradients associated to the variation of dip ≥10° is pos-

sible to be detected in GOCE observation, with a magnitude of ≥75 mE. Any dip
variations with ∆θ ≤10° produces a weak enough Tzz variations (e.g., ∼30 mE for
∆θ = 5°) that could lead to any misinterpretation if we consider also the noise in
the data.

4.2.3. Gravity gradients response to the lateral variation of dip-
ping angle

In the following study, the variation of the gravity gradients due to a lateral variation
of the subduction angle is tested. In a case where there is an abrupt change of the dip
parallel to the trench, a slab tearing could be happened. First, to avoid the effect due to
the limit of the slab, the dimension of synthetic slab model is then set to be 45° of length
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Table 4.2: Maximum amplitude of Tzz resulted from the variation of subduction dip of
slab model 2 and 3.

Component Dip (°) Max. Amplitude (mE)
Model 2 Model 3

Tzz

45 1198 572
55 1100 499
60 1063 472
80 982 398
85 973 387

Tyy

45 -1035 -492
55 -943 -425
60 -909 -400
80 -833 -334
85 -825 -324

Tyz

45 650 295
55 603 260
60 587 248
80 559 217
85 557 213

of both sides of the "slab tear".
For the case of IBM slab, some studies have shown that there is a dip variation parallel

to the trench (cf. Stern et al., 2004; Cruciani et al., 2005; Miller et al., 2005; Oakley et al.,
2008; Jaxybulatov et al., 2013). Here, following Cruciani et al. (2005), I consider a dip
angle along Izu-Bonin is ∼55° and along Mariana slab is ∼85° (Figure 4.6). The abrupt
change of subduction angle is located at X=0°. Here, I use, as a reference, a model
with a constant dip angle of 85°, where there is no lateral variation of subduction angle.
Another test using a dip variation 85°-45° is also performed to see the gravity gradients
effect where the lateral variation of the subduction angle is larger.

North

X

Y

Slab tear

0°

Izu
-B

onin

Mariana

Figure 4.6: A 3D model of slab tear scheme due to an abrupt change of subduction angle
for the case of IBM subduction.
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The six components of gravity gradients calculated at the satellite altitude (255 km)
is shown in Figure 4.7, using slab model 2 (a) and slab model 3 (b), with a dip variation
of 85°-85° (left) as the reference, 85°-55° (middle), and 85°-45° (right). I present also
the results of each component of gravity gradient along a X-profile parallel to the trench
(Figure 4.8) that is indicated in the white line in Figure 4.7.
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85° - 85° 85° - 55° 85° - 45°

Figure 4.7a: Gravity gradients effect of slab model 2 using an infinite dimension of a slab
(45°-45° on the both sides), with a lateral dip variation of 85° - 85° (left), 85° - 55°
(middle), and 85° - 45° (right).
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85° - 85° 85° - 55° 85° - 45°

Figure 4.7b: Gravity gradients effect of slab model 3 using an infinite dimension of a slab
(45°-45° on the both sides), with a lateral dip variation of 85° - 85° (left), 85° - 55°
(middle), and 85° - 45° (right).
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a) b)Slab Model 2 Slab Model 3

Figure 4.8: The gravity gradients effect due to the dip variation of the slab where the
dimension of the slab is set in infinity using a slab model 2 (a) and model 3 (b).

Models 2 and 3 give similar patterns, as previously explained. The magnitude using
slab model 2 is stronger than slab model 3 involving a large portion of crust. Each
component of gradient provides unique response to the lateral variation of the subduction
angle. The responses of each component are summarized in Table 4.3. As expected, since
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the dimension of the slab model is large (90°), the signal along the profile where there
is no lateral variation is quasi-constant. Our results suggest that the gravity gradient
components that can be used to localize where the subduction angle changes abruptly are
Txx, Txy, and Txz where the X-direction is parallel to the trench. The other components,
Tyy, Tyz, and Tzz, can be used to analyze if there is any lateral variation along the
subduction by regarding its signal variations parallel to the trench.

Table 4.3: Description of the gravity gradients’ responses to the lateral variation of slab’s
subduction angle (based on Figure 4.7).

No lateral variation of subduc-
tion angle

With lateral variation of sub-
duction angle

Txx

Consists of a signal with a wave-
length more than 50° with a vari-
ation of ±15 mE along the profile

There is an oscillation due to the lat-
eral variation of subduction angle;
the middle point between the crest
and the trough coincides with the lo-
cation of the tear.

Txy
The signal along the profile is almost
constant with a variation of ∼2 mE

A positive anomaly is produced
around the tear, the crest of the
anomaly lies where the subduction
angle changes abruptly

Txz

Consists of a signal with a wave-
length more than 50° with a vari-
ation of ±15 mE along the profile

A negative anomaly is produced
around the tear, the trough of the
anomaly lies where the subduction
angle changes abruptly

Tyy
The signal along the profile is almost
constant with a variation of ∼9 mE

The signal increases where the sub-
duction angle decreases (negative)

Tyz
The signal along the profile is almost
constant with a variation of∼0.5 mE

The signal is stronger where the sub-
duction angle decreases (negative)

Tzz
The signal along the profile is almost
constant with a variation of ∼5 mE

The signal is stronger where the sub-
duction angle decreases (positive)

The maximal magnitude of gravity gradient variations due to the lateral variation
of slab geometry is summarized in Table 4.4 in the column 45°-45° (infinite plate). As
expected, by comparing the resulted variations of 85°- 55° and 85°- 45°, a larger angle
variation leads to a stronger gravity gradients variations, varies at each component (17
mE in Txx, 28 mE in Txy, -47 mE in Txz, -103 mE in Tyy, -106 mE in Tyz, 112 mE in
Tzz). For the case of IBM zone, with a lateral variation of 85°- 55°, the variation of Tyz

along the profile is the largest among the other components. The obtained results in Tyy,
Tyz, and Tzz show gravity gradients varies over 100 mE, that is theoretically detectable
in GOCE observation.

As preliminary results, it appears that tear due to an abrupt change of subduction
that happens locally produces anomaly with a wavelength larger than 5° (∼550 km) in
Txx, Txy, and Txz components (see also Table 4.4). This wavelength is larger than the
minimum resolution of GOCE (i.e. 100 km) (Rummel et al., 2011). The magnitude of the
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anomaly due lateral variation of dip 85°- 55° is about 14-19 mE in Txx, while it is stronger
in Txy (26-41 mE) and Txz (44-57 mE), depend on the model 2 or 3. Theoretically, with
this wavelength and magnitude, these anomalies are detectable in GOCE observation.

Summary:
• Slab’s lateral dip variation of 85°- 55°, like for the case of IBM, is theoretically

detectable in GOCE observation, with Tyy, Tyz, and Tzz variations are greater than
140 mE.

• The location of the tear could be detected in GOCE observation, particularly using
Txz component that shows 44-57 mE of anomaly with a wavelength of 5.6°. However,
this condition is limit enough to be applied in the real case when we consider the
presence of noise in the data.

Table 4.4: Amplitude and the resolution (half wavelength λ)of gravity gradients due to
the lateral variation of slab dip where the value is relative to the value corresponds to the
slab model without slab variation (dip variation 85°-85°) as the reference. The dimension
of the slab model: 45°-45° for an infinite model and 10°-45° for the dimension similar to
the IBM.

Dip Variation Component Amplitude (mE) 1/2λ (°)
45°- 45° 10°- 45° 45°- 45° 10°- 45°

Sl
ab

M
od

el
2 85°- 55°

Txx 19 19 5.2 5.2
Txy 41 41 7.8 7.7
Txz -57 -57 5.6 5.6
Tyy -142 -142 - -
Tyz -161 -161 - -
Tzz 152 152 - -

85°- 45°

Txx 37 37 5.2 5.2
Txy 69 69 7.4 7.3
Txz -104 -104 5.4 5.4
Tyy -245 -245 - -
Tyz -267 -267 - -
Tzz 264 264 - -

Sl
ab

M
od

el
3 85°- 55°

Txx 14 14 5.6 5.6
Txy 26 26 8 8
Txz -44 -44 6.6 6.6
Tyy -104 -104 - -
Tyz -108 -108 - -
Tzz 113 113 - -

85°- 45°

Txx 25 25 5.6 5.6
Txy 43 43 7.6 7.6
Txz -76 -76 6.2 6.2
Tyy -170 -170 - -
Tyz -177 -177 - -
Tzz 186 186 - -
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4.2.4. The Effect of The Slab Edge

In the previous models, I used a slab with a dimension of 45° to the north and 45°
to the south from the location of the "slab tear". However, for the case of IBM zone, the
dimension along Mariana subduction is ∼10°. In the following test, we examine the effect
of the border of a slab to the gravity gradients and how it affect the signal due to the
slab tear.

The obtained results show that the slab edge produces ∼125 mE and and ∼10° of
wavelength in Txx, Txy, and Txz (Figure 4.9 and Figure 4.10). Compared to the previous
results, this signal is stronger than the one due to slab tear, except for Txy and Txz

which can locally exhibit similar amplitude. The negative anomalous body related to the
subducting oceanic crust results in oscillation with a shorter wavelength (∼3°) coincide
with the location of the slab edge.

Using the results from slab model with no lateral dipping variation (85°- 55°) as the
reference, the signal residual due to the tear slab still have the similar wavelength and
magnitude compared to the previous test (using an infinite dimension of slab).

Summary:
• The slab edge produces ∼125 mE and and ∼10° of wavelength in Txx, Txy, and
Txz components, but it is mostly remarkable in Txz component. This signal is large
enough to be detected using GOCE observations.

• The location of the signal peak in Txy and Txz along a profile parallel to the trench
coincides with the location of the slab edge.
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85° - 85° 85° - 55° 85° - 45°

Figure 4.9a: Gravity gradients effect of slab model 2 using a dimension of slab on the
IBM zone (10° on the south - 45° on the north), with a lateral dip variation of 85° - 85°
(left), 85° - 55° (middle), and 85° - 45° (right).
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85° - 85° 85° - 55° 85° - 45°

Figure 4.9b: Gravity gradients effect of slab model 3 using a dimension of slab on the
IBM zone (10° on the south - 45° on the north), with a lateral dip variation of 85° - 85°
(left), 85° - 55° (middle), and 85° - 45° (right).
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a) b)Slab Model 2 Slab Model 3

Figure 4.10: Profiles as a function of the subduction angle, shown by the different colors,
in Tzz, Tyy, and Tyz along the profile at X=0 of the slab model 2 (a) and model 3 (b),
with a dimension of the slab is 10° on the south and 45° on the north.
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4.2.5. Summary of The Synthetic Tests

Our first approach using synthetic models of slab allows us to evaluate the gravity
gradients related to the structure of the slab, including its density distribution, its edge,
and its subudction angle. From the results above, the density distribution model of a
slab matters to the spatial distribution and the magnitude of gravity gradients. The
presence of crustal anomalies in the subducting slab appears as a major parameter that
controls both amplitude and wavelength of gradients. The presence of crustal anomalies
in the astenopheric layer reduces Tzz up to 600 mE. The oscillation is produced due to
the presence of negative anomalous body, that is related to the oceanic crust in the upper
mantle, with a wavelength ∼4°. This suggests that a good knowledge of the geometry of
the oceanic crust is essential for signal reduction and to assess the detailled geometry of
a slab.

This geometry of a subducting slab depends to its subduction angle, and gravity gra-
dients at satellite altitude are sensitive enough to this parameter. The spatial distribution
of gravity gradients is shifted towards the trench due as a function of the dip. The signal
of gravity gradients is stronger for a slab with a lower subduction angle since the po-
sition of the subducting slab is closer to the surface than a steeper one. The variation
of gravity gradients associated to the variation of dip ≥10° is possible to be detected
in GOCE observation, with a magnitude of ≥75 mE. Any dip variations with ∆θ ≤10°
produces a weak enough Tzz variations (e.g., ∼30 mE for ∆θ = 5°) that could lead to any
misinterpretation if we consider also the noise in the data.

Lateral variation of subduction angle of a slab theoretically can be detected by gravity
gradients at GOCE altitude. In the tests above, the signal associated with the dipping
change of 30° has a magnitude more than 140 mE in Tyy, Tyz, and Tzz.

Tests above also show that the location where the dip changes abruptly can also be
estimated by regarding the peak of Txz with 44-57 mE of signal anomaly and a wavelength
of 5.6°. However, this condition is limit enough to be applied in the real case when we
consider the presence of noise in the data. The location where the dip angle changes
is only detectable where the dip changes abruptly, that is not a common case in the
subduction.

The slab edge produces ∼125 mE and and ∼10° of wavelength in Txx, Txy, and Txz

components, but it is mostly remarkable in Txz component. This signal is relatively
stronger than the one resulted from a slab tear. The signal due to the slab edge is strong
enough to be detected using GOCE observations.

From the results above, GOCE measurements are capable to provide important infor-
mation to constrain slab geometry, including edge and dip angle. However, the detection
of second-order features as lateral variation of dip angle appears quite delicate. Lateral
dip variation of a slab is could be detected using GOCE observations if only the variation
of dip is large enough (e.g. ∆θ ≥ 30°) and the change is abrupt. For a smoother lateral
variation, it may be difficult to be assessed.

For the implication to a real case, the results from this synthetic test can be used where
the gravity gradients signal that we have is the signal residual associated to a subducting
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slab only. Some proper corrections and reductions of gravity gradients datasets thus have
to be performed to attain this kind of residual to extract the information of the structure
of a subducting slab from gravity gradients signal. The next sections will discuss about an
application on the IBM zone, including the correction and reduction processes of GOCE
datasets.

4.3. Application to Izu-Bonin-Mariana (IBM)
Subduction Zone

4.3.1. Izu-Bonin-Mariana: Geodynamical context

The Izu-Bonin-Mariana (IBM) arc system is a tectonic-plate convergent boundary,
formed as a result of the Pacific plate subducting beneath the Philippine Sea plate. Sub-
duction began in the Izu-Bonin-Mariana convergent margin circa 50 Ma (Taylor, 1992;
Cosca et al., 1998). It extends ∼3 400 km along the trench from the south of Tokyo,
Japan to northern Yap, creates a nearly south-north oriented structure (see Figure 4.11).
The Sofugan Tectonic Line at ∼29°30’N separates the Izu and Bonin segments, while the
boundary between the Bonin and Mariana segments is defined by the northern end of the
Mariana Though back-arc basin at ∼23°N. The age of the subducting oceanic lithosphere
is younger in the north than in the south, varied about 130 - 170 million years old (Müller
et al., 2008).

The trench as the eastern boundary of the arc system varies from ∼11 km deep in
the Challenger Deep to a shallow part with a deep less than 3 km where the Ogasawara
Plateau joins the subduction system. The Ogasawara Plateau itself is a igneous seamount
chain which is Jurassic in age, that is younger than the surrounding material on the Pacific
plate (Miller et al., 2004). From bathymetry profile, this plateau is ∼5 km higher than the
surrounding sea floor. The presence of the Ogasawara Plateau causes the bend around
the contact zone between Izu-Bonin and Mariana trenches, as proposed by Jaxybulatov
et al. (2013).

Subducting oceanic crust along the Izu-Bonin Trench is ∼6 km thick. While on the
east of the Mariana Trench, the oceanic crustal thickness varies between 5.3 to 7 km with
the presence of numerous seamounts with 2 to 3 km of height (Oakley et al., 2008). On
the subducted plate, the crustal thickness is less constant, moreover due to the presence
of the ridges and volcanic arc on the bakc-arc system. Some profiles obtained from
reflection/refraction seismic surveys by previous studies ((e.g., Takahashi et al., 2007,
2008, 2009) give a crustal thickness ranging from 17 km to 20 km on the volcanic arc and
the ridges and 6 km to 10 km for the other structures (basins and the fore-arc).

Some previous study have been performed to understand the geometry of IBM sub-
duction (cf. van der Hilst and Seno, 1993; Cruciani et al., 2005; Stern et al., 2004; Miller
et al., 2004, 2005; Hayes et al., 2012; Jaxybulatov et al., 2013). The results of those
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Figure 4.11: Izu-Bonin-Mariana (IBM) subduction zone. The color represent the
bathymetry from GEBCO (Weatherall et al., 2015). Triangle lines show the trenches
and the fenced lines shows the troughs. The arrows indicate the direction of the plate
movement. Numbers in the white box indicate the relative plate motion (mm/yr).

studies agrees that there are lateral variations of subduction angle that is steeper on
the south (Mariana) and less steep on the north (Izu-Bonin), with various proposed dip
angle variations. The location of seimicity on IBM zone is presented in Figure 4.12a to
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illustrate the lateral variation of the subduction. In this study, I adapt the subduction
angle proposed by Cruciani et al. (2005) with a variation of 85° on the south and 55° on
the north. Some proposed models by Miller et al. (2004, 2005) and Zhao et al. (2017)
illustrate the evidence of slab tear on IBM subduction. Those models are prensented in
Figure 4.12b-d.

IBM presents an outstanding example for this study, for several reasons:

• It is a well-studied zone in term of geophysical observations.
• The structures on the IBM zone are large enough, so it is observable for gravity

gradients at satellite altitude. The subduction system is ∼3 400 km long, with ∼ 1
200 km of Izu-Bonin part and the rest related to Mariana part.

• IBM major structures are elongated in south-north direction, therefore it is suitable
for gravity gradient analysis using the horizontal components.

• The IBM arc system is a good example of an intra-oceanic convergent margin. Be-
cause this arc system is far from any continent, it is not affected by the large volume
of sediments due to the accretion. As a consequent, a relatively thin sedimentary
cover makes it much easier to study the arc structure.

• Several studies have reported that there are lateral variations of subduction angle
that is steeper in the southern part (Mariana) and less steep on the northern part
(Izu-Bonin) with a variation of ∼30°. This variation could be large enough to be
assessed using GOCE observations.
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Figure 4.12: (a) Seismicity of the study region from the reprocessed International Seismo-
logical Centre (ISC) catalogue (Storchak et al., 2013). Some proposed slab tear geometries
by Miller et al. (2004) (b), Miller et al. (2005) (c), and Zhao et al. (2017) (d). The location
of the red star in figure (d) is indicated in figure (a) with a black star.
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4.3.2. GOCE gravity gradients - Level 2

The data used in this study are the GOCE gravity gradients of level-2 product
EGG_TRF_2. This type of datasets has been externally calibrated and corrected
to gravity gradients due to temporal gravity variations by the GOCE High Processing
Facility (HPF) (see Gruber et al., 2010b,a). This dataset contains the gravity gradients in
the Local North Oriented Frame (LNOF), that is a local Cartesian reference system with
a right-handed North-West-Up frame with the X-axis pointing North, the Y-axis pointing
West, and the Z-axis pointing Up. The information that is provided in EGG_TRF_2
dataset include GPS time (in second), position of the data in geocentric coordinate (longi-
tude, latitude, and radius from geocenter), gravity gradients in LNOF (in s−2), estimation
of gravity gradients error of each component (in s−2), and its flags for outliers.

In this study, the EGG_TRF_2 dataset is used with a data period from 04-August-
2013 until 19-October-2013. The data points are dense enough for the studied area and
this is the period where the GOCE satellite was located at the lowest altitude (∼230 km)
than the periods before, thus a stronger signal is expected. The variation of the GOCE
altitude in that period over the IBM zone is shown in Figure 4.13. With this altitude of
measurement, like has been mentioned in the Section 1.2., the effective spatial resolution
of GOCE data is around 80 - 100 km.

Figure 4.13: GOCE altitude variation during the used dataset’s period of observation.
The GOCE data have been selected for the region around the Izu-Bonin-Subduction zone.

In GOCE EGG_TRF_2 dataset, the gravity gradients Txx, Tyy, Tzz, and Txz are
determined with high accuracy, whereas the Txy and Tyz are less accurate (Bouman et al.,
2013). Hence, the Txy and Tyz components were therefore treated using EIGEN-05C and
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EIGEN-05S as the a-priory static gravity field models (Gruber et al., 2010b). GOCE
gravity gradients during selected observation period on IBM zone are shown in Figure
4.14. The statistical properties of the estimated error σ of each GOCE gravity gradient
component is shown in the Table 4.5.

Table 4.5: Statistical properties of the uncertainty σ of each component of GOCE obser-
vation data.

Components Min (mE) Max (mE) Mean (mE) Std (mE)
Txx 8 8 8 0
Tyy 9 10 9 1
Tzz 11 12 11 0
Txy 3 4 4 0
Txz 10 10 10 0
Tyz 4 4 4 0

For the computation of gravity field quantities, reference ellipsoid GRS80 system is
used (ESA, 2010). The defining constants are mentioned in Table 1.1. in the Chapter 1.

4.3.3. GOCE data processing

GOCE measures the total attraction of the Earth graviational field, which contains the
attraction from the figure of the Earth (normal shape), topography, and other variations
at depth. The estimation of gravity gradients signal associated to the structure of a slab
is done by analyzing the signal residual of gravity gradients. To that aim, from along
orbit GOCE TRF data, an anomaly map of gravity gradients at satellite altitude on the
study zone is built with respect to an Earth reference spheroid model. Data reductions,
including reduction of topography-bathymetry effect is then performed.

The gravity gradients in this study are maintained at the GOCE altitude, therefore
noise amplification resulting from the downward continuation to the Earth’s surface can
be avoided. All of the estimations of gravity gradients for data reduction processes are
performed by using a forward modelling method by GEEC. This gives us an advantage
to do the calculations of any type of body mass at the original position of GOCE along
orbit dataset.

4.3.3.1. GOCE Coordinate Transformation

GOCE TRF datasets are provided in geocentric coordinate, defined in longitude λ,
latitude ϕ, and radial distance r from the center of the Earth. Calculation in spherical ap-
proximation in GEEC is carried out in geographic coordinate system. Hence a coordinate
transformation of GOCE TRF datasets is needed.

To transform geocentric to geographic coordinate system, firstly we convert the geo-
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Figure 4.14: Gravity gradients from GOCE observation along GOCE orbit track on the
IBM zone.
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centric coordinate to 3D Cartesian system,

X = r (cosϕ cosλ)
Y = r (cosϕ sin λ)
Z = r sinϕ

(4.1)

then followed by the transformation from 3D Cartesian to geographic system using eq.
(2.3) - (2.6) (described in Chapter 2).

4.3.3.2. Correction of Normal Gravity Gradients

Gravity gradients measured by GOCE comprise the gravitational attraction of the
entire Earth. Therefore, we have a really strong gravity gradients signal. Since the total
attraction of the Earth is really strong, the variations of GOCE altitude along its orbit
(Figure 4.13) leave a visible trail of gravity gradient variations, around 7-8 E in Txx, Tyy

and around 15 E in Tzz. Components Txx, Txz, Tyy, and Tzz are also dominated by the
gravity gradients variation along latitude due to the flattening of the Earth, whilst Txy

and Tyz are free from that factor (Chapter 1). To obtain anomaly maps of the studied
region, the signal due to the normal shape of the Earth must be removed.

I calculate the effect of normal Earth in gravity gradients term by using eq. (1.30)
- (1.34) in Section1.4. Then it is followed by using the matrix rotation in eq. (1.45)
to transform the obtained normal gravity gradients to the LNOF reference system. I
use the spheroid GRS80 as the normal Earth reference, like mentioned in the GOCE
High Processing Facility (HPF) standard (ESA, 2010). The parameters of GRS80 are
mentioned in Table 1.1. (Chapter 1). The obtained results for normal Txx, Txz, Tyy, and
Tzz can be found in Figure 4.15.

The regional anomaly maps of IBM zone can be found in Figure 4.16. The effect
due to the normal shape of the Earth and Earth’s sphericity are removed. The obtained
anomalies reflect irregularities in the distribution of mass and its interface deflections with
respect to the reference model.

Similar to conventional gravity anomaly maps, the anomaly of gravity gradients at
satellite altitude show remarkable details mainly related to the Earth’s topography and
bathymetry features that are reflected with short-wavelength anomalies (see also Figure
4.11). Tzz exhibits negative anomalies (-1 E) with ∼1°of wavelength along the trench,
where the bathymetry is deep, and positive anomalies (0.5-1 E) along the island arc and
Japan. In Tyy, a component that is sensitive to the east-west variation, the trench along
IBM arc is marked with positive anomaly (∼1 E). Along island arc and Japan, Tyy shows
negative anomaly (∼1 E). The southern part of Mariana arc, which is elongated east-west,
is marked with negative anomaly (∼1 E) in Txx component.

The signal that is related to topography variations is still dominant in Figure 4.16.
To be able analyze gravity gradients signal associated with the mass below the surface,
topography correction will be needed.
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Figure 4.15: Gravity gradients of normal ellipsoid along GOCE orbit track on the IBM
zone.
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Figure 4.16: Gravity gradients disturbance along GOCE orbit track on the IBM zone.
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4.3.3.3. Topography Correction

The Earth’s topography has a major contribution to the variation of Earth gravita-
tional field after the normal shape of the Earth and its flattening and rotation (see Figure
1.8). As been discussed in Chapter 3, for geodynamics application at satellite altitude
using absolute value of gravity gradients, the use of global topography dataset is required.

Topography effect combines the positive effect of the mass excesses above a specified
reference surface, e.g. ellipsoid or geoid, and the negative effect of mass deficit below this
reference surface. Gravity gradients due to the topography effect is normally composed
in a short wavelength. Topographic correction of gravity gradients field observations is
performed in order to remove the effect of the mass on the Earth surface, therefore the
residual that we obtain only reflect remaining subsurface features.

Topography and bathymetry dataset that is used in this study is GEBCO 2014 gridded
bathymetric dataset that contains a global 30 arc-second interval grid for ocean and land
(Weatherall et al., 2015; GEBCO, 2014). Data sources in GEBCO 2014 consists of regional
seafloor mapping contributions, bathymetric soundings, and version 2.0 of the SRTM30
for land area.Altimetry bathymetry is used for completing the data where there is no
bathymetry measurement on that area, which is not for the case of IBM zone. This
dataset was then processed using GEEC sub-routines to obtain a global equidistance
dataset with a resolution of 10 km for later to be used in topography effect computation.
Topography and bathymerty map on the IBM zone is shown in Figure 4.11.

The vertical datum of GEBCO is mean sea level. Digital Terrain Model (DTM) height
adjustment was then performed to bring the topography-bathymetry surface in respect to
the ellipsoid of reference (GRS80) using the geoid height (or undulation) N as determined
from EGM96 geopotential model. This height adjustment is carried out in order to avoid
the indirect effect caused by different vertical reference level (Talwani, 1998).

Topography effect is computed at GOCE along orbit data position. The topography
model is decomposed in two bodies: rock layer for masses above sea level with a density
ρr = 2670 kg m−3 and water layer for masses below sea level with a density ρr = 1030
kg m−3. Using a crustal density ρr = 2800 kg m−3 as the reference below sea level, the
density anomaly for ocean layer is -1670 kg m−3.

The topography effect on the IBM zone is shown in Figure 4.17. The excess mass
above mean sea level (msl) in Japan are marked with positive anomaly (∼2 E) in Tzz.
Water bodies below msl produce negative anomalies on the oceanic domain, vary up to -5
E in Tzz. Along the island arc, the Tzz shows anomalies approximately -0.1 to 0 E, that
is weaker than its surrounding due to its shallower bathymetry profiles. The island arc
and Japan with higher bathymetry-topography profiles comparing to its eastern-western
bathymetry features results in negative anomalies in Tyy (between -1 and 0 E). In Txx,
the deep trench on the southern part of Mariana arc (∼11°N results in strong positive
anomalies (∼3 E). Txx around the Ogasawara plateau, located around 142°-144°E; 27°N,
is weaker than the trenches on its northern and southern part. This plateau is ∼4 000 m
higher than its surrounding.
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Figure 4.17: Topography and bathymetry effect along GOCE’s track observation over the
IBM zone.
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If we compare the gravity gradients due to the topography effect (Figure 4.17) and
the anomaly of gravity gradients after normal correction (Figure 4.16), the signal due to
the topography effect is stronger and the distributions of the signals are different. This
could be an indication if the gravity gradients in Figure 4.16 are not only related to
topography, but also related to other sources, e.g., slab or mantle variation. To find out,
the topography effect is removed from the gravity gradients anomaly. The results of this
correction are shown in Figure 4.18.

The small wavelength signal associated with the topography variation is removed, yet
they are still containing complex spatial distribution of gravity gradients. After the topog-
raphy effect correction, gravity gradient distribution in Tzz shows positive anomalies over
the oceanic domain (up to 5 E) and negative around Japan (∼-1.5 E). This could indicate
the evidence of thinner and denser oceanic crust that contributes to positive anomaly and
the presence of crustal root beneath Japan with negative anomaly contribution.

The island arc is marked with a weak positive anomaly (∼0.5 E) in Tzz, that is weaker
than its surrounding. This could be related to the presence of thicker crustal layer along
the arc that provides negative contribution to gravity gradients signal. Tyy highlights
positive gradient anomaly with a wavelength of 1° along the IBM back-arc system. It
coincides to the weak positive signal in Tzz, as been mentioned before.

To investigate whether we can see the signature of the slab in the gravity gradients
that have been corrected to the normal shape and the topography effect, I trace 2 profiles
across Izu (profile A), Bonin (B), and Mariana arc (profile C) to see the variation of Tzz,
Tyy, and Tyz along the profile (Figure 4.19). These profiles mimic the profile that we used
in the synthetic modelling (Figure 4.4) in order to assess the signal due to the presence of
the slab. These three gravity gradient components are chosen since they exhibit the most
remarkable variation along the profile perpendicular to the trench (see Section 4.2.1.).

If we compare the signal residual in Tzz, Tyy, and Tyz after the topography effect
correction along the profile (Figure 4.19-red line) and the one resulted from the synthetic
tests (Figure 4.4), the profiles of gradients in the IBM case are closer to the slab model 3
(where the crustal anomaly remains in the slab to a depth of asthenosphere layer), notably
in Tyz. However, the wavelength and the amplitude of the oscillation on the profile from
IBM case are much stronger than the one resulted from synthetic models, more negatives
up to 2 E inTzz and more positives up to 2 E in Tyy. This could be an indication of the
presence of other source that contributes in producing this strong signal, positive in Tyy

and negative in Tzz, for example.
One of the possible sources is crustal root or crustal thickening. Crustal root results

in negative anomaly in Tzz component (cf. Cadio et al., 2016). From the crustal models
resulted from tomography inversion by Takahashi et al. (2007) and Takahashi et al. (2009)
(Figure 4.20), we can see that there is crustal thickening below the volcanic arcs and the
ridges. The gravity gradients that are obtained from synthetic modelling does not consider
the presence of crustal layer above the slab. Thus, to extract the signal due to the slab,
the effect of this crustal layer should be removed.
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Figure 4.18: Residual of gravity gradients after topography and bathymetry effect reduc-
tion on the IBM zone.
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Figure 4.19: Topography profile and Tzz, Tyy, and Tyz components of gravity gradients
after topography reduction along profiles A, B, and C that are elongated perpendicular
to the trench (red line). The yellow line is the effect of the slab that is obtained using
synthetic models (Section 4.2.). The location of the profiles is indicated in Figure 4.17.

4.3.3.4. Crustal Effect Reduction

Until this step, the results from gravity gradients data reductions show that topog-
raphy reduction only is not enough to decipher the structure of a subducting slab. The
presence of crustal layer still has a significant effect on the residual gravity gradients.

Until today, the availability of global crustal model is not as sophisticated as global
topography model. Global crustal model datasets that are available right now is limited
to crust 1.0 (Laske et al., 2013) and GEMMA (Reguzzoni and Sampietro, 2015) with a
grid resolution of 1° and 30’ respectively. However, between those two available datasets,
only crust 1.0 that is independent to the gravity dataset, whilst GEMMA is constructed
based on the inversion of GOCE data. Like has been discussed by Szwillus et al. (2016)
and also in Chapter 3, a truncated topography and crustal model for gravity gradients
analysis at satellite altitude could lead to errors. So, until this manuscript writing, crust
1.0 dataset is the best crustal model that I can use.

The Moho depth in global crustal model crust 1.0 is based on 1° × 1 ° averages of
an updated database of crustal thickness data from active source seismic and receiver
function studies (Laske et al., 2013). The sediment and crustal structures in crust 1.0
model are predicted from globally averaged data from active seismic method and deep
drilling profiles. In case where there is no seismic measurement available, the crustal
structure is predicted by a generalization to similar tectonic and geological setting.

Figure 4.21 shows the Moho depth from crust 1.0 model on IBM zone. In crust 1.0
model, the Moho depth along the IBM back-arc system is approximately less than 10 km,
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Figure 4.20: Velocity model of Izu and Mariana back-arc system. Bathymetry map of Izu
(a) and Mariana (b) back-arc system. Inset shows the profile superimposed on bathymetry
of entire Izu-Bonin- Mariana arc, and locates Parece Vela Basin (PVB), West Mariana
Ridge (WMR), Mariana Trough (MT), Northern Izu arc (NIA), Kyushu Palau ridge
(KPR), Mariana arc (MA), and Mariana Trench. The seismic profile at each zone is
indicated by red line in (a) and black line in (b). (c) shows the final velocity model of Izu
back-arc system from seismic tomography inversion in Takahashi et al. (2009), while (d)
shows the final model for Mariana back-arc system by Takahashi et al. (2007).

contrary to the profile of velocity model by Takahashi et al. (2007) and Takahashi et al.
(2009) that illustrate of crustal thickening along the islands and volcanic arc as parts of
the back-arc system. The comparison Moho depth along the same profiles (Figure 4.21
in red lines) from crust 1.0 model and tomographic inversion results in Takahashi et al.
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(2007) and Takahashi et al. (2009) is illustrated in Figure 4.22. The difference between
those models can reach up to 25 km of depth in certain location, particularly below the
Mariana and Ogasawara arcs and ridges.

Figure 4.23 show the gravity gradients effect due to the global crustal layer by crust
1.0. The estimation of crustal effect is performed by applying a contrast density of 500 kg
m−3 between crustal and mantle layer. The obtained results do not reflect the presence
of thick arc crust on the back-arc. The inadequate accuracy of crust 1.0 model does
not allow us to obtain the gravity gradients due to the crustal layer with an adequate
precision. As a consequence, with the current availability and precision of crustal model
datasets, estimation of slab structure is difficult to be achieved.
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Figure 4.21: Moho depth crust1.0 (Laske et al., 2013)



Chapter 4. Detailed Subduction Slab Geometry, What is Really Constrained from GOCE
Observations? 143

−30

−20

−10

0

D
ep

th
 (k

m
)

0 50 100 150 200 250 300 350 400 450 500 550
Distance (km)

−30

−20

−10

0

D
ep

th
 (k

m
)

−400 −350 −300 −250 −200 −150 −100 −50 0 50 100 150 200 250 300 350 400
Distance (km)

a)

b)

A

B

ORTSM VA

WMR
MA

OT

MT

Figure 4.22: Comparison of Moho depth along profiles in Figure 4.20 between the model
from crust 1.0 (Laske et al., 2013) and the tomographic inversion result after Takahashi
et al. (2009) along profile A (a) and Takahashi et al. (2007) along profile B (b). The
location of the profile is indicated in Figure 4.21. The profile from crust 1.0 is shown
in black-bold line, whilst the results from Takahashi et al. (2009) and Takahashi et al.
(2007) are in dashed-gray line. Bathymetry variation along the profiles is also provided
in thin-black line. TSM: Tenpo Seamount, VA: Volcanic Arc, OT: Ogasawara Trough,
OR: Ogasawara Ridge, WMR: West Mariana Ridge, MT: Mariana Trough, MA: Mariana
Arc.

4.4. Discussion

Can we estimate the detailed geometry of a slab using GOCE
dataset?

This is the question that we are trying to answer in this study. Although from the
tests using synthetic model, we can decipher the second-order structures of a slab by
regarding the gravity gradients spatial distribution, the application on a real geodynamic
case results in different outcome. Based on GOCE data processing in this study, the
answer of this question is difficult to be reached.

To be able to assess gravity gradients associated to a slab, a high precision of computa-
tion method and correct estimation of topography and crustal effect has to be done. To do
so, the calculations are performed using GEEC. Validation processes in Chapter 2 shows
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Figure 4.23: Gravity gradients of crust effect from global crustal model crust 1.0 on the
IBM zone by Laske et al. (2013).
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that GEEC is able to perform gravity gradient forward modelling with high precision.
GOCE dataset accuracy is better than 10 mE, that is good enough to extract the

gravity gradient information due to the slab geometry (see Section 4.2.5.). Topography
correction is performed by using a high-resolution dataset (GEBCO 2014) where the
produced gravity gradients errors is less than the accuracy of GOCE dataset (Chapter
2). The crust model that is used in this study has a low resolution (i.e. 1°) and the
discrepancy of its Moho depth on the IBM area can reach up to 25 km compared to the
model from local geophysical observations. A poor estimation of crustal effect thus is the
main source of the error.

Crustal model accuracy and its implication to the gravity gradi-
ents at satellite altitude

Lastly, we assess errors due to the Moho depth uncertainties using the crustal model
crust 1.0 by Laske et al. (2013)). First, we impose on the Moho depth a constant offset of
1 km and 5 km (illustrated in Figure 4.24) and calculate its associated gravity gradients.
The computation is performed at the position of GOCE measurements in the IBM study
case. The discrepancies between the resulted gravity gradients from the reference model
and from the offset models are then assumed as the errors. This approach show that the
obtained errors in diagonal components are in skewed distribution (Figure 4.25a and c).
With a constant offset of 1 km in the Moho depth model, errors in Tzz are approximately
-120 mE, while errors in Txx and Tyy are around 60 mE (Table 4.6). The errors obtained
with a crust model with a constant offset of 5 km are greater than the one with 1 km
offset, approximately -713 mE in Tzz and 300-400 mE in Txx and Tyy components. While
in the off-diagonal components, the obtained errors are quasi-normally distributed with
a median value around 1-3 mE for the results using 1 km offset and 15-75 mE for the
results using 5 km offset. This may indicate that the off-diagonal components are less
sensitive to the depth variation than the diagonal components.

induced
error

Figure 4.24: Scheme of how the variations of Moho depth are applied to the crust model.
The black line illustrates the reference Moho depth. The red line illustrates the resulted
variations after imposing a constant offset. The blue line illustrates the resulted Moho
depth after adding random errors.

Second, we assume a normally distributed random offset with a range of 1 km and
5 km. By introducing these offsets to the crustal model, the results show that the error
distributions in the diagonal components of gravity gradients follow the normal distribu-
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tion of the imposed errors (Figure 4.25b and d). They also exhibit larger errors than the
ones in the off-diagonal components, consistent with the results of the previous test. The
largest error is obtained in Tzz with ∼63 mE from a crust model with a precision of 1
km and ∼369 mE from a crust model with 5 km of precision. Other statistic values can
be found in Table 4.6. The errors obtained from random noise are approximately half
times smaller than the errors obtained from a constant offset. It may indicate that the
combination of positive and negative errors that related to the imposed depth acts as a
counterbalance to the gravity gradients signature.

By considering the accuracy of GOCE observations, the errors obtained from a crustal
model with 5 km of uncertainties are superior to the gravity gradients signatures in
the synthetic tests (see Section 4.2.) to assessing the presence of the slab, the density
distribution of a slab, and to estimate the slab edge (Table 4.7). The estimation of slab
dip angle and its lateral variation cannot be performed using a crustal model with 5 km
of accuracy because the errors (Table 4.6) are superior to the gravity gradients associated
to those slab geometry properties.

With the use of a crustal model with 1 km of accuracy, the errors associated to the
uncertainty of the crustal model is 80% lower than the errors obtained from 5 km of crustal
model’s uncertainty. Therefore, we can assess several more detailed properties of slab
geometry (Table 4.7), but still very limited for certain slab properties. For the estimation
of slab dip angle, the precision that we can obtain by using a 1 km of uncertainty is
not better than 20°, when it is 10° if there is no additional error from crustal effect.
Detection of lateral dipping variation and the location where it changes is very limited
for a ∆θ ≥ 40°. Any variation below that is very difficult to be detected. To be able
to assess the lateral variation in more detail, the use of crustal model with an accuracy
better than 1 km is required.

Table 4.6: Gravity gradients errors due to the precision of a crustal model.

Gradients
Constant offset error (mE) Random error (mE)

-1 km -5 km ±1 km ±5 km
median std median std median std median std

Txx 60 17 371 293 30 27 185 111
Txy 0 6 15 269 0 14 3 61
Txz 3 18 15 361 3 30 -6 128
Tyy 60 15 342 374 30 26 177 118
Tyz 0 18 -75 491 -1 30 -29 136
Tzz -120 26 -713 572 -63 43 -369 186
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Figure 4.25: Gravity gradient errors due to the error of crustal model.
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Table 4.7: Assessment of crustal model accuracies to estimate the detailed properties of slab geometry. The associated gravity
gradient signatures are based on synthetic tests in Section 4.2. The errors due to the uncertainties in crustal model for each
component are summarized in Table 4.6. (X-detectable, ×-undetectable).

. Slab Properties Magnitude (mE) Gradients Notes Crustal model uncertainties
5 km 1 km

0 order

The presence of subducting slab 600-1100 yz, yy, zz Model 2 X X

260-500 yz, yy, zz Model 3 X X

1st order
Density distribution of a slab 600, 500, 350 zz, yy, yz Between model 2 and 3 X X

Slab edge 400 xz Model 2 X X

125 xz Model 3 × X

Slab dip angle 70 yy, zz σθ = 10° × limited to σθ ≥ 20°
2nd order

Lateral variation of slab dipping angle 104-113 yy, yz, zz ∆θ = 30° × limited to ∆θ ≥ 40°
170-186 yy, yz, zz ∆θ = 40° × X

Location of where the slab dip changes 14-44 xx, xy, xz ∆θ = 30° × ×
25-76 xx, xy, xz ∆θ = 40° × very limited
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4.5. Conclusion

In this chapter, I present some approaches that I did in attempt to see if we can
extract the detailed information about the structure of a slab, including the distribution
of density in the slab, slab border, dip angle, and its lateral dip variation, using gravity
gradients at satellite altitude.

The tests using synthetic models of subduction show that the gravity gradients are
sensitive enough to assess the density distribution in the slab, with a variation of 350-600
mE in Tyz, Tyy, and Tzz and with a wavelength of 8°. The slab edge results in the variation
greater than 125 mE in Txz with a wavelength of ∼10°. Estimation of dip angle of a slab
could be performed with a precision no better than 10° by assessing the variations in
Tyy and Tzz. Lateral dip variation of a slab is also possible to be detected. The lateral
dip variation of more than ∆θ ≥ 30° results a variation ∼100 mE in Tyz, Tyy, and Tzz

components. The location where the dip changes abruptly can be estimated using Txx,
Txy, and Txz components, where it produces 14-40 mE of anomaly with a wavelength of
5-7°. The obtained gravity gradients anomaly associated with these detailed structures
are superior than GOCE accuracy (10 mE) and spatial resolution (100 km) (cf. Gruber
et al., 2010b; Drinkwater et al., 2003). The results from synthetic models are therefore
promising.

Horizontal gravity gradient components are normally less used than the vertical grav-
ity gradient in gravity gradients applications. The tests using synthetic models in this
study highlight that the horizontal components, that are sensitive to the limit and lateral
variation of geometry of a structure, can also provide useful information to constrain the
detailed geometry of a structure.

I then applied this approach using GOCE gravity gradients in Izu-Bonin-Mariana
(IBM) zone. This zone is chosen because the geometry is relatively simple and elongated
in the south-north orientation that is suitable to test the usefulness of horizontal gradients.
This zone is also a convergence zone between oceanic plates, thus I can avoid any transition
between oceanic-continental plate and the geometry of the subduction is not perturbed
by the presence of accretion prisms.

However, in the application to a real subduction case, extracting gravity gradients
information due to the subduction geometry is not straightforward. Panet et al. (2014)
have shown that it is possible to detect the presence of an ancient slab in depth by using
GOCE data. However, this study in IBM zone exhibits that to perform a second-order
structure detection, particularly the lateral variation along the subduction, is difficult to
be achieved. Performing an optimum calculation to estimate the effects of a body mass
is required, and having a high resolution and high precision dataset of both topography
and crustal model is mandatory.

This study is unsuccessful to decipher the information about the second-order detailed
geometry of a subducting slab using GOCE gravity gradients dataset. The main reason
that could be invoked is the accuracy and the spatial resolution of the available crustal
models that remains too low and thus it introduces and additional error to the residuals
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of gravity gradients.
To be able assessing the density distribution of a slab and the slab edge, a global

crustal model with 5 km of accuracy is required. Whilst for assessing the dip of a slab
and its extreme lateral dip variation, a global crustal model with an accuracy 1 km is
required. To estimate the location of slab lateral variation, a global crustal model with
an accuracy better than 1 km is mandatory.

This study also provides guidance for the development of satellite missions or other
Earth’s gravity observation. GOCE’s altitude still seems too high to assess the detailed
geometry of lithospheric structures. By descending the altitude of acquisition, the mag-
nitude of the signal could be amplified by avoiding the noise due to the data downward
continuation.

Performing a joint interpretation of gravity and gravity gradients datasets from var-
ious altitudes of acquisition, i.e. ground measurement, airborne survey, and satellite
mission could also be a solution. The signal associated to crustal and slab effect can be
distinguished using wavelength properties at each dataset.
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Scientific Context

Nowadays, the scientific community has as its disposal a unique gravity and gravity
gradient dataset with unprecedented accuracy and spatial resolution. This new dataset
enhances our knowledge of the Earth gravitational field at various scales and wavelengths;
small wavelengths are inferred from ground survey whereas medium to long wavelengths
are documented from airborne and satellite measurements. In parallel with gravimetry,
the improvement of digital elevation model obtained from satellite observations, such as
Pléiade, also provides more detailed information about Earth’s structure geometry. To-
gether, these novel datasets provide a great opportunity to better understand the Earth’s
structures and dynamics at local, regional, and global scales.

To optimize the use and the interpretation of these high-quality datasets, the proper
techniques in the gravity data processing should be used, hence the quality of the data can
be maintained. This thesis consists of a series of studies aiming to improve the precision
in the chain of gravity and gravity gradients data processing for geodynamics studies, in
particular, to perform joint approaches combining ground, airborne, and satellite gravity-
related datasets.

To realize this aim, several attempts have been made. I started with the development
a computation code GEEC that is capable to compute precisely both the gravity and
gravity gradients effects of any mass body, regardless of its geometry and its distance
from measurements. Next, I presented a first application dedicated to the assessment
of optimal parameters required to calculate topography effects which is an essential step
for the interpretation of gravity-related data. In this study, I paid a special attention to
control parameters, such as DEM resolution or topography truncation distance for local,
regional, and global applications. In the last chapter, I applied GEEC to the Izu-Bonin-
Mariana subduction zone to assess the degree of details in lithospheric structure images
that can be deciphered from GOCE measurements.
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Results

In this thesis, I developed a dedicated code to calculate the gravitational effect of Earth
body mass at various scales, local to global scale, at various altitudes, from ground, air-
borne, and satellite measurements, named GEEC (Gal Eötvös Earth Calculator). GEEC
is a novel Matlab-based computation tool to calculate the gravity and gravity gradients
effect of an irregular mass body based on a the analytical solution of the expansion of
line integrals of a polyhedron body. Following gravity solution by Singh and Guptasarma
(2001), I developed a new formula of gravity gradients that is implemented in GEEC’s
algorithms. Beside for topography effect estimations, GEEC is also able to calculate the
gravitational effects of other bodies, both in spherical approximation that is highly rec-
ommended for Earth-related studies and also in planar approximation for a simple mass
geometry.

GEEC is easy to use, including all processes from computation to visualization of the
obtained result. Beside of its simplicity, the application of GEEC for gravity and gravity
gradients forward modelling offers other advantages:

• GEEC deals with body mass in various scales regardless of its geometry, in other
words, it has a high capacity to preserve the complexity of the body mass geometries
at all scales.

• GEEC supports the computation at any altitude and any spatial distribution of
measurement points regardless of the extent of the study area. This allows joint
approaches combining datasets obtained from satellite, airborne, to ground surveys.

• In gravity or gravity gradients processing, GEEC can serve as a all-in-one tool to
accomplish gravitational data correction, data reductions, and forward model in
stochastic methods.

• High numerical precision in Matlab makes a robust computation process.
• GEEC allows parallel computation that provides an efficient computation time.

Validation processes in local, regional, and global scales confirm the robustness of GEEC’s
performance where the resolution of the model, that depends on both size of the body
mass and its distance from the measurement point, controls strongly the accuracy of the
results.

The contribution of this thesis for geodynamics lies in two parts. Firstly, I investigate
the importance of distant topography and its consequences to the precision of topography
correction. Topography has a major contribution in the Earth gravitational attraction,
therefore the estimation of topography effects must be carefully considered in the process-
ing of gravity data, especially in areas with rugged topography or at large-scale studies.

This study confirmed that the precision in estimating the gravitational effect of Earth
topography is mostly controlled by the truncation distance of which the topography is
considered. The classical distance of 1.5°, proposed by Bullard (1936), is confirmed in this
study to be too narrow for regional application and also for zones with high topography
variations. By quantifying the relative truncation errors from end-members regions in
terms of topography roughness within and around the zones, this study allows to create
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a guideline to determine the optimal truncation distance as a function of dimension of
study area to assess the topography effect.

Our results suggest that the use of global topography in the estimation of topography
effect is mandatory for the following types of application:

• Gravity and gravity gradient applications at global scale.
• For the analysis of the spatial variation of gravity and gravity gradients in its ab-

solute value, regardless of its scale of application. Application using satellite obser-
vation datasets can be categorized in this case.

• For high-accuracy gravity studies that require a very high precision in the estimation
of topography effect (better than 1 mGal and 10 mE).

For studies at local and regional scales that are based on the analysis of relative spatial
variations of gravity-field, i.e. only differences between values accross the region matter
while the absolute value is ignored, truncated topography at a specific distance can be
adequate. From this study,

• At the first order of approximation, by using the dimension of the zone d as the
topography truncation distance ψt, i.e. ψt = d, it ensures to obtain topography
effect with a precision between 1 and 10 mGal, with 5 mGal in average.

• At regional scale of gravity application, where the dimension is smaller than 20°,
the use of 15° of truncation distance ensures to obtain a precision of ∼1 mGal. This
truncation distance applies to all measurement altitudes.

• In gravity gradient applications at regional scale, the topography effect with a pre-
cision of 1 E for ground and airborne altitude can be obtained using a truncation
distance of ≥8.5°. While for gravity gradient at satellite altitude that requires a
precision of 0.01 E, it can be fulfilled by using a truncation distance of ≥40°.

For the second application in this thesis, I addressed the issue: Are GOCE observa-
tions relevant to obtain a detailed image of the structure of a slab, including its detailed
geometry and lateral variation? The accuracy and spatial resolution of GOCE, 10 mE
and 100 km respectively, are used as the threshold in this study to assess which properties
of slab geometry that can be detected by GOCE observations.

Resulted gravity gradients modelling using synthetic slab model, computed at GOCE
mean altitude (255 km), exhibit that the presence of the slab can be easily detected by
GOCE observations. The excess mass related to the slab generates positive anomaly in
Tzz with a magnitude of 1100 mE and a wavelength of ∼10°, negative anomaly in Tyy

with a same magnitude and wavelength as Tzz, and in Tyz with a half-wavelength of 5°
and an amplitude of ∼500 mE.

By analyzing the gravity gradients responses to the variations of more detailed prop-
erties of the slab geometry, our results demonstrate that:

• Gravity gradients are sensitive to the density distribution of a subducting slab. The
presence of crustal layer with negative density contrast on a slab generates lower
magnitude at all gravity gradient components with a variation of ≤ 600 mE, notably
for Tyy, Tyz and Tzz components. The presence of this negative density contrast also
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generates oscillations with a shorter wavelength (∼4°) along a profile perpendicular
to the trench.

• The subduction edge is most noticeable in Txz component with negative anomaly
with a magnitude of ≥125 mE and ∼10° of wavelength, where x-direction is parallel
to the trench.

• Estimation of slab dipping angle is possible to be performed using GOCE, with
precision no better than 10°. The difference of 10° of slab dip produces ∼75 mE of
variation in Tzz and Tyy.

• Lateral variation of slab dipping angle produces remarkable signal variation that
can be detected by GOCE, particularly in Tyy, Tyz, and Tzz components. Lateral
variation with ∆θ ≥ 30° produces variations with magnitude >100 mE in Tyy, Tyz,
and Tzz.

The slab properties that mentioned above, such as the density distribution of a slab, the
slab edge, the slab dipping angle, and its lateral dipping variation is theoretically can be
detected by GOCE observations.

But, it is difficult to locate where the slab dip changes using GOCE observations,
especially when there is a presence of crustal layer on the upper part of the subducting
slab. The most remarkable anomaly is resulted in Txz with a magnitude of <76 mE and
with ∼6.5° of half-wavelength. Theoretically, these signal properties are detectable by
GOCE. However, if the presence of noise in the real observations is also taken into account
in the analysis, this detailed structure property is difficult enough to be interpreted.

However, the results from synthetic models are only applicable to a real case if the
effects of mass layers above the slab, i.e. topography-bathymetry and crustal structure,
are properly removed. In the application to the Izu-Bonin-Mariana (IBM) subduction
zone, topography and bathymetry effects are successfully removed. However, due to the
low spatial resolution and accuracy of the available global crustal model, the crustal effect
are not successfully removed thus the residual of gravity gradients is still interfered by the
presence of crustal effect. Therefore, the residual gravity gradients signal cannot properly
explain the detailed structures of IBM slab, such as the border of the slab, the slab dip
angle, and its lateral variation. This study underlines the importance to use global Earth
mass model, including topography, bathymetry, and crustal model, with a high accuracy
and spatial resolution in order to interpret the second-order of slab geometry, for example
the location of slab tear.

Our results suggest that to be able to assess the first-order properties of the slab
geometry using GOCE observations, including slab edge, its density variation, and slab
dip, the reduction of crustal effect requires a global crustal model with an accuracy of
1 km. While for assessing the second-order properties of the slab geometry, such as its
lateral dip variation and the location where the dip angle change, the use of global crustal
model with an accuracy better than 1 km is mandatory.
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Perspectives

During this thesis, I showed that the precision during the chain of gravity-related data
processing is essential for the interpretation in geodynamics studies. Factors that play an
important role to achieve the expected precision include (1) the computation techniques
itself, (2) the accuracy and the spatial resolution of gravity data, and (3) the properties
of the used Earth mass model (in this case is topography and crust models), including its
spatial resolutions, truncation distances or spatial extents, and accuracies.

I showed that GEEC is capable to encompass most essential steps in the chain of
gravity-related data processing, including gravity correction and reduction processes as
well as in the stochastic process as a part of the process to interpret the results. In order
to make GEEC more advanced, flexible, and time-saving, particularly for computation of
topography correction, a systematic study about the role of the truncation distance, the
resolution of digital terrain model, the altitude of measurement and the morphology, in
term of roughness of topography of a zone is now required. This can be achieved using
synthetic topography morphology based on the use of well-known parameters, such as
Hurst exponent (e.g., Candela et al., 2009; Persson, 2015). By completing this task and
developing an automation algorithm to be implemented in GEEC, an adaptive discretiza-
tion of triangle mesh that constructs the polyhedron can be achieved.

The approaches to assess the detailed geometry properties of a slab in this study are
performed using static models of a slab without taking into account the dynamic aspects
at depth. For future works, this aspects could be considered in the modelling to better
understand the gravity gradient signatures related to the subducting slab.

The case study of Izu-Bonin-Mariana zone also underlines the necessity of well-constrained
mass geometry model to perform a precise data processing and to obtain results that are
interpretable. Crustal model construction with a high-accuracy and spatial resolution is
thus required to better constrain mass variations at depth, including its detailed geom-
etry properties. Geophysical studies and data merging of seismic tomography inversion
results are then highly encouraged. A combination of gravity-related datasets at various
altitudes also can be a solution, where the effect of Earth crust and other masses at depth,
such as a subducting slab, can be separated by considering the different wavelengths of
gravity or gravity gradients (spectral analysis).

As demonstrated in this study, the gravity gradient signatures related to the lateral
variation of a subducting plate is relatively weak, only slightly superior to the accuracy
of GOCE dataset. This aspect limits the use of GOCE dataset at its original altitude to
detect and to localize second-order geometry properties of a slab. These results highlight
the interest to measure the Earth’s gravity gradients field at a lower altitude than GOCE’s.
For example, installing an atomic interferometry absolute gravimeter on a balloon that
flights up to 40 km of altitude in the framework of HEMERA Project coordinated by
the French space agency CNES (Centre National d’Et́udes Spatiales) (HEMERA H2020,
2018) could be envisaged for future works to produce a stronger gravity response with a
better spatial resolution.

Although the gravity gradients from GOCE mission appears inadequate to constrain
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the details of a slab structure properties, they allow the detection of deep mass variations
at a large scale (e.g., Panet et al., 2014) as well as the structure properties in the first
order (i.e. border of a subducting plate, slab dipping variation, and density distribution
model), as shown in Chapter 4. This aspect could be developed in future works to
open a perspective about detection of slab termination using gravity gradients data. For
example, this approach should be applicable to delineate the geometry of Yakutat terrane
in southeastern Alaska that can be related with the seismicity of the zone (cf. Mazzotti
and Hyndman, 2002; Eberhart-Phillips et al., 2006; Worthington et al., 2012). Detection
of the geometry of an anomaly source or to delineate the segmentation of seismicity on a
subduction zone (cf. Song and Simons, 2003) by using tensor deconvolution method (e.g.,
Beiki, 2010; Mikhailov et al., 2007) could be also considered in the analysis of gravity
gradients signal in future works.

Lastly, the algorithm established in this thesis to calculate the gravity effect is based on
the solution by Singh and Guptasarma (2001). This solution is also adapted to calculate
the 3D magnetic field of a polyhedron source. Hence, in a near future, algorithms to
calculate the magnetic field of an anomalous body will be also integrated in GEEC to
support the study of the contribution of magnetic data, from SWARM satellite mission
for example.
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Appendices
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Appendix A

Compensation degree of Airy isostasy
derived from topography and satellite
gravity gradient

In the beginning of my thesis, I participated in the production of paper by Cadio
et al. (2016). This method highlight the importance of topography contribution in the
geodynamical processes.
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S U M M A R Y
Estimating how topography is maintained provides insights into the different factors respon-
sible for surface deformations and their relative roles. Here, we develop a new and simple
approach to assess the degree of isostatic compensation of continental topography at regional
scale from GOCE gravity gradients. We calculate the ratio between the radial gradient ob-
served by GOCE and that calculated from topography only. From analytical and statistical
formulations, simple relationships between this ratio and the degree of compensation are ob-
tained under the Airy–Heiskanen isostasy hypothesis. Then, a value of degree of compensation
at each point of study area can be easily deduced. We apply our method to the Alaska-Canada
Cordillera and validate our results by comparison with a standard isostatic gravity anomaly
model and additional geophysical information for this area. Both our GOCE-based results
and the isostatic anomaly show that Airy–Heiskanen isostasy prevails for the Yukon Plateau
whereas additional mechanisms are required to support topography below the Northwest Ter-
ritories Craton and the Yakutat collision zone.

Key words: Numerical approximations and analysis; Satellite geodesy; Gravity anomalies
and Earth structure; Continental margins: convergent; North America.

1 I N T RO D U C T I O N

An important question in geodynamics, especially for continen-
tal domains, is to distinguish the part of the topographic signal
isostatically compensated by either crustal roots (Airy–Heiskanen
model) or lateral density variations (Pratt–Hayford model) from the
one associated with lithosphere rigidity (Vening-Meinesz model;
Watts 2001) and present-day mantle convection (Braun 2010; Fla-
ment et al. 2013). Topography variations are associated with grav-
ity anomalies for which the amplitude is not only related to mass
anomalies at the surface but also to compensating masses at depth.
Indeed, the spatial variations of gravity are directly related to the
density anomalies located in both the crust and mantle. Joint analysis
of topography and gravity data can thus help identify the isostatic
component from the dynamic one in the topographic signal, and
gives an estimate of their contribution (Hager et al. 1985; Watts
2001; Cadio et al. 2012).

Owing to space gravity missions, unprecedented high-quality
data are now available on the entire Earth surface and improve
considerably our knowledge of gravity field (Tapley et al. 2005).
In particular, the GOCE mission (Gravity Field and Steady-State
Ocean Circulation Explorer; Drinkwater et al. 2003) allows the
study of features as small as 80 km in continental orogens (Hirt et al.
2012; Bruinsma et al. 2014), often characterized by a sparse spatial
coverage of available ground gravity data due to high reliefs. Such

resolution is made possible by the low altitude (∼255 km) of the
GOCE satellite, which does not provide measurements of the gravity
field but of its variations in the three spatial directions (Rummel et al.
2011). Beyond the resolution improvement compared to previous
space gravity missions, GOCE gravity gradients are also much
more sensitive to the spatial structure and directional properties
of the attracting masses than classical observation of gravitational
intensity (Mikhailov et al. 2007).

These satellite gravity gradients constitute a new class of obser-
vations that requires the development of new methods in order to
extract information. In solid Earth geophysics, analyses of GOCE
gravity gradients have been mainly developed to address the global
Earth’s internal structure at crustal (Reguzzoni et al. 2013), litho-
spheric (Bouman et al. 2015) and mantle (Panet et al. 2014) level.
At a regional scale, GOCE gravity data have been used to identify
geological structures (Álvarez et al. 2012; Mariani et al. 2013; Shin
et al. 2015).

Here, we propose a new and simple approach to assess the mech-
anism and degree of isostatic compensation in a given region using
GOCE gravity gradients. We use analytical and statistical formu-
lations to compute the degree of topography compensation under
the Airy–Heiskanen isostasy hypothesis. This allows identifying ar-
eas for which this hypothesis is valid and those requiring different
or additional compensation mechanisms. Thus, our approach pro-
vides complementary information to usual analysis of the geoid to

C⃝ The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. 645
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646 C. Cadio et al.

Figure 1. Topography of the NW American cordillera. Thin black lines show some of the primary faults for reference (DF, Denali Fault and TF, Tintina Fault).
The arrow indicates the motion of the Pacific Plate relative to North America. The black box marks the study area.

elevation ratio used to estimate the apparent compensation depth
of a specific topographic structure (Chase et al. 2002; Cadio et al.
2012). Also, on continental areas, the gravity gradients measured
from the GOCE satellite provide a homogeneous coverage of higher
resolution than previously available gravity data. This improvement
in resolution is in part related to the technique of differentiation.
GOCE gravity gradients are thus better suited to study continental
structures at the regional scale. Beyond this benefit, the new ap-
proach allows us to interpret a new kind of data defined in different
spatial directions. Although we focus on the radial gravity gradient
in this study, our method can constitute a basis to explore the others
components.

We test our method over the NW America orogen (Fig. 1), which
is associated with the accretion of allochthonous blocks carried by
the Pacific plate in the corner of the Gulf of Alaska (e.g. Lahr &
Plafker 1980; Plafker et al. 1994). The study area extends from the
Yakutat collision zone along the continental margin to the Canadian
Craton, spanning the entire Alaska-Canada Cordillera. The topog-
raphy pattern, the crustal thickness and the isostatic compensation
mode are well defined in most of this region and vary significantly
(Lewis et al. 2003; Hasterok & Chapman 2007; Mazzotti et al.
2008), making this area particularly well adapted to validate our
method.

In the following, we present our approach to estimate the degree
of the local isostatic compensation of the topography in continental
domains at regional scale. First, we explain the methodology from
which the degree of compensation is deduced. We introduce the
GOCE gravity gradients and present the formulations obtained for
a synthetic model. Next, we apply our approach to the NW America
orogeny. Finally, we discuss the results in terms of isostatic and
dynamic topography in the region.

2 M E T H O D S

In our approach, the degree of compensation α is estimated from
GOCE measurements. First, we calculate the ratio β between the
radial gradient observed by GOCE and that modeled from topo-
graphic contribution only. Next, using a simple cylinder model, we
obtain a relationship between α and β under the Airy–Heiskanen
isostasy hypothesis. In this way, a degree of compensation can be
deduced at each point of the study area.

2.1 GOCE and topography gravity gradients

The European Space Agency’s GOCE mission provides data with
unprecedented global resolution (Bruinsma et al. 2014). GOCE
directly measures, on a ∼255-km-altitude orbit, the six components
of the Earth’s gravity gradient tensor (Txx , Tyy, Tzz, Txy, Tyz, Tzx )
corresponding to the first spatial derivatives of the gravity in three
directions (Rummel et al. 2011):

Ti j = ∂gi

∂ j
= ∂g j

∂i
= Tji . (1)

The GOCE High-level Processing Facility (Fuchs & Bouman
2011) expresses the gradients in the Local North Oriented Frame
(LNOF). In this right-handed North-West-Up frame, the radial gra-
dient Tzz gives an isotropic view of masses whereas the others deriva-
tives underline masses orthogonal to the differentiation directions.

In this study, we use the gravity gradient grid at 255 km above the
WGS 84 reference ellipsoid established by Bouman et al. (2016).
The gradients are given in the LNOF frame with a resolution of 0.2
deg. The grid combines the GOCE gradients measured during the
period from 2010 February 1 to 2013 November 11 for the small
and intermediate scales (< 700 km) and GRACE (Gravity Recovery
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Isostatic compensation of topography 647

Figure 2. Cylinder model of the topography with its compensation follow-
ing the Airy–Heiskanen isostatic model with R, the radius of the cylinder, h
the elevation, H the hydrostatic equilibrium crustal thickness, b the thickness
of the crustal root, ρc the crustal density and ρm the mantle density. The
satellite is at altitude z + h = 255 km above the ellipsoid.

and Climate Experiment) data for longer wavelengths. Based on
satellite data only, it therefore provides a precision over the whole
Earth of 0.01–0.06 E (Eötvös, with 1 E = 10−9 s−2) for the Tzz

component (Panet et al. 2014). In the following, we consider the
signal as significant when its amplitude is above 0.05 E.

The gravity gradient due to topography is given by the GeoEx-
plore project (Grombein et al. 2013, 2014; Bouman et al. 2016).
The topographic contribution is estimated from the spherical har-
monic model RWI TOPO 2012, complete to degree and order 1800
(Grombein et al. 2014). In this model, the DTM2006.0 topography
(Pavlis et al. 2007) is decomposed into three layers corresponding
to rock, water and ice masses with density values of 2670, 1000 and
920 kg m−3, respectively.

2.2 Synthetic model

2.2.1 Model parameters

We evaluate the contribution of a partially or totally compensated
topography in the radial component of the gravity gradient tensor
from synthetic models. We assume a local isostatic compensation
following the Airy–Heiskanen model in which the topography is
accommodated by variations in Moho depth, the crust having a
constant density (Fig. 2). The gravitational signal of a compensated
topography is thus related to both the topographic mass excess and
the crustal root mass deficit. In order to derive simple analytical
expressions, we approximate a given topography and the associated
crustal root as a superimposition of two cylinders separated by a
distance H corresponding to a reference crust (Fig. 2). Parameters
of this model correspond to the cylinder density, height and ra-
dius. The density value is the crustal density ρc for the topography
and the crust–mantle density contrast %ρ = ρc −ρm for the root.

The thickness b of the root is calculated from the height h of the
topography:

b = −α
ρc

%ρ
h, (2)

where α is the degree of compensation. For α = 1, the topography
is totally compensated in the Airy–Heiskanen hypothesis, whereas
α > 1 and α < 1 are associated with an over- and undercompensated
topography, respectively. The two cylinders having the same radius
R, a model is thus described by a set of six independent parameters:
(α, ρc, %ρ, h, R, H ).

2.2.2 Gravity and gravity gradient

The vertical component of the gravitational attraction %g due to the
two-cylinder model can be analytically calculated above the centre
of the cylinder as (e.g. Turcotte & Schubert 2002):

%g = %gtopo + %gcrustal root (3)

where

%gtopo = 2πGρc

(
h +

√
z2 + R2 −

√
(z + h)2 + R2

)

%gcrustal root = 2πG%ρ

×
(

b +
√

(z + h + H )2 + R2 −
√

(z + h + H + b)2 + R2

)

(4)

with G the gravitational constant (Table 1) and z the distance above
the upper surface of the topography cylinder (Fig. 2). Here, to be
consistent with GOCE data, the measurement point is held at altitude
z + h = 255 km above the ellipsoid.

As the GOCE gravity gradient is the first vertical derivative of
%g, the analytical radial component Tzz is derived from eqs (3) and
(4):

Tzz = ∂%g
∂z

= ∂%gtopo

∂z
+ ∂%gcrustal root

∂z
= Tzztopo + Tzzcrustal root

(5)

where

Tzztopo = 2πGρc

⎛

⎝ z√
z2 + R2

− z + h
√

(z + h)2 + R2

⎞

⎠

Tzzcrustal root = 2πG%ρ

⎛

⎝ z + h + H
√

(z + h + H )2 + R2

− z + h + H + b
√

(z + h + H + b)2 + R2

⎞

⎠ . (6)

The ratio β between the total gradient Tzz and the topography
gradient Tzztopo is:

β = Tzz

Tzztopo

=
Tzztopo + Tzzcrustal root

Tzztopo

= 1 + Tzzcrustal root

Tzztopo

. (7)

2.2.3 Relationships between α and β

In order to derive a relationship between the degree of compensa-
tion (α) and the total to topography gradient ratio (β), we assume
a priori information on ρc, %ρ, h, R and H, with value ranges that
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648 C. Cadio et al.

Table 1. Definitions of parameters and their values. The ranges for the Alaska-Canada Cordillera are in italic. αmin and αmax

are the upper and lower bounds of the reference model in Fig. 3.

Parameters Definition Value and range

G Gravitational constant 6.67 × 10−11 m3 kg−1 s−2

ρc Crustal density 2600–2900 kg m−3

ρc max Highest value for αmax 2900 kg m−3

%ρ Crust–mantle density contrast −700–300 kg m−3

|%ρmax| Highest value for αmax −700 kg m−3

h Elevation 10–4.5 × 103 m
hmin Lowest value for αmin 10 m
hmax Highest value for αmax 4.5 × 103 m

R Cylinder radius 1–500 × 103 m
Rmin Lowest value for αmax 1 × 103 m
Rmax Highest value for αmin 500 × 103 m
H Hydrostatic equilibrium crustal thickness 10–60 × 103 m

25–40 × 103 m
Hmin Lowest value for αmin 25 × 103 m
Hmax Highest value for αmax 40 × 103 m

z GOCE satellite altitude 250 × 103 m
α Degree of compensation
β Ratio between GOCE gradients and its topographic contribution

Figure 3. Relationship between the degree of compensation α and the ratio
β. The grey colour scale gives the probability density associated with a
collection of 108 models. Red lines give the lower and the upper bounds
(αmin and αmax) for the degree of compensation. Independently of the model
parameter values, the topography is systematically overcompensated (re-
spectively, undercompensated) for ratio values of β < 0.02 (respectively,
β > 0.55). The blue dotted lines give the location of profiles presented in
Fig. 5.

correspond to continental regions (Table 1); each parameter set then
corresponds to a (α, β) couple. We sample the potential combina-
tions of this six-parameter space by randomly selecting 108 possible
models using a uniform distribution for each parameter sampled
from its a priori range (Table 1). This random selection is large
enough to provide a quasi-systematic exploration of the parameter
space with the associated (α, β) couples. The sample of 108 (α, β)
couples is then analysed using a bivariate frequency histogram to
derive a non-parametric statistical distribution, or probability den-
sity function (PDF), that describes the probability of occurrence of
possible (α, β) couples for our a priori range of parameters.

The obtained PDF exhibits a clear relationship between the com-
pensation degree α and gravity gradient ratio β (Fig. 3). Unsurpris-
ingly, α and β are inversely correlated. A high degree of compen-

sation involves a large-mass deficit at depth, which directly reduces
the amplitude of the radial component Tzz. More interestingly, our
calculations show that the lowest α values are bounded by a lin-
ear relationship between α and β, which corresponds to the lowest
(h, H ) and the highest R:

αmin ∼ (1 −β) C1 (8)

In contrast, the upper bound for α is given by a non-linear rela-
tionship with β, which corresponds to the highest (h, H, ρc, |%ρ|)
and the lowest R:

αmax ∼
−C2 +

√
C2

2 −4C3 (β −1)

2C3
. (9)

Derivations of eqs (8) and (9), and constants C1, C2 and C3 are
given in Appendix. Using the parameter ranges given in Table 1, the
topography is overcompensated (α > 1) for β < 0.02, whereas β >

0.55 is associated with an undercompensated (α < 1) topography
(Fig. 3).

We test the influence of each individual parameter by varying
their value independently from the others, so that all the topographic
deformations observed on the Earth’s surface, in terms of amplitude,
spatial extent and density contrasts, are considered. Fig. 4 shows
how the relationships between α and β associated with eqs (8) and
(9) evolve as functions of ρc, %ρ, h, R, H and z. αmin varies only
slightly and is mainly influenced by the highest R and the lowest
H. In contrast, αmax is much more sensitive to parameter values,
especially to the highest h, H and %ρ. The sensitivity is weaker
with the lowest R and z. Both relationships are weakly dependent
on ρc.

In order to estimate a degree of compensation α for a given
ratio β (derived from GOCE and topography data), we calculate
likelihood distributions of α for all values of β (discretized every
0.01) on the basis of their joint probability distribution (Fig. 3).
Fig. 5 shows examples of such α likelihood distributions for three
β values. These distributions can be characterized by a maximum
and half-width (values at 1

2 maximum probabilities, Fig. 5), which
are used in the following to quantify the degree of compensation α

by its most-likely value and an associated uncertainty (α,αl and αu ;
Fig. 6).
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Isostatic compensation of topography 649

Figure 4. Sensitivity of the compensation degree (αmax and αmin) to model parameters. Parameters set: cylinder radius R, crustal density ρc , crust–mantle
density contrast %ρ, elevation h, reference crustal thickness H and satellite elevation z. Parameter ranges: Rmin ∈ [25; 100 km], Rmax ∈ [250; 1000 km],
ρc ∈ [2600; 2900 kg m−3], %ρ ∈ [−700; −300 kg m−3], hmin ∈ [0; 1 km], hmax ∈ [1; 5 km], Hmin ∈ [10; 25 km], Hmax ∈ [30; 60 km] and z ∈ [230; 270 km].
The grey colour scale (dashed lines) and associated black arrows indicate an increase in the parameter value. The red lines are associated with the data collection
presented in Fig. 3.

Figure 5. Example of probability density of α for three different values of
β (cf. Fig. 3). The red circles correspond to the obtained maximum. The
most likely value of ‘alpha’ is given by the number above the red circles.
The grey areas represent the range of possible ‘alpha’ values (uncertainty)
for a selected threshold of 50 per cent probability.

3 A P P L I C AT I O N T O T H E
A L A S K A - C A NA DA C O R D I L L E R A

3.1 Elevation, crust thickness and isostatic state

On the basis of its first-order topography and geology, we can sub-
divide the NW America orogen area into three domains: (1) the
Yakutat collision zone, (2) the Yukon Plateau and (3) the Northwest

Figure 6. Transfer function between β and α. Black is the most likely α.
Grey envelop is associated with the α uncertainties. The red circles are
associated with the three different values of β presented Fig. 5. Blue text
gives the value of β and α. Black text gives the lower (αl) and upper (αu)
limit of α.

Territories Craton (Fig. 1). The collision front, including the Alaska
Range and the St Elias–Chugach–Wrangell Mountains, comprises
high and steep mountains located at the northern boundary of the
Yakutat block (Fig. 1) and is associated with an intense seismicity
(Doser & Lomas 2000; Mazzotti et al. 2008). The average elevation
in this region is ∼2500 m, with highs up to 6000 m in the Alaska
Range and St Elias Mountains. These ranges are inferred to result
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650 C. Cadio et al.

from a series of subduction and collision processes, including the
present-day underthrusting of the Yakutat block. The crustal thick-
ness is not well resolved for a large part of this area. Nevertheless,
the isostatic anomaly map established by Barnes et al. (1994) shows
that this region is not in Airy–Heiskanen equilibrium and the topog-
raphy is undercompensated. A deep support related to the mantle
dynamics around the edge of the Pacific slab could be expected in
such context (Mazzotti et al. 2008).

The Yukon Plateau has an average elevation of ∼1000 m with
little relief (Fig. 1) and a consistent crustal thickness of ∼35 km
(Erdmer et al. 2001; Rasendra et al. 2014). At its easternmost part, it
is delimited by the Mackenzie Mountains, which rise to an elevation
of ∼2000 m. Although located 600–800 km northeast of the Yakutat
collision, these mountains are affected by a strong seismicity and
mark the transition between the backarc active Cordillera and the
stable Canadian Shield (Mazzotti et al. 2008). Strain transfer across
the whole Cordillera is made possible by a hot lithosphere (Mazzotti
& Hyndman 2002). Isostatic equilibrium prevails for most of this
region (Lewis et al. 2003).

Finally, lowlands and lakes, with an average elevation of ∼300 m
and a crust of 35 km thickness (Cook et al. 1999), characterize the
Northwest Territories Craton (Fig. 1). This region is associated with
a cold and thick lithosphere, similar to the Canadian Shield, which
contributes to the regional isostatic equilibrium (Lewis et al. 2003).

3.2 GOCE results

The GOCE radial gravity gradient Tzz over the Alaska-Canada
Cordillera reflects at first order the topography (Figs 7a and b).
The radial gradient displays a significant signal over the topography
highs with a maximal magnitude of 0.8 E in the St. Elias–Wrangell
Mountains. Minimal values are observed over the eastern lowlands
where the signal varies slowly. The Mackenzie Mountains, which
culminate at ∼2000 m, are associated with the higher signal in the
Yukon plateau region.

We show the calculated topography gradient Tzztopo in Fig. 7(c).
Tzztopo displays a pattern close to GOCE observations but with higher
amplitudes (cf. maximal of 2.6 E over the St Elias–Wrangell Moun-
tains). This significant difference in amplitudes between observa-
tions and predictions points out the existence of a process reducing
the gravitational effect of topography, such as local isostatic com-
pensation by crustal thickness variations, which we can assess sim-
ply and efficiently by estimating a degree of compensation. Fig. 7(d)
shows the spatial distribution of the gravity gradient ratio β. We dis-
tinguish the three different domains: the eastern lowlands with β <

−0.3, the Yukon Plateau with −0.3 ≤ β ≤ 0.3 and the northwest
highlands with β > 0.3.

The corresponding degree of compensation is obtained from the
transfer function between β and α established in Section 2.2.3 and
is shown in Fig. 8. The transfer function is adapted to our study
area using a priori information available on the reference crustal
thickness H (Table 1). The uncertainty range of the degree of com-
pensation, αl and αu (Fig. 6), is represented in Figs 8(c) and (d). The
three maps show a gradual increase of the degree of compensation
under the Airy–Heiskanen hypothesis from the collision front to
the stable craton area. α is significantly higher than 1 in the Eastern
lowlands, indicating that the region is overcompensated. The Yukon
Plateau area, characterized by α values varying between 0.7 and 1.2,
is close to the isostatic equilibrium. Finally, associated with α < 0.7,
topography highs in the Alaskan forearc and Yakutat collision zone
are only partially compensated.

3.3 Discussion

In order to validate the approach, we ensure the consistency be-
tween our results deduced from GOCE observations and the isostatic
gravity anomalies derived from the WGM2012 global model based
on terrestrial measurements and GRACE satellite data (Bonvalot
et al. 2012). These isostatic anomalies are obtained by subtracting
to the Earth Gravitational Model 2008 (EGM2008; Pavlis et al.
2008) the gravitational effect of the topography and its low-density
root according to the Airy–Heiskanen model with a reference crust
thickness of 30 km. Thus, a negative (positive) isostatic anomaly
indicates an over (under) compensation of reliefs whereas a zero
isostatic anomaly reflects a topography perfectly compensated.

We first apply a 200 km high-pass filter to WGM2012 isostatic
anomalies to obtain a similar wavelength content as for our satellite-
based analysis. Second, we correct the WGM2012 isostatic anomaly
to account for the difference in crustal thickness reference (30 km
for WGM2012 versus 35 km in our analysis tuned to regional seis-
mic data). This correction, calculated using eqs (2) and (4) to ac-
count for topography variations, corresponds to about 0–10 mGal
depending on local topography. The resulting WGM2012 isostatic
anomaly shows a good general agreement with the degree of com-
pensation derived from GOCE observations (Fig. 9 versus Fig. 8).
Both our GOCE-based results and the ground-based WGM2012
isostatic anomaly show that Airy–Heiskanen isostasy prevails for
the Yukon Plateau whereas additional mechanisms are required to
support topography below the Northwest Territories Craton and the
Yakutat collision zone.

For the Northwest Territories region, our analysis and the isostatic
anomaly map indicate an overcompensated topography, that is, that
the actual crustal root is greater than the isostatic root predicted by
the Airy–Heiskanen model (Figs 8 and 9). However, seismic data
indicate that crustal thickness under this region is similar to that
of the Yukon Plateau (∼33–35 km; Cook et al. 1999; Erdmer et al.
2001; Rasendra et al. 2014) and corresponds to isostatic equilibrium
with the Plateau elevation (∼1 km). Thus, the overcompensated
signature and the support of the low topography are not associated
with simple Airy–Heiskanen isostasy. As shown by Lewis et al.
(2003) and Hasterok & Chapman (2007), thermal isostasy is likely
the primary support mechanism due to the presence of a thick and
cold lithosphere below the Craton. Near-sea level elevation regions
(0–200 m), such as the Canadian Craton, have indeed a wide range
of crustal thicknesses (25–55 km) and a simple relation between
these two quantities is difficult to establish (Zoback & Mooney
2003). This implies a significant contribution of a cooler and denser
lithospheric mantle to reach the isostatic equilibrium in these areas.

In contrast with the Craton, the Yakutat collision system to the
west is isostatically undercompensated: crustal thickening resulting
from the collision between the Yakutat block and the American con-
tinent does not completely compensate the St Elias and Chugach
Mountains elevation (Figs 8 and 9). Our approach indicates the
existence of additional mechanisms that support the topography in
the collision zone: (1) the continental lithosphere could be rigid
enough to partially maintain these reliefs. However, the collision
zone is characterized by large deformation and faults, which can
highly reduce the rigidity of lithosphere, as shown by the low effec-
tive elastic thickness (< 20 km) obtained over the region (Kirby &
Swain 2009). Moreover, the Alaska-Canada Cordillera is located in
a recent backarc region characterized by a hot, thin and weak litho-
sphere (Hyndman et al. 2005). (2) Alternatively, asthenospheric
mantle dynamic processes could contribute to topography support,
such as sublithospheric erosion by small-scale convection (Cadio
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Isostatic compensation of topography 651

Figure 7. (a) Topography, (b) the GOCE radial gravity gradient Tzz , (c) the uncompensated topographic contribution Tzz topo and (d) the ratio β over the
Alaska-Canada Cordillera.

et al. 2012). Mantle flow associated with the edge of the Yakutat
slab could also contribute to dynamic topography. Thus, our ap-
proach could allow the identification of dynamic topography in this
region and provide an estimate of its minimal contribution. The
comparison between observed and synthetic gravity gradients de-
rived from numerical modeling of subduction process could bring
further constraints on the slab dynamics at the collision front.

4 C O N C LU S I O N S

The approach developed here evaluates the degree of the local iso-
static compensation of the topography, under the Airy–Heiskanen
hypothesis, in continental region. This simple method only requires
knowledge of the radial GOCE gradient and its topographic contri-
bution, data available on the entire Earth’s surface. Consequently,
our approach can be easily applied to any continental region and
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Figure 8. (a) Topography, (b) the degree of compensation α and (c) its estimated range αl and (d) αu over the Alaska-Canada Cordillera.

can integrate independent constraints on parameters specific to each
region. It can be also adapted to oceanic domain, allowing the study
of subduction zones. Finally, the gravity gradient tensor holds com-
plementary information in other components, which can be used in
future studies.

Our application on the NW America orogen confirms the pres-
ence of additional mechanisms in the topography support, involv-

ing thermal isostasy, lithosphere rigidity and probably mantle dy-
namics. This approach provides constraints on the maximal (mini-
mal) potential isostatic (dynamic) topography and associated with
independent data (seismic velocity, seismicity, surface heat flow,
etc.) can bring additional information on the Moho depth, on ther-
mal or mechanical lithospheric variations, and on deeper mantle
processes.
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Isostatic compensation of topography 653

Figure 9. Isostatic gravity anomalies derived from the WGM2012 global model (Bonvalot et al. 2012) smoothed with a 200 km high-pass filter and corrected
to account for the difference in crustal thickness reference (30 km for WGM2012 versus 35 km in our analysis tuned to regional seismic data).
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A P P E N D I X : M AT H E M AT I C A L F O R M U L AT I O N S B E T W E E N α A N D β

Using the function of real f (x) = x√
x2+R2

eq. (6) can be written as

Tzztopo = 2πGρc ( f (z) − f (z + h) )

Tzzcrustal root = 2πG%ρ( f (z + h + H ) − f (z + h + H + b)). (A1)

The function f being infinitely differentiable, it can be approximated by using a finite number of terms of its Taylor series with (x, y) ∈ R2 :

f (x + y) = f (x) + y f ′ (x) + y2

2!
f ′′ (x) + · · · + yn

n!
f (n) (x) + · · · . (A2)

Compared to z, H and R the elevation h is always small. Hence, two cases can be considered to simplified eq. (7). First assuming that the
crustal root b is also small the first two terms of eq. (A2) can be used to simplify eqs (6) and (7)

Tzztopo ∼ −2πGρch R2
(
z2 + R2

)−3
2

Tzzcrustal root ∼ 2πG%ρh R2
(
(z + h + H )2 + R2

)−3
2 . (A3)

The ratio β between the observed gravity gradient Tzz and Tzztopo is then

β = Tzz

Tzz topo
=

Tzztopo + Tzzcrustal root

Tzztopo

= 1 + Tzzcrustal root

Tzztopo

∼ 1 −α

(
z2 + R2

(z + h + H )2 + R2

) 3
2

(A4)

which corresponds to a simple linear relationship between β and α

α ∼ (1 −β) C1

C1 =
(

z2 + R2

(z + h + H )2 + R2

)−3
2

. (A5)

This equation can be used for small b only. Thus, it gives a lower bound for α. Note that for lim
R→+∞

(α) = 1 −β.

For cases in which the crustal root b is comparable to z, H or R, the third terms of eq. (A2) cannot be neglected and Tzzcrustal root becomes

Tzzcrustal root ∼ 2πG%ρ

[
−bR2

(
(z + h + H )2 + R2

)−3
2 + 3

b2

2
R2 (z + h + H )

(
(z + h + H )2 + R2

)−5
2

]
. (A6)

The ratio β is then

β ∼ 1 −C2α −C3α
2

C2 =
(

z2 + R2

(z + h + H )2 + R2

) 3
2

= 1
C1

C3 = 3ρc

2%ρ
h (z + h + H )

[
(z + h + H )2 + R2

]−5
2

(z2 + R2)−
3
2

. (A7)

Thus, we obtain the following quadratic polynomial equation

C3α
2 + C2α + (β −1) ∼ 0 (A8)

which has for root (α > 0)

α ∼
−C2 +

√
C2

2 −4C3 (β −1)

2C3
. (A9)
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Appendix B

Relative errors due to topography trun-
cation
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Relative gravity truncation errors
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Figure B.1: Relative gravity error σg(ψt, d) at airborne altitude (10 km) between to two
points in the region, as a function of their distance d and the topography correction trun-
cation ψ (cf. Figure 3.2), for Himalaya (a), Pacific (b), and Southeast Pacific (c) zones,
respectively. The dashed grey line marks the ψ=1.5°, corresponding to the standard trun-
cation distance (Bullard, 1936). The differential effect of major continental and oceanic
masses are labeled (see Figure 3.3).
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Figure B.2: Relative gravity error σg(ψt, d) at satellite altitude (255 km) between to two
points in the region, as a function of their distance d and the topography correction trun-
cation ψ (cf. Figure 3.2), for Himalaya (a), Pacific (b), and Southeast Pacific (c) zones,
respectively. The dashed grey line marks the ψ=1.5°, corresponding to the standard trun-
cation distance (Bullard, 1936). The differential effect of major continental and oceanic
masses are labeled (see Figure 3.3).
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Relative gravity gradient truncation errors

Figure B.3: Relative gravity gradient error σT (ψt, d) (in Eötvös) at airborne altitude
(10 km) between two points in the region, as a function of their distance d and the
topography correction truncation ψ (cf. Figure 3.2), for Himalaya (a), Pacific (b), and
Southeast Pacific (c) zones, respectively. The differential effect of major continental and
oceanic masses are labeled (see Figure 3.3).
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Figure B.4: Relative gravity gradient error σT (ψt, d) (in Eötvös) at satellite altitude
(255 km) between two points in the region, as a function of their distance d and the
topography correction truncation ψ (cf. Figure 3.2), for Himalaya (a), Pacific (b), and
Southeast Pacific (c) zones, respectively. The differential effect of major continental and
oceanic masses are labeled (see Figure 3.3).
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Abstract
Nowadays, the scientific community has at its disposal gravity and gravity gradient datasets with unprecedented accuracy

and spatial resolution that enhances our knowledge of Earth gravitational field at various scales and wavelengths, obtained
from ground to satellite measurements. In parallel with gravimetry, the advancement of satellite observations provides the
community with more detailed digital elevation models to reflect the Earth’s structure geometry. Together, these novel datasets
provide a great opportunity to better understand the Earth’s structures and dynamics at local, regional, and global scales. The
use and interpretation of these high-quality data require refinement of standard approaches in gravity-related data processing
and analysis. This thesis consists of a series of studies aiming to improve the precision in the chain of gravity and gravity
gradient data processing for geodynamic studies. To that aim, we develop a tool, named GEEC (Gal Eötvös Earth Calculator)
to compute precisely the gravity and gravity gradients effects due to any mass body regardless of its geometry and its distance
from measurements (Saraswati et al, submitted). The gravity and gravity gradients effects are computed analytically using the
line integral solution of an irregular polyhedron. The validations at local, regional, and global scales confirm the robustness of
GEEC’s performance, where the resolution of the model, that depends on both size of the body mass and its distance from the
measurement point, control strongly the accuracy of the results. We present an application for assessing the optimum parameters
in the computation of gravity and gravity gradients due to topography variations. Topography has a major contribution in
Earth gravitational attraction, therefore the estimation of topography effects must be carefully considered in the processing of
gravity data, especially in areas of rugged topography or in large-scale studies. For high-accuracy gravity studies at a global
scale, the topography correction process must consider the topography effect of the entire Earth. But for local to regional
applications based on relative variations within the zone, we show that truncated topography at a specific distance can be
adequate. When using a truncation distance that equals with the dimension of the study area, errors 1-10 mGal are obtained.
The use of 15° ensure a precision of 1 mGal. For gravity gradient, to obtain 1 E of precision, a truncation distance of 8.5°
is required. To obtain 0.01 E of precision, the truncation distance must be set at 40°. Lastly, we approach the issue: Are
GOCE measurements relevant to obtain a detailed image of the structure of a subducting plate, including its geometry and
lateral variation? The results of gravity gradients forward modelling using synthetic slab models demonstrate that the detailed
structures of slab geometry are detectable by gravity gradients at GOCE mean altitude (255 km). However, in the application
to the real case of Izu-Bonin-Mariana subduction zone, the second-order geometric features of the subducting plate (e.g., slab
tear) are difficult to be detected due to poor spatial resolution and accuracy of the currently available global crustal model. We
show that to be able to assess the geometry of a slab in the second-order, the estimation of crustal effect using a global crustal
model with an accuracy better than 1 km is mandatory.

Keywords : gravity field, space gradiometry (GOCE), numerical development, forward modelling, optimization, geodynamics

Résumé
La communauté scientifique dispose aujourd’hui de jeux de données gravimétriques et gradiométriques d’une précision

et d’une résolution spatiale sans précédent. Ces données obtenues à partir de mesures au sol, d’acquisitions aériennes et
d’observations satellitaires permettent d’améliorer notre connaissance du champ gravitationnel de la Terre à diverses échelles
et longueurs d’onde. Les observations satellitaires fournissent également à la communauté des modèles numériques de terrain
globaux de plus en plus détaillés qui permettent une meilleure prise en compte de la géométrie fine des structures géologiques.
Ensemble, ces nouveaux jeux de données offrent une opportunité unique de mieux comprendre les structures et la dynamique
terrestre aux échelles locale, régionale et globale. L’utilisation et l’interprétation de ces données de haute qualité nécessitent
d’aller au-delà des approches standards en matière de traitement et d’analyse des données gravimétriques et gradiométriques.
Focalisée sur des applications géodynamiques, cette thèse consiste en une série d’études visant à améliorer la précision dans la
chaine de traitement et d’interprétation de ces données. Pour cela, un nouvel outil a été développé. Intitulé GEEC (Gal Eötvös
Earth Calculator), il permet de calculer précisément les effets gravimétriques et gradiométriques dus à un corps massique,
quelles que soient sa géométrie et sa distance aux mesures (Saraswati et al, submitted). Ces effets sont calculés analytiquement
en utilisant la solution intégrale le long des arrêtes d’un polyèdre irrégulier. Les validations aux échelles locale, régionale et
globale ont permis de quantifier les performances et la robustesse de GEEC. Nous montrons qu’il est possible de définir une
emprise optimale assurant rapidité de calcul et précision des résultats, qui dépend à la fois de la taille du corps massique et
de sa distance aux points de mesure. L’estimation de l’effet de la topographie doit être soigneusement pris en compte dans
le traitement des données gravimétriques et gradiométriques, en particulier dans les zones de topographie accidentée ou dans
les études à grande échelle. Dans un premier temps, nous montrons que, pour les études gravimétriques de haute précision,
la correction des effets topographiques sur les données satellitaires nécessite d’utiliser une emprise globale. A l’inverse, une
topographie tronquée sur une distance égale à la dimension de la zone étudiée peut être adéquate dans l’analyse de variations
relatives à des échelles locales et régionales, générant des erreurs de 1 à 10 mGal sur les mesures relatives. Plus généralement,
une distance de troncature de 15° assure une précision de 1 mGal. Dans le cas de données de gradient de gravité, une distance
de troncature de 8,5° (resp. 40 °) est requise pour obtenir une précision relative d’environ 1 E (resp. 0,01 E). Dans la troisième
partie de cette thèse, nous abordons le problème suivant : les données du satellite GOCE sont-elles pertinentes pour obtenir
une image détaillée de la structure d’une plaque de subduction (slab), y compris de sa géométrie et des variations latérales
? L’analyse d’une série de modèles synthétiques de slab montre que les structures détaillées de la géométrie sont détectables
par les données de gradient de gravité à l’altitude moyenne de GOCE (255 km). Cependant, l’application au cas réel de la
zone de subduction d’Izu-Bonin-Mariannes montre que la détection des caractéristiques géométriques de second ordre (par ex.
déchirure de slab) reste difficile, en raison de la faible résolution spatiale des données et, principalement, de la mauvaise qualité
des modèles d’épaisseur de croûte actuellement disponible. Nous montrons que, pour pouvoir étudier les détails de géométrie
d’un slab, modèle régional ou global d’épaisseur de croûte est nécessaire avec une précision supérieure à environ 1 km.
Mots-clefs : champ de pesanteur, gradiométrie spatiale (GOCE), développement numérique, modèle directe, optimisation, géo-
dynamique
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