
HAL Id: tel-02063530
https://theses.hal.science/tel-02063530v1

Submitted on 11 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Permittivities retrieval of a dihedral structure using
radar polarimetry

Orian Couderc

To cite this version:
Orian Couderc. Permittivities retrieval of a dihedral structure using radar polarimetry. Signal and
Image processing. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLC009�. �tel-
02063530�

https://theses.hal.science/tel-02063530v1
https://hal.archives-ouvertes.fr


N
N

T
:

2
0
1
9
S

A
C

L
C

0
0
9

T
h

è
s
e

d
e

d
o

c
t
o
r
a
t

Permittivities retrieval
of a dihedral structure

using radar polarimetry

Thèse de doctorat de l’Université Paris-Saclay
préparée à Centrale-Supélec

Ecole doctorale n◦575 : Electrical, optical, bio :
physics and engineering (EOBE)

Spécialité de doctorat : Electronique et Optoélectronique,
Nano et Microtechnologies

Thèse présentée et soutenue à Gif-sur-Yvette le 08 février 2019 par

Orian COUDERC

Composition du jury :

Raphaël Gillard
Professeur, INSA Rennes (IETR) Président

Philippe Paillou
Professeur, Université de Bordeaux (Laboratoire d’Astrophysique de

Bordeaux)

Rapporteur

Daniele Riccio
Professeur, Université de Naples (Department of Electrical Enginee-

ring and Information Technology)

Rapporteur

Albane Saintenoy
Maître de conférences, Géosciences Paris Sud (INSU) Examinateur

Pierre Sabouroux
Maître de conférences, Université de Provence (Institut Fresnel) Examinateur

Laetitia Thirion-Lefevre
Professeure adjointe, CentraleSupélec (SONDRA) Examinateur

Régis Guinvarc’h
Professeur, CentraleSupélec (SONDRA) Directeur de thèse



ii



Remerciements

Une première pensée part pour l’équipe Vision de Fugro Intersite de mon année 2013/2014 de
césure, ainsi qu’à Jean-Christophe Cexus, encadrant de mon stage de master recherche et de Projet
de Fin d’Etudes à l’ENSTA Bretagne sans qui, je pense, je n’aurais effectué de thèse.
Je remercie aussi la Fondation Supélec d’avoir financé ce doctorat et aussi au laboratoire SONDRA
et à travers celui-ci, ses différents directeurs, M. Lesturgie, S. Azzarian et S. Saillant, de m’avoir
accueilli. Ma gratitude va aussi aux membres du jury pour s’être intéressé à ma thèse.

Bien sûr, un énorme et grand merci à Laetitia Thirion-Lefevre et Régis Guinvarc’h. Je suis
parti de Master Recherche et de troisième année d’école d’ingénieur avec la seule bonne parole
d’Alexandre Baussard à votre sujet... et ma confiance en cette parole a été très bien placée. De très
bons conseils et mais aussi tout à l’écoute du thésard trimant, le duo, sympathique et compétant,
fait en sorte que le doctorant s’en sorte grandi et content. Pour ces trois années de conseils et
d’efforts pour que ma thèse se déroule au mieux, tant au plan professionnel que personnel, merci
du fond du cœur.

Dans la même veine et aussi pour son aide avec les mesures effectuées en chambre anéchoique
et les mesures au bâtiment Eiffel, je remercie Israel Hinostroza. De bonne humeur, de bonne vo-
lonté et toujours curieux et intéressé, cela a été un vrai plaisir de travailler avec toi. Concernant
les mesures, je souhaites aussi exprimer ma gratitude auprès du laboratoire Geeps. Notamment,
envers Mohammed Serhir, qui toujours prêt à faire un aparté philosophique ou artistique prêtant à
réflection entre deux mesures, apporte par la même occasion une bouffée d’air au doctorant enfermé
dans sa dernière année de thèse. Je remercie aussi Vincent Polledri pour son expertise de la sonde
coaxiale du Geeps concernant la mesure de permittivité au contact, et Joel Legrand pour ce qui
concerne la mise en oeuvre des mesures dans les chambres anéchoiques.
Je remercie aussi Thierry Letertre pour ses conseils avisés lorsqu’il s’agit d’expérimentations ou
de leur mise en oeuvre. J’en profites aussi pour saluer François Doyelle qui au cours de son stage
pour son magistère m’aura aider à explorer les pistes théoriques possibles concernant la méthode
du chapitre 3. I also take the occasion to thank Professor Kamal Sarabandi from the University of
Michigan for suggesting us to use the polarimetric ratio in order to by-pass calibration issues.

En ce qui concerne la vie au laboratoire SONDRA, Virginie Bouvier est incontournable. Parta-
geant plusieurs rôles, confidente des thésards et souvent leur porte-parole, elle est aussi leur premier
rempart face à l’administration. Merci pour tout le taff abbatu pour nous et ta bienveillance !
Concernant le quotidien, je pense aussi au groupe de thésards, avec qui l’on s’est suivi et encouragé
durant cette période : Eugénie Terreaux, Pedro Mendes Ruiz, Uy Hour Tan, Ammar Mian et Bruno
Mériaux. Une grande partie de mes meilleurs souvenirs de SONDRA partiront sans aucun doute
avec les pauses café et déjeuners passées avec vous à déblatérer sur nos thèses respectives mais aussi,
et surtout, sur n’importe quoi d’autre, souvent en compagnie d’Israel, de Thierry et Chengfang. Je
trouve d’ailleurs assez merveilleux que ce groupe du midi ait pu s’entendre à ce point-là, alors que
nous sommes issu de profils étudiants/professionnels mais aussi de cultures et modes de vie et de
religions assez différents. Mais peut être que cela est du aux madeleines et aux cigarettes choco-
noisettes. On pourrait, sur ce point, remercier Bijou pour les quelques centaines d’euros dépensées
à leurs bénéfices et les quelques kilos pris par leurs consommateurs. La crêpière, rêvée, me parait
toujours bien loin... Merci à mon acolyte d’IGARSS, Giovanni Manfredi pour sa bonne humeur
mais aussi son sérieux et sa persévérance quand il s’agissait de travailler ensemble malgré les dif-
ficultés du sujet. J’ai aussi une pensée pour les nouveaux venus et les anciens thésards/post-doc :
Alice, Samir, Vlad, Marie-José, Thibault et Dihia. Bon courage à vous !

Tels Raoul Duke et Maître Gonzo ou le Duc et Walter, nous parcourûmes une partie de l’Ouest
Américain : le Circus Circus à Las Vegas, l’I15 et Baker, le lotissement de Jeffrey Lebowski et le
bowling à L.A., la maison de Hunter S. Thompson à San Francisco,... On reviendra pour le Matrix
Club une autre fois. Des souvenirs impérissables ont été formé à travers l’Autriche (le Mozart

iii



iv

dépressif de Vienne, la voiture égarée à Innsbruck) mais aussi les Etats-Unis (le loueur de chaines
pour pneu à Mariposa, le poulet du Général) et la Russie (les Lénines, Sainte Clara, le Fear and
Loathing en partant, et le terminal de Prague). Dominique, j’ai bon espoir à ce qu’on voyage encore
pour découvrir d’autres personnes, cultures, cuisines et bibines locales, et que d’autres souvenirs
aussi inattendus se forment.
Un grand merci à Romuald Petit, Thomas Faucon, Judith Riou et Mathilde Huguet dont les amitiés
sont et furent précieuses durant ces années.
Enfin, je remercie ma famille pour leur soutien tout au long de mes études.



Résumé étendu

Le domaine des contrôles non destructifs traite généralement de la caractérisation et de la sur-
veillance des matériaux composant des structures telles que des bâtiments ou de grands ouvrages
de type barrages ou digues. Dans cette optique, plusieurs techniques ont été mises en place afin de
s’assurer de la pérennité de ces structures et de leurs fonctions via leurs caractéristiques mécaniques
et leur intégrité physique. Dans le domaine électromagnétique, différentes méthodes de mesure ont
été établies afin de maintenir cette surveillance : de la détection de changement brut sur les signaux
rétrodiffusés à l’estimation des paramètres caractérisant électromagnétiquement un matériau, sa
permittivité diélectrique et sa perméabilité magnétique. Dès lors, myriade de méthodes ont été
développées afin de déterminer ses quantités. Tout d’abord, on a les méthodes usant d’échantillons
du matériel nécessitant donc l’extraction d’un morceau de la structure afin de l’analyser (modèle de
ligne de transmission ou cavité). De même que dans les méthodes utilisables uniquement en labo-
ratoire, on trouve des techniques d’espace libre, ou par la mesure de la réflexion et/ou transmission
d’ondes via une configuration bistatique d’antennes, l’estimation de permittivité et de perméabilité
est possible. Si ces techniques ont certifié leurs fiabilités et leurs précisions, elles se cantonnent à
un usage de caractérisation de matériaux en laboratoire et non sur le terrain.
Les mesures au contact ou même en champ proche se rapprochent plus d’un côté applicatif : la
mesure de permittivité au contact à l’aide d’un guide d’onde ou d’une sonde coaxiale via la mesure
de son coefficient de réflexion préalablement calibrée à l’air ou à l’eau pure. Plus connu, le géo-
radar utilise, lui, en champ proche la différence de vitesse due à la permittivité matériau au sein
de chaque couche composant le sous-sol et les réflexions à chaque interface afin d’imager ces inter-
faces permettant la détection d’anomalies. Parmi ses applications courantes, on trouve notamment
la détection de mines, la détection de structures enterrées dans le domaine de l’archéologie, et le
contrôle non-destructif de structures telles que les routes ou les ponts.
En champ lointain, la mesure de permittivité est plus difficile surtout dans le domaine des micro-
ondes. Des exemples d’études en optique sont, elles, plus fréquentes. En configuration bistatique,
l’estimation peut s’effectuer en spéculaire par inversion directe de la mesure des coefficients de
Fresnel, ou par la mesure de certaines de ses caractéristiques liées intrinsèquement au matériau
à analyser. Dans le domaine de la polarimétrie radar, plus précisément dans l’imagerie radar en
configuration monostatique, quelques études peuvent se trouver sur l’inversion de permittivité d’un
sol rugueux. Nonobstant, la configuration monostatique rend l’estimation de caractéristiques d’une
telle scène compliquée de par la propagation de la puissance émise dans la direction spéculaire,
c’est-à-dire au loin du récepteur. De fait, cette estimation s’effectue donc sur un signal faible sou-
mis au bruit. La structure dièdrique, représentative de scènes type rue-bâtiment ou arbre-sol, elle,
est plus à même à renvoyer la puissance émise notamment grâce à l’effet double rebond.
Ainsi notre étude portera dans un premier temps sur l’analyse de ce type de structure dans le
cas métallique parfait, puis dans le cas d’un dièdre composé de matériaux diélectriques. Ensuite,
nous mettrons en place trois méthodes d’inversion de permittivités pour ce type de structure dont
nous ferons une analyse paramétrique. Pour finir, ces méthodes seront soumises à l’expérience en
environnement contrôlé puis à des mesures en situation.
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De l’estimation de permittivité à distance

De prime abord, en regardant ce qui a été effectué dans le domaine de l’optique, on trouve déjà
des solutions d’estimation de permittivité en champ lointain. En configuration bistatique et plus
spécifiquement grâce à la diffusion spéculaire, les auteurs de [1] purent déterminer la permittivité
complexe d’un matériau via la modélisation par les coefficients de Fresnel du champ rétrodiffusé. En
mesurant l’angle de Pseudo-Brewster, et la réflectivité du matériau (module du coefficient de Fresnel
mesuré avec le matériau en face), ils parviennent à retrouver l’indice de réfraction du milieu, c’est-
à-dire la racine carrée de la permittivité. Dans une configuration identique, l’inversion analytique
des coefficients de Fresnel pour la détermination de la permittivité a été effectuée dans [2]. Par la
connaissance du coefficient en polarisation horizontale et de l’angle d’incidence, ou des coefficients
co-polarisés, l’auteur est capable de remonter jusqu’à la connaissance de la permittivité ǫ. De même
dans [3], cette quantité est obtenue par la mesure du ratio entre les coefficients co-polarisés. Ainsi
plusieurs autres méthodes dérivent des solutions de ce domaine, on trouve notamment [4, 5] qui
estiment la permittivité du sol grâce depuis les images radar et l’hypothèse de sol rugueux.
Dans le cadre de dièdre, on note tout d’abord, la présence de solutions analytiques pour le cas
métal parfait dans [6] et dans [7]. Ces deux articles traitent de configurations différentes : l’un [6]
travaille en monostatique pour un angle dièdre quelconque alors que le second [7] conserve un angle
dièdre droit mais calcule sa solution dans une configuration bistatique. Ces solutions reposent toutes
les deux sur l’approximation de l’Optique Physique mêlée à l’Optique Géométrique. Pour ce qui
est du cas d’un dièdre diélectrique, on retrouve dans une kyrielle d’articles une modélisation du
mécanisme de double rebond par la succession de coefficients de Fresnel, chacun correspondant à
la réflexion sur une plaque homogène définie par une permittivité relative. Ce modèle se formalise
par l’équation suivante :

RDB
p = Rp(φ, ǫ1)Rp(

π

2
− φ, ǫ2), (1)

, où p indique la polarisation à l’emission ainsi qu’à la réception, φ l’angle d’incidence défini comme
dans la Figure 1, ǫ1 (resp. ǫ2) est la permittivité relative de la plaque horizontale (resp. verticale)
et R désigne le coefficient de Fresnel (à la polarisation p). Le système de polarisation à l’émission
est illustré, ainsi que les dimensions du dièdre en Figure 1. Cette approche de modélisation est
commune aux études de décompositions polarimétriques, tout comme aux premières tentatives
d’estimation de permittivités via la mesure d’angles de Brewster du double rebond.

Notre approche consiste alors à utiliser l’équation (1) afin d’en extraire les permittivités mises
en jeu.

Méthodes d’extraction des permittivités du double rebond

Une première méthode que l’on pourrait qualifier d’idéale résulte de l’inversion directe des
permittivités des coefficients RDB

H et RDB
V à un angle d’incidence donné. Mathématiquement, elle

se formalise de la façon suivante :

ǫ1 =

(
cosφ sinφ

X−
2

)2

+ sin2 φ

ǫ2 = (X+
2 )2 + cosφ2

(2)

où X−
2 et X+

2 sont définis par :

X±
2 =

1

2 sinφ

(

Q±
√

Q2 +R

)

(3)
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Figure 1 – Configuration du dièdre

avec :

Q =
KΛ(cos2 φ− sin2 φ)

Λ − Γ cos2 φ

R = 4 sin2 φ cos2 φ

(

1 +
cos2 φ− sin2 φ

Λ − Γ cos2 φ
Γ

) (4)

K, Λ et Γ sont des variables dépendantes de RDB
H et RDB

V , telles que :

K =
RDB
H + 1

RDB
H − 1

Λ = (RDB
V − 1) −K(RDB

V + 1)

Γ = (RDB
V − 1)

(
1 −K2

)
.

(5)

Des simulations utilisant le logiciel commercial FEKO [8] et sa méthode d’Optique Géométrique
RL-GO, ont été effectuées sur un dièdre de 18 mètres en longueur, hauteur et largeur et d’un mètre
d’épaisseur afin d’en collecter les champs rétrodiffusés dans les deux polarisations dans la bande
[0.3, 1] GHz. Afin d’extraire RDB

H et RDB
V des champs, l’hypothèse du mécanisme de double rebond

dominant est effectuée afin que l’on puisse approximer par la suite, le champ comme la multiplica-
tion des coefficients de double rebonds par celui de la composante double rebond rétrodiffusée par
un dièdre métallique parfaitement conducteur (Conducteur Electriquement Parfait, CEP) de même
dimension. La composante double rebond du champ rétrodiffusé par un dièdre CEP est calculée à
partir des dimensions du dièdre et des articles [6, 7].
Deux autres méthodes ont été mises en place : l’une utilisant la polarisation HH seule, l’autre le
ratio entre RDB

H et RDB
V . Les avantages de ces méthodes, l’utilisation d’une seule polarisation, ou la

manipulation d’une quantité relative via le ratio entre HH et VV, sont balancés par la nécessité de
deux angles d’incidences afin de déterminer les deux permittivités en jeu. Les schémas résumant ses
méthodes sont disponibles à la fin des Chapitres 3 et 4 dans les Figures 3.15 et 4.16. La méthode
usant de la mesure à une polarisation nécessite comme la méthode idéale de calibrer la mesure en
usant la composante double rebond d’un dièdre CEP de même dimension. Au contraire, par le calcul
du ratio entre les champs rétrodiffusés HH et VV et aux vues des approximations effectuées précé-
demment, cette étape de calibration est évitée dans la méthode d’inversion par ratio des coefficients.
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Toutes ces méthodes mises en place, en théorie, sont testées sur des simulations FEKO où l’on
s’écarte de la configuration requise afin d’en déterminer les variations sur le résultat de l’inversion.
Notamment, l’influence des paramètres suivants est étudié : la dimension électrique du dièdre
(dimension d’une plaque par la longueur d’onde), l’angle du dièdre (angle formé par les deux
plaques), le comportement à la composition de permittivités d’une des deux plaques. D’autres
paramètres plus liés à l’acquisition de la mesure sont aussi creusés : l’erreur sur l’angle d’incidence,
l’angle d’azimuth et la déviation de polarisation. Un tableau résumant les études effectuées et
qualifiant la sensibilité des méthodes à ces paramètres est donné dans la Table 1.

Méthode idéale Polarization unique Ratio

Polarisations
requises

HH et VV HH HH et VV

Nombre de
mesures

une deux deux

Normalisation
avec un dièdre

CEP
oui oui non

Sensibilité à
l’angle dièdre

très forte forte forte

Composition de
permittivité

loi de mélange
dépendente des

angles d’incidence
loi de mélange

Sensibilité à
l’angle

d’incidence
forte forte forte

Angle d’azimuth
avec normalisation

d’un dièdre CED : oui
avec normalisation

d’un dièdre CED oui
ok

Angle de
rotation

partiellement, selon
les domaines d’incidence

ok forte

Table 1 – Résumé des trois méthodes et de leurs études paramétriques.

Ce tableau présente sur les trois premières lignes le paramétrage de chacune des méthodes
développées et leurs caractéristiques. Les dernières lignes présentent qualitativement les diverses
sensibilités des méthodes à certains paramètres liés soit à l’objet soit à l’outil de mesure.

Validation expérimentale des méthodes

Des mesures sont effectuées dans l’environnement contrôlé de la chambre anéchoïque du labo-
ratoire Geeps à CentraleSupélec afin de valider ces méthodes. Dans cette optique, un dièdre est
construit à l’aide de deux plaques de dimension 0.25 m de côté, l’une en nylon, l’autre en PVC.
Le dièdre résultant est de dimension (a, b, c, L) = (0.22, 0.25, 0.06, 0.25) mètres. Un système quasi-
monostatique est formé de deux antennes identiques fonctionnant sur la plage fréquentielle [2,19]
GHz. Les dièdre et les antennes sont représentés en Figure 2. Néanmoins, vu les dimensions du
dièdre et du fait que la distance entre l’objet-cible et l’appareil de mesure est limitée à 4.3 mètres,
on travaille dans la bande [5,18] GHz. De plus, ces treize GHz de bande sont utiles afin de pouvoir
finement distinguer les différents phénomènes présents après le passage dans le domaine temporel
des mesures. Cela est appuyé par le fait que les permittivités du PVC et du nylon sont quasiment
réelles. En effet, ces dernières ont été mesurées à l’aide d’une sonde coaxiale fonctionnant entre 0.5
et 6 GHz en trois points de chacune des plaques. Le nylon est mesuré en partie réelle entre 2.5 et 3
(2.7 entre 5 et 6 GHz) et sa partie imaginaire oscille autour de zéro dans l’intervalle [−0.1, 0.1]. Ce
dernier comportement se retrouve aussi dans le cas du PVC. Cependant la partie réelle du PVC
est, elle, estimée au-dessus de 3 en variant légèrement autour de 3.2. On supposera que ces valeurs
de permittivités seront toujours valables sur la plage fréquentielle [6, 18] GHz.
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Figure 2 – Les antennes et le dièdre utilisés

Grâce à la ligne d’acquisition automatique des mesures de la chambre anéchoïque, on est en
mesure d’acquérir des données tous les degrés de rotation de l’objet (ici le dièdre). Ainsi on obtient
les mesures co-polarisées pour l’intervalle [0, 90] degrés d’incidence. De prime abord, ces mesures
présentent des motifs d’interférences dont on se débarrasse en les filtrant après passage dans le
domaine temporel. En effet le double rebond étant localisé à la même distance que l’arrête centrale
de l’objet [9], le filtrage temporel (et donc en distance) permet d’isoler cette contribution.

Ainsi la méthode usant du ratio polarimétrique a pu être validée. Pour les deux autres méthodes
qui requièrent les coefficients complexes RDB

H et RDB
V , il s’agit alors de remonter à ces coefficients

et on sépare dès lors le problème en deux : l’amplitude et la phase. Pour l’amplitude, on utilise la
calibration de la chambre anéchoïque par un objet canonique dont on connait la réponse théorique
parfaite, dans notre cas une sphère métallique (Surface radar équivalente, [10]) de diamètre 0.25
mètre afin de compenser les divers phénomènes pouvant dégrader la mesure. En calculant l’erreur
commise entre la mesure et la théorie dans le cas de la sphère, on compense l’erreur qui a aussi
été commise dans la mesure du dièdre (sous l’hypothèse d’une mesure qui aurait été fait dans les
exactes mêmes conditions). Pour ce qui est de la phase, on doit compenser le mouvement de ro-
tation du plateau sur lequel repose le dièdre même si celui-ci a soigneusement été placé au centre
de rotation estimé. Pour résoudre ce problème, on utilise un dièdre métallique avec les mêmes
paramétrages fréquentiels et de positionnement. Avec cette mesure, on peut utiliser la phase des
champs rétrodiffusés par cet objet pour obtenir la correction en phase à appliquer sur la mesure
filtrée du dièdre diélectrique. Grâce à ces opérations sur l’amplitude et la phase de la mesure, on
peut approcher les coefficients de double rebonds tels qu’ils sont formulés dans l’équation (1).

En conséquence, on peut appliquer, par exemple, la méthode idéale formulée par l’équation (2).
La figure 3 présente les résultats de l’inversion pour cette méthode à 10 GHz en partie réelle et
imaginaire sur la plage d’incidence [10, 80] degrés pour les deux permittivités. De ces courbes, on
observe que ǫ1 est calculé à une valeur avoisinante à 2 − i sur l’intervalle [15, 42] degrés. Dans le
cas de ǫ2, dans le même domaine angulaire, l’estimation oscille autour d’une valeur de 3 − 0i puis
2.5 − 0.8i dès qu’on se rapproche de 45 degrés. A 45 degrés, on observe un changement radical des
courbes dû à un problème mathématique connu [11] intrinsèque aux coefficients de double rebonds.
Dans le second domaine angulaire [50, 75] degrés, ǫ1 évolue de 2 − 1i à 2.5 − 0i et ǫ2 lui se stabilise
vers une valeur de 2.5 − 1i.
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Figure 3 – Parties réelles et imaginaires de ǫ1 et ǫ2 à 10 GHz.

Conclusion.

Lors de ces travaux de thèse, trois méthodes d’inversion de permittivités diélectriques d’une
structure dièdrique ont été établies. Le modèle sur lequel elles reposent est celui du double rebond,
qui est la composition successive des coefficients de Fresnel à chacune des interfaces du dièdre. Ce
modèle, valide en champ lointain et pour des dimensions électriques de dièdre grandes, porte dans
sa formulation l’information diélectrique de la structure illuminée. Cette dernière est représentée
par deux plaques, homogènes et isotropes, de permittivités relatives différentes. En utilisant les
coefficients de double rebond en HH et VV, une première méthode a été mise place et est l’inver-
sion directe de ces coefficients. Les deux autres méthodes utilisent soit la connaissance seule du
coefficient en HH, soit le quotient entre VV et HH, pour déterminer les deux permittivités à l’aide
de deux mesures. Les deux premières méthodes nécessitent la normalisation des champs rétrodif-
fusés par celui d’un dièdre CEP de même dimension que celui mesuré. La méthode usant du ratio
polarimétrique est plus souple sur ce point-là étant donné que cette étape n’a pas lieu et que l’on
peut se passer de la connaissance des dimensions du dièdre.

Ces méthodes furent validées par des mesures effectuées dans la chambre anéchoïque du Geeps.
De la mesure du champ rétrodiffusé d’un dièdre formé d’une plaque de PVC et d’une de nylon, on
est parvenu à appliquer la méthode usant du ratio polarimétrique après application d’un filtrage
temporel pour sélectionner la contribution du double rebond. Les deux autres méthodes nécessitant
les coefficients double rebonds bruts, elles nécessitent la calibration de la chambre anéchoïque par
un objet canonique afin d’obtenir l’amplitude de coefficients recherchés. Pour la phase, on mesure un
dièdre métallique dans des conditions proches de la mesure du dièdre diélectrique. Après obtention
de coefficients double rebond approchés, on a pu appliquer les deux premières méthodes. La méthode
idéale présente des résultats proches de ceux attendus (vis-à-vis de la mesure effectuée par une
sonde coaxiale), quant à la méthode usant d’une seule polarisation, les résultats sont cohérents sur
certaines parties angulaires.
Fort de ces résultats, des mesures ont été effectuées sur un dièdre formé par l’angle d’un mur en
béton dans un parking de CentraleSupélec avec le même paramétrage que les mesures en chambre
anéchoïque. La méthode du ratio polarimétrique y a été testée avec succès.
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Introduction

Radar remote sensing is a technique used for various applications, ranging for vegetation map-
ping and/or monitoring to probing the surface of comets. In all these applications, the electromag-
netic properties of materials are key parameters. Lots of techniques have been developed to infer
typically the permittivity of the materials, whereas other techniques could actually make use of this
permittivity, for instance to assess the integrity and resilience of buildings or natural structures to
age, environment hazards or mechanical constraints.
Among those techniques we have to distinguish the ones whose utility is entirely dedicated to the
estimation of permittivity and the ones that can also be used for integrity assessment. This need
for in-situ application discards most of the destructive and near-field techniques. This is mainly
due to the accessibility of the structure to monitor and the need to maintain its integrity. Ground
Penetration Radar is widely used for monitoring accessible roads and lands and their subsurfaces.
Nevertheless, it requires to be extremely close to the object under study.
From a far distance, applications relying on permittivity estimation are focused on the determina-
tion of the moisture content for agriculture concerns and forest monitoring. However this range
of applications can be extended to structures analysis, land or pollution monitoring and remote
sensing for spatial missions.

In monostatic radar, a double bounce on a dihedral structure is particularly interesting as it
can give a strong backscattered signal. This kind of structure is actually quite common. Of course
in urban areas, most buildings present a dihedral configuration, typically between the building and
the ground. More generally, manmade structures have vertically oriented walls, so over the ground
it gives a double bounce. This is true for bridges, dams etc. For natural scenes, this can also be the
case. The trees in a forest, provided they are roughly orthogonal to the ground, can give a double
bounce. Mountains can have extremely steepy faces, so they could exhibit a double bounce. Rocks
on a ground or a beach are another example of natural double bounces. In this strong signature,
useful information about the material might be embedded.

The first chapter deals with the dihedral configuration as it could be found in the literature.
The PEC case in bistatic and monostatic configurations are presented along with their solutions
provided by the Physical Optics approximation. It also gives the opportunity to introduce the
double bounce scattering mechanism. As the goal is to extract permittivity, an insight is given
on the permittivity estimation, first in the case of a planar surface in bistatic configuration where
the optical domain provides some interesting solutions, and then in the microwave domain where
adaptation of these methods is applied for rough surfaces. In the case of a dielectric dihedral, an
existing method relying on the estimation of Brewster angles is presented in this chapter along
with the double bounce equation.

The next three chapters are quite similar in terms of organisation: during a first movement, a
theoretical inversion process is developed in order to invert the two permittivities composing the
dihedral using the double bounce equation at one or two polarisations. Then the method is illus-
trated using numerical data from the Geometrical Optics method of FEKO on a modelled dihedral
made of two homogeneous plates with different permittivities. Then follows a parametric study to
have an insight on what can be done or expected from each method when the configuration steps

1



2 Introduction

away from the reference case. Two groups of parameters are studied for each method: one bound
to the object geometry or characterisation, and the other to the positioning of the measurement
system. Three parameters are analysed for each group: the electrical dimension, the dihedral angle
and the permittivity composition for the first group, and the incidence angle error, the change in
azimuth angle and the roll angle of the device for the second.
The first method presented is the direct mathematical inversion of the double bounce coefficient
written for both polarisations. This method provides an explicit expression of the permittivities
of the two components of the dihedral structure: the vertical and the horizontal faces. However
to do so, an accurate calibration of the complex data is absolutely required, and we have to deal
with an indetermination at 45˚. The second method is using the horizontal polarization of the
double bounce coefficient as it is the most handy to measure in terms of backscattered power given
the double bounce effect. However this requirement imposes a constraint which is the need to use
two incidence angles to be able to determine permittivities. In addition, we still need to accurately
calibrate the data. The last method we developed is using the ratio between the vertical and the
horizontal double bounce coefficients in order to get rid off this calibration step. As the previous
method, this condition implies to use two incidence angles.

The three methods are then assessed using measured data from the controlled environment
of the Geeps anechoic chamber. A dihedral of PVC and nylon was made and its permittivities
were measured using a near-field probe. We collected data for the full incidence angle range [0, 90]
degrees and for the 5-18 GHz frequency range. After a time gating operation to select the double
bounce contribution of these measurements, we applied the three different methods. As the ratio is
the more handy to assess, this was the first method we tested. Then a calibration of the anechoic
chamber and the data collected was performed to be able to apply the two first methods. Finally
an in-situ measurement of the permittivity of a concrete wall corner from a parking lot at Cen-
traleSupélec was performed. After time gating the signal to isolate the double bounce component,
the ratio method was successfully used to invert the permittivity involved.



Chapter 1

Context and state of the art

In this chapter the reasons and aim of the study are presented: as the vertical structure strongly
signs in monostatic configuration, one may be able to invert the field or SAR measurement to obtain
information about the considered structure. In our case, we will focus on the permittivities retrieval
from the double bounce scattering of a dihedral structure. First solutions from the literature for
PEC (Perfect Electric Conductor) dihedral are exposed. Then an insight on the existing solutions
in the optical domain follows and the double bounce model for the dielectric case used all along
the manuscript is exposed.

1.1 Interests of the dihedral structure and PEC solutions

In monostatic configuration, a dihedral arrangement in front of the measuring device got a
strong backscattering. This can easily be seen for instance in SAR images. In Fig. 1.2 taken
from [12], a Pauli decomposition 1 [13] is computed from a PolSAR image of Bretigny airbase such
that red colour corresponds to the double bounce scattering, blue with the single scattering and
green the asymmetric scattering. An optical image from Google is displayed in Fig. 1.1. From
Fig. 1.2, we clearly see that most of the buildings are strongly signing as a double bounce. Lands,
the forest canopy and rotated building are signing with cross polarization signatures.

The strong backscattered fields from the double bounce mechanism can be detected in forest
areas with tree-ground structures, in cities with building-streets configurations. Within these types
of structures, variations could be found in terms of shape, materials, inclination. In urban areas
many materials could be found usually: concrete, glass and for buildings before the fifties, masonry
and wood (as illustrated in Fig. 1.5). Due to shape and orientation, some buildings are not looking
like a parallellipede on a ground soil and others are not built with a sharp 90˚between the building
front and the ground as depicted in Fig. 1.3. In the case of forest areas (Fig. 1.4), with shape
of tree-ground, we coud infer through the estimation of the permittivity of the soil to retrieve its
water content.

As a result, inverting the permittivity in a monostatic configuration takes sense by considering
buildings or structures that can be modelled by a dihedral as they naturally reflect more power
and therefore are more easily exploitable.

When looking at the literature, approximated solutions of the scattered fields using Physical
Optics and Geometrical Optics are given for PEC (Perfect Electric Conductor) dihedral in [6,7]. [6]
considers the case of a dihedral with any angle between the plates whereas [7] considers a right angle

1. It decomposes Sinclair matrice over the Pauli basis. In the monostatic case, the basis is reduced to three
components. This decomposition can be interpreted through the backscattering of canonical elements: the sphere
(or plate), the dihedral and a 45 degree oriented dihedral. These elements respectively represent the scattering
mechanism of single bounce, double bounce and volume.

3
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Figure 1.1 – Image of Bretigny airbase from Google in 2018.

Figure 1.2 – From [12]: the Pauli decomposition of the Bretigny airbase area from the SAR image
taken by the ONERA in X band.

Figure 1.3 – An example of building in Amsterdam.

dihedral but calculates the fields in bistatic configuration. As they are the main articles used in
our work, the appendix A presents the main results of these papers in their own notations (shortly
reminded at the beginning). In both papers P.O. serves the calculations of the single reflection and
the combination P.O. with G.O. the double bounce reflection.
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Figure 1.4 – Forest nearby Dzerjinsk.

Credit: Wikimedia Common,
<https://commons.wikimedia.org>

Figure 1.5 – Front buildings in Amsterdam.

Credit: Wikimedia Common,
<https://commons.wikimedia.org>

An example of the Physical Optics solution provided in [7] and abbreviated A.P.O. for Analytical
Physical Optics (in the article and when used in this manuscript) is given in amplitude and phase
in Fig. 1.6 for a PEC (Perfect Electric Conductor) dihedral of dimension (a, b, L) = (0.25, 0.25, 0.5)
m. a, b, L are the dimensions of the dihedral as displayed in [7] or in Fig. 1.10. The example is
computed at 10 GHz (as in the article) in the monostatic configuration as in Fig. (1.10). The
electric field amplitude shows the backscattering of each plate with their main lobes at 0 and 90
degrees and their decreasing side lobes from 3 to 20 degrees and from 87 to 70 degrees. Between
20 and 70 degrees the double bounce is the main contribution. In phase, as the double bounce is
a succession of bounce on each PEC plate, we get a total phase difference of 180 degrees between
HH and VV quite steady between 20 and 70 degrees.
In Fig. 1.7, we displayed the magnitude of the copolarised backscattered fields in the general
monostatic configuration of the same dihedral at the same frequency (10 GHz). The solution have
been calculated for an incidence angle in the 0- 90 degrees interval and a azimuth angle going from
0 to 180 degrees (for the angles definition see [7] or the appendix A). We observe that when the
emitter and receiver are not perfectly in front of the dihedral (i.e., at azimuth 90 degrees) as the
case we illustrated just before, the fields magnitude in both polarization are quickly decreasing.
This phenomenon can be seen for any incidence angle. For instance at φ = 45 degrees, we lost for

< https://commons.wikimedia.org>
< https://commons.wikimedia.org>
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both polarisation at least 25 dB when we move the measurement device from 90 degrees azimuth
to 80 or 100 degrees in azimuth. Hence, one might conclude that the majority of the backscattered
power from the double bounce contribution in the SAR image after an azimuth compression is
coming from the contribution near the azimuth angle of 90 degrees. It also gives us an insight
on the boundaries of the study as we might have not enough backscattered power to be measured
outside the region near the azimuth angle of 90 degrees.

In [14] the authors use in addition of P.O. and G.O. methods, the physical theory of diffraction
to take into account edge diffraction. In [15] a P.O. solution is put in place for a dihedral made
with a loaded impedance.

Figure 1.6 – Illustration in amplitude and phase of the APO (analytical physical optics) solution
in HH and VV polarization from [7] for a dihedral of 0.25m ×0.25 m ×0.5m dimension (as in [7])

in monostatic configuration.

Figure 1.7 – Illustration in amplitude of the APO (analytical physical optics) solution in HH and
VV polarization from [7] for a dihedral of 0.25m ×0.25 m ×0.5m dimension (as in [7]) in a general

monostatic configuration.

In the same kind of approach, [16] combines of G.O. and P.O. to provide solutions for single,
double and triple reflections of parallelepiped lying on the ground. So here, the scene is more
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complex as it deals with dielectrics from a rectangular building and a rough surface for a general
monostatic configuration (unlike in [6, 14]).

As it deals with dielectric relative permittivities, we first have a look on what has been done in
the optical field where the estimation of permittivity of a plate in bistatic configuration has already
been developed and validated.

1.2 Permittivity measurement

Permittivity and permeability are two parameters that are classically used to characterise a
material from an electric or a magnetic field. Hence numerous ways to measure them have been de-
veloped [17]. Concerning the permittivity retrieval, the first methods rely on the transmission line
model where a sample is extracted from the material and submitted to an electric field. Among
techniques that can only be used in a laboratory, we also have the free space techniques: two
separated antennas pointing toward each other with the material sample in between. Then by
measuring the reflection or the transmission parameter, one could infer the permittivity. However
even if these methods have shown their accuracy and their reliability [18,19], they are not designed
for in-situ measurements.

Literature provides some methods to characterise the material at contact or at near-field dis-
tance. From the transmission line model, the determination of the permittivity could be done using
the open-ended waveguide or coaxial line. By measuring the reflection coefficient of such device for
air and the material, one could determine the permittivity of the material. At near-field distance,
a common technique for non-destructive testing is the Ground Penetration Radar [20], which takes
advantages of the penetration capability of low frequencies and the reflection of the different layers
or permittivities of the ground, to image the underground. With the help of such technique, one can
detect the different layers composing a surface or the anomalies within the subsurface. Many appli-
cations are using this method: landmine detection [21], archaeological studies, or non-destructive
testing (bridge and road monitoring [22, 23]). This technique relies on the permittivity contrast
between layers.

Now from a far distance, works in the specular direction were carried out in [1, 24, 25] where
the authors bind the permittivity of a plate to different quantities from the Fresnel coefficients.
For recall, the Fresnel coefficients are the coefficients binding the incident to the scattered plane
wave in the specular direction after reflection on an infinite interface between the media and air
(displayed in Fig. 1.8). They are expressed differently with the polarization H or V as function of
the incidence angle φ and the relative (to air) permittivity ǫ. Under the eiωt convention (as the rest
of the manuscript), physical relative permittivity has its real part greater than 1 and its imaginary
part is negative or null. The expressions of the Fresnel coefficients are given in Eqs. (1.1).

ǫ

φ φ

Figure 1.8 – Specular configuration.
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RV (φ, ǫ) =
ǫ cosφ−

√

ǫ− sinφ2

ǫ cosφ+
√

ǫ− sinφ2

RH(φ, ǫ) =
cosφ−

√

ǫ− sinφ2

cosφ+
√

ǫ− sinφ2

(1.1)

A more general expression could be found in [26] that is not considering equal magnetic perme-
abilities between the two media and the first media as air. An example of the Fresnel coefficients
computed with Eqs. (1.1) is given in Fig.1.9 for a permittivity set to 10−3i. The plot of amplitudes
shows a drop in VV polarisation at 72 degrees. The incidence angle φPB where this minimum oc-
curs is called the Pseudo-Brewster angle ( [1]) for a complex permittivity. For a real permittivity,
VV magnitude is equal to zero at the Brewster angle φB . It means by conservation that nothing is
reflected, the incident wave is fully transmitted in the media at this angle. We can also notice that
for 0 and 90 degrees of incidence, amplitude of coefficients are equal. In term of phase, we observe
that the sign of the VV coefficient is changing at the Pseudo-Brewster angle, which is not the case
for HH which slowly evolves in the incidence angle range.

Figure 1.9 – Amplitude and phase of the Fresnel coefficients in horizontal and vertical
polarization for ǫ = 10 − 3i.

Those angles, the Brewster and the Pseudo-Brewster angles, are intrinsically bound to the
relative permittivity of the media. For the Brewster angle, solving ∀ǫ, RV (φ, ǫ) = 0 leads to:

φB = arctan(
√
ǫ). (1.2)

For the Pseudo-Brewster angle, we can approximate (from Eqs. (14, 17, 18) in [1]) :

φPB ≈ arctan(
√

|ǫ|). (1.3)

In [1], through the measurements of φPB and the magnitude of the reflectance (squared absolute
value of a Fresnel coefficient at 0 degree), the authors are able to determine graphically the complex
refractive index (square root of the permittivity).
In [2], the concept is further pushed as the author is able to fully retrieve the permittivity from
the knowledge of either both Fresnel coefficients taken at the same incidence, or the HH Fresnel
coefficient and the incidence angle. Both ways are explicitly written in the Eqs. (1.4).
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ǫ =
(1 +RV (φ))(1 −RH(φ))

(1 −RV (φ))(1 +RH(φ))

ǫ =
1 +R2

H(φ) − 2 cos(2φ)RH(φ)

1 +RH(φ)

(1.4)

One last interesting approach from the optic domain is from [3] where a solution (Eq. (1.5)) to
retrieve the permittivity in specular configuration is provided using the ratio between polarization

of the Fresnel coefficients: ρ(φ) = RV (φ)
RH (φ) .

ǫ = (1 +
(1 − ρ(φ))2

(1 + ρ(φ))2
tan2(φ)) sin2(φ) (1.5)

In same scope we can also find ellipsometry approaches as in [27–29] using the measurement of
the received power to infer the permittivity of the plate.

In monostatic configuration, most of the studies are focused to the retrieval of ground permit-
tivity [4, 30]. In fact, the use of the permittivity is more used in the spatial exploration domain
to retrieve the materials (water in general) at the surface or embedded in planet or celestial bod-
ies [31–33] through the modelling the backscattered signature. Retrieval of the permittivity of the
ground can be done through the use of either the copolarised ratio or from the far-field signature
of an object. In the first category, we find the articles [4] and [5] that are using the co-polorised
ratio from the backscattering fields to retrieve the permittivity of a rough surface.
In [34] and in [35], the permittivity of a plate is retrieve by the reflection measurement in far-field
at normal incidence.
One main drawback, as stated at the beginning, of these studies in monostatic configuration is
the fact that by considering a plate, the backscattered fields are weak outside the measurement
at normal incidence as the power is mainly diffused in the specular direction. The previous au-
thors bypassed this issue by considering either a rough surface or by placing their study at normal
incidence.

1.3 Double bounce scattering

As exposed previously, in airborne radar monostatic case, double bounce from buildings are
backscattering more than bare surfaces or vegetated areas. Hence, to retrieve permittivity we
might want to use this component as they contain a significant and meaningful characterization of
the structure. The first approach to model the building and the double bounce is to design a right
angle dihedral.

In [16] a dielectric scene is handled and one could notice in the formulation of the double scatter-
ing contributions the presence of products of Fresnel coefficients in all the scattering components,
one bound to the wall and another bound to the ground. A version of this product can be found
in several other papers as a double bounce equation used to model the wave interaction with two
orthogonal surfaces made of different homogeneous materials for a monostatic radar in front of it.
It is given by the following equation written in Forward Scattering Convention (see [36] for the
FSA definition):

RDB
p = Rp(φ, ǫ1)Rp(

π

2
− φ, ǫ2), (1.6)

where Rp(φ, ǫ) denotes the Fresnel coefficient at p = {V,H} polarisation as defined in Eqs. (1.1),
φ is the incidence angle. ǫ1 and ǫ2 are respectively the relative permittivities of the horizontal
and vertical surfaces. The last three variables are illustrated in Fig. (1.6) with a dihedral and the
incident reference frame (defining the H and V polarization relatively to the global frame). The
double bounce equation can be seen as a cascade of reflections from each surface added coherently
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from direct and inverse paths.

Figure 1.10 – Dielectric dihedral, its dimensions, a double bounce and its central ray.

In [37] this equation is used to model the double bounce between trees and the ground in the
polarimetric decomposition of PolSAR images. As [38] proposes a decomposition derived from [37]
we implicitly retrieve it, but also in [39] in α quantity as ratio between polarization.

We illustrate this equation in HH and VV polarizations in Fig. 1.11 for an incidence angle range
from 0 to 90 degrees and ǫ1 = 10 − 3i and ǫ2 = 2.4 − 4.5i (permittivities of bitumen and concrete
at 600 MHz [40]). From the amplitude plot, we observe two drops in VV polarizations indicating
the two Pseudo-Brewster angles at 25 and 72 degrees from respectively ǫ2 and ǫ1. As underlined
in [40,41], the combination of these two drops spreads over a large incidence angle domain making
VV component inferior to HH of at least 10 dB in the [20, 70] degree range. In addition of this
double bounce effect, we can use the phase shift between VV and HH to detect the double bounce.
For PEC (Perfect Electric Conductor) we had a 180 degrees phase shift between the two polariza-
tions where the double bounce was the dominant contribution. In the dielectric case, the phase
shift still exists but it is not any more a constant 180 degrees. It depends on the two complex
permittivities. The only exception of this statement is for real permittivities where the phase shift
is 0 degrees inside the domain defined by the two Brewster angles and 180 degrees outside. Each
vertical coefficient has a change of sign at its Brewster angle and as one coefficient evolves in π

2 −φ,
we get 0 degrees shift between the two Brewster angles.

The question raising is linked to the possibility to retrieve both permittivity from the double
bounce component. As the double bounce contribution is quite strong in the [20, 70] incidence
angle, we could retrieve permittivities from Eq.(1.6) in this range. A first attempt in this goal
was performed in [42,43] where the authors use Eq.(1.6) to identify the Brewster angles relative to
ground and trunk and therefore determine the assumed real permittivities. This approach reaches
its limits as soon as we consider complex permittivities. As underlined in the section before in
Eq .(1.3) through [1], with Pseudo Brewster angles, only the modulus of the permittivity can be
approximately retrieved. If we take for instance Fig. 1.11 where the Pseudo-Brewster angles are
25 and 72 degrees, we could estimate a modulus of 4.6 and 9.5 for respectively |ǫ2| = 5.1 and
|ǫ1| = 10.4. By doing so, we still miss a part of information on the permittivity involved. More-
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Figure 1.11 – Amplitude and phase of the theoretical double bounce coefficients in HH and VV
polarization for ǫ1 = 10 − 3i and ǫ2 = 2.4 − 4.5i.

over, it requires to estimate properly the Pseudo-Brewster angles, therefore needing several angular
measurements.

We could wonder given the last two sections if by using the different strategies developed for
instance in [2] or in [3,4] we can retrieve the permittivities from the vertical and horizontal surfaces
through Eq. (1.6). Establishing such methods is the goal of the next three chapters. For the rest
of the manuscript, FSA convention is always used (exception made of A.2.1) as the eiωt convention
(implying to have a negative or null imaginary part of the permittivity for the physical condition).
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Chapter 2

Ideal method

In the previous chapter, we simplify the urban structure by a dihedral arrangement. In mono-
static configuration, it is from this structure that we obtain the more power back. It is possible to
model the signature of such building using the double bounce reflection of the signal for either a
PEC material or a dielectric one.
In this chapter, we will use the double bounce reflection coefficients to retrieve the two permittivities
of the dihedral arrangement. The first part will focus on the analytical process to obtain solutions
and it will be then illustrated using a simulation made using the commercial electromagnetic code
FEKO [8]. We explore what can or can not be done with this method regarding the parameters of
the object and of the measuring device. Finally an example of application is provided: the moisture
retrieval of a soil from a ground-building structure at 500 MHz.
Compared to the two other methods, this method is qualified as "ideal" as the solutions are provided
as an explicit expression of the inputs.

2.1 Theory

In this section, we present the analytical development of the method. It first focuses on how
we invert the permittivities from the double bounce equation and how we identify the solutions.

2.1.1 Finding the solutions

Given Eq. (1.6) exposed in 1.3, we will directly invert the two permittivities from the HH and
VV components of this equation. To do so, we define the following variables:

X1 =

√

ǫ1 − sin2 φ

X2 =
√

ǫ2 − cos2 φ

(2.1)

and also the intermediate quantities:

K =
RDB
H + 1

RDB
H − 1

Λ = (RDB
V − 1) −K(RDB

V + 1)

Γ = (RDB
V − 1)

(
1 −K2

)
.

(2.2)

Then the HH component of the double bounce equation can be written as :

RDB
H =

cosφ−X1

cosφ+X1

sinφ−X2

sinφ+X2
. (2.3)

or also after introducing K:

13



14 CHAPTER 2. IDEAL METHOD

X1 =
cosφ sinφ+KX2 cosφ

−(K sinφ+X2)
. (2.4)

By doing the similar operation on VV component, we obtain:

RDB
V =

(

(X2
1 + sin2 φ) cosφ−X1

)

(

(X2
1 + sin2 φ) cosφ+X1

)

(

(X2
2 + cos2 φ) sinφ−X2

)

(

(X2
2 + cos2 φ) sinφ+X2

) . (2.5)

By substituting inside the last equation X1 from Eq. (2.4) we get the following four degree
equation in X2:

AX4
2 +BX3

2 + CX2
2 +DX2 + E = 0 (2.6)

where

A = (Λ − Γ) sinφ cosφ+ Γ sin3 φ cosφ

B = KΛ cosφ(sin2 φ− cos2 φ)

C =
(
2Γ(1 − sin2 φ) sin2 φ− Λ

)
cosφ sinφ

D = KΛ cosφ sin2 φ(cos2 φ− sin2 φ)

E = Λ cos3 φ sin3 φ− Γ sin5 φ cos3 φ

This four degree equation can be factored by (X2
2 − sin2 φ) such that we obtain:

AX2
2 +BX2 + C ′ = 0 (2.7)

with C ′ = −Λ cosφ sinφ+ (Γ + Λ) cosφ sin3 φ− Γ cosφ sin5 φ.

The solutions X+
2 and X−

2 of this equation are given by:

X±
2 =

1

2 sinφ

(

Q±
√

Q2 +R

)

(2.8)

with:

Q =
KΛ(cos2 φ− sin2 φ)

Λ − Γ cos2 φ

R = 4 sin2 φ cos2 φ

(

1 +
cos2 φ− sin2 φ

Λ − Γ cos2 φ
Γ

) (2.9)

2.1.2 Identification of the solutions

The full proof of the identification of the solutions can be found in the appendix B.1. Here only
the methodology and the results are exposed.

In short, by replacing the intermediate quantities K, Λ and Γ by their expressions using RDB
H

and RDB
V , we can express them as functions of X1 and X2 using Eq. (2.3) and Eq. (2.5). Then

by replacing these quantities in Eq. (2.8) we obtain: X+
2 = X2 and X−

2 =
cosφ sinφ

X1
. It means

that from (RDB
H , RDB

V ) measured we can calculate X±
2 (Eq. (2.8)) and then determine ǫ1 and ǫ2 as:

ǫ̃2 = (X+
2 )2 + cosφ2 and ǫ̃1 =

(
cosφ sinφ

X−
2

)2

+ sin2 φ.
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2.1.3 The 45 degree issue

In [2] it has been proven that R2
H(φ, ǫ) = RV (φ, ǫ) at φ = 45 degrees. If we take into account

the expression of Eq. (1.6) we immediately get
(
RDB
H

)2
= RDB

V . This equality leads to an issue

as the related quantity Λ − Γ cosφ2 tends to zero. Thus at φ = 45 degrees, cos2 φ−sin2 φ
Λ−Γ cosφ2 became

undetermined. Therefore as this expression can be found in Q and R in Eq. (2.9), no solutions
exists. The full development of this matter is exposed in the appendix section B.2.

In this part, we have built an analytical solution to retrieve the two permittivities of a dihedral
arrangement with the help of the double bounce model. It uses the co-polarized Fresnel coefficients
at one incidence angle to find them back. The next part illustrates this solution by inverting
permittivities from simulated data.

2.2 Retrieving approximated R
DB
H and R

DB
V

In this part we use the Geometrical Optics (GO) method implemented in FEKO [8] to validate
our theoretical method. In order to have reflections that can be modelled by Fresnel coefficients,
each plate composing the dihedral needs to be sufficiently large regarding to the wavelength. By
using RL-GO (Ray Launching Geometric Optics) method from FEKO, we are able to simulate
the backscattered electric field of structure for different electrical dimension (dimension over the
wavelength). In this section, we focus on retrieving the approximated RDB

H and RDB
V needed for

the method.

2.2.1 Simulation set-up

We model a dihedral structure in FEKO made of identical square plates of D = 18 m side
length (a = b = L = D = 18 m). The electrical dimension is here calculated by the side of each
plates: D

λ
. We set fifteen linearly spaced frequency points starting from 0.083 GHz to 1.016 GHz

that corresponds to an electrical dimension ranging from 5 to 61 by a step of 4.
Backscattered fields are calculated for several incidence angles between [0, 90] degrees with a one
degree step. Permittivities are assumed to be frequency independent and they are set to 10 − 3i
for ǫ1 and 2.4 − 4.5i for ǫ2. It respectively corresponds to a type of bitumen and a type of concrete
materials at 0.6 GHz [12]. In Fig. 2.1 we illustrate using formulas from [44] the depth skin over
the [0.1, 1] GHz bandwidth. Hence the dihedral depth c is set to 3 m such that we can simulate it
down to 0.15 GHz (D

λ
= 9) or even down to 0.083 GHz maximum (D

λ
= 5) but the latter case is

more questionable regarding to the skin depth of ǫ2.

2.2.2 Normalization step

By simulating this structure illuminated by a plane wave, we get the backscattered co-polarised
fields HH and VV and not the required (RDB

H , RDB
V ). To obtain them, we first assume the double

bounce scattering component is preponderant (formulated in Eq. (2.10)). Then we normalize the
simulated signal by the double bounce component of the signal received at the same incidence
angle by an identical PEC dihedral structure as it is suggested in [44] for a dielectric plate case. By
doing so, we remove the scattering part dependant on the object geometry. The latter assumption
is expressed in Eq. (2.11).

EHH(φ) ≃ EDB
HH(φ)

EV V (φ) ≃ EDB
V V (φ).

(2.10)

EDB
HH(φ) ≃ RDB

H (φ)EDB
HH,PEC(φ)

EDB
V V (φ) ≃ RDB

V (φ)EDB
V V,PEC(φ).

(2.11)
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Figure 2.1 – Depth skin over the 0.1 - 1 GHz bandwidth for the two permittivities ǫ1 and ǫ2.

The double bounce component of a PEC dihedral can be extracted from the formulation in [6] or
in [7]. In the terms of [7], it is expressed as:

± jk√
π

(Ixz sinφ+ Iyz cosφ)Ei =

{

± jk√
π

(2La sinφ), for cotφ ≥ a
b

± jk√
π

(2Lb cosφ), otherwise

}

(2.12)

where ± depends on the polarisation; Ei is the incident electric field, and Ixz and Iyz are the
limiting integrals defined in equations (48) and (49) in [7] (the complete expressions of the fields
can also be found in the Appendix A).

2.2.3 Application on the simulated data

By using Eq. (2.10) and Eq. (2.11), we can approximate the RDB
H and RDB

V coefficients for all the
different electrical dimensions. In Fig. 2.2 (resp. Fig. 2.3), we compare in amplitude and in phase
the theoretical RDB

H (resp. RDB
V ) from Eq. (1.6) with the approximated coefficients. As we can see

for HH polarisation, this approximation is correct for angles between [30, 60] degrees and for D
λ

≥ 9

and gets wider in domain angle with an electrical dimension increasing. From D
λ

= 20 we get a
relatively good incidence angle range, [10, 80] degrees, on which the approximation is reasonable.
For VV polarisation, the discussion is more difficult but the trend is similar: we have an increasing
angle range from an electrical dimension from 9 to 30.

In Fig. 2.4, we plot the approximate RDB
H and RDB

V in amplitude and phase from a simulated
data 1 at 0.3 GHz (corresponding to D

λ
= 18) and 1 GHz (corresponding to D

λ
= 60) and compared

them with the theoretical ones computed from Eq. (1.6). As we can see, approximations and
the model are in good agreement especially at 1 GHz for both polarisation in the range [10, 80]
degrees as the curves are very close in amplitude or in phase (less one dB off in amplitude). At 0.3
GHz, curves are less compliant outside the [30, 65] degrees interval of incidence, especially at VV
polarization.

1. This simulated data differs from the previous one in the c dimension that is now set to one meter as we only
consider two frequencies, 0.3 GHz and 1 GHz.
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Figure 2.2 – Difference between the approximation used to get RDB
H and the theoretical RDB

H in
amplitude (left, in dB) and phase (right, in degrees).

Figure 2.3 – Difference between the approximation used to get RDB
V and the theoretical RDB

V in
amplitude (left, in dB) and phase (right, in degrees).

Figure 2.4 – Approximated (dashed lines) and theoretical (continuous lines) double bounce
coefficients in amplitude and phase at 0.3 GHz and 1 GHz.
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2.3 Domain of validity: limits and range of possibilities

In this section, limits and possibilities of the method are explored using FEKO simulations. A
first part is dedicated to the sensitivity of the method to some parameters of the object: dimension,
dihedral angle and permittivity. Then the influence of the measuring device such as its pose (i.e.
position and orientation) is studied.

2.3.1 Object parameters

As we look at the object parameters that might impact the method, we think first at the
geometry of the object. So the two first points will be to look at the dimensions of the object and
the dihedral angle. The last point deals with the permittivity of the dihedral.

Electrical dimension

As the electrical dimension dictates the presence of the double component (as seen in section
2.2), we have a look at the inversion results along this parameter by taking back the simulation
exposed in subsection 2.2.1 and used in subsection 2.2.3. Those observed trends in Fig. 2.2 and
Fig. 2.3 are logically present in the inversion results. In Fig. 2.5 (resp. Fig. 2.6) we illustrate the
inversion of ǫ1 (resp. ǫ2) with the electrical dimension. For both permittivities, for an electrical
dimension between 9 and 21 we have an inversion that successfully operates locally within the
[10, 40] ∪ [50, 80] degrees range. After D

λ
= 21, the range of correct results increases and gets more

and more homogeneous.

Figure 2.5 – Influence of the electrical dimension on the inversion of ǫ1 (theoretical value:
ǫ1 = 10 − 3i).

We draw for instance in Fig. 2.7 the results for ǫ1 from the simulated example used to plot the
approximated RDB

H and RDB
V in Fig. 2.4. We overlay the theoretical permittivity in terms of real

(Re) and imaginary (Im) parts for ǫ1. The representation is made along the incidence angle range
and for the two frequencies 0.3 GHz and 1 GHz. Fig. 2.8 illustrates the same results, but for ǫ2.
The best results are obtained at 1 GHz, real part of ǫ̃1 is contained in [9, 11] and its imaginary part
in [−4.5,−1.5] in [10, 40] ∪ [50, 80] degrees interval (for recall, ǫ1 = 10 − 3i). For ǫ2 = 2.41 − 4.5i,
Re(ǫ̃2) ∈ [2, 3] and Im(ǫ̃2) ∈ [−5,−4] in the same interval. Accuracy degrades when frequencies go
down, but it remains largely acceptable: real part of ǫ̃1 belongs to [7, 14] and its imaginary part is
in [−7, 0]. For ǫ2, the real part ranges is [1.7, 4], while its imaginary part is in [−6,−3.5]. In the
[40,50] degrees range a discontinuity is seen that might be due to the issue at 45 degrees (see 2.1.3)
spreading in this interval.
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Figure 2.6 – Influence of the electrical dimension on the inversion of ǫ2 (theoretical value:
ǫ2 = 2.4 − 4.5i).

Figure 2.7 – Results and theoretical ǫ1 = 10 − 3i in real (Re) and imaginary (Im) parts at 0.3 and
1 GHz using the ideal method.

Figure 2.8 – Results and theoretical ǫ2 = 2.4 − 4.5i in real (Re) and imaginary (Im) parts at 0.3
and 1 GHz using the ideal method.
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Dihedral angle

In this subsection, we analyse the influence of the dihedral angle on the method. As depicted
in Fig. 1.3 some buildings may not present a right angle with the ground. The theoretical method
was developed assuming a right angle. We define φd the difference between the 90 degrees of the
ideal dihedral structure and the one we consider. If φd ≥ 0 then the dihedral angle is obtuse and it
is acute if φd is negative. The dimensions of the dihedral are still set to (a, b, L, c) = (18, 18, 18, 1)
m. As we normalize the received signal by its PEC equivalent (described in 2.2.2), we perform an
identical step using now the formulation from [6] where the dihedral angle can be set. Difference is
we now use the total backscattered electric fields from the PEC structure to normalize the signal
and not only its double bounce component.

We used a non-linear set of φd = {−3,−2,−1.5,−1,−0.6,−0.45,−0.3, 0, 0.3, 0.45, 0.6, 1, 1.5, 2, 3} 2

degrees. A first step is then to assess the validation of the approximation made in Eq. (2.11) but
considering the previous point about the normalization. We work in the following at 1 GHz.
In Fig. 2.9 and in Fig. 2.10 we look at the difference in amplitude and phase of the theoretical
double bounce coefficients and the approximation used. Noticeable differences exist between the
polarization HH and VV. HH approximation still holds when the dihedral angle move to ±1 degree
whereas for the vertical component even if it looks correct in amplitude, it is completely off in phase.
Given the definition of HH and VV relatively to the geometry of the object, it is quite reasonable
to find the kind of behaviour. However it raises questions about the results of the inversion as it
requires an absolute RDB

H and RDB
V as inputs.

Figure 2.9 – Difference in amplitude (left) and phase (right) between the theoretical RDB
H and the

approximation at 1 GHz.

Fig. 2.11 and Fig. 2.12 shows the results of the inversion. We can see that except for φd = 0
degree there is nearly no good results in both real and imaginary part. The only exception to this
statement is for ǫ2 for φd ∈ [−1, 1] ∩ φ ∈ [70, 82] where sometimes we get good estimate of the
permittivity. However for the remaining cases, most of them are not even in the physical domain
of permittivity as their imaginary part is positive.

Mix of permittivities

In cities, buildings are made of different materials as glass, concrete, bricks and wood as picitured
in Fig. 1.5. Hence one last parameter to analyse is the influence of the localization of the permittivity

2. This set was defined in order to see if there were a relation between the results of the inversion and the
D
λ

sin(φd) quantity. The latter quantity characterizes the gap in distance at the edge between a regular dihedral and
the one we consider relatively to the wavelength used.
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Figure 2.10 – Difference in amplitude (left) and phase (right) between the theoretical RDB
V and

the approximation at 1 GHz.

Figure 2.11 – Influence of the dihedral angle on the inversion of ǫ1 at 1 GHz (theoretical value:
ǫ1 = 10 − 3i).

within the dihedral. In this objective, we keep the plate with the ǫ1 = 10 − 3i permittivity. We
change the surface made of ǫ2 = 2.4 − 4.5i permittivity to a composite plate made of artificial
permittivities: ǫ2 = 5 − 2i and ǫ3 = 15 − 10i. These two permittivities are chosen such that
Re(ǫ3)
Re(ǫ2) = 3 and Im(ǫ3)

Im(ǫ2) = 5. This surface is equally divided between these two permittivities.

First set of simulation: We define three different simulations where the permittivities ǫ2 and
ǫ3 are not localized at the same place. Fig. 2.13 presents the dihedral models used. The blue colour
(resp. purple) defines the region where the permittivity is set to ǫ2 (resp. ǫ3). Respectively to their
order of appearance in the figure (left to right), they are abbreviated regarding the axis of change
so we have: ‘vert’,’horiz’ and ‘quad’.

Results from these different models at 1 GHz are given in Fig. 2.14 for ǫ1 and in Fig. 2.15 for
the second permittivity. It is quite comforting to see that the estimation of ǫ1 does not depend on
the composition of the second plate. Little differences can be seen between the different dihedrals.
In the case of the second permittivity, results can be divided in two: the estimation in the [10, 43]



22 CHAPTER 2. IDEAL METHOD

Figure 2.12 – Influence of the dihedral angle on the inversion of ǫ2 at 1 GHz (theoretical value:
ǫ2 = 2.4 − 4.5i).

Figure 2.13 – Composite dihedrals for the first set.

degrees range, and the estimation in [47, 80] degrees range.
In the first angle range, we calculate a permittivity close to 9 − 4.5i for every dihedrals. This
estimation could be related to a mixing law. If we take the Maxwell-Garnett mixing model as
formulated in [18], we can express it to get the effective permittivity ǫeff . In the notation of [18],
we can obtain:

ǫeff =
ǫm(1 + f

ǫi − ǫm

ǫi + ǫm
)

1 − f
ǫi − ǫm

ǫi + ǫm

, (2.13)

where ǫi is the permittivity of the inclusive parts in the material of ǫm permittivity. In the following
fv (f in [18] and in Eq. 2.13) denotes the volumetric fraction of the inclusive parts in the material.
If we set ǫi = ǫ2 and ǫm = ǫ3 with fv = 0.5 we obtain an effective permittivity of 9.0 − 5.0i.
If we swap the permittivity of the inclusive material and the surrounding material we get ǫeff =
8.4−4.2i. The first result 9.0−5.0i is quite close to the permittivity estimated in the [10, 43] degrees
range. Furthermore it seems that this estimated permittivity is independent from the permittivity
structure (horizontal, vertical or squared build) of the second plate.
This is quite different for the angle range [47, 80] degree range where we can distinguish the ‘horiz’
dihedral that tends toward ǫ2 value as the incidence angle increases. At 60 degrees it is this dihedral
is seen as made of exclusively ǫ2 permittivity. For the two other dihedrals (‘vert’ and ‘quad’), their
calculated permittivity behaves identically as before, except that it is now closer to the second
permittivity calculated 8.4 − 4.2i by considering ǫi = ǫ3 and ǫm = ǫ2.
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Figure 2.14 – Estimation of ǫ1 at 1 GHz for the different dihedrals.

Figure 2.15 – Estimation of second permittivity at 1 GHz for the different dihedrals.

Second set of simulation: To improve the understanding of the ‘horiz ’ dihedral, we simulate
the same kind of structure but we will now change the surface taken by ǫ2 in the plate. An example
is given in Fig. 2.16 where ǫ2 takes 20% of the surface (or height) of the second plate. Fig. 2.17
and Fig. 2.18 we plot the results for ǫ1 and the second permittivity at 1 GHz for surface fraction
taken by ǫ2 (specified in the legend).

Again in Fig. 2.17, the estimation of ǫ1 does not vary with the different simulations made.
As before for ǫ2 we will divide the study in two parts: one related to the estimation in [10, 43]
degrees and the other in [50, 80] degrees. With the evolution of the volumetric fraction fv we build
the table 2.1 using Eq. (2.13). From this table, we can see that the curves in Fig. 2.18 roughly
follows the trend described in the table suggesting a mixing model.
For the estimation in [47, 80] degrees, we see the phenomenon described with the first set: the
more the incidence angle increases, the more the estimated permittivity get closer to ǫ2. Logically,
the more ǫ2 is present in the structure, the more “quickly” regarding to the incidence angle the
estimation will get to ǫ2 value. For instance at fv = 0.8 or even 0.75 or 0.66 at 55 degrees, we are
already close to ǫ2.
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Figure 2.16 – Example of a composite dihedral from the second set.

Figure 2.17 – Estimation of ǫ1 at 1 GHz for different ‘horiz’ dihedrals.

Figure 2.18 – Estimation of second permittivity at 1 GHz for different ‘horiz’ dihedrals.

2.3.2 Parameters of the measurement device

Here are presented the studies done to assess the influence of the parameters of the device on
the method. We will focus the study on the position and orientation of the device. First the
sensitivity regarding the incidence angle is addressed. Then a glimpse at parameters such as a
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fv 0.2 0.25 0.33 0.4 0.5 0.6 0.66 0.75 0.8
Real part 12.3 11.7 10.8 10.0 9.0 8.1 7.6 6.8 6.4

Imaginary part -7.7 - 7.2 -6.4 -5.8 -5.0 -4.3 -3.9 -3.3 -3

Table 2.1 – Effective permittivities given ǫ2 and ǫ3 and the volumetric fraction using Eq. (2.13)

non-null azimuth angle or a roll rotation of the device is given.

Incidence angle influence

We first study the main parameter used in our method, the incidence angle φ. To do so, we
define two different incidence angles: φc the angle at which the measurements RDB

H and RDB
V have

been performed and φe the incidence angle we used to normalize the signal and to calculate the
permittivities. In an ideal measurement, we have φe = φc. We use the simulated data from the
subsection 2.3.1 at 1 GHz.
Fig. 2.19 shows the relative error made on both ǫ1 and ǫ2 with the evolution of φe and φc. Images
are thresholded to 1 as a relative error of 1 implies that we might also estimate 0 instead of the
permittivity. Obviously the line φe = φc is the location a minimal error (less than 10%) as it is
the regular functioning of the method. So we retrieve the issue at 45 degree and the degradation
of the results below 10 degrees and higher than 85. However we can notice that the area of error
below 10% is wider in the range [50, 80] degrees. In general for both permittivities the [50, 80] is a
bit more comfortable than the [10, 40] range. Indeed in the [10, 40] incidence angle range the error
increases quickly as soon as an error on the angle is made. It is not as restrictive in [50, 80] degrees,
especially for ǫ2.

Figure 2.19 – Relative errors on ǫ1 and ǫ2 at 1 GHz with incorrect incidence angles φe.

To have a clearer idea, we take the data at φc = 60 degrees and look at the results in Fig. 2.20
when φe varies between 50 and 70 degrees. In those plots the red dots display the theoretical values.
φc = 60 degrees is one of the best case according to Fig. 2.19. In the current figure, underestimating
the incidence angle down of 6 degrees does not imply a large error for ǫ1 and ǫ2. Errors are larger
when it is overestimated: at φe = 66 degrees, we get 15 and around 6 instead of 10 and 3 for ǫ1
and 2 and around 6 instead of 2.4 and 4.5 for ǫ2 in real and imaginary parts.
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Figure 2.20 – ǫ1 and ǫ2 at 1 GHz with incorrect incidence angles φe and φc = 60 degrees.

Non-null azimuth angle

Since the beginning we have considered a structure perfectly in front of the measurement device.
One can wonder if the double bounce equation still holds if we rotate the structure of an angle θ
in the xy plane depicted in Fig. 1.10. From the structure view point, this rotation is equivalent
to a rotation in azimuth of the device. To assess this change, we simulate the same structure as
the one used in 2.3.1 with one meter depth at 1 GHz. However now the co-localized emitter and
receiver will not only move with the incidence angle but also with the azimuth angle. In Fig. 2.21
we display the FEKO view of all the combinations between the incidence angle φ ∈ [0, 90] degrees
and the azimuth angle θ ∈ [−10, 10] degrees with a one degree step for both angle.

Figure 2.21 – Joint variations of the incidence angle (from top to bottom) and the azimuth angle
(from left to right).

A first approach of the problem would be to apply the regular method. However we have seen
in 1.3 the backscattered electric field from a PEC dihedral at a non-null azimuth angle is quite
low compared to one at null azimuth angle at HH or VV. We here proceed by normalizing the
electric fields by either resulting fields from an equivalent simulation made with a PEC dihedral
or the fields from the PEC formulation in [7]. For sake of simplicity (and in order to stay within
FEKO conventions) we simulated an equivalent PEC structure. The results of the normalization
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process compared to the theoretical double bounce coefficients are shown in amplitude and phase
at 1 GHz in Fig. 2.22 and Fig. 2.23 evolving with both incidence and azimuth angles. Aside from
very low (<10˚) or very high (75˚>) incidence angles, we retrieve the amplitude and phase of
the double bounce coefficients as in Fig. 2.4 meaning that this extension of the normalization step
approximates quite well the double bounce equation for the azimuth range [−10, 10] degrees.

Figure 2.22 – Difference in amplitudes (dB) between the normalized backscattered electric fields
and the theoretical double bounce coefficients at HH (left) and VV (right) at 1GHz.

Figure 2.23 – Difference in phase (degrees) between the normalized backscattered electric fields
and the theoretical double bounce coefficients at HH (left) and VV (right) at 1GHz.

Given this starting point we can directly try to invert and as a result we obtain Fig. 2.24 and
Fig. 2.25. As it can be seen, the inversion handles rather well the azimuth change in the [−10, 10]
degrees range. We can notice in Re(ǫ1) and Im(ǫ2) that the results start to be degraded near and
beyond ±8 degrees. This might come from the lack of power of received signals inducing instability
in the results: in the case of a PEC dihedral we have a drop of at least 30 dB between zero and ten
degrees of azimuth in the field amplitude as it is illustrated on a different example in section 1.1.
From these results and the invariance to azimuth angle of the approximated RDB

H and RDB
V , one

could also retrieve the permittivities using different combination of azimuth and incidence angles.
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Figure 2.24 – Inversion done by normalizing the signal with an equivalent PEC structure for
several azimuth angles (theoretical value: ǫ1 = 10 − 3i).

Figure 2.25 – Inversion done by normalizing the signal with an equivalent PEC structure for
several azimuth angles (theoretical value: ǫ2 = 2.4 − 4.5i).

Roll angle

In the study made before, strong assumptions have been made regarding the polarization. H and
V polarizations are bound to the structure orientation. In this subsection, we will look at the effect
of rotating the incident and scattered H and V vectors using the propagation vector as rotation
axis. This rotation is defined by the rotation angle α as defined in [36]. The configuration under
simulation can be seen as a synchronized rotation of the emitter and receiver devices of α around
the Line-of-Sight like a rotation in roll as displayed in Fig. 2.26. In this Figure, the vertical (resp.
horizontal) incident polarization in blue (resp. green) is transformed in the purple (resp. yellow)
vector due to the (positive) rotation α. As before, we simulate this case with the same structure and
permittivities as in 2.3.1 with one meter depth at 1 GHz, and we define α in the [−10, 10] degrees
range with a degree step. Once again the results presented in Fig. 2.27 only show the inversion at
1GHz in terms of relative errors. If we only consider the area where the error is below 10% then
a symmetry around the φ = 45 degrees line can be observed between the two permittivities. For
ǫ1, the inversion is more flexible with α for incidence angle in [10, 25] degrees. After 35 degrees a
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Figure 2.26 – Roll configuration.

perfect polarization as defined for the analytical solution is required. For ǫ2, the same phenomenon
can be observed but at 90 −φ degrees. With α varying an asymmetry is seen between the domains
of incidence angle [10, 45] and [45, 80] degrees. One domain generates less errors for a positive α,
for instance [10, 45] degrees for ǫ1 or [45, 80] for ǫ2. However its complementary domain also gives
less errors but for the negative α.

Figure 2.27 – Relative error on ǫ1 (left) and ǫ2 (right) for several roll angles.

2.4 Application: moisture retrieval

In the case of soil, concrete and vegetation, the permittivity of the material involved are often
bind to the amount of water contained in it. As it is crucial component of the forest (Fig. 1.4) and
crops monitoring, studies have been carried to retrieve the moisture content of soil [30,45,46], some
others have been focused on the link between the moisture content and the permittivity ( [47–50]).
Here we use the model proposed in [50] where the soil permittivity is mainly characterised through
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the part of sand and clay and its moisture content.

We use this model to compute the permittivities for the soil permittivity for three different
moisture content (10%, 20% and 30 % volumetric moisture content). We consider a soil composed
at 65 % of sand and 26% of clay at ambient temperature (20°C). It gives at 440 MHz the fol-
lowing permittivities: 12.87 − 2.5i , 25 − 3.5i and 38.78 − 4.3i for the respective 10%, 20% and
30 % volumetric moisture content. In the case of a dihedral structure, these permittivities are set
to ǫ1. For ǫ2 we consider a concrete material of permittivity 2.4−4.5i as in the previous simulation.

We simulate a dihedral structure at 440 MHz of dimensions (a, b, L) = (20, 18, 20) m the per-
mittivities previously exposed for an incidence angle varying in [10,80] degree with a one degree
step. In Fig. 2.28 and in Fig. 2.29 are plotted the results for respectively ǫ1 and ǫ2 in terms of
real and imaginary parts for the three different moisture content. The different colours are linked
to the moisture content: red corresponds to the 10% volumetric moisture content, green to the
20% and blue to the 30 %. The dashed lines correspond to the theoretical value of permittivity
calculated and exposed in the previous paragraph. At first sight, the real part of ǫ1 allows to easily
differentiate the three permittivities based on the three different water content. Indeed as ǫ2 is
not influence by the water content of the material characterised by ǫ1 and that imaginary part
of ǫ1 is oscillating too much to be able to correctly make an estimate, the real part seems to be
the component to look in order to see a water content change of the soil. In the [20, 35] ∪ [55, 70]
degrees, we get curves allowing to see this difference as they don’t mix each other (the blue stays
above 30, the green between 20 and 30 and the red one around 12). In imaginary part, it is more
difficult to see this, only the red curve seems to present such behaviour except in [20, 35] degrees
where it looks biased as we estimate a value close to -3.5, the theoretical green curve. Again, it is a
behaviour that is retrieved for the estimation of ǫ2 at a smaller scale. Outside this angular domain
we get either the backscattering of each plate in [10, 15] or in [75, 80] degrees or the 45 degrees issue
that appears and spreads in the [35, 55] degrees domain.

Figure 2.28 – Real and imaginary parts of ǫ1 for different moisture content at 440 MHz (red: 10
% of volumetric moisture content, green: 20 % and blue: 30 %).

2.5 Summary of the method

Over this chapter, we have put in place a method based on the double bounce equation Eq. (1.6)
to retrieve the two permittivities of a two-plate dihedral. Its coarse version uses the knowledge of
the incidence angle and the measurement of RDB

H and RDB
V . As it has been seen, the 45 degree
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Figure 2.29 – Real and imaginary parts of ǫ2 for different moisture content at 440 MHz (red: 10
% of volumetric moisture content, green: 20 % and blue: 30 %).

incidence angle is a mathematical limitation and to correctly retrieve RDB
H and RDB

V using a normal-
ization step of the signals is mandatory. The following diagram in Fig. 2.30 summarises this process.

To sum up, this method uses the co-polarised fields HH and V V taken at one incidence angle
φ and at one frequency. We retrieve RDB

H and RDB
V by normalising the fields by its equivalent for a

PEC case, making the approximated RDB
H and RDB

V dimensionless (as expected) from the frequency
and also from the dimensions of the dihedral. This latter statement can be discussed as we have
seen that a minimum of 20 for the electrical dimension of each plate is required to have a reasonable
interval in incidence angle on which we can perform the method.
By studying the influence of the structure on the signal we notice that the process is not robust at
all to a change of the dihedral angle. However we got interesting results when one plate is made
of a composition of permittivity. The method is able to detect the change of permittivity with the
incidence angle when the change is horizontal (i.e. along the dihedral axis). As a result, a mixing
law of permittivities could be observed.
About the positioning of the measurement device, movements with the azimuth angle is no problem
as long as an adequate normalization step is performed. Finally, we study the influence of the
incidence angle and the roll angle on the results to conclude that these two parameters appears
quite critical to obtain a correct result.
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Measured electric fields
in HH and V V at

one incidence angle φ.

Divide the measured
electric fields by their

corresponding PEC fields.

Calculate [6, 7] or simulate
[8] the electric fields in
HH and V V at φ for an
equivalent PEC dihedral
at the same frequency.

a, b, L,
φ and f

EHH , EV V

EHH,PEC ,
EV V,PEC

Calculate K,Γ, Λ using
Eq. (2.2) and then Q

and R using Eq. (2.9)

RDB
H , RDB

V

Estimate the two permittivities:

ǫ̃1 =

(
cosφ sinφ

X−
2

)2

+ sin2 φ and

ǫ̃2 = (X+
2 )2 + cosφ2 using Eq. (2.8)

Q, R

Figure 2.30 – Process of the method.



Chapter 3

One polarization method

With the previous method we have the ability to analytically determine the two permittivities of
a dihedral structure given the two co-polarised backscattered fields collected at one incidence angle.
The dependence on VV polarization may lead to trouble during measurements as the presence of
the double Brewster effect might affect the power budget of the radar or of the measurement device.
This is especially the case at or near Brewster or Pseudo-Brewster angles where the amplitude of
VV field is minimal. By building a solution relying only on HH field we would avoid this issue.
From a mathematical point of view, HH polarisation is also easier to handle and solve when we
compare the analytical expressions from Eq. (2.3) and Eq. (2.5). In addition, one polarization
system at HH would permit to retrieve the permittivities.
In this chapter we will first built the analytical background for such method and then analyse it
regarding the simulations made in 2.3.

3.1 Theory

Considering now only the HH polarization, we first try to invert the permittivities from Eq.
(1.6) at HH using again the variables defined in Eq. (2.1). From Eq. (2.3), we get:

(cosφ sinφ+X1 sinφ+X2 cosφ+X1X2)RDB
H = cosφ sinφ− (X1 sinφ+X2 cosφ) +X1X2 (3.1)

that leads to:
X1X2 + (X1 sinφ+X2 cosφ)K + cosφ sinφ = 0, (3.2)

where K is the quantity from Eq. (2.2).

From Eq. (3.2) alone we can obtain an infinite number of couples (ǫ1, ǫ2) that comply with it.
To reduce the number of possibilities, we will now assume that we have two measurements made
at (φ1, φ2): RDB

H (φ1) and RDB
H (φ2).

First, by isolating X1 we can obtain:

ǫ1 = X2
1 + sin2 φ =

(cosφKX2 + cosφ sinφ)2

(X2 +K sinφ)2
+ sin2 φ. (3.3)

We define the new variables:
ξ1 =

√

ǫ2 − cos2 φ1

ξ2 =
√

ǫ2 − cos2 φ2

(3.4)

As the permittivity should not change with the incidence angle, we can write this invariance
property as:

(cosφ1K1ξ1 + cosφ1 sinφ1)2

(ξ1 +K1 sinφ1)2
+ sin2 φ1 =

(cosφ2K2ξ2 + cosφ2 sinφ2)2

(ξ2 +K2 sinφ2)2
+ sin2 φ2 (3.5)

33
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If we multiply this last equation by (ξ1 +K1 sinφ1)2(ξ2 +K2 sinφ2)2 and after developping and
regrouping terms, we can obtain the following equation:

aξ2
1ξ

2
2 + bξ2

1ξ2 + cξ1ξ
2
2 + dξ1ξ2 + eξ1 + fξ2 + gξ2

1 + hξ2
2 + k = 0. (3.6)

Coefficients (a, b, c, d, e, f, g, h, k) are defined in Eqs. (3.7).

a = cos2 φ1K
2
1 − cos2 φ2K

2
2 + (sin2 φ1 − sin2 φ2)

b = 2K2 sinφ2 cos2 φ1(K2
1 − 1)

c = 2K1 sinφ1 cos2 φ2(K2
2 − 1)

d = 0

e = 2K1 sinφ1 sin2 φ2 cos2 φ2(K2
2 − 1)

f = −2K2 sinφ2 sin2 φ1 cos2 φ1(K2
1 − 1)

g = sin2 φ2(cos2 φ1K
2
1K

2
2 +K2

2 (sin2 φ1 − sin2 φ2) − cos2 φ2)

h = sin2 φ1(− cos2 φ2K
2
1K

2
2 +K2

1 (sin2 φ1 − sin2 φ2) + cos2 φ1)

k = sin2 φ1 sin2 φ2(cos2 φ1K
2
2 − cos2 φ2K

2
1 +K2

1K
2
2 (sin2 φ1 − sin2 φ2))

(3.7)

Using Eq. (3.4), we can write:

ξ2
1 + cos2 φ1 = ξ2

2 + cos2 φ2. (3.8)

We substitute in Eq. (3.6) ξ1 by ±
√

ξ2
2 + cos2 φ2 − cos2 φ1. It gives the following equation:

aξ4
2 + bξ3

2 + lξ2
2 +mξ2 + n∓

√

ξ2
2 + cos2 φ2 − cos2 φ1(cξ2

2 + dξ2 + e) = 0 (3.9)

where
l = g + h+ a(cos2 φ2 − cos2 φ1),

m = f + b(cos2 φ2 − cos2 φ1)

n = k + g(cos2 φ2 − cos2 φ1)

(3.10)

Finally we multiply Eq. (3.9) by aξ4
2 + bξ3

2 + lξ2
2 +mξ2 +n±

√

ξ2
2 + cos2 φ2 − cos2 φ1(cξ2

2 + dξ2 + e)
leading to a polynomial form in ξ2:

Aξ8
2 +Bξ7

2 + Cξ6
2 +Dξ5

2 + Eξ4
2 + Fξ3

2 +Gξ2
2 +Hξ2 + I = 0 (3.11)

with
A = a2

B = 2ab

C = b2 + 2al − c2

D = 2am+ 2bl − 2dc

E = l2 + 2bm+ 2an− d2 − 2ec− c2(cos2 φ2 − cos2 φ1)

F = 2bn+ 2ml − 2de− 2dc(cos2 φ2 − cos2 φ1)

G = m2 + 2nl − e2 − (d2 + 2ec)(cos2 φ2 − cos2 φ1)

H = 2mn− 2de(cos2 φ2 − cos2 φ1)

I = n2 − e2(cos2 φ2 − cos2 φ1).

(3.12)

This eight degree equation can be factored by (ξ2 − sinφ2)2(ξ2 + sinφ2)2 leading to a more
convenient four degree equation defined by:

α4ξ
4
2 + α3ξ

3
2 + α2ξ

2
2 + α1ξ2 + α0 = 0 (3.13)
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where:
α4 = A

α3 = B

α2 = C + 2A sin2 φ2

α1 =
H

sin2 φ2

α0 =
I

sin2 φ2

(3.14)

RDB
H (φ1) and RDB

H (φ2)

Roots of Eq. (3.14)

Eq. (3.3)

ǫi2, i ∈ {1, ..., 4}

(ǫi,21 , ǫi2), i ∈ {1, ..., 4}(ǫi,11 , ǫi2), i ∈ {1, ..., 4}

at φ1 at φ2

Filtering

We verify for each couple (ǫi,j1 , ǫi2), i ∈ {1, ..., 4} and j ∈ {1, 2}:
— Both ǫ1 and ǫ2 are in P = {ǫ| Re(ǫ) > 1, Im(ǫ) ≤ 0}
— Throught Eq. (1.6) at HH, check that ρ1 and ρ2 are

retrieved given ((ǫi,j1 , ǫi2)
Given the permittivity couples that comply the two previous
contraints:

— if one permittivity couple alone is complient, it is the
solution

— if several permittivity couples are complient:
— the couples are close to each other, they define the

same solution couple.
— at least one of the couple is far from the other

couples, none of them are solutions.

Figure 3.1 – Filtering process of the method.

From this equation, at least one of the four roots should lead to ǫ2. To do so, we numerically
computed the four candidates for ǫ2. We can use Eq. (3.2) at φ1 and also at φ2 to get the associated
candidates in ǫ1. By doing so, we collect eight candidates of (ǫ1, ǫ2). We filter out the couples that
are not in the physical domain. We also keep couples that verify at HH polarization Eq. (1.6) at
φ1 and φ2. This process summarized in the scheme in Fig. 3.1 allows us to have for most of the
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cases a unique couple solution.

3.2 Domain of validity: limits and range of possibilities

In this section, we basically take the simulation data from 2.3 and apply the new method to
them. Thus, identical parameters are studied: geometry of the object, its permittivity composition,
and the pose of the device. But first, a remark on the representation of the results is made.

Remark on the result representation

As the new method needs two incidence angles, it makes the representation of the results diffi-
cult when assessing them over a parameter evolution (frequency, dihedral angle, etc.). To partially
bypass this, we count the occurrence of correct, close and the absence of results (Not a Number
results (NaN)) as defined with the following binary equations:

Correct permittivity ǫ :F (ǫ, 1) = 1

Close permittivity ǫ :F (ǫ, 2) = 1
(3.15)

with

F (ǫ, τ) =(Re(ǫ) > Re(ǫtheo) − τ) ∧ (Re(ǫ) < Re(ǫtheo) + τ)

∧(Im(ǫ) > Im(ǫtheo) − τ) ∧ (Im(ǫ) < Im(ǫtheo) + τ)

, where ∧ denotes the AND logical operator and τ is the tolerance parameter.

We calculate these percentages for combination angles (φ1, φ2) ∈ [10, 80]× [10, 80] for every step
parameter considered. One can notice that F (ǫ, 1) = 1 corresponds to the green color code in real
and imaginary parts of Figures such as Figs. 2.5 – 2.11 – 2.24.
Note that the close percentage takes also into account the correct percentage as a ǫ validating
F (ǫ, 1) also validates F (ǫ, 2). Hence when we look at the percentage between the correct and the
close results, we look at results that are close to the theoretical results without being correct. More-
over when we look at the difference between the close and the NaN results we see the percentage
of results that are not even close to the theoretical results.
Also note that as we need to have φ1 6= φ2 there is a permanent percentage of NaN bound to
φ1 = φ2 of 1.4 %.

3.2.1 Object parameters

First the object parameters will be dealt with. Studies on the geometry and the permittivity
of the dihedral are carried out in this subsection.

Electrical dimension

We take the same simulation data from 2.3.1 and apply the new method of solving. To get RDB
H ,

we use the normalisation step described in the subsection 2.2.2. We plot the correct, close and NaN
curves with the electrical dimension D

λ
in Fig. 3.2(a) for ǫ1 and in Fig. 3.2(b) for ǫ2. We see that ǫ2

is more often better estimated than ǫ1 in the [10, 80] × [10, 80] domain. The percentage of absence
of results goes from 65% to a stabilized value around 9 % between the electrical dimension of 5 to
61. The part of correct value for ǫ1 varies from few percent to 57% on the same range, and for ǫ2 it
evolves from 6% to a value around 82%. We can notice that the trend of the correct or close results
are peculiar: for ǫ1 it has a hard time increasing, but for ǫ2,after a quick increase, it stabilises at a
high value.
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(a) For ǫ1 = 10 − 3i. (b) For ǫ2 = 2.4 − 4.5i.

Figure 3.2 – Pencentages for both permittivities over the electrical dimension of correct, close and
absence of results.

In Fig 3.3 we show the results of the inversion on the simulated data for the real and the
imaginary parts of ǫ1 and ǫ2 at 0.3 and 1 GHz. These figures are made along the incidence angles
(φ1, φ2). Colorbars in these figures are thresholded. The green colour is used to denote the correct
interval.
One can notice the symmetry to the axis φ1 = φ2. Noticeable differences can be seen between
0.3 (corresponding to D

λ
= 18) and 1 GHz (corresponding to D

λ
= 60) results. At 1 GHz more

results are determined and they are more homogeneous over the [10, 80] × [10, 80] domain. At 0.3
GHz, results are more scattered around the theoretical value. Combinations using angles below
20 degrees yield results that are more likely to be incorrect. At 1 GHz, this angle boundary is
decreased to a value around 10 degrees. At (φ1, φ2) = 80 × [30, 80] degrees we notice the absence
of results. This strip of ‘no results’ get thinner as the frequency increases. Mainly large areas of
correct results can be found at 1 GHz whereas at 0.3 GHz correct results are more scattered.
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0.3 GHz 1 GHz

Re(ǫ1)

Im(ǫ1)

Re(ǫ2)

Im(ǫ2)

Figure 3.3 – Real and imaginary parts for ǫ1 and ǫ2 at 0.3 and 1 GHz.



3.2. DOMAIN OF VALIDITY 39

Dihedral angle

Figure 3.4 – Percentages for ǫ1 and ǫ2 of correct, close and absence of results at 0.3 GHz.

Figure 3.5 – Percentages for ǫ1 and ǫ2 of correct, close and absence of results at 1 GHz.

Again by taking the simulation data from 2.3.1, we compute the inversion process and as in
3.2.1 we determine the percentage of correct, close and NaN results. We plot the corresponding
curves for 0.3 GHz in Fig. 3.4 and for 1 GHz in Fig.3.5. From the curves at 0.3 GHz, we see that
there is less than 10% of correct results for ǫ1 whatever φd and that the close results barely reach
the 25% at best. Results from ǫ2 are better as we can obtain more that 30% of correct results and
more than 50% of close results over the [−1.5, 1] degrees of φd. It is also quite surprising to see
the asymmetry of the curves especially to not have their maximum at the ideal case φd = 0. At 1
GHz, curves are getting more narrowly centred on φd = 0 degrees. This time, correct results for ǫ1
meets 50% and more than 80% for ǫ2 at best. However high percentages of correct or close results
are contained in the [−1, 1] degree interval. Outside this interval we quickly get either no result or
an erroneous one.
Nevertheless we can see with these results that we obtain a significant improvement compared to
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results in 2.3.1. This is mainly due to the fact that by relying only on HH polarization is more
flexible with the dihedral angle and it avoids the V V drift in phase seen in Fig. 2.9 and Fig. 2.10.

Mix of permittivities

In this part, we consider the two sets of simulations used in 2.3.1. As for the numerical illus-
tration section, we highlight the correct results for ǫ1 in green. For the second permittivity, as we
have two permittivities on the second surface, we put in green correct results for ǫ3 = 15 − 10i and
in red the ones for ǫ2 = 5 − 2i. We remind that the abbreviated names for the different structures
are defined in 2.3.1 and illustrated in Fig. 2.13.

First set of simulation: In Fig. 3.6 (resp. Fig. 3.7) we look at the results at 1GHz for ǫ1 (resp.
ǫ2) from the first set. By looking at these figures we notice that now ǫ1 is more difficult to retrieve.
This is especially the case for the “horiz” structure where for incidence angles above 60 degrees ǫ1
is no longer well retrieved. At (φ1, φ2) = (65, 65) degrees and nearby, no results are found. Only
when we look at the inferior corner of the domain, [10, 50] × [10, 50] we are able retrieve ǫ1 but
it is more disrupted than it was when we simulated the two homogeneous plates in 3.2.1. This
remark also applies to the results from the “quad” and “vert” structures. In these very similar
cases, we are able to find back ǫ1 over the [10, 80] × [10, 80] degree domain but at some places it
gets underestimated like in [45, 80] × [15, 45]. Around the (45, 45) degree point we have an area
with a more pronounced error.
This is also seen in the estimation of the second permittivity. In the upper domain, [45, 80]×[45, 80],
it is estimated around 8 − 4i as with the previous method. In the lower domain [10, 45] × [10, 45]
degrees, we estimate a permittivity around 7 − 3i, i.e. closer to ǫ2 = 5 − 2i. The domain [45, 80] ×
[10, 45] degrees and its symmetrical one seems to show a decreasing estimated permittivity as we
start from (45, 45) degrees with a very high real part and a very low imaginary part to arrive at
(80, 10) degrees with a permittivity similar to the one determined in the upper domain.
For the “horiz” case, we retrieve a similar estimation of the second permittivity on the lower
domain, but in the other domains we are more likely able to find back the value of ǫ2: especially
in [65, 80] × [10, 45] degrees and its symmetric.
As with the previous method when the change of permittivity is horizontal we are able to fully
retrieve the permittivity close to the central edge of the dihedral for high incidence angles. Again
it seems that the estimation of the permittivity outside this domain is ruled by a mixing law.

Second set of simulation: From the second set of simulations, the inverted permittivities are
presented in Fig. 3.8 and in Fig. 3.9. The figures are evolving with the percentage of the surface
taken by ǫ2 within one plate. We can see for ǫ1 that the domain [10, 60] × [10, 45] degrees and
its symmetric allow to generally retrieve a correct value. As the incidence angles increase, we get
either erroneous or no solutions for the cases of 20% and 50% of ǫ2. This is especially true in
the [45, 80] × [45, 80] degrees where ǫ1 value is overestimated. At 80%, this phenomenon is less
important as we begin to see the correct value near of 65 degrees. However there is still a strip of
overestimated ǫ1 at [45, 50] degrees.
For ǫ2, we observe an increasing estimation of ǫ2 as it takes more and more surface on the plate.
At first, it is localised at high incidence angles near 80 degrees. Then, for the 50% case, the
estimation of ǫ2 can be done over [60, 80] × [10, 45] degrees and the symmettrical region. At 80%
this area extends to [50, 80]× [10, 80] and its symmetric. Outside these domains, we get at 20% few
combinations where ǫ3 is correctly estimated (mainly near 50 degrees), then with 50% and 80% we
get closer and closer to ǫ2 value.
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Figure 3.6 – Real and imaginary parts for ǫ1 at 1 GHz for the different structures from the first
set of simulations.
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Figure 3.7 – Real and imaginary parts for the second permittivity at 1 GHz for the different
structures from the first set of simulations.
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Re(ǫ1) Im(ǫ1)
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Figure 3.8 – Real and imaginary parts for ǫ1 at 1 GHz for the different structures from the second
set of simulations.
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Re(ǫ2) Im(ǫ2)
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Figure 3.9 – Real and imaginary parts for the second permittivity at 1 GHz for the different
structures from the second set of simulations.
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3.2.2 Parameters of measurement device

Here, we look at the impact of the position and orientation of the measuring device.

Incidence angle influence

Figure 3.10 – Relative error for ǫ1 and ǫ2 given φ2 error at 1 GHz and φ1 = 60 degrees.

As in subsection 2.3.2 we look here at the influence of the incidence angle on the results. How-
ever, we now have two incidence angles to analyse. Thus we will first set φ1 and make the analysis
like in 2.3.2 assuming there is no error made on φ1. Then we will set also φ2 and look at the error
on the results given errors on both angles. We rely on the symmetry between angles observed in
3.2.1 to get identical results for φ2 relatively to φ1.

We set φ1 to 60 degrees. This choice was made regarding subsection 2.3.2 and also regarding
Fig. 3.3 where φ1 = 60 degrees implies to have correct results at 1 GHz. Then we analyse the
relative error made on each permittivity for different φ2 and given an error on φ2 (notations are
identical to the one in 2.3.2). In Fig. 3.10, the line φe2 = φc2 is the location of the minimum of
relative error as it corresponds to the ideal use of the method. If we step outside this line, the
relative error quickly increases especially for angles above 55 degrees. Below this value, the method
is more flexible in the [20, 45] degrees interval. For ǫ1, it is quite interesting to see that in this
range, it is better to overestimate the incidence angle than to underestimate it as the variation of
the error is slower in the first case. For ǫ2, it seems to be the opposite case.
It is also interesting to see that for φc2 ∈ [45, 85] degrees we can get another permittivity couple if
we compute the solution using φe2 ≈ 90 − φc2.

In Fig. 3.11 and Fig. 3.12, we set φc1 = 60 and φc2 = 50 degrees and we look at the variation of
the estimated permittivities with an error on incidence angles ∆φ1 = φe1 − φc1 and ∆φ2 = φe2 − φc2
of ±10 degrees.
From these figures, we see that the method allows a narrow strip of errors: from (∆φ1,∆φ2) =
(−5,−4)˚to (∆φ1,∆φ2) = (6, 6)˚, a line of correct permittivities could be observed. It means
that if the incidence angle is estimated wrongly due to a small constant offset, results are still ok.
Outside this strip, we see anothet strip that might be interesting: from (∆φ1,∆φ2) = (−10, 4)˚to
(∆φ1,∆φ2) = (−4,−5)˚. In this strip, we might find results quite close to the wanted permittiv-
ities. The imaginary part of ǫ1 and the real part of ǫ2 are correctly retrieved. On the other side
we underestimate the real part of ǫ1 (around 8) and the imaginary part of ǫ2. In the strip defined
by (∆φ1,∆φ2) = (−10,−4)˚to (∆φ1,∆φ2) = (−4,−5)˚, the inverse phenomenon is observed.
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Figure 3.11 – ǫ1 given φ1 and φ2 errors at 1 GHz and φ1 = 60 and φ2 = 50 degrees.

Figure 3.12 – ǫ2 given φ1 and φ2 errors at 1 GHz and φ1 = 60 and φ2 = 50 degrees.

Outisde these strips of results, no physical results are found: having a positive ∆φ1 makes the
method more sensitive to ∆φ2 error as the domain of physical results is reduced.
Anyways, the incidence angle looks to be again a critical parameter as few degrees off may lead to
a large error.

Non-null azimuth angle

In 2.3.2 we have seen that by normalizing the backscattered electric field by its corresponding
PEC equivalent, we can still invert even with a change in azimuth. This was due to the fact that
we can retrieve through this normalization step the double bounce equation in HH and V V . Thus
by taking the same simulation and normalization step at 1 GHz, we are again able to invert with
the new method. Fig. 3.13 shows the proportion of correct, close and absence of results at 1 GHz
versus the azimuth angle. For the close curve, no change with the variation of azimuth can be
observed for either ǫ1 or ǫ2. However if for ǫ2 the amount of correct results remains identical over
the azimuth range considered, it is not the case for ǫ1. For this permittivity at an azimuth angle
of ±6 degrees, changes start to be really noticeable without being dramatic as we get around 75%
of correct results. The percentage of "no result" is around 6 - 7 % whatever the azimuth angle.
These results show a robustness to a change in azimuth like with the first method provided that
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we apply an adapted normalization step. Likewise, the same remark can be done: we could also
have cross different azimuth normalized data to perform the inversion.

Figure 3.13 – Proportion of correct, close and no results for ǫ1 and ǫ2 at 1 GHz for several
azimuth angles.

Roll angle

In this subsection we analyse the influence of the method to a roll rotation (i.e. a rotation
around the line-of-sight) of the emitter-receiver device as in 2.3.2. Results in terms of percentage
of correct, close and absence of results are provided in Fig. 3.14.

Figure 3.14 – Proportion of correct, close and no results for ǫ1 and ǫ2 at 1 GHz for several
auxilary angles.

From those figures, we can notice that this new method is as robust to a roll rotation of the
device as the method exposed in the previous chapter. For ǫ1, we get more than 20 % of correct
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results within ±5 degrees and more than 60 % of close results in the same range. In the case of
ǫ2 we have for all the rotation angle simulated more than 55 % of correct results and more than
70% of close results. Those results are in agreement with the meaning of the rotation angle: as we
rotate the device, we collect more and more from the other polarisation degrading more and more
the results. The importance of the degradation of the results seems to be bound to the value of
permittivity. As the illuminated dimensions of the plates are equals, one might assume that as ǫ2
is in modulus lower than ǫ1 its calculation is more robust to this change.

3.3 Summary of the method

Fig. 3.15 represents the process to find back the permittivities using the method developed in
this chapter.
Two measurements of HH electric field at two different incidence angles are needed to make this
method work. As seen, inversion is still dependent on the electrical dimension. If as the previous
method, the incidence angle and the dihedral angle are still very critical parameters, the method
is flexible with changes in azimuth and auxiliary angles. A noticeable difference with the previous
method is the behaviour to a composite permittivity structure. Here, we do not have an evolution
from one permittivity to another along the incidence angle. We rather find a mixing law on one
sub-domain angle and the rest is dealing with errors. Given the results from the study made
on the influence of parameters, incidence angles (φ1, φ2) taken in crossed domains like (φ1, φ2) ∈
[50, 75] × [15, 40] degrees can provide the best results for this method.
Still one main drawback of this method is its necessity to normalise the backscattered electric field
with the one from an equivalent PEC structure. To bypass this step, one could use the same
approach as in [3,4] and consider the ratio of co-polarised fields. We propose to develop this third
method in the next chapter.
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Measured electric fields
at HH at two inci-

dence angles φ1 and φ2.

Divide the measured
electric fields by their

corresponding PEC fields.

Calculate [6, 7] or simulate
[8] the electric fields in
HH at φ1 and φ2 for an
equivalent PEC dihedral
at the same frequency.

a, b, L, φ1, φ2 and f

EHH(φ1), EHH(φ2)

EHH,PEC(φ1),
EHH,PEC(φ2)

Calculate α1, α2, α3 and α4 using
Eq. (3.14). Numerically calculate the
roots in X2 of Eq. (3.13): r1, r2, r3, r4

RDB
H (φ1), RDB

H (φ2)

For each root ri, calculate two permittivities
ǫ
i,j
1 (at φj , j = {1, 2}) from Eq. (3.3). Using
the definition of X2 in Eq. (2.1), retrieve
the four possible ǫi2 from the four roots ri

r1, r2, r3, r4

Given the couples (ǫi,j1 , ǫi2) with
i ∈ {1, 2, 3, 4} and j ∈ {1, 2}, dis-
card couples that do not belong to
the physical domain of permittivity

and that do no comply with Eq. (1.6)

Possible couples: (ǫi,j1 , ǫi2).

If one couple left: (ǫ1, ǫ2)

Figure 3.15 – Process of the method.
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Chapter 4

Ratio method

The two previous methods both require double bounce reflection coefficients that can be difficult
to obtain from measurements. To solve this problem, we normalise the fields by the ones from an
equivalent PEC structure. This step implies that we have to know the structure dimensions which
might not be the case in practice. To remove this normalisation step, we develop in this chapter a
last method using the ratio between VV and HH fields 1.

4.1 Theory

As we may have a null or a minimal field at VV due to Brewster or Pseudo-Brewster angles,

we will consider the ratio ρDB as : ρDB =
RDB

V

RDB

H

. The assumption that EV V (φ)
EHH (φ) ≈ ρDB relies on the

fact that the double bounce component for a PEC dihedral differs from sign between HH and VV
(see Eq. (2.11) and Eq. (2.12)).

So considering:

ρDB =
RDB
V

RDB
H

, (4.1)

we can substitute Eq. (2.3) and Eq. (2.5) expressions in Eq. (4.1) leading to:

ρDB =
((X2

1 + sin2 φ) cosφ−X1)((X2
2 + cos2 φ) sinφ−X2)

((X2
1 + sin2 φ) cosφ+X1)((X2

2 + cos2 φ) sinφ+X2)

(cosφ+X1)(sinφ+X2)

(cosφ−X1)(sinφ−X2)
. (4.2)

By multiplying ρDB in Eq. (4.2) by the polynomial denominator of its right member we can
have a polynomial equation:

ρDB
((

X2
1 + sin2 φ

)

cosφ+X1

)((

X2
2 + cos2 φ

)

sinφ+X2

)

(cosφ−X1)(sinφ−X2)

−
((

X2
1 + sin2 φ

)

cosφ−X1

)((

X2
2 + cos2 φ

)

sinφ−X2

)

(cosφ+X1)(sinφ+X2) = 0 (4.3)

that can be factored by (X2
2 − sin2 φ)(X2

1 − cos2 φ). So it leads us to:

pX1X2 + qX1 + rX2 + s = 0 (4.4)

where
p = (ρDB − 1) sinφ cosφ

q = (ρDB + 1) cos3 φ

r = (ρDB + 1) sin3 φ

s = (ρDB − 1) cos2 φ sin2 φ

(4.5)

1. We thanks here Prof. Kamal Sarabandi from the University of Michigan for suggesting this approach.
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Eq. (4.4), alone, provides an infinity of (ǫ1, ǫ2) solutions.

This equation is similar to Eq. (3.2) such that we will apply the same process of resolution. We
consider two measurements (ρDB

1 , ρDB
2 ) made at (φ1, φ2). As we have:

ǫ1 = X2
1 + sin2 φ =

( rX2 + s

pX2 + q

)2

+ sin2 φ (4.6)

looking alike to Eq. (3.3), we obtain a similar equation as Eq. (3.6) with the coefficients defined in
Eqs. (4.7).
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Likewise in 3.1 we obtain an eight degree equation (Eq. (3.11)) in ξ2 =
√

ǫ2 − cos2 φ2 with
an identical definition of (A,B,C,D,E, F,G,H, I) regarding to (a, b, c, d, e, f, g, h, k) as defined in
Eqs. (3.12). Unlike in 3.1, we are unable to factorize further this eight degree equation.

From this eight degree equation, at least one of the eight roots should lead to ǫ2. To do so, we
numerically compute the eight candidates for ǫ2. Then we use Eq. (4.4) at φ1 and also at φ2 to get
the associated candidates in ǫ1. By doing so, we collect 16 candidates of (ǫ1, ǫ2). We filter out the
couples that are not in the physical domain. We also keep couples that verify Eq. (4.1) at φ1 and
φ2. This process summurized in Fig. 4.1 allows us to have for most of the cases a unique couple
solution.

ρ1 and ρ2 measured at φ1 and φ2

Roots of Eq. (3.11)

Eq. (4.6)

ǫi2, i ∈ {1, ..., 8}

(ǫi,21 , ǫi2), i ∈ {1, ..., 8}(ǫi,11 , ǫi2), i ∈ {1, ..., 8}

at φ1 at φ2

Filtering

We verify for each couple (ǫi,j1 , ǫi2), i ∈ {1, ..., 8} and j ∈ {1, 2}:
— Both ǫ1 and ǫ2 are in P = {ǫ| Re(ǫ) > 1, Im(ǫ) ≤ 0}
— Throught Eq. (4.1), check that ρ1 and ρ2 are retrieved

given ((ǫi,j1 , ǫi2)
Given the permittivity couples that comply the two previous
contraints:

— if one permittivity couple alone is complient, it is the
solution

— if several permittivity couples are complient:
— the couples are close to each other, they define the

same solution couple.
— at least one of the couple is far from the other

couples, none of them are solutions.

Figure 4.1 – Filtering process of the method.
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4.2 Domain of validity: limits and range of possibilities

As in section 3.2 we use the data from section 2.3 to evaluate the method regarding to the
object and the measuring device parameters.

4.2.1 Object parameters

First the object parameters will be dealt with. Studies on the geometry and the permittivity
of the dihedral are carried out in this subsection.

Electrical dimension

(a) For ǫ1 = 10 − 3i. (b) For ǫ2 = 2.4 − 4.5i.

Figure 4.2 – Percentages of correct, close and absence of results with respect of the electrical
dimension, for ǫ1 (left) and ǫ2 (right).

As in 2.3.1 and in 3.2.1, we analyse here the influence of the electrical dimension on the method.
We use the same way to qualify it than the approach exposed in 3.2. The same dataset is used. As
we are using a ratio between the double bounce coefficients in VV and HH and given the likelihood
of the PEC backscattering signal between the polarization, there is now no need to normalize with a
equivalent PEC signal. We directly compute the ratio VV over HH from the field data and invert it.

In fact we observe the exact same trends as the ones in 3.2.1. Again, the curve of correct results
for ǫ1 goes from few percent to 61% whereas for ǫ2 it is from 6% to 80%. However the occurrence
of no solution has increased compared to the previous method: it decreases from 60% of the data
at D

λ
= 5 to around 14% at D

λ
= 61. It is explainable by the observation of the low and high

incidence angles area where the method is having difficulties to find an acceptable permittivity pair
as described in the following paragraph.

In Fig. 4.3, we draw the permittivities results in terms of real (Re) and imaginary (Im) parts for
ǫ1 and ǫ2 at 0.3 and 1 GHz (corresponding respectively to a D

λ
equal to 18 and 60). The represen-

tation is made along the incidence angle (φ1, φ2). Note that colorbars of Fig. 4.3 are thresholded.
The green colour corresponds to the interval containing the theoretical value.
From first sight, we can notice the axis of symmetry φ1 = φ2. As for the precedent method in
3.2.1, we observe the same influence of the frequency evolution: at 1 GHz we obtain more results
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and homogeneous areas of correct results than at 0.3 GHz. Likewise there is a strip of ‘no re-
sults’ at 80 × [0, 90]˚. However, one difference with the one polarization method is the absence
of results at low combinations angles ([10, 30] × [10, 30]˚at 1 GHz) and also for the high ones
([70, 80] × [70, 80]˚at 1 GHz). The phenomenon gets worse as the frequency decreases. So to
have a good estimation of both permittivities, the best choice for (φ1, φ2) is to take it in, either
]50, 75[×]15, 45[˚or its symmetric.
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0.3 GHz 1 GHz

Re(ǫ1)

Im(ǫ1)

Re(ǫ2)

Im(ǫ2)

Figure 4.3 – Real and imaginary parts for ǫ1 and ǫ2 at 0.3 and 1 GHz.
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Dihedral angle

Figure 4.4 – Percentages for ǫ1 and ǫ2 of correct, close and absence of results at 0.3 GHz.

Figure 4.5 – Percentages for ǫ1 and ǫ2 of correct, close and absence of results at 1 GHz.

In Fig. 4.4 and Fig. 4.5, we plot the percentages of correct, close and absence of results for ǫ1
and ǫ2 at 0.3 and 1 GHz over the φd angle. From the first sight, we see strong similarities in shape
with Fig. 3.4 and Fig. 3.5. Again at 0.3 GHz, we have at best 20 % of correct results for ǫ1 and 45%
for ǫ2 and a minimum of 30% of no results. At 1 GHz, we find again curves with bell shape where
we can expect 60% of correct results for the first permittivity and 80 % for the second. However,
those good results are contained in φd ∈ [−1, 1] degrees. Outside the [−1.5, 1.5] angle domain, the
percentage of correct results for either ǫ1 or ǫ2 drops below 20%.
Again these simulations show the sensitivity of this method as the previous ones to the dihedral
angle : if we have more than 1.5 degrees of difference to a perfect right angle, the ability to estimate
a correct permittivity is reduced.
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Mix of permittivities

We analyse our method regarding to the composition of permittivity using the sets of simulations
exposed in 2.3.1.

Re(ǫ1) Im(ǫ1)

Horiz

Quad

Vert

Figure 4.6 – Real and imaginary parts for ǫ1 at 1 GHz for the different structures from the first
set of simulations.
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Re(ǫ2) Im(ǫ2)

Horiz

Quad

Vert.

Figure 4.7 – Real and imaginary parts for the second permittivity at 1 GHz for the different
structures from the first set of simulations.

First set of simulations: In Fig. 4.6 and Fig. 4.7 we observe very close results between the
different simulation models. From the result on the first permittivity, we perfectly retrieve ǫ1 value
as we would from a dihedral composed of two homogeneous plates. Results are slightly less steady
for the “horiz” structure or when we look at the domain [35, 50] × [10, 45] and its symmetric. For
the second permittivity, we found a homogeneous permittivity around 9 − 5i which is roughly the
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same as the effective permittivity calculated in Table. 2.1 for a volumetric fraction of 0.5. For few
high incidence angles we estimate ǫ2.

Re(ǫ1) Im(ǫ1)

20%

50%

80%

Figure 4.8 – Real and imaginary parts for ǫ1 at 1 GHz for the different structures from the second
set of simulations.

Second set of simulations: From the second set of simulations, we display the results we obtain
for ǫ1 and the second permittivity in Fig. 4.8 and Fig. 4.9. Again, in general, we retrieve ǫ1 for
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Re(ǫ2) Im(ǫ2)

20%

50%

80%

Figure 4.9 – Real and imaginary parts for the second permittivity at 1 GHz for the different
structures from the second set of simulations.

most of the angle combinations even if for [35, 60] × [10, 45] it is less steady as a regular dihedral.
With the second permittivity, we observe its evolution with the volumetric fraction growing from
a value around 12 − 7i at 20% to a value near 6 − 3i at 80%. It looks like it follows the same rule
as the ideal method exposed in 2.3.1 so that we estimate an efficient permittivity.
The results provided by these sets of simulations on this method are more similar to the ones from
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the ideal method. The behaviour of the results is looking alike. ǫ1 is always retrieve almost as if it
was from a dihedral of two homogeneous surfaces. The second permittivity is following the mixing
law observed in 2.3.1.

4.2.2 Parameters of measurement device

Here, we look at the impact of the position and orientation of the measuring device.

Incidence angle influence

Figure 4.10 – Relative error for ǫ1 and ǫ2 given φ2 error at 1 GHz and φ1 = 60 degrees.

In Fig. 4.10 we display the relative error on ǫ1 and ǫ2 at 1 GHz at φ1 = 60 degrees and given an
error on φ2 as in 3.2.2. We observe that ǫ2 is quite sensitive to an error in φ2 as if we step outside
the φc2 = φe2 line the error is increasing quickly. Only few degrees are allowed if we want the result
to be under 10% of relative error. For ǫ1, large area of acceptable angle errors is shown as long as
we have φc2 less than 55 degrees as for φe2. However these figures may partially reflect the behaviour
of the method as we deal with two permittivities with a noticeable difference in modulus between
them.
So we look at an example of error in terms of real and imaginary part at 1 GHz and at (φ1, φ2) =
(60, 50) degrees. In Fig. 4.11 and Fig. 4.12, we plot the results of ǫ1 and ǫ2 with all the combined
(∆φ1,∆φ2) ∈ [−10, 10] × [−10, 10]˚. We observe that ǫ1 as the imaginary part of ǫ2 are correctly
retrieved for (∆φ1,∆φ2) = ([−10, 3], 0)˚. The error in the real part of ǫ1 mainly varies with the
error ∆φ2 is is quite constant with ∆φ1. In ǫ2, the domain of correct real part is different from
the domain in imaginary part. They intersect in a small domain (∆φ1,∆φ2) = [−1, 1] × [−1, 1].
However the error in ǫ2 seems to evolve in real part with ∆φ1 and in imaginary part with ∆φ2.

Non-null azimuth angle

In Fig. 4.13 we plot the magnitude of the resulting ratio from the backscattered fields simulated
as explained in 2.3.2 for an azimuth angle in [−10, 10] degrees. From it, we see that we retrieve the
ratio of the double bounce coefficients for all the azimuth angles. This is supported by the previous
analysis in 2.3.2 and 3.2.2 where we have been able to find back the double bounce coefficients by
normalizing the electric fields by the fields from a PEC equivalent simulation.
In Fig. 4.14 we display the percentage of correct, close and absence of results for ǫ1 and ǫ2 at
1 GHz evolving with the azimuth angles. From these figures, we observe that the curve and so
the estimation of the permittivities are quite constant over the azimuth range. It underlines the
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Figure 4.11 – ǫ1 given φ1 and φ2 errors at 1 GHz and φ1 = 60 and φ2 = 50 degrees.

Figure 4.12 – ǫ2 given φ1 and φ2 errors at 1 GHz and φ1 = 60 and φ2 = 50 degrees.

robustness of the method to a variation of the azimuth angle. Indeed for ǫ1 we are still able to have
more than 40% of correct results at an azimuth angle of ±10 degrees. For ǫ2 this percentage is not
going below 70%. We notice that if the curves are quite constant, still we slightly get better results
for an azimuth angle within the [−2, 2] degrees. One can also notice that we get worse results than
the previous method. This is due to the fact that this method finds more often no solution. Hence
curves are more or less translated of 15 points between this method and the previous one.

Roll angle

We now take the simulated data from 2.3.2 to analyse the effect of the rotation angle on the
method. In Fig. 4.15 are displayed the percentages of correct, close and absence of results for ǫ1
and for ǫ2 at 1 GHz. From these figures, we see bell curves for the correct and the close cases but
also we notice that they are asymmetric. There is more no result cases for high positive rotation
angles than for the negative ones and its is specially visible for ǫ2 that we have more correct or
close results for negative rotation angles. It may be seen for ǫ1 if we look closely for instance at
±4 degrees for the close curve or at ±2 degrees for the correct results. ǫ2 often correctly retrieved
within the [−3, 3] degrees range whereas ǫ1 is restricted to [−1, 1] degree. The percentage of no
results is mainly below 20% except above ±6 degrees.
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Figure 4.13 – Magnitude in dB of the ratio computed from backscattered fields simulated for
several azimuth angles at 1 GHz.

Figure 4.14 – Proportion of correct, close and no results for ǫ1 and ǫ2 at 1 GHz for several
azimuth angles.



66 CHAPTER 4. RATIO METHOD

Figure 4.15 – Proportion of correct, close and no results for ǫ1 and ǫ2 at 1 GHz for several
rotation angles.



4.3. SUMMARY OF THE METHOD 67

4.3 Summary of the method

Measured electric fields
at HH and V V at two

incidence angles φ1 and φ2.

Divide the V V by
HH measured electric

fields at φ1 and φ2.

EHH(φ1), EV V (φ1),
EHH(φ2), EV V (φ2)

Calculate coefficients of Eq. (3.12) us-
ing Eq. (4.7). Numerically calculate
the roots in X2: ri, i ∈ {1, ..., 8}.

ρDB
1 , ρDB

2

For each root ri, calculate two permittivities
ǫ
i,j
1 (at φj , j = {1, 2}) from Eq. (4.6). Using
the definition of X2 in Eq. (2.1), retrieve

the eight possible ǫi2 from the eight roots ri

ri, i ∈ {1, ..., 8}

Given the couples (ǫi,j1 , ǫi2) with
i ∈ {1, 2, ..., 8} and j ∈ 1, 2, dis-
card couples that do not belong to
the physical domain of permittivity

and that do no comply with Eq. (1.6)

Possible couples: (ǫi,j1 , ǫi2).

If one couple left: (ǫ1, ǫ2)

Figure 4.16 – Process of the method.

As before we summarise the method with the chart in 4.16. From the first sight, this method
might look expensive regarding its requirements: in addition of VV and HH fields, we need two
incidence angles. However this is the price to remove the normalisation step from the process
and to directly deal with a relative quantity. All along this chapter, we obtain results without
it. It allows to retrieve the permittivities without knowing the dimensions of the dihedral and
in the extreme case, without knowing the frequency as long as the measurements are made at
the same one. As for the previous method, we advise to use crossed incidence angle domains,
(φ1, φ2) ∈ [15, 45] × [45, 75] and its symmetrical, to obtain the closest results to the theoretical
values according to the parameters study.
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As observed, the proposed method is as sensitive as the previous one with the dihedral angle.
Moreover with a composition of permittivities, it is ruled by the same mixing law as the ideal
method except it is now angle independent. The retrieval is invariant with azimuth angle and it is
flexible with the auxiliary angle.

4.4 Summary and discussion about our three methods

The theoretical part of this dissertation has been dedicated to three main methods we have
developed to retrieve the complex permittivities of a dihedral structure under radar measurements.
Nonetheless, we can also mention side methods that may reveal to be useful in some cases. The
first one retrieves the permittivity of a dihedral made of one material by the mean of HH double
bounce coefficient. It can be found in [11]. By using the equations that bind the permittivities and
the measurement Eq. 3.3 or Eq. (4.6) we can use a ‘mapping’ approach consisting in providing a set
of ǫ2 to generate its associated ǫ1. The same process can be done with the swapped permittivities
as it only needs to reformulate the equations.
This remark raises a thought on the choice made during the theoretical development of the last two
methods when we choose to write the invariance of ǫ1 and then to solve in ǫ2. We can wonder what
would happen if at this stage we swap the role of the permittivities: i.e. we write the invariance
of ǫ2 and then to solve in ǫ1. Actually, nothing changes as it is illustrated using the data from the
numerical illustration subsection in the Annex C.
Another theoretical remark concerns the axis of symmetry φ1 = φ2, clearly observable on simulated
data but that is not obvious from the equations. Indeed, if Eq. (3.6) still possesses this symmetry,
we analytically lost it when we transform it into Eq. (3.11). However observations on the method
using the ratio between VV and HH suggest that if by swapping φ1 and φ2 the roots of Eq. (3.11)
are not the same (to the roots from the ‘unswapped’ version), we find back the same values of ǫ2
after applying Eq. (2.1). This insight suggests that the symmetry is kind of hidden in Eq. (3.11)
but it is revealed with Eq. (2.1) when we undo the transformation to get Eq. (3.11).

One may wonder why we did not try to combine the two last developed methods and make
one using the ratio of HH polarization at two incidence angles. From first sight this approach is
attracting due to the fact that it gathers the advantages of the two methods: one polarization
without Brewster angles, ratio without a normalization by a PEC equivalent field that could in
addition imply the invariance of the results with changes in azimuth. However, the normalisation
step does not disappear completely. If the incidence angles are not in the same sub-domain ([0, 45]

or [45, 90] degrees) we still need the knowledge of
a

b
(see Eq. (2.12) for the PEC case). Moreover the

complexity of the equations put the approach used to develop the methods in its last possibilities 2.

In table 4.1 we briefly summarize the analysis performed over the three methods and their re-
quirements. The dimensions of the dihedral in this table are not mentioned as a parameter. This is
due to the fact they contribute in two ways. First, they are essential to normalize the backscattered
electric field by an equivalent PEC signature. The second is that the dimensions and the frequency
(thus the electrical dimensions) are inherently bound to the double bounce reflection. This last
remark makes difficult to put the dimensions as a specific parameter as it is more a general one. In
fact the electrical dimension does not allow to differentiate the methods as they all require to be
equal at least to 15 (the best would be to start at 20) for each side of the plates to obtain a proper
estimation of the permittivities.

For the ideal method the main advantage is the need of only one incidence angle. Moreover,
its analytical expression makes it easy in use (no filtering process). On the other hand, it requires
two polarized fields and a normalisation step before being applied. With the method that uses one

2. At some point, we ended with a multi-variable polynomial form (due to the different permittivities and angles)
that can not be factored or transformed in a one variable polynomial form easily.
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Ideal method One polarization Ratio

Polarizations required HH and VV HH HH and VV
Number of incidence angles one two two

PEC nomalization yes yes no

Handle dihedral angle no slightly slightly

Permittivity composition mixing law
dependent on

incidence angles
mixing law

Sensitivity to incidence angle high high high

Azimuth angle
with an equivalent

PEC normalization: yes
with an equivalent

PEC normalization: yes
ok

Rotation angle
partially, depends on
the incidence domain

ok slightly

Table 4.1 – Summary of the three methods

polarisation, we reduce the number of required fields but we need two incidence angles and we still
have this normalisation step. By using the ratio we get a handy method where the normalisation
step is removed. However it requires now two angles and two polarisations.



70 CHAPTER 4. RATIO METHOD



Chapter 5

Experimental validation

In this chapter, we will focus on the validation of the different methods using measurements
from controlled environment: the Geeps anechoic chamber. To do so, we will make a dielectric
dihedral from two plates, one made of PVC and one of nylon. A quasi-monostatic system is built
using two identical antennas. Estimated permittivities of the two materials are compared with
permittivities obtained from measurements performed with a near field probe.
In the last section, we look at the application of the last exposed method to a concrete wall corner.
Measurements for few incidence angles are taken in an underground parking lot of CentraleSupélec
to assess the feasibility of the ratio method in-situ.

5.1 Design of the measurement

The anechoic chamber in Geeps laboratory is a rectangular room of dimensions 9 by 6 meters
and 6 meters height. The maximum distance between the object and the monostatic device is 4.3
meters. To make the measurement two identical antennas are used (Double Ridged Broadband
Horn BBHA 9120 C from Schwarzbeck, datasheet in [51]) with a built-in frequency of operation
from 2 to 19 GHz. The greatest dimension of the aperture of these antenna is 0.12 meter. It implies
a minimal distance of 1.8 meter to be in far-field condition 1 relatively to the antenna in the [2,19]
GHz bandwidth. This can be easily achieved with the maximum distance of 4.3 meters allowed in
the anechoic chamber.

Now regarding the dimensions of the object, two issues are raised. The first is the far-field
distance related to the object and the second is the electrical dimension of each plate in order to
have meaningful double bounce to perform the inversion. For a dihedral made of squared plates of
0.25 meters the far-field distance goes from 2.5 to 23.7 meters within the frequency bandwidth of
the antennas. As the wavelength goes from 0.15 to 0.016 meters with the frequency, the electrical
dimension of each plate would go from 1.7 to 15.8. We see here that a trade-off should be made: at
the lower part of the frequency bandwidth, the farfield distance is reasonable given the dimension
of the anechoic chamber, in the higher part of the frequency bandwidth we have the best electrical
dimension. A discussion and an illustration about the far-field distance of a dihedral is presented
in Appendix D.1.

However as the gain of the antenna is the best in the [5,18] GHz (steady and high, see datasheet)
we will choose this bandwidth and invert from the collected field. Moreover such wide bandwidth
also have a purpose into discriminating time phenomenons from each other as we will see it later
in this chapter. The corresponding electrical dimension by plate and theoretical far-field distance
are given in Table. 5.1. We make a dihedral from a plate of nylon (ǫ1) and a plate of PVC (ǫ2). A
near field probe (Agilent 85070D Dielectric Probe Kit) from Geeps laboratory is used to measure

1. 2D2

λ
, where D is the aperture of the antenna, or if we consider an object D is its maximal dimension.
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permittivities and provide us a point of comparison. It extracts the permittivity from 0.5 to 6 GHz
of a flat solid material or a fluid by measuring the reflection coefficient of an open-ended probe
after calibration with air. Limitations of the near-field probe allow us to perform the measurements
in the [0.5, 6] GHz bandwidth and not the [5, 18] GHz. In Fig. 5.1 we display the result of the
measurement in [0.5, 6] GHz of the relative permittivity of the air. As it can be seen, most of
the measurement points are concentrated near 1 with a very small imaginary part (between 0 and
-0.03). Thus we perform the measurement of the PVC and nylon plates on three different points
denoted p1, p2 and p3. Results are displayed in Fig. 5.2 for the nylon material and in Fig. 5.3 for
the PVC. For PVC material, the real part of the permittivity is contained in the [3,3.5] interval
and for the nylon material it is in the [2.5,3] interval. For both materials, their real parts are
quite steady along the frequency and their imaginary parts are quite small and oscillate with the
frequency around zero for frequencies greater than 2 GHz. With these measurements we have at
least an idea of the values of permittivities we have to retrieve even if the measurements are not
made in the same bandwidth 2. Moreover, as it seems that we deal with real value permittivities (or
very close to real value) the wide bandwidth gives an opportunity to distinguish the reflection on
the illuminated sides of the plates from the secondary reflections coming from the transmission of
the wave along the width and its reflection on the shadowed side of the plate. Such bandwidth (13
GHz) allows us to have a fine distance resolution of 0.011 meters regarding the physical 6 cm depth
of each plate. As each plate is made with different permittivities the shortest electrical distance
between the interface air/material and the interface material/air (so from one side of the plate to
the opposite one) is around 10 cm for both plates as the wave travels at c0√

Re(ǫ)
speed inside it. So

this bandwidth might also help us to distinguish in distance the double bounce reflection from the
multiple reflections happening within the dihedral.

f (GHz) 5 6 8 10 12 14 16 18
λ (cm) 6 5 3.7 3 2.5 2.1 1.9 1.7

D
λ

4.2 5 6.7 8.3 10 11.7 13.3 15

2D2

d

λ
(m) 6.2 7.5 10 12.5 15 17.5 20 22.5

Table 5.1 – Evolution of the electrical dimension and of the theoretical farfield distance with the
frequency bandwidth considered and for a dihedral of D = 0.25 m side size implying a diagonal

size of Dd = 0.43 m.

2. It is not the same bandwidth but it is an adjoining one.
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Figure 5.1 – Measured air permittivity in real and imaginary parts with the frequency from the
near field probe.

Figure 5.2 – Measured nylon permittivity (ǫ1) in real and imaginary parts with the frequency
from the near field probe.

Figure 5.3 – Measured PVC permittivity (ǫ2) in real and imaginary parts with the frequency from
the near field probe.
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5.2 Measurement results

Figure 5.4 – Scheme of the measurement setup.

The rotation of the dihedral is made around 180 degrees with a 1 degree step such that the
azimuth rotation of the target in the anechoic chamber correspond to a change of the incidence
angle of the dihedral in our model (see scheme Fig. 5.4). The dihedral is placed on the rotating
platform such that its central edge is aligned with the platform centre of rotation. Marks of the
position of the dihedral on the platform are left to easily reproduce the measurement (or as we will
see it later to easily apply the same measurement to a metallic dihedral). As previously mentioned,
we use a quasi-monostatic system made of two identical antennas over the [5,18] GHz bandwidth.
A discussion about the positioning of the antennas in order to obtain fields as close as possible to
the far-field condition is presented in Appendix D.2. We collect VV and HH backscattered fields
over 1301 frequency points. The antennas (in HH polarization in the picture), the target platform
and the dihedral are displayed in Fig. 5.5. The plate made in PVC (ǫ2) is in grey and the nylon one
(ǫ1) is black. Its dimensions are (a, b, L, c) = (0.22, 0.25, 0.25, 0.06)m. A scheme representing a top
view of the measurement set-up is displayed in Fig. 5.4 where the two blue triangles represent the
two antennas, the blue rectangles the two plates composing the dihedral and the circle represents
the platform. The platform is commanded through the position controller by the computer. The
latter synchronises the measurement stage with the VNA (Vectorial Network Analyser) 3 with the
position controller.

In Fig. 5.6 is plotted the amplitude in dB of the S21 parameter for the two polarizations in the
frequency domain. As the coarse measurement from the antennas could be considered as the mea-
sure of the total field, another measurement without the target (the dihedral) is performed. This
latter measurement is subtracted from the dihedral measurement such that we keep the scattered
field. At the same time, it allows to remove the electromagnetic environment of the anechoic cham-
ber and to attenuate the coupling effect of the quasimonostatic system. In both polarization we see
two dash lines at 0 and 90 degrees of incidence angles that get thinner as the frequency increases.
It corresponds to the reflection of the plates when they are in front of the antennas corrupted by
interferences (no straight lines but dash ones). Between 0 and 90 degrees noticeable differences
between HH and VV can be seen: for HH we have signals mixed with repeatable patterns of gaps
describing arcs of circles in the continuity of the gaps of the dash lines. This is not observable
for VV. To understand this better we look at the signals in the time domain after performing an
inverse Fourier Transform. First we operate such that we obtain a real signal in the time domain 4.

3. A VNA is a measuring device for electrical network. It is modelled as a two-port device characterised by its
S-parameters (S11, S21,S12, S22). In our case, as we measure what is received at one port compared to the first we
are interested in S21 measurement.

4. i.e. s is a real signal in the time domain if F (s)(f) = F (s)(−f)∗, where F (s) is the Fourier transform applied
to s signal, f is the frequency variable and ∗ is the conjugate operator.
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Figure 5.5 – Measurement setup: the antennas, the platform and the dihedral.

Fig. 5.7 shows the temporal evolution of the measurement (globally in the left image, at 45
degrees on the left) for HH polarization. The x axis of these figures are in distance as we can link
time t and distance d with: d = c0t

2 . Due to the aliasing, we observe the target on the left side of the
picture in the negative distance domain. Given the temporal domain, we get a distance domain of
[−7.5, 7.5] m. However provided the length of the cables between the VNA and the antennas (both
greater than 2 m) and their intrinsic impedance, we can observe the mutual coupling of the antennas
at 5.4 m as displayed on the cut made at 45 degrees. Hence the signal is wrapped and the object
is found at -5.1 m. Relative distance is respected : 7.5 − 5.4 − (−7.5 − (−5.1)) = 4.5m, especially
given the distance between the two antennas (around 0.17 m). A zoom on the object location
is displayed in Fig. 5.8. From these images we see the displacement in range of the edges of the
dihedral, the first and main reflection of the dihedral and a secondary reflection after transmission.
In Fig. 5.9, we plot a scheme of the temporal signature. The dark blue and mauve lines represent
the movement of the edges of the dihedral as they are aligned at 0 and 90 degrees to the specular
reflections of each plates (one at 0 the other at 90 degrees) displayed here with the green dots.
If we calculate the distance between those dots and the edges at 0 and 90 degrees we retrieve a
and b values (around d1 in the scheme). We can see in Fig. 5.8 that the second edge is a bit far
away from the main reflection due to the fact that b is greater than a. As seen in [9], the double
bounce signature should be located at the same distance from the emitter-receiver device than the
central edge of the dihedral. This distance is also the one between the measurement device and the
plates signature at 0 and 90 degrees i.e. at 4.3 meters. In Fig. 5.8, we also see in VV image the
two Brewster angles near 30 and 60 degrees. The second reflection (cyan in the scheme) happens
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Figure 5.6 – Amplitude of the measured S21 in HH and VV polarizations in the frequency domain
along the rotation (incidence) angle.

Figure 5.7 – Amplitude of the measured S21 in HH polarizations in the time domain along the
rotation (incidence) angle (on the left) and at 45 degrees (on the right).

0.10 meters after the first reflection. This is due to the propagation delay in transmission within
the material. If we take the real part of the permittivity measured with the probe, we retrieve
the depth of the plate: 0.10√

3
≈ 0.06 m. As our method only relies on the double bounce we should

discard the edge movements and the second reflection by selecting only the temporal event linked
to the main reflection (green in the scheme) located at 4.3 meters from the antennas.
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Figure 5.8 – Amplitude of the measured S21 in HH and VV polarizations in the time domain
along the rotation (incidence) angle near 4.3 meters distance.

Figure 5.9 – Scheme of the measured S21 in the time domain along the rotation (incidence) angle.
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5.3 Inverting the measurement

Given the previous analysis of the temporal signals, we gate them to select at best the double
bounce component around 4.3 meters and for an incidence angle from -7 to 98 degrees as displayed
in Fig. 5.10. To efficiently perform this operation we need several points between the reflection of
interest occurring at -5.1 meters and the second one 10 cm behind. Here the bandwidth of 13 GHz
is useful as it give us around 9 points. To increase this number of points we use a zero padding
operation on the inverse Fourier transform used to put the signal in the temporal domain. By
doing so, we end with a signal of 5120 points (1301 originally) such that we obtain nearly 40 points
between the two phenomenon.

Figure 5.10 – Amplitude of the S21 in VV in the time domain along the rotation (incidence) angle
after time gating.

Once time gating operation is done, we take the signal back to the frequency domain and obtain
fields in HH and VV. Their amplitude are displayed in Fig. 5.11. From them we can see that there
is no more interferences represented as dash or arc patterns 5 in Fig. 5.6. We now have for HH
a rather smooth evolution with the frequency. For both polarization we can see the signature of
the fully illuminated plate at 0 and 90 degrees. In HH, one could observe between 7 and 14 GHz,
a built double bounce that takes over the sidelobes of the plate radiation patterns located at 0
and 90 degrees. In VV, we can clearly see the two Brewster gaps near 30 and 60 degrees. Again
between 7 and 14 GHz, these gaps looks to be constant in terms of incidence angle locations. This
is coherent with our model in which Brewster angles are invariant with the frequency. After 14
GHz, the gaps are slightly moving toward each other and the HH field is degrading. This might
be due to the far-field condition that is not sufficiently respected. Before 7 GHz, the HH signal
presents a dominant scattering of the plates at 0 and 90 degrees 6 . Now, using this two filtered
signals we can compute the ratio between VV and HH polarization.

5.3.1 Inverting using the ratio

By computing the ratio from the signals in the frequency domain after filtering, we can perform
the same kind of representation as in the previous chapter by building a representation with the

5. By playing with the time gating window (i.e. by selecting only the phenomenon of interest), one could see
that these patterns are mainly built though the combination of the two reflections. They are completely built with
the three reflections (one at -5.1 m, the second at -5 m and the weak third reflection at -4.9 m).

6. This phenomenon can be seen when using the theoretical P.O. solution as in Appendix D.1, Fig. D.1 for a
PEC dihedral of 0.3 × 0.3 × 0.3 meters dimension at 5 GHz
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Figure 5.11 – Amplitude of the measured S21 in HH and VV polarizations in the frequency
domain along the rotation (incidence) angle after time gating.

two measurements made at (φ1, φ2). In Fig. 5.12 and in Fig. 5.13 we display the calculated ǫ1 and
ǫ2 in terms of real and imaginary parts for four frequencies: 6, 10 and 13 GHz. For recall, using
the near-field probe, we measure in the [0.5, 6] GHz bandwidth, ǫ1 (nylon) around 2.7 − 0i and ǫ2
(PVC) around 3.2 − 0i.

In Fig. 5.12, we observe the frequency evolution of the ǫ1 (nylon) results in real and imaginary
parts. The real part is getting smoother as the frequency increases. At 6 GHz,the results oscillate
with φ1 or φ2 in [50, 80] degrees range between 2 and 4. These oscillations can be retrieved in the
imaginary part of ǫ1 between 0 and -1.5. They disappear as the frequency increases and at 10 or
13 GHz, most of the results for the real part is between 2.5 and 3 over [50, 75] × [10, 45] (and its
symmetrical) angular domain. In imaginary part, we get a similar behaviour except that at 10 -
13 GHz, we got an evolution by steps centred to the lower angular domain [10, 40] × [10, 40] where
the imaginary part is the lowest. It increases from -1 to 0.5 (tolerance for zero) for angles from
50 to 75 degrees. One can also notice in simulation, we lack the solutions at low angular domain
[10, 40] × [10, 40] degrees and at high angular domain [50, 80] × [50, 80] degrees. As before, these
gaps are slowly being filled from the intermediate angles ([15, 30] degrees) with erroneous values
(too high) as the frequency increases.

In the case of ǫ2 (PVC), we get smooth results at 6 GHz over the [17, 32]× [40, 80] domain. The
real part is contained in [2.5, 3] and the imaginary part in [−0.5, 0]. For angles below 17˚results
are no more meaningful as they variates too quickly from an angle to another (from 5 or more
to 2 or less). For angles between 32 and 40 degrees, we still get a real part in [2.5, 3.5] and an
imaginary part that borders the zero value. Above, in the [40, 80] × [40, 80] angular domain, we
have either, low or no solutions in the [50, 80] × [50, 80] domain, or in the intermediate area [40, 50]
we see repeatable peaks or drops (depending if we look at the real or imaginary parts). At 10 GHz,
we get an oscillating behaviour in real as in imaginary parts. It seems to vary between 2.5 and 3.5
(resp. -1 and 0) for the real (resp. imaginary) part. For both, the more we get close to low angles,
the more we will get a high imaginary part and the real part stays around 2.5 - 3. At 13 GHz, the
domain [20, 40] × [35, 80] degrees is more steady. The oscillating behaviour is less present. The real
part is in the [2.5, 3] interval exception made for few angles where it is in the [3, 3.5] interval. The
imaginary part is evolving by steps from the higher incidence angle domain [45, 90] × [45, 90] where
it is the lowest and it increases as soon as one angle decreases.

These results are in good agreement with the analysis made on the filtered signals: at 6 GHz,
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Re(ǫ1) Im(ǫ1)

6 GHz

10
GHz

13
GHz

Figure 5.12 – Real and imaginary parts for ǫ1 (nylon) at 6, 10 and 13 GHz (expected value
around 2.7 − 0i).

the results are not so nice as the electrical dimension is too low and as we mainly have the bac-
scattering signals of the plates. However between 8 and 14 GHz, we obtain nice results as we
are quite close to the farfield condition and we have a sufficient electrical dimension to invert the
permittivities.
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Re(ǫ2) Im(ǫ2)

6 GHz

10
GHz

13
GHz

Figure 5.13 – Real and imaginary parts for ǫ2 at 6, 10 and 13 GHz (expected value around
3.2 − 0i).

This behaviour with the frequency range can be seen in Fig. 5.14. We select three angle
combinations (φ1, φ2) at (20, 60)˚, (30, 60)˚and (40, 60)˚and plot the estimated ǫ1 and ǫ2 in their
real and negative imaginary parts. In this Figure, we observe a transition part of the results from 5
GHz to 8 GHz (sometimes 9 GHz) where for instance ǫ1 is evolving from 2 − i to 2.7 − 0.5i for any
angle combinations. Then a quite steady interval from 9 to 15 GHz, is observed where solutions
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ǫ1 ǫ2

(φ1, φ2) =
(20, 60)˚

(φ1, φ2) =
(30, 50)˚

(φ1, φ2) =
(40, 60)˚

Figure 5.14 – Real and imaginary parts for ǫ1 and ǫ2 with the frequency at three angle
combinations.

are oscillating. For ǫ1 it is around the 2.7 − 0.5i and for ǫ2 around the 3 − 0.5i. In this frequency
range the results are really close the measurements performed with the near field probe. Beyond
15 GHz, the solutions are diverging very quickly after 16 GHz.
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5.3.2 Inverting using the first two methods

Unlike the method using the polarimetric ratio where only the selection of the double bounce
component was required, for the first two methods we need an absolute value for RDB

H and RDB
H .

Therefore to get these quantities we need to compensate in amplitude and phase for the propaga-
tion of the wave, the characteristics of the antennas, the loss in cables, and the scattering part due
to the geometry of the dihedral.

Retrieving the double bounce coefficients.

For the compensation in amplitude, we apply the following equation derived from the radar
power budget equation [52]:

10 log10(|Spp|) = 20 log10(|S21,pp|) + 10 log10(
(4π)3R4

λ2
) − 2Gantenna,dBi − Lcables (5.1)

where Spp is the scattering element in polarization pp, S21,pp is the measurement of S21 in the
frequency domain after time gating at the polarization pp, R is the distance between the antennas
and the object (4.3 meters), λ is the wavelength, Gantenna,dBi is the isotropic gain of the antenna
and Lcables is the amplitude in dB of the loss due to the propagation in the cables between the
antennas and the VNA. Gantenna,dBi is given by the datasheet of the antenna. Lcables is measured
over the same frequency parameters as the measurement of the dihedral. The gain and the loss
amplitude are plotted in Fig. 5.15. In addition of this compensation we need to take away the
scattering part from the object itself as we did it when dealing with simulation data by normalising
the backscattered electric field by the one of a PEC equivalent structure: Epp,PEC . As we have
the dimension of the dihedral, we can compute the amplitude of the electric field in HH and VV
using [7].
Once this has been subtracted, the only step remaining is to compensate the measurement using
the calibration of the anechoic chamber. To do so we make the measurement of a canonical object,
here a metallic sphere of diameter dsphere = 0.25m over 901 frequency points between 9 and 18
GHz. According to [10], to be able to use the theoretical RCS of the sphere (pictured in Fig. 5.16),

we need to have a sufficiently large k
dsphere

2 quantity. At 9 GHz, it is superior to 20, which is large

enough to use: RCSspherePEC = π
dsphere

2

2
from [10]. Likewise we filter in the time domain based on

the distance between the quasi-monostatic device and the object to get Ssphere21,pp . We apply Eq. (5.1)

to obtain the RCS of the sphere 10 log10(|Sspherepp |). Hence we can compute the difference between
the RCS measured and the theoretical RCS of the sphere.
To sum up and after simplifications, to retrieve the amplitude of the double bounce coefficient in
pp polarization, we apply Eq. (5.2) 7:

20 log10(|RDB
pp |) = 20 log10(|S21,pp|)−20 log10(|Epp,PEC |)−(20 log10(|Ssphere21,pp |)−10 log10(π

dsphere

2

2

))

(5.2)
In Fig. 5.17 we plot the result of such operations at 10 GHz. To provide a comparison we

compute RDB
H and RDB

V using Eq. 1.6 with ǫ1 = 2.75 − 0.5i and ǫ2 = 3 − 0.6i (which is close to
the results found at 10 GHz when we use the ratio in the previous subsection). We can observe
that the amplitude curves in dB are quite close in HH and VV. The trend are retrieved with the
incidence angle and even if there is some gaps especially with HH curve we have a good agreement.

For the phase compensation it becomes more complicated as the dihedral rotates during the
measurement. Even by trying to position the central edge of the dihedral at the rotation centre of
the platform, we still see in phase a drift due to the movement. Therefore the most straightforward

7. Only valid if the measurement of the dihedral and the measurement of the sphere of calibration are performed
in the same conditions: identical antennas, distance, cables and frequency parameters.
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Figure 5.15 – Gain of the antenna from datasheet and its interpolation and the measured loss in
the cables.

Figure 5.16 – Picture of the metallic sphere.

solution is to make the same measurement (with the same parameters and setup) to a metallic dihe-
dral and to use its double bounce phase denoted ∠Spp,PEC to calibrate the phase from the dielectric
case ∠Spp. It should remove the phase drift due to the movement as we place it at the marks left
for the measurement reproducibility. Eq. (5.3) describes the operation to get ∠RDB

pp . We use the
metallic dihedral depicted in Fig. 5.18. It is made of thin square plates of dimensions 0.3 m by 0.3 m.

∠RDB
pp = ∠S21,pp − ∠S21,pp,PEC (5.3)

In Fig. 5.19 we plot the result of such operations at 10 GHz. Again, to provide a comparison
we compute RDB

H and RDB
V phase using Eq. 1.6 with ǫ1 = 2.75 − 0.5i and ǫ2 = 3 − 0.6i. Here we

see that VV has roughly the same trend with the theoretical one: we observe the phase shift of
around 180 degrees between low and high incidence angles and the 40-50 degrees angles. However
we observe a constant offset of the phase (around 20 degrees at minimum) over the whole incidence
angle interval. For HH phase, it is more critical as in addition to have 15 degree offset, we don’t
even retrieve the trend of a theoretical phase of RDB

H . All these drawbacks could be originated
to several reasons 8. The main one is that the metallic dihedral is not identical to the dielectric

8. Regardless the fact that we deal with steel plates and not the ideal PEC material.
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Figure 5.17 – Amplitudes in HH and VV at 10 GHz after compensation and calibration with the
metallic sphere compared to amplitudes of a theoretical RDB

H and RDB
V computed from Eq. (1.6)

using ǫ1 = 2.75 − 0.5i and ǫ2 = 3 − 0.6i.

one in dimensions (0.3 × 0.3 × 0.3 m for the first, 0.22 × 0.25 × 0.25 m for the latter) making the
phase centre higher for this dihedral than the dielectric one. Moreover the metallic dihedral has a
dihedral angle of few degrees off the square angle and as we have seen it in the last three chapters
it is a crucial parameter. One last drawback is the fact that the metallic plates are not perfectly
planar.

Figure 5.18 – Picture of the metallic dihedral.

Now that we have an approximated RDB
V and RDB

H from the measurement we can apply the
methods developed in Chapter 2 and Chapter 3.

Inverting permittivities using the first method.

In Fig. 5.20 we plot the results at 10 GHz in real part and minus the imaginary part of ǫ1 (on
the left) and ǫ2 (on the right). In the [15, 42] degrees interval, ǫ1 is estimated at a value oscillating
around 2 − 1i. For ǫ2, we can observe an oscillating behaviour in the same angular range around
the value of 3 − 0i then 2.5 − 0.8i as we get closer to the 45 degrees. In both plots, we see the
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Figure 5.19 – Phases in HH and VV at 10 GHz after compensation and calibration with the
metallic sphere compared to phases of a theoretical RDB

H and RDB
V computed from Eq. (1.6) using

ǫ1 = 2.75 − 0.5i and ǫ2 = 3 − 0.6i.

discontinuity at 45 degrees inherent to the ideal method and described in Chapter 2. In the [50, 75]
degrees range, we first see in the case of ǫ1 an evolution from 2 − 1i to 2.5 − 0i. ǫ2 estimation is
more stable in this domain: from 50 degrees to 70 degrees it stays at 2.5 − 1i.
In Fig. 5.21, the results are plotted at 11 GHz. The curves are very similar to the ones at 10
GHz. Only the oscillation behaviour is more quiet confirming the estimated value at the previous
frequency.

Inverting permittivities using the second method.

We apply the method from Chapter 3 using the extracted RDB
H . Fig. 5.22 (resp. Fig. 5.23)

shows the results of the inversion for ǫ1 (resp. ǫ2) in real and imaginary part at 10 GHz. From first
sight, we can see two areas where no solutions are found: one is centred at (57, 57) degrees and
the other one smaller is centred at (37, 37) degrees. ǫ1 estimated for a real part in [2.5, 3.5] and
[−1, 0] in imaginary part for angles in [15, 30] × [35, 55] degrees. For ǫ2, the area where its real part
is in [2.5, 3.5] and its imaginary part is in [−1, 0.5] is [55, 75] × [15, 40] degrees. This difference of
areas of estimation and the fact that we don’t retrieve well the permittivities outside these areas
might be due to the error in phase of RDB

H and the fact that for this method we only rely on the
horizontal contribution of the double bounce.
Fig. 5.24 and Fig. 5.25 present the results but now at 11 GHz.

From these results, we can state that the results obtained from the first method are coherent
with the measured permittivities performed with the near-field probe. For the second method, as
we use the data from one polarization we obtain good estimate of permittivities in some areas of
incidence.
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Figure 5.20 – Real and imaginary parts of ǫ1 and ǫ2 at 10 GHz.

Figure 5.21 – Real and imaginary parts of ǫ1 and ǫ2 at 11 GHz.
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Figure 5.22 – Real and imaginary parts of ǫ1 at 10 GHz (expected value around 2.7 − 0i).

Figure 5.23 – Real and imaginary parts of ǫ2 at 10 GHz (expected value around 3.2 − 0i).
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Figure 5.24 – Real and imaginary parts of ǫ1 at 11 GHz (expected value around 2.7 − 0i).

Figure 5.25 – Real and imaginary parts of ǫ2 at 11 GHz (expected value around 3.2 − 0i).



90 CHAPTER 5. EXPERIMENTAL VALIDATION

5.4 Measurement in-situ

Figure 5.26 – Wall and measurement setup.

To assess the ratio method in practice, we choose a concrete corner in the underground parking
lot of Eiffel building in CentraleSupélec. In Fig. 5.26 the left image shows the concrete corner
used for the measurement. The right one depicts the measurement setup that is made of the two
identical antennas used previously in the anechoic chamber and two identical cables to connect
the antennas to a portable VNA (Keysight N9918A). We place the trolley with the measurement
setup at 4.3 meters away from the corner central edge. This distance was chosen given the height
of the device on the trolley (1.1 m) and the aperture angle of the antennas (around 27 degrees)
in order to keep the ground outside the illuminated area 9. To align the antennas with the central
edge of the corner, we place a laser device below the two antennas. It draws a vertical red line to
guarantee that the antennas are in alignment with the central edge. In addition the laser is helpful
to measure the incidence angle as the red line is also drawn on the floor. It only requires to place
a printed protractor on the floor at the corner and to read it. The measurement of the mutual
coupling is taken outside in the open-air. The frequency parameters are identical to the previous
measurements: [5, 18] GHz and 1301 points.

Therefore due to this measurement conditions, many uncertainties arise: the incidence angle is
not precisely taken (from a printed protractor), likewise the distance is measured using a rangefinder
but as we move the trolley to take several incidence angles the distance is also changing. To over-
come this issue we tried to keep the trolley within an interval of 10 cm around the 4.3 meters first
measured. We obviously are not in the far-field condition from the wall even if we only consider
the greatest dimension of the illuminated area on the wall. To finish, the trolley is moving on a
non-planar surface due to the rain evacuation exit. As we were to close to this exit and the trolley
was tilting too much, we didn’t take the measurement at 60 degrees.

In Table. 5.2 we present the temporal signals in amplitude from the measurements near the
location of the wall (cables are at most 1 meter length). It is noticeable when looking at HH signal
we can see the strongest peak that doesn’t move in distance (around 5.6 meters) with the incidence
angle. As it is at the same distance from the antennas than the wall we can infer that it is the peak
corresponding to the double bounce. In addition this peak does not appear in VV polarisation,
that might come from the double bounce effect. Another peak appears in distance at 5.35 meters
at 20 degrees, near 5 meter at 30 degrees and at 5.35 meters at 70 degrees for both polarisation.
This peak seems to move away from the double bounce signature as the incidence angle come closer

9. Considering a trigonometric approach, we have: h
tan(θ

−3dB/2)
≈ 4.5m if θ

−3dB = 27 degrees and h = 1.1

meter.
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to 45 degrees. Hence this peak might be linked to the backscattering of one part of the wall (the
closest to the measurement device) illuminated by the side of the radiation pattern of the antennas.

HH VV

φ =
20°

φ =
30°

φ =
40°
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φ =
50°

φ =
70°

Table 5.2 – Amplitude in dB of the temporal signals in HH and VV polarizations close to the
location of the wall.

Figure 5.27 – Estimated ǫ1 between 9 and 12 GHz before the filtering step.

HH can be easily time gated by selecting the peak as the double bounce signature is strong. For
VV as it is quite difficult for some angles to distinguish the signal, we apply at the same location
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Figure 5.28 – Estimated ǫ2 between 9 and 12 GHz before the filtering step.

the same time gating window. As a result we can now bring the windowed signal to the frequency
domain and apply the ratio method developed in Chapter 4.

In Fig. 5.27 and Fig. 5.28, we plot the results of the estimated permittivities for the 9-12 GHz.
These results comes from the application of the method exposed in Chapter 4 except that we
remove the filter on the imaginary part of the permittivity to look at all the solutions. The colour
of the curves corresponds to an angle combination as specified in the legend. From first sight, most
of the combinations of angles where one angle is above and the other one is below 45 degrees are
given results which corresponds to what have been observed in 4.2.1. We observe that for both
permittivity the real part is evolving between 3 and 5. Most of the curves are decreasing with the
frequency. The curve (purple-pink) from the (70, 50) degrees is not truth-worthy as the real part
of ǫ2 is near 1.5 and the imaginary part of ǫ1 is non-physical. In terms of imaginary part most of
them are between -1.5 and 0 for ǫ2. However for ǫ1, we have two curves near 0, (50, 30) and (50, 20)
degrees, the other curves are non-physical but follow the same trend, decreasing from 6 and above,
to 3.5.
In Fig. 5.29 and Fig. 5.30, we present the results after adding back the filtering part on the imaginary
part. It leaves us with two curves, the ones at (50, 30) and (50, 20) degrees. In ǫ1, they are evolving
around the same value of permittivity: 4 at 9 GHz to 3 + 0.5i at 12 GHz. For ǫ2, we have a more
disparate value in real part as one curve is going from nearly 5 to 4.3 and the other one is staying
close to 3.5. The imaginary part of ǫ2 is showing the same trends: one curve is evolving from -1 to
-0.2 when the other one is staying at -1.2.
These values of permittivities correspond to the mortar material value around 4 − 0.5i found by
the authors in [35] in the 8-12 GHz frequency bandwidth. These values are also compliant with
air-dried or oven-dried mortar from [53]. It also matches a concrete material as characterised in [54]
at low moisture content (below 4%) at 12 GHz, and it is also close to the value determined in [55].
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Figure 5.29 – Estimated ǫ1 between 9 and 12 GHz.

Figure 5.30 – Estimated ǫ2 between 9 and 12 GHz.
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5.5 Summary

In this chapter, we put in place an experimental validation using the controlled environment
of Geeps anechoic chamber. A trade-off has been made in order to maintain a distance close
to the far-field distance and to have a sufficient electrical dimension. Hence by looking in the
temporal domain the signature of the dihedral rotating, we observe the movement of the edges,
the backscattered fields of each plate at their own broadside, the double bounce signature and at
least one reflection due to the propagation of the wave inside the plate material. After isolating
the double bounce contribution, we are able to apply the method from Chapter 4. It provides
quite homogeneous results over the chosen frequencies with an ǫ1 close to 2.5 − 0.5i and an ǫ2
near to 3 − 0.5i for high frequencies. These are good results close to the measured permittivities
with the near-field probe. To assess the two first methods, as they require the absolute quantities
RDB
V and RDB

H , we divide the compensation stage in two: one deals with the amplitude and the
other one with the phase. For the amplitude we use the radar equation, the PEC scattering of
an equivalent structure and the measurement of a calibration target for the anechoic chamber, to
retrieve the amplitude of the double bounce coefficient. For the phase, we make the measurement
for a PEC dihedral and subtract its phase to the measurement of the dielectric one. For the ideal
method, this type of process is sufficient to get to good estimate of the permittivities especially in
the range [15, 40] degrees where they are measured close to 2.2 − 1i and 3 − 0.5i for respectively ǫ1
and ǫ2. However the method using one polarization from Chapter 3 provides results that are more
questionable as we roughly estimate the good permittivities in separate angle areas. This might
come from the error in phase worsen by the use of one polarisation alone.
We successfully apply the method from Chapter 4 to real case of a dielectric corner made of concrete
in a parking lot of CentraleSupélec. Measurements were taken in HH and VV for 5 angles: 20,
30, 40, 50 and 70 degrees. We obtain for the 9-12 GHz, a real part coherent with a concrete
permittivity around 3 - 5, and an imaginary part close to 0 implying a dry material.
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Conclusion

During this PhD thesis, we have demonstrated analytically and validated with measurements
that it is possible to retrieve the permittivity from far-field polarimetric radar data of dihedral
structures. These results are important as permittivity is a key factor for the analysis of radar
data. Actually, in general, we do not have access to this information, when acquiring airborne or
space borne data. In addition dihedral structures are commonly present in radar images, more
specifically in urban areas. The solutions we have proposed allow to determine together the per-
mittivities of the ground (or any other horizontal surface) and of the wall (or any other vertical
surfaces) constituting the dihedral.

To do this, we have developed and tested three methods to invert the permittivities in this con-
figuration. The first method corresponds to the ideal situation: we have access to the co-polarised
responses of a dihedral structure and the measurements need to be perfectly calibrated. The second
method is dedicated to single polarized systems. We have shown for this case, that only HH can be
used and the calibration requirements remain the same. Finally, we have lowered the constraints
on the calibration with the third method as we use the ratio of the two copolarized components.

All these methods rely on the analytical formulation of a double bounce using Fresnel reflection
coefficients. Indeed, any double bounce mechanisms can be modeled, at the first order, as the com-
bination of two successive specular scattering mechanisms. We called it the double bounce equation.

As a result, we have developed and tested three methods to invert the two permittivities from
the double bounce equation. An ideal method, completely analytical, was first developed from the
double bounce equation. The main advantage of this method is the fact the two permittivities can
be written as a direct function of the two copolarised double bounce coefficients. Among the draw-
backs, two are particular annoying: the first is the 45 degrees issue. As there is an indetermination
at this angle, this strongly impacts the retrieval for neighboring angles, so that the [40, 50]˚domain
has to be preferably avoided. However this divergence can also be used as an indicator of the double
bounce. The second is the requirement of fully calibrated data as it needs the two complex double
bounce coefficients as input.
The second method developed is based only on the horizontal polarisation. The choice of the
polarization was made due to the behaviour of the double bounce coefficients in the angle range
of interest. Indeed, the vertical component might lead to issue when we measure because of the
double bounce. The presence of two Pseudo-Brewster angles and their corresponding magnitude
drops influence the magnitude over a large range of incidence angle. To avoid this double bounce
effect, we use the horizontal polarization alone. The price to this advantage is the requirement of
at least two incidence angles to obtain eight possible permittivity couples that are mathematically
compliant. Therefore, we filter out the non-physical solutions to keep one solution couple. As for
the first method, the full calibration of the data is required as we work with the double bounce
coefficient. In addition to this constraint, two angles are now required to obtain the two permit-
tivities.
The last method is using the copolarised ratio between VV and HH polarisation of the double
bounce coefficients. Within the incidence angle range where the double bounce contribution is
dominant, this ratio can be approached by the ratio of the copolarised fields. Again, the advantage
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of using a relative measurement is balanced by the need of two measurements at different incidence
angles and the requirement of filtering the non-physical solutions. However by using the ratio we
avoid the calibration step.

These three methods have been studied one by one using numerical simulations from FEKO to
determine the influence of the parameters of the object or the device on the inversion results. In
the first group, we have analysed the electrical dimension, the dihedral angle and the composition.
For the device parameters, we have looked at its positioning in terms of incidence angle, azimuth
angle and roll angle. Every method is sensitive to the electrical dimension as it is the base of the
double bounce. In addition, the methods are in general highly sensitive to the dihedral angle and
the incidence angle. For these two parameters, few degrees off to the reference value may lead to
consequent error. On the other hand, the change in azimuth angle is handled for all methods. For
the methods that need calibration, the PEC normalisation needs to be adapted to this azimuth
change. For the method using the ratio, no adaptation is needed. In the case of the roll angle,
every method might still work under within its own limitations. When one plate of the dihedral is
composed of two different materials, the ratio and the first method of inversion rule as a mixing law
of permittivities. On the other hand, the one polarisation method might detect both permittivities
depending on the incidence angle combination.

The three methods have been assessed in the controlled environment of the anechoic chamber of
Geeps. We used a dihedral made of PVC and nylon whose permittivities have been measured with
a near field probe, a quasi-monostatic system made of two identical antennas and cables between 5
and 18 GHz. We placed the dihedral on a rotating platform at 4.3 meters of the antennas such that
the rotation angle can be assimilated to the incidence angle we considered in our theoretical study.
Once the measurements collected and calibrated, an analyse has been done in the time domain. As
the dihedral is rotating around its central edge, one could see in the range domain the movement
of the edges, the double bounce that is located at the same distance than the central edge and also
two or three additional reflections due to the quasi-real permittivities of the materials involved.
We discarded the other phenomenon and selected the double bounce component by time gating
the time signals. Once, in frequency domain, the ratio could be computed and the last inversion
method was applied. From it, we have been able to assess the compliance of the results between
the near field probe and our method for few frequencies between 6 and 13 GHz. As the first two
methods need a calibration, we have used the radar equation and the measurement of a canoni-
cal object (a metallic sphere) to compensate the amplitude. For the phase, we have measured a
metallic dihedral to compensate the phase dihedral scattering and the rotation movement of the
platform. We have been able to validate the ideal method but for the one polarisation method
issues appeared as the phase of HH field was not correctly estimated.
Finally, measurements in-situ have been performed in an underground parking lot of Centrale-
Supélec. With five measurements collected at different incidence angles for both polarisations, the
inversion of permittivities of a concrete corner wall has been performed using the ratio method.
Eventually, we managed to retrieve consistent value for the relative permittivities. These values
were relevant with respect to values we can find in literature at these frequencies.

As the ratio method is quite handy for measurements, it might worth to further study its be-
haviour and apply it to more cases. First, we could think at the application of such method to
SAR images. Being able to determine the effective permittivities of a dihedral arrangement made
by a building or tree would be significant. In order to put in place such applications from the
ratio method, we can first think of taking two SAR images from two different incidences angles.
Or one could also try to make a deep analyse of the SAR formation, without using the rectilinear
trajectory assumption such that when applying a time-frequency method to create sub-aperture
images of a building we obtain different sub-images at different incidence angles. This approach is
sustained by the fact that for an identical incidence angle (so a rectilinear trajectory parallel to the
building) the double bounce ratio stays unchanged. Hence either we work with two datasets taken
at two incidence angles or one dataset with a sufficient change in the incidence angle such that we
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could hope to apply the method.
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Appendix A

Dihedral PEC formulations

In this appendix, the analytical formulations of the electric fields a PEC dihedral are given for
several configurations based on Physical Optics (P.O.) approximation. They come from [6] and [7].

A.1 In bistatic configuration

In bistatic configuration, the electric fields have been calculated in [7]. All the notations,
equations and schemes are from this article.
In Fig. A.1 are represented the reference frame, the dimensions of the dihedral and the angles. φr
and θr are the spherical angles for the scattering vector ŝ. Likewise, angles φt and θt define the
spherical angles for the incident vector î. a, b and L are the dimensions of the dihedral.

Figure A.1 – Reference frame, coordinates and dimensions of the dihedral taken from Figs. 2 and
3 in [7].

The electric fields are given by:
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~EHV = ~0 (A.2)
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(A.4)

In those equations k is the wave number, φ̂r and θ̂r are the two last unitary vectors of the
spherical scattered reference frame, Eφ and Eθ are the amplitudes of the incident field. Ixz and
Iyz are integral terms linked to the dimensions of xz or yz plates. These two integrals have their
integration limits depending on six illumination cases illustrated in Fig. 4 in [7].
Ixz and Iyz can written as:
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(A.5)
for the first three cases, and
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(A.6)
for the last three ones. The upper indices on Ixz and Iyz indicate the case number of illumi-

nation. Depending of the illumination case, the integral limits X and Y are different. The six
conditions and their corresponding X and Y are given in table A.1. Hence given the transmitter
device location (φt, θt), we can find X and Y , compute corresponding Ixz and Iyz and then the

different ~E. The (ψx, ψy, ψz) quantities are defined by:

ψx = cosφt sin θt − cosφr sin θr

ψy = sinφt sin θt − sinφr sin θr

ψz = cos θt + cos θr

(A.7)

X Y

Case 1: cotφt ≤ a
b

and cot θt ≤ L
b

sinφt and cotφt ≥ 0 and
cot θt ≥ 0

b cotφt b

Case 2: cotφt ≥ a
b

and cot θt ≤ L
a

cosφt and cot θt ≥ 0 a a tanφt
Case 3: cot θt ≥ L

b
sinφt and cot θt ≥ L

a
cosφt L cosφt tan θt L sinφt tan θt

Case 4: cotφt ≥ 0 and cotφt ≤ a
b

and −L
b

sinφt ≤ cot θt and
cot θt ≤ 0

b cotφt b

Case 5: cotφt ≥ a
b

and −L
a

cosφt ≤ cot θt and cot θt ≤ 0 a a tanφt
Case 6: −L

b
sinφt ≥ cot θt and cot θt ≤ −L

a
cotφt −L cosφt tan θt −L sinφt tan θt

Table A.1 – Cases of illumination and their corresponding X and Y .

One can notice that Eqs. (A.5) and Eqs. (A.6) are presenting a singularity at ψz = 0. In this
case, [7] suggests to use the following limits:
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(A.8)
The upper sign in these equations is for the first three cases of illumination, the lower sign for

the last three cases. Again, in these equations, singularities appear if ψx = 0 in the first equation,
or if ψy = 0 in the second. Solutions are therefore given by:
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2 cosφt
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(A.9)

With Ixz and Iyz, the fields ~EHH , ~EV H , ~EHV and ~EV V can be calculated.

A.2 In monostatic configuration

In this section, we present two formulations of the backscattered fields in monostatic configura-
tion. First, we look at the formulation from [6] in a monostatic configuration as the one pictured
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in Fig. 1.10 for a PEC dihedral with no specific dihedral angle. Then we will express using [7] the
fields in the monostatic configuration we are interested.

A.2.1 For any dihedral angle

As said, we present here the main results of [6]. As in the previous section, all the notations
and results are from [6]. The geometry is exposed in Fig. A.2.

Figure A.2 – Coordinates and dimensions of the dihedral taken from Fig. 1 in [6].

Knott divided the scattering of the dihedral in four contributions: two linked of the backscatter-
ing of each plate and two from the double bounce from one plate to the other one. The scattering
coefficient from each plate is given independently from the polarisation by:

Sa = −ika l
λ

sin(β + φ)e−ika cos(β+φ) sinc(ka cos(β + φ))

Sb = −ikb l
λ

sin(β − φ)e−ikb cos(β−φ) sinc(kb cos(β − φ))

(A.10)

For the double bounce contributions, the scattering coefficients are expressed as:

Sab = −ikb′ l

λ
sin(3β + φ)e−ikb

′

cos(2β) cos(β+φ) sinc(kb
′

cos(2β) cos(β + φ))

Sba = −ika′ l

λ
sin(3β − φ)e−ika

′

cos(2β) cos(β−φ) sinc(ka
′

cos(2β) cos(β − φ))

(A.11)

The double bounce contribution is dependent on the polarisation and it is here written for
HH. The contribution for VV is obtained by substituting sin(3β ± φ) in the previous equations by
− sin(β∓φ). Eqs. (A.11) are expressed as function of a

′

and b
′

that are the illuminated face width.
The two quantities are defined by:

a
′

=







0, φ ≤ −α
a, −α ≤ φ ≤ γ − α

b
sin(β−φ)

sin(3β−φ) , φ ≥ γ − α






(A.12)

b
′

=







a
sin(β+φ)

sin(3β+φ) , φ ≤ γ − β

b, γ − β ≤ φ ≤ α

0, φ ≥ α






(A.13)

, where γ is defined as tan γ = b sin(2β)
a−b cos(2β) .

The total contribution is the summation of Sa, Sb, Sab and Sba.
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A.2.2 For right angle dihedrals

The following results are based on [7]. In the situation displayed in Fig. 1.10, it implies:
θt = θr = 90 degrees and φt = φr. We denote φt = φ to simplify. Therefore we are in the particular
case described in A.1 where ψz = 0 and in addition, ψx and ψy are null.

Thus we directly have ~EV H = 0, and the limiting equations from Eqs. (A.9) are becoming:

Ixz = LX

Iyz = LY
(A.14)

The cases 3 and 6 can not be satisfied due to the definition domain of φ ([0, 90] degrees) and
the fact that θt = 90 degrees. Cases 5 and 2 are now equivalent to cotφ ≥ a

b
. Likewise cases 4 and

1 are also equivalent to cotφ ≤ a
b
. It reduces the six illumination cases to two regarding the value

of cot(φ) to a
b
.

As a result, the backscattered electric fields can be expressed as:

~EV V =
jkL√
π
Eθ θ̂r sinc

[kL

2

]

(

a sinφ sinc
[
ka cosφ

]
ejka cosφ + b cosφ sinc

[
kb sinφ

]
ejkb sinφ

)

− jkL√
π
Eθ θ̂r(X sinφ+ Y cosφ)

(A.15)

~EHH =
jkL√
π
Eφφ̂r sinc

[kL

2

]

(

a sinφ sinc
[
ka cosφ

]
ejka cosφ + b cosφ sinc

[
kb sinφ

]
ejkb sinφ

)

+
jkL√
π
Eφφ̂r(X sinφ+ Y cosφ)

(A.16)

, where X = a and Y = a tanφ if cotφ ≥ a
b

or, X = b cotφ and Y = b if cotφ ≤ a
b
.
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Appendix B

Chapter 2 proofs

In this appendix, we presented some proofs of the Chapter 2. The first section is dedicated to
the proceedings of the solution identification and the last section is an insight of the mathematical
issue encountered at the incidence angle of 45˚.

B.1 Solutions identification

As exposed in section 2.1, we factorised the second degree equation Eq. (2.7) and obtained
non-trivial solutions 1 to our problem. As we solve in X2, we might think that one of two roots of
the second degree equation is bound to it and therefore to ǫ2. But which root, X+

2 or X−
2 ? To

answer this question, we substitute in the algebraic expression of the roots (Eq. (2.8)) the double
bounce formula expressed with the permittivities (Eq. (1.6)). As the calculations are quite long
and tedious but not complicated, we will present here the main steps and intermediate results.

For recall, Eq. (2.8) is written:

X±
2 =

1

2 sinφ

(

Q±
√

Q2 +R

)

with:

Q =
KΛ(cos2 φ− sin2 φ)

Λ − Γ cos2 φ

R = 4 sin2 φ cos2 φ

(

1 +
cos2 φ− sin2 φ

Λ − Γ cos2 φ
Γ

)

So first, let’s define Y1 =
√

ǫ1 − sinφ2 and Y2 =
√

ǫ2 − cosφ2 to simplify the calculation. So
we have:

RDB
H =

(cosφ− Y1)(sinφ− Y2)

(cosφ+ Y1)(sinφ+ Y2)
andRDB

V =

[

(Y 2
1 + sinφ2) cosφ− Y1

][

(Y 2
2 + cosφ2) sinφ− Y2

]

[

(Y 2
1 + sinφ2) cosφ+ Y1

][

(Y 2
2 + cosφ2) sinφ+ Y2

]

We can now substitute these quantities (RDB
H and RDB

V ) in the intermediate quantities (K, Λ
and Γ) to express them as function of Y1 and Y2.

When stated earlier that the calculus are not complicated, it means that they follow the same
scheme as it is about substituting expressions in another one. After substitution, the first step is to
have the same denominator in the quantity to calculate, then factorise what can be factorise in the
numerator, expand the rest, play with the identity cos2 φ+ sin2 φ = 1 and try to factorize as much

1. The trivial ones are removed when we went from the four to the second degree equation.
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as possible in order to simplify numerator and denominator, then move on to the next quantity to
express.

Let’s start with K quantity:

K =
RDB
H + 1

RDB
H − 1

=
(cosφ− Y1)(sinφ− Y2) + (cosφ+ Y1)(sinφ+ Y2)

(cosφ− Y1)(sinφ− Y2) − (cosφ+ Y1)(sinφ+ Y2)
=

cosφ sinφ+ Y1Y2

−(Y2 cosφ+ Y1 sinφ)

K =
cosφ sinφ+ Y1Y2

−(Y2 cosφ+ Y1 sinφ)

Then: RDB
V − 1 =

[

(Y 2
1 + sinφ2) cosφ− Y1

][

(Y 2
2 + cosφ2) sinφ− Y2

]

[

(Y 2
1 + sinφ2) cosφ+ Y1

][

(Y 2
2 + cosφ2) sinφ+ Y2

] − 1

⇐⇒ RDB
V − 1 =

ν
[

(Y 2
1 + sinφ2) cosφ+ Y1

][

(Y 2
2 + cosφ2) sinφ+ Y2

]

where ν =
[

(Y 2
1 + sinφ2) cosφ−Y1

][

(Y 2
2 + cosφ2) sinφ−Y2

]

−
[

(Y 2
1 + sinφ2) cosφ+Y1

][

(Y 2
2 +

cosφ2) sinφ+ Y2

]

.

It leads after expansion of ν to:

RDB
V − 1 =

−2
(
Y2Y

2
1 cosφ+ sinφ2 cosφY2 + Y1Y

2
2 sinφ+ cosφ2 sinφY1

)

(Y 2
1 cosφ+ sinφ2 cosφ+ Y1)(Y 2

2 sinφ+ cosφ2 sinφ+ Y2)

Likewise, we obtain:

RDB
V + 1 =

2
(

Y 2
1 Y

2
2 cosφ sinφ+ cosφ3 sinφY 2

1 sinφ3 cosφY 2
2 + sinφ3 cosφ3 + Y1Y2

)

(Y 2
1 cosφ+ sinφ2 cosφ+ Y1)(Y 2

2 sinφ+ cosφ2 sinφ+ Y2)

We can now calculate Λ = RDB
V − 1 − K(RDB

V + 1). To do that, we set DR = (Y 2
1 cosφ +

sinφ2 cosφ + Y1)(Y 2
2 sinφ + cosφ2 sinφ + Y2) which is the denominator of RDB

V + 1 and RDB
V − 1.

And we calculate DR(Y2 cosφ + Y1 sinφ)Λ. After expansion of the terms, we can factorise them
back to obtain:

Λ =
2 cosφ sinφ(Y1Y2 + cosφ sinφ)(Y 2

1 − cosφ2)(Y 2
2 − sinφ2)

(Y 2
1 cosφ+ sinφ2 cosφ+ Y1)(Y 2

2 sinφ+ cosφ2 sinφ+ Y2)(Y2 cosφ+ Y1 sinφ)

In the case of Γ = (RDB
V − 1)(1 −K2), we first write it as:

Γ =
−2
(
Y2Y

2
1 cosφ+ sinφ2 cosφY2 + Y1Y

2
2 sinφ+ cosφ2 sinφY1

)

(Y 2
1 cosφ+ sinφ2 cosφ+ Y1)(Y 2

2 sinφ+ cosφ2 sinφ+ Y2)

×
[

(Y2 cosφ+ Y1 sinφ)2 − (cosφ sinφ+ Y1Y2)2

(Y2 cosφ+ Y1 sinφ)2

]

︸ ︷︷ ︸

κ

By isolating κ and developing its numerator, we are able to simplify it to :

κ =
−(Y 2

1 − cosφ2)(Y 2
2 − sinφ2)

(Y2 cosφ+ Y1 sinφ)2
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In addition, by also noticing that (Y1Y2+cosφ sinφ)(Y1 cosφ+Y2 sinφ) = cosφY 2
1 Y2+sinφY1Y

2
2 +

sinφ cosφ2Y1 + cosφ sinφ2Y2 we obtain:

Γ =
2(Y1Y2 + cosφ sinφ)(Y1 cosφ+ Y2 sinφ)(Y 2

1 − cosφ2)(Y 2
2 − sinφ2)

(Y 2
1 cosφ+ sinφ2 cosφ+ Y1)(Y 2

2 sinφ+ cosφ2 sinφ+ Y2)(Y2 cosφ+ Y1 sinφ)2

Now that all the “first” intermediate quantities are expressed as function of Y1 and Y2, we will
do the same using the previous results to Λ − cosφ2Γ in order to, at the end, be able to express Q
and R from Eq. (2.8) as function of Y1 and Y2.

First, for Λ−cosφ2Γ, we get the following result by having the same denominator and factorizing
the numerator:

Λ − cosφ2Γ =
2 cosφ(sinφ2 − cosφ2)Y1(Y1Y2 + cosφ sinφ)(Y 2

1 − cosφ2)(Y 2
2 − sinφ2)

(Y 2
1 cosφ+ sinφ2 cosφ+ Y1)(Y 2

2 sinφ+ cosφ2 sinφ+ Y2)(Y2 cosφ+ Y1 sinφ)2
.

So finally we obtain: Q =
KΛ(cosφ2 − sinφ2)

Λ − cosφ2Γ
=

sinφ(Y1Y2 + cosφ sinφ)

Y1

R can be easily expressed as : R = 4 sin2 φ cos2 φ
(

1 + cos2 φ−sin2 φ
Λ−Γ cos2 φ

Γ
)

.

Hence, we get R =
−4 cosφ sinφ3Y2

Y1
.

Now considering the sum Q2 +R we can simplify it to : Q2 +R =
sinφ2

Y 2
1

(Y1Y2 − cosφ sinφ)2.

Therefore, Eq. (2.8) can be rewritten as:

X±
2 =

1

2 sinφ

(

Q±
√

Q2 +R

)

=
1

2 sinφ

[
sinφ(Y1Y2 + cosφ sinφ)

Y1
± sinφ(Y1Y2 − cosφ sinφ)

Y1

]

=
1

2Y1 sinφ

[

sinφ(Y1Y2 + cosφ sinφ) ± sinφ(Y1Y2 − cosφ sinφ)

]

.

As a consequence, we have:

X+
2 = Y2

X−
2 =

cosφ sinφ

Y1

such that, X+
2 leads to ǫ2 and X−

2 to ǫ1.

B.2 Issue at 45 degrees of incidence angle

We present here the inquiry carried to determine the origin of the issue at 45˚of incidence
angle.

1) First step From [2], we know that at φ = π
4 , we get (RDB

H )2 = RDB
V . We can now wonder

how this relation is bound to the discontinuity of the solutions. It is the goal of this section.
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Let’s first express RDB
V and RDB

H at φ = π
4 :

RDB
V =

√
2

2
ǫ1 −

√

ǫ1 − 1

2√
2

2
ǫ1 +

√

ǫ1 − 1

2

×

√
2

2
ǫ2 −

√

ǫ2 − 1

2√
2

2
ǫ2 +

√

ǫ2 − 1

2

⇐⇒ RDB
V =

ǫ1 − √
2ǫ1 − 1

ǫ1 +
√

2ǫ1 − 1
× ǫ2 − √

2ǫ2 − 1

ǫ2 +
√

2ǫ2 − 1

Let’s define T1 =
√

2ǫ1 and T2 =
√

2ǫ2.

Therefore we have: RDB
H =

(1 − T1)(1 − T2)

(1 + T1)(1 + T2)
and RDB

V =

T 2
1 + 1

2
− T1

T 2
1 + 1

2
+ T1

×
T 2

2 + 1

2
− T2

T 2
2 + 1

2
+ T2

⇐⇒ RDB
V =

(T 2
1 − 2T1 + 1)(T 2

2 − 2T2 + 1)

(T 2
1 + 2T1 + 1)(T 2

2 + 2T2 + 1)
=

(1 − T1)2(1 − T2)2

(1 + T1)2(1 + T2)2
= (RDB

H )2

Finally we obtain:

RDB
V =

(1 − T1)2(1 − T2)2

(1 + T1)2(1 + T2)2
= (RDB

H )2 (B.1)

We now show that
1

2
Γ − Λ = 0 ( i.e. at φ =π

4 , Λ − cosφ2Γ = 0).

K =
1 +RDB

H

RDB
H − 1

=
(1 − T1)(1 − T2) + (1 + T1)(1 + T2)

(1 − T1)(1 − T2) − (1 + T1)(1 + T2)
=

1 + T1T2

−T1 − T2

So given that:

RDB
V = (RDB

H )2

Λ = ((RDB
H )2 − 1) −K((RDB

H )2 + 1) = (RDB
H )2(1 −K) − 1 −K

Γ = ((RDB
H )2 − 1)(1 −K2),

we get,
1

2
Γ − Λ = (RDB

H )2

[
1

2
− 1

2
K2 − 1 +K

]

−
[

1

2
− 1

2
K2 − 1 −K

]

⇐⇒ 1

2
Γ−Λ = (RDB

H )2

[

− 1

2
+K− 1

2
K2

]

−
[

− 1

2
−K− 1

2
K2

]

=
−(RDB

H )2

2

[

1−K
]2

+
1

2

[

1+K

]2

And as we have, K − 1 =
(1 + T1)(1 + T2)

−T1 − T2
and K + 1 =

(1 − T1)(1 − T2)

−T1 − T2
we obtain:

1

2
Γ − Λ =

1

2(T1 + T2)2

[

− (RDB
H )2(1 + T1)2(1 + T2)2 + (1 − T1)2(1 − T2)2

]

︸ ︷︷ ︸

=0 from Eq. (B.1)

Hence, we have:
1

2
Γ − Λ = 0

2) The indetermination: By definition of Λ and Γ, we can write:

Λ − cosφ2Γ = RDB
V − 1 −K(RDB

V + 1) − cosφ2(RDB
V − 1)(1 −K2)

= RDB
V (cosφ2K2 + sinφ2 −K)
︸ ︷︷ ︸

χ1

− (cosφ2(K2 −K) + sinφ2(1 +K)
︸ ︷︷ ︸

χ2

)



B.2. ISSUE AT 45 DEGREES OF INCIDENCE ANGLE 111

.

We can expressed χ1 as:

χ1 = cosφ2

[(
RDB
H + 1

RDB
H − 1

)2

−
(
RDB
H + 1

RDB
H − 1

)]

+ sinφ2

[

1 −
(
RDB
H + 1

RDB
H − 1

)]

⇐⇒ χ1 =
1

(RDB
H − 1)2

[

cosφ2
(
(RDB

H )2 + 2RDB
H + 1 − (RDB

H )2 + 1
)

+ sinφ2
(
(RDB

H )2 − 2RDB
H +

1 − (RDB
H )2 + 1

)
]

⇐⇒ χ1 =
2

(RDB
H − 1)2

[

RDB
H (cosφ2 − sinφ2) + 1

]

For χ2, we have:

χ2 = cosφ2

[(
RDB
H + 1

RDB
H − 1

)2

+

(
RDB
H + 1

RDB
H − 1

)]

+ sinφ2

[

1 +

(
RDB
H + 1

RDB
H − 1

)]

⇐⇒ χ2 =
1

(RDB
H − 1)2

[

cosφ2
[

2(RDB
H )2 + 2RDB

H

]

+ sinφ2
[

2(RDB
H )2 − 2RDB

H

]]

⇐⇒ χ2 =
2RDB

H

(RDB
H − 1)2

[

RDB
H + cosφ2 − sinφ2

]

Hence,

Λ − cosφ2Γ = RDB
V χ1 − χ2

=
2

(RDB
H − 1)2

[

RDB
V RDB

H (cosφ2 − sinφ2) +RDB
V − (RDB

H )2 −RDB
H (cosφ2 − sinφ2)

]

It can be written as: Λ−cosφ2Γ =
2

(RDB
H − 1)2

[

(cosφ2−sinφ2)
[

RDB
V −1

]

RDB
H +RDB

V −(RDB
H )2

]

.

This last equation shows why Λ − cosφ2Γ = 0 at φ = π
4 : (cosφ2 − sinφ2) and RDB

V − (RDB
H )2

are null at this angle given the results from the first paragraph.

Therefore,
Λ − cosφ2Γ

cosφ2 − sinφ2
=

2

(RDB
H − 1)2

[

(RDB
V − 1)RDB

H +
RDB
V − (RDB

H )2

cosφ2 − sinφ2

]

. As a consequence,

the ratio
RDB
V − (RDB

H )2

cosφ2 − sinφ2
is undetermined at φ = π

4 , making
Λ − cosφ2Γ

cosφ2 − sinφ2
quantity also undeter-

mined. This
Λ − cosφ2Γ

cosφ2 − sinφ2
is explicitly found in Q and R expressions in Eq. (2.8), making them

and the roots X±
2 also undetermined at this angle.
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Appendix C

Differences between the two kinds

of solvers

In this appendix, we illustrate the invariance of the results to the choice of variable used to
solve the problem. In Chapters 3 and in 4, after stating the need of two measurements, we wrote
the invariance of the permittivity to them. This step (Eq. (3.3) and Eq. (4.6)) was done in both
cases for ǫ1 which allows us to solve in ǫ2 (ξ1 and ξ2). The question is then if the results of the
inversion change if we write the ǫ2 invariance and solve in ǫ1.
As said, we illustrate in the next two paragraphs this matter by building two solvers: the first one
is the one developed in the Chapters 3 and 4, the second is the results from swapping the role of
the permittivity when the invariance is written. The first paragraph is dedicated to the method
from Chapter 3 and the second to the one from Chapter 4. To do that, we use the same simulated
data from the section 2.3.1: the backscattered fields are calculated at 0.3 and 1 GHz for a dihedral
structure of dimensions (a, b, c, L) = (18, 18, 1, 18)m and where permittivities are set to ǫ1 = 10−3i
and ǫ2 = 2.4 − 4.5i.

For the method developed in Chapter 3 In Fig. C.1, we plot the maximum difference
along the frequency axis between the permittivity estimated by the two solvers. It is expressed as
log10(max(|ǫs1

i −ǫs2
i |)) where i denotes which permittivity is concerned, and s1 and s2 are notations

for the first and the second solver. Note that we omit the cases where one solver provides results
but not the other one. These cases are removed from the calculation. At one frequency, if both
solvers give a result in ǫ1 or ǫ2, we calculate the previous quantity. From the figures, we clearly see
that there is no difference between the permittivities up to 10−7.

For the method developed in Chapter 4 Likewise in Fig; C.2, we plot the same quantity as
for the previous method, and again, we have little difference between the results of the two solvers.
However, we can notice that patterns are appearing and that for very high incidence angles, very
low ones and the borders we see the difference increasing up to 10−3 at most.
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Figure C.1 – Maximum differences in log10 along the frequency axis between the solvers for each
permittivity.

Figure C.2 – Maximum differences in log10 along the frequency axis between the solvers for each
permittivity.



Appendix D

Appendix to section 5.1

In this appendix, we expose some further explainations related to the section 5.1 especially
to the farfield condition of the dihedral and the quasi-monostatic arrangement of the antennas.
The first topic is illustrated with a PEC dihedral of dimension 0.3 × 0.3 × 0.3 m simulated with
the Method of Moment from FEKO at different distances. In the second section, we analyse
the different configurations available to build a quasi-mostatic system that provides the closest
signature to a monostatic one.

D.1 Farfield of a PEC dihedral

As we are going to study the farfield condition of the dihedral in the situation of the measure-
ment that is being designed in section 5.1, we use the Method of Moments from FEKO to simulate
a 0.3×0.3×0.3 m structure. To simplify the simulation, we consider a PEC dihedral, such that we
can compare the results from the results from APO solution provided by [7] (also in appendix A).
A plane wave is used as the incident wave as the farfield distance of the antennas is 1.8 meter at
maximum in the antenna bandwidth. For recall, the distance between antennas and the dihedral is
set at 4.3 meter. As we want to determine if at this distance the dihedral is at a farfield condition,
we use the nearfield card in FEKO to calculate the scattered field for all the polarisation vectors
in addition of the propagation vector. Therefore, we can observe the evolution in amplitude and
phase of the simulated fields from 0.5 m to 30 m with a step of 0.5 m. We begin at 0.5 m such
that we are able to observe the field evolution from near to far field, even it is unrealistic given the
antenna chart and the setup put in place.

We plot in Fig. D.1 and Fig. D.2 the field components at respectively 5 and 18 GHz, from a 0
to 10 meters distance and at 45 degrees of incidence angle. We threshold the y axis at -80 dB even
if some curves are located below (and thus considered being null). The fields are named in relation
with the spherical frame of FEKO (r,φ,θ). Hence φ (here and only here) denotes the H polarisation
at the emission as at the reception. Likewise, θ denotes the V polarisation. r denotes the scattered
direction. One condition we may look first is the presence of null fields in the scattered direction
of propagation r. In order to obtain a scattered plane wave, field’s components in the r direction
should be null and as we can see in the Figures: Eφ,r is null everywhere (below -80 dB at 5 as at
18 GHz) as for Eθ,r (also below -80 dB).

From these figures we can also check that as the APO solution we have ~EHV = ~0 and ~EV H = ~0
(see section A.2.2). These facts are verified as Eφ,θ and Eθ,φ are also located below the -80 dB
boundary. Only the Eφ,φ and Eθ,θ (corresponding to EHH and EV V in our usual notation) are not
null (from 6 dB to -20 at 5 GHz and from 6 dB to -10 dB at 18 GHz). We can also notice that
they decrease with the distance as an inverse function of it except for the first meters (enhanced
later in this section).
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Figure D.1 – Amplitudes in dB of fields evolving with the distance at 5 GHz at 45 degrees of
incidence.

Figure D.2 – Amplitudes in dB of fields evolving with the distance at 18 GHz at 45 degrees of
incidence.

This similarity with the APO solution is more visible on cuts plotted in Fig. D.3 at 5 GHz and
in Fig. D.4 at 18 GHz in HH and VV polarisations around 4.3 meter (4, 4.5 and 5 meters) for the
0-90 degrees incidence angle. Note that to be able to compare in amplitude between the APO and
the MoM solutions we multiply by the distance the MoM solution and divide by 2

√
π the APO

solution. From these Figures, we observe few differences in dB between the APO and the MoM
solutions (maximum 2 dB at 45 degrees at 18GHz, or locally at 5 GHz). However in trend, the
curve behaved differently. At 18 GHz, the two solutions are looking alike whereas at 5 GHz, the
lobes are shifted in incidence angle. For instance the main backscattering lobes at 0 and 90 degrees
for the APO solutions are at 3 and 87 degrees.

Another way to assess the farfield condition is the field stabilisation with the distance. In this
aim, we plot in Fig. D.5 and in Fig. D.6 at respectively 5 and 18 GHz, the field variations in ampli-
tude and phase with the distance for three incidence angles (45, 30 and 15 degrees, representative
of the double bounce area) in both HH and VV polarisations. To do so, we compute the first order
numerical derivative of the field amplitude in dB (after compensating the distance as in Fig. D.3
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Figure D.3 – HH and VV amplitudes at 5 GHz for few distances around 4.3 meters and the APO
solution.

Figure D.4 – HH and VV amplitudes at 18 GHz for few distances around 4.3 meters and the
APO solution.

and Fig. D.4) and of the field phase in degrees. As expected, for large distance, the derivative of
the amplitude tends toward zero and the derivative of the phase toward a constant value (as we
didn’t compensate its propagation term in distance). It means that the propagation part of the

field with the distance could be written as ejkR

R
where R is the distance and k the wavenumber.

From the first figure we notice that we have less than half a dB difference starting at 2 meters and
this for both polarizations and any incidence angles. Furthermore, the 45 and 30 degrees curves
are the closest to 0. We can also observe that if the amplitude in HH and VV are very similar in
Fig. D.3 and Fig. D.4, they do not evolve the same way with the distance even if in farfield the
APO solutions is making them equal (in amplitude). What have been said at 5 GHz also holds
at 18 GHz, except that now, the derivative is below 0.5 dB at 4 meters and it is now the central
incidence angles that are the most slow to tend toward 0.
In terms of phase, at 5 GHz, both polarisations are near their farfield limits at 4 meters (within
the degree) whereas for 18 GHz, the convergence is slower as at 6 meters only the 15 degrees curve
is within the degree and only at 8 meters all the curves respect this condition.
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As a conclusion, we look at several characteristics of the farfield condition: the wave plane struc-
ture of the scattered field (and thus its null component with the scattered direction of propagation),
the similarity in amplitude with the APO solution in HH and VV polarisation and the compliance
to a propagation in free space by looking at the numerical derivative with the distance. We have
seen that the wave plane structure is always respected regardless frequencies or polarisations. We
saw that at 5 GHz the farfield condition might be respected at 4.3 meters in terms of amplitude
and phase as the MoM and APO solutions are looking alike and their variations in distance are
quite constant. However at 18 GHz, the farfield condition is not respected (especially in terms of
phase variations) as the phase stabilises after a distance of 8 meters even if in amplitude the APO
and MoM solutions are very similar.

Figure D.5 – HH and VV amplitude and phase variations at 5 GHz for incidence angles at 45, 30
and 15 degrees.
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Figure D.6 – HH and VV amplitude and phase variations at 18 GHz for incidence angles at 45, 30
and 15 degrees.
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D.2 Quasi-monostatic question

This study was made to determine which quasi-monostatic antenna configuration is providing
us the closest results to an ideal monostatic one. For recall, the distance between the dihedral
central edge and the two antennas is 4.3 meters, and the distance between the two antennas (from
aperture centre to aperture centre) is roughly 20 cm. We could considered the two quasi-monostatic
configurations displayed in Fig. D.7 anf Fig. D.8 (the gap between the two antennas is the scheme
exaggerated to correctly see the difference between the two figures).
Configuration (CQM1) displayed in Fig. D.7 is such that the two antennas (greenish cones) are
contained in (Oxz) plane. In Fig. D.8 the two antennas are contained in the plane formed by the y
axis and the bisector ray between the two antennas rays at the incidence angle of φ degrees (CQM2).

We use FEKO Method of Moment (MoM) to compute at 4.3 meters these configurations for a
PEC dihedral whose dimensions are (a, b, L) = (0.3, 0.3, 0.3)m . We compare the simulated fields
with the calculated fields using the P.O. solution from [7] (also expressed in Appendix A.2.2) for
a perfect monostatic case such that we will be able to assess which configuration is the closest to
the monostatic one. Fields results are given in Fig. D.9 for CQM1 and in Fig. D.10 for CQM2 in
amplitude and phase along with the monostatic APO solution from A.2.2. This is done for few
frequency points: 9, 12,15 and 18 GHz. To be able to compare the two fields (the simulated MoM
and the APO solution), we compensate the MoM solution by the propagation distance.

From Fig. D.9, we observe that the more the frequency is increasing, the more the amplitude
and the phase of the signals in both polarisations are altered. In amplitude we observe a hollow
that is increasing from 12 to 15 Ghz and then is divided in two at 18 GHz. A drop of at least 10
dB between the theroretical APO and the simulation can be noticed. In phase a increasing bump
from 12 to 18 GHz, located near 45 degrees making a 90 degrees shift between the 9 and the 18
GHz phase at this incidence angle instead of being constant over the incidence angle range.
In Fig. D.10, the amplitude of the MoM simulation are now quite close to the theoretical APO
solution for every frequency. The maximum difference is being seen at 18 GHz where a few dB are
missing (2 dB). Likewise in phase, we see few changes: a hollow is forming from 12 to 18 GHz, but
it is not as important as the one from CQM1.

From this short study, we can conclude that the use of the configuratio CQM2 is the best option
for a quasimonostatic system to get as close as possible to a the monostatic signature. In addition,
in the case we studied, it is adviseable to stay between 9 and 12 GHz and order to have a relatively
stable phase with the incidence angle.
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Figure D.7 – First quasi-monostatic configuration (CQM1).

Figure D.8 – Second quasi-monostatic configuration (CQM2).
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Figure D.9 – Amplitudes and phases of the backscattered fields for CQM1 at few frequencies,
compared to APO solution.
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Figure D.10 – Amplitudes and phases of the backscattered fields for CQM2 at few frequencies,
compared to APO solution.
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Titre : Inversion de permittivités d’une structure dièdrique au moyen de la polarimétrie radar.

Mots clés : inversion, permittivité, double rebond, monostatique

Résumé : Dans la situation d’un radar monosta-

tique la configuration diédrique présente l’avantage

de renvoyer un signal fort grâce au mécanisme de

double rebond. De plus, il s’agit d’une configuration

omniprésente par exemple en zone urbaine, avec des

structures rue-bâtiment, ou en forêt, avec des struc-

tures de type sol-arbre. Les signaux rétrodiffusés

sont donc liés à ces structures, plus précisément

aux matériaux les composant, via leurs permittivités

diélectriques. Retrouver ces permittivités depuis la

mesure des champs rétrodiffusés permettrait l’identi-

fication des matériaux de la structure diédrique. Ceci

mène à des applications telles que la détection de

défauts dans la structure, l’estimation de la teneur en

eau des sols ou du béton, ou in fine à des thématiques

de classification, pour des objets dans des images ra-

dar par exemple, ou de détection de changement.

En modélisant le mécanisme de double rebond lié

à la structure de dièdre par deux réflexions succes-

sives via les coefficients de Fresnel, trois méthodes

d’inversion des permittivités ont été mises en place

au cours de la thèse. La première, analytique, uti-

lise à un angle d’incidence donné la mesure des

champs copolarisés. Les deux autres méthodes, al-

liant une partie analytique et une partie numérique,

nécessitent la mesure, du ratio polarimétrique pour

l’une, du champ horizontal pour l’autre, effectuée à

deux angles d’incidence différents. Ces méthodes ont

été validées numériquement à l’aide de la méthode

d’Optique Géométrique fournie par le logiciel FEKO.

Des mesures en chambre anéchoique ont été ef-

fectuées afin de valider ces méthodes. De même une

mesure in-situ a été effectuée sur un dièdre en béton

formé par un angle entre deux murs.

Title : Permittivities retrieval of a dihedral structure using radar polarimetry.

Keywords : inversion, permittivity, double bounce, monostatic

Abstract : For a monostatic radar, the dihedral ar-

rangement exhibits a strong response compare to

bare surface. This phenomenon can be seen in ra-

dar images of urban areas or forestry as building and

streets and trunks and ground are forming such struc-

tures. This signature can be modelled with the double

bounce equation as a cascade of Fresnel reflection

coefficients. These coefficients depend on the permit-

tivities of the structures. Finding these permittivities

from the backscattered fields may allowed to identify

the materials involved in the dihedral. Thereforethis

can be applied for default detection, moisture retrieval

and classification topics for instance.

By modelling the double bounce scattering with Fres-

nel coefficients, three methods have been developed

to retrieve these permittivities. The first one uses a

single incidence angle and the measurements of co-

polarised fields. The last two methods need the mea-

surement of the copolarised fields ratio or of the ho-

rizontal electric field alone at two different incidence

angles. All these methods have been validated, first

numerically using FEKO RL-GO method, then experi-

mentally, with measurements in anechoic chamber. At

last, in-situ measurements have been performed on a

wall corner made of concrete to assess the method

on a real case.
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