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INTRODUCTION

In the last decades, there has been an increasing focus on low-dimensional systems, in
particular one-dimensional (1D) or quasi-one dimensional magnetic systems where the
magnetic ions interact preferentially along a single direction in space. This interest is
justified by the fact that the physics in one dimension leads to a very rich physics as
the quantum effects are enhanced by the low-dimensionality. Moreover these systems can
be described by models that have the particularity to be integrable, i.e. that are easily
solvable analytically. Let us cite for instance the famous Bethe ansatz giving the exact
solution of an antiferromagnetic (AF) 1D Heisenberg spin-1/2 chain, which was the first
exact solution of a many-body quantum system. Therefore 1D magnetic systems allow a
direct comparison with theoretical work.

Among all the quantum manifestations of matter, the quantum phase transitions,
corresponding to an abrupt change of the ground state of a many body system due to
quantum fluctuations by varying a physical parameter (e.g. a magnetic field or pressure),
are particularly enhanced in 1D AF systems. Another interesting effect is the doping
of spin-chains by non-magnetic impurities which strongly affects both the static and the
dynamical properties of quantum spin-chains.

Neutron scattering experiments coupled to macroscopic measurements such as spe-
cific heat allow a comprehensive study of both static and dynamical properties of these
quantum spin-chains, and therefore a better understanding of quantum phase transitions
occurring in such systems.

The aim of this thesis was to study various quantum phase transitions in BaCo2V2O8,
a quasi-1D antiferromagnet which presents an Ising-like anisotropy. This system con-
sists of weakly coupled chains of magnetic ions Co2+ carrying an effective spin S = 1/2.
Therefore BaCo2V2O8 can be mapped onto the 1D XXZ spin-1/2 model, largely studied
theoretically with and without a magnetic field. Different quantum phase transitions are
predicted in this model depending on the orientation of the magnetic field, i.e. whether
the field is applied perpendicularly (transverse) or parallel (longitudinal) to the Ising z-
axis. The former case, namely the Ising-chain in a transverse field, is well known to be a
paradigm of quantum phase transition while in the latter case, it has been theoretically
predicted that an Ising-like system enters in a gapless phase known as Tomonoga Luttinger
liquid (TLL) phase. Actually, as we will see later, BaCo2V2O8 unexpectedly exhibits a
very original quantum phase transition when subjected to a transverse field different from
the one of the Ising chain model in a transverse field. Both the static properties and the
spin-dynamics of BaCo2V2O8 for these field orientations have been investigated by means
of neutron scattering during this thesis to understand the quantum phase transitions oc-
curring in this compound. Moreover, heat capacity measurements under high pressure
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and longitudinal magnetic field have been carried out in order to establish the (H,P, T )
phase diagram of the system. Finally a study of the static and dynamical properties of
Ba(Co1−xMgx)2V2O8 with x = 2% and 5% has been initiated to understand the effect of
the substitution of magnetic ions Co2+ by non-magnetic impurities Mg2+.

The manuscript is organized as follows:

• The first chapter will be devoted to generalities about quantum spin-chains, first
by introducing the Heisenberg AF chain and the Haldane conjecture. Secondly I
will explain the 1D XXZ spin-1/2 model and the various field-induced quantum
phase transitions predicted for such a system. Then I will give an overview of some
theoretical tools, namely the fermionization and the bosonization of quantum spin
chains which will be useful to the understanding of our system. Finally I will present
the state of the art of the results on BaCo2V2O8 at zero-field.

• Chapter 2 aims at describing the different experimental techniques that I have
used during my PhD, namely neutron scattering and specific heat measurements
under high pressure.

• Chapter 3 presents the numerical code using exact diagonalization that I have built
with the help of the Mathematica software in order to have a deeper understanding
of our system.

• Chapter 4 is dedicated to the study of BaCo2V2O8 in a transverse magnetic field.
The field evolution of both the static and the dynamical properties are reported. I
will then show a comparison of the experimental results with numerical calculations
and the quantum field theory associated to our system, enlightening the very non-
trivial quantum phase transition occurring in this compound.

• Chapter 5 reports the study of BaCo2V2O8 under a longitudinal magnetic field, in
particular the spin-dynamics above the critical field marking the onset of the TLL
regime. I will then compare the experimental results with numerical calculations
and discuss the nature of the spin-dynamics in this phase.

• Chapter 6 is devoted to two ongoing studies. First I will present the specific heat
measurements of BaCo2V2O8 under high pressure and under a longitudinal magnetic
field. Secondly, I will present briefly our preliminary neutron scattering results
concerning the effect of the substitution of Co2+ magnetic ions by non-magnetic
impurities.
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Ces dernières années, un intérêt constant a été porté sur les systèmes de basses
dimensions, en particulier les systèmes magnétiques unidimensionnels (1D) ou quasi-
unidimensionnels, où les ions magnétiques interagissent préférentiellement selon une di-
rection de l’espace. Cet intérêt est justifié par le fait qu’une physique très riche émerge
des effets quantiques renforcés par la basse dimensionnalité et des petites valeurs de spins.
De plus, ces systèmes peuvent être décrits par des modèles qui ont la particularité d’être
intégrables, i.e. exactement solubles analytiquement.

Parmi toutes les manifestations quantiques de la matière, les transitions de phases
quantiques (correspondant à un changement abrupt de l’état fondamental d’un système
à plusieurs corps à température nulle dû aux fluctuations quantiques en appliquant un
paramètre extérieur comme un champ magnétique ou une pression), sont particulièrement
exacerbés dans les systèmes magnétiques 1D. Un autre exemple d’effet particulièrement
intéressant est le dopage de chaînes de spins quantiques par des impuretés non magné-
tiques qui affectent à la fois leurs propriétés statiques et dynamiques.

Les expériences de diffusion de neutrons, couplées à des mesures macroscopiques, par
exemple les mesures de chaleur spécifique, permettent une étude compréhensive des pro-
priétés statiques et dynamiques des transitions de phases quantiques se produisant dans
ces systèmes.

Le but de cette thèse a été d’étudier des transitions de phases quantiques dans BaCo2V2O8,
un système quasi-1D antiferromagnétique (AF) présentant une anisotropie de type Ising.
Ce système est constitué de chaînes faiblement couplées d’ions magnétiques Co2+ por-
tant un spin effectif S = 1/2. Par conséquent BaCo2V2O8 peut être modélisé par le
Hamiltonien 1D XXZ, largement étudié théoriquement avec et sans champ magnétique.
Différentes transitions de phases quantiques sont prédites par ce modèle en fonction de
l’orientation du champ magnétique: perpendiculaire (transverse) ou parallèle (longitudi-
nal) à l’axe d’anisotropie de type Ising. Le premier cas, à savoir la chaîne de spins de
type Ising en champ transverse, est bien connu pour être un paradigme de transition
de phase quantique. Concernant le deuxième cas, il a été théoriquement montré qu’un
système de type Ising entre dans une phase originale non-gappée connue sous le nom
de liquide de Tomonoga Luttinger (TLL). Durant cette thèse, les propriétés statiques et
dynamiques de BaCo2V2O8 pour ces deux orientations du champ ont été étudiées à l’aide
d’expériences de diffusion neutronique afin de mieux comprendre les transitions de phases
se produisant dans ce système. De plus, des mesures de chaleur spécifique sous haute
pression et champ magnétique longitudinal ont été effectuées afin d’établir le diagramme
de phase (H,P, T ) de ce système. Finalement, une étude des propriétés statiques et dy-
namiques de Ba(Co1−xMgx)2V2O8 avec x = 2% et x = 5% a été initiée afin de comprendre
l’effet de subsitution des ions magnétiques Co2+ par des ions non magnétiques Mg2+.
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1.1 Summary

1.1.1 Abstract
The aim of this chapter is to introduce general concepts about one-dimensional (1D)
systems. First, I will present the very general case of an antiferromagnetic (AF) spin-chain
with isotropic, i.e. Heisenberg, interactions. I will then present the Haldane conjecture
and the difference between integer spin and half integer spin chains. Then, anisotropic
spin 1/2 chains and different quantum phases transitions will be introduced, followed by
some useful theoretical tools to model these systems. Finally I will summarize the state of
the art of the quasi-1D Ising-like antiferromagnet BaCo2V2O8 in zero-field, the compound
that I have studied during my PhD.

1.1.2 Résumé en français
Le premier chapitre est consacré à une introduction sur les chaînes de spins quantiques.
Dans un premier temps, nous présentons la chaîne Heisenberg AF, puis nous expliquons
la conjecture de Haldane qui postule que les chaînes de spins entiers et demi-entiers se
comportent de faÃ§on totalement différentes. Nous nous intéressons particulièrement au
cas des spins demi-entiers, qui correspond à BaCo2V2O8. Les excitations magnétiques
dans ce cas précis sont appelées des "spinons" et sont au coeur de ce sujet d’étude. Elles
correspondent à des excitations fractionnaires créées par paires portant chacune un spin
1/2. L’Hamiltonien XXZ est ensuite présenté. Celui-ci permet de décrire des chaînes de
spins anisotropes, i.e. où les spins veulent s’aligner dans des directions particulières de
l’espace, par exemple dans le plan perpendiculaire à l’axe z (anisotropie de type XY) ou
encore lorsque le spin pointe dans une seule direction de l’espace (anisotropie de type
Ising), ce dernier cas étant celui de BaCo2V2O8. Les différentes transitions de phase
quantiques prédites théoriquement pour diverses configurations du champ magnétique par
rapport l’axe Ising sont alors introduites. Lorsque le champ est appliqué parallèlement
Ã l’axe Ising (longitudinal), il a été montré que le système entre dans une phase non-
gappée dite de liquide de Tomonaga Luttinger (TLL) alors que lorsqu’il est appliqué
perpendiculairement (transverse), la transition de phase quantique attendue est celle d’une
phase ordonnée Ã une phase désordonnée (transition AF-paramagnétique). Plus loin, des
outils théoriques tels que la fermionisation et la bosonisation, utiles à la compréhension
de ces systèmes, sont présentés. Enfin l’état de l’art de BaCo2V2O8 à champ nul est
exposé. Ce système consiste en des chaînes faiblement couplées d’ions magnétiques Co2+

portant un spin effectif 1/2. La structure magnétique à champ nul correspond à un ordre
antiferromagnétique où les spins sont parallèlement alignés le long des chaînes et pointent
selon l’axe z (anisotropie de type Ising). Le spectre des excitations à champ nul est alors
présenté ainsi que les excitations magnétiques associées qui correspondent à des spinons
confinés par l’interaction interchaîne.
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1.2 Introduction: 3D vs 1D systems

Three-dimensional (3D) non frustrated magnetic systems show a well-established behav-
ior. The moments interact with each other through an exchange interaction J which
generally leads to a long-range ordering, for instance the Néel order shown in Fig. 1.1(a)
for antiferromagnetic interactions. The associated excitations are spin waves, quantized
as magnons that one can see semi-classically as the precession of the spins around their
equilibrium position (see Fig. 1.1(b)). Spin waves both for AF and ferromagnets are only
valid assuming an ordered state and for large values of the spins S (i.e. the semi-classical
limit with S → +∞). Indeed, the precession of the spins induces a reduction of the total
magnetic moment by 1 (for one magnon), 2 (for two magnons) and so forth. For instance,
if we consider a ground state with spins S = 7/2, one magnon reduces one of the spins
down to S = 5/2, and this reduction will spread along the system creating a spin-wave.
The criteria of validation of the spin-wave theory is thus nb ≤ 2S where nb is the number
of magnons (bosons) per site 1 [Aue94].

(a) (b)

(c)

Figure 1.1: 3D conventional magnetism. (a) Example of a Néel ordering in a 3D
antiferromagnet. (b) Spin waves excitation in a 3D antiferromagnet corresponding to the
precession of the spin around their equilibrium position. (c) The associated dispersion
spectrum with a well defined branch emerging from the AF position q = π (with q the
wave vector).

Is it possible to go beyond the conventional behavior of 3D magnetic systems? How can
we enhance quantum fluctuations to be able to produce quantum effects? Two ingredients
allow us to do that: a small value of the spin (for example a spin S = 1/2) and a small
dimensionality (for example D = 1). We will see in the following that the physics in
low-dimensional systems is much more exotic compared to the conventional 3D case and
leads to very peculiar ground states and excitations (for instance spinons) arising from
pure quantum effects.

1One can ask the legitimate question: what about a spin S = 1/2? This case is the limit of the
spin-wave theory as one magnon corresponds to a state where the spin has totally flipped.
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1.3 Heisenberg antiferromagnetic spin-chains

In this section I will present some generalities on Heisenberg antiferromagnetic (AF)
spin-chains and the Haldane conjecture which stipulates that half integer and integer spin
chains show a totally different behavior.

1.3.1 Generalities

One simple model is the Heisenberg AF spin chain Hamiltonian. For instance, the S = 1/2
Heisenberg AF chain is the first many-body system solved analytically almost a century
ago by Bethe through the famous Bethe ansatz [Bet31]. The general Hamiltonian of a 1D
Heisenberg system writes as:

HHeisenberg = J
∑
j

~Sj · ~Sj+1

= J
∑
j

{
Sxj S

x
j+1 + Syj S

y
j+1 + SzjS

z
j+1

} (1.1)

where J is the intrachain interaction between first neighbor sites, j labels the sites along
the chain, ~Sj is the spin on site j and Sαj its component along α (with α = x, y, z). In the
convention used here, if J > 0, the system is AF while if J < 0, the system is ferromagnetic
(FM). The scalar form of J means that the exchange interactions are isotropic (in other
words Jxx = Jyy = Jzz = J , Jα,β = 0 for α 6= β with α and β = (x, y, z)). This kind of
chain is pictured in Fig. 1.2.

𝐽𝐽

Figure 1.2: Sketch of a AF Heisenberg spin chain. Only the first neighbor interac-
tions are taken into account here.

One of the first argument which evidences the relevance of the quantum effects in
spin-chains is the Haldane conjecture [Hal83b; Hal83a] which predicts that half-integer
spin and integer spin Heisenberg AF chains behave differently.
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1.3.2 Haldane conjecture: Integer vs half integer spins
1.3.2.1 Haldane conjecture

To get an insight of the Haldane conjecture, a simple way is to deal with the set of coherent
states [Hal83b; Hal83a]:

|n〉 = eiŜ
zφeiŜ

yθ |MS, S〉 (1.2)

= eiφ/2 cos θ2 |↑〉+ e−iφ/2 sin φ2 |↓〉 (1.3)

where |MS, S〉 are states such that Ŝz |MS, S〉 = S |MS, S〉, and θ and φ are the polar and
azimuthal angles describing the orientation of |n〉.

In the semi-classical limit, i.e. S → +∞, these states are a semi-classical representa-
tion of the spin and can be understood as a vector pointing on the Bloch sphere (in other
words pointing the direction of the spin) as shown in Fig. 1.3.

| ۧ𝑛

𝜙

𝜃

| ۧ↑

| ۧ↓

Imaginary time 𝜏 ~ 𝛽
(a) (b)

Figure 1.3: Coherent states representation of the spin. (a) Bloch sphere. The
states |↑〉 and |↓〉 are the north and south poles of the Bloch sphere. (b) Qualitative
imaginary time evolution of the coherent state.

The main idea behind the Haldane conjecture is to use the path integral 2 (i.e. the
action) of these coherent states. One can show that the partition function Z and the path
integral S are related through the following formula [Aue94; MK04]:

Z = Tr
(
e−βH

)
=
∫

D~ne−
∫ β

0 dτ{−〈∂dτn|n〉+H(~n)}

=
∫

D~ne−S(~n)
(1.4)

where H is the Hamiltonian of the system, β the inverse temperature T defined as β =
1/(kBT ), and τ = ~β the imaginary time (which is used to connect quantum mechanics
with statistical physics). The integration

∫
D~n stands for the summation over all possible

paths that ~n can take in a time τ . For an AF: ~Sj = S(−1)j~nj where ~Sj is the spin at site
2Let us consider a field ψ(~r, t). The probability amplitude P associated with the realization of a

given final configuration ψf = ψ(~rf , tf ) from an initial state ψi = ψ(~ri, ti) writes as the path integral:

P = 〈ψi|e
−i
∫ tf

ti
dtH
|ψf 〉 =

∫
ψi→ψf

D~r(t)eiS[ψ(~r,t)].
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j, ~nj the vector describing its orientation and S the value of the spin. It can be shown
in this case that, in the continuous limit, the action S(~n) writes as the sum of a kinetic
term Skin and a topological term (or Berry term) Stop:

S(~n) = Skin(~n) + Stop(~n)

=
∫
dτdx

1
2g
{

(∂τ~n)2 + (∂x~n)2
}

+ 2πSQτ,x

(1.5)

where g = 2/S and Qτ,x is a winding number (Qτ,x ∈ Z) which counts the number of
times the unit vectors ~n sweeps the unit sphere (this can be seen somehow as a Berry
phase). This leads to the partition function:

Z =
∑
Qτ,x

e−i2πSQτ,x
∫

D~ne−Skin(~n) (1.6)

This topological term (which has no classical analogue) is at the origin of the different
behavior between half integer and integer spins. Indeed, for integer spins Stop = 2πnQτ,x

while for half integer spins Stop = (2n + 1)πQτ,x with n ∈ N. Hence the latter will cause
(non-trivial) quantum interference of configurations with different Qτ,x in Eq. (1.6), which
dramatically affects the ground state correlations and excitations. This is responsible for
the fact that there is a gapless phase in spin-1/2 chains. One must be cautious that this
Berry phase effect is actually a "conjecture". For more details, readers can refer to [MK04;
Aue94].

Let us now discuss in more details the differences between integer and half integer spin
chains.

1.3.2.2 Integer spins

For integer spin-chains and at zero-temparature, the ground state is a singlet state (S
= 0) separated from the first triplet excited state (S = 1) by an energy gap ∆. This
gap is related to the intrachain coupling J and to the value of the spin S through ∆ '
JSe−πS [WH93]. The ground state is described by a spin-liquid state called Haldane
phase with short range correlations (the correlation length is about 6 spins for S = 1
and 50 for S = 2). Indeed the static spin-spin correlations decay exponentially with the
distance between two spins at positions ~0 and ~r and writes as:

〈~S(~0, t = 0) · ~S(~r, t = 0)〉 ' (−1)r√
r
e−r/ξ (1.7)

where ξ is the correlation length, and r = ||~r||.
Theoretically, the Haldane phase is explained through the valence bond solid (VBS)

theory. This is rigourosly demonstrated by the AKLT (Affleck-Kennedy-Lieb-Tasaki)
model [Aff+87], i.e. for a bilinear 1/3 biquadratic Hamiltonian 3. The idea behind
the VBS is to consider the ground state as a coherent superposition of all the possible
configurations in which spins form valence bonds between first neighbors. In the case
of the S = 1 spin chain, it consists in splitting the spin S = 1 into two fictitious spins
s = 1/2 and to describe the system as a succession of pairs of spins s = 1/2 as shown in
Fig. 1.4(a).

3This Hamiltonian writes as HAKLT =
∑
j

{
~Sj · ~Sj+1 + 1

3 (~Sj · ~Sj+1)2
}
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𝑆 = 1

s = 1/2

: Valence bond 1/ 2 | + ۧ− − | − ۧ+

(- +) (- +) (- -) (+ +) (+ +) (- -) (+ -)

(- +) (- +) (- -) (+ +) (- +) (- -) (+ -)

(a)

(b)

Figure 1.4: AKLT model. Sketch of the spin-1 Heisenberg chain: every spin S = 1
is decomposed into a pair of two fictitious spins s = 1/2. (a) Ground state where each
spin s = ±1/2 forms a valence bond (blue line) with its first neighbor s = ∓1/2 from
the neighboring S = 1 state. (b) First excited state: one spin s = −1/2 has been flipped
creating a triplet excitation pointed out by the two orange arrows.

There are three possible states for a spin S = 1 that we can decompose in two spins
s = 1/2 which can have the (+) (spin up) or (-) (spin down) states:

Sz = +1↔ |↑〉 = (++)
Sz = −1↔ |↓〉 = (−−)
Sz = 0↔ (+−) or (−+)

Then, a valence bond state consists in forming singlet states (|+−〉 − |−+〉) /
√

2 by
combining each spin s = 1/2 |+〉 with its first neighbor spin s = −1/2 |−〉 from the
neighboring S = 1 state, yielding for example the possible configuration below:

(−+)(−+)(−−)(++)(−+)(−−)(+−)(+−)... = |00 ↓↑ 0 ↓ 00...〉

The ground state consists in a succession of spin triplets |↑〉 and |↓〉 which can be sep-
arated by an arbitrary number of states |0〉. This kind of ground state is often called
diluted antiferromagnet or "hidden" order 4.

The first excitated state is a spin-triplet and such an excitation can be created by
flipping one of the spins 1/2 of the singlet formed by two spins +1/2 and −1/2 tied
through the valence bond (see Fig. 1.4(b)). At a wave-vector k = π, the energy gap ∆
separates the ground state S = 0 from the first excited triplet S = 1 which is often referred
to as a magnon (see Fig. 1.5(a)). At k = 0, the lowest energy excited state is a continuum
of 2-particles (2 magnons) separated by a gap 2∆. It is predicted theoretically that the
one magnon excitation melts in the 2-magnons continuum at the critical wave-vector
kc ' 0.23π [WA08].

4This denomination comes from the fact that the order parameter is non-local. Such an order param-
eter is called a "string" order parameter.
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(a) (b)

1 magnon

Figure 1.5: Dispersion spectrum of a S = 1 Haldane chain. (a) Theoretical predic-
tion for the zero-field dispersion spectrum. Figure extracted from [WA08]. (b) Experi-
mental dispersion spectrum obtained by inelastic neutron scattering in the Haldane chain
S = 1 compound Y2BaNiO5. Figure extracted from [Xu+00].

1.3.2.3 Half integer spins

For half integer spin chains and at zero-temperature, the ground state is a singlet S = 0.
While quantum fluctuations prevent any ordering in 1D systems, for a spin-1/2 AF spin
chain, the static spin-spin correlations decay with the distance r between two spins with
the power law [Bet31]:

〈~S(~0, t = 0) · ~S(~r, t = 0)〉 ' (−1)r
r

(1.8)

It is then often named a "quasi" long range order and the ground state is called Tomon-
aga Luttinger liquid (TLL), which I will explain later.

Contrary to Haldane chains, half integer spin chains are gapless at zero-temperature.
To describe the spin-dynamics of such chains, it is useful to rewrite the Heisenberg Hamil-
tonian of Eq. (1.1). For this purpose, let us consider the quantization axis along the z-axis.

HHeisenberg = J
∑
j

SzjS
z
j+1 + 1

2
(
S+
j S
−
j+1 + S−j S

+
j+1

)
︸ ︷︷ ︸

kinetic part

(1.9)

where the S+
j = Sxj + iSyj and S−j = Sxj − iS

y
j spin-flip operators at site j are introduced.

To create an excitation in such a system, one has to flip one of the S = 1/2 spins. This
leads to a triplet excitation S = 1. What is remarkable in spin-1/2 chains is that this
bosonic excitation fractionalizes into two fermionic excitations each of them carrying a
spin 1/2. These fractionalized excitations are called "spinons" and can propagate along the
chain without any cost of energy through the kinetic part of the Hamiltonian. Therefore
the spinons are "deconfined" and they can be seen as magnetic solitons 5. This is well
understood in the case of an Ising anisotropy where the spinons are equivalent to domain
walls as shown in Fig. 1.6.

5A soliton is defined as a wave maintaining its shape while it propagates at constant velocity.
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Spin-flip 𝑆𝑗
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… 𝑗-2 𝑗-1 𝑗 𝑗+1 𝑗+2 …

spinon 
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Figure 1.6: Sketch of a two spinon excitation in a spin-1/2 chain. One spin at
site j in the ground state is flipped through S−j . This Stot = −1 excitation fractionalizes
into two spinons, each of them carrying a spin Sz = −1/2. The spinons can be seen as
domain walls in the Ising case (dashed green lines) which can propagate freely along the
chain through the kinetic part of the Hamiltonian (see Eq. (1.9)). Indeed, the kinetic part
allows the spinons to hop by two sites and preserves the total magnetization Stot of the
system.

The fact that these excitations can propagate freely along the chain with no energy
cost leads to an ungapped continuum of excitations, characteristic of quantum half integer
spin chains. The lower bound of the dispersion spectrum has been calculated analytically
by Des Cloizeaux and Pearson [CP62]. The dispersion spectrum is delimited by the two
dispersion relations given by:

E1(k) = ~ω1(k) = πJ

2 | sin(k)|

E2(k) = ~ω2(k) = πJ

∣∣∣∣∣sin
(
k

2

)∣∣∣∣∣
where E1 and E2(k) are the energies of the lower and upper bounds of the dispersion
spectrum respectively, and k is the wave-vector.

It is interesting to compare these excitations with the semi-classical limit (S → ∞)
described by the spin-wave theory. Indeed the dispersion relation of spin waves for a
classical AF chain is given by ESW = ~ωSW = J | sin k| and thus differs by a scaling factor
π/2 with the lower bound of the 2-spinon continuum. The dispersion of the Heisenberg
AF spin-1/2 chain is plotted in Fig. 1.7.

The spectral weight of these excitations is given by the Müller ansatz, giving theoret-
ically the dynamical structure factor S(k, ω) (which can be measured in inelastic neutron
scattering experiments) through the following formula [Mül+81]:

S (k, ω) = A√
ω1(k)2 − ω(k)2

Θ (ω(k)− ω1(k)) Θ (ω(k)− ω2(k)) (1.10)
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where ω(k) is the energy of a given excitation, A is a constant, and Θ is the Heaviside
function defined by Θ(x) = 0 if x < 0 and Θ(x) = 1 if x ≥ 1. Therefore, S (k, ω) has a
singularity at E1(k) = ~ω1(k) and a tail up to E2(k) = ~ω2(k). All the spectral weight is
contained in the continuum with a maximum of intensity at k = π (called the AF point
of the Brillouin zone (BZ), in contrast with the points at k = 2nπ with n ∈ Z called zone
center (ZC) points).

𝐸𝑆𝑊 𝑘

Wavevector qchain 

ZC AF ZC 

(a) (b)

0 0.5 1

Figure 1.7: 2-spinon excitations. (a) 2-spinon excitation spectrum predicted theoreti-
cally for a Heisenberg AF spin-1/2 chain [CP62; FT81; MK04]. The spectrum is contained
between the lower and upper bounds E1(k) and E2(k) respectively and consists in a con-
tinuum of excitations. The dispersion relation of spin waves ESW (k) is also plotted for
comparison. The AF and ZC points are pointed out. (b) Excitation spectrum of the
quasi-1D Heisenberg antiferromagnet KCuF3 obtained by inelastic neutron scattering at
low temperature. Figure extracted from [Lak+05].

Many experimental studies, in particular neutron scattering experiments, have con-
firmed the existence of such a continuum, for instance in the AF Heisenberg spin-1/2
chain compounds KCuF3 [Nag+91; Lak+05] (see Fig. 1.7(b)), CuSO4•5D2O [Mou+13]
or CuPzN [Sto+03].

The question is now: what about systems with an anisotropic exchange interaction,
thus breaking the rotational symmetry of Heisenberg systems?

1.4 Anisotropic AF spin-1/2 chains

1.4.1 XXZ Hamiltonian
The magnetic anisotropy refers to the fact that the magnetic moments prefer to point
along given directions (thus reducing the number of degrees of freedom for the spin). It
emerges from different effects such as the magneto-crystalline anisotropy. To modelize the
influence of the anisotropy in quantum AF spin-chains, one can modify the Hamiltonian
of Eq. (1.1) to the XXZ Hamiltonian:
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HXXZ = J
∑
j

{
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjSzj+1

}
or also = J

∑
j

{
ε
(
Sxj S

x
j+1 + Syj S

y
j+1

)
+ SzjS

z
j+1

} (1.11)

where ∆ and ε = 1/∆ are the anisotropy parameters 6. Therefore, we have:

• ∆ = 1 ↔ ε = 1 corresponds to the AF Heisenberg case where the orientation of
the magnetic moment is isotropic (same Hamiltonian as in Eq. (1.1)). The spins
have three degrees of freedom.

• |∆| < 1 ↔ |ε| > 1 corresponds to the XY-like case where the magnetic moments
want to lie in the plane perpendicular to z. The limit ∆ = 0+ ↔ ε → +∞
corresponds to the pure AF XY case, where the spins have only two degrees of
freedom.

• |∆| > 1↔ |ε| < 1 corresponds to the Ising-like case where the magnetic moments
want to point along a single direction. The limit ∆→ +∞↔ ε = 0+ corresponds
to the pure AF Ising case, where the spins have a single degree of freedom.

These considerations are summarized in Fig. 1.8.

𝑧 𝑧 𝑧

Heisenberg
Δ = 1
𝜀 = 1

XY
Δ = 0
𝜀 → +∞

Ising
Δ → +∞
𝜀 = 0

(a) (b) (c)

Figure 1.8: Different anisotropies. The red arrow indicates one orientation of the spin
among all the possible ones (shown by the black sphere, circle or line). (a) Heisenberg
case where the orientation of the spin is isotropic. (b) XY case where the spin lies in the
plane perpendicular to z. (c) Ising case where the spin points along the z direction.

This Hamiltonian will be intensively used in the rest of this manuscript as we will see
in the next chapters. Let us now examine the influence of a magnetic field on this model.

6Note that in the first expression J (J > 0) corresponds to Jxx = Jyy and thus Jzz = ∆J , while in
the second expression J (sign(J) = sign(ε)) corresponds to Jzz and thus Jxx = Jyy = εJ .
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1.4.2 Quantum phase transitions in Ising-like spin-1/2 AF chains

1.4.2.1 Tomonaga Luttinger liquid phase and H −∆ phase diagram of spin-1/2 AF
chains

Let us first consider a magnetic field along the z-axis. This yields the following Hamilto-
nian:

H= J
∑
j

{
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjSzj+1

}
− gzzµBHSzj (1.12)

where gzz is the component of the Landé tensor g̃ along z, µB is the Bohr magneton and
H the applied magnetic field. The second term is the Zeeman Hamiltonian describing the
interactions between the spins and the magnetic field. For the particular case of Ising-
like systems (with z the Ising axis), such a direction of the field is called "longitudinal".
This model is well known theoretically and has led to the H −∆ phase diagram of XXZ
spin-1/2 AF chains [WH00b] shown in Fig. 1.9.
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Figure 1.9: H − ∆ phase diagram of XXZ AF spin-1/2 chains. Magnetic field
h = µBgzzH/J (in reduced units) applied along ~z vs the anisotropy parameter ∆ = 1/ε.
The TLL phase is delimited by a critical field hc and a saturation field hsat.

I will explain in more detail this phase diagram in Chap. 5. Nevertheless let me
introduce the Tomonaga Luttinger liquid (TLL) theory.

The Fermi liquid theory is commonly used to understand 3D electronic systems by
a renormalization of the parameters taking into account the interaction terms of the
Hamiltonian. In 1D this theory breaks down and is replaced by the TLL theory (it
can be seen somehow as the equivalent of the Fermi Liquid theory for 1D systems). This
model describes interacting spinless fermions in 1D systems [GP04; ML94] and is obtained
through bosonization techniques that I will briefly introduce later. This theory leads to
the establishment of the TLL gapless phase for spin-1/2 chains.
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At zero-field, this phase exists between −1 < ∆ ≤ 1 (with in between the XY case
∆ = 0). For ∆ > 1, i.e. in the Ising-like case, the system is AF and gapped. However
the TLL phase is shifted to larger values of ∆ in a magnetic field and thus increasing
the magnetic field above the critical field Hc at which the gap closes (due to the Zeeman
splitting) brings the AF Ising-like systems into this TLL gapless phase.

So far, no chain compound with Ising-like anisotropy has been studied in this field-
induced TLL phase by neutron scattering. During my PhD, I have studied BaCo2V2O8
which has a moderate anisotropy ∆ ' 2 and thus a rather small critical field of µ0Hc '
4 T, allowing this system to be studied in the TLL phase under a longitudinal magnetic
field. As we will see later, an interesting physics emerges for Ising-like systems in the TLL
phase (see Chap. (5)).

1.4.2.2 Ising model in a transverse field, a paradigm for quantum phase transitions

Quantum phase transitions are defined by a change of the ground-state of a many-body
system due to quantum fluctuations by varying a physical parameter such as a pressure
or a magnetic field (which comes naturally in mind for magnetic systems) at T = 0 K 7.

The 1D Ising model in a transverse magnetic field, i.e. in a field applied perpendicularly
to the easy-axis of magnetization 8, is perhaps the most studied theoretical paradigm for
quantum phase transitions [Sac11]. Indeed this simple model can describe order-disorder
transition in many systems (therefore these systems are said to belong to the universality
class of the Ising model). Concerning the 1D case, it has been theoretically solved by
Pfeuty fifty years ago [Pfe70] and experimentally evidenced only recently by neutron
scattering in the strong Ising-like ferromagnet CoNb2O6 by Coldea et al. [Col+10].

Qualitatively, the transverse magnetic field competes with the Ising-axis. It will flip
the spin state from |↑〉 to |↓〉 (and vice versa) and these fluctuations will "melt" (and
thus destroy) the magnetic order at a critical field µ0Hc where the system enters in a
paramagnetic phase (disordered phase). A phase diagram of such a transition is shown
in Fig. 1.10.

At first sight, BaCo2V2O8 was a very-good candidate to investigate this quantum
phase transition for the AF case but as I will explain later in Chap. 4, our study led to a
totally different phase transition of topological nature [Fau+18].

1.4.2.3 Topological phase transition

In the world of condensed matter, the understanding of phase transitions has been much
improved by the Ginzburg-Landau theory [Lan+80]. This theory describes phase tran-
sitions by the concept of spontaneous symmetry breaking 9 where a physical invariant
called "order parameter" is introduced to describe the physical quantity which breaks the
symmetry under consideration. For instance the transition from a paramagnetic state to a
ferromagnetic one when cooling down the temperature is an example of such spontaneous
symmetry breaking where the order parameter is the local magnetization. P. Ehrenfest
is the first one who tried to classify such transitions [Jae98]. The actual classification of

7In contrast, a classical phase transition is defined by a change of state driven by thermal fluctuations.
8The Hamiltonian in this case writes: H = J

∑
j S

z
j S

z
j+1 −

∑
j gxxµBHS

x
j where gxx is the Landé

component of the tensor along the x-axis. Here ~H ‖ ~x.
9Thus violating the Curie principle which stands that "the symmetry of the causes are to be found in

the effects", in other words that the final state is more symmetric than the initial one.
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Figure 1.10: Ising model in a transverse magnetic field. H − T phase diagram of
the Ising FM chain in a transverse field. The dashed line shows the gap ∆ as a function
of the magnetic field h. By increasing the field, the gap closes at the critical field hc
where an order-disorder quantum phase transition occurs and then increasees again when
h further increases. In the low-field phase, the excitations are spinons like in the AF case,
already described above. In the high field phase, i.e. above hc, the transverse field forces
the spins to align along its direction. These ones can fluctuate and are called spin-flip
particles [Cab+14]. Figure extracted from [Col+10]. This quantum phase transition is
theoretically predicted to be the same for an AF Ising chain [Pfe70]

phase transitions is based on his work and stands that a "nth" order transition corresponds
to a discontinuity in the "nth" derivative of the free energy of the system. Interestingly, it
has been understood recently that some transitions are ∞-order phase transitions. They
are continuous but do not break symmetries in the system. Such a transition is called
"topological phase transition" that I will introduce now.

Topological phase transitions can be seen through the signature of topological defects
or excitations. The most famous example of such a transition is the Berezinski-Kosterlitz-
Thouless (BKT) transition [Jos13; Ber71; KT73] which led to the Nobel prize shared in
2016 between J. M. Kosterlitz, D. J. Thouless and F. D. M. Haldane for their under-
standing about topological phase transitions and topological phases of matter.

In their theory, Kosterlitz and Thouless investigated the XY model, i.e. with the spins
lying in the plane [KT73]. They showed that such kind of system "likes" to create vortices
or antivortices (see Fig. 1.11(a)) of spins to minimize its free energy. Vortices and antivor-
tices are topological defects, since it is impossible to deform each of them continuously to
recover a state where all the spins point along the same direction. Topology is somehow
the art of making loops (in a more scientific language, we speak about homology), and
therefore, one can attribute to these defects a "topological number" n ∈ Z (also called
winding number), characterizing how the spins are rotating. In the case of a vortex, n = 1,
meaning that if one draws an oriented loop (for example oriented clockwise) encircling
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the origin of the vortex, the spins on the loop will rotate clockwise 10. In contrast for an
antivortex, n = −1, meaning that if one draws the same loop, the spins rotate counter
clockwise (see Fig. 1.11(a)). To minimize its free energy, the system prefers to generate
free (i.e. decorrelated) vortices/antivortices above the critical temperature TBKT, while it
prefers to create bound vortex-antivortex pairs below TBKT. This corresponds to the BKT
transition. What is interesting to notice is that a vortex and an antivortex can annihilate
each other, resulting in an homogeneous magnetization [HS06].

+
𝟏

𝟐
−
𝟏

𝟐

(a)

(b)

𝚪 𝚪

Figure 1.11: Topological defects: vortices and spinons. (a) Vortex (left) and an-
tivortex (right) in an XY 2D FM system. These topological defects carry a topological
index of ±1. Figure extracted from [FN17]. (b) Pair of spinons in an Ising 1D FM sys-
tem. These excitations are topological defects since each domain wall can be seen as the
rotation of the magnetic moment in a semi-loop rotating clockwise or anticlockwise, thus
carrying a topological index +1/2 and −1/2 respectively.

The spinons can also be described in terms of topological defects. Indeed these soli-
tons, which can be seen as domain walls created in pairs, cannot be deformed individually
in a continuous way to recover the ground state 11. This can be understood with the help

10Formally, this writes
∮

Γ ds · ∇θ = 2πn where Γ is the loop encircling the origin of the vortex and θ
the angle indicating the orientation of the spin.

11In contrast, in the classical limit, the excitations are spin-waves which are topologically "trivial".
These excitations can be seen as the precession of the magnetic moment around their equilibrium position
and it is easy to imagine bringing back continuously the excited state to the ground state ordering.
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of Fig. 1.11(b). Let us consider an infinite chain. Imagine now that you want to erase one
of the two defects, for example the spinon on the left, this would imply to flip all the blue
spins on its left. The only way to bring back the FM order is, like in the case of vortex
and antivortex, that the two spinons collide to annihilate with each other.

While the BKT transition is rather a condensation of topological objects, what I will
present in Chap. 4 is a different topological quantum phase transition (driven by the
quantum fluctuations) where the topological nature of the excitations changes.

Before presenting the state of the art of BaCo2V2O8 in zero-field, let me now introduce
some theoretical tools widely used for 1D quantum magnetism as it will be useful to
understand the following.

1.5 Theoretical tools for studying spin-1/2 AF quan-
tum chains

1.5.1 Fermionization

The aim of the fermionization procedure is to map any system, in our case an AF spin-1/2
chain, to a fermionic system. Jordan and Wigner have observed that the |↑〉 and the |↓〉
states of the spins can be thought as an occupied or empty fermion state [JW28].

The Jordan Wigner transformations write as follows:

S+
j = c†je

iπ
∑

i<j
c†i ci

S−j = cje
iπ
∑

i<j
c†i ci

Szj = c†jcj − 1/2

where c†j and cj are the creation and annihilation operators of a fermion at site j re-
spectively 12. The term eiπ

∑
i<j

ni , with ni = c†ici the density operator, is called "string"
operator and is introduced to preserve the commutation of spin operators [Sαi , S

β
j ] = 0

with α, β = x, y, z, as the fermionic operators anticommute
{
c†i , cj

}
= δij. In other words:

spin operator = string operator × fermionic operator.
It is easy to introduce these transformations in the XXZ Hamiltonian of Eq. (1.11)

and one obtains (up to a constant):

HXXZ = J/2
∑
j

(
c†jcj+1 + cjc

†
j+1

)
+ J∆

∑
j

njnj+1 (1.13)

To get a conventional fermionic Hamiltonian, it is convenient to make the canonical
transformation cj → (−1)jcj, which consist in shifting the momentum of the fermions by

12As c†i ci = {0, 1} (i.e. it describes an empty or occupied fermion state), the third equation gives indeed
the two values of the spin Sz = ±1/2.
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π 13. The Hamiltonian described by Eq. (1.13) can be thus rewritten:

HXXZ = −J/2
∑
j

(
c†jcj+1 + cjc

†
j+1

)
+ J∆

∑
j

njnj+1

= −t
∑
j

(
c†jcj+1 + cjc

†
j+1

)
+ U

∑
j

njnj+1

= Hfree +HU

(1.14)

where t = J/2 is the hopping matrix element and U = J∆ is the nearest neighbor
interaction.

We then recover a model describing spinless fermions. The first term describes a free
electron system while the second one describes the interactions between electrons 14.
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Figure 1.12: Construction of the 2-spinons continuum by a fermionic represen-
tation. (a) Particle-hole band obtained through Jordan-Wigner transformations applied
on the XY Hamiltonian. Two specific particle-hole excitations, at zero-field in the Bril-
louin zone, are pointed out by black and yellow arrows: they correspond to zero-energy
and maximum energy excitations, respectively. EF denotes the Fermi level set to zero.
The fermions are located below EF (thick line) while the holes are located above (thin
line). (b) 2-spinon continuum expected for an AF XY linear spin-1/2 chain at zero-field.
This dispersion can be obtained from the particle-hole excitations at zero-field. Black and
yellow points are the excitations relative to the black and yellows arrows in the left panel.

Mattis and Lieb were the first ones to point out that the XY model can be solved
exactly by mapping it onto a tight binding Hamiltonian describing a half filled band of
non-interacting fermions where one electron can hope to a hole [LSM61]. Indeed we have:

13In terms of spin language, this transformation consists in: Sxj → (−1)jSxj , S
y
j → (−1)jSyj and

Szj → Szj . These transformations respect the anticommutation rules of the spin operators. This changes
Jxx = Jyy = J → −J and does not change Jzz = J∆→ J∆.

14The kinetic operator S+
j S
−
j+1 allows the spinons to move along the chain and can be seen as the

c†jcj+1 operator allowing the electrons to hop from one site to the next one. In contrast the Ising term
J∆Szj Szj+1 forces the spins to be antiferromagnetically coupled along the z direction and thus can be
understood as an interaction term avoiding the hopping of electrons.
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HXY = −J/2
∑
j

(
c†jcj+1 + cjc

†
j+1

)
(1.15)

In terms of the Fourier transform operators defined as: cj = 1√
N

∑
k cke

i~k·~rj and c†j =
1√
N

∑
k c
†
ke
−i~k·~rj where N is the number of sites, ~k the momentum and ~rj the position of

the electron/hole, the Hamiltonian of Eq. (1.15) can be rewritten:

HXY =
∑
k

~ω(k)c†kck

with ~ω(k) = −J cos ka
(1.16)

where a is the lattice spacing.
Interestingly, one can reconstruct from this representation the 2-spinon continuum of

a linear spin-1/2 chain as shown in Fig. 1.12. Indeed Fig. 1.12(a) shows the half filled
band obtained from the fermionization of a XY chain in zero-field and Fig. 1.12(b) shows
the 2-spinon continuum for a XY chain 15 obtained by doing many different particle-hole
excitations in the half-filled band (see the black and yellow arrows in Fig. 1.12(a)). The
same excitation spectrum is obtained for −1 < ∆ ≤ 1, but with renormalized energies
due to the interaction between fermions as soon as ∆ 6= 0.

At first sight, this simple mapping allows us to fully understand quantum XXZ AF
spin-1/2 chains. However, it can be shown that the spin-spin correlation functions turn
to be very complicated, especially because the string operator is non-local. In addition
fermions anticommute (Pauli principle) and are thus difficult to treat theoretically. One
way to get rid of these problems is to change of representation and to approach the system
by means of "bosonization".

I will briefly introduce it now as this is also widely used in 1D systems [GP04].

1.5.2 Bosonization
Generally, the nature of the bosons, in particular the fact that they commute, make them
much easier to treat theoretically as one has to deal with density operators making the
wave-functions of bosons much easier to write.

The basic idea of bosonization is that electron-hole excitations are naturally bosonic
in nature. Here I would like to emphasize two facts: first, bosonization is only an effective
theory, in the sense that it only describes low-energy properties of the system; second
I do not pretend to be an expert of the bosonization technique. Thus I will just recall
basic concepts behind it as it will help the readers to understand some of the theoretical
descriptions of BaCo2V2O8 in Chap. 4. For more detailed lectures, the reader can refer
to [GP04; DS98; Mir03].

Let us consider the XXZ Hamiltonian expressed in terms of fermionic operators given
by Eq. (1.14).

HXXZ = −J/2
∑
j

(
c†jcj+1 + cjc

†
j+1

)
+ J∆

∑
j

njnj+1

= Hfree + HU

(1.17)

15The fermionization of the Heisenberg model (and more generally of the XXZ model with 0 < ∆ ≤ 1)
leads to the same conclusion than the XY one though the fermions are now weakly interacting so that
approximations have to be done.
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where Hfree is the Hamiltonian describing a free electron system and HU the interactions.
Let us now make the assumption that the interaction term HU is weak enough so that

only the low-energy states are much affected 16. It is therefore reasonable to linearize
the spectrum (as the cosine function, coming from Hfree and the linear one only differ at
higher energy) as shown in Fig. 1.13.
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Figure 1.13: Linearization of the half-filled band given by the Jordan-Wigner trans-
formation of the XY model. The left (L) and right (R) branches have the dispersion
relation εL = −vF (kF + k) and εR = vF (k − kF ). An example of the bosonic operator
b†R,q acting on the right branch is shown. It creates a particle-hole excitation with a
momentum +q.

Therefore there are two branches: the left branch (L) and right branch (R) having an
energy εL(k) = −vF (kF + k) and εR(k) = vf (k − kF ) respectively where kF is the Fermi
vector and vF = ∂ε

∂k

∣∣∣
k=kF

= Ja sin(kFa) is the Fermi velocity. These branches can be
extended to −∞ and +∞ and thus one can understand easily that we work now in the
continuum limit 17. We thus work now in field theory and we can then define "fermionic

16Indeed this can be understood easily through the second order perturbation theory where the second
perturbation order writes: ∆E(2)

0 '
∑
n6=0

〈0|HU|n〉〈n|HU|0〉
E0−En

and ∆ |0〉(2) '
∑
n 6=0

〈0|HU|n〉
E0−En

|n〉. Here HU is
weak enough so that the denominator suppresses the corrections of higher energy excitations.

17There is now an infinite number of state k in each branch. This is equivalent to a → 0 such that∑
i −→a→0

∫
dx.
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field operators" ψ(x) 18 by:

ψ(x) = 1√
L

+∞∑
k=−∞

eikxck

ψ†(x) = 1√
L

+∞∑
k=−∞

e−ikxc†k

(1.18)

If we denote the momentum q = k− kF , then the effective Hamiltonian H0 describing
the two branches is:

H0 = vF q
∑
q

{
c†kF+qckF+q − c†−kF+qc−kF+q

}
(1.19)

then, in terms of density operators:

H0 = −ivF
{
ψ†R∂xψR − ψ†L∂xψL

}
(1.20)

where ψR,L = ∑
q e

iqxc±kF+q = ∑
q e

iqxcR,L are the density operators of the right (R) and
left (L) branch. This is the starting point of the bosonization technique that I will not
develop further. One can notice that the Hamiltonian is still written in fermionic language.
To solve this Hamiltonian, one can focus only on half of the Hamiltonian, for instance on
the right branch. To go further and by taking a big shortcut, bosonic operators bR,q, b†R,q
and the bosonic field ϕR(x) are defined as:

bR,q = 1/√nq
+∞∑

k=−∞
c†R,k−qcR,q (1.21)

b†R,q = 1/√nq
+∞∑

k=−∞
c†R,k+qcR,q (1.22)

ϕR(x) = −
∑
q

1
√
nq
e−iqxbR,qe

−αq/2 (1.23)

where nq = Lq
2π a relative number associated to q and α a cut off introduced to ensure that

the higher energy modes do not produce divergence in the calculation of the correlation
functions. Note that the bosonic operators bR,q and b†R,q create particle-hole excitations
with a momentum +q and −q respectively (see an example in Fig. 1.13).

After some transformations, the important equation relating the fermionic field ψR
and the bosonic field ϕR is obtained:

ψR(x) = 1
2πακRe

−i2
√
πϕR(x) (1.24)

where κR is called the "Klein" factor introduced to preserve the anticommutation of ψR.
Finally, the two dual bosonic fields φ(x) and θ(x) can be defined 19:

φ(x) = ϕR(x) + ϕL(x) (1.25)
θ(x) = −ϕR(x) + ϕL(x) (1.26)

18These operators are the continuum limit analog of the annihilation creators cj and satisfy the anti-
commutation rule {ψ(x), ψ(y)} = δ(x− y).

19They are called dual since they do not commute. Indeed [φ(x), θ(x′)] = − i
2 sign(x − x′) where the

function sign(x) = +1 for x > 0 and sign(x) = −1 for x < 0.
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With all these relations, one can rewrite the Hamiltonian H0 given by Eq. (1.20) in
terms of the two dual bosonic field operators φ(x) and θ(x) [GP04; DS98]:

H0 = vF
2π

∫
dx


(
dφ(x)
dx

)2

+
(
dθ(x)
dx

)2
 (1.27)

By taking into account the interactions (weak enough so that they can be renormal-
ized), the Hamiltonian becomes the one of the TLL theory:

HTLL = vF
2π

∫
dx

 1
K

(
dφ(x)
dx

)2

+K

(
dθ(x)
dx

)2
 (1.28)

where K is the Luttinger parameter which takes into account the interactions (which are
thus renormalized). This Hamiltonian describes many 1D systems where the interactions
are weak enough, for instance Heisenberg AF spin-1/2 chains. Actually, as we will see
in Chap. 4, the bosonic fields φ(x) and θ(x) can be seen semi-classically as the polar
and azimutal angles of the staggered magnetization vector for an AF spin-1/2 quantum
spin-chain.

If the interactions are strong enough, i.e. for ∆ > 1, the Hamiltionian HU cannot be
treated at a first order of perturbation and thus cannot be renormalized. To get rid of
this problem, it can be shown that a correction has to be included leading to another
term in the Hamiltonian which then becomes:

HSG = vF
2π

∫
dx

 1
K

(
dφ(x)
dx

)2

+K

(
dθ(x)
dx

)2
− 2λ

(2πα)2

∫
dx cos 4φ(x) (1.29)

where λ is a constant reflecting the strong interactions in the system
This is the so called sine-Gordon (SG) Hamiltonian [GP04; Raj82] describing for in-

stance Ising-like spin-1/2 chains. Qualitatively, in order to minimize the energy of the
system the second term has to be minimized and hence 2φ(x) = πn with n ∈ Z, which
means in other words that the spins point along a privileged axis, i.e. the Ising-axis. The
sine-Gordon model is widely used in physics and describes soliton-like excitations. Indeed
one of the excitations predicted by this Hamiltonian is a pair made of a soliton and an
antisoliton, describing then the two spinons in the case of quantum spin-chains [Raj82].
We will see the solutions of this equation at the end of Chap. 4.

Let me now present the state of the art at zero-field of BaCo2V2O8.

1.6 State of the art of BaCo2V2O8, an Ising-like quasi-
1D antiferromagnet

In this section, I will introduce the BaCo2V2O8 compound which is a quasi-1D Ising-like
antiferromagnet. This compound has raised a lot of interest because of its moderate
anisotropy (ε ' 0.5) allowing strong quantum fluctuations leading to a very interesting
physics as we will see in the next chapters. I will first present the crystallographic structure
of BaCo2V2O8 and its general magnetic properties. Then I will present the magnetic
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structure and the dynamical properties of BaCo2V2O8 at zero-field obtained from neutron
scattering experiments.

1.6.1 Crystallographic structure

BaCo2V2O8 crystallizes in the tetragonal space group I41/acd (n◦ 142). This space group
is centrosymmetric and the unit cell is body-centered. The lattice parameters at ambiant
temperature are: a = b = 12.444 Å and c = 8.415 Å. Each unit cell contains 8 chemical
formulas (Z = 8) [RH86]. Fig. 1.14 shows the crystallographic structure of BaCo2V2O8.

Figure 1.14: Crystallographic structure of BaCo2V2O8. (a) Projection in the (b, c)
plane. For more clarity, only two chains are represented here. (b) Projection in the
(a, b) plane of the four chains contained in the unit cell. The clockwise and anticlockwise
arrows indicates the sense of rotation of the screw chains when z increases. Figure taken
from [Can+13]. Co1, Co1′ , Co5, Co5′ are located at z = 1/8, Co2, Co2′ , Co6, Co6′ at
z = 3/8, Co3, Co3′ , Co7, Co7′ at z = 5/8 and Co4, Co4′ , Co8, Co8′ at z = 7/8. The Co3′

atom is obtained from Co1 (x, y, z = 1/8) by the body-centering translation and is thus
located at (x+ 1/2, y + 1/2, z = 5/8).

The magnetic ions Co2+ are contained in the octahedra formed by the neighboring
atoms of oxygen. Each CoO6 octahedron shares an edge with two neighboring octahedra
forming screw chains along the c-axis. Each screw chain is separated from its neighboring
chains by non-magnetic VO4 (V5+) tetrahedra and Ba2+ ions, thus giving to the magnetic
system a strong one-dimensional character with interchain magnetic interactions much
smaller than the intrachain one. One can notice in Fig. 1.14(b) that there are two types
of screw chains:

• The 41-axis parallel to the c-axis and located at (x = 1/4, y = 0) transforms the
Co1 atom at coordinate z = 1/8 into the Co2 (z = 3/8), then into the Co3 (z = 5/8)
and finally into the Co4 (z = 7/8), thus forming a screw chain of CoO6 octahedra
rotating counter clockwise while z increases.
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• The 43-axis parallel to the c-axis and located at (x = 1/4, y = 1/2) transforms the
Co5 atom at coordinate z = 1/8 into the Co6 (z = 3/8), then into the Co7 (z = 5/8)
and finally into the Co8 (z = 7/8), thus forming a screw chain rotating clockwise
while z increases.

The chains | Co1′ ...Co4′ | and | Co5′ ...Co8′ | are simply obtained by the body-centering
of the unit cell, i.e. by applying the translation (1/2, 1/2, 1/2). Therefore, the Co1 atom
produces the Co3′ , Co5 produces Co7′ and so forth. Finally, each unit cell contains 4 screw
chains parallel to the c-axis and 16 Co2+ magnetic ions.

1.6.2 Effective spin-1/2 and Ising-like anisotropy

The magnetism in BaCo2V2O8 is due to the Co2+ ions which have an orbital angular
momentum L = 3 and a spin S = 3/2 as a free ion. The atom of Vanadium V5+ is
non-magnetic. The crystal field theory of the magnetic ion Co2+ (d7) was widely studied
in the 50’s and the 60’s by Abragham and Pryce in 1951 [AP51], by Lines in 1963 [Lin63]
and later by Goodenough in 1968 [Goo68]. In BaCo2V2O8, because of the spin-orbit cou-
pling and the compression of the CoO6 octahedra along the c-axis 20, it can be shown that
the crystal field ground state is given by a Kramers doublet. The gap ∆E between this
Kramers doublet and the first excited state was found to be about 30 meV (thus about
350 K) [Can10]. As we will see later, the energy range of the magnetic excitations in
BaCo2V2O8 is much lower than this energy (typically below 10 meV) and therefore, we
can consider that only the ground state Kramers doublet is populated in all this work.
This latter can be considered as fictitious spin states ±1/2. Consequently, the real spin
S = 3/2 can be replaced by anisotropic effective spin S = 1/2 and BaCo2V2O8 at zero-
field can be described by the XXZ Hamiltonian given by Eq. (1.11) with effective spins 1/2.

While this compound was first synthesized by R. Wichmann and H. Müller-Buschbaum [RH86],
it tooks more than a decade to see a strong interest raising for BaCo2V2O8 after the studies
of Z. He et al. [He+05a; He+05b] and of S. Kimura et al. [Kim+06; Kim+07; Kim+08b;
Kim+08a].

Fig. 1.15(a) shows the susceptibility as a function of the temperature measured on a
BaCo2V2O8 single-crystal by Z. He et al. [He+05b]. One can see that BaCo2V2O8 exhibits
a strong anisotropic behavior depending on the orientation of the applied magnetic field:
the susceptibility curve observed when the field is applied along the c-axis, i.e. parallel to
the chains, is almost twice larger than the one when the field is perpendicular. Thus the
easy-axis of anisotropy is along c. When the magnetic field is applied along the c-axis,
the susceptibility reaches a maximum at around T ' 30 K. This behavior is characteristic
of 1D correlations in AF spin chain systems [Joh+00].

Fig. 1.15(b) shows the specific heat measurements as a function of the temperature in
zero-field. One can see a sharp λ-like peak around T = TN ' 5.5 K, pointing out a Néel
ordering below this temperature. The fact that a long range order is possible 21 is due to
the presence of weak interchain interactions (i.e. 3D couplings) in BaCo2V2O8.

20This comes from the Jahn Teller effect which stipulates that any (non-linear) molecule presenting a
degenerate ground state will undergo a geometrical distortion so that it lifts the degeneracy because the
distortion lowers the overall energy [JT37]

21Let me recall that for a pure 1D spin-1/2 system, only a quasi long range order is possible.
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(b)(a)

Figure 1.15: Macroscopic characterization of the magnetic properties of
BaCo2V2O8. (a) Susceptibility χ as a function of T for two different orientations of
the magnetic field set to µ0H = 1 T. (b) Temperature dependance of the specific heat at
zero-field. Figures extracted from [He+05a; He+05b].

To summarize, BaCo2V2O8 consists in screw-chains parallel to the c-axis. It shows
an Ising-like anisotropy where the moments want to align antiferromagnetically along the
c-axis. The system enters into a Néel phase below the critical temperature TN ' 5.5 K
because of the interactions between the chains. Let us now turn to the studies using
neutron scattering which allowed to determine the magnetic structure and the dynamical
properties of BaCo2V2O8.

1.6.3 Magnetic structure at zero-field
The magnetic structure of BaCo2V2O8 was first investigated by powder diffraction by
Kawasaki et al. [Kaw+11]. E. Canévet et al. then determined the magnetic structure of
BaCo2V2O8 at zero-field by neutron diffraction on a single crystal [Can+13].

In their experiment, the propagation vector, which reflects the periodicity of the mag-
netic unit cell with respect to the crystallographic one, was found to be:

~k = (1, 0, 0) (1.30)

This means that the hkl magnetic Bragg peaks are such that h + k + l is odd (in
contrast to the nuclear ones for which h+ k + l is even due to the body-centering of the
cell). ~k = (1, 0, 0) or equivalently ~k = (0, 1, 0) rather than ~k = (0, 0, 1) comes from the
fact that a > c [Ros87].

Figs. 1.16(a-b) show the magnetic structure refined at zero-field projected both in the
(a, b) and the (a, c) planes. One can see that the magnetic moments are antiferromag-
netically coupled (J > 0) and aligned along the c-axis, confirming that the Ising-axis
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Figure 1.16: Magnetic structure of BaCo2V2O8 at zero-field. The blue and red col-
ors denote chains rotating clockwise and counter clockwise respectively. (a-b) Projections
in the (a, b) and (a, c) plane respectively. The red dashed line on panel (b) shows the
| Co1...Co4 | spin chain in the unit cell. (c) The two magnetic domains. The interaction
in diagonal (dashed purple line) between two chains having the same chirality stabilizes
the magnetic structure and implies frustration between chains having a different chirality.
Here AF and FM denote the fact that the magnetic moments are antiparallel and parallel
respectively (the parallel or antiparallel arrrangement for the pair Co2-Co8′ is the same
as the one for Co1-Co7′ mentionned in the text). Figure extracted from [Can+13].

is along ~c as observed in macroscopic measurements (see Fig. 1.15(a)). The staggered
magnetization has been obtained as mc = 2.167(3) µB/Co2+ at T = 1.8 K [Can+13].

Actually, two magnetic domains had to be included in the magnetic structure refine-
ment. These magnetic domains are related by the 41 screw axis symmetry element (lost
when going from the paramagnetic to the ordered phase). These two domains were found
to be equipopulated and are shown in Fig. 1.16(c). One can see that the magnetic order
is characterized by some interchain frustration. For instance the pairs of Co1-Co7′ and
Co2-Co8′ are symmetrically equivalent (through the 41 screw axis) but one is FM and the
other one AF (reversed from one domain to the other) which shows that the correspond-
ing magnetic interaction is frustrated. Actually, a small orthorhombic distorsion of the
structure (leading to a a bit larger or smaller than b) stabilizes this magnetic order by
removing partially some of the frustration. Finally the interchain interaction that seems
to stabilize the 3D order is between two chains in diagonal, i.e. two chains having the
same chirality (clockwise or counter clockwise) [Can+13; Kla+15]. This interaction is
denoted J ′ (see Fig. 1.16 (a)).

To summarize, the magnetic order of BaCo2V2O8 corresponds to an AF arrangement
along the chain of the magnetic moments oriented along the c-axis. Moreover the inter-
chain interaction stabilizing the structure is found to be the one in diagonal between two
chains of the same nature.
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1.6.4 Dynamical properties at zero-field
B. Grenier et al. investigated the spin-dynamics of BaCo2V2O8 by means of inelastic
neutron scattering [Gre+15a].
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Figure 1.17: Spin-dynamics of BaCo2V2O8 at zero-field. (a) Dispersion spectrum
of BaCo2V2O8 along QL (i.e. along the chain axis) at zero-field and T = 1.6 K. QL is
expressed in reciprocal lattice units (r.l.u). (b-c) Energy scan at zero-field and T = 1.6 K
on the two positions ZC of the scattering ~Q = (0, 0, 2) and ~Q = (3, 0, 1). The red solid
curves are Gaussian fits. The transverse ST and longitudinal SL character of the modes
are indicated. Figures extracted from [Gre+15a].

Fig. 1.17(a) shows the dispersion spectrum of BaCo2V2O8 in the part of the Brillouin
zone delimited by the zone center (ZC) position ~Q = (2, 0, 2) and the antiferromagnetic
(AF) position ~Q = (2, 0, 3). One can see two main differences between the spectrum of
BaCo2V2O8 and the one of a Heisenberg spin 1/2 chain (for instance, see the dispersion of
KCuF3 in Fig. 1.7). First, there is an energy gap ∆ ' 1.7 meV. This comes mostly from
the Ising-like anisotropy which forces the spins to point along the c-axis, thus making it
more difficult for them to fluctuate (in contrast to the Heisenberg case). Secondly, there is
a series of discretized excitations as one can see in Fig. 1.17(b-c) instead of a continuum.
This comes from the sizable interchain interaction J ′ which confines the spinons. One can
understand this effect through Fig. 1.18.

These discretized excitations are called "Zeeman ladders" and have been theoretically
predicted by H. Shiba for the case of a strong Ising (i.e. ε << 1) quasi-1D spin 1/2 system
where the interchain interaction is treated as a perturbation in mean field theory [Shi80].
One remarkable feature in BaCo2V2O8 is that it shows two types of Zeeman ladders:

• Transverse (T) ones, i.e. fluctuations perpendicular to the ordered magnetic mo-
ment, i.e. in the (~a,~b) plane, denoted ST.

• Longitudinal (L) ones, i.e. fluctuations parallel to the ordered magnetic moment,
i.e. along the ~c direction, denoted SL.
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 𝐽′

Figure 1.18: Confinement of the spinons. This effect is pictured in the Ising case for
sake of clarity. Two spin-chains, with one pair of spinons in one of them, are coupled
antiferromagnetically through J ′. The presence of this interaction will cost an energy
proportional to the distance between the two spinons preventing them from propagating
along the chain (while in the pure 1D case, the spinons can propagate with no energy
cost).

The latter have no classical analogue 22 and are a signature of quantum effects. It has
been established theoretically that the intensity of the longitudinal mode in an Ising-like
chain is proportional to ε2 [IS80]. This is why they are clearly visible in BaCo2V2O8
(ε ' 0.5) while it was impossible to observe them in the strong AF Ising-like compounds
CsCoCl3 and CsCoBr3 (ε ' 0.1) [HY79].

The existence of such T and L modes in BaCo2V2O8 can be proven through Fig. 1.17(b-
c). Indeed one has to remember that a geometrical factor is involved in the magnetic
scattering cross sections of the neutrons, since the neutrons only see the components of
the magnetic moment perpendicular to the scattering vector ~Q both in the ordered phase
and in the dynamics. In Fig. 1.17(b), the scattering vector is ~Q = (0, 0, 2) so that only
the transverse fluctuations of the ordered moments ST are probed and hence the series
of peaks are transverse modes. In contrast, in Fig. 1.17(c), the scattering vector is set to
~Q = (3, 0, 1) so that both perpendicular ST and parallel SL fluctuations are probed. One
can see that another series of peaks appears, hence evidencing the longitudinal character
of these additional modes.

The transverse and longitudinal fluctuations correspond to an odd and even number
of reversed spins, respectively. Thus the total magnetization of the transverse modes is
Sz = ±1 while the one of the longitudinal modes is Sz = 0 23. Such excitations are
shown in Fig. 1.19. In the following chapters, I will denote these zero-field energy modes
|j T〉 = |j, Sz = ±1〉 and |j L〉 = |j, Sz = 0〉, the transverse (T) and longitudinal (L)
modes respectively where j is the number of the T or L mode, starting from the lowest
energy one of the considered series.

From the measured dispersion spectrum and using both the theory of Shiba [Shi80]
and the one of Bougourzi [BKM98], the latter describing the continuum of excitation ex-
pected for an AF Ising-like spin-1/2 chain with any value of ε < 1 and without interchain
interaction, B. Grenier et al. were able to extract the following parameters: J = 4.8 meV,

22The spin-waves are always transverse fluctuations as the precession of the spins implies a component
transverse to the order moments.

23In a hand-waving way, it is somehow as if the transverse excitations were obtained by the application
of the spin-flip operators (thus implying a difference of magnetization between the Néel state and the
excited state ∆Sz = ±1) related to the "transverse operator" Sx and Sy while the longitudinal excitations
are obtained by application of the "longitudinal" operator Sz (conserving the magnetization and thus
∆Sz = 0).
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Figure 1.19: Transverse ST = |j T〉 and longitudinal SL = |j L〉 2-spinons excita-
tions for j = 1, 2. They correspond to an odd and even number N of reversed spins,
thus carrying a total magnetization Sz = ±1 and Sz = 0 respectively.

ε ' 0.56 and J ′ ' 0.2 meV [Gre+15a], consistent with what was found in the previous
studies [Kim+06; Kim+07]. We will see later that numerical calculations give a more
accurate estimation of these parameters.

Q = (QH, 0, QL)

QH

QL QL

Figure 1.20: Dispersion of the excitations along a∗ obtained from constant-Q energy
scans at T = 1.6 K for QL = 1 and QL = 2 at zero-field. The orange solid line is a fit
with the phenomenological law: E =

√
∆2 + (E2

m −∆2) sin2[(QH − 1)π/2], where ∆ is
the gap and Em is the maximum of the dispersion. Figure extracted from [Gre+15a].

B. Grenier et al. have also probed the dispersion perpendicular to the chain in order to
determine the interchain interactions. Fig. 1.20 shows the dispersion along a∗ of the first
transverse T and longitudinal L excitations. The dispersion is very little QL dependent:
flat for QL = 1 and with a dispersion amplitude of about 0.1 meV for QL = 2. The fact
that the excitations are almost non-dispersive perpendicularly to the chains is probably
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a signature of the frustration between neighboring chains in BaCo2V2O8, which means
that the effective interchain interaction responsible for the dispersion of the excitations is
much reduced with respect to the strongest individual interchain interactions.

Finally let me emphasize that there is a folding of the dispersion in BaCo2V2O8 due
to the screw structure of the chain. This means that the AF point behaves like the ZC
one and vice versa (one can see it on Fig. 1.17(a), where what is observed on the AF point
~Q = (2, 0, 3) is also observed on the ZC point ~Q = (2, 0, 2).

1.6.5 BaCo2V2O8 samples
In this PhD, I have exclusively worked with single crystals of BaCo2V2O8. The samples
where previously synthesized by Pascal Lejay at the Néel Institute, Grenoble. They were
grown by the floating zone technique in an image furnace [Lej+11], leading to large single
crystals as shown in Fig. 1.21.

Figure 1.21: Single crystal of BaCo2V2O8 obtained by the floating zone method. The
crystals grown by this technique have the typical dimension of about 3 mm diameter and
5 cm long. Figure extracted from [Lej+11].

The Ba(Co1−xMgx)2V2O8 samples (that I will present in Chap. (6)) were grown by the
same method by Sandra Niesen [Nie+14] at Köln University for x = 5% and by P. Lejay
for x = 2%.
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2.1 Summury

2.1.1 Abstract
The aim of this chapter is to introduce the different experimental techniques used during
this thesis. The first part explain in details the neutron scattering techniques by introduc-
ing the different key concepts such as the nuclear and magnetic scattering cross sections.
Secondly are exposed the cases of the elastic and inelastic neutron scattering experiments.
Finally the different instruments used during this PhD are briefly described. The second
part of this chapter deals with the specific heat measurements under high pressure. First
is presented the preparation of a diamand anvil cells, device allowing to reach pressure
up to 10 GPa. Then the AC-calorimetry principle is explained in details. This qualita-
tive technique allowed us to extract the different values of the critical temparatures and
critical fields for different values of pressure and magnetic field.

2.1.2 Résumé en français
Le deuxième chapitre est dédié aux différentes techniques expérimentales utilisées au
cours de cette thèse. La première partie expose en détail les techniques de diffusion
des neutrons, en introduisant les différents concepts clés tels que les sections efficaces de
diffusion nucléaire et magnétique des neutrons. Ensuite est exposé le cas de la diffusion
élastique des neutrons, i.e. à transfert d’énergie nul. Ce cas correspond à la diffraction des
neutrons qui permet en pratique de déterminer la structure nucléaire et magnétique d’un
échantillon. La diffusion inélastique des neutrons, qui correspond à un transfert d’énergie
non-nul est alors décrite. Cette technique permet de sonder les excitations de la matière
tels que les spinons dans le cas de BaCo2V2O8. Enfin, les différents instruments utilisés
au cours de cette thèse comme les diffractomètres pour monocristaux et les spectromètres
trois axes sont exposés brièvement. La deuxième partie de ce chapitre est axée sur les
mesures de chaleur spécifique sous haute pression. En premier est exposé le montage d’une
cellule à enclumes diamant, dispositif permettant d’atteindre des pressions de l’ordre de
10 GPa. Ensuite est expliquée la technique de calorimétrie-AC qui permet de mesurer la
chaleur spécifique de l’échantillon. Cette technique qualitative nous a permis d’extraire
les différentes valeurs des températures critiques et des champs critiques pour différentes
valeurs de la pression et du champ magnétique.
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2.2 Neutron scattering
Different kinds of experiments have been done during my thesis such as specific heat
measurements under pressure and neutron scattering. As the latter has been the most
widely used technique, I will first introduce it.

Neutron scattering refers to the scattering of free neutrons by matter. It is a powerful
technique used to investigate materials and has many applications in a lot of fields such
as condensed matter, soft matter, chemistry or biology. Neutrons are powerful as they
allow to probe microscopic informations in materials. Neutron scattering is also one
of the most powerful technique to investigate magnetic materials and is often a crucial
step after the first macroscopic characterizations. Moreover neutron diffraction (elastic
scattering) and inelastic neutron scattering can both be performed, allowing to determine
many informations such as nuclear and magnetic structures or the dynamics (i.e. the
excitations) of the systems.

In the present chapter, I will first introduce some generalities about the neutron such
as its properties, its scattering cross sections and how we can manipulate a neutron beam.
Secondly I will discuss about neutron diffraction by first explaining the nuclear and mag-
netic scattering, then diffraction by a cristal and finally I will describe the diffractometers
that I have used. The third and last part will be about the inelastic neutron scattering
where I will present the magnetic dynamical structure factor and then show examples of
three-axis spectrometers which were mainly used in my PhD.

2.2.1 Why using neutrons?
The neutron is a particle discovered by J. Chadwick in 1931 and was used for the first
time for a neutron diffraction experiment fifteen years latter [Shu95]. In terms of particle
physics, the neutron is a baryon consisting of three fermions called quarks: 1 quark up
with a charge +2/3 and 2 quarks down with a charge −1/3. This results in a particle with
a spin S = 1/2 and a charge C = 0. The properties of the neutron make it an excellent
tool to investigate the static and the dynamic properties of nuclear and magnetic systems.

• The neutron is a neutral particle (hence its name...) and then is not sensitive to the
electron cloud of the atoms contrary to X-rays. Therefore it can deeply penetrate
the matter. The neutrons interact with the atomic nucleus via strong interaction.

• The neutron carries a spin S = 1/2 and hence, is sensitive to magnetic fields. That
is why neutron is a favored microscopic probe for magnetic systems with which it
interacts via dipolar interaction.

• The energies and the wavelengths accessible in neutron scattering experiments are
well adapted to study condensed matter. Neutrons used for scattering experiments
have a wavelength of the order of the Å which is comparable to the inter-atomic
distances 1. They generally have an energy smaller than 100 meV while X-rays
produced in synchrotrons have an energy of the order of the keV. Therefore neutrons
are much more suited to probe low-energy dynamics such as magnetic excitations
or phonons.

1The X-rays has also a wavelength of the same magnitude. Hence both techniques are well suited for
diffraction
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• Finally, while X-rays are sensitive to the atomic number Z and hence to the size of
the atoms, neutrons are sensitive to isotopes and to light elements such as hydrogen,
oxygen and so forth.

As any particle, the wave-particle duality stands for the neutrons. Then we can assign
them a wavelength λ and a wave-vector ~k and write the following equation for the energy
E of the neutrons:

E = p2

2mn

= h2

2mnλ2 = ~2k2

2mn

where ~p = ~~k and λ = 2π
k

(2.1)

with ~p the momentum of the neutron, mn = 1.675.10−27 kg the neutron mass, and ~ =
h/2π with h the Planck constant.

2.2.2 Cross sections and interaction potentials
A neutron scattering experiment provides an indirect way to probe microscopic details of
matter. It simply consists in measuring and analysing the initial and final state of the
neutrons after interacting with the sample. The sample is subjected to a neutron beam
with initial wave-vector ~ki, initial spin-state σi and initial energy Ei = ~2k2

i

2mn . The neutrons
are then scattered by the sample and they acquire a final state with a wave-vector kf ,
a final spin state σf and a final energy Ef = ~2k2

f

2mn . During this scattering process, the
system (neutron + sample) is changing from an initial state < ki, σi, αi > to a final state
< kf , σf , αf > with αi and αf , the initial and final states of the sample, associated to an
initial and a final energy Eαi and Eαf respectively. During this scattering process, the
total energy is conserved: Ei + Eαi = Ef + Eαf . The scattering vector ~Q, corresponding
to the momentum transfer, and the energy transfer ~ω of the neutron are then defined as
follows:  ~Q = ~ki − ~kf

~ω = Ei − Ef = Eαf − Eαi
(2.2)

The fundamental quantity measured during a neutron scattering experiment is the
partial differential cross section which has the dimension of a surface per energy and per
solid angle. This quantity represents the number of scattered neutrons per second in the
solid angle dΩ around ~kf and with a final energy between Ef and Ef +dEf . By using the
Fermi’s golden rule which describes the probability for the system (neutron + sample) to
go from an initial state (~ki, σi, αi) to a final state ( ~kf , σf , αf ) and the Born approximation
which reflects the fact that the neutron only see one atom, the partial differential cross
section can be written:(

d2σ

dΩdEf

)
i→f

= kf
ki

(
mn

2π~2

)2 ∑
σi,αi

pσipαi
∑
σf ,αf

| 〈kfσfαf | V̂ (~r) |kiσiαi〉 |2δ(~ω − Ei − Ef )

(2.3)
where:

• pσi and pαi are the probabilities of having the neutrons in an initial spin state σi
and the sample in an initial state αi respectively.

• V̂ (~r) is the interaction potential between the neutron and the sample.
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Figure 2.1: Scattering process and definition of the parameters. ~Q = ~ki − ~kf is
the scattering vector. In the present picture, the neutron with an initial energy Ei > Ef
(thus ~ω > 0) gives an energy ~ω to the sample when it is scattered. Its energy decreases
down to Ef while the energy of the sample increases to Eαf . As all the experiments of
my PhD were performed at low temperature, only the ground state is populated and this
picture is the correct one in our case. Nevertheless, an energy transfer from the sample
to the neutron is also possible at higher temperature (then ~ω < 0).

Incident

beam
target

direction

Volume element

Figure 2.2: Sketch of a scattering process by a "target". ki and kf denote the
initial (incident) and the final (scattered) wave-vector respectively. The scattered beam
is indicated by the angles φ and θ. Figure taken from [Son16; Gre11].

• δ(~ω − Ei − Ef ) is the Dirac function reflecting the energy conservation.

The differential partial cross section depends on the type of the interaction potential
which can be of two kinds:

• The nuclear interaction which describes the interaction between the neutron and
the nucleus of an atom of the sample.
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• The magnetic interaction describing the interaction between the spin of the neutron
and the magnetic moment of an atom of the sample.

2.2.2.1 Nuclear interaction

The nuclear interaction between the neutron and the nucleus of an atom occurs because
of the strong interaction. As the characteristic length of this interaction is much smaller
than the inter-atomic distances and than the wavelength of the neutron, the potential
takes the form of a Fermi pseudo-potential as follows:

V̂N(~r) = 2π~2

mn

b δ(~r − ~R) (2.4)

where ~R is the position of the nucleus of the atom, ~r the position of the neutron, and
b the scattering length which depends in the number of protons and neutrons of the
atom. Hence this length is different for each atom, but also for each isotope. Its value
is randomly depending on the atoms (or isotopes) and that is why neutrons provide
different information than X-rays (see Fig. 2.3). Moreover b is independent of ~Q while
the scattering length of X-rays acquires a form factor f( ~Q) which comes from the Fourier
transform of the electronic environment of the atoms and is thus proportional to the
number of electrons.

Figure 2.3: Difference between neutrons and X-rays cross sections. The cross
section of the X-rays is increasing with the size of the atom, i.e. its number of electrons
and thus its atomic number Z: σXrays ∝ Z2. For the neutrons, we have σneutrons ∝ b2 with
b the scattering length which varies randomly from one atom to another. In particular,
neutrons are very sensitive to hydrogen while X-rays are not.

In any condensed matter system (gas, liquid, or solid), the total interaction potential
writes as the sum over each site (denoted by j in the following). Therefore, by integrating
the energy of the neutron and by making the statistic average on the initial and final
states, the nuclear partial differential cross section takes the following form:(

d2σ

dΩdEf

)
nuc

( ~Q, ω) = kf
ki

1
2π~

∑
j,j′

∫ +∞

−∞

〈
bjb
∗
j′e
−i ~Q· ~Rj′ (0) · ei ~Q· ~Rj(t)

〉
e−iωtdt (2.5)

where 〈...〉 denotes the statistical average.
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Let us focus on the scattering length bj. This quantity is real when the scattering
process occurs without absorption and its amplitude characterizes the strength of the
interaction between the neutron and the target. It depends on the chemical specy, the
considered isotope and the spin state of the nucleus. We have:

bjbj′ = b
2 +

(
b2 − b2)

δj,j′ (2.6)

where b stands for the average scattering length and
(
b2 − b2) is the standard deviation

of b. Hence the nuclear partial differential cross section can be split in two independent
terms: (

d2σ

dΩdEf

)
nuc

( ~Q, ω) =
(

d2σ

dΩdEf

)coh
nuc

( ~Q, ω) +
(

d2σ

dΩdEf

)inc
nuc

( ~Q, ω) (2.7)

The first term describes the interference phenomena between nuclei from different sites
having the same average scattering length b (coherent scattering). By noting Nat the
number of scattering nuclei we have:(

d2σ

dΩdEf

)coh
nuc

( ~Q, ω) = kf
ki
Natb

2
Scoh

(
~Q, ω

)
(2.8)

with Scoh
(
~Q, ω

)
= 1
Nat

1
2π~

∫ +∞

−∞
e−iωt

∑
j,j′

〈
e−i

~Q· ~Rj(0) · ei ~Q· ~Rj′ (t)
〉
dt (2.9)

where Scoh
(
~Q, ω

)
is the scattering function corresponding to the double Fourier transform

in space and time of the pair correlation function
〈
ρj′ (~r, t) · ρj(~0, 0)

〉
of the nuclear density.

It describes the probability to find a nucleus j ′ at time t and position ~r when we have a
nucleus j at time 0 and position ~0. Thus, in the case of a crystal (which has a translational
symmetry), this coherent term reflects the periodicity of the lattice for both the structure
and the excitations and it gives a structured signal in ~Q and ω.

The second term describes the interaction of the nucleus with itself (incoherent scat-
tering). We have:(

d2σ

dΩdEf

)inc
nuc

( ~Q, ~ω) = kf
ki

1
2π~Nat

(
b2 − b2)

Sinc
(
~Q, ω

)
(2.10)

with Sinc
(
~Q, ω

)
= 1
Nat

1
2π~

∫ +∞

−∞
e−iωt

∑
j,j′

〈
e−i

~Q· ~Rj(0) · ei ~Q· ~Rj(t)
〉
dt (2.11)

where Sinc
(
~Q, ω

)
is the double Fourier transform in space and time of the autocorrelation

function
〈
ρj(~r, t) · ρj(~0, 0)

〉
. This term describes the time correlations of a given atom with

itself and hence, gives a structured signal in time only. Moreover it implies deviations
from the average scattering length b and thus leads to no interference.

The cross section can be written in a more compact way:(
d2σ

dΩdEf

)
nuc

( ~Q, ~ω) = kf
ki

1
2π~

∫ +∞

−∞

〈
N †

(
~Q, 0

)
N
(
~Q, t

)〉
e−iωtdt (2.12)

or, in a reduced notation:(
d2σ

dΩdEf

)
nuc

( ~Q, ~ω) =
〈
N †

(
~Q, 0

)
N
(
~Q, t

)〉
ω

(2.13)
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with N( ~Q, t) = ∑
j
bje

i ~Q·Rj(t) the nuclear structure factor. The † notation describes the

Hermitian transpose (in this case, simply the complex conjugate).

2.2.2.2 Nuclear spin interaction

The neutrons can also interact with the nuclear spin of the nucleus. This is the reason
why the scattering length b varies from one isotope to the another. This interaction can in
principle be neglected, except at really low temperature or in presence of a large magnetic
field where a nuclear spin order can occur. In this study, this aspect will be ignored.

2.2.2.3 Magnetic interaction

The magnetic interaction is due to the dipolar interaction between the magnetic moment
of the neutron and the one of the unpaired electrons of an atom. The neutron has an
intrinsic magnetic moment defined by µ̂n = γµBσ̂ where γ is the gyromagnetic factor,
µB is the Bohr magneton and σ̂ is the spin operator. The interaction potential takes the
following form:

V̂m(~r) = −µ̂n · ~H(~r) (2.14)

where ~H(~r) = µ0
4π

(
~∇×

(
~µe×~r
r3

)
− 2µB

~
~pe×~r
r3

)
is the sum of the magnetic fields produced on

the neutron by the unpaired electrons with a spin and an orbital contribution. ~r gives the
positions of the neutron, ~µe = −gµB ~σe with g = 2 and ~pe are the spin and orbital magnetic
moments of the electron, respectively. We can demonstrate [Lov84] that the contribution
of the magnetic part to the partial differential cross section given by Eq. (2.3) takes the
following form:(

d2σ

dΩdEf

)
mag

(
~Q, ω

)
= kf
ki

p2

2π~S
(
~Q, ω

)
= kf
ki

p2

2π~
∑
α,β

(
δαβ −

QαQβ

Q2

)
Sαβ

(
~Q, ω

)
with Sα,β

(
~Q, ω

)
=
∫ +∞

−∞
e−iωt

〈(
Mα

j

)∗
(0)Mβ

j′(t)fj( ~Q)f ′j( ~Q)ei ~Q·( ~R′j(t)− ~Rj(0))
〉
dt

(2.15)

where:

• p = γ e2

2me = 0.2696 10−12 cm/µB is the equivalent scattering length for a magnetic
moment of 1 µB at ~Q = ~0. e and me are the charge and the mass of the electron
respectively.

• the tensor
(
δα,β − QαQβ

Q2

)
is the orientation factor which comes from the dipolar

nature of the interaction. This means that only the magnetic components perpen-
dicular to ~Q are probed. We will see later that this term is very useful in inelastic
neutron scattering, especially to know the direction (polarization) of the fluctua-
tions with respect to the ordered moments. One can understand this term through
Fig. 2.4.

• Mα
j is the component of the magnetic moment along the α direction carried by the

atom j.

• S
(
~Q, ω

)
is the scattering function corresponding to the double Fourier transform

in space and time of the magnetization density
〈
~M j′

⊥ (~r, t) · ~M j
⊥(~0, 0)

〉
where M j

⊥ is
the component of the magnetization carried by the atom j perpendicular to the
scattering vector ~Q.
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• fj( ~Q) is the magnetic form factor of atom j, corresponding to the Fourier transform
of the electronic density of the unpaired electrons (in the case of X-rays, it is the
Fourier transform of electronic density). This quantity accounts for the spatial
extension of the unpaired electrons which cannot be seen as punctual (contrary to
the case of the nucleus). As a result fj( ~Q) decreases with increasing Q (while the
scattering length bj is constant for the nuclear interaction as this interaction is seen
as punctual).

The scattering function S
(
~Q, ω

)
is related to the imaginary part of the dynamic

susceptibility χ( ~Q, ω) through the fluctuation-dissipation theorem:

S
(
~Q, ω

)
= 1
π

1
1− exp

(
− ~ω
kBT

) χ ( ~Q, ω) (2.16)

The dynamical susceptibility is defined as the linear response of the system to a local
magnetic field varying in ω and ~Q.

M
(
~Q, ω

)
= χ

(
~Q, ω

)
H
(
~Q, ω

)
(2.17)

It is as if the neutron was creating a microscopic field varying in frequency and in wave-
vector in the sample and was measuring the answer of the system to this field.

The equation (2.15) can be written in a more compact way:(
d2σ

dΩdEf

)
mag

(
~Q, ω

)
= kf
ki

p2

2π~

∫ +∞

−∞
e−iωt

〈
~M †
⊥( ~Q, 0) · ~M⊥( ~Q, t)

〉
dt (2.18)

(
d2σ

dΩdEf

)
mag

(
~Q, ω

)
=
〈
~M †
⊥( ~Q, 0) · ~M⊥( ~Q, t)

〉
ω

(2.19)

with ~M⊥
(
~Q, t

)
the magnetic interaction vector describing the projection of the magnetic

moment ~M( ~Q, t) in the plane perpendicular to the scattering vector ~Q.

Finally, by occulting the part of the nuclear spin contribution, the total scattering cross
section writes as the sum of the nuclear and magnetic contributions:

(
d2σ

dΩdEf

)(
~Q, ω

)
=
〈
N †( ~Q, 0)N( ~Q, t)

〉
ω

+
〈
~M †
⊥( ~Q, 0) · ~M⊥( ~Q, t)

〉
ω

(2.20)

Those two interactions can give many information depending on the type of experi-
ment:

• Elastic scattering (diffraction): in this case, |~ki| = | ~kf | and hence there is no energy
transfer to the sample. This method allows to determine the nuclear and magnetic
structures of the sample.

• Inelastic scattering: in this case, |~ki| 6= | ~kf | and hence an energy transfer occurs.
This kind of experiment allows to probe the dynamics of the system and hence the
"strength" of the interactions, for examples between atoms (phonons) or between the
magnetic moments of the atoms (magnons or more generally magnetic excitations).
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Figure 2.4: Geometrical factor of the magnetic cross section. Sketch of the effect
of the relative direction between the magnetization ~M and the scattering vector ~Q on
the scattering by a dipolar interaction. Here the magnetic moment ~M in the sample can
be assimiled to a dipolar magnetic field from the unpaired electrons. When ~M ‖ ~Q, the
planes perpendicular to ~Q intercept the magnetic field lines in 4 points in such a way
that, because of symmetry, the total field cancels. This is not the case when ~M⊥ ~Q as the
planes intercept the magnetic field lines in 2 points leading, by symmetry, to a non-zero
total magnetization. Figure extracted from [Gre11].

While both techniques are different as I will discuss later, they are both complementary.
I like to take the example of a car where you need to know its structure (diffraction) and
then know how the motor works (dynamics). Let us now turn to the case of the elastic
coherent neutron scattering for a (periodic) crystal.

2.2.3 Elastic coherent neutron scattering

As explained above, in the case of elastic neutron scattering, we have |~ki| = | ~kf | and thus
Ei − Ef = Eαf − Eαi = ~ω = 0. In this case, we have:

(
d2σ

dΩdEf

)(
~Q, ω = 0

)
=
〈
N †( ~Q, 0)N( ~Q, t)

〉
ω=0

+
〈
~M †
⊥( ~Q, 0) ~M⊥( ~Q, t)

〉
ω=0

(2.21)
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2.2.3.1 Nuclear coherent scattering

In a crystal, we can decompose the position of an atom l in a unit cell m as follows:

~Rm,l(t) = ~Rm + ~rl + ~um,l(t) (2.22)

where ~Rm gives the position of the unit cell in the crystal, rl is the position of the atom
in this unit cell and ~um,l is the deviation of the atom from its equilibrium position (due
to thermal fluctuations or to collective motions). The nuclear interaction in the crystal
writes:

VN(~r) = 2π~2

m
δ
(
~r − ~Rm,l

)
(2.23)

where ~r is the position of the neutron.
Let us rewrite the elastic coherent part of the scattering cross section given in eq. (2.5)

by integrating on the energies:(
dσ

dΩ

)coh
nuc

(
~Q
)

=
∫ +∞

−∞

(
d2σ

dΩdEf

)coh
nuc

(
~Q, ω

)
dω (2.24)

=
∫ +∞

−∞

∫ +∞

−∞
e−iωtδ(ω)

∑
m,m′,l,l′

〈
blbl′e

−i ~Q·~Rm,l(0) · ei ~Q·~Rm′,l′ (t)
〉
dtdω (2.25)

(
dσ

dΩ

)coh
nuc

(
~Q
)

=
∑
m,m′

ei
~Q·(~Rm′−~Rm)∑

l,l′
blbl′e

i ~Q·(~rl′−~rl)
〈
e−i

~Q·(~um,l(0)−~um′,l′ (t))
〉

(2.26)

We have ∑
m,m′

ei
~Q·(~Rm′−~Rm) = (2π)3

V
Ncell

∑
~H

δ
(
~Q− ~H

)
with ~H a vector of the reciprocal

lattice, Ncell the number of cells in the crystal and (2π)3

V
the volume of a reciprocal unit

cell. By developing the factor e−i ~Q·(~um,l(0)−~um′,l′ (t)) to the first order, we get the final form
of the nuclear differential elastic cross section:

(
dσ

dΩ

)coh
nuc

(
~Q
)

= (2π)3

V
Ncell

∑
~H

∣∣∣FN ( ~Q)∣∣∣2 δ ( ~Q− ~H
)

with FN
(
~Q
)

=
∑
l

ble
i ~Q·~rle−Wl

(2.27)

where:

• Wl is the Debye-Waller factor of atom l defined as Wl = 〈u〉2Q2/2 with 〈u〉 the
thermal average displacement of atom l. This term comes from the first order
approximation of the displacement ~um,l and describes the reduction of the coherence
of the scattered waves (and thus of the signal) by the thermal fluctuations.

• the term δ( ~Q− ~H) comes from the Bragg condition for a reflection. It means that
a scattering occurs only if the scattering vector ~Q coincides with a vector of the
reciprocal lattice ~H.

• FN
(
~Q
)
is the nuclear structure factor and contains all the information about the

content of the unit cell, i.e. the nature of the atoms and their coordinates ~rl.
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Therefore, the position of the Bragg peaks will give information about the unit cell,
i.e. the lattice parameters a, b, c, (̂b, c) = α, (̂a, c) = β and (̂a, b) = γ while the intensities
of the peaks will inform about the nature and coordinates of the atoms.

This result obtained in the case of the nuclear scattering can be extended to the case
of magnetic scattering as we will see now.

2.2.3.2 Magnetic coherent scattering

We now consider only the magnetic atoms of the crystal at position Rm,l and carrying
a magnetic moment ~Mm,l. This magnetic distribution which is periodic in space can be
Fourier expended and then gives:

~Mm,l =
∑
~k

~M
~k
l e
−i~k·~Rm (2.28)

where ~M
~k
l are the Fourier components of the distribution associated to the propagation

vector ~k. This propagation vector is characterizing the periodicity of the magnetic lattice
with respect to the nuclear one. One can show, by integrating on the energy the equation
(2.15) and by using the above formula, that the coherent magnetic differential cross section
takes the following form:

(
dσ

dΩ

)coh
mag

(
~Q
)

=
∫ +∞

−∞

(
d2σ

dΩdEf

)coh
mag

(
~Q, ω

)
dω (2.29)

(
dσ

dΩ

)coh
mag

(
~Q
)

= (2π)3

V
Ncell

∑
~H

∑
~k

∣∣∣~FM⊥ ( ~Q)∣∣∣2 δ ( ~Q− ( ~H + ~k)
)

with ~FM⊥
(
~Q
)

= p
∑
l

fl( ~Q) ~M~k
⊥,le

i ~Q·~rle−Wl

(2.30)

where:

• the term δ
(
~Q− ( ~H + ~k)

)
means that the magnetic peaks appear when ~Q coincides

with the sum of a vector from the reciprocal lattice ~H and the propagation vector ~k of
the magnetic structure. This latter vector reflects the periodicity L of the magnetic
structure (k ∝ 1/L) and the direction in which it propagates. For example, in
the case of a ferromagnet (FM), the periodicity of the magnetic lattice is the same
as the nuclear one and thus ~kFM = ~0. For an antiferromagnet (AF) containing
one magnetic atom per unit cell with antiparallel moments along the c-axis, the
periodicity of the magnetic lattice is twice that of the nuclear one in the real space
so that ~kAF = (0, 0, 1/2). As we will see later, this propagation vector can be
trickier as we can have for instance an incommensurate order or a multi-k magnetic
structure.

• ~FM⊥
(
~Q
)
is the projection in the plane perpendicular to ~Q of the magnetic structure

factor which contains the information on the magnetic ordering in the unit cell
(amplitude and orientation of the magnetic moments).

• fl( ~Q) is the magnetic form factor defined in section 2.2.2.3.
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Let us examine the case of BaCo2V2O8. Because of the body-centering of the unit cell
(translation (1/2, 1/2, 1/2) in the real space, the magnetic structure factor ~FM( ~Q) writes:

~FM( ~Q) = pf( ~Q)
N/2∑
j=1

[
~M
~k
1,j + ~M

~k
2,je

iπ(h+k+l)
]
e2iπ(hxj+kyj+lzj) (2.31)

with f( ~Q) the magnetic form factor of the Co2+ ions, N the number of Co atoms in a
unit cell (N = 16), ~M

~k
1,j the Fourier component of the magnetic moment carried by the

Co atom at (xj, yj, zj) position and ~M
~k
2,j the one carried by the Co atom at (xj +1/2, yj +

1/2, zj + 1/2), ~Q = h~a∗+ k~b∗+ l~c∗ is the scattering vector. Here the Debye-Waller factors
are not taken into account for more clarity. Now let us consider the two cases:

• ~M
~k
1,j = − ~M

~k
2,j ⇒ ~FM( ~Q) 6= ~0 if h+ k + l = 2n+ 1 with n an integer

• ~M
~k
1,j = ~M

~k
2,j, ⇒ ~FM( ~Q) 6= ~0 if h+ k + l = 2n

Besides, the body-centering of the structure imposes FN( ~Q) 6= 0 if h + k + l = 2n, in
other words, the lattice vectors ~H are such that h + k + l = 2n. Thus, the propagation
vector ~k = (1, 0, 0) or equivalently ~k = (0, 1, 0) found experimentally in BaCo2V2O8 at
H = 0 (see section 1.6.3) means that magnetic peaks are observed at ~H +~k = (h+ 1, k, l)
with h + k + l = 2n, or, in other words, at ~Q = (h, k, l) with h + k + l = 2n. This
means that the magnetic coupling between the two Cobalt atoms corresponding by the
body-centering translation (1/2, 1/2, 1/2) is AF.

2.2.4 Inelastic coherent neutron scattering

In this case |~ki| 6= | ~kf | and thus the scattering cross section has the general form:(
d2σ

dΩdEf

)(
~Q, ω

)
=
〈
N †( ~Q, 0)N( ~Q, t)

〉
ω

+
〈
~M †
⊥( ~Q, 0) ~M⊥( ~Q, t)

〉
ω

(2.32)

2.2.4.1 Nuclear contribution: Phonons

The phonons are the quasi-particles due to the coherent and collective vibrations of the
atoms. They can be seen classically as the collective motions of the atoms inside the
lattice. In a crystal, if we consider p atoms per unit cell denoted by the index l and
since each atom has 3 degrees of freedom (one in each direction x, y and z), then we
have 3p branches labeled by the index α. We have then: 3 acoustic branches + (3p− 3)
optical branches. If we develop equation (2.26) to higher orders, then we obtain the
following formula for the creation or the annihilation of one phonon by the neutron (lattice
excitations):

(
d2σ

dΩdEf

)coh
±phon

(
~Q, ω

)
= kf
ki
N

(2π)3

V

∑
α, ~H

δ
(
~Q−

(
~H ± ~q

)) ∣∣∣Fα( ~Q)
∣∣∣2 〈nB±(ωα~q )

〉
δ
(
ω ∓ ωα~q

)

with Fα
(
~Q
)

=
∑
l

ble
−Wle+i ~Q·~rl

(
~

2mlωα~q

) 1
2 (
~e~q,l,α · ~Q

)
(2.33)
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where:

• δ
(
~Q−

(
~H ± ~q

))
means that ~Q = ~H ∓ ~q with ~H a vector of the reciprocal lattice

and ~q a vector inside the Brillouin zone.

• δ
(
ω − ωα~q

)
and δ

(
ω + ωα~q

)
are corresponding to the energy condition for the creation

and annihilation of a photon, respectively.

• 〈nB±〉 the Bose-Einstein factor giving the number of bosons (here the phonons).
For a creation and an annihilation process we have respectively:

〈
nB+(ωα~q )

〉
=
〈
nB(ωα~q ) + 1

〉
= 1

1− exp
(
− ~ωα

~q

kBT

)
〈
nB−(ωα~q )

〉
=
〈
nB(ωα~q )

〉
= 1

exp
(

+ ~ωα
~q

kBT

)
− 1

This shows that when T → 0, only creation processes are possible (indeed
〈
nB−(ωα~q )

〉
→

0 and
〈
nB+(ωα~q )

〉
→ 1) as the system is in its fundamental state so it can only re-

ceive energy (from the neutron) and reciprocally the neutron cannot take energy
from the system. However for T → +∞ both processes are equally allowed (indeed〈
nB−(ωα~q )

〉
→ +∞ and

〈
nB+(ωα~q )

〉
→ +∞) which means that the system creates

and annihilates phonons in an equally distributed way. Those conditions are well
known as the principle of detailed balance.

• Fα
(
~Q
)
is the dynamical structure factor of the lattice, ml is the mass of the atom

l. ~e~q,l,α is the polarization of the mode which is thus longitudinal if ~e~q,l,α ‖ ~Q and
transverse if ~e~q,l,α⊥ ~Q and ωα~q is the frequency (energy) of the considered mode.

One can see that this expression involves the square of
(
~e~q,l,α · ~Q

)
and thus Q2. This

shows first that when we are probing phonons, we generally work at a high value of
|| ~Q|| = || ~H ± ~q||, second that the signal is maximum for ~Q ‖ ~e~q,l,α and thus we can
play with the orientation of ~Q to probe the transverse or longitudinal character of the
modes. Finally, one can also observe that the above formula is inversely proportional
to the energy ωα~q so it means that the low-energy branches (the acoustic ones) give the
maximum of intensity. Indeed a low-frequency mode has a huge amplitude of vibration
(one can convince himself with the equipartition energy theorem).

2.2.4.2 Magnetic contribution: Magnons

The magnons are the quasi-particles created by coherent excitations of the electronic spins
of the system. As explained in Chap. (1), the magnons are quantized boson modes of
the spin lattice and can be viewed classically through the spin-waves. For an unpolarized
beam and considering one magnetic ion per unit cell with only spin-magnetism, one can
show that the creation and the annihilation of one magnon by a neutron is given by the
following formula:
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(
d2σ

dΩdEf

)coh
±magn

(
~Q, ω

)
= kf
ki

(2π)3

V

S

2

(
1 +

Q2
‖

Q2

)
(γr0)2

(1
2gf( ~Q)

)2
( ~Q)e−2W

∑
~H

∑
α

〈
nB±(ωα~q )

〉
δ
(
ω ∓ ωα~q

)
δ
(
~Q− ( ~H ± ~q)

)
(2.34)

with:

• S the value of the spin

• f( ~Q) the magnetic form factor that is decreasing with Q, which means that contrary
to the case of phonons, probing magnons requires to work at a small scattering vector
amplitude Q.

• nB± means that the magnons (like the phonons) follow the Bose-Einstein statistics.

• 1 + Q2
‖

Q2 , with Q‖ the projection of ~Q on the direction of the ordered moment, is
the geometrical term describing the fact that the neutron is only sensitive to the
fluctuations of the moments perpendicular to the scattering vector ~Q.

At this stage, we have described the cross sections for an unpolarized beam of neutrons.
Let us now turn to the case where the neutrons are polarized.

2.2.5 Polarized neutrons

The use of unpolarized neutrons a useful technique to investigate both the statics and the
dynamics of spin systems. However, in some cases, the magnetic structure can be complex
and the excitations can be complicated such as a superposition of magnetic and nuclear
modes or excitations with different polarizations, i.e. different directions of fluctuation.
It is in those particular cases that the use of polarized neutrons becomes interesting.

A neutron scattering experiment using polarized neutrons starts with an incident beam
of neutrons polarized with a polarization ~Pi in the spin state |↑〉 or |↓〉. The neutrons
are then scattered by the sample which will produce a flipping (spin-flip process) or not
(non spin-flip process) of the initial polarization into a final polarization ~Pf . I will first
briefly present the Blume-Maleyev equations derived for polarized neutrons and then only
focus on the particular case of the analysis of the uniaxial polarization which was used
during this PhD. For more informations about polarized neutrons for inelastic neutron
scattering, I invite the reader to read [Reg07].

The so called Blume-Maleyev equations were established independently by Blume and
Maleyev during the 60s [Mal61], [Blu63]. The first Blume-Maleyev equation is giving the
general expression of the cross section in function of the incident polarization ~Pi and has
the following form:
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(
d2σ

dΩdEf

)(
~Q, ω

)
=
〈
N †( ~Q, 0)N( ~Q, t)

〉
ω

+
〈
~M †
⊥( ~Q, 0) ~M⊥( ~Q, t)

〉
ω

+ ~Pi ·
〈
N †( ~Q, 0) ~M⊥( ~Q, t) +N( ~Q, t) ~M †

⊥( ~Q, 0)
〉
ω

+ i ~Pi ·
〈
~M †
⊥( ~Q, 0)× ~M⊥( ~Q, t)

〉
ω

where:
• the first term is the usual nuclear contribution σN and the second term is the

standard symmetric magnetic contribution σM . Those two terms have already been
explained above.

• the third term R is a nuclear/ magnetic interference term nuclear/magnetic R which
involves products between the nuclear and magnetic structure factors.

• the fourth termMchiral is an antisymmetric (chiral) magnetic which can be non zero
for some materials showing a magnetic order characterized by a chiral vector such
as helicoidal magnetic structures.

The second equation gives the scattered polarization ~Pf as a function of the incident
polarization ~Pi and of the different cross sections:

~Pf

(
d2σ

dΩdEf

)(
~Q, ω

)
=~Pi

〈
N †( ~Q, 0)N( ~Q, t)

〉
ω
− ~Pi

〈
~M †
⊥( ~Q, 0) ~M⊥( ~Q, t)

〉
ω

+
〈
N †( ~Q, 0) ~M⊥( ~Q, t) +N( ~Q, t) ~M †

⊥( ~Q, 0)
〉
ω

+ i
〈(
~Pi × ~M †

⊥( ~Q, 0)
)
·N( ~Q, t)

〉
ω
− i

〈
N( ~Q, 0) ·

(
~Pi × ~M⊥( ~Q, t)

)〉
ω

+
〈
~M †
⊥( ~Q, 0) ·

(
~Pi · ~M⊥( ~Q, t)

)〉
ω

+
〈(
~Pi · ~M †

⊥( ~Q, 0)
)
· ~M⊥( ~Q, t)

〉
ω

− i
〈
~M †
⊥( ~Q, 0)× ~M⊥( ~Q, t)

〉
ω

In a neutron scattering experiment using polarized neutrons, three directions of the
polarization ~P (standing for ~Pi and ~Pf ) are usually defined which are described by a
referential linked to the scattering vector ~Q:
• ~P ‖ ~X: the direction of the polarization is along ~Q.

• ~P ‖ ~Y : the direction of the polarization is perpendicular to ~Q and in the scattering
plane .

• ~P ‖ ~Z: the direction of the polarization is perpendicular to the scattering plane.
Different orientations of the incident and final polarization are possible in this refer-

ential. This leads to the matrix of polarization P 2:

P =

Pxx Pyx Pzx
Pxy Pyy Pzy
Pxz Pyz Pzz


2An element Pαβ of P can be understood as the polarization of the outgoing beam along β when the

ingoing beam was polarized along α.
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Let us now turn to a method called "uniaxial (or longitudinal) polarization analysis".
This method was first proposed by Moon et al. [MRK69] in 1969. They have shown that
we earn a lot of information by analysing the polarization of the scattered neutrons thanks
to an analyser placed behind the sample. In this type of experiment the incident and the
final polarization have the same direction according to the referential defined above and
thus only the quantities Pxx, Pyy and Pzz are accessible (to probe the other terms, one
should use a spherical polarimetry experiment). In such an experiment, one can initially
polarize the neutron with a + or − spin state (where + and − denote the |↑〉 and the |↓〉
polarized spin states of the neutron respectively) and analyze the + or − spin states also.
Let us denote the various differential cross sections as follows:(

d2σ
dΩdEf

)+−
( ~Q, ω) = σ+−

(
d2σ

dΩdEf

)−+
( ~Q, ω) = σ−+(

d2σ
dΩdEf

)++
( ~Q, ω) = σ++

(
d2σ

dΩdEf

)−−
( ~Q, ω) = σ−−

where σ+− and σ−+ correspond to the for spin-flip processes and σ−− and σ++ to the
non-spin flip processes.

These terms can be related to the σN , σM , Mchiral and R terms defined above by the
following relations:

σ++
xx = σ−−xx = σN

σ+−
xx = σyM + σzM + PiMchiral

σ−+
xx = σyM + σzM − PiMchiral

σ++
yy = σN + σyM + PiRy

σ−−yy = σN + σyM − PiRy

σ+−
yy = σ−+

yy = σzM

σ++
zz = σN + σzM + PiRz

σ−−zz = σN + σzM − PiRz

σ+−
zz = σ−+

zz = σyM

(2.35)

Therefore, by doing an experiment of longitudinal polarization analysis and by mea-
suring the intensities I±±xx , I±±yy , I±±zz , I∓±xx , I∓±yy and I∓±zz , one can extract the nuclear part
σN , the magnetic part σM , the chiral part Mchiral and the interference R between the
nuclear and magnetic contributions of the cross sections. Moreover one can extract the
direction of those different contributions depending on the polarization axis X, Y or Z.
Thus, as we will see later, one can extract the direction of the fluctuations during an
inelastic polarized neutron scattering experiment.

2.2.6 Experimental setup: neutron beam, monochromatization
and polarization

To be able to do neutron scattering experiments we need ... neutrons! Two types of
neutron sources exist: the spallation sources and the nuclear reactors. The former is using
a particle accelerator (synchrotron) to produce neutrons by the collision of an incident
particle (such as a proton, a neutron or an electromagnetic wave having a high energy)
and a heavy nucleus. Those kinds of sources can be pulsed and the neutrons are then
emitted by pulses at a frequency of a few tens of Hz. They have raised a lot of interest in
the past few years as the waste treatment is highly facilitated. Let us cite SINQ at PSI in
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Switzerland, ISIS in United Kindgom or the ESS (European Spalliation Source) project
which will operate in Sweden.

Nuclear reactors produce neutrons via the fission of enriched uranium nucleus 235
92 U .

This kind of production is self-powered by the chain reaction of induced fission by a
neutron:

235
92 U +1

0 n→236
92 U → X + Y + k 1

0n (2.36)
with X and Y the fission products and k the number of emitted neutrons by the fission
process, in average 2.5.

Figure 2.5: Picture of the high-flux reactor Institut Laue-Langevin (ILL). Left:
view of the pool where the core of the reactor is contained. Right: Distribution of the
different kinds of neutrons to the instruments.

Examples of reactors are the LLB-Orphï¿1
2e in Saclay and the ILL-reactor in Grenoble.

While nuclear reactors use uranium bars which are, in addition to being expensive, ra-
dioactive, spalliation source becomes emancipated of it. The advantage of using uranium
bars is to get a continuous beam, generally much more stable than the pulsed beam.

In the core reactor, the neutrons have an energy of about a few MeV. To keep the chain
reaction going, they have to lose a lot of energy down to a few tens of meV. It turns out that
this energy range is ideal for neutron scattering experiments in condensed matter. This is
achieved with moderators which are light nuclei such as deuterium 3, heated berylium or
graphite. The lighter the nucleus, the more efficient the inelastic process is and then, the
more the energy is lowered. Those moderators determine the type of neutrons that will
be use for the experiment ("cold", "thermal", or "hot" as explained below). After some
collisions with those moderators, the neutrons are in a thermal equilibrium with their
environment (the moderator having an average thermal energy of kBT ). They then follow
a Maxwell-Boltzmann distribution (see Fig. 2.6).

Φ(v) ∝ v3exp

[
−
(
v

v0

)2
]

= v3exp
[
−
(
E

E0

)]
(2.37)

where v0 is the average value of the velocity of the neutrons, Φ(v)dv is the neutron flux
with a velocity between v and v + dv, E the kinetic energy of the neutrons defined by
E = mnv2

2 and E0 the average kinetic energy.
3Heavy water at ambiant temperature or cold liquid deuterium.
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Figure 2.6: Examples of Maxwell-Boltzmann energy distribution for moderators
of 300 K and 30 K. Figure extracted from [LRS09].

The neutrons provided by the source are classified by their energy.

• under 10 meV (i.e. λ > 2.9 Å), the neutrons are called "cold neutrons". The neutrons
are previously moderated using e.g. liquid water D2 at 20 K at ILL. In this thesis I
have mainly used three-axis-spectrometers using cold neutrons such as IN12 (ILL),
ThALES (ILL) or TASP (PSI).

• between 10 meV and 100 meV (2.9 > λ > 0.9 Å), the neutrons are called "thermal
neutrons". They are previously moderated using D2O at about 300 K. I have worked
on different kinds of instruments using thermal neutrons: the two diffractometers
6T2 (LLB) and D23 (ILL) and the three-axis-spectrometer IN22 (ILL).

• from 100 meV to 500 meV (0.9 > λ > 0.4 Å), the neutrons are called "hot neutrons".
These neutrons are obtained using e.g. a moderator of graphite heated at 2000 K at
ILL. As the energy range of interest for BaCo2V2O8 is well below, no spectrometer
using hot neutrons has been used during this thesis.

These different kinds of neutrons (cold, thermal and hot) are extracted around the
core or in different guides (see Fig. 2.5) as an unpolarized neutron beam with an energy
distribution that still has to be monochromotized and eventually polarized.

2.2.6.1 Monochromatization

The selection of the energy from the polychromatic neutron beam is achieved with monochro-
mators. There are different kinds of monochromators. Here I will focus on three of them
which were used during this PhD and which are highly used in the neutron community:
the first one is using a Bragg reflection while the others are selecting the neutron velocity.
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• The former one consists in co-aligned single crystals which can be made of graphite,
copper, germanium or silicon depending on the energy-range. Those monochroma-
tors select one incident wavelength (and hence one energy) via a Bragg reflection:

λ = 2dm sin θm (2.38)

where dm is the d-spacing and 2θm the Bragg angle. By rotating the monochromator,
θm rotates and hence, one is able to select the desired wavelength. Let us cite two
typical monochromators: the pyrolithic graphite PG (002) with dm = 3.35 Å, mainly
used with cold and thermal neutrons, which selects a wavelength range between 1.5 Å
(≈ 36 meV) and 6 Å (≈ 2 meV) and the copper (111) or copper (220), mainly used
with thermal neutrons, which select a wavelength range between 0.8 Å (≈ 128 meV)
and 1.5 Å (≈ 36 meV) (see Fig. 2.7(a-b))

(a) (b) (c)

Figure 2.7: Examples of monochromator: (a) of copper and (b) of silicon. (c) Graphic
showing the transmission of the fundamental wavelength λ and its two first harmonics
λ/2 and λ/3 by a Pyrolitic Graphite (PG) filter. For E = 13.5 meV (≈ 2.46Å), the two
harmonics are suppressed. Figure extracted from [ETH].

Therefore we obtain a continuous beam with a wavelength λ (hence an energy
E = h2/2mnλ

2) but also all the harmonics λ/2, λ/3...λ/n which come from the
virtual planes (the Bragg law can be read as λ = 2 d

n
sinθ and then one can see that

there are virtual planes distanced by d/n). To avoid those harmonics, filters, mainly
made of berylium (for cold neutrons) or graphite (for thermal neutrons) are used
(see Fig. 2.7(c)).

• The second device consists in at least two perforated disks, made of a highly absorb-
ing material, called "choppers" which are rotating with a certain frequency around
their axis that does not coincide with the neutron beam. The first disk chops the
beam and then only a few neutrons go through the hole of the disk. We then have
a pulsed beam still polychromatic. The second disk will only let travel neutrons
with the good speed and hence the good energy leading to a monochromatic pulsed
beam. To avoid the harmonics λ/2...λ/n, more choppers are used. This technics is
mainly used for Time Of Flight (TOF) diffractometers or spectrometers.

• The last device is called "mechanical velocity selector". It consists in a helicoidal
device made of a highly absorbing material. This device is rotating at a given speed
around its rotation axis which does not coincide with the neutron beam and then
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stops (absorbs) the neutrons which do not have the good velocity. Therefore it
only selects a unique velocity v and thus a unique wavelength (indeed λ = h/mv).
This device has the advantage of keeping the beam continuous (while the choppers
produce pulsed beam).

At this step, we have a monochromatic beam but still unpolarized.

2.2.6.2 Polarization of the neutron beam

To polarize the incident neutron beam, one can use:

• a Heusler Cu2MnAl crystal: It is a single-domain ferromagnetic crystal obtained
by the application of a vertical uniform magnetic field ~B. In this crystal, for the
1 1 1 reflection FM⊥ = −FN . We can show that for a scattering vector perpendicular
to ~B, i.e. perpendicular to the direction of the magnetic structure factor, that
the intensity I± of the |↑〉 and |↓〉 incident neutron beam polarizations writes as:
I± ∝ |FN ± FM⊥|2. One of the most used polarizer satisfying this condition is the
Heusler crystal Cu2MnAl for the 1 1 1 Bragg reflection [WC09]. The direction of
polarization of the emerging beam is thus given by the direction of the magnetic
field.
• super-mirrors called benders: they consist in magnetic multi-layers for which the

reflectivity index depends on the spin-state of the neutrons. The application of a
magnetic field can increase the scattering contrast (i.e. the number of spins |↑〉 or
|↓〉 which are filtered).
• 3He polarizer: The absorption cross section of the polarized 3He (the nuclear spin

of 3He is polarized prior to the experiment and the device is placed in a magnetic
field) is null if the spin of the neutron and the one of 3He are in the same direction and
large if the polarizations are in opposite directions. Then one of the two polarizations
is absorbed.

This polarization is sustained by guide fields (adiabatic process) up to the sample and
after to avoid the depolarization of the beam (for example by magnetic noise). These po-
larized neutrons are scattered by the sample and their polarization is analyzed afterwards
by an analyzer, often also made of Heusler single crystals. We can also manipulate the
polarization of the spins by putting flippers before and after the sample. These flippers
will flip the spin of the neutrons via a non-adiabatic process.

2.2.7 Description of the instruments
Many instruments have been used in this PhD. The diffractometers D23, D1B, and Ori-
ent express and the three-axis spectrometers IN12, IN22 and ThALES at ILL (Grenoble,
France), the diffractometer 6T2 at in LLB (CEA-Saclay, France), the three axis spec-
trometer TASP at PSI (Villigen, Switzerland) and the diffractometer HFM/EXED at
HZB (Berlin, Germany).

2.2.7.1 Diffractometers

The diffractometers are used to probe nuclear and magnetic structures of a sample. The
wavelength λ of the incident beam is selected by a monochromator. Then, some of the
neutrons will be absorbed by the sample or will be transmitted and then will be absorbed
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by a "beamstop". The other neutrons are scattered by the sample in an elastic or an
inelastic way. The scattered beam is intercepted by a detector, often constituted of 3He,
absorbing the neutrons and then creating a charged particle. This particle creates an
electric current which is measured. In the case of diffraction, the background, the elastic
and the inelastic signal (much weaker than the elastic one) are measured. The diffraction
signal actually results from the integration in energy of the signal between −kBT and
Ei . In the case of a powder, I

(∣∣∣| ~Q∣∣∣ |) is measured while I( ~Q) is measured for a single
crystal. Thus different diffractometers exist adapted to the nature of the sample. I will
now explain briefly what we do in practice to determine magnetic structures.

Determination of the propagation vector: The positions of the magnetic Bragg
reflections, usually identified first by a powder neutron diffraction experiment, allow to
find the propagation vector ~k from the Bragg’s law. For complex propagation vectors,
programs can be used with the 2θ positions of the magnetic Bragg peaks and the cristallo-
graphic characteristics of the sample as input. In case the propagation vector is zero, the
magnetic Bragg peaks are at the same position than the nuclear ones and they are iden-
tified by the difference between the low temperature diffractogram and the one recorded
at a temperature above the magnetic ordering transition temperature.

If only single crytals are available, the search for the propagation vector is more tedious
and consists in scanning the reciprocal space to find the magnetic signal.

Figure 2.8: Example of the determination of a magnetic structure. Left: Powder
diffraction patterns recorded below and above the transition temperature in the compound
Cr[C(CN)3]2 and difference. Right: Schematic representation of the magnetic structure
of Cr[C(CN)3]2 at 2K. For sake of clarity, only the Cr atoms of the unit cell have been
represented. Figures extracted from [MRM00]

Determination of the amplitude and direction of the magnetic moments: The
magnetic structure determination can be attempted either from a powder diffractogram
through a Rietveld analysis or from single-crystal measurements. In this case, a collect
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of the integrated intensities of a large set of magnetic Bragg peaks is done. From a
least square refinement procedure, this is compared to calculated intensities of magnetic
structures with varying amplitude and orientation fo the unit cell magnetic moments.
This converges usually towards the magnetic structure. It can be done using softwares
like Fullprof [Rod93].

The magnetic intensity of one Bragg reflection measured in such an experiment is
given by:

I( ~Q) ∝M2
⊥f

2( ~Q) < sin2 α >

∑
~H

(
δ( ~H − ~Q− ~k) + δ( ~H − ~Q+ ~k)

)
2

(2.39)

where α is the angle between the magnetic structure factor and the scattering vector ~Q
(for α = 0, the intensity is null and is consistent with the fact that neutrons only probe
the component of the magnetization perpendicular to ~Q). Through this, one is able to
understand that the measurement of many magnetic Bragg peaks allows to determine the
orientation of the magnetic moments. An example of the determination of a magnetic
structure is given in Fig. 2.8.

Let us now turn to the different diffractometers that I have used.

D1B (ILL): This 2-axis powder diffractometer is a CRG-CNRS instrument. The wave-
length λ = 2.52 Å of the incident beam is selected thanks to a Pyrolitic Graphite (PG)
monochromator. The neutrons are then scattered by the sample and detected by a "ba-
nana" multi-detector 1D-PSD (Position Sensitive Detectors) of 3He: 400 cells covering an
angular opening of 80ï¿1

2 which can be moved to measure in a window 2◦ < 2θ < 130◦. A
sketch and a picture of this instrument are shown in Fig. 2.9.

Multidector 1D-PSD («banana »)

Figure 2.9: D1B diffractometer at ILL. Left: Picture of the instrument (one can see
the multi-detector covering a large angular region). Right: Sketch of the instrument.
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D23 (ILL): This is a CRG-CEA instrument devoted to the diffraction study of single
crystals. This 2-axis diffractometer with a lifting-detector uses thermal neutrons in the
incident wavelength range 1 Å < λ < 3 Å. The first rotation "axis" coincide with the
vertical axis of the monochromator made of PG or Cu. The second "axis" is characterized
by the angle ω describing the rotation of the sample around the vertical axis perpendicular
to the scattering plane. The detector can rotate around the sample by an angle γ (with an
amplitude of ±130◦) in the horizontal plane and an angle ν (with an amplitude of ±30◦)
in above and below the scattering plane (see Fig. 2.10). The position of the detector is
seen at the angle 2θ between the incident and final wavevectors ~ki and ~kf (in the case
of a scattering process in the horizontal plane, γ = 2θ, otherwise cos θ = cos γ cos ν
generally). Different sample environments can be used such as cryomagnets up to 15 T,
pressure cell up to 30 kbar or a cryostat equiped with a dilution fridge. This instrument
is characterized by a good flux and a good signal over noise ratio. A sketch and a picture
of this instrument are shown in Fig. 2.10. Polarized neutrons are also available but were
not used during my PhD.

Figure 2.10: 2-axis diffractometer D23 at ILL. Left: picture of the diffractometer
with a 12 T vertical cryomagnet. Right: Sketch of the instrument with the different
angles: ω for the rotation of the sample and (γ, ν) for the lifting-detector position. Figure
extracted from [D23].

Orient express (ILL): This instrument has been mainly used to orient the single crys-
tals prior to the experiments. This is a Laue-diffractometer which uses a polychromatic
beam of thermal neutrons beam with a wavelength range 0.8 Å < λ < 3.2 Å. It uses
a CCD (Charge Coupled Device) camera with a high resolution. This allows to get the
Laue pattern of a whole crystal in a very short time and thus to see a sizable part of the
reciprocal space in only one picture. By putting the beam parallel to a symmetry axis
or a plane of symmetry, one can see the symmetries on the snapshots. By indexing these
pictures, one can rapidly obtain the orientation of the sample which is generally placed
on a goniometer so one is able to orient the crystal along one specific direction.
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HFM/EXED (HZB): This instrument is the combination of a "High Magnetic Field"
(HFM) obtained from is an hybrid magnetic coil reaching fields up to 26 T and EXtreme
Environment Diffractometer (EXED) (see Fig. 2.11). This is the strongest continuous
magnetic field available for neutron scattering experiments in the world so far. EXED
is a time of flight (TOF) instrument using neutrons in the wavelength range of 0.7 Å <
λ < 15 Å. In this type of experiment the detectors are fixed (here four 2D-PSD). The
quantity which is varying is no longer θ like in the case of the 2-axis diffractometers but
rather λ (Bragg law Q = 2 sin(θ)/λ).

Figure 2.11: HFM/EXED at HZB. Left: picture of the hybrid magnetic coil HFM.
Right: Sketch of the instrument with the TOF diffractometer EXED and the magnetic
coil HFM. Figure extracted from [HFM].

2.2.7.2 3-axis spectrometers

The 3-axis spectrometer (TAS) is a 2-axis diffractometer to which has been added a
crystal similar to the ones used for the monochromators which allows to analyse the final
energy of the neutrons and thus to determine the energy transfer ~ω between the neutrons
and the sample. It is placed between the sample and the detector and by rotation, this
analyser is positioned in Bragg condition for the desired final wave vector kf . It is the
third "axis" of the spectrometer.

kf = 2π
2da sin θa

(2.40)

Therefore 3-axis spectrometers allow to measure in the
(
~Q, ω

)
space the excitations

in condensed matter and to probe their dispersion, their magnetic-field dependence and
so forth. A sketch which summarizes the triple axis spectrometer is shown in Fig. 2.13.

Principle of an inelastic neutron scattering measurements: During an inelastic
scattering experiment, two kinds of measurements are usually done (see Fig. 2.12). The
former consists in fixing the energy and scanning the scattering vector ~Q ("Q-scan" at
constant energy). The second method consists in fixing the scattering vector ~Q and
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varying the energy ("E-scan" at constant scattering vector). A series of such scans allow
to determine step by step the dispersion spectrum of the excitations (see Fig. 2.12).

𝐻

Figure 2.12: Principe of an inelastic neutron scattering experiment. Left: ki 6= kf
with ~Q in the horizontal plane (a∗, b∗). ~H is a vector of the reciprocal lattice, ~q is a
wave-vector of the Brillouin zone. Right: The two kinds of measurements leading to the
dispersion curve E = f(Q): Q-scan at constant energy (in red) and E-scan at constant
scattering vector ~Q (in blue). Figures extracted from [Can10]

These experiments are usually longer than diffraction experiments as the intensity of
the signal is much weaker and based on the E-scans and Q-scans consisting in measuring
point by point with an adapted interval dE and dQ. The E-scans are well adapted when
the slope of the dispersion is weak while Q-scans are more adapted in the opposite case.

ThALES (ILL): This 3-axis spectrometer has been built in collobaration between ILL
and The Charles University of Prague. It is located next to the core reactor whereas all
the other mentionned ILL instruments are in the guide hall, and thus has a high flux of
neutrons. It uses cold neutrons and allows to study low-energy excitations in a range of
about 0.2 meV to 10 meV.

IN12 (ILL): This 3-axis spectrometer is a CRG-CEA-Jülich instrument using cold
neutrons and allowing to study low-energy excitations in a range of about 0.2 meV to
10 meV and with polarized neutrons.

IN22 (ILL): This 3-axis spectrometer is a CRG-CEA instrument using thermal neu-
trons and devoted to the study of excitations in the energy range 5 meV to 100 meV.

The spectrometers described above allow to use large sample environments such as
low-temperature cryostat/dilution fridge, vertical magnet up to 15 T, pressure cell up
to 1 GPa, horizontal magnetic field up to 6.8 T or polarized neutrons (spherical and
longitudinal polarimetry).

TASP (PSI): This 3-axis spectrometer is located in the neutron guide of SINQ spal-
lation source and is a collaborating instrument between the Laboratory of Neutron Scat-
tering (LNS) of PSI and the Laboratory of Quantum Magnetism (LQM) of the Ecole
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Figure 2.13: Three-axis-spectrometer. Left: Picture of the 3-axis spectrometer IN12
at ILL. Figure extracted from [IN1]. Right: Sketch of the principle of a triple-axis
spectrometer from a top view.

Polytechnique de Lausanne (EPFL). It uses cold neutrons and was used because of the
6.8 T horizontal cryomagnet available there.

2.3 Specific heat measurements under high pressure
To probe the (H,P, T ) phase diagram of BaCo2V2O8, specific heat measurements using
diamond anvil cells (DACs) have been performed. In the next paragraph, I will first
present the characteristic of a DAC: its main constituents, the preparation of such a
pressure cell. Then I will briefly explain the principle of specific heat measurements and
present the experiment that we have performed.

2.3.1 Preparation of diamond anvil cells
While other pressure cells such as piston cylinder or indenter are in general more used
than DACs because they allow a bigger working volume, and thus a much easier sample
preparation, they are limited to lower pressures. Depending on its size, a DAC achieve
pressures up to 300 GPa. One advantage to use DAC is that diamonds are transparent and
thus, measuring the pressure in-situ is possible. To do that we use the ruby fluorescence
technique that allows to measure the pressure in-situ as I will explain later.

Fig. 2.14 shows the main components and a scheme of a DAC. To measure the ac-
calorimetry of our sample, we used a 0.7 mm culet. These small dimensions allow to go
to a high pressure value.

The principle of a DAC is simple: one diamond anvil is fixed at the bottom while the
other one is glued on the mobile piston. A gasket with a hole is placed between them
for sealing the sample, the pressure indicator (ruby) and the pressure medium are placed
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(a) (b) (c)

Figure 2.14: Diamond anvil cell. (a) Picture of the main components of the diamond
anvil cell: 1) fixed bottom diamond cell, 2) body of the cell, 3) gasket (in stainless steel), 4)
mobile upper diamond cell fixed on the piston, 5) Belleville spring washers, 6) top closing
elements with screws. (b) scheme with all the assembled elements. Typical dimensions are
also given. Figure extracted from [Fer12]. (c) Zoom on the DAC: the pressure indicator
is the ruby and the pressure medium is argon (Ar) in our case. Figure extracted from
[Wae12].

inside this hole which constitutes the chamber. The piston is well guided through the
pressure cell and the Belleville spring washers are put to minimize the pressure changes
due to thermal cycling. Therefore, by locking the top with the screws, one can apply a
force on it which will be transmitted to the diamonds and thus, the volume of the chamber
will contract and then its internal pressure will increase. The pressure medium will then
transmit in a hydrostatical way (thus the applied pressure is isotropic) the pressure on
the sample.

While the design of such a DAC seems simple, loading the DAC for electrical and
calorimetry measurements turns out to be very complicated by the necessity to include
wires inside the chamber. Indeed it implies a lot of possible failures, for instance the
breaking of the wires at the border of the hand-drilled hole by the diamonds because of
a possible leakage. Moreover the gasket has to be covered by an insulating layer to avoid
short-circuits and this step is a crucial stage as we will see later. Failures during the loading
of the pressure transmitting medium inside the chamber may also happen. Furthermore,
changing the pressure at room-temperature can also damage the wires because of the
successive cooling-heating cycles.

Let me explain now the main steps for the preparation of such a DAC:

Gasket Initially the gasket consists in a stainless layer of ∼ 500 µm. First we have
to preform it by putting it between the two diamond anvils and by applying a force of
∼ 7000 N in order to reduce its thickness down to ∼ 100 µm. Then an imprint of the
diamond anvils is left at the center of the gasket. A hole of ∼ 350 µm is drilled by hand
at the center of this imprint and is chamfered afterwards at both sides to avoid breaking
the wires. At this stage, the gasket has the good shape but is still metallic. It needs to be
insulated to avoid short-circuits. To do that, one can recover the gasket by an insulating
layer made of a mixture between an epoxy (white Stycast 12%) saturated with alumina
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powder to improve its mechanical strength. This is the crucial and somehow the most
difficult part of this preparation. Indeed if the mixture is not enough saturated or is too
thick, then the mixture can be deformed or can slide inside the chamber because it is
too fluid and thus it covers the sample and breaks the wires as soon as the pressure is
increased.

Figure 2.15: Elaboration of the gasket. Left: gasket with the insulating mixture. One
can see the hole at the center of the gasket and the imprint of the diamond anvils. Right:
Scheme of the setup of a DAC cell with the gasket, the wires, the sample and the anvils.
Figure extracted from [Fer12].

If it is too thin or too saturated, the insulating layer can easily crack and thus there are
great chances of having short-circuits. When the gasket is recovered with the insulating
mixture, the next step is to put it between the two anvils and to apply a force of about
1000 N and then put it in the furnace for 1 hour at 70◦ C, so that the mixture polymerizes.
Therefore the hole where the wires should pass through is recovered by this insulating
layer which is now flat and has taken the imprint of the anvils. Then the hole is drilled
again and its contour is insulated with epoxy (see Fig. 2.15). To be sure that the mixture
is well polymerized, we often put again the gasket in the oven for 24 h.

Now that the gasket is done, one has to prepare the wires. In our case we have done
AC-calorimetry measurements requiring a thermocouple.

Sample Because of the small size of the chamber, the size of the sample must be very
small, typically a square of about 150 x 150 µm2 with a thickness of about 50 µm (see
Fig. 2.16). Its extremely small size makes the sample really difficult to manipulate.

Thermocouple One of the wires of the thermocouple is made of Au of 12 µm diameter
whereas the other one is made of Au(0.07% Fe) of 25 µm diameter. The latter is flattened
to avoid short-circuits. These two wires are then welded perpendicularly to each other.
While this stage is simple, the most complicated part was to glue the sample at the
center of the thermocouple. Indeed while one can directly weld it when it is metallic, the
fact that BaCo2V2O8 is insulating makes things much more difficult. Indeed one needs
to glue this small sample on the thermocouple which has also a micrometric size (see
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Fig. 2.16) without destroying the pre-made thermocouple (the glue tends to cover the
whole thermocouple by capillarity).

When the thermocouple is done, all the components of the DAC cell have to pieced
together by putting the thermocouple at the center of an anvil cell and by checking that
it is also well centred with respect to the hole of the gasket. To be able to measure the
pressure inside the cell, some ruby chips are deposed which will serve as pressure sensors.
Now, the next step is to add the pressure medium inside the chamber. This is what is
called the "loading" step.

(a) (b) (c)
sample

sample

sample

Figure 2.16: Sample and thermocouple. (a): BaCo2V2O8 sample cut using a scalpel
blade with a size of 150 × 170 µm2 and a thickness of about 50 µm. (b): Au:Au(0.07% Fe)
thermocouple with the sample of BaCo2V2O8 glued on it. (c): thermocouple and sample
placed at the center of the bottom diamond anvil. Two layers of Au and Au(0.07% Fe) are
glued on the diamond faces and make the electrical connection between the thermocouple
and the thermometer.

Pressure medium and loading For those DACs, argon has been chosen as pres-
sure medium due to its high hydrostaticity up to 10 GPa. Helium could be also a good
candidate because of its highest hydrostaticity but its strong compressibility at low tem-
peratures makes it less comfortable to work with. This argon is then liquefied thanks to
liquid nitrogen and then the DAC is submerged in the bath of liquid argon for 30 min.
Finally, we close the top of the cell with the nut screws and we apply a force of ∼ 3000 N.
One should ask if the argon is still liquid at really low temperature and at high pressure.
The answer is no but the argon has the advantage to be a kind of "soft-solid". As a noble
gaz, its interatomic forces are so weak that this makes argon still malleable and isotropic
even in those extreme conditions.

Pressure measurement in-situ thanks to ruby fluorescence The ruby fluores-
cence is a well-known technique, very often used in DACs to measure the pressure in-situ
[A F+72]. The principle is simple: the wavelength of the ruby sharpest line (called R-line)
is pressure and temperature dependent above 35 K, and only pressure dependent below.
The ruby grains are excited by an Argon laser via an optical fiber which goes through the
whole cryostat. A second fiber transmits the outcoming signal to a monochromator and
a spectrometer. Therefore, the wavelength value measured (i.e. the position of the R-line
peak) gives the value of the pressure inside the cell (see Fig.2.17). Moreover the width of
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the peak gives indications on the homogeneity of the pressure inside the chamber. Indeed
if the hydrostaticity is not isotropic, then the different rubies will have slightly different
R-lines and thus the average peak will be broader.

Figure 2.17: Ruby fluorescence. Measured ruby spectra at 4 K for different values of
the pressure. One can see that the R-line peak shifts to higher values of λ with increasing
the pressure.

Now that the DAC is ready, let me describe the principle of specific heat measurements.

2.3.2 Specific heat measurements
The specific heat C is the amount of heat (energy) per unit mass required to raise the
temperature by 1 Kelvin. In the experiment done at CEA-Grenoble with the help of Daniel
Braithwaite from the IMAPEC (Instrumentation, Matï¿1

2riaux Avancï¿1
2s, Physique des

Electrons Corrï¿1
2 lï¿

1
2s) laboratory, specific heat has been measured by ac-calorimetry to

probe the phase diagram of BaCo2V2O8 under magnetic field and pressure. Indeed, it is
well known that phase transitions are characterized by an anomaly (i.e. a discontinuity)
in the thermodynamics quantities as a function of an external parameter. Thus by probing
the heat capacity, one is able to extract the critical temperature as a function of pressure
and magnetic field.

2.3.2.1 AC-calorimetry

The main problem of measuring the heat capacity is the thermal coupling between the
sample and its environment (i.e. the gasket, the thermocouple Au:Au(0.07% Fe), the
argon, and the body of the cell) as it is pressure and temperature dependent. To avoid
this problem, one can probe the heat capacity by doing AC-calorimetry measurements.
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This technique is well adapted for small samples where the time to achieve a steady state,
i.e. the thermal equilibrium, is rather small. In the simple model proposed by Sullivan
et al. [SS68], the sample is coupled to its environment via a thermal constant coupling κ.
To heat the sample, an alternating power P = P0(1 + cos(ωt)) is supplied (see Fig.4.18).
Then, the alternative part of the temperature TAC is given by the following formula [SS68],

C(T)

P = P0 (1 + cos(ωt)) 

TB

κ
sample

Figure 2.18: Principle of AC-calorimetry. The sample is coupled to a thermal bath
at the temperature TB via the thermal coupling κ and is heated by an alternating power
P = P0(1 + cos(ωt)).

[Wil03]:

TAC = P0

ωC

(
1 + 1

ω2τ 2

)− 1
2

(2.41)

where P0 is the average value of the supplied power, and τ = C/κ is the characteristic
time for the sample temperature to relax to that of its environment.

If we choose ω high enough such that ω2τ 2 � 1, then we get the following formula:

TAC = P0

Cω
∝ 1
C

(2.42)

and now, one can see that the sample is decoupled from the thermal bath. The tempera-
ture TAC only depends on the frequency and is inversely proportional to the specific heat.
Indeed by choosing a frequency much higher than 1/τ , the temperature of the sample does
not have the time to relax through the thermal bath (on the contrary if ω << 1/τ , then
the sample has time to relax through its environment). However the frequency has to be
chosen not too high, so that the sample has the time to achieve the thermal equilibrium.

In practice a lock-in amplifier measures the oscillating voltage of the Au:Au(0.07% Fe)
thermocouple VAC (at the same frequency ω) which is directly proportional to TAC , VAC =
SthTAC with Sth the sensitivity of the thermocouple, previously known and calibrated.
The lock-in is also measuring the phase-shift of the voltage with respect to the heating
frequency. This measured signal is amplified by a factor of 105. To generate an alternating
power, we use an argon laser (λ = 476.5 nm), with a maximum power of 50 mW, coupled
to a chopper with an adjustable frequency.
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While this method has the advantage to decouple the sample from its environment,
it only leads to semi-quantitative measurements as the average power supply P0 is not
known. Actually there is an unknown part of heat which goes to the sample environment.
Nevertheless the anomaly is still present in the measurements and one is able to extract
temperature transitions.
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3.1 Summary

3.1.1 Abstract
The third chapter is devoted to the explanation of my own numerical code based on exact
diagonalization of Hilbert spaces. This program allowed me to calculate the dynamical
structure factor of a single quantum spin chain. The numerical calculations have then
been compared to the experimental results obtained for BaCo2V2O8. Despite the fact that
there is only a qualitative agreement because of the strong limitations of the calculations
(huge truncation of the Hilbert space), we will see in the next chapters that those ones
have been particularly useful for the understing of BaCo2V2O8 under magnetic field.

3.1.2 Résumé en français
Le troisième chapitre est consacré à l’explication de mon code numérique basé sur des
diagonalisations exactes d’espaces de Hilbert. Ce programme m’a permis de calculer
le facteur de structure dynamique d’une chaîne de spins. Les calculs numériques ont
ainsi pu être comparés aux résultats expérimentaux obtenus pour BaCo2V2O8. Malgré
une concordance seulement qualitative due au fait d’une sérieuse limitation des calculs
(troncation très brutale de l’espace de Hilbert), nous verrons dans les chapitres suivants
que ceux-ci se sont montrés très utiles quant à la compréhension de BaCo2V2O8 sous
champ magnétique.
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3.2 Introduction
One-dimensional (1D) systems are a subject of great interest as many theories in the 1D
case are integrable ([Bet31],[Hal83b],[Hal83a]). For twenty years, numerical calculations
are in constant evolution and are able to simulate strongly correlated systems and in
particular more and more precisely 1D one, then leading to an enormous gain of knowledge
in the understanding of those ones. A lot of experiments have been carried out on the
Ising-like quasi-one dimensional system BaCo2V2O8 . To compare with our data and to
understand deeper the behavior of the excitations, I have written a numerical program
using exact diagonalization that computes the dynamical structure factor S( ~Q, ω) of the
excitations of a quasi-1D Ising-like compound with spin S = 1/2 using the Mathematica
software. All the calculations are made on a simple chain coupled to other chains in a
mean field way. First we will see how the numerical calculations catch the main physics
of quasi-one dimensional systems at zero-field. Then I will discuss the limitations of this
model. Here, I want to emphasize the fact that all the calculations were done on my
own computer which highly limits the numerical calculations capabilities compared to
calculations done on a cluster.

3.3 Theoretical model for the simulation

3.3.1 Parameters
n: Number of sites
ns: Number of states in the Hilbert space
npairs: Number of pairs of spinons
ntruncated: Number of sites that remains after the truncation
ε: Anisotropy parameter (ε < 1 in the Ising-like case)
Jinter: Constant coupling of interchain interaction
J : Constant coupling of intrachain interaction
H: applied magnetic field
τ : Energy resolution
µB: Bohr magneton in meV/T
gαα: Diagonal component of the Landé tensor for the α-direction
gαβ: Off diagonal component of the Landé tensor coupling the α and β directions

3.3.2 Building of the base of the so called "spinons"
When doing quantum calculations, it is important to well define the basis of spinons and
to make the good approximations. I have built the basis in two parts.

3.3.2.1 Complete basis

I consider a spin chain of n atoms.
Magnetic excitations in the 1D case are quasi-particles called spinons. They are created
in pairs by neutrons (with the selection rule ∆Sz = ±1), carry a spin 1/2 and can be seen
as domain walls between 180◦ Néel states in the Ising case. A pair of spinons creates two
defaults by mean of the intrachain coupling (Fig.3.1). It is on this argument that I have
created the basis of spinons. First, I have calculated all the possible positions for these
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+J +J -J -J -J

-J

Matrix A: ( 1  2 )

Matrix B: ( 1  1  0  0  0  0 )

Matrix C: ( 0  0  0  1  0  1 )

Matrix D: (-1 -1 -1  1 -1  1)

Figure 3.1: Building of the spinons basis. Schematic picture of spinons in the Ising-
limit for an AF spin chain. One spin-flip in the chain creates two domains walls (the
two orange dashed lines) and costs an energy proportional to the intrachain coupling J
(red lines). Hence, the creation of two spinons can be seen as two defaults in terms of
intrachain coupling J . On this sketch, the periodic boundary condition is shown. The
equivalence of this state with the A, B, C and D matrices is indicated (see text).

defaults with the Mathematica function "Subsets" which allows to define all subsets with
an even number of defaults in a system containing exactly n elements. An example (the
matrix A) is given below for n = 6 and for 2 defaults (which means that we only consider
excitations with two spinons) but we can calculate the whole basis with more defaults
(k-spinons, k ∈ [2, 4.., n]) and with a larger number of sites n. The A matrix represents
the location of the bond-defaults. For instance, the first line

(
1 2

)
in the A matrix

specifies that the bonds between the spin on sites 1 and 2 (first term) and on sites 2 and
3 (second term) are not satisfied.

The matrix A leads to the matrix B which is the basis expressed in terms of "bonds"
between each spin: if the value is 1 at the ith position, it means that there is a default,
hence that the spins at the position i and i + 1 are parallel (in our case we study an
AF compound), otherwise if the value is 0, it means that the spins are antiparallel. For
example the first state of the B-matrix (1 1 0 0 0 0) is equivalent to the spin chain (- - -
+ - +) where "+" means S = +1/2, whereas "-" means S = −1/2 (or equivalently (+ + +
- + -) but I have chosen the former convention for the C matrix that I explain below). In
the whole program, there is a periodic boundary condition (thus the last 0 in the state (1
1 0 0 0 0) means that the last spin i = 6 is antiparallel to the first spin. Then, I construct
a basis (represented by the matrix C) in terms of spin S = 1/2 and not of bonds.
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A =



1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6



⇒ B =



1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 1 0 0 0
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1



⇒ C =



0 0 0 1 0 1
0 0 1 1 0 1
0 0 1 0 0 1
0 0 1 0 1 1
0 0 1 0 1 0
0 1 1 1 0 1
0 1 1 0 0 1
0 1 1 0 1 1
0 1 1 0 1 0
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 0 1 0
0 1 0 1 1 1
0 1 0 1 1 0
0 1 0 1 0 0



D =



−1 1 −1 1 −1 1
1 −1 1 −1 1 −1
−1 −1 −1 1 −1 1
−1 −1 1 1 −1 1
−1 −1 1 −1 −1 1
−1 −1 1 −1 1 1
−1 −1 1 −1 1 −1
−1 1 1 1 −1 1
−1 1 1 −1 −1 1
−1 1 1 −1 1 1
−1 1 1 −1 1 −1
−1 1 −1 −1 −1 1
−1 1 −1 −1 1 1
−1 1 −1 −1 1 −1
−1 1 −1 1 1 1
−1 1 −1 1 1 −1
−1 1 −1 1 −1 −1
1 1 1 −1 1 −1
1 1 −1 −1 1 −1
1 1 −1 1 1 −1
1 1 −1 1 −1 −1
1 1 −1 1 −1 1
1 −1 −1 −1 1 −1
1 −1 −1 1 1 −1
1 −1 −1 1 −1 −1
1 −1 −1 1 −1 1
1 −1 1 1 1 −1
1 −1 1 1 −1 −1
1 −1 1 1 −1 1
1 −1 1 −1 −1 −1
1 −1 1 −1 −1 1
1 −1 1 −1 1 1


At this step, ’0’ stands for ’-’ state and ’1’ stands for ’+’ state. Now we have a basis in
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terms of spins. Indeed in the B matrix, the first state (1 1 0 0 0 0) is now (0 0 0 1 0 1) in
the C matrix, which means that the first, the second and the third spin are parallel with
S = −1/2. What is missed is only the Néel state. Moreover one can see that we have
the half of the complete basis (the states where all the spins are reversed are missing, i.e.
the time reversal symmetry). If we add those states and change the ’0’ by ’-1’, then we
obtain the complete basis (matrix D) where ’-1’ stands for ’-’ state and ’1’ stands for ’+’
state respectively.

3.3.2.2 Truncated basis

Keeping the entire basis with a large number of sites n and k spinons (k ∈ [2, 4.., n]) is not
possible as it makes heavy calculations. Indeed the size of the Hamiltonian is growing up
exponentially with the number of states ns. To solve this problem I decided to truncate
the basis trying to make the good approximations.
The first truncation is somehow an "intrachain filter" where we only keep the easiest states
to create (i.e. the most probable, and thus carrying the major part of the spectral weight),
i.e. with the smallest number of spinons as possible, for example the two possible Néel
states and those made of the 2-spinons basis. For instance, in all the calculations that I
have performed, the biggest Hilbert space that I considered was the 2-spinons ⊕ 4-spinons
basis.

What can be done also is to reduce the size of the basis by applying an "interchain
filter". To label the states, I have created a function which gives the number of reversed
spins between the two spinons, and the corresponding nature of the excitation: transverse
"T" (resp. longitudinal "L") if the number of spins is odd (resp. even). The coupling
between two chains is antiferromagnetic. The function is simple: it simply counts the
number of interchain defaults between the considered state and a reference Néel state
chosen to be (- + - + - +). The truncation procedure consists then in limiting the
number of spins between the 2-spinons.

This truncation and this labelling are relevant only on the 2-spinons subspace of the
entire Hilbert space which I used in most of my calculations. Indeed these states are the
lowest energy modes for a 1D spin chain and hence they can be believed as the most
relevant ones. This procedure allows to take a larger number of sites n. Nevertheless, I
will discuss the validity of this truncation later.

For example, the interchain truncation to 4 interchain defects in the n = 6 chain ap-
plied on the complete basis (D matrix) above gives:
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

−1 −1 1 −1 1 −1
−1 1 1 −1 1 −1
−1 1 −1 −1 1 −1
−1 1 −1 1 1 −1
−1 −1 1 1 −1 1
−1 −1 1 −1 −1 1
−1 −1 1 −1 1 1
−1 1 1 −1 −1 1
−1 1 1 −1 1 1
−1 1 −1 −1 1 1
1 −1 1 −1 1 −1
1 −1 −1 1 −1 1
1 −1 1 1 −1 1
1 −1 1 −1 −1 1
1 −1 1 −1 1 1
1 1 1 −1 1 −1
1 1 −1 −1 1 −1
1 1 −1 1 1 −1
1 1 −1 1 −1 −1
1 −1 −1 −1 1 −1
1 −1 −1 1 1 −1
1 −1 −1 1 −1 −1
1 −1 1 1 1 −1
1 −1 1 1 −1 −1
1 −1 1 −1 −1 −1



⇔



1 T
2 L
3 T
4 L
4 L
3 T
2 L
4 L
3 T
4 L
0 Neel
4 L
3 T
2 L
1 T
1 T
2 L
3 T
4 L
1 T
2 L
3 T
1 T
2 L
1 T


In the present case, I have truncated all the states above the 4-L states (which means
that the 5-T and 6-L modes are not taken into account). Here, the states order of this
matrix is different than the one in D because of the truncation. Note that the 6-L mode
is equivalent to the reference Néel state (- + - + - +). One can see this mode like a
state where all the spins have been flipped. It is the highest energy mode in terms of
interchain coupling. One can notice that this state does not have intrachain defaults and
thus the energy of the intrachain coupling, which is much higher than the interchain one
is lower for this state than for the 2-spinons state. However this contradiction is removed
for the case of an infinite chain (even for a long enough chain) as its interchain energy is
becoming infinite (for the ∞-L mode). Then we are able to truncate our complete basis.

3.3.3 Hamiltonian of the system
3.3.3.1 General Hamiltonian of the system

The considered Hamiltonian for our quasi-1D Ising-like antiferromagnet system under an
applied magnetic field writes as follows :

H=
∑
ν

∑
j

J [Szj,νSzj+1,ν + ε(Sxj,νSxj+1,ν + Syj,νS
y
j+1,ν)] (3.1)

+
∑
ν,ν′

∑
j

JinterS
z
j,νS

z
j,ν′ +

∑
ν

∑
j

µB ~Sj,ν
∼
gj ~H (3.2)

H= HXXZ + Hinterchain + Hfield (3.3)
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where ν and j denote the index of the chain and of the site respectively, ∼gj is the Landé
tensor (which depends on the site j in the laboratory frame), ε is the anisotropy parameter,
H is the applied field, J is the intrachain coupling (taken > 0) and Jinter is the interchain
coupling. The first part of the Hamiltonian is the well known XXZ model, the second
one describes the interaction between the νth chain and its neighbouring chains ν ′ and
the third part describes the effect of the magnetic field.

What I would like to calculate is the Hamiltonian of one chain coupled to neighbouring
ones. To treat the interachain interaction, I used the mean-field theory as a first order
approximation.
We have Szj,ν =< Szj,ν > +δSzj,ν with < Szj,ν >= mj,ν the average magnetization on site j
of the νth chain and δSzj,ν = Szj,ν− < Szj,ν > the fluctuations of the spin. Thus:

Szj,νS
z
j,ν′ = [< Szj,ν > +δSzj,ν ][< Szj,ν′ > +δSzj,ν′ ] (3.4)

=< Szj,ν >< Szj,ν′ > +δSzj,ν < Szj,ν′ > +δSzj,ν′ < Szj,ν > +δSzj,νδSzj,ν′ (3.5)

The last term is of second order and can thus be neglected. Keeping in mind that δSzj,ν =
Szj,ν− < Szj,ν >, the Hamiltonian describing the interchain interaction can be rewritten
(up to a constant) as follows:

Hinterchain =
∑
ν,ν′

∑
j

Jinter(Szj,ν < Szj,ν′ > +Szj,ν′ < Szj,ν >) (3.6)

= 2
∑
ν,ν′

∑
j

JinterS
z
j,ν < Szj,ν′ > (3.7)

In this model, I consider only one chain (let us say the chain ν) antiferromagnetically
coupled to another one in the Néel state (the chain ν ′). Then considering an antiferro-
magnetic interaction between the two chains we get < Szj,ν >= − < Szj,ν′ >. As we have
only one chain coupled to an effective field (describing the interchain coupling), we do not
need the ν-index. Finally the Hamiltonian of the interchain interaction can be written as:

Hinterchain = −2
∑
j

JinterS
z
j < Szj > (3.8)

Using the following formulas:{
S+ = Sx + iSy

S− = Sx − iSy ⇒
{
Sx = S++S−

2
Sy = S+−S−

2i

the entire Hamiltonian for one chain is written as:

H=
∑
j

J [SzjSzj+1 + ε

2(S+
j S
−
j+1 + S−j S

+
j+1)]︸ ︷︷ ︸

1

− 2Jinter < Szj > Szj︸ ︷︷ ︸
2

+µB ~Sj
∼
gj ~H︸ ︷︷ ︸

3

(3.9)

To summarize, there are three terms in this Hamiltonian :
1: XXZ Hamiltonian: intrachain interactions.
2: molecular field Hamiltonian due to the interchain coupling between the considered
excited chain (containing two spinons) and a neighboring chain (taken as a Néel state at
the beginning of the calculations). < Szj > represents the average magnetization of the
jth site of the neighbouring chain.
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3: Hamiltonian due to the applied magnetic field.

As BaCo2V2O8 has an Ising-like anisotropy (ε ' 0.5), we can distinguish two configu-
rations for the magnetic field: longitudinal (resp. transverse) when the applied magnetic
field is applied along (resp. perpendicular to) the direction of the ordered moments in
zero-field (hence the chain-axis in the case of BaCo2V2O8). I will present the study of
BaCo2V2O8 for these two orientations of the field in Chap. 4 and Chap. 5.

Longitudinal magnetic field: In this case ~H = H~ez with ~ez a unitary vector along
the z-direction. The Hamiltonian describing the effect of the magnetic field takes the
following form:

Hfield =
∑
j

µBgzzHS
z
j (3.10)

Transverse magnetic field: Now, the magnetic field is applied in the plane perpendic-
ular to the ordered moments. This case is much more subtle for BaCo2V2O8. According to
Kimura et al. [Kim+13], additional staggered effective fields emerge from the anisotropic
∼
g tensor which is not diagonal. This non-diagonality is due to the tilt of the local easy-
axis of anisotropy with respect to the c-axis (θ ' 5◦) and the fact that this tilt rotates
around the c-axis by an angle of π/2 from one Co atom to the next one along the chain
[Kim+13]. The Hamiltonian due to the magnetic field is now:

Hfield = µBH
∑
j

(
gyy

S+
j + S−j

2 + gyzS
z
j cos

[
φ+ π(j − 1)

2

]

+ gyx sin[2φ+ π(j − 1)]
S+
j − S−j

2i

)
(3.11)

where φ is an angle describing the direction of the magnetic field: φ = 0◦ in the XY plane
(resp. φ = 45◦) for the field along x + y (resp. y). gyy is the diagonal component of the
Landé tensor along y, gzy and gxy are the off-diagonal components of the Landé tensor
coupling the z and x directions to the y one. In our case we have studied BaCo2V2O8
for ~H = H~ey with ~ey a unitary vector along the y-axis. Taking the same parameters
as Kimura et al. [Kim+13], we have: φ = 45◦, gyy = 2.75, gxy = 0.4gyy ' 1.1 and
gzy = 0.1

√
2gyy ' 0.39.

In my calculations, I consider this Hamiltonian for different orientations and values of
the magnetic field. For each field value, I calculate the eigenstates and eigenvalues of
the Hamiltonian. The normalized eigenvectors are: |Ψ〉 =

ns∑
i=1

ai |Φi〉 where |Φi〉 are the
vectors forming the basis of the Hilbert space.

3.3.3.2 Self-consistent calculations

In order to be more precise, I calculated in a self consistent way the effective magnetiza-
tion for each site of the neighbouring chain.

At a given magnetic field h, we calculate the Hamiltonian and diagonalize it. Then
we write the ground state as a linear combination of the vectors forming the basis of the



92 Chapter 3. Numerical technique: a code to probe quasi-one dimensional systems

Hilbert space |GS(m)〉 = |0(m)〉 =
ns∑
i=1

a
(m)
i |Φi〉 where m is the number of iterations, i.e.

the number of times that we recalculate the ground state at a given field h (the states
|Φi〉 are not m dependent, only the coefficients of the linear combination ai depend on
the number of iterations). What we need to calculate is the average of the magnetization
on each site < Szj >

(m) of the ground state |0)(m)〉 at a step m. We have:

< Szj >
(m) = 〈0(m)|Szj |0(m)〉 (3.12)

=
ns∑

i,i′=1
(a(m)
i )∗a(m)

i′ 〈Φi|Szj |Φi′〉 (3.13)

(3.14)
where ’∗’ denotes the complex conjugate. As the quantization axis is z, then Szj is diago-
nal, so that:

< Szj >
(m) =

ns∑
i,i′=1

(a(m)
i )∗a(m)

i′ Sj(Φi′) 〈Φi|Φi′〉 (3.15)

=
ns∑

i,i′=1
(a(m)
i )∗a(m)

i′ Sj(Φi′)δi,i′ (3.16)

=
ns∑
i=1
|a(m)
i |2Sj(Φi) (3.17)

where δi,i′ is the Kronecker symbol defined as δi,i′ = 1 if i = i′ and 0 otherwise.
To be sure that the difference between two iterations δ(m) = < Szj >

(m+1) − < Szj >
(m)

has fairly converged towards a null value (indeed one expects lim
m→+∞

δ(m) = 0), I imple-
mented the following condition: while δ(m) > 10−4, then it continues to iterate, which
means that the initial reference Néel state for the interchain interaction is now replaced
by the calculated ground state |0(m)〉 at step (m). Then we re-diagonalize the Hamiltonian
and get the ground state |0(m+1)〉 at step (m+ 1), which is compared to the previous one,
and so forth.

3.3.4 Calculation of the dynamical structure factor S( ~Q, ω)

We now focus on the dynamical structure factor S( ~Q, ω) which is the double Fourier
transform in time and space of the spin-spin correlation function, one at position ~0 and
time 0 and the other one at position ~r and time t. As the neutrons are only sensitive
to the magnetic components perpendicular to the scattering vector ~Q, we can write the
dynamical structure factor as follows:

S( ~Q, ω) =
∫∫

ei(ωt−
~Q·~r) < ~S⊥ ~Q(~0, 0) · ~S⊥ ~Q(~r, t) > dt d~r (3.18)

with ~S⊥ ~Q = ~S − (~S · ~Q) ~Q/Q2 the component of the spin perpendicular to the scattering
vector ~Q. Let us write ~r = ~Rj′ − ~Rj (here we go from a continuous space to a discrete
one), and make a change in space origin by a translation of ~Rj. Then we can rewrite
equation (3.18) as:

S( ~Q, ω) =
∫
eiωt(

∑
j,j′

< ~S⊥ ~Q( ~Rj, 0) · ~S⊥ ~Q( ~Rj′ , t) > e−i
~Q·( ~Rj′− ~Rj))dt (3.19)
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By using the Heisenberg representation we get: ~S⊥ ~Q( ~Rα, t) = e−
i
~Ht~S⊥ ~Q( ~Rα, 0)e i~Ht where

α = j, j′. The average of an operator A is given by:

< A > = Tr(Aρ) (3.20)
=
∑
k

pk 〈k|A |k〉 (3.21)

=
∑
k

e−βH

Tr(e−βH) 〈k|A |k〉 (3.22)

=
∑
k

e−βH

Z
〈k|A |k〉 (3.23)

where ρ is the density matrix, |k〉 are the eigenvectors of the system, β = 1
kBT

, pk is the
Boltzmann weight of state |k〉 and Z = Tr(e−βH), the partition function of the system.
Let us rewrite the scattering function with these two ingredients:

S( ~Q, ω) =
∫
eiωt

∑
j,j′

∑
k

pk 〈k| ~S⊥ ~Q( ~Rj, 0)e− i
~Ht~S⊥ ~Q( ~R′j, 0)e i~Ht |k〉 e−i ~Q·( ~R′j− ~Rj)dt (3.24)

We now introduce the identity operator defined as 1 = ∑
m |m〉 〈m| and inject it in

Eq. (3.24). We obtain:

S( ~Q, ω) =
∫
eiωt

∑
j,j′

∑
k,m

pk 〈k| ~S⊥ ~Q( ~Rj, 0)e− i
~Ht |m〉 〈m| ~S⊥ ~Q( ~Rj′ , 0)e i~Ht |k〉 e−i ~Q·( ~Rj′− ~Rj)dt

(3.25)
which leads to:

S( ~Q, ω) =
∫
ei(

Ek−Em
~ +ω)t∑

j,j′

∑
k,m

pk 〈k| ~S⊥ ~Q( ~Rj, 0) |m〉 〈m| ~S⊥ ~Q( ~Rj′ , 0) |k〉 e−i ~Q·( ~Rj′− ~Rj)dt

(3.26)

=
∑
k,m

pk
∑
j,j′
〈k| ~S⊥ ~Q( ~Rj, 0) |m〉 〈m| ~S⊥ ~Q( ~Rj′ , 0) |k〉 e−i ~Q·( ~Rj′− ~Rj)

∫
ei(

Ek−Em
~ +ω)tdt

(3.27)
=
∑
k,m

pk
∑
j,j′
〈k| ~S⊥ ~Q( ~Rj, 0) |m〉 〈m| ~S⊥ ~Q( ~Rj′ , 0) |k〉 e−i ~Q·( ~Rj′− ~Rj)δ(Ek − Em + ~ω)

(3.28)
=
∑
k,m

pk(
∑
j

〈k| ~S⊥ ~Q( ~Rj, 0) |m〉 ei ~Q· ~Rj)(
∑
j′
〈m| ~S⊥ ~Q( ~Rj′ , 0) |k〉 e−i ~Q· ~Rj′ )δ(Ek − Em + ~ω)

(3.29)
=
∑
k,m

pk(
∑
j

〈m| ~S⊥ ~Q( ~Rj, 0) |k〉 e−i ~Q· ~Rj)†(
∑
j

〈m| ~S⊥ ~Q( ~Rj, 0) |k〉 e−i ~Q· ~Rj)δ(Ek − Em + ~ω)

(3.30)
=
∑
k,m

pk|
∑
j

〈m| ~S⊥ ~Q( ~Rj) |k〉 e−i
~Q· ~Rj |2δ(Ek − Em + ~ω) (3.31)

where † denotes the Hermitian conjugate. To simplify the numerical calculations, we
assume that we are at T = 0 K. Then only the ground state is populated (p0 = 1, with
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|GS〉 = |0〉). It means that in an intrinsic way, only the excitations from the ground state
to the excited states have a non-zero spectral weight. Therefore, we have the dynamical
structure factor S( ~Q, ω) given by:

S( ~Q, ω) =
∑
m

∣∣∣∣∣∣
∑
j

〈m| ~S⊥ ~Q( ~Rj) |0〉 e−i
~Q. ~Rj

∣∣∣∣∣∣
2

δ(E0 − Em + ~ω) (3.32)

=
∑
m

Amδ(E0 − Em + ~ω) (3.33)

where Am =
∣∣∣∣∣∑j 〈m| ~S⊥ ~Q( ~Rj) |0〉 ei ~Q· ~Rj

∣∣∣∣∣
2

is the probability amplitude of the transition from

the ground state to the mth mode of the system, driven by the operator S⊥ ~Q. The Dirac
distribution δ(E0 − Em + ~ω) represents the conservation of energy. To be able to see
peaks on the calculated plot, I have replaced the Dirac distribution by a Gaussian peaks
with a full width at half maximum σ fixed at 0.2 meV (which is about the energy resolution
that we had during the different inelastic neutron experiments) for all calculations. Then
the dynamical structure factor takes the definitive form:

S( ~Q, ω) =
∑
m

Am exp
−4 ln 2

[
~ω − (Em − E0)

σ

]2
 (3.34)

It is important to understand that the dynamical structure factor built here is the
one corresponding to a simple linear spin chain and not to BaCo2V2O8. A step further
would be to take into account the magnetic structure factor of BaCo2V2O8 which is
more complex due to the screw nature of the chains. Because I consider a simple chain,
the propagation vector in the present program is ~kAFcalc = (0, 0, 1

2) instead of having the
experimental propagation vector ~kAFexp = (0, 0, 1), or rigorously speaking, ~kAFexp = (1, 0, 0)
since a > c in BaCo2V2O8.

3.4 Calculations at zero-field: validity of the model
and its limitations

At this stage I have built an entire code to catch the spin-dynamics of one dimensional
systems. The first question now is: is this model valid? And what about its limitations?
In order to answer these questions, I have performed test calculations at zero-field and
compare the numerical simulations to the experimental results obtained in BaCo2V2O8
[Gre+15a].

3.4.1 Confinement of spinons
In the ordered phase, the propagation of the spinons upsets the neighbouring chains and
thus costs a potential energy V (nreversed) which grows linearly with the number of reversed
spins nreversed between two spinons. Therefore this potential confines the spinon pairs.
This was already investigated by Shiba and the excitations are known as the Zeemann
ladders [Shi80]. Because of this linear potential, the Schrödinger equation admits solu-
tions of the form [Col+10]:

ET,L
j = 2ET,L

0 + zjα (3.35)
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with 2ET,L
0 the mass of the transverse (T) and longitudinal (L) modes, α ' (JεJ2

inter)1/3

and zj the negative zeros of the Airy function (Ai(−zj) = 0). We propose here to see
first if our calculations in the case of a basis restricted to two spinons reproduce this
type of law for the excited states. For all the simulation below, I will use the following
parameters: J = 5 meV, Jinter = 0.3 meV, ε = 0.5. These parameters are close to the
ones found experimentally in BaCo2V2O8 ([Kim+07; Kim+13; Kim+08b; Gre+15a]).

Fig. 3.2(a) shows both the calculated transverse (T) dynamical structure factor Sxx
and the longitudinal (L) one Szz as a function of the energy at the AF position ~Q =
(1, 0, 0.5), to be compared to the measured spectrum at ~Q = (2, 0, 1) in the experiment.
One can notice that there are two series of discrete T and L excitations and that the
longitudinal ones cost more in energy than the transverse ones. The difference in energy
EL
j − ET

j ' 0.25 meV is consistent with what has been seen in BaCo2V2O8 (see Fig.3.2
and Fig. 3.3). This additional cost has already been understood and simply comes from
the interchain interaction [Gre+15a]. However, if we compare with the experimental data
(see Fig. 3.2(b)), one can see that the energy scale of the calculated modes is much higher
than the experimental ones. Indeed the energy of the first T mode is about 5.8 meV while
the experimental one is about 1.8 meV. In addition, the intensity of the L modes is much
lower (by about a factor 5) than the T ones while it is almost the same in the experiment.
This comes from the restriction of the Hilbert space to the 2-spinons basis as explained
later.
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Figure 3.2: Calculated vs experimental energy-scan. (a) Calculated transverse and
longitudinal dynamical structure factors Sxx and Szz (blue and red lines respectively). The
calculations were done with n = 30. S( ~Q, ω) is calculated on an AF point ~Q = (1, 0, 0.5)
which is not parallel to the c-axis and thus to the ordered moment, so that we are able
to see both the L and T excitations (this ~Q vector is chosen to keep the same angle
in the (a, c) plane than ~Q = (2, 0, 1) in the experiment). (b) Q-constant energy scan
measured by inelastic neutron scattering obtained at T = 1.5 K and H = 0 at the AF
point ~Q = (2, 0, 1) for BaCo2V2O8. The red solid line corresponds to a fit with a series
of Gaussian functions. The symbols (T) and (L) point out the transverse or longitudinal
nature of the excitation. Only the first four excitations for each type of mode (T and L)
are plotted.
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In Fig. 3.3 are plotted the energies of the calculated T (blue points) and L (red
points) excitations as a function of the negative zeros of the Airy function zj. The data
were fitted linearly and show an excellent agreement with the predicted law of Eq. (3.35).
The calculated and experimental fits give (almost) the same slope (the difference of the
intercepts has already been discussed above). The following coefficients of the slope are
found from the fit (solid lines) of the T and L excitations: α(T) ' 0.57 meV and α(L) '
0.60 meV in good agreement with the theoretical coefficient α(th) = (JεJ2

inter)1/3 '
0.60 meV. Finally α(T) ' α(L) which is consistent with the fact that this coefficient does
not depend on the nature of the excitations.

Figure 3.3: Confinement of spinons, linear potential and Airy function. Cal-
culated energies for transverse (blue circles) and longitudinal (red circles) modes as a
function of the negative zeros of the Airy function zj . The experimental T and L ener-
gies are also plotted (green and purple triangles respectively). Blue and red (resp. green
and purple) solid lines represent the linear fits of the calculated (resp. experimental)
excitations energy vs zj .

These results seem quite promising in spite of the discrepancies already mentioned
between the calculations and the experiment: weaker spectral weight for the longitudinal
excitations and a global shift in energy.

3.4.2 Mass 2ET,L
0 and coefficient α as a function of the interchain

interaction and of the anisotropy parameter ε

In this section, we study the dependence of the mass 2ET,L
0 and of the coefficient α as a

function of Jinter and of the anisotropy parameter ε.
In Fig. 3.4(a), one can see that for the ε-dependence of the calculated α(T) and

α(L) coefficients is in a really good agreement with the theoretical values calculated as
α(th) = (JεJ2

inter)1/3 up to ε = 0.5 and start to deviate above this value. This enhances
one of the limitations of this model based on strong Ising anisotropy. For the Jinter-
dependence of the same coefficients (see Fig. 3.4(b)), the calculated ones match well the
theoretical ones only for an interchain coupling between 0.3 meV and 0.6 meV while they
deviate for lower and higher values of Jinter. One possible reason for the deviation of
higher values could be that this model is only valid for a weak interchain coupling, as it is
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Figure 3.4: Dependence of the coefficient α and of the mass ET,L
0 as a function of

Jinter for ε = 0.5 (right panels) and of the anisotropy parameter ε for Jinter = 0.3 meV
(left panels). The calculations were made with n = 30 spins. The blue open triangle
symbols correspond to the T modes, the red open circles to the L ones and the black open
squares to the theoretical ones using Eq. (3.35).

treated in the approximation of the mean-field theory. Concerning the low values of Jinter,
the deviation may come from the fact that in the weak interchain regime, the system is
close to a pure 1D system and hence the 2-spinons basis (which is more relevant in the
presence of interchain interactions as the latter confines them) is not enough to describe
the system correctly.

Concerning the mass E0 of the T and L excitations, at low ε (strong Ising limit),
the two masses do not match. By increasing the anisotropy parameter, they are both
increasing and cross each other at ε = 0.7. Then the mass of the T mode becomes
larger than the L one contrary to the low ε limit (see Fig. 3.4(c)). Concerning the Jinter-
dependence of the masses, by increasing the interchain interaction the energy of the T
excitations is decreasing while that of the L ones is increasing, thus the energy difference
between the two is increasing also (Fig. 3.4(d)). Those results should be taken cautiously
as we have two approximations here: First the model of Zeeman Ladders works only in
the limit of weak interchain interaction and of a strong Ising anisotropy as it is treated in
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a mean-field approximation. Second, the basis is limited to 2-spinons states.

3.4.3 Excitation spectrum of BaCo2V2O8 at zero-field
Figs. 3.5(a-c) show the calculated excitation spectra of BaCo2V2O8.
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Figure 3.5: Calculated excitation spectra S⊥ ~Q, Sxx and Szz (panels (a-c) respectively)
at zero-field and around the AF point ~Q = (1, 0, 1

2) with n = 30. The step in energy (resp.
QL) is 0.08 meV (resp. 0.02 r.l.u). The colorscale of the Szz spectrum is enlarged by a
factor 5 since L modes have a lower spectral weight as discussed above.

One can see directly that the whole spectrum shows a series of discrete modes consis-
tent with the presence of Zeemann ladders. The spectra of ~S⊥ ~Q and Sxx are very similar
because of the much lower intensities of the longitudinal modes (about a factor 5). We
can clearly see that the minimum in energy is obtained at the AF point ~Q = (1, 0, 1

2).
In each series of modes (T and L), the spectral weight is maximum at this point for the
two lowest energy T and L excitations and then it slightly decreases when the energy
increases. This is consistent with what has been seen experimentally in BaCo2V2O8 (see
Fig.3.2 (b)) [Gre+15a]. We clearly see the large amplitude of the gap ∆ ' 6 meV already
discussed above.

3.4.4 Limitations of the calculations
One can see that the calculations reproduce qualitatively the main behaviors of our sys-
tem. However, the numerical results never give the good values of energy and that the
details of the excitations do not match exactly with the experiment. This is mainly due
to two reasons:
-the first one is the finite chain size that we consider.
-the second is the truncated Hilbert space which is necessary to be able to do the calcu-
lations.
Indeed, the whole problem when doing numerical calculations on quantum physics is the
size of the Hilbert space which grows as 2n with n the number of spins. It is possible to
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take the entire Hilbert space but as the size of the Hilbert space grows as 2n, the calcu-
lations becomes really heavy for n > 12 (for instance for n = 16, the number of states in
the entire Hilbert space is 216 = 65536).

Actually, the previous calculations were done with the "2-spinons" subspace of the
entire Hilbert space with n = 30. For this number of sites, the size of the entire Hilbert
space is given by 230 ' 109 while the size of the 2-spinons subspace is given by 2×C2

30 +
the two Néel states = 872. The entire Hilbert space was highly truncated and this allowed
calculations. The two-spinons states are the most entangled states with the fundamental
state |0〉 and have also the lowest energies. That is why, we recover the main physics
(Zeeman ladders, spectrum). But the brutal truncation of the other 2k-spinons with
k ∈ [2, 3, .., n2 ] leads to a loss of information and of agreement with the experimental
results.

(a) (b)

Figure 3.6: Limitation of the calculations and size of the Hilbert space. Calcu-
lated S( ~Q, ω) on an AF point ~Q = (1, 0, 1

2). The Hilbert space corresponds to the: (a)
2-spinons subspace, (b) 2-spinons ⊕ 4-spinons subspace. To make possible the calculations
with the 4-spinons states, the number of spins is taken as n = 16 for both subspaces.

Fig. 3.6 shows the comparison between calculations results for a 2-spinons subspace
and for a 2-spinons⊕4-spinons subspace. One can see that for the 2-spinons⊕4-spinons
states, the energies of the peaks are shifted to lower energies (the gap is much smaller)
and that the intensities of the longitudinal modes Szz are much bigger. While the gap is
' 4.75 meV for the 2-spinons states, the gap of the 2-spinons⊕4-spinons states ' 3 meV
which is closer to the experimental gap ' 1.8 meV. This shows that not taking the higher
energy states into account is at the origin of the discrepancies already mentioned and thus
to a loss of quantitative information.
In conclusion, exact diagonalization calculations is a valuable tool but are rapidly un-
achievable because of the exponential expansion of the Hilbert space and then the trunca-
tion of the basis becomes necessary. This is how and where the DMRG (Density Matrix
Renormalization Group) emerges and why this technique is so powerful.

Keeping in mind the limitations of the calculations, I assume that we will never reach
quantitative information. Nevertheless, we can reproduce some qualitative properties and
acquire an understanding of the physics at play, as I will show in Chap. (4), Chap. (5)
and Chap. (6).
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A last important remark that I should mention is that the term of "exact diagonal-
ization" is perhaps not correct in the case of my calculations as I strongly truncate the
Hilbert space since the beginning. However my numerical code allows to perform an exact
diagonalization and I will continue to use this formulation all along this manuscript.

3.4.5 Some words about DMRG and surrounding techniques
Here I would like to describe briefly my little understanding of the DMRG technics. For
more details, the readers can refer to [Fei13; Sch05; Sch11].

The DMRG technique is a numerical technique which allows to truncate in a "good
way" the Hilbert space. The DMRG method is variational (even if it based on diagonal-
ization) in the sense that the aim is to approximate the wave functions of the system in
a truncated Hilbert space and hence to minimize the loss of information.

But which states have to be kept? and which ones do we have to discard? Naively,
one can think that keeping only the lowest energy modes should be enough to probe the
whole physics of a quantum system. However it is not so simple. It has been shown
by S. White [Whi92], and then in many other studies that the good way to truncate a
quantum system (especially in the 1-D case because of the strong fluctuations) is to keep
only the states which are highly entangled with the ground state.

Figure 3.7: Truncation of the basis. Left: basis where the spectral weight |ai|2 are non
null for each state. The truncation is then not appropriate is this case. The red arrow
points out a rotation of the Hilbert space. Right: After the rotation, all the spectral
weight |ai|2 is contained in the first few states and the truncation becomes possible.
Figure extracted from [Fei13]

To picture this, suppose that you want to diagonalize a Heisenberg chain with a ground
state of the form |ψ〉 = ∑

i ai |φi〉. If we plot the different weights |ai|2, we may find the
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distribution in the left picture of Fig. 3.7 where the majority of the spectral weight is
contained in a few states (for example in our case, such states would be the Néel state
or the 2-spinons excitations which are easier to create and thus more "probable") while
the rest of the spectral weight is spread over the tail. One would like to truncate the
basis by only keeping the first few states containing the majority of the spectral weight.
However the states which are truncated with a smaller spectral weight are responsible of
the interesting physics, i.e. the fluctuations, and thus cannot be neglected by this "brutal"
truncation. Here I would like to emphasize that this is exactly what I am doing in my
numerical calculations when, for example, I limit the Hilbert space to the 2-spinons basis.
So, how to get rid of this problem? This is a basis dependent problem, which means
that if someone finds a representation of the basis such as the one depicted in the right
picture of Fig. 3.7, then the "brutal" truncation done previously becomes valid in this
case. In this example, the number of states is reduced from 35 to 10 while keeping all
the information. This is the main idea of DMRG calculations where a Schmidt decom-
position using "density matrices" is used to rotate the Hilbert space, i.e. to find the good
representation of the basis. One can understand this rotation with a simple mechanical
problem. Suppose that you have a speed vector ~v expressed in the (~ex, ~ey) basis with the
form: ~v = vx~ex + vy~ey. In this case, two vectors are needed to describe ~v. Suppose now
that we rotate the basis such as ~v = v~u with ~u a unitary vector and v =

√
v2
x + v2

y. Now,
one single vector is needed to describe ~v and all the information is preserved.

The DMRG is in constant evolution as it has been shown recently that it has inspired
the MPS (Matrix Product States) and Tensor Networks Method which are widely used
in many-body problems. For example the iTEBD (infinite Time-Evolving Block Deci-
mation) method [Vid07; PVM12] has been in the present project used by the theoretical
team involved in this work, namely Shintaro Takayoshi and Thierry Giamarchi from the
university of Geneva.
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4.1 Summary

4.1.1 Abstract
This chapter is devoted to the study of the Ising-like antiferromagnet BaCo2V2O8 under a
transverse magnetic field (i.e. perpendicular to the easy-axis of magnetization and thus to
the c-axis). I will explain first the context and the motivations of this study and what has
already been done before. The second part will treat the static properties of BaCo2V2O8
under a transverse field. Then I will present how the spin-dynamics is affected by this
configuration of the magnetic field. Finally, I will conclude by discussing and giving an
interpretation of the results with the help of numerical calculations and field theory.

4.1.2 Résumé en français
Le quatrième chapitre est dédié à l’étude de BaCo2V2O8 sous champ magnétique trans-
verse, i.e. perpendiculaire à l’axe Ising. Dans BaCo2V2O8, l’axe Ising est légèrement in-
cliné par rapport à l’axe c. Cette inclinaison tourne d’un quart de tour lorsque l’on passe
d’un site à l’autre le long de la chaîne. Il en résulte un tenseur de Landé non-diagonal,
ce qui signifie que lorsqu’un champ magnétique uniforme est appliqué, par exemple selon
l’axe b, un champ magnétique alterné proportionnel au champ uniforme est induit selon
l’axe a. Nous avons montré au travers de notre étude que ce champ alterné rentre en
compétition avec l’anisotropie du système, induisant alors une transition de phase quan-
tique à µ0Hc ' 10 T, transition qui apparaît bien en dessous de la valeur du champ
à saturation (' 40 T). En effet notre étude des propriétés statiques par diffraction des
neutrons à montré que les moments magnétiques au dessus de la transition de phase sont
antiferromagnétiquement alignés selon l’axe a, i.e. selon le champ local alterné. Nous
avons ensuite étudié les propriétés dynamiques de BaCo2V2O8 sous champ magnétique
au moyen de la diffusion inélastique des neutrons (polarisés ou non). Nous avons observé
que le mode de plus basse énergie à champ nul se scinde en deux branches lorsque le champ
augmente: une des branches augmente en énergie lorsque le champ augmente tandis que
l’autre diminue en énergie pour atteindre un minimum à la transition de phase. Il est
à noter que les deux branches ont une dépendance non-linéaire en champ magnétique,
ce qui nous indique que le champ transverse produit un mélange des fonctions d’ondes
du système. Nous avons ensuite suivi la dépendance en champ magnétique des excita-
tions. Nous avons pu observer que l’excitation de plus basse énergie, polarisée selon a et
b à champ nul (i.e. correspondant à des fluctuations transverses au moment magnétique
aligné selon c), devient progressivement polarisée selon c, pour n’être plus que selon c
au dessus de la transition. Ceci est cohérent avec des fluctuations de spins qui restent
transverses en accompagnant la rotation des spins de c à a. Pour aller plus loin dans
notre analyse, nous avons eu recours à des calculs numériques, d’une part des diagonali-
sations exactes en utilisant mon propre code et d’autre part des calculs iTEBD (infinite
Time Evolving Block Decimation) effectués par Shintaro Takayoshi et Thierry Giamarchi
(Univ. Genève). Les deux techniques ont ainsi pu confirmer les résultats expérimentaux,
en particulier la polarisation des modes sous champ magnétique et le fait que le champ
alterné est l’élément clé à l’origine de la transition. Les calculs iTEBD reproduisent ex-
trêmement bien les résultats expérimentaux de manière quantitative. Ainsi, l’Hamiltonien
du système a pu être confirmé et les paramètres de celui-ci extraits. Shintaro Takayoshi
et Thierry Giamarchi ont alors pu établir une théorie des champs, nous permettant de
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comprendre de façon qualitative la nature des excitations. La théorie des champs associée
à BaCo2V2O8 sous champ magnétique transverse correspond au modèle dit de "Double
sine-Gordon", qui a permis de révéler la nature topologique des excitations de part et
d’autre de la transition. Nous avons ainsi pu montrer que les excitations à bas champ
correspondent à deux spinons (déconfinés si l’on omet l’interaction interchaîne), tandis
que les excitations au dessus de la transition correspondent à deux paires de spinons liés
(chacune des paires pouvant se propager librement le long de la chaîne). Notre travail a
mis en évidence la première réalisation expérimentale du modèle de "Double sine-Gordon".
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4.2 Context and motivations
The one dimensional Ising model in a transverse magnetic field is an archetypal example
of quantum phase transition that was early solved theoretically [Pfe70; Sac11]. It was
only recently studied experimentally in the Ising-like ferromagnet CoNb2O6 where an
order-disorder phase transition has been observed from a ferromagnetic phase at zero-
field to a paramagnetic phase above the critical field [Col+10]. The excitations found in
the paramagnetic phase have also been investigated and have been found to be "spin-flip"
excitations [Cab+14]. Some studies with a transverse magnetic field applied on Ising-like
antiferromagnets such as CsCoCl3 and CsCoBr3 were also done but the strong anisotropy
(ε ' 0.1) and the strong intrachain interactions in those systems yield the critical field up
to 75 T [HY79; Nag+82] [Ama+90; Kim+05], unreachable by means of neutron scattering
experiments.

Thus, at first sight, because of its weak anisotropy (and thus a lower energy gap) and
of an intrachain interaction weaker than in the case of CsCoCl3 and CsCoBr3, BaCo2V2O8
was the first potential candidate to observe such a quantum phase transition in an anti-
ferromagnet with the help of microscopic probes such as neutrons. This was the initial
motivation for this study but, as we will see later, our work evidenced a totally different
kind of quantum phase transition.

Indeed what we have found in BaCo2V2O8 is an exotic transition which comes from
the competition between the Ising-like anisotropy and a staggered field induced by the
uniform field applied perpendicularly to the Ising-axis [Fau+18]. The effect of a staggered
field has been investigated in Heisenberg chains [Ken+05; Koh+01; OA97] and it has been
shown that such systems, as anisotropic spin-chains, can be mapped onto the celebrated
sine-Gordon model which plays a central role in quantum field theory [Raj82]. In our
case, BaCo2V2O8 presents these two ingredients and we have shown that this system
under a transverse magnetic field can be mapped onto the so called "double" sine-Gordon
model [GS88; LGN02], describing a topological quantum phase transition driven by the
competition between two dual topological excitations.

4.3 State of the art and Hamiltonian of the system

4.3.1 H − T phase diagram of BaCo2V2O8 in a transverse mag-
netic field

Macroscopic measurements such as thermal expansion, magnetostriction, thermal con-
ductivity and magnetization were performed and have led to the H − T magnetic phase
diagram of BaCo2V2O8 for different orientations of a uniform transverse field [Nie+13;
Oku+15; Kim+06; Zha+12] (see Fig. 4.1).

Fig. 4.1(a) shows the magnetic phase diagram of BaCo2V2O8 with the uniform mag-
netic field applied along the [100] direction, thus along the a-axis. One can see that the
critical temperature decreases by increasing the field and becomes null at the critical field
µ0Hc ' 10 T. The Néel order present in the zero field phase is then suppressed at the
quantum phase transition where the system enters into a new phase which was unknown
before our study.

Fig. 4.1(b) shows the magnetic phase diagram of BaCo2V2O8 with the uniform mag-
netic field applied along the [110] direction. One can observe that the critical temperature
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(a) (b)

Figure 4.1: H − T phase diagrams of BaCo2V2O8 under a magnetic transverse
field obtained by various macroscopic measurements. (a) Phase diagram for ~H ‖ ~a
(or equivalently, ~H ‖ ~b). (b) Left: Thermal expansion measured for different values of the
magnetic field with ~H ‖ ~a +~b. Right: Phase diagram for ~H ‖ ~a +~b. Those figures were
taken from [Nie+13]

is decreasing smoothly while increasing the field.
Kimura et al. have shown by high field magnetization measurements [Kim+06] that

there are two critical fields for this orientation of the applied field. The first one is observed
around µ0H

exp
c1 ' 30 T. This is consistent with the theoretical critical field µ0H

th
c1 =√

J(J/2+1)
gxxµB

' 30 T assumed to correspond to an order-disorder transition [HOA01]. The
second one is found at µ0H

exp
s ' 40 T [Kim+06] and is consistent with the theoretical

value µ0H
th
s = J

2εgaaµB ' 40 T expected for the saturation field of an anisotropic spin-1/2
chain under a transverse field [DKO02].

From those measurements, it is clear that the (a, b) plane is not isotropic, as the orien-
tation of the applied uniform transverse field leads to different magnetic phase diagrams
whether it is applied along [100] or along [110]. These considerations raise some interroga-
tions: what is the key ingredient which drives the quantum phase transition occurring at
a rather low field in the case of the field parallel to the [100] direction? And what about
the nature of the phase transition? Our study, based on neutron scattering experiments
and theoretical calculations, is answering these questions.

4.3.2 Induced effective staggered field by a uniform field

By analysing magnetization measurements, Kimura et al. developped a model to describe
these anisotropic behaviors in the (a, b) plane [Kim+13]. This model is based on the
peculiar screw structure of BaCo2V2O8 (see Fig. 4.2(a)). Indeed, the magnetization local
easy-axes of the Co2+ ions are actually tilted away from the chain c-axis by ' 5◦ and
rotate by ' 90◦ when moving along the 4-fold c-axis (see Fig. 4.2(b)). This leads to
a non-diagonal Landé tensor ∼g (thus fully anisotropic). It means, in other terms, that
now, if a uniform magnetic field is applied along a given direction, it will induce effective
fields along other directions, whose nature and orientation depends on the direction of the
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applied field. In their paper, Kimura et al. proposed the following Hamiltonian [Kim+13]:

H= HXXZ + Hfield (4.1)
H=

∑
j

J
[
SZj S

Z
j+1 + ε(SXj SXj+1 + Syj S

Y
j+1)

]
−
∑
j

µB ~SY
∼
gj ~H (4.2)

where the first term is the Hamiltonian of an anisotropic spin-1/2 chain and the second
one corresponds to the Zeeman Hamiltonian describing the interaction between the spins
of the system and the applied field. Here the interchain interaction is not taken into
account.

By considering the 5◦ tilt of the easy-axis of magnetization with respect to the 4-fold
c-axis and by developing the Zeeman term, they showed that the Hamiltonian takes the
form:

H=
∑
j

J
[
SZj S

Z
j+1 + ε(SXj SXj+1 + SYj S

Y
j+1)

]

− µBH
∑
j

(
gXXS

X
j + gXZS

Z
j cos

[
φ1 + π(j − 1)

2

]
+ gXY S

Y
j sin[2φ1 + π(j − 1)]

)
(4.3)

where gαα and gαβ (α, β = X, Y, Z) correspond to the diagonal and off diagonal compo-
nents of the Landé factor ∼g respectively. Here ~X ‖ ~H, ~Z ‖ ~c and ~Y ⊥ ( ~X, ~Z). φ1 is an
angle defining the direction of the uniform magnetic field in the (a, b) plane: φ1 = 0 when
H ‖ [110] and φ1 = π/4 when H ‖ [100] (equivalently [010]).

ℎ𝑍ℎ𝑍

ℎ𝑌
𝐻𝐻

Figure 4.2: Cristallographic peculiarities of BaCo2V2O8 and effective fields in-
duced by a uniform transverse field. (a) View of the Co-O chain. (b) CoO6 octahe-
dron. The small 5◦ tilt of the easy-axis of magnetization with respect to the c-axis can
be seen through this picture. (c) ξψζ local coordinate system related to the XYZ one
used to obtain the Hamiltonian of Eq. (4.3). (d-e) Effective fields induced by the applied
(uniform) field: (d) ~hZ in the case of ~H ‖ [110] (φ1 = 0◦), (e) ~hY and ~hZ in the case
~H ‖ [100] (φ1 = 45◦). Those figures were taken from [Kim+13].
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Let us have a look at the Zeeman term of the Hamiltonian for these two particular
cases:

Hfield(φ1 = 0) = −µBH
∑
j

(
gXXS

X
j − gXZSZj sin

[
πj

2

])
(4.4)

Hfield(φ1 = π

4 ) = −µBH
∑
j

(
gXXS

X
j + gXZS

Z
j cos

[
πj

2 −
π

4

]
+ gXY S

Y
j (−1)j

)
(4.5)

These two Hamiltonians were used to fit the magnetization measurements for the
two orientations of the field and have shown a really good agreement with the experiment
[Kim+13]. One can see that applying a uniform field perpendicularly to the c-axis induces
an effective field along the c-direction in both cases. However, the nature of this effective
field is different depending on the value of φ1. When the uniform field is applied along
the [110] direction ([100] direction), the effective field along the Z-axis consists in an
"up-zero-down-zero" ("up-down-down-up") configuration (see Figs. 4.2(d),(e)). The most
surprising effect arises for the case φ1 = π/4, i.e. ~H ‖ [100] or equivalently ~H ‖ [010].
In this case, applying a uniform magnetic field along the b-direction induces an effective
staggered field, i.e. an alternate local field, along the a-direction.

4.3.3 Hamiltonian of the system
From now, I will denote X = b, Y = a and Z = c.

Let us now construct the full Hamiltonian of BaCo2V2O8 under a uniform transverse
field applied along the b-axis. The interchain interaction is present in the Hamiltonian
which accounts for the spinon-confinement (while this term is not relevant for macroscopic
measurements, it will be useful for the numerical calculations of the spin-dynamics in
BaCo2V2O8 as we will see later). Thus, the Hamiltonian takes the following form 1:

H=
∑
j

J [ScjScj+1 + ε

2(S+
j S
−
j+1 + S−j S

+
j+1)]

︸ ︷︷ ︸
1

−
∑
j

J
′
< Scj > Scj︸ ︷︷ ︸

2

−µBHgbb
∑
j

Sbj︸ ︷︷ ︸
3

−µBHgba
∑
j

Saj (−1)j

︸ ︷︷ ︸
4

−µBHgbc
∑
j

cos
[
πj

2 −
π

4

]
Scj︸ ︷︷ ︸

5
with:
1 : XXZ Hamiltonian.
2 : interchain interaction treated in mean field theory.
3 : Zeeman Hamiltonian of the uniform field ~H along the b-axis.
4 : Zeeman Hamiltonian of the induced effective staggered field ~ha along the a-axis.
5 : Zeeman Hamiltonian of the induced effective field "up-down-down-up" ~hc
along the c-axis.

(4.6)

1The Hamiltonian for this system under a field applied along the ~a + ~b direction (i.e. the [110]
direction) would be: H=

∑
j J [ScjScj+1 + ε

2 (S+
j S
−
j+1 + S−j S

+
j+1)]−

∑
j J

′
< Scj > Scj − µBHgbb

∑
j S

b
j +

µBHgbc
∑
j sin

[
πj
2
]
Scj . In this case, no field is induced along a.



4.4. Diffraction study: probing the high-field phase 111

In their paper, Kimura et al. have proposed the following parameters [Kim+13]: gbb =
2.75, gba/gbb = 0.4 and gbc/gbb = 0.14 for φ1 = π/4. In our study, gbb was chosen slightly
smaller, equal to 2.35, while the parameters of Kimura were used for gba/gbb and gbc/gbb.
This choice of parameters was done in order to reproduce the measured critical field
occurring at µ0Hc ' 10 T (while the one found in the study of Kimura was a bit lower
and thus led to a larger Landé value gbb). One important thing that one has to keep
in mind is that the staggered field along ~a is directly proportional to the uniform field
applied along the b-axis.

To summarize, the application of a uniform magnetic field along the b-axis induces a
staggered field along the a-axis and an effective field with an "up-down-down-up" config-
uration along the c-axis. While the latter is not relevant in our study as we will see in
the following, the former is the key ingredient which drives the quantum phase transition
occuring at µ0Hc ' 10 T. To better understand this transition, we have performed both
neutron diffraction and inelastic neutron scattering experiments to probe the ground-state
and the excitations evolution when increasing the applied transverse field.

𝒉𝒂

𝑯

−𝒉𝒂

𝒉𝑎

−𝒉𝒂

𝒉𝒂

−𝒉𝒂

𝒉𝒂

−𝒉𝒂

Figure 4.3: Sketch of the effective staggered field induced by a transverse uni-
form field in BaCo2V2O8. Effective staggered field ~ha (red arrows) along the a-axis
induced by a uniform magnetic field ~H applied along the b-axis. The effective fields along
the c-axis are not shown as they are not relevant in our study.

4.4 Diffraction study: probing the high-field phase

4.4.1 Experimental details
The magnetic structure of BaCo2V2O8 under a transverse magnetic field was probed by
using the CEA-CRG D23 single-crystal two-axis diffractometer at ILL [D23]. The sample
was previously aligned with the b-axis vertical on the Laue diffractometer OrientExpress at
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ILL and was installed on D23 in a 12 T vertical field cryomagnet. A maximum transverse
magnetic field of 12 T ( ~H ‖ ~b) could be reached with a base temperature of 1.5 K. An
incident wavelength of 1.28 Å was used, from a copper monochromator, thus allowing us
to measure h0l and h1l Bragg peaks with a maximum value of 17 for h and 11 for l.

4.4.2 Evolution of the magnetic structure
4.4.2.1 Magnetic Bragg peaks above the phase transition

The first step in this experiment was to probe magnetic Bragg peaks in the high field
phase. As I will explain in more details a bit later, if we make the hypothesis that the
magnetic moments are aligned antiferromagnetically along the staggered field induced
along ~a above the phase transition, the propagation vector is then theoretically predicted
to be ~k′ = (0, 0, 0) with the condition h + k + l even, therefore different from the one in
the Néel phase ~k = (1, 0, 0). Indeed because BaCo2V2O8 is body-centered, two chains in
diagonal correspond to each other through the translation (1/2, 1/2, 1/2). The staggered
field originates from the tilt between the c-axis and the local easy-axis of magnetization
and thus is associated to the symmetry of the nuclear structure. In other words, it means
that the staggered field ~ha for the atom of Co in position (x, y, z) must be the same than
for the one in position (x+ 1/2, y+ 1/2, z+ 1/2) and thus these two Co atoms must have
parallel magnetic moments. This means that the magnetic Bragg peaks above µ0Hc must
appear on nuclear Bragg reflections (with the condition h + k + l even). Because these
reflections are magnetic, they should also appear on forbidden nuclear Bragg reflections 2

as some of the symmetries leading to the extinction of the nuclear Bragg peaks are not
preserved for the magnetic structure 3.

Because the intensity of the magnetic Bragg peaks in the high field phase is actually
much lower than the one of the nuclear ones, we have searched such magnetic reflections
above µ0Hc by doing ω-scans on forbidden positions for different values of the magnetic
field. Fig. 4.4 shows examples of such rocking curves for two magnetic reflections 2̄ 1 0 and
3 0 3 associated to the known magnetic structure in the zero-field phase and to the assumed
magnetic structure in the high field phase above the transition respectively. One can see
on Fig. 4.4(a) that the intensity of the magnetic Bragg peak associated to the zero-field
structure is decreasing from µ0H = 0 to 6 T and becomes null above the phase transition
occurring at µ0Hc = 10 T. On the other hand, the intensity of the magnetic Bragg peak
3 0 3 is almost null at zero-field (thus consistent with the fact that this corresponds to a
forbidden nuclear reflection) and increases progressively with increasing the field, already
before the phase transition, to reach a maximum at µ0H = 12 T.

Let me explain in more details this change of the propagation vector. If the magnetic
moments are antiferromagnetically aligned along the staggered field induced along ~a,
thus the interchain interaction between two chains in diagonal is FM instead of AF. As
BaCo2V2O8 is body centered, we have the following formula for the magnetic structure
factor per unit cell ~FM( ~Q):

~FM( ~Q) = pf( ~Q)
N/2∑
j=1

[
~M
~k
1,j + ~M

~k
2,je

iπ(h+k+l)
]
e2iπ(hxj+kyj+lzj) (4.7)

2i.e. nuclear reflections allowed by the I centering of the lattice but forbidden either by a glide plane
of the space group or by the screw axis 41

3In other word, the magnetic space group is a subgroup of the nuclear one and has thus less symmetries
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Figure 4.4: Field evolution of magnetic reflections. Rocking curves of: (a) the
magnetic reflection 2̄ 1 0 relative to the zero-field phase for the three magnetic field µ0H =
0, 6 T and 12 T. (b) the magnetic reflection 3 0 3 associated to the high field phase for
the same three magnetic field values. Solid lines are Gaussian fits.

with f( ~Q) the magnetic form factor of the Co2+ ions, N the number of Co atoms in
a unit cell (N = 16), ~M

~k
1,j the Fourier component of the magnetic moment carried by

the Co atom at the (xj, yj, zj) position and ~M
~k
2,j the one carried by the Co atom at

(xj + 1/2, yj + 1/2, zj + 1/2). Here the Debye-Waller factors are not taken into account
for more clarity. Now let us consider the two cases:

• ~M
~k
1,j = − ~M

~k
2,j ⇒ ~FM( ~Q) 6= ~0 if h+ k + l = 2n+ 1 with n an integer

• ~M
~k
1,j = ~M

~k
2,j ⇒ ~FM( ~Q) 6= ~0 if h+ k + l = 2n

Thus if the magnetic coupling between the two Cobalt atoms corresponding by the body-
centering translation (1/2, 1/2, 1/2) is AF (first case) it leads to the propagation vector
~k = (1, 0, 0) or equivalently ~k = (0, 1, 0) 4 which corresponds to the one in the zero-field
phase. If now the magnetic coupling is ferromagnetic (second case), it leads to a propa-
gation vector ~k′ = (0, 0, 0).

Now let us turn to the refinement of the magnetic structure in the high field phase.

4.4.2.2 Refined magnetic structures

At µ0H = 0, 288 nuclear reflections, allowed in the I41/acd space group of BaCo2V2O8,
reducing to 149 independent ones, were collected at T = 1.5 K by performing rocking
curves (see exemples in Fig. 4.4). From the measured integrated intensities, the nuclear
structure was then refined using the Fullprof software [Rod93] in order to determine the
necessary information for the magnetic structure refinement (i.e. the scale factor, the co-
ordinates and Debye-Waller factor of Co, the extinction parameters, and the λ/2 ratio).

4This labeling of the propagation vector (instead of ~k = (0, 0, 1)) comes from the fact that a >
c [Ros87].
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The calculated intensities Icalc plotted in Fig. 4.5(a) as a function of the observed ones Iobs
emphasize the quality of the fit. 103 magnetic reflections, associated to the ~k = (1, 0, 0)
propagation vector and reducing to 48 independent ones, were then collected. Let us
remind that they correspond to reflections h k l with h+ k+ l = 2n+ 1, that is, to Bragg
positions for which the nuclear intensity is always null because of the body-centering of
the crystallographic structure. The same magnetic structure as in Canévet et al. [Can+13]
was found, with a staggered moment mc = 2.184(8) µB/Co2+ (see Fig. 4.5(b) for the plot
of Icalc vs Iobs). As mentioned above, ~k = (1, 0, 0) implies an AF coupling in the diagonal
a ± b direction, that is between two chains of the same nature (both described by a 41
screw axis, plotted in red in Fig. 4.6, or by a 43 screw axis, plotted in blue). Consequently,
the magnetic structure presents an AF coupling along ~a and a FM one along ~b (see top
left panel of Fig. 4.6) while it is the reverse in the second magnetic domain, i.e. an AF
coupling along ~b and a FM one along ~a (see Fig. 1.16).

The same nuclear reflections were then collected at µ0H = 12 T > µ0Hc, yielding the
same crystallographic structure as in zero-field with comparable agreement factors. 48
magnetic reflections, with a new propagation vector ~k′ = (0, 0, 0), were then collected,
reducing to 30 independent ones. This set of measured reflections corresponds to pure
magnetic reflections associated to the AF component of the magnetic moments 5. Nev-
ertheless, some of them were not strictly null at zero-field because of the presence of
a sizable λ/2 and/or mostly because of small defects in the crystal. As a result, they
had to be collected in both phases and the difference between the µ0H = 12 T collect
and the µ0H = 0 one was then used for the magnetic refinement. For this reason and
because of the small magnetic signal, a counting rate of 30 seconds per point was used.
The magnetic structure refinement was then performed, yielding the anticipated magnetic
structure with a staggered magnetic moment ma = 0.91(2) µB/Co2+ (see Figs 4.5(e,f) for
the Icalc vs Iobs plots of the nuclear and magnetic refinements at 12 T). As said before
the propagation vector of the high field magnetic structure, ~k′ = (0, 0, 0) implies a FM
coupling in the diagonal a ± b direction (see top right panel of Fig. 4.6). Consequently,
an AF coupling both along ~a and along ~b now occurs, thus lifting some frustration and
yielding a single magnetic domain (see right pannels of Fig. 4.6). It is worth noting that,
in principle, the effective field along ~c also induces a magnetic component along c. As we
will see later, the numerical calculations yield a component of 0.04 µB at µ0H = 12 T
and thus this value is too small to be refined. This effective field has consequently no
relevant role in the phase transition (it has been also confirmed by numerical calculations).

Finally, the magnetic structure at intermediate field µ0H = 6T = 0.6µ0Hc consists in
a superposition of the ~k = (1, 0, 0) and ~k′ = (0, 0, 0) phases, as shown by the rocking curves
at 6 T in Figs. 4.4(a-b) and further evidenced by the field dependencies plotted in Fig. 4.7
in the next section. The same magnetic reflections as for µ0H = 0 and µ0H = 12 T were
collected, with respective counting rates of 6 and 30 seconds. Here again, the difference
with the zero-field phase was used for the second set of reflections. The results of the
magnetic refinement is shown for both contributions (see Figs 4.5(c,d)). The following
values of the staggered components were found: mc = 1.916(7) µB/Co2+ for the zero-field
contribution andma = 0.44(2) µB/Co2+ for the high field one. The very small value of the
latter component, in addition to the data treatment that had to be applied (difference

5There is also a FM component rising on the allowed nuclear reflections.



4.4. Diffraction study: probing the high-field phase 115

0 10 20 30 40 50 60
0

10

20

30

40

50

60

R
F
= 17.1%

R
F2w

= 14.0%

 

 

(b)

C
a
lc

u
la

te
d
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

Observed intensity (arb. units)

0 1 2 3 4
0

1

2

3

4

 

 

R
F
= 39.0%

R
F2w

= 36.0%

C
a
lc

u
la

te
d
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

Observed intensity (arb. units)

(c)

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

 

 

(a)

R
F
= 2.17%

R
F2w

= 4.49%

C
a

lc
u

la
te

d
 i
n

te
n

s
it
y
 (

a
rb

. 
u

n
it
s
)

Observed intensity (arb. units)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

 

 

R
F
= 23.1%

R
F2w

= 16.5%

C
a
lc

u
la

te
d
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

Observed intensity (arb. units)

(d)

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

 

 

(e)

R
F
= 4.31%

R
F2w

= 6.23%

C
a

lc
u

la
te

d
 i
n

te
n

s
it
y
 (

a
rb

. 
u

n
it
s
)

Observed intensity (arb. units)

0 5 10 15
0

5

10

15

 

 
R

F
= 29%

R
F2w

= 27.4%

C
a
lc

u
la

te
d
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

Observed intensity (arb. units)

(f)

𝜇0𝐻 = 0

Nuclear Magnetic (𝑚𝑐)
𝐤 = (1,0,0)

𝜇0𝐻 = 6 T

Magnetic (𝑚𝑎)
𝐤′ = (0,0,0)

Magnetic (𝑚𝑐)
𝐤 = (1,0,0)

𝜇0𝐻 = 12 T

Nuclear
Magnetic (𝑚𝑎)
𝐤′ = (0,0,0)

Figure 4.5: Single-crystal diffraction data at 1.5 K, presented as calculated
versus observed reflections intensities: (a) Nuclear structure refinement in zero
field. (b) Magnetic structure refinement in zero field with the moments oriented along
~c [~k = (1, 0, 0)]. (c) and (d) Magnetic structure refinement at 6 T for the component
of the moments along ~a [~k′ = (0, 0, 0)] and along ~c [~k = (1, 0, 0)], respectively. (e)
Nuclear structure refinement at 12 T. (f) Magnetic structure refinement at 12 T with the
magnetic moments oriented along ~a [~k′ = (0, 0, 0)]. The agreement factors are reported
on the figures.

with the zero-field data) explains the poorness of the fit. The non collinearity of the
6 T structure comes from the fact that it is a double ~k magnetic structure. It can be
simply understood by comparing the exchange couplings along ~a and ~b in the zero field
structure (one is AF the other one is FM) to those in the high field phase (both are
AF): As a result, half of the spins rotate clockwise and the other half anti-clockwise (see
middle panels of Fig. 4.6). In the former, the interchain magnetic arrangement is due
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to the interchain interactions, while in the latter it is constrained by the staggered field
[SO04]. This subtle modification points out the role of the staggered field, which forces a
magnetic structure that competes with the interchain interactions. Indeed, this evolution
of the staggered moment orientation from the Ising c-axis to the a-axis originates from an
energetic compromise, between on the one hand the intrachain AF exchange interaction,
and on the other hand the Zeeman energy gain due to the effective transverse fields, that
overcomes the anisotropy and the interchain energy [SO04; Fau+18].
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Figure 4.6: Evolution of the magnetic structure under a uniform transverse
field. Magnetic structures of BaCo2V2O8 for ~H ‖ ~b shown in the (a, b) plane (top) and
in the (a, c) plane (bottom) at 0, 6, and 12 T, obtained from the structure refinement
described in the main text. The two kinds of chains are plotted in red and blue, respec-
tively, and the Co atoms are numbered in the zero-field panels, like in Ref. [Can+13].
For a better visualization, the amplitude of the magnetic moments was multiplied along
the a and c axes by the values indicated below the figures. The staggered field ~hstag
is represented with black arrows, only in the panels corresponding to the 6 T magnetic
structure for one chain.
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To summarize, with increasing H, the magnetic moments remain staggered but pro-
gressively rotate in the (~a,~c) plane, from the Ising c−axis to the a−axis. Because the two
magnetic structures at zero-field and above the phase transition at µ0Hc = 10 T have not
the same propagation vector (~k = (1, 0, 0) and ~k′ = (0, 0, 0) respectively), we were able to
follow independently the magnetic field dependence of the staggered magnetizations ma

and mc.

4.4.3 Field dependence of the staggered magnetizations
mc and ma have been then probed while increasing the field by counting at the top
of the two magnetic reflections 2̄ 0 1 and 3 0 3, relative to both structures. Indeed, the
observed intensities I(H)2̄ 0 1 and I(H)3 0 3 are directly proportional to |mc|2 and |ma|2
respectively. By knowing the refined value of |mc| at zero-field and the one of |ma|
at µ0H ' 12 T, and by applying the following formula mc(H) = mc(0)

√
I(H)2̄ 0 1
I(0)2̄ 0 1

and

ma(H) = ma(12 T)
√

I(H)3 0 3
I(12 T)3 0 3

, we were able to extract the field dependence of the stag-
gered magnetizations mc(H) and ma(H) of the ordered magnetic moments as shown in
Fig. 4.7.
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Figure 4.7: Field dependence of the staggered magnetic moments of the two
competing magnetic phases determined at 1.5 K from the square root of the intensity of
the 2̄ 1 0 and 3 0 3 pure magnetic reflections for the low and high field phases respectively
(pink and blue circles). These experimental staggered moments mc and ma are compared
to the ones calculated by numerical iTEBD calculations described in subsection 4.6.2
(purple and black crosses connected by solid lines).

From this figure, one can see that mc decreases with increasing the field and vanishes
at the transition. Moreover it shows a conventional behavior for an order parameter which
is the staggered magnetization in our case. On the other hand, ma increases as soon as
H ≥ 0.
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Finally one can see that the iTEBD calculations that I will detail later reproduce quite
well the observed data. However a global scaling factor seems to exist for the staggered
magnetization ma that will be explained later (see paragraph 4.6.2.2).

4.4.4 Nature of the high-field phase
The peculiar nature of the high field phase at µ0H = 12 T is further illustrated in
Fig. 4.8(a). It shows the measured temperature dependence of the staggered order pa-
rameter (ma) compared to the uniform ferromagnetic component (M‖) induced along ~b
by the external uniform field. These measurements were performed at µ0H = 12 T by
following, while increasing the temperature, the neutron counts on top of the magnetic
Bragg peaks 1 0 1 and 1̄ 1 2̄, which are proportional to |ma|2 and |M‖|2 respectively.
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Figure 4.8: Nature of the high field phase. (a) Temperature dependence at µ0H =
12 T of the AF (ma) and FM (M‖) components of the high field phase, obtained from the
square root of the intensity of the 1 0 1 and 1 1 2 reflections, respectively. (b) Temperature
dependence of the lowest energy magnetic excitation at a zone center position and at
µ0H = 12 T, measured on the IN12 three-axis spectrometer. The solid lines are Gaussian
fits.

In contrast with the usual abrupt drop of the order parameter expected when the
temperature becomes larger than the interactions between the magnetic moments (see for
instance Fig. 6 of reference [Can+13]), ma decreases smoothly up to high temperature.
ma is thus induced by the staggered magnetic field ~ha as M‖ is induced by the uniform
magnetic field ~H. The intrachain interaction J is still effective in the high field phase, and
gives rise to well-defined excitations as shown in Fig. 4.8(b). Note that these excitations
disappear between 10 and 20 K when the intrachain interactions are no more effective,
and thus at a much lower temperature than the staggered magnetization.

To conclude on this diffraction study, while, in addition to the AF intrachain interac-
tion present in the complete field range, the interchain interaction stabilizes the magnetic
structure at zero-field, the staggered field along the a-axis induced by the external uniform
magnetic field along ~b stabilizes the high field magnetic order. Well defined excitations
are still observed below 10 K at µ0H = 12 T but they are actually quite unconventional
as described in the next section.
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4.5 Spin-dynamics under a transverse magnetic field
The diffraction study helped us to understand the evolution of the ground state under
a transverse magnetic field. A way to understand deeper the nature of this quantum
phase transition is to study the evolution of the spin-dynamics, i.e. the excitations of the
system under the application of such a field. In this section, I will present our study of
the magnetic excitations in BaCo2V2O8 under a transverse magnetic field by means of
inelastic neutron scattering. I will expose our investigation of the field dependence of the
excitations both in the Néel phase up to µ0Hc = 10 T and above up to µ0H = 12 T for
different values of the scattering vector ~Q. Then I will present the dispersion spectrum
parallel to the chain axis in the high-field phase as well as the magnetic field dependence
of the dispersion perpendicular to the chain axis between zero-field and µ0H = 12 T. I will
present in parallel our inelastic neutron scattering experiment using polarized neutrons,
and more precisely longitudinal polarimetry analysis (LPA), used to get informations
about the polarization of the magnetic excitations (i.e. the directions along which the
spin fluctuates).

4.5.1 Experimental details
The unpolarized inelastic neutron scattering (INS) experiment was performed on the
cold-neutron ThALES triple-axis spectrometer at Institut Laue Langevin (ILL), using
a vertical cryomagnet, allowing to apply magnetic fields up to 12 T. Prior to the INS
experiment, the BaCo2V2O8 crystal was first aligned with the b-axis vertical using the
triple-axis spectrometer IN3 at ILL. Once the sample glued, the alignment was checked to
be better than 1◦ on the neutron Laue diffractometer OrientExpress at ILL. The magnetic
field was applied on ThALES perpendicularly to the (a∗, c∗) scattering plane. A series of
energy scans at constant scattering vector ~Q and different magnetic fields was measured
in the Néel phase and in the phase above the transition. All the data were measured at
a fixed final wave vector of 1.3 Å−1 and at the temperature of 1.8 K. The resolution in
energy was around 0.15 meV.
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𝑚

Figure 4.9: Notations for the fluctuations of the ordered moment. Saa, Sbb
and Scc define the fluctuations of the ordered moment ~m along the a, b and c directions
respectively, and the angle ψ, the angle between ~m and ~a in the (a, c) plane.

An experiment with longitudinal polarization analysis (LPA) in a vertical magnetic
field parallel to the b-axis has also been carried out on the cold neutron IN12 triple-axis
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spectrometer. At zero-field, all the moments are along the c-axis, thus parallel (longitudi-
nal S‖) and perpendicular (transverse S⊥) fluctuations to the ordered moment correspond
to fluctuations along the c-axis (namely Scc) and along the a and b-axes (namely Saa and
Sbb), respectively. As we have seen in the previous section, the ordered moments rotate
from the c-axis to the a-axis while increasing the field. Thus, it is more convenient to use
the notations Saa, Sbb and Scc instead of S‖ and S⊥ which is no longer meaningful as S‖
and S⊥ keep rotating in the (a, c) plane and in two different ways for the spins of the two
different chains. The Saa, Sbb and Scc fluctuations can be probed using LPA as explained
below.
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Figure 4.10: Longitudinal polarization analysis (LPA) on IN12 (a) Non-spin flip
channel: The neutrons carrying a spin ~s are polarized along ~b with an up configuration
before being scattered by the sample. The fluctuations of the ordered moment along the
b-axis, namely Sbb do not flip the spin of the neutrons and thus lead to a non spin-flip
(NSF) process. The scattered intensities are then analyzed and only the neutrons with
an up configuration are scattered by the analyzer. Thus the intensity in the NSF channel
I++ is proportional to the Sbb fluctuations. (b) Spin-flip channel: The neutrons are now
still polarized along the b-axis but with a down polarization thanks to the cryoflipper. The
fluctuations of the ordered moment perpendicular to the b-axis, namely Saa and Scc flip
the spin of the neutrons and thus lead to a spin-flip (SF) process. Thus the intensity in
the SF channel I−+ is proportional to a combination of Saa and Scc fluctuations, namely
Saa,cc.

The set-up of the LPA experiment carried out on IN12 (see Fig. 4.10) is the following:
the neutron beam is polarized vertically by a cavity transmission polarizer and its initial
wavevector is selected by a graphite PG(002) monochromator both located in a vertical
magnetic field. The cryoflipper allows to choose either an up s = 1/2 or a down s = −1/2
configuration for the neutron spins. The vertical magnetic field at the sample position then
keeps the spin ~s of the incident neutrons parallel or antiparallel to the b-axis. The scattered
intensity is then analyzed using a Heusler analyzer which only scatters the up polarization
and thus separates the spin-flip (SF) and non-spin-flip (NSF) contributions, corresponding
respectively to processes where the neutron spin has flipped or not. These scattering
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processes give information respectively about the spin fluctuations perpendicular to the
field direction b, namely Saa,cc (without discriminating between the a and c directions)
and parallel to it, namely Sbb.

From the equations given in Eq. (2.35), and neglecting the chiral term, we have the
following inelastic scattering cross sections for the NSF and SF process:

σNSF = σ++ = σ−− ∝ Sbb (4.8)
σSF = σ−+ = σ+− ∝ Saa,cc ∝ cos θ2Saa + sin θ2Scc (4.9)

where θ = (̂ ~Q,~c). Indeed, when ~Q ‖ ~c, and thus θ = 0, only the Saa fluctuations are probed
in the SF process because of the geometrical factor of the magnetic cross section. On the
other hand, when ~Q ⊥ ~c, and thus θ = 90◦, the neutrons only see the Scc fluctuations.

Let us now have a look at the results, and first, the magnetic-field dependence of the
excitations.

4.5.2 Magnetic-field dependence of the excitations
4.5.2.1 Unpolarized neutrons on ThALES

To probe the evolution of the excitations under a transverse magnetic field in BaCo2V2O8,
we have performed energy scans for different values of the magnetic field (with a step
of 1 T) and for several scattering vectors ~Q: two zone-centers (ZC) ~Q = (3, 0, 1) and
~Q = (0, 0, 2) and one antiferromagnetic point (AF) ~Q = (2, 0, 1) (see examples of scans
for µ0H = 3 T and 12 T in Figs. 4.11(d-i)). From those energy scans we were able to plot
the intensity color maps in Fig. 4.11 (a-c) showing the measured magnetic field evolution
of the lowest zero-field energy excitations (|1 T〉 = |1, Sz = ±1〉, |1 L〉 = |1, Sz = 0〉,
|2 T〉 = |2, Sz = ±1〉 and |2 L〉 = |2, Sz = 0〉) of the Zeeman ladders, as a function of
the transverse field ~H ‖ ~b. At zero-field, all the moments are aligned along the c-axis
and thus the |j T 〉 and |j L〉 modes, which are the jth transverse and longitudinal ex-
citations, correspond to the fluctuations Saa = Sbb and Scc respectively. One can see
that by increasing H, the zero-field |1 T〉 = |1, Sz = ±1〉 mode, which is a transverse
excitation with respect to the zero-field magnetic structure, splits into two branches (see
Figs 4.11(a-c)). The energy dependence of these two branches is not linear. The upper
branch exhibits an upward variation up to µ0H = 12 T while the lower branch decreases
down to µ0H = 10 T = µ0Hc. At this field, this branch reaches its minimum energy
before increasing again, as seen e.g. at the AF position ~Q = (2, 0, 1). The softening of the
lower branch at µ0Hc thus marks the quantum phase transition, as already observed by
Electron Spin Resonance (ESR) [Oku+15] and by a recent neutron scattering experiment
done in parallel to our study [Mat+17]. Note that a small energy gap of about 0.2 meV
which is due to the interchain coupling is still present at the AF position [TFG18] (see
Fig. 4.11(a)) and is larger for the ZC points (see Fig. 4.11(b-c)) 6. The width of these two
modes remains resolution-limited, indicating that they must still be considered as long
lived quasiparticles.

I now consider the next excitation, the |1 L〉 = |1, Sz = 0〉 mode which is longitudinal
at zero-field. The energy of this mode is not constant with the field but increases with
increasing field up to about 3 T. At this field, an anti-crossing with the lowest branch

6iTEBD calculations were done without interchain interaction and led to the closure of the gap.
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issued from the zero-field |2 T〉 = |2, Sz = ±1〉 mode occurs (see dashed white lines in
Fig. 4.11(a)). As H increases above µ0H = 3 T, the lowest of the two hybridized branches
broadens while its energy decreases, to finally disappear completely at the critical field.
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Figure 4.11: Magnetic excitations in a transverse magnetic field. (a-c) Experi-
mental intensity color maps showing the field dependence of the magnetic excitations in
BaCo2V2O8 for a transverse field. Three positions were investigated: AF ~Q = (2, 0, 1)
and two ZC ~Q = (0, 0, 2) and ~Q = (3, 0, 1). The polarization at zero field (T or L) of the
modes is indicated on the maps. Note that the color scale was truncated to about 10 to 15
times less than the maximum number of counts at high field for ~Q = (2, 0, 1) and (3, 0, 1),
for the weak modes to be visible. This gives the false impression that the lowest branch
broadens as the field increases. The SF and NSF nature of the modes determined on
IN12 using polarized neutrons is indicated. These three maps were obtained from energy
scans performed on the ThALES triple-axis spectrometer at T = 1.5 K and every 1 T in
the Néel phase (0 ≤ µ0H ≤ µ0Hc ' 10 T) and in the quantum phase above Hc (critical
field at the red dashed line). (d-i) For each of these three scattering vectors, examples of
such scans at µ0H = 3 T and 12 T are shown above the corresponding map (blue points
correspond to experimental data and red lines to fit by Gaussian functions).

This field-dependence of the excitations is very different from the case of an exter-
nal longitudinal field (parallel to the Ising axis) for which the |j T〉 = |j, Sz = ±1〉 and
|j L〉 = |j, Sz = 0〉 excitations remain decoupled. In this, the field produces a Zeeman
splitting of the transverse excitations (linear field dependence) and has no effect on the
longitudinal ones whose energy thus remains constant. This is indeed what is observed by
ESR [Kim+07] and inelastic neutron scattering in BaCo2V2O8 as we will see in the next
chapter. The transverse field, on the other hand, allows the spinons to hop by one site and
the Sz = ±1 and Sz = 0 sectors are no more independent. As a result, the field creates
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a quantum overlap between the zero-field |j T〉 = |j, Sz = ±1〉 and |j L〉 = |j, Sz = 0〉
excitations. This hybridization process produces non-linearities to second order in H.
Another way to say this is: as the magnetic field is applied perpendicularly to the axis of
quantization, it leads to a mixing of the wavefunctions and thus to a non-linearity of the
energy modes. In the present case, there are two kinds of transverse fields, the uniform
one along ~b and the staggered one along ~a. As we will see, the latter plays a crucial role
since it produces the rapid decrease of the lower branch towards the critical field compared
to almost no field dependence in its absence.

Another interesting feature is the field dependence of the intensity of the two branches
arising from the splitting of the |1 T〉 mode. Indeed the lowest energy branch displays a
drastically different spectral weight evolution for the equivalent ZC (0, 0, 2) and (3, 0, 1)
positions (see Figs 4.11(b, c)). In the latter case, it gets more intense as the critical field
is approached, while in the former case, it progressively vanishes. On the other hand, the
upper branch has an intensity which remains almost constant with increasing the field
(see Fig. 4.11(a, b, c)). To understand this behavior, we have studied the polarization of
the modes.

4.5.2.2 Polarization of the excitations on IN12

To probe the polarization of the fluctuations, we have used LPA on IN12 as described in
Fig. 4.10. As explained above, this allows us to discriminate the Sbb fluctuations (NSF
channel) from the Saa,cc ones (SF channel). Let us recall that in addition, a geometrical
term enters the scattering cross section, reflecting the fact that only spin fluctuations
perpendicular to the scattering vector ~Q contribute to the intensity. This argument helps
us to discriminate the a component from the c one in the SF channel. Indeed, as in the
zero-field case, the inelastic unpolarized neutron cross section in the case of ~Q = (0, 0, 2)
is only proportional to a combination of Saa and Sbb while it implies the three components
Saa, Sbb and Scc for the case of ~Q = (3, 0, 1). Let us summarize these two conditions, i.e.
the longitudinal polarization analysis plus the geometrical factor in terms of scattering
cross section for a better understanding:

• For ~Q = (0, 0, 2):

– σSF ∝ Saa

– σNSF ∝ Sbb

• For ~Q = (3, 0, 1)

– σSF ∝ Saa,cc ∝ cos2 θ(3,0,1)Saa + sin2 θ(3,0,1)Scc ' 0.2Saa + 0.8Scc
– σNSF ∝ Sbb

where θ(3,0,1) ' 63.8◦, the angle between ~Q = (3, 0, 1) and the c-axis.
Fig. 4.12 shows energy-scans for both SF and NSF channels for different values of the

magnetic field and for the two scattering vectors ~Q mentioned above. Let us focus first on
the splitting of the |1 T〉 zero-field excitation spotted in Fig. 4.12(c). At µ0H = 1.5 T the
splitting of this mode is already observable (branch in blue at E ' 1.65 meV and branch
in red at E ' 1.80 meV in Fig. 4.12(c),(f)). While increasing the field, the NSF excitation,
corresponding to Sbb fluctuations (in red) increases in energy (see Fig. 4.12(b-c),(e-f)) and
thus this peak corresponds to the upper branch of the splitting. At µ0H = 9 T, its
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Figure 4.12: Polarization of the excitations using LPA on IN12. Energy scans
measured in BaCo2V2O8 at T = 1.5 K on IN12 using polarized neutrons (open and
closed symbols) fitted to Gaussian functions (solid lines), for (a-c) ~Q = (0, 0, 2) and
(d-f) ~Q = (3, 0, 1), in the non spin-flip (NSF) and spin-flip (SF) channels. These data
were obtained for three different values of an applied transverse magnetic field ~H ‖ ~b:
µ0H = 1.5 T (lower panels), µ0H = 6 T (central panels), µ0H = 9 T (upper panels).
The dashed lines help to visualize the evolution of the three modes with the magnetic
field, and in particular the variation in the intensity of the lowest energy mode decreasing
with the field for ~Q = (0, 0, 2) and increasing for ~Q = (3, 0, 1). Note that an enlarged
vertical scale (neutron counts) was used for panels (d) and (e), as compared to the four
other panels.

energy is even higher (E ' 2.5 meV) and was not measured. On the other hand, the SF
low-energy mode (in blue), corresponding to Saa or Saa,cc depending on ~Q, is decreasing
in energy and thus corresponds to the lowest branch in Fig. 4.11(a-c). For ~Q = (0, 0,
2), the intensity of this excitation decreases with increasing the field while it increases
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for ~Q = (3, 0, 1). This proves that the lowest energy branch, corresponding to pure Saa
fluctuations at zero-field, becomes progressively polarized along the c-axis with increasing
this field, and is then purely Scc above the phase transition.

Concerning the evolution of the zero-field |1 L〉 excitation (which is purely Scc at
µ0H = 0), one can see from Fig. 4.12(e-f) that its intensity for ~Q = (3, 0, 1) has been dras-
tically suppressed and its width broadened while increasing the field. Above µ0H = 6 T
and with increasing the field, this excitation becomes broader and vanishes around the
phase transition in both ~Q and thus does not appear on Fig. 4.12(a-b). This is consistent
with what has been observed in Fig. 4.11.

To summarize, the upper energy branch issued from the splitting of the zero-field |1 T〉
excitation corresponds to Sbb fluctuations, while the lowest energy branch corresponds to
pure Saa fluctuations at zero field and becomes progressively more and more polarized
along the c-axis while increasing the field to be purely Scc above the critical field. This
is consistent with the rotation of the ordered moment from the c-axis to the a-axis and
with the fact that magnetic systems usually prefer to fluctuate perpendicularly to both
the magnetic field and the direction of the ordered moments. In other words, the lowest
energy branch consists in fluctuations always perpendicular both to the magnetic field
applied along ~b and to the ordered moment rotating from ~c to ~a, while the upper one
consists in fluctuations along ~b, hence parallel to the direction of the applied field. This
branch is thus increasing in energy as it is more and more difficult to fluctuate along the
field direction when increasing the field.

A convenient way to interpret the data is to consider longitudinal (L) and transverse
(T) fluctuations with respect to the direction of the ordered moment ~m for a given field ~H.
Since the direction of ~m (in addition to its amplitude) changes with the field, a rotating
frame (~̂`,~̂b, ~̂t) is introduced (see Fig. 4.13a). ~̂` is the (rotating) quantization axis, ~̂t and ~̂b
are two orthogonal vectors such that ~̂t = ~̂

` × ~̂b with ~̂b being the direction of the applied
magnetic field. These unit vectors are defined as:

~̂
` = ~m

m
= cosψ ~a∗

a∗
+ sinψ ~c∗

c∗

~̂t = − sinψ ~a∗

a∗
+ cosψ ~c∗

c∗

~̂
b =

~b∗

b∗

where ψ is the (̂~a∗, ~m) angle. Using this frame, the partial differential cross section reads:

d2σ

dΩdE ∝
∑

x,y=t,b,`

〈
Sx

(
δxy −

QxQy

Q2

)
Sy

〉
(4.10)

For a ~Q vector making an angle ϕ with ~a∗ in the (~a∗,~c∗) scattering plane, we have
Qt = Q sin (ϕ− ψ), Qb = 0, Q` = Q cos (ϕ− ψ), hence:
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Figure 4.13: Analysis of the polarization. (a) Rotating local frame (~̂`,~̂b, ~̂t). The ~̂`
(resp. ~̂t) unitary vector is parallel (resp. perpendicular) to the ordered magnetic moment.
The directions of the scattering vector ~Q and of ~̂` with respect to ~a? are identified by the
ϕ and ψ angles, respectively. (b) Location in the reciprocal lattice of the two ZC positions
investigated here. (c, d) Normalized intensity of the lowest energy branch as a function
of the transverse field for ~Q = (0, 0, 2) and ~Q = (3, 0, 1) ZC positions respectively, as
measured (orange points), and calculated for hypothetical longitudinal (green circles) and
transverse (red circles) fluctuations. This clearly evidences the transverse nature of this
excitation mode.

d2σ

dΩdE ∝
[
1− sin2 (ϕ− ψ)

]
〈StSt〉+ 〈SbSb〉+

[
1− cos2 (ϕ− ψ)

]
〈S`S`〉 (4.11)

− 2 cos (ϕ− ψ) sin (ϕ− ψ)〈StS`〉
∝ cos2 (ϕ− ψ)〈StSt〉︸ ︷︷ ︸

transverse fluctuations

+〈SbSb〉+ sin2 (ϕ− ψ)〈S`S`〉︸ ︷︷ ︸
longitudinal fluctuations

−2 cos (ϕ− ψ) sin (ϕ− ψ)〈StS`〉

(4.12)

Here I will only focus on the polarization of the lowest branch, i.e. the Saa,cc fluctua-
tions and thus Sbb is neglected. The neutron cross section for longitudinal and transverse
fluctuations (which means fluctuations along ~̂` and ~̂t respectively) acquires a geometri-
cal factor sin2(ϕ − ψ) and cos2(ϕ − ψ) respectively. Note that the cross term 〈StS`〉 is
usually small and is thus neglected. A stringent comparison between the measured field
dependence of the spectral weight for ~Q = (0, 0, 2) and (3, 0, 1) (see Figs 4.11(b-c)) and
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the calculation using the above geometrical factors is shown in Figs 4.13(c-d). While the
magnetic moments rotate from the c-axis (ψ = π/2) at zero-field to the a-axis (ψ = 0)
at H ≥ Hc, the lowest energy branch originating from the split |1 T〉 mode indeed fol-
lows the transverse geometrical factor with in particular ϕ = π/2 for ~Q = (0, 0, 2) and
ϕ ≈ 26.2◦ ' 0.15π for ~Q = (3, 0, 1).

The field dependence of ψ has been extracted through the experimental field depen-
dence of the staggered magnetizations ma and mc (see Fig. 4.7) through the following
formula: ma = m cosψ

mc = m sinψ
⇒ ψ = arccos m2

a√
m2
a +m2

c

(4.13)

This analysis further confirms (on a quantitative point of view) that the lowest energy
branch corresponds to purely transverse fluctuations.

As we have understood the evolution of the excitations under a transverse magnetic
field, let us now study their dispersion along the chain direction in the phase above the
transition where all the moments are now antiferromagnetically ordered along the a-axis.

4.5.3 Dispersion along QL in the high field phase
The dispersion of the excitations along the chain axis has been obtained on ThALES by
doing energy-scans (not shown here) in the Brillouin Zone (BZ) with a 0.1 r.l.u step.

Figs. 4.14 (a-b) show the dispersion spectrum along c∗ measured at T = 1.8 K and
µ0H = 12 T around (QH , 0, QL) for QH = 2 and QH = 0 respectively (for the latter,
I recall that only the Saa and Sbb fluctuations are probed). The polarization of the low
energy modes have been also investigated using LPA on IN12.

Well defined excitations can be observed at low energy (E ≤ 3.5 meV), rather dif-
ferent from those in the Néel phase at zero-field. However, at higher energy (typically
E > 4 meV), the excitations are broader and weaker in intensity. Part of this broadening
comes from the fact that many branches cross each other in this dispersion spectrum and
that the neutrons cannot resolve those crossings. This can be reproduced through the
numerical calculations that I will present later. Here, I will only focus on the low energy
branches.

One can see that the gap ∆ is minimum at ~Q = (2, 0, 1) with a value of ∆ ' 0.2 meV
(see Fig. 4.11(e)) while it is larger at ~Q = (2, 0, 2) with a value of ∆ ' 1 meV (see
Fig. 4.14(a)). This is due to the folding of the dispersion in BaCo2V2O8 due to the screw
structure of the chain. This means that the AF point behaves like the ZC one and vice
versa (one can see it from the dispersion spectrum at zero-field in [Gre+15a]). This dif-
ference of the energy gap ∆ can be explained through the dispersion perpendicular to the
chain as I will explain in the next section.

Let us compare the two spectra for QH = 2 and QH = 0 (see Fig. 4.14 (a-b)) and
first focus on the lowest energy excitation, i.e. the one with an energy of about 1 meV
(pointed out by the white dotted line in Fig. 4.14(a)) at ~Q = (2, 0, 2) corresponding to
~Q = (0, 0, 2) (i.e. positions with h + k + l even). In the former case, this excitation
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Figure 4.14: Dispersion spectrum along QL measured on ThALES for: (a) QH = 2
and (b) QH = 0 at µ0H = 12 T. The dashed and dotted white lines in (a) point out
modes that will be discussed when presenting the iTEBD calculations. (c-e) Energy
scans measured in BaCo2V2O8 at T = 1.5 K and µ0H = 12 T on IN12 using LPA. They
were fitted to Gaussian functions (red and blue solid lines for the NSF and SF channels
respectively) for ~Q = (2, 0, 1) (c-d) and ~Q = (2, 0, 1.5) (e). These scans, shown on panel
(a) with the dotted white lines, allowed to determine the polarization of the excitations.

has a very strong intensity for any value of QL while for QH = 2, the excitation has
a very weak intensity which disappears rapidly with increasing QL (the excitation has
completely disappeared for QL = 2.2). This strongly evidences the fact that the lowest
energy mode at ~Q = (2, 0, 1) is mainly Scc. This is consistent with what is observed with
the polarization analysis as shown in the constant-Q energy scan in Fig. 4.14(c).

The second excitation pointed out by the white dashed line in Fig. 4.14(a) at higher
energy (around E ' 3 meV) at ~Q = (2, 0, 1) corresponds to Sbb fluctuations as observed
in the LPA analysis (see Fig. 4.14(d)).

In Fig. 4.14, an anticrossing seems to occur around QL = 1.5 and E = 3 meV. This
is evidenced by the polarized analysis where the mode found around 2.5 meV and at
~Q = (2, 0, 1.5) corresponds to a superposition of Sbb and Scc fluctuations as shown in
Fig 4.14(e).

While complicated at first sight, this dispersion spectrum will become clearer when I
will present the iTEBD calculations in section 4.6.2.2.
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Let us now turn to these dispersions to get an insight on the evolution of the interchain
interaction as a function of the applied field.

4.5.4 Dispersion along QH at various magnetic fields
The interchain dispersions were measured on IN12 at zero-field and on ThALES at
T = 1.8 K and µ0H = 12 T from constant-QH energy scans for QL = 1 and 2.

At zero field, the interchain couplings are believed to be complex, the observed mag-
netic structure being eventually stabilized by a dominant AF exchange interaction in the
diagonal direction [Gre+15a; Kla+15; Gre+15b]. In a previous analysis of the excitations
in zero field [Gre+15a], a combination of an analytical formula given by Bougourzi et al.
[BKM98] and a formula proposed by Coldea et al. [Col+10] was adapted to account for
the energy of the discrete modes. The former is describing the exact two-spinons dynam-
ical structure factor of a XXZ chain (for any ε) without interchain interaction while the
latter describes the spinon confinement in a linear potential for the case of a strongly
Ising spin chain (ε << 1). This analysis yielded a molecular field resulting from the
interchain coupling of ≈0.2 meV. This value is larger than the one estimated from the
amplitude of dispersion along a∗, which was found to slightly depend on QL [Gre+15a]:
flat for QL = 1 and with a small dispersion amplitude of about 0.1 meV for QL = 2
(see Fig. 1.20). Note that a huge theoretical progress has been done by S. Rutkevitch
recently [Rut18], since he has found an analytical solution of the confinement (with J ′)
of the spinons for an arbitrary XXZ spin-chain (for any ε). The fact that the excitations
are almost non-dispersive perpendicularly to the chains is probably a signature of the
frustration between neighboring chains in BaCo2V2O8.

Figs. 4.15 (b-c) show the dispersion of the lowest mode measured in the high field
phase at T = 1.8 K and µ0H = 12 T, for QL = 1 and QL = 2. The amplitude of dis-
persion for both QL values is much stronger than in zero-field: ∆E(QL = 1) ' 0.45 meV
and ∆E(QL = 2) ' 0.67 meV. From similar dispersions recorded at different magnetic
fields, we were able to extract the field dependence of the amplitude of dispersion ∆E
at QL = 1 and QL = 2, as shown in Fig. 4.16. The dispersion under field is stronger
for QL = 2 than for QL = 1, as in zero-field. Both curves have the same behavior: ∆E
increases with increasing field up to Hc and slightly decreases above. For both QL, the
amplitude of dispersion has increased by ≈0.55 meV between µ0H = 0 and µ0H = 12 T.
Let me emphasize that through Fig. 4.16, one is able to understand the difference of the
gap ∆ at different QL observed in the dispersion spectrum along the chain and in the
magnetic field dependence of the excitations. For example at µ0H = 10 T , ∆ ' 0.2 meV
for ~Q = (2, 0, 1) and ∆ ' 0.75 meV for ~Q = (3, 0, 1) leading to a difference of about
0.55 meV (see Figs. 4.11 (a),(c)).

Having in mind that the amplitude of dispersion is proportional to the average inter-
chain coupling J ′, this increase can be understood by a removal of the frustration in the
high field magnetic structure. This is consistent with what was found in the diffraction
results. Indeed, while at zero field the frustrated interactions are between two nearest
neighbor chains, the one in the high field phase is between two chains in diagonal. One
can understand this with the help of Fig. 4.6: the nature of the diagonal interaction along
~a ±~b has changed to a ferromagnetic interaction and all the first neighbors interactions
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Figure 4.15: Dispersion spectra of the excitations along a∗ obtained from constant-
Q energy scans at T = 1.8 K for QL = 1 (a) and QL = 2 (b) at µ0H = 12 T. The
dispersions at zero field and at µ0H = 12 T were fitted with the phenomenological law:
E =
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m −∆2) sin2[hπ2 ], where h = QH or QH−1 depending on the type of Bragg
position, ∆ is the gap and Em is the maximum of the dispersion. This yields the following
amplitudes of dispersion at 12 T: ∆E(QL = 1) ' 0.45 meV and ∆E(QL = 2) ' 0.67 meV.
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along ~a and ~b are now AF and then no longer frustrated. This is due to the fact that
the high field phase is stabilized by the staggered field and not by J ′. The new magnetic
arrangement changes the frustration of the interchain interactions and therefore their
measured dispersion along a∗.

Above the phase transition, the amplitude of dispersion decreases. A possible expla-
nation could arise from the fact that the amplitude of dispersion is directly proportional
to the effective J ′ but also to the AF component of the ordered moments. Therefore,
the decrease of this component at the expense of the FM component might qualitatively
explain this effect. A further step would be to better understand the complex set of
interchain interactions for instance with the help of spin wave calculations.

4.6 Numerical calculations
In this section I will try to give an interpretation of our measurements, first by showing
my numerical calculations using my own program described in Chap. 3 and second by
means of iTEBD calculations.

4.6.1 A first attempt to interpret our measurements by exact
diagonalization

As discussed above in paragraph 4.3.2, under a transverse field applied along the b-axis,
the Hamiltonian of BaCo2V2O8 takes the following form:

H= HXXZ + Hinterchain + Hfield

with Hfield = −µBH
∑
j

{
gbb

(S+
j + S−j )

2 + gbcS
c
j cos

[
π

4 + π(j − 1)
2

]
+ gba(−1)j

(S+
j − S−j )

2i

}

Starting from this Hamiltonian, under a strong value of a magnetic transverse field,
more than one spin will be flipped along the chain. Therefore the 2-spinons basis is not
enough to describe the system as multi-spinons states become relevant now. To be able
to do calculations and to catch up the physics of this system, I used the 2-spinons ⊕ 4-
spinons ⊕ 6-spinons basis for the calculation of the groundstate and the 2-spinons ⊕ 4-
spinons basis only for the calculations of the magnetic excitations (as these ones are much
heavier to calculate). Consequently, the number of sites had to be considerably reduced
(n = 14 instead of n = 30 at zero-field). The parameters used in the calculations are
those of Kimura et al. [Kim+13]: gbb = 2.75, gba = 0.4 gbb ' 1.1, gbc = 0.1

√
2 gbb ' 0.39.

Let us discuss first about the evolution of the ground state under the transverse magnetic
field. Then we will see the magnetic field dependence of both the energy and the spectral
weight of the excitations.

4.6.1.1 Calculations of the groundstate: magnetic field dependence of the magneti-
zations

Fig. 4.17 shows the magnetic field dependence of the calculated staggered magnetizations
ma, mc and of the uniform magnetizationM‖. These magnetizations have been calculated
from the field dependence of the groundstate |GS(H)〉 as ma = 〈GS(H)|Sa|GS(H)〉,
M‖ = 〈GS(H)|Sb|GS(H)〉 and mc = 〈GS(H)|Sc|GS(H)〉.
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One can see that in addition to reproduce qualitatively the neutron data of Fig. 4.7,
these calculations are able to reproduce quantitatively quite well (in contrast with the
spin-dynamics) the experimental field dependence of the staggered magnetic moments.
Indeed the calculations for mc reproduces very well what is observed experimentally.
However, as for the iTEBD calculations, there is a global scaling factor between the
numerical calculations and the experiment for ma.

Nevertheless the critical field of µ0Hc ' 10 T is well reproduced. Indeed one can see
that mc decreases with increasing the field and (almost) vanishes at µ0Hc = 10 T. The
remaining of a small value of mc above Hc is due to the effective field induced along ~c
which is taken into account in the model. On the other hand ma and M‖ increase linearly
with H in such a way that ma > M‖ and one can observe a break in the slope of ma at
µ0Hc. This is consistent with the experimental observations.
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Figure 4.17: Calculated field dependence of ma, mc and M‖ using exact diag-
onalization. The experimental staggered moments mc and ma (blue and red circles
respectively) have to be compared with the calculated ones (blue and red crosses con-
nected by solid lines). The calculated uniform magnetization M‖ induced along ~b by the
uniform field is also plotted (green crosses connected by solid lines). The Hilbert space
consists in a 2-spinons ⊕ 4-spinons ⊕ 6-spinons basis. The calculations were made with
n = 14 spins.

Thus, the calculations of the field dependence of the groundstate using exact diagonal-
ization match well qualitatively with what was found experimentally. These calculations
validate the Hamiltonian of the system. Let us now turn to the spin-dynamics of the
system.
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4.6.1.2 Magnetic field dependence of the energies

Fig. 4.18 shows the magnetic field dependence of the calculated lowest energy excitations
with the two configurations of the magnetic field discussed in paragraph 4.3.2, i.e. ~H ‖ ~b
(with a staggered field along ~a) and ~H ‖ ~a+~b (without any staggered field along ~a).
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Figure 4.18: Calculated field dependence of the excitations using exact diago-
nalization. Intensity map S⊥ ~Q with ~H ‖ ~b (a), i.e. with a staggered field along ~a, and
with ~H ‖ ~a+~b (b). S(Q,ω) is calculated on an antiferromagnetic point (AF)Q = (1, 0, 0.5)
(I recall that my calculation are made for linear spin-chain). The step in energy (resp.
H) is taken as 0.05 meV (resp. 1 T). The colorscale is in arbitrary units. Since the basis
is large (the 2-spinons ⊕ 4-spinons basis), the calculations were made with n = 14 spins
only.

First, we can see that the non-linear field dependence of the excitations is reproduced
for both orientations of the field. This is well understood by the fact that the field is
applied perpendicularly to the quantization axis (the c-axis here) and then a mixing of
the wave-functions occurs. Indeed the uniform field flips spins through the operator S+

j

(as well as the effective staggered field along ~a) and thus mixes the two zero-field sectors
|j T〉 and |j L〉. If we denote a magnetic excitation |Ψ〉 = aT |φT〉 + aL |φL〉 where |φT〉
and |φL〉 are a linear combination of the zero-field states |j T〉 and |j L〉 respectively, we
can also see this effect in the present simulation by plotting the field dependence of the
weights |aT|2 and |aL|2 (see Fig. 4.19).

Between the two orientations of the field, one can see a main difference. The energy of
the lowest mode decreases with increasing field in one case ( ~H ‖ ~b in Fig. 4.18(a)) while
it is almost constant in the other case ( ~H ‖ ~a + ~b in Fig. 4.18(b)). This confirms that
the non-diagonal components of the Landé tensor ∼g, and especially gba (the calculations
without gbc give the same behaviour) are responsible for the lowering of the lowest energy
mode and therefore for the phase transition which occurs at µ0H ' 10 T as seen in the
experiments. In the present calculations we do not reproduce the phase transition (i.e.
the closure of the energy gap) at this value of the field and the calculated energy of the
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lowest excitation decreases much slower with the field than observed experimentally (see
Fig. 4.11). This comes again from the truncation of the basis since the larger the magnetic
field, the more the multi-spinons with a high number of flipped spins become relevant.
In addition to this lowest energy mode, one can see that the numerical calculations show
a qualitative agreement with what has been observed experimentally (see Fig. 4.18 to be
compared to Fig. 4.11). Indeed, the splitting is well reproduced with one branch increasing
and one decreasing in energy when the field increases, as well as the anticrossing (occuring
at µ0H = 6 T here instead of 3 T) between the |1 L〉 and |2 T〉 modes.
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Figure 4.19: Mixing of the wavefunctions by the magnetic field ~H ‖ ~b. Calculated
field dependence of the aT and aL coefficients of the |1 T〉 zero-field excitation. Here the
calculations were made with n = 8 sites and the 2-spinons basis only for more convenience.

What is powerful with numerical techniques is that we can calculate directly the
polarization of the modes. This is what I am going to discuss now.

4.6.1.3 Polarization of the magnetic excitations

Fig. 4.20 shows the polarization of the excitations, i.e. the direction of the fluctuations
for both configurations of the field ~H ‖ ~b and ~H ‖ ~a+~b. One can see on Fig. 4.20(a) and
Fig. 4.20(c) that for ~H ‖ ~b, the spectral weight of the lowest energy excitation is purely
Saa at zero field and becomes progressively more and more Scc with increasing the field
in agreement with the experimental findings.

This is consistent with what has been already said, namely the fact that the gba
non-diagonal component of the Landé tensor ∼g induces a staggered magnetization along
the a-axis proportional to the magnetic field µ0H and that this term competes with the
Ising c-axis. Therefore, while Saa (resp. Scc) were the transverse (resp. longitudinal)
fluctuations at µ0H = 0 where all the spins are ordered along the c-axis, they become
progressively longitudinal (resp. transverse) when the ordered moments are rotating in
the (a, c) plane towards the a-axis.
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Figure 4.20: Polarization of the excitations using exact diagonalization. (a-c)
Field evolution of the polarization of the excitations under a transverse magnetic field
applied along the b-axis, i.e. with a staggered field. (d-f) same calculations but with an
applied field along ~a+~b, i.e. without a staggered field. The step in energy (resp. µ0H) is
taken as 0.05 meV (resp. 1 T) in both cases. The colorscale is in arbitrary units. As the
basis is large (2-spinons ⊕ 4-spinons), the calculations were made with n = 14 spins only.

Another interesting remark is that in both cases, the Sbb branch arising from the split-
ting of the lowest mode is the one increasing in energy with increasing the magnetic field
(see Fig. 4.20(b)). This shows again that the numerical results agree with the experimental
findings.

4.6.1.4 Conclusion and discussion

To conclude on this part, the calculations are consistent with what has been seen in
the experiment and consolidate our understanding of the behavior of BaCo2V2O8 under
a transverse field applied along the b-axis. The mismatch between the experimental
values and the calculated ones comes again from the truncation of the Hilbert space.
Nevertheless, one can see that we capture a lot of physics and that the calculations agree
qualitatively very well with what was found experimentally. Above all it helps us to
understand the key role played by the staggered field induced by the uniform one. Indeed
these calculations show the necessity to include the staggered field ~ha in the Hamiltonian to
explain the experimental findings (whereas ~hc is found to be not relevant). Thus the exact
diagonalization calculations somehow confirm the Hamiltonian proposed in Eq. (4.6). All
these preliminary conclusions were well confirmed by iTEBD calculations, a very powerful
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technique as we will see now.

4.6.2 iTEBD calculations
During my PhD, we have collaborated with Shintaro Takayoshi and Thierry Giamarchi
from the Theory of Quantum Matter Group at the University of Geneva. They have
performed infinite Time Evolve Block Decimation (iTEBD) calculations on this system
(as explained in section. 3.4.5) and also used a quantum field theory approach to better
understand the low-energy properties of this system. This collaboration was really fruitful
as it was a permanent back and forth discussion between experimentalists and theoreti-
cians. In this section, I will expose the results of their calculations, first the calculations
at zero-field which allowed to extract the parameters of the BaCo2V2O8 system, and then
I will present the iTEBD calculations in a transverse field.

4.6.2.1 Calculations at zero-field: fitting of the parameters

Contrary to my calculations, S. Takayoshi and T. Giamarchi took into account the full
4-fold screw symmetry of the BaCo2V2O8 chain. As in my own program, they considered
the contribution of interchain interaction J ′ by a mean field approximation, which gives
rise to an effective staggered magnetic field heff along the ~c direction in the Hamiltonian
(at H = 0):

H= J
∑
n

[ε(SanSan+1 + SbnS
b
n+1) + ScnS

c
n+1]− gccµBheff

∑
n

(−1)nScn (4.14)
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Figure 4.21: Calculated energy scan vs experimental one. (a) Intensity of scattered
neutrons for ~Q = (0, 0, 2) at zero magnetic field calculated by iTEBD with J = 5.8 meV,
ε = 0.53, and gccµBheff = 0.061 meV. (b) Experimental results taken from Ref. [Gre+15a]
for comparison (solid symbols). The red line is a fit to the data.

The parameters J, ε and heff were determined in such a way that the cross section for
the scattering vector ~Q = (0, 0, 2) is reproduced. The differential neutron scattering cross
section is given by (see Eq. (2.15)):

d2σ

dΩdE ∝
kf
ki

∑
α,β=x,y,z

(
δαβ −

QαQβ

| ~Q|2

)
|f( ~Q)|2

∫
dt
∑
~r

ei(ωt−
~Q·~r)〈Sα(~r, t)Sβ(~0, 0)〉, (4.15)
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where f( ~Q) is the magnetic form factor and ~ki, ~kf are the initial and final wave vec-
tors, respectively ( ~Q = ~ki − ~kf ). The space-time correlation functions 〈Sα(~r, t)Sβ(~0, 0)〉
(with α, β = a, b, c) are calculated using iTEBD [Vid07] with the infinite boundary con-
dition [PVM12]. In the calculations, the time is taken to be 0 ≤ t ≤ 80J−1 with the
discretization dt = 0.05J−1. The truncation dimension (i.e., dimension of matrix product
states) is χ = 60. For the Fourier transform in Eq. (4.15), the summation is taken over
the actual positions ~r of Co atoms. The scattering cross section for ~Q = (0, 0, 2) at zero
magnetic field calculated by iTEBD with the parameters J = 5.8 meV, ε = 0.53, and
gccµBh

eff = 0.061 meV is shown in Fig. 4.21(a). It reproduces very well the experimental
data [Gre+15a] reported in Fig. 4.21(b) and these parameters were used for all subsequent
calculations. In mean field theory, gccµBheff = J ′|〈Scj 〉|, which yields J ′ = 0.17 meV and
|〈Scj 〉| = 0.366 in agreement with the experiment.
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Figure 4.22: Dispersion spectrum along QL at zero-field obtained by iTEBD
calculations versus the experimental one. (a) Numerically calculated magnetic
excitations of BaCo2V2O8 in zero field, which show the Zeeman ladders. The parameters
of the calculations determined from a comparison with the zero-field measured excitations
[Gre+15a; Gre+15b] are J = 5.8 meV, ε = 0.53, and J ′ = 0.17 meV. Both ε and J ′ are
in excellent agreement with Ref. [Gre+15a] while J is about 20% larger. Note that the
new parameters, with respect to those determined in [Gre+15a; Gre+15b], are more
reliable since iTEBD calculations take both the inter-chain interaction and an arbitrary
anisotropy into account, while it was not the case in Ref. [Gre+15a]. The color scale is
in arbitrary units. (b) Dispersion spectrum obtained in Ref. [Gre+15a] for comparison to
the calculated one.

The calculated full dispersion spectrum for ~Q = (2, 0, QL) (2 ≤ QL ≤ 3) in Fig. 4.22(a)
also agrees very well with the experiment (see Fig. 4.22(b)) except for the anticrossing
observed around 4-5 meV at ~Q = (2, 0, 2.5). The nature of this anticrossing has been in-
vestigated by the theoreticians and has been proposed to be a consequence of a tetramer-
ization in the chain. Indeed, because of the peculiar screw structure of BaCo2V2O8, an
hypothesis could be that the intrachain interaction changes slightly from two consecutive
pairs of Cobalt atoms to the next ones. Fig. 4.23 shows a sketch of this tetramerization
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and the spectrum calculated by iTEBD calculations taking into account this effect. One
can see that the anticrossing is now reproduced. Nevertheless, this effect has not been
considered in all subsequent calculations.
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Figure 4.23: Tetramerization scenario in BaCo2V2O8. Above: sketch of the
tetramerization along the chain. The intrachain interaction is slighty different between
two adjacent pairs of Co atoms and the next two ones. It can take two values J(1 − δ)
and J(1 + δ), where δ is the tetramerization parameter. Below: Spectrum calculated
with iTEBD calculations with the same parameters as in Fig. 4.23 and the additional
tetramerization effect with δ = 0.1.

The parameters J , J ′, ε determined from the zero-field calculations were used for all
the calculations under magnetic field that I will present now.

4.6.2.2 Calculations in a transverse magnetic field along the b-axis

Evolution of the ground state: The numerical results are shown in Fig. 4.7 by the
purple and black crosses connected by solid lines. One can see that the iTEBD calcula-
tions describe quite well the field dependence of the staggered magnetization along the
chains mc. For the component perpendicular to the chains, i.e. ma, the overall trend of
the data is correctly given by the numerics but a global scaling factor seems to exist with
the experimental data.

The reason for this discrepancy could be due to factors such as: i) effect of temper-
ature; ii) bigger sensitivity of this quantity on small uncertainties in the parameters, iii)
treatment of the interchain interaction in the mean field theory. The latter gives a devi-
ation from the true value of ma and for this problem to be solved, we need a treatment
beyond the mean field theory, which is a challenging problem. As we will see later, the set
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of parameters used in the numerics was a compromise between having the good critical
field and a good matching with the excitation spectrum data. Indeed, the large number of
parameters in the Hamiltonian allows to take another set of parameters which could match
better with the diffraction data, but it would be at the expense of the spin-dynamics data.

Field dependence of the excitations: Figs. 4.24 (a-c) show the field dependence
of the excitations calculated by iTEBD for the three scattering vectors ~Q = (2, 0, 1),
~Q = (0, 0, 2) and ~Q = (3, 0, 1). The Hamiltonian is the one of Eq. (4.6), i.e. with a
staggered field:

H= J
∑
j

[ε(Saj San+1 + SbjS
b
j+1) + ScjS

c
j+1]− gccµBheff

∑
j

(−1)nScj

− µBH
∑
j

{
gbbS

b
j + gbcS

c
j cos

[
π

2 + π(j − 1)
2

]
+ gbaS

a
j (−1)j

}
(4.16)
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Figure 4.24: Field dependence of the excitations obtained by iTEBD calcu-
lations. Theoretical intensity color maps to be compared to the experimental ones in
Fig. 4.11 (a-c), obtained from iTEBD calculations of the S( ~Q, ω) neutron scattering func-
tions. The color scale was truncated and both the critical field and the polarization (T or
L) of the modes in zero-field are pointed out. In addition, the polarization (labeled Saa,
Sbb, and Scc for the ~a, ~b, and ~c directions, respectively) of the split branches arising from
the |1 T〉 mode is indicated at µ0H > 0. The pink dashed lines in panel (a) correspond
to the field dependence these two branches would display in the absence of the staggered
field along ~a (i.e. for the uniform magnetic field applied along ~a+~b).

Here, as already explained in paragraph 4.3.3, the parameter gbb = 2.35 is chosen
slightly smaller than the value of Kimura et al. [Kim+13] in order to reproduce the
critical field of the transition (see Fig. 4.7). The other parameters are gba/gbb = 0.4 and
gbc/gcc = 0.14 according to Ref [Kim+13]. Since heff is introduced from the mean field
approximation of the interchain interactions, heff is determined from the self-consistency
equation heff(H)/heff(0) = mc(H)/mc(0), where mc is the staggered magnetization of the
Néel order along the c-axis. Scattering cross sections calculated using Eq. (4.15) under
a magnetic field are shown in Fig. 4.24. The chosen set of parameters for the g̃ Landé
tensor is the best compromise to reproduce the staggered ordered moments along ~c and ~a,



140 Chapter 4. BaCo2V2O8 under a transverse magnetic field

the zero-field excitation spectrum, the value of the critical field and the field-dependence
of the magnetic excitations.

While my calculations using exact diagonalization only show a qualitative agreement
with the experiment, the results for the excitation spectrum using iTEBD calculations
(see Figs. 4.24(a-c)) show a quantitative agreement with the experimental data (see
Figs. 4.11(a-c)) accounting for the main modes observed experimentally. In addition,
the numerics further validate the polarization of the modes and in particular the trans-
verse nature of the lowest energy one. The rapid energy lowering of the lowest branch
when the field is applied along ~b is confirmed numerically to be a consequence of the ad-
ditional effective staggered field along ~a due to non diagonal components of the ∼g-tensor.
Indeed (as the results of my program) the calculations without this term yield an absence
of field dependence for the lowest energy branch in the investigated field range (see pink
lines in Fig. 4.24(a)).

Dispersion along QL in the high field phase: The dispersion along the chain-axis,
i.e. along QL, has also been calculated by iTEBD calculations. Fig. 4.25(a) shows the
calculated dispersion spectrum at µ0H = 12 T for ~Q = (2, 0, QL).
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Figure 4.25: Dispersion spectrum in the high field phase obtained by iTEBD
calculations. (a) Dispersion spectrum calculated along QL at µ0H = 12 T and for
~Q = (2, 0, QL) to be compared to the experimental spectrum in Fig. 4.14(a). The dashed
and dotted white lines point out the two different low energy modes respectively. (b-d)
Contribution of the Saa, Sbb and Scc fluctuations to the above dispersion spectrum.
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This calculated intensity map shows a very good agreement with the experimental
one except for the anticrossing which appears around QL = 1.5 in the experiment (see
Fig. 4.14(a)). This anticrossing may come from the tetramerization of the chain as sug-
gested in zero-field. There are also many branch-crossings which occur in this spectrum.
This may explain the broadening of the peaks seen in the experiment, as it is difficult to
resolve two peaks close to each other.

Figs 4.25(b-d) show the polarization of the modes along the a, b and c axes of the calcu-
lated dispersion spectrum. These calculations agree with the experimental findings using
polarized neutrons. Indeed excitation pointed out by dotted lines corresponds mainly to
Scc fluctuations while the other one pointed out by dashed lines corresponds mainly to
Sbb fluctuations. A last interesting remark is that the Saa fluctuations (longitudinal in
the high field phase) have an intensity much lower than the Scc and Sbb ones. We will see
later that this arises from the action of the Hamiltonian on the states |j, St = ±1〉 and
|j, S` = 0〉 (where St and S` denote the transverse and longitudinal modes respectively)
making the low energy longitudinal fluctuations evanescent.

4.6.3 Conclusion
We have seen in this section that the numerics were able to reproduce the experimental
findings, with a qualitative agreement for exact diagonalization and with a quantitative
one for the iTEBD calculations. The philosophy behind the use of numerical techniques
is to confirm the Hamiltonian, to determine its various parameters (J , J ′, ε...) and to
understand the relevant terms. Indeed, as shown here, the numerical calculations confirm
that the effective staggered field along ~a induced by a uniform field applied along ~b is
the key ingredient which drives the rapid lowering of the lowest energy branch and finally
triggers this phase transition. Now that the Hamiltonian is confirmed and well established,
we can turn to the interpretation of the magnetic excitations to better understand the
nature of this quantum phase transition.

4.7 Interpretation: nature of the excitations and of
the phase transition

To understand the nature of the excitations, we will see first the action of the Hamiltonian
on the zero-field spinon states |j T〉 and |j L〉. Then I will expose the quantum field theory
approach that the theoretical team has used to understand the low-energy properties of the
system, the nature of the transition and more particularly to get a deeper understanding
about the nature of the excitations.

4.7.1 Description of the excitations under a transverse magnetic
field

To understand the evolution of the excitations throughout the transition occurring under
a transverse field applied along the b-axis, it is instructive to rewrite the Hamiltonian
given by Eq. (4.6) in the rotating frame (~̂`,~̂b, ~̂t) shown in Fig. 4.13(a). New operators
(σ`, σb, σt) are introduced, along with σt = (σ+ + σ−)/2 and σb = (σ+ − σ−)/2i, the
quantization axis ˆ̀ pointing along the ordered magnetic moment. This yields, for the
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intrachain part of the Hamiltonian (XXZ and the Zeeman term of Eq. (4.6)):

H =
∑
n

K±(σ+
n σ
−
n+1 + σ−n σ

+
n+1)

+ K±±(σ+
n σ

+
n+1 + σ−n σ

−
n+1)

+ K`±(σ`nσ+
n+1 + σ`nσ

−
n+1) +K``σ`nσ

`
n+1

− µBHh
`σ`n − µBH(h+σ+

n + h−σ−n ) (4.17)

with

K`` = J(ε cos2 ψ + sin2 ψ)

h` = (−1)ngba cosψ + gbc cos
(
π

2n− 1
4

)
sinψ

K`± = J(1− ε) sinψ cosψ

h± =
[
−gba(−1)n sinψ + gbc cos

(
π

2n− 1
4

)
cosψ

]
/2± igbb/2

K± = J
ε(1 + sin2 ψ) + cos2 ψ

4
K±± = J

(1− ε
4

)
cos2 ψ

In the high field phase, the quantization axis has the same direction as the ordered mo-
ments along the a-axis (which means that now ~̂

` = ~a and ~̂t = ~c), and thus the Hamiltonian
takes the peculiar form:

H=
∑
n

Jεσanσ
a
n+1 + J

(ε+ 1)
4 (σ+

n σ
−
n+1 + σ−n σ

+
n+1) + J

(ε− 1)
4 (σ+

n σ
+
n+1 + σ−n σ

−
n+1)

−µBH
[
(−1)ngbaσan + gbcσ

c
n cos

(
π

2n− 1
4

)
+ gbbσ

b
n

]
While complicated at first glance, this form of the Hamiltonian proves meaningful to

understand, from a physical point of view, how the confined spinon pairs |j, S`〉 evolve
upon the field. For instance, K`` renormalizes the energies of the spinons from J to εJ .
K± allows each kink forming the bound state to hop (independently) by two sites. This
term does not mix the S` = 0,±1 sectors and plays the role of kinetic energy. It evolves
from εJ/2 in zero field up to (1 + ε)J/4 above Hc. The staggered field contribution de-
veloping with the external field, that enters h` (but also h±), behaves as a confinement
potential, in a similar way as the inter-chain interaction J ′ does in zero field. The remain-
ing terms are more complicated: K`± and h± move the spinons by one site and entangle
the S` = ±1 with the S` = 0 sectors. This coupling is responsible for the mixing of the
|1, S` = 0〉 and |2, S` = ±1〉 states.

The most peculiar term (absent in the isotropic Heisenberg case where ε = 1) is K±±.
It induces two spin-flips, changing S` by ±2, and thus increases the number of spinons.
For instance, as shown in Fig. 4.26, when acting on the |j, S` = 0〉 states, this term
essentially gives rise to 4 spinons states carrying a total magnetization Stot` = ±2. This
explains why the low-energy Saa fluctuations are not probed in the high field phase as the
neutron selection rule imposes a difference of magnetization ∆S = ±1 for the scattering
process.
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Figure 4.26: Creation of multi-spinon states. Cartoons explaining the effect of the
σ±n σ

±
n+1 operator on the L and T excitations having the two smallest numbers N of flipped

spins, with the quantization axis ~̂` along the staggered field direction (a-axis).

The cartoon shown in Fig. 4.26 shows further that K±± also couples the two |1, S` =
±1〉 states with each other, resulting in new eigenstates constructed as:

1√
2

(|1, S` = +1〉+ |1, S` = −1〉)

for the lower branch, and

1√
2

(|1, S` = +1〉+ i|1, S` = −1〉)

for the higher one. Finally, K±± moves the two spinons by one site. Physically, this
means that the new states get an extra kinetic energy provided the two spinons hop
simultaneously. Although the physical mechanism is different, these quasiparticles be-
come analogous to the kinetic bound state observed in the Ising-like FM compound
CoNb2O6 [Col+10].

Finally one can see that while at zero-field, the low-energy modes are spinon pairs
(which are deconfined for a pure one-dimensional system), in the high field phase, the
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lowest energy mode given by the action of K±± is a linear combination of bound spinons
(see the application of K±± on the |1 T〉 = |1, S` = −1〉 in Fig. 4.26). Therefore, in the
high field phase, the lowest energy mode is not two deconfined spinons carrying a spin
S` = ±1/2 but rather a four spinons state formed by two deconfined pairs of bound
spinons, each of them carrying a spin S` = ±1. Thus, at first sight, the excitations in the
low and high field regime have a different nature. It becomes even clearer when we treat
this problem by means of quantum field theory as I will explain now.

4.7.2 Quantum field theory: Dual sine-Gordon model and topo-
logical excitations

Here, I will expose the quantum field theory approach (bosonization technique) that
Thierry Giamarchi and Shintaro Takayoshi developped to understand the low-energy
properties in this system.

The validation of the model of Eq. ((4.6)) from the iTEBD calculations allowed them
to use field theory to describe the nature of the transition in a more transparent way. Here
I would like to emphasize that the field theory technique is not a quantitative approach but
a qualitative one, rather used to bring us back to universal and well known equations such
as the sine-Gordon model which describes the XXZ model without an external magnetic
field. As already exposed in Chap. 1, the sine-Gordon model has the following form:

H= v

2π

∫
dz
[ 1
K

(
dφ(z)
dz

)2
+K

(
dθ(z)
dz

)2]
− 2λ

(2πα)2

∫
dz cos 4φ(z) (4.18)

where 2θ and φ are two dual bosonic fields 7 that can be viewed semi-classically through
Fig. 4.27(a) as the polar and azimutal angles of a staggered magnetization vector in the
real space, z = nc/4 with c the lattice constant along the chain direction, α is a non
universal constant, v is the spinon velocity, K is the Luttinger parameter, and λ is a
contant having a dimension of energy [GP04]. These parameters (v,K, λ) are a function
of the anisotropy parameter ε, and they are renormalized when the uniform field along ~b
is applied. However, there is no simple analytic form to represent v,K, λ as a function of
ε and of the strength of the uniform field. The staggered field along ~a also gives another
relevant term which is developped using the bosonization technique [GP04]:

∑
j

(−1)jSxj ⇒
1√
2πα

∫
dz cos θ (4.19)

A dual-field double sine-Gordon model is then obtained to describe BaCo2V2O8 in an
external field along ~b:

Heff = v

2π

∫
dz
[ 1
K

(
dφ(z)
dz

)2
+K

(
dθ(z)
dz

)2]
− 2λ

(2πα)2

∫
dz cos 4φ(z)− gbaµBH√

2πα

∫
dz cos θ(z)

(4.20)

The effect of the Zeeman coupling with the uniform field along the b-axis is renormal-
ized into these parameters [AO99]. Since the Zeeman term of the four-site periodic field

7The term "dual" comes from the quantum nature of the spin. Indeed, the precise determination of
one of the two angles makes the measurement of the other one imprecise. In other words these two fields
do not commute [θ, φ] 6= 0.
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along the c-axis is irrelevant, it does not appear in Eq. (4.20). The effect of this field is
actually negligibly small as shown by the numerics.

𝐚

𝐛

𝐜

𝜃

2𝜙

(a)

(b)

𝜋

2𝜙

𝒂

𝒃

𝒄

𝑧 (chain direction)

(c)

2𝜋

𝜃
𝒂

𝒃

𝒄

𝑧 (chain direction)

𝜋

𝑆𝑐 = +
1

2
𝑆𝑐 = −

1

2

𝑆𝑎 = +1 𝑆𝑎 = −1

Figure 4.27: Two dual topological objects. (a) A qualitative interpretation of the two
fields φ(z) and θ(z) entering in the field theory description. The quantum nature of a spin
1/2 makes it impossible to determine both angles with an infinite accuracy, the two angles
playing a role similar to canonically conjugate variables. (b) Topological excitations in
the low field phase (well below the transition). They can be identified with the spinon
excitations carrying a topological index Sc = ±1/2. (c) Topological excitations in the high
field phase (far above the transition but still well below the saturation) corresponding to
solitons carrying a topological index of Sa = ±1.

While complicated at first sight, let me explain a bit more qualitatively what this
equation means. The first integral, as explained in Chap. 1, is the well known Tomonaga
Luttinger Liquid Hamiltonian which describes a Heisenberg chain (and more generally
any massless one-dimensional system). The second integral with a cos 4φ(z) describes
the Ising-like anisotropy of the system and the third one with a cos θ(z) describes the
effective staggered field along ~a. The prefactor of this last integral is proportional to the
applied magnetic field H. In the low-field phase, when H → 0, the integral in cos 4φ(z)
dominates the one in cos θ(z). Therefore, to minimize the total energy of the system,
φ(z) → 0, which means that all the spins are along the c-axis. On the contrary, in the
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high field phase, i.e. when µ0H > µ0Hc = 10 T, the integral in cos θ(z) now dominates
the other one and thus θ(z) → 0. Now the spins are along the a-axis. The transition
happens when those two terms are equal.

Through this effective Hamiltonian, it became possible to understand the nature of
the excitations and their different topological nature (see Fig. 4.27(b-c)). Indeed, the
topological excitations in the low field phase (well below the transition) correspond to
solitons in the field 4φ(z) linking one of the minima of the cos 4φ(z) to the next one.
Using the bosonization representation of the spin, they can be identified with the spinon
excitations. They carry a spin Sc = ±1/2 corresponding to the topological index of
the excitation. In the high field phase (far above the transition but still well below the
saturation), the elementary excitations now correspond to the solitons of the cos θ(z), and
are thus dual of the low field phase excitations. They carry an index of Sa = ±1 since
θ(z) changes from 0 to 2π (instead of 0 to π for the field 2θ).

To summarize, two dual excitations compete with each other and the domination of
one of them on the other one can be tuned through the value of the applied magnetic
field. When the topological excitation carrying an index of Sa = ±1 fully dominates the
spinons ones carrying an index of Sc = ±1/2, the quantum phase transition occurs. This
transition has a topological nature as it comes from the competition between two different
topological objects.

4.8 Discussion et conclusions
As already mentioned above, the nature of the excitations in this high field phase has been
studied in parallel to our work by other groups in both compounds SrCo2V2O8 [Wan+16]
and BaCo2V2O8 [Mat+17].

In the former study, the excitations were probed by THz spectroscopy at much higher
energy and only at the ZC point ~Q=(0, 0, 0). As the phase transition was believed to
be an order-disorder transition, and thus a paramagnetic phase at high field, it has led
to a misunderstanding concerning the nature of the excitations. Indeed the explanation
proposed by Wang et al. was a deconfinement of the spinons as the interchain interaction
would not be effective in the high field phase compared to the applied magnetic field. The
problem here was the forgetting of the effective staggered magnetic field which is the key
ingredient in this phase transition. In the other study, the excitations were probed by
means of neutron scattering experiments. Contrary to the THz study, the staggered field
was here taken into account. Both elastic and inelastic neutron scattering experiments
have been done and the experimental results are rather similar to ours. However Matsuda
et al. did not use polarized neutrons and their theoretical analysis was more limited than
in our study. Moreover they were focusing essentially on the dispersion spectrum in the
high field phase, rather than on the field dependence of the excitations which was the key
to understand the topological nature of the transition.

To conclude on this chapter, the analysis of the static and dynamical properties mea-
sured experimentally under a transverse field and the agreement with numerics show that
the quantum phase transition occuring in BaCo2V2O8 is described by the dual field double
sine-Gordon model. This provides an explanation of the rather mysterious field-induced
transition and enlightens its topological nature. Indeed this transition arises from the
competition between two excitations having a different topological nature. This competi-
tion (how one excitation dominates the other one) can be tuned through the value of the
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applied magnetic field. Let us mention that BaCo2V2O8 is the first experimental realiza-
tion of such kind of topological transition. From a theoretical point of view, the study of
the transition itself is a challenging problem. A complete study, in particular taking into
account the effective 3D coupling beyond mean-field is still lacking and maybe Quantum
Monte Carlo (QMC) calculations could solve this problem.
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5.1 Summary

5.1.1 Abstract
This chapter is devoted to the study of the BaCo2V2O8 compound under a longitudinal
magnetic field (i.e. parallel to the easy-axis of magnetization and thus to the c-axis). This
orientation of the field leads to a totally different behavior compared to the one perpen-
dicular to the easy-axis (see Chap. 4). I will explain first the context and the motivations
of this study. Secondly I will recall the state of the art of the studies on BaCo2V2O8 under
this configuration of the field. I will then show the diffraction experiment carried out up
to 25 T. Then I will present our inelastic neutron scattering results showing the spin-
dynamics of BaCo2V2O8 in the Néel and the Tomonaga-Luttinger liquid (TLL) phases
and our related numerical calculations. Finally I will conclude with an interpretation of
the data.

5.1.2 Résumé en français
Le cinquième chapitre présente l’étude de BaCo2V2O8 sous champ magnétique longitu-
dinal, i.e. parallèle à l’axe Ising. Il a été montré théoriquement que les systèmes 1D de
type Ising peuvent être amenés dans une phase non gappée dite de liquide de Tomon-
aga Luttinger (TLL) en appliquant un champ magnétique longitudinal. Du fait de son
paramètre d’anisotropie modéré, la transition de phase quantique entre la phase gappée
et non gappée se produit dans ce composé pour une valeur du champ de µ0Hc ' 4 T,
valeur facilement accessible lors d’expériences de diffusion des neutrons. De plus, il a
été prédit que pour des systèmes anisotropes, les corrélations spin-spin longitudinales in-
commensurables, à la fois statiques et dynamiques, dominent les corrélations transverses
commensurables entre µ0Hc et un second champ critique µ0H

∗. Ainsi, du fait des intérac-
tions interchaînes stabilisant un éventuel ordre magnétique, l’état fondamental observé
dans BaCo2V2O8 au dessus de 4 T correspond à une phase où l’amplitude des spins est
modulée de facon incommensurable, dite phase LSDW (onde de densité de spin longitudi-
nale) en accord avec la théorie TLL. Au dessus de µ0H

∗ ' 9 T, l’état fondamental observé
correspond à un ordre antiferromagnétique commensurable transverse (perpendiculaire à
l’axe Ising) auquel se superpose une composante ferromagnétique parallèle au champ ap-
pliqué. Le travail effectué au cours de cette thèse a été d’étudier la dynamique de spins
dans la phase LSDW afin de voir si celle-ci correspond à la dynamique attendue pour
un TLL. Pour ce faire, nous sommes allés faire une expérience de diffusion inélastique
des neutrons sur un spectromètre au Paul Sherrer Institut en Suisse nous permettant
d’atteindre un champ magnétique horizontal de 6.8 T. Nous avons tout d’abord mesurer
la dépendence en champ magnétique des excitations. Nous avons observé que les excita-
tions transverses se scindent en deux branches dans la phase Néel: l’une qui augmente en
énergie lorsque le champ augmente et une autre qui diminue pour atteindre un minimum
à la transition de phase. Contrairement au champ transverse, la dépendence en champ
magnétique est linéaire. Ceci indique que le champ scinde les excitations transverses par
l’effet Zeeman. Contrairement aux excitations transverses, les excitations longitudinales
n’ont pas de dépendance en champ magnétique dans la phase Néel. Ces observations
sont cohérentes avec la nature des excitations. Nous avons ensuite mesuré le spectre des
excitations pour différentes valeurs du champ magnétique. Les spectres dans la phase
LSDW sont très différents de celui obtenu à champ nul. En effet, tout le poids spectral
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est maintenant concentré dans une petite portion de la zone de Brillouin et en énergie. De
plus, le maximum du poids spectral et le minimum en énergie sont maintenant au point
incommensurable, point qui s’éloigne du point commensurable lorsque le champ magné-
tique augmente. La dynamique de spins et son évolution sous champ correspondent bien
à celles attendues pour un TLL. De plus, la comparaison avec les calculs iTEBD effectués
par Shintaro Takayoshi et Thierry Giamarchi nous ont permis de confirmer que la majorité
du poids spectral est contenue dans les fluctuations de spins longitudinales. Ce résultat est
hautement non trivial car les systèmes magnétiques conventionnels et classiques préfèrent
généralement fluctuer perpendiculairement à la fois au champ magnétique et au moment
ordonné. Dans le cas de BaCo2V2O8, les fluctuations de spins sont préférentiellement
dans la direction du champ magnétique et du moment ordonné. Ceci confirme le fort
caractère quantique de BaCo2V2O8. Alors que la phase TLL a été beaucoup étudié dans
des systèmes de type Heisenberg, BaCo2V2O8 est le premier composé à chaînes de spins
anisotropes où le spectre des excitations a été étudié dans cette phase non gappée.
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5.2 Introduction, context and motivations

5.2.1 XXZ AF spin-1/2 chain in a longitudinal magnetic field
XXZ chains with spins 1/2 have been a subject of great interest as no long-range order is
expected at zero temperature due to quantum fluctuations. Their ground state belongs
to a universality class called a Tomonoga-Luttinger liquid (TLL) under zero and finite
magnetic field for the Heisenberg and the XY case or under finite magnetic field applied
along z for the Ising-like spin chain, i.e. a longitudinal magnetic field applied along the
easy axis. Two types of spin-spin correlation functions < Sx(~ri, 0)Sx(~rj, t) > (transverse)
and < Sz(~ri, 0)Sz(~rj, t) > (longitudinal) are present in this state. In particular we have
for the static correlations < Sx0S

x
r >' (−1)rr−ηx and < Sz0S

z
r > −m2 ' cos (2kfr)r−ηz

[BIK86; Mül+81; Hal80]. The first ones can be associated to the staggered correlations
and thus to the usual Néel order. The latter have no classical analogue and are typical
of quantum spin chains. Here m is the magnetization per spin, r the distance between
two spins and 2kf = π(1 − m) the incommensurate wave number characteristics of the
longitudinal spin correlations, which scales with the field-induced ferromagnetic compo-
nent of the magnetization m. ηz and ηx are the TLL exponents which fulfill the relation
ηxηz = 1. The (H −∆) phase diagram of a XXZ spin-1/2 chain is pictured in Fig. 5.1

For −1 < ∆ < 1 at zero-field, the transverse correlations dominate. The maximum of
the spectral weight for low energy excitations is at q = π. By applying the magnetic field
H, both T and L correlation functions are non-zero at commensurate and incommmen-
surate positions q = π and 2πm for the transverse correlations and q = 0 and π(1− 2m)
for the longitudinal ones 1(I will explain in the next subsection where this incommensura-
bility comes from). However the dominant spectral weight still occurs for the transverse
correlation functions at q = π. In presence of interchain coupling J ′, an orderering is
possible and corresponds to a transverse commensurate ordered state.

For ∆ > 1, one can drive Ising-like systems to the TLL phase by applying a sufficiently
large longitudinal magnetic field (H > Hc where the gap closes). The dominant correlation
function is the longitudinal one < Sz(~ri, 0)Sz(~rj, t) >, which decays the slowest at the
incommensurate point q = π(1 − 2m). The ground state in presence of J ′ is thus an
incommensurate spin-density wave (SDW). When H further increases and reaches the
value of H∗, the transverse and longitudinal correlations decay at the same rate, and
above H∗ the transverse correlations < Sx(~ri, 0)Sx(~rj, t) > dominate again. Hence, the
ground state with a finite J ′ becomes a transverse AF order.

Close to the commensurate-incommensurate transition (i.e. close to Hc), the com-
mensurate correlations of the gapped AF order and the incommensurate longitudinal
correlations of the SDW phase compete, resulting in more or less (i.e. rounded) step-like
modulation of the magnetic moments amplitude. Qualitatively, the magnetic field forces
the spins to align along its direction. It will induce spin-flips in the chain, thus creating
pairs of spinons which will spread over a few sites only, to form an incommensurate lattice
(i.e. the ratio of the magnetic period to the atomic lattice one is an irrational number).
When the field further increases, it will create more and more defects yielding a sinusoidal
modulation of the magnetic moments amplitude and thus an incommensurate longitudi-
nal spin density wave (SDW) order in presence of interchain interaction.

1This is also true for ∆ = 1.
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Figure 5.1: Phase diagram for an XXZ spin 1/2-chain: Anisotropy ∆ = 1/ε vs
magnetic field in reduced units h = µBgzzH/J applied along ~z. For ∆ < −1, the system
is always in a gapped ferromagnetic phase. For −1 ≤ ∆ ≤ 1, the system is already in a
TLL phase at zero-field where the static transverse correlations 〈Sx0Sxr 〉 are the dominant
ones and this holds up to the saturation field hc. For ∆ > 1, i.e. for magnetic systems
showing an Ising-like anisotropy along the z-axis, the system enters in a TLL phase
above a first critical field hsat when the gap is closed but, contrary to the previous case
(−1 ≤ ∆ ≤ 1), the IC static longitudinal correlations 〈Sz0Szr 〉 dominate the transverse
ones until a second critical field h∗ (pointed out by the black dashed line). This phase has
no semi-classical analogue. Above h∗, a spin-flop transition occurs until the saturation
field hsat. In this phase, the situation is reversed, i.e. 〈Sx0Sxr 〉 dominate. The vertical
black dashed line represents the case of BaCo2V2O8 where ∆ = 1/ε ' 2.

The TLL phase has been investigated in some AF spin-1/2 chains, namely in the well
known Heisenberg compounds KCuF3 [Lak+05], CuSO4•5D2O [Mou+13] and Cu(C6D5COO)2•
3D2O [Den+97], in the the alternate Heisenberg chain Cu(NO3)2 • 2.5D2O which can be
mapped onto an XXZ chain with ∆ = 1/2 [Gre+07], and in the XY-like spin-1/2 chain
Cs2CoCl4 with ∆ = 0.12 [Ken+02]. In all these systems, the transverse correlations are al-
ways dominant. This phase has been also investigated in two spin-ladder systems, namely
(C5H12N)2CuBr4 (BPCB) [Kla+08; Rüe+08; Bou+11] and (C7H10N)2CuBr4(DIMPY) [Hon+10;
Sch+12; Sch+13], which can be mapped onto a spin-1/2 XXZ chain with an easy plane
anisotropy [GT99]. Here again, the transverse correlations are always dominant. All these
studies have confirmed the different theoretical predictions of the TLL phase, especially
the presence of incommensurate fluctuations when a magnetic field is applied.

One may wonder if there is an AF Ising-like spin-1/2 chain which would allow to probe
microscopically (by means of neutron scattering for example) this TLL phase where the
longitudinal spin-spin correlations dominate? Some Ising-like AF chains such as CsCoCl3
and CsCoBr3 could be at first sight good candidates, but their strong anisotropy ∆ '
10 leads to a critical field of µ0Hc ' 75 T, impossible to reach in neutron scattering
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experiments.
Because of its moderate anisotropy (ε ' 0.56 ⇔ ∆ ' 1.8), BaCo2V2O8 allows us to

investigate this TLL phase where the longitudinal fluctuations dominate with a conve-
nient critical field of µ0Hc ' 4 T, easily reachable. As we will see in the next section,
this material indeed exhibits interesting physics under a longitudinal magnetic field. Note
that because of weak interchain interactions, a long-range order actually appears at finite
temperature. The signature of the spin correlations discussed above were shown to be
reflected in the nature of the ordered phases stabilized under a magnetic field (applied
along the c-axis) and the question is whether the excitations will still reflect the TLL
spin-dynamics. BaCo2V2O8 is the first realization of such a TLL phase with the longitu-
dinal correlations dominating on the transverse ones in which the spin dynamics can be
investigated by neutron scattering.

I will now explain what is expected concerning the excitations of an AF anisotropic
spin-1/2 chain for this orientation of the field.

5.2.2 Spin-dynamics of XXZ spin-1/2 chain under a longitudinal
magnetic field

The dispersion of the excitations in the TLL phase for an AF Heisenberg spin-1/2 chain
has been studied theoretically almost fourty years ago by Müller using Bethe ansatz
calculations [Mül+81] and only recently for an AF Ising-like spin-1/2 chain [Yan+17]. It
has been predicted that the minima of the 2-spinon continuum (at zero energy) appear
both at commensurate and incommensurate points in the reciprocal space, contrary to
the zero-field case where they appear at q = π and q = 0 (for a linear spin 1/2 chain). To
understand this incommensurability, let me take the example of an XY spin chain under a
field applied along z and do a Jordan-Wigner fermionization (explained in section 1.5.1) to
map a spin-1/2 chain onto a spinless fermions representation. The XY-case is considered
for more convenience as it leads to a free electron-hole band theory. Indeed, through
this transformation, one can go from a spin-1/2 chain to a spinless fermion half filled
band system where a spin S = 1/2 corresponds to an electron while a spin S = −1/2
corresponds to a hole. Using this fermionization for a linear spin-1/2 chain with the
constant lattice spacing a = 1 under a field applied along the z-direction, the Hamiltonian
writes as:

H=
∑
j

J

2
[
S+
j S
−
j+1 + S−j S

+
j+1

]
−
∑
j

µBgzzHS
z
j (5.1)

= HXY + Hfield (5.2)

H = 0 case: Let me recall what has been seen in section 1.5.1. Here, we only focus on
the XY-Hamiltonian, i.e. H = 0. By using the Jordan Wigner transformations, we get:

HXY = −J/2
∑
j

(
c†jcj+1 + cjc

†
j+1

)
(5.3)

Using the Fourier transform of the cj operators, one can show that the above Hamiltonian
writes as:

HXY =
∑
k

~ω(k)c†kck

with ~ω(k) = −J cos (ka)
(5.4)
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where a is the lattice spacing.
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Figure 5.2: Construction of the dispersions expected for an XY spin-1/2
chain through the Jordan Wigner fermionization. (a) Particle-hole band obtained
through Jordan-Wigner transformations. Two specific particle-hole excitations, at zero-
field, are pointed out by black and yellow arrow: they correspond to zero-energy and
maximum energy excitations respectively. EF denotes the Fermi level (set to zero). The
fermions are located below EF (thick line) while the holes are located above (thin line).
(b) The applied longitudinal field H can be seen as a chemical potential which splits
the degeneracy of the electron-hole bands. The intraband and interband zero-energy ex-
citations (corresponding to longitudinal S‖ and transverse S⊥ fluctuations respectively)
are pointed out by the blue and pink arrows. The incommensurability δ arises from the
splitting of the bands. (c) 2-spinon continuum expected for an AF XY spin-1/2 chain
at zero-field. Black and yellow points are the excitations corresponding to the black and
yellows arrows. (d-e) Dispersion spectrum of the longitudinal and transverse fluctuations
(SL and ST) expected for an AF XY spin-1/2 chain when H > 0. Some of the incommen-
surate positions where the system is gapless are pointed out by the blue and pink points
(associated to the blue and pink arrows). The excitation spectra shown in panels (c-e)
are the same in all the TLL region and thus in particular for Ising-like spin-1/2 chains
with Hc < H < Hsat, but the energies, which depend on ∆ are then renormalized (e.g.
multiplied by π/2 for the Heisenberg case). The black dashed lines in (d) and (e) are
showing the effect of the folding in BaCo2V2O8.

Hence the XY-model can be mapped exactly to a tight binding Hamiltonian with
spinless fermions and it is possible to build the 2-spinons dispersion spectrum from it as
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shown in Figs. 5.2(a),(c). However, one has to keep in mind that the degeneracy between
the spinons carrying a total magnetization Sz = ±1 is still present.

H 6= 0 case: The Hamiltonian now writes as:

H= −J/2
∑
j

(
c†jcj+1 + cjc

†
j+1

)
− µBgzzH

∑
j

c†jcj (5.5)

where c†jcj corresponds to the particle density. By using the Fourier transform, this leads
to:

H=
∑
k

~ω(k)c†kck

with ~ω(k) = −J cos (ka)− µBgzzH
(5.6)

In the case of spins, the magnetic field lifts the degeneracy due to the time reversal
symmetry for spins by the Zeeman splitting. In fermionic language, the magnetic field
can be viewed as a chemical potential. This spinless Hamiltonian of Eq. (5.5) is written
in such a way to obey the particle-hole symmetry which corresponds to the time-reversal
symmetry for spins. Hence, the chemical potential will break this symmetry by increasing
one of the Fermi levels in one of the two degenerated bands and lowering the other one
as represented in Fig. 5.2(b): one band is shifted upward and the other one downwards,
with respect to the Fermi level, still located at E = 0.

Then the excitations conserving the total number of particles, i.e. the longitudinal
excitations (labelled by SL) or in other words intraband excitations (leading to a difference
of magnetization with the ground state of ∆Sz = 0) will give rise to incommensurate and
commensurate fluctuations reaching zero-energy at q = π ± δ = arccos (µBgzzH/J) with
δ = 2πm and q = 0 and 2π respectively (see Fig. 5.2(b)). Excitations non conserving
the number of particles, i.e. the transverse excitations labelled by ST, in other words
interband excitations (leading to a difference of magnetization of ∆Sz = ±1) give rise to
fluctuations reaching zero-energy at q = π and at the incommensurate points δ and 2π−δ
(see Fig. 5.2(b)). From all possible intraband and interband excitations, one can, as in
the zero-field case, reconstruct the longitudinal SL and transverse ST dispersion spectra
expected for a spin-1/2 chain in a magnetic field along z (see Fig. 5.2(d-e)).

Let us return to the case of BaCo2V2O8 which is an Ising-like antiferromagnet. At
zero-field, the system shows discretized energy modes due to the interchain coupling and
is gapped at zero-field due both to the Ising anisotropy (∆ ' 2) and to the interchain
interactions. This means that this gap must be closed by applying the magnetic field until
the critical field µ0Hc (see Fig. 5.1).

I recall that there is a folding of the dispersion in BaCo2V2O8. One can picture this
effect by the dashed black lines plotted in Fig. 5.2(d-e). Before showing my results on the
spin-dynamics, let me now present the state of the art of BaCo2V2O8 under a longitudinal
field established before my PhD, as well as a preliminary neutron diffraction results under
very high magnetic field.



158 Chapter 5. BaCo2V2O8 under a longitudinal magnetic field

5.3 Phase diagram of BaCo2V2O8 under a longitudi-
nal magnetic field

5.3.1 State of the art
A lot of studies on BaCo2V2O8 under a longitudinal field have been done prior to my
PhD. Kimura et al. determined the (H − T ) phase diagram of BaCo2V2O8 under a
longitudinal magnetic field by means of high-field magnetization and specific heat mea-
surements [Kim+06; Kim+08b; Kim+08a] (see Fig. 5.3(a-b)). Another interesting study
is the work of Okunishi and Suzuki in which they have calculated the TLL exponents ηx
and ηz as a function of the applied field [OS07] (see Fig. 5.3(c)). They have shown that
an inversion of these exponents occurs for the case of BaCo2V2O8 where the longitudinal
correlations dominate the transverse ones in the low field region Hc < H < H∗ (ηx > ηz
below H∗, ηx < ηz above).

(b)

(c)

(a)

Figure 5.3: Studies of Kimura et al. (a) Magnetization M versus field H and corre-
sponding field derivative dM/dH of BaCo2V2O8 at 1.3 K measured for ~H||~c. Solid and
dashed curves are experimental and calculated magnetizations respectively. Figure ex-
tracted from [Kim+06]. (b) Temperature dependence of the specific heat of BaCo2V2O8
for ~H||~c. The inset shows an extended figure of the specific heat observed at 9 T. (c) Mag-
netization curve of BaCo2V2O8 for ~H ‖ ~c and the calculated TLL exponents. Solid and
gray dashed lines are the experimental and theoretical magnetization curves respectively.
Figures (b) and (c) extracted from [Kim+08a].

From these calculations and their measurements, Kimura et al. proposed that the
phase transition occuring at µ0H ' 4 T corresponds to the change from a Néel phase
(commensurate) to a longitudinal incommensurate phase transition, reflecting the quan-
tum nature of the spin-1/2 XXZ chain. However at that point, no microscopic mea-
surements had confirmed this assumption. The first realization of such measurements by
neutron scattering experiment on a single crystal was done by Kimura et al. [Kim+08a]
but because of the setup of the experiment, only the magnetic reflection 4 0 3 could be
reached. Nevertheless, by increasing the magnetic field, they have seen magnetic Bragg
satellites of the form 4 0 3± δ appearing above the critical field confirming that this new
phase corresponds to an incommensurate long range order (see Fig. 5.4(a)).

In another single-crystal neutron diffraction study, Canévet et al. were able to refine
the magnetic structure in this new phase by collecting many reflections above the critical
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(c)

(b) (d) (e) (f)

(a)

Figure 5.4: (H−T ) phase diagram of BaCo2V2O8 in a longitudinal magnetic field
( ~H ‖ ~c). (a) QL scans across the 4 0 3 magnetic Bragg peak for different values of the
magnetic field. The incommensurability growing when increasing the field from µ0H =
4 T. Figure extracted from [Kim+08b]. (b) Field dependence of the magnetic reflection
2 3̄QL. (red and blue open circles for increasing and decreasing field respectively). The
inset is a zoom of (b). Figure extracted from [Can+13]. This refinement leads to the
LSDW structure shown in (e). (c) (H−T ) phase diagram obtained by neutron diffraction
from [Gre+15b]. From zero-field to µ0Hc ' 4 T, the magnetic phase corresponds to a
Néel phase with the moments along the c-axis (LAF phase with L denoting longitudinal).
For µ0Hc ' 4 T ≤ µ0H ≤ µ0H

∗ ' 8.5 T, the magnetic structure corresponds to a
longitudinal spin density wave (LSDW) phase. Above µ0H

∗ ' 8.5 T, the system enters
in a Néel phase where the moments are now perpendicular to the c-axis (TAF phase with
T denoting transverse). (d-f) corresponding magnetic structures refined from the neutron
diffraction data. In addition to this TAF component along b, a ferromagnetic one develops
parallel to the applied field and thus to the c-axis. Figures extracted from [Gre+15b].

field µ0Hc ' 4 T where the propagation vector is now ~kLSDW = (1, 0, δ) 2 [Can+13] (see
Fig. 5.4(b)). Above the critical field, the Néel order is replaced by an ordered phase
with an incommensurate modulation of the amplitude of the magnetic moments oriented
parallel to the field direction (a longitudinal spin density waves denoted LSDW) as a
consequence of the TLL longitudinal correlations. In addition, they could confirm the

2The step like modulation should present a Bragg reflection corresponding to a 3~kLSDW harmonic of
the main Bragg reflection characterestic of the incommensurate SDW signal close to the transition. It has
not been seen by neutron diffraction, probably because the signal is too weak but it has been observed
by NMR experiments [Kla]
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first order character of the transition as it exhibits a field hysteresis and the Néel phase
and the LSDW phases coexist around Hc as can be seen on the field dependence of δ in
Fig. 5.4(b)).

This study was then completed at higher field by Grenier et al. (by neutron diffraction
experiment) [Gre+15b]. It has been shown that above H∗ = 8.5 T, this LSDW phase
is replaced by another Néel phase. In this high field phase, the magnetic moments are
perpendicular to the c-axis in agreement with the TLL transverse correlations which are
predicted to dominate above H∗, before the ferromagnetic saturated phase is stabilized
at higher field, too high to be reached in this experiment (see Fig. 5.4(c-f)). This second
transition was also shown to be of first order, as the LSDW and the transverse AF phase
coexist over a wide field region (see Fig. 5.4(c)).

Finally, nuclear magnetic resonance (NMR) measurements have been performed by
Klanjšek et al. [Kla+15]. This study has led to a complete phase diagram of BaCo2V2O8
in a longitudinal field up to the saturation field µ0Hsat ' 22.5 T (see Fig. 5.5).

µ0𝐻𝑐 µ0𝐻
∗ µ0𝐻𝑠𝑎𝑡µ0𝐻𝑐2

Figure 5.5: H − T phase diagram of BaCo2V2O8 probed by NMR experiments.
From zero field toH∗, this study confirms what has been observed in [Gre+15b; Can+13].
Above H∗, two additional incommensurate phases have been found: IC2 for H∗ ≤ H ≤
Hc2 and IC3 for Hc2 ≤ H ≤ Hs.

This work has confirmed the critical fields µ0Hc ' 4 T and µ0H
∗ ' 8.5 T observed

in the neutron scattering experiments [Can+13; Gre+15b]. It has also confirmed the
inversion of the TLL exponents through the survey of the T1 relaxation time. However,
surprisingly and contrary to the neutron diffraction experiment [Gre+15b], the phase
above µ0H

∗ ' 8.5 T is found to be also incommensurate (IC2) [Kla+15]. A possible
explanation for this discrepancy is that NMR probes the dynamical transverse correla-
tions. As a result, this phase would indeed be a transverse AF phase (as determined by
neutron diffraction and as predicted in the TLL theory) but dressed with strong IC fluc-
tuations (seen via the T1 in NMR), in addition to the expected AF fluctuations. Another
scenario could be that there is a true coexistence (not predicted) between the IC order
seen by NMR and the AF order seen by neutron diffraction. In this NMR study, a third
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incommensurable (IC3) phase has also been found between 19 T and µ0Hsat. The given
explanation for that comes from the huge field dependence of the interchain interaction
in this magnetic field range as reported in [Kla+15].

5.3.2 Neutron diffraction experiment under a longitudinal field
To get further insight in the two high field incommensurate phases IC2 and IC3 observed
by NMR, I went to perform a neutron diffraction experiment on the time of flight (TOF)
diffractometer HFM/EXED [HFM] in the Helmholtz Zentrum of Berlin (HZB) as this
instrument allows to reach a static magnetic field of 25 T. But due to some problems with
the 3He cryostat, the minimum temperature we could reach was only 0.8 K. As a result,
only the IC3 phase could be actually probed as the maximum Tc is about 0.9 K for IC2
and 1.3 K for IC3 (see Fig. 5.5).

After having oriented the c-axis of the sample along the magnetic field, we have col-
lected a set of Bragg reflections. The diffracted neutrons were observed using four PSD
detectors. The reflection positions and integrated neutron counts were analyzed with the
Mantid software. Because of a small misalignment of the c-axis of the sample with re-
spect to the magnetic field (by about 1.7◦), the field was set to 20.75 T instead of the
21 T observed in NMR in order to be at the maximum of the dome of the IC3 phase
(see Fig. 5.5). By making the difference between the neutron counts at 20.75 T and at
T = 0.8 K and the ones at zero-field and at T = 50 K, we obtain the results shown in
Fig. 5.6.

(a)

IC3

IC3

Figure 5.6: HFM/EXED neutron diffraction experiment. (a) The observed
BaCo2V2O8 neutron diffraction result within the four detector panels of HFM/EXED,
obtained after subtracting the zero field measurement at 50 K from the 20.75 T one at
0.8 K, using incident λ band of 1.6 - 2.8 Å. The right forward scattering panel includes
the 200 reflection (nuclear + ferromagnetic) and the potential observed incommensurate
reflection of IC3 phase. (b) Reciprocal difference map in log-scale, where the 200 and
(IC3) reflections are shown.

One can see that a strong intensity is found on the 2 0 0 reflection. This corresponds
to the superposition of a nuclear and a ferromagnetic Bragg peaks, increasing in in-
tensity with the applied field. Another peak weaker in intensity (see Fig. 5.6(b)) is
observed at the incommensurate position ~Q = (2.04, 0.94, 0.03) = (2, 0, 0) + ~kIC3 with
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~kIC3 = (0.04, 0.94, 0.03). Unfortunately, it appears close to the edge of the detector (see
Fig. 5.6(a)). Moreover, the a-axis of the sample was tilted below the horizontal plane
by about 0.2◦. This allowed this IC peak to be seen in the detector but the one at
~Q = (2, 0, 0) − ~kIC3 which is thus outside the detector (see Fig. 5.6). Note also that
due to the restricted Q-range probed here, no other IC peak could be seen. As a result,
with a single observation, the incommensurate position of this peak cannot be fully con-
firmed. This reflection is indeed not so far from the commensurate position 2 1 0, which
corresponds to that of an AF peak. Therefore a clear conclusion cannot be given.

We have planned to do another experiment overcoming the problem of the detector’s
edge and the too limited accessible Q-range and with a better cryogenic environment,
allowing us to reach a temperature below 0.5 K and thus to probe also the IC2 phase.

5.4 Tomonaga Luttinger liquid spin-dynamics in the
LSDW phase of BaCo2V2O8

In this section I will expose our experimental results concerning the spin-dynamics of
BaCo2V2O8 under a longitudinal magnetic field and show that above the phase transition
at µ0Hc ' 4 T, it corresponds to excitations characteristic of a Tomonaga Luttinger liquid
phase.

5.4.1 Experimental details

Figure 5.7: Photograph of the two co-aligned BaCo2V2O8 single crystals. The
two crystals were glued on a copper sample holder with black stykast to ensure a good
thermal contact. A ring of Cadmium was added to avoid the scattering noise from the
glue.

The INS experiments were performed on the cold-neutron TASP triple axis spec-
trometer at the Paul Scherrer Institute (PSI) [TAS], using a horizontal cryomagnet, that
allowed to apply a magnetic field up to 6.8 T. The sample consisted in two BaCo2V2O8
single crystals aligned individually with the b-axis vertical, then co-aligned using X-Rays
at Institut Néel. The coalignment was checked to be better than 1◦ around the b-axis.
This precision is reasonable enough for an inelastic neutron scattering experiment. The
magnetic field was applied along the c? axis of the (a?, c?) scattering plane, hence along
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the magnetic moments. The data were measured at the base temperature of 150 mK with
a fixed final wave vector of 1.06 Å−1, 1.1 Å−1, 1.2 Å−1 and 1.3 Å−1 and the corresponding
energy resolutions of 0.06, 0.06, 0.08, and 0.11 meV respectively.

Two experiments with BaCo2V2O8 under a longitudinal field had been performed on
TASP. The first one had a setup allowing to reach a maximum value of the horizontal field
of 4.2 T, i.e. just above the phase transition. Hence the spin-dynamics was essentially
probed in the AF phase. A second experiment with a new configuration allowed to perform
a study in the LSDW phase (above µ0Hc).

5.4.2 Field dependence of the incommensurability δ

In the Néel phase, the magnetic Bragg peaks appear at the AF points Q = (h + 1, k, l)
with h + k + l even corresponding to the ~k=(1, 0, 0) propagation vector. In the LSDW
phase, the propagation vector becomes ~kLSDW=(1, 0, δ) where δ is field-dependent and
represents the incommensurability of the moment amplitude modulation of the long-range
order. δ increases with the field, which means that the period of the modulation of the
moments becomes shorter. This manifests itself, as already explained in the previous
section (see Fig. 5.4), by a shift of the incommensurate Bragg peak positions in the
reciprocal space which should also correspond to a minimum of the dispersion of the
excitations, as predicted by the TLL theory when H > Hc.
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Figure 5.8: Determination of the incommensurate modulation δ of the propa-
gation vector. (a) QL-scans for the two alignments done on the two crystals. (b) Field
dependence of the incommensurability δ determined from QL-scans across the Bragg
peaks of the LSDW phase ~Q = (2, 0, 1 + δ) for different values of the magnetic field.

In order to determine δ precisely and thus to optimize the inelastic measurements,
we have measured QL-scans across the magnetic Bragg peak of the LSDW phase ~Q =
(2, 0, 1+δ) for each studied value of the magnetic field. Because of the slight misalignment
of about 1◦ around the vertical direction between the two coaligned crystals, we had to do
first the alignment of the first crystal (i.e. a rocking curve) and then a QL-scan. The same
procedure was done for the second crystal. The correspondingQL value was then extracted
for each crystal and their average was considered for δ (see an example in Fig. 5.8(a))
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where QL = 1.129 for the first crystal and 1.131 for the second one, yielding δ = 1.130 3).
Fig. 5.8(b) shows the resulting field dependence of δ, increasing with increasing the field
like δ = 2πm, in agreement with what was already reported [Can+13].

5.4.3 Magnetic field dependence of the excitations and phase
transition

As explained in Chap. 4, probing the magnetic field dependence of the excitations helps
us to see and characterize the phase transition occurring under field. Here, we first
investigate the field dependence of the excitations, obtained from constant-Q energy scans
at T = 150 mK (see an example in Fig. 5.9(a)) for different magnetic fields and for four
particular points in the reciprocal space: the antiferromagnetic (AF) point Q = (2, 0, 1),
the zone center (ZC) point Q = (3, 0, 1), and the two incommensurate positions with
respect to these points, Q = (2, 0, 1 + δ) labeled AFIC and Q = (3, 0, 1 + δ) labeled ZCIC.

5.4.3.1 Zeeman splitting in the Néel phase

Fig. 5.9(b) shows the field dependence of the magnetic excitations for ~Q = (3, 0, 1) in the
Néel phase, i.e. up to µ0Hc ' 3.8 T.
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Figure 5.9: Zeeman splitting in the Néel phase. (a) Energy scan at µ0H = 2 T
and T = 150 mK for ~Q = (3, 0, 1). Orange dashed lines are individual Gaussian fits of
each mode, the blue dashed horizontal line is a fit of the constant background, and the
blue solid line is their sum. (b) Field dependence of the magnetic excitations below the
transition occurring at µ0H ' 3.8 T. The Zeeman splitting can be clearly seen for the
three first transverse excitations |j T, Sz = ±1〉 with j = 1, 2, 3. The solid lines are fit
of the Zeeman splitting with the following formula EjT (H) = EjT (0) ± gzzµBH yielding
gzz = 6.07 [Fau+18]. This value of the gzz component of the Landé tensor g̃ is similar to
what has been found in [Kim+06]. The thin dashed-dotted lines are a fit to a constant
for the two first longitudinal modes: EjL(H) = EjL(0).

3When the alignment is done on the first crystal (blue curve in Fig. 5.8(a)), one can see that the
intensity of the first crystal is almost twice weaker than that of crystal 2. The suggested explanation for
this is that crystal 2 somehow hides the first one and thus reduces the incident intensity reaching crystal
1 or its scattered intensity. Thus using two coaligned crystals gives only a factor of about 1.5 on the
intensity instead of a factor two.
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AtH = 0, the lowest energy excitation at 1.7 meV is the transverse mode |1 T, Sz = ±1〉 [Gre+15a].
The field splits the two degenerate states through the Zeeman effect: Hfield |1 T, Sz = ±1〉 =
±gzzµBH |1 T, Sz = ±1〉 where Hfield = gzzµBHS

z. The resulting lowest energy branch
(in red in Fig. 5.9) decreases linearly up to the transition that occurs at µ0Hc = 3.9 T. The
Zeeman splitting acts in the same way on the other transverse energy modes |j T, Sz = ±1〉
with j = 2, 3. On the other hand the two first longitudinal excitations at zero-field, cor-
responding to |j L, Sz = 0〉 with j = 1, 2 do not vary with the field up to µ0Hc which is
consistent with the fact that Hfield |j L, Sz = 0〉 = 0. Hence, the field evolution of the ex-
citations in the Néel phase under a longitudinal field is another evidence of the transverse
and longitudinal characters of the excitations at zero-field.

5.4.3.2 Phase transition and magnetic field dependence of the excitations in the
LSDW phase

Fig. 5.10 shows the field dependence of the low-energy magnetic excitations for the four
different points AF ~Q = (2, 0, 1), ZC ~Q = (3, 0, 1) and their respective incommensurate
points AFIC ~Q = (2, 0, 1 + δ) and ZCIC ~Q = (2, 0, 1 + δ).
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Figure 5.10: Field dependence of the low-energy magnetic excitations from energy
scans performed in the Néel phase (0 ≤ µ0H ≤ µ0Hc = 3.8 T ) and in the LSDW phase
(µ0Hc ≤ H ≤ 6.8 T ) at T = 150 mK. Four positions were investigated. In the Néel
phase: AF ~Q = (2, 0, 1) (red open circles) and ZC ~Q = (3, 0, 1) (red closed circles). Only
the lowest transverse mode in the Néel phase is shown here. In the LSDW phase: AF
~Q = (2, 0, 1) and ZC ~Q = (3, 0, 1) (open and closed orange triangles, respectively) together
with the IC positions next to them ~Q = (2, 0, 1 + δ) and ~Q = (3, 0, 1 + δ) with δ the IC
modulation of the underlying IC ordering (open and closed blue diamonds, respectively).
The critical field is indicated by a black arrow. The thick red line in the Néel phase is
a fit of the Zeeman splitting as explained above while the dashed orange lines are linear
fits in the LSDW phase (see text).

In the Néel phase, only the lowest energy branch arising from the Zeeman splitting of
the first transverse mode |1 T, Sz = ±1〉 is plotted. The transition between the Néel phase
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and the LSDW phase can be clearly seen from the discontinuity in the field dependence
of the magnetic excitations and from the minimum of the gap which occurs at µ0Hc.
Focusing only on the strongest excitations of the LSDW phase, one can see that above
the transition, the energy of the modes at the commensurate AF and ZC points increases
linearly with the field with a lower energy for the AF point. For the incommensurate
AFIC and ZCIC points, the energy of the excitation is almost constant with a minimum
energy gap of about 0.15 meV for the former while it slowly decreases while H increases
for the latter. The gap at the ZCIC point then reaches a value of about 0.35 meV at
µ0H = 6.8 T. The fact that we do not close the gap here probably comes from the
presence of interchain interactions, as it was the case in a transverse field (see Chap. 4).

5.4.4 Dispersion of the excitations along QL in the LSDW phase
5.4.4.1 Overall view of the dispersion spectrum

To probe the dispersion spectrum in the LSDW phase, we have done many energy scans for
different values of the scattering vector ~Q = (QH , 0, QL) for both QH = 2 and QH = 3 and
by varying QL. These dispersion spectra have been investigated for µ0H = 4.2 T and 6 T.
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Figure 5.11: Spin dynamics in the LSDW phase of BaCo2V2O8 in the vicinity
of a zone center position at µ0H = 4.2 T and T = 150 mK. (a,b) Energy scans at
three different scattering vectors: the ZC position (3, 0, 1), its IC satellite (3, 0, 1+δ) with
δ = 0.082, and further away along c?. Panel (a) shows the low energy part of these scans.
(c) Inelastic scattering intensity map showing the dispersion spectrum of the magnetic
excitations along the c? direction, in a longitudinal field at 4.2 T. (d) is a zoom of part
of the spectrum delimited by the dashed black box in (c).

Figs. 5.11(a-b) show energy scans performed in the LSDW phase, at T = 150 mK
and H = 4.2 T, at three different scattering vectors at and close to the ZC point. These
scans emphasize the presence of a very intense excitation at low energy (typically E <
1.5 meV), whose intensity decreases drastically when going further away from the ZC
point. It loses a factor of about 2 for ∆QL ' 0.08 r.l.u. and has completely disappeared
for ∆QL ' 0.16 r.l.u. At this QL value remains a broad feature that could correspond
to a continuum of excitation or as well to broadened discretized excitations. In all this
QL−range, in addition to the intense excitation, much weaker ones are also visible, one
at a lower energy, and several ones at higher energy.
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This is better seen in the intensity map of Fig. 5.11(c) obtained from the constant-Q
energy scans and thus showing the overall behavior of the spin dynamics, between the
ZC position and 0.8 r.l.u. away from it. One can notice that, as expected for a TLL (see
Fig. 5.2), the minimum of the dispersion, with an energy of about E ' 0.35 meV, occurs
at the satellite position of the LSDW phase, QL = 1.082 r.l.u. at this field value. On the
other hand QL = 1 now corresponds to a (local) maximum of the low energy boundary of
the dispersion spectrum. The two positions (AF and ZC on one hand, AFIC and ZCIC on
the other hand) plotted in the LSDW phase in Fig. 5.11 thus correspond to the extrema
of the dispersion.

5.4.4.2 Field-evolution of the spin-dynamics of the LSDW phase

Fig. 5.12 shows the field-evolution in the spin dynamics of the LSDW phase along QL

both around AF and ZC positions. Due to the folding of the dispersion in BaCo2V2O8,
the spin-dynamics across the ZC point ~Q = (3, 0, 1) and the AF point ~Q = (2, 0, 1) are
expected to be similar.
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Figure 5.12: Field dependence of the dispersion spectrum. (a-b) Inelastic scattering
intensity map obtained from a series of Q-constant energy scans around the AF position
~Q = (2, 0, 1) for the two field values µ0H = 4.2 T and µ0H = 6 T. (c-d) shows the same
content, but around the ZC position ~Q = (3, 0, 1). All the Q-constant energy scans were
measured at T = 150 mK. The intensity is saturated here, especially to emphasize the
signal appearing below the arch-bridge at µ0H = 6 T and QH = 2.

At µ0H = 4 T, the very intense excitation seen around the ZC position (3, 0, 1) and its
incommensurate satellite (see Fig. 5.11(c)) can also be around the AF position (2, 0, 1),
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with a comparable intensity (see Fig. 5.12(a)). The dispersion of this excitation along QL

was studied on both sides of the AF position, up to ∆QL = ±0.1 r.l.u. Here again, the
minima in energy are at the expected incommensurate satellite positions QL = 1± δ, and
a maximum is observed at QL = 1. This arch-bridge shape of the dispersion corresponds
well to the lower bound of the continuum of excitations in the TLL theory (see Fig. 5.2(d)),
except for the residual energy gap of 0.14 meV in the excitations.

Fig. 5.12(b),(d) show the spin dynamics obtained at a higher field of µ0H = 6 T across
the AF and ZC positions respectively. The minima of the dispersion are still obtained
at the incommensurate satellite positions QL = 1 ± δ and the arch-bridge maximum
at the commensurate ones QL = 1. By increasing the field, the arch bridge dispersion
expands. Indeed around both the AF and ZC positions, the amplitude of dispersion is
about 0.2 meV at µ0H = 4.2 T while it is about 0.8 meV for µ0H = 6 T and the IC
minimum moves appart from the ZC or AF positions. This seems to be also in agreement
with the TLL theory for the incommensurate fluctuations, as their energy increases with
increasing the value of δ and thus the value of the magnetic field (see Fig. 5.2(d)).

From Fig. 5.12(b), one can see that a broad very weak signal exists below the arch
bridge. This signal seems consistent with the TLL theory where the commensurate fluctu-
ations reach a minimum of energy at the commensurate position QL = 1 (see Fig. 5.2(c)).

Finally, note that the energy gap is different between the AFIC (∆ = 0.14 meV) and
the ZCIC (∆ ' 0.35 meV) positions while there is a twice smaller difference in zero-field
(the difference is about 0.1 meV). I will explain this difference in the next section.

5.4.5 Dispersion of the excitations along QH

We have investigated the dispersion perpendicular to the chain to get an insight about the
nature of the interchain interaction in the LSDW phase. Constant-Q energy scans have
been performed at 150 mK for different values of the magnetic fields below and above the
phase transition up to µ0H = 6.8 T .

Fig. 5.13(a) shows the field evolution of the dispersion along QH . Fig 5.13(b) shows
the amplitude of dispersion ∆E obtained from the fits of the dispersions. This amplitude
increases with the effective interchain coupling J ′ and with the AF component of the
ordered moments involved in the magnetic structure.

While the system is non-dispersive in the Néel phase (see the dispersion in Fig. 5.13
for µ0H = 3.5 T and 3.8 T in red and blue dashed lines respectively), a finite dispersion
appears in the LSDW phase with a discontinuity in the field dependence of the amplitude
of dispersion ∆E at µ0Hc. Above the transition ∆E = 0.38 meV for µ0H = 4.2 T and
then decreases while increasing the magnetic field down to ∆E ' 0.2 meV at µ0H = 6.8 T.

As we have seen in Chap. 1, the fact that the excitations in the Néel phase at zero-field
are almost non-dispersive could be due to the frustration between neighboring chains. In
a transverse field (see Chap. 4), the amplitude of dispersion ∆E increases continuously
with the transverse field to reach a maximum at the phase transition. This was attributed
to the progressive change of magnetic structure imposed by the staggered field and thus
to a change in the interchain couplings terms releasing the frustration.

Here the fact that there is a discontinuity of the amplitude of dispersion ∆E between
the Néel phase and the LSDW one probably comes from the first order nature of the phase
transition (see Fig. 5.4(b)). The change in ∆E can be explained qualitatively by the
completely different nature of the two respective ground states. Indeed the fact that the
system evolves from a Néel ground state where all the moments have the same amplitude
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Figure 5.13: Field evolution of the dispersion along QH . (a) Dispersion along
QH obtained from constant-Q energy scans measured at T = 150 mK for QL = 1
in the Néel phase and for QL = 1+δ in the LSDW phase for different fields. The
dispersive branches (solid symbols) were fitted with the phenomenological law: E =√

∆2 + (E2
m −∆2) sin2[hπ2 ], where hQH + 1, ∆ is the gap and Em is the maximum of

the dispersion. The non-dispersive branches (open symbols) were fitted by a constant
E = Em = ∆ (dashed lines). (b) Field dependence of the amplitude of dispersion
∆E = Em −∆ extracted from the previous fits.

to a longitudinal spin density waves changes drastically the influence of the interchain
interactions. This might remove some frustrations in the system as the amplitude of the
moments are modulated along the chain in the LSDW phase. The decrease of ∆E with
increasing field can be understood by the decrease of the antiferromagnetic component
of the magnetic moments at the expense of the ferromagnetic one (which is directly
proportional to the incommensurability δ here and logically to the applied magnetic field).

Finally, at zero-field, the fact that the excitations do not disperse perpendicularly to
the chain leads almost to the same gap in the dispersion along QL for both AF and ZC
positions. We have observed on the other hand that the gap ∆ is not the same for AFIC
and ZCIC positions in the LSDW phase. The difference corresponds to the amplitude
of interchain dispersion ∆E which is not zero. Indeed at µ0H = 4.2 T, ∆(ZCIC) −
∆(AFIC) ' 0.36 meV ' ∆E.

5.4.6 Summary of the experimental results
Our experimental results and especially the dispersion along the chain (i.e. along QL)
seem to comply with the expected TLL spin-dynamics of a spin-1/2 chain as far as the
lower bound of the dispersion is concerned. In addition, all the spectral weight seems to be
concentrated in the mode which reaches a minimum at the incommensurate position QL =
1 + δ (see the arch bridge in Fig. 5.12(b)). Unfortunately, because of the experimental
setup, i.e. the pillars of the cryomagnet, it was impossible for us to discriminate the
transverse and longitudinal modes using the geometrical factor of the neutron scattering
cross section, in particular the scattering vector ~Q = (0, 0, 2) probing only transverse
fluctuations, was not accessible.
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Let us recall that in our case, because of the Ising-like anisotropy of BaCo2V2O8, the
longitudinal correlations 〈Sz(~ri, 0)Sz(~rj, t)〉 are expected to dominate over the transverse
ones up to µ0H

∗ ' 8.5 T (as ηx > ηz in this field region). As the spectral weight
is obtained from the double Fourier transform of the spin-spin correlations, this should
imply that the main part of the spectral weight is in the Szz fluctuations.

To try to get a deeper insight and to prove the dominance of the longitudinal polar-
ization of these excitations, we used numerical calculations.

5.5 Numerical calculations and interpretation of the
results

I will first present the Hamiltonian of the system and my numerical calculations using
exact diagonalization as a first attempt to better understand our results. Then I will show
the iTEBD results performed by S. Takayoshi and T. Giamarchi.

5.5.1 Hamiltonian of the system

The Hamiltonian of BaCo2V2O8 under a longitudinal field is the following 4:

H=
∑
j

J [SzjSzj+1 + ε

2(S+
j S
−
j+1 + S−j S

+
j+1)]

︸ ︷︷ ︸
1

−
∑
j

J
′
< Szj > Szj︸ ︷︷ ︸

2

−µBHgzz
∑
j

Szj︸ ︷︷ ︸
3

with:
1 : XXZ Hamiltonian.
2 : interchain interaction treated in mean field theory.
3 : Zeeman Hamiltonian of the uniform field ~H along the c-axis.

(5.7)

where gzz = 6.07 according to the fit of the data in Fig. 5.10. In the following, I will
now denote Sxx (same as Syy since the symmetry between ~a and ~b is not broken by the
field) and Szz the transverse and longitudinal fluctuations of the ordered moments. S⊥
will denote the fluctuations seen through neutron scattering, i.e. perpendicular to the
scattering vector ~Q.

The interchain interaction is still taken into account even if this term is not relevant
in the TLL phase as we will see later. While this part of the Hamiltonian is well defined
and can reasonably be treated in mean field theory in the Néel phase, its treatment in the
LSDW phase is more questionable. One reason for that is the sinusoidal modulation of
the moments. The mean field theory becomes even more critical close to the transition,
especially because of the step-like modulation of the amplitude of the magnetic moments.
Nevertheless, we made the assumption that the interchain interaction can still be treated
in mean field theory.

4Note that, as seen in Chap. 4, the Landé tensor g̃ is not diagonal. Hence effective fields along ~a and
~b are induced when a field is applied along ~c. However, these effective fields have the same nature than
the one along ~c when the field is applied along ~b and thus are non-relevant.
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5.5.2 Exact diagonalization
As for the case of the transverse field, I have used my own Mathematica program explained
in Chap. 3. Here the Hamiltonian computed is the one of Eq. (5.7) for a simple linear
chain. We know that the amplitude of the moments is modulated along the chain in
the LSDW phase, therefore the periodic boundary condition was removed (as it has no
meaning now). The calculations in the LSDW phase were made with a number n = 20
spins and with the 2-spinons basis. The starting point was to compute the field dependence
of the excitations in the Néel phase to check that it reproduces qualitatively the features
found experimentally.

5.5.2.1 Field-dependence of the excitations

Fig. 5.14 shows the calculated magnetic field dependence of the excitations under a lon-
gitudinal field. The scattering intensity is calculated on an AF point ~Q = (1, 0, 0.5).
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Figure 5.14: Field dependence of the excitations in the Néel phase calculated
by exact diagonalization. Calculated intensity maps of S⊥ (a), Sxx (b) and Szz (c)
showing the field-dependence of the magnetic excitations in the Néel phase. S(Q,ω) is
calculated on an antiferromagnetic point (AF) Q = (1, 0, 1

2) of a linear spin-1/2 XXZ
chain. The calculations were made with a 2-spinons basis of n = 20 spins. The numerical
critical field µ0H

num
c is pointed out by the white dashed lines. The step in field (resp. in

energy) is taken as 1 T (resp. 0.05 meV).

First, one can see a discontinuity in the field dependence of the excitations across
µ0H

num
c ' 14 T marking the occurence of a phase transition. Note that the energies of

the modes, and thus also of the critical field, are larger than the experimental one because
of the truncation of the Hilbert space. In the following, only the qualitative behavior will
thus be considered.

Below this transition, one series of excitations at zero field splits in two branches
which exhibit a linear dependence with increasing the field. This corresponds to the
Zeeman splitting observed experimentally. A second series of excitations does not vary
with increasing the field. This is consistent with the calculated polarization of the modes,
i.e. the fact that the first series corresponds to transverse excitations carrying a spin
S = ±1 and the later to longitudinal ones carrying a spin S = 0 (see Fig. 5.14(b) and (c)
respectively).
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Above the transition, the longitudinal fluctuations are the ones observed at the mini-
mum in energy which does not vary when the field further increases, while the transverse
ones, higher in energy, increase linearly with increasing the field. At first sight, this seems
to reproduce qualitatively what is observed in Fig. 5.10. However one has to keep in mind
that the scattering function is calculated at an AF commensurate position for which the
energy of the longitudinal mode is supposed to increase with increasing the field (see the
open orange triangles in Fig. 5.10).

Here, the calculations reproduce qualitatively well the field dependence of the exci-
tations in the Néel phase. The field dependence in the phase above shows some similar
features with our measurements in the LSDW phase. However there are some inconsis-
tencies that I will discuss in the next section, by describing the calculated ground state
above the transition.

5.5.2.2 Ground state

The first step before calculating the dispersion spectrum in the phase above the transition
is to compute the corresponding ground state and to check that we obtain a longitudinal
spin-density wave as expected in the LSDW phase. By calculating the average magneti-
zation on each site, I obtained the ground state shown on Fig. 5.15.

Figure 5.15: Ground state in the phase above the transition calculated with n = 20
sites at µ0H = 16 T. Here the magnetization is plotted perpendicularly to the direction
of the chains for more legibility. The black circles show the defects where two moments
are aligned ferromagnetically.

One can clearly see a modulation of the amplitude of the ordered moments along the
chain. However there are some defects along the chain. Pairs of moments are parallel
instead of being antiferromagnetically coupled.

Moreover, I tried to compute the ground state for different values of the magnetic field
and different number of sites. In the former case, I have seen that it does not change with
increasing the field, which means that the incommensurability remains the same above the
phase transition. This probably explains also the fact that the energy of the longitudinal
mode does not increases with the field at the AF point since it actually increases with the
incommensurability δ. Concerning the influence of the number of sites, I have seen that
there are systematically two defects and the incommensurability δ depends on the number
of sites. This probably comes from to the huge truncation of the Hilbert space and the
highly limited size of the system. Indeed, as explained in section (5.2.1), the LSDW phase
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arises from the defects (i.e. the spinons) created by the applied field which spread over a
few sites to form a sinusoidal modulation of the magnetic moments amplitude. However,
to be able to perform calculations, I needed to truncate the Hilbert space to the 2-spinon
basis, thus limiting the number of defaults to 2.

In spite of these limitations, we recover the fact that the ground state corresponds
to a modulation of the amplitude of the spins, motivating us to calculate the dispersion
spectrum along QL.

5.5.2.3 Dispersion spectrum along QL

Fig. 5.16 shows the calculated dispersion spectra using exact diagonalization.
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Figure 5.16: Dispersion spectra along QL calculated with exact diagonalization.
(a) S⊥ with ~Q = (1, 0, QL). (b-c) the corresponding Sxx and Szz calculated polarizations.
Here the calculations are performed for a chain with n = 20 sites. The scale in intensity
is in arbitrary units. The step in QL is taken as 0.02 r.l.u (resp. 0.05 meV). The white
round in (b) shows the very weak intensity of the commensurate transverse at QL = 0.5.

One can see that compared to the results at zero-field (see section. 3.4.3), the system is
now ungapped. Moreover an incommensurability has developed around the AF point for
the lowest energy branch (see Fig. 5.16(a)) which corresponds to longitudinal fluctuations
(see Fig. 5.16(c)). Two energy branches higher in energy and corresponding to the trans-
verse fluctuations Sxx also appear in the calculated spectrum: a first one at low energy
around 2 meV, very weak in intensity (pointed out by the white circle in Fig. 5.16(b))
at the commensurate AF position QL = 0.5 and a second one at higher energy (around
5 meV at QL = 0.5) which seems to have minima of energy at incommensurate positions
around the AF position QL = 0.5. Those results are qualitatively consistent with what is
expected for an AF chain in a longitudinal field at the AF position [Mül+81] and some
features are reproduced if we compare to [Yan+17]. Note that the spectral weight is
almost zero at ZC positions QL = 0 and QL = 1.

However, the absence of gap expected for the transverse excitations at the AF point is
not reproduced here. This is again supposedly due to the huge truncation of the Hilbert
space and the limited size of the chain. Nevertheless we can show by these calculations
that the majority of the spectral weight is contained in the lowest energy mode which
corresponds to longitudinal fluctuations Szz. In order to fully confirm this hypothesis and
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to have a better accuracy for the comparison with the experimental data, let us now turn
to iTEBD calculations.

5.5.3 iTEBD calculations
I will show here the iTEBD calculations done by Shintaro Takayoshi and Thierry Gia-
marchi for a screw chain as BaCo2V2O8. They have computed the Hamiltonian of Eq. 5.7
by taking gzz = 6.07 and by treating the interchain interaction by means of mean-field
theory. The other parameters are the ones found from the fit of the dispersion spectrum
at zero-field (see section 4.6.2.1), i.e. J = 5.8 meV and ε = 0.53. As we will see later
in this section, the mean field treatment of the interchain interaction does not work well
near the critical point and, moreover, the interchain interaction does not seem to play
a crucial role in the dynamics. Thus, in order to reproduce correctly the data in the
LSDW phase, J ′ was taken as 0.03 meV (while J ′ = 0.17 meV for the zero-field and the
transverse field cases). The number of sites is taken as n = 200 in order to reproduce
well the incommensurability of the system. As in my calculations, there is no periodic
boundary conditions.

I would like to emphasize that while the profile in energy was well known for years [Mül+81],
no calculations of the dynamical structure factors were done until our study and the re-
cent paper of Yang et al. [Yan+17] in which they study the spin dynamics of the similar
compound SrCo2V2O8. I will discuss this work in the conclusion of this chapter.

5.5.3.1 Calculated magnetic field dependence of δ

The first step before calculating the dispersion spectra for different values of the magnetic
field was to calculate the magnetic field dependence of the incommensurability of the
ground state from the static spin-spin correlation function

〈
Sz(~0, 0)Sz(~r, t)

〉
to compare

with the experimental findings.

Figure 5.17: Calculated field dependence of the incommensurability δ to compare
with the experimental ones obtained from neutron scattering experiments on D23 at ILL
and on TASP at PSI. The black arrows point out the step-like tendencies in the field
dependence of δ.
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Fig. 5.17 shows the calculated magnetic field dependence of the incommensurability
using iTEBD for J ′ = 0.17 meV. One can see that the calculations reproduce well the
experimental data. However the incommensurability starts to develop slightly before the
experimental critical field of µ0Hc ' 3.8 T. This is due to the influence of the interchain
interaction and its incorrect treatment. Moreover step like tendencies appear in the
calculated field dependence of δ. This might be due to the finite size of the system.

5.5.3.2 Overall view of the calculated dispersion spectrum in the LSDW phase

Let us first see an overall view of the calculated dispersion spectra along QL.
Figs. 5.18((a),(d)) show the dispersion spectra calculated using iTEBD along (QH , 0, QL)

for the two values QH = 3 and 2 at µ0H = 6 T.
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Figure 5.18: Calculated dispersion spectrum along QL at µ0H = 6 T for ~Q =
(QH , 0, QL) with the two valuesQH = 3 (a-c) andQH = 2 (d-f). The calculated transverse
and longitudinal excitations Sxx and Szz are also shown: for QH = 3 (b-c) and for QH = 2
(e-f). The intensity is in arbitrary units.

One can see that an incommensurability develops in both cases as we can clearly see
minima of energy on IC positions, for example around QL = 1 which corresponds to
an AF position for QH = 2 and to a ZC position for QH = 3. These incommensurate
excitations correspond to longitudinal fluctuations Szz (see Fig. 5.18((c),(f))). The fact
that it is seen similarly at the ZC and AF points is due to the folding of the dispersion
due to the screw structure of the chain. However in theory an incommensurability should
also develop around the ZC point for the transverse excitations Sxx at zero energy. This
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is not seen here which means that the associated spectral weight must be vanishing small
(as in the case of exact diagonalization).

Instead, the transverse fluctuations Sxx exhibit the minima of energy only at AF com-
mensurate positions where the system is gapless (for example at QL = 1 in Fig. 5.18(e)).
A second incommensurate energy mode higher in energy is also present. This one is
similar to the one I have found with exact diagonalization.

Finally, concerning the spectral weight, one can see that the maxima of intensity
correspond to longitudinal fluctuations Szz in all cases.

5.5.3.3 Comparison with the experiments
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Figure 5.19: Calculated dispersion spectrum around the ZC point along QL at
µ0H = 4.2 T for ~Q = (3, 0, QL) (a). (b) is a zoom of the spectrum (a). (c-d) Calculated
transverse and longitudinal fluctuations Sxx and Szz respectively. The intensity is in
arbitrary units.

Fig. 5.19 shows the calculated dispersion spectrum along QL for ~Q = (3, 0, QL) at
µ0H = 4.2 T. Fig. 5.19(a) and its zoom Fig. 5.19(b) have to be compared with Fig. 5.11(c-
d). One can see a good agreement with the experimental data. All the spectral weight
is concentrated in the low energy range extending from the ZC to the incommensurate
position and slightly above. These calculations further confirm that the majority of the
spectral weight is carried by the longitudinal fluctuations Szz (see Fig. 5.19(c-d)).

However there are few differences with the experimental data. First, there is almost
no gap at the incommensurate position in the calculations (' 0.2 meV) while there is one
of about 0.5 meV in the experiment. This gap is explained by the fact that the system be-
comes clearly dispersive perpendicularly to the chain in the LSDW phase. Unfortunately,
the treatment of the interchain interaction in mean field theory is one of the limitation
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of the calculations. In addition, the intensity of the two main calculated longitudinal
branches (starting at about 0.4 and 1.6 meV at QL = 1) are a bit different in the calcu-
lations, possibly due to an anticrossing as the one observed in zero-field. This could also
explain why the additional intermediate excitation seen experimentally around 0.8 meV
(see Fig. 5.11(d)) is not well reproduced by the calculation.
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Figure 5.20: Calculated field dependence of the dispersion spectrum along QL.
(a-b) calculated dispersion spectrum of the transverse and longitudinal fluctuations Sxx
and Szz at µ0H = 6 T. (c-d) calculated dispersion spectrum for ~Q = (2, 0, QL) at µ0H =
4.2 T and µ0H = 6 T respectively. (e-f) show the same calculations for ~Q = (3, 0, QL).

Fig. 5.20 shows the field evolution of the dispersion spectra along ~Q = (2, 0, QL) and
~Q = (3, 0, QL). This figure has to be compared with Fig. 5.12. Once again, one can
observe a rather good agreement between the calculations and the experimental results.
Indeed the arch bridge expands with increasing the magnetic field as seen in the experi-
ment. The calculations for QH = 2 (see Fig. 5.20(c-d)) reproduce better the experiment
than for QH = 3 as the gap of the interchain dispersion is almost null around the AFIC
position (contrary to the ZCIC one for the reasons explained before). The arch bridge
corresponds to Szz fluctuations (see Fig. 5.20(b)) while the weak spectral weight, reaching
a minimum in energy at the commensurate point QL = 1, corresponds to Sxx fluctuations
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(see Fig. 5.20(a)).

To summarize, the calculations reproduce qualitatively well the experimental results.
The arch bridge corresponds to longitudinal fluctuations while the transverse ones corre-
spond to the ones having a minimum in energy at the commensurate position. Moreover
it has been confirmed numerically that the majority of the spectral weight is contained in
the longitudinal fluctuations. This is in agreement with the theory which predicts that
for Ising-like spin-1/2 chains, the longitudinal correlations should dominate in this low
field region of the TLL phase (Hc < H < H∗).

5.5.3.4 Influence of the interchain interaction on the dispersion spectrum
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Figure 5.21: Influence of the interchain interaction on the dispersion spectrum
along QL. (a-c) Calculated Dispersion spectra around the AF position (QH = 2) at
µ0 = 4.2 T and for J ′ = 0, 0.06, 0.12 and 0.18 meV respectively. (d-f) shows the same
spectra at µ0H = 6 T.

Fig. 5.21 shows the calculated dispersion spectra along QL for different values of the in-
terchain interaction treated in a mean-field theory. Close to the transition (see Fig. 5.21(a-
c)), the interchain interaction strongly affects the spin-dynamics. Indeed for J ′ = 0 (see
Fig. 5.21(a)), the incommensurability is well developed. However, if we increase the inter-
chain interaction up to J ′ = 0.12 meV (see Fig. 5.21(c)), the spectral weight shrinks at the
commensurate position. This must be due to the limitation of the mean field treatment
of the interchain interaction to capture a step-like modulation of the amplitude of the
moments expected close to the transition.

However, further away from the critical field, for example at µ0H = 6 T (see Fig. 5.21(d-
f)), the interchain interaction has less influence with only moderate changes in the spectral
weight. But still, J ′ = 0 or eventually 0.06 meV allows to reproduce better the experiment.

Thus, the interchain interaction treated in mean field theory does not alter too much
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the spin-dynamics, except close to the transition. THis shows mainly that it is not a
crucial parameter for the spin dynamics of BaCo2V2O8 in the LSDW phase.

5.6 Conclusion
Before concluding, I would like to discuss a study on SrCo2V2O8 under a longitudinal field
has been done in parallel to our work [Wan+18; Yan+17]. In their paper, Wang et al.
did not use neutron scattering experiments but terahertz spectroscopy and thus they were
only sensitive to the ZC point (0, 0, 0). They have mainly focused on the field dependence
of the excitations in the paramagnetic phase and have shown that they correspond to
Bethe strings, quasiparticles that have been predicted a long time ago from the Bethe
ansatz [Bet31; Gau71; TS72]. In our case, we probed the spin-dynamics of BaCo2V2O8
for several points of the Brillouin zone, and we focused on the dispersion spectra along
the chain in the ordered phase.

In our work, the spin-dynamics of BaCo2V2O8 under a longitudinal field has been
investigated both experimentally and numerically. We have shown that it corresponds to
the one of a Tomonoga Luttinger liquid. This is expected to occur by applying the field
along the easy-axis of anisotropy which changes the system from a gapped Néel phase to
an incommensurate gapless phase [Mül+81]. The good agreement between the experi-
ment and the numerical calculations allows us to confirm the fact that the majority of the
spectral weight is contained in the longitudinal fluctuations. This result, consistent with
the fact that the longitudinal correlations are predicted to dominate in this material be-
cause of its anisotropy, is highly non-trivial. Indeed it enlightens the very strong quantum
character of BaCo2V2O8 since classical systems prefer to fluctuate both perpendicularly
to the magnetic field and to the ordered moments. While the TLL spin-dynamics has
been studied in many Heisenberg materials, BaCo2V2O8 is the first anisotropic spin-chain
where the dispersion spectrum is probed in the gapless phase.

We have shown here that BaCo2V2O8 is a remarkable material showing many quantum
features. In particular, we have proven that the longitudinal fluctuations, usually rather
elusive, are in our case enhanced by the application of a magnetic field along the c-axis.
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6.1 Summary

6.1.1 Abstract
In this chapter, I will first present the study of BaCo2V2O8 under high pressure and
longitudinal field where a commensurate-incommensurate transition from a Néel state to
a longitudinal spin-density waves (LSDW) phase occurs as explained in Chap. 5. I will
show and discuss the specific heat results which has led to the (H,P, T ) phase diagram
of BaCo2V2O8.

Second, I will present very briefly the study of BaCo2V2O8 under the substitution of
the magnetic ions Co2+ by non-magnetic impurities Mg2+. I will show the static and
dynamical properties of Ba(Co1−xMgx)2V2O8 measured by neutron scattering. Then I
will present my numerical calculations which reproduce some of the experimental features.
Finally I will give a conclusion and the perspectives of this study. Both studies are ongoing
studies and the results and conclusions are still preliminary.

6.1.2 Résumé en français
Le sixième chapitre est consacré à deux études toujours en cours. La première concerne
BaCo2V2O8 sous pression hydrostatique et sous champ longitudinal. Afin de déterminer
le diagramme de phase (H,P, T ) de BaCo2V2O8 des mesures de chaleur spécifique sous
champ magnétique et sous pression hydrostatique ont été faites. Pour cela, BaCo2V2O8
a été préalablement placé dans une cellule à enclumes diamant, dispositif permettant
d’atteindre des pressions de l’ordre de 10 GPa. Les résultats ont montré que la tempéra-
ture critique et le champ critique augmentent lorsque la pression augmente. La tempéra-
ture critique augmente néanmoins très légèrement dans la phase LSDW en comparaison
avec la phase Néel, ce qui nous a permis de conclure que l’interaction intrachaîne est la
quantité la plus affectée lorsque la pression augmente. La deuxième étude concerne la
substitution des ions magnétiques de Co2+ par des ions non magnétiques Mg2+. Nous
avons pour cela étudié les propriétés statiques et dynamiques de Ba(Co1−xMgx)2V2O8
pour les deux concentrations x = 2% et x = 5%. L’étude des propriétés statiques par
diffraction des neutrons montre que la structure magnétique à champ nul est essentielle-
ment conservée en présence des impuretés. La température critique décroît linéairement
lorsque la concentration magnétique augmente jusqu’à x = 5%. La phase LSDW n’a
pas été observée pour x = 5% dans la gamme de températures étudiée et une autre ex-
périence est planifiée afin de voir si celle-ci existe pour le cas x = 2%. Concernant les
propriétés dynamiques, les mesures par diffusion inélastique dans les deux composés de
neutrons ont montré que les impuretés affectent beaucoup le spectre des excitations. En
effet, en plus des excitations discrètes dispersives dues au confinement des spinons par
l’interaction interchaîne qui se retrouvent élargis, des modes non dispersifs existent dans la
partie des basses énergies du spectre. Ces derniers doivent provenir des effets de taille finie
du système et pourraient être vus comme excitations locales oú les spinons sont liés aux
impuretés non magnétiques. Mes calculs de diagonalisations exactes semblent confirmer
ce qui est observé expérimentalement. D’autres expériences de diffusion neutronique sont
prévues afin d’aller plus loin dans l’analyse de ces échantillons dopés. De plus des calculs
iTEBD et Monte Carlo quantique pourraient nous aider à mieux comprendre l’effet de
ces impuretés non magnétiques.
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6.2 BaCo2V2O8 under a hydrostatic pressure

6.2.1 Context and motivations
A quantum phase transition is defined as a transition due to quantum fluctuations at zero
temperature by varying a physical parameter such as a magnetic field. This is what we
have seen in the previous chapters (see Chap. (4) and Chap. (5)), where we have studied
two different quantum phase transitions in BaCo2V2O8 for different orientations of the
magnetic field.

The idea to probe phase transitions in magnetic systems by means of magnetic fields
comes to mind naturally. However, another physical parameter that we can play with is
the pressure. Studies with pressure are commonly done with superconductors, for example
the study of Drozdov et al. where they have found a conventional superconductivity at
ambiant temperature in the sulfure hybride system H2S at high pressure (around 200 GPa
which is almost the gravitational pressure of the sun...) [Dro+15]. Another example is the
investigation of phase transitions in heavy fermion compounds, for instance the well known
compound URu2Si2, where a mysterious hidden order phase1 occurs [Has+08]. Concern-
ing magnetic systems, the effect of the application of a hydrostatic pressure has been
investigated in some compounds such as the spin-1/2 ladder system SrCuO3 [Weh+18],
the spin-Peierls chain TiOCl [Rot+18] or in the quantum dimer material TiCuCl3 where
quantum phase transitions are controlled by high pressure and probed by inelastic neutron
scattering experiments [Mer+14].

Some theoretical studies have been carried out in order to relate the critical field µ0Hc

and the critical temperature Tc to the anisotropy ∆, the interchain interaction J ′ and
intrachain interaction J of quasi-1D spin systems. Steiner et al. proposed the following
formula for the critical temperature TN between the paramagnetic phase and the Néel
phase [SVW76]: kBTN ' S2

√
|J ′||J |. This experession is modified in the quantum case

where quantum fluctuations decrease the critical temperature [SIP75]. The anisotropy
also plays a role since the ordering is easier in the Ising case than in the Heisenberg
case [SIP75; SVW76]. To model the Néel to LSDW phase transition obtained in a longi-
tudinal field in BaCo2V2O8, Okunishi et al. [OS07] have studied numerically a linear spin
chain by treating the interchain interaction by mean field theory. They have shown that
both the critical temperature T icc between the incommensurate longitudinal spin-density
waves (LSDW phase) state and the paramagnetic phase and the critical field µ0Hc between
the Néel phase and the LSDW phase increase with increasing ∆. Moreover they proposed
the following formula relating T icc and the interchain interaction: T icc ∝ J(J ′/J)ηx(2ηx−1)

where ηx = ηx(H,∆) is the Luttinger exponent with ηx > 1 in the LSDW phase.

Experimentally, Niesen et al. investigated the effect of a chemical pressure in BaCo2V2O8
by substituting the atoms of barium by lighter atoms of strontium. They have shown
that the lattice parameter a strongly decreases while c increases slightly when increas-
ing strontium concentration (see Fig. 6.1(a)). The main effect of the chemical pressure
is thus to bring the chains closer to each other. Therefore, the interchain interaction is
expected to be stronger. However they have investigated the (H − T ) phase diagram
of Ba1−xSrxCo2V2O8 by macroscopic measurements for different values of the Sr concen-

1The name of "hidden order" comes from the fact that despite 20 years of experimental and theoritical
work, the order parameter which leads the system to this phase is still unknown.
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tration and they have shown that the critical temperature TN decreases with increasing
the concentration of strontium (see Fig. 6.1(b)). This result is counter intuitive but is
probably due to the enhancement of the frustration of the interchain interactions between
neighboring chains. In contrast, the critical magnetic field µ0Hc at zero-temperature is
not affected with increasing the concentration of Strontium.

(a) (b)

Figure 6.1: BaCo2V2O8 under chemical pressure. (a) lattice parameters a (in blue)
and c (in red) as a function of the concentration of Strontium. (b) (H−T ) phase diagram
of Ba1−xSrxCo2V2O8 under a longitudinal magnetic field for differents concentration x of
strontium. Figures extracted from [Nie+14]

In our case, the idea is to study the effect of an hydrostatic pressure on BaCo2V2O8
under a longitudinal field (i.e. ~H ‖ ~c) to obtain its phase diagram (H,P, T ). Indeed, one
can imagine intuitively that the uniform pressure will induce changes of the interchain
J ′ and intrachain J couplings. The fact that the pressure is applied in an isotropic way
does not necessary imply however that the two exchange couplings will vary by the same
amount. Finally, the anisotropy can also be affected if the oxygen octahedra surrounding
the Co2+ are distorted.

To probe the (H,P, T ) phase diagram of BaCo2V2O8, we have done specific heat
measurements (AC-calorimetry) under high pressure using the diamong anvil cells (DACs)
described in Chap. (2.3).

6.2.2 AC-calorimetry measurements

6.2.2.1 Experimental setup

This experiment has been carried out in the CEA-Grenoble with the help of Daniel Braith-
waite. When the DACs cells are ready, they are loaded on the stick of the orange cryostat
shown in Fig. 6.2 allowing to reach a temperature of ∼ 2.8 K. A magnetic coil allows to
apply a magnetic field up to 9 T.

We have then performed AC-calorimetry measurements (for more details see sec-
tion 2.3.2.1). The working frequency was determined by measuring the frequency de-
pendence of the signal at constant temperature. Then the frequency multiplied by the
measured signal VAC as a function of the frequency is plotted in a log-log scale. At low
frequency, a linear dependence is observed. This indicates that the sample is still ther-
mally coupled to the bath: in one period, the heat can propagate in the sample and in its
environment. Then a flat dependence (frequency-independent) is observed. This is where
the quasi-adiabatic conditions hold and thus where the sample is thermally decoupled
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Laser Chopper Orange cryostat 

Figure 6.2: Experimental setup of specific heat measurements under high pres-
sure, magnetic field and low-temperature. Left: The stick of the orange cryostat
where the DAC is inserted. The stick is equipped of levers which allow to apply a force
(and thus a pressure) on the DAC. Right: Picture of the experimental setup. The stick
is now inside the orange cryostat which is surrounded by a magnetic coil. The laser and
the chopper are also shown.

from the bath. We chose to work in this regime at f = 615 Hz.

Two kinds of calorimetric measurements have been done:

• by varying the temperature at a fixed value of the magnetic field. These measure-
ments were done with a step of 1 T.

• by varying the magnetic field at a fixed value of the temperature. All these mea-
surements were done with a temperature of 3 K.

In the following, P = 0 is associated to the ambient pressure (' 1 bar).

6.2.2.2 Criterion for the data treatment

AC-calorimetry measurements allow to probe phase transitions for small samples in a
semi-quantitative way. With this method, both the amplitude of the oscillating signal
VAC proportional to the alternative part of the temperature TAC of the sample (and thus
inversely proportional to the heat capacity C) and the phase shift θ between the applied
heat and the resulting thermal oscillation are measured.

Fig. 6.3 shows the criterion that we have used to identify transitions for the two
different calorimetric measurements (in temperature and in magnetic field). Here the
calorimetry curves are expressed as C/TAC.

Fig. 6.3(a-b) show calorimetry measurements in amplitude and in phase shift respec-
tively versus temperature at µ0H = 1 T for P = 5 kbars and P = 65 kbars. Note that the
background is temperature and pressure dependent. The anomaly peak in the amplitude
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Figure 6.3: Criterion for data treatment. (a) Calorimetry measurements versus tem-
perature at µ0H = 1 T for selected pressures: 5 kbars in blue and 62 kbars in red. The
inset is a zoom of the anomaly rounded peak seen at P = 5 kbars. The brown solid line
shows the fictitious λ-peak expected. One can see that the temperature at the inflection
point of the rounded curve corresponds to the value given by the λ-anomaly. (b) Corre-
sponding phase shift θ. The points and the green solid lines are the raw and binned data
respectively. The black dashed line shows the critical temperature. The black and red
solid lines are an approximation of the binned data curve. (c) Calorimetry measurements
with increasing and decreasing the magnetic field measured at T = 3 K. (d) Correspond-
ing phase shift θ. The black dashed lines point out the critical field for increasing and
decreasing field.

signal VAC becomes rapidly undetectable with increasing the pressure (see Fig. 6.3(a)).
However it is still observable in the phase shift for any values of the pressure. This is why
I have mainly focused on the phase shift rather than the amplitude.

Fig. 6.3(c-d) shows calorimetry scans in amplitude and in phase shift respectively ver-
sus magnetic field at T = 3 K for P = 5 kbars only. One can see that an hysteresis is
present when ramping up and down. Here also, when increasing the pressure, the anomaly
in C/T becomes rapidly undetectable but still observable in the phase shift (curves not
shown).
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The criterion that I chose to extract the critical temperature Tc is the following: from
the low pressure results (i.e. P < 40 kbars where the anomaly in the C/T signal is still
observable), the critical temperature marking the transition is extracted by taking the
inflection point of the anomaly in the C/T signal corresponding to the temperature that
would give a λ sharp peak (see the inset in Fig. 6.3(a)). From that, the obtained value
is reported on the phase shift data. In our example TN ' 5.6 K. Then I have binned the
raw data in order to reduce the duplicate data and also to deal with the fact that the
noise increases with increasing the pressure (see the green lines in Fig. 6.3(b)). The curve
is then approximated by three straight lines (red and black lines in Fig. 6.3(b)) and two
temperatures T1 and T2 can be extracted at their intersection. It turns out that the calcu-
lation of the ratio (Tc− T2)/(T1− T2) for different magnetic fields and different pressures
(where the anomaly in the amplitude signal is still observable) gives systematically ' 0.3.
Therefore, for each calorimetric measurement, I did the same procedure consisting of:

1. binning the data of the phase shift θ

2. plotting the solid lines and extracting the intersection points T1 and T2

3. calculating the critical temperature through the formula Tc = 0.3(T1 − T2) + T2

The same procedure was used on the measurements in magnetic fields. For more con-
venience, I have systematically performed measurements while ramping down the field to
be in the same conditions given the hysteretical nature of the Néel-LSDW transition.

6.2.3 Experimental results
From the data treatment described above, we extracted the critical temperatures TN and
T icc and the critical field µ0Hc. Example of (H,T ) phase diagram at different pressures
are shown in Fig. 6.4.

Note first that the data at ambiant pressure reproduces well what has been observed
in BaCo2V2O8, both with neutrons and heat capacity measurements [Can+13].

Fig. 6.5 shows the pressure dependence of the critical temperatures TN and T icc for
different values of the magnetic field. The extraction of µ0Hc with calorimetric measure-
ments performed by varying the magnetic field at T = 3 K was limited by the fact that
µ0Hc becomes too high to be probed above 50 GPa. Moreover the extraction of the crit-
ical temperatures TN and T icc at high values of pressure and high values of magnetic field
(typically 8 T and 9 T) was impossible due to the very strong noise in the data increasing
both with the pressure and the temperature.

We can observe that, in the Néel phase, the critical temperature TN increases with
increasing the pressure for any value of the magnetic field. Moreover the behavior is
similar for all the values of the magnetic field. For one value of the pressure and by
increasing the magnetic field, TN decreases smoothly at low-field values (below 2 or 3 T)
and starts to decrease faster afterwards following the expected dependence of an order
parameter.

Surprisingly, TN increases strongly in the Néel phase while T icc increases very slightly
in the LSDW phase. For example, between P = 30 kbars and P = 46 kbars, T icc has
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Figure 6.4: (H,T ) phase diagrams obtained from the temperature and magnetic field
calorimetric measurements (full and open symbols respectively) for selected pressures.
The error bars correspond to the width of the anomaly seen in the phase shift.

increased only by about 0.1 K at µ0H = 7 T while TN increases by about 1.5 K at zero
field in the Néel phase (see Fig. 6.4).

Another result that we can extract is the pressure dependence of the critical field
µ0Hc at T = 3 K (see the inset in Fig. 6.5). Interestingly, µ0Hc increases linearly with
the pressure. From the linear fit of the data, we obtain the following formula: µ0Hc =
0.07 P + µ0H

0
c (where P is expressed in kbars, and µ0Hc in T) with µ0H

0
c = 3.6± 0.2 T,

the intercept value of the linear fit. This value is consistent with the one found equal to
3.5 T at about 3 K at ambiant pressure in [Can+13].

6.2.4 Interpretation and perspectives

Our study by means of heat capacity measurements under pressure using DACs leads to
the global (H,P, T ) phase diagram of BaCo2V2O8 (see Fig. 6.6).

Let us discuss our results with respect to the different experimental and theoretical
studies recalled in section 6.2.1. We have the two formulas: kBTN ' S2

√
|J ′||J | for an

Heisenberg chain and T icc ∝ J(J ′/J)ηx(2ηx−1) in the context of BaCo2V2O8. Moreover
Hc, TN and T icc increase with increasing the anisotropy ∆. In the study of Niesen et al.,
TN was shown to decrease by the substitution of the barium atoms by strontium atoms
(lighter element) and this was ascribed to a complex change of the interchain interactions
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Figure 6.5: Pressure dependence of TN and T icc of the Néel phase (circles) and of the
LSDW phase (stars) respectively for different values of the magnetic field. Solid lines are
guide for the eyes. The inset shows the pressure dependence of the critical field µ0Hc at
T = 3 K between the Néel phase and the LSDW phases. The solid line is a linear fit of
the data.

and to the enhancement of the frustration between neighboring chains. In our study,
the critical temperature Tc and the critical magnetic field µ0Hc between the Néel phase
and the LSDW phase both increase with the pressure. Interestingly, T icc increases very
slightly in the LSDW phase. This is due to the fact that ηx → 1 in the LSDW phase,
leading to T icc ∝ J ′. By comparing these results with all the considerations above, our
study suggests that the intrachain interaction J increases by the application of a hydro-
static pressure and has the strongest effect on the critical temperature and magnetic field.

Our study does not allow us to extract individually J , J ′ and ∆ since they all con-
tribute to the critical quantities and to determine their pressure dependence through heat
capacity measurements as there is no exact analytic formulas for quasi-1D systems. To go
further, one possible idea would be to perform an inelastic neutron scattering experiment
on BaCo2V2O8 under pressure. Indeed through the dispersion spectrum and the iTEBD
calculations, one could be able to extract the 3 parameters for each value of the pressure.
A diffraction experiment under pressure would also be useful to probe the distortion of
the structure of BaCo2V2O8 under pressure. The problem is essentially that the DACs
are impossible to use for neutron measurements, mainly because it requires really small
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Figure 6.6: (H,P, T ) phase diagram of BaCo2V2O8. The blue and orange circles
point out the critical temperatures of the Néel phase and the LSDW phase respectively.
Dashed lines are guide for the eyes.

samples (about 0.2 mm2 square) while inelastic measurements need large single crystals.
This therefore limits the maximum pressure that can be applied. Using other pressure
devices, diffraction experiments can be done on powder up to ' 11 GPa but inelastic
neutron scattering experiments on single crystal are still challenging under pressure.

What could be interesting is to do the same measurements but with the magnetic
field applied perpendicularly to ~c, along the b-axis. Indeed, as explained in Chap. 4, the
origin of the staggered field along ~a induced by the uniform field along ~b is the small tilt
between the c-axis and the local easy-axis of anisotropy. Niesen et al. have shown that
for this configuration of the field, the critical field strongly decreases when increasing the
concentration of strontium [Nie+14] implying that the tilt of the octahedron, hence the
staggered field, is affected by the chemical pressure. The question is then: what happens
when a hydrostatic pressure is applied on BaCo2V2O8?

Finally it is also interesting to study the influence of the substitution of the Co2+

magnetic ions by non-magnetic impurities Mg2+. This is what I am going to expose
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briefly below.

6.3 Doping effect on BaCo2V2O8

6.3.1 Context and motivations
The aim of this study is to understand the effect of cutting the chains by non-magnetic
impurities. How are modified the static and dynamical properties of segments of chains
with respect to infinite ones?

1D systems are known to be much more sensitive to doping effects than to 3D non
frustrated systems [All+09; Son+15], in particular for the intra chain doping where a
magnetic atom is replaced by another magnetic specie or by a non-magnetic impurity.
This can be understood through Fig. 6.7. Whatever the case, the doping with impurities
is expected to strongly affect the magnetic static properties, as well as the dynamics ones.

𝐽 𝐽

𝐽 𝐽𝐽imp 𝐽imp

(a)

(b)

Figure 6.7: Doping effect in spins chains. (a) One magnetic atom is substituted by a
non-magnetic impurity, leading to a cut of the chain. (b) One magnetic atom is replaced
by another magnetic specie, leading to a local change of the intrachain interaction J to
Jimp.

Theoritical studies have been done on the effect of impurities on quantum spin chains [EAH02;
EA95; WH00a]. Exotic physics emerges from the disorder such as the Kondo effect in
spin chains [LSA08], or the fact that segmented chains with an odd or an even number of
spins behave differently [EA92].

Experimentally, many studies have also investigated the effect of in-chain impurities
in spin ladder systems such as SrCu2O3 [Azu+97; Fuj+98; Ohs+99] and in spin-chains
such as the spin-Peierls compound CuGeO3 [Has+93; Mas+98; Gre+98; Gre+02]. This
compound consists in spin-1/2 chains which spontaneously form spin-dimers (thus singlets
carrying a spin S = 0) when decreasing the temperature, because of the distortion of the
lattice. In CuGeO3, it has been shown that the in-chain doping of the Cu2+ magnetic
ions carrying a spin-1/2 by impurities (magnetic or not) strongly affects the spin-Peierls
transition [Gre+02]. The critical temperature strongly decreases while increasing the
concentration of impurities. Whatever the nature of the impurities, the singlets including
an impurity are broken, yielding a free spin-1/2. Moreover, an AF order appears by an
order by disorder effect and the associated Néel temperature increases while increasing
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the concentration of impurities. Finally, the influence of the doping was also investigated
on the incommensurate phase of CuGe1−xSixO3 appearing under magnetic field [Kir+96;
Gre+98]. It was shown that this phase completely disappears for x = 0.7% which shows
that the IC phase is much more fragile and sensitive to the long-range correlations than
the AF phase. The nature of the excitations of such segmented chains have also been
studied [Aug+99; Ken+03].

In addition to this, our main motivation is based on the work by S. Niesen et al. who
studied through macroscopic measurements the effect of in-chain substitutions by replac-
ing the magnetic ions of Co2+ by other transition metal ions with different spin quantum
numbers (Cu2+, Ni2+ and Mn2+) and by non-magnetic ions Mg2+. The latter subsitution
strongly affects both the crystallographic and the magnetic properties of BaCo2V2O8. In-
deed the lattice parameter a is strongly reduced by the Mg2+ substitution (see Fig. 6.8(a)),
as well as the critical temperature between the Néel phase and the paramagnetic phase
and the critical field between the AF phase and the LSDW one (see Fig. 6.8(b)). Hovewer
Niesen et al. concluded from their study that the anisotropy is not much affected by the
substitution [Nie+14].

(a) (b)

Figure 6.8: In-chain subsitution of BaCo2V2O8. (a) Lattice parameters a and c as
a function of the ionic radius of the element of substitution. (b) (H − T ) phase diagrams
of Ba(Co1−xMx)2V2O8 for a longitudinal field. Figures extracted from [Nie+14].

The first goal of our study was to check by neutron diffraction if the LSDW phase
of BaCo2V2O8 still exists when substituting the Co2+ magnetic ions by non-magnetic
impurities Mg2+. This could have allowed the investigation of both the static and dy-
namical properties of BaCo2V2O8 at much lower values of the magnetic field. While we
did not found a LSDW phase, it turns out that the dynamical properties of the doped
Ba(Co1−xMgx)2V2O8 for the two concentrations of Mg2+ x = 2% and x = 5% nevertheless
show a very interesting behavior as explained below. As the data are still under treatment
and the results are not yet well understood, I will only show briefly what we obtained.

6.3.2 Static properties

Two single-crystal diffraction experiments have been carried out on 6T2 (LLB) for x =
5% and on D23 (ILL) for x = 2%. These experiments were performed with a 6 T and a
12 T cryomagnet respectively, and with a dilution insert allowing to reach temperatures
down to 50 mK.
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After the refinement of the crystalline structure using the same structure as in the
pure compound, we have found that it is essentially unaffected by the Mg2+ impurities.
The quality of the refinement is illustrated by the standard plot showing the calculated
vs observed Bragg intensities displayed in Fig. 6.9(a).

The same conclusion holds for the magnetic structure in zero-field (see Fig. 6.9(b)),
yet the Néel temperature is slightly reduced from 5.5 K in the pure compound down to
TN = 4.9 K and 3.8 K for x = 2% and x = 5% respectively (see Figs 6.9(c-d)). The later
value is consistent with what was observed in [Nie+14] (see Fig. 6.8(b)). The ordered
magnetic moment is also reduced from 2.2 µB down to 1.8 µB and 1.3 µB for x = 2% and
x = 5% respectively (see Fig. 6.9(d)). At zero-field, the ordered magnetic moment and the
Néel temperature TN then follow a linear dependence as a function of the concentration
of impurities Mg2+ as shown in Fig. 6.9(d).

Finally, we have looked for the IC signal that would reveal the presence of the LSDW
phase under longitudinal magnetic field. While in pure BaCo2V2O8 the LSDW phase is
observed above µ0Hc ' 4.0 T [Can+13; Gre+15b], no such phase has been detected in
Ba(Co1−xMgx)2V2O8 with x = 5% where a large reduction of the critical field µ0Hc ' 2 T
occurs 2. This reduction is actually consistent with what was observed in [Nie+14] (see
Fig. 6.8(b)).

The strong reduction of the Néel temperature TN and of the critical field µ0Hc, and
the absence of an IC ordered phase above µ0Hc can be attributed to the decrease of
the spin-spin correlations by the non magnetic impurities. This is in contrast with the
case of CuGeO3 where the AF order is enhanced by impurities. However, as for the
incommensurate phase in CuGeO3, the LSDW phase in BaCo2V2O8 must be more fragile
than the staggered one upon doping since it has a long periodicity. Qualitatively, the Mg
impurities cut the chains and induce pinning of the magnetic moments in the chains thus
leading to the destruction of the 3D ordering. We have started to study a smaller doping
x = 2%, to test if the LSDW phase resists to this amount of impurities.

6.3.3 Dynamical properties
One may wonder how do the impurities modify the dispersion spectrum of BaCo2V2O8
at zero-field and what is the spin-dynamics of a segmented spin-chain.

To answer this, we have performed two inelastic neutron scattering experiments at
zero-field on Ba(Co1−xMgx)2V2O8 for the two concentrations x = 2% and x = 5% on
IN12 (ILL) using an orange cryostat allowing us to go down to 1.5 K.

We have determined the dispersion spectra at zero-field both for ~Q = (0, 0, QL) (for
which only the transverse fluctuations Saa and Sbb are probed) and ~Q = (2, 0, QL) (for
which both longitudinal Scc and transverse fluctuations are probed) and for the two con-
centrations x = 2% and x = 5%. The INS experiments need to be completed and I show
in the following only preliminary results.

Figs 6.10(a-b) show an example of such a spectrum for x = 2% (non-saturated and
saturated in intensity respectively) measured at T = 1.5 K along ~Q = (0, 0, QL). This
spectrum is very peculiar, since the intensity is nicely distributed in (Q,ω) space along
a curve carrying the majority of the spectral weight that looks like the dispersion of the
Zeeman ladder typical of the pure BaCo2V2O8 case. These Zeeman Ladders [Gre+15a],

2Unfortunately, we have not been able to study yet the static properties of the 2% compound under
field, due to cryogenic problems. An experiment is planned to finish this study.
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Figure 6.9: Static properties of Ba(Co1−xMgx)2V2O8. (a-b) Refinement of the nu-
clear and magnetic structures of Ba(Co1−xMgx)2V2O8 for x = 5% at zero-field. The
agreement factors are reported on the figures. (c) Temperature dependence of the nor-
malized neutron counts I(T )/I(T = 1.5 K) at the maximum of the magnetic Bragg peak
2 0 1 (which is proportional to |mc|2) at zero-field for x = 0% (pure compound), x = 2%,
and x = 5%. (d) Value of the Néel temperature TN (left scale) and of the ordered magnetic
moment (right scale) as a function of the concentration of the non-magnetic impurities
Mg2+. The blue and black lines are linear fits of TN and the ordered moment respectively.

i.e. a serie of discrete modes confined by the inter-chain interaction, still probably exist in
the doped compound but much broader. Moreover in the low-energy part of the spectrum,
i.e. below the curve carrying the majority of the spectral weight, non-dispersive modes
are visible as shown in Figs. 6.10(c-d) for x = 2% at ~Q = (0, 0, QL) and x = 5% at
~Q = (2, 0, QL) respectively. These modes do not exist in the pure compound and thus
should come from finite size effects due to the confinement of the excitations around the
ends of the chain, i.e. the impurities [DV09]. Indeed it is easily understood that it costs
less energy to flip a spin next to the impurity (as it is proportional to ∝ J) than elsewhere
in the chain (∝ 2J). To try to reproduce these non-dispersive modes, I have performed
numerical calculations using my code.
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Figure 6.10: Dynamical properties of Ba(Co1−xMgx)2V2O8 and non-dispersive
excitations. (a) Dispersion spectrum along ~Q = (0, 0, QL) for x = 2% measured at
T = 1.5 K by gathering several energy scans obtained for different QL. The white
dashed line delimits the part where no spectral weight is observed in the pure compound.
The black dashed line points out the lowest non-dispersive energy mode observed in this
system. (b) Zoom of (a) with a saturated intensity scale. (c-d) Energy scans for x = 2%
and x = 5% at different QL. The black dashed lines point out non-dispersive modes.

6.3.4 Numerical calculations using exact diagonalization

If we suppose that the distribution of the magnetic impurities is homogeneous and thus
that they are equally distributed in the chain, then the chain segments have a finite size
and contain a number of spins n ' 1/x. To model these chain segments and the finite
size effects, I removed the periodic boundary conditions in the calculations.

I chose to use at first step n = 20 ↔ x = 5%, J = 5 meV, ε = 0.5 and a slighter
smaller value J ′ = 0.1 meV than in the previous calculations (where I took J ′ = 0.3 meV)
in order to minimize the confinement of the spinons due to the interchain interactions.

Fig 6.11(a) shows the dispersion spectrum calculated along ~Q = (1, 0, QL) for n =
20 ↔ x = 5%. One can see that we still have Zeeman ladders, but broaded in intensity.
This may be due to both the finite size of the chain and/or the low interchain value
J ′ = 0.1 meV. Interestingly, if we saturate the intensity of the dynamical structure factor
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Figure 6.11: Calculated dispersion spectrum of a chain segment (a) along ~Q =
(1, 0, QL) with n = 20. (b) Same than (a) with the intensity scale saturated in order to
see the non-dispersive excitations. (c) Zoom of (b).

as shown in Fig. 6.11(b-c), non-dispersive modes appear in the ( ~Q, ω) zone delimited by
the black-dashed rectangle, with a maximum of intensity at the AF point (QL = 0.5
numerically instead of QL = 1 experimentally as I consider a linear spin-chain in the
calculation) and minimum between the AF point and the ZC point, i.e. QL = 0.75.
This is consistent with what is observed experimentally (see at QL = 1 and QL = 1.5 in
Figs. 6.10(a-b)).

Q = (1, 0, QL)

QL = 0.5
QL = 0.625
QL = 0.750
QL = 0.875

Figure 6.12: Calculated energy scans for different values of QL. The black arrows
point out the four first non-dispersive modes, also shown in Fig. 6.11(c).
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Fig. 6.12 shows the superposition of calculated energy-scans for various scattering
vectors Q = (1, 0, QL). At low-energy values, typically the ones in Fig. 6.11(c), one can
clearly observe that the position in energy of the peaks does not move by varying QL (or
very slightly). Moreover, we can also observe that the difference in energy ∆ω between
two successive non-dispersive mode is roughly constant as long as it is not mixed with
the Zeeman ladders. The difference in energy between two successive excitations is given
by ∆ω = 2J/n [Boh+18; EA92; WH00a]. This yields ∆ω)theory = 0.5 meV in agreement
with the numerical value (∆ω)num ' 0.5 meV obtained in my calculations.

Here I want to emphasize the fact that these calculations are done for a segment of
chain. However in Ba(Co1−xMgx)2V2O8, we rather have a Poisson distribution of size of
the chains. Then a perfect simulation should be the sum over all sizes taking into account
the different probability of having a chain of size n.

6.3.5 Preliminary conclusion and perspectives
We have seen that the substitution of Co2+ by non-magnetic impurities changes both
the static and dynamical properties of BaCo2V2O8. At zero-field, the nuclear and mag-
netic structures are essentially unaffected by the Mg impurities. Both the values of
the ordered moment and of the Néel temperature TN decrease linearly with increasing
the concentration of impurities up to x = 5%. The LSDW phase was not observed
in Ba(Co1−xMgx)2V2O8 for x = 5% in the investigated temperature range and another
experiment is planned to check if this phase is preserved in the case of x = 2%. Concern-
ing the dynamical properties, we have seen that the dispersion spectrum of BaCo2V2O8
is strongly affected by the impurities. In addition to broadened Zeeman ladders, non-
dispersive modes exist especially visible in the low energy part of the spectrum. They
should come from the finite size effects of the system. This study is still in progress as both
neutron diffraction and inelastic neutron scattering experiments are planned to complete
these results. My calculations using exact diagonalization seem to confirms qualitatively
what has been observed experimentally. Quantum Monte Carlo and iTEBD calculations
would be helpful to understand deeper the effect of the non-magnetic impurities.
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In this thesis, we have focused on the study of quantum phase transitions in the quasi-1D
Ising-like antiferromagnet BaCo2V2O8. This compound consists in chains of magnetic
ions Co2+ carrying an effective spin S = 1/2 displaying a moderate anisotropy along the
c-axis, hence parallel to the chains. This compound has revealed many quantum signa-
tures as summarized in the following.

The first study was devoted to BaCo2V2O8 under a transverse field, i.e. a field ap-
plied perpendicularly to the Ising-axis. While the Ising chain in a transverse field is a
paradigm of quantum phase transition, we have found a new kind of phase transition. We
performed both elastic and inelastic neutron scattering on a single crystal of BaCo2V2O8
to better understand its static and dynamical properties under a transverse field. We
have observed in the diffraction and inelastic neutron scattering experiments signatures
of a quantum phase transition between 2 ordered phases. Indeed, because of the slight
tilt of about 5◦ between the local Ising-axis of the magnetic moments and the c-axis,
the application of a uniform transverse field induces a staggered magnetic field both per-
pendicular to the Ising axis and to the applied field. This local field competes with the
Ising anisotropy and causes a quantum phase transition while increasing the field. To go
further in the analysis, we have used numerical simulations, from my own code and by
iTEBD calculations through a collaboration with Shintaro Takayoshi and Thierry Gia-
marchi. By combining the neutron scattering experiments and the numerical calculations,
we were able to confirm the Hamiltonian of the system and the key role of the staggered
field. Furthermore, it has been shown that this system can be mapped into quantum field
theory model called double sine-Gordon model. The single sine-Gordon model is known
to describe Ising-like spin chains and Heisenberg chain in a staggered field but so far, no
experimental realization of a compound presenting these two aspects had been found until
our study. The identification of the dual field double sine-Gordon model for BaCo2V2O8
has allowed us to show that the quantum phase transition is topological in nature. Indeed,
it has shown that this transition can be tuned through the applied magnetic field and
comes from the competition between two dual topological excitations carrying a different
topological index. In the low-field phase, the excitations consist in spinons carrying a
topological index Sz = ±1/2 while in the high field phase, the excitations are pairs of
bounded spinons carrying a topological index Sx = ±1. This work has led to the first
experimental realization of such kind of topological phase transition [Fau+18].

The second study was dedicated to BaCo2V2O8 under a longitudinal field, i.e. a field
applied parallel to the Ising-axis. It has been theoretically predicted that it is possible
to drive Ising-like spin-1/2 chains into a gapless Tomonaga Luttinger liquid (TLL) phase
by applying a field parallel to the Ising-axis and thus closing the anisotropy gap. More-
over, because of the anisotropy, the longitudinal correlations are expected to dominate
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the transverse ones just above the critical field and thus an exotic physics is expected.
Because BaCo2V2O8 presents a moderate anisotropy compared to previous studied com-
pounds such as CsCoCl3 or CsCoBr3, the critical field in our case is µ0Hc ' 4 T, thus
easily reachable for the study by neutron scattering. We have thus performed an inelastic
neutron scattering to probe the spin-dynamics along the chain across the commensurate-
incommensurate phase transition. By combining experimental results and numerical
calculations as in the previous study, we were able to show that the spin-dynamics of
BaCo2V2O8 above the critical field is compatible with the TLL theory. This is the first
time that the dispersion spectrum for an anisotropic spin-1/2 chain is probed in this
gapless phase. We have shown that the majority of the spectral weight is carried by the
longitudinal fluctuations, i.e. fluctuations parallel both to the Ising-axis and to the ap-
plied magnetic field. We have therefore shown that BaCo2V2O8 is a remarkable material
where both the static and dynamical properties are dominated by quantum longitudinal
fluctuations in the TLL phase enhanced by a longitudinal magnetic field.

A study of BaCo2V2O8 under a hydrostatic pressure has also been carried out. We
have probed BaCo2V2O8 under both pressure and a magnetic fields up to 9 T parallel to
the chain-axis to establish its (H,P, T ) phase diagram. To do so, we have used diamond
anvil cells allowing us to reach a pressure of about 10 GPa. The pressure cell containing
the sample was then placed into an orange cryostat with a magnetic coil. Then, we have
performed specific heat measurements using the AC-calorimetry principle. The analysis of
the data has shown that both the critical temperature Tc and the critical field Hc increase
with increasing the pressure. Curiously, the critical temperature of the LSDW phase of
BaCo2V2O8 seems to be very slightly dependent on the pressure compared to the Néel
phase. From our results and the comparison of other theoretical and experimental studies,
we proposed that the intrachain interaction J increases and has the strongest effect on
the critical temperature and critical magnetic field. This should be confirmed by doing
inelastic neutron scattering experiment under pressure. What could be interesting would
be to do the same study with a magnetic field applied perpendicularly to the chain. In this
case, the effective staggered field induced by the uniform field comes from the slight tilt
between the local Ising-axis of the magnetic moments and the c-axis. One could expect
to modify and to control the Landé tensor g̃ by applying a hydrostatic pressure and thus
to tune the topological quantum phase transition that we evidenced at ambient pressure.

A study of Ba(Co1−xMgx)2V2O8 has also been initiated with the two different Mg
concentrations x = 2% and x = 5% in order to understand the effect of the substitution
of the magnetic ions Co2+ by non-magnetic impurities Mg2+. Indeed, the impurities cut
the chains into segmented chains and a drastic change in the static and the dynamical
properties of doped compounds is expected compared to the pure compound BaCo2V2O8.
We have then started to perform elastic and inelastic neutron scattering experiments.
Concerning the static properties, we have shown that both the critical temperature and
the critical field µ0Hc decrease linearly with the non-magnetic impurities concentration x,
i.e. a signature of the reduction of the correlations in the system. The more surprising re-
sult comes from the spin-dynamics measurements where non-dispersive modes seem to be
present in the dispersion spectrum at zero-field. These modes could arise from the finite
size effects of the system and could be seen as localized excitations where the spinons are
bounded to the impurities. This work is still in progress. Indeed other neutron scattering
experiments are planned to go further in the analysis and numerical calculations such as
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quantum Monte Carlo and iTEBD should help us to get a deeper understanding of the
effect of the non-magnetic impurities.

Finally, this work has shown a very nice example of the complementary between
experimental work, numerical calculations and theory. Indeed the systematic comparison
between the neutron scattering results and the iTBED calculations have revealed the
nature of two exotic quantum phase transitions and many quantum signatures of this
original quasi-1D Ising-like antiferromagnet BaCo2V2O8 model system. To go further in
our understanding of the 3D couplings in this system, Monte Carlo calculations could be
performed.
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En conclusion, lors de cette thèse, nous nous sommes concentrés sur l’étude de tran-
sitions de phases quantiques dans le composé quasi-1D antiferromagnétique à anisotropie
de type Ising BaCo2V2O8. Ce composé consiste en des chaînes d’ions magnétiques Co2+,
portant un spin effectif 1/2. Les moments magnétiques présentent une anisotropie le long
de l’axe c, i.e. le long des chaînes. Ce composé a révélé de nombreuses signatures quan-
tiques, comme résumé dans ce qui suit.

La première étude est dédiée à BaCo2V2O8 sous un champ magnétique transverse, i.e.
un champ magnétique perpendiculaire à l’axe Ising. Alors que la chaîne Ising en champ
transverse est un paradigme de transition de phase quantique, nous avons trouvé une
transition de phase d’une toute nouvelle nature dans BaCo2V2O8 en champ transverse.
Nous avons effectué des mesures de diffusions élastiques et inélastiques de neutrons sur un
cristal de BaCo2V2O8 afin de mieux comprendre ses propriétés statiques et dynamiques
sous champ transverse. Nous avons observé au travers de ces expériences la signature
d’une transition de phase quantique entre deux phases ordonnées. En effet, à cause d’une
légère inclinaison d’environ 5◦ de l’axe d’anisotropie avec l’axe c, le tenseur de Landé est
non-diagonal. En d’autres termes, l’application d’un champ uniforme transverse induit
un champ effectif alterné perpendiculaire à la fois à l’axe Ising et au champ uniforme ap-
pliqué. Ce champ local entre en compétition avec l’anisotropie de type Ising. Il en résulte
une transition de phase quantique lorsque le champ magnétique augmente. Afin d’aller
plus loin, nous avons utilisé des techniques numériques, à la fois des diagonalisations
exactes de mon côté, et des calculs iTEBD au travers d’une collaboration avec Thierry
Giamarchi et Shintaro Takayoshi. En combinant les expériences de diffusion de neutrons
et les calculs numériques, nous avons été capables de confirmer l’Hamiltonien du système
et le rôle clé du champ alterné dans la transition de phase quantique. De plus, nous
avons montré que ce système peut être décrit par une théorie des champs dite de "Double
sine Gordon". Le simple "sine Gordon model" est connu pour décrire des chaînes de type
Ising et des chaînes de type Heisenberg soumises à un champ local alterné, mais jusqu’à
maintenant aucun système ne présentait à la fois ces deux ingrédients. L’identification du
modèle Double sine Gordon pour BaCo2V2O8 nous a permis de montrer que la transition
de phase est de nature topologique. En effet, cette transition peut être contrôlée par le
champ magnétique et provient de la compétition entre deux excitations topologiques de
natures différentes. Dans la phase à bas champ, les excitations consistent en des spinons
ayant un index topologique Sz = ±1/2 alors que dans la phase à haut champ, les exci-
tations sont des paires de spinons confinés portant un index topologique Sx = ±1. Ce
travail a mené à la première réalisation d’une telle sorte de transition de phase quantique.

La seconde étude a été dédiée à BaCo2V2O8 sous champ longitudinal, i.e. un champ
parallèle à l’axe d’anisotropie de type Ising. Il a été théoriquement prédit qu’il est possible
d’amener un système de chaînes de spins 1/2 de type Ising à une phase non gappée dite
liquide de Tomonage Luttinger (TLL) en appliquant un champ magnétique parallèle à
l’axe Ising et par conséquent en fermant le gap d’anisotropie. De plus, à cause de cette
anisotropie, les corrélations longitudinales, à la fois statiques et dynamiques, dominent
les corrélations transverses juste au dessus de la transition. Du fait de son anisotropie
modérée comparé aux précédents composés tels que CsCoCl3 et CsCoBr3, BaCo2V2O8
a un champ critique de µ0Hc ' 4 T, facilement accessible au moyen de la diffusion
des neutrons. Nous avons effectué une expérience de diffusion inélastique de neutrons
afin de mesurer la dynamique de spins le long des chaînes au dessus de la transition de



206 CONCLUSION

phase commensurable-incommensurable. En combinant les résultats expérimentaux et
numériques comme dans l’étude précédente, nous avons pu montrer que la dynamique de
spins dans BaCo2V2O8 au-dessus du champ critique correspond à celle attendue pour un
TLL. Nous avons montré que la majorité du poids spectral est portée par les fluctuations
longitudinales, i.e. fluctuations parallèle à la fois au champ magnétique et à l’axe Ising.
Nous avons donc montré que BaCo2V2O8 est un composé remarquable où les propriétés
statiques et dynamiques sont dominées par des corrélations longitudinales dans la phase
à bas champ du TLL, celles-ci étant renforcées par le champ magnétique appliqué. C’est
la première fois que le spectre des excitations pour une chaîne de spins 1/2 anisotrope est
mesuré dans cette phase non gappée.

Une étude de BaCo2V2O8 sous pression hydrostatique a été entreprise. Nous avons
réalisé des mesures de chaleur spécifique dans BaCo2V2O8 sous champ magnétique longi-
tudinal et sous pression hydrostatique afin d’établir le diagramme de phase (H,P, T ) de
celui-ci. L’analyse des données a montré que la température critique Tc et le champ cri-
tique Hc augmentent lorsque la pression augmente. Curieusement, la température critique
de la phase LSDW semble être très peu dépendante de la pression, comparativement à
celle de la phase Néel. À partir de nos résultats et de la comparaison avec d’autres études
théoriques, nous proposons que la quantité la plus affectée par l’effet de la pression est
l’interaction intrachaîne J , celle-ci ayant le plus gros effet sur Tc et Hc. Cette hypothèse
pourrait être confirmée en faisant des expériences de diffusion inélastique de neutrons
sous pression hydrostatique. Une autre expérience qui pourrait être intérressante serait
de faire la même étude sous champ transverse. En effet, dans ce cas précis, le champ
effectif alterné provient de la légère inclinaison entre l’axe c et l’axe Ising. On pourrait
alors s’attendre à modifier et donc contrôler le tenseur de Landé en appliquant une pres-
sion hydrostatique, et donc contrôler la transition de phase topologique que nous avons
mise en évidence à pression ambiante.

Une étude de Ba(Co1−xMgx)2V2O8 a aussi été initiée pour les deux différentes con-
centrations de Mg x = 2% et x = 5% afin de mieux comprendre l’effet de substitution
des ions magnétiques de Co2+ par des impuretés non magnétiques Mg2+. En effet les im-
puretés coupent les chaînes en des segments de chaînes et un changement drastique dans
les propriétés statiques et dynamiques des composés dopés est attendu en comparaison
avec le composé pur BaCo2V2O8. Nous avons donc effectué des mesures de diffusion élas-
tique et inélastique des neutrons. Concernant les propriétés statiques, nous avons montré
que le champ critique et la température critique décroient linéairement avec la concentra-
tion en impuretés non magnétiques x: ceci consiste à une signature de la réduction des
corrélations dans le système. Le plus surprenant des résultats provient des mesures de la
dynamique de spins où des modes non-dispersifs semblent être présents dans le spectre
des excitations à champ nul. Ces modes pourraient provenir des effets de taille finie du
système et pourraient être vus comme des excitations locales où les spinons sont liés aux
impuretés. Ces travaux sont toujours en cours. En effet d’autres expériences de diffusion
des neutrons sont prévues afin d’aller plus loin dans l’analyse et des calculs numériques
tels que des calculs Monte Carlo quantique et iTEBD devraient nous aider à avoir une
meilleure compréhension de l’effet de ces impuretés non-magnétiques.

Enfin, cette thèse a montré un très bel exemple de la complémentarité entre travail



CONCLUSIONS 207

expérimental, numérique et théorique. En effet, la comparaison systématique entre les
résultats de diffusion des neutrons et les calculs iTEBD ont permis de révéler deux tran-
sitions de phases exotiques et beaucoup de signatures quantiques du composé modèle
quasi-1D antiferromagnetique de type Ising BaCo2V2O8. Des calculs Monte Carlo quan-
tique nous permettraient d’aller plus loin dans notre compréhension des couplages 3D
dans ce système.
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Résumé
Ce manuscrit présente l’étude de transitions de phase quantiques dans l’oxyde BaCo2V2O8, un système antiferromagnétique
quasi-unidimensionnel constitué de chaînes d’ions cobalt portant un spin effectif S = 1/2 caractérisé par une forte anisotropie
de type Ising. Lors de ce travail, nous avons étudié les propriétés statiques et dynamiques de BaCo2V2O8 sous l’effet de
différents paramètres physiques.

Notre première étude a porté sur l’effet d’un champ magnétique transverse, i.e. appliqué perpendiculairement à
l’axe Ising. Il a été proposé que lors de l’application d’un tel champ, un champ magnétique alterné effectif est induit
perpendiculairement à l’axe d’anisotropie et au champ uniforme appliqué. La comparaison d’expériences de diffusion
(élastique et inélastique) de neutrons et de calculs numériques nous a permis de montrer que ce champ alterné entre en
compétition avec l’anisotropie. Ceci aboutit à une transition de phase originale, dite topologique, que l’on peut modéliser
par une théorie quantique des champs nommée « modèle de double sine-Gordon » qui décrit la compétition entre deux
excitations topologiques duales. Nous avons pu montrer que BaCo2V2O8 sous champ magnétique transverse était la
première réalisation d’une telle théorie.

La seconde étude était consacrée à BaCo2V2O8 sous champ magnétique longitudinal, i.e. un champ appliqué paral-
lèlement à l’axe Ising. La dynamique de spins a été sondée grâce à la diffusion inélastique de neutrons et nous avons montré
qu’au-dessus d’un champ critique de 4 T, celle-ci semble en accord avec le spectre des fluctuations de spin attendu pour un
liquide de Tomonaga Luttinger (TLL). De plus, les calculs numériques ont confirmé que, du fait de l’anisotropie de type
Ising dans ce système, la majorité du poids spectral du spectre en énergie est porté par les fluctuations de spins de type
longitudinales. Ce résultat est la signature d’un comportement quantique sans analogue classique avec des fluctuations de
basses énergies essentiellement longitudinales pilotant la physique du système. Enfin, c’est la première fois que la dynamique
de spin dans des chaînes de type Ising a pu être sondée dans cette phase TLL.

Les deux dernières études sont préliminaires. Le diagramme de phase de BaCo2V2O8 a été sondé par des mesures
calorimétriques sous l’application d’une pression hydrostatique et d’un champ magnétique longitudinal. Afin d’obtenir des
pressions allant jusqu’à 10 GPa, nous avons utilisé une cellule à enclumes de diamant. Nous avons effectué des mesures
de chaleur spécifique qui nous ont permis de sonder l’effet de la pression sur le Hamiltonien de BaCo2V2O8 au travers de
son diagramme de phase (H,P, T ). Enfin, nous avons étudié l’effet de la substitution des ions magnétiques Co2+ par des
impuretés non-magnétiques Mg2+. Les expériences de diffraction neutronique sous champ longitudinal ont montré que la
température et le champ critiques diminuent proportionnellement à la concentration en impuretés. La dynamique de spins
à champ magnétique nul a aussi été sondée et révèle l’apparition de modes non-dispersifs, provenant possiblement de l’effet
de segmentation des chaînes par les impuretés.

En conclusion, nos études expèrimentales couplées à des calculs numériques nous ont permis de dévoiler une physique
extrêmement riche dans ce composé modèle pour l’étude du magnétisme quantique et des transitions de phase quantiques.

Mots-clefs : Magnétisme quantique, Ordre et excitations, Transitions de phases quantiques, Diffusion neutronique,
chaînes de spins.

Abstract
This manuscript is devoted to the study of quantum phase transitions in the BaCo2V2O8 oxide, a quasi-one dimensional
antiferromagnet consisting of spin chains of cobalt magnetic ions carrying an effective spin S = 1/2 showing a strong
Ising-like anisotropy. To achieve this, we have studied BaCo2V2O8 under the effect of different physical parameters. Our
first study concerned the effect of a transverse magnetic field, i.e. applied perpendicularly to the Ising axis. It has been
shown that when BaCo2V2O8 is subjected to such a field, an effective staggered magnetic field is induced perpendicularly
to both the Ising-axis and the uniform applied field. Using neutron scattering experiments (both elastic and inelastic)
compared to numerical calculations, we have proved that this staggered field competes with the Ising-like anisotropy. This
leads to a very original quantum phase transition. Our system can actually be mapped onto a quantum field theory called
"double sine-Gordon model", describing the competition between two dual topological excitations. We have thus shown
that BaCo2V2O8 under a transverse magnetic field is the first experimental realization of such a theory.

The second study was devoted to the effect of a longitudinal magnetic field, i.e. a field applied parallel to the Ising-axis.
The spin-dynamics have been investigated by means of inelastic neutron scattering experiments and it has been shown that
above a critical field of 4 T, it corresponds to the one expected for a Tomonaga Luttinger liquid phase (TLL). Moreover,
numerical calculations have shown that, because of the Ising-like anisotropy in this system, the majority of the spectral
weight in the energy spectrum is carried by longitudinal spin fluctuations. This result is the signature of a quantum behavior
without classical analogous with low energy longitudinal fluctuations driving the physics of the system. Finally, this is the
first time that the dispersion spectrum for an Ising-like spin 1

2 chain could be probed in this TLL phase.
The last two studies are preliminary work. The phase diagram of BaCo2V2O8 has been probed by calorimetric

measurements under pressure and under a longitudinal magnetic field. Pressures up to 10 GPa have been obtained using
a diamond anvil cell. We have then performed specific heat measurements allowing us to investigate the effect of pressure
on the Hamiltonian of BaCo2V2O8 through its (H,P, T ) phase diagram. Finally, we have also started to study the effect
of the substitution of magnetic ions Co2+ by non-magnetic impurities Mg2+. The neutron diffraction experiments under
a longitudinal magnetic field have shown that the critical temperature and critical field decrease proportionally to the
concentration of impurities. The spin-dynamics at zero-field has also been investigated and reveals the appearance of non-
dispersive magnetic modes, which possibly comes from the finite size effect of the spin chains segmented by the non-magnetic
impurities.

In conclusion, our experimental studies associated to numerical calculations allowed us to unveil a very rich physics in
this model compound for the study of quantum magnetism and quantum phase transitions.

Keywords: Quantum magnetism, Order and excitations, Quantum phase transitions, neutron scattering, spin chains.
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