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Abstract

When learning a classification model for a new target domain with only a small
amount of training samples, brute force application of machine learning algorithms
generally leads to over-fitted classifiers with poor generalization skills. On the other
hand, collecting a sufficient number of manually labeled training samples may prove
very expensive. Transfer Learning methods aim to solve this kind of problems
by transferring knowledge from related source domain which has much more data
to help classification in the target domain. Depending on different assumptions
about target domain and source domain, transfer learning can be further categorized
into three categories: Inductive Transfer Learning, Transductive Transfer Learning
(Domain Adaptation) and Unsupervised Transfer Learning. We focus on the first
one which assumes that the target task and source task are different but related.
More specifically, we assume that both target task and source task are classification
tasks, while the target categories and source categories are different but related.
We propose two different methods to approach this ITL problem.

In the first work we propose a new discriminative transfer learning method,
namely DTL, combining a series of hypotheses made by both the model learned
with target training samples, and the additional models learned with source cate-
gory samples. Specifically, we use the sparse reconstruction residual as a basic dis-
criminant, and enhance its discriminative power by comparing two residuals from a
positive and a negative dictionary. On this basis, we make use of similarities and dis-
similarities by choosing both positively correlated and negatively correlated source
categories to form additional dictionaries. A new Wilcoxon-Mann-Whitney statistic
based cost function is proposed to choose the additional dictionaries with unbal-
anced training data. Also, two parallel boosting processes are applied to both the
positive and negative data distributions to further improve classifier performance.

On two different image classification databases, the proposed DTL consistently out-
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performs other state-of-the-art transfer learning methods, while at the same time
maintaining very efficient runtime.

In the second work we combine the power of Optimal Transport and Deep Neu-
ral Networks to tackle the I'TL problem. Specifically, we propose a novel method
to jointly fine-tune a Deep Neural Network with source data and target data. By
adding an Optimal Transport loss (OT loss) between source and target classifier
predictions as a constraint on the source classifier, the proposed Joint Transfer
Learning Network (JTLN) can effectively learn useful knowledge for target classi-
fication from source data. Furthermore, by using different kind of metric as cost
matrix for the OT loss, JTLN can incorporate different prior knowledge about the
relatedness between target categories and source categories. We carried out experi-
ments with JTLN based on Alexnet on image classification datasets and the results
verify the effectiveness of the proposed JTLN in comparison with standard con-
secutive fine-tuning. To the best of our knowledge, the proposed JTLN is the first
work to tackle ITL with Deep Neural Networks while incorporating prior knowledge
on relatedness between target and source categories. This Joint Transfer Learning

with OT loss is general and can also be applied to other kind of Neural Networks.

Keywords: Inductive Transfer Learning, Sparse Representation, Optimal Trans-

port, Computer Vision.
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Résumé

Lors de l'apprentissage d’un modele de classification pour un nouveau domaine
cible avec seulement une petite quantité d’échantillons de formation, ’application
des algorithmes d’apprentissage automatiques conduit généralement a des classi-
fieurs surdimensionnés avec de mauvaises compétences de généralisation. D’autre
part, recueillir un nombre suffisant d’échantillons de formation étiquetés manuelle-
ment peut s’avérer tres cotiteux. Les méthodes de transfert d’apprentissage visent
a résoudre ce type de probléemes en transférant des connaissances provenant d’un
domain source associé qui contient beaucoup plus de données pour faciliter la clas-
sification dans le domaine cible. Selon les différentes hypotheses sur le domaine
cible et le domaine source, I’apprentissage par transfert peut étre classé en trois
catégories: appentissage par transfert inductif, apprentissage par transfert trans-
ducteur (adaptation du domaine) et apprentissage par transfert non surveillé. Nous
nous concentrons sur le premier qui suppose que la tache cible et la tache source
sont différentes mais liées. Plus pécisément, nous supposons que la tache cible et
la tache source sont des taches de classification, tandis que les catégories cible et
les catégories source sont différentes mais liées. Nous proposont deux méthodes
différentes pour aborder ce probléme.

Dans le premier travail, nous proposons une nouvelle méthode d’apprentissage
par transfert discriminatif, & savoir DTL(Discriminative Transfer Learning), com-
binant une série d’hypotheéses faites a la fois par le modele appris avec les échantil-
lons de cible et les modeles supplémentaires appris avec des échantillons des caté-
gories sources. Plus précisément, nous utilisons le résidu de reconstruction creuse
comme discriminant de base et améliore son pouvoir discriminatif en comparant
deux résidus d’un dictionnaire positif et d’un dictionnaire négatif. Sur cette base,
nous utilisons des similitudes et des dissemblances en choisissant des catégories

sources positivement corrélées et négativement corrélées pour former des dictio-
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nnaires supplémentaires. Une nouvelle fonction de cotlit basée sur la statistique
de Wilcoxon-Mann-Whitney est proposée pour choisir les dictionnaires supplémen-
taires avec des données non équilibrées. En outre, deux processus de Boosting
paralleles sont appliqués a la fois aux distributions de données positives et néga-
tives pour améliorer encore les performances du classificateur. Sur deux bases de
données de classification d’images différentes, la DTL proposée surpasse de maniere
constante les autres méthodes de I’état de I’art du transfert de connaissances, tout
en maintenant un temps d’exécution tres efficace.

Dans le deuxiéme travail, nous combinons le pouvoir du transport optimal (OT)
et des réseaux de neurones profond (DNN) pour résoudre le probléeme ITL. Plus
précisément, nous proposons une nouvelle méthode pour affiner conjointement un
réseau de neurones avec des données source et des données cibles. En ajoutant une
fonction de perte du transfert optimal (OT loss) entre les prédictions du classifica-
teur source et cible comme une contrainte sur le classificateur source, le réseau JTLN
(Joint Transfer Learning Network) proposé peut effectivement apprendre des con-
naissances utiles pour la classification cible a partir des données source. En outre,
en utilisant différents métriques comme matrice de coiit pour la fonction de perte
du transfert optimal, JTLN peut intégrer différentes connaissances antérieures sur
la relation entre les catégories cibles et les catégories sources. Nous avons effec-
tué des expérimentations avec JTLN basées sur Alexnet sur les jeux de données
de classification d’image et les résultats vérifient lefficacité du JTLN proposé. A
notre connaissances, ce JTLN proposé est le premier travail a aborder ITL avec des
réseaux de neurones profond (DNN) tout en intégrant des connaissances antérieures

sur la relation entre les catégories cible et source.

Mots clés: Inductive Transfer Learning, Sparse Representation, Optimal Trans-

port, Computer Vision.
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CHAPTER 1

Introduction

Making machines that can learn and solve problems as humans is one of the most
exciting and even controversial dreams of mankind. The corresponding research
topic is called Artificial Intelligence (AI) and is defined as the study of “Intelligent
agents”: any device that perceives its environment and takes actions that maxi-
mize its chance of success at some goal [Russell et al. 1995]. Among many of the
sub-topics of Al, one important research direction, which is commonly known as
Machine Learning (ML), is to study the construction of algorithms that can learn
from and make predictions on data. Arthur Samuel firstly defined Machine Learning
as “the field of study that gives computers the ability to learn without being explic-
itly programmed” [Samuel 1959]. The earliest theoretical foundations of Machine
Learning are built by Valiant, who introduced the framework of Probably Approx-
imately Correct (PAC) learning [Valiant 1984], and Vapnik, who casts the problem
of ‘learning’ as an optimization problem [Vapnik & Vapnik 1998]. Nowadays ma-
chine learning is a combination of several disciplines such as statistics, information
theory, measure theory and functional analysis.

Depending on the nature of the learning “signal” or “feedback” available to a
learning system, Machine Learning tasks are typically classified into three broad
categories: Supervised Learning (where the computer is presented with example
inputs and their desired outputs, the goal is to learn a general rule that maps
inputs to outputs), Unsupervised Learning (where only example inputs are given
without corresponding outputs, the goal is to find structure in the given inputs) and
Reinforcement Learning (where the computer program interacts with a dynamic
environment in which it must perform a certain goal, the program is provided

feedback in terms of rewards and punishments as it navigates its problem space).
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Depending on the desired output of a learning system, Machine Learning tasks can
be categorized differently: in classification, inputs are divided into two or more
classes, and the learner must produce a model that assigns unseen inputs to one or
more of these classes; in regression, the outputs are continuous rather than discrete;
in clustering, a set of inputs is to be divided into groups; in density estimation, the
program finds the distribution of inputs in some space; and dimensionality reduction

simplifies inputs by mapping them into a lower-dimensional space, etc.

Nowadays, technology is in constant evolution and the amount of data is every-
day dramatically increasing. In particular, we are witnessing a spectacular growth
in image and video data due to the rapid spread of electronic devices capable of
recording and sharing pictures and videos (e.g. smart-phones, tablets, digital cam-
eras, surveillance video recorders, etc.) all around the world. Consequently, billions
of raw images and videos are diffused on the Internet. For instance, 612 million
of pictures are uploaded on Flickr during the year 2016!, and approximately 400
hours of new videos are uploaded on Youtube every minute according to a recent
report in 20172. However, most of these images and video content are difficult to
exploit because they have not been properly labeled or edited. Therefore, automatic
classification of images becomes a quite urgent need. In this thesis, we mainly
focus on the supervised classification of images.

Ideally, when enough labeled training samples are given, the supervised clas-
sification problem could be formalized as an Empirical Risk Minimization (ERM)
problem where we search in the hypothesis space for a hypothesis that can minimize
the empirical risk on training samples. Thanks to Hoeffding’s inequality, when the
hypothesis space is properly chosen and the training set is large enough, the learned
hypothesis could have a bounded generalization error (i.e., the difference between
the empirical risk and the expected risk) which guarantees its good performance on
same distributed test samples.

However, in reality this is not always the case. A common problem is that

collecting a sufficient number of manually labeled training samples is very expen-

"https://www.flickr.com/photos/franckmichel/6855169886
’https://expandedramblings.com/index.php/youtube-statistics/
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sive. Especially with the rapid increase of Web data, most of the Web collected
images are unlabeled or with very noisy labels. When the number of images is
enormous, manually labelling them would be expensive and time-consuming. Fur-
thermore, when dealing with visual data, a frequently encountered problem is that
even for a same semantic concept, the images obtained can be surprisingly different
by using different sensors, under different lighting conditions, or having different
backgrounds, etc.. These kind of problems give birth to a pressing need for algo-
rithms that can learn efficiently from a small amount of labeled training data by
leveraging knowledge from related unlabeled or noisy labeled data or differently
distributed data. The research direction that deals with these kind of problems is
called ‘Transfer Learning’

The study of Transfer Learning is motivated by the fact that human, even a
child, can intelligently apply knowledge learned previously to solve new problems
efficiently. An example in [Quattoni et al. 2009] gives an evidence on this point:
when a child learns to recognize a new letter of the alphabet he will use examples
provided by people with different hand-writing styles using pens of different colors
and thicknesses. Without any prior knowledge a child would need to consider a
large set of features as potentially relevant for learning the new concept, so we would
expect the child to need a large number of examples. But if the child has previously
learnt to recognize other letters, he can probably discern the relevant attributes (e.g.
number of lines, line curvatures) from irrelevant ones (e.g. the color of the lines)
and learn the new concept with a few examples. The fundamental motivation for
Transfer Learning in the field of Machine Learning was discussed in a NIPS-95
workshop on “Learning to Learn”, which focused on the need for lifelong machine
learning methods that retain and reuse knowledge which are learned previously.
Research on Transfer Learning has attracted more and more attention since 1995.
Compared to traditional machine learning techniques which try to learn each task
from scratch, transfer learning techniques try to transfer the knowledge from some
previous tasks to a target task when the latter has fewer high-quality training data.

The goal of this thesis is to develop efficient transfer learning algo-

rithms for images classification. In the following we will firstly give a formal

3



Chapter 1. Introduction

description of this problem, and then introduce our contributions.

1.1 Problem definition

1.1.1 Image classification

In an image classification task our goal is to learn a mapping from images to class
labels. The input images could be represented by pre-extracted feature vectors (as
in chapter 3) or image pixels directly (as in chapter 4), we can therefore assume a
vector x € R? as notation for an image, with d the number of feature dimensions
or number of pixels. For the output class labels, we can either consider binary
classification (as in chapter 3) or multi-class classification (as in chapter 4). In both
cases we can either represent the label of an image with a scalar y (y € {+1, —1} for
binary classification or y a discrete value as class index for multi-class classification)
or a vector y € {0,1}", with n the number of classes.

To build an efficient image classification model, there are two key problems that
need to be solved. The first one is to find a discriminative feature space in which
the class distributions can be easily distinguished from each other, this can either
be done by feature selection (i.e., selecting most discriminative features), or by
mapping the samples into a new feature space (e.g., traditional feature extraction
techniques such as SIFT (Scale-Invariant Feature Transform) or HOG (Histogram
of Oriented Gradient), or the recent representation learning techniques such as
Dictionary Learning or Convolutional Neural Networks (CNNs)). The second one
is to build a proper classifier which maps samples from the feature space to the class
label space. The classifier can either be a generative model which learns the joint
distribution p(x,y) (e.g.,mixture models) or a discriminative model which learns
the conditional distribution p(y|x) (e.g., Support Vector Machines (SVMs)).

In the computer vision community, the first problem is usually the most con-
cerned one, especially with the rapid evolution of Deep Neural Networks, a good
feature representation learned with Convolutional Neural Networks can give excel-
lent classification performance even with a simple classifier (e.g., softmax classifier

or K-Nearest Neighbors classifier). However, the second problem is also important,
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especially for transfer learning problems in which we only have a few target train-
ing samples. Depending on the techniques used, these two problems can sometimes
be treated in a unified model (e.g., in CNNs the feature extraction layers and the

softmax classifier are integrated in a unified Deep Neural Network).

1.1.2 Transfer Learning

Train set:

-

Figure 1.1: Comparison of traditional machine learning setting with transfer learn-
ing setting: in traditional machine learning setting, training set and test set should
be formed with images from same categories and follow the same probability dis-
tribution; while in transfer learning setting, an additional training set is also given,
which is allowed to have images from different data distribution, or even from differ-
ent kind of categories. (The labels ‘C’ stands for ‘Castle’, ‘A’ stands for ‘Airport’,
‘B’ stands for ‘Building’, ‘W’ stands for ‘Water’, ‘S’ stands for ‘Snow’, ‘R’ stands
for ‘Road’ and ‘7’ stands for unknown.)

In this section, we follow the notations introduced in [Pan & Yang 2010a] to
describe the problem statement of transfer learning. A domain D consists of two
components: a feature space X and a marginal probability distribution P(x), where
x € X. In general, if two domains are different, then they may have different feature
spaces or different marginal probability distributions. Given a specific domain,
D = {X,P(x)}, a task T consists of two components: a label space ) and a
predictive function f(-), denoted by 7 = {J, f(-)}. The function f(-) is a predictive
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function (i.e., a mapping from the feature space to the label space) that can be used
to make predictions on unseen instances. From a probabilistic viewpoint, f(x) can
also be written as the conditional distribution P(y|x).

Based on the notations defined above, the definition of transfer learning can be

defined as follows [Pan & Yang 2010a],

Definition 1. Given a source domain Dg and learning task Ts, a target domain
Dr and learning task Tr, transfer learning aims to help improve the learning of
the target predictive function fr(-) in Dr using the knowledge in Dg and Tg, where
Ds # Dr, or Ts # Tr.

In the above definition, a domain is a pair D = {X, P(x)}, thus the condition
Ds # Dr implies that either Xg # Xp or P(xg) # P(xr). Similarly, a task is
defined as a pair 7 = {Y, P(y|x)}, thus the condition Tg # Tr implies that either
Vs # Yr or P(ys|xs) # P(yr|xr). When the target and the source domains are
the same, i.e. Dg = Dp, and their learning tasks are the same, i.e. Tg = Tr, the
learning problem becomes a traditional machine learning problem. An illustration
which compares the traditional machine learning setting and the transfer learning
setting is given in Figure 1.1.

Based on different conditions for differences between source domain and tar-
get domain and differences between source task and target task, transfer learning
scenarios can be categorized differently. For example, based on whether the fea-
ture spaces or label spaces are identical or not, transfer learning is categorized
into two settings [Pan 2014]: 1) homogeneous transfer learning (where the inter-
section between source and target feature spaces is not empty (Xs N Xr # 0) and
source and target label spaces are the same (g = Yr), while source and target
marginal distributions and conditional distributions are different (P(xg) # P(xr)
or P(yslxs) # P(yr|xr))), and 2) heterogeneous transfer learning (where the
two feature spaces have empty intersection or the two label spaces are different
(XsNXpr=0or Vs #Vr)).

Another way to categorize transfer learning is based on whether the two domains

or two tasks are identical or not [Pan & Yang 2010a], we have: 1) inductive transfer
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learning (where source and target domains are the same, while source and target
tasks are different but related), 2) unsupervised transfer learning (where source
and target domains are different but related, and source and target tasks are also
different but related), and 3) transductive transfer learning (where source and target
domains are different but related, while source and target tasks are the same).

In this thesis, we mainly focus on the transfer learning scenario where the in-
tersection between source and target feature spaces is not empty (Xs N Xp # 0)
while the source and target label spaces are different (Vs # YVr). According to
the two categorization methods shown above, this scenario can be categorized as
heterogeneous transfer learning or inductive transfer learning.

Specifically, in chapter 3 we consider binary classification problem. We assume
having a target domain Dr with a binary classification task 77, which can be
accessed through a small set of target training data. We also assume having a
source domain Dg with multiple source binary classification tasks 7g1,...,7s L,
which can be accessed through a large set of source training data. As mentioned in
the previous paragraph, here Xs N Xr # () and Vs ; # Yr, Vi € [1, L]. The aim is to
learn a discriminative predictive function for the target task using both the target
training data and the source training data.

In chapter 4 we consider multi-class classification problem. We assume having
a target domain Dr with a multi-class classification task 77, along with a source
domain Dg with a multi-class classification task Tg. Similarly we assume X¢NXr #
() and Vs # Yr. The aim is also to learn a discriminative predictive function for

the target task using both the target training data and the source training dat