Existence et régularité des solutions de deux équations paraboliques, dégénérées et non-locales Ces travaux concernent deux équations paraboliques, dégénérées et non-locales. La première équation est une équation de lms minces fractionnaire et la deuxième est une équation des milieux poreux fractionnaire. La présentation des problèmes, les résultats existants dans la littérature, ainsi que le résumé de nos résultats font l'objet de l'introduction.

Le deuxième chapitre est consacré à la présentation de la méthode de De Giorgi utilisée pour montrer la régularité Hölder des solutions des équations elliptiques. On présente de plus les résultats utilisant cette approche dans les cas paraboliques local et non-local.

Dans le troisième chapitre, on montre l'existence de solutions faibles d'une équation des lms minces fractionnaire. C'est une équation parabolique, dégénérée, non-locale d'ordre α + 2 où 0 < α < 2. C'est une généralisation d'une équation étudiée par Imbert et Mellet en 2011 pour α = 1. Pour construire les solutions, on passe par un problème régularisé. En utilisant les injections de Sobolev, on passe à la limite pour trouver des solutions faibles.

Vu la diérence des injections de Sobolev, on distingue deux cas 0

Dans les deux cas on démontre que la solution est positive si la condition initiale l'est.

Le quatrième chapitre concerne une équation des milieux poreux fractionnaire. On montre la régularité Hölder de solutions faibles positives satisfaisant des estimées d'énergie. D'abord, on montre l'existence de solutions faibles qui satisfont des estimées d'énergie. On distingue deux cas 0 < α < 1 et 1 ≤ α < 2 à cause de problème de divergence. Puis on démontre les lemmes de De Giorgi qui sont des lemmes de réduction de l'oscillation d'en dessus et d'au dessous. Ces deux lemmes ne susent pas pour montrer la régularité Hölder. On a besoin d'améliorer le résultat du lemme de réduction de l'oscillation d'en dessus. Donc, on passe par un lemme des valeurs intermédiaires et on montrer un lemme de réduction de l'oscillation d'en dessus amélioré. Enn, on montre la régularité Hölder des solutions en utilisant la propriété scaling de ces solutions.

Existence and regularity of solutions of two degenerate non-local parabolic equations

In this thesis, we study two degenerate, non-local parabolic equations, a fractional thin lm equation and a fractional porous medium equation. The introduction contains a presentation of problems, the previous results in the literature and a brief presentation of our results.

In the second chapter, we present a short overview of the De Giorgi method used to prove Hölder regularity of solutions of elliptic equations. Moreover, we present the results using this approachin the local and non-local parabolic cases.

In the third chapter we prove existence of weak solutions of a fractional thin lm equation. It is a non-local degenerate parabolic equation of order α + 2 where 0 < α < 2.

It is a generalization of an equation studied by Imbert and Mellet in 2011 for α = 1. To construct these solutions, we consider a regularized problem then we pass to the limit using Sobolev embedding theorem, that's why we distinguish two cases 0 < α < 1 and 1 ≤ α < 2.

We also prove that the solution is positive if the initial condition is so.

The fourth chapter is dedicated for a fractional porous medium equation. We prove Hölder regularity of positive weak solutions satisfying energy estimates. First, we prove the existence of weak solutions that satisfy energy estimates. We distiguish two cases 0 < α < 1 and 1 ≤ α < 2 because of divergence problems. The we prove De Giorgi Lemmas about oscillation reduction from above and from below. This is not susant. We need to improve the lemma about oscillation reduction from above. So we pass by an intermediate values lemma and we prove an improved oscillation reduction lemma from above. Finally, we prove Hölder regularity of solutions using the scaling property.

Introduction

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂ t u + ∂ x (u n ∂ x I(u)) = 0 pour t > 0, x ∈ Ω, ∂ x u = 0, u n ∂ x I(u) = 0 pour t > 0, x ∈ ∂Ω, u(0, x) = u 0 (x) pour x ∈ Ω, (1.1 
Pour α = 1 et n = 3 cette équation désigne le modèle physique KGD développé par Geertsma et De Klerk [START_REF] Geertsma | A rapid method of predicting width and extent of hydraulically induced fractures[END_REF] et Khristianovich et Zheltov [START_REF] Zheltov | On hydraulic fracturing of an oil-bearing stratum[END_REF]. Ce modèle représente l'inuence de la pression exercée par un uide visqueux sur une fracture dans un milieu élastique sous la condition de plane strain. Cette équation est obtenue à partir de la conservation de la masse du uide à l'intérieur de la fracture, la loi de Poiseuille et une loi pour la pression convenable (p = -I(u)) [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF].

1.1.2 Résultats existants dans les cas α = 0, α = 2 et α = 1

Pour α = 0 on obtient l'équation des milieux poreux en dimension 1 qui est une équation locale

∂ t u -∂ x (u n ∂ x u) = 0.
(1.2)

Nous reviendrons sur cette équation dans la deuxième partie qui a comme sujet une équation des milieux poreux fractionnaire.

Pour α = 2 on obtient aussi une équation locale, l'équation des lms minces donnée par

∂ t u -∂ x (u n ∂ 3 xxx u) = 0.
(1.3)

Pour n = 3 cette équation représente le mouvement monodimensionnel d'une goutte visqueuse glissante sur une surface solide. L'existence de solutions faibles Hölder continues de (1.3) a été prouvée par Bernis et Friedmann pour n > 1 [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF]. Pour montrer ce résultat ils utilisent une méthode de régularisation et des estimées d'énergie. De plus ils montrent que la solution est positive si la condition initiale l'est. En utilisant la même approche, Beretta, Bertsch et Dal Passo montrent des réultats analogues pour la même équation mais en considérant d'autres conditions aux bords [START_REF] Beretta | Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation[END_REF].

D'autre part dans [START_REF] Bertozzi | The lubrication approximation for thin viscous lms: the moving contact line with a porous media cut-o of van der Waals interactions[END_REF][START_REF] Aa | The lubrication approximation for thin viscous lms: regularity and long-time behavior of weak solutions[END_REF] Bertozzi et Pugh montrent aussi des résultats d'existence de solutions faibles qui deviennent fortes après un certain temps ni. De plus ils font des simulations numériques des solutions faibles donnés dans [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF]. Notons aussi que Bernis, Peletier et Williams montrent l'existence de source type solutions pour 0 < n < 3 [START_REF] Bernis | Source type solutions of a fourth order nonlinear degenerate parabolic equation[END_REF].

L'équation des lms minces a été aussi étudiée dans des dimensions supérieures à 1.

Elle prend alors la forme suivante:

∂ t u + ∇.(u n ∇∆u) = 0 (1.4)
Grün [START_REF] Grün | Degenerate parabolic dierential equations of fourth order and a plasticity model with non-local hardening[END_REF], Elliott et Garcke [START_REF] Elliott | On the Cahn-Hilliard equation with degenerate mobility[END_REF] montrent l'existence de solutions pour 1 ≤ n < 2 si la condition initiale est positive arbitraire et pour n ≥ 1 si la condition initiale est strictement positive. De plus Dal Passo, Garcke et Grün [START_REF] Dal Passo | On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions[END_REF] étudient l'existence de solutions (pour 1 8 < n < 3 avec une condition initiale positive arbitraire), la non-unicité, la positivité et le comportement asymptotique des solutions de l'équation (1.4).

D'autres propriétés ont été étudiées pour l'équation des lms minces comme la vitesse nie de propagation des solutions, le comportement asymptotique des solutions et la propriété de temps d'attente. Bernis [START_REF] Bernis | Finite speed of propagation and continuity of the interface for thin viscous ows[END_REF] a montré en dimension N = 1 que pour 0 < n < 3 les solutions ont une vitesse nie de propagation et que l'interface qui sépare les régions où u est strictement positive et où u est égale à zéro se déplace avec une vitesse nie. Il utilise des versions locales des estimées d'entropie trouvée dans [START_REF] Beretta | Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation[END_REF]. Puis Grün [START_REF] Grün | On Bernis' interpolation inequalities in multiple space dimensions[END_REF][START_REF] Grün | Droplet spreading under weak slippage: the optimal asymptotic propagation rate in the multi-dimensional case[END_REF][START_REF] Grün | Droplet spreading under weak slippage: a basic result on nite speed of propagation[END_REF] montrent que la vitesse nie de propagation est veriée par les solutions en dimension N < 4 pour 2 ≤ n < 3. Dal Passo, Giacomelli et Grün [START_REF] Dal Passo | Waiting time phenomena for degenerate parabolic equationsa unifying approach[END_REF] montrent que les solutions présentent un phénomène de temps d'attente c'est à dire il existe un temps positif durant lequel le support de u (localement en espace) ne s'étend pas.

Notons qu'il y a des propriétés communes pour l'équation des lms minces et l'équation des milieux poreux. Les deux équations sont paraboliques dégénérées sous la forme de divergence. La vitesse nie de propagation et le phénomène de temps d'attente sont les propriétés les plus communes connues. Dans les deux cas il existe aussi des source type solutions à support compact (sous condition n > 1 pour l'équation des milieux poreux [START_REF] Luis | The porous medium equation[END_REF] et 0 < n < 3 pour l'équation des lms minces [8][26]). La grande diérence entre ces deux équations est le manque d'un principe du maximum pour l'équation des lms minces [START_REF] Carrillo | Long-time asymptotics for strong solutions of the thin lm equation[END_REF].

Notre équation (3.1) ressemble à l'équation des lms minces en remplaçant le Laplacien par un Laplacien fractionnaire avec des conditions de Neumann aux bords. Donc notre équation est non-locale au contraire de celle des lms minces. Cependant le manque d'un principe du maximum nous amènera à utiliser une approche similaire à celle utilisée pour l'équation des lms minces.

Pour α = 1 cette équation a été d'abord étudiée par Spence et Sharp [START_REF] Spence | Self-similar solutions for elastohydrodynamic cavity ow[END_REF]. Ils travaillent sur les solutions auto-similaires et le comportement asymptotique des solutions. Peirce et al. [START_REF] Peirce | A dual mesh multigrid preconditioner for the ecient solution of hydraulically driven fracture problems[END_REF][START_REF] Peirce | An Eulerian moving front algorithm with weak-form tip asymptotics for modeling hydraulically driven fractures[END_REF] ont développé des méthodes numériques pour ce modèle. Puis Imbert et Mellet ont montré dans [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF], par une technique de régularisation, l'existence de solutions faibles positives de (3.1) pour n ≥ 1 et une condition initiale positive. De plus ils ont montré un résultat de positivité stricte de solutions sous une condition sur n. Les ingrédients principaux de [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF] sont des inégalités d'énergie et l'injection de Sobolev en dimension 1 H 1 2 (Ω) ↪ L p (Ω) (1.5) pour tout p < ∞. Dans un autre article [START_REF] Imbert | Self-similar solutions for a fractional thin lm equation governing hydraulic fractures[END_REF] ils ont construit des solutions auto-similaires pour (3.1) avec n = 3.

La cas α ∈ (-2, 0) a été traité dans [START_REF] Biler | The nonlocal porous medium equation: Barenblatt proles and other weak solutions[END_REF] par Biler, Imbert et Karch qui étudient l'équation suivante

u t = ∇. u∇ β-1 G(u) , t ∈ R, x ∈ R N , (1.6) 
avec ∇ β-1 = ∇(-∆) N (Ω))

qui satisfait dans Q = (0, T ) × Ω ¨Q u∂ t ϕdtdx -¨Q nu n-1 I(u)∂ x u∂ x ϕdxdt -¨Q u n I(u)∂ 2

xx ϕdxdt = -ˆΩ u 0 ϕ(0, .)dx (1.8) pour toute fonction test ϕ ∈ D([0, T ) × Ω) telle que ∂ x ϕ = 0 dans (0, T ) × ∂Ω. De plus u satisfait pour presque tout t ∈ (0, T ) ˆΩ u(t, x)dx = ˆΩ u 0 (x)dx,

ˆΩ G(u(t, x))dx

+ ˆt 0 u 2 . H α 2 +1 N (Ω)
≤ ˆΩ G(u 0 )dx. 

∂ x I(u) ∈ L 2 loc (Q + )
(1.12) où Q + = {u > 0} ∩ Q, et qui satisfait ¨Q u∂ t ϕdtdx + ¨Q+ u n ∂ x I(u)∂ x ϕdxdt = -ˆΩ u 0 ϕ(0, .)dx (1.13) pour tout ϕ ∈ D([0, T ) × Ω) satisfaisant ∂ x ϕ = 0 dans (0, T ) × ∂Ω.

De plus, u est telle que pour presque tout t ∈ (0, T ) ˆΩ u(t, x)dx = ˆΩ u 0 (x)dx En particulier, u n ∈ L ∞ et (1.12) garantit que tous les termes de (3.12) ont bien un sens, sans procéder à une seconde intégration par parties.

Finalement un résultat de positivité des solutions est prouvé pour de grandes valeurs de n.

Theorem 1.4 (Solutions strictement positives). Supposons 0 < α < 2 et n > max{3, 2 + 2 α+1 }. La solution u(t, .) construite dans le Théorème 3.1 est strictement positive dans Ω.

De plus, il existe un ensemble P ⊂ (0, T ) de mesure nulle, tel que u(t, .) ∈ C 0,β (Ω) pour tout t ∈ (0, T ) ∖ P et pour tout β < min{1, α+1 2 }. Enn u est une solution de

u t + ∂ x J = 0 dans D ′ (Ω) où J(t, .) = u n ∂ x I(u) ∈ L 1 (Ω) pour tout t ∈ P.
1.1.4 Etapes de la preuve [START_REF] Tarhini | Study of a family of higher order nonlocal degenerate parabolic equations: from the porous medium equation to the thin lm equation[END_REF] lorsque 0 < α < 2

Nos résultats sont des généralisation des résultats obtenus dans [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF] pour les deux cas 0 < α < 1 et 1 < α < 2 en utilisant la même approche mais en modiant les résultats de compacité. D'abord on considère le problème régularisé suivant

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂ t u + ∂ x (f (u)∂ x I(u)) = 0 pour t > 0, x ∈ Ω, ∂ x u = 0, f (u)∂ x I(u) = 0 pour t > 0, x ∈ ∂Ω, u(x, 0) = u 0 (x) pour x ∈ Ω, (1.16 
) où f (s) = s n + + , > 0 et 0 < α < 2. L'étude d'un problème stationnaire qui permet de montrer l'existence de solutions pour le problème régularisé. Dès que les solutions du problème régularisé sont construites on passe à la limite → 0 pour trouver des solutions faibles pour (3.1). En passant à la limite on distingue les deux cas 0 < α ≤ 1 et 1 < α < 2.

Le cas 1 < α < 2 est le cas le plus simple car dans ce cas on obtient une convergence locale uniforme grâce à l'injection suivante en dimension 1 H α 2 (Ω) ↪ C 0, α-1 2 (Ω).

(1.17 

u t = ∇. u∇ α-1 G(u) , t ∈ R, x ∈ R N , (1.19) 
où G(u) = u m-1 , m ≥ 3 et ∇ α-1 est l'opérateur intégro-diérentiel d'ordre α -1 ∇(-∆) α 2 -1 , avec α ∈ (0, 2). Cette équation est étudiée avec la condition initiale u(0, x) = u 0 (x).

(1.20)

L'opérateur ∇ α-1 est un opérateur nonlocal. Pour une fonction régulière bornée v, on dispose de la représentation intégrale suivante ∇ α-1 v(x) = c α ˆ(v(y)v(x)) yx yx N +α dy (1.21) avec une constante convenable c α > 0. De plus, on a ∇.∇ α-1 = -(-∆)

α 2 .
Notons qu'on ne dispose pas d'un principe de comparaison pour cette équation.

Résultats existants

Pour α = 2 l'équation (1.19) devient l'équation des milieux poreux avec m > 1 et u ≥ 0

∂ t u = ∇.(u∇u m-1 ). (1.22)
C'est une équation parabolique dégénérée d'ordre 2. Le cas m = 2 correspond à l'équation de Boussinesq. Les propriétés de l'équation des milieux poreux (existence de solutions faibles et fortes, unicité des solutions, vitesse nie de propagation, principe du maximum) sont bien connues dans la littérature mathématique, voir [START_REF] Aronson | The porous medium equation[END_REF][START_REF] Luis | The porous medium equation[END_REF] pour la théorie concernant cette équation et ses applications. Cette équation décrit diérents phénomènes naturels.

Ce modèle a été proposé par Boussinesq en 1903 pour étudier l'inltration des eaux souterraines [START_REF] Boussinesq | Recherches théoriques sur l'écoulement des nappes d'eau inltrées dans le sol et sur le débit des sources[END_REF]. En 1950 Zeldovich et al. [START_REF] Ya | Physics of shock waves and high-temperature hydrodynamic phenomena[END_REF] ont développé une application sur le rayonnement thermique en plasmas. Le modèle le plus connu est la description du ux d'un gaz isentropique dans un milieu poreux modélisé par Leibenzon [START_REF] Leibenzon | The motion of a gas in a porous medium. Complete Works[END_REF] et Muskat [START_REF] Muskat | The ow of homogeneous uids through porous media[END_REF] en 1930. Cette équation est dérivée de la conservation de la masse du gaz qui se propage dans un milieu poreux homogène [START_REF] Aronson | The porous medium equation[END_REF][START_REF] Luis | The porous medium equation[END_REF] ∂ t u + ∇.(uv) = 0 Enn une loi sur la pression implique que p est une fonction monotone de u, p = f (u). La fonction f est linéaire quand le ux est isothermique et est un exposant de u quand le ux est adiabatique. Ce qui donne l'équation suivante

∂ t u = ∇.(u∇f (u)). (1.25) Dans notre cas f (u) = (-∆) α 2 -1 u m-1 avec 0 < α < 2. L'opérateur (-∆) α 2 -1 est un Laplacien fractionnaire d'exposant négatif de noyau k(x, y) = c α x -y -(N +α-2) .
(1.26) C'est pour cette raison qu'on appelle l'équation (1.19) une équation des milieux poreux fractionnaire.

En dimension 1 et pour m = 2 l'équation (1.19) coïncide avec l'équation (3.1) étudiée dans la première partie pour n = 1 et Ω = R. Le Laplacien fractionnaire est au coeur de nombreux modèles récents. Vazquez et al [START_REF] De | A fractional porous medium equation[END_REF][START_REF] De | A general fractional porous medium equation[END_REF] étudient l'équation suivante 

∂ t u + (-∆) σ 2 ( u m-1 u) = 0, t > 0, x ∈ R N , (1.27) u(0, x) = u 0 (x), x ∈ R N , avec 0 < σ < 2 et m > 0 pour une condition initiale u 0 dans L 1 (R N ).
u t (t, x) = ˆ(u(t, y) -u(t, x))K(t, x, y)dy (1.28) où k est un noyau symétrique c'est à dire K(t, x, y) = K(t, y, x) pout tout x ≠ y, (1.29) et pour lequel il existe 0 < s < 2 et Λ > 0 tels que χ { x-y ≤3} 1 Λ 1 x -y N +s ≤ K(t, x, y) ≤ Λ x -y N +s . (1.30)
Pour montrer la régularité Hölder des solutions ils utilisent la méthode de De Giorgi qui sera présentée dans le premier chapitre de cette thèse. Les solutions de l'équation (1.28) changent de signe. On observe cependant que si u est une solution de (1.28) alors -u l'est aussi. Donc il sut de montrer un lemme de réduction de l'oscillation par au dessus. L'idée est de comparer u à 0. Si u passe un certain temps en dessous de 0 dans un certain cylindre alors u ne peut pas être très proche de 1 dans un cylindre plus petit. En itérant ce lemme pour une famille de solutions de (1.28) on obtient la régularité Hölder des solutions.

Notons que la propriété de scaling des solutions est essentielle dans la preuve pour pouvoir itérer le lemme de réduction de l'oscillation. [START_REF] Caarelli | Nonlinear porous medium ow with fractional potential pressure[END_REF] étudient l'équation

Caarelli et Vazquez

∂ t u = ∇.(u∇(-∆) -s u) t > 0, x ∈ R N , (1.31) avec 0 < s < 1
2 . L'équation (1.31) coïncide avec notre équation (1.19) dans le cas α = 2 -2s et m = 2. Ils montrent l'existence de solutions faibles pour des conditions initiales bornées avec une décroissance exponentielle à l'inni. Pour construire ces solutions ils ajoutent un terme Laplacien, régularisent le noyau et éliminent la dégénéréscence. De plus comme les solutions de l'équation des milieux poreux, ces solutions ont une vitesse nie de propagation: si la condition initiale u 0 (x) est à support compact alors la solution u(t, x) est aussi à support compact pour tout t > 0. Dans un autre article [START_REF] Caarelli | Asymptotic behaviour of a porous medium equation with fractional diusion[END_REF] ils étudient le comportement asymptotique de ces solutions.

De plus ils montrent avec un autre auteur dans [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF] la régularité Hölder de ces solutions pour le cas s ∈ (0, 1), s ≠ 1 2. Puis ils traitent le cas s = 1 2 dans un autre article [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow with exponent 1/2. Algebra i Analiz[END_REF].

Ils utilisent aussi la méthode de De Giorgi pour montrer leur résultat. Ces deux articles ont été une précieuse source d'inspiration nous allons généraliser leur méthode pour établir la régularité des solutions de (1.19). Les ingrédients principaux de la preuve sont les estimées d'énergie pour montrer les premiers lemmes de De Giorgi et les injections de Sobolev. Notons que la propriété de scaling vériée par les solutions est aussi importante dans la preuve. L'idée est d'itérer les lemmes de réduction d'oscillation (par au dessus ou par en dessous) pour arriver à la régularité. Notons que par rapport à l'équation (1.28) la diérence majeure est qu'ils considèrent des solutions positives. On ne peut donc ni comparer u à 0 ni utiliser -u comme solution de (1.31). Ils comparent plutôt u à 1 2 et dans ce cas ils ont besoin d'un nouveau lemme de réduction de l'oscillation par en dessous.

Plus précisément, si la solution u est presque partout plus grande que 1 2 dans un certain cylindre alors u est strictement plus grande que 0 dans un cylindre plus petit. Enn pour arriver à la régularité Hölder ils itèrent alternativement ces deux lemmes.

Notons que dans les deux cas (1.28) et (1.31) la forme bilinéaire B(u, v) = ¨(u(t, x)u(t, y))K(t, x, y)(v(t, x)v(t, y))dxdy (1.32) joue un rôle crucial dans la preuve des estimées d'énergie. Selon le cas K vérie les conditions (1.29), (1.30) dans le cas de (1.28) et K(t, x, y) = xy -(N +s) dans le cas de (1.31). Pour arriver aux estimations d'énergie ils utilisent la décomposition suivante de u 

u = (u -c) + -(u -c) -+ c (1.33) où c est une constante positive, (u -c) + = max(0, u -c) et (u -c) -= max(0, c -u).
D α t u -∇.(u∇(-∆) -σ u) = f, u(0, x) = u 0 (x), où 0 < σ < 1 2
u t = ∇. u ∇ α-1 ( u m-2 u) , t > 0, x ∈ R N , (1.34) u(0, x) = u 0 (x), x ∈ R N . (1.35)
Ils montrent l'existence de solutions faibles bornées pour des conditions initiales intégrables sous des conditions sur m qui dépendent de la valeur de α. 

(-1 2, 0) × R N et [u] C β 1 ,β t,x ≤ C tels que β 1 , β et la constante C dépendent seulement de N, m et α.
Remark 1.6. On obtient une estimée pour des solutions dans (-T, 0) × R N par remise à l'échelle.

Etapes de la preuve

Dans la deuxième partie de cette thèse on montre la régularité Hölder des solutions faibles de (1.19) qui vérient certaines estimées d'énergie. On suit l'approche utilisée par [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF][START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF][START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow with exponent 1/2. Algebra i Analiz[END_REF] donc on utilise la méthode de De Giorgi.

Dans un premier temps, on cherche des inégalités d'énergie vériées par les solutions pour pouvoir montrer les premiers lemmes de De Giorgi. On considère les solutions approchées u δ du problème régularisé La preuve de ce lemme n'est pas triviale. On a suivi les idées trouvées dans [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF] et on a écrit la preuve après des discussions personnelles avec C. Imbert. En considérant une famille convenable d'itérations de la solution et en utilisant le lemme des valeurs intermédiaires pour cette famille on arrive à obtenir un lemme de réduction de l'oscillation par au dessus amélioré. Enn on arrive à une situation où on a deux alternatives; ou bien u passe un certain temps plus petite que 1 2 ou bien u passe la plupart du temps plus grande que 1 2. Dans les deux cas on arrive à réduire l'oscillation de u. En considérant une famille de solutions itérées remises à l'échelle, on arrive enn à la régularité Hölder de u.

∂ t u = δ∆u + ∇.(u∇ α-1 G(u)
G(u) = G(c + (u -c) + ) + G(c -(u -c -)) -G(c).

Perspectives

Plusieurs questions sont encore ouvertes à propos notre équation. On souhaite par exemple étudier la régularité de l'interface c'est à dire le support de u, Chapter 2

∂ t u = ∇.(u m-1 ∇(-∆) -s u) t > 0, x ∈ R N , (1.38) pour m > 1, 0 < s < 1 et u(t, x) ≥ 0.
De Giorgi elliptic and parabolic regularity theory: a short overview

Introduction

In this chapter we present the method introduced by De Giorgi in [START_REF] De | Sulla dierenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF] to prove Hölder regularity of solutions of elliptic equations with rough coecients.

De Giorgi's legacy: some references

De Giorgi was interested in solving the [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF] th Hilbert problem about the analytic regularity of solutions to some integral variational problems. Nash introduced dierent techniques to solve the problem [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF]. Then Moser showed the result using a new approach [START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic dierential equations[END_REF]. These methods called De Giorgi-Nash-Moser techniques are by now classical in the regularity theory of partial dierential equations. De Giorgi introduced in his paper [START_REF] De | Sulla dierenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF] a class of functions that verify energy estimates and proved that once the function is in this class then it is locally bounded and Hölder continuous.

His ideas was extended to linear parabolic equations with lower order terms and to quasilinear parabolic equations by Ladyzhenskaya and Uralt'seva [START_REF] Ladyzhenskaya | Linear and quasilinear elliptic equations[END_REF]. They introduced parabolic De Giorgi classes and proved that Hölder estimate holds if ±u are both in one of this classes. These results are presented in [START_REF] Gary M Lieberman | Second order parabolic dierential equations[END_REF]. Then they introduce a more general parabolic De Giorgi class in [START_REF] Ladyzhenskaya | tceva. Linear and quasilinear equations of parabolic type[END_REF]. Di Benedetto and Trudinger [START_REF] Dibenedetto | Harnack inequalities for quasiminima of variational integrals[END_REF] showed that nonnegative function in the elliptic De Giorgi class satisfy Harnack inequality. They use a measure theoretic lemma of Krylov and Safonov [START_REF] Krylov | A property of the solutions of parabolic equations with measurable coecients[END_REF]. Wang extend their result to the parabolic case in [START_REF] Lie | Harnack inequalities for functions in De Giorgi parabolic class[END_REF] then he establish in [START_REF] Lie | Harnack inequalities for functions in the general De Giorgi parabolic class[END_REF] Harnack inequality for functions in the general De Giorgi class introduced in [START_REF] Ladyzhenskaya | tceva. Linear and quasilinear equations of parabolic type[END_REF]. The method of De Giorgi has also been extended to degenerate case like the p-laplacian, rst to elliptic case [START_REF] Ladyzhenskaya | Linear and quasilinear elliptic equations[END_REF] then to parabolic case [START_REF] Dibenedetto | On the local behaviour of solutions of degenerate parabolic equations with measurable coecients[END_REF], [START_REF] Dibenedetto | Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial dierential equations[END_REF], [START_REF] Dibenedetto | Harnack type estimates and Hölder continuity for non-negative solutions to certain sub-critically singular parabolic partial dierential equations[END_REF], [START_REF] Dibenedetto | Harnack's inequality for degenerate and singular parabolic equations[END_REF].

Furthermore, nonlinear nonlocal time-dependent variational problems are studied in [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF]. They extend the method of De Giorgi to nonlocal parabolic problems and prove Hölder regularity of solutions for problems with translation invariant kernels. This type of equation has been studied also using Moser's result from [START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic dierential equations[END_REF] in [START_REF] Moritz Kassmann | A priori estimates for integro-dierential operators with measurable kernels[END_REF] and [START_REF] Felsinger | Local regularity for parabolic nonlocal operators[END_REF]. Here they prove local regularity results such as a weak Harnack inequality [START_REF] Felsinger | Local regularity for parabolic nonlocal operators[END_REF]. In [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF] the authors also used the De Giorgi method to prove Hölder regularity of solutions of a porous medium equation with nonlocal diusion eects given by an inverse fractional Laplacian operator. This method was also used to solve regularity issues in uid mechanics [START_REF] Baer | A bound from below on the temperature for the Navier-Stokes-Fourier system[END_REF], [START_REF] Caputo | Global regularity of solutions to systems of reaction-diusion with sub-quadratic growth in any dimension[END_REF], [START_REF] Caarelli | The De Giorgi method for regularity of solutions of elliptic equations and its applications to uid dynamics[END_REF], [START_REF] Goudon | Regularity analysis for systems of reactiondiusion equations[END_REF], [START_REF] Vasseur | Higher derivatives estimate for the 3D Navier-Stokes equation[END_REF]. Recently, the De Giorgi method has been extended to a class of kinetic Fokker-Planck equations [START_REF] Golse | Harnack inequality for kinetic fokker-planck equations with rough coecients and application to the landau equation[END_REF] and [START_REF] Imbert | Weak harnack inequality for the boltzmann equation without cut-o[END_REF]. A Harnack inequality and Hölder regularity are proved for solutions to a general linear equation of Fokker-Planck type whose coecients are merely measurable and essentially bounded.

The main steps of the method

We present the strategy of De Giorgi presented in [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF] and [START_REF] Caarelli | The De Giorgi method for regularity of solutions of elliptic equations and its applications to uid dynamics[END_REF] for the elliptic, local and nonlocal parabolic cases. To prove Hölder regularity, the method is to prove a lemma of reduction of the oscillation. In the elliptic case his idea is to compare sign-changing solutions u bounded from above by 1 to zero(u ≥ 0 or u < 0). If u is mostly below zero in the ball B 1 then u is far from 1 in a smaller ball B 1 2 . Two main ingredients are used in the proof of this lemma, energy estimate derived from the equation and Sobolev's embedding theorem. Then to pass to a lemma of reduction of the oscillation he proves an isoperimetric inequality which is very crucial in the proof. This inequality has been extended to the local and nonlocal parabolic cases and known by the lemma of intermediate values. Finally using scaling property of the solutions he conclude Hölder regularity. In the parabolic cases, they proceed as in the elliptic case but by considering cylinders instead of balls. We note that proving an energy estimate veried by a solution is very crucial in the proof of Hölder continuity using De Giorgi's approach. Once the energy estimate is proved we can follow the steps of De Giorgi and get the regularity result.

Organization of the chapter

In Section 2 we recall the 19 th Hilbert problem. In Section 3 we present De Giorgi's method in the elliptic case. Then we pass to the local parabolic case in Section 4. Finally we present this method in the nonlocal parabolic case in Section 5. 

F (p) p 2 = c > 0 (2.2)
then any solution of (2.1) is C ∞ in Ω. Note that the assumptions (2.2) on F imply that there exists a constant Λ > 0 such that

1 Λ I ≤ F ′′ (∇w) ≤ ΛI, x ∈ Ω,
where I is the identity N × N matrix. If we write the equation in the non-divergence form

F ′′ (∇w) ∶ D 2 w = 0,
then we can use the Calderon-Zygmund theory [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF] to say that ∇w ∈ C α (Ω) implies the C 2,α regularity on w in Ω since the equation is linear with C α coecients, the argument can be reiterated we arrive to w ∈ C ∞ (Ω). So the aim now is to prove that ∇w ∈ C α (Ω).

De Giorgi considered for every 1 ≤ i ≤ N the derivative with respect to x i of (2.1) and denoted u = ∂ i w, we arrive to ∇.(F ′′ (∇w)∇u) = 0.

Elliptic case

We will present in this section the elliptic case which is the original result proved by De Giorgi.

Theorem 2.1 (Hölder regularity). Let Ω be a bounded open set of R N and Λ > 0. Consider A(x) a measurable matrix valued function dened on Ω such that

1 Λ I ≤ A(x) ≤ ΛI, x ∈ Ω.
(2.3)

Let u ∈ H 1 (Ω) be a weak solution of -∇.(A(x).∇u) = 0, x ∈ Ω.

(2.4)

Then u ∈ C α (Ω ′ ) for any Ω ′ ⊂⊂ Ω, with u C α (Ω ′ ) ≤ C u L 2 (Ω) .
The constant α depends only on Λ and N . The constant C depends on Λ, N, Ω ′ and Ω.

By weak solution we mean a function u ∈ H 1 (Ω) which veries ˆA(x).∇u∇ϕdx = 0,

for any function ϕ ∈ C ∞ c (R N ).
Note that Ω ′ ⊂⊂ Ω means that Ω ′ is a relatively compact set of Ω. Let L denote any operator -∇.(A(x)∇.) where A is an uniformly elliptic matrix that is it veries (2.3). As we said the proof of this theorem proceeds in two steps. We rst pass from L 2 to L ∞ where the main ingredients in this step are the energy estimate derived from the equation and Sobolev's embedding theorem. Then we pass from L ∞ to C α using the isoperimetric inequality of De Giorgi. veries Lū = 0 for an operator L which veries (2.3) for the same value of Λ. This scaling property will be essential in the proof of the regularity. We will prove the result for Ω = B 1 and Ω ′ = B 1 2 then using the scaling property we can conclude the result for general Ω and Ω ′ .

First lemma of De Giorgi

We will start with the rst step, which is the rst lemma of De Giorgi. If the solution is bounded in L 2 (B 1 ) then it is bounded in L ∞ in a smaller ball B 1 2 . We write v + = max(0, v).

Lemma 2.3 (From L 2 to L ∞ ). There exists a constant δ > 0 depending only on N and Λ such that for any solution u ∶ R N → R of (2.4) the following implication holds true:

If ˆB1 u 2 + dx ≤ δ then we have u + ≤ 1 2 in B 1 2 .
Note that using the scaling property this lemma implies that u ∈ L ∞ loc (Ω ′ ). 

U k ≤ C k U β k-1 with β > 1, (2.5) 
where 

U k = ´Br k (u -c k ) 2 + dx for some sequence c k → 1 2 as k → ∞.
U k ≤ C k U β k-1 with β > 1.
If U 0 is small enough then U k converges to zero when k goes to ∞.

The reader can nd the proof of this proposition in [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF]. Two main ingredients are used to derive the nonlinear estimate (2.5), the Sobolev inequality

v L p (B 1 ) ≤ c ∇v L 2 (B 1 ) with p = 2N N -2 (2.6) 
and the energy inequality derived from the equation (2.4)

ˆB1 ∇(ξu + ) 2 dx ≤ c ∇ξ 2 L ∞ (B 1 )
ˆB1 ∩supp ξ u 2 + dx (2.7)
for any ξ ∈ C ∞ 0 (B 1 ). The reader can nd the proof of this inequality in Lemma 1.3 in [START_REF] Caarelli | The De Giorgi method for regularity of solutions of elliptic equations and its applications to uid dynamics[END_REF] and Lemma 7 in [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF]. We will now present the proof of Lemma (2.3).

Proof. For k ∈ N, let us dene

r k = 1 2 1 + 1 2 k , c k = 1 2 1 - 1 2 k and ξ k (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 if x ∈ B r k 0 if x ∈ R N ∖ B r k-1 a C 2 -function if x ∈ B r k-1 ∖ B r k . such that ∇ξ k ≤ C2 k . Note that χ Br k ≤ ξ k ≤ χ Br k-1 and (u -c k ) + > 0 implies (u -c k-1 ) + > 2 -(k+1) . Now we dene U k = ˆBr k (u -c k ) 2 + dx.
We have

U k ≤ ˆ(u -c k ) 2 + ξ 2 k dx.
Using Hölder inequality we can write

U k ≤ ˆ((u -c k ) + ξ k ) 2N N -2 dx N -2 N . {(u -c k ) + ξ k > 0} 2 N .
From Sobolev inequality (4.17) we arrive to

U k ≤ c ˆ ∇((u -c k ) + ξ k ) 2 dx . {(u -c k ) + ξ k > 0} 2 N .
Finally, we use the energy estimate (2.7) to conclude

U k ≤ c2 2k ˆsupp ξ k (u -c k ) 2 + dx . {(u -c k ) + ξ k > 0} 2 N ≤ c2 2k ⎛ ⎝ ˆBr k-1 (u -c k-1 ) 2 + dx ⎞ ⎠ . {(u -c k-1 ) + > 2 -(k+1) } ∩ B r k-1 2 N ≤ c2 2k+ 4(k+1) N U k-1 .(U k-1 ) 2 N .
using Chebyshev's inequality. So for U 0 = δ small enough by Proposition 2.4 U k converges to zero when k goes to ∞. Note that

U 0 = ˆB1 u 2 + dx
and U ∞ = 0 implies that u + ≤ 1 2 in B 1 2 .

Second lemma of De Giorgi

In this step one uses measure information to improve an L ∞ bound. It is the key to pass from L ∞ to C α . Lemma 2.5 (Lowering the maximum). Given µ > 0. There exists a constant λ ∈ (0, 1)

depending only on µ, Λ and N such that for any solution u of (2.4) we have

if u ≤ 1 in B 2 and {u ≤ 0} ∩ B 1 ≥ µ then u ≤ 1 -λ in B 1 2 .
This lemma says that if u is a solution of (2.4) smaller than 1 in B 2 and is far from 1 in a subset of B 1 of a nontrivial measure then u is away from 1 in the whole ball B 1 2 .

Note that if we have

{u ≤ 0} ∩ B 1 ≥ B 1 -δ then, as u ≤ 1 in B 2 , ˆB1 u 2 + dx ≤ {u > 0} ∩ B 1 ≤ δ and Lemma 2.3 implies u + ≤ 1 2 in B 1 2 .
So we must bridge the gap between knowing that {u ≤ 0} ∩ B 1 ≥ µ and knowing that {u ≤ 0} ∩ B 1 ≥ B 1δ. The solution is the following De Giorgi isoperimetric inequality.

Lemma 2.6 (De Giorgi isoperimetric inequality). Consider w such that ´B1 ∇w

+ 2 dx ≤ C 0 . Set A = {w ≤ 0} ∩ B 1 , C = {w ≥ 1 2} ∩ B 1 , D = {0 < w < 1 2} ∩ B 1 .
Then we have

C 0 D ≥ C 1 A C 1-1 n 2
.

In other words we can say that if w is less than zero in a set of nontrivial measure and w is bigger than 1 2 also in a set of nontrivial measure then the set where w is between 0 and 1 2 has a nontrivial measure. The proof of this inequality is given in Lemma 1.4 in [START_REF] Caarelli | The De Giorgi method for regularity of solutions of elliptic equations and its applications to uid dynamics[END_REF] and Lemma 10 in [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF]. We can now pass to the proof of Lemma 2.5.

Proof. of 2.5. For any k ∈ N we consider

u k = 2 k u -(1 -2 -k ) . Note that since u ≤ 1 in B 2 then for any k ∈ N, u k ≤ 1 in B 2 . So from the energy inequality (2.7) for ξ ≡ 1 in B 1 and since u k ≤ 1 in B 2 we have ˆB1 ∇(u k ) + 2 dx ≤ C 0 .
By construction {u k ≤ 0} ∩ B 1 is increasing as k increases, thus greater than µ for any k.

Hence we can apply Lemma 2.6 on u k . As long as

ˆB1 (u k ) 2 + dx ≥ δ we get {u k-1 ≥ 1 2} ∩ B 1 = {u k ≥ 0} ∩ B 1 ≥ ˆB1 (u k ) 2 + dx ≥ δ.
In that case Lemma 2.6 implies that there exists γ > 0 depending only on N, δ and µ such that

{0 < u k-1 < 1 2} ∩ B 1 ≥ γ.
Then, recursively,

{u k ≤ 0} ∩ B 1 = {u k-1 ≤ 0} ∩ B 1 + {0 < u k-1 < 1 2} ∩ B 1 ≥ {u k-1 ≤ 0} ∩ B 1 + γ ≥ µ + kγ.
This cannot be true for all k. So for a k 0 we have

ˆB1 (u k 0 ) 2 + dx ≤ δ and Lemma 2.3 implies that u k 0 ≤ 1 2 in B 1 2 hence u ≤ 1 -λ in B 1 2 with λ = 2 -(k 0 +1) . Note that k 0 ≤ B 1 γ ≤ C N µ 2 δ
which depends only on N, Λ and µ.

From L ∞ to C α

We can now state the lemma of local decrease of the oscillation of the solution.

Lemma 2.7 (Local decrease of the oscillation). There exists a constant θ ∈ (0, 1) depending only on Λ and N such for any solution u of (2.4) we have osc

B 1 2 u ≤ θ osc B 1 u.
Proof. As noted after Lemma 2.3, one knows already that u ∈ L ∞ (B 1 ). We dene the function

v(x) = 2 osc B 1 u u(x) - sup u + inf u 2 . We have -1 ≤ v ≤ 1. Assume that {v ≤ 0}∩B 1 ≥ B 1 2 , if not we can work with -v. Applying Lemma 2.5 with µ = B 1 2 we get osc B 1 2 v ≤ 2 -λ hence osc B 1 2 u ≤ (1 -λ 2)osc B 1 u.
To prove Hölder regularity we will use the following proposition Proposition 2.8. Let u be a function dened in B 1 such that for any x 0 ∈ B 1 2 and any r ∈ (0, 1 2) we have osc u

Br(x 0 ) ≤ Cr α . Then u is α-Hölder continuous in B 1 2 (x 0 ).
Finally we can conclude the Hölder regularity of u solution of (2.4) from Lemma 2.7.

Here we use the scaling property for the solutions. Consider any x 0 ∈ B 1 2 . We introduce the rescaled functions

u n (y) = u(x 0 + y 2 n ).
Note that u n are solutions of (2.4) with operators L n that veries (2.3) for the same value Λ and osc

B 1 u n = osc B 1 2
u n-1 . We apply Lemma 2.7 recursively on u n . This gives osc u

B 2 -n (x 0 ) ≤ Cθ n .
We conclude that u is in C α with α = -log θ log 2 .

Local parabolic case

In this section, we will describe how the method of De Giorgi can be applied in the local parabolic case. We consider the following equation

∂ t u -∇.(A(t, x)∇u) = 0, (t, x) ∈ (0, T ) × Ω (2.8)
where Ω is a bounded open set in R N and A is a uniformly elliptic matrix that is it veries

1 Λ I ≤ A(t, x) ≤ ΛI, (t, x) ∈ (0, T ) × Ω.
Remark 2.9. A scaling property holds for the set of solutions of (2.8). If u is a solution of (2.8) then the function u 1 dened by u 1 (t, x) = Bu(C 2 t, Cx) is also solution of (2.8).

Using De Giorgi techniques, Hölder reguarity of weak solutions of (2.8) was proved.

Theorem 2.10 (Hölder regularity). Let u ∈ L ∞ (0, T ; L 2 (Ω)) be a weak solution of (2.8)

in (0, T ) × Ω such that ∇u ∈ L 2 ((0, T ) × Ω).
Then there exists α > 0 such that for any Ω ′ ⊂⊂ Ω and any 0 < s < T ,

u ∈ C α ((s, T ) × Ω ′ ).
As in the elliptic case, the proof is split into two steps. We denote Q r = (-r, 0) × B r .

We will present the result for Ω = Q 2 and Ω ′ = Q 1 2 and using the scaling property and a convering argument we can conclude the result for Ω and Ω ′ . We start with the rst lemma of De Giorgi, passing from L 2 to L ∞ . Then we pass to the second step which is passing from L ∞ to C α .

First lemma of De Giorgi

We will start with the rst step, which is the rst lemma of De Giorgi. If the nonnegative

solution is bounded in L 2 (Q 1 ) then it is bounded in L ∞ in a smaller cylinder Q 1 2 .
Lemma 2.11 (From L 2 to L ∞ ). There exists a constant δ > 0 depending only on N and Λ such that for any solution u ∶ (0, T ) × R N → R of (2.8) the following implication holds true:

If ˆQ1 u 2 + dxdt ≤ δ then we have u + ≤ 1 2 in Q 1 2 .
Proof.

Step 1: In this we prove an energy estimate veried by the solution u.

For k ∈ N, let us dene

T k = - 1 2 1 + 1 2 k , r k = 1 2 1 + 1 2 k , c k = 1 2 1 - 1 2 k and ξ k (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 if x ∈ B r k 0 if x ∈ R N ∖ B r k-1 a C 2 function if x ∈ B r k-1 ∖ B r k .
such that ∇ξ k ≤ C2 k . To derive the energy estimate, we multiply the equation (2.8) by (uc k ) + ξ 2 k then we integrate in time and space on (t 1 , t 2 ) × R N , we get

1 2 ˆ(u -c k ) 2 + (t 2 , x)ξ 2 k (x)dx - ˆt2 t 1 ˆ(u -c k ) + ξ 2 k ∇.(A∇(u -c k ) + )dxdt = 1 2 ˆ(u -c k ) 2 + (t 1 , x)ξ 2 k (x)dx.
We estimate now the second term in the following way

- ˆt2 t 1 ˆ(u -c k ) + ξ 2 k ∇.(A∇(u -c k ) + )dxdt = ˆt2 t 1 ˆA∇(u -c k ) + .∇(u -c k ) + ξ 2 k dxdt + ˆt2 t 1 ˆA.∇(u -c k ) + (u -c k ) + ∇(ξ 2 k )dxdt.
Using the uniform ellipticity of A, see (2.3), we can write

1 2 ˆ(u -c k ) 2 + (t 2 , x)ξ 2 k (x)dx + 1 Λ ˆt2 t 1 ˆ ∇(u -c k ) + 2 ξ 2 k dxdt ≤ 1 2 ˆ(u -c k ) 2 + (t 1 , x)ξ 2 k (x)dx -2 ˆt2 t 1 ˆA.∇(u -c k ) + (u -c k ) + ξ k ∇(ξ k )dxdt.
Now we use Young's inequality to write ˆt2

t 1 ˆA.∇(u -c k ) + (u -c k ) + ξ k ∇(ξ k )dxdt ≤ ˆt2 t 1 ˆ A∇(u -c k ) + 2 ξ 2 k dxdt + c ˆt2 t 1 ˆ(u -c k ) 2 + ∇(ξ k ) 2 dxdt.
Using (2.3) twice for small enough the rst term can be absorbed by the LHS. Since

∇(ξ k ) ≲ 2 k we arrive at ˆ(u -c k ) 2 + (t 2 , x)ξ 2 k (x)dx + 1 Λ ˆt2 t 1 ˆ ∇(u -c k ) + 2 ξ 2 k dxdt (2.9) ≤ ˆ(u -c k ) 2 + (t 1 , x)ξ 2 k (x)dx + C2 2k ˆt2 t 1 ˆsupp ξ k (u -c k ) 2 + dxdt.
Step 2: We are going to prove a nonlinear estimate of the form

U k ≤ C k U k-1 .. Now we consider U k = sup T k ≤t≤0 ˆBr k (u -c k ) 2 dx + 1 Λ ˆ0 T k ˆBr k ∇(u -c k ) + 2 dxdt. From (2.9) taking arbitrary values T k-1 ≤ t 1 ≤ T k ≤ t 2 ≤ 0 we have U k ≤ 2 inf T k-1 ≤t 1 ≤T k ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ˆBr k-1 (u -c k ) 2 + (t 1 , x)dx + C2 2k ˆ0 T k-1 ˆBr k-1 (u -c k ) 2 + dxdt ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ .
Taking averages in t 1 we arrive at the inequality

inf T k-1 ≤t 1 ≤T k ˆBr k-1 (u -c k ) 2 + (t 1 , x)dx ≤ 1 T k -T k-1 ˆTk T k-1 ˆBr k-1 (u -c k ) 2 + dxdt 1 ≤ 2 k ˆ0 T k-1 ˆBr k-1 (u -c k ) 2 + dxdt 1 .
So we have the same term to estimate. Since (u -

c k ) + > 0 implies that (u -c k-1 ) + > (u -c k ) + + 2 -k+1 we can write U k ≤ C k ˆ0 T k-1 ˆBr k-1 (u -c k-1 ) 2 + χ { (u -c k-1 ) + > 2 -k+1 }dxdt.
Let p > 2 be the exponent corresponding to Sobolev's embedding theorem so that

ˆBr k-1 (u -c k-1 ) p + dx ≤ C ⎛ ⎝ ˆBr k-1 ∇(u -c k-1 ) + 2 dx ⎞ ⎠ p 2
.

for some constant C. We consider θ = 2 p and q = 2(1θ) + pθ. Then, as

2 (k-1)(q-2) (u - c k-1 ) q-2 + > 1 in the next integral, ˆBr k-1 (u -c k-1 ) 2 + χ (u-c k-1 )+>2 -k+1 dx ≤ C k ˆBr k-1 (u -c k-1 ) q + dx ≤ C k ⎛ ⎝ ˆBr k-1 (u -c k-1 ) 2 + dx ⎞ ⎠ 1-θ ⎛ ⎝ ˆBr k-1 (u -c k-1 ) p + dx ⎞ ⎠ θ ≤ C k ⎛ ⎝ ˆBr k-1 (u -c k-1 ) 2 + dx ⎞ ⎠ 1-θ ⎛ ⎝ ˆBr k-1 ∇(u -c k-1 ) + 2 dx ⎞ ⎠ . Integrating in time along the interval [T k-1 , 0] gives us U k ≤ C k ⎛ ⎝ sup T k-1 ≤t≤0 ˆBr k-1 (u -c k-1 ) 2 + dx ⎞ ⎠ 1-θ ⎛ ⎝ ˆ0 T k-1 ˆBr k-1 ∇(u -c k-1 ) + 2 dxdt ⎞ ⎠ ≤ C k U 1-θ k-1 U k-1 . Since 1 -θ > 0 we conclude that if U 0 is small enough then U ∞ = 0. Finally, Note that U 0 = ˆQ1 u 2 + dxdt and U ∞ = 0 implies that u + ≤ 1 2 in Q 1 2 .

Second lemma of De Giorgi

To pass to the second step i.e. to pass from L ∞ to C α we need to prove a lemma about lowering the maximum of the solution which leads to a decrease of the oscillation of the solution. We present the result given in [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF]. We write Q = (-3 2, -1) × B 1 .

Lemma 2.12 (Lowering the maximum). There exists a constant λ ∈ (0, 1) such that for

any solution u of (2.8) in Q 2 we have if -1 ≤ u ≤ 1 in Q 2 and {u ≤ 0} ∩ Q ≥ 1 2 Q then u ≤ 1 -λ in Q 1 2 .
This lemma says that if u is below zero for almost every (t, x) ∈ (-3 2, -1) × B 1 then u is far from 1 in the whole cylinder Q 1 2 . The proof of this lemma needs a lemma similar to the isoperimetric inequality for the parabolic case called lemma on intermediate values.

Lemma 2.13 (Lemma on intermediate values)

. There exists a constant γ > 0 such that for any solution u ≤ 1 of (2.8) we have

If {u ≤ 0} ∩ Q ≥ 1 2 Q and {u ≥ 1 2} ∩ Q 1 ≥ δ then {0 < u < 1 2} ∩ (-3 2, 0) × B 1 ≥ γ.
The proof of this lemma is also given in [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF].

Proof. of Lemma 2.12 For any k ∈ N we consider 

u k = 2 k u -(1 -2 -k ) . Note that since u ≤ 1 in Q 2 then for any k ∈ N, u k ≤ 1 in Q 2 . By construction {u k ≤ 0}∩B
{u k-1 ≥ 1 2} ∩ Q 1 = {u k ≥ 0} ∩ Q 1 ≥ ˆQ1 (u k ) 2 + dx ≥ δ.
So Lemma 2.6 implies that there exists γ > 0 depending only on N, δ such that

{0 < u k-1 < 1 2} ∩ Q 1 ≥ γ. Then {u k ≤ 0} ∩ Q 1 = {u k-1 ≤ 0} ∩ Q 1 + {0 < u k-1 < 1 2} ∩ Q 1 ≥ {u k-1 ≤ 0} ∩ B 1 + γ ≥ 1 2 Q + kγ.
This cannot be true for all k. So for a k 0 we have

ˆQ1 (u k 0 ) 2 + dx ≤ δ and Lemma 2.11 implies that u k 0 ≤ 1 2 in Q 1 2 hence u ≤ 1 -λ in Q 1 2 with λ = 2 -(k 0 +1) .
Following the same steps as in the elliptic case we can prove Theorem 2.10.

Nonlocal parabolic case

We will present the result of Caarelli, Chan and Vasseur in [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF] where they prove the Hölder regularity of solutions for nonlocal evolution equations of variational type. We note that they follow the De Giorgi idea and techniques to prove their result.

Presentation of the problem

They study the following equation

∂ t u - ˆRN (u(y) -u(x))K(t, x, y)dy = 0 (2.10)
where K satises the following assumptions K(t, x, y) is symmetric in x and y,

χ x-y ≤3 1 Λ x -y N +α ≤ K(t, x, y) ≤ Λ x -y N +α . (2.11)
where χ denotes a characteristic function. The aim is to show that the solutions u of (2.10) with initial data in L 2 become instantaneously bounded and Hölder continuous. So the result proved in [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF] is the following theorem.

Theorem 2.14 (Hölder regularity for u).

Let u ∈ L 2 loc ((0, ∞); H α 2 (R N )) be a weak solution of (2.10) with initial data u 0 ∈ L 2 (R N ). Then for every t 0 > 0 we have u ∈ C β ((t 0 , ∞) × R N ).
The constants β and the norm of u depend only on t 0 , N, Λ and u 0 L 2 (R N ) .

Note that contrary to the parabolic case, β can now depend on t 0 . By weak solution we mean a function u ∈ L 2 loc ((0, ∞);

H α 2 (R N )) which veries ˆRN ∂ t u(t, x).η(x)dx + B(u(t, .), η) = 0, (2.12 
)

for any function η ∈ C ∞ c (R N ) where B(u, v) = ¨(u(x) -u(y))(v(x) -v(y))K(t, x, y)dxdy. The space H α 2 (R N )) is the space dened by H α 2 (R N ) = {u ∈ L 2 (R N ); ∇ α 2 u ∈ L 2 (R N )} supplemented with the norm u 2 H α 2 (R N )) = u 2 L 2 (R N ) + C(α, N ) ¨(u(x) -u(y)) 2
xy N +α dxdy.

As in the previous cases the proof of this theorem is split into two steps. First we pass from Remark 2.15 (Scaling property). If u satises (2.10) then ū(t, x) = u(A α t, Ax) satises (2.10) with a kernel that satises (2.11). This scaling property will be essential to prove the regularity of solutions.

First lemma of De Giorgi

As we said the rst step is passing from L 2 to L ∞ which is called the rst lemma of De

Giorgi. The novelty in this case is that they compare the solution u to a function ψ who vanishes close to zero, is locally bounded and veries

ˆ x >1 ψ(x)
x N +α dx < ∞.

(2.13)

So in this way they keep track of the long range behaviour of the solution via the function ψ. We dene

ψ(x) = ( x α 4 -1) + .

Lemma 2.16 (First lemma of De Giorgi

). There exists a constant δ 0 ∈ (0, 1) depending only on N, α and Λ such that for any weak solution u ∶

[-2, 0] × R N → R of (2.10) the following implication holds true: if ˆ0 -2 ˆRN (u(t, x) -ψ(x)) 2 + dxdt ≤ δ 0 , then we have u(t, x) ≤ 1 2 + ψ(x) for (t, x) ∈ (-1, 0) × R N , hence u(t, x) ≤ 1 2 for (t, x) ∈ (-1, 0) × B 1 .
Proof.

Step 1: In this we prove an energy estimate veried by the solution u.

For 0 ≤ L ≤ 1 we consider ψ L = L + ψ then we take the test function η to be (u -

ψ L ) + , we get 1 2 d dt ˆ(u -ψ L ) 2 + dx + B(u, (u -ψ L ) + ) = 0. Since u = (u -ψ L ) + -(u -ψ L ) -+ ψ L we write B(u, (u -ψ L ) + ) = B((u -ψ L ) + , (u -ψ L ) + ) -B((u -ψ L ) -, (u -ψ L ) + ) + B(ψ L , (u -ψ L ) + ). Note that since (u -ψ L ) + .(u -ψ L ) -= 0 and K is symmetric then B((u -ψ L ) -, (u -ψ L ) + ) = 2 ¨(u -ψ L ) + (x)(u -ψ L ) -(y)K(x, y)dxdy ≥ 0.
So we can write

1 2 d dt ˆ(u -ψ L ) 2 + dx + B((u -ψ L ) + , (u -ψ L ) + ) ≤ -B(ψ L , (u -ψ L ) + ).
(2.14)

We will estimate the remainder term B(ψ L , (uψ L ) + ) to arrive to the energy estimate.

We write

B(ψ L , (u -ψ L ) + ) = 1 2 ¨(ψ L (x) -ψ L (y))((u -ψ L ) + (x) -(u -ψ L ) + (y))K(t, x, y)dxdy = 1 2 ¨(ψ(x) -ψ(y))((u -ψ L ) + (x) -(u -ψ L ) + (y))K(t, x, y)dxdy.
We consider the integral in two regions. In the rst region we take xy < 1 so we have

ψ(x) -ψ(y) ≤ x -y .
We use the fact that

(u-ψ L ) + (x) -(u -ψ L ) + (y) ≤ χ {(u-ψ L )+>0} (x) + χ {(u-ψ L )+>0} (y) (u -ψ L ) + (x) -(u -ψ L ) + (y) ,
and the symmetry in x and y to write ˆˆ

x-y <1

(ψ(x) -ψ(y))((u -ψ L ) + (x) -(u -ψ L ) + (y))K(t, x, y)dxdy ≤ 2 ˆˆ x-y <1 χ {(u-ψ L )+>0} (x) ψ(x) -ψ(y) (u -ψ L ) + (x) -(u -ψ L ) + (y) K(t, x , y)dxdy. 
Then using Young's inequality we get 2) is integrable in this region. For small enough the rst term can be absorbed by the LHS in (2.14). Now we pass to the second region where xy ≥ 1 and we have

2 ˆˆ x-y <1 χ {(u-ψ L )+>0} (x)(ψ(x) -ψ(y))((u -ψ L ) + (x) -(u -ψ L ) + (y))K(t, x, y)dxdy ≤ ˆˆ x-y <1 ((u -ψ L ) + (x) -(u -ψ L ) + (y)) 2 K(t, x, y)dxdy + c ˆˆ x-y <1 (ψ(x) -ψ(y)) 2 K(t, x, y)χ {(u-ψ L )+>0} (x)dxdy ≤ ¨((u -ψ L ) + (x) -(u -ψ L ) + (y)) 2 K(t, x, y)dxdy + c ˆˆ x-y <1 x -y 2 Λ x -y N +α χ {(u-ψ L )+>0} (x)dxdy ≤ B((u -ψ L ) + , (u -ψ L ) + ) + C ˆχ{(u-ψ L )+>0} (x)dx since x -y -(N +α-
ψ(x) -ψ(y) ≤ C x -y α 4 .
By symmetry we have

ˆˆ x-y ≥1 (ψ(x) -ψ(y))((u -ψ L ) + (x) -(u -ψ L ) + (y))K(t, x, y)dxdy ≤ 2 ˆˆ x-y ≥1 ψ(x) -ψ(y) (u -ψ L ) + (x)K(t, x, y)dxdy ≤ C ˆˆ x-y ≥1 x -y 3α 4 Λ x -y N +α (u -ψ L ) + (x)dxdy ≤ C ˆ(u -ψ L ) + (x)dx since x -y -(N + 3α 4
) is integrable in this region. After these estimations we conclude that for any t 1 < t 2 < 0 we have

ˆ(u-ψ L ) 2 + (t 2 , x)dx + ˆt2 t 1 B((u -ψ L ) + , (u -ψ L ) + )dt ≤ ˆ(u -ψ L ) 2 + (t 1 , x)dx + C ˆt2 t 1 ˆ (u -ψ L ) + (t, x) + χ {(u-ψ L )+>0} (t, x) dxdt.
where C is a constant depending only on N, Λ and α.

In order to employ the Sobolev embedding's theorem we need to compare

B(v, v) to v 2 H α 2 (R N ) . v 2 H α 2 (R N ) = ¨(v(x) -v(y)) 2 x -y N +α dxdy = ¨ x-y ≤3 (v(x) -v(y)) 2 x -y N +α + ¨ x-y >3 (v(x) -v(y)) 2 x -y N +α dxdy ≤ ΛB(v, v) + 2 ¨ x-y ≤3 v(x) 2 + v(y) 2 x -y N +α dxdy ≤ ΛB(v, v) + C ˆv(x) 2 dx. Hence for v = (u -ψ L ) + we can write ˆ(u-ψ L ) 2 + (t 2 , x)dx + 1 Λ ˆt2 t 1 (u -ψ L ) + 2 H α 2 (R N ) dt ≤ ˆ(u -ψ L ) 2 + (t 1 , x)dx + C ˆt2 t 1 ˆ (u -ψ L ) + + (u -ψ L ) 2 + + χ {(u-ψ L )+>0} dxdt.
(2.15)

Step 2: We are going to prove a nonlinear estimate of the form

U k ≤ C k U k-1 .
For k ∈ N let us dene

T k = -1 - 1 2 k , L k = 1 2 (1 - 1 2 k ) and U k = sup t∈[T k ,0] ˆ(u -ψ L k ) 2 + (t, x)dx + ˆ0 T k (u -ψ L K ) + 2 . H α 2 (R N )
dt.

Using (2.15) for T k-1 ≤ t 1 ≤ T k < t 2 < 0 we can write U k ≤ 2 inf T k-1 ≤t 1 ≤T k ˆ(u -ψ L k ) 2 + (t 1 , x)dx + C ˆ0 T k-1 ˆ (u -ψ L k ) + + (u -ψ L k ) 2 + + χ {(u-ψ L k )+>0} dxdt.
Taking averages in t 1 we arrive at the inequality inf

T k-1 ≤t 1 ≤T k ˆ(u -ψ L k ) 2 + (t 1 , x)dx ≤ 1 T k -T k-1 ˆTk T k-1 ˆ(u -ψ L k ) 2 + (t 1 , x)dxdt 1 ≤ 2 k ˆ0 T k-1 ˆ(u -ψ L k ) 2 + (t 1 , x)dxdt 1 . Since (u -ψ L k ) + > 0 implies (u -ψ L k-1 ) + > 2 -(k+1) we can write U k ≤ ˆ0 T k-1 ˆ (2 k + 1)(u -ψ L k-1 ) 2 + + (u -ψ L k-1 ) + + χ {(u-ψ L k-1 )+>2 -(k+1) } dxdt. (2.16)
Let p > 2 be the exponent corresponding to Sobolev's embedding theorem so that

ˆ(u -ψ L k-1 ) p + dx ≤ C( (u -ψ L K ) + 2 H α 2 (R N ) ) p 2 . Now using (u -ψ L k ) + ≤ (u -ψ L k-1 ) + we write ˆ0 T k-1 ˆ(u -ψ L k ) + dxdt ≤ ˆ0 T k-1 ˆ(u -ψ L k-1 ) + χ {(u-ψ L k-1 )+>2 -(k+1) } dxdt ≤ (2 k+1 ) p-1 ˆ0 T k-1 ˆ(u -ψ L k-1 ) p + dxdt ≤ C k U p 2 k ; ˆ0 T k-1 ˆχ{(u-ψ L k )+>0} dxdt ≤ (2 k+1 ) p ˆ0 T k-1 ˆ(u -ψ L k-1 ) p + dxdt ≤ C k U p 2 k ; ˆ0 T k-1 ˆ(u -ψ L k ) 2 + dxdt ≤ ˆ0 T k-1 ˆ(u -ψ L k-1 ) 2 + χ {(u-ψ L k-1 )+>2 -(k+1) } dxdt ≤ (2 k+1 ) p-2 ˆ0 T k-1 ˆ(u -ψ L k-1 ) p + dxdt ≤ C k U p 2 k .
The above three inequalities, together with (2.16), give

U k ≤ C k U p 2 k . Since p 2 > 1 we conclude that if U 0 is small enough then U ∞ = 0. Finally, Note that U 0 ≤ ˆ0 -2 ˆRN (u(t, x) -ψ(x)) 2 + dxdt
and U ∞ = 0 implies that u ≤ 1 2 + ψ.

We will give now a corollary that presents the result in another way: If the solution u is below zero (far from 1) for almost every (t, x) ∈ Q 2 then u cannot be very close to 1 in Q 1 .

Corollary 2.17. There exists a constant δ ∈ (0, 1) depending only on N, α and Λ such that for any weak solution u ∶ [-2, 0] × R N → R of (2.10) the following implication holds true If i) u is bounded from above in the following way

u(t, x) ≤ 1 + ψ(x) in [-2, 0] × R N , ii) u is mostly below 0 in [-2, 0] × B 2 {u > 0} ∩ [-2, 0] × B 2 ≤ δ, then we have u ≤ 1 2 in [-1, 0] × B 1 .
The reader can nd the proof in Corollary 3.3 in [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF].

Second lemma of De Giorgi

It remains to pass from L ∞ to C β so we need a lemma of local decrease of the oscillation of a weak solution of (2.10 

F (x) = sup(-1, inf(0, x 2 -9)).
Note that F is Lipschitz, compactly supported in B 3 and equal to -1 in B 2 . Then for 0 < λ < 1 3 we introduce

Ψ λ (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ [( x -1 λ 4 α ) α 4 -1] + if x ≥ 1 λ 4 α 0 otherwise.
Now we consider the consecutive cutos

ϕ 0 = 1 + Ψ λ + F, ϕ 1 = 1 + Ψ λ + λF, ϕ 2 = 1 + Ψ λ + λ 2 F. Note that ϕ 0 ≤ ϕ 1 ≤ ϕ 2 and ϕ 0 ≡ 0 in B 1 .
Lemma 2.18 (Lemma on intermediate values). Let δ be the constant dened in Corollary 2.17. Then, there exists µ > 0, γ > 0 and λ ∈ (0, 1), depending only on N, α and Λ, such that for any weak solution u ∶

[-3, 0] × R N → R of (2.15) satisfying u ≤ 1 + Ψ λ in [-3, 0] × R N , if {u < ϕ 0 } ∩ ([-3, -2] × B 1 ) ≥ µ, and {u > ϕ 2 } ∩ ([-2, 0] × R N ) ≥ δ then {ϕ 0 < u < ϕ 2 } ∩ ([-3, 0] × R N ) ≥ γ.
The proof is given in Lemma 4.1 in [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF] (They use the function (uϕ 1 ) + to get the result). We can now pass to the lemma of local decrease of the oscillation. First for λ

given in Lemma 2.18 and for any > 0, we dene

Ψ ,λ (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ [( x -1 λ 4 α ) -1] + if x ≥ 1 λ 4 α 0 otherwise.
Lemma 2.19. There exists > 0 and λ * > 0 such that for any solution u of (2.10) in

[-3, 0] × R N such that -1 -Ψ ,λ ≤ u ≤ 1 + Ψ ,λ
for λ given in Lemma (2.18), we have sup

[-1,0]×B 1 u -inf [-1,0]×B 1 u ≤ 2 -λ * .
(2.17)

Proof. We may assume that

{u < ϕ 0 } ∩ ([-3, -2] × B 1 ) > µ.
Otherwise this is veried by -u (ϕ 0 = 0 on B 1 ).

Consider k 0 = (-3,0)×B 3 γ for γ given in 2.18 and x small enough such that

( x -1) + λ 2k 0 ≤ ( x s 4 -1) + for all x,
for λ given in 2.18.For k ≤ k 0 , we consider the sequence

u k+1 = 1 λ 2 (u k -(1 -λ 2 )), u 0 = u. Then u k = 1 λ 2k u + 1 -1 λ 2k and u k (t, x) ≤ 1 + 1 λ 2k Ψ ,λ (x) ≤ 1 + Ψ λ for k ≤ k 0 . By construction {u k < ϕ 0 } ∩ ([-3, -2] × B 1
) is increasing as k increases so it is greater than µ for any k. Hence as long as

{u k > ϕ 2 } ∩ ([-2, 0] × R N ) ≥ δ,
we have, by recursion,

{u k+1 > ϕ 2 } ≤ {u k+1 > ϕ 0 } -γ ≤ {u k > ϕ 2 } -γ ≤ (-3, 0) × B 3 -kγ.
This cannot be true up to k 0 . So there exists k ≤ k 0 such that

{u k > ϕ 2 } ∩ ((-2, 0) × R N ) ≤ δ.
So we can apply Corollary 2.17 to u k+1 , indeed

u k+1 ≤ 1 + Ψ λ ≤ 1 + ψ on (-3, 0) × R N and {u k+1 > 0} ∩ ((-2, 0) × B 2 ) ≤ {u k+1 > ϕ 0 } ∩ ((-2, 0) × B 2 ) ≤ {u k > ϕ 2 } ∩ ((-2, 0) × R N ) ≤ δ.
Hence from Corollary 2.17, we have

u k+1 ≤ 1 2 on (-1, 0) × B 1 . Then u ≤ 1 -λ 2(k+1) 2 on (-1, 0) × B 1 . Since -1 ≤ u ≤ 1 in (-1, 0) × B 1 we get (2.17) for λ * = λ 2(k+1)
2 . Now we can conclude the Hölder regularity of the solution by considering the corresponding rescaled functions using the scaling property.

Proof. of Theorem (2.14). We will prove Hölder regularity of u in (0, 0). We consider

A = 1 1-(λ * 2) for λ * given in Lemma 2.19 andK < 1 such that AΨ λ, (Kx) ≤ Ψ λ, (x),
for λ given in Lemma 2.18 and given in Lemma 2.19. The coecient K depends only on λ, λ * and . Then we dene by induction

u k+1 (t, x) = Au k (K α t, Kx) for (t, x) ∈ (-3, 0) × R N . By construction, u k satises the hypothesis of Lemma 2.19 for any k. Hence osc (-K kα ,0)×B K k u ≤ C(1 -λ * ) k . So using Proposition 2.8, u is C β with β = log(1-λ * ) log(K α ) .
Chapter 3 Study of a family of higher order nonlocal degenerate parabolic equations: from the porous medium equation to the thin lm equation Abstract In this chapter, we study a nonlocal degenerate parabolic equation of order α + 2 for α ∈ (0, 2). The equation is a generalization of the one arising in the modeling of hydraulic fractures studied by Imbert and Mellet in 2011. Using the same approach, we prove the existence of solutions for this equation for 0 < α < 2 and for nonnegative initial data satisfying appropriate assumptions. The main dierence is the compactness results due to dierent Sobolev embeddings. Furthermore, for α > 1, we construct a nonnegative solution for nonnegative initial data under weaker assumptions.

Introduction

In this chapter, we study the following problem

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂ t u + ∂ x (u n ∂ x I(u)) = 0 for x ∈ Ω, t > 0, ∂ x u = 0, u n ∂ x I(u) = 0 for x ∈ ∂Ω, t > 0, u(0, x) = u 0 (x) for x ∈ Ω, (3.1) 
where Ω is a bounded interval in R, n is a positive real number and I is a nonlocal elliptic negative operator of order α dened as the α 2 power of the Laplace operator with

Neumann boundary conditions I = -(-∆) α 2
where α ∈ (0, 2); this operator will be dened below by using the spectral decomposition of the Laplacian.

The case α = 1 was studied by Imbert and Mellet [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF] who proved the existence of nonnegative solutions for nonnegative initial data with appropriate conditions. In this case, when n = 3 the equation designs the physical KGD model developed by Geertsma and de Klerk [START_REF] Geertsma | A rapid method of predicting width and extent of hydraulically induced fractures[END_REF] and Khristianovich and Zheltov [START_REF] Zheltov | On hydraulic fracturing of an oil-bearing stratum[END_REF]. It represents the inuence of the pressure exerted by a viscous uid on a fracture in an elastic medium subject only to plane strain. This equation is derived from the conservation of mass for the uid inside the fracture, the Poiseuille law and an appropriate pressure law (see [54, section 3] and [START_REF] Imbert | Self-similar solutions for a fractional thin lm equation governing hydraulic fractures[END_REF] for further details). In [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF], weak solutions are constructed by passing to the limit in a regularized problem. The necessary compactness estimates are obtained from appropriate energy estimates.

The equation under consideration

u t + ∂ x (u n ∂ x I(u)) = 0 (3.2)
is a nonlocal degenerate parabolic equation of order α + 2.

When α = 2, this equation coincides with the thin lm equation (TFE for short)

u t + ∂ x (u n ∂ 3 xxx u) = 0. (3.3)
This is a fourth order nonlinear degenerate parabolic equation originally studied by Bernis and Friedman [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF]. This equation arises in many applications like spreading of a liquid lm over a solid surface (n = 3) and Hele-Shaw ows (n = 1) (see [START_REF] Almgren | Singularity formation in Hele-Shaw bubbles[END_REF][START_REF] Bertozzi | The mathematics of moving contact lines in thin liquid lms[END_REF][START_REF] Bertozzi | Singularities and similarities in interface ows[END_REF][START_REF] Greenspan | On the motion of a small viscous droplet that wets a surface[END_REF][START_REF] Greenspan | On the wetting of a surface by a very viscous uid[END_REF][START_REF] Hocking | Sliding and spreading of thin two-dimensional drops[END_REF][START_REF] Lacey | The motion with slip of a thin viscous droplet over a solid surface[END_REF]). TFE is derived also from a conservation of mass, the Poiseuille law (derived from a lubrication approximation of the Navier-Stokes equations for thin lm viscous ows) and various pressure laws. The parameter n ∈ (0, 3] models various boundary conditions at the liquid-solid interface. The case n > 3 is mainly of mathematical interest [START_REF] Hulshof | Some aspects of the thin lm equation[END_REF]. In [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF] weak solutions u are exhibited in a bounded interval under appropriate boundary conditions. In addition, they proved that u is nonnegative if u 0 is also so, and that the support of the solution u(t, .) increases with t if u 0 is nonnegative and n ≥ 4.

For α = 0, the porous medium equation (PME for short) is recovered

u t -∂ x (u n ∂ x u) = 0. (3.4)
This is a nonlinear degenerate parabolic equation. The simple PME model describes the modeling of the motion of a gas ow through a porous medium [START_REF] Luis | The porous medium equation[END_REF]. In this case, the PME is derived from mass balance, Darcy's law which describes the dynamics of ows through porous media, and a state equation for the pressure [START_REF] Luis | The porous medium equation[END_REF]. PME also arises in heat transfer [START_REF] Ockendon | Applied partial dierential equations[END_REF] and groundwater ow [START_REF] Ya | Theory of ground water movement[END_REF] and was originally proposed by Boussinesq. It took many years to prove that PME is well posed and the famous source type solutions were found by Zel'dovich, Kompanyeets and Barenblatt [START_REF] Luis | The porous medium equation[END_REF]. The questions of existence, uniqueness, stability, smoothness of solutions together with dynamical properties and asymptotic behavior are well represented in [START_REF] Luis | The porous medium equation[END_REF] where two main problems are studied. First, the domain space is R d and the initial condition u 0 has a compact support so the solution u(t, x) vanishes for all positive times t > 0 outside a compact set that changes with time. Secondly, if the initial data has a hole in the support then the solution has a possibly smaller hole for t > 0.

Note that TFE can be seen as a fourth order version of the classical PME [START_REF] Hulshof | Some aspects of the thin lm equation[END_REF]. Furthermore, both equations are parabolic in divergence form. In both cases, there are compactly supported source type solutions (n > 1 for PME [START_REF] Luis | The porous medium equation[END_REF] and 0 < n < 3 for TFE [START_REF] Bernis | Source type solutions of a fourth order nonlinear degenerate parabolic equation[END_REF]) [START_REF] Carrillo | Long-time asymptotics for strong solutions of the thin lm equation[END_REF].

The most famous common properties are nite speed of propagation and the waiting time phenomenon. Similar properties are expected in our case. Self-similar solutions are constructed in [START_REF] Imbert | Self-similar solutions for a fractional thin lm equation governing hydraulic fractures[END_REF] but other properties are still not proved. One striking dierence between TFE and PME is the lack of a maximum principle for TFE [START_REF] Carrillo | Long-time asymptotics for strong solutions of the thin lm equation[END_REF].

The case α ∈ (-2, 0) corresponds to the fractional porous medium equation studied in [START_REF] Biler | Barenblatt proles for a nonlocal porous medium equation[END_REF]. Explicit self-similar solutions are exhibited and, under appropriate conditions, weak solutions are constructed.

In this chapter, we will generalize the result of [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF] to the cases 0 < α ⩽ 1 and 1 < α < 2.

We prove a result of existence with the same approach as that in the case α = 1 but by modifying the compactness results. Consequently all cases α ∈ [0, 2] are now covered.

In the case α > 1 we get the local uniform convergence of approximate solutions due to the following embedding in dimension 1

H α 2 (Ω) ↪ C 0, α-1 2 (Ω).
This convergence allows one to pass to the limit in the nonlinear term and then allows us to construct nonnegative solutions for nonnegative initial data merely in H α 2 (Ω).

In the case α < 1 because of the following embedding

H α 2 (Ω) ↪ L p (Ω) for all p < 2 1 -α ,
we can get a compactness result in L p (Ω) only for p <2 1-α and not for all p < ∞ as in the case α = 1. Neverthless, we recover a compactness result for the term I(u) which allows us to pass to the limit and conclude.

In both cases, we prove that the solution is strictly positive under a condition on n.

Integral inequalities

Assume that u is a solution of (3.2) then it satises the energy inequality

-ˆR u(t)I(u(t))dx + 2 ˆT 0 ˆR u n ∂ x I(u) 2 dxdt ⩽ -ˆR u 0 I(u 0 )dx. Observe that -´uI(u) is the homogeneous H α 2 norm. Let G be a nonnegative function such that G ′′ (s) = 1 s n . Then the positive solution satises ˆR G(u(t))dx - ˆT 0 ˆR ∂ x u∂ x I(u)dxdt ⩽ ˆR G(u 0 )dx. Note that -´∂x u∂ x I(u) is the homogeneous H α 2 +1 N norm (it is in fact a Neumann-Sobolev
space, see below). We see that the energy inequality controls the L ∞ (0, T ;

H α G(s) = ˆs 1 ˆr 1 1 t n dtdr (3.5) 
so that G is a nonnegative convex function satisfying G(1) = G ′ (1) = 0, G(s) = ∞ for all s < 0 and for s > 0, we have

G(s) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ s ln s -s + 1 when n = 1 -s 2-n (2-n)(n-1) + s n-1 + 1 2-n when 1 < n < 2 ln 1 s + s -1 when n = 2 1 (n-2)(n-1) 1 s n-2 + s n-1 -1 n-2 when n > 2.

Main results

In this work, we prove three main results. We rst prove the existence of nonnegative weak solutions for the problem with 0 < α ≤ 1 for nonnegative initial data with apropriate conditions. Secondly, for α > 1, we construct nonnegative solutions for nonnegative initial data in H α 2 (Ω). Finally, we prove the strict positivity of solutions for large n ′ s.

Theorem 3.1 (Existence of solutions for 0 < α ⩽ 1). Let n ⩾ 1 and α ∈ (0, 1]. For any

nonnegative initial condition u 0 ∈ H α 2 (Ω) such that ˆΩ G(u 0 )dx < ∞ (3.6)
where G is the nonnegative function (3.5) 

such that G ′′ (s) = 1 s n , there exists a nonnegative function u ∈ L ∞ (0, T ; H α 2 (Ω)) ∩ L 2 (0, T ; H α 2 +1 N (Ω)) which satises on Q = (0, T ) × Ω ¨Q u∂ t ϕdtdx -¨Q nu n-1 ∂ x uI(u)∂ x ϕdxdt -¨Q u n I(u)∂ 2 xx ϕdxdt = -ˆΩ u 0 ϕ(0, .)dx (3.7) for all ϕ ∈ D([0, T ) × Ω) satisfying ∂ x ϕ = 0 on (0, T ) × ∂Ω.
Furthermore u satises for almost every t ∈ (0, T ) ˆΩ u(t, x)dx = ˆΩ u 0 (x)dx

(3.8) and u(t, .) 2 . H α 2 (Ω) + 2 ˆT 0 ˆΩ g 2 dxds ≤ u 0 2 . H α 2 (Ω) (3.9)
where the function g

∈ L 2 (Q) satises g = ∂ x (u n 2 I(u)) -n 2 u n-2 2 ∂ x uI(u) in D ′ (Ω), and ˆΩ G(u(t, x))dx + ˆt 0 u 2 . H α 2 +1 N (Ω)
ds ≤ ˆΩ G(u 0 )dx. 

u ∈ C α-1 2(α+2) , α-1 2 t,x (Q) such that ∂ x I(u) ∈ L 2 loc (Q + ) (3.11) 
and that satises

¨Q u∂ t ϕdtdx + ¨Q+ u n ∂ x I(u)∂ x ϕdxdt = -ˆΩ u 0 ϕ(0, .)dx (3.12)
where

Q + = {u > 0} ∩ Q, for all ϕ ∈ D([0, T ) × Ω) satisfying ∂ x ϕ = 0 on (0, T ) × ∂Ω.
Furthermore, u satises for almost every t ∈ (0, T ) ˆΩ u(t, x)dx = ˆΩ u 0 (x)dx 

+ 2 ¨Q+ u n (∂ x I(u)) 2 dxds ≤ u 0 2 . H α 2 (Ω) (3.14) 
Note that in this case ∂ x I(u) ∈ L 2 loc (Q + ) so that we do not need to do an integration by parts to pass to the limit as in (3.7)

Theorem 3.4 (Strictly positive solutions). Assume 0 < α < 2 and n > max{3, 2 + 2 α+1 }. There exists a set P ⊂ (0, T ) such that (0, T ) ∖ P = 0 and the solution u constructed as in Theorem 3.1 for 0 < α ≤ 1 and as in the rst step of the prrof of Theorem 3.3 for 1 < α < 2 satises u(t, .) ∈ C 0,β (Ω) for all t ∈ P and for all β < min{1, α+1

2 } and u(t, .) is strictly positive in Ω. Furthermore, u is a solution of

u t + ∂ x J = 0 in D ′ (Ω)
where

J(t, .) = u n ∂ x I(u) ∈ L 1 (Ω)
for all t ∈ P.

Organization of the paper

The paper is organized as follows: in Section 2, we dene the nonlocal operator I by using the spectral decomposition of the Laplacian and we write an integral representation for it.

Then we prove two important Propositions used in the proofs. In Section 3, we study a regularized problem before proving our Theorems in Section 4.

Notation

In this work, we denote Ω = (0, 1) and Q = (0, T ) × Ω. The space H s N (Ω) is the functional space dened in [54, Section 3.1] by

H s N (Ω) = u = ∞ k=0 c k ϕ k ; ∞ k=0 c 2 k (1 + λ s k ) < +∞
where {λ k , ϕ k } k≥0 are the eigenvalues and corresponding eigenvectors of the Laplacian operator in Ω with Neumann boundary conditions on ∂Ω:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ -∆ϕ k = λ k ϕ k in Ω, ∂ ν ϕ k = 0 on ∂Ω, ´Ω ϕ 2 k dx = 1.
with the norm

u 2 H s N (Ω) = ∞ k=0 c 2 k (1 + λ s k ), (3.15) 
equivalently to

u 2 H s N (Ω) = ˆΩ udx 2 + u 2 . H s N (Ω) (3.16)
where the homogeneous norm is given by

u 2 . H s N (Ω) = ∞ k=0 c 2 k λ s k .
(3.17)

Note that H s N (Ω) = H s (Ω) for all 0 ⩽ s < 3 2 (see [1]) with equivalent norms. Indeed,

u 2 H s (Ω) = u 2 L 2 (Ω) + u 2 . H s (Ω)
and since we are in dimension 1 we have for these values of s u .

H s N (Ω) = u . H s (Ω)
Note also that we have

´Ω udx ⩽ C(Ω) u 2 (H .. older inequality), u 2 2 ⩽ C(Ω) (-∆) s 2 u 2 2 ⩽ c u 2 . H s N (Ω)
(fractional Poincaré's inequality).

Finally, as usual s + = max{0, s}.

Preliminaries

Operator I

Spectral denition. We dene the operator I by

I ∶ ∞ k=0 c k ϕ k → - ∞ k=0 c k λ α 2 k ϕ k which maps H α N (Ω) onto L 2 (Ω)
where {λ k , ϕ k } k≥0 are the eigenvalues and corresponding eigenvectors of the Laplacian operator in Ω with Neumann boundary conditions on ∂Ω.

Integral representation. The operator I can also be represented as a singular integral operator. We will prove the following.

Proposition 3.5. Consider a smooth function u ∶ Ω → R. Then for all x ∈ Ω,

I(u)(x) = ˆΩ(u(y) -u(x))K(x, y)dy
where K(x, y) is dened as follows. For all x, y ∈ Ω

K(x, y) = c α k∈Z 1 x -y -2k 1+α + 1 x + y -2k 1+α
where c α is a constant depending only on α.

Proof. Let's replace Ω by (-1, 1) and u by its even extension to (-1, 1). Then let's extend u periodically to R and let ū be this extension. For x ∈ Ω,

I(u)(x) = -(-∆) α 2 ū(x) = c α ˆR(ū(y) -ū(x)) dy y -x 1+α = c α k∈Z ˆ1+2k -1+2k (ū(y) -u(x)) dy y -x 1+α = c α ˆ1 -1 (ū(y) -u(x)) k∈Z 1 y + 2k -x 1+α dy because ū is 2-periodic = c α ˆ1 0 (u(y) -u(x)) k∈Z 1 x -y -2k 1+α + 1 x + y -2k 1+α
because ū is even.

Now we can easily conclude the following Corollary.

Corollary 3.6. Consider two smooth functions u, ϕ ∶ Ω → R.

Then ˆΩ I(u)(x)ϕ(x)dx = ˆΩ u(x)I(ϕ)(x)dx (3.18)

Important identities

As [54, Section 3], the semi-norms . .

H α 2 (Ω) , . . H α N (Ω) , . . H α 2 +1 N (Ω)
and . . .

2. For all u ∈ H α N (Ω), we have u 2 .

H α N (Ω)
= ´Ω I(u) 2 dx.

3. For all u ∈ H α 2 +1 N (Ω), we have u 2 . H α 2 +1 N (Ω) = -´Ω I(u) x u x dx. 4. For all u ∈ H α+1 N (Ω), we have u 2 . H α+1 N (Ω) = ´Ω I(u) 2 x dx. Proof. Note that if u ∈ H α 2 (Ω) then I(u) ∈ H -α 2 (Ω) and ⟨I(u), v⟩ H -α 2 (Ω),H α 2 (Ω) = - ∞ k=0 c k λ α 2 k d k where v = ∑ ∞ k=0 d k ϕ k ∈ H α 2 (Ω) and u = ∑ ∞ k=0 c k ϕ k , so -ˆuI(u) = ∞ k=0 c 2 k λ α 2 k = u 2 . H α 2 (Ω)
.

The second equality is actually very easy to prove since

I(u) = -∑ ∞ k=0 c k ϕ α 2 k . Indeed, ˆΩ I(u) 2 dx = ∞ k=0 c 2 k ϕ α k = u 2 . H α N (Ω)
.

In order to prove the other equalities, we note that (∂ x ϕ k ) k form an orthogonal basis of L 2 (Ω). We write

u x = ∞ k=0 c k ∂ x ϕ k in L 2 (Ω). and ∂ x I(u) = - ∞ k=1 c k λ α 2 k ∂ x ϕ k in L 2 (Ω) so -ˆΩ I(u) x u x dx = ∞ k=0 c 2 k λ α 2 k ˆΩ ∂ x ϕ 2 k dx = ∞ k=0 c 2 k λ α 2 k ˆΩ ϕ k (-∂ xx ϕ k )dx = ∞ k=0 c 2 k λ α 2 k ˆΩ λ k ϕ 2 k dx = ∞ k=0 c 2 k λ α 2 +1 k = u 2 . H α 2 +1 N (Ω)
.

For the last equality,

ˆΩ I(u) 2 x dx = ∞ k=1 c 2 k λ α k ˆΩ ∂ x ϕ 2 k dx = ∞ k=0 c 2 k λ α+1 k = u 2 . H α+1 N (Ω)
.

These propositions are important to derive the properties of the solutions constructed.

The problem -I(u) = g

We consider the following problem

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ For a given g ∈ L 2 (Ω), nd u ∈ H α N (Ω)such that -I(u) = g. (3.19)
Since ´Ω I(u)dx = 0 for all u ∈ H α N (Ω), we must assume that ´Ω g(x)dx = 0 otherwise (3.19) has no solution.

Proposition 3.8. For all g ∈ L 2 (Ω) such that ´Ω gdx = 0, there exists a unique function

u ∈ H α N (Ω) such that -I(u) = g in L 2 (Ω) and ˆΩ udx = 0. Furthermore if g ∈ H 1 (Ω), then u ∈ H α+1 N (Ω). Proof. Let g ∈ L 2 (Ω). For g = ∑ ∞ k=1 d k ϕ k with ∑ ∞ k=1 d 2 k < ∞, we consider u = I -1 (g) = ∞ k=1 d k λ α 2 k ϕ k ∈ H α N (Ω)
and verify ˆΩ udx = 0.

Since (ϕ k ) k form an orthogonal basis of L 2 (Ω), the solution is the unique satisfying ´Ω udx = 0. It is clear that every further regularity on g will imply a further regularity on u shifted by an α.

We thus conclude the following Corollary which will be used to prove the existence of solutions for the stationary problem.

Corollary 3.9. For all g ∈ L 2 (Ω), there exists a unique function v ∈ H α N (Ω) such that -I(v) + ˆΩ vdx = g.

(3.20)

Furthermore if g ∈ H 1 (Ω), then u ∈ H α+1 N (Ω) and the map g → u is bijective.

Proof. Let m = ´Ω gdx and g ′ = g-m. Then g ′ ∈ L 2 (Ω)(since Ω is bounded) and ´Ω g ′ dx = 0.

From Proposition 3.8, there exists a function u ∈ H α N (Ω) such that -I(u) = g ′ and ˆΩ udx = 0.

Let v = u + m. Then ´Ω vdx = m and -I(v) = -I(u) = g ′ = g -m = g -ˆΩ vdx.
For the uniqueness, consider two solutions v 1 and v 2 then ˆΩ v 1 dx = ˆΩ v 2 dx = ˆΩ gdx and w = v 1v 2 satises -I(w) = 0. Hence, w = 0 from the uniqueness given by Proposition 3.8.

Regularized problem

We consider the following regularized problem

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂ t u + ∂ x (f (u)∂ x I(u)) = 0 for x ∈ Ω, t > 0, ∂ x u = 0, f (u)∂ x I(u) = 0 for x ∈ ∂Ω, t > 0, u(x, 0) = u 0 (x) for x ∈ Ω, (3.21) 
where f (s) = s n + + , > 0 and 0 < α < 2.

To prove Theorem 3.1 and 3.3, we need to prove the existence of a solution for the regularized problem. Let us introduce the following stationary problem 

For τ > 0, g ∈ H α 2 (Ω), nd u ∈ H α+1 N (Ω) s.t. ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ u + τ ∂ x (f (u)∂ x I(u)) = g in Ω, ∂ x u = 0, ∂ x I(u) = 0 on ∂Ω.
+ 2τ ˆΩ f (u)∂ x I(u) 2 dx ⩽ g 2 . H α 2 (Ω)
.

(3.25)

If ´Ω G (g)dx < ∞ where G is a nonnegative function such that G ′′ (s) = 1 f (s) , then ˆΩ G (u)dx + τ u 2 . H α 2 +1 N (Ω)
⩽ ˆΩ G (g)dx. 

A(u)(v) = -ˆΩ uI(v)dx + ˆΩ udx ˆΩ vdx + τ ˆΩ f (u)∂ x I(u)∂ x I(v)dx for u, v ∈ H α+1 N (Ω).
We prove that this is a continuous, coercive and pseudo-monotone operator. Note that the functional T g dened by

T g (v) = -ˆΩ gI(v)dx + ˆΩ gdx ˆΩ vdx for v ∈ H α+1 N (Ω).
is a linear form on H α+1 N (Ω). So our problem reduces to the following

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Let V = H α+1 N (Ω). A ∶ V → V * coercive, continuous and pseudo-monotone. T g ∈ V * . Find u ∈ H α+1 N (Ω) such that A(u) = T g in V * .
(3.28)

The theory of pseudo-monotone operators [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] implies the existence of a solution for (3.28) so there exists u ∈ H α+1 N (Ω) such that

A(u)(v) = T g (v) for all v ∈ H α+1 N (Ω).
It remains to prove that A is a continuous, coercive and pseudo-monotone operator on H α+1 N (Ω). The reader can nd the proof in [54, Appendix A] for V = H 2 N (Ω) but this proof can be easily adapted for our case V = H α+1 N (Ω). By using Corollary 3.9 we deduce that u satises (3.23) for all ϕ ∈ H 1 (Ω).

For the properties of u, rst by taking ϕ = 1 as a test function in (3.23) we obtain mass conservation (3.24). Secondly, take v = u -´Ω udx in (3.27), by using Proposition 3.7 we have

u 2 . H α 2 (Ω) +τ ˆΩ f (u)∂ x I(u) 2 = -ˆΩ gI(u)dx ⩽ g . H α 2 (Ω) u . H α 2 (Ω) ⩽ 1 2 g 2 . H α 2 (Ω) + 1 2 u 2 . H α 2 (Ω)
which (3.25)(Note that the high regularity of g is solely used in this inequality, otherwise g ∈ L 2 (Ω) is sucient to prove the existence above). Finally, note that G ′ is smooth with G ′ and G ′′ are bounded, and Ω is bounded so we can take ϕ = G ′ (u) ∈ H 1 (Ω) as a test function in (3.23),

ˆΩ uG ′ (u)dx -τ ˆΩ f (u)∂ x I(u)∂ x uG ′′ (u)dx = ˆΩ gG ′ (u)dx.
So by using Proposition 3.7 and the fact that G ′′ (s) = 1

f (s) we get τ u 2 . H α 2 +1 N (Ω) = ˆΩ G ′ (u)(g -u)dx ⩽ ˆΩ(G (g) -G (u))dx
because G is convex and we deduce (3.26).

Implicit Euler scheme

We construct a piecewise constant function

u τ (t, x) = u k (x) for t ∈ [kτ, (k + 1)τ ), k ∈ {0, ..., N -1}
where τ = T N and (u k ) k∈{0,...,N -1} is such that

u k+1 + τ ∂ x (f (u k+1 )∂ x I(u k+1 )) = u k .
The existence of the u k follows from Proposition 3.10 by induction on k with u 0 = u 0 . We deduce the following Corollary 3.12. For any N > 0 and u 0 ∈ H α 2 (Ω), there exists a function u τ ∈ L ∞ (0, T ;

H α 2 (Ω)) such that 1. t → u τ (t, x) is constant on [kτ, (k + 1)τ ), k ∈ {0, ..., N -1} and τ = T N .
2. u τ = u 0 on [0, τ ) × Ω.

3. For all t ∈ (0, T ), ˆΩ u τ (t, x)dx = ˆΩ u 0 (x)dx.

(3.29)

4. For all ϕ ∈ C 1 c (0, T ; H 1 (Ω)), ¨Qτ,T u τ -S τ u τ τ ϕdxdt = ¨Qτ,T f (u τ )∂ x I(u τ )∂ x ϕdxdt (3.30)
where S τ u τ (t, x) = u τ (tτ, x) and Q τ,T = (τ, T ) × Ω.

5. For all t ∈ (0, T ),

u τ (t, .) 2 . H α 2 (Ω) + 2 ˆT 0 ˆΩ f (u τ )∂ x I(u τ ) 2 dxdt ⩽ u 0 2 . H α 2 (Ω)
.

(3.31)

6. If ´Ω G (u 0 )dx < ∞, then for all t ∈ (0, T ) ˆΩ G (u τ (t, x))dx + ˆt 0 u τ (s, .) 2 . H α 2 +1 N (Ω)
ds ⩽ ˆΩ G (u 0 )dx.

(3.32)

Existence of solution for the regularized problem

Now we are able to prove the existence of a solution for the regularized problem.

Proposition 3.13. Let 0 < α < 2. For all u 0 ∈ H α 2 (Ω) and for all T > 0, there exists a

function u such that u ∈ L ∞ (0, T ; H α 2 (Ω)) ∩ L 2 (0, T ; H α+1 N (Ω)) satisfying ¨Q u ∂ t ϕdxdt + ¨Q f (u )∂ x I(u )∂ x ϕdxdt = -ˆΩ u 0 ϕ(0, .)dx (3.33) for all ϕ ∈ C 1 (0, T ; H 1 (Ω)) with support in [0, T ) × - Ω.
The function u satises for almost every t ∈ (0, T ) ˆΩ u (t, x)dx = ˆΩ u 0 (x)dx

(3.34) and u (t, .) 2 . H α 2 (Ω) + 2 ˆT 0 ˆΩ f (u )∂ x I(u ) 2 dxdt ⩽ u 0 2 . H α 2 (Ω) . (3.35) Finally, if ´Ω G (u 0 )dx < ∞ then for almost every t ∈ (0, T ), ˆΩ G (u (t, x))dx + ˆt 0 u (s, .) 2 . H α 2 +1 N (Ω)
ds ⩽ ˆΩ G (u 0 )dx.

(3.36)

Proof. We consider the sequence (u τ ) constructed in Corollary 3.12 and let τ → 0. Bound (3.31) and (3.29) implies that (u τ ) is bounded in L ∞ (0, T ;

H α 2 (Ω)) and (∂ x I(u τ )) is bounded in L 2 (Q). Case 0 < α ⩽ 1. Note that u τ -S τ u τ τ = ∂ x (f (u τ )∂ x I(u τ )).
Since n ⩾ 1, the function f is Lipschitz and so (f

(u τ )) is bounded in L ∞ (0, T ; H α 2 (Ω))
thus by the Sobolev embedding theorem, we deduce that (f (u τ )) is bounded in L ∞ (0, T ; L p (Ω))

for all p < 2 1-α . We know that (∂ x I(u τ )) is bounded in L 2 (0, T ; L 2 (Ω)) so f (u τ )∂ x I(u τ ) is bounded in L 2 (τ, T ; L r (Ω)) where 1 r = 1 2 + 1 p . We deduce that ∂ x (f (u τ )∂ x I(u τ )) is bounded in L 2 (τ, T ; W -1,r (Ω))
Since α ⩽ 1, we have the following embedding

H α 2 (Ω) ↪ L p (Ω) → W -1,l (Ω)
for all p < 2 1-α and for all l > 2 (because Ω is bounded and we have a Sobolev space of negative regularity). Aubin's lemma implies that (u τ ) is relatively compact in C 0 (0, T ; L p (Ω))

for all p < 2 1-α . Note that (∂ x I(u τ )) is bounded in L 2 (Ω) and (u τ ) is bounded in L ∞ (0, T ; L 1 (Ω)) (because 1 < 2 1-α ). Hence, (u τ ) is bounded in L 2 (0, T ; H α+1 N (Ω)). Since H α+1 N (Ω) ↪ H α 2 +1 N (Ω) → W -1,l (Ω),
we deduce that (u τ ) is relatively compact in L 2 (0, T ;

H α 2 +1
N (Ω)). So we can extract a subsequence, also denoted (u τ ), such that when τ tends to zero we have

• u τ → u ∈ L ∞ (0, T ; H α 2 (Ω)) almost everywhere in Q, • u τ → u in L 2 (0, T ; H α 2 +1 N (Ω)) strongly, • ∂ x I(u τ ) ⇀ ∂ x I(u ) in L 2 (Q) weakly.
Now let us pass to the limit in (3.30). We have

¨Qτ,T u τ -S τ u τ τ ϕdxdt = 1 τ ˆT 0 ˆΩ u τ (t, x)ϕ(t, x)dtdx - ˆτ 0 ˆΩ u τ (t, x)ϕ(t, x)dtdx - ˆT -τ 0 ˆΩ u τ (t, x)ϕ(t + τ, x)dtdx = ˆT 0 ˆΩ u τ (t, x) ϕ(t, x) -ϕ(t + τ, x) τ dxdt - 1 τ ˆτ 0 ˆΩ u τ (t, x)ϕ(t, x)dtdx + 1 τ ˆT T -τ ˆΩ u τ (t, x)ϕ(t + τ, x)dtdx → τ →0
-¨Q u ∂ t ϕdxdt -ˆΩ u (0, x)ϕ(0, x)dx + 0.

For the nonlinear term, we integrate by parts

¨Q f (u τ )∂ x I(u τ )∂ x ϕ = -¨Q f (u τ )I(u τ )∂ 2 xx ϕ -¨Q n(u τ ) n-1 + ∂ x u τ I(u τ )∂ x ϕ. (3.37)
We have

u τ → u in L 2 (0, T ; H s N (Ω)) for all s < 1 + α. So I(u τ ) → I(u ) in L 2 (0, T ; H s ′ (Ω)) for all s ′ < 1 and ∂ x u τ → ∂ x u in L 2 (0, T ; H s ′′ (Ω)) for all s ′′ < α.
So we deduce the following convergences I(u τ ) → I(u ) in L 2 (0, T ; L q (Ω)) for all q < ∞.

u τ x → u x in L 2 (0, T ; L p (Ω)) for all p < 2 1 -α .
Furthermore, since u τ → u in C 0 (0, T ; L p (Ω)) for all p < 2 1-α and f is lipschitz then

f (u τ ) → f (u ) in C 0 (0, T ; L p (Ω)) for all p < 2 1 -α .
For the term (u τ ) n-1 , if n ⩾ 2 then the function s → s n-1 is lipschitz and

(u τ ) n-1 → (u ) n-1 in C 0 (0, T ; L p (Ω)) for all p < 2 1 -α . If n < 2 then p n-1 ⩾ 1 and (u τ ) n-1 → (u ) n-1 in C 0 (0, T ; L p n-1 (Ω)) for all p < 2 1 -α .
Thus we can pass to the limit in (3.37) and reverse the integration by parts to obtain

¨Q f (u τ )∂ x I(u τ )∂ x ϕ → -¨Q f (u )I(u )∂ 2 xx ϕ -¨Q n(u ) n-1 + ∂ x u I(u )∂ x ϕ = ¨Q f (u )∂ x I(u )∂ x ϕ.
For the properties of u , rst since u τ → u in L ∞ (0, T ; L 1 (Ω)) mass conservation equation (3.34) follows from (3.29).

Secondly, we note that (u τ ) is bounded in L ∞ (0, T ;

H α 2 (Ω)) so (u τ ) weakly converges to u in H α 2 (Ω) and u . H α 2 (Ω) ≤ lim inf τ →0 u τ . H α 2 (Ω)
.

Note that estimate (3.31) implies that f (u τ )∂ x I(u τ ) is bounded in L 2 (0, T ; L 2 (Ω)) thus it weakly converges in L 2 (0, T ; L 2 (Ω)) and the lower semicontinuity permits us to conclude (3.35).

Finally, to derive (3.36) we note that G (u τ ) → G (u ) almost everywhere and Fatou's lemma implies for almost every t ∈ (0, T )

ˆΩ G (u (t, x))dx ≤ lim inf τ →0 ˆΩ G (u τ (t, x))dx. Furthermore, (u τ ) is relatively compact in L 2 (0, T ; H α 2 +1 N (Ω)) thus ˆt 0 u (s) 2 . H α 2 +1 N ds = lim τ →0 ˆt 0 u τ (s) 2 . H α 2 +1 N ds.
Hence (3.32) implies (3.36).

Case

1 < α < 2. Note that u τ -S τ u τ τ = ∂ x (f (u τ )∂ x I(u τ )).
We have (u τ ) is bounded in L ∞ (0, T ; H α 2 (Ω)) so by the Sobolev embedding theorem,

we deduce that (u τ ) is bounded in L ∞ (0, T ; C 0, α-1 2 (Ω)). Thus (f (u τ )) is bounded in L ∞ (0, T ; L ∞ (Ω)). We know that (∂ x I(u τ )) is bounded in L 2 (0, T ; L 2 (Ω)) so (f (u τ )∂ x I(u τ )) is bounded in L 2 (τ, T ; L 2 (Ω)). We deduce that ∂ x (f (u τ )∂ x I(u τ )) is bounded in L 2 (τ, T ; W -1,2 (Ω)).
Since α > 1 we have the following embedding

H α 2 (Ω) ↪ C 0, α-1 2 (Ω) → W -1,2 (Ω).
Aubin's lemma implies that the sequence (u τ ) is relatively compact in C 0 (0, T ; C 0, α-1 2 (Ω)).

Since (∂ x I(u τ )) is bounded in L 2 (Ω) and (u τ ) is bounded in L ∞ (0, T ; L 1 (Ω)) then, (u τ ) is bounded in L 2 (0, T ; H α+1 N (Ω)).
Using the following embedding

H α+1 N (Ω) ↪ H α 2 +1 N (Ω) → W -1,2 (Ω), we deduce that (u τ ) is relatively compact in L 2 (0, T ; H α 2 +1
N (Ω)). So for a subsequence we have

• u τ → u locally uniformly, • ∂ x I(u τ ) ⇀ ∂ x I(u ) in L 2 (Q)-weakly, • u τ → u in L 2 (0, T ; H α 2 +1
N (Ω)) strongly.

Let us pass to the limit in (3.30). As in the rst case

¨Qτ,T u τ -S τ u τ τ ϕdxdt → τ →0
-¨Q u ∂ t ϕdxdt -ˆΩ u (0, x)ϕ(0, x)dx.

For the nonlinear term, since

u τ → u locally uniformly, Then f (u τ )∂ x ϕ → f (u )∂ x ϕ in L 2 (0, T ; L 2 (Ω)) -strongly. Furthermore ∂ x I(u τ ) ⇀ ∂ x I(u ) in L 2 (0, T ; L 2 (Ω)) -weakly. Hence ¨Q f ε (u τ )∂ x I(u τ )∂ x ϕdxdt → ¨Q f (u )∂ x I(u )∂ x ϕdxdt
and the proof is complete.

For the properties of u , the proofs of estimates (3.34), (3.36) and (3.35) are the same as in the rst case.

Proofs of main results

Proof of Theorem 3.1

Consider the sequence (u ) such that u ∈ L ∞ (0, T ;

H α 2 (Ω)) ∩ L 2 (0, T ; H α 2 +1
(Ω)) solution of (3.21). Our goal is to pass to the limit → 0.

Note that (3.35) and (3.34) imply that (u ) is bounded in L ∞ (0, T ;

H α 2 (Ω)). Since f is Lipschitz then f (u ) is bounded in L ∞ (0, T ; H α 2 (Ω)
). So by using the Sobolev embedding theorem, we deduce that f (u ) is bounded in L ∞ (0, T ; L p (Ω)) for all p < 2 1-α .

Furthermore, (3.35) also implies that f (u )

1 2 ∂ x I(u ) is bounded in L 2 (0, T ; L 2 (Ω)). Thus f (u )∂ x I(u )is bounded in L 2 (0, T ; L r (Ω)) where 1 r = 1 2 + 1 2p . Hence ∂ t u = -∂ x (f (u )∂ x I(u )) is bounded in L 2 (0, T ; W -1,r (Ω)). Since H α 2 (Ω) ↪ L 2 1-α (Ω) → W -1,l (Ω),
Aubin's lemma implies that (u ) is relatively compact in C 0 (0, T ; L p (Ω)) for all p < 2 1-α .

So we can extract a subsequence such that

• u → u in C 0 (0, T ; L p (Ω)) for all p < 2 1-α . • u → u ∈ L ∞ (0, T ; H α 2 (Ω)) almost everywhere in Q.
Let us pass to the limit in (3.33). Let ϕ ∈ D([0, T )× Ω) satisfying ∂ x ϕ = 0 on (0, T )×∂Ω.

Since u → u in C 0 (0, T ; L 1 (Ω)), we have ¨Q u ∂ t ϕdxdt → ¨Q u∂ t ϕdxdt.

Remark that (3.35) implies that

¨(∂ x I(u )) 2 ≤ c.
The Cauchy-Schwarz inequality implies

¨∂x I(u )∂ x ϕdxdt ⩽ c(ϕ) √ ( √ ∂ x I(u ) 2 ) → 0.
Estimate (3.35) also gives that (u )

n 2 + ∂ x I(u ) is bounded in L 2 (0, T ; L 2 (Ω)). For the term (u ) n 2 , we consider two cases, if n ⩾ 2 then the function s → s n 2 is Lipschitz and ((u ) n 2 ) is bounded in L ∞ (0, T ; L p (Ω)) for all p < 2 1-α . We deduce that ((u ) n + ∂ x I(u )) is bounded in L 2 (0, T ; L m (Ω)) where 1 m = 1 2 + 1 p . If n < 2 then ((u ) n 2 ) is bounded in L ∞ (0, T ; L 2p n (Ω)) for all p < 2 1-α (in this case 2p n ⩾ 1). We deduce that ((u ) n + ∂ x I(u )) is bounded in L 2 (0, T ; L m (Ω)) where 1 m = 1 2 + n 2p , hence h ∶= (u ) n + ∂ x I(u ) ⇀ h in L 2 (0, T ; L m (Ω)) weakly.
Passing to the limit we obtain ¨Q u∂ t ϕdxdt + ¨Q h∂ x ϕdxdt = -ˆΩ u 0 ϕ(0, x)dx.

It remains to show that

h = u n + ∂ x I(u)
in the following sense

¨Q hϕdxdt = -¨Q nu n-1 + ∂ x uI(u)ϕdxdt -¨Q u n + I(u)∂ x ϕdxdt (3.38)
for all test functions ϕ such that ϕ = 0 on (0, T ) × ∂Ω, that is

h = ∂ x (u n + I(u)) -nu n-1 + ∂ x uI(u) in D ′ (Ω).
Note that G is decreasing with respect to , so ˆΩ G (u 0 )dx ≤ ˆΩ G(u 0 )dx ≤ c.

Thus estimate (3.36) implies that (u ) is bounded in L 2 (0, T ;

H α 2 +1 N (Ω)). Recall that (∂ t u ) is bounded in L 2 (0, T ; W -1,l (Ω)). Aubin's lemma implies that (u ) is relatively compact in L 2 (0, T ; H s N (Ω)) for all s < α 2 + 1. Hence (∂ x u ) is relatively compact in L 2 (0, T ; H s ′ (Ω)) for all s ′ < α 2 and (I(u )) is relatively compact in L 2 (0, T ; H s ′′ N (Ω)) for all s ′′ < 1 - α 2 .
Thus we can extract a subsequence such that u → u in C 0 (0, T ; L p (Ω)) for all p < 2 1α , I(u ) → I(u) in L 2 (0, T ; L q (Ω)) for all q < ∞,

∂ x u → ∂ x u in L 2 (0, T ; L p (Ω)) for all p < 2 1 -α .
We write

¨Q h ϕdxdt = ¨(u ) n + ∂ x I(u )ϕdxdt = -¨n(u ) n-1 + ∂ x u I(u )ϕdxdt -¨(u ) n + I(u )∂ x ϕdxdt.
Using these convergences and the fact that I(u ) converges in L 2 (0, T ; L q (Ω)) for all q < ∞ we can pass to the limit and obtain (3.38). Note that for the terms (u ) n and (u ) n-1

we consider two cases n ⩾ 2 and n < 2 and we proceed as above. In the rst case the functions s → s n and s → s n-1 are Lipschitz and then (u

) n → u n and (u ) n-1 → u n-1 in C 0 (0, T ; L p (Ω)) for all p < 2 1-α . If n < 2 then p n ⩾ 1 and p n-1 ⩾ 1 and (u ) n → u n in C 0 (0, T ; L p n (Ω)) and (u ) n-1 → u n-1 in C 0 (0, T ; L p n-1 (Ω)) for all p < 2 1-α .
For the properties of u, passing to the limit in (3.34) implies mass conservation equation

(3.13). Since (u ) is bounded in L 2 (0, T ; H α 2 +1 N (Ω)) then u ⇀ u and u L 2 (0,T ;H α 2 +1 N (Ω)) ≤ lim inf →0 u L 2 (0,T ;H α 2 +1 N (Ω))
.

Note that G (u ) → G(u) almost everywhere and G (u 0 ) ≤ G(u 0 ).

Then by Fatou's lemma estimate (3.10) follows from (3.36).

Remark that estimate (3.35) implies that g = (u ) n 2 + ∂ x I(u ) weakly converges in L 2 (Q) to a function g and the lower semi-continuity of the norm implies (3.9). It remains to prove that

g = ∂ x (u n 2 + I(u)) - n 2 u n 2 -1 + ∂ x uI(u) in D ′ (Ω).
(3.39)

We have

¨Q g ϕdxdt = ¨(u ) n 2 + ∂ x I(u )ϕdxdt = - ¨n 2 (u ) n 2 -1 + ∂ x u I(u )ϕdxdt -¨(u ) n 2 + I(u )∂ x ϕdxdt.
Also, using the convergences above and the fact that I(u ) → I(u) in L 2 (0, T ; L q (Ω)) for all q < ∞, we can pass to the limit and obtain (3.39). Note also that for the terms (u )

n 2 -1
and (u )

n 2
+ we consider two cases n ⩾ 4 and n < 4 and we proceed as above. It remains to prove that u is a nonnegative function. Note that estimate (3.36) implies that for all t ∈ (0, T )

ˆΩ G (u (t, x))dx ≤ ˆΩ G (u 0 (t, x))dx. Since ˆΩ G (u 0 (t, x))dx ≤ ˆΩ G(u 0 (t, x))dx < ∞,
we conclude that lim sup →0 ˆΩ G (u (t, x))dx < ∞.

(3.40)

Note that for all δ > 0, lim →0 G (-δ) = +∞.

Recall that u (t, .) converges almost everywhere. So for η > 0, Egorov's theorem implies the existence of a set A η ⊂ Ω such that Ω ∖ A η ≤ η and u (t, .) → u(t, .) uniformly in A η .

Let δ > 0. We consider

C η,δ = A η ∩ {u(t, .) ≤ -2δ}.
For every η, δ > 0, there exists 0 (η, δ) such that if ≤ 0 (η, δ) then u (t, .) ≤ -δ in C η,δ .

This implies that C η,δ has measure zero. Indeed, if not then for ≤ 0 (η, δ) we have

G (u (t, x)) ≥ G (-δ) → +∞. By Fatou's lemma lim inf →0 ˆCη,δ G (u (t, x))dx ⩾ ˆCη,δ lim inf →0 G (u (t, x))dx = +∞
which contradicts (3.40).

Hence for all δ > 0 and all η > 0, we have

{u(t, .) ≤ -2δ} ≤ C η,δ + Ω ∖ A η ≤ η.
Thus, {u(t, .) ≤ -2δ} = 0 for all δ > 0. We conclude that {u(t, .)

< 0} = ⋃ k≥1 u(t, .) ≤ -1 k
has measure zero and so u(t, x) ≥ 0 for almost every x ∈ Ω and for all t > 0.

Proof of Theorem 3.3

We organize this proof in two steps. In the rst step we consider nonnegative u 0 ∈ H First step Consider the sequence (u ) such that u ∈ L ∞ (0, T ;

H α 2 (Ω))∩L 2 (0, T ; H α 2 +1
N (Ω)) solution of (3.21). Our goal is to pass to the limit → 0. Note that (3.35) implies that (u ) is bounded in L ∞ (0, T ; H α 2 (Ω)). So by using the Sobolev embedding theorem, we deduce that

(u ) is bounded in L ∞ (0, T ; C 0, α-1 2 (Ω)). Hence (f (u )) is bounded in L ∞ (0, T ; L ∞ (Ω)).
Furthermore (3.35) gives that (f (u )

1 2 ∂ x I(u )) is bounded in L 2 (0, T ; L 2 (Ω)). We deduce that (f (u )∂ x I(u )) is bounded in L 2 (0, T ; L 2 (Ω)). So ∂ t u = -∂ x (f (u )∂ x I(u )) is bounded in L 2 (0, T ; W -1,2 (Ω)). Since H α 2 (Ω) ↪ C 0, α-1 2 (Ω) → W -1,2 (Ω),
Aubin's lemma implies that (u ) is relatively compact in C 0 (0, T ; C 0, α-1 2 (Ω)). So we can extract a subsequence such that u → u locally uniformly. Now let us pass to the limit in (3.33). Proceeding as in the case 0 < α ⩽ 1 we get the same results but it remains to prove the equation on h i.e. (3.38). Since ˆΩ G (u 0 )dx ≤ ˆΩ G(u 0 )dx ≤ c,

estimate (3.36) implies that (u ) is bounded in L 2 (0, T ; H α 2 +1 N (Ω)). Recall that (∂ t u ) is bounded in L 2 (0, T ; W -1,2 (Ω)). Aubin's lemma implies that (u ) is relatively compact in L 2 (0, T ; H s (Ω)) for all s < α 2 + 1. Hence (∂ x u ) is relatively compact in L 2 (0, T ; H s ′ (Ω)) for all s ′ < α 2
and since α < 2 then (u ) is relatively compact in L 2 (0, T ; H α (Ω)) and

(I(u )) is relatively compact in L 2 (0, T ; L 2 (Ω)).
Thus we can extract a subsequence such that u → u locally uniformly,

I(u ) → I(u) in L 2 (0, T ; L 2 (Ω)), ∂ x u → ∂ x u in L 2 (
0, T ; locally uniformly with respect to x).

We have

¨Q h ϕdxdt = ¨(u ) n + ∂ x I(u )ϕdxdt = -¨n(u ) n-1 + ∂ x u I(u )ϕdxdt -¨(u ) n + I(u )∂ x ϕdxdt.
Using these convergences we can pass to the limit and obtain (3.38).

For the properties of u, the proofs are the same as in the case 0 < α ⩽ 1 but we use these convergences above to obtain the equation on g.

We prove also that u is a nonnegative function as in the case 0 < α ⩽ 1.

Second step Now we consider the case where u 0 ⩾ 0 belongs to H 

u δ ≤ A, ¨Q u n δ ∂ x I(u δ ) 2 dxdt ≤ C, u δ (t, x 2 ) -u δ (t, x 1 ) ≤ k x 2 -x 1 α-1 2 , (3.41)
with constants C, A, K independent of δ and T . Proposition 3.14. There exists a constant M independent of δ and T such that

u δ (t 2 , x) -u δ (t 1 , x) ⩽ M t 2 -t 1 α-1 2(α+2) (3.42)
for all x ∈ Ω, t 1 and t 2 ∈ (0, T ).

Proof. The proof is given in Appendix A.

Taking a subsequence u δ → u locally uniformly in Q,

we will prove Theorem 3.3. Let ϕ ∈ D([0, T ) × - Ω) satisfying ∂ x ϕ = 0 on (0, T ) × ∂Ω. We have ¨Q u δ ∂ t ϕdtdx + ¨Q u n δ ∂ x I(u δ )∂ x ϕdxdt = -ˆΩ(u 0 + δ)ϕ(0, .)dx. (3.43)
Since u δ → u locally uniformly then ¨Q u δ ∂ t ϕdtdx → ¨Q u∂ t ϕdtdx and ˆΩ(u 0 + δ)ϕ(0, .)dx → ˆΩ u 0 ϕ(0, .)dx as δ → 0. (3.44) It remains to pass to the limit in the nonlinear term. We consider

h δ = u n δ ∂ x I(u δ ).
From (3.41), ((u δ )

n 2 ∂ x I(u δ )) is bounded in L 2 (Q) and since (u δ ) is bounded in L ∞ (Q) so (h δ ) is bounded in L 2 (Q) and weakly converges to h in L 2 (Q). Our aim is to prove that h = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ u n ∂ x I(u) in Q + ∶= {u > 0} ∩ Q 0 elsewhere.
For any η > 0 we have

c ⩾ ˆ{u⩾η}∩Q u n δ ∂ x I(u δ ) 2 ⩾ η 2 n ˆ{u⩾η}∩Q ∂ x I(u δ ) 2 , so (∂ x I(u δ )) is bounded in L 2 ({u ⩾ η} ∩ Q). Thus for all k ∈ N, (∂ x I(u δ )) weakly converges in L 2 (Q k ) where Q k ∶= {u ⩾ 1 k } ∩ Q. So, up to a subsequence, ∂ x I(u δ )) weakly converges to f in L 2 loc (Q + )
where

Q + = ⋃ k∈N P k = {u > 0} ∩ Q. This implies that ∂ x I(u δ ) → f in D ′ (Q + ).
It remains to prove that

f = ∂ x I(u) in D ′ (Q + ).
Since u δ → u locally uniformly in Q then by using Corollary 3.6

I(u δ ) → I(u) in D ′ (Q). So, ∂ x I(u δ ) → ∂ x I(u) in D ′ (Q). Now, let ϕ ∈ D(Q + ) we have ⟨∂ x I(u δ ), ϕ⟩ D ′ (Q+)D(Q+) = ⟨∂ x I(u δ ), φ⟩ D ′ (Q)D(Q) → δ→0 ⟨∂ x I(u), φ⟩ D ′ (Q)D(Q)
where φ is the extension by 0 of ϕ to Q. So

f = ∂ x I(u) in D ′ (Q + ) and ∂ x I(u) ∈ L 2 loc (Q + ). (3.45)
On the other hand, if δ is suciently small, then ¨{u=0}∩Q

u n δ ∂ x I(u δ )∂ x ϕ ⩽ cδ n 2 ( ¨un δ ∂ x I(u δ ) 2 ) 1 2 ⩽ Cδ n 2 (3.46)
Taking δ → 0 in (3.43) and using (3.44), (3.45) and (3.46) we deduce that (3.12) is satised.

For the properties of u, since u δ satises mass conservation and uniformly converges to u then u inherits the same property. Furthermore, remark that estimate (3.41) implies that g δ = u n 2 δ ∂ x I(u δ ) weakly converges in L 2 (Q) to a function g and the lower semi-continuity of the norm implies (3.14). It remains to prove that

g = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ u n 2 ∂ x I(u) in Q + 0 elsewhere. (3.47)
We proved that ∂ x I(u δ ) weakly converges to

∂ x I(u) in L 2 loc (Q + ) and u δ locally converges to u so g = u n 2 ∂ x I(u) in D ′ (Q + ). On the other hand, if δ is suciently small, then ¨{u=0}∩Q u n 2 δ ∂ x I(u δ )ϕ ≤ cδ n 2 ¨∂x I(u δ ) 2 1 2
.

We deduce that g veries (3.47).

Proof of Theorem 3.4

Consider the sequence (u ) such that u solution of (3.21) introduced in the proof of Theorem 3.1 and Theorem 3.3. Recall that [START_REF] Dal Passo | Waiting time phenomena for degenerate parabolic equationsa unifying approach[END_REF] implies that (u ) is bounded in L 2 (0, T ;

H α 2 +1 N (Ω)).
Case 0 < α < 1. We recall that (∂ t u ) is bounded in L 2 (0, T ; W -1,l (Ω)) . So Aubin's lemma implies that (u ) converges in L 2 (0, T ; C 0,β (Ω)) for all β < α+1 2 . We can thus nd a subsequence, also denoted (u ), and a set P ⊂ (0, T ) such that (0, T ) ∖ P = 0 and for all t ∈ P , u (t, .) converges strongly in C β (Ω).

We note that for all t ∈ P , u is strictly positive. Indeed if there exists (t 0 , x 0 ) ∈ P × Ω such that u(t 0 , x 0 ) = 0 then for any β < α+1 2 there exists a constant c β such that for all x ∈ Ω

u(t 0 , x) ≤ c β x -x 0 β . Thus ˆG(u(t 0 , x))dx ≥ ˆ1 (c β x -x 0 β ) n-2 dx.
Given n > 4, we can choose β < α+1 2 such that β(n -2) > 1. We deduce ˆG(u(x, t 0 ))dx = ∞ which contradicts (3.40).

We deduce that there exists δ > 0 (depending on t) such that for small enough u (t, .) ⩾ δ in Ω.

Note that lim inf

→0 ˆΩ f (u ) ∂ x I(u ) 2 dx < ∞ for all t ∈ P.
Indeed, if we denote

A k = {t ∈ P ; lim inf →0 ˆΩ f (u ) ∂ x I(u ) 2 dx ⩾ k}
then using (3.35) and Fatou's lemma we have

c ⩾ lim inf →0 ˆT 0 ˆΩ f (u ) ∂ x I(u ) 2 dxdt ⩾ lim inf →0 ˆAk ˆΩ f (u ) ∂ x I(u ) 2 dxdt ⩾ ˆAk lim inf →0 ˆΩ f (u ) ∂ x I(u ) 2 dxdt ⩾ k A k . So A k ⩽ c
k and the set t ∈ P ; lim inf

→0 ˆΩ f (u ) ∂ x I(u ) 2 dx = ∞
has measure zero. We deduce that for all t ∈ P lim inf

→0 ˆΩ ∂ x I(u ) 2 dx < ∞
and so for all t ∈ P u (t, .) ⇀ u(t, .) in H α+1 N (Ω)weakly.

In particular, we can pass to the limit in the ux J = f (u )∂ x I(u ) and write lim

→0 J = J = f (u)∂ x I(u) in L 1 (Ω)
and for almost t ∈ (0, T ).

Finally, since u ∈ H α+1 N (Ω), u x (t, x) = 0 for x ∈ ∂Ω and almost every t ∈ (0, T ).

Case 1 ⩽ α < 2. We recall that (∂ t u ) is bounded in L 2 (0, T ; W -1,2 (Ω)). So Aubin's lemma implies that (u ) converges in L 2 (0, T ; C 0,β (Ω)) for all β < 1. We can thus nd a subsequence, also denoted (u ), and a set P ⊂ (0, T ) such that (0, T ) ∖ P = 0 and for all t ∈ P , u (t, .) converges strongly in C β (Ω).

We note that for all t ∈ P , u is strictly positive. Indeed if there exists (t 0 , x 0 ) ∈ P × Ω such that u(t 0 , x 0 ) = 0 then for any β < 1 there exists a constant c β such that for all x ∈ Ω

u(t 0 , x) ≤ c β x -x 0 β . Thus ˆG(u(x, t 0 ))dx ≥ ˆ1 (c β x -x 0 β ) n-2 dx.
Given n > 3, we can choose β < 1 such that β(n -2) > 1. We deduce ˆG(u(x, t 0 ))dx = ∞ which contradicts (3.40).

The rest of the proof is the same as in the rst case.

Proof of Proposition 3.14

Our aim is to prove that if

u δ (t, x 2 ) -u δ (t, x 1 ) ≤ K x 2 -x 1 γ (3.48)
for all t ∈ (0, T ), x 1 and x 2 ∈ Ω with constant K independent of δ and T , then there exists a constant M independent of δ and T such that

u δ (t 2 , x 0 ) -u δ (t 1 , x 0 ) ⩽ M t 2 -t 1 γ 2γ+3 (3.49)
for all t 1 and t 2 ∈ (0, T ), x ∈ Ω. This proof is an adaptation of the proof done by Bernis-Friedman in case γ = 1 2 [10, Lemma 2.1] for a general γ. We suppose that for all M > 0 one can nd x 0 ∈ Ω and t 2 , t 1 ∈ (0, T ) such that

u δ (t 2 , x 0 ) -u δ (t 1 , x 0 ) > M t 2 -t 1 γ 2γ+3 . (3.50)
We suppose that u δ (t 2 , x 0 ) > u δ (t 1 , x 0 ) and that t 2 > t 1 ; thus

u δ (t 2 , x 0 ) -u δ (t 1 , x 0 ) > M (t 2 -t 1 ) µ , 0 < t 1 < t 2 < T, (3.51) 
where µ = γ 2γ+3 . We have

¨uδ ∂ t ϕ = -¨hδ ∂ x ϕ (3.52)
where h δ = u n δ ∂ x I(u δ ), which is valid for any reasonable testfunction. Consider a testfunction ϕ of the form

ϕ(t, x) = ξ(x)θ ρ (t)
where ξ and θ ρ are dened as follows.

ξ(x) = ξ 0 ⎛ ⎝ x -x 0 (M 4K) 1 γ (t 2 -t 1 ) µ γ ⎞ ⎠
where M is from (3.49) and K is from (3.48), and ξ 0

(x) = ξ 0 (-x), ξ 0 ∈ C ∞ 0 (Ω), ξ 0 (x) = 1 if 0 ⩽ x < 1 2 , ξ 0 (x) = 0 if x ⩾ 1 and ξ ′ 0 (x) ⩽ 0 if x ⩾ 0. Thus ξ(x) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 0 if x -x 0 ⩾ (M 4K) 1 γ (t 2 -t 1 ) µ γ 1 if x -x 0 ⩽ 1 2 (M 4K) 1 γ (t 2 -t 1 ) µ γ .
We take

θ ρ (t) = ˆt -∞ θ ′ ρ (s)ds where θ ′ ρ (t) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 ρ if t -t 2 < ρ -1 ρ if t -t 1 < ρ 0 elsewhere, and ρ < 1 2 (t 2 -t 1 ). So, we get ¨uδ ξ(x)θ ′ ρ (t) = -¨hδ ξ ′ (x)θ ρ (t).
The left-hand side satises

¨uδ (t, x)ξ(x)θ ′ ρ (t) → 4 ˆξ(x)(u δ (t 2 , x) -u δ (t 1 , x))dx as ρ → 0
To estimate the last expression, we shall only consider values of x such that

xx 0 ⩽ (M 4K)

1 γ (t 2 -t 1 ) µ γ .
For such values,

u δ (t 2 , x) -u δ (t 1 , x) = [u δ (t 2 , x) -u δ (t 2 , x 0 )] + [u δ (t 2 , x 0 ) -u δ (t 1 , x 0 )] + [u δ (t 1 , x 0 ) -u δ (t 1 , x)] ⩾ -2K x -x 0 γ +M (t 2 -t 1 ) µ ⩾ M 2 (t 2 -t 1 ) µ .
Hence, by assuming that the set {ξ = 1} is included in Ω and by a change of variables in x,

ˆξ(x)(u δ (t 2 , x) -u δ (t 1 , x))dx ⩾ ˆξ0 (x)dx M 2 (t 2 -t 1 ) µ M 1 γ (4K) 1 γ (t 2 -t 1 ) µ γ .
On the other hand, we have

¨hδ ξ ′ (x)θ ρ (t) ⩽ ¨h2 δ 1 2 ¨(ξ ′ θ ρ ) 2 1 2 
.

But ξ ′ (x) = (M 4K) 1 γ (t 2 -t 1 ) µ γ -1 ξ ′ 0 x-x 0 (M 4K) 1 γ (t 2 -t 1 ) µ γ , so since h δ is uniformly bounded in L 2 (Q) we have ¨hδ ξ ′ (x)θ ρ (t) ⩽ C M 1 γ (4K) 1 γ (t 2 -t 1 ) µ γ ¨h2 δ 1 2 M 1 2γ (4K) 1 2γ (t 2 -t 1 ) µ 2γ (t 2 -t 1 -2ρ) 1 2 . 
Thus by letting ρ → 0 we conclude that

M 1+ 1 γ (t 2 -t 1 ) µ+ µ γ ⩽ CM -1 2γ (t 2 -t 1 ) µ 2γ -µ γ + 1 2 ,
where C is a new constant independent of δ, T and M , thus

M ⩽ c 2γ 3+2γ (t 2 -t 1 ) -µ+ γ 2γ+3 . Since µ = γ 2γ+3 , we nd that M ⩽ C 2γ 3+2γ
, and the lemma follows.

Review of the literature. Let us briey recall how the porous medium equation is derived from the law of conservation of mass, for a gas propagating in a homogeneous porous medium [START_REF] Aronson | The porous medium equation[END_REF][START_REF] Luis | The porous medium equation[END_REF]:

∂ t u + ∇⋅(uv) = 0.
In this equation, u ≥ 0 denotes the density of the gas and v ∈ R N is the locally averaged velocity. Darcy's law states that v = -∇p where p denotes the pressure. Finally, the pressure law implies that p is a monotone operator of u i.e. p = f (u). This leads us to the following equation

∂ t u = ∇⋅(u∇f (u)). (4.6) 
The case p = u is the simplest pressure law and leads to the Boussinesq's equation [START_REF] Bear | Dynamics of uids in porous media[END_REF][START_REF] Boussinesq | Recherches théoriques sur l'écoulement des nappes d'eau inltrées dans le sol et sur le débit des sources[END_REF]:

∂ t u = c∆(u 2 ). (4.7) 
L. Caarelli and J. L. Vázquez [START_REF] Caarelli | Nonlinear porous medium ow with fractional potential pressure[END_REF] studied the following equation

∂ t u = ∇⋅ (u∇(-∆) -s u) , t > 0, x ∈ R N . (4.8) 
This equation was proposed by [START_REF] Caarelli | Nonlinear porous medium ow with fractional potential pressure[END_REF] to add long-distance eects in the physical model (for further details, see the motivations therein). They study this problem with nonnegative initial data that are integrable and decay at innity. For s = 2-α 2 ∈ (0, 1) and m = 2, our

The existence of mass-preserving nonnegative weak solutions satisfying energy estimates has been proved in [START_REF] Caarelli | Nonlinear porous medium ow with fractional potential pressure[END_REF]. Such solutions have a nite propagation speed. Their asymptotic behavior as t → ∞ has been studied in [START_REF] Caarelli | Asymptotic behaviour of a porous medium equation with fractional diusion[END_REF]. Moreover, in [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF] and [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow with exponent 1/2. Algebra i Analiz[END_REF], the boundedness and the Hölder regularity of nonnegative solutions has been obtained for s ∈ (0, 1).

The proof of the Hölder regularity in the range s ∈ (0, 1 2) is based on De Giorgi-type oscillation lemmas and on the scaling property (see (4.16) below) of the equation. For a general review of the De Giorgi method for classical elliptic and parabolic equations, we refer for instance to [START_REF] De | Sulla dierenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF], [START_REF] Gary M Lieberman | Second order parabolic dierential equations[END_REF], [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF] and [START_REF] Caarelli | The De Giorgi method for regularity of solutions of elliptic equations and its applications to uid dynamics[END_REF]. The regularity result in the case s ∈ (1 2, 1), which corresponds to α ∈ (0, 1) for us, is more dicult due to convection eects that appear and make some integrals diverge. The method proposed in [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF] consists in a geometrical transformation that absorbs the uncontrolled growth of one of the integrals that appear in the iterated energy estimates.

The most delicate situation, which is the case s = 1 2, has been treated in [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow with exponent 1/2. Algebra i Analiz[END_REF]. The authors performed an iteration analysis that combines consecutive applications of scaling and geometrical transformations.

A similar De Giorgi method is also used in [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF] to prove the Hölder regularity for nonlinear nonlocal time-dependent variational equations. In this case however, -u satises the same equation as u which slightly simplies the proof.

In [START_REF] Biler | Barenblatt proles for a nonlocal porous medium equation[END_REF] and [START_REF] Biler | The nonlocal porous medium equation: Barenblatt proles and other weak solutions[END_REF], P. Biler, C. Imbert and G. Karch consider a problem similar to (4.1)-(4.2), but with u unsigned. They prove, under some conditions on m (see (4.13) below), the existence of bounded and mass-preserving weak solutions for the Cauchy problem

∂ t u = ∇⋅ u ∇ α-1 ( u m-2 u) , t > 0, x ∈ R N , (4.9) 
with initial condition u(0, x) = u 0 (x)

(4.10)
where u 0 is an integrable but not necessarily positive function on R N . Moreover, they

show that the solution u is nonnegative if the initial condition u 0 is so, in which case the solution is a solution of our problem (4.1)-(4.2). In the sequel of this paper, this existence result is our starting point. The nite speed of propagation for these nonnegative weak solutions has been proved in [START_REF] Imbert | Finite speed of propagation for a non-local porous medium equation[END_REF] and holds under the same conditions on m.

A variant of the porous medium equation with both a fractional potential pressure and a fractional time derivative has been studied in [2]

D α t u -∇⋅(u∇(-∆) -σ u) = f.
where D α t is a Caputo-type time derivative. The authors study both the existence and the Hölder regularity of the solutions, using the De Giorgi method as in [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF].

Organization of the chapter and general ideas. This chapter is organized as follows:

In Section 2 we recall briey how the existence Theorem 4.6 was established.

Section 3 is devoted to the local energy estimates satised by a bounded weak solution. We rst derive general energy estimates (Theorem 4.11) and then we localize them and we improve them by estimating in a more precise way the dissipation terms (Proposition 4.28).

In Section 4 we prove the rst lemmas of De Giorgi. The idea is that a direct application of the energy estimate along a sequence of macroscopic space-time balls leads to a point-wise upper-bound, provided that the measure of the set where u is small is suciently large. Similarly, one can get a point-wise lower-bound from knowing that u is large enough on a large set.

In Section 5, we move on to the lemma on intermediate values. It roughly claims that if both the sets where u is small and where u is large are substantial measurewise, then, thanks to the good extra term of the local energy balance, u also has to spend a substantial space-time in-between. In naive words, we quantify the cost of oscillations.

In Section 6, this idea allows us to subtly improve the rst lemma of De Giorgi: the point-wise upper bound can be ascertained provided only that the measure of the set where u is small is not too small. The proof comes naturally by contradiction:

if the upper bound could not be improved, then too much energy would be lost in the oscillations induced between the maximal point and the low values set. Section 6 seems to be a subtle renement of Section 4, but it suces to prove Theorem 4.2.

In Section 7, one follows a zoom-in and enlarge sequence of solutions, along which the oscillation is controlled either from above by the rened rst De Giorgi lemma of Section 6 or from below by the crude one of Section 4. The improvement of Section 6

was needed to have a clean alternative at this point. This scheme leads directly to the Hölder regularity of the solution u.

Preliminaries

Notations. In this work, we denote by B r the ball of R N of radius r > 0 and of center 0. For any measurable function v we dene its positive and negative part by:

v + = max(0, v) and v -= max(0, -v). (4.11) 
We will often use the following notation and identities:

a ∨ b = max{a, b} = a + (b -a) + and a ∧ b = min{a, b} = a -(b -a) -.
The fractional Laplacian has the following singular integral expression

(-∆) α 2 v(x) = - ˆRN (v(y) -v(x)) c 0 α,N
xy N +α dy (4.12)

where c 0 α,N is a constant only depending on α and N .

Finally, let us point out that we will usually specify the domain of each integral, except for double space integrals where ˜f (x, y)dxdy will denote an integral over R N ×R N , unless stated otherwise.

Weak solutions. The existence of positive weak solutions for our Cauchy problem at hand (4.1)-(4.2) was proved in [START_REF] Biler | The nonlocal porous medium equation: Barenblatt proles and other weak solutions[END_REF]. Sobolev embedding. The following local Sobolev's embedding theorem will be useful:

H α 2 (B r ) ⊂ L p (B r )
for p = 2N N -α > 2 and any r > 0. More precisely, there is a constant C independent of r such that:

ˆBr u p dx 2 p ≤ C ¨Br×Br (u(y) -u(x)) 2 dxdy y -x N +α .
(4.17)

Energy estimates

In this section, we derive the necessary energy estimates to follow De Giorgi's original path towards the Hölder continuity of the solutions. As we will ultimately use Lemma 4.9 on a dyadic rescaled sequence of solutions, we cannot take for granted the value of the L ∞ bound of the weak-solution. Instead, we have to prove the energy estimates for weak solutions that are potentially allowed to grow as a mild power-law at innity. Denition 4.10. For any > 0, let us dene

Ψ (x) = ( x -2) + . (4.18) 
Theorem 4.11 (Energy estimates). Let us assume that α ∈ (1, 2) and that m ≥ 2. Then there are absolute constants 0 > and C > 0 (depending only on N, α, m) such that for any weak solution u of (4.1) in (-2, 0] × R N satisfying for some ∈ (0, 0

) that ∀t ∈ (-2, 0], ∀x ∈ R N , 0 ≤ u(t, x) ≤ 1 + Ψ (x) (4.19) 
and for any smooth truncation functions ϕ ± ∶ R N → [0, +∞) such that

1 4 < ϕ + ≤ 1 + Ψ on R N with ϕ + = 1 + Ψ outside B 2 1 and ∇ϕ + ϕ + + ∇ϕ + + ∇ϕ + ϕ + 2 + ∇ϕ + 2 ≤ C ϕ+ , 0 < ϕ -≤ 1 on B 2 but ϕ -≡ 0 outside B 2 with ∇ϕ -ϕ -≤ C ϕ-ϕ -1 m 0 - on B2 for some m 0 ≥ 2,
the two following energy estimates hold true for any -2 < t 1 < t 2 < 0:

1 2 ˆRN (u(t 2 , x) -ϕ ± (x)) 2 ± ϕ -1 ± (x)dx + 1 4 ˆt2 t 1 ¨ (u(t, y) -ϕ ± (y)) ± -(u(t, x) -ϕ ± (x)) ± 2 D G (u(t, x), u(t, y)) dxdy y -x N +α dt + 1 4 ˆt2 t 1 ¨(u(t, x) -ϕ ± (x)) + (u(t, y) -ϕ ± (y)) -D G (u(t, x), u(t, y)) dxdy y -x N +α dt (4.20) ≤ ˆRN (u(t 1 , x) -ϕ ± (x)) 2 ± ϕ -1 ± (x)dx + CC ϕ± {(u -ϕ ± ) ± > 0} ∩ (t 1 , t 2 ) × R N where D G is dened for a, b ∈ R by D G (a, b) = G(a)-G(b) a-b .
Remark 4.12. The ± notation means that the inequality (4.20) stands true if all the symbols ± are either simultaneously replaced by + or by -. Hybrid choices are not allowed.

Remark 4.13. The functions ϕ ± serve a truncation purpose which should get plain as the proof unfolds. For example, (uϕ + ) + ≡ 0 outside B 2 1 and similarly (uϕ -) -≡ 0 outside B 2 which in particular takes the ambiguity out of the rst integral as ϕ -1

does not have to be computed ouside B 2 .

Remark 4.14. Obviously, each term of (4.20) is nonnegative. The third term in (4.20)

that mixes a positive and a negative part is called the good extra term in [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF]. It will play a crucial role in the proof of the Lemma on intermediate values (see Section 5). By themselves, the other non-negative terms of (4.20) would be sucient to prove the rst lemmas of De Giorgi (see Section 4).

Remark 4.15. In order to prove the energy estimates we will introduce an alternate energy functional:

E ± (t) = ˆRN H 1 ± (u -ϕ ± ) ± (x) ϕ(x) ± ϕ ± (x)dx (4.21) 
where H is an appropriate convex function. The functional E + is well-dened since ϕ + does not vanish. Note also that

(u-ϕ+)+ ϕ+ ∈ [0, (inf B 2 1 ϕ + ) -1 ] ⊂ [0, 4]. As far as E -is concerned, we remark that 1 - (u-ϕ-)- ϕ- = 1 ∧ u ϕ-∈ [0, 1].
In particular, the spurious fraction simply boils down to H(1) when x ∈ B 2 . Moreover, only the values of H(1 + r) for r ∈ [-1, 4] are relevant for (4.21).

The proof of Theorem 4.11 is structured as follows. First we explain why it is enough to consider the alternate energy functional (4.21). Then we estimate the error terms for the energy ´(uϕ + ) 2 + ϕ -1 + . Finally, we deal with the case of ´(uϕ -) 2 -ϕ -1 -.

An alternate energy functional

We consider the convex function H ∶ [0, +∞) → [0, +∞) such that

H ′′ (r) = r -1 and H(1) = H ′ (1) = 0.
The function H is given by the formula H(r) = r ln rr + 1. Following [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF], we consider the energy functional (4.21). As

1 4 r 2 ≤ H(1 + r) ≤ r 2 for r ∈ [-1, 4], the proof of Theorem 4.11
is reduced to proving that

E ± (t 2 ) + ˆt2 t 1 (B G ((u(t) -ϕ ± ) ± , (u(t) -ϕ ± ) ± ) -B G ((u(t) -ϕ ± ) + , (u(t) -ϕ ± ) -)) dt ≤ E ± (t 1 ) + C {(u -ϕ ± ) ± > 0} ∩ (t 1 , t 2 ) × R N (4.22)
where the bilinear form B G is dened as follows

B G (v, w) = ¨(v(y) -v(x))(w(y) -w(x))D G (u(x), u(y)) c 0 α,N dxdy y -x N +α ⋅ (4.23) Let us recall that D G (a, b) = G(a)-G(b) a-b
.

Le us compute rst the time derivative of the alternate energy functional:

d dt E ± (t) = ˆ(u-ϕ±)±>0 H ′ 1 ± (u -ϕ ± ) ± ϕ ± ∂ t udx = ˆH′ 1 ± (u -ϕ ± ) ± ϕ ± ∂ t udx = -ˆH′′ 1 ± (u -ϕ ± ) ± ϕ ± u∇ α-1 G(u) ⋅ ∇ ±(u -ϕ ± ) ± ϕ ± .
This formal computation can be made rigorous thanks to the regularity of some approximate solutions as it was done in [START_REF] Biler | The nonlocal porous medium equation: Barenblatt proles and other weak solutions[END_REF]. We now remark that, on the set {±(uϕ ± ) > 0}, we have the following remarkable identity:

H ′′ 1 ± (u -ϕ ± ) ± ϕ ± u = ϕ ± .
This implies that

d dt E ± (t) = -ˆ∇α-1 G(u) ⋅ ∇(±(u -ϕ ± ) ± )dx + ˆ(±(u -ϕ ± ) ± )∇ α-1 G(u) ⋅ ∇ϕ ± ϕ ± dx = -B G (±(u -ϕ ± ) ± , u) + Q G (±(u -ϕ ± ) ± , u) (4.24) 
with

Q G (v, w) = ¨v(x)(w(y) -w(x))D G (u(x), u(y)) ∇ϕ ± (x) ϕ ± (x) ⋅ (y -x) c α,N dxdy y -x N +α ⋅ (4.25)
Up to now, the second variable w = u of B G (⋅, u) or Q G (⋅, u) could have been simplied

with the denominator of the kernel D G (u(x), u(y)). We are now going to split that second variable. More precisely, using the fact that u = ±(uϕ ± ) ± ∓ (uϕ ± ) ∓ + ϕ ± , we get

B G (±(u-ϕ ± ) ± , u) = B G ((u-ϕ ± ) ± , (u-ϕ ± ) ± )-B G ((u-ϕ ± ) + , (u-ϕ ± ) -)+B G (±(u-ϕ ± ) ± , ϕ ± ).
Combining this with (4.24) yields

d dt E ± (t) + B G ((u -ϕ ± ) ± , (u -ϕ ± ) ± ) -B G ((u -ϕ ± ) + , (u -ϕ ± ) -) (4.26) = -B G (±(u -ϕ ± ) ± , ϕ ± ) + Q G (±(u -ϕ ± ) ± , u).
We remark that the two terms B G ((uϕ ± ) ± , (uϕ ± ) ± ) and -B G ((uϕ ± ) + , (uϕ ± ) -) are non-negative. Following [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF][START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF], the rst one is referred to as the coercive term while the second one is referred to as the good extra term. 

= (α -1) (m -1)
.

The proof will be complete once the lemmas mentioned above are established.

In what follows it will be convenient to write

u ± ϕ = (u -ϕ ± ) ± .
An inequality A ≤ cB that involves a universal constant c depending on N, α, m and C ϕ± will be denoted by A ≲ B.

We will use repeatedly that (4.19) implies that The case u(y) ≥ c ≥ u(x) ≥ 0 is similar and the lemma follows.

D G (u(x), u(y)) ≤ sup z∈[u(x),u(y)] G ′ (z) ≲ (1 ∨ x ∨ y ) (m-2)

Common estimate for E + and E -

Controlling Q G will require a dierent approach for E + and for E -. Dealing with the rst term on the right-hand side of (4.26) is much easier.

Lemma 4.17. For < α m , we have:

-B G (±(u -ϕ ± ) ± , ϕ ± ) ≤ 1 2 B G (u ± ϕ , u ± ϕ ) + C ϕ± {(u -ϕ ± ) ± > 0} where C ϕ± ≳ 1 + ∇ϕ ± 2 ∞ .
Proof. Keeping track of the support of u ± ϕ we write

-B G (±(u -ϕ ± ) ± , ϕ ± ) = ∓ ¨(u ± ϕ (y) -u ± ϕ (x))(ϕ ± (y) -ϕ ± (x))D G (u(x), u(y)) c 0 α,N dxdy y -x N +α ≤ 1 2 B G (u ± ϕ , u ± ϕ ) + 1 2 ¨(ϕ ± (y) -ϕ ± (x)) 2 (I u ± ϕ (x)>0 + I u ± ϕ (y)>0 )D G (u(x), u(y)) c 0 α,N dxdy y -x N +α ⋅
Thanks to (4.27) we estimate the second term of the right hand side as follows

¨(ϕ ± (y) -ϕ ± (x)) 2 (I u ± ϕ (x)>0 + I u ± ϕ (y)>0 )D G (u(x), u(y)) c 0 α,N dxdy y -x N +α ≲ ˆu± ϕ >0 ˆ(ϕ ± (y) -ϕ ± (x)) 2 (1 ∨ x ∨ y ) (m-2) dy y -x N +α dx. Since {u ± ϕ > 0} is contained in B 2 1 , we have ˆ(ϕ ± (y) -ϕ ± (x)) 2 (1 ∨ x ∨ y ) (m-2) dy y -x N +α ≲ ∇ϕ ± 2 L ∞ ˆ y-x ≤1 dy y -x N +α-2 + ϕ ± 2 L ∞ (B 2 1 ) ˆ y-x ≥1 y -x m dy y -x N +α ≲ 1
provided < α m. This yields the desired estimate.

Estimates for E +

We rst estimate Q G ((uϕ + ) + , u). In order to do so, we split it as follows (see [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF])

Q G ((u -ϕ + ) + , u) = Q +,+ int + Q +,- int + Q +,0 int + Q +,+ out + Q +,- out + Q +,0 out with ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Q +,+ int = Q int G ((u -ϕ + ) + , (u -ϕ + ) + ) Q +,- int = Q int G ((u -ϕ + ) + , -(u -ϕ + ) -) Q +,0 int = Q int G ((u -ϕ + ) + , ϕ + ) Q +,+ out = Q out G ((u -ϕ + ) + , (u -ϕ + ) + ) Q +,- out = Q out G ((u -ϕ + ) + , -(u -ϕ + ) -) Q +,0 out = Q out G ((u -ϕ + ) + , ϕ + ).
where

Q int G and Q out G are dened by Q int G (v, w) = ¨ x-y ≤η v(x)(w(y) -w(x))D G (u(x), u(y)) ∇ϕ + (x) ϕ + (x) ⋅ (y -x) c α,N dxdy y -x N +α , Q out G (v, w) = ¨ x-y ≥η v(x)(w(y) -w(x))D G (u(x), u(y)) ∇ϕ + (x) ϕ + (x) ⋅ (y -x) c α,N dxdy y -x N +α
for some small parameter η ∈ (0, 1) to be xed later (see Lemma 4.19 below). We estimate successively the six terms appearing in this decomposition. Note that we only need upper estimates as negative terms can be discarded from the right-hand side of (4.26).

Lemma 4.18. For α < 2 ≤ m, one has

Q +,+ int ≤ 1 4 B G (u + ϕ , u + ϕ ) + C ϕ+ {(u -ϕ + ) > 0} where C ϕ+ ≳ ∇ϕ + ϕ + 2 ∞ .
Proof. We rst write a Cauchy-Schwarz type inequality and (4.27):

Q +,+ int = Q int G (u + ϕ , u + ϕ ) = ¨ x-y ≤η u + ϕ (x)(u + ϕ (y) -u + ϕ (x))D G (u(x), u(y)) ∇ϕ + (x) ϕ + (x) ⋅ (y -x) c α,N dxdy y -x N +α ≤ 1 4 B G (u + ϕ , u + ϕ ) + ¨ x-y ≤η (u + ϕ ) 2 (x)(1 ∨ x ∨ y ) (m-2) ∇ϕ + (x) 2 ϕ 2 + (x) c α,N dxdy y -x N +α-2 ⋅ Since ϕ + is Lipschitz continuous and u + ϕ (x) ≤ u(x) ≤ (1 ∨ x ) , we have for m ≥ 2: ¨ x-y ≤η (u + ϕ ) 2 (x)(1 ∨ x ∨ y ) (m-2) ∇ϕ + (x) 2 ϕ 2 + (x) c α,N dxdy y -x N +α-2 ≲ η 2-α {(u -ϕ + ) > 0} .
In this integral, the variable x is conned into B 2 1 and the y variable is controlled by the following fact: 

sup x∈B 2 1 ˆ x-y ≤η (1 ∨ x ∨ y ) (m-2) c α,N dy y -x N +α-2 ≲ η 2-α (4.30) since (1 ∨ x ∨ y ) (m-2) ≲ 1 if y -x ≤ η < 1 and α < 2.
Q +,- int ≤ 1 2 B G ((u -ϕ + ) + , -(u -ϕ + ) -).
Let us recall that the constants of the singular integrals are dened by (4.3) and (4.12).

Proof. The term Q +,- int is easy to handle. We simply write

Q +,- int = -Q int G ((u -ϕ + ) + , (u -ϕ + )-) = - ¨ x-y ≤η (u -ϕ + ) + (x)(u -ϕ + ) -(y)D G (u(x), u(y)) ∇ϕ + (x) ϕ + (x) ⋅ (y -x) c α,N dxdy y -x N +α ≤ ∇ϕ + ϕ + ∞ η ¨ x-y ≤η (u -ϕ + ) + (x)(u -ϕ + ) -(y)D G (u(x), u(y)) c α,N dxdy y -x N +α ≤ 1 2 B G ((u -ϕ + ) + , -(u -ϕ + ) -)
provided η is chosen small enough to ensure that ηc α,N ∇ϕ

+ ϕ + ∞ ≤ 1 2 c 0 α,N .
Lemma 4.20. For α < 2 ≤ m, one has

Q +,0 int ≤ C ϕ+ {(u -ϕ + ) > 0} where C ϕ+ ≳ ∇ϕ + ∞ ∇ϕ + ϕ + ∞ .
Proof. The proof is similar to that of Lemma 4.18, but this time the regularity of ϕ + provides the local integrability, instead of using Cauchy-Schwarz:

Q +,0 int = ¨ x-y ≤η u + ϕ (x)(ϕ + (y) -ϕ + (x))D G (u(x), u(y)) ∇ϕ + (x) ϕ + (x) ⋅ (y -x) c α,N dxdy y -x N +α ≤ ∇ϕ + ∞ ∇ϕ + ϕ + ∞ ˆB2 1 u + ϕ (x) ˆ x-y ≤η (1 ∨ x ∨ y ) (m-2) c α,N dy y -x N +α-2 dx ≲ {(u -ϕ + ) > 0} .
We used again (4.27), the fact that the variable x is conned into B 2 1 and α < 2 ≤ m.

Lemma 4.21. For α > 1 and < (α -1) (m -1), we have:

Q +,+ out ≤ C ϕ+ {(u -ϕ + ) > 0} with C ϕ+ ≳ ∇ϕ + ϕ + ∞ .
Proof. We use (4.27), the boundedness of ∇ϕ + ϕ + and u + ϕ (y) ≤ (1 ∨ y ) in order to get

Q +,+ out ≲ ¨ x-y ≥η u + ϕ (x)(u + ϕ (y) + u + ϕ (x))(1 ∨ x ∨ y ) (m-2) c α,N dxdy y -x N +α-1 ≲ ˆu+ ϕ (x) ˆ y-x ≥η (1 ∨ y ) (m-1) c α,N dy y -x N +α-1 dx + ˆu+ ϕ (x) 2 ˆ y-x ≥η (1 ∨ y ) (m-2) c α,N dy y -x N +α-1 dx.
We use here in an essential way that α > 1 and < (α-1) (m-1) in order to get that the two terms in curly parentheses are ≲ 1. Note that as m ≥ 2, one has α-1 > (m-1) > (m-2) ≥ 0.

This yields the desired estimate.

Lemma 4.22. For α > 1 and < (α -1) (m -1), we have:

Q +,- out ≤ C ϕ+ {(u -ϕ + ) > 0} with C ϕ+ ≳ ∇ϕ + ϕ + ∞ .
Proof. We use (4.27), the boundedness of ∇ϕ + ϕ + and (u -

ϕ + ) -(y) ≤ ϕ + (y) ≤ (1 ∨ y ) in order to get Q +,- out ≲ ¨ x-y ≥η (u -ϕ + ) + (x)(u -ϕ + ) -(y)(1 ∨ x ∨ y ) (m-2) c α,N dxdy y -x N +α-1 ≲ ˆ(u -ϕ + ) + (x) ˆ x-y ≥η (1 ∨ y ) (m-1) c α,N dy y -x N +α-1 dx ≲ ˆ(u -ϕ + ) + (x)dx ≲ C {(u -ϕ + ) > 0} .
The integral in the curly braces converges because (m -1) < α -1. This yields the desired estimate.

Lemma 4.23. For α > 1 and < (α -1) (m -1), we have:

Q +,0 out ≤ C ϕ+ {(u -ϕ + ) > 0} with C ϕ+ ≳ ∇ϕ + ϕ + ∞ .
Proof. We oer here a slightly simpler proof than in [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF]. Again, let us observe that x is conned in B 2 1 in the following integral so one can use ϕ + (y)ϕ + (x) ≲ (1 + x + y ) and (4.27):

Q +,0 out = ¨ x-y ≥η u + ϕ (x)(ϕ + (y) -ϕ + (x))D G (u(x), u(y)) ∇ϕ + (x) ϕ + (x) ⋅ (y -x) c α,N dxdy y -x N +α ≲ ¨ x-y ≥η u + ϕ (x)(1 ∨ y ) (m-1) dxdy y -x N +α-1 ≲ ˆu+ ϕ (x) ˆ y-x ≥η (1 ∨ y ) (m-1) dxdy y -x N +α-1 dx ≲ {u + ϕ > 0} .
The integral in the curly braces converges because (m -1) < α -1.

Remark 4.24. Note that up to now, as α < 2 ≤ m, the most stringent condition on is

0 < < min α m , α -1 m -1 = α -1 m -1 = 0 .

Estimates for E -

In order to estimate Q G (-(uϕ -) -, u), we split it again as follows (see [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF]), but we group the terms dierently:

Q G (-u - ϕ , u) = Q G (u - ϕ , u - ϕ ) + Q G (-u - ϕ , (u -ϕ -) + + ϕ -).
Let us point out that the previous sub-split depending on the size of xy will still be necessary for each term, but the cut-o value η will be dierent between the proof of Lemma 4.25 and that of Lemma 4.26.

Lemma 4.25. For α -1 > (m -2) ≥ 0, we have

Q G (u - ϕ , u - ϕ ) ≤ 1 4 B G (u - ϕ , u - ϕ ) + CC ϕ-{u - ϕ > 0} .
Proof. We rst write

Q G (u - ϕ , u - ϕ ) = Q int + Q out with Q int = ˆ x-y ≤η u - ϕ (x)(u - ϕ (x) -u - ϕ (y))D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α Q out = ˆ x-y ≥η u - ϕ (x)(u - ϕ (x) -u - ϕ (y))D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α ⋅
for some η > 0 of arbitrary value.

We argue as in the proof of Lemma 4.18 by writing rst, thanks to (4.27) and the properties of ϕ -that:

Q int ≤ 1 4 B G (u - ϕ , u - ϕ ) + C ¨ x-y ≤η (u - ϕ ) 2 (x)(1 ∨ x ∨ y ) (m-2) ∇ϕ -(x) 2 ϕ 2 -(x) c α,N dxdy y -x N +α-2 ≤ 1 4 B G (u - ϕ , u - ϕ ) + CC ϕ-ˆ(u - ϕ ) 2 (x)ϕ -2 m 0 - (x)dx.
Using u - ϕ ≤ ϕ -yields the desired estimate for this term since m 0 ≥ 1. Note that the integral in dy did converge because of the assumption α < 2.

For the outer part we use (4.27)

, ∇ϕ -ϕ -≤ C ϕ-ϕ -1 m 0 - and u - ϕ (y) ≤ ϕ -(y) ≤ 1 in order to get Q out ≲ ˆu- ϕ (x)ϕ -1 m 0 - (x) ˆ x-y ≥η (1 ∨ x ∨ y ) (m-2) c α,N dy y -x N +α-1 dx ≲C ϕ- ˆu- ϕ (x)ϕ -1 m 0 - (x)dx ≤ C ϕ- ˆu- ϕ >0 ϕ 1-1 m 0 - (x)dx ≲C ϕ-{u - ϕ > 0} .
We use here in an essential way that α -1 > (m -2) ≥ 0 to ensure the convergence of the dy integral in the curly braces. This yields the desired estimate. 

Q G ((u -ϕ -) + + ϕ -, u) ≤ - 1 2 B G ((u -ϕ -) + , (u -ϕ -) -) + CC ϕ-{u - ϕ > 0} .
Proof. We rst write

Q G ((u -ϕ -) + + ϕ -, u) = Q int + Q out with (u -ϕ -) + + ϕ -= u ∨ ϕ -and Q int = ˆ x-y ≤η u - ϕ (x)(u ∨ ϕ -(x) -u ∨ ϕ -(y))D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α Q out = - ˆ x-y ≥η u - ϕ (x)u ∨ ϕ -(y)D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α
for some parameter η > 0 to be chosen subsequently. Let us point out that we removed the term u ∨ ϕ -(x) for xy ≥ η since it is away from the singularity and that the kernel is anti-symmetric, which makes the corresponding dy integral vanish.

Let us observe that u - ϕ is supported in B 2 . Choosing η large enough we can ensure that for xy ≥ η one has u ∨ ϕ -(y) = u(y) and consequently

Q out = - ˆ x-y ≥η u - ϕ (x)u(y)D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α ≲C ϕ- ˆu- ϕ (x)ϕ -1 m 0 - (x) ˆ y-x ≥η (1 ∨ y ) (m-1) dy y -x N +α-1 dx ≲C ϕ- ˆu- ϕ (x)ϕ -1 m 0 - (x)dx ≲C ϕ-{u - ϕ > 0} since m 0 ≥ 1 and u - ϕ ≤ ϕ -.
As far as Q int is concerned, we revert to u ∨ ϕ -= (uϕ -) + + ϕ -and split it as

Q int = Q -,+ int + Q -,0 int with Q -,+ int = ˆ x-y ≤η u - ϕ (x)((u -ϕ -) + (x) -(u -ϕ -) + (y))D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α Q -,0 int = ˆ x-y ≤η u - ϕ (x)(ϕ -(x) -ϕ -(y))D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α ⋅
We split the integral further, depending on the size of the unsigned factors:

Q -,+ int = - ˆ x-y ≤η (u -ϕ -) -(x)(u -ϕ -) + (y)D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α = - ˆϕ-1 -(x) ∇ϕ-(x) y-x ≤1 2 x-y ≤η (u -ϕ -) -(x)(u -ϕ -) + (y)D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α - ˆϕ-1 -(x) ∇ϕ-(x) x-y ≥1 2 x-y ≤η (u -ϕ -) -(x)(u -ϕ -) + (y)D G (u(x), u(y)) ∇ϕ -(x) ϕ -(x) ⋅ (y -x) c α,N dxdy y -x N +α ⋅
We then use the good extra term as follows

Q -,+ int ≤ - 1 2 B G ((u -ϕ -) + , (u -ϕ -) -) + CC ϕ-ˆ(u -ϕ -) -(x)ϕ -1 m 0 - (x) ˆϕ1 m 0 - (x) (2Cϕ -)≤ x-y ≤η dy y -x N +α-1 dx ≤ - 1 2 B G ((u -ϕ -) + , (u -ϕ -) -) + CC ϕ-ˆ(u -ϕ -) -(x)ϕ -α m 0 - (x)dx.
As m 0 ≥ 2 > α, the last integral is related to the measure of the set {u - ϕ > 0} in the following way:

ˆu- ϕ >0 (u -ϕ -) -(x)ϕ -α m 0 - (x)dx ≤ ˆu- ϕ >0 ϕ 1-α m 0 - (x)dx ≤ C ϕ-{u - ϕ > 0} .
Similarly, using (4.27), the fact that supp u - ϕ ∈ B 2 and the properties of ϕ -, we get for the last term:

Q -,0 int ≲ C ϕ- ˆu- ϕ (x)ϕ -1 m 0 - (x) ˆ x-y ≤η (1 ∨ y ) (m-2) dy y -x N +α-2 dx ≲ C ϕ- ˆu- ϕ (x)ϕ -1 m 0 - (x)dx ≲ C ϕ-{u - ϕ > 0} .
This yields the desired estimate.

Remark 4.27. Note that for this second half of the proof, as α < 2 ≤ m, the most stringent condition on is

0 < < min α m , α -1 m -1 , α -1 m -2 = α -1 m -1 = 0
which is the same critical value as before.

Local energy estimates

Theorem 4.11 provides a global estimate with an embedded cuto function ϕ ± . In the sequel, we will need a localized version with the integrals computed on balls.

Proposition 4.28 (Local energy estimates). Let us assume that α ∈ (1, 2) and m ≥ 2.

We take 0 > 0 given by Theorem 4.11. There then exists C > 0 (only depending on N, α, m) such that for any weak solution u of (4.1) in (-2, 0] × R N satisfying (4.19) for some ∈ (0, 0 ), the two following local energy estimates hold true.

For any r < R in (0, 2 1 ) and c > 1 4 and with -2 < t 1 < t 2 < 0, one has:

ˆBr (u(t 2 , x) -c) 2 + dx + ˆt2 t 1 ˆBr (u -c) p + (x)dx 2 p dt + ˆt2 t 1 ¨Br×Br (u(t, x) -c) + (G(c) -G(u(y))) + dxdy x -y N +α dt ≲ ˆBR (u(t 1 , x) -c) 2 + dx + C(R -r) -2 {u > c} ∩ (t 1 , t 2 ) × B R . (4.31) 
For any cut-o function ϕ -such that ϕ -≡ 0 outside B 2 and ϕ -≡ c > 0 in B r with 

∇ϕ -ϕ -≤ C ϕ-ϕ -1 m 0 - for some m 0 ≥ 2, we have ˆRN (u(t 2 , x) -ϕ -(x)) 2 -ϕ -1 -(x)dx + ˆt2 t 1 ˆBr (u(t, x) -c) pm 2 -dx 2 p dt ≲ ˆRN (u(t 1 , x) -ϕ -) 2 ± ϕ -1 -(x)dx + C ϕ-{(u -ϕ -) -> 0} ∩ (t 1 , t 2 ) × R N . ( 4 
0 < c < c by (G(c) -G(c)) ˆt2 t 1 ¨Br×Br (u -c) + (x)I {u(y)≤c} dxdy dt (4.33) ≲ ˆBR (u -c) 2 + (t 1 , x)dx + C(R -r) -2 {u > c} ∩ (t 1 , t 2 ) × B R .
Proof. We rst prove (4.31). We follow [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF] by applying the energy estimates from Theorem 4.11 with the cut-o function

ϕ + (x) = 1 + Ψ (x) -(1 -c)ξ(x)
where ξ is a smooth characteristic function such that ξ ≡ 1 on B r and supp ξ ⊂ B R . Remark that this cut-o function satises the assumptions of Theorem 4.11 with C ϕ+ ≃ (Rr) -2 .

Moreover, ϕ + (x) ≡ c for x ∈ B r . One can apply (4.29) to bound D G from below on the complementary set of {(x, y) ; u(x) ∨ u(y) ≤ c} on which the following integrand vanishes anyway. One thus gets, thanks to the Sobolev embedding (4.17), that:

¨((u -c) + (y) -(u -c) + (x)) 2 D G (u(t, x), u(t, y)) dxdy y -x N +α ≳ c m-2 ¨Br×Br ((u -c) + (y) -(u -c) + (x)) 2 dxdy y -x N +α ≳ c m-2 ˆBr (u -c) p + (x)dx 2 p
.

As far as the good extra term is concerned, we use the convexity inequality (4.28) to assert that:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ for u(x) ≥ c, D G (u(x), u(y)) ≥ D G (c, u(y)), for u(x) ≥ c > c ≥ u(y), (u(y) -c) -D G (c, u(y)) = G(c) -G(u(y)) ≥ G(c) -G(c) and in particular ¨(u(t, x) -ϕ + (x)) + (u(t, y) -ϕ + (y)) -D G (u(t, x), u(t, y)) dxdy y -x N +α ≳ ¨Br×Br (u(t, x) -c) + (G(c) -G(u(y))) + dxdy x -y N +α ≳ (G(c) -G(c))
¨Br×Br (u(t, x)c) + I {u(y)≤c} dxdy.

For the last estimate, we discarded the denominator because xy -N -α ≳ 1 if x, y ∈ B r . Applying (4.20) from Theorem 4.11 then yields the rst desired estimate (4.31). In particular, (4.33) holds too.

We now turn to the proof of (4.32). Because m can be dierent from 2, the dissipation term B G (u - ϕ , u - ϕ ) appearing in (4.20) is treated in a slightly dierent way than in [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF]. Let us recall that u

- ϕ = (u -ϕ -) -= u ∧ ϕ --ϕ -and write B G (u - ϕ , u - ϕ ) ≥ ¨Br×Br ((u(y) -c) --(u(x) -c) -) 2 D G (u(x), u(y)) dxdy y -x N +α ≥ ¨Br×Br (u(y) ∧ c -u(x) ∧ c) 2 D G (u(x), u(y)) dxdy y -x N +α ⋅
Using the convexity inequality (4.28), one gets:

B G (u - ϕ , u - ϕ ) ≥ ¨Br×Br (u(y) ∧ c -u(x) ∧ c) 2 D G (u(x) ∧ c, u(y) ∧ c) dxdy y -x N +α ≥ ¨Br×Br u(y) ∧ c -u(x) ∧ c G(u(x) ∧ c) -G(u(y) ∧ c) dxdy y -x N +α ≳ ¨Br×Br (u(y) ∧ c) m 2 -(u(x) ∧ c) m 2 2 dxdy y -x N +α .
For the last inequality, we used a well-known identity (4.68) that we recall in the appendix of this paper. Applying the Sobolev embedding (4.17), we nally get

B G (u - ϕ , u - ϕ ) ≳ ˆBr (u ∧ c) pm 2 (x)dx 2 p 
.

In particular, Theorem 4.11 implies that for all -2 < t

1 < t 2 < 0, ˆRN (u(t 2 , x) -ϕ -(x)) 2 -ϕ -1 -(x)dx + ˆt2 t 1 ˆBr (u ∧ c) pm 2 (x)dx 2 p dt ≲ ˆRN (u(t 1 ) -ϕ -) 2 ± ϕ -1 -dx + C ϕ-{(u -ϕ -) -> 0} ∩ (t 1 , t 2 ) × R N .
Using next that (u-c) m -= (c-u∧c) m ≲ c m +(u∧c) m we can play around with the Lebesgue norm: Remark 4.34. The admissible values for δ form an interval (0, δ * ) where δ * is an in- creasing function of µ.

ˆBr (u -c) pm 2 -(x)dx 2 p ≲ c m I u(x)<c + (u(x) ∧ c) m L 2 p (Br) ≤ c m {u < ϕ -} ∩ B r 2 p + ˆBr (u ∧ c) pm 2 ( 
Remark 4.35. We will only use Lemma 4.32 in the proof of its improved version, Lemma 4.44.

We will need to use a high threshold value for µ (i.e. very close to 1).

Proof. Let us use the common denition for T k and r k from the beginning of 4.4. We now dene an increasing sequence (the fact that it is increasing is crucial)

c k = 3 + µ 4 - 1 -µ 4 1 2 k ∈ 1 + µ 2 , 3 + µ 4
and consider the quantity

U k = sup t∈[T k ,0] ˆBr k (u -c k ) 2 + (t, x)dx. (4.36) 
To study the asymptotic behavior of the sequence (U k ) k∈N , we establish a recurrence inequality. We apply the local upper energy estimate (4.31) with r = r k and R = r k-1 so that (Rr) -2 = 4 k . Note that c k ≥ c 0 > 1 4. For all T k-1 ≤ t 1 ≤ T k < t 2 < 0, we get:

ˆBr k (u -c k ) 2 + (t 2 , x)dx + ˆt2 t 1 ⎛ ⎝ ˆBr k (u -c k ) p + (x)dx ⎞ ⎠ 2 p dt ≲ ˆBr k-1 (u -c k ) 2 + (t 1 , x)dx + 4 k {u > c k } ∩ (t 1 , t 2 ) × B r k-1 .
In particular, U k satises (chose a time t 1 that realizes the following inmum and t 2 that realizes U k ):

U k ≤ inf t∈[T k-1 ,T k ] ˆBr k-1 (u -c k ) 2 + (t, x)dx + 4 k ˆ0 T k-1 ˆBr k-1 I {u(t,x)>c k } dxdt.
We remark that, by positivity of the integral:

inf t 1 ∈[T k-1 ,T k ] ˆBr k-1 (u -c k ) 2 + (x, t 1 )dx ≤ 1 T k -T k-1 ˆTk T k-1 ˆBr k-1 (u -c k ) 2 + (x, t 1 )dxdt 1 ≤ 2 k ˆ0 T k-1 ˆBr k-1 (u -c k ) 2 + (x, t 1 )dxdt 1 and as (u -c k ) + ≤ u(x) ≤ 1 on B r k-1 ⊂ B 2 , it is bounded by the characteristic function: inf t 1 ∈[T k-1 ,T k ] ˆBr k-1 (u -c k ) 2 + (x, t 1 )dx ≤ 2 k ˆ0 T k-1 ˆBr k-1 I {u(t,x)>c k } dxdt.
Let us point out that this is the only point in the proof where the local boundedness assumption (4.34) will be used. We thus got so far that

U k ≲ 4 k ˆ0 T k-1 ˆBr k-1 I {u(t,x)>c k } dxdt. (4.37)
Moreover, as the sequence c k is increasing, we note that

(u -c k ) + > 0 ⇒ (u -c k-1 ) + > c k -c k-1 ≥ 2 -k 1 -µ 4 > 0, which transforms (4.37) into U k ≲ 4 k ˆ0 T k-1 ˆBr k-1 I (u-c k-1 )+>2 -k 1-µ 4 dxdt. (4.38) 
Now we take θ = 2 p and q = 2(1θ) + pθ. Then, using the Markov and Hölder inequalities, we get ˆBr k-1

I (u-c k-1 )+>2 -k 1-µ 4 dx ≤ 4 q 2 qk (1 -µ) q ˆBr k-1 (u -c k-1 ) q + dx ≤ 4 q 2 qk (1 -µ) q ⎛ ⎝ ˆBr k-1 (u -c k-1 ) 2 + dx ⎞ ⎠ 1-θ ⎛ ⎝ ˆBr k-1 (u -c k-1 ) p + dx ⎞ ⎠ θ .
Integrating in time t along the interval [T k-1 , 0], we get:

U k ≤ C k ⎛ ⎝ sup t∈[T k-1 ,0] ˆBr k-1 (u -c k-1 ) 2 + (t)dx ⎞ ⎠ 1-θ ⎛ ⎜ ⎝ ˆ0 T k-1 ⎛ ⎝ ˆBr k-1 ((u -c k-1 ) p + dx ⎞ ⎠ 2 p dt ⎞ ⎟ ⎠ (4.39)
To control the last factor, we apply (4.31) one last time, but on the time interval t 1 = T k-1 and t 2 = 0 and with the radii r = r k-1 and R = r k-2 ; we get:

ˆ0 T k-1 ⎛ ⎝ ˆBr k-1 ((u -c k-1 ) p + dx ⎞ ⎠ 2 p dt ≲ U k-1 + C k ˆ0 T k-1 ˆBr k-2 I {u(t,x)>c k-1 } dxdt. (4.40)
The measure term in (4.40) cannot be removed, but it is harmless. Indeed, let us dene 

M k = ˆ0 T k-1 ˆBr k-1 I {u(t,x)>c k } dxdt.
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ U k ≤ C k M k , M k ≤ C k U 1-θ k-1 (U k-1 + M k-1 ). (4.42) Therefore, we have M k ≤ Ck M σ k-1 with σ = 2 -θ = 2 -2 p > 1.
and will chose ϕ k → µI B 1 as k → +∞ while ensuring, for all k ≥ 0, that:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ϕ k ≡ c k in B r k , ϕ k ≡ 0 outside B r k-1 and ∇ϕ k ϕ k ≤ C k ϕ -1 m 0 k
.

For k = 0, we set r -1 = 3 (note that 3 ≤ 2 1 0 with 0 from Theorem 4.11, if 0 ≤ log 2 log 3 ) so that ϕ 0 ≡ Similarly as to what we did in the proof of Lemma 4.32, let us dene: We apply the assumption (4.32) between a starting time t

V k = sup t∈[T k ,0] ˆRN (u(t, x) -ϕ k (x)) 2 -ϕ -1 k (x)dx.
1 ∈ [T k-1 , T k ] such that ˆRN (u(t 1 ) -ϕ k ) 2 -ϕ -1 k = inf t∈[T k-1 ,T k ] ˆRN (u(t) -ϕ k ) 2 -ϕ -1 k and a nal time t 2 ∈ [T k , 0] that realizes V k . As u ≥ 0, the function (u -ϕ k ) -is supported in supp ϕ k ⊂ B r k-1 and as ϕ k ≤ 1, we also have (u -ϕ k ) 2 -ϕ -1 k ≤ ϕ k ≤ 1 (note that it is the
only point in the proof where we use the rst assumption). In particular, we get as in the proof of Lemma 4.32:

inf t∈[T k-1 ,T k ] ˆRN (u(t) -ϕ k ) 2 -ϕ -1 k ≤ 1 T k -T k-1 ˆTk T k-1 ˆRN (u(t) -ϕ k ) 2 -ϕ -1 k dxdt ≤ 2 k ˆ0 T k-1 ˆBr k-1 I {u(t,x)<ϕ k } dxdt.
The measure of {u < ϕ k } ∩ (t 1 , t 2 ) × R N is also obviously bound by the same right-hand side. Thus, for this pair of times, assumption (4.32) implies:

V k ≲ 2 k ˆ0 T k-1 ˆBr k-1 I {u(t,x)<ϕ k } dxdt. (4.46)
As the sequence ϕ k is decreasing both in amplitude and support in a coordinated way, we get:

∀x ∈ B r k-1 , ϕ k (x) ≤ ϕ k-1 (x) - 1 -µ 3 2 -k and in particular u(t, x) < ϕ k ⇒ (u(t, x) -ϕ k-1 ) -> 1 -µ 3 2 -k .
We are thus allowed to rewrite (4.46) into

V k ≲ C k ˆ0 T k-1 ˆBr k-1 I {(u-ϕ k-1 )->(1-µ)2 -k 3} dxdt. (4.47) 
Now we take θ = 2 p and q = 2(1θ) + θ(pm 2) and apply the Markov inequality to (4.47), then the Hölder inequality in the space variable and subsequently integrate in time ; we get

V k ≤ C k ˆ0 T k-1 ˆBr k-1 (u -ϕ k-1 ) q -dxdt ≤ C k ⎛ ⎝ sup t∈[T k-1 ,0] ˆBr k-1 (u -ϕ k-1 ) 2 -ϕ -1 k-1 dx ⎞ ⎠ 1-θ ⎛ ⎜ ⎝ ˆ0 T k-1 ⎛ ⎝ ˆBr k-1 (u -ϕ k-1 ) pm 2 -dx ⎞ ⎠ 2 p dt ⎞ ⎟ ⎠ Note that ϕ -1 k-1 ≡ c -1 k-1 ≥ 1 on B r k-1
so we can add it freely at the end of the computation. Finally, let us apply (4.32) one more time, but between t 1 = T k-1 and t 2 = 0 and with the truncation ϕ k-1 . We then get:

ˆ0 T k-1 ⎛ ⎝ ˆBr k-1 (u -c k-1 ) pm 2 -dx ⎞ ⎠ 2 p dt ≲ V k-1 + C k ˆ0 T k-1 ˆBr k-2 I {u(t,x)<ϕ k-1 } dxdt. (4.48) 
Roughly speaking, if we discard the measure term, the avor of this recurrence equation

is V k ≤ C k V 1-θ k-1 V k-1 .
However, as there is no hope to control I {u(t,x)<ϕ k-1 } by (uϕ k-1 ) -, we have to consider the recurrence equation as a system. For this purpose, let us dene 

N k = ˆ0 T k-1 ˆBr k-1 I {u(t,x)<ϕ k } dxdt. ( 4 
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ V k ≤ C k N k N k ≤ C k V 1-θ k-1 (V k-1 + N k-1 ). (4.50) 
From this system, we can infer that N k ≤ Ck N 2-θ k-1 . Provided that N 1 is small enough, we will then get, as in the proof of Lemma 4.32, that N k → 0 super-exponentially fast as k → ∞ (namely N k ≤ Ck (C ′ N 1 ) σ k with σ = 2θ > 1 so σ k ≫ k, and C ′ N 1 < 1) and therefore V k → 0 too.

Let us check that N 1 is indeed small enough. As ϕ 1 ≤ ϕ 0 = so it can be made arbitrary small for a proper choice of δ. This achieves the proof of the De Giorgi lemma about increasing the inmum.

the end of Section 4 of [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF]. For the convenience of the reader, we will sketch how the end of the argument goes.

We dene for λ < 1 2,

c 0 = 1 2 , c 1 = 1 - λ 2 , c 2 = 1 - λ 2 2 .
We x ρ ∈ (0, 1 8) and we consider Step 1: Using the energy estimate we rst prove in this step that For the last inequality, we followed [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF]- [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF] and used (4.53).

E ′ + (t) ≤ C + λ 2 and
Step 2: We construct a set of early times for which the energy is small. More precisely, in order to do this, we consider Σ 0 = {t ∈ (-2, 0) ∶ {u(t, .) < c 0 } ∩ B 1 ≥ ρ B 1 4}.

and we prove next that Σ 0 ∩ (-2, -1) ≥ ρ 2 , Step 3: We now consider the following set of early times for which the energy is small and we prove that it has a positive measure, Σ0 = {t ∈ Σ 0 ∩ (- 

D ∩ Σ 0 C 2 λ 2 δ 2 ≤ ˆD∩Σ 0 E(t)dt ≤ C 1 λ 3 ρ ≤ C D δ 2 × C 2 λ 2 δ 2 ≤ D 2 C 2 λ 2 δ 2 ,
as soon as

0 < λ ≤ C 2 C D ρδ 2 4C 1 .
(4.62)

Step 6: We will pick up an intermediate set in D ∖ Σ0 with nontrivial measure. Precisely, for t ∈ (-2, 0) ∖ ( Σ0 ∪ Σ 2 ), we have (recall δ ≤ 1 2 and ρ ≤ 1

2 )

B 1 = {u(t) < c 0 } ∩ B 1 + {u(t) > c 2 } ∩ B 1 + {c 0 < u(t) < c 2 } ∩ B 1 ≤ ρ 2 B 1 + δ 2 B 1 + {c 0 < u(t) < c 2 } ∩ B 1 ≤ 1 2 B 1 + {c 0 < u(t) < c 2 } ∩ B 1 .
Proof. The key of the proof consists in applying Lemma 4.41 to a sequence of functions until all the space-time available for the intermediary values is spend. From then on, we will know that u is mostly low-valued on the late times, i.e. on (-1, 0] × B 1 . The rst De Giorgi Lemma 4.32 will then be applied with a high threshold and will reduce the maximum, but only on late times compared to its domain of application. This step is thus responsible for a small but necessary time-gap between the assumptions and the conclusion and we can only improve the maximum on (-1 2, 0] × B 1 2 . The rst steps consists in checking the assumptions of Lemma 4.41 on a sequence of pushed down and rescaled versions of u.

Choice of constants. First, we take the values of λ < 1 2 and γ given in Lemma 4.41.

Next, we consider

j 0 = ⌈ (-2, 0] × B 1 γ ⌉ .
Finally, we take the value δ given by Lemma 4.32 when applied to µ = 1λ 2j 0 +2 . Claim 1. Our rst claim is that the functions dened for 1 ≤ j ≤ j 0 by

u j (t, x) = u(t, x) -(1 -λ 2 )(1 + λ 2 + λ 4 + . . . + λ 2j-2 ) λ 2j = u(t, x) -(1 -λ 2j ) λ 2j
satisfy the local energy estimates (4.31) with uniform constants. Let us observe that as j → ∞, one has λ 2j u j (t, x) → u(t, x) -1 ≤ 0 on B 2 1 0 so that u j may take some negatives values. Equivalently, the sequence is dened iteratively by u j+1 (t, x) = 1 λ 2 u j (t, x) -(1λ 2 ) , starting from u 1 (t, x) = λ -2 (u(t, x) -(1λ 2 )).

For any c j > 0, let us repeatedly apply our assumption We deduce from the previous inequality that u jc j = (uc) λ ¨Br×Br (u jc j ) + (x)(G((1λ 2j ) + λ 2j c j ) -G(u(y)))dxdy dt ≲ ˆBR (u j (t 1 , x)c j ) 2 + dx + C(Rr) -2 λ -4j {u j > c j } ∩ (t 1 , t 2 ) × B R As λ -1 > 1, we have λ -4j ≤ λ -4j 0 if j ≤ j 0 . We conclude that, as long as 1 ≤ j ≤ j 0 , all the functions u j satises the local energy estimates (4.31) with uniform constants. Moreover, c j > 0 can be arbitrary.

Claim 2. We also claim that the early low-values assumption of Lemma 4.41 does hold for u j . Indeed, as λ < 1 then for any µ < 1, the inequality u j (t, x) < µ implies u j+1 (t, x) < µ hence

{u j < 1 2} ∩ (-2, -1] × B 1 ≥ {u j < µ} ∩ (-2, -1] × B 1 ≥ {u < µ} ∩ (-2, -1] × B 1 ≥ ρ B 1 .
As µ ≤ 1 2, the early low-values assumption of Lemma 4.41 is satised.

Main

Step. Let us now reason by contradiction. We assume that for any j ∈ [1, j 0 ] one has {u j > 1λ 2 2} ∩ (-1, 0] × B 1 ≥ δ B 1 .

Then the Lemma 4.41 on intermediate values can be applied to u j and implies that {1 2 ≤ u j ≤ 1λ 2 2} ∩ (-2, 0] × B 1 ≥ γ (-2, 0] × B 1 .

Translating this for the function u, we get

1 - λ 2j 2 ≤ u ≤ 1 - λ 2j 2 - λ 2j+1 2 ∩ (-2, 0] × B 1 ≥ γ (-2, 0] × B 1 .
This implies in particular

1 - λ 2j 2 ≤ u ≤ 1 - λ 2j+2 2 ∩ (-2, 0] × B 1 ≥ γ (-2, 0] × B 1 .
But these intermediate level sets are disjoint and of positive measure so there can be only at most j 0 -1 of them in the space-time ball (-2, 0] × B 1 . The original assumption is false.

In particular, there exists j 1 ≤ j 0 such that

{u j 1 > 1 -λ 2 2} ∩ (-1, 0] × B 1 < δ B 1 .
which implies

{v n < (1 + 2µ n ) 3} ∩ (-2, -1] × B 2 ≥ 2δ n B 2 .
In this case, we can apply Lemma 4.44 with µ = (1 + 2µ n ) 3 and ρ = 2δ n and get that v n (t, x) ≤ µ * in (-1 2, 0] × B 1 2 .

The oscillation of v n has thus decreased to osc v n (-1 2,0]×B 1 2 ≤ µ * .

We then consider the function v n+1 (t, x) = v n (t τ, x κ) µ * with τ = (µ * ) m-1 κ α . Note that τ κ α < 1. Thanks to (4.16), we know that v n+1 is still a weak solution of (4.1) and that

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ v ≤ 1 in (-τ 2, 0] × B κ 2 , v ≤ ( x κ 0 -2)++1 µ * in (-τ, 0] × R N .
It is not dicult to check that for κ ≥ 2(1 + (µ * ) -1 ) 1 > 4, then

( x κ 0 -2) + + 1 µ * ≤ 1 + Ψ 0 (x) ouside B κ 2 .
By also choosing κ ≥ (4(µ * ) -(m-1) ) 1 α , we get τ ≥ 4 and therefore As explained in the introduction of this proof, the oscillation then decays algebraically when zooming-in and this fact achieves the proof of the main theorem. Again, they are also true when a = b. We can thus assume that a ≠ 0 and a ≠ b and consider θ = b a ∈ R + but with θ ≠ 1. We claim that the functions Moreover, one can check that f (θ) and g(θ) reach a global maximum when θ = 1 while h(θ) is maximal at θ = 0, i.e.:

Useful inequalities

f (θ) = (1 -θ m 2 ) 2 (1 -θ)(1 -θ m-1 ) , g(θ) = (1 -θ m+1 2 ) 2 (1 -θ 2 )(1 -θ m-
∀θ > 0, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 ≤ f (θ) ≤ f (1), 1 ≤ g(θ) ≤ g(1)
0 ≤ h(θ) ≤ h(0)

The lower values follow from the limits at 0 and +∞, once we know the variations of f, g, h. and has therefore the same sign as θ -1.

Similarly, one has f ′ (θ) =

(1-θ m 2 )(1-θ (m-2) 2 )F(θ) (1-θ) 2 (1-θ m-1 ) 2

with F(θ) = 1θ m-1 + (m -1)θ m 2 (1θ -1 ) which (based on a quick study of F ′ ) has the sign of (m -1)(2m)(θ -1). Therefore f ′ (θ) has the same sign as

(m -1)(2 -m)(θ -1)(1 -θ m 2 )(1 -θ (m-2) 2 )
which, for m > 1 is positive on (0, 1) and negative on (1, +∞).

In the same spirit, one gets g ′ (θ) = 

  Dans cette thèse, nous travaillons sur deux problèmes dont chacun concerne une équation parabolique dégénérée non-locale. Dans le premier travail, nous montrons l'existence de solutions faibles d'une famille d'équations paraboliques dégénérées non-locales d'ordre supérieur. Dans le second travail, nous traitons la régularité de solutions faibles d'une équation des milieux poreux fractionnaire. Cette introduction est composée de deux parties représentant lchaque problème étudié. On y présente les résultats connus dans la littérature, on donne les résultats obtenus durant cette thèse et on ouvre quelques perspectives. 1.1 Equation des lms minces fractionnaire 1.1.1 Présentation du problème Dans cette partie on étudie le problème suivant

  ) où Ω = (a, b) est un intervalle borné dans R, n est un réel positif et I est un opérateur négatif elliptique non-local d'ordre α déni par I = -(-∆) α 2 avec des conditions de Neumann aux bords et avec α ∈ (0, 2).

β 2 - 1

 21 pour β ∈ (0, 2) et G(u) = u m-1 avec m > 1. Pour β = α + 2, m = 2 et N = 1 cetteéquation coïncide avec notre équation (3.1) pour n = 1. Ils montrent l'existence de solutions faibles de l'équation sous des conditions sur m suivant la valeur de α. Dans la deuxième partie de la thèse on étudie la régularité Hölder de ces solutions.

1. 1 . 3

 13 Résultats obtenus Dans la suite de cette section, Ω = (a, b) désigne un intervalle borné de R. Pour 0 < α ⩽ 1 des solutions faibles positives de (3.1) existent pour des conditions initiales positives sous des conditions convenables dites conditions d'entropie. Theorem 1.1 (Existence de solutions pour 0 < α ⩽ 1). Soit n ⩾ 1 et α ∈ (0, 1]. Pour toute condition initiale positive u 0 ∈ H α 2 (Ω) tel que ˆΩ G(u 0 )dx < ∞ (1.7) où G est une fonction positive tel que G ′′ (s) = 1 s n , il existe une fonction positive u ∈ L ∞ (0, T ; H α 2 (Ω)) ∩ L 2 (0, T ; H α 2 +1

u n- 2 2

 2 g ∈ L 2 (Q) dénie par g = ∂ x (u n 2 I(u)) -n 2 ∂ x uI(u) dans D ′ (Ω).Pour 1 < α < 2 des solutions faibles positives sont construites pour des conditions initiales positives dans H α 2 (Ω).

Theorem 1 . 2 (

 12 Existence de solutions pour 1 < α < 2). Soit n ⩾ 1 et α > 1. Pour toute condition initiale positive u 0 ∈ H α 2 (Ω), il existe une fonction positive

2 ¨Q+ 2 . 3 .

 223 u n (∂ x I(u)) 2 dx ≤ u 0 Notons qu'on obtient la formulation faible (3.7) après deux intégrations par parties. Dans le cas 0 < α ≤ 1, le terme ∂ x I(u) est de trop basse régularité donc on a besoin de la seconde intégration par parties pour que tous les termes non-linéaires dans (3.7) aient un sens. Au contraire lorsque α > 1, on a

) 2 (

 2 Cette convergence nous permet de passer à la limite dans le terme nonlinéaire contenant I(u ). Ce qui nous permet de construire des solutions faibles positives pour des conditions initiales positives dans H α 2 (Ω). D'abord on construit les solutions pour des conditions initiales positives dans H α 2 (Ω) avec une condition d'entropie, puis on montre que le régularité des solutions en espace implique une régularité en temps comme dans [10] ce qui nous permet de construire des solutions faibles positives sans condition d'entropie sur la condition initiale. On note qu'on utilise une représentation intégrale de l'opérateur I pour pouvoir passer à la limite dans le terme I(u ) en utilisant la convergence locale uniforme en temps et en espace. Le cas 0 < α < 1 est plus compliqué car on perd la convergence locale uniforme. Dans ce cas on utilise l'injection suivante H α Ω) ↪ L p (Ω) pour tout p ≤ 2 1α .

(1. 18 )

 18 Donc on obtient un résultat de compacité dans L p (Ω) seulement lorsque p ≤ 2 1-α . Mais en utilisant le lemme d'Aubin on arrive à un résultat de compacité pour u qui nous permet d'armer la compacité du terme nonlinéaire contenant I(u ) et passer à la limite. 1.1.5 Perspectives Comme l'équation des lms minces et l'équation des milieux poreux vérient toutes les deux les propriétés de vitesse nie de propagation et de temps d'attente, on s'attend à ce que notre équation en jouisse aussi. 1.2 Equation des milieux poreux fractionnaire 1.2.1 Présentation du problème Dans cette partie, on étudie le problème suivant

(1. 23 )

 23 où u ≥ 0 représente la densité du gaz et v la vitesse moyenne locale. Puis la loi de Darcy nous permet d'exprimer v en fonction de p la pression v = -∇p.

  Ils montrent l'existence et l'unicité de solutions faibles sous des conditions sur m. De plus ils étudient le comportement asymptotique des solutions et construisent des solutions auto-similaires. Indépendamment Caarelli, Chan et Vasseur [18] étudient la régularité Hölder des solutions dans le cas m = 1, mais dans un cadre plus général. Ils étudient la famille d'équations non locales paraboliques de la forme

  Cettedécomposition astucieuse est utilisée pour séparer les bons termes des autres termes à estimer.Récemment Allen, Caarelli et Vasseur ont étudié une équation sur R N avec un potentiel fractionnaire ainsi qu'une dérivée fractionnaire en temps[START_REF] Allen | Porous medium ow with both a fractional potential pressure and fractional time derivative[END_REF] 

(1. 37 )

 37 Puis on utilise le fait que G est une fonction localement lipschitizienne pour arriver à l'estimation convenable. Une fois que les estimées d'énergie sont vériées on démontre les lemmes de réduction d'oscillation qui sont nécessaires pour arriver à la régularité Hölder.On considère une solution positive et majorée par 1. D'abord on montre un lemme de réduction de l'oscillation par au dessus. Si u est presque partout en dessous de 1 2 dans un certain cylindre (disons (-4, 0) × B 4 ) alors u ne peut être très proche de 1 dans un cylindre plus petit (disons (-1, 0) × B 1 ). Puis on montre un lemme de réduction de l'oscillation par en dessous. Si u est presque partout au dessus de 1 2 dans un certain cylindre alors u est strictement positive dans un cylindre plus petit. Ces deux lemmes sont appelés les premiers lemmes de De Giorgi. Ces deux lemmes ne sont pas susants dans notre cas pour arriver au résultat. Donc on a besoin d'améliorer le lemme de réduction de l'oscillation par au dessus. Pour cela on montre un lemme des valeurs intermédiaires. Ce lemme dit que si u passe un certain temps plus petite qu'une certaine constante c 0 et un certain temps plus grande qu'une autre constante c 2 alors u doit passer du temps entre ces deux constantes.

Remark 2 . 2 (

 22 Scaling property). If u(x) is a solution of Lu = 0 so for any B ∈ R and C > 0 the function ū(y) = Bu(x + Cy) + D

L 2

 2 to L ∞ where the main ingredients of this step are the energy estimate derived from the equation and Sobolev's embedding theorem. Then we pass from L ∞ to C β where we need a lemma on intermediate values to prove a lemma on local decrease of the oscillation of the solution.

(3. 10 )Remark 3 . 2 . 2 (

 10322 The weak formulation (3.7) comes after two integrations by parts of the equation (3.2). We recall that the function G ∶ R + → R + is given by (3.5). Note that the space H s N (Ω) is dened via spectral decomposition of -(-∆) s see below). Theorem 3.3 (Existence of solutions for 1 < α < 2). Let n ⩾ 1 and α > 1. For any nonnegative initial condition u 0 ∈ H α 2 (Ω), there exists a nonnegative function

2 .

 2 operator I by important and very useful equalities. Proposition 3.7. 1. For all u ∈ H α 2 (Ω), we have -⟨I(u), u⟩ = u

(3. 22 )

 22 Once we get a solution for(3.22), we can prove the existence of a solution for (3.21).

(3. 26 )

 26 Remark 3.11. Note that we can consider G (s) = ´s1 ´t 1 G ′′ (r)drdt, so G is a non-negative convex function for all > 0 satisfying G (1) = G ′ (1) = 0.Proof. Thanks to Corollary 3.9, we can recover all test functions from H 1 (Ω) by considering ϕ = -I(v) + ˆΩ vdx for some function v ∈ H α+1 N (Ω). So equation (3.23) becomes -ˆΩ uI(v)dx + ˆΩ udx ˆΩ vdx + τ ˆΩ f (u)∂ x I(u)∂ x I(v)dx = -ˆΩ gI(v)dx + ˆΩ gdx ˆΩ vdx .(3.27) Now, we consider the nonlinear operator A dened by

6 )

 6 and we prove the existence of solutions as in Theorem 3.1. In the second step we use this information to prove the existence of solutions for nonnegative initial data which belongs to H α 2 (Ω).

α 2 (

 2 Ω) without the additional condition(3.6). If we dene u 0δ (x) = u 0 (x) + δ and denote u δ the nonnegative solution u constructed in the rst step for the initial data u 0δ , which satises (3.6), then u δ satises

Theorem 4 . 6 (

 46 Existence of weak solutions, from[START_REF] Biler | The nonlocal porous medium equation: Barenblatt proles and other weak solutions[END_REF] Theorem 2.6]). Let α ∈ (0,

(4. 13 )

 13 For any u 0 ∈ L 1 (R N ; R + ), the Cauchy problem (4.1)-(4.2) admits a weak solution u on (0, +∞) × R N . Moreover, ˆRN u(t, x)dx = ˆRN u 0 (x)dx

(4. 27 )

 27 Here in(4.27) we critically used the fact that m ≥ 2 and 1 + Ψ (x) ≤ (1 ∨ x ) . Another crucial observation that follows from m ≥ 2 is that G is convex ; one has thereforeD G (a, b) ≥ D G (a ′ , b) ≥ D G (a ′ , b ′ ) (4.28) as soon as 0 ≤ a ′ ≤ a and 0 < b ′ ≤ b.Lemma 4.16. For m ≥ 2, if at least one of the values u(x) or u(y) is larger than c > 0 then D G (u(t, x), u(t, y)) ≥ c m-2 .

(4. 29 )

 29 Proof. If u(x) ≥ c and u(y) ≥ c then D G (u(x), u(y)) = G ′ (z) for some z ∈ [u(x), u(y)] with an increasing function G ′ (z) = (m -1)z m-2 . One has therefore D G (u(x), u(y)) ≥ (m -1)c m-2 ≥ c m-2in that case. On the other hand, if u(x) ≥ c ≥ u(y) ≥ 0 then by convexity of G, the inequality (4.28) implies D G (u(x), u(y)) ≥ D G (0, c) = c m-2 .

Lemma 4 . 19 .

 419 For η such that η ≤ c 0 α,N 2c α,N Cϕ +, we have:

Lemma 4 .

 4 26. For < α-1 m-1 , we have

(4. 41 )

 41 So far, thanks to (4.37)-(4.40), we have established that for any k ≥ 1:

1+2µ 3 on B 2

 32 with compact support in B 3 . The critical properties of ϕ k are visible on the graph below.

1+2µ 3 on B 2 1 = ˆ0 - 2 ˆB2I {u<ϕ 1 }

 32121 , our assumption (4.44) allows us to writeN dxdt ≤ {u < (1 + 2µ) 3} ∩ (-2, 0) × B 2 < δ ⋅ (-2, 0) × B 2 .

E

  + (t) = ˆB1 (uc 1 ) 2 + (t, x)dx, G(t) = ¨B1 ×B 1 (uc 1 ) + (t, x)(G(c 1 ) -G(u(y))) + dxdy.The proof proceeds in several steps. During the proof, we will use freely that on B 2(uc 1 ) + ≤ λ 2 ⋅ I {u(x)>c 1 } .

ˆT2 T 1 G

 1 (t)dt ≤ C + λ 2 .

(4. 54 )

 54 for all -2 ≤ T 1 < T 2 < 0. For any c 0 ∈ (0, c 1 ), we can express our assumption (4.31) about the local energy estimate using its alternate form (4.33) and get that:d dt ˆB1 (uc 1 ) 2 + (t 2 , x)dx + (G(c 1 ) -G(c 0 )) ˆB1 ×B 1 (uc 1 ) + (x)I {u(y)<c 0 } dxdy ≲ C {u > c 1 } ∩ (t 1 , t 2 ) × B 3 2 ≲ Cλ 2 .

(4. 56 ) 1 ≤ ˆ- 1 - 2 {uB 1 .c 1 )

 5611211 As far as (4.55) is concerned, we remark that the assumptions of the lemma impliesρ B (t) < c 0 } ∩ B 1 dt ≤ ˆΣ0 ∩(-2,-1) {u(t) < c 0 } ∩ B 1 dt + ˆ(-2,-1)∖Σ 0 ρ 4 B 1 dt ≤ B 1 Σ 0 ∩ (-2, -1) + ρ 2In order to get (4.56), we rst remark that (4.54) yieldsCλ 2 ≥ (G(c 1 ) -G(c 0 )) ˆΣ0 ˆB1 ˆ{u(t,y)<c 0 }∩B 1 (uc 1 ) + (t, x)dxdydt Now we use G(c 1 ) -G(c 0 ) = 1 -+ (t, x)dxdt ≳ ρ λ ˆΣ0 ˆB1 (uc 1 )2 + (t, x)dxdt. using (4.53) again.

1 ˆBr (u -( 1 -

 11 (4.31) to the function u, with the cuto constantc = λ 2j c j + (1λ 2j ) > 1 4, radii 0 < r < R < 21 0 and start and stop times -2 < t 1 < t 2 < 0. Using (4.33) to express the good extra term, we get:ˆBr (u -(1λ 2j )λ 2j c j ) 2 + (t 2 , x)dx + ˆt2 t λ 2j )λ 2j c j ) p + (x)dx

  ) -(1λ 2j )λ 2j c j + G((1λ 2j ) + λ 2j c j ) -G(u(y)) + dxdy dt ≲ ˆBR (u(t 1 , x) -(1λ 2j )λ 2j c j ) 2 + dx + C(Rr) -2 {u -(1λ 2j ) > λ 2j c j } ∩ (t 1 , t 2 ) × B R .

0

  ≤ v n+1 (t, x) ≤ 1 + Ψ 0 (x) on (-2, 0] × R N .This concludes the treatment of the alternative case (4.67).Conclusion. In both cases(4.65)-(4.67), we have reduced the oscillation of u by at least a universal factorω 0 = 1 2 ∧ µ * < 1and proposed a universal rescaling process that brings us back to the initial situation (4.64).

Lemma 4 . 46 . 2 - 2 -b m+1 2

 446222 The following inequalities are valid for any m > 1∀a, b ≥ 0, (ab)(a m-1b m-1 ) ≥ b 2 )(a m-1b m-1 ) ≥ ∀a, b ≥ c > 0, (ab) 2 ≤ c -(m-1) (a m+1 ) 2 .

(4. 70 )Remark 4 . 47 . 2 -b m 2 2 ( 4 . 71 )(a 2 - 2 -b m+1 2 2 ( 4 . 72 )

 7044722471222472 The following proof also shows that converse inequalities to (4.68)-(4.69) are also true:(ab)(a m-1b m-1 ) ≤ a m b 2 )(a m-1b m-1 ) ≤ a m+1for any a, b ≥ 0.Proof. When a = 0, all inequalities are obvious, at least once we observe that m 2 -4(m -1) = (m -2) 2 ≥ 0 and (m + 1) 2 -8(m -1) = (m -3) 2 ≥ 0.

2 are continuous through θ = 1 2 -b m+1 2 ) 2 g 2 L 1 )

 212221 and satisfy f L ∞ (R+) ≤ m 2 4(m-1) , g L ∞ (R+) ≤ (m+1) 2 8(m-1) and h L ∞ (R+) ≤ 1. The inequalities (4.68)-(4.69) then follows from (1θ)(1θ m-1 ) > 0 and (1θ 2 )(1θ m-1 ) > 0 while (4.70) comes from (ab) 2 = a 2 g(θ) 2 (1θ m+1 2 ) 2 ≤ a -(m-1) (a m+1 ∞and the nal restriction a ≥ c.To back up our claim, let us briey study the functions f , g and h. The continuity around θ = 1 comes from a simple Taylor expansion:f (θ) = m 2 4(m -1) -m 2 (m -2) 2 192(m -1) (θ -1) 2 + O[(θ -1) 3 ] g(θ) = (m + 1) 2 8(m -1) -(m + 1) 2 (m -3) 2 384(m -1) (θ -1) 2 + O[(θ -1) 3 ] + O[(θ -1) 2 ].

For 2 - 2 + 2 2 -2

 2222 example, for any θ > 0, one hash ′ (θ) = -(m -1)θm+1 is a positive functions that vanishes only for θ = 1.Indeed, we can rewrite it as a balance of two signed terms(m -1)θ m+1 (m -1)(θ -1) θ + m + 1 2

θ 2

 2 (1-θ 2 ) 2 (1-θ m-1 ) 2 for some auxiliary function G(θ) ≥ 0 and thus g ′ (θ) has the same sign as 1θ m+1

  et les fonctions u 0 et f sont positives. Ils montrent l'existence de solutions faibles positives pour une condition initiale u 0 dans C 2 et une fonction f qui décroît exponentiellement à l'inni. Le résultat principal de leur article est la régularité Hölder de ces solutions. Ils montrent le résultat en utilisant la même approche de De Giorgi.

	En ce qui concerne une variante de l'équation des milieux poreux fractionnaire (1.19)
	Biler, Imbert et Karch [16] étudient le problème de Cauchy suivant

  De plus, ils prouvent que si la donnée initiale u 0 est positive alors la solution u l'est aussi. Dans ce cas l'équation (4.9)

coïncide avec la notre

(1.19)

. Pour construire ces solutions ils passent par un problème régularisé. Dans notre preuve on va aussi utiliser des solutions approchées pour montrer qu'il existe des solutions faibles qui vérient des estimées d'énergie. Dans un autre article

[START_REF] Imbert | Finite speed of propagation for a non-local porous medium equation[END_REF] 

C. Imbert montre que ces solutions ont une vitesse nie de propagation sous des conditions sur m.

1.2.3 Résultats obtenus

On montre la régularité Hölder d'une solution faible de

(1.19)

. Theorem 1.5 (Régularité Hölder). Soit 0 < α < 2 et m > 3. Il existe une solution faible nontriviale bornée de (1.19) u ≥ 0 dénie dans (-1, 0) × R N tel que u est Hölder continue dans

  Le cas α ∈ (1, 2) est le cas le plus simple car on ne rencontre pas des intégrales divergentes. Dans le cas α ∈ (0, 1] une intégrale utilisée dans les estimations diverge, donc on utilise des transformations géométriques inspirées de[START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF][START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow with exponent 1/2. Algebra i Analiz[END_REF]. Ces transformations font apparaître un terme qui permet de contrôler le terme divergent.La nouveauté trouvée en faisant les estimations est qu'on perd la linéarité de u dans la forme bilinéaire (1.32), c'est à dire qu'un terme G(u) remplace u. La décomposition qu'on utilise alors est la suivante, dans l'esprit de(1.33) 

).

(1.36) 

On montre les inégalités d'énergie pour les solutions approchées régulières puis on passe à la limite pour arriver aux estimées vériées par une solution faible. Pour prouver ces inégalités on distingue les cas α ∈ (1, 2), α ∈ (0, 1) et α = 1.

  Ils montrent l'existence de solutions faibles pour des conditions initiales positives bornées à support compact. De plus ils étudient la vitesse de propagation des solutions suivant la valeur de m. Une question encore ouverte est la régularité Hölder des solutions de cette équation. L'étude de la régularité de l'équation (1.38) serait un prolongement naturel de notre travail.

  3.3.1 Stationary problemProposition 3.10. For all g ∈ H α 2 (Ω), there exists u ∈ H α+1 N (Ω) such that for all ϕ ∈ H 1 (Ω) we have ˆΩ uϕdxτ ˆΩ f (u)∂ x I(u)∂ x ϕdx = ˆΩ gϕdx.

			(3.23)
	Furthermore, u veries	
		ˆΩ u(x)dx = ˆΩ g(x)dx	(3.24)
	and	
	u 2 . H	α 2 (Ω)

  The rest of the proof ofTheorem 4.11 consists in controlling the terms in the right hand side of (4.26) by those two non-negativeterms plus C {(uϕ ± ) ± > 0} ∩ (t 1 , t 2 ) × R N . Proof ofTheorem 4.11. As far as E + is concerned, one has to combine (4.26) with the subsequent Lemmas 4.17, 4.18, 4.19, 4.20, 4.21, 4.22 and 4.23. As far as E -is concerned, one has to combine (4.26) with the subsequent Lemmas 4.17, 4.25 and 4.26. Given the range of admissible parameters (α, m) in Theorem 4.11, the critical value for 0 is 0

  The lower bound c > 1 4 in (4.31) is a direct inheritance from the restriction ϕ + > 1 4 in Theorem 4.11, which in turn was constrained by the range on which the L 2 norm is equivalent to the alternate energy functional (4.21). Remark 4.31. Note that the L p or L pm 2 control of (uc) ± in (4.31)-(4.32) are produced by the coercive term in (4.20). The good extra term appears as the third term on the left-hand side of (4.31). The good-extra term in (4.31), can be replaced for

	.32)
	Remark 4.29. In this proposition, p = 2N (N -α) is given by the Sobolev embedding
	(4.17).
	Remark 4.30.

  x)dx Remark 4.33. Thanks to Proposition 4.28, weak-solutions of (4.1) that satisfy the mild growth assumption (4.19) will automatically satisfy the rst two assumptions of Lemma 4.32.It is interesting to point-out that the PDE is not directly responsible for Lemma 4.32 and that only the local energy inequality matters. We do not require u to be nonnegative ; only (4.34) is necessary. Moreover, the good extra term in (4.31) is not required either.

	2
	p
	.

  2, -1) ∶ E + (t) ≤ C 2 2 δλ 2 }. C 2 to be chosen later and we prove that λ small enough. Let F denote Σ 0 ∖ Σ0 . Using (4.56) we can write We next construct a set of late times for which the energy is large. Precisely, C 2 = B 1 64. Estimate (4.58) is obtained as above from the assumption of the lemma. As far as (4.59) is concerned, we write for all t ∈ Σ 2 that In this step, we prove that the energy E + takes intermediate values between C 2 δλ 2 2 and C 2 δλ 2 often enough. Precisely, we consder D = {t ∈ (-2, 0); C 2 2 λ 2 δ ≤ E + (t) ≤ C 2 λ 2 δ} C D = C 2 (2C + ). We start with (4.60) by picking a time T 0 ∈ Σ0 where Σ0 (it has positive measure thanks to (4.57)) and T 2 ∈ Σ 2 ∩ (-1, 0) (it has positive measure thanks to (4.58)). Consider the truncature functionT (r) = max(min(r, C 2 δλ 2 ), C 2 δλ 2 2). that T ′ (r) = I {C 2 δλ 2 2≤r≤C 2 δλ 2 } . Then C 2 2 δλ 2 ≤ T ○ E(T 2 ) -T ○ E(T 0 )As far as (4.61) is concerned, we use the denition of σ 2 , (4.56) and (4.61) in order to get

	for λ ≤ 1 2 .			
	Step 5: and we prove that			
				D ≥ δC D	(4.60)
			D ∖ Σ 0 ≥	D 2	.	(4.61)
				Σ0 ≥	ρ 4	(4.57)
	F = ˆF dt ≤ Remark ≤ C 2 λ 2 δ 2 as soon as λ ≤ ˆT2 T 0 E ˆF E + (t)dt ≤ C 2 δρ 2 4C 1	2C 1 λ C 2 δρ	≤	ρ 2
	and we get (4.57) from (4.55).			
	Step 4: we consider			
	Σ 2 = {t ∈ (-2, 0); {u(t) > c 2 } ∩ B 1 ≥	δ 4	B 1 }
	and we prove that			
				Σ 2 ∩ (-1, 0) ≥	δ 2	(4.58)
	∀t ∈ Σ 2 ,	E + (t) ≥ C 2 δλ 2	(4.59)
		ˆB1		
	E + (t) =		(u -c 1 ) 2 + (t, x)dx
	≥ (c 2 -c 1 ) 2 B 1 ∩ {{u(t, x) > c 2 }
	≥	λ 2 (1 -λ) 2 δ B 1 16
	≥	B 1 64	δλ 2	

for for for with ′ (t)T ′ (E(t))dt ≤ C + λ 2 D where we used (4.31).

  2j satises the following local energy estimate ˆBr (u j (t 2 , x)c j ) 2

		ˆt2	+ dx +	ˆt2 t 1	ˆBr	+ dx (u j (t, x) -c j ) p	2 p	dt
	+	t 1					

1.1. Equation des films minces fractionnaire

(R)) norm of the solution. For the function G mentioned above, we can take
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 Chapter 4Regularity of solutions of a fractional porous medium equation Abstract This chapter is concerned with a porous medium equation whose pressure law is nonlinear and nonlocal. We prove that the weak solutions constructed by Biler 

Introduction

In this work, we study the regularity of nonnegative weak solutions of the following degenerate nonlinear nonlocal evolution equation

where G(u) = u m-1 with m ≥ 2. The equation is supplemented with an initial data u(0, x) = u 0 (x) (4.2) that we will assume to be both non-negative and integrable on R N .

For α ∈ (0, 2), the symbol ∇ α-1 denotes the integro-dierential operator ∇(-∆) 

Our main result is the Hölder regularity of weak solutions of (4.1). For short, let us 

weak solutions u of (4.1)-(4.2) are Hölder continuous at strictly positive times. More precisely, there is β ∈ (0, 1) depending only on N , m and α such that for all T 0 , T 1 > 0 with

where C only depends on N , m and α and T 0 .

Remark 4.3. Weak solutions have been constructed in [START_REF] Biler | The nonlocal porous medium equation: Barenblatt proles and other weak solutions[END_REF] under the assumptions of Theorem 4.2 and even also for some range of values of m < 2. For a precise statement, see Theorem 4.6 below. Our proof can probably be adapted to those small values of m, but it requires some modications and additional work.

Remark 4.4. The (linear) case m = 2 was treated in [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF][START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow with exponent 1/2. Algebra i Analiz[END_REF] not only for α ∈ (1, 2) but for any α ∈ (0, 2). We believe that the case α ∈ (0, 1] with a general m can probably be treated by adapting the subsequent proof with the ideas from [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF][START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow with exponent 1/2. Algebra i Analiz[END_REF], but it still requires additional work.

Remark 4.5. One could also study the regularity of unsigned weak solutions of the equation (4.9) below, which is the unsigned version of the equation (4.1). Since the subsequent proof is local, it is probably possible to extend our result in this direction. The constant C N,α,m is independent of p, t and u 0 .

The admissible pairs of (α, m) in Theorem 4.6 are illustrated on the following drawing.

However, in the rest of this paper, we restrict ourselves to the case m ≥ 2 and α ∈ (1, 2).

Scaling invariance of the equation. A characterization of the Hölder continuity. To prove the Hölder regularity we will use the following lemma which is part of the folklore: Lemma 4.9. Let u be a function dened in (-1, 0) × B 1 such that for any (t 0 , x 0 ) ∈ (-1 2, 0) × B 1 2 and any r ∈ (0, 1 2) we have osc u

We thus get the desired estimate (4.32).

First lemmas of De Giorgi

This section is devoted to the rst lemmas of De Giorgi. These lemmas are concerned with reducing the oscillation of the solution provided u spends most of the space-time Q = (-2, 0]×B 2 either on the upper side or on the lower side of the a-priori range [0, sup Q u].

Depending wether the maximum is lowered or the inmum is increased, we get two lemmas.

Let us dene some common notations that will be used in both proofs of Lemmas 4.36 and 4.32. For k ∈ N, let us dene

One thus has an increasing sequence of times

and a decreasing sequence of balls:

The idea is to apply recursively the local energy estimates from Proposition 4.28 with well chosen cuto values. The sequence of nested estimates then provides, for some c > 0, that ˆ(-

which either means, depending on each respective case, that sup

Lowering the maximum

Lemma 4.32 (Lowering the maximum). Let α ∈ (1, 2). For any µ ∈ (0, 1), there exists δ ∈ (0, 1) such that for any function u that satises the three assumptions:

1. u is locally bounded from above in the following way

2. the upper local energy-inequality (4.31) is satised,

Solving the recurrence equation, we get constants C > 1 and

In turn, this estimate also implies that U k → 0.

Using the last assumption (4.35) and the fact that c 1 > c 0 = 1+µ 2 , we get the nal control

which can be made arbitrary small for a proper choice of δ. Adjusting the value of δ

properly in (4.43), we get that

This achieves the proof of this rst De Giorgi lemma about lowering the maximum.

Increasing the inmum

Lemma 4.36 (Increasing the inmum). Let α ∈ (1, 2) and m ≥ 2. For any µ ∈ (0, 1), there exists δ > 0 such that for any function u that satises the three assumptions:

1. u ≥ 0 on R N , 2. the lower local energy-inequality (4.32) is satised (with the chosen value for m), Remark 4.38. The admissible values for δ form an interval (0, δ * ) where δ * is an in- creasing function of µ.

Remark 4.39. We have chosen to state (4.44) such that the cut-o value 1+2µ

3 ∈ (1 3, 1).

Subsequently, we will only use Lemma 4.36 in the nal proof of the main theorem, where we intend to use it with 1+2µ 3 ≥ 1 2 i.e. for µ ≥ 1 4.

Proof. We use the common denition for T k and r k from the beginning of 4.4. To apply (4.32), the key is to chose the sequence of cut-o functions ϕ -= ϕ k wisely. Following [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF],

we dene a decreasing sequence

Lemma on intermediate values

To prove the Hölder regularity of the weak solution, we need to improve Lemma 4.32 by

showing that a uniform reduction of the maximum in a smaller ball can be obtained not only if u is below 1/2 for most of the space-time domain (-2, 0] × B 2 but that it is also true under the milder assumption that it happens for only a few events (t, x) ∈ (- ) and δ ∈ (0, 1 2 ), there exist λ ∈ (0, 1 2 ) and γ ∈ (0, 1) such that for any function u that satises the following assumptions:

2. the upper local energy-inequality (4.31) is satised, 3. u takes some early low values in the sense that

4. u takes enough late high values in the sense that Remark 4.43. Subsequently, we will use this result with some δ = δ given by Lemma 4.32.

Proof. We will follow closely the proofs given in Section 4 of [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF] and in Section 9 of [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF].

As pointed out in [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF], the key point is to collect a super-linear control of the good extra term

for λ < 1 2 and with some ε > 1. In what follows (as in [START_REF] Caarelli | Regularity theory for parabolic nonlinear integral operators[END_REF], [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF]), we will have ε+1 = 2. Once this goal has been achieved, then the subsequent steps are a straightforward adaptation of Hence for all t ∈ (-2, 0) ∖ ( Σ0 ∪ Σ 2 ) we have

Hence the Lemma is proved with γ = C D δ 4 .

Lowering the maximum improved

We are now in a position to prove the improved oscillation reduction result from above.

We follow the argument given in Section 10 of [START_REF] Caarelli | Regularity of solutions of the fractional porous medium ow[END_REF]. The key will be a proper rescaling of the solution.

Lemma 4.44 (Lowering the maximum improved). Let α ∈ (1, 2). We take 0 from Theorem 4.11. For any µ ∈ (0, 1 2] and ρ ∈ (0, 1), there exists µ * ∈ (0, 1) such that for any function u that satises the following assumptions:

2. the upper local energy-inequality (4.31) is satised, 3. u takes some early low values in the sense that

Note that the value of µ * depends only on the dimension N , on γ, λ from Lemma 4.41, on ρ, µ and 0 .

Remark 4.45. Note that the major dierence with the rst De Giorgi Lemma 4.32 is that the value of ρ is now arbitrary, while before it was xed to ρ = 1δ. Also note that now, as we apply the Intermediate Values Lemma 4.41, the full length of (4.31) is required, i.e. the good extra term plays a crucial role. Lastly, their is a time-gap (from t = -1 to t = -1 2)

between the third assumption and the conclusion.

As µ = 1λ 2j 0 +2 , this translates back to u as

We want to apply the rst De Giorgi Lemma 4.32 to u with µ = 1λ 2j 0 +2 . However, (4.63) only states that u is mostly low valued at late times while Lemma 4.32 requires u to be mostly low valued for all times.

We thus consider ũ(t, x) = u(t 2 α , x 2) which satises

because 2 α > 2 (note that we use here again that α ≥ 1). Applying Lemma 4.32 to ũ, we get:

Proof of the main theorem

In this section, we use alternatively the Lemma of De Giorgi on increasing the inmum (Lemma 4.36) and the improved lemma about lowering the maximum (Lemma 4.44) in order to prove Theorem 4.2.

Proof of Theorem 4.2. We now consider a weak solution of (4.1)-(4.2) associated with an initial data

We know from [START_REF] Biler | The nonlocal porous medium equation: Barenblatt proles and other weak solutions[END_REF]Theorem 2.6] which we recalled here as Theorem 4.6, that this solution is globally bounded in [0, +∞)×R N , by a constant M which depends on u 0

To prove Theorem 4.2, we want to study its Hölder regularity on some interval [T 0 , T 1 ] with 0 < T 0 < T 1 .

We can translate the time interval and study the equation in (-2, 0] × R N . It is then sucient to prove that it is Hölder continuous at the point (t 0 , x 0 ) = (0, 0). Using the scale invariance, we can assume without loss of generality that M = 1 (by choosing A

where Ψ 0 is the mildly-growing function dened by (4.18).

In order to apply Lemma 4.9, we are going to prove that the oscillation of u around the point (t 0 , x 0 ) = (0, 0) decays algebraically on (-r, 0] × B r as r → 0. More precisely, we will show subsequently that if the solution u satises (4.64), then osc u 

and scaling parameters τ n , κ n ≥ 2 such that τ n κ α n ≤ 1. One can adjust the parameters such that all the v n satisfy (4.64). Note that the values of the pair (τ n , κ n ) can alternate between a few universal choices from one iteration to the next, but overall, it has no detrimental eect.

Iterating this construct gives a dyadic formulation of the assumption of Lemma 4.9, which can then ultimately be applied to u and provides the desired Hölder regularity.

Let us now explain the ne details of the process that reduces the oscillation of v n on (-1, 0] × B 1 . We consider an increasing sequence of thresholds

We take δ n to be the value of δ associated with µ = µ n by Lemma 4.36. We will successively distinguish two mutually exclusive cases.

• The rst possibility is that In this case, we can apply Lemma 4.36 with µ = µ n and get that u satises v n (t, x) ≥ µ n in (-1, 0] × B 1 .

The oscillation of v n has thus decreased from 1 on (-2, 0] × B 2 to osc v n

For the subsequent rescaling, we take