
HAL Id: tel-02066632
https://theses.hal.science/tel-02066632

Submitted on 13 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyse of real-time systems from scheduling perspective
Mounir Chadli

To cite this version:
Mounir Chadli. Analyse of real-time systems from scheduling perspective. Performance [cs.PF].
Université de Rennes, 2018. English. �NNT : 2018REN1S062�. �tel-02066632�

https://theses.hal.science/tel-02066632
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : (Informatique)

« Analyse des Systèmes Temps-Réel
de point de vue Ordonnancement »

Thèse présentée et soutenue à « Rennes », le « 21/11/2018 »
Unité de recherche : Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)

Par

« Mounir CHADLI »

Rapporteurs avant soutenance :

Tiziana Margaria Professeur à l’Université de Limerick
Cristina Seceleanu Professeur Associé à l’Université de Mälardalen

Composition du Jury :

Président : Olivier Barais Professeur à l’Université de Rennes1
Examinateurs : Kim Guldstrand Larsen Professeur à l’Université d’Aalborg

Saddek Bensalem Professeur à l’Université Grenoble Alpes (UGA)
Dir. de thèse : Axel Legay CR Inria Rennes Bretagne Atlantique

Remerciements

First of all, I have to thanks God who give me courage and faith that help me to �nish

this modest work.

I would like to thank my supervisor, Professor Axel Legay, for the patient guidance,

encouragement and advice he has provided throughout my time as his student. I have

been extremely lucky to have a supervisor who cared so much about my work, and who

responded to my questions and queries so promptly.

I would also like to thank all the members of TAMIS team who helped me in my work.

In particular I would like to thank Louis-Marie Traounouez, Thomas-Given Wilson and

Fabrizio Biondi for their trust and invaluable support.

I am very honored to thank the presence on my thesis jury and I would like to thank:

Mr. Olivier Barais, Professor at the University of Rennes, for the honor he gave me

by accepting to be the president of my thesis jury. I wish to assure him of my deep

appreciation for his interest in this work.

Mrs Cristina Secelenau, Associate Professor at Malardalen University in Sweden, for

the honor she gave me for her participation in my thesis jury as rapporteur of my work,

for the time spent reading this thesis, and for the suggestions and the judicious remarks

that she indicated to me.

Mrs Tiziana Margaria, Professor at the University of Limerick, for the honor she

gave me for her participation in my thesis jury as rapporteur for my work and for all the

interesting remarks she made me made.

Mr Kim Guldstrand Larsen, Professor at Aalborg University, for having accepted to

be part of the jury of this thesis. I thank him for the scienti�c advice he has given, and

for his immense help in carrying out this work.

Mr. Saddek Bensalem, Professor at Grenoble Alpes University, for his interest in

participating as a guest member of this jury.

On a more personal note, I warmly thank my wife Naima, for her continued support

and encouragement. I also want to thank the patience of my mother, my father and my

1

brother who have experienced all the ups and downs of my research.

Completing this work would have been all the more di�cult were it not for the support

and friendship provided by the other members of TAMIS team, and the IRISA laboratory

members in Rennes. I am indebted to them for their help. Those people, such as the

postgraduate students at MathSTIC doctoral school, who provided a much needed form

of escape from my studies, also deserve thanks for helping me keep things in perspective.

Résumé

De nos jours, les machines sont devenues une partie intégrante de notre vie quotidi-

enne, elles sont utilisées dans di�érents domaines comme les transports, l'industrie ou la

médecine. Ces machines sont contrôlées par des logiciels et des programmes très com-

plexes qui assurent la bonne exécution des taches a�ectées à ces machines. La plupart de

ces machines doit communiquer avec le monde extérieur pour accomplir leurs missions,

cette interaction exige que les systèmes qui contrôlent ces machines devraient avoir la

possibilités de recevoir des données extérieurs, les traiter et donner les réponses adéquates

dans le temps opportun. Ce type de systèmes est appelé Systèmes Temps Réel.

Les systèmes temps réel sont des systèmes de traitement d'information qui doivent

répondre aux entrées reçues de l'extérieur, en véri�ant des contraintes temporelles strictes

sur leur temps de réponse. Ces systèmes sont fréquemment utilisés dans des systèmes

critiques tels que les systèmes embarqués, ce qui exige un très haut niveau de sécurité.

Une des principales problématiques pour développer ces systèmes est de véri�er que ces

contraintes temporelles seront toujours véri�ées, quelques soient les entrées reçues. En

plus des contraintes de temps, d'autres contraintes peuvent être prises en considération,

comme la consommation d'énergie ou la sécurité des données.

Plusieurs méthodes de véri�cation ont été utilisées ces dernières années, comme la

révision attentive du code des programmes qui s'applique essentiellement sur les logiciels,

ou le test qui consiste à réaliser un prototype et puis appliquer di�érents tests pour véri�er

son exactitude. Cependant, avec la croissance de la complexité des logiciels embarqués,

ces méthodes ont atteint leur limitation. C'est pourquoi les recherches se concentrent

actuellement à développer de nouvelles méthodes et formalismes pour pouvoir véri�er

l'exactitude des systèmes les plus complexes.

Le principal travail de ce manuscrit porte sur le développement de techniques avancées

d'ordonnancement basées sur des modèles formels. Le but est d'analyser et de valider la

satisfaction d'un certain nombre de propriétés sur les systèmes temps réel, dont des pro-

priétés non temporelles telles que la consommation d'énergie ou la fuite d'informations.

L'ordonnancement est un processus de prise de décision utilisé dans de nombreux

domaines tels que la fabrication, l'industrie, la médecine et ainsi de suite. Il traite de

l'allocation des ressources aux tâches sur une période donnée, et son but est d'optimiser

un ou plusieurs objectifs.

Les ressources et les tâches peuvent prendre plusieurs formes di�érentes. Les ressources

peuvent être des machines dans un atelier, des pistes dans un aéroport, des unités de

traitement dans un environnement de calcul, et ainsi de suite. Les tâches peuvent être des

opérations dans un processus de production, l'atterrissage dans un aéroport, l'exécutions

de programmes informatiques, etc. Chaque tâche peut avoir un certain niveau de prior-

ité, un instant de début et une date d'échéance. Les objectifs peuvent également prendre

plusieurs formes di�érentes. Un objectif peut être la minimisation du temps d'achèvement

de la dernière tâche. Un autre peut être la minimisation du nombre de tâches accomplies

après leurs échéances respectives.

L'ordonnancement, en tant que processus décisionnel, joue un rôle important dans

la plupart des processus de fabrication et des systèmes de production ainsi que dans la

plupart des environnements de traitement de l'information. Dans les systèmes temps réel

l'ordonnancement consiste à plani�er de l'utilisation des ressources de calcul de façon à

satisfaire toutes les contraintes temporelles.

Les algorithmes classiques d'ordonnancement des systèmes temps réel se basent sur

la priorité des taches et leurs échéances respectives. La priorité de la tâche peut être une

valeur �xe donnée initialement, ce type d'algorithmes est dit Statique, ou peut être une

valeur variable calculer lors de l'exécution de l'ordonnancement, ce type d'algorithmes

est dit Dynamique.

Pour décrire des systèmes plus complexes les techniques basées sur des modèles

utilisent des modèles formels tels que les Systèmes de Transition et les Automates Tem-

porisés pour spéci�er le comportement logique du système et les contraintes temporelles.

Des extensions aux automates temporisés permettent également de spéci�er des mécan-

ismes d'ordonnancement ou des problèmes d'énergie.

Une première contribution de la thèse est de proposer un nouveau modèle stochastique

pour décrire des tâches dont le temps d'exécution n'est pas �xe, mais décrit par une

distribution de probabilités. Ce modèle peut être utilisé pour représenter des tâches

apériodiques dont leur déclenchement est dû à des événements extérieurs au système, et

leur temps d'exécution n'est pas �xe et dépend de l'ensemble des tâches qui constituent

le système.

Pour analyser ces modèles formels complexes on utilise des techniques de véri�cation

automatisée tel que le model-checking. Cette technique permet de véri�er la satisfaction

de propriétés décrites en utilisant une logique formelle. Elle consiste à explorer toutes les

exécutions possibles du modèle et véri�er la satisfaction de la propriété étudiée à chaque

exécution.

Une alternative est la technique de model-checking statistique (SMC) qui traite un

échantillon de l'ensemble de scénarios des exécutions possibles pour quanti�er la prob-

abilité de satisfaction d'une propriété donnée. Cette méthode est utilisée pour gérer le

problème d'explosion d'état, c'est-à-dire le nombre d'états nécessaires pour modéliser

le système avec précision, qui peut facilement dépasser l'espace mémoire disponible sur

l'ordinateur.

En�n cette thèse propose d'utiliser un langage de haut niveau pour avoir une de-

scription graphique simpli�ée des modèles formels. Cette représentation graphique est

transformée automatiquement en un ensemble de modèles formels, puis les di�érentes

propriétés peuvent être véri�ées sur ces modèles en utilisant l'outil de véri�cation Up-

paal. Les résultats de la véri�cation formelle sont analysés et les informations les plus

pertinentes sont a�chées graphiquement sur le modèle graphique.

Cette thèse étudie trois catégories de problèmes d'ordonnancement dans les sys-

tèmes temps réel. Le premier modèle analyse des systèmes d'ordonnancements hiérar-

chiques (HSS). Les HSS sont des systèmes d'ordonnancement complexes avec plusieurs

algorithmes d'ordonnancement. Nous construisons tout d'abord une banque de mod-

èles formels générique à l'aide d'automates temporisés. Ces modèles sont utilisés pour

représenter le comportement des di�érents composants du système étudié. Nous util-

isons en particulier le modèle de tâches temps réel stochastiques implémenté à l'aide

d'automates temporisés probabilistes (PTA). Cette banque de modèles est utilisée pour

construire des HSS complexes.

Pour modéliser les HSS on utilise un langage de haut niveau spéci�que implémenté

avec l'outil Cinco. Cinco est un générateur d'outils de modélisation. Il permet de spéci�er

les fonctionnalités d'une interface graphique dans un langage de méta-modèle compact,

et il génère automatiquement à partir de ce méta-modèle un outil d'analyse spéci�que

au domaine avec une interface graphique.

A l'intérieur de cet outil d'analyse, nous pouvons dé�nir les spéci�cations d'un HSS

et les propriétés qu'il doit satisfaire. Nous pouvons ensuite lancer l'analyse des pro-

priétés. Cela génère automatiquement les modèles d'automates temporisés en utilisant

les composants de notre banque de modèles. Les outils Uppaal et Uppaal SMC sont en-

suite utilisés pour e�ectuer l'analyse. Cette approche permet de masquer complètement

les modèles formels utilisés par le concepteur du système qui peut se concentrer sur la

structure et les paramètres du HSS.

Pour illustrer les travaux réalisés pour résoudre ce premier problème, nous présen-

terons les résultats de nos expériences réalisées sur un cas d'étude qui consiste en un

système de contrôle d'un aéronef. Ces expériences qui consistent à véri�er la possibil-

ité dâ��ordonnancement des tâches du système étudié de façon hiérarchique, du plus

bas niveau vers le haut. Le but �nal est de calculer le budget minimal nécessaire pour

l'ordonnancement du système global.

Le deuxième problème d'ordonnancement étudié analyse la consommation d'énergie

sur une plate-forme multiprocesseur. En e�et beaucoup de CPS évoluent dans des en-

vironnements restreints avec une quantité limitée d'énergie. Le dé� principal de ce type

de systèmes est de s'assurer qu'ils puissent accomplir leurs missions uniquement avec la

quantité d'énergie initialement allouée.

Pour formaliser les systèmes d'ordonnancement multiprocesseurs avec ressources én-

ergétiques, nous étendons les modèles formels précédents avec des informations sur la

consommation d'énergie. Après cela, en utilisant Cinco, nous donnons une représenta-

tion graphique au modèle formel. Ce modèle est constitué de deux couches. La première

couche modélise la plate-forme matérielle avec un système d'ordonnancement composé

de tâches temps réel et de CPUs. La deuxième couche modélise l'application qui est

composée d'un ensemble d'actions.

Une des contributions de la thèse est de proposer une nouvelle technique d'optimisation

pour les ordonnanceurs multiprocesseurs. Cette technique détermine les mappages opti-

maux des tâches aux processeurs a�n de minimiser la consommation d'énergie du système

et/ou le temps de réponse en utilisant des tests statistiques (ANOVA et Tukey HSD).

Tout d'abord, nous déterminons tous les mappages possibles entre tâches et processeurs.

Ensuite en utilisant Uppaal SMC nous évaluons la consommation d'énergie moyenne et

le temps de réponse moyen de chaque mappage. En�n en utilisant les tests ANOVA et

Tukey HSD nous comparons les moyennes et classons les mappages selon leurs consom-

mation d'énergie et/ou temps de réponse.

Nous présentons aussi un algorithme statistique de détection de changement appelé

CUSUM. Le principe est de suivre l'évolution d'une mesure de probabilité à des intervalles

de temps successifs au cours d'une seule exécution du système. L'algorithme détecte

ensuite la position où la probabilité de satisfaire la propriété change de façon signi�cative.

Pour mieux expliquer notre approche pour le problème de consommation d'énergie,

nous proposons comme cas d'étude un système multiprocesseur se composant de deux

niveaux. Le premier niveau consiste à un ensemble de composants qui comporte une

série d'action à accomplir. Le deuxième niveau comporte un nombre de processeurs

sur lesquels les tâches vont être exécutées. Chaque tâche est destinée à exécuter un ou

plusieurs composants du système étudié. Les résultats des expériences réalisés sur ce

modèle et leurs synthèses sont présentés en �n du Chapitre 5.

Le dernier problème étudie les fuites d'informations lorsque des processus avec dif-

férents niveaux de sécurité se partagent l'espace mémoire lors de leurs exécutions. Typ-

iquement cela inclut le chargement d'informations con�dentielles, telles que les clés de

chi�rement, les données médicales et les coordonnées bancaires, pour les utiliser dans des

processus de haute sécurité. Ces informations con�dentielles doivent être étroitement

contrôlée et ne pas être divulgué à des processus de faible niveau sécurité.

Dans cette thèse nous proposons de traiter la con�dentialité, mesurée par le résultat

de fuite d'informations sécurisées, en tant que ressource quantitative que l'ordonnanceur

peut exploiter. Ce qui permet une meilleure quanti�cation de la fuite qui en résulte

dans di�érents scénarios, ainsi que d'avoir une mesure claire du coût des di�érents

choix d'ordonnancement. En outre, cela permet la création de plani�cateurs qui peu-

vent faire de meilleurs choix de programmation et aussi respecter les contraintes de fuite

d'informations con�dentielles.

Nous présentons pour cela un nouveau modèle qui considère que les tâches doivent être

composées d'étapes, chacune d'entre elles à un temps d'exécution, une valeur de fuite

d'information et un niveau de sécurité. Chacune de ces étapes est implicitement une

séquence atomique d'actions qui peuvent être prises dans une tâche sans interruption par

le plani�cateur. Ainsi, une tâche consiste en une séquence ordonnée d'étapes à e�ectuer,

qui donne le comportement total de la tâche.

Nous présentons aussi dans ce manuscrit une nouvelle approche pour résoudre le

problème de fuite de l'information. Cette approche consiste à appliquer une procédure

combinent des Pré-processus qui intervient sur un ensemble initial de tâches pour produire

un nouveau ensemble de tâche. Les Post-processus interviennent sur la trace résultante

de l'application d'un algorithme d'ordonnancement classique sur l'ensemble de tâche à

plani�er. Pour cela, on a proposé un ensemble d'algorithmes pour les deux phases de

notre procédure a�n de trouver la bonne combinaison pour réduire la fuite d'information.

Pour mieux illustrer notre approche, on a présenté les résultats des expériences qu'on a

réalisées en �n du Chapitre 6.

Abstract

Softwares become an important part of our daily life as they are now used in many

heterogeneous devices in our daily life. These devices are dotted with a number of

embedded systems that run in real-time , which means that they must react to external

events. These systems are used in most domains of life, even the critical ones. That is

why the safety of these systems is very important, and can be primordial.

The correctness of Real-Time Systems does not depend only on the correctness of

their treatment results, but it also depends on the timings at which these results are

given. There exist many methods that can be used to analyze the correctness of these

kind of systems, but with the increasing of their complexity, the necessity to �nd new

methods become an urgent requirement.

Today, a well-used class of veri�cation methods are model-based techniques. These

techniques describe the behavior of the system under consideration using mathematical

formalisms, then using appropriate methods they give the possibility to evaluate the

correctness of the system with respect to a set of properties.

In this manuscript we focus on using model-based techniques to develop new advanced

scheduling techniques in order to analyze and validate the satis�ability of a number of

properties on real-time systems. The main idea is to exploit scheduling theory to propose

these new techniques. To do that, we propose a number of new models in order to

verify the satis�ability of a number of properties as schedulability, energy consumption

or information leakage.

Our �rst model treats the Hierarchical Scheduling problem, it consists in analyzing a

number of properties as scheduling and response time of complex real-time systems in a

tree manner. To do that, we propose a new model based on Stochastic Times Automata

in order to represent complex behaviors of the real-time systems under consideration.

In a second time, we extend our �rst model in order to treat the energy consumption

problem. To do that, we implement two algorithms that exploit ANOVA method in order

to optimize the energy consumption of a multi-processor platform. Adding to that, we

propose an adaptation of the CUSUM algorithm to handle any relevant variation in the

probability of satisfying energy consumption properties.

Our last model uses the property studied, which is the information leakage, as a

scheduling resource. For that, we propose a new model that quanti�es the amount of

information leaked by the execution of secured process on the shared memory. Using this

information we propose a number of heuristic algorithms that provide new solution with

less amount of resulting leakage.

Finally, we illustrate our frameworks for each model presented previously by a case-

study and the results of our experiences.

Contents

Remerciements 1

Table of Contents 8

Introduction 13

1 Real-Time Scheduling 19

1.1 Introduction . 19

1.2 Analysis Techniques for Real-Time Systems 20

1.3 Tasks and Jobs . 21

1.4 Scheduling Algorithms . 23

1.5 Scheduling Properties . 26

2 Formal Models for Scheduling Real-Time Systems 29

2.1 Introduction . 29

2.2 Transition Systems . 30

2.2.1 De�nitions . 30

2.2.2 Paths and Traces . 32

2.3 Timed Automata . 33

2.3.1 Clocks and Clock Constraint . 33

2.3.2 Syntax and Semantics of Timed Automata 34

2.3.3 Parallel Composition of Timed Automata 37

2.4 Hybrid Time Automata . 38

2.4.1 Modeling Hybrid Automata in Uppaal 39

2.4.2 Stochastic Hybrid Automata . 41

2.5 Model-based Scheduling Approach . 43

2.5.1 Formal Models of Scheduling Components 45

2.5.2 Stochastic Scheduling Systems . 47

9

3 Model Checking, Statistical Model Checking and High Level Language 49

3.1 Introduction . 49

3.2 Temporal logics . 49

3.2.1 Linear Temporal Logic . 50

3.2.1.1 Syntax . 50

3.2.1.2 Semantics . 52

3.2.2 Computation Tree Logic . 53

3.2.2.1 Syntax . 54

3.2.2.2 Semantics . 55

3.3 Model Checking (MC) . 57

3.4 Statistical Model Checking (SMC) . 60

3.5 High Level Language: Cinco . 61

3.5.1 Domain-Speci�c Code Generator: CINCO 62

3.5.1.1 Meta-Modeling . 62

3.5.1.2 Domain Speci�c Tool . 65

3.5.2 Implementation of the Framework and Tool Chain 65

4 Hierarchical Scheduling Systems 69

4.1 Hierarchical Scheduling Systems . 69

4.2 Scheduling Problems . 71

4.3 Formal Model-based Compositional Framework for HSSs 72

4.3.1 Stochastic Task . 73

4.3.2 Stochastic Dispatcher . 75

4.3.3 Formal Analysis Model of Scheduling Unit 76

4.3.4 Resource Model . 77

4.4 Resolution of the Problems . 78

4.4.1 Checking Correctness and Evaluating Performances with MC and

SMC . 78

4.4.2 Optimization of a Hierarchical Scheduling System 79

4.5 High Level Framework . 80

4.5.1 High-Level Framework for Hierarchical Scheduling Systems 80

4.6 Experiments . 82

5 Energy Consumption For Multi-Processor Scheduling Systems 85

5.1 Introduction . 86

5.2 Formalisation . 87

5.3 Scheduling Problems . 88

5.4 Methods . 89

5.4.1 Checking Correctness and Evaluating Performances with MC and

SMC . 89

5.4.2 Optimization of a Multi-processor Scheduling System with ANOVA 90

5.4.3 Change Detection with CUSUM 95

5.5 High Level Framework . 97

5.5.1 High-Level Framework for Multi-Processor Scheduling Systems . . 97

5.5.2 Implementation of the Framework and Tool Chain 99

5.6 Experiments . 100

5.6.1 Example . 100

5.6.2 Checking Correctness and Evaluating Performances 101

5.6.3 Optimization with ANOVA . 102

5.6.4 Change Detection with CUSUM 103

6 Information Leakage 107

6.1 Introduction . 108

6.2 Related Work . 109

6.3 Model . 110

6.3.1 Concept . 111

6.3.2 Formal Model . 112

6.3.2.1 Steps, Tasks and Jobs . 112

6.3.2.2 Traces, Solutions, and Resulting Leakage 114

6.3.3 Illustrating Examples . 116

6.4 Problems . 118

6.5 Methods . 118

6.5.1 Preprocessing . 118

6.5.2 Postprocessing . 119

6.6 Experiments . 122

6.7 Discussion . 124

Conclusion 127

Bibliographie 139

Table des �gures 141

Introduction

Softwares became an important part of our daily life as they are now used in many

heterogeneous devices, such as our phones, our cars, our home appliances, etc. Modern

cars for example are dotted with a number of embedded softwares, each handling a speci�c

task, like braking, airbags or fuel injection. These embedded softwares are designed to

run inside larger systems with various and heterogeneous hardware and limited resources.

Communication systems, mobile phones, medical systems, transport are using a vast

amount of embedded software. The use of embedded softwares is motivated by the �ex-

ibility and the simplicity that these softwares can guarantee, and to minimize the cost.

These embedded softwares are designed to run in speci�c environments with limited re-

sources. This forces the developers to optimize the size, the cost, the power consumption,

the reliability and the performance.

Cyber-Physical System (CPS) are softwares used to control physical systems. CPS

are often embedded and run in real-time, which means that they must react to external

events. A complex CPS can contain many real-time systems. Then a major challenge is

to �nd an optimal policy to share system resources that guarantee the accomplishment

of the missions of the CPS. The fact that these systems can be used in critical domains

like medicine or transport requires a high level of safety for these systems.

Real-Time Systems by de�nition are processing information systems that have to re-

spond to externally generated inputs, and they are called real-time because their response

must respect strict timing constraints. Therefore, the correctness of these systems does

not depend only on the correctness of their treatment results, but it also depends on the

timings at which these results are given.

The main problem with using real-time systems is the di�culty to verify their timing

constraints. A way to verify timing constraints can be to use Scheduling theory which is a

strategy used in order to share the system resources between its di�erent components. In

addition to the timing constraints, other constraints should be taken into consideration,

like energy consumption or security.

13

Introduction

Several veri�cation methods have been used in the last years, but with the increasing

complexity of the embedded softwares these methods reach their limitation. That is why

researchers are now focusing their works on �nding new methods and formalisms capable

of verifying the correctness of the most complex systems.

Today, a well-used class of veri�cation methods are model-based techniques. These

techniques describe the behavior of the system under consideration using mathematical

formalisms, then using appropriate methods they give the possibility to evaluate the

correctness of the system with respect to a set of properties.

The main work in this manuscript is about using model-based techniques for develop-

ing new advanced scheduling techniques in order to analyze and validate the satis�ability

of a number of properties on real-time systems. The main idea is to exploit scheduling

theory to propose new techniques in order to analyze di�erent properties like energy

consumption or information leakage.

Thesis Structure The remainder of the manuscript is composed as follows:

Chapter 1 presents an introduction about scheduling real-time systems. Scheduling is

a decision-making process that is used in many domains such as manufacturing, industry,

medicine and so on. It deals with the allocation of resources to tasks over given time

periods and its goal is to optimize one or more objectives.

The resources and the tasks can take many di�erent forms. The resources may

be machines in a workshop, runways at an airport, processing units in a computing

environment, and so on. The tasks may be operations in a production process, take-o�s

and landings at an airport, executions of computer programs, and so on. Each task may

have a certain priority level, an earliest possible starting time and a due date.

The objectives can also take many di�erent forms. One objective may be the mini-

mization of the completion time of the last task and another may be the minimization

of the number of tasks completed after their respective due dates.

Scheduling, as a decision-making process, plays an important role in most manufac-

turing and production systems as well as in most information processing environments.

It is also important in transportation and distribution settings and in other types of

service industries.

We begin by presenting a number of techniques used for analyzing real-time systems.

Peer reviewing, testing, emulation or simulation are used as methods to verify the correct-

ness of real-time systems. Even if these methods proved their e�ciency before, on-going

technological advances make real-time systems become more and more complex and the

14

Introduction

methods presented before show their limitation to handle these kinds of systems.

Another kind of methods can be used to verify the correctness of complex real-time

systems, basing on the behavior of these systems a model is created and using appropriate

algorithms and techniques the correctness of the system can be checked. In this chapter,

we present general models that can be used in order to represent the behavior of the

system under consideration.

Finally, we present in this chapter di�erent types of real-time scheduling algorithms.

Scheduling algorithms are categorized according to the policy used to assign resources to

the di�erent processes that need to be executed.

Chapter 2 presents the models used to describe the behavior of real-time systems.

First, we de�ne transition systems which are oriented graphs that can be used to describe

the behavior of the system under consideration using locations to de�ne the di�erent

states of the system and edges to describe the transition from a state to another.

Second, we introduce timed automata for specifying timing constraints. Timed au-

tomata are an extension of transition systems with timing aspects called clocks. Clocks

are used to describe the timing constraints during the execution of real-time systems.

In particular clocks control the amount of time that the system can stay in each state,

and the timing constraints for a transition from a state to another. We also introduce

extensions of timed automata for specifying scheduling mechanisms or energy concerns.

In this chapter, we present our �rst contribution that consists of a new stochastic

model for stochastic tasks and a dispatcher in order to model the variation of execution

time with respect to the computation logic. This representation is very important in

order to model complex real-time systems behavior.

Finally, we present the model-based approach used in our work to specify scheduling

problems with the formal models previously introduced. We �rst give a view about

precedent works done in this �eld. Then we present the formal models of the components

of the scheduling systems analyzed in our work.

Chapter 3 presents the languages used to express correctness properties of RTS and

the techniques used to verify these properties. Temporal logics are formalisms used to ex-

press the timing constraints of the properties needed to be veri�ed with a mathematically

precise notation. Temporal logics express constraints over sequences of events.

After that, we present an automated veri�cation method called model checking (MC)

that we use to verify the satis�ability of properties described using the logic above on

a given model. This method proceeds by exploring all possible executions of the model

15

Introduction

in a brute-force manner and checks the satis�ability of the property under consideration

on each execution. The result will be positive, i.e. the model satis�es the property,

or negative, i.e. the model does not satisfy the property. If the result is negative, a

counter example will be given and analyzed to explain the violation of the property, and

to update the model or the system design to correct these problems. .

We also present an alternative to model checking called statistical model checking

(SMC) that reasons about average scenarios to quantify the probability of satisfying a

property. This method is used to handle the state explosion problem, i.e. the number of

states needed to model the system accurately may easily exceeds the amount of available

computer memory.

The last part of this chapter presents a high level language called Cinco that we

used in our work to have a graphical description of the models under consideration.

Cinco can be used to make a graphical representation of the models that describe the

di�erent components of the system. This graphical representation will be translated to

formal models and then the di�erent properties can be checked on these models using

the model-checking tool Uppaal. The results of the formal veri�cation can be parsed and

the most relevant information can be graphically displayed.

Chapter 4 presents our �rst model for analyzing Hierarchical Scheduling Systems

(HSS). HSS are complex scheduling systems with multiple scheduling algorithms. We

�rst introduce a new model-based compositional framework with stochastic real-time

tasks in a HSS. This framework is designed with timed automata and probabilistic timed

automata that constitute a model bank to describe HSS. In particular we introduce new

probabilistic timed automata (PTA) models to instantiate stochastic tasks where task

real-time attributes, such as deadline, execution time or period, are characterized by

probabilities. This allows to design generic models that cover more cases of CPS.

Then we encapsulate this formal framework into Cinco, a generator for domain-

speci�c modeling tools. Cinco allows to specify the features of a graphical interface in

a compact meta-model language, and it generates automatically from this meta-model

speci�cation a domain speci�c analysis tool with a graphical interface.

Inside this analysis tool we can design the speci�cations of a hierarchical scheduling

system and the properties it must satisfy. We can launch analysis of the properties,

which generates automatically the timed automata models using the components of our

model-bank, and it calls the tools Uppaal and Uppaal SMC to perform the analysis.

This approach allows to completely hide the formal models being used from the system

designer that can concentrate on the structure and the parameters of the hierarchical

16

Introduction

scheduling system. Finally, we illustrate our framework with a case-study and the results

of our experiences.

Chapter 5 presents our study of Energy Consumption of Multi-Processor Scheduling

Systems. Many CPS are mission critical systems, it means that these systems have a

speci�c mission to achieve with a limited amount of energy. Number of researches focused

on analyzing these systems by verifying that the system can accomplish its mission only

using its initial budget of energy.

To formalize multi-processor scheduling systems with energy resources, we extend

formal models presented in the precedent chapter with information about energy con-

sumption. After that, using Cinco we give a graphical representation of the formal model.

The graphical representation consists of two layers. The �rst layer, platform layer, mod-

els the hardware platform with a scheduling system composed of real-time tasks and

CPUs. The second layer, application layer, models the application that is composed of a

set of actions.

In this chapter we present a new optimization technique for multi-processor scheduling

system. It determines optimal mappings from tasks to processors in order to minimize the

energy consumption of the system and/or response time using statistical tests (ANOVA

and Tukey HSD). First, we determine all the possible schedulable mapping from tasks

to processors. Using Uppaal SMC we evaluate the energy consumption and the response

time of each schedulable mapping. After that, using statistical test ANOVA we deter-

mine if the means of the treatments are signi�cantly di�erent. If it is the case we use

Tukey HSD to compare the means of every treatment to the means of every other treat-

ment. Based on this comparison, we classify the precedent mapping according to their

energy consumption and/or response time. Finally, we choose the appropriate mapping

according to the property needed to be veri�ed.

In this chapter also, we present a statistical algorithm for change detection called

CUSUM. The principle is to monitor the evolution of a probability measure at successive

positions during a single execution of the system. The algorithm then detects the position

where the probability to satisfy the property changes signi�cantly.

Chapter 6 presents a new model that handles the information leakage when processes

with di�erent security levels shared memory during their execution. Information leakage

here means, the di�erent pieces of information that can be left by a high level security

process at di�erent moments of its execution. Typically, this includes loading con�dential

information, such as encryption keys, medical data, and bank details, into memory for

17

Introduction

use within high-security processes. These con�dential pieces of information may be vital

to the operation of the high-security processes, but must also be tightly controlled and

not be leaked to low-security processes.

In this chapter we propose to treat con�dentiality, measured by the resulting leakage

of secure information, as a quantitative resource that the scheduler can exploit. This

allows for a better quanti�cation of the resulting leakage in di�erent scenarios, as well

as having a clear measure of the cost of di�erent scheduling choices. Further, this allows

for the creation of schedulers that can make better scheduling choices and also respect

con�dential information leakage constraints.

In this chapter we present also a new model that considers tasks to be composed of

steps, each of which has an execution time, leakage value, and security level. Each one

of these steps is implicitly an atomic sequence of actions that can be taken within a task

without preemption by the scheduler. Thus a task consists of an ordered sequence of

steps to be performed, that yields the total behavior of the task.

18

Chapter 1

Real-Time Scheduling

In this chapter, we give a brief introduction about real-time systems scheduling theory.

Scheduling this kind of systems must take on account the timing constraints of these

systems. Generally speaking, scheduling these systems consists in �nding a schedule for

the processes of the system such that all the processes respect their timing constraints.

Solution will be considered true if all the processes respect their timing constraints. First,

we introduce the main techniques for analyzing real-time system. Second, we present the

main concepts of tasks and jobs used to design real-time scheduling systems. Finally, we

present some examples of scheduling algorithms and we list the properties that must be

satis�ed.

1.1 Introduction

Cyber Physical System (CPS) are software-implemented control systems that control

physical objects of the real world. The physical system observes the environment by

means of its sensors. The software receives the information from the sensors and sends

signals to actuators. The information sent by sensors can be periodic or irregular depend-

ing on the events happening in the environment. In all cases the system must react to

these demands, and there will be a time bound for the response that must be respected.

The software must be able to deal with the case where there is more than one treatment

to do and where each one of these treatments have a time constraints.

CPS have to schedule the computation between all the received requests in order to

satisfy each treatment to get response within its required time bound. The no respect

of the treatment time bound by the software can have di�erent consequences, in some

cases it can have no negative consequence, in other cases it can have a few negative

consequences that can be solved, but in other case it can have disastrous consequences.

19

Real-Time Scheduling

The correctness of these systems is not only based on the correctness of the results

given by the system, but on the time when those results are given too. That is why the

timing constraints are as important as the correctness of the results given.

In this chapter we present basics about the model formalizing of the CPS systems

used in our work. First we give a brief de�nition of the di�erent methods used to analyze

real-time systems, then we present the formalizing model used in our work. After that we

present the di�erent algorithms used to analyze scheduling problems. Finally, we present

the di�erent kinds of properties that can be analyzed on this model.

1.2 Analysis Techniques for Real-Time Systems

The criticality of the real-time systems requires e�cient analysis methodology to verify

the correctness of these systems. A number of existing techniques can be used to analyze

these systems. Peer reviewing and testing are the most used veri�cation techniques for

the software systems in practice. For hardware analysis there exists other techniques like

emulation or simulation.

Peer reviewing consists of the inspection of the software statically in order to �nd any

problem, this inspection is done before the compilation of the software by a neutral en-

gineer group, preferentially that has not been involved in the software development. The

testing technique gives test values to the compiled software and observes the treatment

results, basing on this observation weather the correctness of the system is satis�ed or

not.

The emulation technique is a kind of testing used to verify hardware systems, it

consists of con�guring the emulator to behave like the hardware under consideration and

in the same way as the testing technique, it gives test values to the emulator and compares

the generated output with the expected output to decide the correctness of the system

under consideration. Simulation consists in constructing a model for the hardware that

simulates this hardware. Simulation is like testing, but it is applied on a model. The

main limitation of this method is that simulation gives a possible scenarios to the system

execution, but the number of scenarios to be checked to get high con�dence about the

correctness of the system can be very high and cannot be accomplished by a simulator

in a reasonable way.

Formal techniques are very used to analyze complex real-time systems, the general

idea is to apply a number of mathematical techniques on aModel to verify the satis�ability

of a number of Properties. The model is an abstraction describing the real-time system,

it represents the behavior of the system respecting the time constraints. The properties

20

Real-Time Scheduling

can be results that the system must produce or speci�c behaviors of the system.

In the next section, we will present a general model to describe di�erent components

of real-time systems.

1.3 Tasks and Jobs

In this section we present a formalization of a real-time system. As we mentioned before,

real-time systems are such that the correctness do not depend only on the correctness

of the results, but also on the time when these results are given. A real-time system

is normally composed of a number of tasks, also called threads. Each task is designed

to accomplish a speci�c work. Each time the task recurs it is called a job. The job

is instantiated at a regular time or not depending on the task nature, the jobs are

periodically produced if the task is periodic. According to the system architecture the

Jobs are executed on one or di�erent processors, but at given instant a processor is able

to execute only one Job, processor here refers to a single core architecture.

We can divide the nature of the tasks on two categories, soft and hard tasks.

De�nition 1.1 (Soft tasks). We designate soft tasks those for which meeting their time

constraints is not necessary, this means it is acceptable that this category of tasks do not

�nish its work before its deadline.

De�nition 1.2 (Hard tasks). We designate hard tasks those for which meeting their time

constraints is mandatory, this means it is not acceptable that this category of tasks do

not �nish its work before its deadline. The no respect of their time constraints can have

disastrous consequences on the system.

The events happening in the environment in which the real-time system performs are

picked up by the system sensors. The system receives the information given by sensors

and a�ects each treatment to a speci�c task. The tasks can be periodic or aperiodic

depending on the nature of the treatment.

De�nition 1.3 (Periodic tasks). We call periodic tasks those where the task is repeated

after a �xed amount of time called Period P , they are called Time-triggered.

A simple example of real-time systems with periodic tasks, is the tra�c light system.

Each light is turned on for a �xed amount of time, that can be modeled as the execution

time E before it is turned o�. The amount of time between every two activations of the

light can be modeled as the period.

21

Real-Time Scheduling

De�nition 1.4 (Aperiodic tasks). We call aperiodic tasks those which have an irregular

arrival time, they are called Event-triggered.

A simple example of an aperiodic task is the air-bag activation system, if there is

a collision the sensor sends the signal to the system, the system takes the power of the

collision and evaluates the necessity to activate the air-bag or not, if yes the system sends

a signal to the actuator to activate the air-bag, all these treatments must be done with

a time constraint to guarantee the safety of the conductor.

It is a great di�culty to represent such aperiodic tasks. A solution is to model these

kinds of tasks using sporadic tasks.

De�nition 1.5 (Sporadic tasks). Sporadic tasks are such that their period can be modeled

using di�erent probability distributions in order to have a bound on the task arrival time.

Each task or job is characterized by the following parameters, the release time, exe-

cution time and the deadline.

Period P is the minimal amount of time between two consecutive jobs. For periodic

task, period P is a �xed value. For aperiodic tasks, period P cannot be de�ned because

their arrival time are irregular. For sporadic tasks, period P is a bound on the task

arrival time that can be modeled using di�erent probability distributions.

Release Time is the date at which a job is instantiated. If the job is instantiated

from periodic tasks, the release time R of the job is computed by the following formula:

R = (n− 1) ∗P , where n is the number of the job and P is the period of the task. If the

job is instantiated from aperiodic task, the release time R of the job cannot be predicted

because the release time of the task is irregular.

Execution time E is the time needed by each task or job to �nish its execution. We

can de�ne several types of execution time: best case execution time BE, is the minimum

time needed by the task or job to �nish its execution; worst case execution time WE, is

the maximum time needed by the task to �nish its execution.

Deadline D is the time at which the task or job must �nish its execution relative to

the release time, we call it relative deadline.

22

Real-Time Scheduling

1.4 Scheduling Algorithms

For a given set of jobs, the scheduling problem is to �nd an order for which all the jobs

are executed satisfying all their time constraints. Usually, each job is parametrized by its

release time R, its absolute deadline A, its execution time E and resource requirements.

Each job execution may or may not be interrupted (preemptivity). The order given by

the scheduler must be respected, it means that each job cannot be executed before the

complete execution of its predecessors.

We can distinguish two types of scheduling techniques, static techniques called o�-line

techniques and dynamic techniques called on-line techniques.

O�-line Scheduling Algorithms We designed an o�-line scheduling algorithms sys-

tems that have an entire knowledge about the set of jobs scheduled, the scheduler have

knowledge about each task, its release time, execution time and deadline before begin-

ning the execution. This type of algorithms is mostly used when the system contains

periodic tasks only.

On-line Scheduling Algorithms Contrary to the o�-line algorithms, the on-line al-

gorithms have a partial knowledge about the set of jobs scheduled, the scheduler receives

requests at any time and must answer these requests. This kind of algorithms is suited

to handle the scheduling of aperiodic tasks, because the aperiodic tasks produce jobs at

an irregular time. That is why the scheduler cannot have an entire knowledge about the

arrival time of the aperiodic tasks.

Scheduling algorithms can also be classi�ed according to the policy used for the

classi�cation of the ready jobs for execution. The jobs are classi�ed according to their

criticality, the most critical job must be executed in �rst and so on. This criticality can

be expressed using a priority value where the job with the highest priority value will be

executed �rst. The scheduling algorithms can be classi�ed into two classes �xed priority

and dynamic priority scheduling algorithms.

Fixed Priority Algorithms Fixed priority algorithms are those where the priorities

of the tasks do not change during the execution time. The priority of each task is �xed

at the design time according to the criticality of the task, and this priority will not be

a�ected during the execution.

A good example of the �xed priority algorithms is the Rate Monotonic Algorithm

(RM), this algorithm assigns the highest priority to the task with the smallest period P .

23

Real-Time Scheduling

Dynamic Priority Algorithms Dynamic priority algorithms are those where the

priorities of the tasks are calculated on the �y during the execution time of the system.

The scheduler calculates the priorities depending on the tasks parameters.

An example of the dynamic priority algorithm is the Earliest Deadline First (EDF).

EDF determines the priority of jobs according to their absolute deadline, at any given

point of time, out of the currently available jobs, the job with the earliest absolute

deadline is scheduled �rst.

In some cases, the real-time system requires that some speci�c tasks must be executed

in priority over the other tasks. For that, the scheduler can stop the execution of a lower

priority task in order to promote another high priority task. The interruption action

called preemption can be used by preemptive scheduling algorithms. Other algorithms

are non-preemptive scheduling algorithms.

Preemptive Scheduling Algorithms We call Preemptive Scheduling Algorithms those

accepting that a job in execution can be preempted (stopped) by another job with a higher

priority. The precedent job is returned to the ready queue in order to �nish its execution.

Non-Preemptive Scheduling Algorithms Contrary to the precedent kind of algo-

rithms, the non-preemptive ones do not accept that a running job can be preempted.

The running job keeps all the necessary resources until �nishing its execution even if

there is another job with a higher priority that needs to be executed.

The preemptivity of the scheduling algorithms depends on the nature of the job

and the priority of its execution, some jobs must be executed rapidly because of their

criticality. That is why these jobs must have a higher priority value. The priority of each

job can be �xed by the system constructor in advance, or can be calculated according to

the tasks attributes. Mixed systems are also possible, the system can accept preemptivity

but in the same time can guarantee for some jobs to be executed without be preempted.

Example Let consider the two periodic tasks T1(3, 3, 2) and T2(6, 6, 2), where T1 has

a period of 3 units time and must �nish its computation before 3 units time with an

execution time of 2 units time. T1 has a period of 6 units time and must �nish its

computation before 6 units time with an execution time of 2 units time. Let consider

that T1 has a higher priority than T2.

Figure 1.1 represents a possible execution of T1, T2 on a single processor platform

using a non-preemptive scheduling algorithm. Let consider that the release time of both

tasks is zero, the task T1 is executed �rst because its priority is higher. Task T1 �nishes

24

Real-Time Scheduling

Figure 1.1 � Example of scheduling two tasks using a non-preemptive Scheduling algo-
rithm

its execution after 2 time units. Then the task T2 begins its execution. A new job of task

T1 is instantiated at time 3, but at this moment the processor is not available because

the task T2 is running. Task T1 must wait until task T2 �nishes its execution. Even if

we know that T1 has a higher priority than T2, the non-preemptive algorithm protects

T2 from any interruption before �nishing its execution.

Figure 1.2 represents another possible execution of the precedent model using a pre-

emptive scheduling algorithm. Task T1 is executed �rst because its priority is higher.

Task T1 �nishes its execution after 2 time units. Then task T2 begins its execution.

A new job of task T1 is instantiated at time 3, this time the algorithm interrupts the

execution of the running job since a higher priority task needs to be executed. The

job instantiated by task T1 at time 3 will interrupt the execution of T2 in order to be

executed. Task T2 will resume its execution when T1 �nishes its execution.

Figure 1.2 � Preemptive Scheduling algorithm

25

Real-Time Scheduling

1.5 Scheduling Properties

The principal objective of analyzing real-time systems is to verify that these systems ac-

complish their designated work correctly while respecting time constraints. The correct-

ness of the results, and the time constraints are modeled as properties. These properties

can be classi�ed generally on two main classes, safety and liveness properties.

Safety Properties Safety Properties are those that declare that �something bad never

happens�. Generally, safety requirements means that the system does not have any

deadlock or any similar state that can crash the system.

Deadlock is considered as a safety property. We call deadlock the states where the

system cannot progress, like interminable loops or terminal states. In such systems

terminal states are undesirable and mostly represent a design error. A simple example

of deadlock scenario occurs when several components wait for the progress of the other

component.

A way to verify safety properties is to search using speci�c algorithms in the set of

states of the system about any undesirable state like state where the system do not �nish

its work but in the same time the system cannot progress any more. This search should

outputs a trace with a counter example leading to the deadlock problem.

Another important safety property is the schedulability property, this property con-

sists of verifying that each component of the system �nishes its treatment respecting its

time constraints.

Example An example of safety property, the mutual exclusion problem. A simple logical

representation of this problem is ¬(T0∧T1), it means that the Task T0 and Task T1 cannot

be in the critical section at the same time.

Liveness Properties Contrary to safety properties, liveness properties attest that

�something good will eventually happen�, safety properties are violated within a �nite

time, while liveness properties are violated in an in�nite time. For example the liveness

property in the mutual exclusion problem can be presented as follow:

� Each task must enter its critical section.

� Each task must enter its critical section each time it is needed.

� Each waiting task must enter its critical section in some time in the future.

26

Real-Time Scheduling

From what we see above, the fact that real-time systems are today used in many criti-

cal domains of our live, their correctness becomes a primordial necessity. Over the years,

many methods have been used to analyze the correctness of these kinds of systems. In

this thesis, we focus our work on model-based methods. These methods design a model

to describe the behavior of the real-time system under consideration, and apply di�erent

techniques to analyze the correctness of this system. The next chapter describes a well-

used model to describe this kind of systems.

The next chapter presents formal models used in our work to model, veri�es and

validates real-time systems.

27

Chapter 2

Formal Models for Scheduling

Real-Time Systems

This chapter introduces formal methods in order to model, verify and validate real-time

systems using discrete event models extended with time. This formal model gives us the

possibility to represent the behavior of complex systems with their timing constraints.

This representation can be exploited by formal methods in order to verify the satisfaction

of speci�c properties on the system under consideration. In this chapter we present the

transition system theory to represent the discrete behavior of the system. Then we add

timing constraints to represent real-time systems, and stochastic constraints to represent

systems with complex behaviors or real-time systems. To do that, we use the time

automata. Finally we present the model-based method that we use in our work, and we

present some models of scheduling components.

Key Contributions In this chapter we present new stochastic models for stochastic

tasks and dispatcher in order to model the variation of execution time with respect to

the computation logics. This representation is very important in order to model complex

real-time systems behavior.

2.1 Introduction

Today, formal methods became one of the most used techniques for analyzing real-time

systems. The possibility of analyzing complex systems make the use of this methods very

desirable in the design process of the real-time systems. During the last two decades, re-

search in formal methods has led to the development of some very promising veri�cation

29

Formal Models for Scheduling Real-Time Systems

techniques that facilitate the early detection of defects. These techniques are accompa-

nied by powerful software tools that can be used to automate various veri�cation steps.

Model-based veri�cation techniques are based on models describing the possible be-

havior of the system under consideration in a mathematically precise and unambiguous

manner. Such problems are usually only discovered at a much late stage of the design.

The system models are accompanied by algorithms that systematically explore all states

of the system model in order to detect any undesirable behavior.

This chapter �rst introduces transition systems, a standard class of models to repre-

sent systems under consideration. Di�erent aspects for modeling concurrent systems are

treated, ranging from the simple case, in which processes run completely autonomously

to more realistic settings, where processes communicate in some ways.

Then to model real-time systems we need a model that takes into account timing

aspects. For that we introduce timed automata. That is an extension of transition systems

with clocks to handle timing aspects. Finally, we present a model-based framework based

on timed automata to describe scheduling systems.

2.2 Transition Systems

2.2.1 De�nitions

Transition systems can be used to model the behavior of real-time systems. Transition

systems are oriented graphs containing nodes and edges. The nodes represent the state

(or location) of the system in a speci�c moment of its behavior. The edges represent the

transitions from a state to another state. As an example the state of the tra�c light is

the current color of the light and the edge is the switch from one color to another.

There exist di�erent types of transition systems. In our work we decide to use tran-

sition systems with action names on the edges and atomic propositions on the locations.

The action names on the edges describe communication mechanisms of the system pro-

cesses controlling the transition from one location to another. The atomic propositions

express di�erent characteristics of the system at this moment.

De�nition 2.1 (Transition System). A transition system is a tuple (Loc,Act, E, I, AP,L)

where

� Loc is a set of locations;

� Act is a set of action;

� E ∈ (S ×AP × S) is a transition relation;

30

Formal Models for Scheduling Real-Time Systems

� I, I ⊆ S is a set of initial states;

� AP is a set of atomic proposition;

� L : S → 2AP is a labelling function.

The transition system starts at some initial location l0, where l0 ∈ I, and progresses

according to its set of transitions E. The transition system moves from location l to

another l′ and executes an action α ∈ Act, which we write l α−→ l′. In case the location l

has more than one outgoing edge, it is important to precise that the next edge is chosen

in a non-deterministic manner. In the following we denote actions using Greek alphabet

(such as α or β).

Each location in the transition system contains one or more atomic proposition a ∈
AP . These propositions express some knowledge about the system at this state. The

atomic propositions will be denoted using letters from the beginning of the alphabet

(such as a, b, c ..). Examples of atomic propositions are "light is green" or "x equals 2".

The labeling function L relates a set of atomic propositions L(l) to a location l. The

labeling function stands for the atomic propositions a ∈ AP satis�ed by the location l.

Figure 2.1 � Light Switch Transition System TA

Example Let consider the example presented in Figure 2.1. It models a simple design

of a light switch with a transition system. The locations of the model are designed by

circles and the transitions are designed by labeled edges. The name of each location is

written inside the circle, the initial locations are those having an incoming edge without

a source.

The set of locations is Loc = {on, off} . The set of initial locations consist of a

single location I = {OFF}. The set of actions is Act = {Switch_on, Switch_off} The
action Switch_on moves the system from the initial location off to the location on,

31

Formal Models for Scheduling Real-Time Systems

and the action Switch_off moves the system from the location on to the location off .

Examples of transitions are:

off
Switch_on−−−−−−−→ on and on

Switch_off−−−−−−−−→ off

De�nition 2.2 (α_successors and α_predecessors). Let consider TS = {Loc,Act, E, I, AP}
a transition system. For l ∈ Loc and α ∈ Act, the set of α_successors of l is de�ned as

follow:

Post(l, α) = {l′ ∈ Loc | l α−→ l′}. To generalize we write Post(l) =
⋃

α∈Act
Post(l, α)

The set of α_predecessors is de�ned as follow:

Pre(l, α) = {l′ ∈ Loc | l′ α−→ l}. To generalize we write Pre(l) =
⋃

α∈Act
Pre(l, α)

Each location l′ in the α_successors (resp. α_predecessors) set is a direct successor

(resp. predecessor) of the location l.

De�nition 2.3 (Terminal Location). Terminal locations, also called blocking locations,

are locations without any outgoing transition. When a transition system reaches a ter-

minal location the system execution terminates.

It is important to precise that terminal locations are used to represent the ending of

the system running. In some type of systems, this kind of locations is undesirable.

2.2.2 Paths and Traces

Let consider TS = (Loc,Act, E, I, AP) a transition system, the executions (or paths) of

the transition system de�ne its possible behaviors.

De�nition 2.4 (Path Fragment). A sequence of locations, π = l0l1l2...ln (when the

sequence is �nite) or π = l0l1l2... (when the sequence is in�nite) is called:

� A path fragment if ∀i, li+1 ∈ Post(li), it means for each location li in the path the

next location li+1 is a direct successor of the state li.

� Initial path fragment if the sequence is a path fragment and the �rst location of the

sequence l0 is an initial location, i.e l0 ∈ I.

� Maximal path fragment if the sequence is a path fragment and the last location of

the sequence do not have a direct successor, i.e Post(ln) = ∅ or the sequence π is

in�nite.

32

Formal Models for Scheduling Real-Time Systems

De�nition 2.5 (Path). A sequence of locations is called a path if the sequence is an

initial and maximal path fragment.

As an example π = off on off on... is a path of the transition system describing the

behavior of the light switch example.

Let consider a transition system TS. Let Paths(TS) denote the set of all paths in TS.

De�nition 2.6 (Trace). Let TS be a transition system with no terminal locations, it

means that all its paths are in�nite. If π = l0l1l2... is an in�nite path, its trace is de�ned

as follow:

Trace(π) = L(l0)L(l1)L(l2)...

We denote by Traces(TS) the set of all traces of the transition system (TS), it is

de�ned by

Traces(TS) = {Trace(π), π ∈ Paths(TS)}

2.3 Timed Automata

In the precedent section, we have presented transition systems as a way to model the

behavior of real-time systems. But until now, we did not present how to model the

timing aspects of these systems, that is, information about residence time in a state or

the possibility of taking a transition within a timing interval. These information give us

the possibility to verify the satis�ability of the timing constraints of the real-time system

under consideration.

As a modeling formalism for real-time systems, the notion of timed automata has

been developed, an extension of transition systems with clock variables that measure the

elapse of time. This model includes means to impose constraints on the residence times

of states, and on the timing of actions.

2.3.1 Clocks and Clock Constraint

Timed automata are used to model the behavior of time-critical systems, time is a contin-

uous entity. That is why to express the timing information it uses real-valued variables

called clocks. All clocks in a system progress at the same rate. The only operations

possible on a clock are reading the value of the clock and resetting the clock to zero.

Intuitively, a clock represents the amount of time elapsed since the last reset of the clock.

33

Formal Models for Scheduling Real-Time Systems

In timed automata we reason about timing aspects in an abstract way as a sequencing

of events.

To express the variations of the clocks values, we use a valuation function v : C → R+

that assigns to each clock c ∈ C a non-negative value v(c). For an element t of R+ and

a subset x ⊆ C, the valuations v + t and v[x← 0] are de�ned as follow:

(v + t)(c) = v(c) + t for each clock c ∈ C

v[x← 0](c) =

0 if c ∈ x

v(c) otherwise

To express conditions over clocks, we use clock constraints. Clock constraints can

be used on location and transition. In the �rst case, it is called a location Invariant.

The location invariant represents the time allowed to the system to stay in this location.

When the invariant does not hold, the location must be left. In the second case, it is

called a Guard. A transition is available as long as the guard holds. When the guard

evaluates to false, the transition cannot be taken.

De�nition 2.7 (Clock Constraint). A clock constraint over a set of clocks C can be

written according to the following grammar:

g ::= c < k | c 6 k | c > k | c > k | g ∧ g

where k ∈ N, and c ∈ C. We denote CC(c) the set of clock constraints over the set C.

We write v � ϕ when valuation v satis�es the clock constraint ϕ.

Note that:

� A clock constraint can be written in an abbreviated mode, i.e. (c > k1) ∧ (c 6 k2)

can be written as c ∈ [k1, k2], where k1, k2 ∈ IN;

� Clock di�erence constraints as c1 − c2 > k can be added using a more complex

theory, in this work we focus on atomic clock constraints, without any di�erence.

2.3.2 Syntax and Semantics of Timed Automata

A timed automaton is a transition system extended with a �nite set of real-valued clock

variables and clock constraints.

34

Formal Models for Scheduling Real-Time Systems

De�nition 2.8 (Timed Automaton). A timed automaton is a tuple TA = (Loc,Act, C,E,

I, Inv,AP,L) where:

� Loc is a set of locations;

� Act = Acti] Acto] {%} is the set of actions, where Acti is a set of input actions,

Acto is a set of output actions and % is an internal action;

� C is a set of clocks;

� E ⊆ S × CC(C)×Act× 2C × S is a set of edges.

� I ⊆ S is a set of initial locations;

� Inv : S → CC(C) is a function assigning invariants to locations;

� AP is a set of atomic propositions;

� L is a set of labelling.

Edges are labeled with the tuple (g, α,D), where g ∈ CC(C) represents the guard

that must hold to enable the transition, α ∈ Act is an action and D ∈ 2C is the set of

clocks that must be reset to zero when the transition is taken. Intuitively, l
g:α,D−−−→ l′

means that the timed automaton can move from location l to location l′ when the guard

g holds. When moving from location l to location l′, each clock in the set D will be

reset to zero and the action α is carried out. The function Inv assigns to each location a

location invariant that indicates the amount of time that the timed automaton can stay

in the designated location.

To represent timed automaton we adopt the drawing conventions for transition sys-

tems. Invariants are indicated inside locations and are omitted when equal true. Edges

are labeled with the guards, the action, and the set of clocks to be reset. Empty sets

of clocks are often omitted. The same applies to clock constraints that are constantly

true. The reset of set D of clocks is sometimes indicated by reset(D). If the actions are

irrelevant, they are omitted.

Example Figure 2.2 describes a simple timed automaton with a single clock x and some

possible evolution of this clock through time. In Figure 2.2a, we can distinguish two

guards, the �rst guard x > 2 means that the system cannot move from location l0 to

location l1 before (2) time units, the second guard x 6 4 means that the system can

move from location l1 to location l0 if the clock x is less or equal to (4) time units. When

the system takes the transition from location l1 to location l0 the clock x is reset to zero.

35

Formal Models for Scheduling Real-Time Systems

(a)

(b)

y

yy

y

(c)

y

(d)

Figure 2.2 � Examples of timed automata with a single clock and one example of the
evolution of their clock over time.

Figure 2.2b describes the evolution of the clock x through time. The system do not

have any restriction about the time passed in each location, that is why if the system

stays in one of the two locations more than (4) time units, then the system cannot take

anymore the transition from location l1 to the location l0 due to the restriction on the

clock x.

In Figure 2.2c, we add two invariants, the �rst invariant y 6 3 in location l0 to ensure

that the system cannot stay more than (3) time units in location l0, the second invariant

y 6 4 means that the system must move from location l1 to location l0 before (4) time

units. These two invariants avoid that the system is blocked in any location.

Operational Semantics The semantics of a timed automaton are de�ned as a transi-

tion system where a state or con�guration consists of the current location and the current

values of clocks. There are two types of transitions between states. The automaton may

either delay for some time (a delay transition), or follow an enabled edge (an action

transition).

De�nition 2.9 (Operational Semantics). The semantics of a timed automaton is a tran-

sition system (also known as a timed transition system) where states are pairs (l, u), and

transitions are de�ned by the rules:

36

Formal Models for Scheduling Real-Time Systems

� 〈l, u〉 d−→ 〈l, u+ d〉 if u ∈ I(s) and (u+ d) ∈ I(l) for a non-negative real d ∈ R+;

� 〈l, u〉 a−→ 〈l′, u′〉 if l g:a,r−−−→ l′, u ∈ g, u′ = [r 7→ 0]u and u′ ∈ I(l′).

2.3.3 Parallel Composition of Timed Automata

A practical manner to model complex systems consists of using parallel composition of

timed automata. This makes it possible to model time-critical systems in a compositional

manner. We consider a parallel composition operator, denoted ‖.
Let consider the two following timed automata TA1 = (Loc1, Act1, C1, E1, I1, Inv1,

AP 1, L1) and TA2 = (Loc2, Act2, C2, E2, I2, Inv2, AP 2, L2), with Act10 ∩ Act20 = ∅. The
timed automaton TA = TA1 ‖ TA2 is a tuple TA = (Loc,Act, C,E, I, Inv,AP,L)

de�ned as follow:

� Loc = Loc1 × Loc2 is the set of locations;

� Act = Acti]Acto, where Acti = Act1i \Act2o ∪Act2i \Act1o and Acto = Act10 ∪Act2o is
the set of actions;

� C = C1] C2 is the set of clocks;

� I = I1 ∪ I2 is the set of initial locations;

� Inv(s1, s2) = Inv1(s1) ∧ Inv2(s2) is the set of invariants for the new location

(s1, s2);

� L(〈l1, l2〉) = L(l1) ∪ L(l2) is the set of labels

The set of the edges is de�ned as follow:

� If (l1, a, α1, c1, l′1) ∈ E1 with a ∈ Act1\Act2 then for each location

l2 ∈ Loc2((l1, l2), a, α1, c1, (l′1, l2)) ∈ E;

� If (l2, a, α2, c2, l′2) ∈ E2 with a ∈ Act2\Act1 then for each location

l1 ∈ Loc1((l1, l2), a, α2, c2, (l1, l′2)) ∈ E;

� If (l1, a, α1, c1, l′1) ∈ E1 and (l2, a, α2, c2, l′2) ∈ E2 with a ∈ Act1 ∩Act2

then ((l1, l2), a, α1 ∧ α2, c1 ∪ c2, (l′1, l′2)) ∈ E;

The location invariant of a composite location is simply the conjunction of the location

invariants of its components. For α ∈ Act, the guard of the synchronized transition is

de�ned by the conjunction of the guards of the transitions in the initial timed automata.

37

Formal Models for Scheduling Real-Time Systems

That implies that each action in Act can only be taken if it is true in both timed automata.

The clocks that are reset in the initial automata are all reset. The operator ‖ is associative
for a �xed set Act.

Example Parallel composition can be done by synchronizing inputs and outputs in a

broadcast manner. This means that when an TA executes one output, all those TA that

can receive it must be synchronized. We denote input actions with a channel name

followed by ? and output actions with the channel name followed by !.

2.4 Hybrid Time Automata

Hybrid automata [Hen00] are an extension of timed automata that extends the dynamic of

clocks with ordinary di�erential equations. Let X be a set of continuous variables. As for

clocks, a variable valuation is a function ν : X → R. We write RX for the set of valuations

over X. Valuations over X evolve according to delay functions F : R≥0 × RX → RX ,
where for a delay d and a valuation ν, F (d, ν) is a the new valuation. Delay functions

are assumed to be time additive (F (d1, F (d2, ν)) = F (d1 + d2, ν).

De�nition 2.10. A hybrid automaton (HA) is a tuple H = (Loc, I, C,Act, E, F, Inv).

� Loc is a �nite set of locations;

� I ∈ L is a set of initial locations;

� C is a �nite set of continuous variables.

� Act = Acti] Acto] {%} is a �nite set of actions partitioned into inputs (Acti),

outputs (Acto) or internal (labelled with %).

� E is a �nite set of edges of the form (l, g, a, φ, l′), where l and l′ are locations (resp.

the source and the destination), g is a predicate on RX (called the guard), a ∈ Act
is an action label, φ is a binary relation on RX that de�nes the clock updates.

� For each location l, F (l) is a delay function;

� Inv(l) is an invariant predicate.

The semantics of H are a transition system, whose states are pairs (l, ν) ∈ L × RX

with ν |= I(l), and whose transitions are either, delay transitions (l, ν)
d−→(l, ν ′) with

d ∈ R≥0 and ν ′ = F (l)(d, ν), or, discrete transitions (l, ν)
a−→(l′, ν ′) if there is an edge

(l, g, a, φ, l′) ∈ E, such that ν |= g and φ(ν, ν ′). An execution of H is an alternating

38

Formal Models for Scheduling Real-Time Systems

sequence of delay and discrete transitions. As timed automata, HA can be combined in

networks of HA via parallel composition.

The above de�nition deliberately left open the syntax for the delay functions F , the

guards g, the update predicates φ and the invariants I. Their concrete de�nition depends

on the class of hybrid automata that is considered.

Timed automata (TA) [AD94] is the most restrictive class of HA we use as presented

in Section. 2.3. This means that for any clock x ∈ X, the delay functions F (l) de�nes

an implicit rate x′ = 1.

Stopwatch automata (SWA) [CL00] extend TA by allowing to stop and resume

clocks. The rates of the variables are therefore either x′ = 1 (for running clocks) or

x′ = 0 (for stopped clocks).

Priced timed automata (PTA) [BFH+01, ALTP04] allow the continuous variables

to be either clocks as in TA, or cost-variables with a rate x′ = e, where e is an expression

that only depends on the discrete part of the current state. These cost-variables cannot

be used in guards, updates and invariants of the PTA, which implies that they cannot

a�ect the behavior of the model.

Hybrid automata (HA) is the most general case. It allows to use ordinary di�erential

equations to de�ne delay functions F and invariants I.

2.4.1 Modeling Hybrid Automata in Uppaal

Uppaal is one the most famous tools for modeling and analyzing timed automata and

their hybrid extensions. The tool has been developed for more than 20 years by a

collaboration between Uppsala University in Sweden and Aalborg University in Denmark.

It allows to design models that belong to one of the four classes of hybrid automata

presented previously. It additionally provides many syntactic constructions that help

the design of complex models. In the following of the thesis we will heavily use these

constructions for designing models of scheduling systems. We will succinctly explain

the syntax and semantics of our models, but we cannot present here the full syntax of

Uppaal models, and therefore we redirect the reader to the documentation of the tool (at

http://www.uppaal.org/) for a more precise description. Some of the main capabilities

o�ered by the tool are:

39

Formal Models for Scheduling Real-Time Systems

� Data variables. In addition to clocks, the tool allows to use data variables (in-

teger, �oat, arrays, and structures). They can be updated during transitions, and

tested in guards or invariants. Synchronization channels can also be de�ned in

arrays.

� Functions. The tool allows to write functions using a syntax similar to the C

language. They can be used in guards, invariants, and updates of variables. When

synchronizing transitions on a channel, the update functions of all the transitions

involved in the synchronization are performed.

� Templates automata. Hybrid automata can be de�ned as templates with input

parameters. This allows to instantiate several automata in a model using the same

template (for instance several tasks with di�erent parameters).

In this thesis we will show several examples of hybrid automata by using screen captures

from automata designed in Uppaal. In these �gures the transitions have guards in green,

synchronization actions in light blue (τ actions are omitted), updates in blue. Locations

have a name and an invariant (possibly with clock rates) in purple.

Example We present in Figure 2.3 four examples of the di�erent types of models. All

these models implement a simple real-time task with various functionalities, depending

on the type of model being used.

The model in Figure 2.3a implements a task with no preemption using a timed au-

tomata. It has a clock x to measure the length of the period and a clock y to measure

the execution time. It starts its execution when receiving the event schedule?. It sends

an event done! as soon as the clock y has reached the best case execution time (bcet) and

before reaching the worst case execution time (wcet). Otherwise it goes to the location

MissingDeadline with an internal transition when the clock exceeds the deadline. Finally it

returns to location JobDone to wait for the next execution round and it sends the signal

ready! to the scheduler.

The model in Figure 2.3b implements a preemptive task using a stopwatch automaton.

It re�nes the previous model with a stopwatch on clock y: the clock is stopped in location

Ready (denoted y'=0), otherwise it is assumed that its execution rate is 1. The task can

be preempted by the scheduler when it receives the signal not_schedule?, in which case it

returns to location Ready.

The model in Figure 2.3c additionally computes the energy consumed by the running

task using a priced timed automaton with a variable e to measure the energy. The energy

can only increase in location Executing at a rate given by the constant POWER.

40

Formal Models for Scheduling Real-Time Systems

Finally, the model in Figure 2.3d is additionally aware of the frequency FREQ at which

the processor is running. This frequency de�nes the rate at which the task executes by

setting y'==FREQ in the invariant of location Executing.

2.4.2 Stochastic Hybrid Automata

Hybrid automata (and their sub-classes) may be used with a stochastic semantics [DLL+11,

DDL+12] that re�nes all non-deterministic choices with probability distributions. This

impacts the choice of delay, output and next state. For each state s = (l, ν) of an HA H
we assume there exists the following probability distributions:

� the delay density function µs over delays in R≥0, that de�nes when the component

will perform an output,

� the output probability function λs, that assigns probabilities to each available out-

puts o ∈ Σo,

� the next-state density function ηas , that provides stochastic information on the next

state s′ = (l′, ν ′) ∈ RX given an action a.

Adding stochastic information Stochastic hybrid automata are analyzed with Up-

paal SMC. Without additional information the tool is also able to run classical TA, SWA,

PTA or HA with a stochastic semantics, that apply uniform distributions to delays in

states with bounded delay, to outputs and to next states. Additionally the user can

provide the rate of an exponential distribution for each location with unbounded delay,

and discrete probability distributions between di�erent outputs and the next states.

These distributions can be sampled from executions or simulations of the system, or

set as requirements from the speci�cations. For instance in avionics, display components

have a lower criticality. They can include sporadic tasks generated by user requests. In

that case, average user demand will be e�ciently modeled with a probability distribution.

Similarly, timing executions may vary due to the content being displayed and can be

measured from the system.

If analyzed with Uppaal model-checker, stochastic information from a stochastic hy-

brid automaton is discarded to consider only the underlying non-deterministic model.

Example Stochastic hybrid automata with discrete probability distributions are useful

to initialize the parameters of a model with random values, e.g., to specify that the period

or the deadline of a task depends on some random information. They can be designed

41

Formal Models for Scheduling Real-Time Systems

(a) Timed automata

(b) Stopwatch automata

(c) Priced timed automata

(d) Hybrid automata

Figure 2.3 � Implementations of a simple real-time task with timed, stopwatch, priced
and hybrid automata

42

Formal Models for Scheduling Real-Time Systems

in Uppaal using a special node with one incoming transition (possibly with guard), and

several outgoing transitions (displayed with dashed lines) that perform di�erent updates

and reach di�erent locations, each associated to a probability weight (the probability of

the transition is then the ratio of the probability weight over the sum of all the weights).

For instance, the simple automaton in Figure 2.4 allows to select two values for the

period of the task: 10 with probability 2/3 or 15 with probability 1/3. In what follows,

we will call this automaton a dispatcher.

Figure 2.4 � Stochastic dispatcher implemented with a stochastic TA

In a network of stochastic HA the components repeatedly race against each other,

i.e. they independently and stochastically decide on their own how much to delay before

outputting, the �winner� being the component that chooses the minimum delay.

2.5 Model-based Scheduling Approach

Analytical scheduling methods determine if a set of tasks are schedulable by a given

scheduling algorithm, using a scheduling test that is a function on the parameters of

the tasks. Though e�ective, these techniques are limited to speci�c classes of schedul-

ing policies and systems. An alternative is to use model-based approaches, with formal

models of the components of a scheduling system (tasks, scheduler), and formal tech-

niques such as model-checking and statistical model-checking. A recent series of papers

[DLLM12, BDK+13, BDK+15a, KLT+16a] show that model-based approaches, imple-

mented with timed automata and their extensions, are �exible enough to embed various

types of scheduling policies, that go beyond those in the scope of analytical tools.

Model-based approaches also enable to use stochastic tasks whose real-time attributes,

such as deadline, execution time or period, are characterized by probability distributions.

This is particularly useful to describe mixed-critical systems and to make assumptions

on the hardware domains. These systems combine hard real-time periodic tasks, with

soft real-time sporadic tasks. Analytical scheduling techniques can only reason about

worst-case analysis of these systems, and therefore always return pessimistic results.

Using stochastic veri�cation techniques like SMC we can instead analyze the system in

43

Formal Models for Scheduling Real-Time Systems

an average scenario and provide more accurate measures.

Analytical Methods for Analysis of Sporadic Tasks Sporadic tasks were �rst

introduced in [BMR90, Mok83] as an extension of the Liu and Layland [LL73] task model.

The authors in [BMR90] proposed an exact schedulability analysis by providing some

necessary and su�cient conditions for a sporadic task system.

In [ZKG+08], the authors propose a framework for the schedulability analysis of real-

time systems, where they de�ne a generalized model for sporadic tasks to more precisely

characterizes the task arrival times. Each task is characterized by two constraints: higher

instantaneous arrival rate, which bounds the maximum number of task arrivals during

some small time interval; lower average arrival rate, which is used to specify the maxi-

mum number of arrivals over some longer time interval. The work of [MCG13] considers

systems with probabilistic execution times and probabilistic inter-arrival times. However

it does not handle dynamic scheduling policies. Moreover, the method is a numerical

analysis technique whose complexity is exponential in proportion to the number of sam-

ples and tasks. In [TDP12], the authors propose a method to control the preemptive

behavior of real-time sporadic task systems by the use of CPU frequency scaling. They

introduced a new sporadic task model in which the task arrival may deviate, according

to a discrete time probability distribution, from the minimum inter-arrival time. Based

on the probability of arrivals, the authors propose an on-line algorithm computing CPU

frequencies that guarantee non-preemptiveness of task behavior while preserving system

schedulability.

Model-based Analysis of Stochastic Sporadic Tasks In the context of model-

based analysis, the authors in [CBF+11] present a symmetric multi-core framework where

a �at scheduling system can be described in the Prelude language. The schedulability

can be checked using generated Uppaal models.

The authors in [MEP07] formally characterize stochastic tasks for various platforms

and presents a model-based analysis technique to check the schedulability of the tasks.

The main idea is to compute the probability distribution of a task termination time by a

convolution of the probability density functions of the task starting time and execution

time. However, it is restricted to non-preemptive stochastic tasks, and the analysis

complexity is also exponential.

Using the statistical model checking technique in Uppaal, the work in [BDK+14]

proposes a way of estimating the "degree of schedulability" of sporadic tasks and also

presents the Uppaal models used to implement the concepts as well as an avionics case-

44

Formal Models for Scheduling Real-Time Systems

Figure 2.5 � SWA model of a stochastic task

study.

The analysis technique of our work is based on extending the models of Timed Au-

tomata (TA) and Stopwatch Automata (SWA) in [BDK+13, BDK+15a], to present a model

of hierarchical scheduling systems, based on the stochastic sporadic tasks of [BDK+15b]

but with dynamic stochastic updates of real-time attributes. In this thesis, we reuse

these models and extend them to de�ne stochastic tasks.

2.5.1 Formal Models of Scheduling Components

The formal models of our scheduling systems are inspired by [BDK+13, BDK+15a].

Tasks Tasks are implemented with a SWA shown in Figure. 4.4. From the Init location,

a �rst job is initialized with real-time attributes obtained from the function setTaskAt-

tribute(...). This job is queued for execution at location DlyPOo�set. There it requests

the scheduler to assign a CPU, which is granted by a synchronisation on the channel

req_sched[tstat[tid].pid], and reaches location Executing. Its execution can be stopped and

resumed according to the availability of the CPU resource. This is implemented by a

stopwatch clock t_et[tid]. The clock progresses only when the CPU is available, that

is when the function isSchedSuped(...) returns 1. Finally, the job exits from location

Executing when it has completed its execution time. This releases the CPU resource

45

Formal Models for Scheduling Real-Time Systems

(a) EDF (b) FP

Figure 2.6 � SWA models of schedulers

Figure 2.7 � PTA of the stochastic dispatcher

using function deque_tid(...). The SWA waits the end of the minimal inter-arrival time

(WaitEndofMINIntv) and then instantiates a new job.

Scheduler The scheduler SWA implements the scheduling policy. We use two types

of scheduling policy: earliest deadline �rst (EDF), implemented with the SWA in Fig-

ure. 2.6a, and �xed priority (FP), implemented with the SWA in Figure. 2.6b. These

schedulers synchronize with the task model on the channel req_sched.

46

Formal Models for Scheduling Real-Time Systems

2.5.2 Stochastic Scheduling Systems

In [CKL+16] we have extended these models to use stochastic tasks whose real-time

attributes (period, delay, execution time) depend on probability distributions, and are

dynamically chosen by a stochastic dispatcher. This stochastic feature is of interest to

model the variation of execution time with respect to the computation logic and the

capability of the execution environments (CPU, memory, I/O and caches, etc). Such

real values can be obtained by sampling the execution times from the real world system.

Observe that other tasks parameters such as the deadline and the period are determined

according to the timing requirements of the functionality implemented by a set of tasks.

For instance, some video decoder and encoder would update the deadline and period of

tasks according to the frequency of input streams. For those reasons, they can also be

represented by probability distributions.

In a stochastic task the stochastic attributes are determined by a stochastic dispatcher

at each new instantiation of a job (when calling the functions setTaskAttribute and setJo-

bAtt). The stochastic dispatcher is implemented with a stochastic timed automata using

discrete probabilistic choices. Figure. 2.7 presents an example of a dispatcher that con-

�gures the three attributes with probabilistic choices between �ve values.

47

Chapter 3

Model Checking, Statistical Model

Checking and High Level Language

In this chapter, we present model checking MC and statistical model checking SMC as

formal methods that we used in our work to analyze real-time systems. We �rst introduce

the formal language used for the properties speci�cation. Then we present the principals

of MC and SMC. Finally we present high level languages that allow to embed these formal

speci�cations into a user friendly graphical interface.

3.1 Introduction

The formal models de�ned in the previous chapter can be used to perform automatic

veri�cations. For that, They must be accompanied by a speci�cation of the properties

of interest that need to be veri�ed. This chapter introduces some important, though

relatively simple, classes of properties. These properties are based on temporal logic

to express requests about sequences of events. We present the syntax and semantics of

this logic. Next, we present formal methods model checking (MC) and statistical model

checking (SMC) to verify properties on a given model. Finally, we present a high level

language called Cinco used to produce a graphical representation of the model and the

properties under consideration.

3.2 Temporal logics

To express the timing constraints an appropriate formalism must be used. Here the

timing constraints are de�ned as a sequence of events and not as a quantitative values.

49

Model Checking, Statistical Model Checking and High Level Language

Temporal logic is a formalism used to express the timing aspects of the property that

needs to be veri�ed with a mathematically precise notation. Temporal logic considers

time in one of the two following manners. The �rst one is in linear way, which means

that at each state of execution the system has a unique possible future state. The second

manner is to consider time in a branching way, which means that at each state of the

execution of the model the system can have more than one possible future. The second

one considers the structure of time as a tree.

3.2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) reasons in linear way about time. At each moment in time

LTL considers that there is only one possible future of the system. Formulas of LTL are

constructed from the set of atomic proposition AP of the transition system using the

usual boolean connectors (¬,∧) and the temporal operators (©,
⋃

), where © designs

the temporal operator Next and
⋃

designs the temporal operator Until.

3.2.1.1 Syntax

The LTL formulas over set of atomic proposition are constructed according the the fol-

lowing grammar:

ϕ = true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1
⋃
ϕ2

where a ∈ AP .
The © operator is a unary pre�x operator. ©ϕ holds if it holds in the next step.

The operator
⋃

is a binary one. Formula ϕ1
⋃
ϕ2 holds at the current state li if there is

some state lj in the future for which the formula ϕ2 holds and the formula ϕ1 holds at

all the states until lj .

The precedence order of the operators is given as follow. the unary operators are

stronger than the binary ones. ¬ and © are equal strong, the temporal operator
⋃

takes precedence over ∧,∨, and →. Operator
⋃

is right associative, ϕ1
⋃
ϕ2
⋃
ϕ3 means

ϕ1
⋃

(ϕ2
⋃
ϕ3).

From the negation and the conjunction we can de�ne the usual boolean connectors

as disjunction and implication as follow:

� ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2) (disjunction)

� ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 (implication).

50

Model Checking, Statistical Model Checking and High Level Language

Using the until operator, we can express the temporal modalities ♦ (eventually in

the future) and � (now and forever in the future) as following:

♦ϕ = true
⋃
ϕ �ϕ = ¬♦¬ϕ

Intuitively, ♦ϕ means that eventually in the future the property ϕ will be true. �ϕ

holds if and only if ¬ϕ do not holds eventually in the future.

Figure 3.1 � Examples of the satisfaction of simple temporal modalities over an execution
trace

New temporal modalities can be obtained by combining the two temporal modalities

♦ and �. For example, �♦a (always eventually a) means that at any moment i there

is a moment j, j > i at which the proposition a is true, it means that the proposition a

will be true in�nitely often. Another example is ♦�a (eventually forever) which means

that after some moment j only the proposition a will be true.

Figure 3.1 represents a graphical representation of given temporal modalities for a

simple case where the arguments of the modalities are atomic propositions {a, b}. In

the left side of the �gure, some LTL formulae are given, while in the right side their

corresponding graphical representation as an example of the satisfaction relation over an

execution trace.

Example Let consider two processes P1, P2. For each process we can de�ne three states.

A non critical section state non_criti, a wait state waiti, when the process is ready to

enter its critical section, and the critical section criti. The LTL formula to express the

requirement that the two processes can not enter their critical section simultaneously is:

51

Model Checking, Statistical Model Checking and High Level Language

�(¬crit1 ∨ ¬crit2)

This formula expresses that always (�) at least one of the two processes is not in its

critical section.

3.2.1.2 Semantics

LTL formula expresses properties on paths (or in fact their trace). This means that a path

can either satisfy an LTL formula or not. To precisely formulate when a path satis�es an

LTL formula, we proceed as follows. First, the semantics of LTL formula ϕ is de�ned as

a language Words(ϕ) that contains all in�nite words over the alphabet 2AP that satisfy

ϕ.

De�nition 3.1 (Semantics of LTL). Let consider an LTL formula ϕ over atomic propo-

sitions AP . The language accepted by ϕ is:

Words(ϕ) = {σ ∈ (2AP)w|σ � ϕ}

with σ = A0A1A2... ∈ (2AP)w, σ[j...] = AjAj+1Aj+2... is the su�x of σ starting in the

(j+1)st symbol Aj, and the satisfaction relation �⊆ (2AP)w×LTL is the smallest relation

with the properties:

� σ � true

� σ � a i� a ∈ A0 (i.e. A0 � a)

� σ � ϕ1 ∧ ϕ2 i� σ � ϕ1 and σ � ϕ2

� σ � ¬ϕ i� σ 2 ϕ

� σ �©ϕ i� σ[1...] = A1A2A3... � ϕ

� σ � ϕ1
⋃
ϕ2 i� ∃j > 0, σ[j...] � ϕ2, for all 0 6 i < j, σ[i...] � ϕ1

For the derived operators ♦ and � the satisfaction relation will be:

σ � ♦ϕ i� ∃j > 0, σ[j...] � ϕ

σ � �ϕ i� ∀j > 0, σ[j...] � ϕ

As a subsequent step, we determine the semantics of LTL formula with respect to a

transition system. The LTL formula ϕ holds in location l if all paths starting in l satisfy

ϕ. The transition system TS satis�es ϕ if TS satis�es Words(ϕ), i.e., if all initial paths

of Paths(TS) starting in an initial state l0 ∈ I satis�es ϕ.

52

Model Checking, Statistical Model Checking and High Level Language

De�nition 3.2 (Semantics of LTL over Paths and States). Let consider ϕ as an LTL

formula over atomic propositions AP , and let TS = (Loc,Act, E, I, AP,L) be a transition

system without any terminal location.

� For in�nite path fragment π of TS, the satisfaction relation is de�ned by:

π � ϕ i� Trace(π) � ϕ

� For location l ∈ Loc, the satisfaction relation is de�ned by:

l � ϕ i� ∀π ∈ Paths(l), π � ϕ

� TS satis�es ϕ, denoted by TS � ϕ, if Traces(TS) ⊆Words(ϕ)

3.2.2 Computation Tree Logic

In a transition system a location can have more than one direct successor, it means that

we can have di�erent paths starting from the same location. The satisfaction of an LTL

formula ϕ in a state requires that the LTL formula holds in the location l if all possible

computations starting in l satis�es ϕ.

In LTL, it is not simple to verify the existence of some paths starting at location l

that satis�es the property ϕ. For example, to verify if there exists some paths starting at

location l and that satis�es property ϕ, we can exploit the duality between universal and

existential quali�cations. We may check whether l � ¬ϕ; if this formula is not satis�ed,

then there must be some computations satisfying ϕ.

For more complicated properties, like "for every computation it is always possible to

return to the initial location", this is, however, not possible. A naive attempt would be to

require (�♦l0) to hold for every computation, where the location l0 uniquely identi�es

the initial state. This is, however, too strong as it requires a computation to always

return to the initial state, not just possibly. Other attempts to specify the intended

property also fail, and it turns out that the property cannot be speci�ed in LTL.

To overcome these problems, another kind of temporal logic can be used. Contrary

to LTL, Computation Tree Logic (CTL) reasons about time in a branching manner, i.e at

each state there can be several di�erent futures. Due to this branching notion of time,

this class of temporal logic is known as a branching temporal logic. The semantics of a

branching temporal logic is de�ned in terms of an in�nite, directed tree of states rather

than an in�nite sequence. Each traversal of the tree starting in its root represents a

53

Model Checking, Statistical Model Checking and High Level Language

single path. The tree itself thus represents all possible paths, and is directly obtained

from a transition system by "unfolding" at the state of interest.

The temporal operators in a branching temporal logic allow the expression of prop-

erties some or all paths that starts at location l. To that end, it supports an existential

path quanti�er (denoted ∃) and a universal path quanti�er (denoted ∀). For instance,

the property ∃♦ϕ denotes that there exists a path along which ♦ϕ holds. It means that

there is at least one possible path in which a state that satis�es ϕ is eventually reached.

The property ∀♦ϕ, in contrast, means that all paths satisfy the property ♦ϕ.

3.2.2.1 Syntax

CTL distinguishes between state formula and path formula. State formula expresses a

property of a state, while path formula expresses a property of a path, i.e. an in�nite

succession of states. The temporal operators© and
⋃

have the same meaning as in LTL.

The CTL formula over a set of atomic proposition is de�ned as follow:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ∃Φ | ∀Φ

where a ∈ AP and Φ is a path formula. CTL path formulae are formed according to the

following grammar:

Φ ::= ©ϕ | ϕ1
⋃
ϕ2

where ϕ,ϕ1, and ϕ2 are state formulae.

Path formula can be turned into state formula by adding path quanti�er ∃ (pro-

nounced it exists some paths) or the quanti�er ∀ (pronounced for all paths). Temporal

modalities "eventually", and "always" can be derived as follow:

eventually: ∃♦ϕ = ∃(true
⋃
ϕ)

∀♦ϕ = ∀(true
⋃
ϕ)

always: ∃�ϕ = ¬∀♦¬ϕ
∀�ϕ = ¬∃♦¬ϕ

Example Let consider the precedent example presented in section 3.2.1, the mutual

exclusion property can be written in CTL as follow:

∀�(¬crit1 ∨ ¬crit2)

It means that for all paths we have always one process at least out of its critical section.

54

Model Checking, Statistical Model Checking and High Level Language

(a) (b)

(c) (d)

(e) (f)

Figure 3.2 � Examples of satisfaction of some CTL formula

Figure 3.2 describes the graphical representation of the semantics of some CTL formulae.

The �rst graphic Figure 3.2a describes the property "black holds potentially". The

second graphic Figure 3.2b describes the property "black holds potentially always". The

two graphics Figure 3.2c and Figure 3.2d respectively describe the properties "black is

inevitable" and "invariably black". The last two graphics Figure 3.2e and Figure 3.2f

express the properties "there exists paths where gray holds until black holds" and "for

all paths gray holds until black holds", respectively.

3.2.2.2 Semantics

CTL formulae are interpreted over the states and paths of transition system. Formally,

55

Model Checking, Statistical Model Checking and High Level Language

given a transition system, the CTL formulae are de�ned by two satisfaction relations:

one for the state formula and one for the path formula. For the state formula, � is a

relation between the states in the transition system and the state formula Φ, we write

s � Φ, to mean that state s satis�es the state formula Φ. For the path formula, � is a

relation between maximal path fragment π and path formula ϕ, we write π � ϕ, to mean

that π satis�es the path formula ϕ.

De�nition 3.3 (Satisfaction relation for CTL). Let TS = (Loc,Act, E,AP,L) be a

transition system without terminal state, a ∈ AP an atomic proposition, Φ,Ψ a CTL

state formula, ϕ a CTL path formula. We de�ne the satisfaction relation � as follow:

� l � a i� a ∈ L(l)

� l � ¬Φ i� not l � Φ

� l � Φ ∧Ψ i� (l � Φ) and (l � Ψ)

� l � ∃ϕ i� π � ϕ for some π ∈ Paths(l)

� l � ∀ϕ i� π � ϕ for all π ∈ Paths(l)

For paths π, the satisfaction relation � is de�ned as follow:

� π �©Φ i� π[1] � Φ

� π � Φ
⋃

Ψ i� ∃j > 0, (π[j] � Ψ ∧ (∀0 6 k < j, π[k] � Φ))

where for path π = l0l1l2... and for i > 0, π[i] denotes the (i+ 1)th location of π.

In CTL atomic propositions, negation, and conjunction are interpreted over states,

whereas in LTL they are interpreted over paths. State formula ∃ϕ holds in l if and only

if there exists some paths starting in l that satis�es ϕ. The state formula ∀ϕ holds in l if

and only if all paths starting in l satis�es ϕ. The semantics of path formula is identical

to that for LTL. For instance, ∃© Φ holds in location l if and only if there exists paths

starting in location l where the next location satis�es Φ, this is equivalent to the existence

of a direct successor l′ of the location l where l′ � Φ. ∀(Φ
⋃

Ψ) holds is location l if and

only if for all paths starting in location l there exists an initial �nite pre�x such that Ψ

holds in the last location of this pre�x and Φ holds for all the locations along this pre�x.

56

Model Checking, Statistical Model Checking and High Level Language

3.3 Model Checking (MC)

Model checking is an automated veri�cation technique that explores all the possible exe-

cutions of a model in a brute-force manner to verify if it satis�es a property written in a

formal logic. Model-checking can thus be used to assess the schedulability of a system,

for any of its executions. This corresponds to the so-called worst-case analysis.

Figure 3.3 � Graphical representation of the model checking approach

Figure 3.3 represents the model checking approach. The system model is usually

automatically generated from a model description that is expressed in some appropriate

language. Note that the property speci�cation describes what the system should do, or

what should not do, while the model speci�cation describes how the system behaves.

The model checker analyses all the relevant system states and veri�es if they satisfy the

desired property. If the model checker detects a system state that does not satisfy the

desired property, it provides a counterexample that indicates how the model can reach

the undesired state. The counterexample represents an execution path starting from the

initial state until the state that violates the desired property. The user can analyze the

counterexample to adapt the model accordingly.

When using model checking to analyze a given system, we can distinguish the follow-

ing phases:

Modeling The modeling phase consists of:

� Model the system under consideration using the model description language

of the model checker.

57

Model Checking, Statistical Model Checking and High Level Language

� Make some initial simulations to detect and �x any simpler errors before using

any form of checking.

� Formalize the properties to be checked using appropriate temporal logic.

Running The running phase executes the model checker to verify the satis�ability of

the properties under consideration.

Analysis The analysis phase interprets the results of the model checker:

� If the property is satis�ed then check the next property if it exists. If all

properties are checked and are satis�ed, then we conclude that the model

satis�es all the desired properties;

� If the property is not satis�ed then:

1. analyze the generated counterexample;

2. re�ne the model, the system design, or the property;

3. repeat the entire procedure.

� If the model is too large to be handled (state space of real-life system is often

too large to be stored in the available memory) then reduce the model and

try again.

Typically, properties of qualitative nature can be checked using model checking. For

example, "is the generated result OK?" or "can the system reach a deadlock situation?".

Additionally, timing properties can be checked, like "can the system reach a deadlock

situation within one hour after a system reset?", or, "is the response always received after

sending a question?". In that case, model checking requires a precise and unambiguous

statement of the properties to be examined.

CTL checking problems are decidable for TA. Even basic model checking problems

(reachability) are undecidable for SWA and HA. For these models it is only possible to

perform exhaustive analysis with an over-approximation of the reachable states. The

alternative is to exploit the stochastic semantics of HA and to resort to simulations and

statistical model-checking (SMC).

The model checker Uppaal uses a restricted version of temporal logic CTL to express

the properties under consideration. It is de�ned as follow:

ϕ ::= A[]P | A<>P | E[]P | E<>P

The operator A represents the operator for all paths" ∀ de�ned above in section. 3.2.2.
In the same way E represents the operator "there exists a path" ∃. [] and <> are state

58

Model Checking, Statistical Model Checking and High Level Language

operators, meaning respectively `"all states of the path" and "there exists a state in the

path", the corresponding state operators de�ned in section. 3.2.2 are respectively � and

♦. P is an atomic proposition that is valid in some state. For example the formula "A[]

not error" speci�es that in all the paths and all the states on these paths we will never

reach a state labeled as an error. For instance for schedulability analysis, an error state

is one where a task has missed a deadline.

Strengths andWeaknesses The main important qualities that constitute the strength

of model checking are:

� It is a general veri�cation approach that can be applied on di�erent ranges of

systems.

� The properties can be checked separately, i.e. each property can be checked indi-

vidually.

� It gives diagnostic information if the property is not validate, these information are

very important for debugging purposes.

� It can be easily integrated in existing development cycles.

The main important weaknesses of model checking are:

� It veri�es a system model not the actual system itself. Any obtained result is thus

as good as the system model.

� It checks only stated requirements, i.e., there is no guarantee of completeness. The

validity of properties that are not checked cannot be judged.

� It su�ers from the state-space explosion problem, i.e., the number of states needed

to model the system accurately may easily exceeds the amount of available com-

puter memory.

� Its usage requires some expertise in �nding appropriate abstractions to obtain

smaller system models and to state properties in the logical formalism used.

Despite the above limitations we conclude that model checking is an e�ective technique

to expose potential design errors. Thus, model checking can provide a signi�cant increase

in the level of con�dence of a system design.

59

Model Checking, Statistical Model Checking and High Level Language

3.4 Statistical Model Checking (SMC)

To overcome the above di�culties we also propose to work with Statistical Model Checking

SMC [KZH+11, You05, You06, SVA04, SVA05a, SVA05b], an approach that has recently

been developed as an alternative to avoid an exhaustive exploration of the state-space of

the model.

SMC allows to reason on the average scenario, and to quantify the results with a

probability measure. The principle is to combine formal veri�cation and techniques from

the statistic area in order to compute the probability that a system achieves a given

objective.

There exists several SMC algorithms, see [LDB10] for details. In this thesis, we

focus on the Monte-Carlo algorithm. This algorithm performs N executions ρ and then

estimates the probability γ that the system satis�es a logical formula ϕ using the following

equation:

γ̃ =
1

N

N∑
i=1

1(ρ |= ϕ)

where 1 is an indicator function that returns 1 if ϕ is satis�ed and 0 otherwise. The

number of simulations N de�nes the precision of the results. It guarantees that the

estimate γ̃ is close enough to the true probability γ, such that if N =
⌈
(ln 2− ln δ)/(2ε2)

⌉
the probability of error is Pr(| γ̃−γ |≥ ε) ≤ δ, where ε and δ de�ne the con�dence interval
and the con�dence level, respectively.

Bounded Linear Temporal Logic (BLTL) is a restricted version of LTL that expresses

bounds on step or time units in order to reduce the paths or time on which the desired

property will be veri�ed. These bounds give the length of the run on which the property

under consideration will be veri�ed. Any decidable property on states or paths can be

used in the formulae including BLTL operators. Thus, the semantics of BLTL logic is the

semantics of LTL logic restricted to a time interval. The BLTL temporal operators are

de�ned as follow:

� "eventually within time t" : ♦tϕ = true
⋃t ϕ where t ∈ R+

� "always up to time t" : �tϕ = ¬♦t¬ϕ where t ∈ R+

The statistical model checker Uppaal SMC uses BLTL formulas to ask for the proba-

bility that a given property holds within a �xed bound of time.

60

Model Checking, Statistical Model Checking and High Level Language

Uppaal SMC queries express properties over a single trace using BLTL. These queries

associate an LTL formula and probability operator Pr and a time bound. The following

query for instance "Pr[<=maxTime](<> error)" asks to compute the probability of reaching

an error state before maxTime. Additionally, Uppaal SMC allows writing simulate queries

that only examine traces without computing a probability.

3.5 High Level Language: Cinco

Currently, many models and tools are successfully used to analyze properties of CPS. But

they are domain-speci�c, which means they cannot easily be applied to other systems.

Moreover, these models and tools require high technical knowledge about the theoretical

formalisms used to design models and write properties, which most system engineers do

not master. In this section we demonstrate a �exible and formal analysis engineering

approach for analyzing scheduling properties of CPS.

We encapsulate the formal models for scheduling systems presented in Chapter 2.5.1

into Cinco [NLKS17, NTI+14] a generator for domain-speci�c modeling tool, these mod-

els constitute a model bank that will be used to represent the di�erent systems under

consideration. This bank will be enriched in the next chapters.

Cinco allows to specify the features of a graphical interface in a compact meta-

model language, and it generates automatically from this meta-model speci�cation a

domain-speci�c analysis tool with a graphical interface. Inside this analysis tool we can

specify scheduling systems and the properties they must satisfy. Cinco allows also to add

implementations in order to achieve additive works, in our work we implement number

of algorithms that are designed to:

� Transform the graphical representation of the components and the properties spec-

i�cations of the system under consideration to timed automata;

� Allow to launch analyses in the graphical interface;

� Call Uppaal [BDL+06] and Uppaal SMC [DLL+15] to perform the analysis;

� Parse the results and displays them by modifying the graphical elements.

These transformations from the graphical representation to the formal models consist

in translating the graphical components and the properties speci�cations of the system

under consideration using the appropriate timed automata from the model bank. Con-

sequently it constructs a full formal model that can be analyzed by Uppaal in order to

61

Model Checking, Statistical Model Checking and High Level Language

verify the satis�ability of the properties studied. This approach allows to completely

hide the formal models being used from the system designer, who can concentrate on the

structure and the parameters of the scheduling system.

The last challenge is to give signi�cant feedbacks to the user in the most friendly

manner. Indeed, results of formal veri�cation from academic tools like Uppaal can be

di�cult to interpret, all the more when the models used by these tools have been au-

tomatically generated. Cinco provides an API for model transformations that allows to

program actions that can update the model. We have used this functionality to parse

the results of the analyses output by Uppaal and to show graphically the most relevant

information.

3.5.1 Domain-Speci�c Code Generator: CINCO

Cinco is a generative framework for the development of domain-speci�c graphical model-

ing tools. It is based on the Eclipse Modeling Project [Gro08], but with a strong emphasis

on simplicity [MS10], so that the user (i.e. the developer of a tool generated with Cinco)

does not need to struggle with the underlying powerful but complicated EMF meta-

modeling technologies [SBPM08] directly. This is achieved by focusing on graph model

structures (i.e. models consisting of various types of nodes and edges) and automatically

generating the required Ecore metamodel as well as the complete corresponding graphical

editor from an abstract speci�cation in terms of structural constraints. In a sense, this

approach turns constraint-based variability management [JLM+12, LNS13] into a tool

generation discipline, where a product line is just characterized by the tools' modeling

capacities.

3.5.1.1 Meta-Modeling

Central to every Cinco product is the de�nition of a �le in the Meta Graph Language

(MGL). It de�nes what kind of modeling components the model consists of and what

attributes they have. Every modeling component is either a node type, a container type

(i.e. a special node that can hold other nodes) or an edge type. It is also possible

to de�ne which kind of nodes can be connected to which kind of edges and express

cardinality constraints on those connections.

Example For instance, Listing 3.1 presents of a portion of an MGL �le with the def-

inition of a container node to represent a simple task. The de�nition precises some

attributes (period, wcet, deadline . . .). It needs exactly one input transition and one or

more output transitions. Furthermore, it can contain other nodes of type Query.

62

Model Checking, Statistical Model Checking and High Level Language

@style(task ,"${tid}","${period}","${wcet}","${deadline}","${priority}")

container Supplier {

attr EInt as tid

attr EInt as period

attr EInt as wcet

attr EInt as priority

attr EInt as deadline

incomingEdges (Transition[1,1])

outgoingEdges (Transition[1 ,*])

containableElements (Query)

}

Listing 3.1 � Part of the MGL �le that speci�es a task.

The second important �le is a speci�cation in the Meta Style Language (MSL), which

is used for de�ning shapes (rectangle, ellipse, polygon,image, text, etc.) and appearances

(colors, line style, line width, etc.) for nodes and edges. To change the look of the model

depending on runtime information (e.g. the value of a node's attribute) one can either

use the attribute directly within a text shape or implement an appearance provider that

is invoked by the framework and may contain Java code that decides on the appearance

by arbitrary external or internal factors.

Example Listing 3.2 contains the style de�nition for the previous task node. It is

displayed with a red rounded rectangle and some texts in the top precessing the identi�er

of the task, as shown in Figure 3.4.

nodeStyle task(1) {

roundedRectangle r {

appearance extends default {

foreground (220,15,15)

background (255,255,255)

}

size(100,80)

corner(20,20)

text {

position relativeTo r (CENTER ,TOP)

value "Task %s"

}

}

}

Listing 3.2 � Part of the STYLE �le that con�gures the display of the task node.

Those speci�cations are already enough for Cinco to generate the complete graphical

modeling tool. But Cinco also provides mechanisms to integrate the code that interprets

63

Model Checking, Statistical Model Checking and High Level Language

Figure 3.4 � Example of task display generated by the style con�guration.

Figure 3.5 � Main principles of domain-speci�c tools generation with Cinco.

or transforms the models. It automatically generates APIs speci�c to the model type

and seamlessly integrates code implemented against it into a ready-to-run modeling tool,

which is a realization of the one-thing-approach [MS09].

The main principles for the generation of a domain-speci�c tool with Cinco are de-

picted in Figure 3.5. From the MGL and Style de�nitions, Cinco generates an Ecore

metamodel as well as a corresponding graphical editor for the domain-speci�c tool. The

user can then create a model in the tool that conforms to the given speci�cation. This

model can be analyzed by custom Java code, embedded in the tool during the automatic

generation by Cinco.

64

Model Checking, Statistical Model Checking and High Level Language

3.5.1.2 Domain Speci�c Tool

Besides the tool meta-modeling, the second important feature of Cinco needed to develop

a domain speci�c tool is the possibility to enhance the graphical editor by adding custom

code. This code can call an API generated by Cinco to interact with the meta-model.

Please refer to [NLKS17, NTI+14] or the website1 for more detailed introductions.

The easiest way to enhance the graphical editor is by adding a custom action to a

node type, which is then available via the nodes' context menu or on double-click. For

a custom action two methods need to be implemented: canExecute and execute. Both

receive the node on which the action should be performed as a parameter. While the �rst

decides whether the action is available (i.e. not disabled/greyed out in the context menu),

the second one actually performs it. The generated enhanced API for the metamodel

simpli�es the implementation of those methods, as one can easily access related modeling

elements in a semantic and type-safe way, e.g. by accessing all successors (i.e. target

nodes of outgoing edges) of a certain type.

Furthermore, Cinco makes it especially easy to perform changes to the edited model.

Usually, with the common Eclipse approaches, the visual representation as well as the

underlying model structure need to be changed separately. The transformation API that

Cinco generates for every model type handles the synchronous and consistent modi�-

cation of both parts automatically, so that it becomes very straightforward to program

transformations for the model, as the generated API provides the same actions the tool

user can perform within the editor, e.g. change attributes, add new elements, connect

them with edges, or move/resize/delete them.

3.5.2 Implementation of the Framework and Tool Chain

We have implemented the domain-speci�c analysis framework. The tool chain involved

in the generation of these frameworks and then in their usage is described in Figure 3.6.

The framework is developed in Java and with Cinco. The graphical interface of the

framework is speci�ed with the meta-modeling languages of Cinco, presented in Sec-

tion 3.5.1.1. Then we have developed Java programs for generating complete formal

models from the high-level speci�cations. These generators use existing formal models

from a model bank (the models presented in Section 2.5.1). Finally we have developed

Java custom analysis programs. These programs are linked to the code generated by

Cinco such that they can be started directly from the graphical interface, either by a

right-click menu or double-click actions. These programs solve the problems listed in

1http://cinco.scce.info

65

Model Checking, Statistical Model Checking and High Level Language

Tool Generation Framework

Domain-Specific Design and Verification Framework

Meta-model
specifications

Analysis
Program

(Java)

Model
Generation

Program
(Java)

reference

Model bank

HAn

TA1 SWA2

...

reference

CINCO: Tool Generator

Specifications
+

Properties

Domain-Specific
Analysis Tool

Results

transform

External Tools

UPPAAL UPPAAL
SMC

R

Figure 3.6 � Tool chain for generating and using domain-speci�c analysis frameworks

Section 4.2 using the techniques presented in Section 4.4.1. In the background, they

launch Uppaal and Uppaal SMC via the command line interface to perform formal ver-

i�cations, and they use the tool R for statistical analysis. The textual results of these

veri�cations are then analyzed by our programs to determine the relevant results of the

analysis. Then, the transformation API of Cinco is used to visualize the results on

the model's high-level abstract view, either by creating pop-up windows or by making

modi�cations on the model designed in the interface.

Using the meta-model speci�cation, our custom Java code and the model bank, Cinco

automatically generates a domain-speci�c framework, that includes the Java code and

the Ecore speci�cations of an Eclipse graphical interface. This domain-speci�c framework

allows to design scheduling problems, using the high-level graphical languages presented

in Section 3.5.1.2. It then launches analysis by calling external tools (Uppaal, Uppaal

SMC and R). It produces results and consequently can transform the original high-level

speci�cation.

66

Model Checking, Statistical Model Checking and High Level Language

In the next two chapters we will demonstrate the use of Cinco in combination with

MC and SMC.

67

Chapter 4

Hierarchical Scheduling Systems

In this chapter, we extend the model-based approach of Section 2.5 in order to model

hierarchical scheduling systems HSS, that are complex scheduling systems with multiple

heterogeneous scheduling levels. The next step consists of expressing a number of prob-

lems that must be veri�ed on this model. After that, we detail the methods used to solve

each problem. Then, we present a new high-level framework for specifying and verify-

ing the models and the problems. Finally, a number of experiences using the high-level

framework are presented with a discussion on their results.

Key Contributions. The key contributions in this chapter are as follows:

� Formal models for HSS using stochastic tasks of Chapter 3 .

� A high level framework for specifying and verifying HSS models.

� A set of experiments executed on a case study which is an avionic system.

4.1 Hierarchical Scheduling Systems

One of the trends in developing CPS is to execute many heterogeneous real-time com-

ponents into a single high-performance platform. This does not only reduce the costs,

but also improves the performances and maximizes the utilization of hardware resources.

However, these heterogeneous components must be partitioned, such that errors caused

by one component are alienated from the other components. For instance, heterogeneous

operating platforms in avionics and automotive systems manage various and di�erent

integrity-level applications. They are integrated using a high-performance hardware

69

Hierarchical Scheduling Systems

Figure 4.1 � Periodic Resource Model supplier with stochastic budget

platform, supported by multi-core processors, advanced memories, and multi-level cache

architectures.

This has motivated research on hierarchical scheduling systems (HSS), where a global

scheduler is used to distribute a shared resource among several local schedulers. This

mechanism can be duplicated in a multi levels system, e�ectively building a hierarchy

of schedulers organized in a tree structure. On one hand, analytical methods have been

proposed for HSS [SEL08a, PLE+11]. Though they are easy to apply once proven correct,

proving their correctness is a di�cult research topic, and they only provide a coarse

abstraction that grossly overestimates the amount of resources needed.

On the other hand, there exists model-based techniques [DLLM12, BDK+13, BDK+15a].

Since the complexity of the entire HSS is too large to be analyzed with formal methods,

we rely on compositional approaches that allow to analyze each local scheduler indepen-

dently [SL03].

In our formal framework, a HSS is a set of scheduling units organized in a tree

structure. Each scheduling unit is composed of a set of real-time tasks, a scheduler,

that implements a scheduling algorithm, and a queue, that manages jobs instantiated by

tasks. To perform a compositional analysis of the system, we provide each scheduling

unit with a resource supplier that abstracts the behavior of the parent scheduling unit.

The models for tasks and schedulers are de�ned in Chapter 2.5.1.

Resource Supplier The resource supplier is responsible for supplying a scheduling

unit with the resource allocated from a parent scheduling unit. We adopt the periodic

resource model (PRM) [SL03]. It supplies the resource for a duration of Θ time units

every period Π. To speed up the schedulability analysis using model checking techniques,

it only generates the extreme cases of resource assignment: either the resource is provided

at the beginning of the period (from 0 to Θ) or at the very end (from Π−Θ to Π). The

70

Hierarchical Scheduling Systems

Figure 4.2 � Example of Hierarchical Scheduling System

choice between the two assignments is non-deterministic.

The PRM automaton communicates with the task model through a shared variable

isSupply that is set to true during the supply period.

We also use the probabilistic supplier model presented in [BDK+15a]. This prob-

abilistic supplier is implemented with the SWA of Figure 4.1. Instead of using a �xed

budget Θ, it uses a range of values speci�ed between an interval [LowerBound,UpperBound].

This will allow to perform a parameter sweep with SMC by selecting uniformly a value

of the budget, and it will help determining the optimal budget.

Example We present in Figure 4.2 a small example of HSS with three schedulers: a top

scheduler Croot, with an EDF policy, and two bottom schedulers C1 and C2, with Rate

Monotonic (RM) and EDF policies, respectively. The top scheduler schedules two tasks

T1 and T2 that distribute the resource to the interfaces I1 and I2 of the lower schedulers.

These interfaces use the PRM, each with a period of 100, and a budget of 35 for I1 and

25 for I2. The lower schedulers schedule three real-time tasks each using the resource

they receive from the interfaces I1 and I2.

4.2 Scheduling Problems

In this section we present the di�erent problems that we want to solve in scheduling

systems.

Problem 1: Correctness and performance We want to evaluate several properties

of the scheduling system to assess its correctness and measure its performances:

1. Absence of deadlock: We check that the formal models have been correctly

designed, because they cannot reach a deadlock state in which time is blocked and

no action is available.

71

Hierarchical Scheduling Systems

2. Schedulability: We determine whether the tasks are schedulable, i.e, none of

them misses a deadline. In case of HSS, we check that all the scheduling units are

schedulable.

3. Maximum response time: We measure the maximum response time of tasks,

i.e., the maximum time between a job instantiation and its completion.

Problem 2: Optimal con�guration of the system Depending on their nature,

our scheduling systems may admit di�erent con�gurations. Then, we may evaluate each

con�guration according to one or several measures presented in Problem 1 in order to

select an optimal con�guration.

In a HSS, each scheduling unit is analyzed independently using the budget provided

by the PRM. To con�gure the system we determine which budget values make the system

schedulable. Our goal is to �nd minimum budgets, such that all the scheduling units are

schedulable.

4.3 Formal Model-based Compositional Framework for HSSs

Our model-based compositional analysis tool implements a model-based analysis frame-

work of HSSs that is �exible enough to represent any scheduling systems.

Figure 4.3 � Flexible Compositional Analysis Framework

As shown in Figure 4.3, the framework is composed of a set of component models

(tasks, a scheduler and a stochastic dispatcher), that are used to con�gure the scheduling

72

Hierarchical Scheduling Systems

units of a HSS, and a set of real-time properties that must be analyzed.

The con�guration of the scheduling units of a HSS is determined by the user, who

de�nes the structure of the HSS and speci�es the real-time attributes of individual tasks.

Once the con�guration of the HSS has been made, our tool enables the designer to check

the con�guration of the HSS against real-time properties. In our setting, three important

real-time properties are checked: the deadlock freedom of a HSS, and the schedulability

and the worst-case response time of individual tasks.

4.3.1 Stochastic Task

In this section, we use the model of stochastic tasks presented in Section 2.5 whose real-

time attributes depend on probability distributions. An execution of a task is character-

ized by 3 real-time attributes: an execution time, a period, and a deadline. The di�erence

between these stochastic tasks and the previous work [BKD+, BDK+15a, MCG13] is that

the three real-time attributes are dynamically con�gured according to the condition in

which the system is running. This dynamic con�guration is modeled by a stochastic

dispatcher with an extension of timed automata with con�guration actions that depends

on the probability distributions.

A task represents the time spent for executing some computation. Its execution time

may vary due to the length of executions of the computation logic and the capability of

the execution environments, such as CPU, memory, I/O and caches, etc. Real values can

be obtained by sampling the execution times from the real world system. The sampled

execution times can then be captured by a probability distribution.

Meanwhile, the deadline and the period are determined according to the timing re-

quirements of the functionality implemented by a set of tasks. For instance, some video

decoder and encoder would update the deadline and period of tasks according to the

frequency of input streams. In a similar way, they can also be represented by probability

distributions.

In our stochastic task model we consider discrete probability distributions, de�ned

with a random variable X given by:

X =
(x1, ..., xn

p1, ..., pn

)
(4.1)

where {x1, .., xn} are samples, P (xi) = pi is the probability of each sample xi and∑n
i=1 pi = 1. The probability of any variable x is given by P (x) if x ∈ {x1, .., xn},

otherwise P (x) = 0.

73

Hierarchical Scheduling Systems

Figure 4.4 shows the TA for our stochastic task model. The only di�erence of this

TA model with the periodic TA task model of [BDK+15a] is that it begins the execution

if its job's queue job_q[tid] is not empty.

Figure 4.4 � TA template of a stochastic task (Ti)

If a process of the TA stochastic task at the Init location is instantiated, it reads

the default attributes by function setTaskAttribute() and initializes a job. Then, the job

requests the scheduler to assign a CPU by synchronizing the channel req_sched(pid) and

queues at a resource (ready) queue by inserting its id (tid) to the queue.

A job process may stay at location Executing as long as job's execution time is not

ful�lled and it does not miss the deadline. The process stops and resumes its execution

on that location according to the availability of CPU resource, i.e. the job process can

make progress when a CPU is available, otherwise, it must stop its execution.

In our model, there is no preemption location to denote that a task is waiting for

CPU after it has been preempted but preemption is implemented by a stopwatch clock

t_et[tid]. This clock measures the CPU-consuming time of a task since a job of the task

has been instantiated; the clock can stop and resume when a CPU is available to the task.

At location Executing, the invariant expression t_et[tid]'=isSchedSuped(tstat[tid].pid),tid) is

associated to the stopwatch clock. This condition is such that the clock progresses if the

function isSchedSuped() returns 1, otherwise, it does not progress.

The process of a task exits from location Executing when it has ful�lled its execution

time and it releases the CPU resource using function deque_tid(tstat[tid].pid, tid). Then,

74

Hierarchical Scheduling Systems

it joins the location WaitEndofMINIntv and waits the end of the minimal inter-arrival

time. Finally, the process of a task joins the location JobWait to be instantiated by a job

dispatcher.

4.3.2 Stochastic Dispatcher

These stochastic tasks are combined with a stochastic dispatcher that con�gures the

real-time attributes of the tasks at each individual execution round. In other words, the

stochastic dispatcher determines the con�guration of tasks real-time attributes at the

beginning of each execution round when the task is waiting at the location JobWait.

Figure 4.5 � An action to con�gure stochastic real-time attributes

To represent this dynamic con�guration of real-time attributes, we extend the timed

automata (TA) with a con�guration action. An example of the con�guration of a set of 3

tasks is given in Figure 4.5: The transition l to l′ is enabled if the condition threshold > h

holds. When the transition is taken, the set A of actions are carried out, meaning that the

execution e1 of task T1 is chosen randomly according to the probability distribution pe1.

In the similar way, the deadline and period of each individual stochastic tasks are taken

from the corresponding probability distributions. Note that e3, d3 and p3 are assigned

to constants values, 10, 45 and 45, respectively.

Figure 4.6 � An action to con�gure stochastic real-time attributes

Figure 4.6 shows an example of a job dispatcher that uses the con�guration actions.

On the initial location Stable, two recursive transitions trigger the events start_job[1] and

start_job[2] to instantiate the corresponding jobs if the conditions tstat[1].status=WAITING

75

Hierarchical Scheduling Systems

and tstat[2].status=WAITING hold. Even if the transitions are enabled, they are ac-

tually taken by the exponential distribution with rate λ = 1/100. If the condition

numofJobs > h holds, the transition heading for location Unstable can be taken. Then,

a new con�guration on the real-time attributes of T1, T2 and T3 are made and, in par-

ticular, the real-time attributes of T1 and T2 are taken from the associated probability

distributions, such as ρe1,2, ρ
p
1,2, ρ

d
1,2, etc.

4.3.3 Formal Analysis Model of Scheduling Unit

The approach we pursue is compositional: each scheduling unit is individually analyzed

with respect to an interface that abstracts the behavior of the other components. For

the analysis of HSSs, the interface we are using is the PRM [SEL08b] that assigns the

amount Θ of resources every period Π.

Figure 4.7 � Conceptual model of a scheduling unit of a HSS

Figure 4.7 depicts the conceptual model of a scheduling unit of a HSS: The scheduling

unit is composed of a set of tasks (Ti), a scheduler (A), a queue (pq) and a stochastic

dispatcher D. The unit is given a PRM (ΓPRM (Π,Θ)) that is used to analyze the

component in a compositional manner. We will call this resource model the supplier.

Our framework supports two types of tasks: periodic task and stochastic task. A peri-

odic task instantiates at the same period. Meanwhile, a stochastic task instantiates with

a minimum inter-arrival time by an event. The real-time attributes of stochastic tasks

are determined by the stochastic dispatcher D using a set Ω of probability distributions,

as shown in Figure 4.7.

Once a job is instantiated by a task, it asks the scheduler for CPU computation time

by �ring the event req(tid,pid), which inserts the task's Id into the ready queue pq. Then,

the scheduler sorts task's identities according to a scheduling policy and chooses the id

of the task having the highest priority. This task can carry out its jobs until it �nishes

the jobs or it is preempted.

76

Hierarchical Scheduling Systems

The model of the scheduling unit is extended with a resource model ΓPRM (Π,Θ) in

Figure 4.7 in order to analyze the HSS in a compositional manner. The resource model

ΓPRM in Fig. 4.7 can stop and resume the execution of a running task. It determines

when to stop and resume according to the timing requirement (Π,Θ). In our work, the

TA model of resource model ΓPRM is created such that it supplies the Θ amount of

resources at every period Π in a non-deterministic way, i.e. a task that is scheduled to

use CPU is allowed to execute only for Θ time units at any time within its period.

Such a non-deterministic behavior simulates every resource supplying patterns of a

parent task, including the extreme cases when the longest starvation of the resource

assignment occurs, as mentioned in Section 4.1.

4.3.4 Resource Model

Figure 4.8 � Abstract PRM model in TA

To speed up the schedulability analysis using model checking techniques, we adapt

the PRM to generate the extreme cases more often, as depicted in Figure 4.8: The TA

model of the PRM uses two clocks, x and y. The clock x is reset every new period and

used to measure the current time since a new period has begun. The clock y denotes

the time of supplying the resources, so it may progress only when the process resides on

the Supply location. A new supply period starts when the clock x reaches Π at location

PrdDone. Then, one of the two transitions existing from location PrdDone is taken non-

deterministically. One of the transitions leads to location Supply where immediately starts

the resource supply. Otherwise, the other transition leads to the location NonSupply that

postpones the resource supply up to the time Π−Θ that is the laxity time of the resource

supply.

Figure 4.9 � A simulation of PRM behavior model

77

Hierarchical Scheduling Systems

Figure 4.9 shows a simulation of the PRM behavior that provides a resource for 33

time units every 100 time units. The spike in blue denotes a period of the supply and

the graph in red denotes a resource supply. Note that the resource supply begins and

terminates in synchronization with the beginning and end of a period, which implies that

the longest starvation of the supplying resources can occur extremely often.

4.4 Resolution of the Problems

In this section we detail the techniques we use to solve the scheduling problems presented

in Section 4.2.

4.4.1 Checking Correctness and Evaluating Performances with MC

and SMC

The properties associated to Problem 1 are translated into formal queries in the format

of the tool Uppaal MC and Uppaal SMC.

Absence of deadlock We use the CTL formula A[] not deadlock that is checked with

model-checking by the tool Uppaal.

Schedulability In our formal models we check schedulability by searching for error

states in tasks, that correspond to the tasks missing their deadline. All these error states

are identi�ed by a single Boolean variable error, set to true when a task misses a deadlines.

Then, schedulability is analyzed by Uppaal SMC using the following probabilistic

query:

simulate nbSim [<=runTime] {error} : 1 : {error}

It asks to perform nbSim simulations of length runTime t.u., until one reaches a state

labelled with error. If such a state is found, then the system is not schedulable.

Uppaal SMC performs a quick evaluation of the schedulability. If the system is not

schedulable it may �nd quickly a counterexample execution. However, for an exhaustive

result, we rely on model-checking with Uppaal using the CTL formula A[] not error. If

the system contains stopwatches the analysis is performed with an over-approximation:

if the result is true then the system is surely schedulable; if the result is false it may not

be schedulable.

78

Hierarchical Scheduling Systems

Maximum response time We measure this property using Uppaal SMC with the

following query:

E[<= runTime;nbSim](max:t_resp[2])

It runs nbSim simulations of runTime t.u. and it computes the average value over these

simulations of the maximum response time of the task with ID 2 (the response time of

task 2 is measured in the model with a variable t_resp[2]).

4.4.2 Optimization of a Hierarchical Scheduling System

To optimize a HSS we must determine the minimum budgets for the resource suppliers

such that all the scheduling units are schedulable. For this purpose we use the stochastic

model of the resource supplier presented in Figure 4.1 that speci�es a range of possible

budgets Θ. Then we use Uppaal SMC to randomly select a value within this range and

check whether the scheduling unit is schedulable with this value.

We use the following probabilistic BLTL formula:

Pr[estBudget[1]<=runTime](<>globalTime>=runTime and error)

It computes the probability distribution of all the possible budget values that are not

schedulable. With Uppaal SMC we can plot the probability density distribution in a

graph, as shown in Figure 4.10. By looking at the support of this distribution we can

determine the minimum budget whose probability is zero, that is the minimum budget

necessary to schedule all the tasks of the scheduling unit.

Example We consider the HSS example presented in Figure 4.2. We analyze scheduling

unit C1 to compute the possible budgets for the resource supplier of this scheduling unit

(such that the unit is schedulable). In Figure 4.2, this budget was arbitrarily set at

35 over a period of 100. We would determine if this value is su�cient and if it can be

lowered.

We set the range of budgets between 0 and 100. Using Uppaal SMC we analyze

the probabilistic BLTL formula presented above and we compute the probability density

distribution shown in Figure 4.10. It tells us that all the budgets lower than 34 have a

non zero probability of being not schedulable. Therefore the minimum budget needed

for the scheduling unit is 35 over a period of 100.

79

Hierarchical Scheduling Systems

Figure 4.10 � Probability density distribution for the budgets for the scheduling unit C1.

4.5 High Level Framework

This section presents how to use the high-level domain-speci�c language presented in

Section 3.5 in order to design our high-level framework dedicated to the design and

analysis of hierarchical scheduling systems.

4.5.1 High-Level Framework for Hierarchical Scheduling Systems

Figure 4.11 � HSS with 3 scheduling units

As presented in Section 4.1, HSS are best represented by a tree structure. This

is the format we adopt for our graphical speci�cation of HSS. Figure 4.11 presents an

example of an HSS designed in our framework. The nodes of the tree correspond to the

components of the scheduling units (tasks, suppliers). In the rest of the section we detail

the available components of our high-level language and their con�guration parameters.

Resource suppliers TopSupplier(policy), in blue, is the root of the HSS tree. It supplies

80

Hierarchical Scheduling Systems

the resource to all the scheduling units. Its only parameter is the scheduling policy.

Supplier(policy,period,budget), in yellow, are intermediate suppliers (e.g., Supplier1 in Fig-

ure 4.11) that receive the resource from an upper level and supply real-time tasks or lower

level suppliers. Their parameters are a scheduling policy, a period and a budget within

this period. To estimate the necessary budget of a scheduling unit we use a probabilis-

tic supplier, in red, (e.g., PSupplier2 in Figure 4.11) whose budget is chosen randomly

between values given in an interval. It is denoted ProbSupplier(policy,period,budget), where

budget is an interval of the form [LowerBound,UpperBound].

Tasks Tasks are the leaf of the HSS tree. They represent the time spent for executing

some computations. A task is denoted Task(period,deadline,bcet,wcet,priority) and repre-

sented in the model with a green rounded box. As presented in Section 2.5.1, we propose

a new model of stochastic task whose attributes may be probability distributions. This

type of task is denoted STask(period,deadline,execution,priority) and represented by a green

rectangle. Here period, deadline and execution are discrete probability distributions. In-

stead of having a worst case and a best case execution time, we input a probability

distribution of execution times.

Queries Queries are associated to the suppliers. The following queries, that correspond

to the formal properties presented in Section 4.4.1, are available: deadlock query, schedu-

lability, maximum response time, and budget estimation. In Figure 4.11 for instance,

PSupplier2 is assigned a budget estimation query and Supplier1 a schedulability query.

Queries that have been veri�ed are colored automatically by the tool, in green if they

are satis�ed, or in red if they are not satis�ed.

We detail below the basic steps performed by our analysis programs to solve the

di�erent scheduling problems.

Correctness and performance The program that solved these problems �rst gener-

ates the Uppaal model from the model designed in the graphical interface of the frame-

work. It also generates a text �le with the Uppaal query needed for the analysis. It

then launches Uppaal or Uppaal SMC and analyses the results. The following results are

displayed in the interface:

� The absence of the deadlock is shown in a pop-up window. The color of the query

is turned to green or red according to the result.

� The schedulability analysis produces a pop-up window with the result. The color

81

Hierarchical Scheduling Systems

of the query is turned to green or red. Additionally, if the result is false the color

of the task that has missed a deadline is turned to red.

� The measures of maximum response times is displayed in pop-up windows and in

the queries.

Optimisation of Hierarchical Scheduling Systems The program that solves this

problem generates the Uppaal model of the HSS with a probabilistic supplier, as the one

presented in Figure 4.1. It analyses the schedulability query with Uppaal SMC. This

generates a probability distribution, as the one presented in Figure 4.10. The program

analyses this distribution to determine the minimum budget. It displays the result in a

pop-up window.

4.6 Experiments

We apply our framework for HSS to model and verify an avionic scheduling system. We

consider the speci�cation of avionic tasks presented in [LLG90]. This is a mixed-critical

system with multiple tasks of various criticality running together. We arrange these

tasks in a hierarchical scheduling system by grouping tasks from similar functions and

criticality (Navigation, Targeting, Weapon control and Controls and displays). Each

function is associated to a scheduling unit. The three scheduling units of the most

critical functions (Navigation, Targeting and Weapon control) are further grouped under

a �Hard-Subsystem� scheduling unit. These results in the hierarchical scheduling systems

are presented in Figure 4.12.

The goal of our study is to determine if the complete system is schedulable and to

�nd appropriate parameters for each scheduling unit, such that they are all schedulable.

High-level model We design the HSS in our domain-speci�c tool generated by Cinco,

using the high-level language presented in Section 4.5.1. Sporadic tasks are modelled

with stochastic task nodes and are associated to probability distributions. To estimate

their necessary budget, each scheduling unit is modelled using a probabilistic supplier.

Veri�cation procedure We analyze each scheduling unit, starting from the bottom,

with the budget estimation query. We con�gure the scheduling unit, by selecting several

values for the period of the probabilistic supplier. The period must be lower than the

minimum period of the tasks being supplied. Then, we con�gure the minimum and the

maximum budget for the estimation between [1, period]. The tool computes the minimum

82

Hierarchical Scheduling Systems

Avionics

Hard-Subsystem

(000, 000)
Controls and Display

(000, 000)

Target ng
(000, 000)

Navigat on

(000, 000)

Weapon Ctrl.

(000, 000)
HUD Display

(50,6,50)

MPD Display

(50,8,50)

HOTAS But on

(Exp.,40,1,40)

Threat Display

(Gauss.,100,3,100)

Flight Data

(50,8,50)

Steering

(80,6,80)

Target Tracking

(40,4,40)

Target Sweetening

(Unif.,40,2,40)

AUTO/CCIP Toggle

(Gauss.,200,1,200)

Weapon Release

(10,1,5)

Hard

Sof

Weapon Trajectory

(100,7,100)

Reinit ate Trajectory

(Unif.,400,6,400)

Periodic Task

Sporadic Task

Figure 4.12 � Hierarchical scheduling of avionic tasks

budget such that the tasks are schedulable. The ratio budget/period gives us the load

factor of the scheduling unit. Our goal is to �nd the lowest load factor among the choices

of possible values for the period.

When all the bottom units have been analyzed we can replace them with normal

suppliers using the minimum budget that has been computed. We then repeat the

procedure to compute the minimum budget for the upper scheduling units.

Results We present in Figure 4.13 the results obtained from the analysis of the 3

bottom scheduling units (Navigation, Targeting, Weapon control). The graph plots the

load factor of the scheduling unit using the minimum budget computed with SMC for

several values of the periods. From these results we select the points with the lowest load

factor and the highest period. The values that we choose are listed in Table 4.1.

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

Period

L
oa
d
fa
ct
or

Navigation
Targeting

Weapon Ctrl.

Figure 4.13 � Budget estimation for Navigation, Targeting and Weapon control

83

Hierarchical Scheduling Systems

Unit Period Budget Load factor
Navigation 8 2 0.25
Targeting 6 1 0.17
Weapon Ctrl. 4 2 0.5
Hard-Subsystem 4 4 1
Controls and Display 3 1 0.33

Table 4.1 � Minimum budget for the scheduling units

We can now replace these probabilistic Suppliers with normal suppliers and con�rm

the schedulability of the units using the schedulability query, that is checked either with

MC or SMC.

We then determine the period and the budget for the Hard-Subsystem unit. Its

period must be lower than 4, the chosen period of the Weapon control unit. Since the

combined load factor of the 3 lower scheduling units is 0.92, only a budget of 4 over 4

can schedule the Hard Subsystem unit, which we verify with the schedulability query.

We also determine the necessary budget for the Controls and display scheduling units.

We found the best budget to be 1 over a period of 3.

From our results we conclude that the two upper scheduling units (Hard Subsystem

and Controls and Display) are each schedulable. However since the load factor of the

Hard Subsystem is already 1, it cannot be scheduled with the second unit using the same

resources.

84

Chapter 5

Energy Consumption For

Multi-Processor Scheduling Systems

Let consider the energy consumption problem on a multiprocessor platform. In this

chapter we present two new techniques for scheduling analysis. The �rst performs runtime

monitoring using the CUSUM algorithm to detect alarming change in the system. The

second performs optimization using e�cient statistical techniques. In this chapter we

present our framework on which we implement these two techniques, then we illustrate

our framework on two case studies.

Key Contributions. The key contributions in this chapter are as follows:

� New formal models for specifying complex scheduling system with models for multi-

processor scheduling systems and energy measure.

� A high-level framework for specifying and verifying scheduling problems. It is

automatically generated using a meta-modeling approach.

� Two new techniques for solving scheduling problems. The �rst one optimizes multi-

processor scheduling systems. The second one performs runtime monitoring to

detect expected events.

� A case-study that demonstrates the high-level framework and the veri�cation tech-

niques.

85

Energy Consumption For Multi-Processor Scheduling Systems

5.1 Introduction

Many Cyber Physical Systems (CPS) are mission critical systems. It means that these

systems must complete their missions within a period of time. In some cases the system

must also complete its mission with limited resources: in particular a limited amount of

energy. Number of researches focused on analyzing these systems by verifying that the

system can accomplish its mission only using its initial budget of energy.

Besides schedulability, various objectives can be asked upon the scheduler. One of

these can be to measure and minimize the energy consumption. This is a great concern

in energy limited systems, like cell phones or satellites, and more generally the power

consumption of computing devices is an emerging topic.

In this chapter we present a new optimization technique for multi-processor scheduling

systems. It determines optimal mappings from tasks to processors in order to minimize

the energy consumption of the system and/or response time. We propose algorithms

that use statistical tests (ANOVA and TukeyHSD) to determine the optimal mappings.

Related Work Scheduling problems with energy costs are studied in [ORC15]. This

work studies an energy-�exible �ow shop scheduling problem, that is a multi-objective

optimization problem whose goal is to minimize both overall completion time and global

energy consumption. It employs stochastic local search techniques. We address a similar

problem in our framework for multi-processor scheduling systems. Instead of execution

modes and machines switch-o�, the con�guration options that we study are assignments

of tasks to processors and we use statistical model-checking combined with the ANOVA

technique to estimate energy cost and response time.

There also exists approaches that perform scheduling via timeline-based planning.

The work of [CMR17] proposes such an approach and uses timed game automata (timed

automata with controllable and uncontrollable actions) to �nd strategies for the timeline-

based planning problem. Timed games and satis�ability modulo theory are also used in

[CMR16] to solve control problems with temporal constraints. Our model-based approach

is also based on extensions of timed automata but we mostly rely on statistical model-

checking for �nding solutions to the scheduling problems. This allows us to consider more

complex scheduling systems, with sporadic tasks, hierarchical scheduling or energy con-

straints, that would not be solvable using exhaustive techniques such as model-checking

or timed games.

Another work presented in [CFO+11] uses a logic-based approaches. The planning

problem is encoded in a high level action notation modeling language [SFC08] and then

86

Energy Consumption For Multi-Processor Scheduling Systems

translated into linear temporal logic modulo rational arithmetic formula. In our work,

we introduce new high level graphical notations for complex scheduling problems. These

notations are speci�c to the scheduling framework being studied (either hierarchical or

multi-processor scheduling systems). These domain-speci�c notations allow to have a

simpler and more accurate description of a scheduling system than using existing for-

malisms. Moreover we can rely on the tool generator Cinco for easily generating a

domain-speci�c tool that implements a graphical editor for these notations.

5.2 Formalisation

To formalize multi-processor scheduling systems with energy resources, we use formal

models presented in Section. 2.5.1, and we extend formal models to take into account

the energy consumption.

Adding energy to our timed automata models requires to extend the models with

continuous variables and costs, using priced timed automata and hybrid automata. For

measuring energy consumption we consider a multi-processor scheduling system with

processors of di�erent capabilities (frequencies). Based on CMOS technology, the power

consumption is dominated by dynamic power dissipation Pd when the processor is used

by some task, given by the following formula:

Pd = C ∗ V 2 ∗ f

where C is the capacitance, V the voltage and f the frequency. The processor speed is

almost linear to the voltage:

f = k · V − Vt
V

where k is a constant and Vt is the threshold voltage. We therefore get an approximated

power consumption:

Pd = k′ ∗ f3

k′ being a constant (C ∗ k). In our study we want to compare di�erent con�gurations of

the system according to the trade-o� between speed (higher frequency) and energy con-

sumption (lower frequency). We will therefore consider that the di�erent con�gurations

have the same constant characteristics by setting k′ = 1 and only compare the energy

consumption using the formula:

Pd = f3

Then, our formal models for multi-processor scheduling systems de�ne a set of pro-

87

Energy Consumption For Multi-Processor Scheduling Systems

cessors, each having a frequency and its own scheduler. Processors can use di�erent

scheduling algorithms. Tasks are statically assigned to one processor.

To measure the energy consumption of the system, we add to our formal models

a simple PTA. It de�nes a cost variable energy whose rate is energy'=totalPow, where

totalPow is the power of all the running processors. If we increase the speed of a processor

(the frequency f) we increase the energy consumption, but in return the task using the

processor can run faster. We take this into account in our task model. The stopwatch

clock t_et[tid] becomes a continuous variable that progresses at a rate t_et[tid]'=f , where

f is the frequency of the processor that executes the task.

5.3 Scheduling Problems

In this section we present the di�erent problems that we want to solve on scheduling

systems.

Problem 1: Correctness and performance To analyze the correctness of multi-

processor scheduling systems, we evaluate the properties presented in Section 4.2, i.e.

(absence of deadlock, schedulability, and maximum response time), and additionally we

evaluate energy consumption property:

Energy consumption: We measure the average and maximum energy consumed

by the system over a period of time.

Problem 2: Optimization, Con�guration We consider a multi-processor system,

with CPUs having di�erent frequencies, and a set of real-time tasks. Our goal is to assign

each task to a CPU. Then we evaluate the con�gurations of the scheduling system in

terms of schedulability, response time and energy consumption.

Problem 3: Change detection We now want to monitor our scheduling system in

order to detect emerging behaviors or an expecting event. We consider a property of the

system, based on the measures presented in Problem 1, e.g., the energy is always lower

than a given value. We consider our system as a stochastic process and we evaluate the

property at regular steps during an execution. This allows us to compute at runtime the

probability to satisfy the property. Then, our goal is to detect an abrupt variation of

this probability, which will be the sign that some event happened.

Formally, let S be a set of states and T ⊆ R be a timed domain. A stochastic process

(S, T) is a family of random variables X = {Xt | t ∈ T}, each Xt having range S. An

88

Energy Consumption For Multi-Processor Scheduling Systems

execution of the stochastic process is any sequence of observations {xt ∈ S | t ∈ T} of
the random variables Xt ∈ X . It can be represented as a sequence π = (s0, t0), (s1, t1),

. . . , (sn, tn), such that si ∈ S and ti ∈ T , with time stamps monotonically increasing,

e.g. ti < ti+1. Let 0 ≤ i ≤ n, we denote πi = (si, ti), . . . , (sn, tn) the su�x of π starting

at position i.

Let ϕ be a property that can be evaluated to true or false on an execution. We

consider a sequence of Bernoulli variables Yi such that Yi = 1 i� πi |= ϕ. We de�ne that

the execution π satis�es a change τ = Pr[π |= ϕ] ≥ pchange, where pchange ∈]0, 1[, i�

Pr[Yi = 1]<pchange for ti < t and Pr[Yi = 1]≥pchange for ti ≥ t. The �rst time ti when

this is detected it is the time of change.

Consider for instance a stochastic scheduling system as presented previously. We can

evaluate at regular time intervals the probability that the energy consumption during

the time interval exceeds a given value. This probability may change at runtime if the

load of the scheduling system changes, because for instance some new tasks have been

added. With change detection we would like to raise an alarm when the change occurs.

5.4 Methods

In this section we detail the techniques we used to solve the problems presented in

Section. 5.3.

5.4.1 Checking Correctness and Evaluating Performances with MC

and SMC

To solve the �rst three problems,i.e (Absence of deadlock, Schedulability, and Maximum

Response Time), we use the same techniques presented in Section. 4.4.1.

Energy consumption We �rst measure the average energy consumed over a period

of time. We use the following query:

E[<= runTime;nbSim](max: PlatformEnergy.energy)

PlatformEnergy is the PTAthat measures the energy using a cost variable energy. Uppaal

SMC runs nbSim simulations of runTime t.u. and it computes the average value of the

energy at the end of these simulations.

We can also check if the energy is always lower than a maximum value. We use the

89

Energy Consumption For Multi-Processor Scheduling Systems

following probabilistic BLTL formula:

Pr[<= runTime]([] PlatformEnergy.energy <= maxEnergy)

where runTime is the time length for the simulations and maxEnergy is an energy bound.

With Uppaal SMC we compute the probability that the property is satis�ed.

5.4.2 Optimization of a Multi-processor Scheduling System with ANOVA

We consider a set of CPUs, C = (CPU1, CPU2, . . . , CPUk) and a set of real-time tasks

T = (T1, T2, . . . , Tl). A multi-processor scheduling system is con�gured by specifying a

mapping γ : T 7→ C.
For each possible mapping, we would like to evaluate �rst, if the system is schedulable,

and second, the average energy consumption and/or the maximum response time of a

task Ti ∈ T . The Uppaal query that we use to evaluate the energy consumption is:

ϕe = simulate nbSim[<= runTime]{PlatformEnergy.energy} : 1 : false

and to evaluate the maximum response time of a task with id i:

ϕt = simulate nbSim[<= runTime]{max_resp[i] } : 1 : false

Finally we would like to compare the di�erent con�gurations in order to select a

schedulable con�guration that has a minimum energy consumption and/or a minimum

response time. If we want to achieve both objectives we are faced with a multi-objective

optimisation problem. A simple solution would be to analyze each con�guration with

SMC experiments in order to compute values for the energy consumption and the re-

sponse time. However this requires a lot of simulations per con�guration to be able to

compare them, as the con�dence intervals should not overlap. Fortunately, there ex-

ists a more e�cient statistical technique to solve this problem that is called analysis of

variance (ANOVA). The test has already been used to perform optimisation with SMC

[DDGL+13]. We propose in this chapter new algorithms based on this test.

ANOVA is a statistical test used to compare several probability distributions. We

use it in a single factor con�guration with a �xed e�ects model, as presented in [Mon06].

We have k treatments of a single factor (the system con�guration de�ned by a mapping

γ) that we wish to compare. For each 1 ≤ i ≤ k, the observed response for treatment i is

a random variable Xi (the energy or response time) for which we draw n random values

90

Energy Consumption For Multi-Processor Scheduling Systems

xi,1, . . . , xi,n (computed by running n simulations of the system using the mapping γi
and a property ϕe or ϕt). We denote Xi the mean of the random variable Xi and X

the total mean all the values. ANOVA tests the null hypothesis that all the means of

the treatments are equal, against the alternative hypothesis that at least two treatments

have di�erent means.

ANOVA is based on a comparison between the variability observed between the treat-

ments and the variability observed within the treatments using the following F-value:

F =
1/(k − 1)

∑k
i=1(Xi −X)2

1/(n− k)
∑k

i=1

∑n
j=1(Xi,j −Xi)2

If the null hypothesis is true this F-value should follow a F-distribution de�ned by the

degrees of freedom of the experiment, that are k − 1 and n − k. To determine if the

null hypothesis holds a classical hypothesis testing solution is to compute the P-value

of the test. The P-value is the probability of observing a more extreme F-value than

the actual result. It corresponds to the area under the probability density function of

the distribution greater than the F-value, as shown in Figure. 5.1. Therefore, the lower

the P-value, the lower the probability that the F-value computed actually follows the F-

distribution, and consequently the more likely the null hypothesis should be rejected. To

make a decision we compare this P-value to a con�dence level α, for instance α = 0.05

for a 95% con�dence. If P-value ≤ α then the null hypothesis is rejected, i.e. some

treatments have di�erent means, with a 5% chance of making a Type I error.

Figure 5.1 � F-distribution example with the p-value computed for F=2.23.

Tukey HSD If ANOVA shows that the means of the treatments are signi�cantly

di�erent, then we would like to determine which treatments di�er in order to compare

them. In [DDGL+13] the test was used with treatments that are continuous variables

(temperature thresholds). In their context, using ANOVA alone, the authors were able

to valid a linear regression over the continuous variables in order to optimize the system

91

Energy Consumption For Multi-Processor Scheduling Systems

In our context, the treatments (the di�erent mappings) cannot be compared directly

with ANOVA. The result of the test is only that at least two treatments di�er, but we do

not know which ones. Therefore we need an additional test to compare the treatments.

This cannot simply be done by a series of pairwise T-test, as it would greatly increase

the likelihood of false positive.

There exists however a multiple comparison test called Tukey HSD (Tukey's Honest

Signi�cant Di�erence test) that compares the means of every treatments to the means of

every other treatment. It computes the pairwise di�erences Xi −Xj with a con�dence

interval. If the endpoints of the con�dence interval have the same sign (both positive

or both are negative), then 0 is not in the interval and we conclude that the means are

di�erent. If the endpoints of the con�dence interval have opposite signs, then 0 is in the

interval and we cannot determine whether the means are equal or di�erent. Tukey HSD

is based on a studentized range distribution. As for the ANOVA test, each comparison

of the Tukey test can be associated to a P-value to measure the level of signi�cance.

Note that if the number of mappings is reduced to two, then Tukey HSD should be

replaced by a T-test.

Algorithms Using the two statistical tests previously presented, we propose two new

algorithms to optimize multi-processor scheduling systems. The algorithms determine

dynamically the number of simulations needed to compare the means of energy con-

sumption and/or response time with a su�cient con�dence. Algorithm 1 has a single

objective (minimizing the energy consumption or the response time), while Algorithm 2

considers both objectives simultaneously.

In these algorithms Simulate is a function that performs n simulation of a mapping

γ and computes the values speci�ed in the property ϕ (e.g. energy consumption or

the response time). RunANOVA runs the ANOVA test on the simulations to determine

if the mappings values are signi�cantly di�erent. It returns the P-value of the test.

RunTukeyHSDSingle runs the Tukey HSD test on the simulations and determines the

best mappings, which can be a single mapping, or a set of mappings that cannot be

distinguished because there is not enough signi�cance, or because they have the same

probability distributions. RunTukeyHSDMulti runs the Tukey HSD test and returns True

if all the di�erences have either a signi�cant di�erence (P-value ≤ α) or are equal (P-

value ≥ 1−α). ComputeMeans computes the means of the values for each mapping given

in parameter over all the simulations of the mapping.

Finally we are able to select the �best� con�gurations. Let (γ1, γ2, . . . , γn) be the

set of schedulable con�gurations. We denote energy(γi) the average energy consumed

92

Energy Consumption For Multi-Processor Scheduling Systems

Algorithm 1: Single objective multiprocessor optimization
Input:

Γ: list of mappings
n: initial number of simulations
α: con�dence level
ϕ ∈ {ϕe, ϕt}: simulation property.

Output:
bestMappings: set of mappings with minimum energy consumption or
response time.
min: minimum mean of energy consumption or response time.

Let conf be a Boolean, initialised conf ← False
bestMappings← Γ
foreach γ ∈ Γ do

Let simulations[γ] be the set of simulations of the mapping γ, initially
empty.

while not conf do
foreach γ ∈ bestMappings do

simulations[γ]← simulations[γ] ∪ Simulate(γ, n, ϕ)

P-value← RunANOVA(simulations)
if P-value ≥ 1− α then

conf ← True

if P-value ≤ α then
bestMappings← RunTukeyHSDSingle(simulations, α)
if |bestMappings| = 1 then

conf ← True

foreach γ ∈ Γ \ bestMappings do
Remove simulations[γ] from simulations

min← Min(ComputeMeans(simulations, bestMappings))

93

Energy Consumption For Multi-Processor Scheduling Systems

Algorithm 2: Multi-objectives multiprocessor optimization
Input:

Γ: list of mappings
n: initial number of simulations
α: con�dence level
ϕe, ϕt: simulation properties

Output:
means_e,means_t: means of energy consumption and response time for
each mapping

Let conf_e and conf_t be Booleans, initialised conf_e← False and
conf_t← False
foreach γ ∈ Γ do

Let simulations_e[γ] be the measures of energy consumption of the
mapping γ, initially empty.
Let simulations_t[γ] be the measures of response time of the mapping γ,
initially empty.

while not conf_e or not conf_t do
if not conf_e then

foreach γ ∈ Γ do
simulations_e[γ]← simulations_e[γ] ∪ Simulate(γ, n, ϕe)

P-value ← RunANOVA(simulations_e)
if P-value ≥ 1− α then

conf_e← True

if P-value ≤ α then
conf_e← RunTukeyHSDMulti(simulations_e, α)

if not conf_t then
foreach γ ∈ Γ do

simulations_t[γ]← simulations_t[γ] ∪ Simulate(γ, n, ϕt)

P-value ← RunANOVA(simulations_t)
if P-value ≥ 1− α then

conf_t← True

if P-value ≤ α then
conf_t← RunTukeyHSDMulti(simulations_t, α)

means_e← ComputeMeans(simulations_e,Γ)
means_t← ComputeMeans(simulations_t,Γ)

94

Energy Consumption For Multi-Processor Scheduling Systems

over a �xed period of time and resp(γi) the maximum response time of one task. If

we consider only one objective we select the con�guration with the minimum estimated

value for energy(γi) or resp(γi). If we consider both objectives simultaneously we should

select a con�guration that is Pareto-e�cient. Formally, a con�guration γi is Pareto-

e�cient if there exists no other con�guration γj such that energy(γj) ≤ energy(γi) and

resp(γj) ≤ resp(γi). We can plot the results on a graph and draw a Pareto-e�ciency curve

that links the Pareto-e�cient con�gurations.

We consider that Algorithm 2 produces the results given in the graph shown in

Figure. 5.2, with values energy and resp for a set of con�gurations from A to F. Con-

�gurations A to D are Pareto-e�cient. Con�guration E is not Pareto-e�cient because

energy(C) < energy(E) and resp(C) < resp(E). Similarly, con�guration F is no Pareto-

e�cient because resp(B) < resp(F) and energy(B) = energy(F).

0 1 2 3 4 5
0

1

2

3

4

5

energy

re
sp

A

B C
D

E
F

Figure 5.2 � Pareto-e�ciency curve

5.4.3 Change Detection with CUSUM

CUSUM [Pag54, BN93] is a statistical algorithm used for monitoring change detection.

The principle is to monitor the evolution of a probability measure at successive positions

during a single execution of the system. The algorithm then detects the position where it

drastically changes from original expectation. We have previously adopted the CUSUM

algorithm to monitor a BLTL property over an execution trace of a stochastic process and

to detect the position in the trace when the probability to satisfy the property changes

signi�cantly [LT16].

Let π = (s0, t0), (s1, t1), . . . , (sn, tn) be an execution of the stochastic process and

ϕ a BLTL property to monitor during this execution. As de�ned in Problem 3, Yi are

Bernoulli variables such that Yi = 1 i� πi |= ϕ. We note pk = Pr[Yi = 1|i <= k] the

probability of satisfying ϕ from (s0, t0) to the state (sk, tk). CUSUM will decide between

95

Energy Consumption For Multi-Processor Scheduling Systems

the two following hypothesis:

� H0 : ∀ k, 0 ≤ k ≤ n, pk < pchange, i.e., no change occurs.

� H1 : ∃ l, 0 ≤ l ≤ n such that the change occurs at time tl: ∀k, 0 ≤ k ≤ n, we

have tk < tl =⇒ pk < pchange and tk ≥ tl =⇒ pk ≥ pchange.

We assume that we know the initial probability pinit < pchange of Pr[π |= ϕ] before

the change occurs. One solution is to estimate this probability with the Monte Carlo

algorithm using an ideal version of the system in which no change occurs.

Like the Sequential Probability Ratio Test (SPRT) [Wal45], the CUSUM comparison

is based on a likelihood-ratio test: it consists in computing the cumulative sum Sk of the

logarithm of the likelihood-ratios si over the sequence of samples Y1, . . .Yk. The change

is detected as soon as Sk satis�es a stopping rule.

Sk =
∑k

i=1 si si =

ln

pchange

pinit
, if Xi = 1

ln
1−pchange

1−pinit
, otherwise

The typical behavior of the cumulative sum Sk is a global decreasing before the

change, and a sharp increase after the change. Then the stopping rules purpose is to

detect when the positive drift is su�ciently relevant to detect the change. It consists

in saving mk = min1≤i≤k Si, the minimal value of CUSUM, and comparing it with the

current value. If the distance is su�ciently great, the stopping decision is taken, i.e., an

alarm is raised at a time ta = min{tk : Sk −mk ≥ λ}, where λ is a sensitivity threshold.

CUSUM Calibration

The e�ciency of the CUSUM algorithm depends on several parameters. First, it is

important to note that the likelihood-ratio test assumes that the considered samples

are independent. This assumption may be di�cult to ensure over a single execution

of a system, but heuristic solutions exist to guarantee independence. One of them is

to introduce delays between the samples. In that case Monte Carlo SMC analysis can

evaluate the correlation between the samples, and help to select appropriate delays.

Second, the CUSUM sensitivity depends on the choice of the threshold λ. A smaller

value increases the sensitivity, i.e., the false alarms rate. A false alarm is a change

detection at a time when no relevant event actually occurs in the system. Conversely,

big values may delay the detection of the change. The false alarms rate of CUSUM is

96

Energy Consumption For Multi-Processor Scheduling Systems

de�ned as E[ta], the expected time of an alarm raised by CUSUM while the system is

still running before the change occurs. Ideally, this value must be the biggest as possible

(E[ta] → +∞). The detection delay is de�ned as the expected time between the actual

change at time t and the alarm time ta raised by CUSUM (E[ta − t | t < ta]). Ideally,

this value has to be as small as possible.

To calibrate the sensitivity a solution is to use two versions of the model: one in

which the change never occurs and one in which it always occurs. Running the CUSUM

on the �rst model allows to determine the minimum sensitivity such that no detection

occurs. Then, the CUSUM is run on the second model to determine the detection delay.

5.5 High Level Framework

This section presents how to use the high-level domain-speci�c language presented in

Section. 3.5 in order to represent our high-level framework dedicated to the design and

analysis of the multi-processor scheduling systems with energy constraints.

5.5.1 High-Level Framework for Multi-Processor Scheduling Systems

For the design of CPS with multi-processor we consider a two-layer approach as proposed

in [KLL+15a]. The �rst layer models the hardware platform, with a scheduling system

composed of real-time tasks and CPUs. The second layer models the application that

is composed of a set of actions. The link between the two layers is implemented by a

mapping from actions to tasks, that speci�es for each action of the application on which

task it is intended to run. In our current framework this mapping is static and determined

before the execution.

This design allows a separation of concerns that facilitates the veri�cation of formal

properties:

� Scheduling properties are veri�ed on the platform layer only.

� Logical properties of the application are veri�ed on the application layer only.

� Energy consumption or execution time properties need to consider both layers

simultaneously.

We have implemented with Cinco a high-level framework that allows to design a

two-layer multi-processor scheduling system.

97

Energy Consumption For Multi-Processor Scheduling Systems

Platform Layer The platform layer is composed of a set of processors and a set of

real-time tasks. Each processor has its own scheduling mechanism and is parametrized

by its own frequency. The frequency de�nes the speed of the processor and its energy

consumption when running. Real-time tasks can be either hard real-time, with a deadline,

a period and execution times, or soft real-time, with only period and execution times.

Tasks are statically assigned to a processor. A model of a platform layer designed in

our framework is presented in Figure. 5.3. This model is translated into a set of timed

automata, using the models presented in Section ??.

Figure 5.3 � Platform layer with 2 processors, 3 hard real-time tasks and 1 soft real-time
task

Application Layer Applications running in CPS are unlimited, with no �xed design.

To demonstrate the use of our framework we consider a simple design methodology for

writing applications with stochastic behavior. Our application is composed of a set of

components. Each component consists in a sequence of actions. Each action has a delay

mechanism, implemented with either a uniform or an exponential probability distribu-

tion, and minimum and maximum execution time. Actions are also parametrized with an

energy consumption parameter (between [0, 1]) that de�nes how much power the action

will take from the CPU. The semantics of this language is to execute each component

in parallel by running their actions iteratively. A component that has completed its last

action will continue in a loop with the execution of the �rst action. An example of ap-

plication is presented in Figure. 5.4. These models are translated in a set of stochastic

timed automata.

Mapping between application and platform The mapping between the two layers

is done by linking each action of the application to a real-time task, as presented in

Figure. 5.5.

98

Energy Consumption For Multi-Processor Scheduling Systems

Figure 5.4 � Application layer with 3 components and 5 actions

Figure 5.5 � Mapping between application layer and platform layer

Queries: In this framework we consider di�erent type of queries, some of them associ-

ated to the platform and some of them associated to the application. On the platform

layer we verify schedulability queries and we determine optimal mapping between tasks

and processors with ANOVA, as presented in Section 5.4.2. On the application layer

we measure average energy consumption and we use CUSUM to detect changes in the

application behavior.

5.5.2 Implementation of the Framework and Tool Chain

To implement our domain-speci�c framework dedicated to the design and analysis of

multi-processor scheduling systems, we use the tool chain described in Section. 3.5.2. We

detail below the basic steps performed by our analysis programs to solve the di�erent

scheduling problems.

Optimisation of Multi-Processor Scheduling Systems We have implemented Al-

gorithms 1 and 2. Our program generates a set of Uppaal models, each corresponding

to a con�guration of the system with a mapping from tasks to processors. It then runs

the optimisation algorithm. This algorithm launches some simulations with Uppaal SMC

and extracts the numerical results. The results are written in some temporary �les. that

99

Energy Consumption For Multi-Processor Scheduling Systems

are analysed with the statistical tool R to perform the RunANOVA, RunTukeyHSDSingle,

RunTukeyHSDMulti and ComputeMeans procedures. According to the results the program

determines if more simulations are needed, or outputs the result.

For the single objective problem the program directly shows the optimal mapping by

drawing it on the interface using the transformation API of Cinco.

For the multi-objectives problem the program opens a pop-up window and draws into

the Pareto diagram. This window allows to select one of the Pareto-e�cient mapping

that is then drawn on the interface.

Change detection The program that performs change detection implements the CUSUM

algorithm. It �rst generates the Uppaal model and it will run the CUSUM algorithm on

this model several times. For each execution, it generates with Uppaal SMC a simulation

trace that corresponds to the total length of the experiment. It then splits this execu-

tion into a set of samples and it analyses each sample to evaluate the query and update

the CUSUM ratio. If the value of ratio exceeds the sensitivity threshold it outputs a

detection with the detection time in a pop-up window.

5.6 Experiments

This section presents an example of a multi-processor scheduling system designed and

analyzed in our framework. We �rst describe the model and then we present the experi-

ments performed in our framework to solve the problems presented in Section 5.4.

5.6.1 Example

The proposed example is composed of two layers, following the modeling framework

presented in Section 5.5, a Platform layer and an Application layer.

The Platform Layer is composed of 3 periodic hard real-time tasks and 2 processors.

The tasks parameters are con�gured according to the following order: Task(period,deadline,

bcet,wcet,priority), and are respectively T1(10, 10, 3, 4, 9), T2(20, 20, 5, 6, 8) and T3(30, 30, 6, 8, 7).

The 2 processors are P1, with a 1.5 MHz frequency and a FP scheduling policy,and P2,

with a 1.0 MHz frequency and an EDF scheduling policy. We initially distribute T1 and

T2 on processor P1, while T3 is running alone on processor P2.

The Application Layer consists of 3 components, each composed of a succession

of actions as presented in Figure. 5.6. Component C1 is composed of actions A1, A2

100

Energy Consumption For Multi-Processor Scheduling Systems

Figure 5.6 � Application layer of our case-study model

and A3, whose execution time is respectively 4, 3, 5. These actions are executed on

task T1. Component C2 is composed of actions A4, A5 and A6, whose execution time is

respectively 4, 5, 5. These actions are executed on task T2. Component C3 is composed

of actions A7 and A8, whose execution time is respectively 5 and 6. These actions are

executed on task T3.

Each action has an energy parameter that de�nes how much energy it takes when

running on a processor, with a maximum value of 1 meaning that it takes the full power

of the processor.

Finally, random delays with uniform distributions are set between the execution of

each actions. As explained in Section 5.5 the execution of each component is cyclic:

it runs sequentially each action, and then starts again at the �rst action. Action A8

is additionally delayed, such that is starts only after 50 or 100 executions of action A7.

Using the change detection problem and CUSUM we will try in our experiments to detect

the beginning of execution of this action.

5.6.2 Checking Correctness and Evaluating Performances

Experiments Using SMC we perform the following experiments on the initial model:

1. Schedulability analysis.

2. Measure of energy consumption, considering the platform only and both the plat-

form and the application.

3. Measure of the maximum response time for each task.

We use 100 simulations and a runtime of 60 t.u. This runtime allows to execute the

model over the smallest common multiple of the periods of our tasks (the hyper-period).

101

Energy Consumption For Multi-Processor Scheduling Systems

Results The results of these experiments are presented in Table 5.1. We give for each

result the time taken by the analysis. If the result is a measure we give its estimated

value and the con�dence interval that corresponds to the SMC analysis.

Analysis Result Time (s)
Schedulability True 4.47

Energy consumption (platform) 69.408± 0.46 1
Energy consumption (application) 37.69± 0.72 4.2
Maximum response time of T1 3.86± 0.025 3.8
Maximum response time of T2 9.36± 0.055 3.78
Maximum response time of T3 4.89± 0.061 3.78

Table 5.1 � Correctness and performances analyzed with Uppaal SMC

5.6.3 Optimization with ANOVA

Experiment This second experiment consists in �nding optimal mappings between

tasks and processors, such that the system is schedulable and has optimal performances.

Therefore we start by removing in our model the mapping used in the previous section.

Then we use the ANOVA method with the multi-objectives Algorithm 2 proposed in Sec-

tion 5.4.2. Our two objectives are to minimize the energy consumption of the scheduling

system and the maximum response time of one of the tasks. The result is a Pareto

e�ciency diagram.

For this experiment we will use SMC with 100 simulations to determine schedulability,

and Algorithm 2 with ANOVA and Tukey HSD techniques with a 95% con�dence.

Results Table 5.2 presents the results of executing Algorithm 2. We perform 3 execu-

tions of the algorithm (Exec. 1, Exec. 2 and Exec. 3) that are di�erentiated according

to the task for which we want to minimize the maximum response time. One execution

takes approximately 40 seconds. We determine that there are 8 mappings schedulable,

simply named mapping-i with i from 1 to 8. Then for each execution we give in column E

the energy consumption of the processors, and in column t(Ti) the maximum response

time of a task Ti.
Let us now consider that task T2 is our critical task for which we want to minimize

the maximum response time. From the results given in columns 4 and 5 we can plot in

our framework a Pareto diagram in a pop-up window, as shown in Fig. 5.7. From this

window we can select one of the Pareto-e�cient mapping that will then be automatically

102

Energy Consumption For Multi-Processor Scheduling Systems

Exec. 1 Exec. 2 Exec. 3
Mapping

E t(T1) E t(T2) E t(T3)
mapping-1 98.1 2.57 98.1 6.21 97.8 7.15
mapping-2 115 2.58 115 6.24 115 11.7
mapping-3 77.2 2.57 77.3 5.74 77.5 12.2
mapping-4 95.3 2.57 95.1 5.76 94.9 7.18
mapping-5 70.1 3.81 70.2 3.58 70.1 9.99
mapping-6 88.5 3.80 88.5 3.74 88.8 8.29
mapping-7 50.9 3.87 50.8 9.34 50.7 19.3
mapping-8 69 3.86 68.7 9.33 69.2 4.91

Table 5.2 � Optimization of the mapping between tasks and processors according to
energy consumption and maximum response time of tasks T1, T2 or T3

applied to the model.

Figure 5.7 � Pareto E�ciency diagram for optimizing energy consumption and maximum
response time of task T2

5.6.4 Change Detection with CUSUM

Experiment In our third experiment we analyze each of the 4 optimal mappings found

in the previous experiment and shown in Fig. 5.7. We use the CUSUM algorithm pre-

sented in Section 5.4.3 to detect the beginning of execution of action A8. While action

A7 that precedes A8 consumes only 80% of the CPU power, A8 when it starts consuming

the full power. This di�erence should increase the probability that the maximum energy

103

Energy Consumption For Multi-Processor Scheduling Systems

consumption during a sample exceeds a given level. We consider a sample time of 60 time

units, that corresponds to the hyper-period of the executing platform. We will observe

at each sample of an execution the probability to exceed the maximum energy consump-

tion. This probability should raise when action A8 starts executing. We will monitor the

variation of this probability during an execution of 300 samples, i.e. 18'000 time units.

The CUSUM algorithm detect a change of probability and measure the detection time.

We repeat the CUSUM 100 times and we compute the detection time as the average

detection time over all the execution of the CUSUM.

To con�gure the CUSUM algorithm we �rst need to determine the initial probability.

In this example we choose to estimate this probability by executing the optimal model,

that is the model without action A8 that provokes the change. The second parameter

that we need to con�gure is the deviation from the initial probability when the change

occurred. This parameter is estimated by computed the energy consumption on a model

in which that action is already running at the beginning of the execution.

After �xing these two parameters, we proceed to the calibration of the CUSUM

algorithm. This step consists in computing the sensitivity threshold λ. It is done by

executing CUSUM on the optimal model, without the action responsible for the change,

and using the initial probability and the deviation computed before. The threshold λ

will be the minimal value such that no detection is observed for all simulations.

Results We run CUSUM on the set of Pareto-e�cient mappings of Figure. 5.2. The

analysis of one model takes approximately 20 minutes. The results for each mapping are

presented in the following tables. In these tables, the �rst column (Energy) is the energy

level used for the detection, the second column (Init. prob.) is the initial probability,

the third column (Deviat.) is the probability deviation, the fourth column (λ) is the

sensitivity threshold λ, the �fth and sixth columns (T.Detect) are the detection times,

in the cases when action A8 starts after 50 or 100 executions of A7.

Table 5.3 presents the results obtained for mapping-6, that executes T1 on processor

P1 and T2, T3 on processor P2. With this mapping we can measure experimentally with

Uppaal that action A8 starts after approximately 1470 t.u. when its start parameter is

50, and 2950 t.u. when its start parameter is 100.

Table 5.4 presents the results obtained for mapping-5, such that T1 and T3 are executed

on processor P1, and T2 is executed on processor P2. In this mapping action A8 begins

after approximately 1480 t.u. for a start of 50, and 2970 t.u. for a start of 100.

The third mapping is mapping-8 such that T1 and T2 executes on P1 and T3 executes

on P2. The results are presented in Table 5.5. In this mapping action A8 begins after

104

Energy Consumption For Multi-Processor Scheduling Systems

Energy Init. Deviat. λ T. Detect T. Detect
prob. (50) (100)

48 0.665 0.27 7.2 2745 4282
50 0.227 0.432 7.4 2278 3814
52 0.042 0.215 8.4 3109 4396

Table 5.3 � Change detection results for mapping-6

Energy Init. Deviat. λ T. Detect T. Detect
prob. (50) (100)

44 0.867 0.059 5.3 7277 8646
46 0.492 0.255 5.4 9381 9546
48 0.135 0.124 5.5 4961 6425
50 0.026 0.03 5.7 10725 11761

Table 5.4 � Change detection results for mapping-5

approximately 1510 t.u. for start of 50, and after approximately 3010 t.u. for a start of

100.

Energy Init. Deviat. λ T. Detect T. Detect
prob. (50) (100)

39 0.48 0.475 9.0 2362 3851
41 0.289 0.518 4.7 1932 3416
43 0.118 0.489 7.0 2339 4004
45 0.033 0.271 8.0 2557 4070

Table 5.5 � Change detection results for mapping-8

The last Pareto-e�cient mapping is mapping-7 that executes all tasks on P1. Results

for this mapping are presented in Table. 5.6. In this mapping the action A8 begins after

approximately 1480 t.u.for start of 50, and after approximately 2980 t.u. for a start of

100.

Energy Init. Deviat. λ T. Detect T. Detect
prob. (50) (100)

23 0.976 0.013 4.0 3687 3714
25 0.832 0.067 20.8 16211 16730
27 0.612 0.086 19.8 13067 13683
29 0.388 0.119 13.5 7379 8587
31 0.188 0.106 3.8 6836 8170
33 0.038 0.103 8.3 7348 8092

Table 5.6 � Change detection results for mapping-7

105

Energy Consumption For Multi-Processor Scheduling Systems

Discussion In these experiments, we are mainly interested in the detection delay, that

is the delay between the true occurrence of the event and its detection by our CUSUM

algorithm. Since our models are stochastic and our experiments are based on statistics

there is inevitably some variance in the results. First we have con�gured our algorithm

in order to limit to the minimum the occurrences of false alarms. As we can see in the

results there is no detection before the true occurrence of the event. There is however

some detection delay. Since our algorithm is based on the measure of energy consumption,

the event that we monitor (the start of action A8) needs some time to produce e�ects

on the energy consumption. Indeed the change produced by this event is quite subtle

(a change from 80% CPU power to 100% CPU power, when the action is running).

Nevertheless the algorithm always manages to raise a detection.

Looking more closely at the results from the di�erent mappings, we can observe that

the best results are obtained from mapping-8, a model in which action A8 (that runs on

task T3) is executed alone on processor P2. This result can be explained by the fact

that A8 running alone on P2 is not perturbed by the preemption from other tasks, and

therefore tends to produce more deterministic e�ects on the energy consumption. In

Table. 5.2 we can see that mapping-8 also provides the best maximum response time for

task T3.

106

Chapter 6

Information Leakage

High-security processes have to load con�dential information into shared resources as part

of their operation. This con�dential information may be leaked (directly or indirectly)

to low-security processes via the shared resource. In this chapter, we consider leakage

from high-security to low-security processes from the perspective of scheduling. The

work�ow model is here extended to support preemption, security levels, and leakage.

Formalization of leakage properties is then built upon this extended model, allowing

formal reasoning about the security of schedulers. Several heuristics are presented in

the form of compositional preprocessors and postprocessors as part of a more general

scheduling approach. The e�ectiveness of these heuristics is evaluated experimentally, it

shows signi�cantly better schedulability than the state of the art. Modeling of leakage

from cache attacks is presented as a case study.

Key Contributions. The key contributions in this chapter are as follows:

� Amodel to reason quantitatively on the amount of information leaked by scheduling

tasks with di�erent security levels on a shared resource system.

� A scheduling approach with compositional and specialized pre- and postprocessors

that schedule tasks while reducing the amount of con�dential information leaked.

� Several heuristic pre- and postprocessing algorithms that can reduce leakage.

� Experimental evaluation of the combinations of the pre- and postprocessors, show-

ing that the approach provides signi�cantly better schedulability and lower infor-

mation leakage than the state of the art.

107

Information Leakage

� A case study showing how to adapt the model to other scenarios and kinds of

leakage, demonstrated with cache attacks.

6.1 Introduction

This chapter considers a shared resource system where processes are classi�ed as either

high-security or low-security. High-security processes work with con�dential information

that should not be leaked to low-security processes. Typically, this includes loading

con�dential information into memory for use within high-security processes. Examples

of such con�dential information include encryption keys, medical data, and bank details.

This con�dential information may be vital to the operation of the high-security processes,

but must also be tightly controlled and not be leaked to low-security processes. For

instance, in an embedded sensor, high-security encryption processes handle encryption

keys that must not be leaked to low-security data compression processes.

Example Consider the small example in Figure 6.1, written in Intel x86-64 assembly

code for Linux compiled to ELF format1. There are two processes: Process 1 doing some

(trivial) encryption operations, and Process 2 attempting to access the encryption key.

Process 1 takes a key $KEY and a message $MSG then encrypts the message with the key

using an exclusive or XOR operation. The result is then output to the disk (represented

by $DISK1). Process 2 writes to a di�erent disk location (represented by $DISK2) the

content of register r13. It is clear that if Process 2 is executed after the �rst operation

and before the fourth operation of Process 1, then the value of the key is directly leaked.

However, high-security processes may not properly �ush con�dential information from

the shared resource, or context switching may interrupt their execution before such �ush-

ing can be applied. Consequently, con�dential information remaining in the shared re-

source becomes (directly or indirectly) available to low-security processes.

If a scheduler is aware of a process' access level, then the scheduler can take ac-

tions to prevent con�dential information being leaked to low-security processes. Recent

work [MYPB14, PPY+15] has explored these kinds of problems in a real-time setting

by scheduling a complete resource (memory) �ush after any high-security process that

is followed by a low-security process. However, this provides only limited options to the

scheduler since such a complete resource �ush is expensive and may prevent real-time

1Technical details for X86-64 (https://software.intel.com/sites/default/�les/article/402129/mpx-
linux64-abi.pdf) and ELF initialization (http://lxr.linux.no/linux+v3.2.4/arch/ia64/include/asm/elf.h).

108

Information Leakage

; Process 1:

mov r13,$KEY ; load key to register r13

mov r14,$MSG ; load message to register r14

xor r14,r13 ; encrypt message with key

; using XOR, store result in r14

xor r13,r13 ; wipe value of key

out $DISK1,r14 ; output the ciphertext (r14)

; Process 2:

out $DISK2,r13 ; output r13 (may store the key)

Figure 6.1 � Example Processes with schedule-dependent con�dential information leak-
age.

tasks from meeting their deadlines. Furthermore, when �ushing is not possible, cur-

rent approaches do not quantify the information leakage, simply considering any leakage

unacceptable.

In this chapter we propose treating con�dentiality, measured by the resulting leakage

of secure information, as a quantitative resource that the scheduler can exploit. This

allows for a better quanti�cation of the resulting leakage in di�erent scenarios, as well

as having a clear measure of the cost of di�erent scheduling choices. Further, this allows

for the creation of schedulers that can make better scheduling choices and also respect

con�dential information leakage constraints.

We built our work upon the work�ow model commonly used to represent real-time

systems [BcRS13, Gra66, YMCS16]. In the work�ow model a set of tasks periodically

produces jobs that have to be scheduled to complete before deadlines.

The work�ow model is here extended by considering tasks to be composed of steps,

each of which has an execution time, leakage value, and security level. Each one of these

steps is implicitly an atomic sequence of actions that can be taken within a task without

preemption by the scheduler. Thus a task consists of an ordered sequence of steps to be

performed, that yields to the total behavior of the task.

6.2 Related Work

Real-time systems need to communicate with the outside world, such as receiving data

from sensors or communicating with other systems, sometimes over unsecured networks.

This communication has allowed attacks against even air-gapped industrial control sys-

tems [FMC11].

The real-time scheduling requirement itself can be exploited to generate additional

109

Information Leakage

vulnerabilities. For instance, a process can modulate its use of a resource to a�ect

the scheduling of another process, and use this to covertly transmit information [SA06,

SMD00].

Further vulnerabilities can occur in any system with shared resource. When processes

with di�erent security levels share the same memory resources, it is possible for low-

security processes to access con�dential information that should only be accessed by

high-security processes [MYPB14]. Using separated memories for processes with di�erent

security levels is expensive, particularly if the system has more than two security levels.

Mohan et al. [MYPB14] consider a shared memory scenario where low-security processes

executing after high-security processes could access the high-security processes' memory

space resulting in information leakage. To prevent this, they propose completely �ushing

the memory after the execution of high-security processes when followed by a low-security

process. In [PPY+15], Pellizzoni et al. generalize this work by introducing a binary

relation no-leak on tasks, where no-leak(Tx, Ty) holds if no leakage can occur from Tx
to Ty. The authors also determine the number of memory �ushes needed to enforce

the no-leak relation, and consequently construct a preemptivity-assignment scheduling

algorithm. This work proposes a more �ne-grained approach to con�dentiality in similar

scenarios.

Another less formal approach is that used in [VRS14] where they limit the time be-

tween preemptions between virtual machines in an online scheduling scenario to prevent

cache attacks. This could be analysed using the formal approach and methodology here,

albeit as a speci�c case study.

Formal analysis of scheduling system under resource constraints has been performed

by Kim et al. [KLL+15b, KLT+16b]. The proposed approach can be extended to con�-

dentiality as a resource using the model proposed in this chapter.

6.3 Model

The model here is based upon the work�ow model recalled in Section 1.3. The extension

here is to represent more precise information about the internal operations and preemp-

tivity of tasks by dividing them into steps. These steps include their own execution

time (like a task or job from the work�ow model), and are extended to include leak-

age value and security level. Special tasks are also added to model other operations of

the system.The rest of this section details this extended model and presents illustrative

examples that motivate the choices in this chapter.

110

Information Leakage

6.3.1 Concept

This section considers concepts and motivations behind our information leakage model.

In particular, the division of tasks into steps, how to account for leakage in practice, and

justi�cation for special tasks.

Steps. This model considers the possibility to divide tasks into �ne-grained steps. A step

represents an atomic sequence of operations that cannot be interrupted by preemption.

The practical implementation of steps depends on the architecture and granularity of the

scheduling system.

The model is agnostic to step implementation details as long as an execution time,

leakage value, and security level can be de�ned for each step. The most �ne-grained

approach would be to consider each CPU operation as a step. For instance, Process 1

in Figure 6.1 would be represented as a task divided into �ve steps. Thus, a task could

be preempted after each CPU operation. Although very simple, in practice this approach

is too �ne-grained. In lightweight and embedded systems it is common to delegate part

of the handling of preemption and atomicity to the programmer, so it is reasonable to

consider that the programmer itself could de�ne the steps.

Special Tasks. We consider two special tasks representing special system operations: �ush

and wait. The �ush task �ushes all con�dential information from the shared resource,

for instance by overwriting all shared memory with zeroes. This preserves compatibility

with the state of the art [MYPB14, PPY+15] where �ushing is used as the main tool to

preserve con�dentiality. The wait task represents idle processor time. Apart from the

obvious use, scheduling of idle time can impact con�dentiality of the system.

Leakage Values. The leakage value of a step represents the amount of con�dential infor-

mation that would be leaked to an attacker able to read the shared resource just after

the execution step. The model does not constrain the way the leakage value is obtained:

leakage can be added by the programmer as an annotation, computed by an automatic

tool [BLTW13, CMS14, CKN14, VEB+16], or possibly both.

For instance, the programmer could specify critical zones in which the program must

not be interrupted, and the leakage values would be computed automatically by a tool

(for both critical and non-critical zones).

An alternative, variable-based approach would be to have the programmer annotate

some variables as containing con�dential information at a certain point (and as cleared

111

Information Leakage

of con�dential information at a later point). Taint analysis can be used to identify which

variables are tainted at each point. Information leakage quanti�cation can be used to

quantify leakage from the tainted variables.

6.3.2 Formal Model

6.3.2.1 Steps, Tasks and Jobs

De�nition 6.1 (Step). Formally, each step is a tuple S(E,L,X) where E denotes the

(worst case) execution time that the step takes to be completed, L denotes its (potential)

leakage value, and X denotes its security level (either high > or low ⊥).

The (potential) leakage value L of a step S is a measure of the amount of con�dential

information left in a shared resource at the completion of S. Again, the exact meaning of

the leakage value is unimportant here. Here> indicates that the step contains con�dential

information and therefore is high-security. Similarly, ⊥ indicates that the step should

not have access to con�dential information and therefore is low-security. Since > and

⊥ are used to indicate whether the step has access to con�dential information, ⊥ steps

typically have leakage zero. This is not a strict requirement, see Section ??. The choice

of having two security levels here is to clearly illustrate the model, however the extension

to any number of security levels is straightforward.

Example For instance, consider Process 1 in Figure. 6.1. Each assembly instruction

can be represented by a single step with an execution time of one time unit and a security

level of >. The �rst three instructions have a leakage value of one, representing the fact

that one word of con�dential information (the key) is in the shared resource (in register

r13). However, the remaining instructions have a leakage value of zero since the fourth

instruction wipes r13.

The system operates with a set of tasks Γ = {Tα, Tβ, . . .}.

De�nition 6.2 (Task). Each task Tx ∈ Γ is a tuple Tx(Px, Dx, Ŝx) where Px is the

period of the task, Dx is its relative deadline, and Ŝx is a sequence of steps Sxa,Sxb, . . .
making up the ordered actions of the task.

Tasks are named with Greek letters, e.g. Tβ . Steps are named with the corresponding

tasks Greek letter and a Latin letter in alphabetical order, e.g. step Sβc represents the
third step of task Tβ .

112

Information Leakage

Example Observe that Process 1 in Figure 6.1 can be modeled by the following task:

Tα = T (Pα, Dα,Sαa(1, 1,>)

Sαb(1, 1,>)

Sαc(1, 1,>)

Sαd(1, 0,>)

Sαe(1, 0,>)) .

Similarly, Process 2 in Figure. 6.1 can be modeled by the following task:

Tβ = T (Pβ, Dβ,Sβa(1, 0,⊥)) .

De�nition 6.3 (Job). Each job τx,k is created by the activation of the task Tx at release
time Rx,k = (k − 1)Px for k ∈ N0, and is a tuple τx,k(Rx,k, Ax,k, Ŝx,k) where Ax,k =

Rx,k +Dx is the job's absolute deadline, and Ŝx,k is the sequence of steps inherited from

task Tx.

Jobs are named with the corresponding task's Greek letter and the number k, so job

τβ4 is the fourth job generated by task Tβ and step Sβ4c is the third step of job τβ4.

For simplicity, a task (resp. job) will be referred to as > or ⊥ when all steps within

that task (resp. job) are either > or ⊥, respectively.

Flush and Wait. The model uses a task to represent complete �ushing of the shared

resource. The �ush task is de�ned by TF (−,−,SF (EF , 0,>)) where EF is the execution

time to completely �ush the shared resource. Observe that after �ushing the shared

resource the leakage is reduced to zero. This is achieved by the single step SF (EF , 0,>)

that takes all the execution time of the �ush task and has a zero leakage value. Since

the �ush task is always available to be scheduled, it has no de�ned period or deadline

(denoted here as -), being able to schedule (or not) at whim. The security level of �ush

is > since it is acceptable for �ush to have access to con�dential information, and for use

in calculating the resulting leakage (see below). For simplicity and when no ambiguity

may occur, F is used for the �ush task or step.

To represent idle processor time, de�ne the wait task as TW(−,−,SW(1, ∗, ∗)) . Simi-

lar to �ush, wait is always available to be scheduled and has no period or deadline (again

denoted as -). Wait also has a single step that has the minimal runtime of one time unit.

However, the leakage value of wait is here denoted by ∗ since waiting does not change

113

Information Leakage

the shared resource, instead the ∗ denotes that the leakage value of a wait step is the

same as the previous step. Similarly, the security level is also represented by ∗ because
it is the same as the previous step. Again for simplicity and where no ambiguity may

occur, W may be used in place of the wait task or step.

6.3.2.2 Traces, Solutions, and Resulting Leakage

De�nition 6.4 (Trace). A trace S̃ = (S1(E1, L1, X1),S2(E2, L2, X2), . . .) is a (possibly

in�nite) sequence of n ∈ N ∪ {∞} steps that may come from any number of jobs.

In a trace, Step S1 starts execution at time t1 = 0, and each step Si for i > 1 starts

execution at time ti =
∑i−1

j=1Ej and terminates execution at time ti + Ei. The notation

S̃1++S̃2 is used to indicate concatenation of traces S̃1 and S̃2, and S̃ \ S1 the removal of

the step S1 from the trace S̃. The focus of this chapter is upon solutions.

De�nition 6.5 (Solution). A trace S̃ is a solution S if:

1. for each job τ(R,A, Ŝ):

(a) each step in Ŝ appears in the trace S̃ in the order that it appears in Ŝ;

(b) the �rst step of Ŝ does not start execution before R;

(c) the last step of Ŝ does not terminate execution after A;

2. each step that is not wait W or �ush F appears exactly once in the trace S̃.

Given a set of tasks Γ, a solution S is a solution for Γ, written SΓ, i� ∀Tx ∈ Γ, ∀k ∈ N0

then for each job τx,k(Rx,k, Ax,k, Ŝx,k) it holds that every step in Ŝx,k is in S.
A solution S is periodic if it periodically repeats the same sequence of steps up to

job indexing. For simplicity, a periodic solution may be represented by the periodically

repeated sequence alone.

Given a trace S̃ the resulting leakage L (S̃) of trace S̃ represents the total amount

of information leaked during the execution of the jobs scheduled according to S̃.

De�nition 6.6 (Resulting leakage). Given a trace S̃ composed of n steps with n ∈
N ∪ {∞}, the resulting leakage L (S̃) of the trace S̃ is de�ned inductively as follows:

� if n ≤ 1, then L (S̃) = 0;

� if n > 1 and the second step S2 of trace S̃ is >, then the resulting leakage is the

leakage of the trace without the �rst step S1: L (S̃) = L (S̃ \ S1) ;

114

Information Leakage

hyperperiod = 3

(a) Solution leaking information.

hyperperiod = 3

(b) Solution leaking no information.

hyperperiod = 6

(c) Solution with waiting.

Figure 6.2 � Periodic Solutions for Leakage between hyperperiods.

� if n > 1 and the second step S2 of trace S̃ is ⊥, then the resulting leakage is the

leakage of the trace without the �rst step S1 = S(E1, L1, X1) plus the leakage value

L1 of the �rst step S1: L (S̃) = L (S̃ \ S1) + L1 .

Since every solution S is a trace S̃, a solution resulting leakage L (S) is de�ned in

the same manner.

Example Recall the example from Figure 6.1. The solution in Figure 6.3a has resulting

leakage one, since Process 2 is executed when the key is in the shared resource and so

the step Sβa is able to access the key.

However, the solution in Figure 6.3b has resulting leakage is zero, since Process 2 is

executed after the key has been wiped from the shared resource.

If a solution is periodic, the periodic leakage can be calculated as follows. Given one

instance of the periodically repeated sequence of steps S̃ = (S1,S2, . . . ,Si), the periodic
leakage is the resulting leakage of the sequence S̃++S1.

115

Information Leakage

(a) Solution leaking information. (b) Solution leaking no information.

Figure 6.3 � Schedulings for the processes in Figure. 6.1.

6.3.3 Illustrating Examples

This section presents three examples illustrating the utility of the model. Each presents

a di�erent aspect of using the model to �nd solutions with good resulting leakage.

Periodic Leakage This example illustrates leakage due to the periodic nature of

tasks and how to account for this when scheduling. Consider two tasks: a > task

Tα(3, 3,Sαa(1, 0,>), Sαb(1, 4,>)) and a ⊥ task Tβ(3, 3,Sβa(1, 0,⊥)). The goal is to �nd

a solution with minimal (here zero) resulting leakage.

Two periodic solutions to these tasks are depicted in Figure 6.2a & 6.2b. Note that

the > step Sα1a has leakage value zero, so even if Sα1a is followed by the ⊥ step Sβ1a

this does not increase the resulting leakage. Thus both periodic solutions have a result-

ing leakage of zero within their periodically repeated sequence (here corresponding to

their hyperperiod). However, when the periodically repeated sequence is repeated, the

periodic solution in Figure 6.2a has non-zero periodic leakage, since at time four the >
step with leakage value four Sα1b is followed by the ⊥ step Sβ2a on periodic scheduling.

Hence, only the periodic solution in Figure. 6.2b has periodic leakage zero.

Waiting can Reduce Leakage This example illustrates the utility of making W
available to the scheduler. In some cases exploiting W reduces the resulting leakage

of a solution. Consider two tasks: a > task Tα(6, 5,Sαa(1, 0,>), Sαb(1, 4,>)) and a ⊥
task Tβ(3, 2,Sβa(1, 0,⊥)). Again the goal is to �nd a solution with the minimal (zero)

resulting leakage.

One periodic solution to this example with zero resulting leakage is presented in Fig-

ure 6.2c. The periodic solution exploits W to have the two ⊥ steps executed together

(with only W in between). This allows the > step Sα1b (with positive leakage value)

116

Information Leakage

hyperperiod = 24

Figure 6.4 � Hyperperiodic �ush.

to be scheduled after the last ⊥ step in the periodically repeated sequence (again corre-

sponding here to the hyperperiod) and still meet its deadline. Observe that since Sα2a

has zero leakage value, the periodic solution has zero periodic leakage. This periodic

solution with zero periodic leakage would not be possible if W was not available to be

scheduled at any time (in particular as an alternative to scheduling the step Sα1b), since

withoutW then Sα1b would be scheduled before Sβ2a and thus increase periodic leakage.

Periodic Flush Since �nding a solution for a set of tasks is generally best solved in

a periodic manner, it is possible to exploit this periodic nature when constructing the

solution. For example, the total amount of time units not used by jobs can be calculated,

and then these time units can be used to consider adding F . Typically, such free time

units would be fragmented inside the solution. However, with this information, the

scheduler can use su�ciently long empty spaces (or create them) to schedule F . Hence,
even if it may not be possible to �ush the memory after each > step followed by a ⊥
step, some additional F can be scheduled to reduce the solution's resulting leakage while

maintaining schedulability.

For example, consider two tasks: a> task Tα(8, 8,Sαa(1, 5,>), Sαb(1, 1,>), Sαc(1, 6,>),

Sαd(1, 4,>)) and a ⊥ task Tβ(3, 3,Sβa(1, 0,⊥)). Here let the execution time of F be two,

i.e. EF = 2. Consider the scheduling of the two tasks over their hyperperiod of twenty-

four time units (when developing periodic solutions, the hyperperiod is a convenient

choice since periodicity is guaranteed). A periodic solution can be seen in Figure 6.4.

No solution with resulting leakage zero exists. Further, it is not possible to schedule

the jobs by inserting an F after every > step followed by a ⊥ step since this would not be

schedulable (this is the state of the art as in [MYPB14]). However, the periodic solution

in Figure 6.4 achieves a low periodic leakage of three per hyperperiod while maintaining

schedulability by adding two F steps to minimize the periodic leakage.

117

Information Leakage

6.4 Problems

Information leakage (or just leakage) quanti�es the amount of privileged information

leaked (lost to an attacker) by a system, and is widely used to obtain a measure of the

(in) security of the system [KLT+16b, BLMW15, ACPS12, BKR09]. In our work, leakage

is used to measure the amount of privileged information that a high-security job leaves

in the shared memory at di�erent moments of its execution. We will consider the unit of

measure of leakage to be bits, following the standard for information-theoretical leakage

measures [BCGL17]. However, the same leakage model could be used to appropriately

measure the loss of any measurable security property, where zero represents no loss.

Similarly, we do not constraint the way the leakage value is obtained: it could be added

by the programmer as an annotation in the source code, or automatically computed by

one of the many tools available [BLTW13, CKN14, VEB+16].

6.5 Methods

The overarching goal of the approach proposed in this chapter is to produce a solution

with a low resulting leakage for a given set of tasks. To achieve this, standard o�ine

scheduling algorithms are extended with a preprocessing and a postprocessing phase. The

preprocessing phase transforms a set of tasks Γ into a set of preprocessed tasks Γ′. Then

scheduling is applied to Γ′ obtaining a solution S ′Γ′ for Γ′. Finally, the postprocessing

phase transforms the solution S ′Γ′ into a postprocessed solution S ′′Γ′ . Both the pre- and

postprocessing phases can a�ect the desired solution S ′′Γ′ , here with the goal of reducing

the resulting leakage. The rest of this section presents various heuristic algorithms used

for the experiments (see Section 6.6). The scheduling algorithms considered are EDF and

LSF. Note that EDF and LSF do no consider the security-level or leakage of the steps

(for discussion of this see Section 6.7). The rest of this section focuses upon the pre- and

postprocessors. The division in phases creates a modular and compositional approach,

allowing for a better comparison of di�erent pre- and postprocessors.

6.5.1 Preprocessing

Preprocessors are algorithms that take a set of tasks Γ and produce a set of tasks Γ′ to

be scheduled.In our work, we consider preprocessors that attempt to �merge� adjacent

steps with the same security level within each task in Γ. The merged step has the sum

of the execution times of the merged steps, the leakage value of the last merged step,

and the same security level as the merged steps. For instance, the steps Sαa(1, 0,>) and

118

Information Leakage

Algorithm 3: Total Merge Preprocessor

Data: task T(P,D, Ŝ)
Result: processed task T ′
ET = 0; LT = 0; XT = ⊥
for i = 1 to |Ŝ| do

let S(Ei, Li, Xi) = Si
ET = ET + Ei
LT = Li
XT = Xi

end
Return T ′ = T(P,D,ST (ET , LT , XT))

Sαb(1, 4,>) could be merged producing the step Sαa′(2, 4,>). The rest of this section

presents three preprocessing algorithms that exploit merging.

Total Merge. The Total Merge algorithm merges all the steps in a task into a single step

(as detailed in Algorithm 3). The merging is achieved by starting with a step that has

execution time and leakage value zero. The execution time for each other step in the task

is then added, and the leakage value from the last step being merged is preserved. The

security level is set to that of the last step. Finally, the processed task uses this single

merged step as its only step.

One-Step Merge. The One-Step Merge algorithm attempts to merge pairs of adjacent

steps. Adjacent pairs are merged if the leakage of the former step is higher than the

latter. This is achieved by iterating through the steps Si of the task. If Li > Li+1,

then the steps Si and Si+1 are merged. Otherwise, Si is maintained unchanged. This

algorithm generates a new sequence of steps Ŝ ′, that are then used in the processed task

Details can be seen in Algorithm 4.

n-Step Merge. A straightforward extension to the One-Step Merge algorithm is to allow

the merging of any number of steps. This appears in the results as n-Step Merge.

6.5.2 Postprocessing

Postprocessing algorithms take one solution and produce another solution. This can be

done by any possible manipulation of the steps within the original solution S ′Γ to pro-

duce the new solution S ′′Γ that does not break the property of being a solution for Γ.

The rest of this section presents four such postprocessors.

119

Information Leakage

Algorithm 4: One-Step Merge Preprocessor

Data: task T(P,D, Ŝ)
Result: processed task T ′
Ŝ ′ = ∅; i = 1
while i < |Ŝ|+ 1 do

let S(Ei, Li, Xi) = Si
let S(Ei+1, Li+1, Xi+1) = Si+1

if Li+1 < Li then

Ŝ ′ = Ŝ ′++S(Ei + Ei+1, Li+1, Xi+1); i = i+ 2
else

Ŝ ′ = Ŝ ′++Si; i = i+ 1
end

end

Return T ′ = T(P,D, Ŝ ′)

Add Flush. The Add Flush algorithm replaces sequences of W with F where possible

(detailed in Algorithm 5). Add Flush operates by �nding sequences ofW whose length is

greater than or equal the execution time of F . If such a sequence is found, a F is added

to the produced solution instead of the initial sequence of W with execution time equal

to the F . Any remaining W in the solution are maintained.

Algorithm 5: Add Flush Postprocessor

Data: solution S, and wait W
Result: solution S ′
S ′ = ∅; i = 1
while i < |S|+ 1 do

if Si ==W then

j = CountWaitsFrom(S, i)
if j ≥ EF then

S ′ = S ′++F
j = j − EF

end

S ′ = S ′++Repeat(W, j)
else

S ′ = S ′++Si
i = i+ 1

end

end

Return S ′

120

Information Leakage

Swap. The Swap algorithm attempts to reduce the resulting leakage by swapping steps

within the solution (as in Algorithm 6). Swap works by considering each step Si. Then
each possible swap [Si ↔ Sj] between the step Si and a following step Sj is considered.
If the trace with this swap applied has less resulting leakage and is still a solution, then

this solution [Si ↔ Sj]S is kept as the best possible solution so far. Finally, once all

possible swaps have been considered, the best swap to the solution is applied and i is

incremented.

Algorithm 6: Swap Postprocessor

Data: solution S
Result: solution S ′
for i = 1 to |S| do
S ′ = S
for j = i to |S| do
S ′′ = [Si ↔ Sj]S
if L (S ′′) < L (S ′) && isSolution(S ′′) then
S ′ = S ′′

end

end

S = S ′
end

Return S

Move. The Move algorithm moves one step to a new position in the solution. Move works

in the same manner as the Swap postprocessor, except instead of swapping [Si ↔ Sj]S
the steps Si and Sj , the move [Si −→ Sj]S moves the step Si to be after Sj . For example:

[S1 −→ S3]Sa,Sb,Sc = Sb,Sc,Sa
where the �rst step Sa is moved to be after the third step Sc. The rest of the algorithm

is the same as Swap, �nding the best possible move and ensuring the trace after the move

is a solution. The algorithm is identical to the Swap algorithm substituting [Si ↔ Sj]S
with [Si −→ Sj]S in Line 4.

1-Swap. Observe that if only swapping or moving with the following step is considered,

that is [Si ↔ Si+1] or [Si −→ Si+1], then the swap and move postprocessors coincide.

This postprocessor is denoted as 1-Swap in the results.

121

Information Leakage

6.6 Experiments

This section discusses the results obtained by running experiments with the preprocess-

ing, scheduling, and postprocessing algorithms in this chapter.

The experiments were conducted by using approximately 30,000 randomly generated

sets of tasks2, and then testing each possible combination of one preprocessing, one

scheduling, and one postprocessing algorithm. Each set of tasks consists of 2 to 6 tasks

with at least one > task and one ⊥ task, with each task having 1 to 8 steps, and each

step execution time from 1 to 5.

Preprocessor Postprocessor
Merge None Add Flush Swap Move 1-Swap

None 2 116 1919 1903 190
One-Step 1 93 1567 1489 149
n-Step 1 88 1486 1404 141

Table 6.1 � Average execution time (in ms) for each combination of pre- and postprocessor
(except Total Merge) using the EDF scheduling algorithm.

Sets of tasks with a hyperperiod over 5000 have been discarded to reduce testing

time. The code3 to perform the tests and implement the preprocessing, scheduling, and

postprocessing is written in Java 1.8, and all experiments conducted on a Linux 3.13

64-bit kernel on an Intel Core i7-3720QM 2.60GHz CPU with 8GB of RAM.

A demo4 is available that shows examples, and allows users to conduct their own

GUI-based experiments.

The rest of this section discusses experimental outcomes.

The �rst point of interest is the schedulability of the set of tasks used in each exper-

iment. Merging task steps in a preprocessor can make a set of tasks unschedulable, and

the EDF and LSF scheduling algorithms are not equally able to �nd solutions. The fail-

ure percentage for each combination of preprocessing and scheduling algorithm is shown

in Figure 6.5.

Figure 6.5 clearly shows that a greater merging of steps leads to more schedulability

failures. In particular, indicating that Total Merge is not an e�ective algorithm to use

in practice despite being considered as the current state of the art [MYPB14, PPY+15].

This is a strong motivation for the approach presented in this work to consider �ne-

grained preprocessing and preemption of tasks. Due to its high failure rate, Total Merge

230,000 sets of tasks were generated, 22 were discarded as unschedulable.
3Available via git from: https://scm.gforge.inria.fr/anonscm/git/secleakpublic/secleakpublic.git
4Demo available via website at: http://secleakpublic.gforge.inria.fr/

122

Information Leakage

None One-Step n-StepTotal

0

2,000

4,000

6,000

0 0 5

5,992

10 24 46

6,406

Merge Preprocessor Algorithm

Fa
ilu

re
s

EDF LSF

Figure 6.5 � Number of failures for each combination of preprocessor and scheduling
algorithm, out of ∼30,000 experiments. Note that Total Merge, corresponding to the
state of the art [MYPB14, PPY+15], fails ∼20% of the time.

will not be considered further in this chapter.

Figure 6.5 also shows that, for all preprocessing algorithms, EDF performs better for

schedulability than LSF. (This is expected since EDF is guaranteed to �nd a solution

if the tasks are schedulable, while LSF is not.) The two scheduling algorithms produce

almost the same results for every other measure tested, so the rest of this chapter shall

present only experimental results using the EDF scheduling algorithm.

Comparing the experimental results from postprocessing algorithms, the average re-

sulting leakages for each combination of pre- and postprocessor is shown in Figure 6.6,

while the average running times to generate a solution are shown in Table 6.1.

As expected, solutions without any postprocessing produce the highest resulting leak-

age. The best resulting leakage is obtained by the Add Flush algorithm. (This would

correspond to the approach in [MYPB14, PPY+15] when combined with the Total Merge,

however as noted above this is often not schedulable.) Note that merging preprocessors

reduce total time, since they reduce the number of steps that the scheduler has to sched-

ule.

1-Swap slightly reduces the resulting leakage, however Table 6.1 shows that it is

signi�cantly more expensive than the scheduling operation, so 1-Swap could be applied

after Add Flush only if the cost is acceptable. Swap and Move do not reduce the resulting

leakage signi�cantly more than 1-Swap and are signi�cantly more expensive to compute.

123

Information Leakage

None One-Step n-Step

60

80

100

120

140

160

141

125
122

84

68
64

114

106 104

116

106 104

128

118
115

Merge Preprocessor Algorithm

L
ea
ka
ge

No Post Add Flush Swap Move 1-Swap

Figure 6.6 � Information leakage of the solutions for each combination of pre- and post-
processor (except Total Merge) using the EDF scheduling algorithm.

This indicates that there is a balance to be found depending on the scenario. Taking

signi�cant time to pre-compute an optimal scheduling strategy for a sensor or other

real-time system prior to shipping could be worth the time cost. However, for online

scheduling with limited (or no) ability to look ahead and consider such options, the cost

of anything more complex than Add Flush or 1-Swap may be too much.

6.7 Discussion

On the Division of Scheduling into Three Phases. The division into three phases is to sep-

arate out distinct parts of an overall scheduling from tasks to a solution. This approach

allows for separation conceptually of di�erent phases, and also for composition of simple

algorithms in the pre- and postprocessing phases. For example, a postprocessor could

move steps in a solution around to maximize contiguous Ws and then be composed with

the Add Flush postprocessor to improve the resulting leakage further. This also allows

di�erent strategies to be employed in di�erent phases, including strategies with di�erent

goals. For example, processors for resulting leakage minimization and energy consump-

tion could be combined during pre- or postprocessing (or both).

124

Information Leakage

Online Scheduling. In our work, we consider o�ine scheduling, i.e. when the tasks to

be scheduled are known beforehand. In most real cases the tasks appear at runtime, re-

quiring online heuristics to decide the scheduling. The division in steps and the leakage

model presented in this chapter extend immediately to the online scenario. While the

preprocessors and postprocessors do not, they provide insight that can be used to build

online heuristics that reduce leakage. We consider this as a future work.

Execution Time. This chapter consideres the execution time to be essentially �xed for

each step. Although formally the execution time is worst case, the scheduling here does

not exploit when steps may terminate prior to their (worst case) execution time. This

could naturally be incorporated into online scheduling (above), but even in a purely

o�ine scheduling system this could be exploited. For example, consider the cache at-

tack scenario, where �ushing not only a�ects the leakage, but by �ushing the cache the

execution time will go up due to cache misses.

125

Conclusion

In this manuscript we focused our work on �nding new advanced techniques for exploit-

ing the scheduling theory in order to analyze the correctness of CPS under various types

of properties.

First, we have presented a software engineering approach that generates model-based

analysis tools for the schedulability analysis of CPS. This approach is based on one side

on a set of formal models for describing complex scheduling problems, and on the other

on meta-models of high-level speci�cation languages to easily specify these scheduling

problems. Our approach generates automatically domain-speci�c analysis tools based on

the Cinco framework. These tools allow to specify scheduling problems using graphical

components, and they can launch formal analyses by calling model-checking tools such

as Uppaal and Uppaal SMC.

On Hierarchical Scheduling Our �rst domain-speci�c tool is designed to analyze

hierarchical scheduling systems, using a stochastic model to represent stochastic behavior

of the system, this model gives us the possibility to represent more complex systems and

analyze their schedulability.

As an example for our �rst framework we propose to model an avionic system, on

which we execute a number of experiments in order to verify its schedulability, and also

to compute the minimum budget for which the whole system is schedulable. We present

in this manuscript the results of these experiments.

On Energy Consumption We have also presented new statistical model-checking al-

gorithms that perform optimization or runtime monitoring. These algorithms are based

on statistical tests like ANOVA and CUSUM. They are implemented and embedded into

our analysis tools. Our second domain-speci�c tool is designed to analyze scheduling of

multi-processor systems with the energy constraint.

127

Conclusion

For this second framework, we propose an example to illustrate how to use the al-

gorithms proposed for the optimization of the energy consumption and the detection of

signi�cant probability variation. The results of these experiments and their analyses are

presented to consolidate our work.

Second, we proposed a new model that consider information leakage as quantitative

resource that the scheduler can exploit In a system with shared resources, the security

of con�dential information is a major concern.

On Information Leakage This manuscript allows reasoning about leakage of con�-

dential information by extending the work�ow model to support �ne-grained preemption

and con�dentiality. This allows con�dentiality to be addressed by quantifying the amount

of information leaked by the system, including di�erent leakage models.

Scheduling in this new model is then considered using pre-and post-processors. These

can be computationally combined for scheduling that exploits di�erent techniques and

approaches, including focusing on di�erent aspects of the overall problem. Several pre-

and post-processing heuristic algorithms are presented that can operate on the model.

These are focused on improving resulting leakage, but the principles can be adapted to

other problems as well.

In order to evaluate these heuristic algorithms, experiments were conducted by using

approximately 30,000 randomly generated sets of tasks, then testing each possible com-

bination of one pre-processing, one scheduling, and one post-processing algorithm. The

results of these experiments demonstrate that the model and the heuristics improve over

the state of the art and show that even simple heuristics can be e�ective.

Future work the next step in our work would be to improve our models by extending

the model banks in order to analyze more complexe systems. Adding to that, we can

also focus on improving treatment time by using parallelism theory advantages, these

improvements allow as to treat more information in a small time which would improve

the con�dence of our results.

Another axis that we can follow could be to generalize our models to deal with

multi-resource approaches, where scheduling algorithms considers a number of di�erent

properties at the same time. For example consider con�dentiality, energy consumption,

schedulability, etc.

128

Conclusion

In fact, multi-resource approaches could be a very good solution to analyze complex

systems that have energy constraints, and must interact with other systems to accomplish

its mission at the same time. These interactions could expose the con�dential information

of the system under consideration.

Concerning the model that consider con�dentiality problem, one direction that can be

followed would be to generalize this model in order to treat on-line scheduling algorithms.

On-line scheduling algorithms are designed to deal with real-time systems that interact

with external environment through di�erent sensors. The on-line scheduling algorithm

must schedule the entering task and take into consideration the con�dentiality problem.

Another direction would be to consider theoretical complexity, that can help to im-

prove the e�ciency of the heuristic algorithms. The heuristic algorithms could be pro-

posed to aim di�erent objectives, as example one objective could be to �nd a solution

that gives optimal con�dentiality by reducing the resulting leakage to zero. Another

objective could be to �nd a solution with a �xed value of the resulting leakage.

Finally, in our work we proposed a composed strategy that combines pre and post-

processors in order to solve the con�dentiality problem, a good direction that could be

followed is to improve this strategy or to propose other strategies that could give better

solutions for this problem.

129

Listes de travaux de Mounir Chadli

1. Titre: High-level frameworks for the speci�cation and veri�cation of scheduling

problems.

Authors: Mounir Chadli, Jin Hyun Kim, Kim Guldstrand Larsen, Axel Legay,

Stefan Naujokat, Bernhard Ste�en, Louis-Marie Traonouez.

Actes: International Journal on Software Tools for Technology Transfer (STTT),

pages 1-26, 2017.

2. Titre: Information Leakage as a Scheduling Resource.

Authors: Fabrizio Biondi, Mounir Chadli, Thomas Given-Wilson, Axel Legay.

Actes: International Workshop on Formal Methods for Industrial Critical Systems

and Automated Veri�cation of Critical Systems (FMICS-AVoCS), LNCS, volume

10471, pages 83-99, 2017

3. Titre: A Model-Based Framework for the Speci�cation and Analysis of Hierarchi-

cal Scheduling Systems.

Authors: Mounir Chadli, Jin Hyun Kim, Axel Legay, Louis-Marie Traonouez,

Stefan Naujokat, Bernhard Ste�en, Kim Guldstrand Larsen.

Actes: International Workshop on Formal Methods for Industrial Critical Systems

and Automated Veri�cation of Critical Systems (FMICS-AVoCS), LNCS, volume

9933, pages 133-141, 2016

130

Bibliography

[ACPS12] Mário S. Alvim, Konstantinos Chatzikokolakis, Catuscia Palamidessi, and

Geo�rey Smith. Measuring information leakage using generalized gain func-

tions. In Stephen Chong, editor, CSF. IEEE, 2012.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput.

Sci., 126(2):183�235, April 1994.

[ALTP04] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in

weighted timed automata. Theor. Comput. Sci., 318(3):297�322, June 2004.

[BCGL17] Fabrizio Biondi, Mounir Chadli, Thomas Given-Wilson, and Axel Legay.

Information leakage as a scheduling resource. In FMICS-AVoCS, volume

10471 of Lecture Notes in Computer Science, pages 83�99. Springer, 2017.

[BcRS13] Anne Benoit, Ümit V. Çatalyürek, Yves Robert, and Erik Saule. A survey

of pipelined work�ow scheduling: Models and algorithms. ACM Comput.

Surv., 45(4):50:1�50:36, August 2013.

[BDK+13] A. Boudjadar, A. David, J.H. Kim, K.G. Larsen, M. Miku£ionis, U. Nyman,

and A. Skou. Hierarchical scheduling framework based on compositional

analysis using uppaal. In Proceedings of the 10th International Sympo-

sium on Formal Aspects of Component Software (FACS), Revised Selected

Papers, volume 8348 of LNCS, pages 61�78. Springer, 2013.

[BDK+14] A.Jalil Boudjadar, Alexandre David, Jin Hyun Kim, Kim G. Larsen, Marius

Miku£ionis, Ulrik Nyman, and Arne Skou. Degree of schedulability of mixed-

criticality real-time systems with probabilistic sporadic tasks. In Theoretical

Aspects of Software Engineering Conference (TASE), 2014, pages 126�130,

Sept 2014.

131

Bibliography

[BDK+15a] Abdeldjalil Boudjadar, Alexandre David, JinHyun Kim, KimGuldstrand

Larsen, Marius Miku£ionis, Ulrik Nyman, and Arne Skou. Widening the

schedulability of hierarchical scheduling systems. In Proceedings of the

11th International Symposium on Formal Aspects of Component Software

(FACS), Revised Selected Papers, volume 8997 of LNCS, pages 209�227.

Springer, 2015.

[BDK+15b] Jalil Boudjadar, Alexandre David, Jin Hyun Kim, Kim Guldstrand Larsen,

Marius Miku£ionis, Arne Skou, Insup Lee, Linh Phan Xuan, and Ulrik Ny-

man. Quantitative schedulability analysis of continuous probability tasks

in a hierarchical context. Springer International Publishing, 2015. To be

appeared.

[BDL+06] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Håkans-

son, Paul Pettersson, Wang Yi, and Martijn Hendriks. UPPAAL 4.0. In

Third International Conference on the Quantitative Evaluation of Systems

(QEST), pages 125�126, 2006.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen,

Paul Pettersson, Judi Romijn, and Frits W. Vaandrager. Minimum-cost

reachability for priced timed automata. In Proceedings of the 4th Interna-

tional Workshop on Hybrid Systems: Computation and Control (HSCC),

pages 147�161. Springer, 2001.

[BKD+] A.Jalil Boudjadar, Jin Hyun Kim, Alexandre David, Kim G. Larsen, Marius

Miku£ionis, Ulrik Nyman, Arne Skou, Insup Lee, and Lihn Thi Xuan Phan.

Flexible framework for statistical schedulability analysis o� probabilistic

sporadic tasks. In 18th International Symposium of Real-Time Distributed

Computing (ISORC). To be appeared.

[BKR09] Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic discovery

and quanti�cation of information leaks. In S&P, pages 141�153. IEEE, 2009.

[BLMW15] Fabrizio Biondi, Axel Legay, Pasquale Malacaria, and Andrzej Wasowski.

Quantifying information leakage of randomized protocols. Theor. Comput.

Sci., 597:62�87, 2015.

[BLTW13] Fabrizio Biondi, Axel Legay, Louis-Marie Traonouez, and Andrzej Wa-

sowski. QUAIL: A quantitative security analyzer for imperative code. In

132

Bibliography

Natasha Sharygina and Helmut Veith, editors, CAV, volume 8044 of LNCS,

pages 702�707. Springer, 2013.

[BMR90] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively

scheduling hard-real-time sporadic tasks on one processor. In In Proceedings

of the 11th Real-Time Systems Symposium, pages 182�190. IEEE Computer

Society Press, 1990.

[BN93] Michèle Basseville and Igor V. Nikiforov. Detection of Abrupt Changes:

Theory and Application. Prentice-Hall, Inc., 1993.

[CBF+11] Mikel Cordovilla, Frédéric Boniol, Julien Forget, Eric Noulard, and Claire

Pagetti. Developing critical embedded systems on multicore architectures:

the PRELUDE-SCHEDMCORE toolset. In Sébastien Faucou, Alan Burns,

and Laurent George, editors, RTNS 2011, pages 107�116, 2011.

[CFO+11] Amedeo Cesta, Simone Fratini, Andrea Orlandini, Alberto Finzi, and Enrico

Tronci. Flexible plan veri�cation: Feasibility results. Fundam. Inform.,

107(2-3):111�137, 2011.

[CKL+16] Mounir Chadli, Jin Hyun Kim, Axel Legay, Louis-Marie Traonouez, Stefan

Naujokat, Bernhard Ste�en, and Kim Guldstrand Larsen. A model-based

framework for the speci�cation and analysis of hierarchical scheduling sys-

tems. In Proceedings of the Joint 21st International Workshop on Formal

Methods for Industrial Critical Systems and 16th International Workshop

on Automated Veri�cation of Critical Systems (FMICS-AVoCS), volume

9933 of LNCS, pages 133�141. Springer, 2016.

[CKN14] Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. Leakwatch: Esti-

mating information leakage from java programs. In Miroslaw Kutylowski

and Jaideep Vaidya, editors, ESORICS, volume 8713 of LNCS, pages 219�

236. Springer, 2014.

[CL00] Franck Cassez and Kim Guldstrand Larsen. The impressive power of stop-

watches. In Proceedings of the 11th International Conference on Concur-

rency Theory (CONCUR), pages 138�152. Springer, 2000.

[CMR16] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Dynamic control-

lability of disjunctive temporal networks: Validation and synthesis of exe-

133

Bibliography

cutable strategies. In Proceedings of the 30th AAAI Conference on Arti�cial

Intelligence, pages 3116�3122. AAAI Press, 2016.

[CMR17] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Validating do-

mains and plans for temporal planning via encoding into in�nite-state linear

temporal logic. In Proceedings of the 31st AAAI Conference on Arti�cial

Intelligence, pages 3547�3554. AAAI Press, 2017.

[CMS14] Rohit Chadha, Umang Mathur, and Stefan Schwoon. Computing informa-

tion �ow using symbolic model-checking. In Venkatesh Raman and S. P.

Suresh, editors, FSTTCS, volume 29 of LIPIcs, pages 505�516. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

[DDGL+13] Alexandre David, Dehui Du, Kim Guldstrand Larsen, Axel Legay, and Mar-

ius Miku£ionis. Optimizing control strategy using statistical model checking.

In NASA Formal Methods: Proceedings of the 5th International Symposium

(NFM), pages 352�367. Springer, 2013.

[DDL+12] Alexandre David, Dehui Du, Kim G. Larsen, Axel Legay, Marius Miku£ionis,

Danny Bøgsted Poulsen, and Sean Sedwards. Statistical model checking

for stochastic hybrid systems. In Proceedings of the First International

Workshop on Hybrid Systems and Biology (HSB), volume 92 of EPTCS,

pages 122�136, 2012.

[DLL+11] Alexandre David, Kim G. Larsen, Axel Legay, Marius Miku£ionis,

Danny Bøgsted Poulsen, Jonas van Vliet, and Zheng Wang. Statistical

model checking for networks of priced timed automata. In Proceedings of

the 9th International Conference on Formal Modeling and Analysis of Timed

Systems (FORMATS), volume 6919 of LNCS, pages 80�96. Springer, 2011.

[DLL+15] Alexandre David, KimG. Larsen, Axel Legay, Marius Miku£ionis, and

Danny Bøgsted Poulsen. Uppaal SMC tutorial. International Journal on

Software Tools for Technology Transfer, pages 1�19, 2015.

[DLLM12] Alexandre David, Kim Guldstrand Larsen, Axel Legay, and Marius Miku£io-

nis. Schedulability of herschel-planck revisited using statistical model check-

ing. In Proceedings of 5th International Symposium ISoLA, Part II, volume

7610 of LNCS, pages 293�307. Springer, 2012.

134

Bibliography

[FMC11] Nicolas Falliere, Liam O. Murchu, and Eric Chien. W32.Stuxnet dossier,

2011.

[Gra66] R. L. Graham. Bounds for certain multiprocessing anomalies. The Bell

System Technical Journal, 45(9):1563�1581, Nov 1966.

[Gro08] Richard C. Gronback. Eclipse Modeling Project: A Domain-Speci�c Lan-

guage (DSL) Toolkit. Addison-Wesley, 2008.

[Hen00] Thomas A. Henzinger. The Theory of Hybrid Automata, pages 265�292.

Springer, 2000.

[JLM+12] Sven Jï¿½rges, Anna-Lena Lamprecht, Tiziana Margaria, Ina Schaefer, and

Bernhard Ste�en. A Constraint-based Variability Modeling Framework.

International Journal on Software Tools for Technology Transfer (STTT),

14(5):511�530, 2012.

[KLL+15a] Jin Hyun Kim, Axel Legay, Kim G. Larsen, Marius Miku£ionis, and Brian

Nielsen. Resource-parameterized timing analysis of real-time systems. In

Hardware and Software: Veri�cation and Testing: Proceeding of the 11th

International Haifa Veri�cation Conference (HVC), pages 190�205. Springer,

2015.

[KLL+15b] Jin Hyun Kim, Axel Legay, Kim Guldstrand Larsen, Marius Miku£ionis,

and Brian Nielsen. Resource-parameterized timing analysis of real-time

systems. In Nir Piterman, editor, HVC, volume 9434 of LNCS, pages 190�

205. Springer, 2015.

[KLT+16a] Jin Hyun Kim, Axel Legay, Louis-Marie Traonouez, Abdeldjalil Boudjadar,

Ulrik Nyman, Kim G. Larsen, Insup Lee, and Jin-Young Choi. Optimizing

the resource requirements of hierarchical scheduling systems. SIGBED Rev.,

13(3):41�48, August 2016.

[KLT+16b] Jin Hyun Kim, Axel Legay, Louis-Marie Traonouez, Abdeldjalil Boudjadar,

Ulrik Nyman, Kim G. Larsen, Insup Lee, and Jin-Young Choi. Optimiz-

ing the resource requirements of hierarchical scheduling systems. SIGBED

Review, 13(3):41�48, 2016.

[KZH+11] Joost-Pieter Katoen, Ivan S Zapreev, Ernst Moritz Hahn, Holger Hermanns,

and David N Jansen. The ins and outs of the probabilistic model checker

mrmc. Performance evaluation, 68(2):90�104, 2011.

135

Bibliography

[LDB10] Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical model

checking: An overview. In Proceedings of the First International Confer-

ence on Runtime Veri�cation (RV), volume 6418 of LNCS, pages 122�135.

Springer, 2010.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogram-

ming in a hard-real-time environment. J. ACM, 20(1):46�61, January 1973.

[LLG90] Douglas Locke, Lee Lucas, and John Goodenough. Generic avionics software

speci�cation. Technical Report CMU/SEI-90-TR-008, Software Engineering

Institute, 1990.

[LNS13] Anna-Lena Lamprecht, Stefan Naujokat, and Ina Schaefer. Variability Man-

agement Beyond Feature Models. Computer, 46(11):48�54, 2013.

[LT16] Axel Legay and Louis-Marie Traonouez. Statistical model checking with

change detection. Transactions on Foundations for Mastering Change I,

1:157�179, 2016.

[MCG13] Dorin Maxim and Liliana Cucu-Grosjean. Response Time Analysis for

Fixed-Priority Tasks with Multiple Probabilistic Parameters. In RTSS 2013

- IEEE Real-Time Systems Symposium, Vancouver, Canada, 2013.

[MEP07] Sorin Manolache, Petru Eles, and Zebo Peng. Analysis of monoprocessor

systems. In Real-Time Applications with Stochastic Task Execution Times,

pages 27�60. Springer Netherlands, 2007.

[Mok83] Aloysius Ka-Lau Mok. Fundamental design problems of distributed systems

for the hard-real-time environment. PhD thesis, Massachusetts Institute of

Technology, 1983.

[Mon06] Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley

& Sons, 2006.

[MS09] Tiziana Margaria and Bernhard Ste�en. Business Process Modelling in the

jABC: The One-Thing-Approach. In Handbook of Research on Business

Process Modeling. IGI Global, 2009.

[MS10] Tiziana Margaria and Bernhard Ste�en. Simplicity as a Driver for Agile

Innovation. Computer, 43(6):90�92, 2010.

136

Bibliography

[MYPB14] Sibin Mohan, Man-Ki Yoon, Rodolfo Pellizzoni, and Rakesh Bobba. Real-

time systems security through scheduler constraints. In ECRTS, pages 129�

140. IEEE Computer Society, 2014.

[NLKS17] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard Stef-

fen. CINCO: A Simplicity-Driven Approach to Full Generation of Domain-

Speci�c Graphical Modeling Tools. Software Tools for Technology Transfer,

2017. to appear.

[NTI+14] Stefan Naujokat, Louis-Marie Traonouez, Malte Isberner, Bernhard Ste�en,

and Axel Legay. Domain-Speci�c Code Generator Modeling: A Case Study

for Multi-faceted Concurrent Systems. In Proc. of the 6th Int. Symp. on

Leveraging Applications of Formal Methods, Veri�cation and Validation,

Part I (ISoLA), number 8802 in LNCS, pages 463�480. Springer, 2014.

[ORC15] A. Oddi, R. Rasconi, and A. Cesta. A multi-objective large neighborhood

search methodology for scheduling problems with energy costs. In 2015

IEEE 27th International Conference on Tools with Arti�cial Intelligence

(ICTAI), pages 453�460, Nov 2015.

[Pag54] E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100�115,

1954.

[PLE+11] Linh T. X. Phan, Jaewoo Lee, Arvind Easwaran, Vinay Ramaswamy, San-

jian Chen, Insup Lee, and Oleg Sokolsky. CARTS: A tool for compositional

analysis of real-time systems. SIGBED Rev., 8(1):62�63, March 2011.

[PPY+15] Rodolfo Pellizzoni, Neda Paryab, Man-Ki Yoon, Stanley Bak, Sibin Mohan,

and Rakesh Bobba. A generalized model for preventing information leakage

in hard real-time systems. In RTAS. IEEE, 2015.

[SA06] Joon Son and Jim Alves-Foss. Covert timing channel capacity of rate mono-

tonic real-time scheduling algorithm in MLS systems. In Sanguthevar Ra-

jasekaran, editor, IASTED, pages 13�18. IASTED/ACTA Press, 2006.

[SBPM08] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.

EMF: Eclipse Modeling Framework (2nd Edition). Addison-Wesley, 2008.

[SEL08a] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework for

virtual clustering of multiprocessors. In Euromicro Conference on Real-

Time Systems, pages 181�190, July 2008.

137

Bibliography

[SEL08b] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling frame-

work for virtual clustering of multiprocessors. In ECRTS, pages 181�190.

IEEE Computer Society, 2008.

[SFC08] D. Smith, J. Frank, and W. Cushing. The anml language. In In ICAPS

Poster session, 2008.

[SL03] Insik Shin and Insup Lee. Periodic resource model for compositional real-

time guarantees. In Proceedings of the 24th IEEE International Real-Time

Systems Symposium (RTSS), pages 2�13. IEEE Computer Society, 2003.

[SMD00] Sang Hyuk Son, Ravi Mukkamala, and Rasikan David. Integrating secu-

rity and real-time requirements using covert channel capacity. IEEE Trans.

Knowl. Data Eng., 12(6):865�879, 2000.

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model check-

ing of black-box probabilistic systems. In CAV, volume 3114, pages 202�215.

Springer, 2004.

[SVA05a] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model

checking of stochastic systems. In CAV, volume 3576, pages 266�280.

Springer, 2005.

[SVA05b] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Vesta: A statistical

model-checker and analyzer for probabilistic systems. In Quantitative Eval-

uation of Systems, 2005. Second International Conference on the, pages

251�252. IEEE, 2005.

[TDP12] Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat. Prob-

abilistic preemption control using frequency scaling for sporadic real-time

tasks. In The 7th IEEE International Symposium on Industrial Embedded

Systems, June 2012.

[VEB+16] Celina G. Val, Michael A. Enescu, Sam Bayless, William Aiello, and Alan J.

Hu. Precisely measuring quantitative information �ow: 10k lines of code

and beyond. In EuroS&P. IEEE, 2016.

[VRS14] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael M Swift.

Scheduler-based defenses against cross-vm side-channels. In Usenix Security,

pages 687�702, 2014.

138

Bibliography

[Wal45] A. Wald. Sequential Tests of Statistical Hypotheses. The Annals of Math-

ematical Statistics, 16(2):117�186, 1945.

[YMCS16] Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Lui Sha. Taskshu�er:

A schedule randomization protocol for obfuscation against timing inference

attacks in real-time systems. In RTAS, pages 1�12. IEEE, 2016.

[You05] Hakan L Younes. Veri�cation and planning for stochastic processes with

asynchronous events. Technical report, CARNEGIE-MELLON UNIV

PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 2005.

[You06] Håkan LS Younes. Error control for probabilistic model checking. In Inter-

national Workshop on Veri�cation, Model Checking, and Abstract Interpre-

tation, pages 142�156. Springer, 2006.

[ZKG+08] Yuanfang Zhang, Donald K. Krecker, Christopher Gill, Chenyang Lu, and

Gautam H. Thaker. Practical schedulability analysis for generalized spo-

radic tasks in distributed real-time systems. In Proceedings of the 2008

Euromicro Conference on Real-Time Systems, ECRTS '08, pages 223�232,

Washington, DC, USA, 2008. IEEE Computer Society.

139

List of Figures

1.1 Example of scheduling two tasks using a non-preemptive Scheduling algo-

rithm . 25

1.2 Preemptive Scheduling algorithm . 25

2.1 Light Switch Transition System TA . 31

2.2 Examples of timed automata with a single clock and one example of the

evolution of their clock over time. 36

2.3 Implementations of a simple real-time task with timed, stopwatch, priced

and hybrid automata . 42

2.4 Stochastic dispatcher implemented with a stochastic TA 43

2.5 SWA model of a stochastic task . 45

2.6 SWA models of schedulers . 46

2.7 PTA of the stochastic dispatcher . 46

3.1 Examples of the satisfaction of simple temporal modalities over an execu-

tion trace . 51

3.2 Examples of satisfaction of some CTL formula 55

3.3 Graphical representation of the model checking approach 57

3.4 Example of task display generated by the style con�guration. 64

3.5 Main principles of domain-speci�c tools generation with Cinco. 64

3.6 Tool chain for generating and using domain-speci�c analysis frameworks . 66

4.1 Periodic Resource Model supplier with stochastic budget 70

4.2 Example of Hierarchical Scheduling System 71

4.3 Flexible Compositional Analysis Framework 72

4.4 TA template of a stochastic task (Ti) . 74

4.5 An action to con�gure stochastic real-time attributes 75

4.6 An action to con�gure stochastic real-time attributes 75

141

List of Figures

4.7 Conceptual model of a scheduling unit of a HSS 76

4.8 Abstract PRM model in TA . 77

4.9 A simulation of PRM behavior model . 77

4.10 Probability density distribution for the budgets for the scheduling unit C1. 80

4.11 HSS with 3 scheduling units . 80

4.12 Hierarchical scheduling of avionic tasks . 83

4.13 Budget estimation for Navigation, Targeting and Weapon control 83

5.1 F-distribution example with the p-value computed for F=2.23. 91

5.2 Pareto-e�ciency curve . 95

5.3 Platform layer with 2 processors, 3 hard real-time tasks and 1 soft real-

time task . 98

5.4 Application layer with 3 components and 5 actions 99

5.5 Mapping between application layer and platform layer 99

5.6 Application layer of our case-study model 101

5.7 Pareto E�ciency diagram for optimizing energy consumption and maxi-

mum response time of task T2 . 103

6.1 Example Processes with schedule-dependent con�dential information leak-

age. 109

6.2 Periodic Solutions for Leakage between hyperperiods. 115

6.3 Schedulings for the processes in Figure. 6.1. 116

6.4 Hyperperiodic �ush. 117

6.5 Number of failures for each combination of preprocessor and scheduling

algorithm, out of ∼30,000 experiments. Note that Total Merge, corre-

sponding to the state of the art [MYPB14, PPY+15], fails ∼20% of the

time. 123

6.6 Information leakage of the solutions for each combination of pre- and post-

processor (except Total Merge) using the EDF scheduling algorithm. . . . 124

142

	these

