
HAL Id: tel-02066643
https://theses.hal.science/tel-02066643

Submitted on 13 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfigurable hardware acceleration of CNNs on
FPGA-based smart cameras

Kamel Abdelouahab

To cite this version:
Kamel Abdelouahab. Reconfigurable hardware acceleration of CNNs on FPGA-based smart cameras.
Electronics. Université Clermont Auvergne [2017-2020], 2018. English. �NNT : 2018CLFAC042�.
�tel-02066643�

https://theses.hal.science/tel-02066643
https://hal.archives-ouvertes.fr

UNIVERSITÉ CLERMONT AUVERGNE

ÉCOLE DOCTORALE: SCIENCES POUR L’INGÉNIEUR

THÈSE

présentée par

Kamel ABDELOUAHAB

Pour obtenir le grade de:

DOCTEUR DE L’UNIVERSITÉ CLERMONT AUVERGNE

Spécialité: Électronique et Architecture de Systèmes

Titre de la thèse:

Reconfigurable hardware acceleration of CNNs on FPGA-based
smart cameras

Thèse soutenue le 11 décembre 2018 devant le jury composé de

Président M. Jocelyn Sérot

Directeur de thèse M. François Berry

Co-directeur de thèse M. Maxime Pelcat

Rapporteurs M. Daniel Ménard
Mme. Francesca Palumbo

Examinateurs M. Cédric Bourrasset
M. Luca Maggiani

DOCTORAL THESIS

Reconfigurable hardware acceleration of
CNNs on FPGA-based smart cameras

Author:
Kamel ABDELOUAHAB

Supervisors:
Prof. Frano̧is BERRY
Dr. Maxime PELCAT

A thesis submitted in fulfillment of the requirements
for the degree of Docteur de l’Université Clermont Auvergne

at the

DREAM Research Group
Institut Pascal

https://dream.ispr-ip.fr/
http://www.institutpascal.uca.fr

iii

UNIVERSITÉ CLERMONT AUVERGNE
Ecole Doctorale des Sciences Pour l’Ingénieur

Institut Pascal

Abstract
Reconfigurable hardware acceleration of CNNs on FPGA-based smart cameras

by Kamel ABDELOUAHAB

Deep Convolutional Neural Networks (CNNs) have become a de-facto standard in com-
puter vision. This success came at the price of a high computational cost, making the
implementation of CNNs, under real-time constraints, a challenging task.

To address this challenge, the literature exploits the large amount of parallelism ex-
hibited by these algorithms, motivating the use of dedicated hardware platforms. In
power-constrained environments, such as smart camera nodes, FPGA-based processing
cores are known to be adequate solutions in accelerating computer vision applications.
This is especially true for CNN workloads, which have a streaming nature that suits well
to reconfigurable hardware architectures.

In this context, the following thesis addresses the problems of CNN mapping on FP-
GAs. In Particular, it aims at improving the efficiency of CNN implementations through
two main optimization strategies; The first one focuses on the CNN model and parame-
ters while the second one considers the hardware architecture and the fine-grain building
blocks.

Keywords: Deep Learning, CNN, FPGA, Dataflow, Direct Hardware Mapping, Smart Cam-
era

HTTP://WWW.UCA.FR
http://spi.ed.uca.fr/
http://www.institutpascal.uca.fr

v

UNIVERSITÉ CLERMONT AUVERGNE
Ecole Doctorale des Sciences Pour l’Ingénieur

Institut Pascal

Résumé
Architectures reconfigurables pour l’accélération des CNNs. Applications sur

cameras intelligentes à base de FPGAs

par Kamel ABDELOUAHAB

Les Réseaux de Neurones Convolutifs profonds (CNNs) ont connu un large succès
au cours de la dernière décennie, devenant un standard de la vision par ordinateur. Ce
succès s’est fait au détriment d’un large coût de calcul, où le déploiement des CNNs reste
une tâche ardue surtout sous des contraintes de temps réel.

Afin de rendre ce déploiement possible, la littérature exploite le parallélisme impor-
tant de ces algorithmes, ce qui nécessite l’utilisation de plate-formes matérielles dédiées.
Dans les environnements soumis à des contraintes de consommations énergétiques, tels
que les nœuds des caméras intelligentes, les cœurs de traitement à base de FPGAs sont
reconnus comme des solutions de choix pour accélérer les applications de vision par
ordinateur. Ceci est d’autant plus vrai pour les CNNs, où les traitements se font na-
turellement sur un flot de données, rendant les architectures matérielles à base de FPGA
d’autant plus pertinentes.

Dans ce contexte, cette thèse aborde les problématiques liées à l’implémentation des
CNNs sur FPGAs. En particulier, ces travaux visent à améliorer l’efficacité des implan-
tations grâce à deux principales stratégies d’optimisation; la première explore le mod-
èle et les paramètres des CNNs, tandis que la seconde se concentre sur les architectures
matérielles adaptées au FPGA.

Mot clés : Apprentissage profond, Réseaux de neurones convolutifs, FPGA, Flot de données,
Implémentation matérielle, Caméras intelligentes

HTTP://WWW.UCA.FR
http://spi.ed.uca.fr/
http://www.institutpascal.uca.fr

vii

To my family:
wife, child, and parents

ix

Acknowledgements

This work could not have been carried-out without the guidance of my supervisors: Prof.
François Berry and Dr. Maxime Pelcat. Thank you François for your trust and advice1.
Thank you Maxime for your continuous support and expertise2.

Moreover, I express my gratitude towards Prof. Jocelyn Sérot3 and Dr. Cedric Bour-
rasset4 for their availability and their prior works related to this thesis. I also thank Dr.
Luca Maggiani for his advice, and for our upcoming collaboration ...

Besides the advisors, I would like to thank Prof. Daniel Ménard and Dr. Francesca
Palumbo for being members of my thesis committee. Thanks for reading, commenting,
and reviewing this manuscript.

I am also grateful to Dr. Christos Bouganis for welcoming me at the Imperial College
London last summer. Thanks to Labex IMobS3 for sponsoring this visit, and more gen-
erally, thanks to the French ministry of higher education for funding my doctoral studies.

This work benefited from many free and/or open-source tools. To the maintainers of
Python, Numpy, Matplotlib, OpenCV, Caffe, GHDL, Caph, Latex ... Thank you.

For the last three year, it has been a pleasure5 to work within the DREAM research
group. In order of appearance, thanks to Sebastien, El Mehdi, Lobna, John6, Dimia and
Abderrahim. It was great to struggle and learn together.

Finally, this work would never be completed without the support of my family. Words
cannot describe my gratitude for my parents, my brother, my sisters and of course, my
wife. To all of you, thank you for your continuous encouragements and devotion.

1Particularly those during lunch-time at «Leclerc». These were the best !
2Even over Skype!
3Thanks for that VHDL top level generator you’ve written a Saturday morning !
4Thanks for that 365 messy code lines that became the Haddoc tool !
5Except «that» period. By the way, I don’t thank the person in charge of ZRR at all.
6Au secours!

xi

Contents

1 Introduction 1
1.1 The Context of Deep Learning and Smart Cameras 1
1.2 Deep Learning Constraints and Implementation Challenges 2
1.3 Smart Cameras as Dataflow Computer Vision Systems 3
1.4 Contributions . 3
1.5 Manuscript Outline . 4

2 Embedded Deep Learning 5
2.1 From Machine learning to Deep Learning 5
2.2 Deep Convolutional Neural Networks . 9
2.3 CNN Applications, Datasets and Evaluation Metrics 14
2.4 Workload and Implementation Challenges on SmartCams 18
2.5 Hardware for mainstream DL . 21
2.6 Embedded Deep Learning . 24
2.7 Conclusions . 25

3 Reconfigurable Hardware for Embedded Vision 27
3.1 FPGA Architecture . 27
3.2 From Algorithms to Hardware Architectures 32
3.3 Dataflow Model for FPGA-Based Image processing 34
3.4 Implementation Example: Image convolution 37
3.5 Conclusions . 46

4 FPGA-Based Deep Learning Acceleration 47
4.1 Evaluation Metrics . 47
4.2 Computational Transforms . 48
4.3 Data-path Optimizations . 51
4.4 Approximate Computing of CNN Models 59
4.5 Conclusions . 66

5 Model-Based Optimization of CNN Mappings on FPGAs 67
5.1 Models of Computation for CNN inference on FPGAs 67
5.2 Direct Hardware Mapping of CNNs on FPGAs 70
5.3 Direct Hardware Mapping with CAPH . 72
5.4 Design Space Exploration . 74
5.5 Multi-view CNNs . 82
5.6 Conclusions and perspectives . 86

6 Architectural Optimizations of CNN Mappings on FPGAs 87
6.1 FIFO channels in Dataflow Inferred CNNs 88
6.2 Memory-Efficient Window Buffers . 90
6.3 Convolutions with Single Constant Multiplications 93
6.4 Accumulation with Pipelined Adders . 96
6.5 Implementation Results . 100
6.6 Modeling CNN Mappings . 106

xii

6.7 Conclusions and Perspectives . 110

7 Negative Results on Optimizing Direct Hardware Mapping 111
7.1 Serial Adders . 111
7.2 Approximate Adders . 113
7.3 Stochastic arithmetic . 115
7.4 Conclusions . 119

8 Conclusions and Perspectives 121
8.1 Conclusions . 121
8.2 Perspectives and future directions . 122

A Topology of Popular CNN Models 141

B Direct Hardware Mapping with Haddoc2 143
B.1 Convolution Layers . 143
B.2 Pooling Layers . 144
B.3 Activation Layers . 144

xiii

List of Figures

1.1 Diagram of Stream-based dataflow image processing 2

2.1 Deep learning as a sub-field of Artificial Intelligence 6
2.2 Feed Forward Propagation . 8
2.3 Example of a typical CNN Structure . 9
2.4 Example of a Convolutional layer, C = 3, N = 5 10
2.5 Example of ReLU activation function . 11
2.6 Illustration of a max pooling layer in a CNNs 11
2.7 Decomposing (5× 5) filters into two successive stages of (3× 3)filters . . 13
2.8 Advanced CNN Topologies . 14
2.9 Example of Image Classification . 15
2.10 Metrics for Object Detectors . 16
2.11 Performance of CNN-based classifiers and detectors 17
2.12 Performance of Batch Parallelism in popular CNNs 19
2.13 Nvidia Pascal Architecture [Nvi16] . 22

3.1 Simplified Block diagram of an FPGA device 28
3.2 Logic Element of an Intel Cyclone III FPGA [Int14a] 28
3.3 Structure of an Adaptive Logic Module [Int18a] 29
3.4 Scheme of an Interconnect Network of an FPGA 30
3.5 LAB Structure Overview in Cyclone V Devices. From [Int14a] 31
3.6 Scheme of a DSP Block in a Stratix 10 FPGA 32
3.7 Design Flow in FPGA . 33
3.8 Comparing imperative execution models and dataflow models 35
3.9 Caph Conception Flow . 36
3.10 RTL description of the studied MAC unit 38
3.11 Post fitting representation of the studied MAC unit 38
3.12 Scheme of a pipelined MAC for (3× 3) convolutions 40
3.13 Structure of a (3× 3) window buffer . 40
3.14 (3× 3) Window buffer with CAPH Wiring Functions. From [SBB16] 43
3.15 Post fitting view of the generated MAC units reported by the Quartus Tool 45
3.16 Evolution of resources in Xilinx and Intel FPGAs 46

4.1 Main Approaches to accelerate CNN inference on FPGAs 48
4.2 GEMM Based processing of: a- FC layers, b- conv layers. 49
4.3 Winograd Filtering F(u× u, k× k) . 50
4.4 Generic Data-paths of FPGA-based CNN accelerators 53
4.5 Loop tiling and unrolling in convolution layers 54
4.6 Design Space Exploration Methodology . 55
4.7 Design selection driven by the Roofline Model. 56
4.8 Fixed Point Arithmetic for CNN Accelerators 60
4.9 Distribution of Alexnet activations and weights 60
4.10 AlexNet top1 accuracy for various FxP representations 61
4.11 Binary Neural Networks . 62
4.12 Histogram of conv weights in a compressed Alexnet model 63

xiv

4.13 Example of a separable filter . 64

5.1 Models of Architecture for CNN Inference on FPGA 68
5.2 Hardware Architecture of NeuFlow . 69
5.3 Graph Partitioning in FPGAConvNet . 69
5.4 The 3 levels of DHM implementation of CNN entities 70
5.5 CTC Ratio for in Popular CNNs . 72
5.6 Dataflow Graph of the Network described in 5.1 73
5.7 Haddoc Conception flow for FPGA Mapping of CNNs 74
5.8 Differences between MNIST and USPS databases 76
5.9 Design Space Exploration With Haddoc . 79
5.10 Design space exploration of CNN topologies 80
5.11 Design space exploration of parameter bit-widths 81
5.12 Results of the Holistic Design Space Exploration 81
5.13 Multi-view CNN for 3D Shape Recognition. 82
5.14 Examples of entries in the ModelNet40 database 83
5.15 Graph of a Multi-view Alexnet as proposed in [SMKLM15] 83
5.16 Top1 Accuracy and Computational Workload of Muti-view CNNs 84
5.17 Multi-view Alexnet with view-pooling after the pool1 layer 85
5.18 Accuracy to Workload trade-off for MVCNNs 85

6.1 Example of a dataflow graph . 88
6.2 Resource utilization per actor for the LeNet implementations 88
6.3 Patterns Involved in the DPN representation of CNNs 89
6.4 Hardware Architecture of a Pipelined 2D-Convolution engine 90
6.5 FPGA Resources instantiated when mapping window buffers 91
6.6 DPN of a conv layer with and without window buffer factorization 91
6.7 Theoretical Memory utilization of Window Buffers in AlexNet conv layers 92
6.8 Implementing multiplications with logic resources in FPGAs 94
6.9 Example of a constant multiplier implementation on an FPGA 95
6.10 Implementation a MOA by cascading binary adders 96
6.11 Performance of the «cascaded» MOA for a variable number of inputs . . . 97
6.12 Hardware Architecture of a Pipelined MOA 97
6.13 Performance of the pipelined «cascaded» adder 98
6.14 Implementation of a MOA with the tree structure 98
6.15 Performance of a tree MOA Structure . 98
6.16 Frequency and hardware utilization of the studied adders 99
6.17 Impact of Pipeline on Resources Utilization and frequency of MOAs . . . 99
6.18 Frequency to ALM trade-off using the sreg parameter 100
6.19 Evolution of top1-accuracy vs bit-width . 101
6.20 The DreamCam Smart Camera [BB14] . 103
6.21 Demonstration Setup . 104
6.22 Deploying CNNs with and without Sliding Windows 104
6.23 Classification results . 105
6.24 Evolution of Fmax with the input Resolutions 105
6.25 Resource utilization of 3D-convolutions vs. zero-valued weights 107
6.26 Resource utilization of 3D-convolutions vs. qdyn 109

7.1 Architecture of a serial MOA . 112
7.2 Logic resources used by a serialized and fully pipelined MOA 112
7.3 Hardware Architecture of a LOA . 113
7.4 MRED and ALMs of LOA Adders . 114
7.5 Stochastic number generator using an LFSR, from [Ala15] 115
7.6 Circuits implementing stochastic computing arithmetic 115

xv

7.7 Hardware Architecture of the stochastic multiplier block 117
7.8 Performance of Stochastic and Conventional Multipliers 118
7.9 Hardware Architecture of a parallel stochastic multiplier 118
7.10 Latency and resource utilization of the studied multipliers 119

B.1 Implementation of a Convolution Layer in Haddoc2 143
B.2 Hardware Architecture of the Tensor Extractor 144
B.3 Hardware Architecture of SCM and MOA parts 144
B.4 Implementation of a Pooling Layer in Haddoc2 145
B.5 TanH Function: Approximation and Implementation 145
B.6 Intermediate Feature Maps . 146
B.7 Similarity between Hardware and Software extracted Features 146

xvii

List of Tables

2.1 Tensors Involved in the inference of a given layer ` 9
2.2 Confusion Matrix . 15
2.3 Popular datasets for computer vision applications 17
2.4 Workload of Popular CNN models. 19
2.5 Comparison of Available Hardware to Accelerate CNN Workload 23
2.6 Lightweight CNN Models . 24
2.7 Popular Embedded CNN Accelerators . 25

3.1 Resource utilization and Operating frequencies of the convolution blocks 44

4.1 Accelerators employing computational transforms 52
4.2 Loop Optimization Parameters Pi and Ti . 54
4.3 Accelerators employing loop optimization 58
4.4 Accelerators employing Approximate arithmetic 65
4.5 Accelerators employing pruning and low rank approximation 65

5.1 Topology of the Studied LeNet Implementations: For each layer `, N, C, J
refers to the number and dimensions of 3D filters, U to feature maps’ width
width,Rm to the number of multipliers and C computational workload . 75

5.2 Accuracy of the studied networks on MNIST and USPS 76
5.3 Post-fitting Results of the CNNs mapped with Haddoc 77
5.4 Remarkable Configurations: C1 is the most efficient, C2 has the lowest

hardware utilization and C3 is the more accurate 79
5.5 C1 implementation features on a Stratix-V device 80

6.1 Resource Utilization of the previously studied LeNet mappings 89
6.2 Logic Fabric and Memory Resources Allocated to Map Alexnets’ first layer 92
6.3 Multipliers in Popular CNN layers . 93
6.4 Statistics on convolution kernels in popular CNNs 95
6.5 Impact of SCM in the mapping of LeNet5-I1 96
6.6 Experimental Setup: Topology, weights stats and top1 accuracy 101
6.7 Resource Utilization of the generated mappings 102
6.8 Resource utilization of AlexNet, VGG and YOLOv3 first layers 102
6.9 Resource Utilization of the OCR system . 105
6.10 ALMs Used by Entity . 106
6.11 R-Squared Values and Estimation Error of the proposed Linear Models . . 108

A.1 Object Detectors . 141
A.2 Classifiers . 142

xix

Glossary

AI Artificial Intelligence. 5, 8

ALM Adaptative Logic Module. 28–31, 44, 77, 87, 90, 93, 97, 99, 106, 112, 114

ASIC Application Specific Integrated Circuits. 23, 27, 32

BNN Binary Neural Network. 12, 62

CLB Configurable Logic Block. 30

CNN Convolutional Neural Network. iii, 1, 4, 5, 7–14, 17–25, 27, 34, 37, 46–51, 53, 55–57,
59, 63, 64, 66, 68–75, 77, 81, 83, 87, 93, 97, 100, 101, 110, 111, 113–115, 119

CPU Central Processing Unit. 21, 22, 27, 31, 34, 48, 49, 59, 67

CTC Computation to Communitcation. 71, 102, 103

DHM Direct Hardware Mapping. 70, 71, 87, 90, 95, 96, 99, 102, 107, 117, 119, 122

DL Deep Learning. 5, 18

dma Direct Memory Access. 70

DP Dot-Product. 90

DPN Data-flow Process Network. 35, 70, 73, 74, 78, 89

DRAM Dynamic Random Access Memory. 21, 53, 55, 57

DSL Domain Specific Language. 35

DSP Digital Signal Processing. 23, 31, 38, 45, 48, 51, 53, 59, 62, 76–81, 93, 106, 111, 119

EWMM Element-Wise Matrix Multiplication. 50, 51

FA Full Adder. 29

FC Fully Connected. 12, 13, 18, 20, 48, 49, 71, 72, 76

FFT Fast Fourier Transform. 48, 51

FIFO First-In First-Out. 44, 71, 77, 88, 89, 121

FIR Finite Impulse Response. 94

FM Feature Map. 9–11, 13, 20, 48–51, 53, 55, 57, 59, 61, 62, 75, 77–80, 84, 92

FPGA Field-Programmable Gate Array. iii, 1–4, 7, 23, 27, 30, 32–34, 36, 45, 47–51, 53, 55,
56, 59, 61, 62, 64, 69, 70, 72, 73, 93, 101, 110, 111, 114, 119

FPS Frames Processed per seconds. 47

xx

FSM Finite State Machine. 116

FxP Fixed Point. 59, 61

GEMM General Matrix Multiplication. 49, 64

GPU Graphics Processing Unit. 7, 21, 22, 24, 27, 31, 34, 48–50, 59, 64, 122

HDL Hardware Description Language. 32–34, 43, 44

HLS High-Level Synthesis. 33–36, 45, 46, 72, 86, 87

HPC High Performance Computing. 47

HPS Hard Processor System. 31

I/O Inputs Outputs. 27, 38, 76, 91

ILSVRC ImageNet Large Scale Visual Recognition Competition. 17

IoU Intersection over Union. 16

IP Intellectual Property. 40, 72, 103

LAB Logic Array Block. 30

LC Logic Cell. 27, 28

LE Logic Element. 28, 29

LFSR Linear Feedback Shift Register. 115, 117, 118

LOA Lower-part-Or Adder. 113, 114

LUT Look-Up Table. 28, 29, 32, 48, 50, 114

MAC Multiply Accumulate. 18, 20, 21, 37, 38, 43–45, 47, 62, 64

mAP Mean Average Precision. 16

MCM Multiple Constant Multiplication. 110

ML Machine Learning. 5, 6

MLP Multi-Layer Perceptron. 6–8, 12

MNIST Modified National Institute of Standards and Technology. 76, 78

MOA Multiple Operand Adder. 96, 99, 106–108, 111–114, 143

MoC Model of Computation. 34, 35, 72, 86

MRED Mean Relative Error Distance. 113, 114

MSE Mean Squared Error. 107

MVCNN Multi-View CNN. 82–85, 122

OCR Optical Character Recognition. 12, 75, 78, 80, 103

PE Processing Element. 21, 51, 53, 54, 66

xxi

PSNR Peak signal-to-noise ratio. 145

QNN Quantized Neural Networks. 62, 94

QoS Quality of service. 2

RAM Random Access Memory. 55

ReLU Rectified Linear Unit. 11, 13, 19, 144

RTL Register Transfer Level. 32–34, 38, 67, 87

SC Stochastic Computing. 115–119

SCM Single Constant Multiplication. 87, 94–96, 100, 106–108, 110, 143

SDF Static Data-Flow. 69

SGD Stochastic Gradient Descent. 7

SIMD Single Instruction on Multiple Data. 21

SM Streaming Multiprocessor. 21

SNG Stochastic Number Generator. 115–119

SRAM Synchronous Random Access Memory. 30, 31, 40, 48, 90, 92, 106

SSIM Structural SIMilarity. 145

TPU Tensor Processing Unit. 23

TTQ Trained Ternary Quantization. 62, 63, 94

USPS United States Postal Service. 76, 79

VHDL VHSIC Hardware Description Language. 32, 35, 37, 38, 100

WB Window Buffer. 90

1

Chapter 1

Introduction

1.1 The Context of Deep Learning and Smart Cameras

Video is arguably the largest data being stored and exchanged, as it accounts for over
70% of today’s Internet traffic [Cis17]. On a daily basis, over 800 million hours of video
are collected worldwide, and that is only for video surveillance [Woo14]. The acquisi-
tion and processing of all this data opens up critical research challenges in both areas of
multi-camera networks –during the acquisition phase–, and computer vision –during the
processing phase–. In the conventional approach, multi-camera vision systems operate
in a centralized fashion in which all data collected by a cameras is sent to a unique pro-
cessing unit. Then, this central node extracts high level information from the gathered
data, inferring for instance the presence of an object in a given scene. Such an approach
quickly reaches its limits when the number of cameras increases. In this case, both the
computing capabilities of the processing unit and the network bandwidth become lim-
iting factors. This is even more true when the multi-camera vision system is deployed
under real-time constraints, which involve usually high resolution video streams, and
elevated frame rates. Under these constraints, network technologies fail at providing
sufficient bandwidth and become very costly in hardware resources and energy.

In order to address this bandwidth problem, distributed vision systems have been
proposed. In this kind of systems, the objective is to decentralize the calculations directly
to each camera, or node, of the system. The role of these cameras is not only to acquire the
video of a given scene, but also to partially or fully process this video, extracting some
information from the scene. Such « intelligent » cameras are commonly referred to as smart
cameras, and embed their own processing capabilities. Thanks to decentralization, smart
camera nodes are able to solve the bandwidth bottleneck problem, but introduce new
challenges, mainly related to computer vision, and embedded image processing under
low-power constraints.

In the last few years, computer vision has been revolutionized by deep learning.
Many tasks of computer vision, consisting in extracting structured information from raw
data, are now efficiently carried out with deep learning based techniques, and particularly
Convolutional Neural Networks (CNNs). CNNs have been successfully employed in
a large number of vision problems, ranging from image classification and object detec-
tion [RF18], to semantic scene labelling and context understanding [KTB15, TKTH18]. In
a large number of applications, deep learning outperforms conventional computer vision
algorithms, and even human performance in the image classification task [HZRS16]. In
the context of camera networks, deep learning and CNNs open new perspectives of sys-
tem autonomy and reliability.

When considering the embedded processing aspects of smart camera design, the ar-
chitecture of the hardware, and the nature of the processing core represent critical factors
to meet real-time and low power constraints. In this context, Field-Programmable Gate

2 Chapter 1. Introduction

Arrays (FPGAs) have drawn a lot of attention in the past years because they offer large
opportunities for exploiting the fine grain, regular parallelism that most of image pro-
cessing applications exhibit. This is even more true for deep learning applications, which
naturally have a streaming nature, and can thus benefit from significant acceleration when
running on reconfigurable hardware such as FPGAs.

However, deep learning techniques are very computationally intensive, involving
up to billions of operations to properly operate. These high computational workloads
currently prevent the real-time implantation of state-of-the-art deep learning in power-
constrained environments, and especially smart camera nodes. In this context, the fol-
lowing manuscript addresses the problem of deep learning implementation on embed-
ded reconfigurable hardware to push the boundaries of deep learning embeddability.

1.2 Deep Learning Constraints and Implementation Challenges

The challenges of embedded vision with deep learning are those of conventional com-
puter vision in general, to which are added constraints related to the physical implemen-
tation in an embedded platform. Mainly, these constraints can be formalized as:

1. Real-time constraints: Depending on the application, video streams have to be pro-
cessed at high frame-rates, typically over 30 frames per second when human per-
ception is involved.

2. Quality of service (QoS): Deep learning based methods are known to deliver high
reliability. In this manuscript, reliability is quantified using accuracy metrics de-
tailed in the next chapter. However, one may note that deep learning algorithms
are usually tolerable to approximate computing with a controlled rate of error, al-
lowing a designer to trade a minimal amount of QoS for efficiency improvements.

3. Embedded environment: These constraints are mainly related to power consump-
tion of the system (typically, under 20W in embedded systems), and to the nature
of the implementation platfrom (typically under < 300USD)

Of course, these constraints are antagonist and a given accelerator has to trade off
between computational performance, reliability, and energy efficiency according to the
application it implements.

00 01 02 03 04
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34
40 41 42 43 44

<< 00, 01, … 44 >>

fdata

Task 1 … Task n

fdata fdata

Video stream
Processing Core

Computer Vision
 Pipeline

Image
sensor

Smart Camera Node

FIGURE 1.1: Diagram of Stream-based dataflow image processing.
Data is acquired and processed at the same rate

1.3. Smart Cameras as Dataflow Computer Vision Systems 3

1.3 Smart Cameras as Dataflow Computer Vision Systems

To meet the real-time requirements of embedded vision, numerous studies advocate the
use of the dataflow paradigm in the smart camera nodes [SBB16, Bou16, Mag17].

Diagram 1.1 illustrates the dataflow paradigm. The video of a given scene is acquired
by a camera sensor in a raster scan fashion, and is then sent to a processing unit as a
continuous stream of data. When using dataflow, the objective is to process this stream
at the very rate it is sent by the sensor, resulting in a real-time execution (i.e. sustainable
over long periods without accumulating data or starving processing units). In this case,
the number of frames processed per seconds is only a function of the frequency at which
the system operates, and of the resolution of the considered video stream. For instance,
considering the arrival of one pixel per clock cycle, processing a 720p monochrome video
stream at 30 FPS imposes a minimum processing frequency of 30 ∗ 1280 ∗ 720 = 27.5MHz.

Frames per seconds =
Frequency
Resolution

To implement this stream processing, the computation core of a smart camera has to
be able to process large processing pipelines. Reconfigurable hardware platforms such
as FPGAs shine at this task, and can naturally support streaming workloads thanks to a
low granularity of parallelism, and a high hardware flexibility.

As a result, a large number of smart camera architectures rely on FPGA-based pro-
cessing cores to implement dataflow image processing [YEBM02,SAWM08,LMH04,DBSM07,
HPFA07, BB14].

1.4 Contributions

This document mainly addresses the challenge of deep learning implementation on FP-
GAs. While a variety of studies already address the same problem [APBS18, VKB18],
this work is carried out in a context of smart camera networks. As evoked above, the
real-time and low-power requirements are critical in this context, and this calls for ded-
icated methods to make real-time deep learning feasible on low-power devices. In this
perspective, the main contributions of this manuscript can be be listed as:

• Exploring dataflow hardware architectures capable of implementing CNN infer-
ence on FPGAs.

• Proposing « Tactics » and optimization strategies to reduce the footprint of FPGA-
Based CNN accelerators.

• Introducing a design space exploration methodology that searches for the best trade-
off between the FPGA resource utilization and the deep learning accuracy.

• Developing tool-flow that automates the mapping of CNN accelerators on FPGA
devices.

• Reporting a list of negative methods, which first look promising to optimize CNN
mappings, but give negative results when deployed on FPGAs.

4 Chapter 1. Introduction

1.5 Manuscript Outline

The manuscript is structured in two main parts. The first part includes Chapters 2, 3,
4 and gives a background on CNNs, FPGAs and state-of-the-art methods to accelerate
the former on the latter. The second part includes Chapters 5, 6, 7 and presents thesis
contributions.

• Chapter 2 motivates the use of deep learning for embedded vision. More partic-
ularly, concepts and notions related to CNNs are introduced. The chapter also
discusses the computational workload of CNNs, and the conventional hardware
accelerators supporting these workloads.

• Chapter 3 briefly recalls the FPGA features and design flow. This chapter partic-
ularly highlights the relevance of FPGAs in real-time image processing through
end-to-end implementation examples.

• Chapter 4 details how deep learning acceleration can benefit from the evolution
of FPGAs technology. A survey of methods and optimization employed in FPGA-
Based deep learning acceleration is provided, leading to a classification of the exist-
ing approaches into three main categories: algorithmic-based, data-path-based and
approximate- computing-based.

• Chapter 5 introduces the first contribution of this work: Model-based optimization
of CNN mappings on FPGAs. This chapter can be viewed as a direct follow up
to the work of Bourrasset et al. [Bou16] in which the use of a dataflow model of
computation is advocated. In particular, it proposes a methodology the chapter de-
tails a design space exploration methodology that minimizes the resource allocated
to dataflow CNN mappings. Finally, the chapter introduces multi-view CNNs, and
shows how they improve the efficiency of a vision system.

• Chapter 6 discusses the architectural optimization of CNN implementation. In par-
ticular, it focuses on improving the previously derived mappings by customizing
the hardware architecture of the atomic components; mainly by specializing the
multipliers and pipeline the adders. As a proof of concept, the discussed methods
are leveraged on to map a CNN application on an FPGA-powered smart camera.

• Finally, chapter 7 lists the methods that fail to optimize the mapping of CNNs on
FPGAs. These methods make sense on paper, but, when implemented, give unex-
pected bad results on current FPGA architectures, calling for new hardware archi-
tectures.

5

Chapter 2

Embedded Deep Learning

With the emergence of low-cost and energy-efficient processing platforms, it is now pos-
sible to implement mainstream computer vision tasks on low-power embedded sys-
tems. This discipline, known as embedded vision, makes numerous applications possible.
Among these applications, smart camera networks recently gained a lot of research interest.

In a smart camera network, each node is able to pre-process the raw video stream
it captures and transform information into mid-level semantic descriptors that are then
exploited to extract meaningful information from a given scene. In classical computer vi-
sion approaches, these descriptors are hand-crafted and require a domain-specific knowl-
edge to be engineered. However, with the exponential growth of operating image sensors
and video sources, a new challenge of embedded vision is to extract high-level seman-
tic information, in a fully autonomous fashion, without the need of any domain-specific,
human-crafted visual descriptor. In order to address this challenge, Deep Learning (DL)
based methods can be used and are currently the de-facto standards to solve computer
vision tasks where a sufficient amount of data is available to train the system.

In the following material, elements of deep learning for embedded visions are dis-
cussed. A special interest is given to CNNs, which is motivated in the first sections of
this chapter. Then, the classical CNN layout is described and currently popular models
of computer vision are studied. Special interest if given to the computational workload
of CNN inference and to the available hardware architectures supporting this workload.
This chapter finally discusses lightweight deep learning models, and low-power hard-
ware platforms supporting embedded deep learning for computer vision.

2.1 From Machine learning to Deep Learning

A majority of concepts involved in deep learning are inherited from the Machine Learn-
ing (ML) theory and more specifically from feed-forward neural networks. This relation-
ship of deep learning to the whole of Artificial Intelligence (AI) discipline is illustrated in
figure 2.1.

Machine Learning is a branch of AI that explores the conception of algorithms that
can automatically extract structured information from raw data without being explicitly
programmed. In other words, a machine learning algorithm is able to learn how to do
some "intelligent" activities outside the notion of programming, which is in contrast with
purpose-built algorithms whose behaviours are defined by hand-crafted heuristics that
are explicitly defined.

The advantage of ML is clear: instead of creating a distinct, custom set of programs to
solve individual tasks of a given a domain, a single machine learning algorithm can learn,
via a process known as training, how to solve multiple tasks (e.g image classification,
detection, segmentation ...) of a given domain (e.g. computer vision).

The next subsections discuss the main features constituting deep learning systems, as
an introduction to the notion of deep CNN discussed in Section 2.2.

6 Chapter 2. Embedded Deep Learning

Artificial Intelligence

Machine Learning

Brain Inspired

Neural Networks

Sp
ik

in
g

R
ec

ur
re

nt Feed Forward

 CNN

 MLPDeep
Learning

FIGURE 2.1: Deep learning as a sub-field of Artificial Intelligence

2.1.1 Neural Networks and MLPs

The majority of the proposed ML algorithms, deep or not, take their inspiration from
the brain itself. As an organ, the brain involves millions of elementary computational
elements called neurons that are densely interconnected using synapses.

Artificial neural networks constitute a class of brain-inspired ML that makes the as-
sumption that the neuron computational model is a weighted sum of input information,
followed by a non linear function that produces an activation, i.e. that «decides» whether
the input signals are sufficient to generate an output signal for the neuron. A common
form of Neural Networks are feed-forward Neural Networks wherein the neurons are hierar-
chically arranged onto layers and connections between these neurons do not form a cycle.
From the «input» to the «output» of a feed-forward neural network, data is progressively
transformed from one representation to another.

One of the most popular classes of feed-forward neural networks are Multi-Layer
Perceptrons (MLPs) where each layers’ neuron (`− 1) is fully connected to the neurons of
layer `. This means that if M` is the number of inputs of a given layer ` and N`−1 is the
number of outputs (activations) of previous layer (`− 1), then M` = N`−1. Feed-forward
neural networks serve as as a substrate for two operations: inference and training. These
operations are explained in the next section.

2.1.2 Training and Inference of Neural Networks

As a typical ML setup, neural networks are deployed in two phases. First, the training
phase works on a known (and often large) training set of data samples to create a model
with a modeling power which semantics should be sufficient to interpolate and extrapo-
late to natural data outside the training set. The output of this phase is the value of the
weights of the neural network. These weights are then used during the second phase of
the deployment named inference. The inference works on new data samples (i.e images
that were not previously seen during training), and implements the feed-forward propa-
gation of the inputs across the network to performed the learned task.

There are multiple ways to train a neural network and derive its weights. The most
common approach in computer vision tasks is supervised learning, where each training
sample is labelled (i.e. where we know what the neural network should ideally produce
for this data). This is typically the case in image classification applications, wherein the
networks are trained on annotated images where the class of the object present in each
image of the training set is specified by a human operator.

Unsupervised learning is another approach where none of the training samples is
labelled. In this case, the objective is to find clusters of similar features on a given dataset.

2.1. From Machine learning to Deep Learning 7

In the example of image classification, this corresponds to grouping multiple images of a
given class, without explicitly knowing which label to put on each group.

Finally, Semi-supervised learning falls in between the two approaches and typically
works on a small subset of labelled training data and a large subset of unlabelled data.
A semi-supervised machine learning algorithm can for instance use unlabelled data to
define the clusters on a dataset and use a small amount of labelled data to label these
clusters.

In general, the training of neural networks implements a back-propagation algo-
rithm [LBBH98] which iteratively updates the network parameters to improve the pre-
dictive power of the model. Particularly, neural networks can also be fine-tuned by using
weights of a previously-trained network to initialize the parameters of a new training.
These weights are then adjusted to a new constrain, such as a new dataset or reduced
precision.

From a computational point of view, the learning phase requires several orders of
magnitude more computation than the inference. In fact, back-propagation relies on iter-
ative Stochastic Gradient Descent (SGD) algorithms [Bot10] such ADAM or RMSProp
[KB14, HSS12] that require millions of iterations to derive accurate models. In addi-
tion, back-propagation calls for high precision arithmetic (float32/float64) to support
the computation of small gradients. As a result, the training of a CNN is an energy-
consuming process that is usually performed once or a few times per problem, in an
off-line fashion, on large clusters of GPUs. Indeed, GPUs are currently the preferred
hardware architecture for training neural networks. Moreover, training a state-of-the-
art model for computer vision requires several days to complete [KSGH12]. For these
reasons, training CNNs with the current learning methods1 is not feasible on embedded
devices. Consequently the acceleration of the training phase is kept beyond the scope of
this manuscript. For more details about FPGA-based acceleration of training, the reader
is referred to [EH94, OJU+16, KMNM17]. This document is thus concentrated on the in-
ference of neural networks, based on a feed forward propagation.

2.1.3 Forward Propagation in a Neural Network

The inference –also known as forward propagation– of a feed-forward neural network
refers to the phase of deploying a pre-learned network to make a prediction (i.e. extract
structured information) from a new data sample. In this case, each neuron n of a given
layer ` applies a learned weight Θ[m, n] to each of the activations of layers `− 1. This is
followed by the addition of a learned bias bn and the application of a non-linear function,
as depicted in equation 2.1:

∀ {l, n} ∈ [1, B]× [1, L]

a`[n] = act

(
b`[n] +

M`

∑
m=1

Θ[m, n]a`−1[m]

)
(2.1)

Note that the operations involved in feed-forward propagation can be expressed as
the following vector-matrix multiplication:

∀` ∈[1 : L]
a` = act (b` + Θa`−1) (2.2)

The efficient porting of feed-forward propagation in embedded vision systems is the
subject of this thesis. However, rather than targeting MLPs formulations such as the
one in Equation 2.1, focus is put on Convolutional Neural Networks (CNNs) for their
capacity to overcome MLPs limitations.

1Other training methods, referred as One-Shot Learning, are introduced in [FFFP06]

8 Chapter 2. Embedded Deep Learning

...

... ...

Flaen

28x28 x1

x2

x784

"five"

FIGURE 2.2: Feed Forward Propagation

2.1.4 Limitations of MLPs and Motivations of CNNs

MLPs were a popular machine learning solution in the 80. However, these neural net-
works are often used as classifiers, working on pre-computed representative features, as
they are limited in their ability to process data in its natural raw form.

Indeed, MLPs require domain specific features to be hand-crafted before being pro-
cessed by the AI algorithm. To overcome these limitations, a neural network has to em-
bed more layers of neurons in order to discover its own intermediate representation and
automate the feature extraction process. Such networks use a large cascade of layers, each
corresponding to a higher level semantics representation [LBH15]. By convention, neu-
ral networks with a number of layers exceeding three are referred as deep neural network.

However, training deep and fully connected networks such MLPs is an inadequate
solution because the derived models are excessively complex and over-parametrized. As
shown in equation 2.1, (M` × N`) weights have to be learned at each layer `. In the con-
text of computer vision, and particularly in the first layer, M` generally has a large value
that corresponds to the total number of pixels of a given image. For instance in figure 2.2,
each of the N1 neurons of the first layer has to learn 28× 28 weights. As a consequence,
a tremendous amount of computations and storage would be needed to train a deep and
fully-connected neural net.

Moreover, since the network is receptive to each pixel of the input, it can easily be
subject to over-fitting. An over-fitted neural network overreacts to all the minor fluctua-
tions in the training data and, consequently, has poor predictive performance for unseen
inputs.

Two strategies are advocated to address over-parametrization and over-fitting. The
first one is to force a proportion of the weights to have a null value, which is equivalent
to partially removing some connections between a layer ` and a layer `+ 1 resulting in a
sparsely connected layer.

The second, known as weight sharing, is to reduce the number of weights contribut-
ing to an output by replicating them across the inputs using a sliding window over the
image space. In this case, each neuron is only receptive to a local neighbourhood in-
stead of being receptive to all of the inputs separately. Combining these two methods
resulted to the creation of Convolutional Neural Networks (CNNs), which the invention
is associated to LeCun el al. [LBD+90]. Later on, it has been empirically demonstrated
in [GGS+17] that neural nets need be both deep and convolutional in order to maintain
their accuracy performance, especially in computer vision.

2.2. Deep Convolutional Neural Networks 9

FIGURE 2.3: A typical CNN Structure with 3 convolutional layers, 2 pool layers and a single
layer MLP

2.2 Deep Convolutional Neural Networks

Convolutional networks are feed-forward neural networks that use convolution instead
of general matrix multiplication. Therefore, CNNs have a hierarchical structure that
stacks multiple convolution (conv) layers. Figure 2.3 illustrates this structure where each
conv layer includes a set of three-dimensional filters that extract features from the input
data generating a Feature Map (FM).

TABLE 2.1: Tensors Involved in the inference of a given layer `

Array Dimension

X Input FMs B× C× H ×W
Y Output FMs B× N ×V ×U
Θ Learned Filters N × C× J × K
β Learned biases N

The depth of a CNN corresponds to to the number of layer it contains, and, the deeper
the layer is, the higher is the level of the features it extracts [LBH15]. CNN inference refers
to the feed-forward propagation of B input images across L layers. A common practice is
to manipulate layers, parameters and FMs as multi-dimensional arrays, as listed in ta-
ble 2.1. Note that when it will be relevant, the type of the layer will be denoted as a
super-script, and the position of the layer will be denoted as an under-script.

The dimensions of tensors labelled above by their sizes, are described here-under:

• B: the Batch size (i.e the number of input frames processed by the CNN).

• C: the number of Channels in the considered input image (C0) or more generally
the depth of feature maps that input a CNN layer (C`).

• H: the Height of the considered input image (H0) or input feature maps (H`).

• W: the Width of the considered input image (H0) or input feature maps (W`).

• N: the depth of the output feature maps.

• U: the Height of the output feature maps.

• V: the Width of the output feature maps.

• J: the Height of the convolution kernels.

• K: the Width of the convolution kernels.

Next paragraphs detail the best practises and computation of these dimensions.

10 Chapter 2. Embedded Deep Learning

2.2.1 Common CNN layer types

Recent CNN models may comprise up to hundreds of layers. This section describes the
role of each layer type and details the computations it involves.

2.2.1.1 Convolution layers

A convolution layer (conv) carries out the feature extraction process by applying a set of
3D-convolution filters Θconv to a batch B of input volumes Xconv. Each input volume has
a depth C and can be a color image2, or an output generated by previous layers in the
network.

As illustrated in figure 2.4, applying a 3D-filter to 3D-input results in a 2D Feature Map
(FM) and, each conv layer outputs a set of N two-dimensional features maps.

In some CNN models, a learned offset βconv –called a bias– is added to the 3D-conv
results, but this practice is discarded in recent models [SZ14]. The computations involved
in feed-forward propagation of conv layers are detailed in equation 2.3.

∀ {b, n, u, v} ∈ [1, B]× [1, N]× [1, V]× [1, U]

Yconv[b, n, v, u] = βconv[n] +
C

∑
c=1

J

∑
j=1

K

∑
k=1

Xconv[b, c, v + j, u + k].Θconv[n, c, j, k] (2.3)

Input FMs Xconv Conv Filters Θconv Output FMs Yconv

N

U

V

W

H

C

C
K

J

N

FIGURE 2.4: Example of a Convolutional layer, C = 3, N = 5

Applying a 3D-convolution to a 3D-input boils down to applying a mainstream 2D-
convolution to each of the 2D-channels of the input, then, at each point, sum the results
across all the channels, as shown in equation 2.4

∀n = 1 : N

Y[n]conv = βconv[n] +
C

∑
c=1

conv2D (X[c]conv, Θ[c]conv) (2.4)

The depth of an output FMs, N`, referring to the number of features extracted by a
layer `, is set when designing the CNN topology. The other dimensions of the output
FMs can be computed as followed:

V =
W − K + 2px

sx
+ 1

U =
H − J + 2py

sy
+ 1

(2.5)

2This is the case of the first conv layer, where C = 3 for the 3 color components of each pixel.

2.2. Deep Convolutional Neural Networks 11

Where p(`)x , p(`)y refers to horizontal (resp. vertical) padding3 and s(`)x , s(`)y refers to hor-
izontal (resp. vertical) stride4. In general, popular CNN models use rectangular inputs
and rectangular filters in a way that FMs have the same horizontal and vertical dimen-
sions (W = H, U = V, J = K, px = py, sx = sy)

2.2.1.2 Activation Layers

Each conv layer of a CNN is usually followed by an activation layer that applies a non-
linear function in an element-wise fashion across the FMs. Early CNNs were trained
with TanH or Sigmoid functions but recent models employ the ReLU function that grants
faster training times and less computational complexity, as highlighted in [KSGH12].

∀ {b, n, u, v} ∈ [1, B]× [1, N]× [1, V]× [1, U]

Yact[b, n, h, w] = act
(

Xact[b, n, h, w]
)

| act := TanH, Sigmoid, ReLU ... (2.6)

1 -3 2 -2
-2 0 4 3
-1 -2 -2 -3
-2 4 4 2

1 0 2 0
0 0 4 3
0 0 0 0
0 4 4 2

Xact Yact

ReLU

FIGURE 2.5: Example of ReLU activation function

2.2.1.3 Pooling layers

The convolutional and activation parts of a CNN are directly inspired by the cells of vi-
sual cortex in neuroscience [HW62]. This is also the case of pooling layers, which are
periodically inserted in-between successive conv layers. As shown in equation 2.7, pool-
ing sub-samples each channel of the input FMs by selecting either the average, or, more
commonly, the maximum of a given neighbourhood K. As a results, the dimensionality of
a FMs is reduced, as illustrated in figure 2.6

∀ {b, n, u, v} ∈ [1, B]× [1, N]× [1, V]× [1, U]

Ypool[b, n, v, u] = max
p,q∈[1:K]

(
Xpool[b, n, v + p, u + q]

)
(2.7)

Xpool

max pool
1 0 2 0
0 0 1 3
0 0 0 0
0 4 7 2

1 3
4 7

Ypool

FIGURE 2.6: Illustration of a max pooling layer in a CNNs

3Number of zeros put at each edge of the image (North, South, West, East).
4Number of pixels (horizontally and vertically) between the application of two successive convolution windows.

12 Chapter 2. Embedded Deep Learning

2.2.1.4 Fully Connected Layers

When deployed for classification purpose, the CNNs pipeline is often terminated by an
MLP referred as Fully Connected (FC) layers. These layers can be seen as conv layers with
no weight sharing (i.e W = K , H = J, U = V = 1). Moreover, in a same way as conv
layers, a non-linear function is applied to the outputs of FC Layers.

∀ {b, n} ∈ [1, B]× [1, N]

Y fc[b, n] = βfc[n] +
C

∑
c=1

H

∑
h=1

W

∑
w=1

Xfc[b, c, h, w].Θfc[n, c, h, w] (2.8)

2.2.1.5 Softmax Layer

The Softmax function is a generalization of the Sigmoid function, and "squashes" a N-
dimensional vector X to Sigmoid(X) where each output is in the range [0, 1]. The Softmax
function is used in various multiclass classification methods, especially in CNNs. In this
case, the Softmax layer is placed at the end of the network and the dimension of vector
it operates-on (i.e N) represents the number of classes in the considered dataset. Thus,
the input of the Softmax is the data generated by the last fully connected layer, and the
output is the probability predicted for each class.

∀ {b, n} ∈ [1, B]× [1, N]

So f tmax(X[b, n]) =
exp (X[b, n])

∑N
c=1 exp (X[b, c])

(2.9)

2.2.1.6 Batch-Normalization Layers

Batch-Normalization is introduced in [IS15] to speed up training by linearly shifting and
scaling the distribution of a given batch of inputs B to have zero mean and unit variance.
These layers find also their interest when implementing Binary Neural Networks (BNNs)
as they reduce the quantization error compared to an arbitrary input distribution, as
highlighted in [HCS+16]. Equation 2.10 details the processing of batch norm layers, where
the mean µ and the variance σ are statistics collected during the training, α and γ are
parameters learned during the training, and ε is a hyper-parameter set empirically for
numerical stability purposes (i.e avoiding division by zero).

∀ {b, n, u, v} ∈ [1, B]× [1, N]× [1, V]× [1, U]

YBN[b, n, v, u] =
XBN[b, n, u, v]− µ√

σ2 + ε
γ + α (2.10)

2.2.2 Popular CNN Models

CNNs come in multiple shapes with various layers configurations. This section overviews
the currently popular CNN models and highlights the improvements they bring. The
full topology of the studied CNNs is given in appendix A. Note that more details can be
found on a survey of CNN topologies [GWK+17]

LeNet5

Introduced in the late 90s by LeCun et al. [LBBH98], LeNet5 was the first commercial suc-
cess of CNNs, and was deployed for Optical Character Recognition (OCR) of handwrit-
ten digits. LeNet5 employs two conv layers, respectively with 6 filters of size (5× 5× 1)

2.2. Deep Convolutional Neural Networks 13

and 16 filters of size (5× 5× 3)5. These layers are interspersed by two average pool layers
and terminated by two FC-layers.

AlexNet

The real emergence of CNNs as a prominent technique in the field of computer vision
took place in 2012 when Krizhevsky et al. submitted AlexNet [KSGH12], the first success
of employing CNNs in classifying the ImageNet data-set [DDS+09]. AlexNet was the
first network to use a deep topology that involved five conv layers, three maxpool and
three FC layers. Moreover, AlexNet also introduced the ReLU activation function, which
significantly fastened the training process.

The first layer of AlexNet extracts 96 FMs, the second layer conv2 extracts 256 FMs
while layers conv3,conv4 and conv5 extract 384 FMs. Filter size in these layers ranges
from (11× 11× 3) up to (3× 3× 192).

VGG

In 2014, Simonyan et al. [SZ14] deepen the CNN architecture to 13 conv and 3 FC layers.
This model, known as VGG, replaces the (11× 11) and (5× 5) filters by successive stages
of (3× 3) filters. With this method, the size of the receptive field of a given filter remains
unchanged while its processing requires less computations, as illustrated in figure 2.7.

FIGURE 2.7: Decomposing (5× 5) filters into two successive stages of (3× 3)filters.
Used in VGG [SZ14], image from [SCYE17]

By lowering the computational load in the first layers, Simonyan et al. can deepen
the CNN, which in turn, improves the classification performance by 14,8% on ImageNet.
Three versions of this network are proposed with variable depths. Note that the deepest
model –known as VGG19– requires 27% more computations then the shallow model –
VGG16– to increase the accuracy by only 1%.

GoogLeNet

Szegedy et al. [SLJ+15] go deeper and use a CNN of 22 learned layers to outperform VGG
accuracy on ImageNet by 3.2%. This network leverages on 9 micro-networks [LCY13],
each employing variable filter sizes, to capture visual patterns at multiple scales6. Each
micro-network, known as an Inception modules, includes a (3 × 3) maxpool, as well as
(1× 1), (3× 3) and (5× 5) convolution layers arranged in a parallel fashion. The results
of these operations is concatenated to the output, as illustrated in Fig. 2.8a. GoogleNet
also introduces three-dimensional (1× 1) convolutions, known as bottleneck filters, are
placed before (3× 3) and (5× 5) convolutions as dimension reduction filters. Their role
is to increase the depth of each layer, and consequently its modeling power, without
increasing the computational complexity.

5In fact, LeNet5 second conv layer uses 6 filters (5x5x3), 9 filters (5x5x4) and 1 filter (5x5x6)
6Each micro-network includes 2 conv layers. GoogLeNet is also known as Inception-v1. Inception-v2 and Inception-v3

models have been proposed. Inception-v4 combines the inception architecture with short-cut connections of ResNet

14 Chapter 2. Embedded Deep Learning

ResNet

Numerous works such in [HS15] report that when the network depth increases too much
(> 50 conv layers), accuracy gets saturated and start even to decrease. This degradation
is not caused by over-fitting, but by gradient vanishing. This phenomenon appears when
training a very deep CNN with gradient descent, and causes the gradient to decrease
exponentially with L until it « vanishes ».

To address this problem, and deepen the network while avoiding gradient vanishing,
Residual Networks are introduced in [HZRS16]. These networks rely on skip connections
illustrated in Fig. 2.8b. Instead of learning layers that fit a desired mapping from x to
F(x), ResNets learn the mapping between x and F(x) − x. Authors demonstrate that
the so-called Residual Mapping is less prone to gradient vanishing and, as a consequence,
ResNets can involve hundreds of layers while being more accurate. For instance, the
ResNet-152 CNN contains 155 conv layers and delivers an error rate of 6.7% on ImageNet,
which outperforms the human accuracy by 3.5 % on this dataset!

(192×1×1) conv (64×3×3) conv (64×5×5) conv

(64×1×1) conv (64×1×1)conv (192×3×3) maxpool

Output
FM

N=64
N=128 N=32

(192×1×1)conv

N=32

N=64 N=64 N=192

Input
FM

C=192

+

X
conv

Y
conv

(64×1×1)conv

(64×3×3)conv

(256×1×1)conv

N=256

Input FMX
conv

Output FMY
conv

(A)

(192×1×1) conv (64×3×3) conv (64×5×5) conv

(64×1×1) conv (64×1×1)conv (192×3×3) maxpool

Output
FM

N=64
N=128 N=32

(192×1×1)conv

N=32

N=64 N=64 N=192

Input
FM

C=192

+

X
conv

Y
conv

(64×1×1)conv

(64×3×3)conv

(256×1×1)conv

N=256

Input FMX
conv

Output FMY
conv

(B)

FIGURE 2.8: Advanced CNN Topologies: a-Inception Network, b- Residual Network

2.3 CNN Applications, Datasets and Evaluation Metrics

CNN models, which have been originally proposed to solve image classification prob-
lems, are now used in an increasing number of large scale computer vision applications.
Indeed, and as stated in section 1, the advantage of machine learning for computer vision
is the possibility to re-use the same algorithm for different applications, just by changing
the datasets and the labels it processes.

In the sequel, this manuscript focuses on image classification and object detection
applications, since they are the most relevant in the context of Smart Camera networks.
Nevertheless, CNNs are at the heart of many computer vision algorithms, and have suc-
cessfully been employed to solve problems related to semantic segmentation [GDDM14,
LSD15], saliency maps [ABM13,ZOLW15,KTB15], visual tracking [WOWL15], and many
other applications. For more details realted to CNN applications for computer vision, the
reader is referred to [GWK+17].

2.3.1 Image Classification with CNNs

The intent of the classification process is to categorize an image or a part of an image into
one of several classes. In other words, an image classification algorithm outputs the class
to which a given object of the image belongs. In this manuscript, the output produced by

2.3. CNN Applications, Datasets and Evaluation Metrics 15

a classifier is called a prediction while the ground truth value is referred as annotation or
label.

Tiger cat
Tabby cat (0.25)
Persian cat (0.18)
Lynx (0.12)
Leopard (0.08)

FC Layers
+ SoftmaxConv Layers

...

Output Classes
with con�dence

Feed Forward Prop.

Tiger cat (0.32)

Other. (0.05)

FIGURE 2.9: Example of Image Classification

The performance of image classifiers is usually reported as an accuracy rate, defined
in equation 2.11. Note that when dealing with datasets involving a very large number of
classes, accuracy can be reported as a TOP-N rate (usually Top5). In this case, a sample
is considered to be correctly classified if its associated label figures among the top N
predictions of the algorithm. This is illustrated in the example of Fig.2.9 which classifies
the input image on the left. In this figure, the prediction of the CNN is «Tiger cat» while
the ground truth is «Tabby cat». This sample is considered to be correctly classified using
the Top5 Accuracy and miss-classified when using the Top1 Accuracy.

Accuracy =
Number of correctly classified samples

Total Number of Samples
(2.11)

However, when it comes to comparing different classification algorithms, choosing
the classifier with the highest accuracy might not be the best solution. Indeed, the previ-
ous definition of accuracy supposes that the classifier outputs a prediction whenever the
confidence on its prediction exceeds a given decision threshold. Varying this decision thresh-
old can heavily impact the outputs of the algorithm, biasing the comparison between two
classifiers.

For these reasons, performances of classifiers are evaluated using the precision and
recall values. To define these metrics, the following confusion metric is built:

TABLE 2.2: Confusion Matrix

Label
Positive Negative

Prediction
Positive True Positive (TP) False Positive (FP)

Negative False negative (FN) True Negative (TN)

With this matrix, precision and recall are defined as:

precision =
TP

TP + FP
(2.12)

recall =
TP

TP + FN
(2.13)

Thanks to these metrics, the precision-to-recall curve can be used to compare different
algorithms depending on the requirement (high precision at the cost of recall, or high
recall with lower precision)7.

The networks studied in the last section were all originally trained to solve this clas-
sification problem, and generally consider the presence of a unique class in an image. For
these networks, figure 2.11a reports the Top1 and Top5 accuracy rates on the ImageNet
dataset.

7Examples of the Precision-to-Recall study are nicely explained in
https://www.quora.com/What-is-the-best-way-to-understand-the-terms-precision-and-recall

https://www.quora.com/What-is-the-best-way-to-understand-the-terms-precision-and-recall

16 Chapter 2. Embedded Deep Learning

2.3.2 Object Localization and Detection with CNNs

The object localization problem is slightly different: the output in no longer the class of a
given object, but also its coordinates on the image, given under the form of a bounding
box. Object localization can also be applied on all the objects in the image, which results in
multiple bounding boxes. These objects can belong to different classes, and this problem
is known as object detection. In these applications, the datasets provide annotations of the
classes of the objects present in the image, but also their positions.

To decide if a given detection is positive or not, the Intersection over Union (IoU)
ratio, defined in equation 2.14, and depicted in Fig.2.10a, is generally used.

IoU =
Area of predicted bounding box∩Area of labeled bounding box
Area of predicted bounding box∪Area of labeled bounding box

(2.14)

The Performance of CNN detectors is usually reported using the Mean Average Pre-
cision (mAP) metric [EVW+10]. This metric is explained in Fig.2.10b, which gives an
example of a precision-to-recall curve for single class of the dataset. To compute the
average precision (AP) metric, the precision-to-recall curve is divided into a number of
segments the where the maximum precision is averaged. This corresponds to finding the
total area under the blue curve and dividing it by the number of segments. The mAP
metric simply averages the former AP measure over all classes of a given dataset. Note
that the mAP50 value considers that a detection is positive if its IoU exceeds 0.5, while
The mAP75 considers an IoU that exceeds 0.75.

Label
Bounding Box

Area of Union

Predicted
Bounding Box

(A) IoU Measure

PR Curve

Average Precision (Area under PR)
Maximum Average Precision

Recall

Pr
ec

isi
on

(B) PR curve and mAP Metric

FIGURE 2.10: Metrics for Object Detectors

The CNN models studied in section 2.2.2 generally constitute a backbone for CNN-
Based Object detectors. Two approaches can be distinguished:

• Region Based approaches rely on a first stage of region proposal that outputs bounding
box candidates, and a second stage that processes the candidates to output the de-
tections. In the original Region-CNN works (RCNN) [GDDM14], the second stage
uses the AlexNet CNN. Later on, improved versions known as Fast-RCNN [Gir15]
and Faster-RCNNs [RHGS17] were proposed, and used deeper VGG and ResNet
models.

• Single Shot approaches, such YOLO [RDGF16, RF18] and SSD [LAE+16], rely only
on one network, jointly trained on bounding boxes and labels. Such detectors di-
rectly predict class probabilities and bounding boxes in a single evaluation, granting
them faster inference times. As backbones, SSD is based on the VGG Network while
YOLO uses the DarkNet CNN which topology is given in appendix A

2.3. CNN Applications, Datasets and Evaluation Metrics 17

2.3.3 Image Datasets Availability as a Boost to CNN

Two key factors made the success of deep CNNs: the availability of annotated datasets
and the development of powerful computational platforms. The former factor is dis-
cussed in this section and the latter is detailed in sections 2.4 and 2.5.

The availability of massive-sized image databases has provided enough annotated
inputs to train robust large-scale feature extractors and accurate classifiers for machine
vision. Tab. 2.3 lists these popular and « open » datasets.

TABLE 2.3: Popular datasets for computer vision applications

Dataset Resolution #Classes #Train Samples #Test Samples Application

MNIST [LBD+90] 28 x 28 x 1 10 60 K 10 K OCR

Cifar10 [Kri09] 32 x 32 x 3 10 50 K 10 K
ClassificationCifar100 [Kri09] 32 x 32 x 3 100 50 K 10 K

ImageNet [DDS+09] 256 x 256 x 3 1000 1.3 M 100 K

PascalVOC [EVW+10] - 20 11.5 K
Detection

COCO [LMB+14] - 91 328 k -

OpenImages [KDA+16] - 5000 9 M 125.4 K

Most of the recent CNN improvements took place at the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) [RDS+14]. ImageNet [DDS+09] is a visual database
that contains –as of 2016– over 10M images where objects present in each picture are
hand-annotated. ILSVRC provides 1.3M color images from ImageNet for training and
100k for testing CNN classifiers.

Since the first CNN model was proposed to solve ImageNet, and discussed in sec-
tion 2.2.2, the accuracy of CNN classifiers continues to improve overtime, as summarized
in Fig.2.11a.

The same improvements apply to CNN-based object detectors, where two main bench-
marks are made available (PASCAL-VOC [EVW+10] and MS-COCO [LMB+14]). Fig-
ure 2.11b compares the performance of CNN-based detectors on the COCO dataset. One
may note that the Single Shot methods outperform region based methods –R-CNN– in
terms inference time, making them more adequate in a context of real-time embedded
vision.

2012 2013 2014 2015
50

60

70

80

90

100

AlexNet

Overfeat
GoogleNet

VGG19
ResNet152Top5 Acc.

Top1 Acc.

(A) Image Classifiers

50 100 150 200 250
Inference Time (ms)

48

50

52

54

56

58

C
O

C
O

 m
A

P
-5

0

B C

D

E

F

G

RetinaNet-50
RetinaNet-101

YOLOv3

Method
[B] S S D321
[C] DS S D321
[D] R -FCN
[E] S S D513
[F] DS S D513
[G] FPN FRCN
RetinaNet-50-500
RetinaNet-101-500
RetinaNet-101-800
YOLOv3-320
YOLOv3-416
YOLOv3-608

mAP-50
45.4
46.1
51.9
50.4
53.3
59.1
50.9
53.1
57.5
51.5
55.3
57.9

time
61
85
85

125
156
172
73
90

198
22
29
51

(B) Object Detectors [RF18]

FIGURE 2.11: Performance of CNN-based classifiers and detectors

18 Chapter 2. Embedded Deep Learning

2.4 Workload and Implementation Challenges on SmartCams

In the context of embedded vision, DL based methods are too computationally intensive
for general purpose processors, especially for the ones generally included in smart cam-
era nodes. This section details the computations that deep CNNs involve. Moreover, it
describes how these computations exhibit a massive, fine-grain parallelism, which makes
the implementation of CNN on embedded devices feasible thanks to dedicated hardware
accelerators.

2.4.1 Computations in CNN Inference

As shown in equations 2.3 and 2.8, the processing of CNNs involves an intensive use of
the Multiply Accumulate (MAC) operation. All these MAC operations take place at conv
and FC layers while the remaining parts of network are element-wise transformations
that can be generally implemented with low complexity computational requirements.

In this manuscript, the computational workload C of a given CNN corresponds to
the number of MACs it involves during inference8. The number of these MACs mainly
depends on the topology of the network, and more particularly on the number of conv
and FC layers and their dimensions. Thus, the computational workload can be expressed
as in equation 2.15, where, Lc (resp. L f) is the number of conv (resp. fully connected)

layers, and Cconv
` (resp. C f c

`) is the number of MACs occuring on a given convolution (resp.
fully connected) layer `.

C =
Lc

∑
`=1
Cconv
` +

L f

∑
`=1
C f c
` (2.15)

Cconv
` = N` × C` × J` × K` ×U` ×V` (2.16)

C f c
` = N` × C` ×W` × H` (2.17)

In a similar way, the number of weights, and consequently the size of a given CNN
model, can be expressed as follows:

W =
Lc

∑
`=1
W conv

` +
L f

∑
`=1
W f c

` (2.18)

W conv
` = N` × C` × J` × K` (2.19)

W f c
` = N` × C` ×W` × H` (2.20)

For state-of-the-art CNN models, Lc, N` and C` can be quite large (see appendix A).
This makes CNNs computationally and memory intensive, as illustrated in table 2.4, where
for instance, the classification of a single frame using the VGG19 Network requires 19.5
Billions MAC operations.

It can be observed in the same table that most of the MACs occur on the convolution
parts, and consequently, 90% of the execution time of a typical the inference is spent on
conv layers [CX14]. By contrast , FC layers marginalize most of the weights, and thus the
size of a given CNN model.

8Batch size is set to 1 for clarity purposes

2.4. Workload and Implementation Challenges on SmartCams 19

TABLE 2.4: Workload of Popular CNN models. Computational workload given as the number
of MACs. Accuracy measured on single-crops of ImageNet test-set.

Model AlexNet GoogleNet VGG16 VGG19 ResNet101 ResNet-152
[KSGH12] [SLJ+15] [SZ14] [SZ14] [HZRS16] [HZRS16]

Top1 err (%) 42.9 % 31.3 % 28.1 % 27.3 % 23.6% % 23.0%
Top5 err (%) 19.80 % 10.07 % 9.90 % 9.00 % 7.1 % 6.7 %

Lc 5 57 13 16 104 155
∑Lc

`=1 Cconv
` 666 M 1.58 G 15.3 G 19.5 G 7.57 G 11.3 G

∑Lc
`=1W conv

` 2.33 M 5.97 M 14.7 M 20 M 42.4 M 58 M

Act. ReLU

Pool. 3 14 5 5 2 2

L f 3 1 3 3 1 1

∑
L f
`=1 C

f c
` 58.6 M 1.02 M 124 M 124 M 2.05 M 2.05 M

∑
L f
`=1W

f c
` 58.6 M 1.02 M 124 M 124 M 2.05 M 2.05 M

C 724 M 1.58 G 15.5 G 19.6 G 7.57 G 11.3 G
W 61 M 6.99 M 138 M 144 M 44.4 M 60 M

2.4.2 Parallelism in CNNs

The high computational workload of CNNs makes their inference a challenging task,
especially on low-energy embedded devices. The key solution to this challenge is to
leverage on the extensive concurrency they exhibit. These parallelism opportunities can
be formalized as:

• Batch Parallelism: CNN implementations can simultaneously classify multiple
frames grouped as a batch B in order to reuse the filters in each layer, minimiz-
ing the number the memory accesses. However, and as shown in Fig.2.12, batch
parallelism quickly reaches it limits. This is due to the fact that most memory trans-
actions are made for storing intermediate results and not loading CNN parameters.
Consequently, reusing the filters only slightly impacts the overall processing time
per image.

FIGURE 2.12: Performance of Batch Parallelism in popular CNNs: A speedup of 3× in inference
time per image is achieved by AlexNet due to better optimization of its FC layers for larger

batches [CPC16].

20 Chapter 2. Embedded Deep Learning

• Inter-layer Pipeline Parallelism: CNNs have a feed-forward hierarchical structure
consisting of a succession of data-dependent layers. These layers can be executed
in a pipelined fashion by launching layer (`) before ending the execution of layer
(`− 1). This pipelining costs latency but increases throughput.

Moreover, the execution of the most computationally intensive parts (i.e conv layers),
exhibits the four following types of concurrency:

• Inter-FM Parallelism: Each two-dimensional plane of a FM can be processed sep-
arately from the others. Meaning that PN elements of Yconv can be computed in
parallel (0 < PN < N).

• Intra-FM Parallelism: In a similar way, pixels of a single output FM plane are data-
independent and can thus be processed concurrently by evaluating PV × PU Values
of Yconv[n] (0 < PV × PU < V ×U)

• Inter-convolution Parallelism: 3D-convolutions occurring in conv layers can be ex-
pressed as a sum of 2D convolutions as shown in equation 2.4. These 2D convo-
lutions can be evaluated simultaneously by computing concurrently PC elements
(0 < PC < C).

• Intra-convolution Parallelism: The 2D-convolutions involved in the processing of
conv layers can be implemented in a pipelined fashion such as in [Sho94]. In this
case PJ × PK multiplications are implemented concurrently (0 < PJ × PK < J × K).

2.4.3 Memory Accesses

As a consequence of the previous discussion, the inference of a CNN shows large vec-
torization opportunities that can be exploited by allocating multiple computational re-
sources to concurrently process multiple features. However, this parallelisation can not
accelerate the execution of a CNN if no datacaching strategy is implemented. In fact,
memory bandwidth is often the bottleneck when processing CNNs.

In FC parts, the execution can be memory-bounded because of the high number of
weights that these layers contain, and consequently, the high number of memory reads
required.

This is expressed in eq.2.21 whereM f c
` refers to the number of memory accesses oc-

curring in an FC layer `. This number can be written as the sum of memory accesses
reading the inputs X f c

` , the memory accesses reading the weights θ
f c
`), and the number

of memory accesses writing the results (Y f c
`).

M f c
` = MemRd(X f c

`) + MemRd(θ f c
`) + MemWr(Y f c

`) (2.21)
= C`H`W` + N`C`H`W` + N` (2.22)
∼ N`C`H`W` (2.23)

Note that the fully connected parts of state-of-the-art models involve large values of N`

and C`, making the memory reading of weights the most impacting factor, as formulated
in eq. 2.23. In this context, the batch parallelism discussed above is relevent, and can
significantly accelerate the execution of CNNs with a large number of FC layers9.

In the conv parts, the high number of MAC operations results in a high amount of
memory accesses, as each MAC requires at least 2 memory reads and 1 memory write10.

9Which is the reason why AlexNet (3 FC Layers) benefits from a considerable acceleration when implementing batch
processing, as depicted in Fig.2.12.

10This is the best case scenario of a fully pipelined MAC where intermediate results do not need to be loaded.

2.5. Hardware for mainstream DL 21

This number of memory accesses accumulates with the high dimensions of data manip-
ulated by conv layers as shown in equation 2.25. If all these accesses are towards exter-
nal memory (for instance, Dynamic Random Access Memory (DRAM)), throughput and
energy consumption will be highly impacted, because a DRAM access engenders high
latency and energy consumption, even more than the computation it self [Hor14].

Mconv
` = MemRd(Xconv

`) + MemRd(θconv
`) + MemWr(Y conv

`) (2.24)
= C`H`W` + N`C` J`K` + N`U`V` (2.25)

The number of these DRAM accesses, and thus latency and energy consumption, can
be reduced by implementing a memory caching hierarchy using on-chip memories. As
discussed in the next sections, state-of-the-art CNN accelerators employ register files as
well as several levels of caches. The former, being the fastest, is implemented at the near-
est of the computational capabilities. The latency and energy consumption resulting from
these caches is lower by several orders of magnitude than external memory accesses, as
pointed-out in [SCYE17].

2.5 Hardware for mainstream DL

As detailed in the last section, CNN workloads call for important computational re-
sources to exploit the parallelism, as well as the memory caching requirements and to
reduce the number of external memory accesses. As a result, efficient execution of CNNs
should be achieved on particular hardware architectures. As pointed-out in [SCYE17],
we distinguish two main hardware architectures: Temporal and Spatial.

2.5.1 Temporal Architectures

Temporal Architectures appear on multi-cores processors such Central Processing Units
(CPUs) and Graphics Processing Units (GPUs). Both rely on the « Single Instruction on
Multiple Data (SIMD) » paradigm to capture the parallelism of CNNs. Thanks to SIMD,
temporal architectures employ multiple processing elements to simultaneously perform
the same operation (i.e MAC) on multiple inputs (i.e feature maps).

CPUs are the most general purpose and easily programmable computational plat-
forms. Current multi-core CPUs can peak at over 1 TFLOP per second, which is enough
to infer, and even train medium and moderately large CNNs [RHR+17]. However, the
training and inference of state-of-the-art models were only made possible by a more spe-
cialized hardware platform: GPUs.

GPUs are multi-core processors that are specialized at manipulating computer graph-
ics. Current GPUs architectures, such as the Nvidia Pascal [Nvi17] architecture depicted
in Fig.2.13a, employ thousands of Processing Elements (PEs) –known as NVidia Cuda
cores (Fig.2.13c)–, each having its own computational capabilities by means of floating-
point arithmetci units. These cores are grouped into Streaming Multiprocessors (SMs)
(Fig.2.13b) that include separate «level 1» Memory caches, and «level 2» caches shared
across different SMs.

GPUs use the «single-instruction multiple threads» (SMT) method. They can store in
internal registers the context of thousands of concurrent threads (actually, each SM has
its own copy of the context of all threads) and fire execution upon availability of thread

22 Chapter 2. Embedded Deep Learning

data. GPU boards also include dedicated off-chip memories (GDDRs) with high capacity
and bandwidth.

Thanks to this highly parallel structure, GPUs are more efficient than general-purpose
CPUs in processing embarrassingly parallel algorithms, which is typically the case of classic
CNN models. For instance, a GTX 1080Ti GPU is able to peak at 12 TFLOPs when infer-
ring CNNs, which corresponds to 36.87ms of computation time when executing AlexNet
inference 11.

L2 Cache

GigaThread Engine
PCI Express 3.0

GigaThread Engine

M
em

. ctrlr
M

em
. ctrlr

M
em

. ctrlr
M

em
. ctrlr

M
em

. ctrlr
M

em
. ctrlr

M
em

. ctrlr
M

em
. ctrlr

M
em

. ctrlr

H
B

M
2

H
B

M
2

H
B

M
2

H
B

M
2

High-Speed-HUB
NVLink NVLink NVLink NVLink

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

(A) Overall GPU Architecture

(B) Streaming Multiprocessor

Cuda CoreCuda CoreCuda Core
Dispatch port

Operand Collector

Int Unit FP Unit

Operand Collector

(C) Cuda Core

FIGURE 2.13: Nvidia Pascal Architecture [Nvi16]

2.5.2 Libraries and development Frameworks

To make the use of CPU and GPU accelerators efficient, specialized libraries for paral-
lel computing, and more particularly deep learning have been developed. This is for
instance the case of CuDNN on Nvidia GPUs12 and MKL-DNN13 for Intel CPUs. A
cross-platform alternative, the DeepCL library14 provides acceleration for heterogeneous
hardware architectures (CPU/GPU/FPGA) through the OpenCL standard [Per17].

Built-upon these libraries, dedicated frameworks for deep learning are proposed.
These aim at improving productivity of designing, training and deploying CNNs, such
as Caffe [JSD+14] and TensorFlow [ABC+16].

11For more details, a CNN Benchmark on GPUs is available in https://github.com/jcjohnson/cnn-benchmarks
12https://developer.nvidia.com/cudnn
13https://github.com/intel/mkl-dnn
14https://github.com/hughperkins/DeepCL

https://github.com/jcjohnson/cnn-benchmarks
https://developer.nvidia.com/cudnn
https://github.com/intel/mkl-dnn
https://github.com/hughperkins/DeepCL

2.5. Hardware for mainstream DL 23

2.5.3 Spatial Architectures

Temporal architectures rely on a centralized control logic for multiple processing ele-
ments, following a Von Neumann execution model [Tay06]. These elements can only
fetch data from the memory hierarchy and cannot communicate directly with each other,
which may limit the performance of a given implementation. In addition, general pur-
pose temporal architectures advocate the ease of programmability at expense of perfor-
mance and efficiency. By contrast, spatial architectures implement a processing chain
where computing elements can directly pass data from one to another. This architecture
model naturally fits the streaming nature of CNN graphs, and allows the processing ele-
ments to include their own control fabric and local memory.

Spatial CNN architectures are often deployed as Application Specific Integrated Cir-
cuitss (ASICs) or mapped on FPGA devices. A key advantage of these devices is their
ability to support fine-grain parallelism with low energy consumption. This makes spa-
tial architectures particularly efficient when processing irregular parallelism patterns and
custom precision computations. As a result, these dedicated accelerators deliver superior
energy efficiency when compared to temporal architectures, which comes at the price of
low programmability and flexibility.

Among a large amount of ASICs for Deep learning [DFC+15,HLM+16,CB16,ACRB16,
CES16,RWA+16,MM16,DDL+18], the Tensor Processing Unit (TPU), developed by Google
in late 2016, encountered the largest commercial success due its capability to support var-
ious Machine Learning algorithms in addition to its tight integration with the TensorFlow
framework. However, the major drawback of ASICs remain their lack of reconfigurabil-
ity and their high production cost.

By contrast, FPGAs benefit from a higher hardware flexibility and reconfigurabil-
ity at the price of a lower computation per watt ratio. Still, current generation of FP-
GAs can catch the computational workload of state-of-the-art CNNs thanks to a high
density of hard-wired Digital Signal Processing (DSP) blocks that can deliver up to 8
TFLOPs [Int17]. In addition, FPGAs embed a collection of In-situ on-chip memories, lo-
cated next to DSPs, which significantly reduces the needs of external memory accesses.

TABLE 2.5: Comparison of Available Hardware to Accelerate CNN Workload

Hardware CPU GPU FPGA
i7-7980HQ GTX1080Ti DE5-Net

Inference Time(ms)15 1630 4.31 15
Power (W)16 41 206 27

15Inference time of AlexNet mesured with Caffe for single batches
16Power dissipation of CPU estimated with Intel Power Profiling tools. Power dissipation of GPU estimated with

nvidia-smi tools. Power dissipation of FPGA measured with a power-meter in [Wan17]

24 Chapter 2. Embedded Deep Learning

2.6 Embedded Deep Learning

Because of latency, bandwidth and security concerns, it is more suitable to infer deep
learning models locally, next to the sensor, rather than offloading the computations into
the cloud [Guo17, RCLC17, EP18]. This is particularly true for smart camera networks
where it is critical to extract meaningful information directly from the video streams at
the nearest of the image sensors. The challenge of embedded deep learning is thus to infer
deep and accurate CNN models, on devices with stringent energy consumption (Typ-
ically under 20W), and thus limited computational power and low memory resources.
These constrains make the state of the art solutions –such the ones listed table 2.5– unfea-
sible for embedded CNN inference. To address this challenge, two strategies are consid-
ered: Top-down and bottom-up.

2.6.1 Lightweight CNN Models for Embedded Vision:
The Top-Down Approach to Embed Deep Learning

Top-down approaches design and train networks to jointly reach modelling accuracy
AND energy efficiency to target low-power devices. In other words, the objective is no
longer to have networks delivering the best accuracy on a given dataset, but to have net-
works that can be executed in an embedded system with a tolerable accuracy. In general,
the key idea to design such models is to deepen the CNN without increasing its compu-
tational workload and/or the number of weights. This is achieved by using small convo-
lution kernels, bottleneck filters and inception modules, as detailed in section 2.2.2. Examples
of such lightweight CNN models are given in table 2.6

TABLE 2.6: Lightweight CNN Models

Model AlexNet ResNet SqueezeNet MobileNet MobileNet NasNet
v1 v2 Mobile

Top1 err. (%) 42.9 24.7 44.6 29.5 28.1 25.7
Work.(GMACs) 0.72 3.86 0.86 0.64 0.48 0.56

Params. (M) 61 25.5 1.2 4.3 7.8 7.7

Moreover, computations can be further reduced by introducing approximate com-
puting methods that trade a minimal amount of modeling power for efficiency improve-
ments. A review and performance analysis of these methods will be detailed in the next
chapter (c.f section 4.4).

2.6.2 Hardware Acceleration Platforms for Embedded Vision:
The Bottom-Up Approach to Embed Deep Learning

The bottom-up approach deploys neural networks on the edge by optimizing the hard-
ware architecture towards energy efficiency. This is typically the case of Nvidias’ Tegra
GPUs, which include a limited number of Processing Cores, or Nvidias’ Max-Q GPU,
which are under-clocked to satisfy certain power-dissipation requirements.

Spatial Architectures for Embedded Vision have also been proposed. For instance,
Intels’ Movidius Neural Computing Stick (NCS) is a platform built around an application
specific chip known as the Myriad Vision Processing Unit. The NCS can accelerate the
execution of AlexNet by x6.13 when plugged on a RaspberryPi3 board17 at the price of
1.3W more power dissipation. Popular platforms to accelerate embedded deep learning
applications are compared in table 2.7.

17Simply through a USB interface
18As of June 2018 on mouser.eu

mouser.eu

2.7. Conclusions 25

TABLE 2.7: Popular Embedded CNN Accelerators

Platform RasPi3 Movidius NCS Jetson TX1 DE1-SoC

CPU Cortex A53 Cortex A53 Cortex A57 Cortex A9

Accelerator
- Myriad2 VPU Tegra X1 Cyclone V

(CPU only) (ASIC) (GPU) (FPGA)

Cost (€)18 43 66+43 366.0 210.0
Inference time (ms) 1803 294.0 30.3 205.5

Power(W) 1.3 0.75 + 1.3 5.0 2.1

2.7 Conclusions

This chapter has covered the recent developments of embedded deep learning. For com-
puter vision, deep learning methods based on CNNs currently offer tremendous oppor-
tunities of deploying new services and products, especially in a smart camera context.
Moving deep learning to embedded systems, as shown in this chapter, is a challenging
task but greatly increases the potential and reliability of embedded vision. With this ob-
jective in mind, next chapters discuss novel solutions, based on reconfigurable hardware,
for embedding deep learning into energy constrained embedded devices.

27

Chapter 3

Reconfigurable Hardware for
Embedded Vision

When evaluating hardware platforms to accelerate a domain specific applications, the
trade-off between flexibility, performance and power consumption is always considered.
On one end of the spectrum, general purpose processors such CPUs and GPUs provide a
high degree of programmability while offering a relatively low performance/watt ratio.
On the other end of the spectrum, ASICs deliver better performance per watt at the price
of low flexibility and high production coasts.

FPGAs somehow stay between the two and deliver a good compromise between the
three metrics. This is especially true in the case of CNN acceleration; While FPGAs
have not been known for offering top performance when compared to ASICs and GPUs,
they are known to provide superior energy efficiency (vs GPUs) and better flexibility (vs
ASICs).

This chapter gives an introduction to FPGAs and details their reconfigurable resources
and design flow. In a context of computer vision, this chapter also demonstrates how
FPGAs can exploit the streaming-processing model of computation of many vision ap-
plications to accelerate their execution. To support this claim, the third section describes
an implementation example which studies the dataflow implementation of image convo-
lution. Finally, the relevance of FPGAs for CNN acceleration is discussed.

3.1 FPGA Architecture

Since their introduction in the late 80s, Field-Programmable Gate Arrays (FPGAs) have
been providing a growing amount of computational resources operating at higher fre-
quencies. These technological improvements have allowed the implementation of in-
creasingly complex applications on FPGA-powed platforms.

In it simplest form, the architecture of an FPGA is at least composed of three elements,
as illustrated on Fig 3.1,

• Logic Cells (LCs) are the building blocks of an FPGA and are arranged in matrix
form. As shown in the Fig 3.1, each component is programmable, and identical to the
others.

• The Interconnect Network links logical resources together to implement complex
functions. Within an FPGA, interconnections are often hierarchical, where each
level of the hierarchy operates at a different transmission frequency.

• Configurable Inputs/Outputs (I/Os) are circuits that interface the FPGA with the
external environment. Each input/output circuit controls a pin of the FPGA de-
vice and can be set as an input, an output, a bidirectional signal, or can be unused
staying a high impedance state.

28 Chapter 3. Reconfigurable Hardware for Embedded Vision

I/O Block
Programmable

logic

Reconfigurable
Network

Interconnect

FIGURE 3.1: Simplified Block diagram of an FPGA device

3.1.1 Logic Cells

The basic function of logic cells is to provide calculation and storage capabilities to the
FPGA. A logic cell is typically composed of a Look-Up Table (LUT) for implementing
the combinatorial part and a storage element (register) for implementing the sequential
functions. A LUT of N inputs behaves like a memory with 2N entries; in order to perform
a combinatorial function, the truth table corresponding to the desired boolean equation
is loaded into this memory.

According to the FPGA manufacturer, LCs come in relatively similar shapes. At In-
tel, FPGA building blocks are referred as Logic Elements (LEs) and have six inputs: four
of them come from the interconnection network, one from the carry chain and one from
the register. The control signals of the registers also come from the interconnection net-
work, as shown in figure. 3.2. The logic element illustrated in the last figure can operate
in two modes: the normal mode implements combinatorial and sequential functionali-
ties while the arithmetic mode implements operations like additions, accumulations or
comparisons.

FIGURE 3.2: Logic Element of an Intel Cyclone III FPGA [Int14a]

In modern FPGA devices, the general structure detailed above has evolved in favour
of complex blocks that offer greater flexibility and better optimization in resource place-
ment. In this context, Intel introduced the Adaptative Logic Modules (ALMs) (see Fig.3.3),
which are the new elementary blocks replacing the logic elements. Similarly, Xilinx (resp.

3.1. FPGA Architecture 29

Actel) introduced Slices (resp. VersaTile) as elementary logic blocks. These blocks are rela-
tively similar in their structures1 and have several operating modes. The next paragraph
lists these modes using Intels’ ALMs as examples.

FIGURE 3.3: Structure of an Adaptive Logic Module [Int18a]

Each ALM has four registers and higher number of inputs. Moreover, the operating
modes have been extended when compared to the LE structure:

• In the normal mode, a single ALM can implement two combinatorial functions of
four inputs, or a single function of six inputs.

• In the extended LUT mode, the ALM can be connected to seven inputs but the output
can not be synchronized by the register. This mode is commonly used for the if-
else statements of hardware description languages. The eighth entry of the unused
ALM can be potentially connected to an output register, allowing synthesis tools to
optimize the surface utilization. This optimization, known as the register packing
technique, groups in the same ALM the purely combinatorial functions of the LUTs
and the storage of a signal from outside the block.

• In the in arithmetic mode, an ALM infers two four-input LUTs and two FAs. Each
adder is hard-wired and can perform a binary addition. These two FAs can also be
chained to perform an addition a two-bits with and input carry.

• Finally, the ALM in the shared arithmetic mode can implement a three-input add.
In this mode, the ALM is configured with 4 four-input LUTs. Each LUT either
computes the sum of three inputs or the carry of three inputs. The output of the
carry computation is fed to the next FA using a dedicated connection called the
shared arithmetic chain. This shared arithmetic chain can significantly improve the
performance of an adder tree by reducing the number of summation stages required
to implement an adder tree.

3.1.2 Interconnect Networks

After highlighting the reconfigurability of logic cells, this section focuses on the Inter-
connect Networks of FPGAs. As explained above, logic blocks of an FPGA are intercon-
nected to each other through a programmable network. This network provides connec-
tions between the logic resources to implement a user-defined circuit.

1The main nuances between Intel ALMs, Xilinx Slices, and Actel VersaTiles can be found in http://ee.sharif.edu/
~asic/Docs/fpga-logic-cells_V4_V5.pdf

http://ee.sharif.edu/~asic/Docs/fpga-logic-cells_V4_V5.pdf
http://ee.sharif.edu/~asic/Docs/fpga-logic-cells_V4_V5.pdf

30 Chapter 3. Reconfigurable Hardware for Embedded Vision

The routing interconnect consists of wires and programmable switches –configured
using a programmable technology – that form the desired connection. The interconnect
network differs from one FPGA to another, however, most FPGAs share a similar routing
structure that involves horizontal and vertical routing tracks which are interconnected
through switch boxes. Programming these switches interconnects the desired blocks, as
depicted in Fig.3.42.

FIGURE 3.4: Scheme of an Interconnect Network of an FPGA

The connections between the blocks is a key factor in the performance of a given
FPGA implantation. The longer the connection between two blocks is, the higher the
transmission delay will be, lowering the maximum operating. The placement of the ele-
ments on the FPGA is therefore a crucial element for performance.

With the evolution of FPGAs, interconnection systems have been redesigned to im-
prove the frequency performance. In recent FPGAs, the interconnections are hierarchical
and the logic resources are grouped into larger entities (Logic Array Blocks (LABs) at In-
tel and Configurable Logic Blocks (CLBs) at Xilinx). Each level of this hierarchy operates
at a different transmission frequency. For instance, in Intel FPGAs, elements within the
same LAB [Int14a] have privileged communications. Thus, complex functions can be im-
plemented without passing through the interconnection network, which in turn results
in better operating frequencies.

This concept is illustrated in Fig. 3.5, which gives a diagram of a Cyclone V LAB
that embeds ten ALMs. The LAB also includes carry chains to transfer the result of an
arithmetic calculation, and register chains to transfer a sequential output from one ALM
to another3. Finally, note the presence of Direct Links, which are used to link the LAB
to external elements such as other adjacent LABs, external memory blocks or multiplier
units. These elements are the subject of the next section.

3.1.3 Additional Resources

In recent architectures, additional resources are hard-wired within the FPGA. These phys-
ical components can be listed as the following:

• Synchronous Random Access Memory (SRAM) blocks: Ideal to store large blocks
of data, the SRAMs provide up to three independent input and output ports, shar-
ing the same memory space. In the case of Intel FPGAs, the company provides
various sizes of embedded memory blocks according to the device. For instance,
a Cyclone V FPGAs embed between 135 and 1220 M10K blocks, each delivering
10Kbits of memory.

2Image from http://fpgabeginners.blogspot.com/2012/08/what-is-fpga.html
3Within the same LAB

http://fpgabeginners.blogspot.com/2012/08/what-is-fpga.html

3.1. FPGA Architecture 31

• Distributed memory blocks: In contrast with dedicated SRAM blocks which have
a fixed position in the FPGA, distributed memory blocks can be implemented any-
where, and are created automatically from a set of logical resources. In the case
of Intel FPGAs, these blocks –known as MLABs– are made up of ten ALMs, which
can be configured as ten 32 × 2 blocks, resulting in one 32 × 10 equivalent dual
port SRAM per MLAB. This type of memory is ideal for small memorizations (shift
registers, small buffers). In Cyclone V devices, MLABs provide 640 bits of mem-
ory. In addition, it is possible to allocate up to 25% of the available logic as MLAB,
providing up to 1.7Mbits of additional memory to the device.

FIGURE 3.5: LAB Structure Overview in Cyclone V Devices. From [Int14a]

• Digital Signal Processing (DSP) Blocks: These hard-wired arithmetic units are
optimized for computational throughput and power consumption. DSP blocks can
also operate at different bit-widths and are capable to pack concurrent computations
in a single unit. For instance, Intel FPGA DSP blocks can either implement:

– One (27× 27) bits multiplication (see Fig.3.6a)

– Two independent (18× 18) bits multiplications concurrently

– Three independent (9× 9) bits multiplications concurrently.

Note that a number of current devices include DSPs that naively support simple
precision floating point arithmetic (see Fig.3.6b). Thanks to DSP Blocks, high-end
FPGAs such Xilinxs’ Virtex Ultra-scale or Intels’ Stratix 10 can peak at over 9.3
TFLOPS [Int17].

• Hard Processor System (HPS): The HPS is a CPU that replaces the softcore-based
co-design systems (NIOS, MicroBlaze) in a number of FPGA boards. Currently,
FPGA manufacturers typically use ARM processors known for their low power
consumption in embedded applications and their computation performance in data-
centers. Note that Xilinx recently introduced new boards which embed ARM Mali
GPUs. With this, FPGA-based systems move towards the era heterogeneous com-
puting, which opens up many possibilities in terms of performance, flexibility, re-
configurability (hardcore can reconfigure the FPGA dynamically) and design pro-
ductivity.

32 Chapter 3. Reconfigurable Hardware for Embedded Vision

(A) DSP in (27× 27) multiplier mode

(B) DSP in FP32 mode

FIGURE 3.6: Scheme of a DSP Block in a Stratix 10 FPGA. From [Int17]

3.2 From Algorithms to Hardware Architectures

3.2.1 Hardware Description Languages

In general, the algorithm to be mapped on an FPGA is described using a Hardware De-
scription Language (HDL). HDLs, such VHSIC Hardware Description Language (VHDL)
or Verilog, are specialized computer languages used to describe the structure and be-
haviour of digital logic circuits, and more particularly those implemented on ASICs and
FPGAs.

The hardware description process is typically carried out using two different styles:

• The behavioural description in which the hardware is modeled based on its func-
tionality. Thus style explicitly describes the desired behaviour of a given circuit.

• The structural description in which the digital circuit interconnects a number of
building blocks (referred as components) implementing some basic behaviour. These
building blocks are usually grouped in order to realize a more complex functional-
ity.

3.2.2 FPGA Design Flow

The transcription of a source code described in an HDL into a hardware architecture
follows the design flow depicted in Fig.3.7. The steps of this flow can be enumerated as:

1. Register Transfer Level (RTL) Synthesis is a process that translates the input HDL
code into a RTL netlist (i.e a description of the circuit using elementary block such
registers and LUTs). This phase first creates a database of all the components used

3.2. From Algorithms to Hardware Architectures 33

Hardware Description

RTL Synthesis

Place and route

Functional simulation

Temporal simulation

Timing analysis

FPGA Programation

FIGURE 3.7: Design Flow in FPGA

in a given project, checking their validity (for instance the syntax and connections).
Then, the synthesis tool extracts from the code macros or patterns implementing
a specific behaviour (for instance a memory or a multiplication), which will be re-
placed by the FPGA manufacturer implementation of the functionality (for instance
, the manufacturers’ implementation of memorization and multiplication). FPGA
manufacturers even advice to use some «coding style» to guide the synthesizer in
extracting these macros. This step also optimizes the design, removing for instance
the redundant or unused components.

After the synthesis is completed, it is possible to perform a functional simulation in
order to check whether the described behaviour meets the expected functionalities.

2. The «Place and route» or implementation step is divided into two parts. The first
one transforms the RTL representation into a logic gate level representation, taking
into account the characteristics of the targeted FPGA. The second step places the
resulting logic on the desired FPGA. At this stage, the post-routing simulation is
possible. This step takes into consideration the characteristics of the FPGA and the
placement made by the tool in order to verify that the propagation times in the
FPGA do not interfere with not the proper functioning of the system. At the end
of this process, a precise analysis of the time delay between the FPGA elements
provides the user with a information on the maximum operating frequency of the
design.

3. The bit-stream generation step transforms the previous representation into a config-
uration file (bitstream) which is used to program the connections of the targeted
FPGA.

3.2.3 High Level Synthesis Tools

In FPGA designs, HDLs have the advantage of providing the best results in terms of
implementation performance in terms of resources and computational throughput. In
counter-part, they require a good knowledge of digital circuit design and hardware ar-
chitectures [Ben10, PBMB17].

In the case of complex algorithms like deep learning, the transcription task becomes
even more difficult, mainly because of the large number of computations (see sec.2.2.1)
and the high variability of CNNs workloads (see sec.2.2.2). As a consequence, the tran-
scription of complex algorithms to hardware description is a task requiring a consider-
able amount of development time, limiting the use of FPGAs. In response to these pro-
ductivity problems, large research efforts are given towards the development of High-
Level Synthesis (HLS) tools.

HLS tools are an alternative to conventional HDLs which intend to provide an easier
access to FPGAs, especially for the « software programmers». This motivate a large part
of the currently used HLS tools to be based on imperative languages such as C/C++,

34 Chapter 3. Reconfigurable Hardware for Embedded Vision

offering familiar programming paradigms. In this context, two popular « C-like » HLS
tools have been introduced: Vivado HLS, and OpenCL for FPGAs.

Vivado HLS [Xil13] is part of the Xilinx Vivado suite, and provides a programming
environment similar to those available for software developers. The tool relies on pre-
compilation guidelines, or pragmas to generate the RTL description of a design. Note that
during the transcription process, the tool generates representations in SystemC, VHDL
and Verilog, and that it is possible an HLS-designed component ca be generated sepa-
rately and integrated it into a project.

OpenCL [Khr15] is an open-source framework for parallel programming on hetero-
geneous architectures. Programs written in OpenCL can be executed transparently on
CPUs, GPUs and FPGAs. For FPGAs, OpenCL uses a master-slave model where an
OpenCL host device controls the execution of multiple OpenCL kernels. On the kernel side,
OpenCL abstracts away the complexities of HDL, allowing software programmers to
write hardware-accelerated kernel functions in high level C/C++ code. On the host side,
a host program controls and supervises the kernels using a predefined OpenCL API. Both
Intel and Xilinx provide dedicated OpenCL APIs for their FPGAs with respectively the
Intel SDK for OpenCL [CAD+12, Int16] and the SDaccel environment [GRT+16].

Note that OpenCL not only compiles a C code to an RTL description, but also man-
ages the interfacing with the external memory and the communication between the host
CPU and the FPGA kernel. This considerably reduces the design time, while achieving
performance comparable to the traditional RTL flow, often at the price of resource uti-
lization, especially on-chip memory [SCD+16].

The common feature between the two former tools is their inspiration from the im-
perative programming models. The problem is that these models, designed to run on
processor-based architectures differ too much from the FPGA execution model. This dif-
ference prevents from efficiently switching from one to the other in an automatic fash-
ion [Bou16]. One possible solution to address this problem is choosing a more adequate
Model of Computation (MoC), particularly, the dataflow model.

3.3 Dataflow Model for FPGA-Based Image processing

When porting real-time vision applications on FPGA-powered platforms, the problem
often boils down to finding an efficient mapping between the computational model of
the formers and the execution model supported by the latters.

To address this mapping problem, numerous studies [BSB13, MBP+15, SBB16] advo-
cate the use of the dataflow Model of Computation (MoC). In this approach, a given algo-
rithm is described as a graph of fundamental processing units exchanging data through
unidirectional channels. As studied in [Bou16], a large variety of algorithms involved
in computer vision, including CNNs, can be expressed as dataflow graphs, which sig-
nificantly accelerates their execution on FPGA platforms at the price of an algorithmic
reformulation effort.

3.3.1 The Dataflow Model

The foundations of the dataflow MoCs appeared in works of Sutherland et al. [Sut66], and
were then formalized by Dennis et al. [DM75]. The objective of these works was to cre-
ate an architecture where multiple fragments of instructions can simultaneously process
streams of data. Dataflow architectures outperform conventional processor architectures
in many applications which are limited by the classic bottleneck problem between the
processor and the memory storing the program and data.

3.3. Dataflow Model for FPGA-Based Image processing 35

Programs respecting the dataflow semantics are described as DPNs. Each node of
this network corresponds to a fundamental processing unit called an actor and each edge
corresponds to a communication FIFO channel. Actors exchange abstract data –known
as tokens– through these FIFOs.

The notion of time is implicit in dataflow programs, where only the concept of causal-
ity is relevant. Each actor follows a purely data-driven execution model wherein the
firing (execution) is triggered only by the availability of input operands. The behaviour
this actor is thus only defined by some firing rules that are explicitly defined by the pro-
grammer. These firing rules define the response of an actor (i.e the tokens it outputs) to a
given combination of input tokens.

a

b

c

d

+ ×

+ ×

+ i

e

f

g

h

• step 1: e = a + b

• step 2: f = c + d

• step 3: g = a ∗ e

• step 4: h = d ∗ f

• step 5: i = g + h

FIGURE 3.8: Comparing imperative execution models and dataflow models

A comparison between the dataflow model and the conventional Von Neumann model
is given in Figure 3.8 on a simple example; the computation of i = (a+ b) ∗ a+(c+ d) ∗ d.
While the Von Neumann model executes this example in five steps, the dataflow model
requires only three. Indeed, Steps 1 and 2 operate on independent data and can be per-
formed in parallel, as well as steps 3 and 4.

3.3.2 High Level Synthesis of Dataflow Programs

The performance of dataflow architectures and their adequacy with FPGA hardware plat-
forms motivated a number of efforts to create languages that aim at describing dataflow
graphs, and generating the hardware architectures they correspond to. This is typically
the case of the CAPH language, and its associated compiler.

Caph [SBB16] is a Domain Specific Language (DSL) for image processing that tran-
scripts a given algorithm onto a digital hardware description that implements its be-
haviour. When compared to the HLS tools listed in sec.3.2.3, CAPH main feature is to
generate a purely dataflow architecture from a DPN. This architecture naturally exploits
the pipeline and parallelism exhibited by the image processing workload. Note that
CAPH generates the corresponding hardware description as aVHDL code which can be
implanted using an FPGA synthesis tool, as illustrated in the CAPH tool chain given in
Fig.3.9.

LISTING 3.1: Caph Actors
actor add
in (i1 :int<s,m> dc

i2 :int<s,m> dc)
out(o :int<s,m> dc)
rules
|i1:’x, i2:’y -> o:’(x+y);

actor mult
in (i1 :int<s,m> dc

i2 :int<s,m> dc)
out(o :int<s,m> dc)
rules
|i1:’x, i2:’y -> o:’(x*y);

LISTING 3.2: Wiring
Functions

net step1 (e,f) =
add a b,
add c d;

net step2 (g,h) =
mult a e,
mult b f;

net step3 (i) =
add g h;

LISTING 3.3: (4 × 4)
Image

00 01 02 03
10 11 12 13
20 21 22 23
30 31 32 33

To capture the concepts involved in dataflow MoC, the CAPH programming language
relies on three formalisms:

36 Chapter 3. Reconfigurable Hardware for Embedded Vision

FIGURE 3.9: The CAPH tool chain Image from [SBB16]

• The first one describes the behaviour of fine-grain actors and relies and relies set
of transition rules. These rules describe the modifications that should occur on out-
puts and/or local variable when receiving some values on the inputs or/and local
variables. The choice of the rule to be fired is made by pattern matching, as shown
in listing 3.1, which gives the CAPH implementation of addition and multiplication
actors used in the example 3.8.

• The second formalism defines wiring functions that operate on graph edges. These
are used to describe coarse-grain actors, or more generally, graph structures. In
the previous example of Fig.3.8, the dataflow graph can be described using wiring
functions given in listing 3.2.

• The third formalism unifies the programmers’ vision of data and control flows
through structured data types. In CAPH, tokens corresponding to actual data –for
instance, pixels in a given image– and tokens referring to the structure of this data
–for instance, the start of a line in the image– are uniformity represented as tagged
values. Listing 3.3 illustrates this concept and shows how a (4× 4) image that can
be represented by the following stream of tokens:

< < 00 01 02 03 > < 10 11 12 13 > < 20 21 22 23 > < 30 31 32 33 > >

In this case, the red < and > tokens respectively represent the start and the end of a
frame in the video stream, and the blue < and > tokens represent the start and the
end of a line in an image. The advantage of this representation is that it allows the
control part of the corresponding architecture to be implemented locally within the
actors which exempts from synthesizing separate global controls.

To illustrate the concepts of stream processing, FPGA conception flow, and HLS tools,
the following section studies the FPGA implementation of a (3× 3) two dimensional con-
volution in VHDL and CAPH. In both cases, special interest is given to the implementa-
tion of parallelism and pipeline.

3.4. Implementation Example: Image convolution 37

3.4 Implementation Example: Image convolution

Convolution is a recurrent operation in image processing applications (demosaicing, fea-
ture extraction). This is especially true for CNN applications, where convolution layers
can be implemented as sums of 2D-convolutions, as pointed-out in sec.2.2.1.1.

This study considers a monochrome video stream in_data and a (3× 3) convolution
kernel theta. The input is streamed into a convolution block which functionality can be
described by pseudo-code 3.4. In this snippet, the input data in_data[h,w] are acquired
successively. Moreover, in sequential languages such as C/C++, the MAC operation in-
volved is executed sequentially as the next iteration of the loops can only begin when the
last operation in the current loop iteration is complete. As a consequence, listing 3.4 takes
9 clock cycles to output the result of one convolution.

However, in the considered implementation, we want the convolution block to op-
erate in the fly, processing the data at the same rate it acquires them. To achieve this,
the nested loops loop_J and loop_K have to pipelined in a way to output one result per
clock cycle. This section shows how to implement this pipeline in VHDL and CAPH.

LISTING 3.4: Pseudo code of a (3× 3) convolution
Loop_H: for (int h=0; h<H; h++){
Loop_W: for (int w=0; w<W; w++){
Loop_J: for (int j=0; j<3; j++){
Loop_K: for (int k=0; k<3; k++){
y[w][h] += x[h+j][w+k] * theta[j][k]

}}}}

3.4.1 Dataflow Implementation with VHDL

As pointed-out in the last chapter, the MAC unit constitute the building block of the con-
volution operation. Listing 3.5 gives a VHDL implementation of a MAC unit, and more
particularly the behavioural description implementing its functionality: the component
operates on three inputs a, b, c, multiplies the two first and adds a third. Note that for
clarity reasons, the bit-width is deliberately not expended after the accumulation process
(see sec.4.4.1).

LISTING 3.5: Behavioural description of a MAC unit
entity CustomMAC is
generic(BITWIDTH : integer := 4);
port(
clk : in std_logic ; -- Clock signal
reset_n : in std_logic ; -- Reset, active at low state
enable : in std_logic ; -- Enable, active at high state
a : in std_logic_vector (BITWIDTH-1 downto 0); -- First Input operand
b : in std_logic_vector (BITWIDTH-1 downto 0); -- Second Input operand
c_in : in std_logic_vector (BITWIDTH-1 downto 0); -- Input to add
y : out std_logic_vector (2*BITWIDTH-1 downto 0) -- Output value
);

end CustomMAC;

architecture bhv of CustomMAC is
begin
process(clk)
begin
if (reset_n = ’0’) then
y <= (others => ’0’);

elsif(rising_edge(clk)) then
if (enable = ’1’) then

y <= c_in + a * b;
end if;

end if;
end process;

end architecture;

Figures 3.10 and 3.114 illustrate the netlists generated from listing 3.5 respectively
after the synthesis and implementation steps.

4In both figures, the bit-width has been reduced to 4 bits for clarity reasons

38 Chapter 3. Reconfigurable Hardware for Embedded Vision

During synthesis, the design is recognized as a multiplier-adder pair depicted in the
generated RTL of Fig.3.10. Since the MAC unit is a very common element present in a
large number of digital designs, a macro is associated to this operation in the synthesizer,
leading the tool to instantiate the manufacturer implementation of the MAC. Note that
one can directly instantiate the former component (for instance, the altmult_add in case
of Intel FPGAs), though the first practice is generally preferred for code portability rea-
sons.

a[3..0]

+

Add0CIN1'h0

A[7..0]

B[7..0]

OUT[7..0]

x

Mult0
A[3..0]

B[3..0]
OUT[7..0]

b[3..0]

c_in[3..0]

y[0]~reg[7..0]

D

CLK

CLRN

ENA

SCLR
8'h0

Q
clk

y[7..0]
enable

reset_n

FIGURE 3.10: RTL description of the studied MAC unit

Then, during place and root, the system’s inputs and outputs are automatically asso-
ciated with FPGA I/O blocks (IO_BUF in Fig.3.11). Moreover, the multiplier-adder pair is
automatically replaced by a hard DSP block (Mult0~mac). From this netlist, the tool infers
one of the available DSP blocks and the corresponding I/O resources to implement the
MAC.

a[0]~input

IO_IBUF

I O

a[1]~input

IO_IBUF

I O

a[2]~input

IO_IBUF

I O

a[0..3]

a[3]~input

IO_IBUF

I O

b[0]~input

IO_IBUF

I O

b[1]~input

IO_IBUF

I O

b[2]~input

IO_IBUF

I O

b[0..3]

b[3]~input

IO_IBUF

I O

Mult0~mac

ACLR[1]

AX[17..0]

AY[17..0]

BX[17..0]

BY[17..0]

CLK

ENA

NEGATE
1'h0

SUB
1'h0

RESULTA[7..0]

reset_n~input

IO_IBUF

I Oreset_n

clk~input

IO_IBUF

I O

clk~inputCLKENA0

CLKCTRL

INCLK OUTCLKclk

y[0..7]

y[0]~output

IO_OBUF

I O

enable~input

IO_IBUF

I Oenable

c_in[1]~input

IO_IBUF

I O

y[1]~output

IO_OBUF

I O

c_in[2]~input

IO_IBUF

I O

y[2]~output

IO_OBUF

I O

c_in[3]~input

IO_IBUF

I O

y[3]~output

IO_OBUF

I O

y[4]~output

IO_OBUF

I O

y[5]~output

IO_OBUF

I O

c_in[0]~input

IO_IBUF

I Oc_in[0..3]

y[7]~output

IO_OBUF

I O

y[6]~output

IO_OBUF

I O

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

4

5

7

6

a[0]~input

IO_IBUF

I O

a[1]~input

IO_IBUF

I O

a[2]~input

IO_IBUF

I O

a[0..3]

a[3]~input

IO_IBUF

I O

b[0]~input

IO_IBUF

I O

b[1]~input

IO_IBUF

I O

b[2]~input

IO_IBUF

I O

b[0..3]

b[3]~input

IO_IBUF

I O

Mult0~mac

ACLR[1]

AX[17..0]

AY[17..0]

BX[17..0]

BY[17..0]

CLK

ENA

NEGATE
1'h0

SUB
1'h0

RESULTA[7..0]

reset_n~input

IO_IBUF

I Oreset_n

clk~input

IO_IBUF

I O

clk~inputCLKENA0

CLKCTRL

INCLK OUTCLKclk

y[0..7]

y[0]~output

IO_OBUF

I O

enable~input

IO_IBUF

I Oenable

c_in[1]~input

IO_IBUF

I O

y[1]~output

IO_OBUF

I O

c_in[2]~input

IO_IBUF

I O

y[2]~output

IO_OBUF

I O

c_in[3]~input

IO_IBUF

I O

y[3]~output

IO_OBUF

I O

y[4]~output

IO_OBUF

I O

y[5]~output

IO_OBUF

I O

c_in[0]~input

IO_IBUF

I Oc_in[0..3]

y[7]~output

IO_OBUF

I O

y[6]~output

IO_OBUF

I O

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

4

5

7

6

FIGURE 3.11: Post fitting representation of the studied MAC unit.

Again, the convolution algorithm benefits from significant acceleration when exe-
cuted in a pipelined fashion. In VHDL, this pipeline can be implemented in two ways,
as detailed in listing 3.6. The first method implicitly implements the pipeline through
behavioural description. The second method relies on a structural approach and infers the
previous custom_mac component multiple times, implementing the pipelined in an ex-
plicit fashion. In both cases, the synthesis tool chains a number of DSP blocks in a way to
compute one result per clock cycle, as shown in figure 3.12.

3.4. Implementation Example: Image convolution 39

LISTING 3.6: VHDL Implementation of Pipelined MAC Units
entity CustomMAC33 is
generic(
BITWIDTH : integer := 8;
KERNEL_SIZE : integer := 3
);
port(
clk : in std_logic; -- Clock signal
reset_n : in std_logic; -- Reset, active at low state
enable : in std_logic; -- Enable
x : in pixel_array (0 to KERNEL_SIZE * KERNEL_SIZE - 1); -- In data (3*3*8 bits)
theta : in pixel_array (0 to KERNEL_SIZE * KERNEL_SIZE - 1); -- In kernel (3*3*8 bits)
y : out std_logic_vector (2*BITWIDTH-1 downto 0) -- Out value (8 bits)
);

end CustomMAC33;
--
-- Behaviouaral Architecture :
architecture bhv of CustomMAC33 is
signal mac_out : prod_array (0 to KERNEL_SIZE*KERNEL_SIZE - 1) := (others=>(others=>’0’));
begin
process(clk)
begin
if (reset_n = ’0’) then
mac_out <= (others => (others => ’0’));
elsif(rising_edge(clk)) then
if (enable = ’1’) then
mac_out(0)(2*BITWIDTH-1 downto 0) <= x(0) * theta(0); -- Multiply wo/ additions
pipelined_mac_loop : for i in 1 to KERNEL_SIZE * KERNEL_SIZE -1 loop
mac_out(i) <= x(i) * theta(i) + mac_out(i-1) -- Multiply than add to previous result
end loop pipelined_mac_loop;
end if;
end if;
end process;
y <= mac_out(KERNEL_SIZE * KERNEL_SIZE-1); -- Output is the result of the last MAC
end architecture;
--
-- Structural Architecture : Instantiate the custom_mac component
architecture structural of conv33MAC is
signal mac_out : prod_array (0 to KERNEL_SIZE*KERNEL_SIZE - 1) := (others => (others =>

’0’));
begin
pipelined_mac: for i in 0 to KERNEL_SIZE*KERNEL_SIZE - 1 generate
first_mac: if i = 0 generate
first_custom_mac_inst: custom_mac -- Multiply wo/ additions
generic map(BITWIDTH=>BITWIDTH)
port map(
clk => clk,
reset_n => reset_n,
enable => enable,
a => x(i),
b => theta(i),
c_in => (others => ’0’),
y => mac_out(i)
);
end generate first_mac;
gen_mac: if i > 0 and i < KERNEL_SIZE * KERNEL_SIZE - 1 generate
gen_custom_mac_inst: custom_mac -- Multiply than add the previous result
generic map(BITWIDTH=>BITWIDTH)
port map(
clk => clk,
reset_n => reset_n,
enable => enable,
a => x(i),
b => theta(i),
c_in => mac_out(i-1),
y => mac_out(i)
);
end generate gen_mac;
last_mac: if i = KERNEL_SIZE * KERNEL_SIZE - 1 generate
last_custom_mac_inst: custom_mac -- Convolution Output is the result of the last MAC
generic map(BITWIDTH=>BITWIDTH)
port map(
clk => clk,
reset_n => reset_n,
enable => enable,
a => x(i),
b => theta(i),
c_in => mac_out(i-1),
y => y
);
end generate last_mac;
end generate pipelined_mac;
end architecture;
--

40 Chapter 3. Reconfigurable Hardware for Embedded Vision

+

×

x0

θ0

+

×

x0

θ0

+

×

x1

θ1

+

×

x

θ

+

×

x8

θ8

+

×

x

θ

…0 y

MAC0 MAC1 MAC8
y0 y7

FIGURE 3.12: Scheme of a pipelined MAC for (3× 3) convolutions

After implementing the pipelined MAC part, we detail how this block can be used
to perform real-time image convolution. Indeed, the studied MAC block operates in a
pipelined fashion but still requires all the necessary data to be made available on its in-
puts. Recall that (3× 3) convolution operates on each (3× 3) neighbours of a pixel, which
have to be provided simultaneously. In the literature, a well known method to make this
data available is the window buffer structure.

The window buffer, depicted in figure 3.13, relies on a number of shift registers to
bufferize the input stream and extract the neighbours of each pixel. In FPGAs, these shift
registers, also known as taps, can be implemented by means of distributed memory (by
cascading the registers), or by means of SRAM memory blocks. In both cases, a total
buffer size of 2 ∗W + 3 is needed to memorize and delay the relevant pixels, where W is
the width of the considered image.

x02 x01 x00

x12 x11 x10

x22 x21 x20

LineBuffer

LineBuffer

K W − K

J

FIGURE 3.13: Structure of a (3× 3) window buffer

In VHDL, the window buffer functionality can be implemented in a structural fash-
ion by inferring the taps component three times. This is illustrated in listing 3.7 which
describes the architecture of the window buffer.

Similarly to the MAC unit, the taps component is common in hardware designs and
can be either implemented by describing its behaviour, or directly inferring the man-
ufacturers’ IP. In the case of Intel devices, both methods result in the inference of the
ALTSHIFT_TAPS block.

Finally, the last conception step is to wire the WindowBuffer33 and CustomMAC33
components, resulting in the top level description of the convolution block given in 3.8.
In this description, note the presence of a third component (FlowController) in which
the structure of the output video stream is manually managed through in out_dv (data
valid) and out_fv (frame valid) control signals.

3.4. Implementation Example: Image convolution 41

LISTING 3.7: VHDL Implementation of the (3× 3) Window Buffer
entity WindowBuffer33 is
generic (
IMAGE_WIDTH : integer := 320;
DATA_WIDTH : integer := 8
);
port (
clk : in std_logic; -- Clock signal
reset_n : in std_logic; -- Reset, active at low state
enable : in std_logic; -- Enable
in_data : in std_logic_vector(DATA_WIDTH-1 downto 0); -- Input data array stream
p00, p01, p02 : out std_logic_vector(DATA_WIDTH-1 downto 0); -- Output 3x3 neighborhood
p10, p11, p12 : out std_logic_vector(DATA_WIDTH-1 downto 0);
p20, p21, p22 : out std_logic_vector(DATA_WIDTH-1 downto 0)
);
end WindowBuffer33;

architecture structural of WindowBuffer33 is

signal line0_pix_out : std_logic_vector((DATA_WIDTH-1) downto 0);
signal line1_pix_out : std_logic_vector((DATA_WIDTH-1) downto 0);

begin
Taps1 : CustomTaps -- First taps : Delay by a line
generic map (LENGTH => IMAGE_WIDTH_MAX-1, WIDTH => DATA_WIDTH)
port map (
clk => clk,
reset_n => reset_s,
enable => all_valid,
in_data => in_data,
out_data => line0_pix_out,
i0 => p22 , i1 => p21, i2 => p20
);

Taps2 : CustomTaps -- Second taps : Delay by a line
generic map (LENGTH => IMAGE_WIDTH_MAX-1, WIDTH => DATA_WIDTH)
port map (
clk => clk,
reset_n => reset_s,
enable => all_valid,
in_data => line0_pix_out,
out_data => line1_pix_out,
i0 => p12 , i1 => p11 , i2 => p10
);

Taps3 : CustomTaps -- Third taps : Delay by 3 cycles
generic map (LENGTH => 3, WIDTH => DATA_WIDTH)
port map (
clk => clk,
reset_n => reset_n,
enable => enable,
in_data => line1_pix_out,
i0 => p02 , i1 => p01, i2 => p00
);
end structural;

42 Chapter 3. Reconfigurable Hardware for Embedded Vision

LISTING 3.8: VHDL Implementation of a dataflow (3× 3) Convolution block
entity Conv33 is
generic (
IMAGE_WIDTH : integer := 512;
DATA_WIDTH : integer := 8
);

port (
clk : in std_logic; -- Clock Signal
reset_n : in std_logic; -- Reset, active at low state
enable : in std_logic; -- Enable
in_dv : in std_logic; --Input frame is valid
in_fv : in std_logic; -- Input data is valid
in_data : in std_logic_vector(DATA_WIDTH-1 downto 0); -- Input Pixel Value
k00, k01, k02 : in std_logic_vector(DATA_WIDTH-1 downto 0); -- Convolution Kernel
k10, k11, k12 : in std_logic_vector(DATA_WIDTH-1 downto 0);
k20, k21, k22 : in std_logic_vector(DATA_WIDTH-1 downto 0);
out_data : out std_logic_vector(DATA_WIDTH-1 downto 0); -- Output frame is valid
out_dv : out std_logic ; -- Output data is valid
out_fv : out std_logic -- Output Pixel Value
);

end Conv33;

architecture Structural of Conv33 is
begin
ker33(0) <= k00; -- Cast convolution kernel in a 9 element array
ker33(1) <= k01;
ker33(2) <= k02;
ker33(3) <= k10;
ker33(4) <= k11;
ker33(5) <= k12;
ker33(6) <= k20;
ker33(7) <= k21;
ker33(8) <= k22;

FlowController_inst : FlowController -- Instantiate the FlowController component
generic map(
IMAGE_WIDTH => IMAGE_WIDTH, DATA_WIDTH => DATA_WIDTH
)

port map(
clk => clk,
reset_n => reset_n,
enable => enable,
in_dv => in_dv,
in_fv => in_fv,
to_WindowBuffer => to_WindowBuffer,
to_CustomMAC33 => to_CustomMAC33,
out_dv => out_dv,
out_fv => out_fv
);

WindowBuffer33_inst : WindowBuffer33 -- Instantiate the Windows Buffer
generic map(
IMAGE_WIDTH => IMAGE_WIDTH, DATA_WIDTH => DATA_WIDTH
)

port map(
clk => clk,
reset_n => reset_n,
enable => to_WindowBuffer,
in_data => in_data,
p00 => neigh33(0), p01 => neigh33(1), p02 => neigh33(2),
p10 => neigh33(3), p11 => neigh33(4), p12 => neigh33(5),
p20 => neigh33(6), p21 => neigh33(7), p22 => neigh33(8)
);

CustomMAC33_inst : CustomMAC33 -- Instantiate the Pipelined MAC
generic map(
BITWIDTH => DATA_WIDTH, KERNEL_SIZE => 3
)

port map(
clk => clk,
reset_n => reset_n,
enable => to_CustomMAC33,
x => neigh33,
theta => ker33,
y(2*DATA_WIDTH -1 downto DATA_WIDTH) => out_data -- Put MSBs at the output (no shift)
);

end architecture;

3.4. Implementation Example: Image convolution 43

3.4.2 Dataflow Implementation with Caph

After detailing the conception of a dataflow convolution block in VHDL, the following
section shows how an HLS tool like CAPH in able to derive a similar architecture in a
more productive fashion.

First, two elementary actors are used; the first one, dp, delays the input stream by one
pixel while the second, dl, delays the stream by one line. These actors are very common
in image processing tasks are thus already provided in the CAPH standard library.

Second, one can leverage on CAPH wiring functions to implement the window buffer:
The neigh13 function produces three wires representing the (1× 3) neighbourhood of
the input stream (generated by applying the dp actor) and the neigh33 function produces
nine wires representing the (3 × 3) neighbourhood. This is illustrated by Figure 3.14
where only two actors implements the (3× 3) neighbourhood extraction, thanks to the
wiring functions.

FIGURE 3.14: (3× 3) Window buffer with CAPH Wiring Functions. From [SBB16]

After extracting the (3× 3) neighborhood, the mac33 actor operates on the 9 inputs
and computes their dot product with the considered convolution kernel. Listing 3.9 gives
the CAPH implementation of this actor5. Note how the pipeline is implicitly expressed
line 22, thanks to which, the MAC is processed in a single clock cycle.

In the same listing, the last line simply wires the mac33 and neigh33 actors to im-
plement convolution. Unlike the HDL approach, the structure of the output stream is
managed when describing the actors, thanks to structured data types. As a consequence,
the user is exempted from manually managing the output structure through dedicated
blocks and signals, as it is the case in listing 3.8.

Finally, as a last step, the hardware description (in VHDL) is generated using the
CAPH compiler. This code is then synthesized and implanted on the target FPGA using
the tool chain detailed in section 3.2.2.

5In this listing, the convolution kernel is deliberately declared as input stream and not an input parameter. In fact, the
second option specializes the convolution engine to the convolution kernel, advantaging the specialized CAPH implemen-
tation over the generic VHDL implementation

44 Chapter 3. Reconfigurable Hardware for Embedded Vision

LISTING 3.9: Caph description of a pipelined MAC actor.
1 -- 2D 3x3 convolution - with explicit neighborhood generation
2 #include "neigh.cph"
3 actor mac33
4 in (
5 -- Input 3x3 neighborhood
6 x0:signed<8> dc, x1:signed<8> dc, x2:signed<8> dc,
7 x3:signed<8> dc, x4:signed<8> dc, x5:signed<8> dc,
8 x6:signed<8> dc, x7:signed<8> dc, x8:signed<8> dc,
9 -- Convolution Kernel

10 k0:signed<8> , k1:signed<8> , k2:signed<8>,
11 k3:signed<8> , k4:signed<8> , k5:signed<8>,
12 k6:signed<8> , k7:signed<8> , k8:signed<8>
13)
14 out (s:signed<8> dc)
15 rules
16 | (x0: ’<, x1: ’<, x2: ’<, x3: ’<, x4: ’<, x5: ’<, x6: ’<, x7: ’<, x8: ’<) -> s:’<
17 | (x0: ’>, x1: ’>, x2: ’>, x3: ’>, x4: ’>, x5: ’>, x6: ’>, x7: ’>, x8: ’>) -> s:’>
18 | (x0:’x0, x1:’x1, x2:’x2, x3:’x3, x4:’x4, x5:’x5, x6:’x6, x7:’x7, x8:’x8,
19 k0: k0, k1: k1, k2: k2, k3: k3, k4: k4, k5: k5, k6: k6, k7: k7, k8: k8) ->
20 s:’((k0*x0 + k1*x1 + k2*x2 + k3*x3 + k4*x4 + k5*x5 + k6*x6 + k7*k7 +k8*x8)>>8);
21
22 net (o0, o1, o2, o3, o4, o5, o6, o7, o8) = neigh233 0 x;
23 net r = mac33 (o0, o1, o2, o3, o4, o5, o6, o7, o8,
24 k0, k1, k2, k3, k4, k5, k6, k7, k8);

After detailing HDL-based and CAPH based implementations, the last part of our
study compares the performance of generated architectures.

3.4.3 Implementation Results

Table 3.1 compares the two implementations of convolution in terms of operating fre-
quency and resource utilization. Both implementations consider a variable kernel oper-
ating on a 512 x 512 image, and a data width of 8 bits. The target is a low budget Intel
Cyclone V 5CSEA7 FPGA, and the synthesis tool is Quartus 18.1. Code is made available
online6.

TABLE 3.1: Resource utilization and Operating frequencies of the convolution blocks

Resource ALM REG DSP M10K MemBits Fmax (MHz)

VHDL 95 195 5 3 10180 78.36
CAPH 1029 2059 9 11 12982 63.58

Globally, the HLS-derived architecture involves more resources, and runs slightly
slower (13%) than the HDL based implementation.

In terms of logic fabric, our CAPH implementation of convolutions requires 10×more
ALMs. This is due to the fact that CAPH infers inter-actor FIFOs, which, in this case,
are implemented by means of registers. In turn, these registers result in the inference
of ALMs. Note that this logic utilization can be significantly reduced when using the
mono-actor CAPH formulation of convolutions, as detailed in [Bou16].

In terms of on-chip memory, both implementations have nearly the same require-
ments around 10Kbits within 20% of each other. However, there is a major difference in
terms of SRAM blocks inferred:

• The VHDL implementation instantiate three M10K blocks: one for the window
buffer, and two for the flow controller.

• The CAPH implementation instantiate eleven: three to implement the neighborhood
extraction, and eight to implement the deep FIFOs between actors.

Finally, a substantial difference in the number of DSP blocks can be noticed; Even if
the considered (3× 3) convolution involve nine MAC units, the synthesizer infers five

6https://github.com/KamelAbdelouahab/conv33

https://github.com/KamelAbdelouahab/conv33

3.4. Implementation Example: Image convolution 45

DSPs blocks for the VHDL implementation and nine DSPs for CAPH implementation.

This is a direct result of the DSP packing capabilities detailed in sec.3.1.3. Thanks to
DSP packing, the synthesizer is able to pack two MAC operations in a single DSP block
when operating on 8 bits operands, as it is the case in the VHDL implementation. How-
ever, in the case of the Caph-generated architecture, a tag of two bits is inserted on each
structured data to differentiate between control and data tokens. This tag expands the
bit-width of the image operands by two bits, resulting in 10 bits operands for which DSP
packing is unfeasible.

This can be verified in Fig.3.15, which reports the post-fitting views of the generated
MAC units. On the left, note how the DSP block is inferred in « MAC mode », and
how it is able to simultaneously input four operands of 8 bits in the case of the VHDL
implementation. On the right, the DPS block is inferred as a multiplier, and is only able
to input two operands of 10 and 8 bits in the case of the implementation with CAPH .

clk~inputCLKENA0

Mult0~[128..191]

enable~input

reset_n~input

theta[2][0..7]~input

theta[3][0..7]~input

x[2][0..7]~input

x[3][0..7]~input

Mult0~mac
ACLR[1]

AX[17..0]

AY[18..0]

BX[17..0]

BY[18..0]

CHAININ[63..0]

CLK

ENA

NEGATE
1'h0

SUB
1'h0

CHAINOUT[63..0]

fifo:F44:mem[2][0..9]

fifo:F53:mem[7][0..7]
(8 bits Kernel value)

(10 bits Image value)

Mult3~8
AX[8..0]

AY[8..0]

BX[8..0]

BY[8..0]

NEGATE
1'h0

SUB
1'h0

RESULTA[7..0]
9{7}

7,7:0

9{7}

FIGURE 3.15: Post fitting view of the generated MAC unit reported by the Quartus Tool. DSP
Packing is unfeasible for the figure on the right

These results corroborate our expectation: HLS greatly impacts productivity at the
price of an overhead in resource utilization. Again, this overhead can be significantly
reduced when reformulating the dataflow description [Bou16].

To conclude, we highlight that both implementations deliver real-time performance
on an entry-level FPGA, exposing the benefits of the dataflow paradigm in the imple-
mentation of image processing tasks.

46 Chapter 3. Reconfigurable Hardware for Embedded Vision

3.5 Conclusions

As demonstrated in the previous example, and more generally in this chapter, FPGAs
support massive data parallelism, offering large opportunities in order to match with the
real-time constraints of image processing.

FIGURE 3.16: Evolution of resources in Xilinx and Intel FPGAs

The same advantages apply for computer vision with deep learning; While GPU im-
plementations have demonstrated state-of-the-art computational performance, CNN ac-
celeration is shortly moving towards FPGAs thanks to three main factors:

• First, the recent improvements in FPGA technology put reconfigurable hardware
performance within striking distance to GPUs. Thanks to the increasing amount of
logic, memory and computational resources (see.3.16), FPGA can now peak at 9.2
TFLOP/s [Int18b].

• Second, recent trends in CNN development increase the sparsity of CNNs and use
extreme compact data types. These trends, studied in the next chapter, favourize
FPGA devices which are designed to handle irregular parallelism and custom data
types. As a result, next generation CNN accelerators are expected to deliver up to
x5.4 better computational throughput than GPUs [NSB+17].

• Finally, the maturation of HLS tools makes FPGA development more productive,
especially when designing complex applications like CNNs.

The amount and diversity of research on the subject of CNN FPGA acceleration within
the last 3 years demonstrates a tremendous industrial and academic interest. As an in-
flection point in the development of CNN accelerators might be near, the next chapter
presents a state-of-the-art of CNN inference accelerators over FPGAs.

47

Chapter 4

FPGA-Based Deep Learning
Acceleration

As detailed in the last chapter, CNNs can benefit from a significant acceleration when
running on reconfigurable hardware. This causes numerous research efforts to study
FPGA-Based CNN acceleration, targeting both High Performance Computing (HPC) ap-
plications [ORK+15] and embedded devices [QWY+16].

In this chapter, we conduct a survey on methods and hardware architectures to ac-
celerate the execution of CNNs on FPGAs. The first section lists the evaluation metrics
used, then sections 4.2 and 4.3 respectively studies the computational transforms and the
data-path optimization involved in recent CNN accelerators. Finally, the last section of
this chapter details how approximate computing is a key in FPGA-based Deep Learning,
and overviews the main contributions implementing these techniques.

4.1 Evaluation Metrics

Accelerating a CNN on an FPGA-powered platform can be seen as an optimization effort
which focuses on one, or several of the following criteria:

• Computational Throughput (T) : A large number of the works studied in this chap-
ter focus on reducing the CNN execution times on the FPGA (i.e the computa-
tion latency), by improving the computational throughput of the accelerator. This
throughput is usually expressed as the number of MACs an accelerator performs
per second (MACS). While this metric is relevant in the case of HPC workloads, we
prefer to report the throughput as the number of frames an accelerator processes
per second (FPS), which suits more to the embedded vision context. The two met-
rics can be directly related using equation 4.1, where C is defined in equation 2.15,
and refers to the number of computations a CNN involve in order to process a sin-
gle frame:

T(FPS) =
T(MACS)

C(MAC)
(4.1)

• Classification/Detection Perf. (A): Another way to reduce CNN execution times is to
trade some of their modeling performance in favour of faster execution timings. For
this reason, the classification and detection metrics are reported, especially when
dealing with approximate computing methods. As studied in sec.2.3, classification
performance is usually reported as top-1 and top-5 accuracies and detection perfor-
mance is reported using the mAP50 and mAP75 metrics.

• Energy and Power Consumption (P): Numerous FPGA-Based acceleration methods
can be categorised as either latency-driven or energy-driven. While the former fo-
cus on improving the computational throughput, the latter considers the power

48 Chapter 4. FPGA-Based Deep Learning Acceleration

consumption of the accelerator, reported in Watts. Alternatively, numerous latency-
driven accelerators can be ported to low-power-range FPGAs and perform well un-
der strict power consumption requirements.

• Resource Utilization (R): When it comes to FPGA acceleration, the utilization of the
available resources (LUTs, DSP blocks, SRAM blocks) is always considered. Note
that the resource utilization can be correlated to the power consumption, but im-
proving the ratio between the two is a technological problem that clearly exceeds
the scope of this thesis. For this reason, both power consumption AND resources
utilization metrics will be reported when available.

In the context of embedded vision, an FPGA implementation of a CNN has to sat-
isfy to the former requirements. In this perspective, the literature provides three main
approaches to address the problem of FPGA-based deep learning. These approaches
mainly consists of computational transforms, datapath optimizations and approximate
computing techniques, as illustrated in the chart 4.1.

FPGA Acceleration of CNNs

Computational Transforms

GEMM
[CX14, SCD+16]
[NSB+17, CPS06]

Winograd
[AOC+17]
[DLV+16]

FFT
[ZP17]

[KMNM17]

Datapath Optimization

Dataflow
[VB16, SPM+16]

[LFJ+16]
[APS+17]

Von-Neumann
[ZLS+15, MGAG16]
[SCD+16, MDC+16]

[MGG17]

Approx. Computing

Sparsity

Pruning
[MTK+17]
[FSNM17]

SVD
[QWY+16]

Quantization

Linear
[ZWN+16]
[QWY+16]

Binary
[UFG+17]
[ACRB16]
[ZOLW15]

FIGURE 4.1: Main Approaches to accelerate CNN inference on FPGAs

4.2 Computational Transforms

In order to accelerate the execution of conv and FC layers, numerous implementations
rely on computational transforms. These transforms operate on the FMs and weight ar-
rays, and aim at vectorizing the implementations and reducing the number of operations
occurring during inference.

Three main transforms can be distinguished. The im2col method reshapes the feature
and weight arrays in a way to transform 3D-convolutions into matrix multiplications.
The FFT method operates on the frequency domain, transforming convolutions into mul-
tiplications. Finally, in Winograd filtering, convolutions boil down to element-wise matrix
multiplications thanks to a tiling and a linear transformation of data.

These computational transforms mainly appear in temporal architectures (see sec.2.5.1)
and are implemented by means of variety of linear algebra libraries such OpenBLAS for
CPUs1 or cuBLAS for GPUs2. Beside this, various implementations make use of these
transforms to efficiently map CNNs on FPGAs.

This section discusses the three former methods, highlighting their use-cases and
computational improvements. For a better understanding, we recall that for each layer `
:

• The input feature map are represented as four-dimensional array X which the di-
mensions B× C× H ×W respectively refer to the batch size, the number of input
channels, the height, and the width.

1https://www.openblas.net/
2https://developer.nvidia.com/cublas

https://www.openblas.net/
https://developer.nvidia.com/cublas

4.2. Computational Transforms 49

• The weights are represented as four-dimensional array Θ which the dimensions
N × C× J × K respectively refer to the depth of the output feature map, the depth
of the input feature map, the vertical, and the horizontal kernel size.

4.2.1 The im2col Transformation

In CPUs and GPUs, a common way to process CNNs is to map conv and FC layers as
General Matrix Multiplications (GEMMs). A number of studies generalize this approach
to FPGA-based implementations.

For FC layers, in which the processing boils down to a matrix-vector multiplication
problem, the GEMM-based implementations find its interest when processing a batch of
FMs. As mentioned in section 2.4.1, most of the weights of CNNs are employed in the FC
parts. Instead of loading these weights multiple times to classify multiple inputs, features
extracted from a batch of inputs are concatenated onto a CHW × B matrix. In this case,
the weights are loaded only one time per batch, as depicted in fig 4.2a. As a consequence,
the former equation 2.23 –which expressed the number of memory accesses occurring on
FC layers– becomes:

M f c
` = MemRd(θ f c

`) + MemRd(X f c
`) + MemWr(Y f c

`) (4.2)
= N`C`W`H` + BC`H`W` + BN` (4.3)
∼ N`C`H`W` (4.4)

As detailed in sec.2.4.2, the vectorization of FC layers is often employed in GPU im-
plementations to increase the computational throughput while maintaining a constant
memory bandwidth utilization. The same concept holds true for FPGA implementa-
tions [ZWS+16,ZFZ+16,AOC+17], which « batch » the FC layers to map them as GEMMs.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

BN
H

C
W

CHW

N

x

CHW

=

B

N

B

Input FMs XfcFC Weights ϴfc

Output
 FMs
Yfc
~

(A)

1

1

1

1

1

1

1

1

1

1

1

1

=

ϴ

(B)

FIGURE 4.2: GEMM Based processing of: a- FC layers, b- conv layers.

3D Convolutions can also be mapped as GEMMs using the so-called im2col method
introduced in [CPS06]. First, this method flattens all the weights of a given conv layer onto
an N × CKJ matrix Θ̃. Second, it re-arranges the input feature maps onto a CKJ ×UV
matrix X̃, squashing each Feature map to a column3. With these reshaped data, the out-
put feature maps Ỹ are computed by multiplying of two former matrices, as illustrated
in Fig 4.2b.

Ỹconv = Θ̃conv × X̃conv (4.5)

3That’s what the im2col name refers to: flattenning an image to a column

50 Chapter 4. FPGA-Based Deep Learning Acceleration

Suda et al. [SCD+16] and more recently, Zhang et al. [ZL17] leverage on im2col to
derive OpenCL-based FPGA Accelerators for CNNs. However, this method introduces
redundant data in the input FMs matrix which can lead to either inefficiency in storage
or complex memory access patterns. As a result, and as pointed-out in [SCYE17], other
strategies to map convolutions have to be considered.

4.2.2 Winograd Transform

Winograd minimal filtering algorithm, introduced in [Win80], is a computational trans-
form that can be applied to process convolutions with a stride of 1, which is very common
in CNN topologies.

This algorithm is particularly efficient when processing small convolutions (where
K ≤ 3), as advocated in [LG15]. In this work, authors outperform the throughput of the
conventional im2col method by a factor of×7.2 when executing VGG16 on a TitanX GPU.

⊙
~

~ ~

Input FM Xconv

W

H

w

w k
k

conv kernel ϴconv

J

K
x

x ϴ

Winograd
transform

= y

w+k-1 w+k-1

u
u

Output FM Yconv

U

ϴ y

EWMM

V

FIGURE 4.3: Winograd Filtering F(u× u, k× k)

In Winograd filtering, data is processed by blocs, referred as tiles, as following:

1. An input FM tile x of size (u× u) is pre-processed: x̃ = ATxA

2. In a same way, θ the filter tile of size (k× k) is transformed into θ̃: θ̃ = BTxB

3. Winograd filtering algorithm, denoted F(u× u, k× k), outputs a tile y of size (u× u)
that is computed according to equation 4.6

y = CT [θ̃ � x̃
]

C (4.6)

where A, B, C are transformation matrices defined in the Winograd algorithm [Win80]
and � denotes the Hadamard product also known as EWMM.

While a standard filtering requires u2 × k2 multiplications, Winograd algorithm, de-
noted F(u × u, k × k), requires (u + k − 1)2 multiplications [Win80]. In the case of tiles
of a size u = 2 and kernels of size k = 3, this corresponds to an arithmetic complexity
reduction of x2.25 [LG15], and in this case, transform matrices can be written as:

AT =

[
1 1 1 0
0 1 −1 −1

]
BT =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

C =

1 0 0

1/2 1/2 1/2
1/2 −1/2 1/2

0 0 1

 (4.7)

Beside this complexity reduction, implementing Winograd filtering in FPGA-Based
CNN accelerators has two advantages. First, transformation matrices A, B, C can be
evaluated off-line once u and k are determined. As a result, these transforms become
multiplications with the constants that can be implemented by means of LUT and shift
registers, as proposed in [LLXY17].

4.3. Data-path Optimizations 51

Second, Winograd filtering can employ the loop optimization techniques discussed in
section 4.3.2 to vectorize the implementation. On one hand, the computational through-
put is increased when unrolling the computation of the Element-Wise Matrix Multiplica-
tions (EWMMs) parts over multiple DSP blocs. On the other hand, memory bandwidth
is optimized using loop tiling to determine the size FM tiles and filter buffers.

First utilization of Winograd filtering in FPGA-Based CNN accelerators is investi-
gated in [DLV+16] and delivers a computational throughput of 46 GOPs when executing
AlexNet convolution layers. This performance is significantly improved by a factor of
x42 in [AOC+17] when optimizing the data-path to support Winograd convolutions (by
employing loop unrolling and tiling strategies), and storing the intermediate FM in on-
chip buffers (cf sec 4.2).

The same method is employed in [LLXY17] to derive a CNN accelerator on a Xilinx
ZCU102 device that delivers a throughput of 2.94 TOPs on VGG convolutional layers.
The reported throughput corresponds to half of the performance of a TitanX device, with
x5.7 less power consumption [Nvi15]4.

4.2.3 Fast Fourier Transform

Fast Fourier Transform (FFT) is a well known algorithm to transform the 2D convolutions
into EWMM in the frequency domain, as shown in equation 4.8:

conv2D(X[c], Θ[n, c]) = IFFT
(

FFT(X[c])� FFT(Θ[n, c])
)

(4.8)

Using FFT to process 2D convolutions reduces the complexity from O(W2 × K2) to
O(W2log2(W)), which is exploited to derive FPGA-based accelerators to and infer CNNs
[KMNM17]. When compared to standard filtering and Winograd algorithm, FFT finds
its interest in convolutions with large kernel size (K > 5), as demonstrated in [LG15,
BKA+16]. The computational complexity of FFT convolutions can be further reduced to
O(Wlog2(K)) using the overlap-and-add Method [HR16] that can be applied when the
signal size is much larger than the filter size, which is typically the case in conv layers
(W >> K). Works in [ZP17] leverage on the overlap-and-add to implement frequency
domain acceleration for conv layers on FPGA, which results in a computational through-
put of 83 GOPs for AlexNet.

4.3 Data-path Optimizations

As highlighted in sec 2.4.2, the execution of CNNs exhibit numerous sources of paral-
lelism. However, due to the resource limitation of FPGAs devices, it might be impossible
to fully exploit all the concurrency patterns, especially with the sheer volume of opera-
tions involved in deep topologies. In other words, the execution of recent CNN models
can not fully be «unrolled», sometimes, not even for a single conv layer.

To address this problem, the general approach, advocated in state-of-the-art imple-
mentations, is to map a limited number of PEs on the FPGA. These PEs are then reused
by temporally iterating data through them.

4.3.1 Systolic Arrays

Early FPGA-based accelerators for CNNs implemented systolic arrays to accelerate the
2D filtering in convolutions layers [SJC+09, FPH+09, CSJC10, GJD+14]. As illustrated in

4Implementation in the TitanX GPU employs Winograd algorithm and 32 bits floating point arithmetic

52 Chapter 4. FPGA-Based Deep Learning Acceleration

T
A

B
L

E
4.1:A

ccelerators
em

ploying
com

putationaltransform
s

M
ethod

Entry
N

etw
ork

C
om

p
Param

s
bit-w

idth
D

esc.
D

evice
Freq

T
hrough

Pow
er

LU
T

D
SP

M
em

ory
(G

O
P)

(M
)

(M
H

z)
(G

O
Ps)

(W
)

(K
)

(M
B

)

W
inograd

[D
LV

+
16]

A
lexN

et-C
1.3

2.3
Float32

O
penC

L
V

irtex7
V

X
690T

200
46

-
505

3683
56.3

[A
O

C
+

17]
A

lexN
et-C

1.3
2.3

Float16
O

penC
L

A
rria10

G
X

1150
303

1382
44.3

246
1576

49.7
[LLX

Y
17]

V
G

G
16-C

30.7
14.7

Fixed
16

H
LS

Z
ynq

Z
U

9EG
200

3045
23.6

600
2520

32.8
[LLX

Y
17]

A
lexN

et-C
1.3

2.3
Fixed

16
H

LS
Z

ynq
Z

U
9EG

200
855

23.6
600

2520
32.8

FFT
[Z

P17]
A

lexN
et-C

1.3
2.3

Float32
-

Stratix5
Q

PI
200

83
13.2

201
224

4.0
[Z

P17]
V

G
G

19-C
30.6

14.7
Float32

-
Stratix5

Q
PI

200
123

13.2
201

224
4.0

G
EM

M

[SC
D

+
16]

A
lexN

et-C
1.3

2.3
Fixed

16
O

penC
L

Stratix5
G

X
A

7
194

66
33.9

228
256

37.9
[Z

FZ
+

16]
V

G
G

16-F
31.1

138.0
Fixed

16
H

LS
K

intex
K

U
060

200
365

25.0
150

1058
14.1

[Z
FZ

+
16]

V
G

G
16-F

31.1
138.0

Fixed
16

H
LS

V
irtex7

V
X

960T
150

354
26.0

351
2833

22.5
[Z

L17]
V

G
G

16-F
31.1

138.0
Fixed

16
O

penC
L

A
rria10

G
X

1150
370

866
41.7

437
1320

25.0
[Z

L17]
V

G
G

16-F
31.1

138.0
Float32

O
penC

L
A

rria10
G

X
1150

385
1790

37.5
-

2756
29.0

4.3. Data-path Optimizations 53

figure 4.4a, systolic arrays employ a static collection of PEs, typically arranged in a 2-
dimensional grid. These PEs operate as a co-processor under the control of a central pro-
cessing unit. The configuration of systolic arrays is agnostic to the CNN model, making
them inefficient to process large scale networks for three following reasons.

First, the static collection of PEs can only support convolutions up to a given filter size
Km, where typical values of Km ranges from 7 in [FPH+09] to 10 in [GJD+14]. Therefore,
a convolution layer (`) in which K` > Km is not supported by the accelerator.

Second, systolic arrays suffer from under utilization when processing layers in which
the kernel size K` is much smaller then Km. This is for instance the case in [GJD+14],
where the processing 3× 3 convolutions uses only 9% of DSP Blocs while the processing
of these layers can be further parallelized and thus accelerated.

Finally, PEs in systolic arrays do not usually include memory caches and have to fetch
their inputs from a off-chip memory. As a result, the performance of systolic arrays can
rapidly be bounded by memory bandwidth of the device.

...

...

...

...

...

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

DMA

Off-chip
memory

...

...

...

...

...

Bottleneck

(A)

Input FMs Xconv

PN

conv Weights
 ϴconv

DMA

Co
nt

ro
lle

r

PE PE ... PE

Pr
og

ra
m

m
ab

le
 lo

gi
c

H
PS

Xconv

buffer
ϴconv

buffer
Yconv

buffer

External MemoryCPU

(B)

+ act

conv
+

..
.

..
.

+

..
.

xconv

θconv

P

1

1

xconv

θconv
pc

pc

yconv

Previous partial sum

conv

conv

C

(C)

FIGURE 4.4: Generic Data-paths of FPGA-based CNN accelerators: A-Static Systolic Array. B-
Dedicated SIMD Accelerator. C-Dedicated Processing Element

4.3.2 Loop Optimization in Spatial Architectures

Due to the inefficiency of systolic arrays, flexible and dedicated Spatial Architectures for
CNNs were mapped on FPGAs. The general computation flow in these accelerators is
illustrated in Fig.4.4b.

First, FMs and weights are fetched from DRAM to on-chip buffers, and are then
streamed into the PEs. At the end of the PE computation, results are transferred back
to on-chip buffers and, if necessary, to the external memory in order to be fetched in their
turn to process the next layers. Each PE –as depicted in Fig. 4.4c– is configurable and
has its own computational capabilities by means of DSP blocs, and its own data caching
capabilities by means of on-chip registers.

With this paradigm, the problem of CNN mapping consists in finding the optimal
architectural and temporal configuration of PEs. In other words, the best number of DSP
blocs per PE, the optimal temporal scheduling of data that maximizes the computational
throughput.

For convolution layers, in which the processing is described in listing 4.1, finding
the optimal PE configuration comes down to a loop optimization problem [ZLS+15,
QWY+16, SCD+16, MGAG16, ACFM16, MCVS17b].

54 Chapter 4. FPGA-Based Deep Learning Acceleration

LISTING 4.1: Nested Loops
// Lb : Batch
for (int b=0;b<B,l++){
// Ll: Layer
for (int l=0;l<L,l++){
// Ln: Y Depth
for (int n=0;n<N;n++){
// Lv: Y Columns
for (int v=0;v<V,v++){
// Lu: Y Raws
for (int u=0;u<U,u++){
// Lc: X Depth
for (int c=0;n<C;c++){
// Lj: Theta Columns
for (int j=0;j<J,j++){
// Lk: Theta Raws
for (int k=0;k<K,k++){
Y[b,l,n,v,u] += X[b,l,c,v+j,u+k] *

Theta[l,n,c,j,k]
}}}}}}}

LISTING 4.2: Loop Tiling in conv layers
for (int b=0;b<B,l++){
for (int n=0;n<N;n+=Tn){
for (int v=0;v<V,v+=Tv){
for (int u=0;u<U,u+=Tu){
for (int c=0;n<C;c+=Tc){
// DRAM: Load in on-chip buffers the tiles:
// X[l,c:c+Tc,v:v+Tv,u:u+Tu]
// Theta [l,n:n+Tn,c:c+Tc,j,k]
// Process on-chip tiles
for (int tn=0;tn<Tn;tn++){
for (int tv=0;tv<Tv,tv++){
for (int tu=0;tu<Tu,tu++){
for (int tc=0;tn<Tc;tc++){
for (int j=0;j<J,j++){
for (int k=0;k<K,k++){
Y[l,tn,tv,tu] += X[l,tc,tv+j,tu+k] *

Theta[l,tn,tc,j,k];
}}}}}} // DRAM: Store output tile

}}}}

TABLE 4.2: Loop Optimization Parameters Pi and Ti

Parallelism Intra Inter Intra Inter Intra
layer FM FM conv. conv.

Loop LL LN LV LU LC LJ LK
Unroll factor PL PN PV PU PC PJ PK
Tiling Factor TL TN TU TU TC TJ TK

This problem is addressed by applying loop optimization techniques such loop un-
rolling, loop tiling or loop interchange to the 7 nested loops of listing 4.1. In this case, the
unroll and tiling factors (resp. Pi and Ti) determine the number of PEs, the computational
resources and on-chip memory allocated to each PE.

Input FMs Xconv Output FMs Yconv

C N

W U

H
V

conv Weights
 ϴconv

TC

TH

TW
TU

TV

TN

C

TC

...

TK

TJ

J

K

TW

PK

PJ

×
×
×

× ×
×
× ×

×

PJ × PK
mult.

+
+

+

+
+...

Adder
tree

xi
conv

θi
conv

FIGURE 4.5: Loop tiling and unrolling in convolution layers

4.3.2.1 Loop Unrolling

Unrolling a loop Li with an unrolling factor Pi (Pi ≤ i, i ∈ {L, V, U, N, C, J, K}) accelerates
its execution by allocating multiple computational resources. Each of the parallelism pat-
terns listed in section 2.4.2 can be implemented by unrolling one of the loops of listing 4.1,
as summarized in table 4.2. For the configuration given in figure 4.4c, the unrolling fac-
tor PN sets the number of PEs. The remaining factors PC, PK, PJ determine the number of
multipliers, as well as the size of buffer contained in each PE.

4.3. Data-path Optimizations 55

4.3.2.2 Loop Tiling

In general, the capacity of on-chip memory in current FPGAs is not large enough to store
the weights and intermediate FMs of all CNN layers5. For example, AlexNets’ convolu-
tion layers resort to 18.6 Mbits of weights, and generate a total 70.7 Mbits of intermediate
feature maps6. In counter part, the « largest » Stratix V FPGA provides a maximum of 52
Mbits of on-chip RAM.

As a consequence, FPGA based accelerators resort to external DRAMs to store these
data. As mentioned in section 2.4.3, DRAM accesses are costly in terms of energy and
latency, and data caches must be implemented by means of on-chip buffers and local
registers. The challenge is thus to build a data-path in a way that every data transferred
from DRAM is reused as much as possible.

For conv layers, this challenge can be addressed by tiling the nested loops of listing 4.1.
Loop tiling [DR01] divides the FMs and weights of each layer into multiple groups that
can fit into the on-chip buffers. For the configuration given in figure 4.4c, the size of the
buffers containing input FM, weights and output FM is set according to the tiling factors
listed in table 4.2.

Bconv
X = TC × TH × TW (4.9)
Bconv

Θ = TN × TC × TJ × TK (4.10)
Bconv

Y = TN × TV × TU (4.11)

With these buffers, the number of memory accesses occurring in conv layer (c.f eq.2.25)
is respectively devided by Bconv

X , Bconv
Θ and Bconv

Y , as expressed in equation 4.12.

Mconv
` =

C`H`W`

TCTHTW
+

N`C` J`K`

TNTCTJTK
+

N`U`V`

TNTV TU
(4.12)

Since the same hardware is reused to accelerate the execution of multiple conv layers
with different workloads, the tiling factors are agnostic to the workload of a specific layer,
as it can be noticed in the denominator of equation 4.12. As a result, the value of the tiling
factors is generally set to optimize the overall performance of a CNN execution.

4.3.3 Design Space Exploration

Finding the optimal unrolling and tiling factors for a specific device is a complex problem
that is generally solved using brute-force design space exploration [ZLS+15, SCD+16,
AJK16, ZWS+16, MGAG16, MSC+16]. This exploration is driven by an analytical model,
in which the inputs are loop factors Pi, Ti and outputs are a theoretical predictions of
the computational throughput (T), the size of buffers (B) and the number of external
memory accesses (M). This model is parametrized by the available resources of a given
FPGA platform and the workload of the considered CNN.

Analytical Model Roofline Model
Ti

Pi

T
M
B

Design selection

FIGURE 4.6: Design Space Exploration Methodology

5Exception can be made for [Mic17], where a large cluster of FPGAs is interconnected and resorts only to on-chip
memory to store CNN weights and intermediate data

6Estimated by summing the number of outputs for each convolution layer

56 Chapter 4. FPGA-Based Deep Learning Acceleration

FIGURE 4.7: Design selection using the Roofline Model. Figure from [ZLS+15]

To select the feasible solutions of this optimization problem, most of the literature
approaches rely on the Roofline method [WWP09] to accept or reject the design solutions
that do not match with the maximum computational throughput or the maximum mem-
ory bandwidth of a given device.

A typical design space exploration driven by the roofline model is illustrated in fig-
ure 4.7. In this graph, each point of represents the performance of an explored solu-
tion (Pi, Ti). For a given FPGA platform, the attainable bandwidth and computational
throughput are respectively reported by the diagonal and horizonal lines. Point A is an
invalid solution as it is above the bandwidth roof while point A′ is feasible but delivers
mediocre computational throughput. Acceptable solutions are represented by points C
and D, the latter being better than the former since it has lower bandwidth requirements.

4.3.4 FPGA Implementations

Employing loop optimizations to derive FPGA-based CNN accelerator was first inves-
tigated in [ZLS+15]. In this work, Zhang et al. report a computational throughput of
61.62 GOPs in the execution of AlexNet convolutional layers by unrolling loops LC and
LN . This accelerator, described with Vivado HLS tools, relies on 32-bits floating point
arithmetic. Works in [MSC+16] follow the same unrolling scheme and features a 16-
bits fixed point arithmetic and , resulting in a x2.2 improvement in terms of computa-
tional throughput. Finally, the same unrolling and tiling scheme are employed in recent
works [ZWS+16] were authors report a x13,4 improvement, thanks to a deeply pipelined
FPGA cluster of four Virtex7-XV960t devices.

In all these implementations, loops LJ and LK are not unrolled because J and K are
usually small, especially in recent topologies. Works of Motamedi et al. [MGAG16] study
the impact of unrolling these loops in AlexNet, where the first convolution layers use
large 11× 11 and 5× 5 filters. Expanding loop unrolling and tiling to loops LJ and LK
results in a x1.36 improvement in computational throughput vs [ZLS+15] on the same
VX485T device when using 32 floating point arithmetic. Nevertheless, and as pointed
out in [MCVS17b], unrolling these loops is ineffective for recent CNN models that em-
ploy small convolution kernels.

The values of U, V, N can be very large in CNN models. Consequently, unrolling and
tiling loops LU , LV , LN can be efficient only for devices with high computational capabil-
ities (i.e DSP Blocs). This is demonstrated in works of Rahman et al. [AJK16] that report

4.3. Data-path Optimizations 57

an improvement of ×1.22 over [ZLS+15] when enlarging the design space exploration to
loops LU , LV , LN , which comes at the price of very long exploration timing.

In order to keep data in on-chip buffer after the execution of a given layer, works of
Alwani et al. [ACFM16] advocate the use of fused-layer accelerators by tiling across layer
LL. As a result, authors are able to remove 95% of DRAM accesses at the cost of 362KB of
extra on-chip memory.

In all these approaches, loops LN , LC, LJ , LK are unrolled in a same way they are tilled
(i.e Ti = Pi). By contrast, the works of Ma et al. [MCVS17b, MKC+17] fully explore all
the design variables searching for optimal loop unroll and tiling factors. More particu-
larly, authors demonstrate that the input FMs and weights are optimally reused when
unrolling only computations within a single input FM (i.e when PC = PJ = Pk = 1).
Tiling factors are set in way that all the data required to compute an element of Y are
fully buffered (i.e TC = C, TK = K, TJ = J). The remaining design parameters are derived
after a brute force design exploration. The same authors leverage on these loop optimiza-
tions to build an RTL compiler for CNNs in [MCVS17a]. To the best of our knowledge,
this accelerator outperforms all the previous implementations that are based on loop op-
timization in terms of computational throughput.

58 Chapter 4. FPGA-Based Deep Learning Acceleration

T
A

B
L

E
4.3:A

ccelerators
em

ploying
loop

optim
ization

Entry
N

etw
ork

C
om

p
Param

s
bit-w

idth
D

esc.
D

evice
Freq

T
hrough

Pow
er

LU
T

D
SP

M
em

ory
(G

O
P)

(M
)

(M
H

z)
(G

O
Ps)

(W
)

(K
)

(M
B

)

[Z
LS

+
15]

A
lexN

et-C
1.3

2.3
Float32

H
LS

V
irtex7

V
X

485T
100

61.62
18.61

186
2240

18.4
[Q

W
Y
+

16]
V

G
G

16SV
D

-F
30.8

50.2
Fixed

16
R

TL
Z

ynq
Z

7045
150

136.97
9.63

183
780

17.5
[SC

D
+

16]
A

lexN
et-C

1.3
2.3

Fixed
16

O
penC

L
Stratix5

G
SD

8
120

187.24
33.93

138
635

18.2
[SC

D
+

16]
A

lexN
et-F

1.4
61.0

Fixed
16

O
penC

L
Stratix5

G
SD

8
120

71.64
33.93

272
752

30.1
[SC

D
+

16]
V

G
G

16-F
31.1

138.0
Fixed

16
O

penC
L

Stratix5
G

SD
8

120
117.9

33.93
524

1963
51.4

[A
JK

16]
A

lexN
et-C

1.3
2.3

Float32
H

LS
V

irtex7
V

X
485T

100
75.16

33.93
28

2695
19.5

[Z
W

S
+

16]
A

lexN
et-F

1.4
61.0

Fixed
16

H
LS

V
irtex7

V
X

690T
150

825.6
126.00

N
.R

14400
N

.R
[Z

W
S
+

16]
V

G
G

16-F
31.1

138.0
Fixed

16
H

LS
V

irtex7
V

X
690T

150
1280.3

160.00
N

.R
21600

N
.R

[M
SC

+
16]

N
IN

-F
2.2

61.0
Fixed

16
R

TL
Stratix5

G
X

A
7

100
114.5

19.50
224

256
46.6

[M
SC

+
16]

A
lexN

et-F
1.5

7.6
Fixed

16
R

TL
Stratix5

G
X

A
7

100
134.1

19.10
242

256
31.0

[LFJ +
16]

A
lexN

et-F
1.4

61.0
Fixed

16
R

TL
V

irtex7
V

X
690T

156
565.94

30.20
274

2144
34.8

[A
C

FM
16]

A
lexN

et-C
1.3

2.3
Float32

H
LS

V
irtex7

V
X

690T
100

61.62
30.20

273
2401

20.2
[M

C
V

S17b]
V

G
G

16-F
31.1

138.0
Fixed

16
R

TL
A

rria10
G

X
1150

150
645.25

50.00
322

1518
38.0

[M
G

G
17]

A
lexN

et-C
1.3

2.3
Fixed

16
R

TL
C

yclone5
SEM

100
12.11

N
.R

22
28

0.2
[M

G
G

17]
A

lexN
et-C

1.3
2.3

Fixed
16

R
TL

V
irtex7

V
X

485T
100

445
N

.R
22

2800
N

.R
[M

C
V

S17a]
N

iN
20.2

7.6
Fixed

16
R

TL
Stratix5

G
X

A
7

150
282.67

N
.R

453
256

30.2
[M

C
V

S17a]
V

G
G

16-F
31.1

138.0
Fixed

16
R

TL
Stratix5

G
X

A
7

150
352.24

N
.R

424
256

44.0
[M

C
V

S17a]
R

esN
et-50

7.8
25.5

Fixed
16

R
TL

Stratix5
G

X
A

7
150

250.75
N

.R
347

256
39.3

[M
C

V
S17a]

N
iN

20.2
7.6

Fixed
16

R
TL

A
rria10

G
X

1150
200

587.63
N

.R
320

1518
30.4

[M
C

V
S17a]

V
G

G
16-F

31.1
138.0

Fixed
16

R
TL

A
rria10

G
X

1150
200

720.15
N

.R
263

1518
44.5

[M
C

V
S17a]

R
esN

et-50
7.8

25.5
Fixed

16
R

TL
A

rria10
G

X
1150

200
619.13

N
.R

437
1518

38.5
[LD

J +
17]

A
lexN

et-F
1.5

7.6
Float32

N
.R

V
irtex7

V
X

690T
100

445.6
24.80

207
2872

37
[LD

J +
17]

V
G

G
16SV

D
-F

30.8
50.2

Float32
N

.R
V

irtex7
V

X
690T

100
473.4

25.60
224

2950
47

4.4. Approximate Computing of CNN Models 59

4.4 Approximate Computing of CNN Models

Beside the computational transforms and data-path optimization, the CNN execution
can be accelerated when employing approximate computing, which is known to perform
efficiently on FPGAs [Mit16].

In the methods detailed in this section, a minimal amount of the CNN accuracy is
traded to improve the computational throughput or energy efficiency of the accelerator.
Two main strategies are employed. The first implements approximate arithmetic to pro-
cess the CNN layers with a reduced precision. The second aims at reducing the number
of operations occurring in CNN models without critically affecting the modelling perfor-
mance. Note that both approaches can resort to fine-tuning in order to compensate the
accuracy loss introduced by approximate computing.

4.4.1 Approximate Arithmetic for CNNs

Several studies have demonstrated that the precision of both operations and operands in
CNNs, and more generally in neural networks, can be reduced without critically affecting
their predictive performance. This reduction can be achieved by quantizing either or both
of the CNN inputs, weights and/or FMs using a fixed point numerical representation.

4.4.1.1 Fixed point arithmetic

In a general way, CNN models are deployed in CPUs and GPUs using the same numerical
precision they were trained with, relying on simple-precision floating point representation.
This format employs 32 bits, arranged according to the IEEE754 standard. As current
FPGAs support floating operations, various implementations [ZLS+15, ACFM16, AJK16]
employ such data representation.

Nonetheless, numerous studies such [AHS15, GAN+15, LTA16] demonstrate that the
inference of CNNs can be achieved with a reduced precision of operands. More partic-
ularly, works in [CBD14, ZWW+17] demonstrate the applicability of Fixed Point (FxP)
arithmetic to train and infer CNNs.

The FxP representation encodes numbers with a given bit-width b, using i bits for the
integer part, and f bits for the fractional part (b = i + f). Note that value of i is selected
according the desired numerical range, and the value of f is selected according to the de-
sired numerical precision.

In the simplest version of fixed point arithmetic, all the numbers are encoded with the
same fractional and integer bit-widths. This means that the position of the radix point is
similar for all the represented numbers. In this manuscript, we refer to this representation
as static FxP.

When compared to floating point, FxP is known to be more efficient in terms of hard-
ware utilization and power consumption. This is especially true in FPGAs [DKT07],
where –for instance– a single DSP block in Intel devices can either implement one 32bits
floating point multiplication or three concurrent FxP multiplications of 9 bits [Int17]. This
motivated early FPGA implementations, such [FMC+11, GJD+14] to employ fixed point
arithmetic in deriving CNN accelerators. These implementations mainly use a 16-bits
Q8.8 format , where 8 bits are allocated to the integer parts, and 8 bits to the fractional
part. Note that the same Q8.8 format is used for representing the features and the weights
of all the layers.

In order to prevent overflow, the former implementations also expand the bit-width
when computing weighted-sums of convolutions. Equation 4.13 explains how the bit-
width is expanded; if bX bits are used to quantize the input FMs and bΘ bits are used to

60 Chapter 4. FPGA-Based Deep Learning Acceleration

quantize the weights, an accumulator of bacc bits is required to represent a weighted-sum
of C`K2

` elements, where:

bacc = bx + bΘ + max
`

[
log2

(
C`K2

`

)]
(4.13)

In practice, most FPGA accelerators use 48-bits accumulators, such as in [FPH+09,
CSJC10].

X +

bq bits

bx bits bq + bx bits

bq + bx +

log (CK²) bits2

Accumulate

conv
X

conv
Q

(A) bit-width of accumulators

mantissasign

Integer part Fractional part{{

0 0 1 1 0 0 1 0

0 0 1 1 0 0 1 0

(B) Dynamic FxP

FIGURE 4.8: Fixed Point Arithmetic for CNN Accelerators

4.4.1.2 Dynamic Fixed Point for CNNs

In deep topologies, it can be observed that distinct parts of a network can have a signifi-
cantly different range of data. In particular, the features of the deep layers tend to have a
much larger numerical range when compared to the features of the first CNN layers.

2-7 2-6 2-5 2-4 2-3 2-2 2-1 20 21 22 23 24 25 26 27

Data Range

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 D
en

si
ty

data

conv1

conv5

(A) Histogram of the layer outputs

-27 -26 -25 -24 -23 -22 -21 0 21 22 23 24 25 26 27 28 29 210 211 212
101

102

103

104

105

106

107

108

Activations
Weights

Data Range

N
um

be
r

of
 E

nt
ri

es

(B) Histogram of weights and activations. Inputs and weights encoded in 8 bits

FIGURE 4.9: Distribution of Alexnet activations and weights.

The histograms of Fig. 4.9a depict this phenomenon for AlexNet convolution layers7.
While the CNN inputs (in red) are normalized take their values between 0 and 1, the
outputs of the fist convolution layer (in blue) have a wilder numerical range, between 2−7

and 22. This is even more salient for the fifth convolution layer, where most of the out-
puts take their values between 2−1 and 26. The same problem appears when comparing

7Code made available at github.com/KamelAbdelouahab/CNN-Data-Distribution

github.com/KamelAbdelouahab/CNN-Data-Distribution

4.4. Approximate Computing of CNN Models 61

the numerical of the CNN weights, and CNN activations. In this case, the weights are
numerically much smaller when compared to the activations, as illustrated in figure 4.9b8.

As a consequence, large bit-widths have to be allocated to the integer and fractional
parts in order to keep a uniform precision across the network while preventing overflow.
This expansion badly increases the resources requirements of a given FPGA mapping. As
a result, static FxP, with its unique shared fixed exponent, is ill-suited to deep learning,
as pointed out in [GMG16]

To address this problem, works in [CBD14, GMG16] advocates the use of dynamic
FxP [Wil91]9. In dynamic FxP, different scaling factors are used to process different parts
of the network. In other words, the position of the radix point varies from one layer
to another. More particularly, weights, weighted-sums and outputs of each layer are
assigned distinct integer and fractional bit-widths.

The optimal values of these bit-widths (i.e the ones that deliver the best trade-off
between accuracy loss and computational load) for each layer can be derived after a pro-
filing processes, performed by dedicated frameworks that supports FxP. Among these
frameworks, Ristretto [GMG16] and FixCaffe [GWC+17] are compatible with Caffe while
TensorFlow natively supports 8 bits computations. Most of these tools can fine-tune a
given CNN model to improve the accuracy of the quantized network. Figure 4.10 illus-
trates the improvements brought by dynamic FxP. One may note how the inference of
Alexnet is possible using 6 bits in dynamic FxP, while classic fixed point requires 15 bits
to deliver the same accuracy.

FIGURE 4.10: AlexNet top1 accuracy for various FxP representations, from [Gys16]

4.4.1.3 FPGA Implementations

The FPGA-Based CNN Accelerator proposed in [SCD+16] is build upon this quantifica-
tion scheme and employs different precisions to represent the FM, convolution kernels
and FC weights with resp. 16,8,10 bits. Without fine-tuning, authors report a drop of 1%
in classification accuracy of AlexNet. In a same way, Qiu et al. employ FxP to quantize
the VGG network with respectively 8 bits for the weights, 8 bits for activations and 4
bits for FC layers, resulting in 2% of accuracy drop. In all these accelerators, dynamic
quantization is supported by means of data shift modules [QWY+16]. Finally, the accel-
erator in [MGG17] rely on the Ristretto framework [GMG16] to derive an AlexNet model
wherein the data is quantized in 16 bits with distinct integer bit-widths per layer10.

8This figure deliberately multiplies the weights and activations by a scale factor of 27 − 1 to emulate an 8 bits quanti-
zation.

9An other approach to address this problem is to use custom floating point representations, as detailed in [AOC+17]
10Since the same PEs are reused to process different layers, the same bit-width is used with a variable radix point for

each layer

62 Chapter 4. FPGA-Based Deep Learning Acceleration

4.4.1.4 Extreme quantification with Binary and pseudo-Binary Nets

Training and inferring CNNs with extremely compact data representations, is an area that
is recently gaining a lot of research interest. Early works of Courbariaux et al. in Bina-
ryConnect [CBD15] demonstrate to feasibility of training neural networks using binary
weights i.e weights with either a value of−θ or θ encoded in 1 bit. BinaryConnect lowers
the bandwidth requirements of a network by a factor of x32 at the price of an accuracy
loss, evaluated at 19.2% on ImageNet11.

The same authors go further in their investigations in [HCS+16] and propose Binary
Neural Networks (BNNs) that represent both feature maps and weights with only 1 bit.
In these networks, negative values are represented as 0 while positive values are repre-
sented as 1.

BNNs greatly simplify the processing of convolutions, boiling-down the computa-
tions of MACs into bitwise XNOR operations followed by a pop-count (see Fig.4.11b).
Moreover, authors use the sign function as activation and apply Batch normalization be-
fore applying of the activation, which reduces the information lost during binarization
(see Fig. 4.11a. In turn, a higher drop in classification accuracy occurs when using BNNs,
evaluated at 29.8% for ImageNet. This accuracy drop is than lowered to 11% by Rastegari
et al., using different scale factors for binary weights (i.e −θ1 or +θ2)

conv
(bin) pool BN act

(sign)
Xconv

Xconv

Z
ϴconv

Xconv
Xconv

Z Xconv
Xconv

Xconv
Z Yconv

(A) Processing Pipeline

1 0 0

0 1 0

1 1 0

0 1 0

1 1 0

1 0 0

0 1 0

1 1 0

1 0 0

1 0 0

0 1 0

1 1 0

0 0 1

0 1 0

1 1 0

5
XNOR

=

Pop count
0 0 1

0 1 0

1 1 0
Count number

of ones over C,J,K

ϴ conv

xconv

(B) Binary Convolutions

FIGURE 4.11: Binary Neural Networks

Beside BNNs, Pseudo-Binary Networks, such DoReFa-Net [NFS17] and Quantized Neu-
ral Networkss (QNNs) [HCS+18] reduce the accuracy drop to 6.5% when employing
a slightly expanded bit-width (2 bits) to represent the intermediate FMs. Similarly, in
Trained Ternary Quantization (TTQ) [ZHMD17], weights are constrained to three values
(2 bits) −θ1, 0,−θ2, but FM are represented in a 32bits float scheme. As a consequence,
the efficiency gain of TTQ is not as high as in BNNs. In turn, TTQ achieves comparable
accuracy on ImageNet, within 0.7% of full-precision.

In FPGAs, BNNs benefit from a significant acceleration as the processing of "binary"
convolutions can be mapped on XNOR gates followed by a pop count operation, as de-
picted in figure 4.11b. Furthermore, and as suggested in [NSB+17], pop count operation
can be implemented using lookup tables in a way that convolutions are processed only
with logical elements. Thus, the DSPs blocs can be used to process the batch norm cal-
culation (eq 2.10, which can be formulated as a linear transform in order to reduce the
number of operations. This approach is followed in the implementation of [ZSZ+17] to
derive an FPGA-Based accelerator for BNNs that achieves 207.8 GOP/s while only con-
suming 4.7 W and 3 DSP Blocs to classify the Cifar10 dataset.
For the same task, works in [UFG+17, FUG+17] use a smaller network configuration12

and reaches a throughput of 2.4 TOP/s when using a larger Zynq 7Z045 Device with

11When compared to an exact 32 Bits implementation of AlexNet
12The network topology used in this work involves 90% less computations and achieves 7% less classification accuracy

on Cifar10

4.4. Approximate Computing of CNN Models 63

11W Power consumption.
For ImageNet classification, Binary Net implementation of [LYL+17] delivers an overall
throughput 1.9 TOP/s on a Stratix V GSD device. In all these works, the first layer is
not binarized to achieve better classification accuracy. As pointed-out in [LYL+17], the
performance in this layer can be improved when using a higher amount of DSP blocs. Fi-
nally, an accelerator for TTQs is proposed in [PBP+17] and achieves a peak performance
of 8.36 TMAC/s when classifying the Cifar10 data-set with a 2-bit precision.

4.4.2 Reduced Computations

In addition to approximate arithmetic, several studies attempt to the reduce the number
of operations involved in CNNs. For FPGA-Based implementations, two main strategies
are investigated: weight pruning, which increases the sparsity of the model, and low-rank
approximation of filters, which reduces the number of multiplications occurring in the
inference.

4.4.2.1 Weight Pruning

As highlighted in [LWF+15], CNNs as over-parametrized networks and a large amount
of the weights can be removed –or pruned– without critically affecting the classification
accuracy. In its simplest form, pruning is performed according to the magnitude such as
the lowest values of the weights are truncated to zero [HPTD15]. In a more recent ap-
proach, weights removal is driven by energy consumption of a given node of the graph,
which is 1.74x more efficient than magnitude-based approaches [YCS17]. In both cases,
pruning is followed by a fine-tuning of the remaining weights in order to improve the
classification accuracy. This is for instance the case in [HMD16], where pruning removes
respectively 53% and 85% of the weights in AlexNet conv and FC layers for less then 0.5%
accuracy loss.

FIGURE 4.12: Histogram of conv weights in a compressed Alexnet model

4.4.2.2 Low Rank Approximation

Another way to reduce the computations occurring in CNNs is to maximize the number
of separable filters. A 2D-separable filter, denoted θsep, has a unitary rank13, and can be
expressed as two successive 1D filters (θsep

J×1 then θ
sep
1×K). Filter decomposition reduces

the number of multiplications from J × K to J + K. This is illustrated in the example
Fig.4.13, where the 3× 3 averaging filter is separable, and can thus be decomposed into
two successive one-dimensional convolutions.

The same concept expands to 3D-convolutions, where a separable filter requires C +
J + K multiplications instead of C× J × K multiplications.

13Meaning that rank (θsep) = 1

64 Chapter 4. FPGA-Based Deep Learning Acceleration

1 1 1
1 1 1
1 1 1

 θ sep

1 1 1

 θJ
sep

X

conv2D conv1D

1 1 1
 θK

sep

conv1D

X

FIGURE 4.13: Example of a separable filter

Nonetheless, only a small proportion of CNN filters are separable. To increase this
proportion, a first approach is to force the convolution kernels to be separable by penal-
izing high rank filters when training the network [STR+15]. Alternatively, and after the
training, the weights Θ of a given layer can be approximated into a small set of r low
rank filters. In this case, r × (C + J + K) multiplications are required to process a single
3D-convolution.

Finally, when implementing im2col methods to process convolutions as GEMMs (c.f
sec. 4.2.1), computations can be reduced by decomposing the weight matrix Θ̃fc through
Single Value Decomposition (SVD). In a similar way to pruning, low rank approximation
or SVD is followed by a fine-tuning in order to counterbalance the drop in classification
accuracy.

4.4.2.3 FPGA Implementations

In FPGA Implementations, SVD is applied on FC layer to significantly reduce the num-
ber of weights, such as in [QWY+16], where authors derive a VGG16-SVD model that
achieves 87.96% accuracy on ImageNet with 63% less parameters.

Alternatively, one can take advantage of the numerous research efforts given to accel-
erate Sparse GEMM on FPGA [DRM14]. In this case, the challenge is to determine the
optimal format of matrices that maximizes the chance to detect and skip zero computa-
tions, such compressed sparse column (CRC) or compressed sparse row (CSR) formats14.
Based on this, Sze et al. [SCYE17] advocates the use of the CRC to process CNNs. Indeed,
this format requires lower memory bandwidths when the output matrix is smaller then
the input, which is typically the case in CNNs where N < CJK in Fig 4.2b.

However, this efficiency of CRC format is only valid for extremely sparse matrices
(typically with ≤ 1% of non zeros), while in practice, pruned CNN matrices are not that
sparse (typically, ≤ 4− 80% of non zeros). Therefore, works in [NSB+17] propose a zero
skip scheduler that identifies zero elements skips them in the scheduling of the MAC pro-
cessing. As a consequence, the number of cycles required to compute the sparse GEMM is
reduced. For AlexNet layers, the zeros skip scheduler results in a 4x speedup. The same
authors project a throughput of 12 TOP/s for pruned CNNs in the next Intel Stratix10
FPGAs, which outperforms and the computational throughput of state-of-the-art GPU
implementations by 10%.

14These format represents a matrix by three one-dimensional arrays, that respectively contain nonzero values, row
indices and column indices

4.4. Approximate Computing of CNN Models 65

TA
B

L
E

4.
4:

A
cc

el
er

at
or

s
em

pl
oy

in
g

A
pp

ro
xi

m
at

e
ar

it
hm

et
ic

A
xC

En
tr

y
D

at
as

et
C

om
p

Pa
ra

m
s

bi
t-

w
id

th
A

cc
D

ev
ic

e
Fr

eq
Th

ro
ug

h.
Po

w
er

LU
T

D
SP

M
em

or
y

(G
O

P)
(M

)
In

/O
ut

FM
s

θco
nv

θ
FC

(%
)

(M
H

z)
(G

O
Ps

)
(W

)
(K

)
(M

B)

FP
32

[Z
L1

7]
Im

ag
eN

et
30

.8
13

8.
0

32
32

32
32

90
.1

A
rr

ia
10

G
X

11
50

37
0

86
6

41
.7

43
7

13
20

25
.0

FP
16

[A
O

C
+

17
]

Im
ag

eN
et

30
.8

61
.0

16
16

16
16

79
.2

A
rr

ia
10

G
X

11
50

30
3

13
82

44
.3

24
6

15
76

49
.7

D
FP

[M
C

V
S1

7b
]

Im
ag

eN
et

30
.8

13
8.

0
16

16
8

8
88

.1
A

rr
ia

10
G

X
11

50
15

0
64

5
N

.R
32

2
15

18
38

.0
[M

C
V

S1
7a

]
Im

ag
eN

et
30

.8
13

8.
0

16
16

16
16

N
.R

A
rr

ia
10

G
X

11
50

20
0

72
0

N
.R

13
2

15
18

44
.5

[Z
L1

7]
Im

ag
eN

et
30

.8
13

8.
0

16
16

16
16

N
.R

A
rr

ia
10

G
X

11
50

37
0

17
90

N
.R

43
7

27
56

29
.0

BN
N

[Z
SZ

+
17

]
C

if
ar

10
1.

2
13

.4
20

2
1

1
87

.7
Z

yn
q

Z
70

20
14

3
20

8
4.

7
47

3
N

.R
[U

FG
+

17
]

C
if

ar
10

0.
3

5.
6

20
/1

6
2

1
1

80
.1

Z
yn

q
Z

70
45

20
0

24
65

11
.7

83
N

.R
7.

1
[L

Y
L
+

17
]

M
N

IS
T

0.
0

9.
6

8
2

1
1

98
.2

St
ra

ti
x5

G
SD

8
15

0
59

05
26

.2
36

4
20

44
.2

[L
Y

L
+

17
]

C
if

ar
10

1.
2

13
.4

8
8

1
1

86
.3

St
ra

ti
x5

G
SD

8
15

0
93

96
26

.2
43

8
20

44
.2

[L
Y

L
+

17
]

Im
ag

eN
et

2.
3

87
.1

8
32

1a
1

66
.8

St
ra

ti
x5

G
SD

8
15

0
19

64
26

.2
46

2
38

4
44

.2

TN
N

[P
BP

+
17

]
C

if
ar

10
1.

2
13

.4
8

2
2

2
89

.4
X

ili
nx

7
V

X
69

0T
25

0
10

96
2

13
.6

27
5

N
.R

39
.4

[P
BP

+
17

]
SV

H
N

0.
3

5.
6

8
2

2
2

97
.6

X
ili

nx
7

V
X

69
0T

25
0

86
12

4
7.

1
15

5
N

.R
12

.2
[P

BP
+

17
]

G
TS

R
B

0.
3

5.
6

8
2

2
2

99
.0

X
ili

nx
7

V
X

69
0T

25
0

86
12

4
6.

6
15

5
N

.R
12

.2

TA
B

L
E

4.
5:

A
cc

el
er

at
or

s
em

pl
oy

in
g

pr
un

in
g

an
d

lo
w

ra
nk

ap
pr

ox
im

at
io

n

R
ed

uc
.

En
tr

y
D

at
as

et
C

om
p

Pa
ra

m
s

R
em

ov
ed

bi
t-

w
id

th
A

cc
D

ev
ic

e
Fr

eq
Th

ro
ug

h.
Po

w
er

LU
T

D
SP

M
em

or
y

(G
O

P)
(M

)
Pa

ra
m

.(
%

)
(%

)
(M

H
z)

(G
O

Ps
)

(W
)

(K
)

(M
B)

SV
D

[Q
W

Y
+

16
]

Im
ag

eN
et

30
.8

50
.2

63
.6

16
Fi

xe
d

88
.0

Z
yn

q
7Z

04
5

15
0

13
7.

0
9.

6
18

3
78

0
17

.5
0

Pr
un

in
g

[F
SN

M
17

]
C

if
ar

10
0.

3
13

.9
89

.3
8

Fi
xe

d
91

.5
K

in
te

x
7K

32
5T

10
0

86
20

.7
7.

0
17

14
5

15
.1

2
[N

SB
+

17
]

Im
ag

eN
et

1.
5

9.
2

85
.0

32
Fl

oa
t

79
.7

St
ra

ti
x

10
50

0
12

00
0.

0
14

1.
2

N
.R

N
.R

N
.R

66 Chapter 4. FPGA-Based Deep Learning Acceleration

4.5 Conclusions

Numerous studies leverage on FPGA computational power to implement the feed-forward
propagation of CNNs. After studying the accelerators available on the literature, two
conclusions can be drawn:

• The first one is related to automation of the mapping process: Deriving FPGA ac-
celerators calls for a holistic exploration of the design space of both CNN hyper-
parameters (sec. 4.4.2), arithmetic precision (sec. 4.4.1) and Hardware parameters
(sec. 4.3.2). This process calls for either tool-flows to automatically Map CNNs on
FPGAs, or models to estimate performance and energy of CNN mappings before
synthesis.

• The second is related to the FPGA devices used. In fact, little research interest
is given to « embedded » FPGAs and a majority of state-of-the-art accelerators
target high-end devices. This is generally done by inferring a limited number of
processing elements, time-sharing the computations across these PEs. Such Time-
multiplexed architectures do not match with the streaming nature of CNNs and
deliver poor real-time performance when ported to resource constrained FPGAs.
This is especially true for the FPGAs integrated in smart camera nodes, where the
computational resources are up to 50 times less important than in high-end devices.

To address the two former points, the next chapters discuss a tool-flow to efficiently
map CNNs on FPGAs. This tool-flow rely on coarse-grain optimizations at the model
level, and fine-grain optimizations at the architectural level, both described in the re-
maining parts of this manuscript.

67

Chapter 5

Model-Based Optimization of CNN
Mappings on FPGAs

In order to make real-time embedded vision feasible on reconfigurable hardware, this
chapter focuses on optimizations that operate at the level of the CNN and its execution
model. These optimizations are agnostic to the FPGA technology used and can be com-
bined with other low-grain approaches operating at the RTL levels that will be discussed
in chapter 6.

The proposed optimizations take the form of « rules » that are derived after map-
ping CNNs with variable configurations. By configuration, we refer to the CNN hyper-
parameters (Depth, kernel-size, number of activations), and to execution models (Dataflow
vs Von-Neumann). Moreover, this chapter studies the effects of pruning and quantization
on the performance of an FPGA implementation.

Comparing the performance of multiple CNN mappings on FPGAs is a time con-
suming task that calls for automated tools to generate the hardware of a given CNN. In
the sequel, HADDOC, a tool-chain to map CNN graphs on FPGAs is proposed. The first
part of this chapter (sec.1,2,3) discusses the model of computation HADDOC relies-on and
introduces the principles of direct hardware mapping of CNNs on FPGAs.

Then, section 4 details the design space exploration process with HADDOC and de-
rives first rules of efficient hardware mapping of CNNs. Finally, the last section explores
a novel parameters in CNNs: the number of views.

5.1 Models of Computation for CNN inference on FPGAs

In general, two different paradigms exist in deriving custom hardware accelerators, par-
ticularly in the case of CNN acceleration. Figure 5.1 depicts these paradigms. On one
side of the spectrum, Von Neumann based Models are widely present in the literature,
and support a large variety of CNN workloads. On the other side, dataflow accelerators
directly map the operations involved in a given CNN, delivering better performance at
the price of a lower flexibility.

5.1.1 The Von Neumann paradigm

As detailed in chapter 4, numerous FPGA-based CNN accelerators comprise a computa-
tion engine and a control block. The computation engine takes the form of a systolic array
or a collection of processing elements, and execute the CNN operations sequentially in a
time-multiplexed fashion. The model of computation in such accelerators is inspired by
Von Neumann architectures, as illustrated in Fig.5.1b. This architecture involves a fixed
template scaled according to the available FPGA resources and controlled by a software,
usually hosted in a CPU.

With this scheme, the CNN is described as a sequence of micro-instructions that are
executable by a static architecture. In this case, the same bit-stream can target multiple

68 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

CONV NONLIN POOL FCCONV POOL

FPGA

HOST

CPUMemory

……

Classification Output

flower

insect

leaves

Input Images

(A) Dataflow Based

Conv	Layer

Re
LU Pooling	

Layer
Conv	Layer

Re
LU Pooling	

Layer

MemoryCPU

CONV LAYER

NONLIN:	ReLU

MAX POOL

CONV

MAX POOL

FULLY	CONNECTED

CONV/FC

Control	
Unit

N
O
N
LI
N

POOL

DMA

Processing Elements
FPGA

HOST Intermediate layer I/Os

(B) Von Neumann Based

FIGURE 5.1: Models of Architecture for CNN Inference on FPGA. From [VKB18]

CNNs, granting high flexibility to the accelerator. In turn, this flexibility comes at the
price of inefficiencies resulting from the complex control mechanisms and the high vari-
ability of CNNs workloads.

5.1.2 The Dataflow Paradigm

As detailed in section 3.3, image processing workloads generally benefit from a signifi-
cant acceleration when running on dataflow architectures. This acceleration comes in ex-
change of an algorithmic reformulation effort by the programmer. However, in the case
of deep learning based computer vision, CNN are algorithms that «naturally» match with
the dataflow semantics.

This is especially true for the feed-forward propagation, which is a typical stream-
ing workload wherein the execution is purely data-driven. Indeed, the inference of a
CNN (detailed in sec.2.2) can be described as a graph where the nodes represent funda-
mental computations occurring of the feature maps. This execution layout is in contrast
with Von Neumann execution models and, as highlighted in section 2.5.3, a given CNN
accelerator can easily be memory-bounded if it has to fetch every instruction from mem-
ory [SCYE17].

The advantages of such a model for CNN inference are clear.

• First, it catches all the parallelism patterns detailed in section 2.4.2 and grants high
computational throughput that delivers real-time performances.

• Second, it exempts from external memory accesses as the streams of tokens locally
stay on the FIFOs, next to the processing capabilities of the actors

• Finally, the dataflow graph can be seen as an intermediate representation that stays
between the mathematical description of the CNN and its hardware implementa-
tion. This representation can thus be used to derive a hardware implementation of
the CNN.

These advantages motivated numerous research efforts to consider the dataflow paradigm
for the CNN inference problem. The next section reviews the main contributions.

5.1.3 Dataflow-Inferred CNN Accelerators

The dataflow-based implementation of CNNs was first investigated in [FMC+11] where
Farabet et al. describe NeuFlow, an acceleration engine for CNNs relying on a dataflow
model. NeuFlow transforms the CNN graph into a set of dataflow instructions, each

5.1. Models of Computation for CNN inference on FPGAs 69

being described as a hardware configuration of 2D-processing elements called Processing
tiles implemented on FPGA. The execution of the graph is carried out by sequencing the
instructions through the Processing tiles.

FIGURE 5.2: Hardware Architecture of NeuFlow [FMC+11]

A special case of dataflow, called Static Data-Flow (SDF) [LM87], is a paradigm in
which the number of tokens produced and consumed by each actor can be specified a
priori, which is the case in CNN inference. SDF is employed in [VB16, VB17] to optimize
the mapping of CNN graphs on FPGAs. In this works, actors of the dataflow graph
correspond to the layers of the CNN. This graph is then modelled as a topology matrix
Γ where each row corresponds to an arc and each column corresponds to a node (layer).
Thus, an element Γ(a, `) in this matrix specifies the rate of the data that flows from layer
` along the arc a.

Moreover, authors define elementary building blocks such sliding windows, convo-
lution banks and memory I/O units, in a way that each column of Γ (i.e each layer of
the CNN) is to be mapped to a set of hardware building blocks that implement its func-
tionality. To find the optimal configuration of these building blocks, design space ex-
ploration is achieved by decomposing and transforming the topology matrix. Finally, the
study in [VB16] exploits the dynamic reconfiguration capabilities of FPGAs and features
a partitioning of the DPN into subgraphs, with one generated bit-stream per subgraph.
Nevertheless, this approach requires the reconfiguration of the FPGA whenever data has
to enter a different subgraph, which can add a substantial reconfiguration time overhead.

FIGURE 5.3: Graph Partitioning in FPGAConvNet [VB16]

70 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

5.2 Direct Hardware Mapping of CNNs on FPGAs

In all the previously evoked approaches, FPGA resources are time-shared to provide a
tunable trade-off between resource utilization and throughput performance (see sec.4.3).
This « time-multiplexing» calls for memory accesses which, even with the help of a dma,
limits the final speedup [FMC+11].

To overcome this limitation, a direct mapping of the CNN onto the physical resources
of the FPGA is proposed. The so-called Direct Hardware Mapping (DHM) consists of
physically mapping the DPN on the target device. Each actor of the graph becomes a
computing unit with its specific instance on the FPGA, and each edge of the graph be-
comes a signal.

5.2.1 DHM of convolution layers

As stated in section 2.4.1, convolution layers are the most computationally intensive parts
of a CNN. To accelerate the execution of these layers, the proposed DHM approach fully
« unrolls » the processing of a given conv layer ` by:

• Physically Mapping the N` three-dimensional convolutions in a concurrent fashion,
as illustrated in Fig. 5.4a.

• Physically Mapping each of the former 3D-convolutions as C` concurrent two-dimensional
convolutions, as shown in Fig 5.4b.

• Implementing each 2D-convolution in a pipelined fashion, using J` × K` multipli-
ers, as shown in Fig 5.4c.

X0

X1

...
XC

conv3D

conv3D

...

conv3D

Y0

Y1

YN

(A) Convolution Layers

XC

...

X1

X0

b0

conv2D

conv2D

conv2D

...

sum bias Y0

(B) 3D Convolutions

x00

x01

xJK

...

×

×

...

×

∑

(C) 2D Convolu-
tions

FIGURE 5.4: The 3 levels of DHM implementation of CNN entities

With this method, the DHM approach fully unrolls the processing in a way to pro-
duce N` token per clock cycle. This corresponds to mapping Rm` multipliers per layer,
as shown in the following equation:

Rm` = N`C` J`K` (5.1)

The advocated approach has two main benefits:

• First, it grants a high computational throughput that depends only on the length of
input streams (i.e the input video resolution), and the frequency of the design F, as
expressed in equation 5.2.

T(FPS) =
F

H0W0
(5.2)

5.2. Direct Hardware Mapping of CNNs on FPGAs 71

• Second, it exempts from any external memory access. Streams of tokens are pro-
duced on the fly at each actor and are transferred to the next actor through FIFOs
channels.

• The major downside is related to the flexibility of the accelerator. With the proposed
DHM, a CNN mapping can rapidly be bounded by the available resources present
in a given FPGA. For instance, if the graph of a given layer (or network) involves
more multiplications than the number of multipliers available on an FPGA, the
dataflow mapping is not feasible. Tactics to overcome this downside are discussed
in the next chapter.

5.2.2 Use-cases of DHM

Because of the previously evoked argument, direct hardware mapping of CNN graphs
is advocated for networks and layers that involve a low number of computation on a high
number of data. For this kind of workloads, DHM requires less resources and can process
a high number of inputs at a high computational throughput, without being bounded by
resources availability.

By contrast, a Von Neumann paradigm is more suitable for workloads involving a
high number of computation on a small amount of data. In this case, there is less data to
move in and out the processing elements when iterating the computations. Consequently,
Von Neumann based accelerators spends less timings on memory access, allowing real-
time performance on « time-multiplexed » architectures.

Thus, different paradigms have to be used according to the workload of a given
layer. To characterize this workload, the Computation to Communitcation (CTC) metric
is defined, and corresponds to the ratio between the number of resources to be mapped
(eq.5.1) and the amount of data to be manipulated (eq.2.25). For each conv layer, this ratio
can be written as:

CTC` =
Rm`

M`
(5.3)

=
N`C` J`K`

C`H`W` + N`C` J`K` + N`U`V`
(5.4)

Figure 5.5 reports the CTC ratio for various layer of multiple CNNs1. The higher the
CTC is, the lower the dataflow paradigm is suitable. In particular, one may note that
the first layers of CNNs manipulate a high number of inputs/outputs while involving a
small number of resources2. It it thus preferable to implement these layers in a dataflow
fashion. By contrast, notably because of the sub-sampling layers, mid-range and last lay-
ers manipulates a smaller amount of data while involving more resources. They are thus
good candidates for a time-multiplexed implementation.

It is also worth to mention that CNN detectors such YOLOv2 operate on images with
a higher resolution when compared to CNN classifiers (416× 416 vs 227× 227). Dataflow
architectures are thus expected to perform more efficiently for these workloads.

5.2.3 The case of FC Layers

Fully connected layers is a typical example of workloads involving a large number of
computations on a small amount of data. According to the results of [Bou16], imple-
menting FC layers in a fully pipelined fashion consumes 47% of the resources allocated

1The code reproducing this chart is made available at https://github.com/KamelAbdelouahab/CNN-Workload
2Exception made for Alexnet first conv layer as it involves 11× 11 convolutions

https://github.com/KamelAbdelouahab/CNN-Workload

72 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 conv9 conv10 conv11 conv12 conv13
10-4

10-3

10-2

10-1

100

101

102

103

C
T

C
 R

at
io

Alexnet

VGG16

DarkNet

YOLOv2-tiny

FIGURE 5.5: CTC Ratio in Popular CNNs. Y axis in logarithmic scale

to a given mapping despite representing 3% of the total computational workload. As a
consequence, models of computation other then the dataflow MoC have to be considered
to implement of the fully connected parts of a CNN.

In the upcoming experiments, the processing of FC layers is formulated as as a vector-
matrix multiplication (cf. sec.4.2.1). With this approach, one can leverage on the ad-
vances of a large number of works addressing the problem of matrix multiplication on
FPGA, according to the matrix dimension [KDC12, SQH+18], the matrix sparcity [ZP05,
DRM14], and the resource/energy constrains [JCP02, JCP05]. Moreover, one can directly
use the optimized matrix multiplication IP cores made available by FPGA manufactur-
ers [DFK+07, Int14b].

The downside of this approach is that it requires a data transfer between the feature
extraction block that computes the conv layers, and the matrix-multiplication block that
computes the FC layers. Fortunately, the transferred data volume corresponds to vector
of few hundreds of elements representing the features extracted from each frame. For
example, in the case of Alexnet, the dimension of this vector is

Cconv5 ∗ Hconv5 ∗Wconv5 = 43264

This corresponds to 1.29 MBs of bandwidth in a 30 FPS video frame.

5.3 Direct Hardware Mapping with CAPH

In the upcoming experiments, the hardware description of a given CNN is derived by
CAPH HLS tool. The choice of using CAPH is motivated by the high productivity it grants
when prototyping dataflow-based architectures on reconfigurable hardware, as studied
in section 3.3.

5.3.1 CAPH Formulation of CNNs

To describe a Convolutional Neural Network as a dataflow graph, a set of actors have to
be specified first, each actor being defined according to its functionality in the CNN.

Based on the topology of popular CNN models, Bourrasset et al. [Bou16] proposed a
CAPH implementation of common CNN actors. To build the complex dataflow graphs
involved in CNNs, authors follow an ascendant conception flow that relies on the wiring
functions of the CAPH tool to build high semantics actors from the lower semantic ones
(see sec.3.3.2). In the case of convolution and pooling layers, the main actors are:

5.3. Direct Hardware Mapping with CAPH 73

convLayer : This actor describes the behaviour of a conv layer and implements the 3D-
convolutions as a sum of 2D-convolutions (see eq. 2.4). This is done by wiring
concurrent conv2DJK3 blocks with sum, bias and ReLU actors. These respectively
sums, adds the bias, and applies a ReLU function to the inputs streams.

conv2DJK : Performs a two-dimensional J × K convolution on input streams. Authors
implement this 2D-convolution as a mono-actor, meaning that it is described us-
ing a large number of firing rules instead of wiring fine grain actors. While this
implementation suffers from a low expressibility, it grants a better computational
throughput and a lower resource utilization4.

PoolJK : Sub-samples the input stream by applying J × K max-pooling. This actor is
built by wiring PoolH and PoolV actors, which respectively sub-samples the stream
in the horizontal (resp. vertical) dimension.

Listing 5.1 gives an example of a CAPH description of a CNN using the formerly
defined actors. The corresponding DPN is illustrated in figure 5.6.

LISTING 5.1: Example of a CAPH Description of a CNN
-- Layer conv1: Extracts Three Feature Maps C=1, K=3, N=3
net(c10, c11, c12) = convs conv233c rep3 weights_conv1 bias_conv1 i;
-- Apply ReLU Activation
net(r10, r11, r12) = map relu (c10, c11, c12);
-- Layer pool1: 2x2 Max-pooling
net(p10,p11,p12) = map (pool 2 2) (r10,r11,r12);
-- Layer conv2: Extracts Five Feature Maps C=3, K=3, N=5 and applies ReLU
net(c20,c21,c22,c23,c24) =
convlayer conv233c weights_conv2 bias_conv2 sum3 relu ((p10,p11,p12),

(p10,p11,p12),
(p10,p11,p12),
(p10,p11,p12),
(p10,p11,p12));

-- Layer pool2: 2x2 Max-pooling
net(p20,p21,p22,p23,p24) = map (pool 2 2) (c20,c21,c22,c23,c24);

rep3

conv2D33

conv2D33

conv2D33

ReLU

ReLU

ReLU

Pool

Pool

Pool

conv2D33
conv2D33
conv2D33

conv2D33
conv2D33
conv2D33

conv2D33
conv2D33
conv2D33

conv2D33
conv2D33
conv2D33

conv2D33
conv2D33
conv2D33

sum3

sum3

sum3

sum3

sum3

ReLU

ReLU

ReLU

ReLU

ReLU

Pool

Pool

Pool

Pool

Pool

In
pu

tM
on

oc
hr

om
e

Fr
am

e

conv1 relu1 pool1

conv2 relu2 pool2

O
ut

pu
tF

ea
tu

re
M

ap
s

Y
po

ol
2

FIGURE 5.6: Dataflow Graph of the Network described in 5.1

In the same work [Bou16], the author highlights that implementing a high level func-
tionality by wiring low grain actors can badly impact the performance and resource uti-
lization of a given FPGA mapping. However, the proposed approach grants a higher
productivity, fastening the prototyping and exploration process. The studies proposed
in the next sections of this chapter are all based on the CAPH implementation of CNNs
discussed above.

3Where J and K represent the size of the convolution kernel
4As highlighted in section 3.4.2

74 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

5.3.2 Automated Hardware Generation

Based on the CAPH Implementation of CNN actors detailed above, this section intro-
duces the HADDOC tool. It automatically transforms a CNN description into a synthe-
sizable hardware description thanks to the CAPH language.

The Conception flow of HADDOC is illustrated in figure 5.7. Starting with a CNN
designed and trained using Caffe [JSD+14], HADDOC generates the corresponding DPN
described as a CAPH network. HADDOC also extracts the weights from the pre-trained
Caffe network and, if specified by the user, quantizes these weights into a desired fixed
point-representation5. Second, the CAPH compiler is used to create a hardware descrip-
tion of the generated DPN. This hardware description, which is platform and constructor
independent, is finally mapped on a given device using the adequate synthesis Tool.

Training set

CNN Con�guration

Ca�e

.ca�emodel

Haddoc

Caph

.cph

.vhd

Synthesis
 Tool

Bitstream FPGA

- C++ Based Deep Learning library
- Open downloadable CNN Models

High-level CNN Description

- Transcripts the ca�emodel
into data-�ow graph.
- Converts params into FxP

Data�ow CNN Description (DPN)

- DSL to describe and implement
streaming-based image processing
applications

Hardware Description

FIGURE 5.7: Haddoc Conception flow for FPGA Mapping of CNNs

HADDOC automates and fastens the generation of dataflow accelerators. In the se-
quel, this tool is used to explore the performance of CNN mappings in the embedded
space. Through this study, we want to clearly quantify the efficiency improvements6

brought by methods like quantization or pruning to a given FPGA mapping.

5.4 Design Space Exploration

As detailed in the last chapter, deriving efficient CNN mappings on FPGAs often comes
down to finding the best trade-off between computational throughput, classification ac-
curacy and energy consumption. Finding this trade-off calls for an exploration in large

5Haddoc1 code is made available https://github.com/KamelAbdelouahab/haddoc1
6In terms of CNN classification accuracy and FPGA resource utilization

https://github.com/KamelAbdelouahab/haddoc1

5.4. Design Space Exploration 75

space of design parameters such the CNN depth (L) , the topology (N, K), and the arith-
metic precision (b).

5.4.1 Depth and Convolution Kernel Size

This first example of design space exploration considers four CNNs designed for OCR
applications. These networks are based on a LeNet5 CNN, which includes a small num-
ber of convolutional layers interspersed with sub-sampling layers, as detailed in table 5.1.
This table also reports the number of multipliers to be mapped on the device (Rm`), and
the computational workload of each layer (C`)

TABLE 5.1: Topology of the Studied LeNet Implementations: For each layer `, N, C, J refers to
the number and dimensions of 3D filters, U to feature maps’ width width, Rm to the number

of multipliers and C computational workload

Impl. Layer N C J U Act, pool Rm` C` (KMAC)

I1

conv1 20 1 5 24 Pool 500 288.00
conv2 50 20 5 8 Pool 25000 1600.00

ip1 500 800 1 1 ReLU - 400.00
ip2 10 500 1 1 Softmax - 5.00

I2

conv1 20 1 3 26 Pool 180 121.68
conv2 50 20 3 11 Pool 9000 1089.00

ip1 270 800 1 1 ReLU - 408.38
ip2 10 500 1 1 Softmax - 2.70

I3

conv1 6 1 3 26 TanH+Pool 54 36.50
conv2 16 6 3 11 TanH+Pool 864 104.5
conv3 120 8 3 5 TanH+Pool 17280 155.5

ip1 84 480 1 1 TanH - 22.68
ip2 10 84 1 1 Softmax - 0.84

I4

conv1 6 1 3 26 ReLU+Pool 54 36.50
conv2 8 6 3 11 ReLU+Pool 432 52.27
conv3 60 8 3 3 ReLU 4320 38.88

ip1 420 540 1 1 ReLU - 226.80
ip2 10 420 1 1 Softmax - 4.20

The first CNN is the standard implementation of LeNet available in Caffe7. It includes
two convolutional layers using (5× 5) kernels interspersed with sub-sampling layers8.
The second implementation I2 considers a similar topology, but replaces the previous
(5× 5) kernels by (3× 3) filters, which theoretically reduces the utilized FPGA resources.

The third implementation is our porting on Caffe of the original LeNet5 described
in [LBBH98]9. It includes three convolution layers interspersed with sub-sampling and
TanH non-linearities. Note that this implementation involves less convolutions per layer
than the one proposed by Caffe, but includes a third computationally intensive conv layer.
Finally, I4 is network that involve the same number of layers as I3, but extracts twice less
FMs on the second and third layers, significantly reducing the number of multipliers
mapped on the device.

7https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt
8Caffe implementation of Lenet does not include use activation functions after the convolutions, but works surprisingly

well on MNIST dataset...
9We slightly modified the network to use 3x3 kernels on 28x28 frames instead of 5x5 kernels on 32x32 frames

https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt

76 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

For the four implementations, the number of neurons involved the FC layers is set
according to the dimension of the features extracted by the last conv layer. In particular,
we set the number of neurons in a way that maintains the computational workload of
classifier as constant as possible, around 400KMACs.

5.4.1.1 Training

The studied CNNs are first implemented in the Caffe framework and trained on 60K
examples of the MNIST handwritten digit database. The remaining 10K examples of
the dataset are used to validate the trained model and evaluate its classification perfor-
mance on MNIST. This classification performance is reported as an Top1 accuracy rate in
table 5.2.

(A) (B)

FIGURE 5.8: Differences between MNIST and USPS databases

Moreover, and to insure the trained networks generalize well on unseen «real-life»
examples, we evaluate the CNNs’ top1 accuracy on 1500 entries of the USPS dataset
which were never been seen by the models. Note that USPS is more difficult to solve
than MNIST, as depicted by the samples of figures 5.8b and 5.8a.

5.4.1.2 Accuracy Evaluation

As it can be seen in table 5.2, the training is successful as each of the four implementations
achieves more than 98.8% accuracy on MNIST. Particularly, this table highlights how the
deep networks (I3, I4) generalize better on USPS when compared to shallow networks
with two layers (I1, I2).

It can also be observed that reducing the filter size degrades the performance on USPS
by only 1.79%, while theoretically reducing the resources by a ×2.7 factor. Similarly, re-
ducing the number of feature maps decreases the classification performance by few per-
cents (−0.05% on MNIST and−6.36% on USPS), but significantly improves the efficiency
of the mapping (×3.68 less resources utilization expected).

These results suggest that reducing the depth on a network degrades its classification
performance, especially on unseen data samples. By contrast, lowering the size of convo-
lution filters and reducing the dimensions of feature maps are approaches that can both
be considered. To validate this suggestions, the next section focuses on the mapping of
the networks on FPGA devices.

TABLE 5.2: Accuracy of the studied networks on MNIST and USPS

Impl. Rm C(MMAC) AMNIST AUSPS

I1 25500 1.88 98.83 % 70.87 %
I2 9180 1.21 99.01 % 69.08 %
I3 18198 0.44 98.96 % 85.38 %
I4 4806 0.17 98.81 % 76.21 %

5.4.1.3 FPGA Implementation Results

To map the proposed networks, a Stratix 5SGSED8N3F45I4 device is selected for proto-
typing purposes, mainly related to the availability of DSPs and I/Os. Moreover, a fixed

5.4. Design Space Exploration 77

point format of 8 bits is applied to both the weights and activations. This quantization
doesn’t effect the classification accuracy as it will be detailed in the next section.

The FPGA implantations use Caph-2.9.0 and Quartus-18.0. The corresponding post-
fitting reports are summarized in table 5.3.

TABLE 5.3: Post-fitting Results of the CNNs mapped with Haddoc

Network Actor ALM10 Registers DSP Freq (MHz)

I1

conv 245618 (93.6%) 191K 694

N.R
pool 2850 (1.1%) 1K 0
fifo 119078 (45.4%) 211K 0

total 334885 (127.6%) 344.2 694

I2

conv 98830 (37.7%) 44K 1004

59.87
pool 3020 (1.2%) 1K 0
fifo 79355 (30.2%) 145K 0

total 181296 (69.1%) 190.9 1004

I3

conv 207654 (79.1%) 9K 2115

N.R
pool 5216 (2.0%) 3K 0
fifo 164859 (62.8%) 299K 0

total 377730 (152.9%) 401.0 2115

I4

conv 105924 (40.4%) 49K 1421

61.46
pool 3574 (1.4%) 1K 0
fifo 87885 (33.5%) 162K 0

total 197493 (75.3%) 214.0 1421

It can first be noticed that mapping of I1 and I3 requires more resources than what
is available on the selected device, which calls for further optimizations that will be ad-
dressed in the next chapter. The other implementations of LeNet are synthesisable on
the FPGA and operate at frequency around 61MHz. This corresponds to 33 FPS on 720p
monochrome videos streams according to eq.5.211.

As expected, using (3× 3) convolution filters significantly reduces the resources in-
stantiated, granting ×1.8 savings in terms of ALMs and registers. Reducing the dimen-
sion of the extracted FMs brings even more savings, lowering the utilization of the logic
blocks, registers and DSPs blocks by respectively ×2, ×1.8 and ×1.5.

Table 5.3 also shows how the actors involved in the processing of conv layers (namely,
conv2D33, sum, bias, ReLU) are –as expected– the most resources-hungry parts of a given
mapping. What wasn’t expected though is the high hardware cost of the FIFOs. Gen-
erated by CAPH between each separate actors, FIFO channels result in a large overhead
that represent up to 31% of the ALMs and 76% of the registers of a given mapping.

This overhead explains why the implementation I4 requires as much resources as I2
despite involving twice less computations. Indeed, adding a third convolutional layer
causes CAPH to generate an additional stage of FIFOs between the layers, which in turn,
badly impacts the efficiency of the FPGA Mapping.

5.4.2 Quantization vs Pruning

The last study has shown how a given CNN should be deep enough to provide tolerable
generalization performance, and how the kernel size K can be decreased to positively

10Percentage given against the total number of ALMs available on the device: 262400
11The actor model currently defined in the CAPH compiler constrains the actor frequency to be twice bigger than the

input data frequency. This constrain divides the computational throughout by two

78 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

impact the efficiency of the FPGA mapping. In this part, the remaining parameters (N, b)
are explored. While similar works already addressed this so-called « pruning vs quanti-
zation » problem [LM97, FTX17], none of them focused on the impacts of these methods
on an FPGA implementation. A tool such HADDOC make this study possible by automat-
ing the hardware generation process, and thus, the design space exploration.

5.4.2.1 Methodology and Experimental Setup

The proposed automated design space exploration relies on an iterative method that gen-
erates the corresponding CNN hardware architecture for each network topology and data
representation size (see algorithm 1).

At each iteration, The CNN performances and hardware utilization are monitored by
triggering the proposed tool chain depicted in Figure 5.9. It consists of using Caffe to
train a network with a selected topology, then HADDOC to transcript the Caffe model
into multiple DPNs with variable bit-widths. CAPH processes these DPNs and uses its
SystemC backend to perform a functional simulation that evaluates the Top1 accuracy of
the FPGA implementation. In parallel, CAPH also generates the hardware description of
the CNN whose hardware utilization is monitored using the Quartus II synthesizer.

Algorithm 1: Design Space Exploration

Set Boundaries of Design Space N1min, N1max, N2max, N3max, bwmin, bwmax;
for N1 ∈ [N1min, N1max] do

for N2 ∈ [N1max, N2max] do
for N3 ∈ [N2max, N3max] do

Caffe : Train
for bw ∈ [bwmin, bwmax] do

Haddoc : Generate DPN
Caph : Generate Hardware Description and SystemC Files
SystemC: Evaluate Accuracy
Quartus : Evaluate DSP

end
end

end
end

As a proof of concept, this method is tested to explore the design space of CNNs
for OCR applications. Following the results of the previous section, Three convolutional
layers are trained. Each employs (3× 3) filters and is followed by ReLU activation and
max-pooling.

In this experiment, choice is made to monitor the DSP blocks utilization, and to set,
in the most resource-hungry case, a limited number of 5 outputs for the first layer, 10 for
the second layer, and 14 for the third layer. This topology offers reasonable classification
accuracy on the MNIST database (98.7%) and can be expanded at the price of higher
exploration timings.

Moreover, reducing the number of FMs extracted at each layer can be seen as in our
case as a pruning of the CNN weights. In this study, the pruning is performed in a « brute
force » manner by successively removing the activations of a given layer and re-training
the network. However, magnitude-driven [HPTD15] or energy-driven pruning [YCS17]
(see sec.4.4.2) can also be considered and integrated into the proposed exploration tool-
chain.

5.4. Design Space Exploration 79

CNN Con�g.

Training dataset
(MNIST)

Ca�e
Train

.ca�emodel

Haddoc

.cph

Caph

.cpp .vhd

SystemC Quartus II

DSPAcc.
(FxP)

Acc.
(FP32)

Bitwidth

FPGA

Ca�e
Test

Test dataset
(USPS)

FIGURE 5.9: Design Space Exploration With Haddoc

The other explored parameter is the bit-width b. Weights and FMs can have a maxi-
mum size of 7 bits, which results in a −0.1% loss of accuracy on MNIST when compared
to a floating-point reference. In contrast, a minimum of 3 bits were used to represent
the parameters, which was the weakest precision usable to have acceptable classification
rates. With these design space «boundaries» , 76 networks, with 5 different data repre-
sentation are explored (A total of 380 combinations). SystemC processed the 1500 entries
of USPS a rate of 66.6 classifications per second while the synthesis tool takes an average
of 6 minutes to estimate the number of DSP blocks required. Thus, a configuration is
explored every 8.5 minutes12.

TABLE 5.4: Remarkable Configurations: C1 is the most efficient, C2 has the lowest hardware
utilization and C3 is the more accurate

Conf. N1 N2 N3 b A USPS A MNIST DSP Ratio

C1 4 6 8 5 64.8% 98.3 % 161 0,40%
C2 3 5 7 3 48.7% 82.4 % 140 0,34%
C3 4 8 12 7 73.2% 99.7 % 428 0.17%

5.4.2.2 Implementation Results

A few remarkable configurations –among the 350 explored networks– are reported in tab
5.4. The most efficient one is C1: it delivers the best trade-off between hardware cost and
classification accuracy. Table 5.5 gives the post-fitting reports of C1. This mapping uses
161 of the 1963 DSP blocks available in the Stratix V device and 20 % of the available
logic fabric. It also maintains a classification accuracy of 64.8% on USPS at a rate of 57.93
MHz per pixel, which corresponds to 31 classifications per second on 720p video stream.

12Results achieved with an Intel i7-4700K CPU on 32x32 Frames

80 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

Therefore, C1 could be implemented on a lower-end device with less logic resources and
DSP blocks.

C2 is the configuration with the lowest number of neurons and data representation
size, thus, its mapping has the lowest DSP usage. Finally, C3 is the configuration that
delivers the greatest classification accuracy. This configuration is among the ones with
the highest number of FMs and bit-widths considering the design space boundaries es-
tablished above.

TABLE 5.5: C1 implementation features on a Stratix-V device

Logic utilization (in ALMs) 53,779 / 262,400 (20 %)
Total RAM Blocks 109 / 2,567 (4 %)
Total DSP Blocks 161/1963 (8 %)
Frequency 57.93 MHz
Classification rate(on 720p streams) 31 FPS

5.4.2.3 Exploration Results

In this section, the performances of the explored configurations are analyzed. On one
hand, when only network topology is explored while the bit-width is maintained con-
stant, both of classification accuracy and DSP utilization increase linearly with the num-
ber of feature maps as shown in figures 5.10a and 5.10b.

35

40

45

50

55

60

65

70

15 20 25 30

(A) Accuracy (%)

6

8

10

12

14

16

18

20

22

24

15 20 25 30

(B) DSP Blocks (%)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
3 bits
4 bits
5 bits
6 bits
7 bits

15 20 25 30

(C) Acc/DSP Ratio(%)

FIGURE 5.10: Design space exploration of CNN topologies. Values on the abscissa axis reports
the total Number of FMs extracted

On the other hand, and to monitor the effects of numerical rounding on the efficiency
of the FPGA mapping, figures 5.11a and 5.11b are plotted. The first ones illustrates how
the mean classification accuracy grows with numerical precision before saturating at a
bit-width of 5, meaning that a precision of 5 bits is sufficient enough to maintain tolerable
classification and generalization performance for the studied OCR application.

The second figure 5.11b depicts how the DSP utilization grows quadratically with
the bit-width. More particularly, it shows that using compact bit-widths lower than 5
bits brings little to no savings in terms of DSP utilization. This is due to the fact that
current FPGAs and synthesis tools can not natively pack such low bit-width computa-
tions in a single DSP block, and motivates the use of logic resources to map this kind of
computations13. Alternatively, one can consider that a 5 bit precision delivers –for this
application– the best trade-off between classification accuracy and resource utilization,
as highlighted in figure 5.10c.

13Another solution would be to «manually» force a DSP block to pack 4 bits operands, as proposed in [WZY17]

5.4. Design Space Exploration 81

30

35

40

45

50

55

60

65

70

3 bits 4 bits 5 bits 6 bits 7 bits

(A) Accuracy (%)
3 bits 4 bits 5 bits 6 bits 7 bits

10

12

14

16

18

20

22

24

(B) DSP Blocks (%)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

3 bits 4 bits 5 bits 6 bits 7 bits

(C) Acc./DSP Ratio(%)

FIGURE 5.11: Design space exploration of parameter bit-widths

5.4.3 Holistic Exploration Results

To understand the joint effects of pruning and quantization on a given FPGA mapping,
figures 5.12a and 5.12b reports the performance and resource utilization of all the ex-
plored configurations.

The first figure considers the ratio between accuracy and DSP utilization of the imple-
mentations. It shows that the most efficient configurations can be obtained after explor-
ing both the topologies and data representations. Particularly, the presence of maximums
in this plot suggests that using optimization algorithms such gradient descent can be
considered to drive the exploration14, which could significantly fasten the process.

In Fig. 5.12b, efficiency in terms of Pareto-optimal is considered. Similarly, the most
efficient configurations (i.e the ones laying on the Pareto front plotted in dashed blue),
have a significantly different bit-width and topology. Finally, the same plot shows how
the proposed exploration flow can be used to derive CNNs configurations that respect
given constraints in terms of accuracy or DSPs block utilization.

2 4
6

8
15 20 25

0.15

0.20

0.25

0.30

0.25

0.35

bwN1 + N2 + N3

TPR/DSP (%)

(A) Ratio between accuracy and DSP Utilization

200 300 400 500
DSP Blocks Instanciated

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

TP
R

 (%
)

Paratto

3 bits

4 bits

5 bits

6 bits

7 bits

(B) Paretto Fronts

FIGURE 5.12: Results of the Holistic Design Space Exploration

14In contrast with the proposed approach which relies on a brute force exploration

82 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

5.5 Multi-view CNNs

To improve the efficiency of embedded deep learning on reconfigurable hardware, the
previous sections first considered the models of computation, then the accuracy to re-
source utilization trade-off through approximate computing. In all the studies, the deep
learning algorithm operates on a unique input, generally a video stream of a given scene
or a single picture if a given object.

But what happens when CNNs operate on multiple inputs, typically, multiple images
giving different perspectives of a given object? In this section, the so-called Multi-View
CNNs (MVCNNs) are detailed, focusing on the efficiency improvements they can bring.
In fact, the concept of MVCNNs is already addressed in the literature and contribution
of this work is to adapt it to the smart camera context. To do so, the first subsection
investigates the feasibility of MVCNNs for a small number of perspectives while the
second subsection to reduces the computational workload of MVCNNs through graph
adjustments.

5.5.1 Related Work

The concept of MVCNN was introduced by Su et al. [SMKLM15] for 3D-shape recognition
applications. In this work, authors design a CNN that inputs 12 perspectives of a given
object in order to retrieve its class and 3D-shape, as illustrated in figure 5.13.

FIGURE 5.13: Multi-view CNN for 3D Shape Recognition. Image from [SMKLM15]

As depicted by the same figure, a view-pooling layer is introduced in this kind of net-
works to fuse the feature maps computed from different perspectives. This layer is quite
similar to max-pooling layers (see sec.2.2.1) except it returns the maximum value of the
feature maps across the number of views and not across a given neighborhood15.

The computation of this layer is detailed in equation 5.5, where the first dimension
of tensor XVP is no longer the batch-size B, but the number of views nv. Note that in
this section, the concept of batch size is replaced by the number of views for clarity pur-
poses, meaning that feature maps involved before the application of view-pooling have
a dimension (nv × C ×W × H), and the feature maps post view-pooling layers have a
dimension (1× C×W × H)

∀ {c, h, w} ∈ [1, C]× [1, H]× [1, W]

YVP[0, c, h, w] = max
v∈[1:nv]

(
XVP[v, c, h, w]

)
(5.5)

15as it is the case in max-pool layers

5.5. Multi-view CNNs 83

Authors train and evaluate the accuracy of the proposed MVCNN on ModelNet40.
ModelNet40 is a database of 12K three-dimensional 3D models from 40 common cate-
gories, few of them depicted in figure 5.14. For this dataset, authors report the following
results:

• A baseline implementation of AlexNet, trained on ImageNet1K, achieves 83.0 % of
Top1 accuracy on the test set of ModelNet.

• When fine-tuned on the training set of ModelNet, Alexnet, with a single perspec-
tive, delivers 85.1% Top1 Accuracy.

• This Top1 accuracy grows to 88.6% when averaging the predictions of twelve AlexNets,
each operating separately on a perspective.

• The proposed MVCNNs with view-pooling (trained on ImageNet1K without fine-
tuning) delviers an accuracy of 88.1% on the test set of ModelNet. This accuracy
grows to 88.9% when fine-tuning the multi-view network on the ModelNet training
set.

These results show how the accuracy of CNNs classification tasks can be further im-
proved when considering multiple views of the image. This is even more true according
to our experiments, where the ResNet50 CNN, introduced two years after the MVCNNs
results were published, delivers a 87.1% Top1 accuracy on ModelNet with fine-tuning.
In this particular case, the accuracy improvement brought by multi-view (3.8%) is higher
than the improvements brought by topology optimization (2%).

FIGURE 5.14: Examples of entries in the ModelNet40 database

5.5.2 Efficiency Improvements

The previously discussed work focuses only on improving the performance of 3D-shape
recognition and reconstitution, giving no interest to efficiency or computational work-
load.

In fact, before the view-pooling layer is involved, all the layers are replicated across
the number of views. Consequently, the studied « MVCNN AlexNet » with nv = 12
views16 replicates the first layers nv times, causing the computational workload to in-
crease by a factor of ×nv. As a result, the proposed network increases the computations
from 0.66GMAC to 2GMAC in order to deliver 3.8% more accuracy.

conv1

conv1

...

conv1

pool1

pool1

pool1

...

conv2

conv2

conv2

...

. . .

. . .

. . .

...

pool5

pool5

pool5

...

view-pool fc6 fc7 fc8 "class"

FIGURE 5.15: Graph of a Multi-view Alexnet as proposed in [SMKLM15]

In the context of a smart camera, such multi-view CNNs are not adequate solutions
because, mainly for two reasons:

16where the view-pool layer is placed just before the FC layers

84 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

• First, the number of perspectives (nv = 12), and their arrangement (360◦ around
the object) is not a «practical» design solution.

• Second, the workload of MVCNN –as described in [SMKLM15]– clearly exceeds
the computational capabilities of smart camera nodes.

The first advocated approach to lower the computational workload is to reduce the
number of views. Indeed, implementing an MVCNN with a limited number of views, for
instance three, from slightly different angles is an acceptable design solution for a multi-
view smart camera with three image sensors. Moreover, and since the computational
workload grows linearly with the number of views, an MVCNN with 3 views is expected
to involve ×12/3 = 4 times less computations vs. a CNN with twelve views .

To check if MVCNNs still maintain their accuracy improvements, the experiments
of [SMKLM15] are re-conducted on Alexnet (referred as MVA), with a variable number
of views. The accuracy of the derived networks is then compared to CNNs and MVCNNs
where the number of FMs per layer is divided by two (compared to the baseline imple-
mentation of Alexnet). This is done by adapting the Caffe implementation of MVCNNs17

so that it can support a number of views nv ranging from 1 to 12. In all the considered
networks, training and inference are achieved on multiple adjacent views of a given object
of the ModelNet40 dataset18.

1 2 3 4 5 6 7 8 9 10 11 12
Number of views

81

82

83

84

85

86

87

88

89

To
p1

 A
cc

ur
ac

y
(%

)

MVA

MVA-Half

0

1

2

3

4

5

6

7

8

W
or

kl
oa

d
(G

M
A

C
)

FIGURE 5.16: Top1 Accuracy and Computational Workload of Muti-view CNNs. The hashed
parts represent the computational Workload

The results of these experiments are reported in figure 5.16 where the workload is
plotted in hashed bars on the right axis and Top1 accuracy is plotted in a plain color on
the left axis. The blue columns refer to Multi-View AlexNets while the green columns
refer to MVCNNs with a halved number of features maps. In these plots, on may note
the following trends:

• An MVCNN with three adjacent perspectives delivers +2.6% more accuracy than a
single view CNN, which is 0.8% better that a ResNet50 with 80% less computations.

• When compared to a twelve-view MVCNN, a three-view MVCNN delivers −0.7%
less accuracy, but is 4× less computationally intensive.

• In the single view case, halvening the number of FMs (MVA1-Half) decreases the
accuracy by 3.5% while in the multi view case, it decreases accuracy by −2.0%
(MVA12-Half). This suggests that providing additional perspectives to a CNN com-
pensates the accuracy loss due to pruning.

17https://github.com/suhangpro/mvcnn/tree/master/caffe
18Acknowledgments to Gautier Claisse for providing the GTX 1080 GPU used for training the MVCNNs

https://github.com/suhangpro/mvcnn/tree/master/caffe

5.5. Multi-view CNNs 85

To sum up, the so-called MVA-Half3 with 3 views network has similar accuracy to the
original single view AlexNet while involving 0.09G less MAC operations. To decrease
the computational workload even more, the second contribution of this work is the place
view-pooling layer just after the pool1 layer of the network, as depicted in figure 5.17.

In this case, only the computations of the first layer conv1 are duplicated, greatly
reducing the workload of MVCNNs. This comes at the price of a loss of −0.6% (resp.
−0.8%) in the classification accuracy of MVA3 (resp. MVA3-Half).

conv1

conv1

conv1

...

pool1

pool1

pool1

...

view-pool . . . fc6 fc7 fc8 "class"

FIGURE 5.17: Multi-view Alexnet with view-pooling after the pool1 layer

The results of all the MVCNN investigations are summarized in Fig.5.18. As demon-
strated, multi-view networks improve the computational efficiency of CNNs by increas-
ing their accuracy rates at the price of a low computational overhead. Particularly, these
improvements outperform the enhancements brought by topology optimization alone.
In addition, the former experiments hint that MVCNNs can be more resilient towards
pruning when compared to conventional CNNs.

However, note that all the results reported in this section are achieved for ModelNet
dataset, which motivates further investigations related to the generalization performance
of MVCNNs, and their implementation of multi-view smart camera nodes.

0 2 4 6 8
Computational Workload (GMAC)

82

83

84

85

86

87

88

To
p1

 A
cc

ur
ac

y
(%

)

MVA

MVA-Half

ResNet

MVA3-pool1

MVA-Half-pool1

FIGURE 5.18: Accuracy to Workload trade-off for MVCNNs

86 Chapter 5. Model-Based Optimization of CNN Mappings on FPGAs

5.6 Conclusions and perspectives

This chapter studied model-based methods that aim at improving the efficiency of CNN
mappings on FPGAs. First, the nuances between the Von Neumann and the dataflow
paradigms have been presented. It has been pointed-out that two paradigms have to be
considered according to the workload and nature of a CNN layer.

The second section of this chapter focused on the hardware mapping of CNNs on FP-
GAs with the dataflow MoC. A first tool-flow, built-upon the CAPH language, have been
proposed. As pointed-out, relying on HLS greatly improves the design productivity, but
comes at the price of a large overhead, especially in terms on logic utilization. This prob-
lem will be addressed in the next chapter.

The proposed tool-flow have then been exploited to explore the design space of CNN
hyper-parameters. This study focused on the depth, the quantization scheme, and the
CNN topology, evaluating their impact on the mappings’ efficiency. The results advo-
cated the necessity of a holistic approach, where all the parameters are tweaked to opti-
mize the mapping according to the considered constraints.

Finally, a novel CNN-hyper parameter have been investigated: the number of views.
Indeed, the last section demonstrated how the CNN efficiency can be further improved
when processing multiple perspectives of a given object, opening future research direc-
tions in the area of multi-view smart camera nodes.

87

Chapter 6

Architectural Optimizations of CNN
Mappings on FPGAs

In the previous chapter, the study focused on coarse grain optimizations that occur at the
level of the CNN model and its hyper-parameters. With this aim in mind, a first tool-flow
have been proposed, and relied on the CAPH HLS tool to fasten the hardware generation
process and automate the design space exploration.

These hardware architectures, derived by CAPH, constitute the baseline contribution
of this thesis. However, they suffer from:

• A large overhead in the resource utilization, particularly in terms of logic resources.
This overhead prevents numerous CNN networks layers from a DHM implemen-
tation, especially in resource-constrained FPGAs.

• An impossibility to fine-tune the CNN actors and perform low-level tweaks to the
architecture.

To overcome the shortcomings listed above, the next studies by-pass the CAPH layer
and rely on a full RTL description of CNNs. This approach sacrifices the productiv-
ity of HLS in favour of flexibility in optimizing low grain architectural parameters. The
main objective of these optimizations is to reduce the resource utilization, especially the
logic fabric allocated to convolution layers. Indeed, when looking at the experiments of
sec. 5.4.1, the number of ALMs is the first resource that prevents direct hardware map-
ping.

With this objective in mind, low-level « tactics » to directly map CNN graphs on « em-
bedded FPGAs » are given. First, the problem of the FIFO overhead is addressed. Then,
a first optimization of the convolution engines is given. These two tactics significantly
improve the utilization of memory blocks and registers.

The third section goes further in the fine-grain optimization process, and points-out
how Single Constant Multiplication (SCM) greatly reduces the resource utilization of con-
volution actors in a given mapping. Section 4 focuses on the adder parts and studies the
trade-off between resource utilization and computational throughout. Finally, the last
sections leverage on the proposed tactics to derive an improved version of the HADDOC

tool. In this version, resource utilization, throughput, and modeling performance of CNN
implementations can be tweaked to meet with the imposed constraints.

88 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

6.1 FIFO channels in Dataflow Inferred CNNs

6.1.1 FIFO channels in the Dataflow paradigm

In the dataflow model, the execution is purely data-driven as each actor is trigged only by
the availability of input operands. It is thus critical to make sure that these operands are
perfectly synchronized, and are made available to the actor at the correct clock cycle.

To depict this concept, lets consider the dataflow graph of figure 6.1. This example
involves three actors to compute ri = di + ai − bi ∗ ci, and illustrates how streams a and
d have to be delayed by respectively one and two clock cycles to correctly perform the
previous operation. The corresponding dataflow architecture of this graph –such the one
derived by CAPH– implements theses delays by means of two First-In First-Out (FIFO)
channels.

a

b

c

d

r× − +

an, . . . , a2, a1

bn, . . . , b2, b1

cn, . . . , c2, c1

dn, . . . , d2, d1

FIGURE 6.1: Example of a dataflow graph: streams a and d are respectively delayed by one and
two clock cycles by means of FIFO channels

The former concept also holds true for dataflow inferred CNNs where FIFO channels
are rooted between each dependent actors. However, because of the large number of ac-
tors involved in CNN inference, FIFOs result in large resource utilization. This overhead
is illustrated in Fig.6.2, where FIFO channels use up to 44% of the logic fabric and 76% of
the registers allocated to the mappings. Resource utilization grows even more with the
number of layers, making the implantation of some deep CNNs impossible on current
embedded FPGA platforms.

62.4%

2.0% 35.6%

I1

52.5%

3.7%

43.8%

I2

53.1%

3.2%

43.6%

I3

51.5%

3.9%

44.5%

I4
Conv
Sum+Bias
+Act+Pool
FIFO

(A) ALMs

38.3%
0.4%

61.3%

I1

23.1%
0.8%

76.0%

I2

24.5%
0.8%

74.7%

I3

23.2%
0.9%

75.9%

I4
Conv
Sum+Bias
+Act+Pool
FIFO

(B) Register

FIGURE 6.2: Resource utilization per actor for the explored LeNet implementations

6.1.2 All we need is signals!

When it comes to the inference of CNNs, most of topologies correspond to dataflow
graphs where the tokens are « naturally » synchronized. Indeed, a large number of CNN

6.1. FIFO channels in Dataflow Inferred CNNs 89

layers showcase a regular structure wherein tokens (i.e feature maps) do not bypass any
stage.

This structure is illustrated in figure 6.3a, and depicts the DPNs generated from «main-
stream» CNNs such LeNet, AlexNet, VGG or DarkNet. In these networks, stream syn-
chronization occurs by itself given the nature of the graphs. As a result, FIFO channels
are not needed in these networks, an can thus be replaced by direct signals, which require
much less resources to be mapped.

i convLayer actLayer poolLayer . . . FCLayer "class"

(A) «Mainstream» CNNs

i

convLayer

poolLayer

convLayer

convLayer

convLayer

convLayer

convLayer

concat . . . FCLayer "class"

(B) Inception

FIGURE 6.3: Patterns Involved in the DPN representation of CNNs.

Note that for some networks like GoogleNet or ResNets, the presence of inception
modules and shortcut connections (see sec. 2.2.2) prevents from entirely removing the
FIFOs. This is illustrated in fig. 6.3b where the red edge of the graph have to be delayed.
This delay is explicitly formulated by instantiating a FIFO with the appropriate depth.

6.1.3 Validation

To study the effect of FIFO removal on FPGA mappings, the exploration of sec. 5.4.1 is
re-conducted using FIFOs and direct signals. Table 6.1 reports the resource utilization of
LeNet networks before and after this replacement. It can first be noticed that number of
allocated registers decreases by respectively 18%, 43.6%, 43% and 50%. In turn, these sav-
ings in terms of registers reduce the amount of inferred logic blocs by 34.4% and 39.4%
in the case of I2 and I4 implementations.

Despite these savings, the other implementations of LeNet (I1 and I4) still do not fit
on the device because of a lack in logic elements or DSP blocks. On a side note, when
replacing FIFOs by signals, we notice that the synthesis tool automatically infers the all
the available DSPs (1963) then maps the remaining multiplications using the logic fabric.
This explains why the number of ALMs grows in the case of I1 and I3.

TABLE 6.1: Resource Utilization of the previously studied LeNet mappings

With FIFOs With Signals

ALM Reg DSP ALM Reg DSP

I1 334 K 344 K 694 370 K 279 K 985
I2 181 K 190 K 1004 118 K 107 K 1004
I3 377 K 401 K 2115 432 K 227 K 1963
I4 197 K 214 K 1421 119 K 106 K 1421

90 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

6.2 Memory-Efficient Window Buffers

6.2.1 Motivation

As studied in chapter 4, the literature provides multiple approaches to accelerate the
computation of convolutions. In the proposed DHM approach, the processing of 3D-
Convolutions is formulated as a sum of concurrent 2D-Convolutions. Each of the 2D-
Convolution engines is fully pipelined and its architecture can be divided into 2 parts:

• A Window Buffer (WB): This component relies on on-chip memories to grant a si-
multaneous access to the J × K neighbors of each entry of the input stream (i.e
feature map or input image). The architecture of the window buffer, depicted in
figure 6.4a, extracts the neighborhood [x00, . . . , xJK] on the fly at each clock-cycle
and concurrently provides them to the second block.

• A Dot-Product (DP) block: Multiplies the extracted neighborhood with the convolu-
tion kernels then sums the partial products. Since all the input operands (neigh-
borhoods and kernels) are made available thanks to the window buffer, the dot-
product operation can be performed in a single clock-cycle by using J× K multipli-
ers. (See Fig.6.4b).

x02 x01 x00

x12 x11 x10

x22 x21 x20

LineBuffer

LineBuffer

K W − K

J

(A) Windows Buffer

x00

x01

x22

...

×

×

×

... ∑

(B) Parallel Dot-Product

FIGURE 6.4: Hardware Architecture of a Pipelined 2D-Convolution engine (J=K=3)

Combining the window buffer and the parallel dot-product block fully exploits the
intra-kernel parallelism of CNNs discussed in sec. 2.4.2. As a consequence, the structure
described in fig. 6.4 performs one 2D-convolution per clock cycle. The DHM approach
instantiate this structure C×N times, highly increasing the computational throughput at
the price of resources utilization.

Indeed, scaling this approach to a full convolution layer, which involves hundreds of
convolutions, leads to map hundreds of window buffers on the FPGA resources. Partic-
ularly, memory resources such registers and on-chip buffers are highly impacted by the
high number of window buffers. For a given layer `, the number of window buffers and
memory they require can be written as the following equation, where b denotes the width
of the buffer (i.e the bit-width of the value it stores):

WinBuff` = C` ∗ N` (6.1)
MemBits(WinBuff`) = b ∗WinBuff` ∗ [W` ∗ (J` − 1) + K` − 1] (6.2)

= b ∗ C` ∗ N` ∗ [W` ∗ (J` − 1) + K` − 1] (6.3)

As the number of memory bits grows, the resource utilization of a given mapping
(in terms of logic fabric and memory blocks) increases. This is illustrated by figure 6.5
which reports the number of ALM and SRAM blocks allocated to a growing number of

6.2. Memory-Efficient Window Buffers 91

5 10 15
0

500

1000

1500

A
LM

s

#WindowBuffers
5 10 15

10

20

30

M
20
K

#WindowBuffers

FIGURE 6.5: FPGA Resources instantiated when mapping Window Buffers.

window buffers. This experiment is achieved on an Intel Stratix V 5SGXMABN3 device1

for W = 227 and J = K = 3. It can be noticed that the synthesis tool instantiates M20K
blocks to map the window buffers, but more importantly, adds a glue of logic resources
to map these RAM blocks. For a large number of buffers –which is typical in the case of
CNNs–, this overhead of ALMs grows, and can represent a non-negligible percentage of
the resources. For instance, in our early attempts to map AlexNet first layer, we noticed
that 10% of the ALMs were allocated to the windows buffer parts.

6.2.2 Factorizing The Window Buffers

Figure 6.6a illustrates the dataflow graph of convolution layers as proposed previously in
this manuscript. The graph also explicitly depicts how 3D-convolutions are implemented
as a sum of concurrent 2D-convolutions, each 2D-Convolution being mapped as a com-
bination of a window buffer and dot-product block. Notice in this graph how multiple
window buffers operate on the same input streams.

X2

X1

X0

WB
WB
WB

WB
WB
WB

WB
WB
WB

WB
WB
WB

WB
WB
WB

DP
DP
DP

DP
DP
DP

DP
DP
DP

DP
DP
DP

DP
DP
DP

Σ

Σ

Σ

Σ

Σ

Y4

Y3

Y2

Y1

Y0

(A)

X2

X1

X0

WB

WB

WB

DP
DP
DP
DP
DP

DP
DP
DP
DP
DP

DP
DP
DP
DP
DP

∑

∑

∑

∑

∑

Y4

Y3

Y2

Y1

Y0

(B)

FIGURE 6.6: DPN of a conv layer with and without window buffer factorization

Indeed, the previously proposed implementation of 3D convolutions can be consid-
ered as an inefficient, since it allocates multiple hardware instances to perform the same
task on the same inputs. To address this inefficiency, the graph is reformulated in Fig. 6.6b
in a way to factorize the window buffers. In this case, the memory footprint of a given
layer is divided by a factor N`. As a consequence, the number of memory needed to map
window buffers becomes:

1This device is selected because it has the largest number of I/O available

92 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

MemBits(WinBuff`) = b ∗ C` ∗ [W` ∗ (J` − 1) + K` − 1] (6.4)

6.2.3 Validation

To demonstrate the improvements of this reformulation, lets consider the case of AlexNet
first conv layer (W = 227, N = 96, C = 3, K = 11) with FMs and weights quantized to
b = 6 bits. This layer is mapped on a Stratix V 5SGXMABN3 device with and without fac-
torized buffers. Note that in both cases, FIFO channels are replaced by direct signals. The
resource utilization in terms of logic and memory blocks of both mappings is reported in
table 6.2

TABLE 6.2: Logic Fabric and Memory Resources Allocated to Map Alexnets’ first layer

ALMs Memory (Bits) M20K

WinBuffers wo/ factorization 10208 3939840 194
Total WB+DP+sum 132039 3939840 194

WinBuffers w/ factorization 929 41040 30
Total WB+DP+sum 122760 41040 30

While the «non-factorized» implementation of 3D-convolutions requires 3.9MBits of
on-chip storage, the factorized version requires 41.04KBits. This saving in terms of on-
chip memory reduces the number of SRAM blocks by factor of×6.4, lowering the overall
logic utilization by 8%.

One can also note that the synthesis tool infers one SRAM block per line-buffer instead
of sharing the block across multiple line buffers. In this case, the width of input feature
maps, and thus the resolution of input streams, can be increased without affecting the
resource utilization, up to an image width of 2560 pixels (size of an M20K SRAM block).

Finally, the savings brought by the proposed factorization are expected to scale with
the number of features maps produced by a layer, as illustrated by the projections of
figure 6.72.

conv1 conv2 conv3 conv4 conv5
101

102

103

104

Memory allocated to Window Buffers (KBits)

Original

Factorized

FIGURE 6.7: Theoretical Memory utilization of Window Buffers in AlexNet conv layers.

After optimizing the registers and memory blocks, the remaining parts of this chapter
focus on the computational resources allocated to CNN mappings. The two following
sections respectively focus on the multiplications than the accumulations occuring in 3D
convolutions.

2Plotted with equations 6.3 and 6.4

6.3. Convolutions with Single Constant Multiplications 93

6.3 Convolutions with Single Constant Multiplications

6.3.1 Motivation

In all the previous experiments, the direct hardware mapping considered relatively sim-
ple CNN layers while targeting high-end FPGA platforms. This is motivated by the need
of abundant resources (ALMs and DSPs) for prototyping purposes. However, when ad-
dressing state-of-the-art CNN layers, such AlexNet or VGG, the following problem ap-
pears: The number of multipliers required to map these layers greatly exceeds the num-
ber of multipliers available on current FPGA platforms.

To illustrate this problem, one may consider the case of AlexNets conv1 (N = 96, C =
3, J = K = 11). To directly map this layer, 34848 multipliers are needed according to
equation 5.1. However, and to the best of our knowledge, the « largest » FPGA currently
available on the market delivers 5760 hardwired DSP blocks3.

To address this problem, one can rely on the DSP packing capabilities of FPGAs evoked
in sec.3.1.3. Recall that a single DSP blocks to either implement:

• One (27× 27) bits multiplication, or

• Two independent (18× 18) bits multiplications concurrently, or

• Three independent (9× 9) bits multiplications concurrently.

However, and even with DSP Packing, the available number of 9bits multipliers (5760×
3 = 17280) is still not enough to map AlexNets first layer with a 9bits precision. More-
over, and as pointed-out in sec. 5.4.2.3, DSP packing has its limitations when using very
compact bit-widths lower that 5 bits, while the literature provides methods to infer CNNs
with much more compact bit-widths.

Finally, the same problem holds true when addressing smaller networks and low-end
FPGAs. Table 6.3 reports the requirements of popular CNN layers in terms of multipliers
and nuances them with the number of DSP blocks available of common FPGA platforms.

TABLE 6.3: Multipliers in Popular CNN layers

Layer Rm FPGA Available Multipliers

LeNet conv1 500 Cyclone V
SEA6

336
LeNet conv2 2500

VGG conv1-1 1728 Arria 10
GX900

4554
VGG conv1-2 36864

AlexNet conv1 34848 Stratix 10
GX2800

17280
AlexNet conv2 307200

6.3.2 Single Constant Multiplication on FPGA

6.3.2.1 Multiplication with logic resources

As discussed above, the number of multipliers currently available on FPGAs clearly lim-
its the complexity of implementable CNN. To overcome this limitation, the proposed
solution is to implement multiplications using logic resources instead of DSP blocks. In
this case, the resulting circuitry relies on AND gates and of half-adders to perform mul-
tiplications [Int04].

3Number of multipliers present on an Intel Stratix 10 GX2800 [Int18b]

94 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

From a technical side, one can either modify the synthesizer settings (Fig.6.8a), or use
dedicated attributes in the hardware description of the component (Fig.6.8b) in order to
infer logic resources instead of hardwired multipliers

(A) Through the Synthesizer settings (Quartus II)

entity LogicMult is
port (
clk : in std_logic;
x : in std_logic_vector(3 downto 0);
theta : in std_logic_vector(3 downto 0);
y : out std_logic_vector(7 downto 0)
);
attribute use_dsp48 : string;
attribute use_dsp48 of
LogicMult : entity is "no";
end LogicMult;

architecture RTL of LogicMult is
begin
process(clk)
begin
if (rising_edge(clk)) then
y <= theta * x;

end if;
end process;

end architecture;

(B) Through VHDL Attribute

FIGURE 6.8: Implementing multiplications with logic resources in FPGAs

When implementing arithmetic operations with logic resources, the cost of a fixed
point multiplier varies as the square of the precision of its operands while the cost of
an adders varies as a linear function of the precision [DKT07]. As a consequence, the
amount of logic fabric inferred to map a given convolution grows quadratically with the
bit-widths of the operands and weights.

As a result, the proposed solution can be applied on extremely compact bit-widths
such in QNNs or TTQ (see sec. 4.4.1.4), but scales badly when considering a larger nu-
merical precision that exceeds 4 bits. Indeed, the high amount of logic resources needed
in this case prevents from directly mapping a CNN. A possible solution to this problem
is discussed next.

6.3.2.2 Constant Multiplies

To reduce the footprint of the mapping, we take advantage of the fact that the convolu-
tion weights – and hence one operand of each multiplication – are constants derived from
an off-line training stage. These multipliers can thus be specialized to their constants.

In the literature, this method is often referred as Single Constant Multiplication (SCM)
[VP07], and has been successfully applied to minimize the footprint of Finite Impulse Re-
sponse (FIR) filters in signal processing tasks [dDL00, Kon17, Wal17]. More importantly,
FPGA synthesis tools employ their own SCM methods to derive area-optimized arith-
metic circuits. Indeed, the circuitry of a constant multiplier in is specialized according
to the value of its constant multiplicand. The synthesis tool automatically performs low-
level optimizations, and more particularly:

• It removes the circuit in case of a multiplication by 0

• It replace the multiplier by a direct signal in case of a multiplication by 1

• It transforms the multiplier into a shift-register in case of a multiplication by a
power of 2.

6.3. Convolutions with Single Constant Multiplications 95

This can be verified with the example of Fig.6.9, which gives the hardware description
of four constant multipliers parametrized by their multiplicands t0 = 0, t1 = 1, t2 = 2,
t3 = 3.

entity ConstMult is
generic(
t0 : in unsigned(3 downto 0) := "0000";
t1 : in unsigned(3 downto 0) := "0001";
t2 : in unsigned(3 downto 0) := "0010";
t3 : in unsigned(3 downto 0) := "0011"

);
port (
x0,x1,x2,x3 : in unsigned(3 downto 0);
y0,y1,y2,y3 : out unsigned(7 downto 0)

);
end ConstMult;

architecture str of ConstMult is
begin
y0 <= x0 * theta0;
y1 <= x1 * theta1;
y2 <= x2 * theta2;
y3 <= x3 * theta3;

end architecture;

(A) VHDL Description

+

Add0

CIN 1'h0
A[4..0]

B[4..0]

OUT[3..0]x3[3..0] y3[7..0]

x1[3..0] y1[7..0]

x2[3..0] y2[7..0]

x0[3..0] y0[7..0]

0

4:1

0

(B) Generated RTL Representation

FIGURE 6.9: Example of a constant multiplier implementation on an FPGA

One may note how the synthesis tool removes the multiplication circuit in the case of
t0, and how it directly wires the output to the input when the multiplicand is equal to
one. In the case of t2, the synthesizer simply shifts the output by one bit. Finally, when
the multiplicand takes the values of three, the synthesis tool shift the input by one bit
then infers an adder in a way to map the operation (3 ∗ x) as (2 ∗ x + x)

In counterpart, the major downside of this approach is that it completely locks the
architecture of the accelerator, greatly limiting its flexibility. Relying on the direct hard-
ware mapping with SCM requires to re-synthesise the hardware design whenever the
CNN topology or weights are changed.

Still, CNN mappings benefit from a significant reduction in resource utilization thanks
to SCM. Indeed, CNN layers have large percentage of zero-valued, one-valued and power-
of-two-valued parameters, as summarized in table 6.4. The reduction is even greater
when considering the sparse CNNs discussed in section 4.4.2, where the sparse weights
can represent up to 63% of total convolution kernels. Thus, DHM can remove up to 63%
of the multipliers in the FPGA implementation of these networks.

TABLE 6.4: Statistics on convolution kernels in popular CNNs

Network Alexnet DeepComp. SqueezeNet VGG16 VGG16 VGG16

Layer conv1 conv1 conv1 conv1-1 conv1-2 conv2-1
Weights 34848 34848 14112 1728 36864 73728

Null(%) 36.84 38.32 22.67 5.56 44.66 57.15
Pow2(%) 26.94 26.21 39.34 18.98 26.25 20.64

6.3.3 Validation

To quantify the impact of SCM, Table 6.5 reports the resource utilization of the previ-
ously studied LeNet5-I1 implementation on an embedded Intel Cyclone V 5CGXFC9E7

96 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

device. In this experiment, a 5-bit precision is selected and three multiplication schemes
are studied. In the first result, only DSP blocks are used to infer all CNN multiplications.
The resulting hardware requires 72× the available resources of the device. The second
case features multipliers based on logic elements and requires 3.8× the available logic.
Finally, using tailored constant multipliers reduces resources by a factor of 8.6×, fitting
the CNN accelerator onto an Intel Cyclone V embedded FPGA.

TABLE 6.5: Impact of SCM in the mapping of LeNet5-I1

DSP-based Logic-based SCM
Logic Usage (ALM) NA 433500 (381%) 50452 (44%)
DSP Block usage 24480 (7159 %) 0 (0%) 0 (0%)

6.4 Accumulation with Pipelined Adders

6.4.1 Motivation

After studying the optimization of the multiplications, this section addresses the problem
of additions in CNN mappings.

Recall that with DHM, the computation of dot-products is fully unrolled. Conse-
quently, the (C× J × K) partial products resulting from each 3D convolution have to be
accumulated in a parallel fashion. This concurrent accumulation is achieved by means
of an adder with nopd = CJK inputs, referred in this manuscript as a Multiple Operand
Adder (MOA).

By default, synthesis tools chain multiple binary adders4 to generate a MOA, each
binary adder being generated using combinatorial logic. In its most naive implementa-
tion, the architecture of a MOA can be described using the VHDL loop given in Fig. 6.10.
The hardware generated from the former description has a « cascaded » structure as il-
lustrated in the same figure.

in_data[0]

in_data[1]

in_data[2]

in_data[Nopd-2]

in_data[Nopd-1]

...

clk

+

+

. . .

+

+ out_data

variable acc: data_array (0 to
N_OPD-1);

...
if (rising_edge(clk)) then
acc_loop : for i in 0 to N_OPD-1 loop
acc := acc

+ in_data(i);
end loop acc_loop;

...

FIGURE 6.10: Implementation a MOA by cascading binary adders

Fig. 6.10 shows how the cascaded structure infers nopd− 1 binary adders to implement
a nopd-input MOA. Consequently, the resource utilization in expected to grow linearly
with nopd.

The same figure also shows that the cascaded MOA generates a critical path which is
function of nopd − 1. Thus, the operating frequency is expected to decrease as O(1/nopd).
These expectations are confirmed by Fig.6.11 which reports the performance of the cas-
caded MOA and its resource utilization for a variable number of inputs5. One may note
how the maximal operating frequency of the design decreases with the number of inputs,

4Binary adders refer to adders with TWO operands and NOT adders with a 1-bit operand
5Experiments performed on a an Intel 5CSEMA5F31 device. The maximum frequency is constrained to 50 MHz.

6.4. Accumulation with Pipelined Adders 97

which results in a low computational throughput when the number of operands becomes
large.

0 50 100
Number of Operands

30

40
Fm

ax

0 50 100
Number of Operands

0

50

100

A
LM

s

FIGURE 6.11: Performance of the «cascaded» MOA for a variable number of inputs

The problem is that for state-of-the-art CNNs, C, J, K, and thus the number of operands
of MOAs is indeed important. In the case of AlexNet, adders can input up to 1774
operands. Consequently, the MOA architecture described in fig.6.10 bottlenecks the map-
ping, greatly limiting the operating frequency and computational throughput.

6.4.2 Pipelined Adders

A first solution to the problem of low operating frequencies is to Pipeline the MOAs. This
method places a register after each binary adder, and can be simply implemented by using
VHDL signals instead of variables, as highlighted in Fig. 6.12.

in_data[0]

in_data[1]

in_data[2]

in_data[Nopd-2]

in_data[Nopd-1]

...

clk

+

+ . . .

+

+ out_data

signal acc: data_array (0 to N_OPD-1);
...
if(rising_edge(clk)) then
acc(0) <= in_data(0);
acc_loop : for i in 1 to N_OPD-1 loop
acc(i) <= acc(i-1) + in_data(i);

end loop acc_loop;
...

FIGURE 6.12: Hardware Architecture of a Pipelined MOA. Registers are interleaved between
each adder stage

However, the drawback of pipeline is the additional resource utilization it generates.
Figure 6.13 compares the resources utilizations and the maximum frequencies of the
pipelined and unpipelined adders. As expected, the pipeline requires a number of reg-
isters that grows linearly with the number of operands. In the selected device, these
registers are implemented by means of ALMs, which explains why the logic resources
increase twice rapidly than in the unpipelined implementation. In turn, the pipelined
adder maintains a constant operating frequency (arround 50 MHz) independently from
the number of operands. Indeed, the pipeline trades resource efficiency for throughput
improvements .

6.4.3 Adder Trees

In order to improve the operating frequency, another solution would be to reduce the
critical path. This can be achieved using the tree structure illustrated in figure 6.14a.

The tree MOA generates a number of stages, each of them summing the inputs two by
two. Consequently, the number of inputs is halfened after each stage, until the addition
is completed. For an nopd-MOA, the total number of stages required to complete the

98 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

0 50 100
Number of Operands

0

100

200
A

LM
s

Unipelined

Pipelined

0 50 100
Number of Operands

0

200

400

R
EG

s

0 50 100
Number of Operands

30

40

50

Fm
ax

FIGURE 6.13: Performance of the pipelined «cascaded» adder

in_data[0]

in_data[1]

in_data[Nopd-2]

in_data[Nopd-1]

...

clk

+

+

+

+

+

+

+

+
+ out_data

... . . .

(A) unpipelined

in_data[0]

in_data[1]

in_data[Nopd-2]

in_data[Nopd-1]

...

clk

+

+

+

+

+

+

+

+
+ out_data

.

(B) Pipelined

FIGURE 6.14: Implementation of a MOA with the tree structure

addition is log2(nopd). As a result, the critical path varies with of log2(nopd) and the
maximum frequency with O(1/ log2(nopd)).

Number of Adders = nopd − 1 (6.5)

Depth of Cascade MOA = nopd − 1 (6.6)

Depth of Tree MOA = ceil(log2(nopd)) (6.7)

In addition, and similarly to the cascade structure, the adder tree can also be pipelined
to increase its operating frequency (see Fig.6.14b). Figure 6.15 compares the resources
utilizations and operating frequencies of pipelined and unpipelined adder trees.

Similarly to the cascaded structure, the pipeline results in an overhead in the resource
utilization, but maintains the operating frequency at a constant level (∼ 50MHz). Of
course, without the pipeline, the frequency decreases with the number of operands. Fig-
ure 6.16 summarizes the performances of tree and cascade structures. It particularly
shows how the tree adder outperforms the cascade structure when working with re-
source constrained devices. Indeed, the tree structure delivers a better operating fre-
quency for similar resource utilization in this case.

0 50 100
Number of Operands

0

100

200

A
LM

s

Unpipelined

Pipelined

0 50 100
Number of Operands

0

200

400

R
EG

s

0 50 100
Number of Operands

40

45

50

Fm
ax

FIGURE 6.15: Performance of a tree MOA Structure

6.4. Accumulation with Pipelined Adders 99

0 50 100 150 200 250
ALMs

30

35

40

45

50

Fm
ax

Cascade-P

Cascade-U

Tree-P

Tree-U

FIGURE 6.16: Frequency and hardware utilization of the studied adders

6.4.4 Resource to Throughput Trade-off

The trade-off between ALM utilization and Fmax can be controlled further by partially
pipelining the hardware architecture. For the tree structure, this approach inserts regis-
ters periodically between a variable amount of adder stages. To control the periodicity (i.e
the number of stages between two successive registers), the sreg parameter is introduced,
and ranges from 1 to ceil(log2(nopd)):

• When sreg = 1, the adder is fully pipelined (as in fig.6.14b) and both the frequency
and resource utilization are expected to be at their maximum.

• By contrast, when sreg = ceil(log2(nopd)), no registers are inserted between adders
(such in fig.6.14a), and consequently, the frequency and resource utilization are ex-
pected to be at their minimum.

To study the impact of the sreg parameter, the following experiment considers a tree
MOA of 128 inputs of 4 bits. Figures 6.17 respectively reports the evolution of ALMs,
registers and Fmax with a variable sreg. As expected, resource utilization and operating
frequency decrease with the stride of register. However, in our case of a 128-input adder, a
value of sreg = 2 delivers the best ratio between the operating frequency and the resource
utilization, as pointed-out in Fig.6.18.

2 4 6
Sreg

150

200

250

A
LM

s

2 4 6
Sreg

0

200

400

R
EG

s

2 4 6
Sreg

30

40

50

Fm
ax

FIGURE 6.17: Impact of Pipeline on Resources Utilization and frequency of MOAs

More generally, the previous studies have demonstrated that DHM can balance be-
tween resource utilization and computational throughput. This trade-off is selected ac-
cording to the resource available on a given FPGA platform, the workload of the CNN,
and the real-time constraints.

100 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

125 150 175 200 225 250
ALMs

30

40

50

Fm
ax

FIGURE 6.18: Frequency to ALM trade-off using the sreg parameter

6.5 Implementation Results

After discussing tactics optimizing the low-grain components of CNN mappings, this
section reports the implementation results with HADDOC2. When compared to the first
version, the major difference in HADDOC2 is the description of CNN actors, and the
extraction of the CNN weights.

• Instead of relying on the CAPH HLS tool, Haddoc2 uses a set of components written
in VHDL-2008 to directly transcript a CNN Network onto a VHDL top-level file.

• To map multiplications as SCMs, CNN weights are rounded than hard-coded as
generic VHDL parameters in a configuration file.

LISTING 6.1: Caffe description
name: "LeNet"
...
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1

}
param {
lr_mult: 2

}
convolution_param {
num_output: 50
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"

}
bias_filler {
type: "constant"

}}
}
...

LISTING 6.2: Generated VHDL code
...
architecture RTL of lenet is
...
conv2: convLayer
generic map(
BITWIDTH => BITWIDTH, -- bw
IMAGE_WIDTH => CONV2_IMAGE_WIDTH, -- H,W
KERNEL_SIZE => CONV2_KERNEL_SIZE, -- J,K
NB_IN_FLOWS => CONV2_IN_SIZE, -- C
NB_OUT_FLOWS => CONV2_OUT_SIZE, -- N
KERNEL_VALUE => CONV2_KERNEL_VALUE,-- Theta
BIAS_VALUE => CONV2_BIAS_VALUE -- beta

)
port map(
clk => clk,
reset_n => reset_n,
enable => enable,
in_data => pool1_data, -- X_conv
in_dv => pool1_dv,
in_fv => pool1_fv,
out_data => conv2_data, -- Y_conv
out_dv => conv2_dv,
out_fv => conv2_fv

);
...

The output of HADDOC2 is a platform independent VHDL code that can be imple-
mented on the FPGA device using the adequate synthesis tool. Examples of inputs and
outputs of are given in listings 6.1 and 6.2. Note that the tool and the library of VHDL
components are detailed in appendix B, and are made available online6.

6https://github.com/KamelAbdelouahab/haddoc2

https://github.com/KamelAbdelouahab/haddoc2

6.5. Implementation Results 101

6.5.1 Direct Hardware Mapping of Networks

As a first proof of concept, FPGA-based accelerators for three simple networks, namely
LeNet5-I17, SVHN [NW11]8 and CIFAR10 [Kri09]9, are implemented with HADDOC2.
Table 6.6 details the topology of these CNNs and the shares of their zero-valued, one-
valued and power-of-two-valued parameters. Note that CIFAR10 and SVHN share the
same topology but have different kernel values, which is useful to study the impact of
these values on the FPGA mapping.

TABLE 6.6: Experimental Setup: Topology, weights stats and top1 accuracy

LeNet5-I1 Cifar10 SVHN
Layer parameters N C K N C K N C K
conv1+pool+TanH 20 1 5 32 3 5 32 3 5
conv2+pool+TanH 50 20 5 32 32 5 32 32 5
conv3+pool+TanH − − − 64 32 5 64 32 5

top1-FP32 (%) 98.96 76.63 87.54
selected bit-width 3 6 6
top1-FxP (%) 98.32 73.05 86.03
zero parameters(%) 88.59 33.78 37.14
pow2 parameters(%) 0.05 31.20 27.55
other (%) 11.36 35.02 35.31

For each network, the quantization scheme is selected after studying its impact on
the top1 accuracy. To do so, the three networks are first trained on respectively MNIST,
Cifar10 and SVHN datasets. Than, the Ristretto framework [GMG16] is used to explore
their top1 accuracy for variable bit-widths. The results of this exploration are reported
in Fig. 6.19 and shows how how a 3-bit representation can be chosen for LeNet5 without
affecting classification accuracy (resp. 6-bit representation for SVHN and CIFAR10).

2 3 4 5 6 7 8
0

20

40

60

80

100

Bit-width (bits)

ac
c

(%
)

LeNet5
CIFAR10

SVHN

FIGURE 6.19: Evolution of top1-accuracy vs bit-width for the studied CNNs. The dashed lines
refer to accuracy of the baseline 32-bits floating point model.

Tables 6.7-a and 6.7-b respectively detail post-fitting results on two embedded FPGA
platforms: the Intel Cyclone V 5CGXFC9E7 and the Xilinx Kintex 7 XC7Z045FBG. To the
best of our knowledge, these numbers are the first to demonstrate the applicability of a
DHM-based approach for the implementation of CNNs on embedded FPGAs.

The three hardware accelerators fit onto the embedded devices with no off-chip mem-
ory requirement, the reported memory footprint corresponding to line buffers used by

7Caffe model available at https://github.com/BVLC/caffe/tree/master/examples/mnist
8Caffe model available at https://github.com/alexvking/neural-net-house-number-recognition
9Caffe model available at https://github.com/BVLC/caffe/tree/master/examples/cifar10

https://github.com/BVLC/caffe/tree/master/examples/mnist
https://github.com/alexvking/neural-net-house-number-recognition
https://github.com/BVLC/caffe/tree/master/examples/cifar10

102 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

the factorized window buffers. Moreover, the three mappings operate at more than 45
FPS, granting real-time performances on 720p video streams. Finally, and as expected
when using DHM, the logic utilization grows with the number of non-null weights, as it
will be discussed in the last section of this chapter.

TABLE 6.7: Resource Utilization of the generated mappings:
a- On an Intel Cyclone V FPGA, b- On a Xilinx Kintex 7 FPGA.

LeNet5-I1 Cifar10 SVHN

a

Logic Elements (ALMs) 8067 (7%) 51276 (45%) 39513 (35%)
DSP Blocks 0 (0 %) 0 (0%) 0 (0%)
Block Memory Bits 176 (1%) 15808 (1%) 10878 (1%)
Frequency 65.71 MHz 63.89 MHz 63.96 MHz
FPS (720p/3 mul-sc) 54 52 53

b

Slices 25031 (11%) 172219 (79%) 136675 (63%)
DSP Blocks 0 (0%) 0 (0%) 0 (0%)
LUTs as Memory 252 (1%) 1458 (2%) 1552 (1%)
Frequency 59.37 MHz 54.17 MHz 54.49 MHz
FPS (720p/3 mul-sc) 49 44 45

6.5.2 Direct Hardware Mapping of CNN Layers

When it comes to large-scale CNNs like AlexNet or VGG, the high amount of resources
needed to implement these networks entirely makes the DHM approach not feasible on
current FPGA platforms, not even the highest-end ones. However, thanks to the tactics
discussed above, separately mapping each layer of these CNNs is yet possible. Table 6.8
reports the post-fitting results of the mapping of AlexNet, VGG, and YOLOv3 layers on
a Terasic DE5-Net board10 with a 6bits precision11. Note that we focus on the mapping
of the first layers of these networks since their CTC ratio makes them suitable for a direct
hardware mapping, as argued in sec. 5.2.2.

TABLE 6.8: Resource utilization of AlexNet, VGG and YOLOv3 first layers

Network Layer ALMs Registers M20K

AlexNet conv1 122760 (52%) 159587 30 (1%)
DeepComp conv1 123512 (53%) 155626 30 (1%)
SqueezeNet conv1 74394 (32%) 153152 18 (<1%)

VGG16 conv1-1 13 554 (6%) 15545 6 (<1%)
VGG16 conv1-2 123 559 (59%) 149103 988 (39%)
VGG16 conv2-1 176 033 (84%) 221300 494 (19%)

YOLOv3-tiny conv1 6835 (3%) 2793 2 (<1%)
YOLOv3-tiny conv2 28468 (14%) 39168 8 (<1%)

As shown in table 6.8, DHM is indeed feasible for large-scale CNN layers. AlexNets’
first layer, which involves the highest number of multiplications due to the (11 × 11)
convolutions, is the most resource-hungry layer, requiring more than 123K of ALMs.
Interestingly, the hardware utilization of this layer could not be reduced further when
considering the compressed version of AlexNet proposed in [HMD16]12. Indeed, the

10Embeds an Intel Stratix V 5SGXEA7 FPGA
11Which grants a tolerable accuracy according to [HMD16, NYFS18]
12Referred As DeepComp in the table

6.5. Implementation Results 103

compressed and original conv1 layers share nearly the same sparsity, around 36% zero-
valued weights. In place, we found that using SqueezeNet [IMA+16], and its (7 × 7)
filers, was a better way to maintain AlexNet accuracy while lowering the resource uti-
lization, resulting in 40% less utilization of the ALMs.

By contrast to AlexNet, the first layers of VGG16 and YOLOv3-tiny have a low CTC
and, consequently, a small footprint. These layers can even be ported to embedded FP-
GAs featuring a lower amount of available resources and power consumption.

6.5.3 OCR on the DreamCam with Haddoc2

To validate the concepts and tactics discussed in the last two chapters, this section details
the implementation of a CNN-based OCR system on the DREAMCAM smart camera. The
DREAMCAM [BB14], illustrated in Fig. 6.20 is a smart camera development platform in
which the processing core is an Intel Cyclone III FPGA. The DreamCam is also modular,
and can be equipped with a large panel of:

• Sensors: mainly an MT9 or an E2V (1280 × 720) image sensor, a gyroscope, an
accelerometer or a Global Positioning System

• Communication interfaces: USB-2.0 or Gigabit Ethernet

The Cyclone III FPGA is also connected to 6× 1 MBytes of SRAM memory blocks wherein
each memory block has private data and address buses allowing up to six processes to
simultaneously access the external memory.

FIGURE 6.20: The DreamCam Smart Camera [BB14]

Moreover, the DREAMCAM is compatible with the GPSTUIO tool-chain [CHB+16],
which manages the inclusion of the sensor and communication IPs, and gives user-
friendly software interface to parametrize and display the processed video flows.

In the following demonstration, a frame depicting 100 hand-written digits is sent to
the FPGA through USB. In this FPGA are mapped the three convolution layers of LeNet5-
I4 (see tab.5.1)13 as well as the activation and pooling parts. The extracted features maps
(Y conv3) are than transfered to a CPU where the processing of the fully connected and
softmax layers occur. Fig. 6.21 describes this setup:

• The red parts of the scheme are hardware instances generated by Haddoc2

• The green part is the hardware and software glue generated by GPSTUDIO

• The blue parts are implemented in software using the Caffe library.

13This implementation is selected because it delivers a tolerable generalization performance on USPS as pointed-out in
tab. 5.2

104 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

FPGA CPU

U
SB

In

conv1 . . . conv3

U
SB

O
ut

A
cq

ui
si

ti
on

FC1 Softmax
Classif.
Map

Y conv3

FIGURE 6.21: Demonstration Setup

6.5.3.1 Classification without Sliding Windows

A key advantage of ConvNets is their ability to work on large images without resorting
to sliding windows.

Extract wo × h0 Widow

h0

w0

hconv3

wconv3

NFC × 1× 1

1

1

conv1, . . . , conv3 FC Softmax
"Seven"

(A) With a Sliding Window

W0

h0

Wconv3

hconv3

Wconv3 − wconv3 + 1

conv1, . . . , conv3 FC Softmax
"Seven", "Zero", ...
"Two" , "Six" , ...
"One" , "Nine", ...

(B) Without Sliding Window

FIGURE 6.22: Deploying CNNs with and without Sliding Windows

Indeed, conventional classifiers in computer vision are used to rely on a sliding win-
dow block that extracts a given (w0 × h0) window on the input image, performs the
classification on this window, than iterates this process across all the possible positions in
the original image. Instead, CNNs can directly operate on a large input (W0×H0) simply
by computing convolutions at each layer over the entire image. This concept is depicted
in figures. 6.22 where the output of the CNN is no longer a vector NFC (i.e a single class),
but a map of classifications on each position of the image.

To compute the FC and Softmax results, the weights are shared across multiple posi-
tions of (Y conv3). In this case, the processing of an fully connected layer can be seen as a
convolution where KFC = wconv3 and JFC = hconv3.

6.5.3.2 Implementation Results

Figures 6.23 give the inputs and outputs of the studied OCR system. As it can be seen
in fig.6.23b, the proposed hardware implementation of LeNet5 with a 3 bits precision
correctly classifies 98 of the 100 digits processed. Note that this figure only shows the
classfications where the confidence (i.e the output of the softmax function) exceeds 0.5.
This confidence map is depicted in fig.6.23c. As expected, the confidence rate is high
(green) in the regions where the digits are present, and low (red) in the interval between
digits.

6.5. Implementation Results 105

(A) Input Frame (B) Classif. map (C) Confidence map

FIGURE 6.23: Classification results

For the FPGA resource utilization, the complete design uses respectively 87% and 69%
of the logic and memory available on the Cyclone III device. Most of the logic resource
are allocated to the last convolution layer conv3, which involves the highest number of
computations. By contrast, most of the RAM block of the FPGA are allocated to the USB
controller and only a small part of these memories are allocated to the CNN mapping,
thanks to the factorized window buffer discussed in sec.6.2. Tables 6.9 summarize the
resource utilization of the mapping.

TABLE 6.9: Resource Utilization of the OCR system on the DreamCam Platform

(A) Resource Summary

Logic utilization (in Logic Elements) 103854 / 119088 (87 %)
Total Memory Bits 2.14 / 3.98 MBits (54 %)
Total M9K RAM Blocks 298 / 432 (69 %)
Total 9-bit Multipliers 0 / 576 (0 %)
Frequency 53.42 MHz

(B) Utilization per Entity

Entity LE MemBits M9K

conv1 769 1112 1
pool1 5512 0 0
conv2 10253 4896 6
pool2 7820 0 0
conv3 61219 6303 20
pool3 15546 152 3
USB 2280 2130944 268

As reported in the same table, the proposed OCR system operates at a maximum
frequency of 53.42 MHz, which corresponds to a theoretical throughput 671 FPS on the
processed (282× 282) frames. However n practice, this frame rate drops to ∼ 83 FPS,
the main bottleneck being the bandwidth of the USB2.0 used. Notice that the maximum
frequency of the design slightly varies with the input resolution and more particularly in
image width, as depicted in Fig.6.24.

0 100 200 300 400 500 600 700
40

50

60

70

W0

Fm
ax

(M
H

z)

FIGURE 6.24: Evolution of Fmax with the input Resolutions

106 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

6.6 Modeling CNN Mappings

As pointed-out in the implementation results, the resource utilization of a given CNN
mapping is correlated to the shares ofe zero-valued and the power-of-two valued weights.
This suggest that the footprint of CNN mappings can be reduced further by tweaking
these parameters.

However, tweaking the CNN weights and finding an optimal design that trades be-
tween accuracy and resource utilization calls for an exploration in a large design space.
While the design space exploration of CNN hyper-parameters has been the subject of chap-
ter 5, the design space exploration we discuss in this chapter occurs on the parameters
them-selves (i.e the values of Θ).

This makes the design space even larger. With a larger space, exploration process
takes more time to be completed. Particularly, the process of synthesizing the generated
hardware on FPGA –and thus reporting the resource utilization– is the most critical. In-
deed, the synthesis of CNN accelerators on FPGAs is a task that can take up to several
hours to be completed. For instance, the mapping results reported in table 6.8 took up to
20 hours to be synthesized by the Quartus II tool 14.

A solution to fasten the exploration process is to mathematically model the resource
utilization according to the values of the weights. This is what this section aims to: derive
a model that estimates the resources allocated to a given mapping without resorting to
synthesis tools. In fine, the model discussed here would be integrated in an exploration
tool-chain, accelerating the exploration process.

6.6.1 Resource Utilization by Entity

To see which of the CNN actors impacts resource utilization the most, table 6.10 gives
–for each of the layers studied in sec.6.5.2– the ALMs used by each entity. As expected,
most of the logic fabric is allocated to the dot-product parts of the mapping (The SCMs
and MOAs). Indeed, multipliers and adders use more than 95% of the allocated ALMs.
Consequently, the modeling will focus on these two parts, and will mainly consider the
logic resources (i.e ALMs) allocated to the mapping. Note that this study can be extended
to DSPs (in the case of non-SCM implementations) and SRAM blocks.

TABLE 6.10: ALMs Used by Entity

Layer SCMs MOAs Window Buffers

AlexNet-conv1 30491 (24.84 %) 89786 (73.14 %) 929 (0.76 %)
DeepComp-conv1 33542 (27.07 %) 87505 (70.62 %) 959 (0.77 %)
SqueezeNet-conv1 21139 (27.00 %) 51909 (66.30 %) 549 (0.70 %)

VGG16-conv1-1 3649 (26.92 %) 8798 (64.92 %) 174 (1.28 %)
VGG16-conv1-2 51071 (41.33 %) 66810 (54.07 %) 5212 (4.22 %)
VGG16-conv2-1 78691 (44.70 %) 92143 (52.34 %) 4301 (2.44 %)

YOLOv3-tiny-conv1 1117 (16.34 %) 5305 (77.62 %) 286 (4.18 %)

On a side note, tab.6.10 also shows a surprising result: the largest portion of the re-
sources is allocated to map the adder parts and not the multiplier parts. Despite being less
complex than multipliers, the MOA components takes up to 77% of the ALMs inferred
to map a layer, even with the optimization discussed in sec.. This problem is addressed
in the next chapter of this manuscript.

14Running on an Intel i7-4770 CPU with 16 GB of RAM

6.6. Modeling CNN Mappings 107

6.6.2 ALM utilization model

In the following section, we aim at deriving a linear model that quantifies the resource
utilization of SCM and MOA blocks. The inputs of this linear model are metrics (or
features) extracted from the CNN weights, which can accurately estimate the resource
utilization when combined.

In an naive approach, the first metrics taken into account are the number of zero-
valued and power-of-two-valued weights in a given kernel (resp. noted qzero and qpow2).
Moreover, a third metric qbit1 that measures the numbers of «bits-set-to-one» in a given
kernel is added. Indeed, our experiments have shown that synthesis tools tend to infer
more resources when the number of bits-set-to-one in the constant multiplicand is above
average.

With the previously listed features, the linear model can be written in eq.6.8, where
αzero, αpow2 and αbit1 are coefficients that can be estimated using linear regression. The
proposed study uses the Python implementation of Linear Regression made available in
the sklearn library. The following experiments can be reproduced 15.

Model1 : R̂ALM(n) = αzero ∗ qzero[n] + αpow2 ∗ qpow2[n] + αbit1 ∗ qbit1[n] (6.8)

Clearly, the allocated resources decrease with the portions of zero valued and power-
of-two valued weights in a kernel. This is confirmed by Fig 6.25 which plots the logic re-
sources allocated to each of the 96 three-dimensional convolutions involved in AlexNets’
first layer. For each 3D-kernel (i.e each point in the scatter plot), the ALMs and number
of zero-valued weights is reported.

0 100 200 300
qzero

0

500

1000

1500

A
LM

s

s=-4.97
r2=0.7345

MOA

(A) MOA

0 100 200 300
qzero

0

100

200

300

400

500

600

A
LM

s

s=-1.49
r2=0.6480

SCM

(B) SCM

FIGURE 6.25: Resource utilization of 3D-convolutions vs. zero-valued weights

However, the three former features alone can not accurately model the resource uti-
lization, especially of the one of the MOA parts. Indeed, the MSE of the estimation re-
mains too high, exceeding 10%. To improve the modeling quality, a fourth feature qdyn is
introduced, and is directly correlated to the numerical dynamic of the kernels.

MSE = mean
[

ˆ(RALM(n)−RALM(n))2
]

(6.9)

Recall that the accumulation of partial products in DHM is achieved with a MOA that
inputs multiple operands with variable bit-widths. To map this adder, the synthesis tool
generates a circuit which the complexity is correlated to the number of inputs, but more
importantly to their numerical dynamic range.

15https://github.com/KamelAbdelouahab/Multi-Operand-Adder

https://github.com/KamelAbdelouahab/Multi-Operand-Adder

108 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

This concept is illustrated by the following example: Let x be an input vector and
w = [2, 0, 18, 256] a constant weight vector. Both of x and w are quantized to 8 bits and
let’s study the mapping of the dot-product x ∗ w with SCM and MOA:

• The multiplication of x by the first coefficient can be implemented with a shift reg-
ister and the resulting partial product p[0] = x[0] ∗w[0] requires 8+mcl(2) = 9 bits
to be represented, where mcl(x) = max(ceil(log2(x))).

• The multiplication by the second coefficient is skipped and does not generate any
partial product.

• The multiplication by the third coefficient requires 8 + mcl(18) = 13 bits to be
represented.

• The multiplication by the last coefficient is implemented by means of shift register
and the partial product requires 8 + mcl(256) = 16 bits to be represented.

• Finally, the accumulation of these partial terms is achieved with a MOA that inputs
respectively 9, 13 and 16 bits. The circuitry of this adder has a complexity which
function of the number of partial products and their dynamic. This dynamic, ex-
pressed in bits, can be written in equation 6.11, where bx is the bit-width of x, and
mcl(θ[c, j, k]) is the minimal number of bits required to encode a constant θ[c, j, k].

Model2 : R̂ALM(n) = αdyn ∗ qdyn[n] (6.10)

qdyn[n] =
C−1

∑
c=0

J−1

∑
j=0

K−1

∑
k=0

[bx + mcl(Θ[n, c, j, k])] (6.11)

Figures 6.26 illustrate how the resource utilization increases with qdyn. As it can be
seen, the qdyn feature delivers better r-squared values when compared to qzero, and is thus
more accurate in modeling the CNN resources. This last result is corroborated by ta-
bles 6.11 which report the r-squared values of all the linear models using the four features
previously introduced. Each model is tested on the first layer of AlexNet, SqueezeNet
and DeepComp.

TABLE 6.11: R-Squared Values and Estimation Error of the proposed Linear Models

(A) MOA R2

Alexnet Squeezenet DeepCmp.

Model1 0.680 0.682 0.692
Model2 0.776 0.711 0.778
Model3 0.814 0.737 0.810

(B) SCM R2

Alexnet Squeezenet DeepCmp.

Model1 0.599 0.509 0.617
Model2 0.726 0.591 0.748
Model3 0.801 0.690 0.833

(C) MOA MSE

Alexnet Squeezenet DeepCmp.

Model1 5.59e-02 1.44e-02 5.35e-02
Model2 3.93e-02 1.31e-02 3.87e-02
Model3 3.25e-02 1.19e-02 3.29e-02

(D) SCM MSE

Alexnet Squeezenet DeepCmp.

Model1 6.15e-02 2.14e-02 5.83e-02
Model2 4.20e-02 1.78e-02 3.84e-02
Model3 3.05e-02 1.35e-02 2.55e-02

The last column of tables 6.11 stands for the third model which combines the four
features to predict the logic utilization as formulated in equation 6.12. For all the tested

6.6. Modeling CNN Mappings 109

networks, Model3 delivers the most accurate estimation of resources utilization for both
multi-operand adders and constant multipliers.

Model3 : R̂ALM(n) = αqdyn ∗ qqdyn[n] + αzero ∗ qzero[n] + αpow2 ∗ qpow2[n] + αbit1 ∗ qbit1[n]
(6.12)

0 500 1000 1500 2000
qdyn

0

500

1000

1500

A
LM

s

s=0.62
r2=0.7759

MOA

(A) MOA

0 500 1000 1500 2000
qdyn

0

100

200

300

400

500

600

A
LM

s

s=0.21
r2=0.7262

SCM

(B) SCM

0 200 400 600 800 1000
qdyn

0

200

400

600

A
LM

s

s=0.67
r2=0.7109

MOA

(C) MOA

0 200 400 600 800 1000
qdyn

0

50

100

150

200

250

300

A
LM

s

s=0.27
r2=0.5906

SCM

(D) SCM

0 500 1000 1500 2000
qdyn

0

500

1000

1500

A
LM

s

s=0.62
r2=0.7784

MOA

(E) MOA

0 500 1000 1500 2000
qdyn

0

200

400

600

A
LM

s

s=0.24
r2=0.7481

SCM

(F) SCM

FIGURE 6.26: Resource utilization of 3D-convolutions vs. qdyn

110 Chapter 6. Architectural Optimizations of CNN Mappings on FPGAs

6.7 Conclusions and Perspectives

This chapter has investigated tactics that optimizes the direct hardware mapping (DHM) of
CNNs on FPGAs for embedded vision applications. It has demonstrated that current em-
bedded FPGAs provide enough hardware resources to support this approach. To demon-
strate DHM, the HADDOC2 tool has been introduced and used to automatically generate
platform-independent CNN hardware accelerators from high level CNN descriptions.

The optimizations discussed in the last two chapters open new opportunities in terms
of hardware implementations of CNNs. An interesting perspective would be to extend
DHM principles to ASIC technologies as well as Binary Neural Networks.

A first future direction of this works would be to rely on the resource utilization model
proposed in sec.6.6 to predict the CNN resource during the training. In this case, the CNN
can be jointly optimized toward accuracy and low resource utilization.

Another future direction would be to investigate the feasibility of MCM for CNNs.
MCM demonstrated significant improvements in terms of resources consumption when
mapping 1D-convolutions on FPGAs [PM14], and its major advantage over SCM is its
ability to reuse some parts of the circuitry of a given constant adder to implement another.
For instance, MCM can use the result of a previous multiplication of x× 4 to implement
the multiplication of x× 5. As a result, it grants resources savings that are function of the
values of the kernels, but also function of the relation between these values.

111

Chapter 7

Negative Results on Optimizing
Direct Hardware Mapping

This chapter details experiments for optimizing direct hardware mapping of CNNs that
were promising but did not conduct to performance improvements. More particularly,
we address the problem pointed out in tab.6.10, which is the high resource utilization of
adder trees in direct CNN mappings.

To solve the problem of adders, the first sections of this chapter explore two different
strategies: serial adders using local time multiplexing of additions, and approximate adders
trading off accuracy for resources. The third section is more general and explores the
feasibility of stochastic arithmetic in direct hardware mapping. For the three studies, code
reproducing the experiments is made available online12.

7.1 Serial Adders

7.1.1 Motivation

FPGA devices –and more particularly the DSP blocks they embed– can run at a peak
frequency which is much higher when compared to the rate at which data and feature
maps are acquired by a given CNN layer. Given this, it is possible to replace clusters of
binary adder trees by a serial accumulator that runs in a different (higher) clock domain.
In other words, serialization trades a clusters of nc binary adders that operate at a fre-
quency f0 for a single accumulator that operates at a frequency fc > f0. This accumulator
runs ×nc times faster than the remaining parts of the mapping (eq.7.1). One may note
that using serial adders, the CNN is not any more fully using « direct hardware mapping
». To make serialization possible, a parallel-to-serial register (serializer) is required at the
input the accumulator, as shown in Figure 7.1.

fc = nc ∗ f0, 0 ≤ nc ≤ nopd (7.1)

In recent FPGA devices, DSP blocks can peak at fc =∼ 200 MHz while a 720p@30FPS
video stream can be acquired at a frequency of f0 = 27.6 MHz. Serialization can thus re-
place about ≈ 6 inputs of a Multiple Operand Adder (MOA) by a serializer-accumulator
pair, which would theoretically reduce the footprint of a MOA by a factor of nc − 1 ≈ 5
under the hypothesis that serializers have a simpler, negligible circuitry when compared
to MOAs.

1Serialized and approximate adders: https://github.com/KamelAbdelouahab/Multi-Operand-Adder
2Stochastic Computing: https://github.com/KamelAbdelouahab/SC

https://github.com/KamelAbdelouahab/Multi-Operand-Adder
https://github.com/KamelAbdelouahab/SC

112 Chapter 7. Negative Results on Optimizing Direct Hardware Mapping

+

......

Serial MOA

Serialize +
Accumulator

fc = nc f0

+

+

Clock domain fc

Serial MOA

Serialize +
Accumulator

fc = nc f0

nc

Clock domain fc

Yconv

Serializer Accumulator
+

nc

f0

fc

FIGURE 7.1: Architecture of a serial MOA. Each Serializer-Accumulator Pair replaces a cluster
of adders in the MOA

7.1.2 Experiments and Results

In order to study the impact of serialization on an MOA, the Serializer/accumulator pair
of Figure 7.1 is implemented in VHDL3. Figure 7.2 reports the logic utilization (in terms
of ALMs) of both the serializer, the accumulator and the serial adder for variable cluster
sizes. These results are compared to the logic utilization of the standard cascade structure
of a MOA detailed in sec.6.10.

This figure shows a very unexpected result: the resource utilization of the serializ-
er/accumulator pair exceeds the resources used by a «cascaded» implementation of a
MOA. This is the result of the costly logic fabric required by the serializer part, displayed
in Figure 7.2, which grows linearly with the number of parallel inputs. The overhead of
serializers thus invalidates the approach.

0 20 40
nc

0

50

100

150

200

A
LM

s

Serializer
Accumulator
Serial MOA
Cascade MOA

FIGURE 7.2: Comparison of the Logic resources used by a serialized and fully pipelined imple-
mentation of a MOA: The serializer results in a large resource overhead

3Synthesized on an Intel Stratix V 5SGXEA7 FPGA using Quartus 16.0. The bit-width of operands is 8 bits

7.2. Approximate Adders 113

7.2 Approximate Adders

7.2.1 Motivation

As highlighted in sec.4.4, deep CNNs are over-parametrized networks that tolerate by
nature a degree of approximate computing and multiple state-of-the-art publications
demonstrate the resiliency of CNNs towards compact bit-width arithmetic [GAN+15,
WLW+16]. This hints that CNNs may support others types of approximate computing
techniques such as approximate adders.

These adders, which use is limited to fault-tolerant applications, are known to de-
liver higher speed and power efficiency than exact operators [JHL15]. In order to solve
the challenge of MOA footprint reduction for CNNs, we leverage on the low resource
utilization of the LOA approximate adders [MAFL10].

As illustrated in Figure 7.3, a LOA divides a b-bit adder into two sub-adders. The
first one is an approximate b′-bit sub-adder that computes the sum of least-significant
bits by using a bit-wise OR operation. The second is an exact (b − b′)-bit sub-adder
that processes the most-significant bits using full adders. An extra AND gate is used to
generate the carry-in signal for the exact adder part.

As pointed-out in the study of [JHL15], LOA is the slowest yet most area efficient
approximate adder, making it the best candidate to reduce the footprint. In the Multi-
Operand case, area saving may be achieved by replacing the exact binary adders present
in the tree with approximate adders such the LOAs.

FA FA

S[b-1] S[b-b'] S[b-b'-1] S[0]

A
[0
]

B
[0
]

A
[b
-b
'-1
]

B
[b
-b
'-1
]

A
[b
-b
']

B
[b
-b
']

A
[b
-b
'-1
]

B
[b
-b
'-1
]

A
[b
-1
]

B
[b
-1
]

FIGURE 7.3: Hardware structure of a Lower-part OR approximate adder (LOA). Approximate
parts in the red box. Each LOA Replaces a Binary Adder in the Tree of figure 6.10

7.2.2 Experiments and results

In order to investigate the feasibility of approximate LOA adders in CNN implementa-
tions, two experiments are conducted: the first studies the impact of the approximation
on the accuracy of the adder . The second is hardware-oriented and focuses on the re-
sources savings of LOA adders on FPGAs. Both studies use the following metrics:

• The « approximation » is quantified using the approximation ratio. It is defined as the
number of approximated bits per total bit-width b/b′. A ratio of 0% corresponds to
an exact adder while a ratio of 50% means that half of the bits of a given addition
have been approximately processed using OR gates.

• The « accuracy » of the adder is quantified using the MRED metric. If S = A + B
is the result of an exact addition of A and B, and Ŝ the result of an approximate
addition with same operands. The error distance is defined as:

MRED(S, Ŝ) = mean

(
|Ŝ− S|

S

)
. (7.2)

114 Chapter 7. Negative Results on Optimizing Direct Hardware Mapping

• As usual, the number of ALMs quantifies the logic resource utilization.

The evolution of the MRED metric when varying bit-widths and approximation ratios
is illustrated in Figure 7.4. In terms of accuracy, using lower-part OR Adders results in a
relatively small error (< 10% MRED for 8bits adders), which suggests that they might be
exploited to derive energy-efficient CNN accelerators.

However, when it comes to FPGA resources utilization, our experiments show that
no area saving can be achieved on an FPGA when using LOAs. Indeed, the number of
ALMs remains surprisingly constant, independently from the number of bits processed
by an OR gate. This is explained by the fact that modern FPGA devices employ complex
logical modules (such as Intel ALMs) which already embed a hard-wired full adder, as
explained in section 3.1.1. This logical module either implements a full adder in the
case of exact adders, or implements an OR gate using the LUT it includes in the case
of the approximate LOA adder. As a consequence, current FPGA and related hardware
synthesizers do not benefit from approximate computing when targeting MOA adders.
Note that these results have been observed on both Intel and Xilinx FPGAs.

0 20 40 60 80
Approx. Ratio b'/b (%)

0

2

4

6

8

10

M
R

ED
 (%

)

4 Bits
5 Bits
6 Bits
7 Bits
8 Bits
9 Bits
10 Bits
11 Bits
12 Bits

0 20 40 60 80
Approx. Ratio b'/b (%)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

A
LM

FIGURE 7.4: Error Rates and logic utilization of LOAs for variable bit-widths and approxima-
tion ratios.

7.3. Stochastic arithmetic 115

7.3 Stochastic arithmetic

After addressing the problem of adders, the last section of this manuscripts studies the
feasibility of stochastic arithmetic for CNN direct hardware mapping.

SC [Von56] is a processing technique that represents values as streams of random
bits with a specific mean value. One of the advantages of SC is its ability to imple-
ment complex computations with simple bit-wise operations on the streams. As a re-
sults, stochastic computing has been successfully applied in numerous image processing
algorithms [BC01, LL11], and their hardware implementations [AH13, AH14, Ala15].

7.3.1 Sequence generation and Arithmetic operations

In SC, a given number x is represented as a random sequence sx . In the basic «unipolar»
format, the number of ones appearing in sx determines the value of x. In other words, the
numerical value of a given number x is the ratio between the number of ones appearing
in sx and the length of this sequence. Generally, this ratio is expressed as the expected
value of sx, which can be written as:

x = E[sx] =
Number of ones in a sequence sx

Length of sequence sx
(7.3)

From a hardware point of view, the stochastic stream sx is created using a random
number generator and a comparator, the random numbers being usually generated by
a LFSR. Fig.7.5 illustrate the LFSR-comparator pair which, hereafter is referred to as a
SNG.

FIGURE 7.5: Stochastic number generator using an LFSR, from [Ala15]

As stated above, SC implements complex computations with simple bit-wise opera-
tions. In the case of multiplication, two « binary » numbers a and b can be multiplied in
the stochastic domain by simply using a single AND gate, as depicted in fig 7.6a.

a ∗ b = E[sa] ∗E[sb] = E[sa ∧ sb] (7.4)

(A) Multiplication (B) Addition with OR (C) Addition with MUX

FIGURE 7.6: Circuits implementing stochastic computing arithmetic, from [ALPO+15]

When it comes to addition, two methods can be identified: scaled adders or OR gates.
On one hand, for OR gates, it is known that the expected value of sa ∨ sb can be written
as:

E[sa ∨ sb] = E[sa] + E[sb] + E[sa ∧ sb] (7.5)

116 Chapter 7. Negative Results on Optimizing Direct Hardware Mapping

When the E[sa ∧ sa] term is close to 0 (i.e when the stochastic streams are generated
by disjoint SNGs) the OR gate functions as an approximate adder.

On the other hand, scaled adders rely on a multiplexer to sum two streams sa and sb.
It is known that the output sc of a 2-1-multiplexer with a selection bit (sel) is:

sc = MUX(sa, sb) = (sa ∧ sel) ∨ (sb ∧ ¯sel) (7.6)

When considering eq.7.5, the expected value of the sc stream can thus be written as:

E[sc] = E[sa ∧ sel] + E[sb ∧ ¯sel] + E[(sa ∧ sel) ∧ (sb ∧ ¯sel)]) (7.7)

Since E[sel ∧ ¯sel] is always null, the former expression becomes:

sc = E[sa ∧ sel) + E[sb ∧ ¯sel] (7.8)

In the equation above, note that when the probability of stochastic stream sel is 0.5,
the output of the MUX has an expected value of:

c =
E[sa] + E[sb]

2
(7.9)

This corresponds to (a + b)/2, as illustrated in Fig.7.6c.

As in the precious discussion, stochastic computing benefits from a great simplicity
when implementing addition and multiplication circuits. In turn, SC remains an approxi-
mate computing technique which is error-prone and suffers from three major downsides:

• First, the errors generated by stochastic arithmetic circuits are function of the length
of the stochastic steams. In fact, stochastic circuits have to operate on extremely
long sequences to deliver tolerable accuracy. At similar precision, a conventional
binary representation of b bits number in the binary domain corresponds to a se-
quence of 2b bits in the stochastic domain. For instance, a stochastic sequence of 512
bits is required to accurately represent an 9 bits number.

• Second, the transition between the binary and the stochastic domain calls for ded-
icated hardware blocks (SNGs and binary counters), which can generate a large
overhead when the number of operands increases.

• Third, the errors generated by stochastic arithmetic circuits are also function of the
statistical independence between the stochastic sequences. The errors of stochastic
circuits are minimal when the SNGs are uncorrelated and increases when the SNGs
are correlated. This generally prevents from sharing the same random number gen-
erator between two SNGs.

Yet, the advantages of SC motivated numerous research efforts to investigate its fea-
sibility for neural network inference, as discussed in the next section.

7.3.2 Stochastic computing and neural network inference

Early works of [ALPO+15, RLL+17, KKY+16] demonstrate the applicability of stochas-
tic arithmetic to accelerate neural network inference. More particularly, Ardakani et
al. [ALPO+15] propose an FPGA accelerator to classify the MNIST dataset, where mul-
tiplications are processed using AND gates and activation functions (TanH) are imple-
mented using Finite State Machine (FSM). Such an implementation delivers a compu-
tational throughput of 15.44 TOP/s with a miss-classification rate of 2.40% on MNIST,

7.3. Stochastic arithmetic 117

which is comparable to the accuracy of « conventional » approximate computing tech-
niques on this dataset (see Sec.4.4).

The work of Kim et al. [KKY+16] addresses the problem of long bit sequences by
exploiting the progressive precision characteristics of stochastic computing. Progressive
precision allows stochastic circuits to have a precision that increases gradually with the
length of the sequence. Authors rely on this characteristic to implement multiplications
that process 32 bits to make a decision, and, if processing fails, continues processing the
next 32 bits, up to a 512 bits sequence. As a result authors are able to trade off between
the accuracy of the classification and the latency of the processing.

7.3.3 Stochastic Computing for CNN DHM

The studies described above demonstrate how stochastic computing is a processing ap-
proach that improves the efficiency of neural network implementations. It particularly
suggests that the direct hardware mapping can significantly benefit from SC, especially
in reducing the footprint of the accelerator.

SNGx0

θ0

sx0

SNG sθ0

SNGxn

θn

sxn

SNG sθn

…

b bits 1 bit

Comparator

x0[0]

LFSR

 sx0

2b clock cycles

x0[b-1]…

FIGURE 7.7: Hardware Architecture of the stochastic multiplier block

In order to study the feasibility of stochastic computing in the DHM context, we de-
sign stochastic multipliers that are integrated into the previously described dot product
engines (see Fig.B.3). Thus, the stochastic multipliers replace the conventional « binary »
multipliers introduced in section 6.3 with the objective to reduce the mappings’ footprint.
Note that this study of multipliers can simply translated to stochastic adders, simply by
considering OR gates in place of AND gates.

As evoked in the previous section, stochastic circuits call for dedicated SNGs to be
used for each data. Ideally, each stochastic multipliers requires its own SNG, with a
proper random number generator, to insure that the generated stochastic streams are in-
dependent. Thus, each binary multiplier is replaced by an SNG-Adder pair, as shown
in Fig.7.7. This figure also depicts the architecture of the SNG which uses an LFSR
that generates random numbers as described in [GK88]. This LFSR is initialized with
a parametrizable random seed and generates pseudo-random numbers at each clock cy-
cle.

In the following experiment, 32 multipliers (binary and stochastic) are mapped on an
Intel 5SGXMABN3F45I4 device4. These multipliers are mapped with a variable bit-width
to study the evolution of resource utilization and operating frequency. The results of this
study are given in Fig.7.8.

Clearly the stochastic multiplier has a simpler circuitry when compared to the con-
ventional one, which results in resources savings. These savings grow with the bit-width

4This device is selected because it delivers the highest amount of IOs

118 Chapter 7. Negative Results on Optimizing Direct Hardware Mapping

4 6 8
Bitwidth

200

400

600

800

1000
A
LM

s
Stochastic
Binary

4 6 8
Bitwidth

60

70

80

90

Fm
ax

 (M
H

z)

4 6 8
Bitwidth

101

102

103

La
te

nc
y

(n
s)

FIGURE 7.8: Performance of Stochastic and Conventional Multipliers

and can be reduced by a factor of ×2.5 ALMs for 8 bits multiplications. This is explained
by the fact that the resource utilization of the stochastic multiplier depends mainly on the
utilization of its SNG (shift register + comparator), which is –at a similar bit-width– less
complex than a conventional multiplier. Moreover, and since the stochastic arithmetic
involves less combinatorial logic, the stochastic multiplier peaks at higher frequencies,
and operates up to 53% faster than the binary circuit.

However, when it comes to the latency of the computation, and thus the « real » com-
putational throughout, conventional binary multipliers largely outperform the stochastic
ones. Indeed, one may recall that SC requires a stochastic stream of 2b to encode an
b−bits number. Consequently, the SNG needs 2b clock cycles to generate the stream
and perform the multiplication. This latency greatly impacts the throughput, even if the
stochastic multiplier operates at higher frequencies.

…

SNG 0

 θ (b bits) x (b bits)

sp (2
b bits)

Spacialized SNG

SNG 1

SNG2b-1

…

SNG 0

SNG 1

SNG2b-1

sp[0]

sp[1]

sp[2
b-1]

Comparator

x[0]

 sx[1]

x[b-1]…

C
onstant R

andom
N

um
ber

FIGURE 7.9: Hardware Architecture of a parallel stochastic multiplier

A possible solution to decrease the latency is to infer a large number of SNGs, each
of them set at a different state. With this method, 2b SNGs generate 2b random num-
bers simultaneously, allowing the stochastic multiplier to operate in a single clock cycle.
Moreover, and since the SNGs involve random number generators with a single state,
they can be specialized and benefit from a simpler circuitry. This is depicted in Fig.7.9,
where each random number generator of the SNG is replaced by a simpler combinatorial
logic, specializing the LFSR block of figure 7.8.

However, and even with the help of the specialized number generators, the resource
utilization of of this multiplier is too high, mainly because of the large number of stochas-
tic number generators (see Fig.7.10). This last figure also gives the latency and resource
utilization of the studied stochastic multiplier blocks, and compares them to the conven-
tional binary multipliers. On one hand of the spectrum, the standard serial SC-Multiplier
(in blue) generates the lowest resource utilization at the price of poor computational per-
formance. On the other hand, the parallel SC multiplier operates with a low latency at

7.4. Conclusions 119

the price of excessively high resource utilization. The conventional binary multipliers are
the most efficient, involving a lower resource utilization.

103 104

ALMs

101

102

103

La
te

nc
y

(n
s)

Binary

Serial SC
Parallel SC

FIGURE 7.10: Latency and resource utilization of the studied multipliers

As demonstrated in the two previous studies, stochastic number generators constitute
a problem in the context of SC-based inference of neural networks; SNGs result in either
a high processing latency or in a large hardware overhead. This conclusion agrees with
the study of [KKY+16] where authors found that SC circuits perform ×4.61 times faster
when no SNG is implemented. The same study also reports that at a similar footprint, SC
performs ×1.53 times slower compared with a « conventional » 9-bit fixed-point, which
also matches with our results.

7.4 Conclusions

This chapter has introduced the challenge of multi-operand adder footprint reduction
when implementing a CNN with direct hardware mapping on an FPGA. Three potential
solutions have been studied, respectively relying on serialization of adders, approximate
computing, and stochastic computing.

Though originally promising, these solutions have proven ineffective with current
FPGA architectures that do not lend themselves well to adder approximation and se-
rialization. On one hand, the serialization of a cluster of adders does not reduce the
footprint since the serializers require too many logic elements. On the other hand, the
approximated adder is also ineffective, due to the structure of the logic blocks. These
conclusions motivate for introducing new specialized DSP blocks in FPGAs, imple-
menting large adders fully in hardware.

Finally, this chapter demonstrated that the stochastic arithmetic results in either a
large computational latency or a large resource overhead, preventing its deployment in
DHM-based implementations.

121

Chapter 8

Conclusions and Perspectives

8.1 Conclusions

This thesis addressed the problem of CNN mappings on FPGAs in the context of em-
bedded smart cameras. Mainly, it has demonstrated that a dataflow-based approach
and a direct hardware mapping are adequate solutions to meet the real-time constraints
of FPGA-based smart camera networks. Indeed, these paradigms naturally exploit the
streaming nature of CNN workloads, and fully take advantage of the large parallelism
CNNs exhibit. In counterpart, direct hardware mapping results in large utilization of the
hardware resources, making its implementation in resource-constrained devices a chal-
lenging task.

To address this challenge, the first contributions of this work are oriented towards
adapting the structure of CNN workloads and the numerical precision they involve. As
advocated in numerous studies, deep learning applications are resilient to approximate
computing, and can be pruned [MTK+17] or quantized [GPMG18] without critically im-
pacting their reliability. As demonstrated in chapter 5, pruning and quantization greatly
impact the footprint of a given FPGA implementation, making the direct hardware map-
ping possible. In this context, we have proposed a design space exploration methodol-
ogy, capable of deriving CNN topologies and arithmetic precisions according to the ap-
plication and considered FPGA device. To conclude the model-based optimization part,
multi-view CNNs have been introduced, opening new perspectives in terms of multi-
view smart camera nodes.

In the next chapters, the manuscript has focused on the fine-grain optimization of the
generated hardware architectures. In this scope, chapter 6 has started by demonstrating
how a majority of the FIFO components, mapped between CNN actors, can be safely re-
moved without affecting the behaviour of a dataflow CNN mapping. Then, a study of
specialized multipliers and pipelined adder trees has been provided. These « tactics »
result in a significant reduction of FPGA resource requirements, making direct hardware
mapping feasible on « embedded » FPGAs. To support this demonstration, the deploy-
ment of a CNN-based OCR system on a Cyclone III smart camera has been detailed in
chapter 6

Finally, the work described in this manuscript have brought to light an unexpected
feature of FPGA-based CNN mappings: the high resource utilization of the adders. In-
deed, after specializing the multipliers, up to 75 % of the resource inferred by a given
mapping are allocated to the adder logic. Factually, CNN inference involves the addi-
tion of a large number of operands, which synthesizers implement by cascading logical
resources. All our efforts to overcome this problem –discussed in chapter 7– were un-
fruitful, opening a new challenge in the area of FPGA-based CNN acceleration.

122 Chapter 8. Conclusions and Perspectives

8.2 Perspectives and future directions

The prospects of this thesis are mainly oriented towards improving the efficiency, and
reducing the resource utilization of the generated accelerators.

In this perspective, a promising direction is to investigate the performance of the
DHM approach for binary neural networks, especially with the improvement in relia-
bility they recently demonstrated [RCB17].

Furthermore, one can imagine a CNN fine-tuning process driven by DHM results.
Similarly to the studies that explore the quantization during training [BPF+18], the value
of the weights can be updated so that they jointly improve the modeling power and im-
plementation efficiency. Note that early stages of this investigation are given in sec.6.6,
and aim at modeling the resource utilization of a given mapping according to the bit-
width, the topology, and the value of the convolution kernels.

Additionally to these opportunities, the efficiency improvements brought by MVC-
NNs motivate their implementation on multi-view smart cameras [YEBM02], where the
first layers of the CNN are mapped on an FPGA chip at nearest of the sensor. This concept
is corroborated by the fact that the first layers are usually more suitable for a dataflow
mapping, while the last layers better fit a Von Neumann execution paradigm, as demon-
strated in section.5.2.2.

Finally, this last point highlights the relevance of heterogeneous computing in the
case of CNN inference; Even if this manuscript advocates the use of fine-grain FPGA
devices, the addition of different hardware substrates, such as GPUs or many-cores, to a
smart camera is currently a solution to be considered, especially with the emergence of
low-power "embedded" GPUs.

123

Bibliography

[ABC+16] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-
den, Martin Wicke, Yuan Yu, Xiaoqiang Zheng, and Google Brain. Ten-
sorFlow: A System for Large-Scale Machine Learning. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation - OSDI
’16, 2016.

[ABM13] Edoardo Ardizzone, Alessandro Bruno, and Giuseppe Mazzola. Saliency
Based Image Cropping. In Proceedings of the International Conference on Image
Analysis and Processing - ICIAP ’13. Springer, Berlin, Heidelberg, 2013.

[ACFM16] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer
CNN accelerators. In Proceedings of the Annual International Symposium on
Microarchitecture - MICRO ’16, volume 2016-Decem, 2016.

[ACRB16] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. YodaNN: An
ultra-low power convolutional neural network accelerator based on binary
weights. Proceedings of the IEEE Computer Society Annual Symposium on VLSI
- ISVLSI ’16, 2016-Septe, 2016.

[AH13] Armin Alaghi and John P. Hayes. Survey of Stochastic Computing. ACM
Transactions on Embedded Computing Systems, 2013.

[AH14] Armin Alaghi and John P Hayes. Fast and Accurate Computation using
Stochastic Circuits. In Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition - DATE ’14. IEEE, 2014.

[AHS15] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Fixed point optimiza-
tion of deep convolutional neural networks for object recognition. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing - ICASSP ’15, 2015.

[AJK16] Rahman Atul, Lee Jongeun, and Choi Kiyoung. Efficient FPGA acceleration
of Convolutional Neural Networks using logical-3D compute array. In Pro-
ceedings of the Design, Automation & Test in Europe Conference & Exhibition -
DATE ’16, Dresden, Germany, 2016. IEEE.

[Ala15] Armin Alaghi. The Logic of Random Pulses : Stochastic Computing. PhD thesis,
University of Michigan, 2015.

[ALPO+15] Arash Ardakani, Francois Leduc-Primeau, Naoya Onizawa, Takahiro
Hanyu, and Warren J. Gross. VLSI Implementation of Deep Neural Net-
work Using Integral Stochastic Computing. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(10), 2015.

[AOC+17] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, and Gor-
don R. Chiu. An OpenCL(TM) Deep Learning Accelerator on Arria 10.

124 BIBLIOGRAPHY

In ACM, editor, Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays - FPGA ’17, Monterey, California, USA, 2017.
ACM.

[APBS18] Kamel Abdelouahab, Maxime Pelcat, François Berry, and Jocelyn Sérot. Ac-
celerating CNN inference on FPGAs: A Survey. Technical report, Université
Clermont Auvergne, 2018.

[APS+17] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Serot, Cedric Bourrasset, and
Francois Berry. Tactics to Directly Map CNN graphs on Embedded FPGAs.
IEEE Embedded Systems Letters, 2017.

[BB14] Merwan Birem and François Berry. DreamCam: A modular FPGA-based
smart camera architecture. Journal of Systems Architecture, 60(6), jun 2014.

[BC01] Bradley D. Brown and Howard C. Card. Stochastic neural computation I:
Computational elements. IEEE Transactions on Computers, 50(9), 2001.

[Ben10] Khaled Benkrid. Reconfigurable Computing in the Multi-Core Era. In Pro-
ceedings of the International Workshop on Highly Efficient Accelerators and Re-
configurable Technologies - HEART ’10, 2010.

[BKA+16] Jeremy Bottleson, Sungye Kim, Jeff Andrews, Preeti Bindu, Deepak N.
Murthy, and Jingyi Jin. ClCaffe: OpenCL accelerated caffe for convolu-
tional neural networks. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium - IPDPS’16, 2016.

[Bot10] Leon Bottou. Large-Scale Machine Learning with Stochastic Gradient De-
scent. In Proceedings of International Conference on Computational Statistics -
COMPSTAT’10. Springer, 2010.

[Bou16] Cedric Bourrasset. High level synthesis of dataflow programs for image process-
ing on FPGA-based smart camera. Application to machine learning. PhD thesis,
Universite Blaise Pascal, Clermont-Ferrand, feb 2016.

[BPF+18] Michaela Blott, Thomas Preusser, Nicholas Fraser, Giulio Gambardella,
Kenneth O’Brien, and Yaman Umuroglu. FINN-R: An End-to-End Deep-
Learning Framework for Fast Exploration of Quantized Neural Networks.
ACM Transactions on Reconfigurable Technology and Systems, sep 2018.

[BSB13] Cedric Bourrasset, Jocelyn Serot, and Francois Berry. FPGA-based smart
camera mote for pervasive wireless network. In Proceedings of the Interna-
tional Conference on Distributed Smart Cameras - ICDSC’13, 2013.

[CAD+12] Tomasz S. Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman,
Michael Kinsner, David Neto, Jason Wong, Peter Yiannacouras, and De-
shanand P. Singh. From OpenCL to high-performance hardware on FPGAS.
In Proceedings of the International Conference on Field Programmable Logic and
Applications - FPL ’16. IEEE, aug 2012.

[CB16] Lukas Cavigelli and Luca Benini. Origami : A 803 GOp/s/W Convolutional
Network Accelerator. IEEE Transactions on Circuits and Systems for Video
Technology, 8215(c), 2016.

[CBD14] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training
deep neural networks with low precision multiplications. arXiv e-print, dec
2014.

BIBLIOGRAPHY 125

[CBD15] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryCon-
nect: Training Deep Neural Networks with binary weights during propaga-
tions. In Advances in Neural Information Processing Systems - NIPS’15, 2015.

[CES16] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks. In Pro-
ceedings of the International Symposium on Computer Architecture - ISCA ’16,
2016.

[CHB+16] Sebastien Caux, Edouard Hendrickx, François Berry, Maxime Pelcat, and
Jocelyn Serot. Demo GPStudio. In Proceedings of the International Conference
on Distributed Smart Cameras - ICDSC’16, New York, New York, USA, 2016.
ACM Press.

[Cis17] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016–2021 White Paper. Cisco, 2017.

[CPC16] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of
Deep Neural Network Models for Practical Applications. arXiv e-print, may
2016.

[CPS06] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High Performance Con-
volutional Neural Networks for Document Processing. In Proceedings of the
International Workshop on Frontiers in Handwriting Recognition - FHR’06. Su-
visoft, oct 2006.

[CSJC10] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari
Cadambi. A Dynamically Configurable Coprocessor for Convolutional
Neural Networks. ACM SIGARCH Computer Architecture News, 38(3), jun
2010.

[CX14] Jason Cong and Bingjun Xiao. Minimizing computation in convolutional
neural networks. In Proceedings of the International Conference on Artificial
Neural Networks - ICANN ’14. Springer, 2014.

[DBSM07] Fabio Dias, Francois Berry, Jocelyn Serot, and Francois Marmoiton. Hard-
ware, Design and Implementation Issues on a Fpga-Based Smart Camera.
In Proceedings of the International Conference on Distributed Smart Cameras -
ICDSC’07. IEEE, sep 2007.

[dDL00] Florent de Dinechin and Vincent Lefevre. Constant multipliers for FPGAs.
Parallel and Distributed Processing Techniques and Applications, 2000.

[DDL+18] Li Du, Yuan Du, Yilei Li, Junjie Su, Yen Cheng Kuan, Chun Chen Liu, and
Mau Chung Frank Chang. A Reconfigurable Streaming Deep Convolu-
tional Neural Network Accelerator for Internet of Things. IEEE Transactions
on Circuits and Systems I: Regular Papers, 65(1), 2018.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition - CVPR ’09. IEEE, 2009.

[DFC+15] Z Du, R Fasthuber, T Chen, P Ienne, L Li, T Luo, X Feng, Y Chen, and
O Temam. ShiDianNao: Shifting vision processing closer to the sensor. In
Proceedings of the International Symposium on Computer Architecture - ISCA
’15, jun 2015.

126 BIBLIOGRAPHY

[DFK+07] Nirav Dave, Kermin Fleming, Myron King, Michael Pellauer, and Murali-
daran Vijayaraghavan. Hardware acceleration of matrix multiplication on
a Xilinx FPGA. In Proceedings of ACM and IEEE International Conference on
Formal Methods and Models for Co-Design, MEMOCODE’07, 2007.

[DKT07] Jean-Pierre David, Kassem Kalach, and Nicolas Tittley. Hardware Com-
plexity of Modular Multiplication and Exponentiation. IEEE Transactions on
Computers, 56(10), oct 2007.

[DLV+16] Roberto DiCecco, Griffin Lacey, Jasmina Vasiljevic, Paul Chow, Graham
Taylor, and Shawki Areibi. Caffeinated FPGAs: FPGA Framework For Con-
volutional Neural Networks. In Proceedings of the International Conference on
Field-Programmable Technology - FPT ’16, 2016.

[DM75] Jack B Dennis and David P Misunas. A Preliminary Architecture for a Basic
Data-flow Processor. In Proceedings of the International Symposium on Com-
puter Architecture - ISCA ’75. ACM, 1975.

[DR01] Steven Derrien and Sanjay Rajopadhye. Loop tiling for reconfigurable ac-
celerators. In Proceedings of the International Conference on Field Programmable
Logic and Applications - FPL ’01, volume 2147. Springer, 2001.

[DRM14] Richard Dorrance, Fengbo Ren, and Dejan Marković. A scalable sparse
matrix-vector multiplication kernel for energy-efficient sparse-blas on FP-
GAs. In Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays - FPGA ’14, New York, New York, USA, 2014.
ACM.

[EH94] J.G. Eldredge and B.L. Hutchings. RRANN: a hardware implementation of
the backpropagation algorithm using reconfigurable FPGAs. In Proceedings
of the IEEE International Conference on Neural Networks - ICNN’94, volume 4.
IEEE, 1994.

[EP18] Amir Erfan Eshratifar and Massoud Pedram. Energy and Performance
Efficient Computation Offloading for Deep Neural Networks in a Mobile
Cloud Computing Environment. In Proceedings of the Great Lakes Symposium
on VLSI - GLSVLSI’18, GLSVLSI ’18, New York, NY, USA, 2018. ACM.

[EVW+10] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn,
and Andrew Zisserman. The Pascal Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision, 88(2), jun 2010.

[FFFP06] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object cate-
gories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4),
2006.

[FMC+11] Clement Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Euge-
nio Culurciello, and Yann LeCun. NeuFlow: A runtime reconfigurable
dataflow processor for vision. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition - CVPR ’11. IEEE, jun 2011.

[FPH+09] C Farabet, C Poulet, J Y Han, Y LeCun, David R. Tobergte, and Shirley
Curtis. CNP: An FPGA-based processor for Convolutional Networks. In
Proceedings of the International Conference on Field Programmable Logic and Ap-
plications - FPL ’09, 2009.

BIBLIOGRAPHY 127

[FSNM17] Tomoya Fujii, Simpei Sato, Hiroki Nakahara, and Masato Motomura.
An FPGA Realization of a Deep Convolutional Neural Network Using a
Threshold Neuron Pruning. In Proceedings of the International Symposium on
Applied Reconfigurable Computing - ARC’16, volume 9625, 2017.

[FTX17] Peter Forsyth, Raphael Tang, and Zehao Xu. An Empirical Study of Pruning
and Quantization Methods for Neural Networks. Technical report, Univer-
sity of Waterloo, 2017.

[FUG+17] Nicholas J Fraser, Yaman Umuroglu, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers. Scaling Binarized Neural
Networks on Reconfigurable Logic. In Proceedings of the Workshop on Par-
allel Programming and Run-Time Management Techniques for Many-core Archi-
tectures and Design Tools and Architectures for Multicore Embedded Computing
Platforms - PARMA-DITAM’17. ACM, 2017.

[GAN+15] Suyog Gupta, Ankur Agrawal, Pritish Narayanan, Kailash Gopalakrishnan,
and Pritish Narayanan. Deep Learning with Limited Numerical Precision.
In Proceedings of the International Conference on Machine Learning - ICML ’15,
2015.

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich Fea-
ture Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion - CVPR ’14, 2014.

[GGS+17] Urban Gregor, Krzysztof J. Geras, Ebrahimi Kahou Samira, Ozlem Aslan,
Wang Shengjie, Abdelrahman Mohamed, Matthai Philipose, Matt Richard-
son, and Caruana Rich. Do Deep Convolutional Neural Networks need to
be deep and convolutional ? In Proceedings of the International Conference on
Learning Representations - ICLR’17, 2017.

[Gir15] Ross Girshick. Fast R-CNN. In Proceedings of the IEEE International Confer-
ence on Computer Vision - ICCV ’15, 2015.

[GJD+14] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and Eu-
genio Culurciello. A 240 G-ops/s mobile coprocessor for deep neural net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition - CVPR ’14, jun 2014.

[GK88] P. K. Gupta and R. Kumaresan. Binary Multiplication with PN Sequences.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(4), apr 1988.

[GMG16] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. Hardware-
oriented Approximation of Convolutional Neural Networks. In arXiv
preprint, 2016.

[GPMG18] Philipp Gysel, Jon Pimentel, Mohammad Motamedi, and Soheil Ghiasi.
Ristretto: A Framework for Empirical Study of Resource-Efficient Inference
in Convolutional Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 2018.

[GRT+16] Giulia Guidi, Enrico Reggiani, Lorenzo Di Tucci, Gianluca Durelli, Michaela
Blott, and Marco D. Santambrogio. On How to Improve FPGA-Based Sys-
tems Design Productivity via SDAccel. In Proceedings of the IEEE Interna-
tional Parallel and Distributed Processing Symposium - IPDPS’16. IEEE, may
2016.

128 BIBLIOGRAPHY

[Guo17] Tian Guo. Towards Efficient Deep Inference for Mobile Applications. arXiv
preprint, 2017.

[GWC+17] Shasha Guo, Lei Wang, Baozi Chen, Qiang Dou, Yuxing Tang, and Zhisheng
Li. FixCaffe: Training CNN with Low Precision Arithmetic Operations by
Fixed Point Caffe. In Proceedings of the International Workshop on Advanced
Parallel Processing Technologies - APPT ’17. Springe, aug 2017.

[GWK+17] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy,
Bing Shuai, Ting Liu, Xingxing Wang, Li Wang, Gang Wang, Jianfei Cai, and
Tsuhan Chen. Recent Advances in Convolutional Neural Networks. Pattern
Recognition, 2017.

[Gys16] Philipp Gysel. Ristretto: Hardware-Oriented Approximation of Convolutional
Neural Networks. PhD thesis, University of California, 2016.

[HCS+16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in Neural Infor-
mation Processing Systems - NIPS’16, feb 2016.

[HCS+18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations. Journal of Machine Learning
Research, sep 2018.

[HLM+16] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. EIE: Efficient Inference Engine on Com-
pressed Deep Neural Network. Proceedings of the International Symposium on
Computer Architecture - ISCA ’16, 16, 2016.

[HMD16] Song Han, Huizi Mao, and William J. Dally. Deep Compression - Com-
pressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. Proceedings of the International Conference on Learning Rep-
resentations - ICLR’16, 2016.

[Hor14] Mark Horowitz. Computing’s energy problem (and what we can do about
it). In Proceedings of the IEEE International Solid-State Circuits - ISSCC ’14.
IEEE, feb 2014.

[HPFA07] Stephan Hengstler, Daniel Prashanth, Sufen Fong, and Hamid Aghajan.
MeshEye. In Proceedings of the International conference on Information process-
ing in sensor networks - IPSN ’07, New York, New York, USA, 2007. ACM
Press.

[HPTD15] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both Weights
and Connections for Efficient Neural Network. In Advances in Neural Infor-
mation Processing Systems - NIPS’15, 2015.

[HR16] Tyler Highlander and Andres Rodriguez. Very Efficient Training of Convo-
lutional Neural Networks using Fast Fourier Transform and Overlap-and-
Add. arXiv preprint, 2016.

[HS15] Kaiming He and Jian Sun. Convolutional Neural Networks at Constrained
Time Cost. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition - CVPR ’15, 2015.

BIBLIOGRAPHY 129

[HSS12] G. Hinton, N. Srivastava, and K. Swersky. A separate, adaptive learning
rate for each connection. Slides of Lecture Neural Networks for Machine
Learning. Technical report, University of Toronto, 2012.

[HW62] David H Hubel and Torsten N Wiesel. Receptive fields, binocular inter-
action and functional architecture in the cat’s visual cortex. The Journal of
physiology, 160(1), 1962.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition - CVPR ’16, 2016.

[IMA+16] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,
William J. Dally, and Kurt Keutzer. SqueezNet: AlexNet accuracy with 50x
fewer parameters and 0.5MB Model Size. arXiv e-print, arXiv:1602, 2016.

[Int04] Intel FPGA. Implementing Multipliers in FPGA Devices. Technical report,
Altera, 2004.

[Int14a] Intel FPGA. Cyclone V Device Handbook, volume 1. 2014.

[Int14b] Intel FPGA. Floating-Point IP Cores User Guide. Technical report, 2014.

[Int16] Intel FPGA. The Intel FPGA SDK for Open Computing Language
(OpenCL), 2016.

[Int17] Intel FPGA. Intel Stratix 10 Variable Precision DSP Blocks User Guide. Tech-
nical report, Intel FPGA, 2017.

[Int18a] Intel FPGA. Cyclone V Device Overview. Technical report, 2018.

[Int18b] Intel FPGA. Intel Stratix 10 Product Table. 2018.

[IS15] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Francis
Bach and David Blei, editors, Proceedings of the International Conference on
Machine Learning - ICML ’15, volume 37, Lille, France, 2015.

[JCP02] Ju-wook Jang, Seonil Choi, and Viktor K Prasanna. Area and Time E ffi cient
Implementations of Matrix Multiplication on FPGAs. In Proceedings of the
International Conference on Field-Programmable Technology - FPT’02, 2002.

[JCP05] Ju Wook Jang, Seonil B. Choi, and Viktor K. Prasanna. Energy- and time-
efficient matrix multiplication on FPGAs. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2005.

[JHL15] Honglan Jiang, Jie Han, and Fabrizio Lombardi. A Comparative Review
and Evaluation of Approximate Adders. In Proceedings of the Great Lakes
Symposium on VLSI - GLSVLSI’15. ACM Press, 2015.

[JSD+14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Con-
volutional Architecture for Fast Feature Embedding. In Proceedings of the
ACM International Conference on Multimedia - MM’14, 2014.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. In Proceedings of the International Conference on Learning Represen-
tations - ICLR’15, dec 2014.

130 BIBLIOGRAPHY

[KDA+16] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, and Sami Abu-El-
Haija. Openimages: A public dataset for large-scale multi-label and multi-
class image classification, 2016.

[KDC12] Srinidhi Kestur, John D. Davis, and Eric S. Chung. Towards a universal
FPGA matrix-vector multiplication architecture. In Proceedings of the IEEE
International Symposium on Field-Programmable Custom Computing Machines -
FCCM’12, 2012.

[Khr15] Khronos. OpenCL: The open standard for parallel programming of hetero-
geneous systems, 2015.

[KKY+16] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun Lee,
and Kiyoung Choi. Dynamic Energy-accuracy Trade-off Using Stochastic
Computing in Deep Neural Networks. In Proceedings of the Annual Confer-
ence on Design Automation - DAC ’16, number 1, New York, NY, USA, 2016.
ACM.

[KMNM17] Jong Hwan Ko, Burhan Ahmad Mudassar, Taesik Na, and Saibal
Mukhopadhyay. Design of an Energy-Efficient Accelerator for Training of
Convolutional Neural Networks using Frequency-Domain Computation.
In Proceedings of the Annual Conference on Design Automation - DAC ’17, 2017.

[Kon17] Moller Konrad. Run-time Recongurable Constant Multiplication on Field Pro-
grammable Gate Arrays. PhD thesis, Kassel University, 2017.

[Kri09] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
Technical report, Technical Report, University of Toronto, 2009.

[KSGH12] Alex Krizhevsky, Ilya Sutskever, Hinton Geoffrey E., and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems - NIPS’12, 2012.

[KTB15] Matthias Kümmerer, Lucas Theis, and Matthias Bethge. Deep Gaze I: Boost-
ing Saliency Prediction with Feature Maps Trained on ImageNet. In Proceed-
ings of the International Conference on Learning Representations - ICLR’15, 2015.

[LAE+16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot Multi-
Box Detector. In Proceedings of the European Conference on Computer Vision
- ECCV’16. Springer, 2016.

[LBBH98] Y LeCun, L Bottou, Y Bengio, and P Haffner. Gradient Based Learning
Applied to Document Recognition. In Proceedings of the IEEE, 1998.

[LBD+90] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne E Hubbard, and Lawrence D Jackel. Hand-
written digit recognition with a back-propagation network. In Advances
in Neural Information Processing Systems - NIPS’90, 1990.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553), 2015.

[LCY13] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network. arXiv
preprint, arXiv:1312, dec 2013.

BIBLIOGRAPHY 131

[LDJ+17] Zhiqiang Liu, Yong Dou, Jingfei Jiang, Jinwei Xu, Shijie Li, Yongmei Zhou,
and Yingnan Xu. Throughput-Optimized FPGA Accelerator for Deep Con-
volutional Neural Networks. ACM Transactions on Reconfigurable Technology
and Systems, 10(3), 2017.

[LFJ+16] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang.
A high performance FPGA-based accelerator for large-scale convolutional
neural networks. In Proceedings of the International Conference on Field Pro-
grammable Logic and Applications - FPL ’16. IEEE, aug 2016.

[LG15] Andrew Lavin and Scott Gray. Fast Algorithms for Convolutional Neural
Networks. arXiv e-print, arXiv: 150, sep 2015.

[LL11] Peng Li and David J. Lilja. Using stochastic computing to implement digital
image processing algorithms. In Proceedings of the IEEE International Confer-
ence on Computer Design - ICCD ’11, 2011.

[LLXY17] Liqiang Lu, Yun Liang, Qingcheng Xiao, and Shengen Yan. Evaluating fast
algorithms for convolutional neural networks on FPGAs. In Proceedings of
the IEEE Annual International Symposium on Field-Programmable Custom Com-
puting Machines - FCCM ’17, 2017.

[LM87] Edward A Lee and David G Messerschmitt. Synchronous data flow. In
Proceedings of the IEEE, 1987.

[LM97] Tomas Lundin and Perry Moerland. Quantization and Pruning of Multi-
layer Perceptrons: Towards Compact Neural Networks. Technical report,
Dalle Molle Institute for Perceptual Artificial Intelligence, 1997.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
Common Objects in Context. In Proceedings of the European Conference on
Computer Vision - ECCV’14. Springer, 2014.

[LMH04] M. Leeser, S. Miller, and Haiqian Yu. Smart Camera Based on Reconfig-
urable Hardware Enables Diverse Real-Time Applications. In Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing Machines -
FCCM’04. IEEE, 2004.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional
Networks for Semantic Segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition - CVPR ’15, 2015.

[LTA16] Darryl Lin, Sachin Talathi, and V Annapureddy. Fixed Point Quantization
of Deep Convolutional Networks. In Proceedings of the International Confer-
ence on Machine Learning - ICML ’16, 2016.

[LWF+15] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna
Pensky. Sparse Convolutional Neural Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition - CVPR ’15, 2015.

[LYL+17] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. FP-
BNN: Binarized Neural Network on FPGA. Neurocomputing, oct 2017.

[MAFL10] H R Mahdiani, A Ahmadi, S M Fakhraie, and C Lucas. Bio-Inspired Im-
precise Computational Blocks for Efficient VLSI Implementation of Soft-
Computing Applications. IEEE Transactions on Circuits and Systems I: Regular
Papers, 57(4), apr 2010.

132 BIBLIOGRAPHY

[Mag17] Luca Maggiani. Heterogeneous Smart Cameras: towards the Internet of Recon-
figurable Things. PhD thesis, Scuola Superiore SantAnna, 2017.

[MBP+15] Luca Maggiani, Cedric Bourrasset, Matteo Petracca, Francois Berry, Paolo
Pagano, and Claudio Salvadori. HOG-Dot: A Parallel Kernel-Based Gra-
dient Extraction for Embedded Image Processing. IEEE Signal Processing
Letters, 2015.

[MCVS17a] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. An automatic RTL
compiler for high-throughput FPGA implementation of diverse deep con-
volutional neural networks. In Proceedings of the International Conference on
Field Programmable Logic and Applications - FPL ’17. IEEE, sep 2017.

[MCVS17b] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing Loop Op-
eration and Dataflow in FPGA Acceleration of Deep Convolutional Neu-
ral Networks. In Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays - FPGA ’17, 2017.

[MDC+16] Paolo Meloni, Gianfranco Deriu, Francesco Conti, Igor Loi, Luigi Raffo, and
Luca Benini. Curbing the Roofline : a Scalable and Flexible Architecture
for CNNs on FPGA. In Proceedings of the ACM International Conference on
Computing Frontiers - CF ’16, Como, Italy, 2016.

[MGAG16] Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil Ghi-
asi. Design space exploration of FPGA-based Deep Convolutional Neural
Networks. In Proceedings of the Asia and South Pacific Design Automation Con-
ference - ASPDAC’16, jan 2016.

[MGG17] Mohammad Motamedi, Philipp Gysel, and Soheil Ghiasi. PLACID: A Plat-
form for FPGA-Based Accelerator Creation for DCNNs. ACM Transactions
on Multimedia Computing, Communications, and Applications, 13(4), sep 2017.

[Mic17] Microsoft. Microsoft unveils Project Brainwave for real-time AI, 2017.

[Mit16] Sparsh Mittal. A Survey of Techniques for Approximate Computing. ACM
Computing Surveys, 48(4), mar 2016.

[MKC+17] Yufei Ma, Minkyu Kim, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. End-to-
end scalable FPGA accelerator for deep residual networks. In Proceedings of
the IEEE International Symposium on Circuits and Systems - ISCAS ’17. IEEE,
may 2017.

[MM16] Bert Moons and Verhelst Marian. A 0.3–2.6 TOPS/W precision- scalable
processor for real-time large-scale ConvNets. In IEEE Symposium on VLSI
Circuits, number June, 2016.

[MSC+16] Yufei Ma, Naveen Suda, Yu Cao, Jae Sun Seo, and Sarma Vrudhula. Scalable
and modularized RTL compilation of Convolutional Neural Networks onto
FPGA, 2016.

[MTK+17] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz.
Pruning Convolutional Neural Networks for Resource Efficient Learning.
arXiv preprint, 2017.

[NFS17] Hiroki Nakahara, Tomoya Fujii, and Shimpei Sato. A fully connected layer
elimination for a binarizec convolutional neural network on an FPGA. In
Proceedings of the International Conference on Field Programmable Logic and Ap-
plications - FPL ’17. IEEE, sep 2017.

BIBLIOGRAPHY 133

[NSB+17] Eriko Nurvitadhi, Suchit Subhaschandra, Guy Boudoukh, Ganesh
Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang, Jason OngGee-
Hock, Yeong Tat Liew, Krishnan Srivatsan, and Duncan Moss. Can
FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Net-
works? In Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays - FPGA ’17, 2017.

[Nvi15] Nvidia. GPU-Based Deep Learning Inference: A Performance and Power
Analysis. White Paper, 2015.

[Nvi16] Nvidia. Nvidia Tesla P100 GPU Architecture. White Paper, 2016.

[Nvi17] Nvidia. Nvidia Tesla V100 GPU Architecture. White Paper, (v1.1), 2017.

[NW11] Yuval Netzer and Tao Wang. Reading digits in natural images with un-
supervised feature learning. In Advances in Neural Information Processing
Systems - NIPS’11, 2011.

[NYFS18] Hiroki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, and Shimpei Sato. A
Lightweight YOLOv2. In Proceedings of the ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays - FPGA ’18, New York, New York,
USA, 2018. ACM Press.

[OJU+16] Francisco Ortega, Jose M. Jerez, Daniel UrdaMunoz, Rafael LuqueBaena,
and Leonardo Franco. Efficient Implementation of the Backpropagation Al-
gorithm in FPGAs and Microcontrollers. IEEE Transactions on Neural Net-
works and Learning Systems, 27(9), sep 2016.

[ORK+15] Kalin Ovtcharov, Olatunji Ruwase, Joo-young Kim, Jeremy Fowers, Karin
Strauss, and Eric Chung. Accelerating Deep Convolutional Neural Net-
works Using Specialized Hardware. White paper, feb 2015.

[PBMB17] Maxime Pelcat, Cedric Bourrasset, Luca Maggiani, and Francois Berry. De-
sign productivity of a high level synthesis compiler versus HDL. In Pro-
ceedings of the International Conference on Embedded Computer Systems: Archi-
tectures, Modeling and Simulation - SAMOS’16, 2017.

[PBP+17] Adrien ProstBoucle, Alban Bourge, Frédéric Pétrot, Hande Alemdar,
Nicholas Caldwell, and Vincent Leroy. Scalable High-Performance Archi-
tecture for Convolutional Ternary Neural Networks on FPGA. In Proceed-
ings of the International Conference on Field Programmable Logic and Applications
- FPL ’17, jul 2017.

[Per17] Hugh Perkins. Deep CL: OpenCL library to train deep convolutional neural
networks, 2017.

[PM14] Yu Pan and Pramod Kumar Meher. Bit-Level Optimization of Adder-Trees
for Multiple Constant Multiplications for Efficient FIR Filter Implementa-
tion. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(2), feb
2014.

[QWY+16] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,
Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong
Yang. Going Deeper with Embedded FPGA Platform for Convolutional
Neural Network. In Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays - FPGA ’16, New York, NY, USA, 2016.
ACM.

134 BIBLIOGRAPHY

[RCB17] Manuele Rusci, Lukas Cavigelli, and Luca Benini. Design Automation for
Binarized Neural Networks: A Quantum Leap Opportunity? arXiv preprint,
nov 2017.

[RCLC17] Xukan Ran, Haoliang Chen, Zhenming Liu, and Jiasi Chen. Delivering
Deep Learning to Mobile Devices via Offloading. In Proceedings of the Work-
shop on Virtual Reality and Augmented Reality Network, VR/AR Network ’17,
New York, NY, USA, 2017. ACM.

[RDGF16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition - CVPR ’16, 2016.

[RDS+14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision, 115(3), sep
2014.

[RF18] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
Technical report, University of Washington, apr 2018.

[RHGS17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017.

[RHR+17] Samyam Rajbhandari, Yuxiong He, Olatunji Ruwase, Michael Carbin,
Trishul Chilimbi, Samyam Rajbhandari, Yuxiong He, Olatunji Ruwase,
Michael Carbin, Trishul Chilimbi, Samyam Rajbhandari, Yuxiong He,
Olatunji Ruwase, Michael Carbin, Trishul Chilimbi, Samyam Rajbhandari,
Yuxiong He, Olatunji Ruwase, Michael Carbin, and Trishul Chilimbi. Opti-
mizing CNNs on Multicores for Scalability, Performance and Goodput. In
Proceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems - ASPLOS’17, volume 51. ACM, apr
2017.

[RLL+17] Ao Ren, Ji Li, Zhe Li, Caiwen Ding, Xuehai Qian, Qinru Qiu, Bo Yuan, and
Yanzhi Wang. SC-DCNN: Highly-Scalable Deep Convolutional Neural Net-
work using Stochastic Computing. Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems -
ASPLOS’17, 2017.

[RWA+16] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu, Lee José, Miguel Hernández-Lobato, Gu-Yeon
Wei, and David Brooks. Minerva: Enabling Low-Power, Highly-Accurate
Deep Neural Network Accelerators. In Proceedings of the International Sym-
posium on Computer Architecture - ISCA ’16. IEEE, 2016.

[SAWM08] Mohammed A-Megeed Salem, Markus Appel, Frank Winkler, and Beate
Meffert. FPGA-based Smart Camera for 3D wavelet-based image segmen-
tation. In Proceedings of the International Conference on Distributed Smart Cam-
eras - ICDSC’08. IEEE, sep 2008.

[SBB16] Jocelyn Serot, François Berry, and Cedric Bourrasset. High-level dataflow
programming for real-time image processing on smart cameras. Journal of
Real-Time Image Processing, 12(4), dec 2016.

BIBLIOGRAPHY 135

[SCD+16] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei
Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-Optimized
OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural
Networks. In Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays - FPGA ’16, 2016.

[SCYE17] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient Pro-
cessing of Deep Neural Networks: A Tutorial and Survey. Proceedings of the
IEEE, 105(12), dec 2017.

[Sho94] Richard G Shoup. Parameterized convolution filtering in a field pro-
grammable gate array. In Proceedings of the International Workshop on Field
Programmable Logic and Applications on More FPGAs., 1994.

[SJC+09] Murugan Sankaradas, Venkata Jakkula, Srihari Cadambi, Srimat Chakrad-
har, Igor Durdanovic, Eric Cosatto, and Hans Peter Graf. A Massively
Parallel Coprocessor for Convolutional Neural Networks. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing
- ICASSP ’17. IEEE, jul 2009.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going Deeper with Convolutions. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition - CVPR ’15, 2015.

[SMKLM15] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller.
Multi-view Convolutional Neural Networks for 3D Shape Recognition. In
Proceedings of the IEEE International Conference on Computer Vision - ICCV ’15.
IEEE, dec 2015.

[SPM+16] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
From high-level deep neural models to FPGAs. In Proceedings of the Interna-
tional Symposium on Microarchitecture - MICRO ’16, 2016.

[SQH+18] Junzhong Shen, Yuran Qiao, You Huang, Mei Wen, and Chunyuan Zhang.
Towards a Multi-array Architecture for Accelerating Large-scale Matrix
Multiplication on FPGAs. In Proceedings of the International Symposium on
Circuits and Systems - ISCAS’18. IEEE, may 2018.

[STR+15] Amos Sironi, Bugra Tekin, Roberto Rigamonti, Vincent Lepetit, and Pascal
Fua. Learning separable filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(1), 2015.

[Sut66] Ivan Sutherland. Online graphical specification of procedures. PhD thesis, MIT,
1966.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint, arXiv:1409, 2014.

[Tay06] Michael Taylor. CSE 548: Computer Architecture. Dataflow Computers.
Technical report, University of Washington, 2006.

[TKTH18] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster
gaze prediction with dense networks and Fisher pruning. arXiv e-print, jan
2018.

136 BIBLIOGRAPHY

[UFG+17] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers. FINN: A Framework for
Fast, Scalable Binarized Neural Network Inference. In Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays -
FPGA ’17, 2017.

[VB16] Stylianos Venieris and Christos Bouganis. FpgaConvNet: A Framework for
Mapping Convolutional Neural Networks on FPGAs. In Proceedings of the
IEEE Annual International Symposium on Field-Programmable Custom Comput-
ing Machines - FCCM ’16, 2016.

[VB17] Stylianos Venieris and Christos Bouganis. Latency-Driven Design for
FPGA-based Convolutional Neural Networks. In Proceedings of the Inter-
national Conference on Field Programmable Logic and Applications - FPL ’17,
2017.

[VKB18] Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis.
Toolflows for Mapping Convolutional Neural Networks on FPGAs. ACM
Computing Surveys, 51(3), jun 2018.

[Von56] J Von Neumann. Probabilistic logics and the synthesis of reliable organisms
from unreliable components. Automata Studies, 1956.

[VP07] Yevgen Voronenko and Markus Püschel. Multiplierless multiple constant
multiplication. ACM Transactions on Algorithms, 3(2), may 2007.

[Wal17] E. Walters. Reduced-Area Constant-Coefficient and Multiple-Constant
Multipliers for Xilinx FPGAs with 6-Input LUTs. Electronics, 6(4), 2017.

[Wan17] Dong Wang. PipeCNN: An OpenCL-based FPGA Accelerator for Convo-
lutinal Neural Networks. In Proceedings of the International Conference on
Field-Programmable Technology - FPT ’17, 2017.

[WBSS04] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image Quality As-
sessment: From Error Visibility to Structural Similarity. IEEE Transactions
on Image Processing, 13(4), apr 2004.

[Wil91] D. Williamson. Dynamically scaled fixed point arithmetic. In Proceedings
of the IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing Conference. IEEE, 1991.

[Win80] Shmuel Winograd. Arithmetic complexity of computations, volume 33. Siam,
1980.

[WLW+16] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.
Quantized Convolutional Neural Networks for Mobile Devices. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition - CVPR
’16, 2016.

[Woo14] Josh Woodhouse. Big, big, big data: higher and higher resolution video
surveillance, 2014.

[WOWL15] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. Visual
Tracking with Fully Convolutional Networks. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition - CVPR’15, 2015.

[WWP09] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An
insightful visual performance model for multicore architectures. Communi-
cations of the ACM, 52(4), apr 2009.

BIBLIOGRAPHY 137

[WZY17] Yi Wang, Mingxu Zhang, and Jing Yang. Exploiting Parallelism for Convo-
lutional Connections in Processing-In-Memory Architecture. In Proceedings
of the Annual Conference on Design Automation - DAC ’17, 2017.

[Xil13] Xilinx. Introduction to FPGA Design with Vivado High-Level Synthesis, volume
998. 2013.

[YCS17] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing Energy-Efficient
Convolutional Neural Networks using Energy-Aware Pruning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition - CVPR
’17, 2017.

[YEBM02] Jc Yang, M Everett, C Buehler, and L McMillan. A real-time distributed light
field camera. The Eurographics Association, 2002.

[ZFZ+16] Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong.
Caffeine: Caffeine: Towards uniformed representation and acceleration for
deep convolutional neural networks. In Proceedings of the International Con-
ference on Computer-Aided Design - ICCAD ’16, New York, New York, USA,
2016. ACM.

[ZHMD17] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained
Ternary Quantization. In Proceedings of the International Conference on Learn-
ing Representations - ICLR’17, dec 2017.

[ZL17] Jialiang Zhang and Jing Li. Improving the Performance of OpenCL-based
FPGA Accelerator for Convolutional Neural Network. In Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays -
FPGA ’17, 2017.

[ZLS+15] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing FPGA-based Accelerator Design for Deep Convolutional
Neural Networks. In Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays - FPGA ’15, FPGA, 2015.

[ZOLW15] Rui Zhao, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Saliency
detection by multi-context deep learning. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition - CVPR ’15, 2015.

[ZP05] Ling Zhuo and Viktor K. Prasanna. Sparse Matrix-Vector multiplication on
FPGAs. In Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays - FPGA ’05, New York, New York, USA, 2005.
ACM.

[ZP17] Chi Zhang and Viktor Prasanna. Frequency Domain Acceleration of Convo-
lutional Neural Networks on CPU-FPGA Shared Memory System. In Pro-
ceedings of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays - FPGA ’17, 2017.

[ZSZ+17] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin,
Mani Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating Bina-
rized Convolutional Neural Networks with Software-Programmable FP-
GAs. In Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays - FPGA ’17, 2017.

[ZWN+16] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng
Zou. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks
with Low Bitwidth Gradients. arXiv e-print, 2016.

138 BIBLIOGRAPHY

[ZWS+16] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason Cong.
Energy-Efficient CNN Implementation on a Deeply Pipelined FPGA Clus-
ter. In Proceedings of the International Symposium on Low Power Electronics and
Design - ISLPED ’16, 2016.

[ZWW+17] Shuchang Zhou, Yuzhi Wang, He Wen, Qinyao He, and Yuheng Zou. Bal-
anced Quantization: An Effective and Efficient Approach to Quantized
Neural Networks. Journal of Computer Science and Technology, 32, 2017.

139

Publications

Journals

• K. Abdelouahab, M. Pelcat, J. Sérot and F. Berry (2017) «Tactics to Directly Map CNN
graphs on Embedded FPGAs», IEEE Embedded Systems Letters.

Conference Proceedings

• J. Bonnard, K. Abdelouahab, M. Pelcat and F.Berry (2018) Real-time Embedded Object
Classification with FPGA-based Distributed Multi-View CNNs, Submitted to the Design
Automation Conference - DAC’19 (submitted)

• K. Abdelouahab, M. Pelcat, and F. Berry (2018) «The Challenge of Multi-Operand
Adders in CNNs on FPGAs, And How NOT to Solve It!». Proceedings of the Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation - SAMOS’18.

• K. Abdelouahab, M. Pelcat, and F. Berry (2017) « PhD Forum: Why TanH can be a
Hardware Friendly Activation Function for CNNs». Proceedings of the 11th Interna-
tional Conference on Distributed Smart Cameras - ICDSC’17.

• K. Abdelouahab, C. Bourrasset, M.Pelcat, J. Sérot, J.C.Quinton and F. Berry (2016)
«A Holistic Approach for Optimizing DSP Block Utilization of a CNN implementation
on FPGA». Proceedings of the 10th International Conference on Distributed Smart
Cameras - ICDSC’16.

Book Chapters

• K. Abdelouahab, M. Pelcat and F. Berry (2018) «Accelerating CNN inference on FP-
GAs: A Survey», Deep Learning in Computer Vision: Theories and Applications
(submitted).

141

Appendix A

Topology of Popular CNN Models

The following tables detail the topology of the CNNs studied in this manuscript. For each
network, the convolution and fully connected layers, with their dimension, are listed.
The presence of activation, batch normalization or sub-sampling is denoted in the last
column of the tables. This last column also gives the order of the layers following each
convolution.

TABLE A.1: Object Detectors

Network Layer C N J × K U × V Act, pool, BN

RCNN

conv1 3 96 11x11 55x55 ReLU+Pool+BN
conv2 48 256 5x5 27x27 ReLU+Pool+BN
conv3 256 384 3x3 13x13 ReLU
conv4 192 384 3x3 13x13 ReLU
conv5 192 256 3x3 13x13 ReLU+Pool

fc6 9216 4096 - - ReLU
fc7 4096 4096 - - ReLU

fc-rcnn 4096 200 - - -

Yolov2-tiny

conv1 3 16 3x3 416x416 BN+ReLU+Pool
conv2 16 32 3x3 208x208 BN+ReLU+Pool
conv3 32 64 3x3 104x104 BN+ReLU+Pool
conv4 64 128 3x3 52x52 BN+ReLU+Pool
conv5 128 256 3x3 26x26 BN+ReLU+Pool
conv6 256 512 3x3 13x13 BN+ReLU+Pool
conv7 512 1024 3x3 12x12 BN+ReLU
conv8 1024 512 3x3 12x12 BN+ReLU
conv9 512 425 1x1 12x12 -

142 Appendix A. Topology of Popular CNN Models

TABLE A.2: Classifiers

Network Layer C N J × K U × V Act, pool, BN

LeNet5

conv1 1 20 5x5 24x24 Pool
conv2 20 50 5x5 8x8 Pool

fc1 800 500 - 1x1 ReLU
fc2 500 10 - 1x1 Softmax

Cifar 10

conv1 3 32 5x5 32x32 Pool+ReLU
conv2 32 32 5x5 16x16 ReLU+Pool
conv3 32 64 5x5 8x8 ReLU+Pool

fc1 1024 10 - 1x1 Softmax

AlexNet

conv1 3 96 11x11 55x55 ReLU+BN+Pool
conv2 48 256 5x5 27x27 ReLU+BN+Pool
conv3 256 384 3x3 13x13 ReLU
conv4 192 384 3x3 13x13 ReLU
conv5 192 256 3x3 13x13 ReLU+Pool

fc6 9216 4096 - 1x1 ReLU
fc7 4096 4096 - 1x1 ReLU
fc8 4096 1000 - 1x1 Softmax

VGG16

conv1-1 3 64 3x3 224x224 ReLU
conv1-2 64 64 3x3 224x224 ReLU+Pool
conv2-1 64 128 3x3 112x112 ReLU
conv2-2 128 128 3x3 112x112 ReLU+Pool
conv3-1 128 256 3x3 56x56 ReLU
conv3-2 256 256 3x3 56x56 ReLU
conv3-3 256 256 3x3 56x56 ReLU+Pool
conv4-1 256 512 3x3 28x28 ReLU
conv4-2 512 512 3x3 28x28 ReLU
conv4-3 512 512 3x3 28x28 ReLU+Pool
conv5-1 512 512 3x3 14x14 ReLU
conv5-2 512 512 3x3 14x14 ReLU
conv5-3 512 512 3x3 14x14 ReLU+Pool

fc6 25088 4096 - 1x1 ReLU
fc7 4096 4096 - 1x1 ReLU
fc8 4096 1000 - 1x1 Softmax

Darknet

conv1 3 16 3x3 256x256 BN+ReLU+Pool
conv2 16 32 3x3 128x128 BN+ReLU+Pool
conv3 32 64 3x3 64x64 BN+ReLU+Pool
conv4 64 128 3x3 32x32 BN+ReLU+Pool
conv5 128 256 3x3 16x16 BN+ReLU+Pool
conv6 256 512 3x3 8x8 BN+ReLU+Pool
conv7 512 1024 3x3 4x4 BN+ReLU+Pool
conv8 1024 1000 3x3 6x6 ReLU+Pool+Softmax

143

Appendix B

Direct Hardware Mapping with
Haddoc2

This appendix describes the blocks introduced in the HADDOC2 tool. This tool relies on
a hierarchical construction of the CNN actors; Similarly to the first version, the low-grain
actors (multipliers, adders, line buffers) are described in a behavioral VHDL and constitute
the building blocks of coarse-grain actors (Dot-product blocks, Window Buffers, layers ...)
which are described in structural VHDL, and listed next.

B.1 Convolution Layers

The convolution layer block implements the processing of eq.2.3 by mapping N three-
dimensional convolutions. Clearly, the convLayer block is parametrized by the number
of 3D-kernels (N) and their dimension (C × J × K), but also the value of these kernels
(Θ), following the principles of SCM described in sec.6.3. Figure B.1 explains how the
convLayer operates:

Xconv
[0,h,w]

...

Xconv
[C−1,h,w]

Yconv
[0,h,w]

Yconv
[1,h,w]

Yconv
[N−1,h,w]

...

T
e
n
s
o
r
E
x
t
r
a
c
t
o
r SCM

SCM

...

SCM

MOA

MOA

...

MOA

x

ConvLayer

FIGURE B.1: Implementation of a Convolution Layer in Haddoc2

The Tensor Extractor block extracts the (C × J × K) neighbors of each input Xconv
[c,h,w].

The output of this block, denoted x in fig.B.1, is built by instantiating the WindowBuffer
structure C times, following the technique discussed in sec.6.2. A diagram of the TensorExtractor
block and its hardware description is given in Fig.B.2.

The Single Constant Multiplication (SCM) part multiplies each entry of tensor x
by each weight of Θ[c, j, k]. The scm component is instantiated N times per layer, and
generates (C × J × K) constant multipliers per 3D-convolution. This corresponds to
(N × C× J × K) constant multipliers per layer.

The Multiple Operand Adder (MOA) part sums the partial products resulting from
the constant multiplications. As depicted in B.1, each layer generates N adders, and each

144 Appendix B. Direct Hardware Mapping with Haddoc2

WindowBuffer

...

WindowBuffer

Xconv
[0,h,w]

...

Xconv
[C−1,h,w]

x[0,0,2] x[0,0,1] x[0,0,0]

x[0,1,2] x[0,1,1] x[0,1,0]

x[0,2,2] x[0,2,1] x[0,2,0]

LineBuffer

LineBuffer
TensorExtractor

WindowBuffer

FIGURE B.2: Hardware Architecture of the Tensor Extractor

of them inputs (C × J × K) operands. In its most « naive » form, the MOA component is
implemented as a binary adder tree, as depicted in fig. B.3.

x[0,0,0]

x[0,0,1]

x[C−1,J−1,K−2]

x[C−1,J−1,K−1]

×θ000

×θ001

×θCJK−2

×θCJK−1

...

+

+

+

+

+

+

+

+
+ Yconv

[n,u,v]
.

...

MOASCM

FIGURE B.3: Hardware Architecture of SCM and MOA parts

B.2 Pooling Layers

Similarly to the CAPH implementation, sub-sampling layers are built by combining the
vertical and horizontal pooling blocks. The PoolH block computes the maximum (or aver-
age) of K adjacent inputs (X[c,h,w], . . . X[c,h,w+K−1]). It is followed by the PoolV block which
relies on a LineBuffer to compute the vertical maximum of (X[c,h,w], . . . , X[c,h+K−1,w]).
Fig. B.4b illustrate the architecture of the PoolH and PoolV blocks in the case where K = 2.

B.3 Activation Layers

ReLU: The ReLU function is the simplest activation to implement as it requires only a
comparator and a multiplexer to be mapped. Note however that the block implement-
ing this layer, namely RELULayer, is parametrized by a shift value that can be used to
implement –by means of shit-registers– the « leaky ReLU » function used in some CNN
layers:

Leaky-ReLU(x) =
ReLU(x)

α
(B.1)

Sigmoid and TanH Layers: HADDOC2 relies on a piece-wise approximation to imple-
ment the Sigmoid and hyperbolic tangent functions. These piece-wise functions either
threshold, or apply a or a linear transformation to their inputs, as depicted in Fig. B.5a.

B.3. Activation Layers 145

poolH

...

poolH

poolV

...

poolV

Xpool
[0,h,w]

...

Xpool
[N−1,h,w]

Ypool
[0,h,w]

...

Ypool
[N−1,h,w]

(A) Pool layer block

LineBuffer X[n,h,w]X[n,h+1,w]

max

Vertical Pooling

X[n,h,w]X[n,h,w+1]

max

Horizontal Pooling

(B) (2× 2) Vertical and Horizontal Pooling

FIGURE B.4: Implementation of a Pooling Layer in Haddoc2

When compared to an «exact» implementations using lookup tables, the key advan-
tage of the proposed approximations is their low hardware footprint. For instance, the
piece-wise implementation of the TanH requires only four comparators, one multiplexer
and one shift register, as illustrated in fig.B.5b.

−3 −2 −1 1 2 3

−1

1

x

TanH(x)
Approx

(A) TanH function and its approx.

E
n
c
o
d
e
rcmp

cmp
cmp
cmp

Yact
[n,h,w]

1

>>

-1

Xact
[n,h,w]

(B) Hardware Implementation

FIGURE B.5: TanH Function: Approximation and Implementation

B.3.1 Feature Map similarity

Fig. B.6 gives an example of feature maps extracted by HADDOC2 and compares them to
features extracted by Caffe. Despite being slightly different, the feature maps deliver the
same classification rate in both hardware and software implementations. In this example,
the implementation of sec.6.5.3 is considered.

Figure B.7 quantifies the similarity of hardware-extracted and software-extracted fea-
ture maps in terms of Peak signal-to-noise ratio (PSNR) and Structural SIMilarity (SSIM).
While the former metric estimates absolute errors, the latter is a perception-based model
that considers structural information of an image [WBSS04].

On the left figure, the PSNR drops after each layer, mainly because of the rounding
and approximated TanH function. Surprisingly, on the right figure, the SSIM stays on a
high level at over 0.97. This high structural similarity may explain why CNNs deliver the
same classifications in hardware and software, despite the differences between the two
feature maps.

146 Appendix B. Direct Hardware Mapping with Haddoc2

(A) conv1 (B) conv2 (C) conv3

FIGURE B.6: Intermediate Feature Maps: Hardware-computed on the left, software-computed
on the right

Input conv1 pool1 conv2 pool2 conv3
10

20

30

40

50

60

PS
N

R
(d

B)

(A) PSNR

Input conv1 pool1 conv2 pool2 conv3
0.96

0.97

0.98

0.99

1

1.01

SS
IM

(B) SSIM

FIGURE B.7: Similarity between Hardware and Software extracted Features

	Introduction
	The Context of Deep Learning and Smart Cameras
	Deep Learning Constraints and Implementation Challenges
	Smart Cameras as Dataflow Computer Vision Systems
	Contributions
	Manuscript Outline

	Embedded Deep Learning
	From Machine learning to Deep Learning
	Deep Convolutional Neural Networks
	CNN Applications, Datasets and Evaluation Metrics
	Workload and Implementation Challenges on SmartCams
	Hardware for mainstream DL
	Embedded Deep Learning
	Conclusions

	Reconfigurable Hardware for Embedded Vision
	FPGA Architecture
	From Algorithms to Hardware Architectures
	Dataflow Model for FPGA-Based Image processing
	Implementation Example: Image convolution
	Conclusions

	FPGA-Based Deep Learning Acceleration
	Evaluation Metrics
	Computational Transforms
	Data-path Optimizations
	Approximate Computing of CNN Models
	Conclusions

	Model-Based Optimization of CNN Mappings on FPGAs
	Models of Computation for CNN inference on FPGAs
	Direct Hardware Mapping of CNNs on FPGAs
	Direct Hardware Mapping with Caph
	Design Space Exploration
	Multi-view CNNs
	Conclusions and perspectives

	Architectural Optimizations of CNN Mappings on FPGAs
	FIFO channels in Dataflow Inferred CNNs
	Memory-Efficient Window Buffers
	Convolutions with Single Constant Multiplications
	Accumulation with Pipelined Adders
	Implementation Results
	Modeling CNN Mappings
	Conclusions and Perspectives

	Negative Results on Optimizing Direct Hardware Mapping
	Serial Adders
	Approximate Adders
	Stochastic arithmetic
	Conclusions

	Conclusions and Perspectives
	Conclusions
	Perspectives and future directions

	Topology of Popular CNN Models
	Direct Hardware Mapping with Haddoc2
	Convolution Layers
	Pooling Layers
	Activation Layers

