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Abstract

In this thesis, we present and study a new formulation of frictional contact between two elastic bodies

based on Nitsche’s method. This method aims to treat the interface conditions in a weak sense, thanks

to a consistent additional term stabilized with the parameter γ. At first, we introduce the study carried

out in the small strain framwork for an unbiased version of the method. The non-distinction between a

master surface and a slave one will allow the method to be more generic and directly applicable to the

self-contact problem. The restrictive framework of small strain allowed us to obtain theoretical results on

the consistency and convergence of the method. Then, we present the extension of the Nitsche method

to the large strain case more relevant for industrial applications and situations of self-contact. This

Nitsche’s method is formulated for an hyper-elastic material and declines in the two versions: biased and

unbiased. We describe a class of methods through a generalisation parameter θ . Particular variants

have different properties from a numerical point of view, in terms of accuracy and robustness. To prove

the accuracy of the method for large deformations, we provide several academic and industrial tests. We

also study the influence of numerical quadrature on the accuarcy and convergence of the method. This

study covers a comparison of several integration rules proposed in the literature for other integral methods.

Key words — frictional contact for small and large strain, Nitsche’s method, unbiased methods, numer-

ical quadrature for contact.

Résumé

Dans cette thèse, nous présentons et étudions une nouvelle formulation du problème de contact frot-

tant entre deux corps élastiques se basant sur la méthode de Nitsche. Dans cette méthode les conditions

de contact sont imposées faiblement, grâce à un terme additionnel consistant et stabilisé par un paramètre

γ. En premier lieu, nous introduisons, l’étude effectuée en petites déformations pour une version non

biaisée de la méthode. La non-distinction entre une surface mâıtre et une surface esclave permettera à la

méthode d’être plus générique et applicable directement au problème d’auto-contact. Le cadre restrictif

des petites déformations nous permet d’obtenir des résultats théoriques sur la stabilité et la convergence

de la méthode. Ces résultats sont complétés par une validation numérique. Ensuite, nous introduisons

l’extension de la méthode de Nitsche au cadre des grandes déformations qui est d’avantage pertinent pour

les applications industrielles et les situations d’auto-contact. La méthode de Nitsche est formulée pour un

matériau hyperélastique avec frottement de Coulomb et se décline en deux versions : biaisée ou non. La

formulation est généralisée à travers un paramètre θ pour couvrir toute une famille de méthodes. Chaque

variante particulière a des propriétés différentes du point de vue théorique et numérique, en termes de

précision et de robustesse. La méthode est testée et validée à travers plusieurs cas tests académiques et

industriels. Nous effectuons aussi une étude de l’influence de l’intégration numérique sur la précision et

la convergence de la méthode. Cette étude couvre une comparaison entre plusieurs schémas d’integration

proposés dans la littérature pour d’autres méthodes intégrales.

Mots clés — contact frottant en petites et grandes déformations, méthode de Nitsche, formulation non

biaisée, intégration numérique.
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Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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Glossary of acronyms and symbols

The following acronyms are used in this thesis.

Acronyms

FEM Finite Element Method

NTS Node-to-Segment

STS Segment-to-Segment

X-FEM Extended finte element method

IBVP Initial Boundary Value Problem

KKT conditions Karush-Kuhn-Tucker conditions

PVW Principle of Virtual Work

CIFRE ”Convention Industrielle de Formation par la Recherche”

INSA ”Institut National des Sciences Appliquées”

The following mathematical symbols are used in this thesis.

General notation

For an arbitrary field, we note:

a A scalar field

a A vectorial field

a A second order tensor

a A fourth order tensor
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c ∪ Γ2

c

(Γic)
t The deformed contact surface

Γtc =(Γ1
c)
t ∪ (Γ2

c)
t

ΓiD The reference Dirichlet surface (where the displacement ui is imposed)

(ΓiD)t The deformed Dirichlet surface.

ΓiN The reference Neumann surface (where the traction ti is imposed)

(ΓiN)t The deformed Neumann surface.

ϕi The motion transformation of Ωi

ϕ The motion transformation of Ω

Πi A one to one application mapping the two contact surfaces.

σn Normal stress for small strain

σt Tangential stress for small strain

σ̂
N
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σ̂n Normal stress for large strain

σ̂ Tangential stress for large strain
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θ A generalization parameter (∈ R)
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Tresca dans le cadre des petites déformations . . . . . . . . . . . . 2
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Introdution

Le présent travail est une étude mathématique et numérique d’une nouvelle méthode

éléments finis permettant l’approximation numérique du contact et du frottement. Le

phénomène de contact entre corps déformables et ses effets associés, tel que le frotte-

ment, l’usure ou l’adhésion, génèrent des complexités significatives dans la modélisation

numérique et la simulation en mécanique des solides. Ceci est principalement dû à la non-

linéarité de ce type de condition aux limites et à la non-régularité des principes physiques

simulés. Plusieurs difficultés s’opposent à la mise en place d’un outil de simulation général

pour la mécanique de contact, en prenant en compte ses deux aspects les plus importants:

la robustesse et l’approximation précise et efficace des déplacements et des contraintes.

Cette étude, réalisée en partenariat avec la Manufacture Française des Pneumatiques

Michelin sous forme d’un contrat CIFRE entre l’INSA de Lyon, l’entreprise et moi-même,

est motivée par la présence et l’influence éminentes des phénomènes de contact et d’auto-

contact dans la simulation des pneumatiques.

Dans cette thèse, nous présentons une nouvelle formulation de contact frottant entre

deux corps élastiques basée sur la méthode de Nitsche. La méthode de Nitsche est une

méthode consistante et primale pour traiter le contact. Son aspect intégral lui permet

d’être très adaptée au contact de corps déformables avec des maillages non-conformes.

La motivation principale de ce travail est le besoin d’une méthode d’approximation sim-

ple et efficace pour l’auto-contact. Pour répondre à cette exigence, nous proposons une

méthode non biaisée dans laquelle nous ne faisons pas la distinction entre une surface

mâıtre et une surface esclave et nous imposons la non-pénétration et les conditions de frot-

tement sur les deux. La méthode de Nitsche est adaptée au formalisme non biaisé puisque

la méthode permet d’imposer faiblement les conditions de contact sur les deux surfaces en

vis-à-vis. La méthode doit d’abord être formulée et testée en petites déformations dans
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0.1. Résumé des travaux 2

le cadre de l’élasticité linéaire. Ce cadre restrictif nous permet d’obtenir des résultats

théoriques sur la stabilité et la convergence de la méthode.

Elle doit, ensuite, être étendue au cadre des grandes transformations élastiques, d’avantage

pertinent pour les applications et les situations d’auto-contact.

Comme dans [CHR15c], nous décrivons une famille de méthodes (symétrique, non-symétrique,

anti-symétrique) à l’aide d’un paramètre θ, chaque variante particulière ayant des pro-

priétés différentes du point de vue numérique, en termes de précision et de robustesse.

La méthode sera testée sur une palette de cas de tests académiques et industiels pour les

petites et grandes déformations afin de s’assurer de sa performance.

Ce chapitre, ayant pour objectif de présenter ce travail de thèse et résumer le prérent

manuscrit, est organisé comme suit: La première partie 0.1 résume les travaux effectués

pendant la thèse et l’essentiel des résultats. La deuxième partie 0.2 est un bref sommaire

de ce manuscrit et de son organisation.

0.1 Résumé des travaux

Nous donnerons, d’abord, les notions et les concepts de base de la mécanique de contact

et introduirons la méthode de Nitsche pour traiter les différents types de conditions aux

limites. Puis, nous formulerons cette méthode pour le problème de contact de deux corps

élastiques:

0.1.1 Méthode non biaisée de Nitsche pour le contact et le frot-

tement de Tresca dans le cadre des petites déformations

Nous considérons deux corps Ωi pouvant entrer en contact via leurs surfaces ΓiC . Afin

d’obtenir une formulation non biaisée du problème de contact nous prescrivons les con-

ditions de contact déduites du problème de Signorini et les conditions de frottement de

Tresca sur les deux surfaces ΓiC d’une manière symétrique et nous allons intégrer sur

chacune d’elles. La dérivation d’une méthode de type Nitsche provient d’une reformula-

tion des conditions de contact sous forme d’une seule équation (voir par exemple [CH13]

et [CHR15c]). De même, une simple adaptation au frottement de Tresca est proposée

dans [Cho14]. Si on note σin(ui) la contrainte normale sur le bord de contact du corps (i)

et JuKin le saut normal de déplacement entre les deux surfaces calculé sur le bord ΓiC , on

démontre que les conditions de contact et de frottement inscrites sur les deux surfaces de

contact sont équivalentes aux deux équations (1) et (2).

σin(ui) = [σin(ui)− γiJuKin]R− , (1)

où, γi est réel positif (on l’appellera paramètre de Nitsche) et [a]R− indique la partie

négative d’un réel a ∈ R.

De même, dans [Cho14], en notant σt(u
i) la contrainte tangentielle et JuKit le saut tan-

gentiel de deplacement sur le bord de contact, la condition de frottement de Tresca est
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0.1. Résumé des travaux 3

équivalente à l’équation:

σt(u
i) = [σt(u

i)− γiJuKit]si , (2)

où si est le seuil de frottement de Tresca. Pour tout α ∈ R+, la notation [·]α fait référence

à la projection orthogonale sur la boule fermée B(0, α) ⊂ Rd−1, centrée à l’origine et de

rayon α. L’utilisation de la méthode de Nitsche nous permet de diviser l’effort de con-

tact équitablement sur les deux surfaces de contact en utilisant la loi d’action-réaction.

Ensuite, nous utilisons la formule de Green et toutes les équations d’équilibre et les con-

ditions aux limites pour avoir la formulation éléments finis non biaisée (3) dans laquelle

le contact et le frottement sont imposés faiblement sur les deux surfaces de contact ΓiC
d’une manière symétrique.

Trouver uh ∈ Vh tel que,

A1,2
θγ (uh,vh) +

1

2

2∑
i=1

∫
ΓiC

1

γi

[
P i
n,1γi(u

h)
]
R−
P i
n,θγi(v

h) dΓ

+
1

2

2∑
i=1

∫
ΓiC

1

γi

[
Pi
t,1γi(u

h)
]
si
·Pi

t,θγi(v
h) dΓ = L(vh), ∀vh ∈ Vh,

(3)

avec:

P i
n,θγi(v) = θσin(vi)− γiJvKin , et Pi

t,θγi(v) = θσit(v
i)− γiJvKit ,

et

A1,2
θγ (u,v) =

2∑
i=1

(∫
Ωi
σ(ui) : ε(vi) dΩ− 1

2

∫
ΓiC

θ

γi
σi(ui)ni · σi(vi)ni dΓ

)
.

Le paramètre θ permet de retrouver des variantes qui possèdent des propriétés théoriques

et numériques différentes (voir [CHR15c]). Par exemple, quand θ = 1 la méthode est

symétrique. Pour θ = 0 la méthode est assez simple, mais elle n’est pas symétrique. Et

quand θ = −1, on obtient une méthode plus robuste qui converge indépendamment du

paramètre de Nitsche γi.

Pour prouver l’efficacité de la méthode, nous avons effectué son analyse mathématique.

Nous montrons, dans un premier temps, l’équivalence formelle entre les formulations forte

et variationnelle pour le problème continu. Étant donné que la construction de la méthode

consiste en particulier à séparer les conditions de contact en deux parties, cette étape est

nécessaire pour assurer la cohérence de la formulation. Nous montrons également la con-

sistance, qui provient de la consistance de la méthode de Nitsche, et l’existence et l’unicité

d’une solution et la convergence optimale de la méthode pour la norme H1 pour γi suff-

isamment grand. Si θ = −1, aucune condition sur γi n’est requise pour assurer l’existence

et l’unicité d’une solution et la convergence optimale.

Pour tester la méthode, une validation numérique a été faite à travers le test de

Hertz en deux et trois dimensions. Les tests comportent une étude de convergence pour
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0.1. Résumé des travaux 4

les différentes valeurs du paramètre de généralisation θ et du paramètre de Nitsche γi.

À titre d’exemple, nous présentons dans la Figure.1 la courbe de convergence pour la

méthode avec θ = 0 et γ0 = 100E, tel que

γi|Ki∩ΓiC
=

γ0

hKi

.
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1%

10%

100%

h

H
1
 r

e
la

ti
v

e
 e

r
r
o

r

 

 

norm on Ω
1
  (slope=1.0867)

norm on Ω
2
 (slope=0.97363)

(a) (b)

Figure 1: Courbe de convergence en 2D pour la méthode θ = 0 et la norme H1 de l’ erreur
relative, avec γ0 = 100E et des élément finis de Lagrange P1 (a) et P2 (b).

Comme prévu par l’analyse mathématique la convergence est obtenue avec des taux

optimaux.

L’environnement libre GetFEM ++ 1 a été utilisé pour effectuer les tests. Tous les détails

de la construction et des analyses de la méthode ainsi que les résultats numériques sont

donnés au chapitre 3 du manuscript et aussi publiés dans l’article [CMR16].

0.1.2 Méthode de Nitsche en grandes déformations

Soit Ω ⊂ Rd un ensemble ouvert borné qui présente la configuration de référence. Le

domaine Ω représente, cette fois, tout les corps susceptibles d’entrer en contact (un seul

pour l’auto-contact) et Γc est l’union de toutes les surfaces de contact dans la configura-

tion de référence.

La configuration déformée Ωt est définie à travers la transformation ϕ qui relie tout point

X de la configuration de référence au point x ∈ Ωt. On définit ainsi le déplacement u par

rapport à la configuration de référence par: u(X) = ϕ(X)−X .

Pour étendre notre méthode au frottement de Coulomb, on considère un processus quasi-

statique et le cas statique sera traité comme un cas particulier.

Étant donné que le choix d’une loi de comportement n’est pas central dans l’approximation

proposée du contact, nous allons considérer une énergie potentielle globale J (u) dépendante

d’un potentiel hyper-élastique W (F). Notons, par ailleurs, le premier tenseur de Piola-

1http://getfem.org
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Kirchhoff

σ̂ =
∂W

∂F
(F),

qui sert à définir la contrainte de contact: σ̂
N

= σ̂(u)Nx en ∂Ω. En définissant une

fonction de correspondance qui relie un point x d’une surface de contact à son projeté

y ∈ ΓtC , on peut définir la fonction de gap g(u). Cette fonction va dépendre du choix

du mapping et ainsi ce choix influence naturellement notre méthode. Dans le chapitre 4

deux stratégies de mapping sont introduites: la projection et le lancé de rayon puis une

comparaison entre les deux est donnée.

Dans ce formalisme les conditions de contact sont:

g(u) ≥ 0 (4a)

σ̂n(u) ≤ 0 sur Γc. (4b)

σ̂n(u)g(u) = 0 (4c)

Et celle de frottement de Coulomb sont:
‖σ̂t(u)‖ ≤ −F σ̂n(u) si v = 0,

σ̂t(u) = F σ̂n(u)
v

‖v‖ sinon,
(5)

où F est le coefficient de frottement de Coulomb et v une vitesse définie de façon objec-

tive ( voir section 2.1.2.2 du chapitre 2) Comme en petites déformations, les conditions

de contact et de frottement (4) et (5) sont équivalentes à l’équation (6) qui intègre les

conditions de contact dans sa composante normale et les conditions de frottement dans

la composante tangentielle :

Cγ,F (σ̂
N
, g,v,nx) = σ̂

N
, (6)

où Cγ,F est un opérateur non linéaire défini par :

Cγ,F (σ, g,v,n) = −[σ · n + γ g]R− n + PB(n,F [σ·n+γ g]R− )(σ − γ v).

PB(n, τ) est la composition d’une projection sur le plan tangent correspondant à la normale

n et la projection sur la boule de rayon τ .

En considérant l’équilibre et le principe d’action réaction en x et y, on obtient le

problème variationnel suivant:
DJ (u)[δu]− 1

2

∫
Γc

θ

γ
σ̂

N
(u) · Dσ̂

N
(u)[δu] dΓ

+
1

2

∫
Γc

1

γ
Cγ,F (σ̂

N
, g,v,nx) · D

(
θσ̂

N
+ γ(u(Y)− u(X))

)
[δu] dΓ = 0 ∀ δu ∈ V ,

(7)

Le paramètre θ est un réel qui, comme en petites déformation, sert à généraliser la

méthode.
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Ce problème correspond à une méthode non biaisée où on intègre sur toutes les surfaces

de contact Γc.

Une formulation plus complète de la méthode ainsi qu’une preuve qu’elle dérive d’un

potentiel d’énergie dans sa version symétrique (θ = 1) sont données dans le chapitre 4.

Remarque 0.1.1. L’avantage essentiel de la méthode proposée est qu’elle est consis-

tante sans ajout de variables supplémentaires. Mais l’inconvénient le plus important de

cette méthode est l’utilisation de la loi de comportement ainsi que de sa dérivée. Le

problème tangent fait alors intervenir la dérivée seconde de la loi de comportement (dérivée

troisième du potentiel), via le terme D2σ̂
N

(u)[δu,∆u]. Ce terme peut être difficile à ex-

pliciter pour des lois de comportement complexes. Il n’apparâıt cependant plus lorsque

θ = 0, ce qui rend cette variante plus attractive du point de vue de l’implémentation.

La méthode proposée a été implémentée sous GetFEM++ et testée à travers quelques

tests classiques. Les différents tests et les résultats sont détaillés au chapitre 4 ainsi que

dans l’aricle [MRC17].

Contact de Hertz

Parmi ces tests, le test de contact de Hertz permet de vérifier la capacité de la méthode

à approximer un profil de pression de contact connu avec un nombre limité de points

d’intégration. Comme en petites déformations la convergence de la méthode est influencée

par la valeur du paramètre de Nitsche γ et cette influence dépend de la valeur de θ

(voir [CHR15c,CMR16]). On teste alors la méthode pour différentes valeurs de γ et θ pour

vérifier son comportement et sa robustesse. La table 1 résume les résultats de convergence

pour un matériau de Saint-venant Kirchhoff et 3 points d’intégration par élément. Il est

remarquable que la version θ = −1 soit plus robuste et converge avec toutes les valeurs de

γ. Cette propriété démontrée théoriquement dans le cadre des petites déformations est

alors vérifiée numériquement pour les grandes déformations. La version symétrique θ = 1

est la plus sensible et ne converge que pour γ élevé. En comparant θ = 0 à θ = 1, on

remarque que la version simple (θ = 0) est plus robuste par rapport à γ même si on perd

également la convergence quand γ est faible. Les mêmes observations sont déduites avec

ou sans frottement. Nous mentionnons, aussi, que quand γ est très élevé la convergence

est plus difficile à obtenir, surtout avec frottement. Cela est dû au fait que, quand γ est

élevé, le problème devient raide et mal conditionné.

Tubes croisés

Le dernier exemple numérique présenté est le test des tubes croisés. Dans cet exemple,

nous simulons le contact entre deux cylindres élastiques creux croisés. Étant donné que

le déplacement imposé est grand, les déformations des tubes sont très importantes et

on observe une configuration d’auto-contact dans le tube le moins rigide. Ce test nous

permet donc de valider notre modèle pour le cas d’auto-contact.
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Sans frottement
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100

5.3 3.3
E 4.3 3.1

100 · E 9.2 4

1 E
100

29.8 59
E 30 64

100 · E 11.2 4.1

Table 1: Erreur moyenne de pression de contact et nombre moyen d’iterations de Newton sur
les 10 étapes de chargement

Figure 2: Déformation et pression de Von-Mises des deux tubes sans frottement et pour un
déplacement de 20, 30 et 40 mm avec γ = E et θ = 0
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0.1.3 Influence de l’erreur d’intégration pour le problème de

contact

Le calcul précis et efficace des intégrales prescrites dans les formulations de contact (3) ou

(7) est l’un des principaux défis des algorithmes de contact intégral. Ceci est dû au fait

que le problème de contact fait intervenir, en général, des surfaces non coincidantes et des

maillages non conformes, où nous intégrons des fonctions non-régulières qui ne peuvent

pas être évaluées exactement en utilisant des quadratures de Gauss standard. Cette non-

régularité a pour origine les termes par morceaux provenant des produits de grandeurs

définies sur les deux surfaces et aussi l’opération de projection présentant le basculement

entre les états contact/non contact et glissement/adhérence. L’intégration de telles fonc-

tions à travers des schémas de quadrature numérique classiques génère généralement des

oscillations de la solution sur l’interface de contact et empêche la méthode de passer les

“patch tests”.

Cette problématique est abordée au chapitre 5. Pour dépasser ces difficultés, nous

avons testé quelques stratégies d’integration et comparé leurs efficacité avec une formula-

tion de Nitsche.

L’erreur d’intégration est générée par deux type de discontinuité:

• Des discontinuités dites “faibles”: Elles sont présentes à l’intérieur de la surface de

contact. Ces irrégularités sont la conséquence de la discrétisation non conforme de

la surface de contact et elles se manifestent sous la forme d’une intégrande continue,

mais polynomiale par morceaux au sein d’un élément esclave.

• Des discontinuités “fortes”: Elles sont observées au bord de la surface de contact.

Celle ci sont, généralement plus singulières puisqu’elles sont causées par un change-

ment non-continu (un saut) d’état entre contact/non-contact, ou adhérence/glissement.

Pour pouvoir intégrer des fonctions avec de telles irrégularités, plusieurs techniques d’intégration

numérique ont été testées:

“L’ intégration par élément”

Dans ce cas, nous n’effectuons pas de découpage de la méthode d’intégration. Le schéma

d’intégration utilisé est celui de la surface esclave, tout en augmentant le nombre de

point de Gauss pour améliorer la précision. Cette stratégie, utilisée par exemple dans

[FW05, FW06], est la plus simple mais elle génère une erreur d’integration significative

même avec un grand nombre de point de Gauss.

“L’intégration par segment”

Pour gérer ces problèmes d’intégration, beaucoup de méthodes segment-à-segment utilisent

un algorithme de segmentation du schéma d’intégration. Nous appellerons cette technique

“l’intégration par segment”. L’ idée générale a été décrite pour les méthodes classiques

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI002/these.pdf 
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0.1. Résumé des travaux 9

de contact segment-segment dans [SWT85,ZW98]. Puis, la technique a été appliquée aux

formulations “mortar” du contact dans [ML00a, PL03]. Pour éviter toutes les disconti-

nuités dans l’intégration de la méthode (3), l’intégration par segment propose de couper

chaque élément esclave en fonction des mâıtres correspondants. Un segment d’intégration

(polygone) est ainsi construit par le chevauchement d’un élément mâıtre et d’un élément

esclave. La caractéristique principale de ces segments est que la fonction intégrée est

régulière et polynomiale sur chaque segment.

L’approximation avec l’intégration basée sur le segment est exacte à la précision machine

près pour le Patch test. (voir voir Tableau 2 et Section 5.1.3 du Chapitre 5).

Cependant en observant le temps de calcul, la segmentation augmente considérablement

le coût de calcul. Sachant que, dans le cas des grandes déformations, cette segmenta-

tion doit être effectuée pour chaque itération de Newton sur toute la surface de con-

tact et que l’opération est beaucoup plus difficile dans ce cas avec une géométrie 3D

car l’emplacement des points d’intégration n’est pas fixe, nous pourrions conclure que

l’utilisation de l’intégration par segments entrâıne des efforts considérables pour la mise

en œuvre et le calcul.

La “segmentation des bords”

Pour réduire le coût de calcul de l’intégration par segment, [FPW15] a proposé, pour la

méthode “mortar”, une combinaison des deux méthodes d’intégration pour trouver un

équilibre entre la simplicité de la première et l’exactitude de la deuxième. En notant que

les fortes discontinuités provoquent plus d’erreur de quadrature que les faibles, il s’agit

de couper le schéma d’intégration seulement lorsqu’une forte discontinuité se manifeste.

Cette technique a été appelée ”segmentation des bords” puisqu’on ne découpe que les

éléments du bord de la surface de contact.

En d’autres termes, le schéma d’intégration par segments sera utilisé pour les éléments

esclaves problématiques ayant de fortes discontinuités (bords libres, par exemple) et pour

les éléments esclaves non critiques à l’intérieur de la zone de contact, l’intégration par

éléments sera utilisée.

Ainsi, la segmentation des bords améliore la précision de l’approximation avec un

coût de calcul beaucoup plus faible; mais l’erreur causée par les faibles discontinuités est

toujours présente et nous ne réussissons toujours pas à passer le patch test.

L’intégration non-symétrique

Cette stratégie d’intégration a été introduite et testée pour la méthode “mortar” dans

[CLM97,MRW02]. En constatant que réduire l’erreur d’approximation nécessite une for-

mule en quadrature basée sur le côté esclave et que l’erreur de consistance est plutôt

réduite par une intégration du côté mâıtre, les auteurs proposent de combiner les deux

règles d’intégration. En adaptant le concept à la méthode de Nitsche, la formulation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI002/these.pdf 
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obtenue est:
DJ (uh)[δuh]− 1

2

∫
Γc

θ

γ
σ̂

N

h · Dσ̂
N

h[δuh] dΓ +
1

2

∫
Γc

θ

γ
Cγ,F (σ̂

N

h, g,vh,nx) · Dσ̂N

h[δuh]

+
1

2

∫
Γc

(
Cγ,F (σ̂

N

h, g,vh,nx)− Cγ,F (σ̂
N

h(Y), g(Y),vh(Y),ny)
)
· [δuh(X)] dΓ = 0

∀ δuh ∈ Vh.
(8)

Pour comparer ces différentes stratégies, nous avons effectué au chapitre 5 plusieurs

tests. Nous rapportons, à titre d’exemple, dans le Tableau 2 le maximum d’erreur de

pression et de gap obtenus avec les différents schémas, pour le patch test de Taylor avec

bords de contact coincidants.

Nbre de pts de Gauss/face 3 3 3 45 3

(méthode d’integration) maillage conforme(par segment)(par élément) (par élément)(non-symmetrique)

Max erreur relative de pression 2.48 · 10−12 2.9 · 10−12 3.4 · 10−3 1.51 · 10−4 7.26 · 10−11

Max gap(mm) 2.61 · 10−18 3.22 · 10−17 2.1 · 10−7 1.2 · 10−9 3.21 · 10−16

Temps de calcul (ms) 76.4 281 79.5 273 77.4

Table 2: Maximum d’erreur relative de pression et de gap et temps de calcul avec les differents
schémas d’intégration pour le patch test.

La “segmentation des bords” a été testée avec d’autres testes comportants des bords

non-conformes (voir chapitre 5).

D’après les tests effectués, l’intégration non symétrique semble être une bonne solution

pour réduire l’erreur d’intégration à l’intérieur de la surface de contact, mais au bords de la

surface il est nécessaire de découper le schéma d’intégration et dans ce cas la segmentation

des bords est la stratégie adaptée.

0.2 Structure du rapport

Cette thèse présente la modélisation mathématique et numérique et l’analyse de la méthode

de type de Nitsche pour le contact et le frottement. Elle constitue une présentation

générale de tous les aspects de la méthode de Nitsche et fournit l’analyse théorique et

numérique effectuée tout au long des études doctorales. Ce manuscript de thèse de doc-

torat est organisé comme suit:

Le Chapitre 1 est un chapitre introductif où nous presentons le contexte scientifique et

industiel de la thèse et résumons les objectifs et les réalisations du travail.

Le Chapitre 2 est un rappel préliminaire des problèmes de contact et de frottement pour

les petites et grandes déformations. En outre, la deuxième section de ce chapitre donne

un aperçu sur la méthode de Nitsche. Nous présentons dans cette partie du rapport la

conception de la méthode pour traiter les conditions aux limites, en particulier le contact

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI002/these.pdf 
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0.2. Structure du rapport 11

et le frottement.

Dans le Chapitre 3, nous construisons une formulation non biaisée du contact entre deux

corps élastiques avec un frottement de Tresca. La formulation décrit toute une classe de

méthodes à travers un paramètre de généralisation θ.

Le Chapitre 4 étend la méthode de Nitsche au cadre des grandes déformations avec un

formalisme non biaisé permettant de traiter plus simplement le cas d’auto-contact et de

contact multi-corps. En plus du contact, le frottement de Coulomb est pris en compte.

Le cadre envisagé est celui d’ un matériau hyper-élastique. Dans la dernière section du

chapitre, nous fournissons une validation numérique de la méthode.

Le dernier Chapitre 5 constitue une étude de l’influence de l’erreur d’intégration sur

l’approximation du contact. Cette étude est réalisée pour la méthode de Nitsche et elle

examine l’efficacité de la segmentation du schéma d’intégration et des différentes alterna-

tives à cette opération coûteuse. Dans ce chapitre, nous évaluons les performances pour

le patch test et l’impact sur l’ordre de convergence des différents schémas d’intégration.

Le manuscrit est cloturé par un chapitre de conclusion.
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The work presented in this thesis consists in a mathematical and numerical modeliza-

tion and analysis of a new finite element method allowing the simulation of contact and

friction.

Contact interaction of deformable bodies and its associated effects, as frictional sliding,

originate significant complexities in the numerical modeling and simulation of solid me-

chanics. This is chiefly due to the non-linearity of this type of boundary conditions and

the lack of smoothness of the simulated physical principles. Several challenges face the

construction of a truly general simulation tool for computational contact mechanics, with

the three most important aspects in the constraint enforcement: robustness, accuracy and

efficiency.

This study, carried out in partnership with the Manufacture Française des Pneu-

matiques Michelin, is motivated by the outstanding presence and influence of frictional

contact and self-contact phenomena in the tire simulation. The tire is a quite complex and

highly challenging structure for mechanical modeling and numerical simulation, since it

couples different types of non-linearities and undergoes very large deformations and high

pressures. Thus, the improvement of contact models to get further robust and accurate

simulation with a lower cost is always a challenging task.

In this context, this work is fulfilled in the framework of a partnership in the form of a

CIFRE contract between INSA of Lyon, the company Michelin and myself. This partner-

ship aims to offer a complete study of a new integral formulation of contact ensuring an

accurate and robust approximation of the frictional contact problem.

This introductive chapter is organized as follows: The first section 1.1 gives an overview

of the industrial context of the problem and highlights the different motivations and spec-

ifications of the work. The Section 1.2, describes the general scientific environment of

the thesis with a literature review of computational contact and the Nitsche’s method

proposed in the current work . We give, then, in section 1.3 an overview of the thesis

underlining its main achievements and contributions. Finally, Section 1.4 is dedicated to

a brief outline of this manuscript and its organization.
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1.1. Industrial context and objectives 13

1.1 Industrial context and objectives

As part of its R&D and innovation effort, Michelin adopts numerical modeling and simu-

lation as one of the main tools to ensure the safety and integrity of its various tire models

and to improve its production process. Users of this tool are therefore faced to more and

more complex modeling which involves a large number of degrees of freedom and all types

of non-linearities.

The tire is one of nonlinear industrial structures, locally incompressible (rubber), highly

heterogeneous (steel/rubber) and non isotropic operating in large strain. In addition,

self-contact situations within the lamellae and increasing stress especially when braking

could, further, complicate the simulation. But, nowadays, computational mechanics have

reached an advanced level of description allowing a relatively accurate approximation of

tire features and production process. The finite element method (FEM), which is the

standard approach in this numerical field, represents an efficient simulation tool for this

structural analysis.

When rolling or in the manufacturing stage, the tire is subjected to several contact config-

urations with road, sidewalk board, the mold or even itself. Thus, the models of contact

with friction are often present in the tire simulation. The complexity of tire mechanics

makes primordial the robustness and precision of this used models. Research needs in

the field of computational contact mechanics are, therefore, important for Michelin. The

numerical mechanics research team of the company conduced many previous research

projects in this field. The capitalized results are implemented in its finite elements code

BIBMEF.

The main three states of contact encountered for tire simulation are :

• Road-tire contact: in this case, the road could be considered as a rigid obstacle.

This simplification is very useful to improve the robustness of the contact method.

• Deformable body-tire contact: in some cases, especially in process simulation, the

rubber is in contact with other bodies that could not be modelized as rigid. The

contact method needs in this case to include mapping function between the bodies.

The robustness is, also, more influenced by the choice of the model parameters

(notably penalty parameter).

• Self contact: Meaning that the body is highly deformed that it contacts itself (See

Fig. 1.1). This configuration is present mainly at the level of the lamellae when

the tire undergos several efforts. It could be also observed in the simulation of the

tire manufacturing. This case could generate detection problems and, of course, it

is treated as a deformable-deformable contact.

Hence, contact models in Michelin’s code are mainly based on two approaches: deformable-

rigid contact and deformable-deformable contact, including self-contact. The most used

resolution method for the first type of contact is the nodal penalization technique. This

method has the advantage of being robust in this case even though it is not consistent and

allows more penetration error. Yet, for the def-def contact case this technique remains
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Figure 1.1: Self contact illustration

problematic in a nodal constraint. So, for the def-def contact, the mostly used method is

the mortar one. Important efforts were focused on the used formulation and the solving

algorithm of contact and resulted in a contact models generally accurate, robust and op-

timized. However, in case of self-contact or multi-body contact, mortar method has more

difficulties because it is impractical to a priori nominate a mortar (slave) surface and a

non-mortar (master) one.

On the other hand, recently, the Nitsche method (see Section 2.2), originally devel-

oped to impose Dirichlet conditions, has been adapted to friction and contact conditions.

Being a segment to segment formulation, the method was interesting to be applied to

def-def contact. Nitsche’s method is a primal method while remaining consistent and this

could make it more accurate than penalty methods without adding Lagrange multipliers.

Besides, this method has the advantage of not using Lagrange multipliers to represent

the contact forces what makes it more adapted to an unbiased formalism without distin-

guishing between slave and master surface. Thus, the method could be more adapted to

self-contact case.

These advantages of Nitsche’s method make it an interesting option for contact modeliza-

tion that could answer Michelin’s performance needs.

In this context, the first objective of the present work is to provide an adaptation of

the Nitsche’s method to the def-def contact problem with eventual presence of friction.

To maintain convexity, allowing more efficient mathematical analysis, we would consider

a Tresca type friction. This formulation has to adopt a non biased vision of the two

contact surfaces, so that, it will be directly applicable to the self-contact case. Beside the

implementation of the method to validate it numerically through some classic tests, we

need to perform a theoretical study in order to allow a better understanding of the method.

Since the rubber is generally modelized as an hyper-elastic material undergoing very

important deformations, it was mandatory to come through the restrictive frameworks of

small strain and linear elasticity. Hence, the second challenge of this study was to formu-

late a Nitsche type method of contact and friction in the large strain framework. This

Nitsche’s method would be formulated for an hyper-elastic material. For the friction,

it would be more efficient to construct our Nitsche’s method directly with a Coulomb

friction. In order to apply it to the self-contact problem, the approximation of frictional
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contact has to be non biased and would constitute the continuity of the previous work in

the small strain framework. For large deformations, the study would be concentrated on

a numerical examination of Nitsche’s method to evaluate its robustness and performance

for Newton’s resolution. In this study, we would validate the proposed method through

some academic tests and, eventually, compare the method’s performance with other clas-

sic contact methods before using it in some industrial applications.

Being an integral formulation, the accuracy and the performance of Nitsche’s method

depend on the used quadrature rule. For the mortar type methods, it has been preferred

to adopt an exact evaluation of integrals through a segmentation of the quadrature rule

when the meshes are not conformal. But the cost of this segmentation could be important

in the large strain three dimensional case. Thus, it could be worthwhile to investigate the

effect of numerical integration and such segmentation on the accuracy and the cost of the

studied Nitsche’s method. We could, as well examine the influence of the quadrature rule

on the convergence order.

Therefore, a third concern of this thesis would be the study of the integration rule influence

on the approximation and the comparison of several integration rules proposed in the

literature for other integral methods.

1.2 Scientific context and literature review

Contact phenomena are omnipresent in biological and mechanical systems, what makes

mandatory providing a better comprehension and modelization of this phenomena. Con-

tact mechanics can be viewed from different aspects. In some cases (e.g. in nano-

tribology), contact interaction is observed at an atomic scale. However, for most contact

applications, a macroscopic viewpoint with a classical continuum assumptions is sufficient.

Throughout this thesis, contact mechanics are considered as a subclass of continuum solid

and structural mechanics. Yet, with this assumption the physics of the contact interaction

is particularly rich and complicated, due to the multi-scale and multi-physical nature of

the phenomenon and its associated interface effects such: sliding friction, adhesion, heat

transfer, lubrication and wear.

From a mathematical point of view the contact is formulated as a boundary value

problem in which the main constraint to be respected is the geometrical non-inter pen-

etration. Besides, the effort transfer between contacting bodies has to be considered in

agreement with the second Newton law.

This seemingly simple problem is actually non-trivial and complex to describe and solve

mathematically as well as numerically. We are, in fact, faced to a nonlinear boundary

condition, since the permitted relative displacements and efforts on the contact surface

must be negative and complementary (see Fig 1.2). The contact constraints constitute

a boundary inequality instead of a classic variational equality. This new mathematical

structure requires new solution approach.
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Figure 1.2: Permitted normal pressure and relative displacement on a contact interface

In addition, when considering friction the problem becomes even more complex be-

cause most of the friction laws state that tangential resistance depends on the normal

contact pressure. Moreover, the nature of contact and friction law yields a non-smooth

energy functional resulting even more difficulties from a numerical point of view. We

can refer to the book of Kikuchi and Oden [KO88] for the mathematical formulation of

contact and friction.

Due to this complexity, only very few contact settings, could be analytically solved. As

an example, the work conducted by Hertz [Her82] on pressure profiles of contacting elas-

tic bodies is commonly considered as the origin of modern contact analysis. An overview

of the basic principles of contact mechanics, and the most important analytical solution

techniques can be found in [Joh85,Lur70,AM83] and [TG70].

Most of the methods used for computational contact mechanics are developed in the

context of the finite element method (FEM). Since the 1960s, the FEM has dominated

numerical approximation of partial differential equations for solid mechanics, thermody-

namics, and in particular, contact mechanics. The general FEM literature is abundant;

for example we refer to [Bat96,BLM00,Hug00,Red04] and [ZT05].

Contact formulation

The first weak formulations of the computational contact began with the works of Signorini

[Sig33, Sig59] who wrote the equilibrium of a linearly elastic body in frictionless contact

with a rigid foundation. The existence and uniqueness of a solution to such variational

inequalities problem were discussed in several works: [Fic72,KO88,MO87,MMG94,JE99]

and the stability of contact problem solution have been discussed in [Kla88]. The dynamic

case is treated in many publications: see e.g. [AP98,DEP11,HHLTIW12], but existence,

uniqueness and energy conservation still involves many difficulties (see [Ren10]) For the

standard FEM, it has been quite challenging to establish optimal convergence for contact.
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The first analyses in the 1970s were sub-optimal with a convergence in O(h
1
2

+ ν
2 ) for a

solution in H
3
2

+ν(Ω) ( 0 < ν < 1
2
): [SV77,Has77,HHN96] . The first fully optimal result,

without extra assumptions, for the standard FEM has been achieved recently, in 2015,

see [DH15]. We refer to, e.g., [BB00,HW05,Woh11,HR12,DH15] for more detailed reviews

on a priori error estimates for contact problems in elasticity.

Contact resolution

The contact constraints are, generally, brought as additional terms in the objective energy

functional by means of different techniques. The most common ones are:

• Penalty method: In this case the set of inequations associated to contact is

replaced with a non-linear equation that approximates them using a penalization

parameter that acts as a contact rigidity (see, e.g., [KS81, OK82b, OK82a, KO88,

CS07,CH13]), This method remains primal, and is easy to implement. Nevertheless,

consistency is lost, as penetration remains allowed and it is controlled by the penalty

parameter.

• Mixed method: A Lagrange multiplier is introduced to enforce contact con-

ditions (see, e.g., [HHN96, Hil00, BBR03, HW05, LR08, Woh11]). Resulting weak

form remains consistent, and characterizes the saddle-point of the corresponding

Lagrangian, but in this case, inf-sup compatibility between the primal space and

the dual one must be satisfied to ensure well-posedness (see, e.g. [Woh11]).

• Augmented Lagrangian method: The augmented Lagrangian method is a

sort of Lagrange multiplier formulation regularized by penalty functions. It yields

a smooth energy functional and fully unconstrained problem. The method has

been proposed in [AS58] for equality constrained optimization and then in [Roc70]

and [Roc73] for inequality constraints. This technique has been considered often in

the context of incompressibility constraints in, for example, [GLT89]. In [Pow69] the

inf-sup condition is avoided by an independent consecutive updating of the primal

and dual degrees of freedom resulting on an Uzawa’s algorithm. The augmented La-

grangian method was adapted to the contact problem in [GLT89,MP85,SL92] and

to frictional contact in [Ala88, AC91]. Several improvements were applied to the

method to improve its robustness and convergence speed: see e.g. [ZDL12,HR10]

[AC91] provides a good overview and discussion of these different enforcement tech-

niques of contact constraints.

• Nitsche’s method: See next paragraph.

Nitsche’s method

In 1971 J. Nitsche proposed a new technique to impose Dirichlet conditions within the

variational formulation without adding Lagrange multipliers [Nit71]. In this method the

boundary condition is imposed weakly on the surface through a consistant term regu-

larized by a real parameter (Nitsche’s parameter). Conversely to standard penalization
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techniques, the resulting method is consistent. Moreover, unlike mixed methods, no ad-

ditional unknown (Lagrange multiplier) is needed. Nitsche’s method has been widely

applied on problems involving linear conditions on the boundary or at the correlation of

sub-domains: see, e.g. [Ste95] for the Dirichlet problem or [BHS03] for domain decom-

position with non-matching meshes. More recently, in [HH04a] and [HH06] it has been

adapted for bilateral (persistent) contact, which is, still, a linear boundary condition. A

Nitsche-based formulation of the unilateral (non-linear) contact problem was introduced

in [CH13] and generalized in [CHR15c] to encompass symmetric and skew-symmetric vari-

ants. Recently, various extensions of Nitsche’s method were proposed:

Some non-symmetric variants have been reconsidered recently, due to remarkable robust-

ness properties (see, e.g., [Bur12, BB16]). A simple adaptation of the Nitsche method

to Tresca’s friction is proposed in [Cho14]. In [AHD14] a Nitsche stabilized approach

was introduced for frictional sliding problem. The case of contact in elastodynamics is

treated in [CHR15a,CHR15b]. The proposed scheme is inspired from [HLT06]. In [FPR16]

Nitsche’s method is combined with a cut-FEM / fictitious domain discretization, in the

small deformations framework and a residual-based a posteriori error estimates are pre-

sented in [CFH+2]. The topic of small-sliding frictional contact on 3D interfaces is the

object of [ASJ+15]. In [HRS16] a least-square stabilized augmented lagrangian method,

inspired by Nitsche’s method, is described for unilateral contact. This has been followed

recently by some papers [BHL16a, BHLS17, BH17] that explore further the link between

Nitsche and the augmented Lagrangian, for the contact problem, the obstacle problem

and interface problems with adhesive contact. A penalty-free Nitsche’s method has been

designed and studied in [BHL16b].

An overview of the Nitsche’s method for contact problems is given in [CFH+17].

The Nitsche’s method was used only for small strain; but, as mentioned in section 1.2,

the industrial applications require generally a large strain formulation. Therefore, a main

challenge of the current work is to provide an adaptation of Nitsche’s method to the large

strain framework.

Contact discretization

Another difficulty of the contact problem resolution is the spatial discretization. In fact,

the determination of the values involved in the model’s equations is difficult when both

bodies are deformable. First contributions to contact discretization within the FEM can

be traced in [FZ75] and [HTS+76], where contact conditions were formulated with a very

simple nodal approach, which requires node-matching meshes at the contact interface and

this study was restricted to small deformations.

Thereafter, a different approach was adopted to model the contact, typically denoted as

node-to-surface or node-to-segment (NTS) approach. This method is characterized by a

point-wise enforcement of the non-interpenetration condition at the finite element nodes

of a chosen ”slave” surface. The reader is referred to [BC85,HGB85,BH90,Lau92,SL92,

LS93a] and [WVS90,ZDL09b] for a comprehensive overview. The use of the NTS method

involves a loss of accuracy in the calculation of displacements and stresses in the contact
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area. This results from the amplification of spatial discretization errors caused by the

node-wise contact constraint enforcement. A way to overcome this problem is the use

of the integral mortar method. The first use of an integral constraint of contact was

proposed with the called “segment-to-segment” (STS) discretization in [SWT85, PT92]

and [ZW98] .

Mortar methods were originally introduced as a domain decomposition technique; see

[BMP94, BB99, SS00]. They are characterized by an imposition of the interface con-

straints in a weak sense. Early applications of mortar finite element methods for con-

tact mechanics can, for example, be found in [BBHL98, Hil00], and [ML00b] in the

small strain case and then the method was adapted to the large deformations framework

in [PL04a, PL04b, FW05, FW06, TFW09, HB11, PWGW12]. In [FHW04], a comparison

between Nitsche’s method and mortar-type ones is provided for linear elasticity.

Other techniques have been proposed to solve the contact problem such domain de-

composition ( [LT94,LTS95]). This method is used to reduce the calculation time, espe-

cially for multi-bodies contact, by treating an iterative problem instead of global solving

(see [BAV01, LK03]) . We mention, also, contact domain method [OHC+09, HOW+09,

HH07,WSS13] and intermediate mortar surface method [ML00b]

Other contact methods

Apart from the standard FEM, many other approximation methods were used to solve

the contact problem, such as:

• Isogeometric analysis: introduced in 2005 by Hughes [HCB05] and applied to do-

main coupling in [HB12,ASWB14,DVK15] and to the contact problem in [TWH11,

DLWZ12,DLWH14,DLS+14].

• Extended finite element method (X-FEM) (see [MDB99, DMB01, Amd13]):

although this method is generally used for crack mechanics, it could be used for the

modeling of nonlinear phenomena located near contact boundaries (surface rough-

ness, damage,....).

Meshfree methods (see [Yvo04, Liu13] and refrences therein): used for contact

because of their advantage of being more malleable. So, the densification of the

contact areas can be easily performed. These methods are used, especially, for

forming application and thermal models.

A comprehensive introduction to most of topics related to computational contact me-

chanics can be found in the textbooks by Kikuchi and Oden [KO88], Laursen [Lau02] and

Wriggers [Wri06].
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Unbiased contact formulation

The most common paradigm to formulate contact problem of two deformable bodies is

known as the master/slave formulation. In this approach one distinguishes between a

master surface and a slave one on which is prescribed the non-interpenetration condition.

A presentation of this formulation can be found in most of the contact literature (see for

example [Lau92, Lau02]). This approach is confronted with important difficulties in the

case of self-contact and multi-body contact where it is impossible or impractical to a priori

nominate a master surface and a slave one. Automating the detection and the separation

between slave and master regions in these cases may generate a lack of robustness since

it may create detection problems.

Consequently, to avoid these difficulties, we need a called “unbiased” formulation of

the contact. In such formulation we do not distinguish between a master surface and

a slave one. Several previous works investigated the construction of unbiased methods.

One can refer for example to [KROM99] for a global optimization managing contact and

self-contact in the same formalism, [Pan08] where the contact constraint is approached

successively by convex sets, [PA08] that solves the contact problem via a fictitious do-

main strategy, [HH07] for an oriented domain strategy, [OHC+09] with another fictitious

domain type strategy as well as [WSS13] with the modeling of an intermediate body.

The “two-pass” method is also an often adopted strategy in which the contact conditions

are imposed on both surfaces. This last over-constraints, generally, the contacting sur-

faces, as noted by Kikuchi and Oden [KO88],p:165. This method was formulated with

penalty (see [PJS95,SL13,SD15]), and with Lagrange multipliers (see [PS98,JP01,SP05]).

For the mixed methods, this kind of formulation is problematic because the use of two

different multipliers for the same contact condition is not possible; then the gap constraint

is prescribed in some nodes and the pressure continuity is enforced in some others. The

method used in [SL13, SD15] is also called “two-half-pass” contact method because each

pass accounts only for half of the contributions of common biased approaches.

Since, as mentioned in section 1.1, the application case of the method proposed by

this work is, among others, self-contact, an unbiased formulation of the Nitsche’s method

is more adapted to the thesis objectives. Since Nitsche’s method uses the contact stress

instead of a Lagrange multiplier, it is very simple to divide this contact effort equitably

on both of contact surfaces and a “two-half-pass” method is directly obtained. Therefore,

Nitsche’s method seems to be more natural to adapt to the unbiased formalism only by

using the pressure continuity condition (see section 3.1).

Numerical integration

Nitsche’s method is a fully integral method for which the contact conditions are im-

posed weakly through boundary integrals. For a two deformable bodies contact problem,

one integrates fields that are discretized over two different (not necessarily matching)

meshes which generates a difficulty of exactly computing boundary integrals. Typically,
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the approach that is used in mortar-type methods is to mark out elements intersections

(segments) between every two contact elements and evaluate the integrals on these seg-

ments (see [PL04a, PL02]). This segmentation process is challenging, especially in the

large strain three dimensional case.

Due to this implementation and computation complexity, it has been seen appealing

to use a higher order quadrature rule on the slave mesh without segmentation (see

[FW05,TFW09]). [FPW15] provides a detailed comparison between these two integration

techniques. A new segmentation approach is proposed in [WB17] to improve efficiency of

the integration procedure. In [CLM97, MRW02, BBWW15] a non-symmetric integration

resulting in a Petrov-Galerkin approach is proposed and tested for the mortar method.

Only few previous studies treated the influence of the quadrature error on the con-

tact approximation and the convergence optimality. This observation suggest that an

evaluation of the quadrature error for Nitsche’s method, in order to quantify and control

this error and to propose numeric strategies to reduce it, is an important purpose of the

current study.

1.3 Overview and achievements of the thesis

In this thesis, we present a new formulation of frictional contact between two elastic bod-

ies based on the Nitsche method. Nitsche’s method is a consistent and primal method

to treat contact. Its integral aspect allows it to be very suitable to deformable bodies

contact with non-matching meshes.

The principal motivation of this work is the need of a simple and efficient approximation

method for self-contact. To meet this requirement, we propose an unbiased method in

which we do not distinguish between a master surface and a slave one and we impose the

non-interpenetration and the friction conditions on both of them. Nitsche’s method is

more adapted to the unbiased formalism since the unbiased Nitsche’s method is obtained

without any additional consideration.

A first study in the framework of small strain is performed in order to adapt Nitsche’s

method to the two elastic bodies contact problem with an unbiased description of frictional

contact. The small strain assumption allows us to obtain theoretical results proving the

consistency of the method as well as its well-posedness and optimal convergence. These

mathematical analysis are complemented by a numerical study of convergence. This part

of the work was the subject of a first submitted and recently accepted journal article

: [CMR16].

Since the analysis in the small strain case was promising, the next step was to propose

a Nitsche’s method for a non-linear material in the large strain framework. The proposed

extension of Nitsche’s method to contact and friction in the large strain framework is con-

sidered with a Coulomb friction instead of Tresca friction. A generalization parameter θ is

considered to cover an entire set of methods with different numerical properties. To prove
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the accuracy of the method for large deformations, we give an extended numerical study

including several academic and industrial tests. The method is constructed independently

of the mapping function, but its performance depends on the used mapping. Therefore,

we gave a brief comparison of two mapping strategies: projection and ray-tracing. The

formulation of the Nitsche’s method in the large strain case was the subject of the pub-

lished journal article : [MRC17].

Many integration rules were proposed in the literature for other integral methods.

Being a fully integral method, the performance of Nitsche’s method depends, obviously,

on the used quadrature rule. Therefore, the third part of this work is devoted to the study

of the integration rule influence on the approximation. This study covers a comparison

of the method’s accuracy and performance with different quadrature rules. The achieved

work allowed the participation to the redaction of the generic overview paper on the

Nitsche’s method for contact: [CFH+17].

1.4 Outline

This thesis presents mathematical and numerical modelization and analysis of Nitsche’s

type method used to solve the frictional contact problem. It constitutes a generic pre-

sentation of all aspects of Nitsche’s method for contact and provides the theoretical and

numerical analysis performed along the PhD preparation. The remainder of this thesis is

organized as follows:

Chapter 2 is devoted to a preliminary reminder of the governing equations of contact

and friction problems for small and large strain. In addition, it presents the basic con-

cepts of contact resolution. The second section of this chapter is an overview of Nitsche’s

method. We provide the derivation of Nitsche’s method to treat boundary conditions, in

particular contact and friction.

In Chapter 3, we build an unbiased formulation of the two elastic bodies contact

problem with a Tresca friction. The formulation describes a whole class of methods

through a generalization parameter θ. We carry out a mathematical analysis to prove

the strong-weak problems equivalence, the consistency, the well-posedness and the op-

timal convergence. The third section of the chapter involves a numerical study of the

convergence and the influence of Nitsche’s parameter γ0.

Chapter 4 extends the Nitsche–based approximation to the large strain framework

with an unbiased formalism. In addition to contact, Coulomb friction is considered. Pos-

sible self–contact configuration could be taken into account. The method is built with a

generic hyper-elastic material. The chapter includes, as well, a comparison between two

classical mapping strategies: projection and ray-tracing. In the last section of the chap-

ter, we provide a numerical validation of the method with several tests. The influence of

Nitsche’s parameter for different variants (θ) is investigated numerically.
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The Chapter 5 hands over a study of the influence of the integration error on con-

tact approximation. This study is performed for Nitsche’s method and it inspects the

efficiency of segmenting the integration rule and the different alternatives to this costly

operation. In this chapter, we evaluate patch test performance and the impact on the

convergence order of different quadrature rules.

The manuscript is closed by a last chapter in which we remind the main conclusions

drawn in this work and the possible perspectives and future works.
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Chapter 2

Contact mechanics and Nitsche’s

method
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2.1 Outline of contact mechanics

Introduction

In continuum mechanics, the small strain theory is a mathematical approach to describe

the deformation in which the displacements of the material particles are assumed to be

much smaller than any relevant dimension of the body. Thus, its geometry and the consti-

tutive properties of the material (such as density and stiffness) at each point of space can

be assumed to be unchanged by the deformation. With this assumption, the mechanical

equations are considerably simplified because of the geometric linearity meaning that the

strain tensor ε(u) is a linear function of the displacement u. This simplification will allow,

especially, mathematical analysis of the contact problem.

This approach is contrasted with the ”large strain” or ”finite strain” theory where the

geometry and material properties are changed by deformation; so that, one has to distin-

guish between the initial and the deformed (or actual) configuration.

The first formulations of the contact problem were performed in the small strain as-

sumption by Signorini [Sig33] to describe a unilateral contact configuration between an
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elastic body and a rigid obstacle. The Signorini conditions consist in a simple geometric

description of the non-penetration, using a normal relative displacement of the contacting

surfaces, as well as contact pressure that has to be compressive. These two conditions are

complementary since when the contact appears the normal relative displacement have to

be zero and when no contact is present the contact stress vanishes (see 2.2). Signorini

problem is non linear and non differentiable at the contact boundary since the change

of phase at the contact zone i.e. contact-no contact transition is highly nonlinear with

respect to u. To simplify the analysis, even more, some works consider a linear, or “bilat-

eral ”, contact were the contact is imposed on the whole contact zone and no transition

could appear (see 2.4). We refer to [AC88] for a detailed study of contact in the small

strain framework.

In the large strain case the non-interpenetration is imposed through a gap function

g(u) (instead of normal relative displacement) describing the normal distance between

the contacting surfaces in the deformed configuration. The pressure condition is given in

the deformed contact surface Γtc through the Cauchy stress vector or in the initial one Γc
using the first Piola-Kirchoff stress tensor. The contact conditions in this case are named

”Karush-Kuhn-Tucker” or ”Hertz-Signorini-Moreau” conditions. A comprehensive pre-

sentation of computational contact mechanics, especially for large train, can be found in

the textbooks by Laursen [Lau02] and Wriggers [Wri06].

To approximate the contact problem with FEM, the strong problem is substituted by

a variational one. Due to the contact conditions, the weak formulation of signorini’s prob-

lem is classically written as a variational inequality (see [Fic64,KO88]). The inequality is

solved in convex cone K of admissible displacements with respect to non-interpenetration

condition.

To be solved the contact problem is in general considered from an optimization stand-

point by constructing a general framework in which the contact contributions are indicated

generically in a system functional to be minimized in the solution process. The functional

corresponds to the virtual work of the system and the minimization is performed under

the contact constraints. The optimality system can be easily extended to friction since

the friction conditions are similar to contact ones. In the small strain framework, we

choose to consider the Tresca friction to allow theoretical analysis. Several mathemati-

cal formulations can be applied to incorporate the contact constraints into the variational

formulation. Most of them have been developed to solve generic constrained minimization

problems (see e.g. [Ber84]). The penalty method and the Lagrangian multipliers formu-

lation are commonly used. Among other relevent methods, we mention the augmented

Lagrangian formulation. The Nitsche’s method is described in details in the second part

2.2 of this chapter.

The obtained non-linear problem is solved in implicit applications, generally, with a gen-

eralized Newton-Raphson algorithm [AC88]. The term “generalized Newton’s method”

(or “semi-smooth Newton’s method”) comes from the fact that the optimality system is

not differentiable but only Lipschitz-continuous and piecewise differentiable. However, no
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special treatment is needed because from a numerical viewpoint, it is quite improbable

to come across a non-differentiable point. In [Ren13], the author provides a comparison

of generalized Newton’s method performance with different discretization and resolution

methods.

Two other major difficulty of the contact problem resolution are the spatial discretiza-

tion and the contact detection. These problematics are linked since detection algorithms

are developed for a discrete configuration. Many discretization techniques have been pro-

posed and developed. The most common ones are node-to-segment methods and mortar

methods. In this brief introduction to contact problem we will not broach these problem-

atics. The presented models are described in the continuum framework.

In this first part of the chapter we provide a brief outline of the frictional contact

modeling and resolution. The section 2.1.1 is devoted to the unilateral contact in the

small strain assumption. In section 2.1.2, we give the contact formalism for large strain.

And, finally, the third section 2.1.3 presents an outline of different classic methods to

solve contact.

2.1.1 Unilateral contact with Tresca friction

In this first section we give the essential notions and concepts of the contact mechanics

continuum. We make, in a first time, the assumption of small strain with linear elastic

body expected to income into contact with a rigid foundation.

Figure 2.1: Basic notations for the unilateral contact problem.

The considered body is represented by the domain Ω in Rd with d = 2 or d = 3 (see

Figure 2.1 when d = 2). Plane strain assumption is made when d = 2. We partition

the boundary ∂Ω of Ω in three nonoverlapping parts ΓD, ΓN and the contact/friction

boundary ΓC , with meas(ΓD) > 0 and meas(ΓC) > 0. The contact/friction boundary is

supposed to be a straight line segment when d = 2 or a planar polygon when d = 3 to

simplify. The surface of effective contact is included in ΓC , but not necessarily all of it.
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The normal unit outward vector on ∂Ω is denoted n. The body is clamped on ΓD for

the sake of simplicity. It is subjected to volume forces f ∈ (L2(Ω))d and to surface loads

t ∈ (L2(ΓN))d.

The unilateral contact problem with Tresca friction under consideration consists in

finding the displacement field u : Ω → Rd verifying the equations and conditions (2.1)–

(2.2)–(2.3):

div σ(u) + f = 0 in Ω, σ(u) = A : ε(u) in Ω,

u = 0 on ΓD, σ(u)n = t on ΓN ,
(2.1)

where σ = (σij), 1 ≤ i, j ≤ d, stands for the stress tensor field and div denotes the

divergence operator of tensor valued functions. The notation ε(v) = (∇v + ∇v
T
)/2

represents the linearized strain tensor field and A is the fourth order symmetric elasticity

tensor having the usual uniform ellipticity and boundedness property. For any displace-

ment field v and for any density of surface forces σ(v)n defined on ∂Ω we adopt the

following decomposition into normal and tangential components:

v = vnn + vt and σ(v)n = σn(v)n + σt(v).

The unilateral contact conditions (Signorini conditions) on ΓC are formulated as fol-

lows:

un ≤ 0 (i) σn(u) ≤ 0 (ii) σn(u)un = 0 (iii) (2.2)

The first Signorini condition simply represents the geometric constraint of non-penetration,

whereas the second condition implies that no adhesive stresses are allowed in the contact

zone. Finally, the third one, well-known as complementarity condition, forces the gap to

be closed when non-zero contact pressure occurs (contact) and the contact pressure to be

zero when the gap is open (no contact).

Let s ∈ L2(ΓC), s ≥ 0 be a given threshold. The Tresca friction conditions on ΓC
read:  |σt(u)| < s if ut = 0, (i)

σt(u) =− s ut

|ut|
otherwise, (ii)

(2.3)

where | · | stands for the euclidean norm in Rd−1. Note that conditions (2.3)–(i) and

(2.3)–(ii) imply that |σt(u)| ≤ s in all cases: if |σt(u)| < s, we must have ut = 0, and

this presents the stick state and when|σt(u)| = s we get slip.

Remark 2.1.1. The case of bilateral contact with Tresca friction can be considered too,

simply substituting to equations (2.2) the following one on ΓC:

un = 0. (2.4)
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The case of frictionless contact is recovered setting s = 0 in (2.3).

Remark 2.1.2. The conditions of Coulomb friction can be written similarly as: |σt(u)| ≤ −Fσn(u) if ut = 0, (i)

σt(u) = Fσn(u)
ut

|ut|
otherwise, (ii)

(2.5)

where F is the friction coefficient. In the Tresca friction model, we assume that the

amplitude of the normal friction threshold is known (i.e., F |σn(u)| = s, see, e.g., [KO88,

Section 10.3]). [Ren06] provides a uniqueness criterion for Signorini problem with Colmob

friction.

To get the weak formulation of the contact problem, necessary for the FEM, we in-

troduce the Hilbert space V and the convex cone K of admissible displacements which

satisfy the non-inter penetration on the contact zone ΓC :

V :=
{

v ∈
(
H1(Ω)

)d
: v = 0 on ΓD

}
, K := {v ∈ V : vn = v · n ≤ 0 on ΓC} ,

and we define

a(u,v) :=

∫
Ω

σ(u) : ε(v) dΩ, L(v) :=

∫
Ω

f · v dΩ +

∫
ΓN

t · v dΓ, j(v) :=

∫
ΓC

s|vt| dΓ,

for any u and v in V.

The weak formulation of Problem (2.26)–(2.3) as a variational inequality of the second

kind (see [Glo80]), is:{
Find u ∈ K such that:

a(u,v − u) + j(v)− j(u) ≥ L(v − u), ∀v ∈ K.
(2.6)

In the frictionless case, the Stampacchia theorem ensures that this problem admits a

unique solution (see, e.g., [KO88, Theorem 10.2, Chapter 10]). The frictional problem

(2.6) admits, as well, a unique solution (see, e.g., [Glo84, Theorem 5.1, Remark 5.2]).

Moreover this solution is the unique minimizer on the non-empty closed convex K of the

functional

J : V 3 v 7→ 1

2
a(v,v)− L(v) + j(v) ∈ R. (2.7)

So, to solve the contact problem we could use the available methods for constrained

optimization of J under the constraint imposed in K.

Remark 2.1.3. In the case of bilateral contact (condition (2.4) instead of (2.2)), the

same weak formulation (2.6) holds, replacing the convex cone K by the vector space:

Kb := {v ∈ V : vn = 0 on ΓC} .

The case of two contacting deformable bodies is presented in section 2.2.2. That case

is more complex to treat because the contact detection and the contact discretization are
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much more difficult.

2.1.2 Contact in the large strain case

2.1.2.1 Notations for the large strain framework and algebraic operators

We give in this paragraph some notations for the large strain tensors and algebraic oper-

ators. These notations will be used in the next sections as well as in the Chapter 4.

The gradient of a quantity in the deformed (resp. reference) configuration will be noted

∇ (resp. ∇X). To describe the deformation we introduce as usual the identity tensor of

size d×d, denoted by I and the deformation gradient F = I+∇Xu. We introduce as well

ε(u) =
1

2
(∇u +∇uT ) =

1

2
((∇Xu)F−1 + F−T (∇Xu)T ).

The jacobian of the motion transformation ϕ is denoted by J = det F. We introduce also

the Cauchy-Green tensor C = FTF, and the Green-Lagrange tensor E = 1
2
(C − I). We

will note σ the Cauchy stress tensor, σ̂ = JσF−T the first Piola-Kirchhoff stress tensor

and S = JF−1σF−T the second Piola-Kirchhoff stress tensor. We define σ̂
N

= σ̂N the

contact stress on ∂Ω (where N is the outward unit normal to ∂Ω).

The operator Tn refers to the projection on the tangent plane corresponding to normal

vector n. Moreover, we consider the following notations to simplify the mathematical

presentation.

The directional derivative of a quantity A with respect to the displacement u in direction

δu will be denoted by DA(u)[δu] or even by DA[δu] if the argument of the quantity A is

not ambiguous. This directional derivative is defined as

DA(u)[δu] = lim
ε→0

A(u + ε δu)− A(u)

ε

when this limit exists.

The projection onto R− is defined as:

[a]R− =

{
a if a ≤ 0 ,

0 if a > 0 ,

and the projection onto a ball centered at the origin and with a radius τ is:

PB(τ)(q) =

{
q if ‖q‖ ≤ τ ,

τ q
‖q‖ otherwise,

(2.8)

where ‖ · ‖ is the euclidean norm on Rd.
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The notation H(·) stands for the (multivalued) Heaviside function: for any x ∈ R,

H(x) =


1 if x > 0,

[0, 1] if x = 0,

0 if x < 0.

2.1.2.2 Contact problem

In the large strain, the mechanical continuum is different. In this section we give the

general case of two deformable bodies contact. The rigid obstacle (or Signorini) problem

is easily obtained as a sub-case. In Figure 2.2, the large deformation frictional contact

problem involving two bodies is shown schematically.

ϕ1

Γ2
D

(Γ2
D)

t

(Γ1
D)

t

Ω1

Ω1

Γ1
c

Γ2
c

Γ1
N

Γ2
N

(Γ1
N)

t

(Γ1
c)

t

(Γ2
c)

t

(Ω1)t

(Ω2)t

(Γ1
N)

t

Γ1
D

ϕ2

b

b

b

b

y

x

b

b

Y

X

t1

t2

Figure 2.2: Basic notation for the two body large deformation contact problem.

As indicated in the figure, the reference configurations of the two bodies are repre-

sented by the open sets Ω1 and Ω2 in Rd, d = 2, 3. To simplify the notations, a general

index i is used to represent indifferently the 1st or the 2nd body. The bodies undergo

motions, denoted ϕi, which lead them to the deformed configurations (Ωi)t, and cause

them to contact and produce interactive forces on some portions of the contact surfaces

Γic (deformed to (Γic)
t). As in 2.1.1, the boundary of each body ∂Ωi consists in three

non-overlapping parts ΓiD where displacements is imposed, ΓiN where a tractions ti are

prescribed and ΓiC where contact could appear. Each body could be, as well, subjected to

volume forces f i ( such as gravity). The actual, so-called active contact surface Γa ⊆ Γc is

unknown, possibly continuously changing over time and thus has to be determined as part

of the nonlinear solution process. A point Xi ∈ Ωi is related to its deformed coordinates

xi ∈ (Ωi)t through the unknown displacement ui = ϕi − Id.
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In the current work, we adopt a Lagrangian description of the boundary value problem

(BVP) in which the the unknown of interest will be u = (u1,u2).

Thus, the system stress is defined through the first Piola-Kirchhoff tensor σ̂(ui) and the

stress on the bodies boundaries is noted σ̂
N

(ui) = σ̂(ui)Ni. Apart of contact condition,

the BVP in material description in a quasi-static approach, can be summarized as follows:

div σ̂(ui) + f i = 0 in Ωi,

ui = 0 on ΓiD,

σ̂
N

(ui) = ti on ΓiN ,

(2.9)

In the parlance commonly used in the literature, the parameterizing surface is termed

the slave (or contractor) surface, where lives the point X (resp. x in the deformed configu-

ration), while the opposite surface is often called the master, or target surface, where is the

corresponding point Y (resp. y in the deformed configuration) see, e.g., [HGB85,BH90].

If we let (1) refers to the slave side and (2) refers to the master one, x and y are related

by the mapping function Π such:

Π : (Γ1
c)
t −→ (Γ2

c)
t

x 7−→ y = Π(x).

The choice of these two surfaces introduces a bias into the numerical approximation. Thus

in Chapter 4 we discuss and deal with this difficulty. The choice of the this mapping func-

tion influence significantly the contact approximation since it has a direct impact on the

detection algorithm and the expression of the normals and gap.

In section 4.1.2 of the fourth chapter, we give and compare two classical mapping strate-

gies: projection and ray-tracing.

A fundamental geometric measure of proximity of the two bodies is the so-called gap

function:

g(u) = n · (x− y),

The definition of the normal vector n depends on the mapping function Π. Hence, the

non-interpenetrability constraint is stated mathematically as g(u) ≥ 0.

The surface stress on the contact on the slave side is divided into a normal component

and a tangential one such:

σ̂
N

(u1) = σ̂n(u1)nx + Tnxσ̂N
(u1) = σ̂n(u1)nx + σ̂t(u

1).

The quantity σ̂n(u1) now represents the contact pressure at a slave point X, and must

be compressive (negative). In a similar way to the small strain case, Karush-Kuhn-Tucker

(KKT) conditions for normal contact are:

g(u) ≥ 0 (2.10a)

σ̂n(u1) ≤ 0 on Γ1
c . (2.10b)

σ̂n(u1)g(u) = 0 (2.10c)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI002/these.pdf 
© [R. Mlika], [2018], INSA Lyon, tous droits réservés



2.1. Outline of contact mechanics 32

These conditions as well as the friction conditions (2.14) are prescribed only on the slave

surface in a classic biased formulation of contact. For the unbiased version, we refer to

Chapter 4.

In the presence of friction, normal and tangential stresses at the contact interface are

coupled through the sliding velocity vector v for a quasi-static problem. As in [PR15],

we use the frame indifferent definition of velocity described in [CHK95]. Adapted to the

current notation v(X) reads:

v(X) = ϕ̇(X)− ϕ̇(Y) + g ṅ . (2.11)

Time discretization is based on a backward Euler approximation of the first expression in

(2.11) which reads:

v(X) =
1

∆t
(ϕ(X)−ϕ(Y) + g n)− 1

∆t
(ϕ0(X)−ϕ0(Y) + g n0) , (2.12)

where ∆t > 0 is the time-step, and where ϕ0, n0 are respectively the deformation and

the surface normal at the previous time-step. Equation (2.12) can be then simplified, as

in [PR15], using (4.1) and (4.2):

v(X) = − 1

∆t
(ϕ0(X)−ϕ0(Y) + g n0) . (2.13)

It should be underlined here that the mapping between points X and Y appearing in

(2.13) corresponds to the current deformation ϕ and not to the deformation ϕ0 at previous

time-step.

The conditions of Coulomb friction can be written as follows (see, e.g., [KO88]):
‖σ̂t(u1)‖ ≤ −F σ̂n(u1) if v = 0,

σ̂t(u
1) = F σ̂n(u1)

v

‖v‖ otherwise.
(2.14)

So, to summarize, the strong problem for frictional contact with Coulomb friction is :

(2.9), (2.10) and (2.14).

In the context of the small deformation, linearly elastic theory, the statement of virtual

work for contact problem is often constructed by casting the problem as one of constrained

minimization. To obtain the variational inequality, the convexity of K is an important

condition that we do not ensure in the general case of large strain. Faced with a non-convex

and non-conservative frictional contact problem , one might assume directely the contact

virtual work by incorporating the local equations and associated kinematic quantities.

Thus, the well-known principle of virtual work (PVW) is derived here as:{
Find u ∈ V such that:

Gint,ext(u, δu)−Gc(u, δu) = 0, ∀ δu ∈ V,
(2.15)
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where,

Gint,ext(u, δu) =
2∑
i=1

(∫
Ωi
∇Xδu

i : σ̂(ui) dΩ,−
∫

Ωi
f i · δui dΩ−

∫
ΓiN

ti · δui dΓ
)
,

is the sum of the internal virtual work (the virtual work due to the internal stresses) and

the external virtual work (the virtual work due to applied loadings) and Gc(u, δu) are

contact and friction contributions of virtual work.

The Hilbert space V is the space of displacements respecting the Dirichlet conditions on

ΓiD:

V :=
{

u = (u1,u2) : ui = 0 on ΓiD

}
.

The virtual work of frictional forces has the same sign as the virtual work of internal

forces, since σ̂n(u1) ≤ 0, and it is not conservative so all this energy dissipates. The

major difficulty about (2.17) is due to the coupling between the friction threshold and

the contact pressure that depends on the solution. Furthermore, the term virtual work of

friction is non convex and non differentiable, consequently the questions of existence and

uniqueness of the solution for the problem (2.17) remain open.

2.1.3 Contact resolution

The expression for Gc(u, δu) includes two integrals, one over each contact surface. But all

contact quantities have been assumed to be parametrized by X. The term Gc(u, δu) has

to be converted to an expression involving only an integral over the slave surface Γ1
c . This

is achieved by enforcing the second Newton law across the contact interface, by requiring

that the differential contact force induced on body (2) at Y is equal and opposite to that

produced on body (1) at X:

t1
c · δu1(X) dΓ1

c = −t2
c · δu2(Y) dΓ2

c ,

In other words, for all points were contact occurs, Γ2 is thought of as being indexed by X

through the mapping function Π. Equation (4.80) facilitates replacement of the contact

contribution in the expression of Gc(u, δu) by:

Gc(u, δu) =

∫
Γ1
c

t1
c ·
(
δu2(Y)− δu1(X)

)
dΓ,

where t1
c is the contact pressure which expression depends on the used resolution method.

In the case of hyper-elastic materials, with a frictionless contact, the problem (2.17)

becomes a constrained minimization problem. The starting point to derive equation

(2.17) is the minimization of the total energy of the two bodies in contact:

2∑
i=1

(∫
Ωi
W i(E)− f i · ui dΩ−

∫
ΓiN

ti · ui dΓ
)
− Jc(u),
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where W i(E) is the energy potential of the hyper-elastic law, and E is the Green-Lagrange

tensor. The term Jc(u) is contact energy, and its expression depends on the method used

to constrain contact.

Introduction of dissipation, either in the form of inelasticity or friction, makes this min-

imzation form of the problem not valid since the dissipation makes the solution path-

dependent.

In case of frictional contact, a complementary condition on tangential sliding in case of

stick is:

v = 0 if ‖σ̂t(u1)‖ ≤ F σ̂n(u1).

Several different variants for the formulation of Gc(u, δu) are discussed below.

2.1.3.1 Penalty method

The penalty method was one of the first to be used. It utilizes the non exactitude of the

numerical resolution of the system to approximate, also, the contact conditions. The con-

ditions of contact are thus not strictly respected and the interpenetration and reversible

tangential slip are permitted. Hence, the penalty method is not consistent. In fact this

method implies that the contact surface does not restrict penetration and reversible slip

but resists them: the deeper the penetration the higher the resisting reaction. The phys-

ical interpretation of this method is to represent the master surface as a serie of springs

with zero initial length and a rigidity equal to the penalization parameter εn. It has the

advantage of being very simple for implementation what makes it, till today, one of the

most widespread methods.

For the penalty method the expression of the contact and friction virtual work is:
Gc(u, δu) = −

∫
Γ1
stick

(
εn[g(u)]R−n− εtv

)
·
(
δu2(Y)− δu1(X)

)
dΓ, for stick,

Gc(u, δu) = −
∫

Γ1
slip

(
εn[g(u)]R−n + F σ̂n(u1)

v

‖v‖
)
·
(
δu2(Y)− δu1(X)

)
dΓ for slip.

This two cases could be collected in a single equation using the projection operator

PB(τ) and knowing that σ̂n(u1) = εn[g(u)]R− , we get:

Gc(u, δu) = −
∫

Γ1
c

(
εn[g(u)]R−n− PB(−F εn[g(u)]R− )(εtv)

)
·
(
δu2(Y)− δu1(X)

)
dΓ.

It is clear that the exact imposition of the contact and sliding conditions is recovered

from this formulation for εn →∞ and εt →∞; however, large values for εn and εt will lead

to an ill-conditioned numerical problem. The penalty method replaces the contact and

friction laws (2.10), (2.14) by relations defining continuous contact and friction constraints

as functions of normal gap g(u) and the slip velocity(v). In other terms, the contact and

friction conditions are regularized with εn and εt: see Fig. 2.3.
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Figure 2.3: Regularization of the contact and friction laws with the penalty method

Thus, the equation governing the mechanics of solids in the presence of frictional

contact is expressed by:

Gint,ext(u, δu) +

∫
Γ1
c

(
εn[g(u)]R−n− PB(−F εn[g(u)]R− )(εtv)

)
·
(
δu2(Y)− δu1(X)

)
dΓ = 0.

(2.16)

The resolution of this non linear problem is performed through the linearization of the

equation 2.16 as part of the Newton-Raphson algorithm.

For a conservative system without friction, the virtual work of contact Gc(u, δu) de-

rives from the contact potential :

Jc(u) =
1

2

∫
Γ1
c

εn([g(u)]R−)2 dΓ,

The linear penalty coefficient is the most adapted from a numerical point of view, because

it does not introduce additional nonlinearities to the problem. However, other non linear

penalty functions could be better from the precision and robustness point of view.

Remark 2.1.4. The small strain case could be treated in a very similar way by replacing

g(u) by −un for unilateral contact with rigid obstacle and (−F σ̂n(u1)) by s , v by ut for

Tresca friction.

2.1.3.2 Lagrange multipier method

A classical method is the use of Lagrange multipliers to add constraints to a weak form.

This method is a mixed one since it introduces new variables, the Lagrange multipliers

noted λ. They represent the contact forces preventing inter penetration at the contact
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interface. The field λ is decomposed into a normal component λn and a tangential part

λt. The normal Lagrange multiplier λn is interpreted as the contact pressure and needs to

fulfill the contact constraints: λn ≤ 0. Hence, the problem (2.17) is replaced be a mixed

one : 

Find u ∈ V and λ ∈M such that:

Gint,ext(u, δu)−
∫

Γ1
c

λ ·
(
δu2(Y)− δu1(X)

)
dΓ = 0, ∀ δu ∈ V.∫

Γ1
c

(λn − δλn)g(u) ≤ 0 dΓ,∫
Γ1
c

(λt − δλt) · v ≤ 0 dΓ ∀ δu ∈M

(2.17)

, where admissible variations δλ of λ are defined via:

M =
{
λ : Γ1

c −→ Rd, λn ≤ 0 and ‖λt‖ ≤ −Fλn

}
.

This inequality problem is hard to solve, especially with finite sliding and/or rotations.

Different possibilities exist for the numerical solution of variational inqualities. Among

them, the so-called “active set strategies” [Lue03] are the most used because they are easy

to introduce in a finite element framework and do not require a totally new minimization

technique.

In such strategies, we derive the framework based on variational equalities on “the active

set”. Active set Γa denotes such components of the potential contact zone Γ1
c which are

in “active” contact at the current solution step. Naturally, the “inactive set” contains

only components of the potential contact surface which are not in contact. Thus, the

integration of the contact contribution to the system’s work on Γ1
a and Γ1

c merges.

Once the contact interface is known we can write the weak form as an equality. This

means that we know the active set of constraints within an incremental solution step.

In the frictionless case, the problem is formulated as a constrained minimization of

the energy J (u):

min
g(u)≥0 on Γ1

c

J (u)

This problem is replaced by the search of a saddle point of the Lagrangian functional:

L (u, λn) = J (u) +

∫
Γ1
c

λng(u) dΓ, λn ≤ 0.

The constraint λn ≤ 0 has still to be fulfilled, that is why the Lagrange multiplier

method does not convert a minimization problem with inequality constraints to a fully

unconstrained one. For a more rigorous formulation of Lagrange multiplier method for

contact problems the reader is referred to [KO88,Yas11]. To get rid of this constraint,λn
is often replaced by [λn]R− .
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However, an important drawback of mixed formulation is the mathematical conditions

like the inf-sup or Babuska- Brezzi condition that have to be fulfilled in order to achieve

a stable discretization scheme (see, e.g. [Woh11]).

2.1.3.3 Augmented Lagrangian method

Another method to regularize the non-differentiable normal contact and friction terms is

the augmented Lagrange formulation. The main idea is to combine the penalty method

with Lagrange multiplier one. The augmented Lagrange formulation yields a C1-differentiable

saddle point functional. We present here an unconstrained integral formulation of the aug-

mented Lagrangian method presented in [PR15, Ren13] and based on the Alart-Curnier

augmented Lagrangian (see [AC88] ). This is an unconstrained formulation, that is more

appropriate for numerical solving.

For the frictionless contact, we get the following augmented Lagrangian:

Lγ(u, λn) = J (u) +
1

2γ

∫
Γ1
c

[λn + γg(u)]2R− − λ2
n dΓ, (2.18)

where γ is the augmentation parameter. Note that use of Lγ(u, λn) does not represent an

approximation or a penalization of the contact condition as for penalty method since the

penalization term vanishes in the the limit case and the augmented Lagrange formulation

reduces to its Lagrange multiplier counterpart. Thus, in the continuous setting and ne-

glecting regularity issues, this Lagrangian have the same saddle point of the Lagrangian

used with the pure Lagrange multipliers method L (u, λn). The augmented Lagrange

formulation is, then, consistent.

Compared to the Lagrange multiplier method, the advantage of the augmented Lagrangian

formulation is that it can be easier to treat numerically. For example, the augmented

Lagrangian function penalizes violations of the kinematic constraint just as its penalty

counterpart did, resulting in a “convexified” version of the objective function in the vicin-

ity of the solution. See [Lau02] for a clear illustration of this aspect.

The optimality system of 2.18 is:
Gint,ext(u, δu) +

∫
Γ1
c

[λn + γg(u)]R−Dg(u)[δu] dΓ = 0, ∀ δu ∈ V,

−1

γ

∫
Γ1
c

(λn − [λn + γg(u)]R−)δλn dΓ = 0, ∀ δλn.
(2.19)

Optionally, the second line of System (2.19) can be exploited for replacing the term

[λn + γg(u)]R− in the first line with λn.

In the same way, a similar formulation can be formulated for the frictional case. For

this purpose we introduce the tangential augmented Lagrange multiplier λt + γv. As

for penalty, we collect the slip and stick cases in the same expression of the contact and
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friction virtual work, using the projection P . The VWP reads:
Gint,ext(u,v)−

∫
Γ1
c

λ · (δu2(Y)− δu1(X)) dΓ = 0, ∀v ∈ V,

−1

γ

∫
Γ1
c

(
λ− [λn + γg(u)]R−n− PB(−F [λn+γg(u)]R− )(λt − γv)

)
· δλ dΓ = 0, ∀ δλ.

(2.20)

Remark 2.1.5. In the case of unilateral contact with rigide obstacle problem and without

friction, the optimality expression is:
Gint,ext(u, δu)−

∫
Γc

[λn + γun)]R−vn dΓ = 0, ∀v ∈ V,

−1

γ

∫
Γc

(λn − [λn + γun]R−)δλn dΓ = 0, ∀ δλn.

Now, remark that the second equation is a way to enforce weakly, at the discrete level,

the condition (2.2), which is the aim of the Nitsche’s method as well.

Another way, straightforward, to enforce this condition, is to substitute σn(u) to λn
in the first equation of the optimality system (and we drop the second equation). The

optimality system in this case reads:

a(u,v)−
∫

Γ1
c

[σn(u)− γun]
R−
vn dΓ = L(v), ∀v ∈ V.

We now recognize Nitsche’s method (2.24) for θ = 0 (See section 2.2). Moreover the

Nitsche’s parameter can be identified with the augmentation parameter γ. Note, in this

context, that some recent works are filling the gap between Nitsche and augmented La-

grangian formulations in the case of contact and obstacle problems [BHL16a, BHLS17,

HRS16].

In practice, two different implementations of the Augmented Lagrange method exist.

On one hand, it is possible to keep the Lagrange multipliers λ as additional unknowns

and apply standard Newton–Raphson iteration as nonlinear solution method. As for

the Lagrange multiplier method, this leads to an undesirable saddle point formulation,

however a certain “convexification” of the underlying potential around the solution is

achieved. On the other hand, a simplified variant of 2.20 is provided by decoupling the

displacement and the Lagrange multiplier. This leads to a double loop algorithm in

which the Lagrange multiplier λ is fixed during an iteration loop to solve the weak form

depending only on u. Then within an outer loop the Lagrange multiplier is updated to a

new value. This procedure results on an Uzawa algorithm. Therein, the penalty approach

is used as kernel and the Lagrange multipliers λ are fixed within each iteration step,

see Fig.2.4. This method permit to overcome the problem of ill-conditioning that arises

with the penalty method since the values of γ is, in general taken smaller then penalty

parameters εn, εt.

The formulation of to the Uzawa algorithm can be, easily, derived from the equation
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Figure 2.4: Schematic diagram of Uzawa’s algorithm for the Augmented Lagrange method with
normal Lagrangian λn

(2.20) by keeping the Lagrange multipliers constant in an inner loop and updating it in

the outer loop (see Fig. 2.4) via:

{
λk+1
n = λk

n + γg(u),

λk+1
t = λk

t + γv.

Another interesting method to constraint the contact and the friction conditions is

the Nitsche’s method. Unlike penalty methods, this method is consistent, and it remains

primal without adding any additional computation steps in contrast with Lagrangian and

augmented Lagrangian methods. In the Section 2.2 of this chapter we present this method

in the small strain framework before generalizing it to the large strain one in Chapter 4.

2.2 Nitsche’s method for boundary conditions

Introduction

Contact and friction conditions are usually formulated with a set of inequalities and non-

linear equations on the boundary. Basically, contact conditions allow to enforce non-inter

penetration on the whole candidate contact surface. For numerical computations, various
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techniques have been used to enforce contact conditions, and the most common ones are:

• Penalty method (see, e.g., [KS81, OK82b, OK82a, KO88, CS07, CH13]), where the

set of inequations associated to contact is replaced with a non-linear equation that

approximates them weakly. This method remains primal, and is easy to implement.

Nevertheless, consistency is lost, as penetration remains allowed and it is controlled

by the penalty parameter.

• Mixed methods (see, e.g., [HHN96, Hil00, BBR03, HW05, LR08, Woh11]), where a

Lagrange multiplier is introduced to enforce contact conditions. Resulting weak

form remains consistent, and characterizes the saddle-point of the corresponding

Lagrangian, but in this case, inf-sup compatibility between the primal space and

the dual one must be satisfied to ensure well-posedness (see, e.g. [Woh11]).

Nitsche’s treatment of contact is an extension of the method proposed in 1971 by J.

Nitsche to impose Dirichlet conditions within the variational formulation without adding

Lagrange multipliers [Nit71]. Nitsche’s method has been widely applied on problems

involving linear conditions on the boundary of a domain or at the interface between sub-

domains: see, e.g. [Ste95] for the Dirichlet problem or [BHS03] for domain decomposition

with non-matching meshes. More recently, in [HH04b] and [HH06] it has been adapted

for bilateral (persistent) contact, which still involves linear boundary conditions on the

contact zone. An extension to large strain bilateral contact has been performed in [WZ08].

Conversely to standard penalization techniques (see section 2.1.3.1), the resulting method

is consistent. Moreover, unlike mixed methods, no additional unknown (Lagrange multi-

plier) is needed. In recent works [CH13,CHR15c] a new Nitsche-based FEM was proposed

and analyzed for Signorini’s problem. Conversely to bilateral (persistent) contact, the

proposed method treat directly non-linear boundary conditions associated to unilateral

contact, with an unknown actual contact region. For this Nitsche-based FEM, optimal

convergence in the H1(Ω)-norm of order O(h
1
2

+ν) has been proved, provided the solution

has a regularity H
3
2

+ν(Ω), 0 < ν ≤ k − 1/2 (k = 1, 2 is the polynomial degree of the

Lagrange finite elements). To this purpose there is no need of additional assumption

on the contact/friction zone, such as an increased regularity of the contact stress or a

finite number of transition points between contact and non-contact. The proof applies

in two-dimensional and three-dimensional cases, and for continuous affine and quadratic

finite elements (see section 3.2.3 of Chapter 3). For many classical variants of the contact

formulation such as mixed/hybrid methods or penalty methods, it has been quite chal-

lenging to establish optimal convergence in the case the solution u belongs to H
3
2

+ν(Ω)

(0 < ν ≤ 1/2), without extra assumptions. We refer to, e.g., [HW05,Woh11,HR12,DH15]

for more detailed reviews on a priori error estimates for contact problems in elasticity.

A friction law may also be considred in the tangentiel direction and treated in a similar

way as for contact. Various friction models exist and correspond to different surface prop-

erties. The most simple one is Tresca’s friction (see, e.g., [AS98]) and the most common

one is the Coulomb law (see, e.g., [KO88]). In this chapter we are going to use Tresca

friction law for sake of simplicity to allow the theoretical analysis. A simple adaptation
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of the Nitsche-based Finite Element Method to Tresca’s friction is proposed in [Cho14].

All these adaptations of Nitsche’s method were formulated for the contact between a

deformable body and a rigid one. Thus, a first challenge of this chapter is to give an

adaption of the method to the two deformable bodies contact problem.

The Nitsche-based FEM proposed in [CHR15c] and adopted in the current work en-

compasses symmetric and non symmetric variants depending on a generalization param-

eter θ. The symmetric case is recovered when θ = 1. When θ 6= 1 positivity of the

contact term in the Nitsche variational formulation is generally lost. Nevertheless some

other advantages are recovered, mostly from the numerical viewpoint. Namely, one of the

variants (θ = 0) involves a reduced quantity of terms, so that it is easier to implement

and to extend to contact problems involving non-linear elasticity. In addition, this non

symmetric variant θ = 0 performs better for the Newton’s loop, for a wider range of the

Nitsche parameter, than the variant θ = 1, see [Ren13]. Concerning the skew-symmetric

variant θ = −1, the well-posedness of the discrete formulation and the optimal conver-

gence are preserved irrespectively of the value of the Nitsche parameter (See section 3.2

of chapter 3). Note that for other boundary conditions, such as non-homogeneous Dirich-

let, the symmetric variant (θ = 1) as originally proposed by Nitsche [Nit71] is the most

widespread, since it preserves symmetry, and allows efficient solvers for linear systems

with a symmetric matrix. However some non symmetric variants have been reconsidered

recently, due to some remarkable robustness properties (see, e.g., [Bur12,BB16]).

In this second part of the chapter we present the Nitsche’s method to treat contact: In

section 2.2.1, we introduce Nitsche method for unilateral contact with a Tresca friction.

Afterward an adaptation of the method to the two elastic bodies contact problem is pro-

vided in section 2.2.2. Finally, in section 2.2.3 we give a recently formulated generalization

of the method that covers different type of boundary conditions.

2.2.1 Nitsche’s method for unilateral contact

To discretize the problem (2.6) formulated for unilateral contact, we let Vh ⊂ V be a

family of finite dimensional vector spaces (see [Cia91,EG04,BS07]) indexed by h coming

from a family Th of triangulations of the domain Ω (h = maxT∈Th hT where hT is the

diameter of T ). We suppose that the family of triangulations is regular, i.e., there exists

σ > 0 such that ∀T ∈ Th, hT/ρT ≤ σ where ρT denotes the radius of the inscribed ball

in T . Furthermore we suppose that this family is conformal to the subdivision of the

boundary into ΓD, ΓN and ΓC (i.e., a face of an element T ∈ Th is not allowed to have

simultaneous non-empty intersection with more than one part of the subdivision). We

choose a standard Lagrange finite element method of degree k with k = 1 or k = 2, i.e.:

Vh :=
{
vh ∈ (C 0(Ω))d : vh|T ∈ (Pk(T ))d,∀T ∈ Th,vh = 0 on ΓD

}
. (2.21)

However, the analysis would be similar for any C0-conforming finite element method. We

make use of the notation [·]
R−

of section 2.1.2, that stands for the projection onto R−. To

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI002/these.pdf 
© [R. Mlika], [2018], INSA Lyon, tous droits réservés



2.2. Nitsche’s method for boundary conditions 42

lighten the formulas in the mathematical analysis, for the small strain case, the notation

PB(τ) of projection onto the closed ball centered at the origin 0 and of radius τ , will be

substituted by the notation [·]τ .

The next result has been pointed out earlier in [AC88].

Proposition 2.2.1. Let γ be a positive function defined on ΓC. The contact conditions

(2.2) can be reformulated as follows:

σn(u) = [σn(u)− γun]
R−
, (2.22)

and the condition of Tresca friction (2.3) is equivalent to :

σt(u) = [σt(u)− γut]s . (2.23)

We consider in what follows that γ is a positive piecewise constant function on the

contact and friction interface ΓC : for any x ∈ ΓC , let T be an element such that x ∈ T
and set

γ(x) =
γ0

hT

where γ0 is a positive constant. Let now θ ∈ R be a fixed parameter. Let us introduce

the discrete linear operators

Pt
θ,γ :

Vh → (L2(ΓC))d−1

vh 7→ θσt(vh)− γvht
, and Pn

θ,γ :
Vh → L2(ΓC)

vh 7→ θσn(vh)− γvhn
.

Define also the bilinear form:

Aθγ(uh,vh) := a(uh,vh)−
∫

ΓC

θ

γ
σ(uh)n · σ(vh)n dΓ.

Through an application of the Green formula on the equilibrium and boundary conditions

equations (2.1) (see Section 3.1.2 for an illustration of calculation details) and inserting

the contact and friction conditions (2.22),(2.23) to the problem, our Nitsche-based method

for unilateral contact with Tresca friction then reads:
Find uh ∈ Vh such that:

Aθγ(uh,vh) +

∫
ΓC

1

γ
[Pn

1,γ(uh)]R−Pn
θ,γ(vh) dΓ +

∫
ΓC

1

γ

[
Pt

1,γ(uh)
]
s
·Pt

θ,γ(vh) dΓ

= L(vh), ∀ vh ∈ Vh.

(2.24)

Remark 2.2.2. For bilateral contact with friction (equations (2.26)–(2.4)–(2.3)), the

Nitsche-based formulation reads:
Find uh ∈ Vb

h such that:

Abθγ(uh,vh) +

∫
ΓC

1

γ

[
Pt

1,γ(uh)
]
s
·Pt

θ,γ(vh) dΓ = L(vh), ∀ vh ∈ Vb
h,

(2.25)
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where Abθγ(uh,vh) := a(uh,vh)−
∫

ΓC

θ

γ
σt(uh) · σt(vh) dΓ and Vb

h := Vh ∩Kb.

Remark 2.2.3. As in [CHR15c] the parameter θ can be set to some interesting particular

values, namely:

1. for θ = 1 we recover a symmetric method for which the contact term∫
ΓC

1

γ

[
Pn

1,γ(uh)
]
R−

Pn
1,γ(vh) dΓ

is positive when we set vh = uh.

2. for θ = 0 we recover a simple method close to augmented Lagrangian, which involves

only a few terms and may be of easiest implementation.

3. for θ = −1 the method admits one unique solution and converges optimally irrespec-

tively of the value of γ0 > 0.

2.2.2 Nitsche’s method for contact between two elastic bodies

In this section, we formulate a Nitsche type method for contact between two elastic bodies

in the small strain case. This will be a preliminary step to get the unbiased version of

the method (Chapter 3). Thus, the current formulation will be, contrariwise, biased. We

present, firstly, the two elastic bodies contact problem with, always, a Tresca friction.

We consider two elastic bodies expected to come into contact. To simplify notations,

a general index i is used to represent indifferently the 1st or the 2nd body. Let Ωi be the

domain in Rd occupied by the reference configuration of the i-th body, with d = 2 or 3.

Small strain assumption is made, as well as plane strain when d = 2. We suppose that

the boundary ∂Ωi of each body consists in three non-overlapping parts ΓiD , ΓiN and ΓiC .

On ΓiD (resp ΓiN) displacements ui (resp. tractions ti) are given. The body is clamped on

ΓiD for the sake of simplicity. In addition each body can be subjected to a volumic force

f i (such as gravity). We denote by ΓiC a portion of the boundary of the i-th body which

is a candidate contact surface with an outward unit normal vector ni. The actual surface

on which a body comes into contact with the other one is not known in advance, but is

contained in the portion ΓiC of ∂Ωi. Furthermore let us suppose that ΓiC is smooth. We let

the body 1 contain the slave surface and 2 the master one. For the slave contact surface

Γ1
C , let us assume a sufficiently smooth one to one application (projection for instance)

mapping each point of the first contact surface to a point of the second one:

Π1 : Γ1
C → Γ2

C .

Let J1 be the Jacobian determinant of the transformation Π1. We suppose in the following

that J1 > 0.
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Ω2

n

1

x

2 = Π1(x1)

Γ2
C

n

2

Γ1
C

Ω1

x

1

Figure 2.5: Two contacting bodies and definition of Π1(x)

We define on the slave contact surface Γ1
c another “normal” vector ñ1(x) such that:

ñ1(x) =


Π1(x)− x

‖Π1(x)− x‖ if x 6= Π1(x),

n1 if x = Π1(x).

In the small strain case such vector is needed to define the same ”normal” direction for

the two bodies; so that, the contact definition is consistent.

The displacements of the bodies, relatively to the fixed spatial frame are represented by

u = (u1,u2), where ui is the displacement field of the i-th body.

The contact problem in linear elasticity consists in finding the displacement field u

satisfying the equations (2.26) and the contact conditions described hereafter:

divσi(ui) + f i = 0 in Ωi, (2.26a)

σi(ui) = Ai : ε(ui) in Ωi, (2.26b)

ui = 0 on ΓiD, (2.26c)

σi(ui)ni = ti on ΓiN , (2.26d)

where σi = σi(j,k), 1 ≤ j, k ≤ d, stands for the stress tensor field and div denotes the

divergence operator of tensor valued functions. The notation ε(v) = 1
2
(∇v + ∇v

T
) rep-

resents the linearized strain tensor field and Ai is the fourth order symmetric elasticity

tensor on Ωi having the usual uniform ellipticity and boundedness property.

For any displacement field v1 and for any density of surface forces σ1(v1)n1 defined

on Γ1
c we adopt the following notation:

v1 = v1
nñ

1 + v1
t and σ1(v1)n1 = σ1

n(v1)ñ1 + σ1
t (v

1),

where v1
t (resp σ1

t (v
1)) are the tangential components of v1 (resp σ1(v1)n1).
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To simplify the expressions, we let the initial normal gap representing the normal distance

between a point x of Γ1
C and its image on the other body: g1

n = (Π1(x)− x) · ñ1 = 0. We

define, as well, the relative normal displacement JuK1
n = (u1 − u2 ◦ Π1) · ñ1.

We prescribe the contact conditions deduced from the Signorini problem conditions

(see 2.1.1) on the slave surface Γ1
C :

JuK1
n ≤ 0 (2.27a)

σ1
n(u1) ≤ 0 on Γ1

C , (2.27b)

σ1
n(u1)(JuK1

n) = 0 (2.27c)

Let s1 ∈ L2(Γ1
C), s1 ≥ 0, be the Tresca friction threshold associated to the phys-

ical properties of the 1-st surface, and JuK1
t = u1

t − u2
t ◦ Π1 is the tangential relative

displacement.

The Tresca friction condition on Γ1
C reads:

‖σ1
t (u

i)‖ ≤ s1 if JuK1
t = 0,

σ1
t (u

1) = −s1 JuK1
t

‖JuK1
t‖

otherwise,
(2.28)

where ‖ · ‖ stands for the Euclidean norm in Rd−1.

Remark 2.2.4. In the frictionless contact case this condition is simply replaced by σ1
t = 0.

Finally, we need to consider the second Newton law between the two contact stresses.

The weak imposition of this condition gives:

σ1(v1)n1 = −J1σ2(v2)n2 on Γ1
C .

This condition will allow to integrate the virtual work of the master side on the slave

one through the mapping function Π1.

As in Section 2.2.1, we reformulate the contact and friction conditions (2.27)-(2.28) as

follows:

σ1
n(u1) =

[
σ1
n(u1)− γ1JuK1

n

]
R−
, (2.29)

where the notation [·]
R−

refers, as in 2.22 to the projection onto R− and γ1 is a positif

real function defined on the slave surface Γ1
c . Similarly, as in (2.23), the Tresca friction

condition is equivalent to the equation

σt(u
1) = [σ1

t (u
1)− γ1JuK1

t )]s1 , (2.30)

Using the same approach as for contact with a rigid obstacle we get a similar varia-

tional problem with the parameter θ that has the same usefulness.
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We introduce the finite dimensional vector spaces as in Section 2.2.1:

Vh = (V1
h ×V2

h), with Vi
h =

{
vih ∈ C 0(Ωi) : vih|T ∈ (Pk(T ))d,∀T ∈ T ih ,vih = 0 on ΓiD

}
.

We use the Green formula and the different equations considered as well as the Nitsche’s

writing of the contact and friction to get the following biased finite element approximation:


Find uh ∈ Vh such that, ∀vh ∈ Vh,

Aθ(uh,vh) +

∫
Γ1
C

( 1

γ1
P 1
n,θγ1(vh)

[
P 1
n,1γ1(uh)

]
R−

+
1

γ1
P1
t,θγ1(vh) ·

[
P1
t,1γ1(uh)

]
s1

)
dΓ = L(vh).

(2.31)

Where:

P 1
n,θγ1(v) = θσ1

n(v1)− γ1JvK1
n, , P1

t,θγ1(v) = θσ1
t (v

1)− γ1JvK1
t ,

and

Aθ(u,v) =

∫
Ω1

σ1(u1) : ε(v1)dΩ +

∫
Ω2

σ2(u2) : ε(v2)dΩ−
∫

Γ1
C

θ

γ1
σ1(u1)n · σ1(v1)n dΓ,

and

L(v) =

∫
Ω1

f1 · v1dΩ +

∫
Ω2

f2 · v2dΩ +

∫
Γ1
N

t1 · v1dΓ +

∫
Γ2
N

t2 · v2dΓ,

All the mathematical properties that will be presented in Chapter 3 for the unbiased

formulation case can be transposed to this biased deformable/deformable Nitsche formu-

lation.

Remark 2.2.5. Nitsche method for frictionless contact was, also, adapted to the frame-

work of a fictitious domain discretization using cut-elements in [FPR16].

.

Ω

Γ1C

Γ2C

Γ1D

Γ1N

Γ2D
Ω2

Γ1NΩ1

.

Figure 2.6: Two bodies Ω1 and Ω2 in contact with a single mesh of the fictitious domain Ω.
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2.2. Nitsche’s method for boundary conditions 47

In this study, A fictitious domain Ω that contains both Ω1 and Ω2 is considered, gen-

erally with a simple geometry such that a structured mesh T h of Ω can be used (see the

example in Fig. 2.6). Then a single finite element space

Wh :=
{

vh ∈ C 0(Ω) : vh,i|T ∈ (Pk(T ))d, ∀T ∈ T h
}
,

is used to approximate the displacement of the two bodies, in the sense that we consider

the following approximations space

Vh := Wh|Ω1 ×Wh|Ω2 .

in the discrete problem (2.32), where Wh|Ωi is the space of restrictions to Ωi of functions

of Wh. This yields the following approximation (in the frictionless case):
Find uh ∈ Vh such that,

A
1

θγ(uh,vh) +

∫
Γ1
C

1

γ1

[
P n,1γ1(uh)

]
R−
P n,θγ1(vh) dΓ = L(vh), ∀vh ∈ Vh,

(2.32)

where now

P n,θγi(v) := θRρ̂(v
i)− γiJvKin ,

and

A
1

θγ(u,v) :=
2∑
i=1

(∫
Ωi
σ(ui) : ε(vi) dΩ

)
−
∫

(Γ1
C∪Γ1

D∪Γ2
D)

θ

γ1
Rρ̂(u

1) ·Rρ̂(v
1) dΓ.

The new term Rρ̂(v
h,i) is an approximation of σi(vi)ni built in order to recover an optimal

order of convergence. In [FPR16] this operator is defined as the polynomial extension of

the displacement field of neighbor elements having a sufficiently large intersection with

the domain Ωi, as proposed initially in [HR09]. Note that an alternative is the use of the

so-called ghost penalty introduced in [BH12].

Remark finally that the presentation here differs slightly from [FPR16] in which the

second Newton’s law is used to reformulate differently the contact conditions (2.27). This

second Newton’s law reveals as well to be a key ingredient for the derivation of the unbiased

formulation, as detailed before.

2.2.3 A generic formulation of the Nitsche’s method for bound-

ary conditions

We present in this section the Nitsche method within an abstract setting, and then we illus-

trate the application of the method to some classic problems in computational mechanics

(Dirirchlet conditions and domain coupling). This abstract formulation was inspired by

the one proposed in [HCCB17] to genereralize Nitsche’s type methods for different bound-

ary and interface conditions. As for contact, we will consider a whole family of Nitsche’s

methods indexed by the real parameter θ. Consider in the following we want to compute a
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2.2. Nitsche’s method for boundary conditions 48

field u : Ω −→ Rd, (d ≥ 1), that is solution to a given set of partial differential equations

with prescribed boundary/interface conditions. We will denote by v an arbitrary test

function corresponding to u. We let Γ a portion of the boundary of Ω or an interface

that subdivides Ω into two sub-domains. Two main equations are necessary to build a

Nitsche-based formulation. The first one is a Green formula, that we provide below in an

abstract setting:

a(u,v)− 〈τ (u),Bv〉Γ = L(v), (2.33)

where a(·, ·) is a bilinear form , 〈·, ·〉Γ, is an appropriate duality product for functions

on Γ(the boundary/interface work), and L(·) a linear form. The linear operator Bv is a

trace-like operator (for instance Bv can be the value of v on the interface, or of its normal

component). The term τ (u) is to be defined for each application, and is generally related

to the boundary/interface stress (if u is a displacement). We suppose that both τ(u)

and B can be represented at almost every point of the boundary as vectors of dimension

k(1 ≤ k ≤ d). τ (u) : Γ −→ Rk ; Bv : Γ −→ Rk.

The second equation is a reformulation of the boundary / interface conditions as follows:

τ (u) = [τ (u)− γ(Bv − B̄)]S, (2.34)

where γ > 0 is a stabilization parameter called the Nitsche parameter, B̄ is a known

quantity, and [·]S is the projection onto S, a closed convex set of Rk.

To get a Nitsche-based discretization we apply the following steps (which are mathe-

maticaly valid only for sufficiently smooth fields u and v):

1. Apply the following decomposition:

Bv = −1

γ
(θτ (v)− γBv) +

θ

γ
τ (v)

2. Put it into(2.33) which yields:

a(u,v)− θ

γ
〈τ (u), τ (v)〉Γ +

1

γ
〈τ (u), θτ (v)− γBv〉Γ = L(v).

3. Inject condition (2.34) into the above formula, so as to impose it weakly:

a(u,v)− θ

γ
〈τ (u), τ (v)〉Γ +

1

γ
〈[τ (u)− γ(Bu− B̄)]S, θτ (v)− γBv〉Γ = L(v).

When all the fields are discretized, we obtain the Nitsche-based formulation below:

Aθ(uh,vh) +
1

γ
〈[P1(uh) + γB̄)]S, Pθ(vh)〉Γ = L(vh), (2.35)

with the notations

Aθ(uh,vh) = a(u,v)− θ

γ
〈τ (uh), τ (vh)〉Γ,
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2.2. Nitsche’s method for boundary conditions 49

and

Pθ(vh) = θτ (vh)− γBvh.

An interesting case to consider is when boundary/interface conditions are linear, which

means that the convex set S is the whole sub-space (S = Rk) and so the projection

operator is merely the identity. Then (2.35) reads:

Aθ(uh,vh) +
1

γ
〈P1(uh) + γB̄), Pθ(vh)〉Γ = L(vh).

and, after re-ordering and simplifications:

a(uh,vh)− θ〈Buh, τ (vh)〉Γ − 〈τ (uh),B(vh)〉Γ + γ〈,Buh,Bvh〉Γ = L(vh) (2.36)

We recognize here the standard formulation presented for instance in [Han05].

Dirichlet conditions

To illustrate how the above framework can be applied to deal with various boundary

conditions, we consider in a first time an elastic body Ω, subjected to Dirichlet conditions

on the boundary ΓD. The PVW reads:

a(u,v) = L(v), u = ū on ΓD, (2.37)

where a(u,v) =

∫
Ω

σ(u) : ε(v) dΩ and L(v) is the virtual work of external forces. Taking:

Bu = u, τ (u) = σ(u)n, B̄ = ū and S = Rd,

we obtain from (2.36) the following Nitsche-based formulation:

a(uh,vh)− θ〈uh,σ(vh)n〉Γ−〈σ(uh)n,vh〉Γ +γ〈uh,vh〉Γ = L(vh)−〈ū, θσ(vh)n−γvh)〉Γ.

This last correspond to the Nitsche’s method for Dirichlet conditions discribed in [Han05]

Subdomain interface coupling

We consider now an interface problem in which the domain Ω is decomposed into two sub-

domains Ωi, i = 1, 2 (see Fig. 2.7). The shared boundary between Ω1 andΩ2 is denoted

by Γ, and ni is the unit normal along the interface, pointing out of Ωi.
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Ω2

Ω1

Γ

n2n1

Figure 2.7: Two sub-domains Ω1 and Ω2 divided by the boundary Γ.

We still consider elastic body in small strains. The continuity of displacement and

pressure along the interface reads:{
u1 − u2 = 0,

σ1n1 + σ2n2 = 0.
on Γ (2.38)

Let us define as usual the jump and average operators along the interface:JuK = u1 − u2,

〈σ〉 =
1

2
(σ1n1 − σ2n2)

Green formula for elasticity equations yields:

a(u,v)−
∫

Γ

σ1n1 · v1 dΓ−
∫

Γ

σ2n2 · v2 dΓ = L(v)

Using the second equation of (2.38) we get the needed Green formula for our Nitsche’s

method:

a(u,v)−
∫

Γ

〈σ〉 · JvK dΓ = L(v). (2.39)

With the choice

Bu = JuK, τ (u) = 〈σ(u)〉, B̄ = 0 and S = Rd,

formulation (2.36) reads:

a(uh,vh)− θ
∫

Γ

JuhK · 〈σ(vh)〉 dΓ−
∫

Γ

〈σ(uh)〉 · JvhK dΓ +

∫
Γ

γJuhK · JvhK dΓ = L(vh).
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2.2. Nitsche’s method for boundary conditions 51

The case of contact and friction are recovred by the formulation (2.35) as well when

taking :

Bu = JuK1
n, τ (u) = σ̂1(u1), B̄ = 0 and S = R−,

for contact and

Bu = JuK1
t , τ (u) = σ1

t (u
1), B̄ = 0 and S = Bs,

for friction; where Bs is the closed ball of radius s equal to the friction threshold depending

on the friction law.
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Chapter 3

Unbiased Nitsche’s method in the

small strain framework
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Introduction

The most common paradigm to treat the problem of two deformable bodies in contact

is known as the master/slave formulation. In this approach one distinguishes between a

master surface and a slave one on which is prescribed the non-interpenetration condition.

A presentation of this formulation and the contact problem can be found in Laursen’s

work [Lau92,Lau02] (see also [LS93b]). In section 2.2.2, we presented a classical Nitsche
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formulation of the contact between two elastic bodies. This formulation uses a biased

master/slave description of the problem.

This approach is confronted with important difficulties especially in the case of self-

contact and multi-body contact where it is impossible or impractical to a priori nominate

a master surface and a slave one. Automating the detection and the separation between

slave and master surfaces in these cases may generate a lack of robustness since it may

create detection problems.

If the master/slave formulation consists in a natural extension of the contact treatment

between a deformable body and a rigid ground, it has no complete theoretical justifica-

tion. Consequently, to avoid these difficulties, we provide in this chapter an unbiased

formulation of the two elastic bodies contact problem in the small strain framework. In

this formulation we do not distinguish between a master surface and a slave one since we

impose the non-inter penetration and the friction conditions on both of them. Unbiased

contact and friction formulation have been considered before in [SD15] and references

therein. There, the authors present a numerical study of the method and make use of a

penalized formulation of contact and friction. The terms two-pass and two-half-pass are

also used in literature to describe this type of methods.

This study can be seen as a first step in the construction of a method taking into

account contact between two elastic solids and self-contact in large transformations in the

same formalism. The present formulation, in small deformations, allows us to ensure the

consistency, the convergence and the optimality of the method. In this context, the aim

of this chapter is to provide an unbiased description of the contact and Tresca friction

conditions, that relies upon a Nitsche’s treatment of contact conditions.

Other possibilities for contact discretization are for instance node-to-segment tech-

niques or the mortar method. Note that the mortar method is an efficient alternative

that has been widely applied to contact problem (see [BBHL99,ML00a,PWGW12]). The

mortar technique allows to match independent discretization of the contacting solids and

takes into account the unilateral contact conditions in a convenient way. The procedure

provides variationally consistent contact pressures. But mortar methods normally repre-

sent asymmetric formulations, by distinguishing between a master (or mortar) and a slave

(or non-mortar) surface. Thus, the adaptation to an unbiased contact description is quite

easier with Nitsche’s method than a mortar one. In fact, since Nitsche’s method uses

the contact stress as a multiplier, it is very simple to divide this contact effort equitably

on both of contact surfaces. A comparaision between Nitsche’s method and mortar-type

ones for linear elasticity is provided in [FHW04].

The formulation described in this chapter uses an additional parameter θ as in [CHR15c]

and the previous chapter, allowing us to introduce some variants acting on the symmetry

/ skew-symmetry / non-symmetry of the discrete formulation. Moreover, a unified analy-

sis of all these variants can be performed. We provide, as well, theoretical and numerical

verifications of the proposed method. First, we prove the consistency of the method,

its well-posedness and its optimal convergence. And then, a numerical verification is

performed to confirm the theoretical results.

In section 3.1 we build an unbiased formulation of the two elastic bodies frictional

(Tresca) contact problem. To prove the efficiency of the method (3.16), we carry out some
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3.1. Construction of the unbiased Nitsche’s method 54

mathematical analysis in section 3.2. In the last section 3.3 of this chapter, we present the

results of several two/three-dimensional numerical tests. The tests cover a convergence

study of the global relative error of displacement in H1-norm and the contact pressure

error in L2-norm with different values of the parameter θ and the Nitsche’s parameter γ0.

The open source environment GetFEM++1 is used to perform the tests.

3.1 Construction of the unbiased Nitsche’s method

3.1.1 Formal statement of the two bodies contact problem

As for the classic (biased) formulation, we consider the two elastic bodies configuration

with the same notations and considerations of section 2.2.2.

The displacements of the bodies, relatively to the fixed spatial frame are represented by

u = (u1,u2), where ui is the displacement field of the i-th body.

In the same way for the biased formulation, we assume a sufficiently smooth one to

one application (projection for instance) mapping each point of the first contact surface

to a point of the second one:

Π1 : Γ1
C → Γ2

C .

Let J1 be the Jacobian determinant of the transformation Π1. But for the non biased

case we define also the mapping Π2 as the inverse function of Π1 (Π2 = (Π1)−1). Then,

the Jacobian determinant of Π2 = will be J2 =
1

J1
. We suppose in the following that

J i > 0.

ñ1

ñ2

Ω2

Ω1

Γ1
c

Γ2
c

x

Π(x)

Figure 3.1: Example of definition of ñi

We define, this time two normal vectors ñi, on each contact surface (see Figure 3.1)

1http://getfem.org/
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3.1. Construction of the unbiased Nitsche’s method 55

such that:

ñi(x) =


Πi(x)− x

‖Πi(x)− x‖ if x 6= Πi(x),

ni if x = Πi(x).

Note that ñ1 = −ñ2 ◦ Π1 and ñ2 = −ñ1 ◦ Π2.

We consider the same equilibirum and boundary conditions (2.26) given for the biased

version.

As in 2.2.2, displacement field vi and for any density of surface forces σi(vi)ni defined

on Γic we adopt the following notation:

vi = vinñ
i + vit and σi(vi)ni = σin(vi)ñi + σit(v

i),

where vit (resp σit(v
i)) are the tangential components of vi (resp σi(vi)ni).

We define an initial normal gap representing the normal distance between a point x of ΓiC
and its image on the other body: gin = (Πi(x) − x) · ñi. We define, as well, the relative

normal and tangential displacements :
JuK1

n = (u1 − u2 ◦ Π1) · ñ1 and JuK2
n = (u2 − u1 ◦ Π2) · ñ2,

and

JuK1
t = u1

t − u2
t ◦ Π1 and JuK2

t = u2
t − u1

t ◦ Π2.

Remark 3.1.1. Note that: g1
n ◦ Π2 = g2

n and g2
n ◦ Π1 = g1

n ; JuK1
n ◦ Π2 = JuK2

n and

JuK2
n ◦ Π1 = JuK1

n. And JuK1
t = −JuK2

t ◦ Π1 and JuK2
t = −JuK1

t ◦ Π2.

In order to obtain an unbiased formulation of the contact problem we prescribe the

contact conditions deduced from the Signorini problem conditions (see [KO88]) on the

two surfaces in a symmetric way. Thus, the conditions describing contact on Γ1
C and Γ2

C

are:

JuKin ≤ gin (3.1a)

σin(ui) ≤ 0 on ΓiC , (3.1b)

σin(ui)(JuKin − gin) = 0 (3.1c)

Let si ∈ L2(ΓiC), si ≥ 0, be the Tresca friction threshold associated to the physical

properties of the i-th surface.

The Tresca friction condition on Γ1
C and Γ2

C reads:
‖σit(ui)‖ ≤ si if JuKit = 0,

σit(u
i) = −si JuKit

‖JuKit‖
otherwise,

(3.2)
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where ‖ · ‖ stands for the Euclidean norm in Rd−1.

Remark 3.1.2. In the frictionless contact case this condition is simply replaced by σit = 0.

Finally, we need to consider the second Newton law between the two bodies:
∫
γ1
C

σ1
n(u1)ds−

∫
γ2
C

σ2
n(u2)ds = 0,∫

γ1
C

σ1
t (u

1)ds+

∫
γ2
C

σ2
t (u

2)ds = 0,

where γ1
C is any subset of Γ1

C and γ2
C = Π1(γ1

C). Mapping all terms on γ1
C allows writing:

∫
γ1
C

σ1
n(u1)− J1σ2

n(u2 ◦ Π1)ds = 0,∫
γ1
C

σ1
t (u

1) + J1σ2
t (u

2 ◦ Π1)ds = 0,
∀γ1

C ⊂ Γ1
C

so we obtain: {
σ1
n(u1)− J1σ2

n(u2 ◦ Π1) = 0,

σ1
t (u

1) + J1σ2
t (u

2 ◦ Π1) = 0,
on Γ1

C . (3.3)

Remark 3.1.3. : A similar condition holds on Γ2
c:{

σ2
n(u2)− J2σ1

n(u1 ◦ Π2) = 0,

σ2
t (u

2) + J2σ1
t (u

1 ◦ Π2) = 0.

It is important to mention that, due to second Newton law, we need to fix s1 and s2

such that: −s1 JuK1
t

‖JuK1
t‖

= σ1
t (u

1) = −J1σ2
t (u

2 ◦ Π1) = J1s2 JuK2
t ◦ Π1

‖JuK2
t ◦ Π1‖ = −J1s2 JuK1

t

|JuK1
t |
.

And so:

s1 = J1s2. (3.4)

3.1.2 Variational formulation using Nitsche’s method

In this section, we establish the weak formulation of problem (2.26)–(3.3) using Nitsche’s

method and the unbiased form of the contact and the friction conditions given in Section

3.1.1.

As in [CHR15c], we introduce an additional parameter θ. This generalization will allow

several variants, depending on the value of θ. The symmetric case is obtained when θ = 1.

The advantage of the symmetric formulation is that it derives from an energy potential

(see 3.1.3). These features are lost when θ 6= 1. Nevertheless the variants θ = −1 and

0 presents some other advantages, mostly from the numerical viewpoint. In particular,

the case θ = 0 involves a reduced number of terms, which makes it easier to implement

and to extend to contact problems involving non-linear elasticity. Also, for θ = −1,
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the well-posedness of the discrete formulation and the optimal convergence are preserved

irrespectively of the value of the Nitsche parameter γi. Some general guidelines on how

to choose γ0 and θ are provided in the section 3.3.5. First, we introduce the Hilbert space

V =
{

v = (v1,v2) ∈ H1(Ω1)d ×H1(Ω2)d : v1 = 0 on Γ1
D and v2 = 0 on Γ2

D

}
.

Let u = (u1,u2) be the solution of the contact problem in its strong form (2.26)–(3.3).

We assume that u is sufficiently regular so that all the following calculations make sense.

As shown in Chapter 2, the derivation of a Nitsche-based method comes from a re-

formulation of the contact conditions (4.16a)-(4.16b)-(4.16c) (see for instance [CH13]

and [CHR15c]). This reformulation is similar to the augmented Lagrangian formula-

tion of contact problems. The contact conditions (4.16a)-(4.16b)-(4.16c) are equivalent

to the equation (3.5) for a given positive function γi :

σin(ui) = [σin(ui)− γi(JuKin − gin)]R− , (3.5)

where the notation [·]R− refers to the the projection on R− of a scalar quantity. Similarly,

as in chapter 2, the Tresca friction condition is equivalent to the equation

σt(u
i) = [σt(u

i)− γiJuKit]si , (3.6)

where, as in section 2.2.1, the notation [·]τ refers to the orthogonal projection onto, the

closed ball centered at the origin and of radius τ . In what follows some properties of the

positive part and the projection are mentioned. Those properties will be useful in the

analysis of the method.

Note that, for x, y ∈ R:

(y − x)([y]
R−
− [x]

R−
) ≥ ([y]

R−
− [x]

R−
)2. (3.7)

We note, also, the following classical property for a projection for all x,y ∈ Rd−1 :

(y − x).([y]τ − [x]τ ) ≥ ‖[y]τ − [x]τ‖2. (3.8)

From the Green formula and equations (2.26), we get for every v ∈ V:∫
Ω1

σ1(u1) : ε(v1)dΩ +

∫
Ω2

σ2(u2) : ε(v2)dΩ =

∫
Ω1

f1 · v1dΩ +

∫
Ω2

f2 · v2dΩ

+

∫
Γ1
N

t1 · v1dΓ +

∫
Γ2
N

t2 · v2dΓ +

∫
Γ1
C

σ1(u1)n1 · v1dΓ +

∫
Γ2
C

σ2(u2)n2 · v2dΓ.
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We define

a(u,v) =

∫
Ω1

σ1(u1) : ε(v1)dΩ +

∫
Ω2

σ2(u2) : ε(v2)dΩ,

and

L(v) =

∫
Ω1

f1 · v1dΩ +

∫
Ω2

f2 · v2dΩ +

∫
Γ1
N

t1 · v1dΓ +

∫
Γ2
N

t2 · v2dΓ.

So, there holds:

a(u,v)−
∫

Γ1
C

σ1
n(u1)v1

ndΓ−
∫

Γ2
C

σ2
n(u2)v2

ndΓ−
∫

Γ1
C

σ1
t (u

1)·v1
tdΓ−

∫
Γ2
C

σ2
t (u

2)·v2
tdΓ = L(v).

Using condition (3.3) we can write

a(u,v)− 1

2

∫
Γ1
C

(σ1
n(u1) + J1σ2

n(u2 ◦ Π1))v1
ndΓ− 1

2

∫
Γ2
C

(σ2
n(u2) + J2σ1

n(u1 ◦ Π2))v2
ndΓ

−1

2

∫
Γ1
C

(σ1
t (u

1)− J1σ2
t (u

2 ◦ Π1)) · v1
tdΓ− 1

2

∫
Γ2
C

(σ2
t (u

2)− J2σ1
t (u

1 ◦ Π2)) · v2
tdΓ = L(v).

So, using the property

∫
Γ1
C

J1fdΓ =

∫
Γ2
C

f ◦ Π2dΓ, we have

a(u,v)− 1

2

∫
Γ1
C

σ1
n(u1)v1

ndΓ− 1

2

∫
Γ1
C

σ1
n(u1)(v2

n ◦ Π1)dΓ− 1

2

∫
Γ2
C

σ2
n(u2)v2

ndΓ

−1

2

∫
Γ2
C

σ2
n(u2)(v1

n ◦ Π2)dΓ− 1

2

∫
Γ1
C

σ1
t (u

1) · v1
t +

1

2

∫
Γ1
C

σ1
t (u

1) · (v2
t ◦ Π1)dΓ

−1

2

∫
Γ2
C

σ2
t (u

2) · v2
t +

1

2

∫
Γ2
C

σ2
t (u

2) · (v1
t ◦ Π2)dΓ = L(v).

This leads to:

a(u,v)− 1

2

∫
Γ1
C

σ1
n(u1)(v1

n + v2
n ◦ Π1)dΓ− 1

2

∫
Γ2
C

σ2
n(u2)(v2

n + v1
n ◦ Π2)dΓ

−1

2

∫
Γ1
C

σ1
t (u

1) · (v1
t − v2

t ◦ Π1)dΓ− 1

2

∫
Γ2
C

σ2
t (u

2) · (v2
t − v1

t ◦ Π2)dΓ = L(v).

Using the writings, for θ ∈ R,
v1
n + v2

n ◦ Π1 = − 1

γ1

(
θσ1

n(v1)− γ1(v1
n + v2

n ◦ Π1)
)

+
θ

γ1
σ1
n(v1)

v2
n + v1

n ◦ Π2 = − 1

γ2

(
θσ2

n(v2)− γ2(v2
n + v1

n ◦ Π2)
)

+
θ

γ2
σ2
n(v2)
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v1
t − v2

t ◦ Π1 = − 1

γ1

(
θσ1

t (v
1)− γ1(v1

t − v2
t ◦ Π1)

)
+

θ

γ1
σ1
t (v

1)

v2
t − v1

t ◦ Π2 = − 1

γ2

(
θσ2

t (v
2)− γ2(v2

t − v1
t ◦ Π2)

)
+

θ

γ2
σ2
t (v

2),

we obtain:

a(u,v)− 1

2

∫
Γ1
C

θ

γ1
σ1
n(u1)σ1

n(v1)dΓ− 1

2

∫
Γ2
C

θ

γ2
σ2
n(u2)σ2

n(v2)dΓ

−1

2

∫
Γ1
C

θ

γ1
σ1
t (u

1) · σ1
t (v

1)dΓ− 1

2

∫
Γ2
C

θ

γ2
σ2
t (u

2) · σ2
t (v

2)dΓ

+
1

2

∫
Γ1
C

σ1
n(u1)

γ1

(
θσ1

n(v1)− γ1(v1
n + v2

n ◦ Π1)
)
dΓ

+
1

2

∫
Γ2
C

σ2
n(u2)

γ2

(
θσ2

n(v2)− γ2(v2
n + v1

n ◦ Π2)
)
dΓ

+
1

2

∫
Γ1
C

σ1
t (u

1)

γ1
·
(
θσ1

t (v
1)− γ1(v1

t − v2
t ◦ Π1)

)
dΓ

+
1

2

∫
Γ2
C

σ2
t (u

2)

γ2
·
(
θσ2

t (v
2)− γ2(v2

t − v1
t ◦ Π2)

)
dΓ

= L(v).

(3.9)

Let us define:

P i
n,γi(u) = σin(ui)− γi(JuKin − gin),

P i
n,θγi(v) = θσin(vi)− γiJvKin,

Pi
t,γi(u) = σit(u

i)− γiJuKit,
Pi
t,θγi(v) = θσit(v

i)− γiJvKit
(3.10)

and

Aθ(u,v) = a(u,v)− 1

2

∫
Γ1
C

θ

γ1
σ1
n(u1)σ1

n(v1)dΓ− 1

2

∫
Γ2
C

θ

γ2
σ2
n(u2)σ2

n(v2)dΓ

−1

2

∫
Γ1
C

θ

γ1
σ1
t (u

1) · σ1
t (v

1)dΓ− 1

2

∫
Γ2
C

θ

γ2
σ2
t (u

2) · σ2
t (v

2)dΓ

= a(u,v)−
2∑
i=1

1

2

(∫
ΓiC

θ

γi
σi(ui)n · σi(vi)n dΓ

)
.

Now we insert the expressions (3.5) of σin(ui) and (3.6) of σit(u
i) in (3.9) and the varia-

tional problem could be formally written as follows:
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Find a sufficiently regular u ∈ V such that for all sufficiently regular v ∈ V,

Aθ(u,v) +
1

2

∫
Γ1
C

1

γ1
[P 1
n,γ1(u)]R−P 1

n,θγ1(v)dΓ +
1

2

∫
Γ2
C

1

γ2
[P 2
n,γ2(u)]R−P 2

n,θγ2(v)dΓ

+
1

2

∫
Γ1
C

1

γ1
[P1

t,γ1(u)]s1 ·P1
t,θγ1(v)dΓ +

1

2

∫
Γ2
C

1

γ2
[P2

t,γ2(u)]s2 ·P2
t,θγ2(v)dΓ = L(v).

(3.11)

Remark 3.1.4. In the frictionless contact case the formulation reads:
Find a sufficiently regular u ∈ V such that for all sufficiently regular v ∈ V

Aθ(u,v) +
1

2

∫
Γ1
C

1

γ1
[P 1
n,γ1(u)]R−P 1

n,θγ1(v)dΓ +
1

2

∫
Γ2
C

1

γ2
[P 2
n,γ2(u)]R−P 2

n,θγ2(v)dΓ = L(v).

.

3.1.3 Derivation of the method from a potential

In this section we show, through a formal demonstration, that the method derives from

a potential in the frictional symmetric (θ = 1) case. Let us define the potential:

J(u) = εΩ(u) +
2∑
i=1

(εin(u) + εit(u)),

with:

εΩ(u) =
1

2
a(u,u)−

2∑
i=1

(1

4

∫
ΓiC

(σin(ui))2

γi
+

1

4

∫
ΓiC

‖σit(ui)‖2

γi
dΓ
)
− L(u)

=
1

2
A1(u,u)− L(u),

εin(u) =
1

4

∫
ΓiC

1

γi
[P i
n,γi(u)]2R−dΓ,

εit(u) =
1

4

∫
ΓiC

1

γi
‖Pi

t,γi(u)‖2dΓ− 1

4

∫
ΓiC

1

γi
‖Pi

t,γi(u)− [Pi
t,γi(u)]si‖2dΓ.

We compute now the derivative of this potential. We have:

DεΩ(u)[v] = A1(u,v)− L(v) (L is linear and Aθ is bilinear),
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Dεin(u)[v] =
1

2

∫
ΓiC

1

γi
[P i
n,γi(u)]R−D

(
[P i
n,γi(u)]R−

)
[v]dΓ

=
1

2

∫
ΓiC

1

γi
[P i
n,γi(u)]R−H

(
− P i

n,γi(u)
)
(D
(
P i
n,γi(u)

)
[v]dΓ,

where H is the Heaviside step function. Using the equalities: H(−x)[x]R− = [x]R− , for any

x ∈ R, and D[A(u)]R− [v] = H(−A(u))DA(u)[v], for any application A : u 7→ A(u) ∈ R,

and since D
(
P i
n,γi(u)

)
[v] = P i

n,γi(v) (P i
n,γi is affine), we get:

Dεin(u)[v] =
1

2

∫
ΓiC

1

γi
[P i
n,γi(u)]R−P i

n,γi(v)dΓ.

For the tangential term, we have:

Dεit(u)[v] =
1

2

∫
ΓiC

1

γi
Pi
t,γi(u) ·Pi

t,γi(v)dΓ

−1

2

∫
ΓiC

1

γi
(Pi

t,γi(u)− [Pi
t,γi(u)]si) · (Pi

t,γi(v)−D
(
[Pi

t,γi(u)]si
)
[v])dΓ


if ‖Pi

t,γi(u)‖ ≤ γisi, then Pi
t,γi(u)− [Pi

t,γi(u)]si = 0

if ‖Pi
t,γi(u)‖ > γisi, then D

(
[Pi

t,γi(u)]si
)
[v] is tangential to B(0, γisi) and

D
(
[Pi

t,γi(u)]si
)
[v] · (Pi

t,γi(u)− [Pi
t,γi(u)]si) = 0.

So, in both cases we get:

Dεit(u)[v] =
1

2

∫
ΓiC

1

γi
[Pi

t,γi(u)]si ·Pi
t,γi(v)dΓ

so, if we consider the first order optimality condition Dε(u)[v] = 0 ∀v ∈ V, we get:

A1(u,v)+
2∑
i=1

(1

2

∫
ΓiC

1

γi
[P i
n,γi(u)]R−P i

n,γi(v)dΓ+
1

2

∫
ΓiC

1

γi
[Pi

t,γi(u)]si ·Pi
t,γi(v)dΓ

)
= L(v).

This is exactly (3.11) when θ = 1.

3.1.4 Strong-weak formulation equivalence

In this section, we are going to establish the formal equivalence between (3.11) and (2.26)-

(3.3). Since the construction of (3.11) is quite elaborated and consists in particular in the

splitting of the contact terms into two parts, this step is necessary to ensure the coherence

of the formulation.

Theorem 3.1.5. Let u = (u1,u2) be a sufficiently regular solution to the problem (3.11),

then u solves the problem (2.26)-(3.3) for all θ ∈ R.
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Proof. Let u = (u1,u2) be a sufficiently regular solution to the problem (3.11). Using the

definitions of Aθ, P
i
γi(u) and P i

θγi(v), we obtain:

a(u,v)− 1

2

∫
Γ1
C

θ

γ1
σ1
n(u1)σ1

n(v1)dΓ− 1

2

∫
Γ2
C

θ

γ2
σ2
n(u2)σ2

n(v2)dΓ− 1

2

∫
Γ1
C

θ

γ1
σ1
t (u

1) · σ1
t (v

1)dΓ

−1

2

∫
Γ2
C

θ

γ2
σ2
t (u

2) · σ2
t (v

2)dΓ +
1

2

∫
Γ1
C

1

γ1
[σ1
n(u1)− γ1(JuK1

n − g1
n)]R−

(
θσ1

n(v1)− γ1(v1
n + v2

n ◦ Π1)
)
dΓ

+
1

2

∫
Γ2
C

1

γ2
[σ2
n(u2)− γ2(JuK2

n − g2
n)]R−

(
θσ2

n(v2)− γ2(v2
n + v1

n ◦ Π2)
)
dΓ

+
1

2

∫
Γ1
C

1

γ1
[σ1

t (u
1)− γ1JuK1

t ]s1 ·
(
θσ1

t (v
1)− γ1(v1

t − v2
t ◦ Π1)

)
dΓ

+
1

2

∫
Γ2
C

1

γ2
[σ2

t (u
2)− γ2JuK2

t ]s2 ·
(
θσ2

t (v
2)− γ2(v2

t − v1
t ◦ Π2)

)
dΓ = L(v).

Using Green’s formula we can write

a(u,v) = −
∫

Ω1

divσ1(u1) · v1dΩ−
∫

Ω2

divσ2(u2) · v2dΩ

+

∫
∂Ω1

σ1(u1)n1 · v1dΓ +

∫
∂Ω2

σ2(u2)n2 · v2dΓ.

If we take v = (v1,0) with v1 = 0 on ∂Ω1, we obtain:∫
Ω1

divσ1(u1) · v1dΩ =

∫
Ω1

f1 · v1dΩ ∀v1,

which yields (4.22) for i=1. In the same way we establish (4.22) for i=2.

To establish (4.16),(4.18) and (3.3), we consider a displacement field v that vanishes on

the boundary except on the contact surfaces where v = (v1,v2). Then (3.11) and (4.22)

gives∫
Γ1
C

σ1
n(u1)v1

ndΓ +

∫
Γ2
C

σ2
n(u2)v2

ndΓ +

∫
Γ1
C

σ1
t (u

1) · v1
tdΓ +

∫
Γ2
C

σ2
t (u

2) · v2
tdΓ

−1

2

∫
Γ1
C

θ

γ1
σ1
n(u1)σ1

n(v1)dΓ− 1

2

∫
Γ2
C

θ

γ2
σ2
n(u2)σ2

n(v2)dΓ− 1

2

∫
Γ1
C

θ

γ1
σ1
t (u

1) · σ1
t (v

1)dΓ

−1

2

∫
Γ2
C

θ

γ2
σ2
t (u

2) · σ2
t (v

2)dΓ +
1

2

∫
Γ1
C

1

γ1
[σ1
n(u1)− γ1(JuK1

n − g1
n)]R−

(
θσ1

n(v1)

−γ1(v1
n + v2

n ◦ Π1)
)
dΓ +

1

2

∫
Γ2
C

1

γ2
[σ2
n(u2)− γ2(JuK2

n − g2
n)]R−

(
θσ2

n(v2)− γ2(v2
n + v1

n ◦ Π2)
)
dΓ

+
1

2

∫
Γ1
C

1

γ1
[σ1

t (u
1)− γ1JuK1

t ]s1 ·
(
θσ1

t (v
1)− γ1(v1

t − v2
t ◦ Π1)

)
dΓ

+
1

2

∫
Γ2
C

1

γ2
[σ2

t (u
2)− γ2JuK2

t ]s2 ·
(
θσ2

t (v
2)− γ2(v2

t − v1
t ◦ Π2)

)
dΓ = 0.

(3.12)

We need to discuss two cases: θ 6= 0 and θ = 0.
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Case 1 θ 6= 0:

In (3.12), let us consider v = (v1,v2) such that:{
v1 = 0 and σ1

t (v
1) = 0 , σ1

n(v1) 6= 0 on Γ1
C and

v2 = 0 and σ2(v2)n2 = 0 on Γ2
C ,

(3.13)

so,

θ

2

∫
Γ1
C

(
[σ1
n(u1)− γ1(JuK1

n − g1
n)]R− − σ1

n(u1)
) 1

γ1
σ1
n(v1)dΓ = 0 ∀v satisfying (3.13).

Then:

σ1
n(u1) = [σ1

n(u1)− γ1(JuK1
n − g1

n)]R− ,

which implies (4.16) for i = 1. Arguing in the same way we obtain (4.16) for i =2 and

the friction conditions (4.18).

Remark 3.1.6. We can show that v satisfying (3.13) can be built by considering s(x)

the curvilinear coordinate system on the boundary ΓC and d(x) the signed distance to ΓC.

Then, for g a given vector field of Rd, u(x) = B−1(s(x))g(s(x))d(x) satisfies u(x) = 0

and σ(u)n = g on ΓC, with Bil = Aijklnknj, A being the elasticity tensor.

To obtain the second Newton law, we use Nitsche’s writing of (4.16) in (3.12) with:

vt = 0 and σt = 0 and v2
n = −v1

n ◦ Π2:∫
Γ1
C

σ1
n(u1)v1

ndΓ−
∫

Γ2
C

σ2
n(u2)v1

n ◦ Π2dΓ = 0 ∀v1
n.

Then: ∫
Γ1
C

[σ1
n(u1)− J1σ2

n(u2 ◦ Π1)]v1
ndΓ = 0 ∀v1

n.

For v1
n = v2

n = 0 and v2
t = v1

t ◦ Π2 and using (4.18) in (3.12), we have similary∫
Γ1
C

[σ1
t (u

1) + J1σ2
t (u

2 ◦ Π1)] · v1
tdΓ = 0 ∀v1

t ,

and we have (3.3).

Case 2 θ = 0:

Let us take v1
t = v2

t = 0 and v2
n = −v1

n ◦ Π2, v1
n = −v2

n ◦ Π1, then (3.12) reads:∫
Γ1
C

[σ1
n(u1)− J1σ2

n(u2 ◦ Π1)]v1
ndΓ = 0 ∀v1

n.

Let us take,now v1
n = v2

n = 0 and v2
t = v1

t ◦ Π2, v1
t = v2

t ◦ Π1, then (3.12) reads:∫
Γ1
C

[σ1
t (u

1) + J1σ2
t (u

2 ◦ Π1)] · v1
tdΓ = 0 ∀v1

t ,

and we have (3.3).
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Let v2 = 0 on Γ2
C . Taking v1

t = 0, we get:∫
Γ1
C

[
σ1
n(u1)−1

2
[σ1
n(u1)−γ1(JuK1

n−g1
n)]R−−J1 1

2
[σ2
n(u2◦Π1)−γ2(JuK2

n◦Π1−g2
n◦Π1)]R−

]
v1
ndΓ = 0

,∀v1
n.

Then, noting the Remark3.1.1:

σ1
n(u1) =

1

2

(
[σ1
n(u1)− γ1(JuK1

n − g1
n)]R− + J1[σ2

n(u2 ◦ Π1)− γ2(JuK1
n − g1

n)]R−

)
.

Since J1 > 0, σ1
n(u1) ≤ 0 and so we obtain (4.16b). The second Newton law (3.3) yields:

σ1
n(u1) =

1

2

(
[σ1
n(u1)− γ1(JuK1

n − g1
n)]R− + [σ1

n(u1)− J1γ2(JuK1
n − g1

n)]R−

)
. (3.14)

We discuss both cases:

If σ1
n(u1) = 0 :

(γ1 + J1γ2)[−(JuK1
n − g1

n)]R− = 0 then JuK1
n ≤ g1

n.

If σ1
n(u1) < 0 :

σ1
n(u1)− γ1(JuK1

n − g1
n) < 0 or σ1

n(u1)− J1γ2(JuK1
n − g1

n) < 0 or both .

1. If we suppose first that: σ1
n(u1)−γ1(JuK1

n−g1
n) < 0 and σ1

n(u1)−J1γ2(JuK1
n−g1

n) < 0,

the equation (3.14) holds :

σ1
n(u1) =

1

2

(
2σ1

n(u1)− (γ1 + J1γ2)(JuK1
n − g1

n)
)

then JuK1
n = g1

n.

2. If now there only holds σ1
n(u1)−γ1(JuK1

n−g1
n) < 0 and σ1

n(u1)−J1γ2(JuK1
n−g1

n) > 0,

we can write (3.14):

σ1
n(u1) =

1

2
σ1
n(u1)− γ1

2
(JuK1

n − g1
n).

So σ1
n(u1) = −γ1(JuK1

n − g1
n).

Then, since σn(u1) < 0 : JuK1
n > g1

n. But in this case,

σ1
n(u1)− J1γ2(JuK1

n − g1
n) < 0,

and this contradicts the assumption σ1
n(u1)−J1γ2(JuK1

n−g1
n) > 0 . So, this case is ab-

surd. In a similar way we get contradiction for the case σ1
n(u1)−J1γ2(JuK1

n−g1
n) < 0.

To conclude, we establish that: if σ1
n(u1) = 0 , JuK1

n ≤ g1
n and if σ1

n(u1) < 0 , JuK1
n = g1

n;

and this is equivalent to (4.16a) and (4.16c).

We suppose, now, that v1
n = 0 and v2 = 0. We get:
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∫
Γ1
C

[
σ1
t (u

1)− 1

2
[σ1

t (u
1)− γ1JuK1

t ]s1 +
J1

2
[σ2

t (u
2 ◦ Π1)− γ2JuK2

t ◦ Π1]s2
]
· v1

tdΓ = 0 ∀v1
t .

Then, using the property: ∀γ > 0, [x]γs = γ
[x
γ

]
s

and the condition (3.4) , it yields:

σ1
t (u

1)− 1

2

[
σ1
t (u

1)− γ1JuK1
t

]
s1

+
1

2

[
J1σ2

t (u
2 ◦ Π1)− J1γ2JuK2

t ◦ Π1
]
s1

= 0.

We use the Newton law (3.3) and the Remark3.1.1 to obtain:

σ1
t (u

1)− 1

2

[
σ1
t (u

1)− γ1JuK1
t

]
s1
− 1

2

[
σ1
t (u

1)− J1γ2JuK1
t

]
s1

= 0.

1. If ‖σ1
t (u

1)− γ1JuK1
t‖ < s1 and ‖σ1

t (u
1)− J1γ2JuK1

t‖ < s1:
JuK1

t

2
(γ1 + J1γ2) = 0; so JuK1

t = 0. In this case we obtain: σ1
t (u

1) =
[
σ1
t (u

1)
]
s1

,

and so: ‖σ1
t (u

1)‖ < s1.

2. If ‖σ1
t (u

1)− γ1JuK1
t‖ ≥ s1 and ‖σ1

t (u
1)− J1γ2JuK1

t‖ ≥ s1:

σ1
t (u

1)− s1

2

σ1
t (u

1)− γ1JuK1
t

‖σ1
t (u

1)− γ1JuK1
t‖
− s1

2

σ1
t (u

1)− J1γ2JuK1
t

‖σ1
t (u

1)− J1γ2JuK1
t‖

= 0. (3.15)

The equation (3.15) shows that σ1
t (u

1) and JuK1
t are collinear.

So:


σ1
t (u

1)− γ1JuK1
t

‖σ1
t (u

1)− γ1JuK1
t‖

=
σ1
t (u

1)− J1γ2JuK1
t

‖σ1
t (u

1)− J1γ2JuK1
t‖
,

or
σ1
t (u

1)− γ1JuK1
t

‖σ1
t (u

1)− γ1JuK1
t‖

= − σ1
t (u

1)− J1γ2JuK1
t

‖σ1
t (u

1)− J1γ2JuK1
t‖

(∗),

and we obtain, from (3.15) :


σ1
t (u

1) = −s1 σ1
t (u

1)−γ1JuK1
t

‖σ1
t (u

1)−γ1JuK1
t ‖

= − 1
γ1 [σ1

t (u
1)− γ1JuK1

t ]s1 ,

and, according to (3.6) ,this is equivalent to (3.2).

or

σ1
t (u

1) = 0 which means JuK1
t = 0 in (∗).

3. If now ‖σ1
t (u

1)− γ1JuK1
t‖ < s1 and ‖σ1

t (u
1)− J1γ2JuK1

t‖ ≥ s1 :

σ1
t (u

1) + γ1JuK1
t − s1 σ

1
t (u

1)− J1γ2JuK1
t

‖σ1
t (u

1)− J1γ2JuK1
t‖

= 0.

Projecting on σ1
t (u

1)

‖σ1
t (u

1)‖ and setting a = ‖σ1
t (u

1)‖ ; b =
γ1σ1

t (u
1) · JuK1

t

‖σ1
t (u

1)‖ ,
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we get: 
|a− b| < s1 and |a− bJ1 γ2

γ1 | ≥ s1

and

a+ b− εs1 = 0 ; where ε = sign(a− bJ1 γ2

γ1 ) = ±1.

Let ε = −1; so, a = −b− s1 and we obtain:
b− a = 2b+ s1 and |b− a| < s1

and

a− bJ1 γ2

γ1 = −(J1 γ2

γ1 + 1)b− s1 and a− bJ1 γ2

γ1 ≤ −s1.

So: 
−s1 < b < 0

and

(J1 γ2

γ1 + 1)b ≥ 0

which is absurd.

Let ε = 1; so a = −b+ s1 and we obtain:
b− a = 2b− s1 and |b− a| < s1

and

a− bJ1 γ2

γ1 = −(J1 γ2

γ1 + 1)b+ s1 and a− bJ1 γ2

γ1 ≥ s1,

so: 
0 < b < s1

and

(J1 γ2

γ1 + 1)b ≤ 0,

which is absurd.

4. If ‖σ1
t (u

1)− γ1JuK1
t‖ ≥ s1 and ‖σ1

t (u
1)− J1γ2JuK1

t‖ < s1:

We argue in the same way laying a = ‖σ1
t (u

1)‖ ; b = J1γ
2σ1

t (u
1) · JuK1

t

‖σ1
t (u

1)‖ .

Thus, we establish the friction condition (4.18) for i=1. In the same way, when supposing

v1 = 0, we get (4.16a)-(4.16b)-(4.16c) and (4.18) for i=2.
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3.1.5 Discretization of the variational formulation

Let (T ih )h>0 be a family of triangulations of the domain Ωi supposed regular and conformal

to the subdivisions of the boundaries into ΓiD, ΓiN and ΓiC . We introduce

Vh = (V1
h ×V2

h), with Vi
h =

{
vih ∈ C 0(Ωi) : vih|T ∈ (Pk(T ))d,∀T ∈ T ih ,vih = 0 on ΓiD

}
,

the family of finite dimensional vector spaces indexed by h and coming from T ih .

We consider in what follows that γi is a positive piecewise constant function on the contact

interface ΓiC which satisfies

γi|Ki∩ΓiC
=

γ0

hKi

,

for every Ki ∈ T ih that has a non-empty intersection of dimension d − 1 with ΓiC , and

where γ0 is a positive given constant. Note that the value of γi on element intersections

has no influence. This allows to define a discrete counterpart of (3.11). Let us use, for

this purpose, the same notations for the linear operators as given by 3.10.

Then the unbiased formulation of the two bodies contact in the discrete setting reads:



Find uh ∈ Vh such that, for all vh ∈ Vh,

Aθ(uh,vh) +
1

2

∫
Γ1
C

1

γ1
P 1
n,θγ1(vh)[P

1
n,γ1(uh)]R−dΓ +

1

2

∫
Γ2
C

1

γ2
P 2
n,θγ2(vh)[P

2
n,γ2(uh)]R−dΓ

+
1

2

∫
Γ1
C

1

γ1
P1
t,θγ1(vh) · [P1

t,γ1(uh)]s1dΓ +
1

2

∫
Γ2
C

1

γ2
P2
t,θγ2(vh) · [P2

t,γ2(uh)]s2dΓ = L(vh).

(3.16)

Remark 3.1.7. Note that Nitsche’s method is not a standard penalty method, since it

is consistent. In fact the Nitsche’s method is closer to Barbosa & Hughes stabilization

(see [Ste95] and [CH13, Section 2.3]), so the Nitsche parameter γ0 is in fact a stabilization

parameter. As a result, making γ0 high does not increase necessarily precision, conversely

to standard penalty (see as well Figures 3.16 and 3.17 in section 3.3.5 for a numerical

illustration here). The parameter γ0 must therefore be just larger than a threshold value

ensuring the coercivity so that the problem is well posed (and not too large not to cause

ill-conditioning). This threshold value depends on the variant (θ).

3.2 Mathematical analysis of the method

A major difference between Nitsche’s method and standard penalty methods is the con-

sistency demonstrated in 3.2.1. Using the same arguments as in [CH13] we prove the

well-posedness and the optimal convergence of (3.16) when the mesh size h vanishes. To

insure well-posedness and convergence of the method we need to impose γ0 to be suffi-

ciently large when θ 6= −1. This condition is avoided when θ = −1 which is a major
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advantage of this version.

3.2.1 Consistency

Similarly to Nitsche’s method for unilateral contact problems [CH13], our Nitsche-based

formulation (3.16) is consistent:

Lemma 3.2.1. Suppose that the solution u of (2.26)-(3.3) lies in (H
3
2

+ν(Ω1))d×(H
3
2

+ν(Ω2))d

with ν > 0, then u is also solution to:

Aθ(u,vh) +
1

2

∫
Γ1
C

1

γ1
P 1
n,θγ1(vh)[P

1
n,γ1(u)]R−dΓ +

1

2

∫
Γ2
C

1

γ2
P 2
n,θγ2(vh)[P

2
n,γ2(u)]R−dΓ

+
1

2

∫
Γ1
C

1

γ1
P1
t,θγ1(vh) · [P1

t,γ1(u)]s1dΓ +
1

2

∫
Γ2
C

1

γ2
P2
t,θγ2(vh) · [P2

t,γ2(u)]s2dΓ

= L(vh), ∀vh ∈ Vh.
(3.17)

Proof. Let u be a solution of (2.26)–(3.3) and set vh ∈ Vh. Since ui ∈ (H
3
2

+ν(Ωi))d, we

have σin(ui) ∈ (Hν(ΓiC))d and Pnγi and Ptγi are well-defined and belong to L2(ΓiC).

With equations (2.26)–(3.2) and integration by parts, it holds:

a(u,vh)−
∫

Γ1
C

σ1
n(u1)v1

hndΓ−
∫

Γ2
C

σ2
n(u2)v2

hndΓ−
∫

Γ1
C

σ1
t (u

1)·v1
htdΓ−

∫
Γ2
C

σ2
t (u

2)·v2
htdΓ = L(vh).

We use now (3.3) to write:

a(u,v)− 1

2

∫
Γ1
C

σ1
n(u1)(v1

hn + v2
hn ◦ Π1)dΓ− 1

2

∫
Γ2
C

σ2
n(u2)(v2

hn + v1
hn ◦ Π2)dΓ

− 1

2

∫
Γ1
C

σ1
t (u

1) · (v1
ht − v2

ht ◦ Π1)dΓ− 1

2

∫
Γ2
C

σ2
t (u

2) · (v2
ht − v1

ht ◦ Π2)dΓ = L(vh).

For any θ ∈ R, we can write:
v1
hn + v2

hn ◦ Π1 = − 1

γ1

(
θσ1

n(v1
h)− γ1(v1

hn + v2
hn ◦ Π1)

)
+

θ

γ1
σ1
n(v1

h)

v2
hn + v1

hn ◦ Π2 = − 1

γ2

(
θσ2

n(v2
h)− γ2(v2

hn + v1
hn ◦ Π2)

)
+

θ

γ2
σ2
n(v2

h)
v1
th − v2

th ◦ Π1 = − 1

γ1

(
θσ1

t (v
1
h)− γ1(v1

th − v2
th ◦ Π1)

)
+

θ

γ1
σ1
t (v

1
h)

v2
th − v1

th ◦ Π2 = − 1

γ2

(
θσ2

t (v
2
h)− γ2(v2

th − v1
th ◦ Π2)

)
+

θ

γ2
σ2
t (v

2
h),

(3.18)

Using (3.18), formulations (3.5) and (3.6) of the contact and friction conditions and the

notations (3.10), we obtain (3.17).

Remark 3.2.2. The regularity assumption that we made in Lemma 3.2.1 is standard

for Signorini contact. It was proved for an elliptic scalar problem in [MK92] and noted
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numerically for linear elasticity. In fact the singularities that appear with contact-non-

contact transitions allow us, generally, to expect a Sobolev regularity between 3/2 and

5/2.

3.2.2 Well-posedness

To prove well-posedness of our formulation, we first need the following discrete trace

inequality.

Lemma 3.2.3. There exists C > 0, independent of the parameter γ0 and of the mesh size

h, such that:

‖(γi)−
1
2σit(v

i
h)‖2

0,Γic
+ ‖(γi)−

1
2σin(vih)‖2

0,Γic
≤ C

γ0

‖vih‖2
1,Ωi , (3.19)

for all vih ∈ Vi
h.

Proof. The inequality (3.19) is obtained using a scaling argument as in [Cho14, Lemma

3.2] .

We then show in Theorem 3.2.4 that the problem (3.16) is well-posed using an ar-

gument from [Bre68] for M-type and pseudo-monotone operators. In the proof of the

well-posedness, two cases are discused: θ = 1 and θ 6= 1.

Theorem 3.2.4. Suppose that γ0 > 0 is sufficiently large or θ = −1, then Problem (3.16)

admits one unique solution uh in Vh. When θ = −1 we do not need the assumption of

largeness of γ0.

Proof. Using the Riesz representation theorem, we define a (non-linear) operator B :

Vh → Vh, by means of the formula:

(Buh,vh)1 = Aθ(uh,vh) +
2∑
i=1

(1

2

∫
ΓiC

1

γi
P i
n,θγi(vh)[P

i
n,γi(uh)]R−dΓ

+
1

2

∫
ΓiC

1

γi
Pi
t,θγi(vh) · [Pi

t,γi(uh)]sidΓ
)
,

for all uh,vh ∈ Vh, and where (., .)1 stands for the scalar product in Vand the notations

P i
n,γi , Pi

t,γi , P
i
n,θγi and Pi

t,θγi are given by (3.10).

Note that Problem (3.16) is well-posed if and only if B is a one-to-one operator. Let

vh,wh ∈ Vh, using the writings P i
n,θγi(·) = P i

n,γi(·) + γigin + (1 − θ)σin(·) and Pi
t,θγi(·) =
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Pi
t,γi(·) + (1− θ)σit(·), we have:

(Bvh −Bwh,vh −wh)1 = a(vh −wh,vh −wh)

+
2∑
i=1

(
− θ

2
‖(γi)−

1
2σ(vih −wi

h)n‖2
0,ΓiC

+
1

2

∫
ΓiC

1

γi
P i
n,γi(vh −wh)

(
[P i
n,γi(vh)]R− − [P i

n,γi(wh)]R−
)
dΓ

+
(1− θ)

2

∫
ΓiC

1

γi
σin(vih −wi

h)
(
[P i
n,γi(vh)]R− − [P i

n,γi(wh)]R−
)
dΓ

+
1

2

∫
ΓiC

1

γi
Pi
t,γi(vh −wh).

(
[Pi

t,γi(vh)]si − [Pi
t,γi(wh)]si

)
dΓ

+
(1− θ)

2

∫
ΓiC

1

γi
σit(v

i
h −wi

h).
(
[Pi

t,γi(v
i
h)]si − [Pi

t,γi(wh)]si
)
dΓ
)
.

We use Cauchy-Schwarz inequality and the proprieties (3.7) and (3.8) to get:

(Bvh −Bwh,vh −wh)1 ≥ a(vh −wh,vh −wh) +
2∑
i=1

(
− θ

2
‖(γi)−

1
2σ(vih −wi

h)n‖2
0,ΓiC

+
1

2
‖(γi)−

1
2
(
[P i
n,γi(vh)]R− − [P i

n,γi(wh)]R−
)
‖2

0,ΓiC
+

1

2
‖(γi)−

1
2
(
[Pi

t,γi(vh)]si − [Pi
t,γi(wh)]si

)
‖2

0,ΓiC

−|1− θ|
2
‖(γi)−

1
2
(
[P i
n,γi(vh)]R− − [P i

n,γi(wh)]R−
)
‖0,ΓiC

‖(γi)−
1
2σin(vih −wi

h)‖0,ΓiC

−|1− θ|
2
‖(γi)−

1
2
(
[Pi

t,γi(vh)]si − [Pi
t,γi(wh)]si

)
‖0,ΓiC

‖(γi)−
1
2σit(v

i
h −wi

h)‖0,ΓiC

)
.

If θ = 1, we use the coercivity of a(·, ·) and the property (3.19) to get:

(Bvh −Bwh,vh −wh)1 ≥ a(vh −wh,vh −wh)−
2∑
i=1

1

2
‖(γi)−

1
2σi(vih −wi

h)n
i‖2

0,ΓiC

≥ a(vh −wh,vh −wh)−
2∑
i=1

1

2

(
‖(γi)−

1
2σin(vih −wi

h)‖2
0,ΓiC

+ ‖(γi)−
1
2σit(v

i
h −wi

h)‖2
0,ΓiC

)
≥ C‖vh −wh‖2

1

when γ0 is sufficiently large.
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We suppose now that θ 6= 1 ; let β > 0. Applying Young inequality yields:

(Bvh −Bwh,vh −wh)1 ≥ a(vh −wh,vh −wh) +
2∑
i=1

(
− θ

2
‖(γi)−

1
2σi(vih −wi

h)n
i‖2

0,ΓiC

+
1

2
‖(γi)−

1
2
(
[P i
n,γi(vh)]R− − [P i

n,γi(wh)]R−
)
‖2

0,ΓiC
+

1

2
‖(γi)−

1
2
(
[Pi

t,γi(vh)]si − [Pi
t,γi(wh)]γisi

)
‖2

0,ΓiC

−|1− θ|
4β

‖(γi)−
1
2
(
[P i
n,γi(vh)]R− − [P i

n,γi(wh)]R−
)
‖2

0,ΓiC
− |1− θ|β

4
‖(γi)−

1
2σin(vih −wi

h)‖2
0,ΓiC

−|1− θ|
4β

‖(γi)−
1
2
(
Pi
t,γi(vh)]si − [Pi

t,γ(wh)]si
)
‖2

0,ΓiC
− |1− θ|β

4
‖(γi)−

1
2σit(v

i
h −wi

h)‖2
0,ΓiC

)
= a(vh −wh,vh −wh) +

2∑
i=1

(
− 1

2

(
θ +
|1− θ|β

2

)(
‖(γi)−

1
2σin(vih −wi

h)‖2
0,ΓiC

+‖(γi)−
1
2σit(v

i
h −wi

h)‖2
0,ΓiC

)
+

1

2

(
1− |1− θ|

2β

)(
‖(γi)−

1
2
(
[P i
n,γi(vh)]R− − [P i

n,γi(wh)]R−
)
‖2

0,ΓiC

+‖(γi)−
1
2
(
[Pi

t,γi(vh)]si − [Pi
t,γi(wh)]si

)
‖2

0,ΓiC

))
.

Choosing β =
|1− θ|

2
and γ0 sufficiently large we get:

(Bvh −Bwh,vh −wh)1 ≥ a(vh −wh,vh −wh)

−(1 + θ)2

8

2∑
i=1

(
‖(γi)−

1
2σin(vih −wi

h)‖2
0,ΓiC

+‖(γi)−
1
2σit(v

i
h −wi

h)‖2
0,ΓiC

)
.

(Bvh −Bwh,vh −wh)1 ≥ C‖v −w‖2
1

Note that, when θ = −1 we do not need the assumption of largeness of γ0.

Let us show, now, that B is hemicontinuous. Since Vh is a vector space, it is sufficient

to show that:

φ : [0, 1] → R
t 7→ (B(vh − twh),wh)1
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is a continuous real function for all vh,wh ∈ Vh. Let t, s ∈ [0, 1] , we compute:

|φ(t)− φ(s)|
=
∣∣∣(B(vh − twh)−B(vh − swh),wh)1

∣∣∣
=
∣∣∣Aθ((s− t)wh,wh) +

2∑
i=1

(1

2

∫
ΓiC

1

γi
P i
n,θγi(wh)

(
[P i
nγi(vh − twh)]R− − [P i

nγi(vh − swh)]R−
)
dΓ

+
1

2

∫
ΓiC

1

γi
Pi
t,θγi(wh)

(
[Pi

tγi(vh − twh)]si − [Pi
tγi(vh − swh)]si

)
dΓ
)∣∣∣

≤ |s− t|Aθ(wh,wh) +
2∑
i=1

(1

2

∫
ΓiC

1

γi
|P i
n,θγi(wh)|

∣∣∣[P i
nγi(vh − twh)]R− − [P i

nγi(vh − swh)]R−

∣∣∣dΓ

+
1

2

∫
ΓiC

1

γi
‖Pi

t,θγi(wh)‖
∥∥∥[Pi

tγi(vh − twh)]si − [Pi
tγi(vh − swh)]si

∥∥∥dΓ
)
.

We use the bounds |[a]R− − [b]R−| ≤ |a − b| for all a, b ∈ R and
∥∥[a]gi − [b]gi

∥∥ ≤ ‖a − b‖
for all a, b ∈ Rd−1 to deduce that:∫

ΓiC

1

γi
|P i
n,θγi(wh)|

∣∣∣[P i
nγi(vh − twh)]R− − [P i

nγi(vh − swh)]R−

∣∣∣dΓ

+

∫
ΓiC

1

γi
‖Pi

t,θγi(wh)‖
∥∥∥[Pi

tγi(vh − twh)]si − [Pi
tγi(vh − swh)]si

∥∥∥dΓ

≤
∫

ΓiC

1

γi
|P i
n,θγi(wh)|

∣∣∣P i
nγi(vh − twh)− P i

nγi(vh − swh)
∣∣∣dΓ

+

∫
ΓiC

1

γi
‖Pi

t,θγi(wh)‖
∥∥∥Pi

tγi(vh − twh)−Pi
tγi(vh − swh)

∥∥∥dΓ

≤|s− t|
(∫

ΓiC

1

γi
|P i
n,θγi(wh)||P i

nγi(wh)|dΓ +

∫
ΓiC

1

γi
‖Pi

t,θγi(wh)‖‖Pi
tγi(wh)‖dΓ

)
.

It results that:

|φ(t)− φ(s)| ≤ |s− t|
(
Aθ(wh,wh) +

2∑
i=1

(∫
ΓiC

1

2γi
|P i
n,θγi(wh)||P i

nγi(wh)|dΓ

+

∫
ΓiC

1

2γi
‖Pi

t,θγi(wh)‖‖Pi
tγi(wh)‖dΓ

))
.

Which means that φ is Lipschitz, so that B is hemicontinuous. We finally apply the

Corollary 15 (p.126) of [Bre68] to conclude that B is a one to one operator.

3.2.3 A priori error analysis

Our Nitsche-based method (3.16) converges in a optimal way as the mesh parameter h

vanishes. This is proved in the Theorem 3.2.6, where we provide an estimate of the
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displacement error in H1-norm and of the contact error in L2(ΓiC)-norm. We establish,

first, the following abstract error estimate.

Theorem 3.2.5. Suppose that u is a solution to (2.26-3.3) and belongs to (H
3
2

+ν(Ω1))d×
(H

3
2

+ν(Ω2))d with ν > 0.

1. We suppose γ0 sufficiently large. The solution uh to the discrete problem (3.16)

satisfies the following error estimate:

2∑
i=1

(
‖ui − uih‖2

1,Ωi +
1

2
‖(γi)−

1
2
(
σin(ui)− [P i

n,γ(uh)]R−
)
‖2

0,ΓiC

+
1

2
‖(γi)−

1
2
(
σit(u

i)− [Pi
t,γi(uh)]si

)
‖2

0,ΓiC

)
≤ C inf

vh∈Vh

( 2∑
i=1

‖ui − vih‖2
1,Ωi +

1

2
‖(γi)

1
2 (ui − vih)‖2

0,ΓiC
+

1

2
‖(γi)−

1
2σ(ui − vih)n

i‖2
0,ΓiC

)
,

(3.20)

where C > 0 is a constant independent of h, u and γ0.

2. If θ = −1, for all γ0 > 0, the solution uh to the problem (3.16) satisfies the estimate

(3.20) with C > 0 a constant independent of h and u, but eventually dependent of γ0.

Proof. The proof of this theorem is inspired by [CHR15c, Theorem 3.6] for unilateral

contact and [Cho14, Theorem 3.4] for the frictional case.

Let vh ∈ Vh, using the coercivity and the continuity of the form a(·, ·) as well as

Young’s inequality, we obtain:

α
2∑
i=1

‖ui − uih‖2
1,Ωi ≤ a(u− uh,u− uh)

= a(u− uh,u− vh) + a(u− uh,vh − uh)

≤ C
2∑
i=1

‖ui − uih‖1,Ωi‖ui − vih‖1,Ωi + a(u− uh,vh − uh)

≤ α

2

2∑
i=1

‖ui − uih‖2
1,Ωi +

C2

2α

2∑
i=1

‖ui − vih‖2
1,Ωi

+a(u,vh − uh)− a(uh,vh − uh).

Therefore, we get:

α

2

2∑
i=1

‖ui − uih‖2
1,Ωi ≤

C2

2α

2∑
i=1

‖ui − vih‖2
1,Ωi + a(u,vh − uh)− a(uh,vh − uh).
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Since u solves (2.26-3.3) and uh solves (3.16), using the Lemma 3.2.1 yields:

α

2

2∑
i=1

‖ui − uih‖2
1,Ωi ≤

C2

2α

2∑
i=1

‖ui − vih‖2
1,Ωi

+
2∑
i=1

(
− θ

2

∫
ΓiC

1

γi
σi(uih − ui)ni · σi(vih − uih)n

idΓ

+
1

2

∫
ΓiC

1

γi
Pi
t,θγi(vh − uh) ·

(
[Pi

t,γi(uh)]si − [Pi
t,γi(u)]si

)
dΓ(3.21)

+
1

2

∫
ΓiC

1

γi
P i
n,θγi(vh − uh)

(
[P i
n,γi(uh)]R− − [P i

n,γi(u)]R−
)
dΓ
)
.

Let β1 > 0. The first integral term in (3.21) is bounded, using Cauchy-Schwarz and

Young’s inequalities, as follows:

−θ
2

∫
ΓiC

1

γi
σi(uih − ui)ni · σi(vih − uih)n

idΓ

=
θ

2

∫
ΓiC

1

γi
σi(vih − uih)n

i · σi(vih − uih)n
idΓ− θ

2

∫
ΓiC

1

γi
σi(vih − ui)ni · σi(vih − uih)n

idΓ

≤ θ

2
‖(γi)−

1
2σi(vih − uih)n

i‖2
0,ΓiC

+
|θ|
2
‖(γi)−

1
2σi(vih − ui)ni‖0,ΓiC

‖(γi)−
1
2σi(vih − uih)n

i‖0,ΓiC

≤ β1θ
2

4
‖(γi)−

1
2σi(vih − ui)ni‖2

0,ΓiC
+

1

2

(
θ +

1

2β1

)
‖(γi)−

1
2σi(vih − uih)n

i‖2
0,ΓiC

.

(3.22)

For the second integral term in (3.21), we can write:∫
ΓiC

1

γi
Pi
t,θγi(vh − uh) ·

(
[Pi

t,γi(uh)]si − [Pi
t,γi(u)]si

)
dΓ

=

∫
ΓiC

1

γi
Pi
t,γi(vh − u) ·

(
[Pi

t,γi(uh)]si − [Pi
t,γi(u)]si

)
dΓ

+

∫
ΓiC

1

γi
Pi
t,γi(u− uh) ·

(
[Pi

t,γi(uh)]si − [Pi
t,γi(u)]si

)
dΓ

+

∫
ΓiC

(1− θ)σit(vih − uih) ·
(
[Pi

t,γi(uh)]si − [Pi
t,γi(u)]si

)
dΓ.

Using the bound (3.8) and applying two times Cauchy-Schwarz and Young’s inequalities,
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we obtain for β2 > 0 and β3 > 0:∫
ΓiC

1

γi
Pi
t,θγi(vh − uh) ·

(
[Pi

t,γi(uh)]si − [Pi
t,γi(u)]si

)
dΓ

≤ 1

2β2

∥∥∥(γi)
− 1

2

(
σit(u

i)− [Pi
t,γi(uh)]si

)∥∥∥2

0,ΓiC

+
β2

2
‖(γi)−

1
2 [Pi

t,γi(vh − u)]si‖2
0,ΓiC

−
∥∥∥(γi)

− 1
2

(
σit(u

i)− [Pi
t,γi(uh)]si

)∥∥∥2

0,ΓiC

+
|1− θ|

2β3

∥∥∥(γi)
− 1

2

(
σit(u

i)− [Pi
t,γi(uh)]si

)∥∥∥2

0,ΓiC

+
|1− θ|β3

2
‖(γi)−

1
2σit(v

i
h − uih)‖2

0,ΓiC
.

(3.23)

In a similar way, we can upper bound the third integral term of (3.21).

Noting that:

‖(γi)−
1
2 [Pi

t,γi(vh − u)]si‖2
0,ΓiC

+ ‖(γi)−
1
2 [P i

n,γi(vh − u)]R−‖2
0,ΓiC

≤ 2‖(γi)
1
2 (Ju− vhKin + Ju− vhKit)‖2

0,ΓiC
+ 2‖(γi)−

1
2σi(ui − vih)n

i‖2
0,ΓiC

≤ 2
2∑
i=1

(
‖(γi)

1
2 (ui − vih)‖2

0,ΓiC

)
+ 2‖(γi)−

1
2σi(ui − vih)n

i‖2
0,ΓiC

,

(3.24)

and using estimates (3.22) and (3.23) in (3.21), we obtain:

α

2

2∑
i=1

‖ui − uih‖2
1,Ωi ≤

C2

2α

2∑
i=1

‖ui − vih‖2
1,Ωi

+
1

2

2∑
i=1

(
(
β1θ

2

2
+ β2)‖(γi)−

1
2σi(ui − vih)n

i‖2
0,ΓiC

+ 2β2‖(γi)
1
2 (ui − vih)‖2

0,ΓiC

+
(
− 1 +

1

2β2

+
|1− θ|

2β3

)(
‖(γi)−

1
2 (σit(u

i)−Pi
t,γi(uh)]si)‖2

0,ΓiC
+

‖(γi)−
1
2 (σin(ui)− [P i

n,γi(uh)]R−)‖2
0,ΓiC

)
+
( 1

2β1

+ θ +
|1− θ|β3

2

)
‖(γi)−

1
2σi(vih − uih)n

i‖2
0,ΓiC

)
.

(3.25)

We use now the estimate (3.19) to get:

‖(γi)−
1
2σi(vih − uih)n

i‖2
0,ΓiC
≤ Cγ

− 1
2

0 ‖vih − uih‖2
1,Ωi ≤ Cγ

− 1
2

0 (‖vih − ui‖2
1,Ωi + ‖uih − ui‖2

1,Ωi)

(3.26)

For a fixed θ ∈ R we choose β2 and β3 large enough that:

−1 +
1

2β2

+
|1− θ|

2β3

< −1

2

Choosing γ0 large enough in (3.26) and putting the estimate in (3.25), we establish the

first statement of the theorem.
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We consider now the case θ = −1 in which (3.25) becomes:

α

2

2∑
i=1

‖ui − uih‖2
1,Ωi ≤

C2

2α

2∑
i=1

‖ui − vih‖2
1,Ωi

+
1

2

2∑
i=1

(
(
β1

2
+ β2)‖(γi)−

1
2σi(ui − vih)n

i‖2
0,ΓiC

+ 2β2‖(γi)
1
2 (ui − vih)‖2

0,ΓiC

+
(
− 1 +

1

2β2

+
1

β3

)(
‖(γi)−

1
2 (σit(u

i)− [Pi
t,γi(uh)]si)‖2

0,ΓiC
+ ‖(γi)−

1
2 (σin(ui)− [P i

n,γi(uh)]R−)‖2
0,ΓiC

)
+
( 1

2β1

− 1 + β3

)(
‖(γi)−

1
2σi(vih − uih)n

i‖2
0,ΓiC

))
.

Let be given η > 0. Set β1 = 1
2η

, β2 = 1 + 1
η
, β3 = 1 + η. And so we arrive at:

α

2

2∑
i=1

‖ui − uih‖2
1,Ωi ≤

C2

2α

2∑
i=1

‖ui − vih‖2
1,Ωi

+
1

2

2∑
i=1

(
(

5

4η
+ 1)‖(γi)−

1
2σi(ui − vih)n

i‖2
0,ΓiC

+ 2
1 + η

η
‖(γi)

1
2 (ui − vih)‖2

0,ΓiC

− η

2(1 + η)

(
‖(γi)−

1
2 (σit(u

i)− [Pi
t,γi(uh)]si)‖2

0,ΓiC
+ ‖(γi)−

1
2 (σin(ui)− [P i

n,γi(uh)]R−)‖2
0,ΓiC

)
+2η‖(γi)−

1
2σi(vih − uih)n

i‖2
0,ΓiC

)
Set η =

α

16C2γ0

, where C is the constant in (3.26) to conclude the proof of the theorem.

Theorem 3.2.6. Suppose that u = (u1,u2) is a solution to problem (2.26-3.3) and belongs

to (H
3
2

+ν(Ω1))d × (H
3
2

+ν(Ω2))d with 0 < ν ≤ 1

2
if k = 1 and 0 < ν ≤ 1 if k = 2 ( k is the

degree of the finite element method). If θ = −1 or γ0 is sufficiently large, the solution uh
to the problem (3.16) satisfies the following estimate:

2∑
i=1

(
‖ui − uih‖2

1,Ωi +
1

2
‖(γi)−

1
2
(
σin(ui)− [P i

n,γi(uh)]R−
)
‖2

0,ΓiC

+
1

2
‖(γi)−

1
2
(
σit(u

i)− [Pi
t,γi(uh)]si

)
‖2

0,ΓiC

)
≤ Ch1+2ν

2∑
i=1

‖ui‖2
3
2

+ν,Ωi

(3.27)

where C is a constant independent of u and h.

Proof. To establish (3.27) we need to bound the right terms in estimate (3.20). We choose

vih = I ihui where I ih stands for the Lagrange interpolation operator mapping onto Vi
h. The

estimation of the Lagrange interpolation error in the H1-norm on a domain is classical

(see, e.g., [DS80], [BS07] and [EG04])

‖ui − I ihui‖1,Ωi ≤ Ch
1
2

+ν‖ui‖ 3
2

+ν,Ωi (3.28)
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for −1
2
< ν ≤ k − 1

2
.

Let E in ΓiC be an edge of triangle K ∈ T ih, we have:

‖(γi)
1
2 (ui − I ihui)‖0,E ≤ Ch

1
2

+ν‖ui‖1+ν,E

A summation on all the edges E , with the trace theorem yields:

‖(γi)
1
2 (ui − I ihui)‖0,ΓiC

≤ Ch
1
2

+ν‖ui‖1+ν,ΓiC
≤ Ch

1
2

+ν‖ui‖ 3
2

+ν,Ωi (3.29)

From Appendix A of [CHR15c] (see also [FHW04]), we get the following estimate:

‖(γi)−
1
2σ(ui − I ihui)ni‖0,ΓiC

≤ Ch
1
2

+ν‖ui‖ 3
2

+ν,Ωi (3.30)

By inserting (3.28), (3.29) and (3.30) onto (3.20) we get (3.27).

3.3 Numerical experiments

In this section, we test the Nitsche unbiased method (3.16) for two/three-dimensional

contact between two elastic bodies Ω1 and Ω2. The first body is a disk/sphere and the

second is a rectangle/rectangular cuboid. This situation is not strictly a Hertz type

contact problem because Ω2 is bounded.

The tests are performed with P1 and P2 Lagrange finite elements. The finite element

library Getfem++ is used. The discrete contact problem is solved by using a general-

ized Newton method. Further details on generalized Newton’s method applied to contact

problems can be found for instance in [Ren13] and the references therein. The accuracy of

the method is discussed for the different cases with respect to the finite element used, the

mesh size, and the value of the parameters θ and γ0. We perform experiments with a fric-

tionless contact to compare the results of the formulation with other ones using Nitsche’s

method (given mainly in [CHR15c,FPR16]). Moreover, we present the convergence curves

for frictional contact in figures 3.11 and 3.12.

The numerical tests in two dimensions (resp. three dimensions) are performed on

a domain Ω =] − 0.5, 0.5[2 (resp. Ω =] − 0.5, 0.5[3) containing the two bodies Ω1 and

Ω2 . The first body is a disk of radius 0.25 and center (0,0) (resp. a sphere of radius

0.25 and center (0,0,0)), and the second is a rectangle ] − 0.5, 0.5[×] − 0.5,−0.25[ (resp.

Ω2 =] − 0.5, 0.5[2×] − 0.5, 0.25[). The contact surface Γ1
C is the lower semicircle and Γ2

C

is the top surface of Ω2 (i.e. Γ1
C = {x ∈ ∂Ω1;x2 ≤ 0} and Γ2

C = {x ∈ ∂Ω2;x2 = −0.25}
(resp. Γ1

C = {x ∈ ∂Ω1;x3 ≤ 0} and Γ2
C = {x ∈ ∂Ω2;x3 = −0.25})). A Dirichlet condition

is prescribed at the bottom of the rectangle (resp. cuboid). Since no Dirichlet condition is

applied on Ω1 the problem is only semi-coercive. To overcome the non-definiteness coming

from the free rigid motions, the horizontal displacement is prescribed to be zero on the

two points of coordinates (0,0) and (0,0.1) (resp. (0,0,0) and (0,0,0.1)) which blocks the

horizontal translation and the rigid rotation. The projector Π1 is defined from Γ1
C to Γ2

C in

the vertical direction. All remaining parts of the boundaries are considered traction free.
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For simplicity, we consider a dimensionless configuration with Lamé coefficients λ = 1

and µ = 1 and a volume density of vertical force fv = −0.25.

The expression of the exact solution being unknown, the convergence is studied with

respect to a reference solution computed with a P2 element on a very fine mesh for θ = −1

(see Figures 3.2 and 3.3).

Figure 3.2: 2D Numerical reference solution with contour plot of Von Mises stress. h =
1/400, γ0 = 100 and P2 elements.

Figure 3.3: Cross-section of 3D numerical reference solution with contour plot of Von Mises
stress. h = 1/50, γ0 = 100 and P2 elements.

To show the quality of the approximation method we plot in Figure 4.5 the contact

stress profile on the second boundary and we compare it to Hertz’s solution. The diagrams
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in Figure 4.5 correspond to the pressure profiles for the reference fine mesh with quadratic

elements. The vertical green arrows correspond to values of the contact pressure field

at quadrature points. The blue solid line represents the analytically calculated Hertz’s

pressure profile. The left diagram correspond to the bi-dimensional case and the right

one is the obtained pressure at quadrature points of the elements crossing the plan y = 0

in the three dimensional case.
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(b) 3D (for y=0)

Figure 3.4: Contact pressure profile for the 2D and 3D cases (Hertz solution in blue solid line
and computed solution in vertical green lines).

3.3.1 Convergence in the two dimensional frictionless case

We perform a numerical convergence study on the three methods θ = 1, θ = 0 and θ = −1

for a fixed parameter γ0 = 100 (chosen large in order to obtain convergence for the three

cases) and friction coefficients s1 = s2 = 0. In each case we plot the relative error in

percentage in the H1-norm of the displacement in the two bodies and the error of the L2

norm of the Nitsche’s contact condition on Γ1
C and Γ2

C . The error of the Nitsche’s contact

condition is equal to:

‖(γi)−
1
2
(
σin(uhiref )− [P i

n,γ(uh)]R−
)
‖0,ΓiC

‖(γi)− 1
2σin(uhiref )‖0,ΓiC

, where uhiref is the reference solution on Ωi.

On figures 3.5, 3.6 and 3.7 the curves of relative error in percentage for Lagrange P1 finite

elements are plotted. The convergence rate in a H1-norm is about 1 for the three values

of θ which is in this case optimal, according to Theorem 3.2.6. On figures 3.8, 3.9 and

3.10 the same experiments are reported for Lagrange P2 finite elements. The convergence

rate for the three cases is about 1.5 which correspond to optimality as well.
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Figure 3.5: Convergence curves in 2D for the method θ = 1, with γ0 = 100 and P1 finite elements
for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 3.6: Convergence curves in 2D for the method θ = 0, with γ0 = 100 and P1 finite elements
for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 3.7: Convergence curves in 2D for the method θ = −1, with γ0 = 100 and P1 finite
elements for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 3.8: Convergence curves in 2D for the method θ = 1, with γ0 = 100 and P2 finite elements
for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 3.9: Convergence curves in 2D for the method θ = 0, with γ0 = 100 and P2 finite elements
for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 3.10: Convergence curves in 2D for the method θ = −1, with γ0 = 100 and P2 finite
elements for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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3.3.2 Convergence in 2D frictional contact case

We establish, as well, the convergence curves for a frictional contact (Tresca friction)

with a friction coefficient s1 = 0.1 with the method θ = −1, for a Nitsche’s parameter

γ0 = 100. The frictional contact curves are presented for P1 and P2 Lagrange elements in

figures 3.11 and 3.12. Similar curves are obtained with other values of θ. We mention here

that this numerical validation is the first one for Nitsche’s method with frictional contact

since in [Cho14] no numerical study was performed. This validation confirms optimal

convergence with a convergence rate close to the frictionless case.
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Figure 3.11: Convergence curves in 2D frictional case for the method θ = −1, with γ0 = 100
with P1 finite elements for the relative H1-norm of the error (a) for the L2(ΓC)-norm of the
error(b).
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Figure 3.12: Convergence curves in 2D frictional case for the method θ = −1, with γ0 = 100
with P2 finite elements for the relative H1-norm of the error (a) for the L2(ΓC)-norm of the
error (b).
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3.3.3 Convergence in the three dimensional case

The three-dimensional tests are similar to the two-dimensional ones. The error curves with

θ = −1 and P1 Lagrange elements are presented in Fig. 3.13. Very similar conclusions

can be drawn compared with the two-dimensional case.

(a) (b)

Figure 3.13: Convergence curves in 3D for the method θ = −1, with γ0 = 100 for the relative
H1-norm of the error with P1 finite elements (a) and P2 finite elements (b).

As expected the optimal convergence is obtained in H1 and L2(ΓC)-norm for all meth-

ods in good accordance with Theorem 3.2.6.

3.3.4 Comparison with other methods

To better compare the proposed method with other ones we present in the following the

convergence curves of our test case with the convergence curves of the biased Nitsche’s

formulation and the augmented Lagrangian method [CHR15c,HR10], see Figure 3.14 and

Figure 3.15. As for the proposed Nitsche’s method, for augmented Lagrangian method

the augmentation parameter r is taken as linear function of the mesh size : r = γ0h.

The curves are exactly the same for P1 elements and very similar for P2 ones and the

convergence rate of the unbiased Nitsche’s method is equal to other formulations’ rate.

We note that, for different values of θ the convergence is obtained for Nitsche’s method

(biased and unbiased) and the augmented Lagrangian method generally with a close

number of iterations of the Newton algorithm.
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Figure 3.14: Comparison of convergence curves in 2D frictionless case for the method θ = −1,
with γ0 = 100 and P1 finite elements for the relative H1-norm of the error on Ω1 (a) and on Ω2

(b) for different formulations of contact.
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Figure 3.15: Comparison of convergence curves in 2D frictionless case for the method θ = −1,
with γ0 = 100 and P2 finite elements for the relative H1-norm of the error on Ω1 (a) and on Ω2

(b) for different formulations of contact.

3.3.5 Influence of the Nitsche’s parameter

The influence of γ0 on the H1-norm of the error for P2 elements is plotted for a mesh

size h = 0.01 in Figure 3.16 in the frictionless case and on Figure 3.17 with a friction

coefficient s1 = 0.1. It is remarkable that the error curves for the largest value of γ0 are

rather the same for the three values of θ.

The variant θ = 1 is the most influenced by the value of γ0. It converges only for γ0 large

(≥ 10). The method for θ = 0 gives a much large window of choice of γ0 though it has to

remain large to keep a good solution. In agreement with the theoretical result of Theorem

3.2.6, the influence of γ0 on the method θ = −1 is limited.
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(a) (b)

Figure 3.16: Influence of γ0 on the H1-norm error for different values of θ in the 2D frictionless
case and with P2 finite elements on Ω1 (a) and on Ω2 (b).

(a) (b)

Figure 3.17: Influence of γ0 on the H1-norm error for different values of θ in the 2D frictional
case and with P2 finite elements on Ω1 (a) and on Ω2 (b).

So the choice of γ0 depends on the considered version. We can always choose θ = −1 to

insure the stability and convergence independently on γ0. In this case we loose symmetry

and we need to introduce σ(vh) into the weak formulation. The version θ = 1 allows

to keep symmetry, however it requires that γ0 be rather large. The version θ = 0 can

be seen as good compromise since it is the simplest and it remains stable and converges

optimally even for moderate values of γ0. A strategy to guarantee the coercivity of the

problem and then an optimal convergence is of course to consider a sufficiently large γ0
. However, the price to pay is an ill-conditioned discrete problem. The study presented

in [Ren13] shows that Newton’s method has important difficulties to converge when γ0 is

very large because the nonlinear discrete system (3.16) becomes very stiff in this case.
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Conclusion

A theoretical and numerical study of Nitsche’s method were carried out for the Signorini

problem in [CH13,CHR15c]. These analysis prove the performance of this type of formu-

lation for contact between an elastic body and a rigid support. In this chapter we adapt

Nitsche’s method to the two elastic bodies contact problem through an unbiased method

that could be directly applicable to multi-body contact and self-contact. The method

was analyzed and we proved its consistency, well-posedness and optimal convergence. For

the numerical study, the accuracy of the method was discussed for the Hertz problem

with different types of finite elements, for variations of the mesh size and the value of the

parameters θ and γ0. Frictionless and frictional situations have been considered, as well

as two- and three-dimensional cases. The theoretical results are, generally, confirmed by

numerical tests, especially the optimal convergence and the influence of the parameter

γ0. As well, other solvers than semi-smooth Newton could be considered for improved

computational efficiency. For instance highly efficient multi-grid methods have been de-

signed for mortar-type discretization of contact problems in [WK03]. The adaptation of

multigrid techniques to Nitsche’s discretization of contact is still an open issue and could

be considered as a perspective (see [FHW04] for multi-grid with Nitsche’s method for

interface problems).

Since the analysis in the small strain case are promising, the next chapter will concern

Nitsche’s method for the non-linear materials in the large deformation framework. In this

case, our goal is to provide a construction of the method similar to the linear case and

the corresponding numerical study.
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Nitsche’s formulation of large strain

contact and self-contact
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Introduction

Frictional contact problems involve difficulties from both theoretical and numerical view-

points, especially in large deformations, where complex geometrical and mechanical quan-

tities depend on an a priori unknown mapping between contact surfaces. Contact prob-

lems are inherently non–linear, even non–smooth, and involve variational inequalities and

constrained minimization. In the literature, many attempts have been developed to deal

with such problems using the finite element method. In most cases, the difficulty caused
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by the non-differentiability of contact and friction laws is resolved with either a method

of regularization, such as penalization or augmented Lagrangian [KO88,SL92], or a mixed

method [HR10,BS05].

Moreover, the spatial discretization of the problem produces difficulties at level of the

calculation of mechanical contact. Evaluating the quantities involved in the equations

of mechanical contact is difficult when the two boundaries are discretized. The most

commonly used method is the node-to-surface (NTS) approach under a master-slave con-

figuration [LS93b, PL02]. Then, mortar method has been successfully applied to solve

contact problems with finite deformations [FW06, PL04a, PWGW12]. In this method,

the enforcement of contact constraints is applied in a weak sense throughout the contact

interface.

In this chapter we introduce an extention of Nitsche’s method to the large deformation

contact problem. Nitsche’s method was originally proposed in [Nit71] to take into account

a Dirichlet condition weakly. It was adapted to bilateral contact in [HH04a, WZ08] and

to unilateral contact in [CH13,CHR15c]. This method aims at treating the interface con-

ditions in a weak sense, thanks to a consistent penalty term. So it differs from standard

penalization techniques which are non-consistent. Conversely to mixed method and aug-

mented Lagrangian method, the proposed approach is primal; this allows us to eliminate

an outer augmentation loop as well as additional unknowns (Lagrange multiplier) and

there is no inf-sup condition to satisfy. In [CH13,CHR15c] a complete study of Nitsche’s

method for frictionless unilateral contact undergoing small deformations is presented.

The well-posedness as well as the nominal convergence for the H1–norm were proved.

In [AHD14] a Nitsche stabilized approach was introduced for frictional sliding problem.

In Chapter 3 were introduced some variants of the method, that a real parameter θ

allows to encompass. Namely, θ = 0 yields a non-symmetric simple version of Nitsche;

when θ = 1 we recover a symmetric method and to θ = −1 corresponds a skew-symmetric

method that is much more robust regarding Nitsche’s parameter. In this adaptation to

the large strain case, we use a similar parameter to recover all the different variants.

The above remarks concerning this parameter θ remain true to some extent for large

deformation contact. The main difference between large and small strain is that, when

θ 6= 0, the weak formulation and the tangent problem are more difficult to obtain since

they involve additional derivatives of the stress tensor.

The standard paradigm to treat the problem of two deformable bodies in contact is

known as the master/slave formulation (see, e.g., [Lau02,LS93b,Wri06]): one distinguishes

between a master surface and a slave one on which one prescribes the non–penetration

condition. With this paradigm important difficulties appear in the case of self–contact

and multi–body contact where it is difficult to a priori nominate a master surface and a

slave one. Automating the detection and the separation between slave and master surfaces

in these cases may generate a lack of robustness since it may create detection problems.

To avoid these difficulties some unbiased formulations for contact were proposed, see for

instance [SD15].

In Chapter 3, the Nitsche’s method was formulated for a two deformables bodies

contact problem with a Tresca type friction. In order to prepare its adaptation to the
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self-contact problem, an unbiased version for contact and Tresca friction in the small

strain framework was presented and analysed. In this previous work, the two contact

surfaces were treated symmetrically and the integration of contact/friction condition was

made along the two surfaces. This current chapter could be seen as the continuity of the

previous one, since in this chapter, we present also an unbiased approximation of contact

but in the large strain formalism.

The extension is also made for the friction law, since Coulomb friction is considered in-

stead of Tresca friction. The reformulation of Coulomb friction follows the same path as

in [Cho14,CMR16]. Of course no proof of well-posedness or convergence can be obtained

with standard techniques for the problem under consideration, but we test numerically the

performance of our method in various situations. The formulation involves boundary inte-

grals of fields that are discretized over two different meshes what generates a difficulty for

the numerical quadrature. Typically, the approach that is used in mortar-type methods

is to compute elements intersections between the two contact surfaces and subdivide the

integration rule in order to accurately integrate the contributions to the algebraic system

using standard Gauss quadrature techniques. This segmentation process is challenging,

especially in the three dimensional case (see [PL04a, PL02]). Due to this computational

complexity, it has been seen appealing to use a higher order quadrature rule on the

slave mesh without segmentation (see [FW05,TFW09]). Following [FPW15], we call this

technique “element-based integration” and the segmentation technique “ segment-based

integration”. In section 4.3.1,we compare the two methods: the error generated by us-

ing element-based integration, though much larger than with segment-based integration,

remains small. This is in agreement with the study [FPW15] that concludes that both

methods provide acceptable results. Though segment-based integration leads to an im-

proved quality of the solution for quadratic elements and/or friction (see [FPW15]), we

carried out the remaining part of the study with element-based integration because this

method is simpler and cheaper.

Another major difficulty for large deformation contact comes from the mapping func-

tion relating the two contact surfaces. Classically, a point of the first contact surface is

mapped to the closest projection point on the second one. Hence, the second surface

normals ny govern the definition of the gap function and its kinematics. This classical

mapping will in the following be simply referred to as the projection strategy. In [PR15]

this strategy is compared with another one named ray-tracing, where a point of the first

surface is mapped to the closest intersection with the other surface along the first surface

normal. Unlike projection the definition of the gap and related quantities are governed

by the first surface normal nx. The formulations presented for instance in [FW06,KS13]

employ the classic projection approach, while [PL04a,TFW09] present formulations that

rely on the ray-tracing strategy. According to [PR15] the ray-tracing is more stable since

the expression of the directional derivative of the mapping is quite simpler and expected

to be smoother. Moreover, there are generally less special cases to treat when dealing

with ray-tracing rather than projection since the probability to come across a non regu-

lar point, like a corner of the geometry or simply an element boundary, is negligible for

the ray-tracing strategy while it is very frequent for the projection. In Section 4.1.2 of

this chapter, we remind the advantages of using ray-tracing, and we provide a numerical
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comparison between them in Section 4.3.6.

In Section 4.1 we present the setting and notations for the problem under consideration:

large deformation contact with Coulomb friction and possibly self–contact. In Section 4.2

the Nitsche–based approximation is detailed, particularly the variational formulation and

the tangent problem. Section 4.3 is a numerical validation of the method with several tests.

The influence of Nitsche’s parameter for different variants is investigated numerically.

4.1 Problem setting

4.1.1 Notations

In this chapter, we use the same notations of tensors and operators defined in the section

2.1.2.1 of chapter2.

We let, moreover, Ω ⊂ Rd be an open bounded set that denotes the reference configu-

ration of one or several deformable solids in a space of dimension d = 2 or 3. A deformed

configuration Ωt of the considered solids can be defined through a transformation ϕ which

maps any point X of the reference configuration to a point x of the deformed one (see

Figure 4.1):
ϕ : Ω −→ Rd

X 7−→ x = ϕ(X).

We define the displacement u relatively to the reference configuration as:

u(X) = ϕ(X)−X.

Deformation of the solid can be considered either in equilibrium or as part of a quasi-static

evolution. To deal with Coulomb friction, a quasi-static process will be considered, and

the static case can be viewed as a particular case.

       

Ω

X

Y

NY

NX
y

ny

Γc

nx

x
Γt
c

Γt
c

Ωt

Ωt

Γc

Ω

ϕ = u+ Id

Figure 4.1: Basic notations for different quantities in reference and deformed configurations.

In the deformed configuration Ωt, at time t, different portions of the boundary ∂Ω of
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Ω may come into contact and interact with each other. In order to express this interaction

mathematically, it is convenient to consider a restricted part of ∂Ω as the contact surface

Γ, i.e. the surface where contact/friction phenomena may occur. As in [CMR16] we

consider an unbiased formulation that does not distinguish between a master and a slave

surface. The case of self–contact is treated implicitly and there is no need to divide the

self–contact surface. A non-penetration condition on the deformed contact surface Γt can

be expressed with the help of a mapping function relating a point x to its mapping y.

We denote by Γtc ⊂ Γt (resp. Γc ⊂ Γ) the set of points x (resp. X) in the deformed (resp.

reference) configuration, for which such a mapping Π exists:

Π : Γtc −→ Γt

x 7−→ y = Π(x).

Recall that surface points X, Y, x and y are of dimension d as well as the corresponding

unit outward normal vectors: NX, NY in the reference configuration and nx, ny in the

deformed one.

To fix ideas we will consider a general hyperelastic constitutive law, derived from a

potential W that depends on the deformation through E (or C) (see, e.g., [BW08,FG11]),

so that the second Piola-Kirchhoff stress is

S =
∂W

∂E
(E) = 2

∂W

∂C
(C),

with corresponding fourth-order elasticity tensor

C =
∂S

∂E
=

∂2W

∂E∂E
.

We will need as well the isotropic tensor

I =
1

2
(ei ⊗ ej ⊗ ei ⊗ ej + ei ⊗ ej ⊗ ej ⊗ ei),

where ⊗ denotes the tensor product of two vectors, (ei)i=1,...,d is the canonical basis of

Rd and where Einstein’s summation convention is used. The tensor I has the property

I : A = A for any symmetric second-order tensor A (: denotes the double-dot product

between two tensors).

Since the choice of a constitutive law is not central in the description of the proposed

contact approximation, we will simply denote the global potential energy by J (·). For

example, if considering simple equilibrium under a gravity force, the potential energy is

J (u) =

∫
Ω

W (E) dX −
∫

Ω

ρ g · u dX,

where ρ is the density in the reference configuration and g is the gravity acceleration
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vector. Of course, additional terms such as boundary loads, can be considered as well.

Dirichlet conditions can also be prescribed, but, to simplify the formulation, the treatment

of Dirichlet conditions will be omitted in the following.

4.1.2 The mapping and the gap function

In the problem setting above, it is assumed that a point x of the deformed contact surface

is mapped to a point y. Regarding this mapping, there are several possibilities. The

most classic strategy is to define y as the closest point projection of x onto the deformed

surface Γc, like shown in Figure 4.2(a). We can refer to [Lau02] for this mapping. The

main difficulty for using projection is the complicated expression of the tangent problem,

that is due to the derivative of the unit normal vector ny. The expression of this derivative

can be found in [Lau02, chapter 4]. However, this expression does not take into account

the inter-element jumps.

x̃

ñy

ỹ

Γt
x

Γt
y y

nx
x Γt

x

Γt
y

(a) Projection strategy (b) Ray-tracing strategy

Figure 4.2: Illustration of projection and ray-tracing strategies.

An alternative strategy, corresponding to Fig. 4.2(b), is to define y as the closest

intersection of the contact surface with the line passing through point x and having direc-

tion vector nx. The latter strategy, which can be referred to as ray-tracing, was studied

in [PR15].

The two strategies are in fact closely related since the orthogonality of nx to the con-

tact surface implies that in the ray-tracing strategy, the point x is the projection of the

corresponding point y on the deformed slave surface. For this reason, this strategy can

also be characterized as an inverse projection. The main motivation for using it instead

of the classical projection is for achieving a simpler expression for the weak formulation,

due to the fact that the unit normal vector nx has a simpler derivative than ny. In this

section, we give the expressions of the derivatives of y and nx to prove that those ex-

pressions are much simpler for ray-tracing. We investigate also the performance of each

strategy. This theoretical comparison is inspired by [PR15] and completed by a numerical

one on Section 4.3.6.
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Contact kinematics are actually for both methods very similar. In order to make

similarities and differences easier to recognize, the most important equations for both

ray-tracing and projection are presented in parallel, with quantities referring to the pro-

jection method identified by an additional tilde symbol.

Gap functions corresponding to ray-tracing and projection are respectively defined by:

g = nx · (y − x) , (4.1)

g̃ = ñy · (x̃− ỹ) . (4.2)

Those expressions allow us to write:

y = x + g nx , (4.3)

ỹ = x̃− g̃ ñy . (4.4)

To obtain and linearize a weak formulation representing the non-penetration condition,

not only the definition of a gap function is required, but also the directional derivatives

of all quantities involved in Eqs. (4.3) and (4.4) with respect to the current deformation

ϕ in any direction δu.

With X or X̃ considered as the independent variable, the directional derivatives of

x or x̃ and nx are straightforward to determine, whether corresponding quantities at

the point y are difficult to evaluate. This is because y depends on both deformation ϕ

and coordinate Y, with the latter depending on ϕ itself and having its own directional

derivative DY [δu]. Thus, we write, on a first time the directional derivatives of y and ỹ

with respect to δu:

Dy[δu] = δu(Y) + FY DY[δu] , (4.5)

Dỹ[δu] = δu(Ỹ) + F̃Y DỸ[δu] , (4.6)

with DY[δu] and DỸ[δu] being tangential to ΓY , so that FY DY[δu] and F̃Y DỸ[δu]

are tangential to the deformed surface Γty, which means:

ny · FY DY[δu] = ñy · F̃Y DỸ[δu] = 0 . (4.7)

Other expressions of the directional derivatives of y and ỹ can be obtained from Eqs. (4.3)

and (4.4) as:

Dy[δu] = δu(X) +Dg[δu] nx + g Dnx[δu] , (4.8)

Dỹ[δu] = δu(X̃)−Dg̃[δu] ñy − g̃ Dñy[δu] . (4.9)

Assuming sufficient regularity, the directional derivatives of the gap functions can be

written after combining Eqs. (4.5) and (4.8) or Eqs. (4.6) and (4.9), multiplying respec-
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tively by ny or ñy and exploiting Eq. (4.7), as:

Dg[δu] = − ny
nx · ny

· (δu(X)− δu(Y) + g Dnx[δu]) , (4.10)

Dg̃[δu] = ñy ·
(
δu(X̃)− δu(Ỹ)

)
. (4.11)

The simpler expression in the case of projection is due to the fact that ñy ·Dñy[δu] = 0,

but no similar relation can be utilized in case of ray-tracing. The directional derivative

of the unit normal vector nx in Eq. (4.10) is given by:

Dnx[δu] = −TnxF
−T
X ∇δuT (X) nx . (4.12)

At this point, despite the more complex expression obtained for Dg[δu], the basic

kinematic analysis of ray-tracing can be considered as completed. Substituting Eqs. (4.10)

and (4.12) into Eq. (4.8) permits evaluation of Dy[δu] while Eq. (4.5) can be used in a

further step for evaluating DY[δu] as:

DY[δu] = F−1
Y

(
I− nx ⊗ ny

nx · ny

)(
δu(X)− δu(Y)− gF−TX ∇δuT (X) nx

)
. (4.13)

In the case of the projection strategy, Eq. (4.9) cannot be evaluated yet, since the

expression of Dñy[δu] can not be established in a similar way to Eq. (4.12). Apart from

a term similar to Eq. (4.12), Dñy[δu] involves DỸ[δu] and the curvature of the deformed

surface Γty at point ỹ. With such an expression and combining Eqs. (4.6) and (4.9), it

is possible to determine DỸ[δu] and consequently also Dỹ[δu] as described, for instance,

in [LS93a, Wri95, Lau02, KS13]. We note also that for projection, even when calculating

the exact expression of the derivatives, the discrete method will not be stable because

of the non-continuity of the normal vector ny(X) in terms of the position X since the

projection is not a continuous operator.

Thus, for ray-tracing, y is continuous with respect to ϕ and the directional derivative

does not depend on the curvature of the projected (master) surface. This is a crucial

advantage compared to the projection strategy for which the projected point is discontin-

uous in several situations and the directional derivative involves the computation of the

surface curvature.

Besides, from a computational viewpoint, ray-tracing allows a more efficient algorithm

implementation than projection. The intersection equation for determining point Y in

ray-tracing is:

(ϕ(Y)−ϕ(X)) · ti(X) = 0 , (4.14)

while the projection equation for specifying point Ỹ is:

(ϕ(Ỹ)−ϕ(X̃)) · t̃i(Ỹ) = 0 , (4.15)

where vectors ti and t̃i, for i = 1, ... d−1, form orthonormal bases of the planes tangent to
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nx and ñy respectively. After expressing Y through d−1 coordinates on an element face of

the discretized body, applying Newton’s method for solving Eq. (4.14) is straightforward

and efficient since its tangent system only involves FY . The tangent system of Eq. (4.15)

additionally involves the nonlinearity between the tangent basis vectors and the unknown

Ỹ.

Moreover, there are generally less special cases to treat when dealing with ray-tracing

rather than projection. The probability to come across a non regular point, like a corner

of the geometry or simply an element boundary, is negligible for the ray-tracing strategy

while it is very frequent for the projection. Fig. 4.3(a), illustrates how the projection from

a significant portion of the slave surface can be somehow attracted by convex non-regular

points, complicating the definition of ñy. The probability that a ray-traced point y in

Fig. 4.3(b) falls on a non-regular point is negligible.

x̃

ỹ

Γt
x

Γt
y

x

y

Γt
x

Γt
y

(a) Projection strategy (b) Ray-tracing strategy

Figure 4.3: Set of points x̃ projected onto a convex non-regular point ỹ (a). Negligible probability
of a ray-traced point y falling on a non-regular point (b).

Those advantages of the ray-tracing strategy seems to increase its numerical perfor-

mance compared to the projection. The strategy is more performing according to Section

4.3.6.

4.1.3 Formulation of contact and friction conditions

The impenetrability constraint is stated mathematically as g(u) ≥ 0. To formulate the

associated complementarity conditions, we need to consider the contact traction σ̂
N

(u)

which we take to be the Piola traction at point X. This traction is resolved as follows:

σ̂
N

(u) = σ̂n(u)nx + Tnxσ̂N
(u) = σ̂n(u)nx + σ̂t,

where nx is the outward normal to Γtc at x. When contact occurs (σ̂n < 0) the outward

normal vectors nx and ny are opposite. Thus, for projection the stress vector σ̂
N

is

resolved at the projected point ỹ according the normal vector −ñy, instead of nx. The

quantity σ̂n(u) now represents the contact pressure at X, and must be negative. The
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conditions for normal contact are:

g(u) ≥ 0 (4.16a)

σ̂n(u) ≤ 0 on Γc. (4.16b)

σ̂n(u)g(u) = 0 (4.16c)

Let γ be a given positive function. As for small strain in [AC88, CH13, CHR15c] and

Chapter 3, the contact conditions (4.16) are reformulated as

σ̂n(u) = [σ̂n(u) + γg(u)]R− . (4.17)

Using the vilocity v defined in section 2.1.2, the conditions of Coulomb friction can

be written as follows: 
‖σ̂t(u)‖ ≤ −F σ̂n(u) if v = 0,

σ̂t(u) = F σ̂n(u)
v

‖v‖ otherwise.
(4.18)

As presented in Capter 3 for Tresca friction, we could reformulate the Coulomb friction

condition using the projection PB(τ). In fact, for a given positive function γ, the friction

condition is equivalent to the non-smooth equation:

σ̂t(u) = PB(−F σ̂n(u))(σ̂t(u)− γv). (4.19)

To simplify the formulation, and following [PR15], we define the non-smooth operator

Cγ,F as:

Cγ,F (σ, g,v,n) = [σ · n + γ g]R− n + PB(n,−F [σ·n+γ g]R− )(σ − γ v).

Unlike PB(τ) that represents a simple ball projection, here PB(n, τ) is the projection onto

the tangent plane defined by the normal n, followed by the projection onto a ball of radius

τ , i.e. :

PB(n,τ)(q) =


Tnq if ‖Tnq‖ ≤ τ ,

τ
Tnq

‖Tnq‖
otherwise.

(4.20)

As a result, contact and friction conditions, in the case of ray-tracing, are formulated as:

σ̂
N

= Cγ,F (σ̂
N
, g,v,nx). (4.21)
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4.2 A Nitsche-based formulation for frictional con-

tact

4.2.1 Weak formulation

We consider test functions δu ∈ V, with V the space of all (smooth) admissible variations

of u satisfying possibly homogeneous Dirichlet conditions on the appropriate part of ∂Ω.

The abstract weak formulation for (frictional) contact is:

G(u, δu) =

∫
Γc

σ̂
N
· δu dΓ, ∀δu ∈ V.

The expression G(u, δu) is the sum of the internal virtual work and of the virtual work

of body or surface external forces. This work is seen to balance the virtual work of the

contact and friction forces acting on Γc. In the considered case of hyperelastic bodies and

simple equilibrium under a gravity force, there holds G(u; δu) = DJ (u)[δu]. Thus, the

above weak formulation reads:

DJ (u)[δu]−
∫

Γc

σ̂
N
· δu dΓ = 0, ∀δu ∈ V. (4.22)

Moreover, we apply the second Newton law: to each point X ∈ Γc, we require that

the differential contact force induced on Γc at the corresponding point Y be equal and

opposite to that produced at X, i.e.

σ̂
N

(X) dΓX = −σ̂
N

(Y) dΓY . (4.23)

Integrating with respect to Y instead of X, we obtain the following identities:∫
Γc

σ̂
N

(X) · δu(X) dΓX =

∫
Γc

σ̂
N

(Y) · δu(Y) dΓY

=
1

2

(∫
Γc

σ̂
N

(X) · δu(X) dΓX +

∫
Γc

σ̂
N

(Y) · δu(Y) dΓY

)
.

Using (4.23) we get:∫
Γc

σ̂
N

(X) · δu(X) dΓX =
1

2

∫
Γc

σ̂
N

(X) ·
(
δu(X)− δu(Y)

)
dΓX .

We inject the above expression into (4.22) and get:

DJ (u)[δu]− 1

2

∫
Γc

σ̂
N
·
(
δu(X)− δu(Y)

)
dΓ = 0, ∀δu ∈ V.

Let now θ ∈ R be a fixed parameter that we use to recover different variants of the Nitsche

method, as in the linear elastic setting (see, e.g., [CHR15c] and Chapter 3). With the
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splitting

δu(X)− δu(Y) =− 1

γ

(
γ(δu(Y)− δu(X)) + θDσ̂

N
[δu]

)
+
θ

γ
Dσ̂

N
[δu]

=− 1

γ
D
(
θσ̂

N
+ γ(u(Y)− u(X))

)
[δu] +

θ

γ
Dσ̂

N
[δu],

we obtain, for all δu ∈ V,

DJ (u)[δu]− 1

2

∫
Γc

θ

γ
σ̂

N
·Dσ̂

N
[δu] dΓ+

1

2

∫
Γc

1

γ
σ̂

N
·D
(
θσ̂

N
+γ(u(Y)−u(X))

)
[δu] dΓ = 0.

(4.24)

We inject finally the expression (4.21) into (4.24) and obtain, formally, our Nitsche’s based

formulation for frictional contact and the ray-tracing strategy:
DJ (u)[δu]− 1

2

∫
Γc

θ

γ
σ̂

N
· Dσ̂

N
[δu] dΓ

+
1

2

∫
Γc

1

γ
Cγ,F (σ̂

N
, g,v,nx) · D

(
θσ̂

N
+ γ(u(Y)− u(X))

)
[δu] dΓ = 0 ∀ δu ∈ V .

(4.25)

The expression of Dσ̂
N

[δu] is provided in Appendix A. Note that, for the numerical solv-

ing, when θ 6= 0, the tangent system involves the second order derivative: D2σ̂(u)[δu,∆u]

(see Section 4.2.3). This emphasizes the interest of the non-symmetric variant θ = 0 for

which the method is simpler. As in the small strain case ( [CHR15c, CMR16]) the in-

terest of the symmetric variant θ = 1 consists mostly in its derivation from a potential

(see Section 4.2.2) and the symmetry of the tangent problem, while the interest of the

skew-symmetric variant θ = −1 is its robustness respectively to the Nitsche parameter γ

(see Section 4.3).

Remark 4.2.1. For projection we decompose σ̂
N

at point ỹ instead of x and using the

normal ñy. The yielding formulation reads:
DJ (u)[δu]− 1

2

∫
Γc

θ

γ
σ̂

N
· Dσ̂

N
[δu] dΓ

+
1

2

∫
Γc

1

γ
Cγ,F (σ̂

N
, g̃, ṽ, ñy) · D

(
θσ̂

N
+ γ(u(Ỹ)− u(X̃))

)
[δu] dΓ = 0 ∀ δu ∈ V .

(4.26)

In this case, the derivative of the gap is (according to (4.11)):

Dg̃[δu] = ñy · (δu(X̃)− δu(Ỹ)).

This results allows us to get a symmetric variant of the Nitsche’s formulation in the

frictionless case and when θ = 1. This variant is similar to the formulation described in
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Proposition 4.2.3. When projecting on n = −ñy, the method reads indeed:
DJ (u)[δu]− 1

2

∫
Γc

1

γ
σ̂nDσ̂n[δu] dΓ

+
1

2

∫
Γc

1

γ

[
σ̂n + γ g

]
R−

(
Dσ̂n[δu] + γDg[δu]

)
dΓ = 0 ∀ δu ∈ V .

Remark 4.2.2. A biased version of our Nitsche’s method is obtained by dividing the

domain Ω into two bodies Ω1 and Ω2 and the contact surface Γc into a master surface ΓMc
and a slave one ΓSc . In this case the factor 1

2
disappears when applying the second Newton

law because the integration is applied only on the slave surface. In this case the method

reads:
DJ (u)[δu]−

∫
ΓSc

θ

γ
σ̂

N
· Dσ̂

N
[δu] dΓ

+

∫
ΓSc

1

γ
Cγ,F (σ̂

N
, g,v,nx) · D

(
θσ̂

N
+ γ(u(Y)− u(X))

)
[δu] dΓ = 0 ∀ δu ∈ V.

(4.27)

4.2.2 Energy potential and symmetric formulation for friction-

less contact

In this section, as in Section 3.1.3 for small strain, we show, that, at least formally, a

symmetric variant θ = 1 of Nitsche’s formulation, close to (4.25), for frictionless contact

derives from an energy potential. This result is summarized as:

Proposition 4.2.3. Let us define the energy potential JN(·) that takes into account the

body deformation as well as non-penetration formulated in a Nitsche’s manner:

JN(u) = J (u)− 1

4

∫
Γc

1

γ
σ̂2
n dΓ +

1

4

∫
Γc

1

γ
[σ̂n + γg]2R− dΓ , (4.28)

where γ > 0 is the Nitsche’s parameter, σ̂n is the normal stress in reference configuration

(see Section 4.1.3) and g is the gap function (see Section 4.1.2). The first-order optimality

system associated to JN(·) reads:
DJ (u)[δu]− 1

2

∫
Γc

1

γ
σ̂nDσ̂n[δu] dΓ

+
1

2

∫
Γc

1

γ
[σ̂n + γg]R−D(σ̂n + γg)[δu] dΓ = 0 ∀ δu ∈ V.

(4.29)

Proof: Let us write the optimality system associated to JN(·):

DJN(u)[δu] = DJ (u)[δu]−1

2

∫
Γc

1

γ
σ̂nDσ̂n[δu] dΓ+

1

4

∫
Γc

1

γ
D[σ̂n+γg]2R− [δu] dΓ = 0 ∀ δu ∈ V.
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To obtain (4.29) there remains to compute:

D[σ̂n + γg]2R− [δu] = 2[σ̂n + γg]R−D[σ̂n + γg]R− [δu]

= 2[σ̂n + γg]R−H
(
− (σ̂n + γg)

)
D
(
σ̂n + γg

)
[δu]

= 2[σ̂n + γg]R−D(σ̂n + γg)[δu],

where we used properties D[A(u)]R− [δu] = H(−A(u))DA(u)[δu], for any application

A : u 7→ A(u) ∈ R as well as H(−x)[x]R− = [x]R− for any x ∈ R. �

The expression of the derivative Dσ̂n[δu] is detailed in Appendix A while for Dg[δu],

we can refer to Section 4.1.2 or [PR15, Section 3] both for ray-tracing and projection

techniques.

Remark 4.2.4. We can introduce θ ∈ R, as in section 4.1.3. We only modify slightly

system (4.29) as below:
DJ (u)[δu]− 1

2

∫
Γc

θ

γ
σ̂nDσ̂n[δu] dΓ

+
1

2

∫
Γc

1

γ
[σ̂n + γg]R−D(θσ̂n + γg)[δu] dΓ = 0 ∀ δu ∈ V .

(4.30)

4.2.3 Finite element approximation and tangent system

A standard Galerkin procedure can be applied by choosing a finite element space for the

displacement, i.e., Vh ⊂ V to account for any possible Dirichlet condition. We consider

in what follows, as in Section 3.1.5, that γ is a positive piecewise constant function on

the contact interface Γc which satisfies

γ|K∩Γc =
γ0

hK
,

for every element K that has a non-empty intersection of dimension d− 1 with Γc, where

hK is the size of the element K and γ0 is a positive given constant. Note that the value

of γ on element intersections has no influence.

Then, the finite element approximation of System (4.25) reads:
DJ (uh)[δuh]− 1

2

∫
Γc

θ

γ
σ̂

N

h · Dσ̂
N

h[δuh] dΓ

+
1

2

∫
Γc

1

γ
Cγ,F (σ̂

N

h, g,vh,nx) · D
(
θσ̂

N

h + γ(uh(Y)− uh(X))
)

[δuh] dΓ = 0 ∀ δuh ∈ Vh,

(4.31)

where σ̂
N

h = σ̂
N

(uh), Dσ̂
N

h[δuh] = Dσ̂
N

(uh)[δuh] and vh is a finite element approxi-

mation of the velocity v. The system (4.31) is Lipschitz-continuous with respect to uh

and piecewise C1–continuous. This means that it is sufficiently regular to be solved with

a generalized Newton method. The tangent system is provided below. Each Newton step
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consists in finding ∆uh solution to:

D2J (uh)[δuh,∆uh]

−1

2

∫
Γc

θ

γ
Dσ̂

N

h[∆uh] · Dσ̂
N

h[δuh] dΓ − 1

2

∫
Γc

θ

γ
σ̂

N

h · D2σ̂
N

h[δuh,∆uh] dΓ

+
1

2

∫
Γc

1

γ

(
∂σCγ,F Dσ̂N

h[∆uh] + ∂gCγ,F Dg[∆uh] + ∂vCγ,F Dvh[∆uh]

+∂nCγ,F Dnx[∆uh]
)
· D
(
θσ̂

N

h + γ(uh(Y)− uh(X))
)

[δuh] dΓ

+
1

2

∫
Γc

1

γ
Cγ,F (σ̂

N

h, g,vh,nx) ·
(
θD2σ̂

N

h[δuh,∆uh] + γ∇Xδu
h(Y)DY[∆uh]

)
dΓ

= −DJ (uh)[δuh] +
1

2

∫
Γc

θ

γ
σ̂

N

h · Dσ̂
N

h[δuh] dΓ

−1

2

∫
Γc

1

γ
Cγ,F (σ̂

N

h, g,vh,nx) · D
(
θσ̂

N

h + γ(uh(Y)− uh(X))
)

[δuh] dΓ ∀ δuh ∈ Vh,

(4.32)

where D2J (uh)[δuh,∆uh] is the second directional derivative of J (uh). From (2.13) the

derivative Dvh[∆uh] can be evaluated as:

Dvh[∆uh] =
1

∆t

(
FY0DY[∆uh]−Dg[∆uh] n0

)
, (4.33)

where FY0
is the deformation gradient at the previous time-step, evaluated at point Y.

All partial derivatives ∂σC, ∂gC, ∂vC and ∂nC of the function C are provided in Appendix

B.

For the ray-tracing strategy, we refer to section 4.1.2 and [PR15] for the exact expres-

sion of Dg[∆uh], Dnx[∆uh] and and DY[∆uh].

For the projection strategy, the tangent system is the same, replacing nx by ñy. In this

case Dg̃[∆uh] is simple to compute but the expression of Dñy[∆uh] is quite intricated.

Therefore we neglect this term in the tangent system and in the expression of DỸ[∆uh].

Using (4.2) Dỹ[δu] reads:

Dỹ[δu] = δu(X̃)−Dg[δu] ñy − g Dñy[δu] ' δu(X̃)−Dg̃[δu] ñy .

Moreover, using(4.11), (4.6) and neglecting Dñy[δu], we can take:

DỸ[δu] ' F−1

Ỹ
(I− ñy ⊗ ñy)

(
δu(X̃)− δu(Ỹ)

)
. (4.34)

Remark 4.2.5. For the non-symmetric variant θ = 0, the tangent system can be sub-
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stantially simplified as:

D2J (uh)[δuh,∆uh]

+
1

2

∫
Γc

(
∂σCγ,F Dσ̂N

h[∆uh] + ∂gCγ,F Dg[∆uh] + ∂vCγ,F Dvh[∆uh] + ∂nCγ,F Dnx[∆uh]
)

·
(
δuh(Y)− δuh(X)

)
dΓ +

1

2

∫
Γc

Cγ,F (σ̂
N

h, g,vh,nx) ·
(
∇Xδu

h(Y)DY[∆uh]
)
dΓ

= −DJ (uh)[δuh]− 1

2

∫
Γc

Cγ,F (σ̂
N

h, g,vh,nx) ·
(
δuh(Y)− δuh(X))

)
dΓ ∀ δuh ∈ Vh.

(4.35)

4.3 Numerical tests and validation

Formulation (4.31) has been implemented in our open-source finite element library Get-

FEM++ (see http://getfem.org/). It corresponds to solving System (4.32) within a

(semi–smooth) Newton loop. We test and compare both unbiased and biased versions, as

well as variants corresponding to different values of θ = −1, 0, 1. Except in Section 4.3.6,

the mapping strategy used is always the ray-tracing.

As a first example, the simulation of a two-dimensional patch test with non-matching

meshes allows to check the capability of the formulation to exactly transmit constant

normal stresses between two contacting surfaces, regardless of their discretization. With

this first example, we provide numerical evidence that element-based integration leads to

acceptable accuracy, provided enough Gauss points are used. So we keep this choice for

the remaining numerical tests, following [FW05] and [PR15]. For the unbiased version of

the method, in each contact boundary Γic, we use the corresponding Gauss rule to evaluate

the contact intgral. The second test is the two-dimensional Hertz contact problem that

assesses the capability of the approximation to capture a known contact pressure profile in

a restricted contact area with non-matching meshes. Further two-dimensional examples

are classic problems found in the large sliding contact literature and aim at testing the

performance of the proposed method. Finally, simulation of contact between two hollow

cylindrical tubes, including self-contact, is presented in order to evaluate the performance

of the method in three dimensions and for the self-contact case. In reference [PR15] the

projection and the ray-tracing strategies are presented with a general discussion. We

complement here this discussion with a numerical comparison between the two mapping

strategies.

4.3.1 Taylor patch test

The patch test originally proposed in [TP91], investigates the ability of contact formu-

lations to exactly transmit constant normal tractions between two contacting surfaces,

regardless of their discretization. However, note that a patch test does not provide any

information about the stability of an algorithm and and is not relevant when considering

contact between deformable and rigid bodies. In this section we compare the obtained
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error with element-based and segment-based quadrature. Among available patch tests, we

choose the one depicted in Figure 4.4, that is similar to the test used in [Cri00] and [Hil00].

An elastic body rests on a smooth elastic foundation having the same dimensions. A uni-

form distributed load p = 10 KPa is applied on the upper surface of the solid. A two

dimensional plain strain analysis is considered with a Saint Venant-Kirchhoff material.

Corresponding elastic parameters are: E = 2 · 105 MPa and ν = 0.3. Frictionless contact

is considered. We compare the performance of our Nitsche-based method with some other

Figure 4.4: Taylor patch test configuration.

discretizations of contact. The transferred contact stress is measured on the lower contact

surface. We compare the obtained pressure profile with those computed using a simple

nodal (node-to-segment) approximation, with an integral augmented lagrangian method

(see [PR15]) as well as a mortar method (see [TFW09,PL04a]). For Nitsche’s method, we

compare biased and unbiased versions. For the biased method, as well as for other contact

methods, the slave surface is the upper one. The parameters for Nitsche’s method are:

θ = 0 and γ0 = 100E. At first, we perform the test with a subdivision of the quadrature

method according to the elements intersections (segment-based integration). The maxi-

mum relative stress errors for different methods is shown in Table 4.1 with 4 integration

points per element and Lagrange Q2 elements. All of Nitsche’s methods, augmented La-

grangian and mortar ones produce a resulting axial stress exactly satisfied to more than

ten decimal places and a zero penetration up to the truncation error. As expected the

nodal method results in a much higher error.

Approximation method Biased Nitsche Unbiased Nitsche Augmented Lag Mortar Nodal

Max pressure relative error 7.5 · 10−12 3.7 · 10−12 8.8 · 10−9 1.7 · 10−13 1.1 · 10−1

Max gap(mm) −8.5 · 10−16 −6.4 · 10−16 −2.5 · 10−12 −6.5 · 10−19 −9 · 10−6

Table 4.1: Maximum of contact pressure relative error and gap for segment-based integration.

If, now, performing same measures using the Gauss integration rule without cutting

(element-base integration) we get the following results:
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Approximation method Biased Nitsche Unbiased Nitsche Augmented Lag Mortar Nodal

Max pressure relative error 6.3 · 10−3 9.6 · 10−3 7.6 · 10−3 7.4 · 10−3 8.9 · 10−2

Max gap(mm) −2.6 · 10−7 −2.9 · 10−7 −3.9 · 10−6 −3.9 · 10−6 −7.6 · 10−6

Table 4.2: Maximum of contact pressure relative error and gap for element-based integration.

It is clear that segment-based integration is more precise and using element based

integration technique generates a quadrature error. But this error remains still very small

and can be considered acceptable in practice and it vanishes when refining the integration

method (see Table 4.3). We observe from Table 4.2 that, despite the coarse mesh and

the use of only 4 integration points per segment, the rate of quadrature error is low

for Nitsche’s method in its two versions. For both versions the accuracy is comparable

even though the biased method seems to generate a lower error since the integration is

performed only on one surface for this variant. Remark that changing the integration

method does not affect the nodal method. The augmented lagrangian integral method

and the mortar method have almost the same accuracy.

Approximation method Biased Nitsche Unbiased Nitsche Augmented Lag Mortar Nodal

Max pressure relative error 1.7 · 10−3 2.2 · 10−3 0.6 · 10−3 0.6 · 10−3 9.7 · 10−2

Max gap(mm) −0.7 · 10−7 −1.5 · 10−7 −1.6 · 10−6 −1.6 · 10−6 −7.5 · 10−6

Table 4.3: Maximum of contact pressure relative error and gap for element-based integration
and a finer inegration rule (8 integration points).

In Table 4.3, we use the element based integration with 8 Gauss points per segment.

The results show that for all integral formulations the integration error decreases signifi-

cantly when refining numerical integration.

4.3.2 Hertz contact

We consider the case of a half-disc of radius R = 10 mm pressed onto a plane elastic foun-

dation. For the sake of simplicity, we consider a material law of Saint-Venant-Kirchhoff

type. The elastic modulus is E = 105 MPa, and the Poisson ratio is set to ν = 0.3 for both

bodies. The half-disc’s top side is clamped and lowered vertically. For all the tests we

compare the approximated solution to the Hertz one for a small rate of loading going from

0 to 0.5 mm in ten steps equally spaced. The tests were performed with both Lagrange

linear and quadratic triangular finite elements and non matching interface meshes. The

test is performed first with γ0 = E, θ = 0 and the unbiased variant.

The diagrams in Figure 4.5 correspond to the pressure profiles at the 10th load-step ob-

tained with two and three quadrature points per element while Figure 4.6 corresponds to
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the penetration error measured on the contact surface (in mm) when taking 3 integra-

tion points per element. Figure 4.6 allow to measure and locate the penetration on the

contact surface with the proposed weak imposition of contact constraints. The vertical

red arrows in Figure 4.5 correspond to values of the contact pressure field at quadrature

points. The blue line represents the analytically calculated Hertz’s pressure profile for the

corresponding normal load obtained in the simulation. In both figures, diagrams in the

left column correspond to a linear approximation of the displacement while the results in

the right column refer to a quadratic one.
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Figure 4.5: Contact pressure for Hertz problem with unbiased Nitsche’s method.

A first observation is that the method approximates well the Hertz solution: the

exact pressure profile is reproduced and no problem is encountered with the release of the

nodes for inactive contact elements. For linear approximation, two quadrature points per

element edge appear to be sufficient for numerical integration whereas 3 points allow a

better accuracy for the quadratic approximation. The linear approximation is accurate

only for a sufficiently fine mesh because the pressure profile is not linear along the contact

surface.

Figure 4.6 shows that the measured penetration is very low with linear and quadratic

elements: less than 0.4% of the element size. To better see the convergence of this error

when refining the mesh, we plot on Figure 4.7 the evolution of the measured penetration

norm with the mesh size for Lagrange quadratic elements. This curve shows clearly that
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Figure 4.7: Evolution of gap error norm along Γ1
c with elements size.

the gap error vanishes by refining the mesh. The order of convergence is approximately 2

in L2-norm. Increasing the approximation order reduces as well the gap error.
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Figure 4.6: Gap error for Hertz problem with 3 integration points per element and unbiased
Nitsche’s method.

The solution of this problem depends on Nitsche’s parameter γ in the sense that

similarly to the small strain case studied in [CHR15c, CMR16] the convergence of the

method is influenced by the parameter γ0 and this dependency differs for different values

of θ. We provide in Table 4.4 the average (along the loading steps) of the pressure error and

of the required Newton iterations yielding convergence with a maximum of 50 iterations

for all steps, for different values of γ0 and θ. The test is performed for Lagrange quadratic

triangular elements, with and without friction.
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E 30 64

100 · E 11.2 4.1

Table 4.4: Average of contact pressure error and number of Newton’s iterations for Hertz contact.

As for small strain [CHR15c,CMR16] the influence of Nitsche’s parameter γ0 depends

on θ. It is remarkable that the skew-symmetric version θ = −1 remains the most robust

one and converges whatever is the value of γ0. In this case the obtained pressure profile

approximates well the theoretical one. This is also observed in [CHR15c] for small defor-

mations and a mathematical proof is provided in that case. The symmetric version θ = 1

is the most sensitive one and it converges only when γ0 is large enough. Comparing θ = 0

to θ = 1, we remark that the simple version θ = 0 is more robust regarding γ0 since it

converges for a wider range of values for γ0. Nevertheless, convergence is lost when γ0

becomes too small. The same behavior is observed in the frictional case. Additionally

let us mention that when γ0 is very large, convergence of the Newton algorithm is more

difficult to achieve, especially for frictional contact. This is related to the fact that, when

taking γ0 too large, the problem becomes stiff and ill-conditioned (see, e.g., [Ren13]).

Remark 4.3.1. Note that a recent attempt has been made to adapt a penalty-free Nitsche

method originally analyzed in [Bur12] to the Signorini problem (see [BHL16a]). However

it does not correspond to the case γ0 = 0 and there remains an additional numerical

parameter, conversely to the case of Dirichlet boundary conditions which is parameter-

free.
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4.3.3 Shallow ironing

The third numerical example to be presented is the so-called shallow ironing test. An

indenter with a circular arc shaped bottom edge is pressed against an elastic block and

is forced to slide along the block length. This example can also be found for instance

in [FW06, HOW+09, TFW09, PR15]. In this test we investigate the transmission of the

force in vertical and horizontal directions when the contact surface evolves. We compare

essentially the frictionless and the frictional case to test the accuracy of method when

approximating a friction problem. Figure 4.8 shows the initial geometry with the different

dimensions in mm. For the two contacting bodies a neo-Hookean material behavior is

considered, with Young’s moduli equal to 68.96 · 108 MPa and 68.96 · 107 MPa for the

indenter and the block, respectively, and Poisson’s ratio of 0.32 for both parts. The

considered two-dimensional system is solved under the plane strain assumption. As in

[PR15], we consider a quasi-static load. For t ∈ [0, 1], a vertical displacement of 1 mm

is performed in 10 steps. Then, when t ∈ [1, 2], we perform an horizontal displacement

along the block in 500 equal steps, each of 0.02 mm. The three computed deformed

configurations are presented in Figure 4.8 with a plot of the Von-Mises stress distribution,

which demonstrate the finite deformations involved in the ironing process. This result

and the curves of Figure 4.9 correspond to a friction coefficient F = 0.3 and quadratic

rectangular finite elements. We use the simple version of the method (θ = 0) and three

quadrature points per segment for numerical integration. Since the material parameters of

the two bodies are different, we consider, for the unbiased version, two different Nitsche’s

parameters γi0 = Ei.
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Figure 4.8: Initial geometry and deformed configuration of the shallow ironing example with
contour plot of the Von-Mises stress in the frictionless case, at t = 1, t = 1.5 and t = 2.

Figure 4.9 shows the evolution of the total horizontal and vertical force components

between the contacting bodies during the whole simulation. During the first phase of

pressing the indenter into the slab, the curves are smooth and the two bodies stick to-

gether. Starting the horizontal movement, the vertical as well as the horizontal reaction

forces increase a bit until a limit is reached. At this stage the block starts sliding over

the slab. An oscillation is observed for the vertical and horizontal reaction forces. This

oscillation decreases when refining the mesh. This is due to the fact that the finite element

mesh of the block has to slip around the right corner of the indenting body. Note however

that these observed oscillations for vertical and horizontal force, even with only three

quadrature points, remain still small, compared to similar results presented in [FW06].

Comparing the results of the present study with those reported in [PR15, FW06], one
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Figure 4.9: Evolution of the vertical and horizontal components of the contact forces for shallow
ironing.

can note that the qualitative behavior is very well captured. The results are close to

those obtained in [PR15] but there are important quantitative differences with [FW06].

The vertical force in Figure 4.9 is slightly lower than in [FW06], while the reported hor-

izontal force is significantly lower compared to the aforementioned reference. At time

1.5 s for example, the ratio between the horizontal and vertical force can be estimated

to 0.53, based on the results reported in [FW06] and 0.304 according to [PR15]. The

obtained ratio with our Nitsche’s unbiased method is 0.3014, which is very close to the

result of [PR15] and [TFW09] where an integral augmented mixed method and a mrotar

one are respectively used. The contact stress distribution is in agreement with common

understanding of system mechanics and if we calculate the angle between the resulting

stress vector along the contact surface at t = 1.5 and the resulting surface normal, we

get 15.36◦. This appears to be very close to the friction angle of 16.7◦ corresponding to

the given coefficient of friction of 0.3. For the frictionless case, a zero horizontal force is

predicted correctly for the symmetric position at t = 1.5, and it goes for negative values

near the edge.

4.3.4 Contact of an elastic half-ring

In the fourth example, contact between an elastic ring undergoing large deformations and

an elastic block is considered. As in reference [FW05,TFW09], both parts are assumed to

exhibit neo-Hookean material behavior with Poisson’s ratio equal to 0.3. As introduced

in [TFW09], in this test, the elastic half-ring is assembled from outer and inner rings with

the same thickness of 5 mm. The outer ring has a Young modulus of 103 MPa and the inner

one is assumed to be 100 times stiffer. The Young modulus is of 300 MPa for the block.

The inner radius of the half-ring is equal to 90 mm. The block is 260 mm long and 50 mm

high. The rectangular block is fixed at its bottom edge, while the ends of the half-ring
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are horizontally fixed and vertically displaced by a total distance of 70 mm in 140 steps of

size 0.5 mm. Figure 4.10 shows the initial geometry and four deformed configurations at

different time-steps. The deformations are obtained without and with friction coefficient

F = 0.5. The coarsest mesh used in the calculations is made of 64 elements along the ring

circumference and 1 element across each ring layer, while the block is discretized with 52

by 10 quadrilateral elements, in length and height directions respectively. On each body,

Nitsche parameter will be equal to its Young modulus: γ0R = ERext, γ0B = EB. We

consider the version θ = 0.
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Figure 4.10: Deformation of the elastic half ring without friction (left) and with F = 0.5 (right)
for Q2 elements, after a loading of 25, 45, 60 and 70 mm.

This example allows us to test the accuracy of the Nitsche method in the case of

heterogeneous materials and high friction forces. To compare the computed deformation

with previous results from other methods, we measure the vertical displacement of the

ring’s mid-point. This displacement along the load steps is plotted in Figure 4.11, both
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for frictionless and frictional contact.

Figure 4.11: Vertical displacement of the half-ring middle point for different mesh sizes.

Figure 4.10 shows that the loaded half-ring compresses initially the elastic block on its

central contact surface, as expected. At this stage the frictional and frictionless cases are

quite similar and the central mid-point of the half-ring moves downwards. This is observ-

able on Figure 4.11 until an amount of imposed displacement of 20 to 25mm is reached.

This corresponds to the first deformed configuration in Figure 4.10. Subsequently, the

tracked point is lifted progressively until 45mm of displacement. Then, in the interval

between 45mm and 60mm , the lifting speed of the half-ring middle point peaks in absence

of friction when it remains low in the frictional case because of extensive sliding between

the ring and the block. In the remaining part of the simulation the tracked point keep

on moving up, but with a lower speed in both cases. The results with coarse and refined

meshes are very similar for the frictionless case, and also for the frictional one but only

until 50 mm of displacement. In the last 20 mms of the simulation, a remarkable difference

between the two approximations is observed, when considering friction. This could be due

to the important sliding forces since we do not get that error in the frictionless case. As

for Hertzian contact, Nitsche’s parameter γ0 needs to be large enough for stability and

convergence, but when it is too large the problem stiffens: some elements are inverted and

convergence is difficult to achieve. The optimal values of γ0 on each material are those

near its Young modulus E. For γ0 = E we obtain an average of Newton’s iterations of 4.45

for frictionless contact and 4.44 for frictional contact. With a fine mesh the convergence

speed is similar with a slight difference for the frictional case since the average in that

case is 5.05.

To test the method with large contrast of stiffness between the contacting bodies, we

measure the average of Newton’s iterations with different values of the ratio ERext/EB in

the frictional case. The Young modulus of the inner ring is constant (=105 MPa) and as

for previous tests, Nitsche’s parameter is equal to the Young modulus on each body.
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ERext/EB 10−5 10−3 10−2 10−1 1 10 102 103

Average of Newton’s iterations No convergence 6,43 6,07 6,35 7,66 6,36 5,73 No convergence

Table 4.5: Average of Newton’s iterations with different values of ERext/EB.

We observe that a large difference of stiffness does not influence the accuracy of the

unbiased method. The convergence is obtained with a close number of iterations for

different values of the stiffness ratio. We loose convergence only when going to extreme

values because, when the block is too much flabby, some elements are inverted; and when

it is too rigid the problem becomes stiff and ill-conditioned.

4.3.5 Crossed Tubes with self-contact

The last numerical example is the crossed tubes test. In this example we simulate contact

between two crossed hollow elastic cylinders. Each of the tubes has an outer diameter of

24 mm, a wall thickness equal to 0.8 mm and a length equal to 100 mm. Neo-Hookean

material behavior is considered for both tubes, with material parameters corresponding

to Poisson’s ratio equal to 0.3 and Young moduli of E1 = 105 MPa for the lower tube and

E2 = 104 MPa for the upper one. The tubes are forced into contact through Dirichlet

conditions applied at their ends. The upper tube is displaced vertically for a total distance

of 40 mm divided into 80 equal load steps. Since the enforced displacement is large, the

deformations of the tubes are large and we observe a self-contact configuration on the less

rigid tube. So this test allows us to validate our method in case of self-contact. Since the

geometry as well as the boundary conditions are symmetric, it is sufficient to model only

one quarter of the considered structure. The actually modeled portion of each tube is

colored in Figure 4.12 and it is discretized using 16 by 24 by 2 three-dimensional elements

in the length, circumferential and radial directions respectively.
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Figure 4.12: Geometry and mesh of the crossed tubes in their initial configuration.

The presented solution is based on an approximation of the geometry and of the

displacement with quadratic hexahedral elements. The unbiased Nitsche method with

θ = 0 is considered to deal with self-contact. The results of Figure 4.13 correspond to

the frictionless case with a Nitsche’s parameter γ0 = E1 for the lower tube and γ0 = E2

for the upper one. Figure 4.13 depicts the calculated deformed configurations for the

30th, 60th and 80th load steps. Figure 4.14 shows the evolution along the loading steps

of required Newton’s iterations for the frictionless case and for a friction coefficient F =

0.3. Despite the increase of the required iterations when self-contact occurs, Newton’s

algorithm converges in general within a few iterations. The required iterations number

for convergence increases from the 45th load step. This is due to the onset of self-contact.
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Figure 4.13: Deformation and Von-Mises contour plot of the two crossed tubes test without
friction for a loading of 20, 30 and 40 mm.
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Figure 4.14: Crossed tubes test: required Newton’s iterations per load step with (F = 0.3) and
without friction.

4.3.6 Projection and ray-tracing

For contact problems, the choice of mapping strategy influences directly the performance

and the robustness of the method. In section 4.1.2, we provided a theoratical comparaision

between two classic strategies of mapping: orthogonal projection and ray-tracing. In this

last part we compare the two mappings from a numerical viewpoint. The comparison is

made through two tests: two-dimensional Hertz’s contact and three-dimensional crossed

tubes.

(a) Ray-tracing (b) Projection

Figure 4.15: Illustration of ray-tracing and projection from the upper interface to the lower one
and Von mises pressure profiles for Hertz contact.

At first, we illustrate in Figure 4.15 the difference between ray-tracing and projection

for Hertz problem and we present the deformation and the effort distribution obtained

by using the two mappings. The two strategies solve well Hertz contact problem, but to

compare them, we provide for each one the average number of Newton iterations yielding

convergence as well as the mean pressure error along the ten steps of loading. The test is
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performed with different values of θ, with and without friction. For sake of briefness, we

choose only the value of γ0 equal to E and the unbiased version of the method.
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0 0 2.7 3.34

0.3 2.8 3.4

-1 0 3.4 3.36

0.3 3.3 3.46

1 0 No convergence -

0.3 No convergence -
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0 0 5.9 3.39

0.3 6.5 3.35

-1 0 6.3 3.36

0.3 6.5 3.45

1 0 No convergence -

0.3 No convergence -

Table 4.6: Mean contact pressure and number of Newton’s iterations for projection and ray-
tracing strategy, for the Hertz test with γ0 = E and the unbiased Nitsche’s method.

A first observation is that the accuracy of the approximation is the same for the two

mappings, meaning that the choice of the mapping does not influence strongly the quality

of the solution. When θ = 1 we do not reach convergence since γ0 is not large enough.

So the two strategies seem to have the same response regarding Nitsche’s parameter. In

addition, the difference in terms of Newton’s iterations is clearly observable for different

values of θ. Ray-tracing allows a convergence twice faster than projection. This may be

due to the non-exactitude of the tangent problem for projection in which we neglected the

directional derivative of ny term. A similar difference of convergence speed is observed

for the crossed tubes test in Figure 4.16. If we apart the influence of self-contact, the

number of iterations is almost two times higher for projection. The smoothness of the

contact surfaces in both tests does not allow to study robustness regarding some special

cases detailed in [PR15].
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Figure 4.16: Required Newton’s iterations per load step for the crossed tubes test without
friction, for the ray-tracing and projection mapping strategies.

4.3.7 Industrial validation

In this section we give, briefly, the simulation results of some tests more severe and more

representative of industrial applications. Through these tests we validate the Nitsche’s

method, especially in the large strain framework, in an industrial context. After being

analyzed with academic tests on the Getfem++ environment, the Nitsche’s method was

implemented on the FEM code of Michelin. In a first step, the method was implemented

for a contact with a rigid ground. This configuration is not the interesting application of

the Nitsche’s method but it will enable the evaluation of the method’s ability to simulate

contact and friction for an advanced geometry and behavior laws. The method was

implemented, in this first application, for θ = 0. For a unilateral contact, in the large

strain case, the method reads, where the red terms are deleted:
DJ(u)[δu] +

1

2

∫
Γc

([σn(u) + γn g(u)]R−n) · D
(
u(Y)− u(X)

)
[δu] dΓ

+
1

2

∫
Γc

PB(−F [σ̂n(u)+γn g(u)]R− )(σt(u)− γv) · D
(
u(Y)− u(X)

)
[δu] dΓ = 0 ∀ δu .

(4.36)

This, simplifies significatly the tangent system.

The first performed test is a contact between a simplified model of the tire and a rigid

ground. The tire is composed of 4 different materials and discretized with 9424 nodes. To

test normal contact, we impose a vertical displacement of 5 mm on the center of the tire.

The inner side is submitted to a pumping pressure of 2 bars. All the extern side of the

tire is considered as a contact surface. The obtained deformation using Nitsche’s method

as well as a contact stress contour plot are given in Fig. 4.17
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Figure 4.17: Obtained deformation and contact stress contour plot of the bi-stripe tire with the
Nitsche method and γ = 103

A first observation is the ability of Nitsche’s method to approximate the contact even

with a large number of elements and complex behaviour laws. The number of Newton

iterations is close to the one got with the penalty method but, the method do not converge

with very small values of γ (see Fig. 4.18). This was expected for the tested variant θ = 0.

To study the robustness of the method regrading the Nitsche’s parameter we give in Fig.

4.18 the needed iterations to get convergence when variating γ between 10−3 and 1012.

Figure 4.18: Required Newton’s iterations for differents values of γ.

As expected, the small values of γ prevent the convergence since the coercivity is lost.

For high values of γ the convergence is got for a large interval of values and the problem

become ill-conditioned only when γ exceeds 109.
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To test friction, we consider the same test configuration and we add a rolling of the

tire over five time steps. In fact the tire is charged progressively on the normal direction

along 5 first time steps and then rolled along 5 second steps.

For this test, we variate this time the friction coefficient F and we repport the total

number of Newton iterations along the 10 time steps (see Fig 4.19). For the simulation

we used 3 different integration rules: in blue: Newton-côte rule, in red: Gauss rule with 4

Gauss points per face and in yellow Gauss rule with 8 Gauss points. This test will allow

us to validate the method for slip and stick states. We consider here γN = 100 and γT = 1

Figure 4.19: Required Newton’s iterations for different values of F .

We remark that the Nitche’s method converges well when the friction coefficient F is

very low or very high: pure slip and pure stick configurations. When the two phenomenas

took place the convergence is lost with Newton-côte integration. This may be caused

by the non-smooth transition of the Coulomb law. However, when considering a Gauss

integration with a sufficient number of integration points, the convergence is obtained for

all values of F . We note here that the augmented Lagrangian method (with Uzawa type

algorithm), when F = 0.8 and γN = 106, tooks 71 iterations. So that, Nitsche’s method

is as performing as this last.

Conclusion

In Chapter 3, we proposed and studied an unbiased Nitsche method for the contact

between two elastic bodies in the small strain framework. We proved theoretically its

consistence, stability and optimal convergence, and studied numerically its robustness.

The aim of this Chapter is to extend the method to the large strain case. We proposed an

extension of Nitsche’s method to contact and friction in the large strain framework. The

extension is made also for the friction law, since we consider a Coulomb friction in this

chapter instead of Tresca friction. We derived an unbiased formulation that can be more
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amenable to self-contact and multi-body contact. A generalization parameter θ is consid-

ered to cover an entire set of methods with different numerical properties. The method is

constructed independently of the mapping function, but its performance depends on the

used mapping. Therefore, we gave a brief comparison of two mapping strategies: projec-

tion and ray-tracing.

In this work, we used an hyper-elastic material, but, since the behavior law is used,

extending the method to inelastic behavior may need some adaptations.

Being an integral formulation, the performance of Nitsche’s method depends on the used

quadrature rule. We made the choice of using the classic Gauss rules over the original

elements without cutting. This choice was briefly argued, but, still, the effect of numerical

integration for Nitsche’s method is an interesting perspective of study. Therefore, the third

part of this thesis will be devoted to the study of the integration rule influence on the

approximation and to the estimation of the quadrature error.
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Chapter 5

Influence of the integration error for

contact problem
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Introduction

Accurately and efficiently computing the integrals prescribed in the contact formulations

(3.16) and (4.31) is one of the main challenges of integral contact algorithms. This is due

to the fact that evaluating those quantities requires an integration over the slave contact

surface with an integrand containing functions defined on both master and slave sides.

In fact, in the case of non conforming surfaces and non-matching meshes, the integrand

represents a non-smooth function which cannot be evaluated exactly by using standard

Gauss rules. This non-smoothness stems the piecewise terms coming from inner products

of quantities defined on both surfaces and also the projection operation presenting the

change-over between contact/non-contact and stick/slip states. Integrating such functions

through classical numerical quadrature rules generates generally numerical oscillations of

the solution on the contact interface and prevent the method from passing the Patch tests.
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To overpass these difficulties, many strategies have been proposed in the literature:

In [FW05,FW06] the authors choose just to use a high number of integration point with-

out changing the quadrature rule. The used rule in this case is the Gauss one of the slave

elements.

Conversely, [ZW98, ML00a, PL03, PL04a] used a segmentation technique to create inte-

gration segments. These segments are generated by detecting every intersection between

any two contacting elements, Thus, the integrand is polynomial on each segment and the

numerical integration is accurate. The cost of this technique is expected to be signifi-

cant for a 3D geometry undergoing large deformations. In fact, in this case, especially for

quadratic elements, the operations of projection and segmentation are not straightforward

in implementation neither in computation.

This cost prompt the authors of [FPW15] to combine these two strategies by cutting the

integration rule only on the border of the contact surface.

Another integration strategy was proposed and tested in [CLM97, MRW02] and then

in [BBWW15] for isogeometric analysis. This strategy named ”non-symmetric integra-

tion” uses a combination betwen the integration rule of the slave and master sides to

reduce the quadrature error. Thus, this method seems to be adequate to the unbiased

formulation of contact, since, in this case, the two sides are already used in integration.

The aim of this chapter is to provide a numerical study of the influence of the inte-

gration error on the accuracy and convergence of Nitsche’s type contact method. A main

challenge of this study is to test the different rules already proposed, generally for the

mortar method, with the Nitsche’s method. To cut off the quadrature error, the main

tests studied in this section are different varieties of the patch test, for which the exact

solution is known and simple.

This chapter will be organized as follows: Section 5.1 will be a study of the patch

test performance of Nitsche’s method with different integration rules. In section 5.2 we

introduce the non-symmetric integration technique and its adaptation to the method of

Nitsche. And, before concluding a study of the influence of quadrature error on the

convergence will be provided in section 5.3.

5.1 Integration error and patch test performance for

Nitsche’s method

5.1.1 Highlighting of the quadrature error for contact in the

small strain framework

Throughout this section, we use the same notations and quantities defined in Chapters 2

and 3 for small deformations unilateral contact problem of two elastic bodies and Chapter

4 for large strain one. We let two elastic bodies occupying the domains Ωi ∈ Rd, d being 2

or 3. We consider the same equilibrium and limit conditions (2.26) of section 2.2.2 as well
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as the contact conditions (2.27). In this section, we use the classical biased formulation of

contact to simplify the analysis of quadrature error, but the results could be generalized

to the non-biased method since the integrated terms are the same. If we consider the

elasticity equation and the boundary conditions described in (2.26), we will obtain the

weak problem(2.31) of section 2.2.2.

To study the quadrature error influence on the approximation, we will begin by con-

sidering the simplest case of frictionless contact with θ = 0. For the spatial discretization

of the problem, standard isoparametric finite elements with first and second-order inter-

polation are employed. This defines the usual finite dimensional subspace Vh. In the

following, the subscript ()h refers to a spatially discretized quantity. In Vh, the discrete

problem reads:
Find uh ∈ Vh such that, ∀vh ∈ Vh,

a(uh,vh)−
∫

Γ1
C,h

(v1
h − v2

h ◦ Π1) · ñ1
[
σ1
n(u1

h)− γ1(u1
h − u2

h ◦ Π1) · ñ1
]
R−

dΓ= L(vh).

(5.1)

A first observation is that, in the formulation (5.1), we integrate a function containing

the projection operator [·]R− over Γ1
C,h. The non-smoothness of this operator constitutes

a first integration challenge. In fact, numerical quadrature formulas are able to exactly

integrate only polynomial integrand; while this projection is not even a continuous func-

tion when a non smooth switch between contact and detachment states appear (a corner,

for example). We could neglect the influence of this singularity inside the contact area

when no change-over between contact and non-contact states is present; but when the

projection is active, an important numerical oscillation could be generated by the inca-

pability of quadrature rules to integrate such singular function.

We neglect, momentarily, the projection to better analyze the second type of compli-

cation about the integration. The displacement and test functions interpolation is given

as: u1
h|Γ1

C,h
=
∑n1

A=1N
1
Ad1

A, v1
h|Γ1

C,h
=
∑n1

a=1N
1
aδa,

u2
h|Γ2

C,h
=
∑n2

B=1N
2
Bd2

B, v2
h|Γ2

C,h
=
∑n2

b=1 N
2
b δb,

(5.2)

where dik is the discrete nodal displacements on ΓiC,h and the total number of nodes on

each edge ΓiC,h of ΓiC is ni. N i
k is the kth shape fonction defined on the element h of the

body (i). Substituting (5.2) into (5.1) produces:

a(uh,vh)−
n1∑
a=1

( n1∑
A=1

( ∫
Γ1
C,h

N1
aN

1
AdΓ(σ1

n(d1
A)− γ1d1

A)
)
−

n2∑
B=1

∫
Γ1
C,h

N1
aN

2
B ◦ Π1dΓd2

B

)
+

n2∑
b=1

( n1∑
A=1

( ∫
Γ1
C,h

N2
b ◦ Π1N1

AdΓ(σ1
n(d1

A)− γ1d1
A)
)
−

n2∑
B=1

∫
Γ1
C,h

N2
b ◦ Π1N2

B ◦ Π1dΓd2
B

)
= L(vh).

(5.3)
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For exact integration, most of numerical quadrature formulas (e.g. Gauss or Lobatto

rules) require a polynomial integrand. If the two meshes are not matching the coordi-

nate mapping is piecewise linear and the inner products N1
aN

2
B ◦ Π1, N2

b ◦ Π1N1
A and

N2
b ◦Π1N2

B ◦Π1 will not be polynomial on the edge ΓC,h of the slave surface. This makes

the accuracy of the integration rule a critical issue.

In the frictional contact case (Eq.(3.16)), the projection into the closed ball of radius si

is not regular and the same inner products of shape functions are integrated. We add

to this the mapping function that is not smooth in the discrete configuration. Thus, the

same difficulties of numeric integration are faced with the frictional contact.

Those observations suggest that an evaluation of the quadrature error generated by

integrating those quantities is an important subject of study that will allow us to quantify

and control this error and propose numeric strategies to reduce it.

5.1.2 Integration error without segmentation

The main obstacle hindering the exact evaluation of integrals, as in most contact algo-

rithms, is the form of the gap function g. The expression of g is:

g = (y − x) · n

This function includes quantities defined on both contact surfaces, the normal vector n

which is not necessary smooth in the discrete set; and it includes, as well, the mapping

function that is not smooth neither. This makes the gap a piecewise continuous function

along ΓC with possible discontinuities occurring at the nodes of either contact surfaces.

To better display this, we illustrate in Fig. 5.1 the gap’s variation for a given linear

discretization of the contact interface. The gap, in this case, is a piecewise C 0-continuous

function with the derivative discontinuity occurring at the nodes of either surface.

The kinks present on the gap function causes a first type of singularities in the integrand

that we will call “weak discontinuities”. This singularities are caused be the discretization

and present inside the contact surface.

In many previous works, the authors choose just to use a very high number of integration

points to overcome the influence of weak discontinuities (see, for example, [FW05,FW06]).

In Fig. 5.2, we report the error generated by numerical integration of such piecewise linear

function.
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Figure 5.1: Illustration of gap’s variation between two surfaces with non-matching mesh.

(a) fk(x) (b) Reported integration error

Figure 5.2: Test case to highlight integration error due to weak discontinuities

We consider a set of functions fk(x) linear piecewise for x ∈ [−1, 1] with a kink at

x = k. We let fk(k) = 1 and fk(−1) = fk(1) = 0. In this Fig. 5.2-(b) we give the

quadrature error of the function fk(x), ploted in 5.2-(a), when integrating it on [−1, 1]

and varying the kink position from -1 to 1 of k. The numerical integration is performed

with 2, 3 and 5 Gauss–Legendre points. The reported error decreases, obviously when

increasing the integration order, but it depends also on the position of the kink regarding

Gauss’s points positions. If observing Gauss point positions, one notices that the kink

locations with the largest integration errors actually are the integration point positions.

This interesting result concluded in [FPW15] for 2D interface problem can be also trans-

ferred to the three-dimensional case.

To quantify the integration error generated by this kinks, we call out a classic patch

test. The patch test originally proposed in [TP91], investigates the ability of contact

formulations to exactly transmit constant normal tractions between two contacting sur-

faces, regardless of their discretization. The patch tests are typically not passed by NTS
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formulation, even though some modifications were introduced to this methods to pass

it (see [ZDL09a, ZDL11]). Among available patch tests, we choose the one used several

times for the mortar method (see e.g. [PL04a,WB17]).

The test is similar to the patch test introduced in 4.3.1, but it is a 3D one. The

configuration of the test is given by Fig. 5.3. On the topmost surface a prescribed

displacement δz = −0.5mm in z-direction is applied. Both blocks are retained against

rigid body motions in the x-y-plane. With the given boundary conditions a uniaxial

compression is simulated and thus a constant stress σ̂z can be expected. In this test,

we use a linear elastic material with E = 2 · 105MPa and ν = 0.3 and we let Nitsche’s

parameter γ0 = 10E. For the numerical integration, we use a classical Gauss Legendre rule

Figure 5.3: 3D Patch test: Geometry and finite element mesh.

on the slave elements without any segmentation. Adopting the nomination of [FPW15],

this rule is named “element based integration”. When using a conforming mesh, element

based integration procedure is able to represent the constant stress exactly (up to machine

precision). For the non-matching mesh, the patch test cannot be passed exactly, as

expected, because the non-polynomials integrand. The maximum of relative errors in σ̂zz

for different number of Gauss points is investigated and given in Table 5.1. We inspect

as well the maximum of gap error (normal penetration) measured on Gauss’s points.

Nbre of Gauss’s points/face 7 (conforming mesh) 2 7 20 175

Max pressure relative error 6.92 · 10−15 5.86 · 10−2 6.13 · 10−3 3.22 · 10−3 2.76 · 10−4

Max gap(mm) 1.11 · 10−16 1.2 · 10−3 8.73 · 10−5 4.15 · 10−5 3.66 · 10−6

Table 5.1: Maximum of contact pressure relative error and gap.

The first observation is that, even though the integration error generated by weak

discontinuities is small, it is significant when compared to the exactly integrated solution.
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This error prevent the Nitsche’s method from passing this patch test despite it is an in-

tegral method.

Obviously, the more integration points are used the better the integral can be approxi-

mated and the error is smaller. Still, the error does not decrease significantly even when

using a huge number of integration points. This first test shows that adding integration

points could improve the method’s accuracy for an element-based integration but from a

certain order this improvement is no more significant when taking into account the cost

of using such number of integration points.

The previous illustration highlights the quadrature error inside the contact surface;

but another source of error is the transition in the boundary of a dropping edge. This

transition causes the so called “strong discontinuities” (i.e. jumps) . These discontinuities

are not caused by the discretization and they are source of large integration errors in

general. From a numerical point of view, the strong discontinuities could be detected

when the search algorithms used for the mapping operation fails.

For example, with a dropping edge of the master surface the projection operation of

some Gauss’s points fails. Then a portion of the slave element will have a zero contribu-

tion to the integrand and this will affect the exactitude of the quadrature rule. In this

case, it could be added to that the singularity of the solution itself, since the dropping

age could be a reason of singularity of the contact pressure.

To evaluate the impact of such discontinuities on the accuracy of the approximation,

we consider a second patch test similar to the first one but with two non coincident

contact surfaces. The lower cube is taken larger than the first one and its upper surface

is considered to be the slave one Γ1
c . This choice will allow us to get strong discontinuities

on the borders of the second contact surface. If we impose a vertical displacement on

the upper cube, as for the first example, the stress solution will be singular. Thus, to

get only the impact of the integration error, we impose a constant pressure on the free

upper surface of both cubes. So, a constant vertical stress σ̂z is be expected. The imposed

vertical stress is p = 1346KPa which is the obtained pressure in the first test 5.3 with an

imposed displacement of 0.5mm. The configuration of this test is given by Fig.5.4 and we

consider the same parameterization of the first example. For this test, we use the biased

Nitsche’s method and first order Lagrange elements.
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Figure 5.4: 3D Patch test with non-conforming contact surfaces: Geometrie and finite elements
mesh.

We measure the relative error of contact pressure and the normal penetration (in mm)

on the integration points and we give in Table 5.2 the maximum of these errors with

different numbers of quadrature points.

Nbre of Gauss’s points/face 7 (conforming mesh) 7 28 80 175

Max pressure relative error 9.019 · 10−10 3.56 · 10−2 7.13 · 10−3 3.81 · 10−3 1.15 · 10−2

Max gap(mm) 5.72 · 10−13 2.40 · 10−3 1.01 · 10−4 3.66 · 10−5 1.80 · 10−3

Table 5.2: Maximum of contact pressure relative error and gap.

The magnitude of the error due to the strong discontinuities is not very different from

what obtained with weak ones, but the error in this case is about 4 times higher. As

for weak discontinuities, enriching the integration rule reduces the error, but even with a

lot of integration points we are still far from the exact integration solution. We remark

as well that not just the number of the Gauss points influences this error, but also their

positions because sometimes, adding integration points does not improve the accuracy of

the integration. For example, the obtained error with 175 Gauss points is larger than the

obtained with only 28 points. To better locate the error on the contact surface we give

in Fig. 5.5 the pressure profile and the gap one on the slave contact surface.
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Figure 5.5: Pressure and penetration profiles on the contact plane (z = 0) of the slave surface

It is clear from the profiles of pressure and gap that the most important error is located

near the dropping edges (x = ±25 and y = ±25). This irregularity create numeric

oscillation around the edges. To avoid this kink of error we could cut the integration

method when a dropping age is detected.

Accordingly, any integration rule involving integration points that are dictated by

only one of the two surfaces cannot exactly evaluate Eq. (5.4) regardless of the num-

ber of integration points used. If however, the integration intervals are cut in any two

neighboring nodes regardless of their surface of origin, an exact evaluation is possible.

This segmentation of the quadrature rule will generate an additional computation in each

Newton iteration. This additional work may be important in the 3D case and a potential

difficulty here is that the location of the integration points is not fixed, since the locations

of the segment boundaries change due to the relative motion between the two surfaces.

5.1.3 Segment-based integration

As shown in section 5.1, using the element-based integration ignores the occurring discon-

tinuities and accepts integration error that may be significant. To handle this problems,

most of the segment-to-segment methods uses an algorithm of segmentation of the integra-

tion rule. We will call this technique “segment-based integration”. Its general idea was

first outlined for the classical segment-to-segment contact methods in [SWT85, ZW98].

Than the technique was applied to the 3D mortar contact formulations in [ML00a,PL03].

Severale adoptions and extensions can for example be found in [PL04a,PL04b,PLS08].

In Fig. 5.6, we illustrate this operation.
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Figure 5.6: Procedure of segmentation of the integration rule (as proposed in [PL03]).

To prevent all possibly occurring discontinuities in the integrand of the method (5.1),

the segment based integration propose to cut every slave element according to the cor-

responding master ones. Then a contact segment (polygon) will be constructed by the

overlap of one master and one slave element. The main characteristics of these segments

is that the integrand is smooth within each segment. In order to simplify the integra-

tion, a piecewise flat approximation of the contact region is used by projecting the two

contacting elements into the same plan p. Thus we obtain the projected elements Â and

B̂. Thus, the determined intersection segment Â ∩ B̂ is a flat polygon with up to eight

vertices. Then a subdivision of the segment into triangles for example (as in [PL03]) is

performed in order to use classical quadrature formulas on each triangle (see Fig. 5.6

(d)). The edges of the triangles connect the center of gravity of the segment with its

vertices. This way the number of triangles corresponds to the number of vertices of the

segment. The triangles are called integration cells and within each of them a classical

Gauss’s integration rule is allocated for numerical quadrature.

To evaluate the impact of such segmentation on the accuracy of the integration we

consider a bidimentional patch test similar to the test described by 5.4 (see 5.7).

We perform this test for the bi-dimensional case because the implementation of the

segmentation algorithm is much simpler in this case, but similar conclusions could be

drawn in the 3D case. The first body is discretized to 17×17 quadrangles and the second

to 5 × 5 with linear approximation. We prevent tangential displacements by imposing

symmetry conditions on the vertical borders of the two bodies as well as on the lower

border of the 1st body.

We consider always the same material parameters (E = 2.105MPa and ν = 0.3) with

an isotropic linear elastic constitutive law. The applied pressure on the top of the upper
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Figure 5.7: 2D Patch test with non conforming contact surfaces

cube is set to q = 10KPa this time.

For the simulation the biased Nitsche’s method is used with γ0 = 10E. We give in Table

5.3 a comparison between the pressure and penetration errors obtained with and without

segmentation. In order to quantify the cost of the segmentation process we give the time

of calculation in each case. The approximation with segment-based integration is exact

Nbre of Gauss’s points/face 3 3 3 45
(integration method) (conforming mesh) (segment-based) (element-based) (element-based)

Max pressure relative error 5.48 · 10−12 3.87 · 10−12 1.11 · 10−2 4.51 · 10−4

Max gap(mm) 2.61 · 10−18 6.02 · 10−17 5.68 · 10−7 1.20 · 10−9

Computing time(ms) 86.4 321 89.5 314

Table 5.3: Maximum of contact pressure relative error and gap and computing time with different
integration rules.

up to machine precision. So, it is proved from Table 5.3 that the segmentation of the

quadrature method allow to compute exactly the contact terms’ integrals and to get the

same accuracy of using conforming mesh. As for the 3D case, even when using a big

number of integration points, the element-based integration do not reach the precision of

the segment-based one.

However when observing the time of computing, the segmentation seems to increase con-

siderably the computing cost. Even though the current test is very simple in a 2D as-

sumption the difference of the computation cost is important. Knowing that, in the large

strain case, this segmentation has to be performed in every Newton iteration on all the

contact surface and that the operation is much more difficult in that case with a 3D
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geometry because the location of the integration points is not fixed, we could conclude

that using the segment-based integration causes considerable effort for implementation

and computation.

5.1.4 Boundary-segmentation

To reduce the computation cost of the segment-based integration, [FPW15] proposed, for

the mortar method, a combination of the two integration methods to strike a balance

between the simplicity of the first and the accuracy of the second. Noting, in the test

described in Fig. 5.4, that the strong discontinuities causes more quadrature error than

weak ones, we are going to cut the integration rule only when a strong discontinuity oc-

curs. This technique was named “boundary segmentation”.

In other terms, the segment-based integration rule will be employed for problematic slave

elements having strong discontinuities in the integrand and for non-critical slave elements

within the contact zone the element-based integration will be used. The critical slave

elements are the elements containing integration points whose projection misses all of the

master elements associated.

For the last test of Fig. 5.7, we give in table 5.4 the reported pressure and gap errors

with the three integration rules.

Nbre of Gauss’s points/face 3 3 3
(integration method) (segment-based) (element-based) (Boundary-segmentation)

Max pressure relative error 3.87 · 10−12 1.11 · 10−2 1.9 · 10−3

Max gap(mm) 6.02 · 10−17 5.68 · 10−7 5.37 · 10−9

Computing time(ms) 321 89.5 112

Table 5.4: Maximum of contact pressure relative error and gap and computing time with different
integration rules.

Using boundary-segmentation allows reducing the maximum of pressure relative er-

ror by a factor of 10 and the gap’s maximum 100 time, with 3 Gauss points per face.

The computation time for this boundary segmentation is about 20 ms more than an

element-based integration in the same circumstances. Thus the boundary segmentation

improve the accuracy of the approximation with a much less computation time; but the

error caused by weak discontinuities is still present and we still do not pass the patch test.

For the 3D case we go back to the test of Fig. 5.4. The simulation using the boundary

segmentation gives the pressure and gap profiles of Fig. 5.8.
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Figure 5.8: Pressure and penetration profiles on the contact plane (z = 0) of the slave surface
(with boundary segmentation)

As expected, the error is no more present close to the limits of contact surfce but

within the contact zone. With 7 Gauss points per face, the maximum of pressure error is

1.09 · 10−2 and of penetration error is to 7.03 · 10−4 mm. Comparing these results to the

ones obtained in Table 5.2, the errors’ maximum is reduced especially for the penetra-

tion. The simulation in this case took 5.62 s against 2.46 s with element-based integration.

5.1.5 A non-smooth solution patch test

In order to test the ability of the segmentation to improve the approximation with a more

realistic configuration, we do over the test of Fig. 5.7 without adding the artificial pressure

on the free upper board of the big cube. We eliminate, then, the pressure applied on both

cubes and we replace it by an imposed displacement of 0.5 mm on the upper bound of the

upper body (See Fig. 5.9). We eliminate as well the spherical conditions dictated on the

vertical sides. This case is the mostly encountered one when a dropping edge is present.

But in this case the exact solution will be very irregular (especially in pressure; see Fig.

5.9 (b)). To evaluate the error we compute the H1 norm of the difference between the

approximated solution and a reference one obtained with a very fine mesh. The expected

pressure profile is obtained in Fig. 5.9(b) with this reference solution.
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(a) (b)

Figure 5.9: 2D Patch test with imposed vertical displacement (a) and its reference pressure
solution (b).

We give in Table 5.5 the obtained H1 error with the different integration strategies.

Nbre of Gauss’s points/face 3 3 3 45
(integration method) (segment-based) (boundary-segmentation) (element-based) (element-based)

H1 error 7.82 · 10−2 7.93 · 10−2 8.07 · 10−2 7.94 · 10−2

Table 5.5: H1-norm of error of the non-smooth patch test 5.9, with different integration rules.

The error in H1 norm is not significantly different between the three integration meth-

ods. Even adding a big number of Gauss points do not increase the precision. This is due

to the fact that the solution itself is very singular. Thus, in some cases, when the solution

is very singular, the segmentation could be not efficient.

5.1.6 Integration error for the quadratic interpolation and fric-

tional contact

For element-based integration, no considerable difference in the integration process is

present with quadratic since we use classic quadrature rules. However, it has been shown

in [EAB01], for a node-to-segment mixed method, and [FPW15], for the mortar method,

that the integration error is more important for high order elements and that it affects

remarkably the convergence order.

On the other hand, the segmentation process needs to be modified, since the elements

are no more straight-lined. A simple adaptation of the segment-based integration was

proposed by Puso and Laursen in [PLS08]. The modification consists on dividing the
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quadratic elements to linearly interpolated sub-elements and establishing geometric map-

pings from parent element space so sub-segment space (See Fig. 5.10). Thus, it is possible

to evaluate higher-order shape function products in the integrand without any algorithmic

changes. However, this operation could influence the optimality of the approximation.

Figure 5.10: Illusration of quadratic elements’ division into contact linear sub-segments for
quadrangular (a) and triangular elements (b).

To confirm these observations for Nitsche’s method, we do over the test of Fig. 5.7

with quadratic elements and then frictional contact. We give in Table 5.6 the maximum

of pressure and penetration errors when using Q2 elements.

Nbre of Gauss’s points/face 3 3 3 45
(integration method) (conforming mesh) (segment-based) (element-based) (element-based)

Max pressure relative error 6.98 · 10−7 2.46 · 10−6 5.16 · 10−2 1.1 · 10−3

Max gap(mm) 1.93 · 10−11 8.05 · 10−12 1.86 · 10−7 3.39 · 10−8

Table 5.6: Maximum of contact pressure relative error and gap with quadratic approximation
and without friction

We remark that the use of quadratic element reduce the accuracy of the segment-

based integration, but still it is far more precise that the element-based one even with big

number of Gauss points. Using a quadratic approximation reduces the penetration error,

but the pressure error due to integration increases. The influence of using higher order

elements on the convergence is studied in details in section 5.3
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For the frictional case, we add to the discontinuities present in the frictionless one

the non regularity of the velocity v. This quantity is approximated by difference between

tangential gap evaluated at the current time step tn and the previous time step tn−1 , see

(2.13). Thus, The integration error in a time step is the accumulation of error at both

time steps. Beside this effect, there exist element regions where the element-based inte-

gration is not able to detect contributions from master elements because the integration

points are generally located within the slave element and not on the edges. According

to [FPW15], the resulting loss of precision is important for the velocity v and this affects

the decision, whether a node is in stick or slip state; while for frictionless contact, the error

is not severe because the evaluated terms within the element dominate the integrals.

For the segment-based integration these differences between frictional and frictionless

cases are, in general, not problematic because the integrals for both time steps are calcu-

lated with a high precision.

To conclude, the segmentation of all the contact surface is the best solution to get an

exact integration of the Nitsche’s method but the cost of this operation may be important,

especially in the large strain, 3D case. The segmentation of only the elements presenting

strong discontinuities is cheaper but it does not eliminate quadrature error inside the

contact zone. Although this error is less important than the error generated by strong

discontinuities, but it decreases the occupancy of the method and it may influence its

convergence order.

5.2 Non symmetric integration

This integration strategy was introduced and theoretically analyzed for mortar method

in [CLM97]. Noting that the best approximation error requires a quadrature formula

based on the slave side and the consistency error requires one on the master side, the

authors propose to use both integration rules. In other words, if we let (·)− refer to a

quantity defined on the slave surface and (·)+ for the master one and Mh to the space of

Lagrange multipliers, instead of choosing between the two space:

V−+
h =

{
vh ∈ Vh :

∫
Γ−
c

v−nhµ
−
h dΓ =

∫
Γ+
c

v+
nhµ

−
h dΓ,∀µ−h ∈Mh

}
and

V−−h =
{

vh ∈ Vh :

∫
Γ−
c

v−nhµ
−
h , dΓ =

∫
Γ−
c

v+
nhµ

−
h dΓ,∀µ−h ∈Mh

}
to impose the contact condition∫

Γ−
c

(v+
nh − v−nh)λ−h dΓ = 0,
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we use the first space as a test space and the second as a trial one. Then problem reads: Find uh ∈ V−−h such that, ∀vh ∈ V−+
h ,

a(uh,vh) = L(vh),

(5.4)

This approach results in a non-symmetric saddle point problem since we work with

different test and trial spaces, resulting in a Petrov-Galerkin approach and a loss of

symmetry.

Remark 5.2.1. The choice of the test and trial spaces can be interpreted as follow: In

the mortar approach, The contact condition could be seen as coupled Dirichlet-Neumann

problem. On the slave side, a Dirichlet problem has to be considered where the boundary

condition is obtained from the trace on the master side. We impose the boundary condition

in a weak integral form based on quadrature formulas on the mesh which is the mesh on

the slave side. Thus the natural choice for the trial space is V−−h . On the other hand, on

the master side, we solve a Neumann problem where the boundary conditions are obtained

from the residual on the slave side. In this case, a quadrature formula on the master side

is the natural choice. Since Neumann boundary conditions enter in a weak form on the

right-hand side (they are seen by the test space), V−+
h is the natural choice for the test

space.

Numerical examples in [MRW02] and [BBWW15] show an accuracy close to the case of

exact integration, but we note that from the theoretical point of view the well-posedness

of this non-symmetric saddle point problem remains unproved.

To adapt this strategy to the Nitsche’s method, we need to consider an integration

rule on both of the contacting surfaces. Thus it is more natural to consider the non-biased

version of the method. The contact integrand in (4.31) is divided into two terms:

1

2

∫
Γc

1

γ
Cγ,F (σ̂

N

h, g,vh,nx) · D
(
θσ̂

N

h + γ(uh(Y)− uh(X))
)

[δuh] dΓ

=
1

2

∫
Γc

1

γ
Cγ,F (σ̂

N

h, g,vh,nx) · D
(
θσ̂

N

h − γ(uh(X))
)

[δuh] dΓ

+
1

2

∫
Γc

Cγ,F (σ̂
N

h, g,vh,nx) · δuh(Y) dΓ,

(5.5)

and every term is integrated on the corresponding surface. To be able to integrate the

method on both surfaces we have to project the operator Cγ,F (X) on the corresponding

master point Y. Since Γc present, here, the union of the two surfaces we could keep

the integration domain unchanged and express the changing of the interation side by

replacing: ∫
Γc

Cγ,F (σ̂
N

h, g,vh,nx) · δuh(Y) dΓ

by : ∫
Γc

Cγ,F (σ̂
N

h(Y), g(Y),vh(Y),ny) · δuh(X) dΓ
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Thus, the obtained method reads:
DJ (uh)[δuh]− 1

2

∫
Γc

θ

γ
σ̂

N

h · Dσ̂
N

h[δuh] dΓ +
1

2

∫
Γc

θ

γ
Cγ,F (σ̂

N

h, g,vh,nx) · Dσ̂N

h[δuh]

+
1

2

∫
Γc

(
Cγ,F (σ̂

N

h, g,vh,nx)− Cγ,F (σ̂
N

h(Y), g(Y),vh(Y),ny)
)
· [δuh(X)] dΓ = 0

∀ δuh ∈ Vh.
(5.6)

To test the ability of the non symmetric integration method to better approximate the

contact integrals, we perform a first test of (5.6) with the patch test described in Fig.

5.3. This will allow us to evaluate the ability of non symmetric integration to overcome

the weak discontinuities. The maximum of gap and pressure errors are given by Table

5.7 with and without non symmetric integration, using the unbiased version of Nitsche’s

method with θ = 0.

Nbre of Gauss’s points/face 7 7 7

(integration method) (conforming mesh) (element-based) (non symmetric)

Max pressure relative error 1.43 · 10−12 6 · 10−3 7.26 · 10−12

Max gap(mm) 7.68 · 10−17 3.85 · 10−3 1.21 · 10−16

Computing time(s) 0.60 0.63 0.60

Table 5.7: Maximum of contact pressure and gap error and Computing time for the test config-
uration 5.3.

It is obvious from Table 5.7 that the non symmetric integration is able to compute

preciously the contact integrals for this patch test. Thus, the non symmetric seems to

be a very efficient solution to overcome the weak discontinuities. However, for the strong

discontinuities, the obtained error is bigger when using non-symmetric integration: For

the 3D patch test with non conforming contact surfaces, described in Fig. 5.4, the maxi-

mum of error is : 0.1 for the pressure and 6.46 · 10−7 for the penetration which is higher

than the error got with direct element-based integration, especially for the pressure (see

Table 5.2).

The cost of the non-symmetric integration is almost the same as for the element-based

one since they use the same integration rules. The only additional cost is the mapping’s

one that is low for this test.

The non symmetric integration is a good solution to reduce the integration error within

the contact surface, but on the boundary of the surface it is needed to cut the integration

rule and in that case the boundary segmentation is the adapted strategy.
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5.3 Influence of the quadrature error on the conver-

gence order

For the mortar method, early results in [CLM97,MRW02] and [FPW15] showed that the

element-based integration does not yield optimal convergence, especially for quadratic

elements. More precisely, when the integration rule is chosen on the slave mesh the con-

sistency error is affected. Numerical results confirmed the lack of optimality especially in

terms of pressure norm although reasonable results were obtained with linear approxima-

tion.

In order to observe the effects of inexact quadrature rules on the convergence we

consider the same test case used in [BBWW15] with a Poisson problem:

∆ui = −f i,

solved on the domain Ω = Ω1 ∪ Ω2, with Ω1 = [0, 1] × [−1, 0] and Ω2 = [0, 1] × [0, 1].

We impose ui = 0 on the Dirichlet boundaries: Γ1
D =

{
x = (x1, x2) ∈ Ω1, x2 = −1

}
and Γ2

D =
{
x = (x1, x2) ∈ Ω2, x2 = 1

}
. A scalar Signorini problem is considered on the

contact surfaces: Γ1
c =

{
x = (x1, x2) ∈ Ω1, x2 = 0

}
and Γ2

c =
{
x = (x1, x2) ∈ Ω2, x2 = 0

}
.

We use the unbiased Nitsche method with θ = 0 to model the contact between the two

domains. In this case the weak problem with a Nitsche’s treatment of contact can be

written as:

Find uh ∈ Vh such that, ∀vh ∈ Vh,
2∑
i=1

( ∫
Ωi
∇uih · ∇vih dΩ

)
− 1

2

∫
Γ1
c,h

1

γ1
(v1
h − v2

h)
[
σ1
n(u1

h)− γ1(u1
h − u2

h)
]
R−

dΓ

−1

2

∫
Γ2
c,h

1

γ2
(v2
h − v1

h))
[
σ2
n(u2

h)− γ2(u2
h − u1

h)
]
R−

dΓ =
2∑
i=1

( ∫
Ω

f ivih dΩ
)
,

(5.7)

where σin(uih) = ∇uih · ni and Vh is the discretized Hilbert space such that:

Vh =
{

(v1
h, v

2
h) ∈ (H1(Ω1)×H1(Ω2)) : vih|T ∈ Pk(T )),∀T ∈ T ih , vih = 0 on ΓiD

}
,

The internal load is manufactured to have the analytical solution:

u(x) = cos(πx1)
(

cos(
π

2
x2) + sin(2πx2)

)
.

Thus, the normal derivative on the interface Γic is given by
∂u

∂n
(x) = 2π cos(πx1).
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Figure 5.11: Obtained solution u for the scalar Signorini problem with a non-conforming mesh

The obtained solution of (5.7) with Nitsche’s method is given in Fig. 5.11. In the

following, we provide different numerical error studies. In all cases, the relative H1 primal

error
‖u−u1

h‖H1,Ω1

‖u‖H1,Ω1
and the gradient one on the bord:

‖ ∂u
∂n

−σ1
n(u

1
h)‖0,Γ1

c

‖ ∂u
∂n

‖
0,Γ1

c

are computed by a

comparison with the analytical solution stated above. The convergence curves of the two

errors are given in Fig. 5.12 for P1 Lagrange elements and in Fig. 5.13 for P2 Lagrange

element for segment-based integration and element based one with different orders of

Gauss-Legendre quadrature rule.

(a) (b)

Figure 5.12: Convergence curves with P1 elements for different integration rules

The convergence orders of the errors ‖u − u1
h‖H1,Ω1 and ‖∂u

∂n
− σ1

n(u
1
h)‖0,Γ1

c
are not
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affected by integration, for linear approximation, which is the same finding for mortar

method in [FPW15,BBWW15].

(a) (b)

Figure 5.13: Convergence curves with P2 elements for different integration rules

For the second order approximation, the results with element-based quadrature rules

coincide with the ones with segment-based rule, up to a certain refinement level. Then,

the convergence order of the two computed errors is reduced at a certain refinement level

and the error is significantly larger than the exact integration one. The starting distur-

bance threshold is different for different quadrature orders. We note that the gradient

error on the interface (equivalent, here to pressure error) is more affected than the primal

one by the integration error. Using a higher integration order permits to emprove the

convergence but the difference with exact and segment-based integrations remains impor-

tant.

We get optimal convergence with segment-based integration rule for both linearly and

quadratically interpolated elements, as shown by the black solid lines. It is very expected

that this behavior would also occur for linear elements, however only for a very small

element sizes, which are irrelevant from a practical point of view.

The non symmetric integration proposed in Section 5.2 was an adapted method to

avoid weak discontinuities. To confirm that, and since this test involves only weak dis-

continuities, we plot the convergence curves for P1 elements, in Fig 5.14, and P2 elements,

in Fig. 5.15, with different integration orders when using non-symmetric integration. The

convergence curves got with conforming meshes is plotted in black dashed line to enable

comparison.
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(a) (b)

Figure 5.14: Convergence curves with P1 elements and non-symetric integration for different
integration orders

(a) (b)

Figure 5.15: Convergence curves with P2 elements and non-symmetric integration for different
integration orders

In the linear case, results of the non-symmetric approach are comparable to the results

of the classic integration case. An additional error appears regarding exact integration,

but the error of the two norms keeps decreasing optimally even for small mesh sizes.

The difference between classic and non-symmetric integration is, especially, observable

for quadratic approximation. In Fig. 5.15, the optimality is preserved for the two norms

even with only an integration order equal to 3.

In some test cases, the influence of quadrature error on the convergence may be limited.

As an example, in 3.3, we noted that, for the Hertz problem, the convergence order is

not affected by the quadrature error and the optimal convergence is obtained even if

using an element-based integration. To confirm that we reconsider Hertz problem, as

described in Section 4.3.2 (see Fig. 4.15) with a linear elastic material. A frictionless
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contact is considered with only one step charging of 0.1 mm. We plot the convergence

curves regarding a reference solution calculated with a very fine mesh. The plots include

a segment based integration with a 3d order Gauss-Legendre integration and an element

based one with an integration order equal to 3 and 5. We give the convergence curves

of the H1 error of displacement on the master body Ω2:
‖uref−u2

h‖H1,Ω2

‖uref‖H1,Ω2
and L2 error of

contact pressure on the master surface Γ2
c :
‖σ(uref )n−σ(uh)n‖

0,Γ2
c

‖σ(uref )n‖
0,Γ2

c

for P1 elements in Fig.

5.16 and for P2 elements in Fig. 5.17.

(a) (b)

Figure 5.16: Convergence curves with P1 elements and different integration rules for Hertz
problem

As expected, the convergence order is not influenced by quadrature error for linear

approximation. The optimality is conserved for the displacement error as wel as for the

contact pressure one. Even when using only a third order integration rule, we obtain the

same results as with segmentation.

(a) (b)

Figure 5.17: Convergence curves with P2 elements and different integration rules for Hertz
problem

For the quadratic approximation, Fig. 5.17 shows a small difference of convergence
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order for small mesh sizes, but it not as significant as for the previous test. In addition,

the displacement error is affected by the integration error this time, while the pressure

error ‖σ(uref )n − σ(uh)n‖0,Γ2
c

is not influenced. Hertz test is a relatively smooth one,

where the active contact zone is limited and the state changing of contact-detachment is

continuous. This, could explain the limited influence of quadrature error.

The previous examples proves that segmenting the integration does not increase, nec-

essarily, the convergence order, especially for linear approximation.

Conclusion

The accuracy and the efficiency of integrals computing is an important issue of contact

approximation. For Nitsche’s method the approximation accuracy is directly influenced

by the choice of quadrature rule. In this chapter we provided a numerical study of the

patch test performance and the convergence order for different integration strategies. The

adapted integration rule depends on the irregularities faced. In the general case, segment-

based integration is the more accurate one, but, its high cost motivates the use of other

strategies. In addition, in some highly irregular cases the gain of segmentation is not

significant. This may be the case, as well when the contact occurs only in a limited surface

(as for Hertz problem). The use of the non-symmetric integration is a a good solution to

reduce the integration error within the contact surface, but on the boundary of the surface

it is needed to cut the integration scheme and in that case the boundary segmentation

is the adapted strategy. In general, Nitsche’s method seems to be influenced in a similar

way by the quadrature error as the mortar method; but a more elaborated comparison of

the two methods in this aspect is an interesting continuation of this work. The considered

study was limited to the 2D case for the segment-based integration. One could investigate

the influence of segmentation in the 3D case. An other important perspective of this study

is the test of different integration strategies, especially non-symmetric integration, with a

more complex and realistic configuration.
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Conclusions and Outlook

This thesis provided a detailed mathematical and numerical study of Nitsche’s finite ele-

ment method for contact and friction. The method was presented for Signorini’s problem

and generalized to the two elastic bodies contact problem and then presented in a generic

formalism appropriate for different type of boundary conditions. The main advantage

of the method is the consistent treatment of boundary conditions without adding La-

grange multipliers. It is, as well, intrinsically integral permitting a better handling of

non-conforming descritization of the interface.

For the frictional contact, we proposed a classic and then an unbiased formulation

that could be seen as a first step to apply Nitsche’s method to multi-body contact and

self-contact in the generic framework of large strain. A generalization parameter θ is

considered to cover an entire set of methods with different numerical and theoretical

properties. For a conservative system, we succeed to derive the method from an energy

potential. The method was analyzed and we proved its consistency, well-posedness and

optimal convergence and the particular case of θ = −1 was proved to be more robust

regarding the Nitsche’s parameter γ. The theoretical results are, generally, confirmed by

numerical tests, especially the optimal convergence and the influence of the parameter γ.

Since the analysis in the small strain case was promising, the next step was to extend the

method to the large strain case. The extension was made also for the friction law, since we

consider a Coulomb friction in this chapter instead of Tresca friction. We derived an un-

biased formulation that can be directly amenable to self-contact and multi-body contact.

The method is constructed independently of the mapping function, but its performance

depends on the used mapping. Therefore, we gave a brief comparison of two mapping

strategies: projection and ray-tracing and we noted that ray-tracing is the exceeding

choice from the modeling and simulation point of view. The study of Nitsche’s method

in the large strain framework proved that it is a very competitive contact formulation

directly relevant to an unbiased description of the phenomena. The method is as accurate

as classic mortar type methods remaining primal. In term of robustness, the method’s

performance depends on the considered variant θ, but, generally the method succeeds

to converge without any additional considerations, even with extreme deformations, and

self-contact configurations, and heterogeneous materials.

Being an integral formulation, the performance of Nitsche’s method depends on the scheme

used to approximate the contact integrals. In the performed tests, we made the choice

of using the classic Gauss scheme over the original elements without cutting. This choice

was argued in details in Chapter 5. The influence of numerical integration on the accuracy

and convergence of Nitsche’s type contact method was then studied for different types of

quadrature scheme and we concluded that segmenting the contact interface is not always

efficient and other integration techniques may be as accurate with a cheaper cost.

The study of quadrature scheme may be supported by a more elaborated test pallet.

The tests performed with different integration methods were considered for non-frictional
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contact; but a study of the influence of quadrature on the friction approximation is, as

well, an important perspective.

For the analytical part, An estimation of error in the L2-norm and the development

of a criterion for adaptative mesh refinement could be envisaged in future work.

In this work, we used an hyper-elastic material, but, since the constitutive law is used

in the contact model for Nitsche’s method, extending the method to inelastic behavior

may need some adaptations, since state variables are typically calculated and stored at

quadrature points on the interior of the elements. In a Nitsche approach, such fields will

also need to be computed and stored on the surface. Therefore an extension to inelastic

materials could be considered in forthcoming studies. The method was analyzed only for

two types of mapping: ”projection” and ”ray-tracing”. The comparison between this two

methods may be further analyzed. One can use other definitions of the gap such us the

construction of an intermediate geometry, as done in [Dur12].

All the current study concerns the implicit model, but in several applications the ex-

plicit time scheme are used and an application of Nitsche’s method for contact to this

framework may be interesting. In that case, the main disadvantage of Nitsche’s method,

which is its use of the constitutive law, could be overcome since the contact pressure is

calculated explicitly. The use of thin-shell structures may be problematic for Nitsche’s

type formulations because of the use of pressure; but it remains an important development

subject.
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Appendix A

Directional derivative of the stress

tensor

To make explicit each term in formulation (4.25), we need first the following results on the

directional derivatives of deformation tensors, that are obtained after simple computations

(see, e.g. [FG11, Chapter 14]):

Proposition A.0.1. The directional derivatives of F and E are:

DF(u)[δu] = ∇X(δu),

DE(u)[δu] = sym (FT (u)∇X(δu)) = FT (u) ε(δu) F(u),

where sym (·) denotes the symmetric part of a second order tensor.

The computation of the directional derivatives of stress tensors σ̂ and S is more

involved and we recall their expression below (see as well [FG11, Chapter 14]):

Proposition A.0.2. The directional derivatives of S, resp. σ̂, are:

DS(u)[δu] = C(u) : FT (u)∇X(δu) = C(u) : FT (u) ε(δu) F(u). (A.1)

Dσ̂(u)[δu] = ∇X(δu) S(u) + F(u)(C(u) : FT (u)∇X(δu)). (A.2)

Proof: First, for an hyperelastic law, there holds in fact S(u) = S(E(u)) and we apply

the chain rule:

DS(u)[δu] = DS(E(u))[DE(u)[δu]] =
∂S

∂E
(u) : DE(u)[δu].

Since C =
∂S
∂E and using Proposition A.0.1 we get:

DS(u)[δu] = C(u) : sym (FT (u)∇X(δu)).

Then (A.1) is obtained with the above formula and the symmetry properties of C.

Using the relationship σ̂ = FS and applying the product rule yield, for Dσ̂(u)[δu]:

Dσ̂(u)[δu] = DF(u)[δu]S(u) + F(u)DS(u)[δu].

We use (A.1) and once again Proposition A.0.1 to obtain (A.2). �
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As an example, suppose that the constitutive law is those of a Saint-Venant-Kirchhoff

material, i.e., that:

W (E) =
λ

2
(tr (E))2 + µ tr (E2),

where λ and µ are material parameters, see, e.g., [BW08, Chapter 5]. The associated

second Piola-Kirchhoff stress tensor and elasticity tensor are:

S = λtr (E)I + 2µE, C = λ I⊗ I + 2µI.

Let us detail the expression

Dσ̂(u)[δu] =∇X(δu) S(u) + F(u)(C(u) : FT (u)∇X(δu))

=∇X(δu) (λtr (E(u))I + 2µE(u)) + F(u)((λ I⊗ I + 2µI) : FT (u)∇X(δu)).

We compute separately

I⊗ I : FT (u)∇X(δu) = (I : FT (u)∇X(δu))I = tr (FT (u)∇X(δu))I,

and

I : FT (u)∇X(δu) = sym (FT (u)∇X(δu)).

This yields

Dσ̂(u)[δu] =∇X(δu) (λtr (E(u))I + 2µE(u))

+ F(u)(λ tr (FT (u)∇X(δu))I + 2µ sym (FT (u)∇X(δu)))

=λ
(
tr (E(u))∇X(δu) + tr (FT (u)∇X(δu))F(u)

)
+ 2µ

(
∇X(δu)E(u) + F(u) sym (FT (u)∇X(δu))

)
.

We finally obtain Dσ̂
N

(u)[δu] using relationship:

Dσ̂
N

(u)[δu] = Dσ̂(u)[δu]N ,

since σ̂
N

= σ̂N . The same process can be applied for various constitutive laws.
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Appendix B

Partial derivatives of C(λ, g,v,n)

Making use of the Heaviside function, defined as:

H(x) =

{
0, for x < 0

1, for x ≥ 0 ,

partial derivatives of the quantity τ = F [λ · n + r g]R− , with [.]R− is the projection into

R−, can be expressed as:

∂λτ = H(−λ · n− r g) F n ,

∂gτ = H(−λ · n− r g) F r ,

∂nτ = H(−λ · n− r g) F Tn λ .

Moreover, writing q
T

= Tn q, partial derivatives of projection PB(n,τ)(q) can be expressed

as:

∂qPB(n,τ)(q) =


0 for τ ≤ 0

Tn for ‖q
T
‖ ≤ τ

τ

‖q
T
‖

(
Tn −

q
T

‖q
T
‖ ⊗

q
T

‖q
T
‖

)
otherwise

∂τPB(n,τ)(q) =

 0 for τ ≤ 0 or ‖q
T
‖ ≤ τ

q
T

‖q
T
‖ otherwise

∂nPB(n,τ)(q) =


0 for τ ≤ 0

−q · n Tn − n⊗ q
T

for ‖q
T
‖ ≤ τ

− τ

‖q
T
‖

(
q · n

(
Tn −

q
T

‖q
T
‖ ⊗

q
T

‖q
T
‖

)
+ n⊗ q

T

)
otherwise.

Finally, the partial derivatives of function C can be calculated as:

∂λC(λ, g,v,n) = ∂qPB(n,τ) + ∂τPB(n,τ) ⊗ ∂λτ +H(−λ · n− r g) n⊗ n ,

∂gC(λ, g,v,n) = ∂τPB(n,τ) ∂gτ +H(−λ · n− r g) r n ,

∂nC(λ, g,v,n) = ∂nPB(n,τ)∂τPB(n,τ) ⊗ ∂nτ
+H(−λ · n− r g) (n⊗ λ− (2 λ · n + r g) n⊗ n + (λ · n + r g) I) ,

∂vC(λ, g,v,n) = −r ∂qPB(n,τ) ,
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where PB(n,τ) = PB(n,τ)(q) = PB(n,τ)(λ−r v) in the presentation of the partial derivatives

of C.
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Abstract

In this thesis, we present and study a new formulation of frictional contact between two elastic bodies

based on Nitsche’s method. This method aims to treat the interface conditions in a weak sense, thanks

to a consistent additional term stabilized with the parameter γ. At first, we introduce the study carried

out in the small strain framwork for an unbiased version of the method. The non-distinction between a

master surface and a slave one will allow the method to be more generic and directly applicable to the

self-contact problem. The restrictive framework of small strain allowed us to obtain theoretical results on

the consistency and convergence of the method. Then, we present the extension of the Nitsche method

to the large strain case more relevant for industrial applications and situations of self-contact. This

Nitsche’s method is formulated for an hyper-elastic material and declines in the two versions: biased and

unbiased. We describe a class of methods through a generalisation parameter θ . Particular variants

have different properties from a numerical point of view, in terms of accuracy and robustness. To prove

the accuracy of the method for large deformations, we provide several academic and industrial tests. We

also study the influence of numerical quadrature on the accuarcy and convergence of the method. This

study covers a comparison of several integration rules proposed in the literature for other integral methods.

Key words — frictional contact for small and large strain, Nitsche’s method, unbiased methods, numer-

ical quadrature for contact.

Résumé

Dans cette thèse, nous présentons et étudions une nouvelle formulation du problème de contact frot-

tant entre deux corps élastiques se basant sur la méthode de Nitsche. Dans cette méthode les conditions

de contact sont imposées faiblement, grâce à un terme additionnel consistant et stabilisé par un paramètre

γ. En premier lieu, nous introduisons, l’étude effectuée en petites déformations pour une version non

biaisée de la méthode. La non-distinction entre une surface mâıtre et une surface esclave permettera à la

méthode d’être plus générique et applicable directement au problème d’auto-contact. Le cadre restrictif

des petites déformations nous permet d’obtenir des résultats théoriques sur la stabilité et la convergence

de la méthode. Ces résultats sont complétés par une validation numérique. Ensuite, nous introduisons

l’extension de la méthode de Nitsche au cadre des grandes déformations qui est d’avantage pertinent pour

les applications industrielles et les situations d’auto-contact. La méthode de Nitsche est formulée pour un

matériau hyperélastique avec frottement de Coulomb et se décline en deux versions : biaisée ou non. La

formulation est généralisée à travers un paramètre θ pour couvrir toute une famille de méthodes. Chaque

variante particulière a des propriétés différentes du point de vue théorique et numérique, en termes de

précision et de robustesse. La méthode est testée et validée à travers plusieurs cas tests académiques et

industriels. Nous effectuons aussi une étude de l’influence de l’intégration numérique sur la précision et

la convergence de la méthode. Cette étude couvre une comparaison entre plusieurs schémas d’integration

proposés dans la littérature pour d’autres méthodes intégrales.

Mots clés — contact frottant en petites et grandes déformations, méthode de Nitsche, formulation non

biaisée, intégration numérique.
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