
HAL Id: tel-02067210
https://theses.hal.science/tel-02067210

Submitted on 14 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantically-enabled stream processing and complex
event processing over RDF graph streams

Syed Gillani

To cite this version:
Syed Gillani. Semantically-enabled stream processing and complex event processing over RDF graph
streams. Databases [cs.DB]. Université de Lyon, 2016. English. �NNT : 2016LYSES055�. �tel-
02067210�

https://theses.hal.science/tel-02067210
https://hal.archives-ouvertes.fr

!

N°d’ordre NNT :2016LYSES055

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

Université Jean Monnet – SAINT-ETIENNE

Ecole Doctorale N° ED 488-SIS
Sciences Ingénierie, Santé

Spécialité de doctorat :
Discipline : Informatique

Soutenue publiquement/à huis clos le 04/11/2016, par :
Syed Gillani

Semantically-enabled Stream
Processing and Complex Event

Processing Over RDF Graph Streams

Devant le jury composé de :
Bonifati, Angela Professeur Université de Lyon, France Présidente

Bonifati, Angela Professeur Université de Lyon, France Rapporteure
Rousset, Marie-Christine Professeur Université Grenoble Alpes, France Rapporteure
Mileo, Alessandra Adjunct Lecturer INSIGHT NUI Galway, Ireland Examinatrice
Lecue, Freddy Principal Scientist Accenture Tecnology Labs, Ireland Examinateur

Laforest, Frédérique Professeur Université Jean Monnet Directrice de thèse
Picard, Gauthier !! Maitre Assistant HDR Ecole des Mines Saint Etienne, France Co-directeur de thèse

To my parents and sisters

Abstract

There is a paradigm shift in the nature and processing means of today’s data: data are
used to being mostly static and stored in large databases to be queried. Today, with the
advent of new applications and means of collecting data, most applications on the Web
and in enterprises produce data in a continuous manner under the form of streams. Thus,
the users of these applications expect to process a large volume of data with fresh low
latency results. This has resulted in the introduction of Data Stream Processing Systems
(DSMSs) and a Complex Event Processing (CEP) paradigm – both with distinctive aims:
DSMSs are mostly employed to process traditional query operators (mostly stateless),
while CEP systems focus on temporal pattern matching (stateful operators) to detect
changes in the data that can be thought of as events.

In the past decade or so, a number of scalable and performance intensive DSMSs and
CEP systems have been proposed. Most of them, however, are based on the relational
data models – which begs the question for the support of heterogeneous data sources,
i.e., variety of the data. Work in RDF stream processing (RSP) systems partly addresses
the challenge of variety by promoting the RDF data model. Nonetheless, challenges like
volume and velocity are overlooked by existing approaches. These challenges require
customised optimisations which consider RDF as a first class citizen and scale the process
of continuous graph pattern matching.

To gain insights into these problems, this thesis focuses on developing scalable RDF
graph stream processing, and semantically-enabled CEP systems (i.e., Semantic Complex
Event Processing, SCEP). In addition to our optimised algorithmic and data structure
methodologies, we also contribute to the design of a new query language for SCEP. Our
contributions in these two fields are as follows:

• RDF Graph Stream Processing. We first propose an RDF graph stream model,
where each data item/event within streams is comprised of an RDF graph (a set
of RDF triples). Second, we implement customised indexing techniques and data
structures to continuously process RDF graph streams in an incremental manner.

• Semantic Complex Event Processing. We extend the idea of RDF graph
stream processing to enable SCEP over such RDF graph streams, i.e., temporal
pattern matching. Our first contribution in this context is to provide a new query
language that encompasses the RDF graph stream model and employs a set of
expressive temporal operators such as sequencing, kleene-+, negation, optional,

conjunction, disjunction and event selection strategies. Based on this, we implement
a scalable system that employs a non-deterministic finite automata model to evaluate
these operators in an optimised manner.

We leverage techniques from diverse fields, such as relational query optimisations,
incremental query processing, sensor and social networks in order to solve real-world
problems. We have applied our proposed techniques to a wide range of real-world
and synthetic datasets to extract the knowledge from RDF structured data in motion.
Our experimental evaluations confirm our theoretical insights, and demonstrate the
viability of our proposed methods.

Acknowledgements

The road to a successful PhD is long and labour intensive. During the last three years or
so, I have experienced countless setbacks: each one plunging my hopes and self confidence
to the ground. However, through these setbacks, I have undergone a genuine and powerful
transformation – both intellectually and personally. The main thing I have learned from
this experience is that, no matter how di�cult and improbable the task is if you keep
on walking in the right direction, and keep on looking for the probable remedies, you
will definitely find the solution. Critically, this journey would have been unbearable were
it not for the great support from the following people.

This thesis owes its existence to the help, support and inspiration from two of my great
advisors: Frédérique Laforest and Gauthier Picard. Without the countless discussions with
them, I would have not been able to establish the frontier works that were able to impact
on the development of this research. I am greatly indebted to Frédérique for spending
hours remotely (on weekends and during holidays!!) to give me advice, proofreading
and correcting my “s” and “the” mistakes. Over the past three years or so she has not
only helped me in writing technical papers, but has also assisted me with the tedious
administrative tasks. Gauthier, on the other hand, provided me with a di�erent view of
research and o�ered me some critical suggestions that moulded my research. He has also
been extremely supportive and understanding, especially with the choice of my research
path. In addition, I would like to thank my advisors for supporting me and making it
possible for me to attend numerous summer schools and conferences. No matter how
much I write in this note, it is impossible to express my sincere gratitude to my advisors.

I would also like to thank all my colleagues from my group formally known as “Satin-
lab”: Abderrahmen Kammoun, Christophe Gravier, Julian Subercaze, Kamal Singh, Jules
Chevalier. Especially to Christophe and Julien for giving me feedback and insightful
suggestions to improve my work. In addition, a special thanks to Antoine Zimmerman
for o�ering me his services and insights into the theoretical aspects of my work, and my
thesis reviewing committee (Angela Bonifati and Marie-Christine Rousset) for providing
insightful comments and suggestions.

Finally, thanks to my great family for giving me so much support and guidance. Mom,
Dad and my sisters, you guys are the best, and you instilled in me the confidence, curiosity
and discipline it takes to be successful. Thank you so much. I would also like to thank
my two best mates Calum and Adam for providing me with such a great company. Last
but not least, thanks to my girlfriend and Psychiatrist Céline for supporting me during
my di�cult times and encouraging me to be up to the task.

Il n’existe pas de chemin tracé pour mener l’homme à son salut; il doit en
permanence inventer son propre chemin. Mais pour inventer, il est libre,
responsable, sans excuse et tout espoir est en lui.
There is no trace out path to lead a man to his salvation; he must constantly
invent his own path. But, to invent, he is free, responsible, without excuse,
and every hope lies within him.

– Jean-Paul Sartre

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Overview and Contributions . 4

1.1.1 Part II: Continuous Query Processing over RDF Graph Streams . 4
1.1.2 Part III: Semantic Complex Event Processing Over RDF Graph

Streams . 5
1.2 Research Impact . 7

I Background and Related Work 8

2 Background on Semantic Web Technologies 9
2.1 Introduction . 9
2.2 The Semantic Web . 10
2.3 Resource Description Framework . 11

2.3.1 RDF Terms . 12
2.3.2 RDF Triples and Graphs . 13
2.3.3 Linked Data . 14

2.4 The SPARQL Query Language . 15
2.4.1 Semantics of the SPARQL Query Evaluation 16
2.4.2 Complexity of SPARQL . 19

2.5 Common Symbols . 20
2.6 Summary . 20

3 Data Stream Processing 22
3.1 Data Stream Management System . 23
3.2 Data Models for the DSMSs . 25

3.2.1 Data Streams . 25
3.2.2 Temporal Models of Data Streams 25
3.2.3 Windows . 26

3.3 Query Languages for DSMSs . 27

vi

Contents vii

3.3.1 Query Semantics . 27
3.3.2 Executional Semantics of DSMS 29

3.4 Syntax and Algebraic Properties of DSMS Query Languages 30
3.4.1 Continuous Query Language (CQL) 30
3.4.2 StreaQuel Language . 32
3.4.3 Gigascope Query Language . 32
3.4.4 TruSQL . 33

3.5 Existing Data Stream Management Systems 33
3.6 Optimisation Strategies for the DSMSs . 36
3.7 Summary and Discussion . 37

4 Semantically-enabled Stream Processing 39
4.1 Introduction . 40
4.2 RSP Data Model . 40
4.3 RSP Systems and Their Query Languages 41

4.3.1 C-SPARQL . 41
4.3.2 CQELS . 42
4.3.3 StreamQR . 43
4.3.4 Sparkwave . 44
4.3.5 Other Systems . 45

4.4 Under the Hood of RSP Systems . 46
4.5 RDF Graph Storage and Processing Techniques 47

4.5.1 Native RDF Graph Storage Systems 48
4.5.2 Non-Native RDF Graph Storage Systems 49

4.6 Summary and Discussion . 49

5 Detection of Complex Event Patterns 52
5.1 Introduction . 53
5.2 Data Model and Operators for Complex Event Processing 53

5.2.1 Data Model . 54
5.2.2 Event Query Languages and their Operators 55

5.3 Methods and Techniques for Complex Event Processing 58
5.3.1 Rule-based Techniques . 58
5.3.2 Graph-based Techniques . 59
5.3.3 Automata-based Techniques . 61

5.4 Semantic Complex Event Processing . 63
5.4.1 Temporal RDF Systems . 63
5.4.2 Semantic Event Processing over RDF Streams 64

5.5 Summary and Discussion . 67

Contents viii

II Semantically-Enabled Stream Processing: Problem Analysis, Stream
Model and Proposed Solution 69

6 Problem Formulation: Continuous Query Processing over RDF Graph
Streams 70
6.1 General Idea . 70
6.2 Limitations of Existing Solutions . 71

6.2.1 O�ine/Online Indexing . 72
6.2.2 Match Recomputation . 72
6.2.3 Limited Scope . 72

6.3 Data Model and Problem Statement . 73
6.3.1 Data Model . 73
6.3.2 Problem Statement . 75

6.4 Summary . 76

7 SPECTRA: High-Performance RDF Graph Streams Processing 77
7.1 Introduction . 78
7.2 Overview of the SPECTRA Framework 78
7.3 RDF Graph Summarisation . 79
7.4 Continuous Query Processing . 81

7.4.1 Incremental Indexing . 81
7.4.2 Query Processor . 84

7.5 Incremental Query Processing . 88
7.6 Processing Timelist and Matched Results 89
7.7 Experimental Evaluation . 91

7.7.1 Experimental Setup . 91
7.7.2 Evaluation . 92

7.8 Extending SPECTRA . 99
7.9 Summary . 100

III Semantic Complex Event Processing: Model, Language and Im-
plementation 101

8 A Query Language for SCEP: Syntax and Semantics 102
8.1 Introduction . 103
8.2 Why A New Language? . 104

8.2.1 A Motivating Example . 104
8.2.2 Limitations of Existing SCEP Languages 105

8.3 The SPAseq Query Language . 106
8.3.1 Data Model . 107

Contents ix

8.4 Syntax of SPAseq . 108
8.5 SPAseq By Examples . 110
8.6 Formal Semantics of SPAseq . 112

8.6.1 Rough Work . 112
8.6.2 Semantics of SPAseq Operators 115
8.6.3 Evaluation of SPAseq Queries . 120

8.7 Qualitative Comparative Analysis . 121
8.7.1 Input Data Model . 121
8.7.2 TimePoints Vs Time-Intervals . 123
8.7.3 Temporal Operators . 124

8.8 Summary . 125

9 SPAseq: Semantic Complex Event Processing over RDF Graph Streams126
9.1 General Idea . 127
9.2 NFA-based Semantic Complex Event Processing 128

9.2.1 NFA
scep

Model for SPAseq . 128
9.2.2 Compiling SPAseq Queries . 130

9.3 System Design of SPAseq Query Engine 134
9.3.1 Evaluation of NFA

scep

Automaton 136
9.4 Query Optimisations . 139

9.4.1 Evaluation Complexity of NFA
scep

. 139
9.4.2 Global Query Optimisations . 142
9.4.3 Local Query Optimisation . 145

9.5 Experimental Evaluation . 148
9.5.1 Experimental Setup . 148
9.5.2 Results and Analysis . 149

9.6 Summary . 155

IV Conclusion and Future Perspectives 157

10 Conclusion 158
10.1 RDF Graph Stream Processing . 158
10.2 Semantic Complex Event Processing . 158
10.3 Impact . 159

11 Future Perspectives 160
11.1 Top-k Operator over RDF Graph Streams 160
11.2 Multicore Mode for the RDF Graph Streams 161
11.3 Processing RDF Graph Streams in Distributed Environments 161

Contents x

Appendices

A Dataset Queries 164
A.1 LUBM Queries . 164
A.2 SNB Queries . 166
A.3 LSBench Queries . 166
A.4 SEAS Queries . 167
A.5 V-Shaped Pattern Queries for SPAseq and EP-SPARQL 168

A.5.1 SPAseq Queries . 168
A.5.2 EP-SPARQL V-Shaped Pattern . 169

B List of Related Publications 170

List of Figures

2.1 An Example of an RDF Graph . 13

3.1 (a) Traditional DBMS vs (b) DSMS . 23
3.2 (a,b) Sliding Window , (c,d) Tumbling Window, where W w

x

, x is the slide,
and w is the size of the window. 26

3.3 Simple Continuous Query Operators: (a) Selection, (b) Join (c) Count
(Adapted from [GO03]) . 29

3.4 A Generic Architecture of DSMS . 34

4.1 CQELS Architecture (adapted from [Bar+10a]) 42
4.2 Data flow in CQELS for the Query 4.2 . 44
4.3 Architecture of StreamQR (adapted from [CMC16]) 44
4.4 RETE nodes for the rule A > B . 45

5.1 High-level Overview of CEP System . 54
5.2 Example of Sentinel Event Detection Graph 60
5.3 From top left to right, the S-PN of the three composite event constructors:

conjunction (E1,E2), disjunction (E1|E2) and sequence (E1;E2). The
function ü(x,y) computes the union of the parameters x and y. Note that,
in the S-PN for (E1;E2) the place H (with an initial token) prevents the
transition t0 from firing until E1 has occurred.(adapted from [MZ95]) . . 61

5.4 Structure of NFAb for the pattern ab+c with skip-till-any strategy (adapted
from [Agr+08]) . 62

5.5 System Diagram of EP-SPARQL(adapted from [Ani+12]) 66

6.1 Two RDF Graph Events (·
i

, G
D

) and (·
j

, G
D

) 73

7.1 (a) Summary Graph from the RDF Graph Event (·
i

, G
D

) using Query 6.1,
(b) Materialised Views for the Summary Graph (·

i

, G
S

). 81
7.2 (a) Two Views Joined on an Object and Subject Column, (b) Sibling List

constructed during the Join Operation for V
2

. 83
7.3 (a) Matching Process of (·

i

, G
D

) with Query 6.1 as described in Example 8,
(b) a set of Final Views and a Timelist 85

xi

List of Figures xii

7.4 Incremental Processing of matched results of (·
j

, G
D

) in Figure 6.1 with
Query 6.1, as described in Example 9. 90

7.5 (a)(b)(c) Performance analysis of SNB Queries (1,2 and 3 respectively)
(including both latency measures and query time) 95

7.6 (a) Query time and (b) Latency measures of SNB-Q1 on the SNB dataset. 96
7.7 Break-Even point for the re-evaluation and incremental methods 96
7.8 Performance of the non-selective SEAS-Q1 97
7.9 Performance of the selective SEAS-Q2 . 97
7.10 S-Inc comparison with CQELS for SNB data set and LSBench Queries . 98
7.11 Resident set size (in MB) of S-Inc-1 and CQELS for SEAS Q1 99

8.1 Structure of the Events from three Named Streams, (8.1a) (u
1

, S
g1) Power

Stream’s Event, (8.1b) (u
2

, S
g2) Weather Stream’s Event, (8.1c) (u

3

, S
g3)

Power Storage Stream’s Event . 108
8.2 V-Shaped Patterns (a) Without Kleene-+ Operator, and (b) With Kleene-+

Operator . 125

9.1 Compiled NFA
scep

for SPAseq Query 8.2 with SEQ(A,B+,C) expression . 130
9.2 Compilation of the Immediately followed-by Operator 132
9.3 Compilation of the Followed-by operator 133
9.4 Compilation of the Optional Operator . 133
9.5 Compilation of the Kleene-+ Operator . 133
9.6 Compilation of the Negation Operator . 134
9.7 Compilation of the Conjunction Operator 134
9.8 Compilation of the Disjunction Operator 134
9.9 Architecture of the SPAseq Query Engine 135
9.10 Execution of NFA

scep

runs for the SPAseq Query 8.2, as described in
Example 23 . 139

9.11 Processing Streamset over Active Runs . 143
9.12 Partitioning Runs by Stream Ids . 144
9.13 Compilation of Disjunction Operator for ((u

1

, P
1

) | (u
1

, P
2

) | (u
1

, P
3

) |
(u

1

, P
4

)) . 145
9.14 Compilation of Conjunction Operator for ((u

1

, P
1

) <> (u
1

, P
3

) <> (u
1

, P
3

)) 146
9.15 Performance Measures of Optional, Negation and Kleene-+ Operators . . 150
9.16 Comparison of Conjunction and Disjunction Operators 151
9.17 Comparison of Followed-by and Immediately Followed-By Operators . . . 151
9.18 Analysis of Indexing Runs by Stream Ids 152
9.19 Lazy vs Eager Evaluation of Conjunction Operator 153
9.20 Comparative Analysis of SPAseq and EP-SPARQL over Variable Window

Size . 154

List of Figures xiii

9.21 Comparative Analysis of SPAseq and EP-SPARQL over Variable # of
Sequences . 155

11.1 Layered Architecture of DIONYSUS . 162

List of Tables

1.1 Thesis Overview . 4

2.1 Common Symbols and Definitions . 20

4.1 Classification of Existing RSP Systems . 47
4.2 Classification of Existing RSP Systems . 47
4.3 Optimisation and Underlying Engines for RSP systems 50

5.1 Underlying Execution Models and Operators Supported by CEP and SCEP
Systems (S: Sequence, K: Kleene-+, C: Conjunction, D: Disjunction, EST:
Event selection strategies, N: Negation) 68

7.1 Dataset Distribution for the SNB Dataset, Min and Max describe the
Range of Number of Triples for each Event. 91

7.2 Throughput Analysis ◊1000 triples/second (rounded to the nearest 10)
on LUMB Dataset and Queries over three di�erent Tumbling Windows.
Boldface for the Incremental Evaluation and Best Throughputs for Re-
evaluation are italicised. (•) indicates Aborted Execution due to Timeouts 93

9.1 Available Optimisation Strategies Adopted by the CEP Systems 128

xiv

1
Introduction

The World Wide Web (WWW), now 27 years old, is a massive communication break-
through and has captivated minds during the last decade or two. Tim Berners-Lee’s
simple creation has been transformed into a digitally connected world with unprecedented
fluency in inter-communication and information dissemination. The WWW forms a
connected network where the basic units being connected are pieces of information, and
links that conform to the relationships join the pieces of information. At the basic level,
WWW is an application to enable the distribution of information at low cost with an
unlimited audience: the size of the potential audience of a shared document on the Web
is limited only by the demand for it. As a result, today’s web contains around 232 billion1

unique web documents containing diverse forms of information.
However, the question is how to make sense of these information sources: humans

not only need machines to store such a large repository of information, but also to
query, extract, analyse, categorise and organise information for consumption. For such
tasks, the starting point is to use search engines or, to use the modern cliché, to Google
it. These (keyword-based) search engines generally employ relational-based stores (i.e.,
Database Management Systems, DBMSs) to store relationships between keywords and
the associated Web content. However, such search engines can only direct users to the
relevant reading list – usually containing a long list of documents – from which the user
has to glean thereafter. The main drawbacks of keyword-based search engines include:
high recall and low precision of retrieved web documents, queried results are highly
sensitive to the vocabulary used by each document, and the user has to manually initiate
several queries to collect the related documents. Even if the users are somewhat happy
with the results, the main obstacle in providing the required support for searching the
Web is that its content is not machine readable.

In order to address these shortcomings, the Semantic Web was introduced. Its primary
goal is to provide machine readable content over the Web such that it can be reused and
integrated with other related ones, and machines can – to some extent – interpret content
on the users’ behalf. During the last decade or so, the Semantic Web community has
progressed by leaps and bounds. It started as a prototype research through the visionary

1Source: http://www.worldwidewebsize.com/

1

http://www.worldwidewebsize.com/

1. Introduction 2

ideas of Tim Berners-Lee, and recently we have seen its adoption even at the industrial level.
The whole consortium of Semantic Web relies on its data model called RDF and ontological
languages such as RDF Schema and Web Ontology Language (OWL). RDF data consist of
triples, where an RDF triple can then be seen as representing an atomic “fact” or a “claim”,
and consists of subject, predicate and object. A set of these triples forms an RDF graph.

The prototype research of processing RDF data had a similar start to that of the
relational data model. That is, the data are persisted and indexing techniques are
utilised on top of it to process it with expressive query languages: SPARQL is the
SQL of RDF and triples stores are the relational stores for RDF. In recent years, a
number of highly e�cient RDF triple stores have been engineered, storing billions of
triples with high-speed query processing.

However, in today’s application, the assumption of static data may not be applicable,
and data items arrive in a continuous, ordered sequence of items. Consider few examples:
on social networks, people continuously collaborate, consequently producing data in a
continuous manner; sensors, that are ubiquitous devices and crucial for a multitude of
applications, continuously produce situational data. Hence, data are always in motion
for such applications, construct a dynamic world, and contain an additional attribute of
time. Such data are not only produced rapidly, but also continuously – hence forming
data streams. This highly dynamic and unbounded nature of data streams requires that
a new processing paradigm be found: data from a variety of sources are pushed into
the system and are processed by persistent and continuous queries, which continuously
produce the results with the arrival of new data items.

The apparent characteristics of data streams are especially challenging for both
DBMSs and RDF query processors. The reasons are two-fold: first of all, data streams are
usually produced at a very high frequency, often in a bursty manner, can pose real-time
requirements on processing applications and may only allow them one pass over the
data. Second, data streams result in a high volume of data, such that not all of it
can be stored and processed. Considering these requirements, traditional DBMSs are
simply not suitable to process data streams in a timely fashion. Thus, a new research
field, Data Stream Management Systems (DSMSs), was introduced parallel to DBMSs
with the following novel requirements:

• The computation is performed in push-based manner or it is data driven. That is,
newly arrived data items are continuously pushed into the DSMS to be processed.

• The DSMS’s queries are persistent, and continuously processed throughout the
lifetime of the streams. The results of these continuous queries also take the form
of streams.

• Data streams are considered to be unbounded, thus they cannot be stored in their
entirety. Instead, a portion of the recent data items are stored and processed, where
the boundaries of recency are defined by the users. These boundaries are generally
called windows.

• Due to the requirement of a real-time response, DSMSs should employ the main-
memory to process the most recent data items within windows.

• New data models and query languages are required to comply with the above
mentioned requirements.

1. Introduction 3

Guided by these requirements, a large number of DSMSs have been developed in the
last decade or so. These systems employ specialised languages and data structures to
optimise response time and improve on scalability requirements.

Following the DSMSs, the Semantic Web community also leaped into this field and
named it RDF Stream Processing (RSP). The use of the RDF data model enabled
RSP systems to comply with the heterogeneity requirements of today’s data sources.
Furthermore, the use of ontologies and static background knowledge empowered the RSP
systems to extract the contextual knowledge from the dynamic world. However, RSP
systems also come with their drawbacks. Having been inspired by DSMSs, they inherit
most of their optimisation strategies without explicitly considering the complex nature
of RDF. This results in a huge drop in their performance and scalability measures. One
can engineer an RDF model on top of a DSMS while employing static data indexing
techniques, for example, but it is di�cult to optimise it without considering the graph
nature of RDF streams and their dynamicity. Nevertheless, these systems pioneered the
field of dynamic machine-readable Web, where machines can make decisions in real-time.

As one can imagine, this cannot be the end of the story, and there is a twist in
the tail. DSMSs are considered as monitoring applications, where the aim is to process
the query operators insipid from SQL such as selection, joins, etc. So the question is
where is the temporal reasoning and how to contemplate the happening of something,
i.e., an event? Complex Event Processing (CEP) was developed to achieve this. Data
items are considered as atomic events, and the combination of a set of them – which
corresponds to the defined temporal patterns – constitute complex/composite events.
CEP, however, adheres to the main design principles of DSMSs, but it improves upon
them by providing temporal operators. These temporal operators include: sequencing of
events, negations, kleene closure, etc. These operators have diverse use cases in many
critical applications, such as sensor network, stock market, inventory management, social
network analysis, etc. Consider a simple example of events emanating from a nuclear
power station. A user is interested in receiving a critical alarm if the temperature of a
nuclear power station is greater than a certain threshold value, followed by the detection
of smoke. Using both of these atomic events, i.e., a rise in temperature, and a presence
of smoke, a user can easily infer the complex event of a fire. Note that a DSMS in this
case cannot contemplate such a complex event, it can only determine if there is an event
of high temperature or take the average of temperature values.

The evolution of CEP systems has started from active databases, where temporal
operators were evaluated on persistent data, and currently the popularity of CEP systems
has reached the level of DSMSs. Thus, a number of new languages with expressive temporal
operators have been proposed, and new techniques have been devised for their e�cient
implementation. However, such response has not been received from the Semantic Web
community, and only handful of solutions have been proposed with restricted functionality.
These solutions, usually called Semantic Complex Event Processing (SCEP), have acquired
their design directly from standard CEP systems: RDF triples are mapped onto the
underlying CEP systems, and subsequently temporal operators are evaluated over them.
Therefore, these solutions (i) do not provide all the required/general temporal operators,
and (ii) they are not optimised for an RDF data model.

This thesis focuses on both aspects of RDF graph-based stream processing and
SCEP. It proposes how to provide an e�cient and scalable solution for continuously
processing RDF graph streams, and how to build a performance intensive SCEP system
with expressive temporal operators. The main directions of our work are: (a) providing

1. Introduction 4

incremental indexing and evaluation for RDF graph streams, (b) providing an expressive
SCEP query language, by extending SPARQL, and its e�cient implementation. In the
following section, we introduce our problem statements and contributions of this thesis.

1.1 Overview and Contributions
This thesis is organised into three main parts: (I) background and existing works on
DSMSs, RSP systems, CEP systems and SCEP systems, (II) continuous query processing
over RDF graph streams, and (III) SCEP over RDF graph streams. Herein, the main
problems discussed in this thesis are summarised under the form of questions.

Table 1.1: Thesis Overview

Part Research Problem Chapter

I: Background What is the Semantic Web, and what are its main
constituents?
What are the main lessons that can be learned from
the existing DSMSs, and how do RSP systems
inherit their techniques?
What are the main properties of CEP query op-
erators and systems, and what can we learn from
existing SCEP systems?

2

3, 4

5

II: RDF Graph Stream
Processing

What are the limitations of existing solutions,
and how can we implement incremental indexing
and evaluation techniques for RDF graph streams?

6, 7

III: SCEP Why do we need a new SCEP language, what
operators should it contain, and how can said SCEP
language be implemented e�ectively?

8, 9

Herein, we describe Parts II and III of the thesis and list our contributions.

1.1.1 Part II: Continuous Query Processing over RDF Graph Streams
RDF stream processing (RSP) systems employ RDF triple streams, where each data item
within a stream is a single RDF triple (Èsubject, predicate, objectÍ). A set of RDF triple
streams are matched against an extended form of SPARQL query (query graph) and
the matches are propagated as output streams. These systems provide either a black or
white box approach. A black box approach directly uses an existing DSMS and a triple
store, while a white box approach employs techniques from DSMSs and adapts them
for RDF triples. In both cases, a mapping from RDF triple to the underlying tuples is
performed and an indexing structure (a B+ tree) is used on top of it.

Problem Statement 1 What can we learn from existing RSP systems, and how can we
provide customised data structures and indexing techniques for RDF graph streams? How
can a new solution accommodate both RDF data and streaming requirements in a single
framework?

A direct way of processing RDF graph streams, where each data item is a graph
instead of a triple, is to transform static graph solutions for streaming settings. However,
these solutions are based on o�ine indexing and create indices a priori assuming accurate

1. Introduction 5

workload knowledge and data statistics, and plenty of priori slack time to invest in
physical design. Furthermore, these solutions are based on an index-store-query model,
which is not in line with the streaming requirements. RSP systems improve on this by
providing online indexing, where the basic concepts of o�ine indices are transformed
into online indices. That is, the system monitors the workload and reorders its operators.
However, most of these systems employ statically-optimised structures for such indexing
(such as B+ trees). Hence, first these kinds of indexing are not insertion and deletion
friendly. Second, in case of variable workloads, the creation of new indices from scratch
can considerably outweigh the cost of query processing.

We formalise the problem of continuously processing RDF graph in Chapter 6, which
shows that the number of triples within an event has a direct impact on the query cost.
Thus, in order to reduce the search space on top of the incremental indexing, we also
propose a graph summarisation technique. It employs the structural and selectivity
attributes of a query graph and prunes the unnecessary triples from each incoming RDF
graph. We list our contributions as follows.

In Chapter 7, we describe our system, called SPECTRA (Chapter 7), that provides
answers to the shortcomings of former techniques. It aims at providing an incremental
indexing technique that is the by-product of query processing. Thus, it o�ers considerable
advantages over o�ine and online indexing, which is employed by static RDF and RSP
solutions respectively. Furthermore, contrary to existing approaches, we employ an
incremental evaluation of triples within a window. That is, with the insertion and eviction
of triples, query matches are produced while considering the previously matched results:
most of the existing RSP solutions re-evaluate the matched results from scratch. This
results in a considerable reduction in response time, while cutting the unnecessary cost
imposed by re-evaluation models for each triple insertion and eviction within a defined
window.

Contributions:

• Problem Formulation and Data Model. We formally introduce the problem and data
model for continuously querying RDF graph streams over sliding windows.

• Graph Summarisation. We provide a novel graph summarisation technique to prune
unwanted triples from each RDF graph within the streams.

• Incremental Indexing. We propose an incremental indexing technique for RDF
graphs, which is a by-product of query processing and is compatible with the
streaming settings.

• Incremental Evaluation. Our query evaluation is also based on an incremental
model, where the previously matched results are reused.

• E�ectiveness on multiple Datasets. Our experimental results on both synthetic and
real-world datasets show up to an order of magnitude of performance improvements
as compared to state-of-the-art systems.

1.1.2 Part III: Semantic Complex Event Processing Over RDF Graph
Streams

CEP systems are inspired from active databases, where temporal operators are applied
over static datasets. Hence, the data model of most of the existing CEP systems is inspired

1. Introduction 6

by the relational data model. That is, each event contains a relational tuple – with a set of
keys and values – associated with a timestamp or time-interval. The simplicity of the data
model paves the way to employ expressive temporal operators for CEP query languages,
inherit optimisation techniques from DSMSs, and borrow from existing pattern matching
techniques. SCEP solutions inspired by CEP systems generate mappings from RDF
triples to tuples, and usually employ CEP systems as their underlying execution engines.
This first restricts the use of many expressive CEP operators for their query languages
due to the complexity of the RDF data model. Second, it hampers their scalability and
performance measures: SCEP requires customised optimisations for the RDF data model.

Problem Statement 2 How can we design a new SCEP query language that covers all
the main temporal operators? How can such a language be implemented in an e�cient
way to provide the scalability and performance requirements?

Having gained knowledge about e�ciently processing RDF graph streams, the question
is how to extend it to enable temporal operators over RDF graph-based events. The first
answer to this question came with the design of a new query language for SCEP. Existing
SCEP query languages do not provide the required capabilities due to the following
reasons: (i) they are based on the RDF triple stream data model, (ii) they provide a
small subset of temporal operators, (iii) their semantics for matching graph patterns
and temporal operators are mixed, making it di�cult to extend them for expressive new
operators. These are the problems we address in Chapter 8.

Considering the aforementioned shortcomings of existing SCEP query languages, we
provide a novel query language called SPAseq (Chapter 8). It extends SPARQL operators
with a set of expressive temporal operators. One of the main attributes of SPAseq is that
it provides a clear separation between the constructs of graph patterns from SPARQL
and temporal operators. Hence, it can easily be extended for the new temporal operators,
and its design is not restricted by the underlying executional framework. Moreover,
SPAseq data model is based on the RDF graph model, where each event contains a
set of RDF triples. In Chapter 8, we provide the syntax and semantics of SPAseq and
provide a comparison with existing SCEP languages.

In addition to the syntax and semantics of SPAseq, we also provide its e�cient
implementation. Since SPAseq provides a clear separation of graph patterns and temporal
operators, we employ techniques for graph pattern matching from our system SPECTRA,
and a Non-deterministic Finite Automata (NFA) model for the evaluation of temporal
operators. Furthermore, we provide various system and operator level optimisation by
considering the RDF graph model and lessons learned from existing CEP systems. Such
discussion is provided in Chapter 9. We list our contributions as follows:

Contributions:

• Problem Formulation and Data Model. We formally introduce the problem and data
model for SCEP over RDF graph streams.

• SPAseq Query Language. We provide a novel query language for SCEP called
SPAseq and provide the syntax and semantics of this query language.

• Qualitative Analysis. We provide a qualitative analysis of SPAseq in comparison
with existing SCEP languages.

1. Introduction 7

• Evaluation Framework. We propose a novel evaluation framework for SPAseq

queries, and provide various customised optimisations to evaluate SPAseq query
operators.

• E�ectiveness on Multiple Datasets. Our experimental results on both synthetic and
real-world datasets show the e�ectiveness of these optimisation techniques.

1.2 Research Impact
Parts of the work presented herein have been published in various international workshops
and conferences. In the following, we briefly introduce them in the chronological order.

• We presented an ontology design for the RDF graph-based events emanated from a
Smart Grid, which serves as a precursor to the use cases presented in Chapter 6
and 8: [GLP14] in workshop EnDM@EDBT/ICDT.

• We presented the visionary works regarding the design of a SCEP language, which
serves as a precursor to work presented in Chapter 8: [SGL14, GPL14] in workshops
Ordring@ISWC and IWWISS.

• We presented our work on continuous graph pattern matching, and data models
for the RDF graph streams. It serves as a precursor work to the work presented in
Chapter 6 and 7: [GPL16a] in ACM DEBS conference.

• We published an extension of the above paper for our framework SPECTRA (with
new algorithms, indexing techniques, and data model). This provides the basis of
our work presented in Chapters 6 and 7: [GPL16c] in SSDBM conference.

• Recently, we have also provided a visionary paper to extend the RDF graph streams
and SCEP solutions for the distributed environment. This serves as our future work
as discussed in Chapter 11: [GPL16b] in workshop GraphQ@EDBT/ICDT.

Beside the above mentioned papers, we have also been involved in other published
works which have received much inspiration from this thesis. Highlights include, a paper
presented at ACM DEBS on providing a Top-k operator over RDF graph streams [Gil+15].
In this paper, we use techniques for continuously processing RDF graph-based events, and
employ a new data structure. It permits the system to capture the top-k elements within
a stream with user-defined constraints. Furthermore, another of our papers [Kam+16],
published in ACM DEBS, employs incremental indexing on top of relational data streams.
This results in providing a scalable solution for the top-k operator over non-linear
sliding windows. Moreover, much of the work described in Chapter 8 and 9 will be
submitted for review in the Journal of Web Semantics. The complete list of related
publications is provided in Appendix B.

Part I

Background and Related Work

8

I know by my own experience how, from a stranger met

by chance, there may come an irresistible appeal which

overruns the habitual perspectives just as a gust of wind

might tumble down the panels of a stage set – what had

seemed near becomes infinitely remote and what seemed

distant seems to be close.

— Gabriel Marcel, On the Ontology of Mystery

2
Background on Semantic Web Technologies

In this Chapter, we provide a broad overview of the history and key concepts
of the Semantic Web. These concepts provide a crucial background to our
discussion on the Semantically-enabled Stream Processing and Complex Event
Processing. It starts with the evolutionary history of the World Wide Web and
then presents the case of the Semantic Web.

Contents

2.1 Introduction . 9
2.2 The Semantic Web . 10
2.3 Resource Description Framework 11

2.3.1 RDF Terms . 12
2.3.2 RDF Triples and Graphs . 13
2.3.3 Linked Data . 14

2.4 The SPARQL Query Language 15
2.4.1 Semantics of the SPARQL Query Evaluation 16
2.4.2 Complexity of SPARQL . 19

2.5 Common Symbols . 20
2.6 Summary . 20

This Chapter is structured as follows: Section 2.1 provides the preliminary
history and introduction of the World Wide Web. Section 2.2 provides
insight into the Semantic Web. Section 2.3 details the Resource Description
Framework (RDF). Section 2.4 describes the syntax and semantics of the
SPARQL query language for RDF. Section 2.6 summarises the chapter.

2.1 Introduction
The World Wide Web (WWW) that we all cherish is an ever growing information resource,
that is built on the concept of distribution of information with global access. In order
to provide the vision of WWW, there are primarily two requirements: machine-readable

9

2. Background on Semantic Web Technologies 10

structure and a global system of interlinking such structured documents. The first
requirement is achieved by providing a Hyper Text Markup Language (HTML) [Nel65],
which essentially contains formatted natural language, digital images, etc., while the
second goal is realised through globally unique addresses, i.e., Unique Resource Locators
(URLs): URL encodes the location from which (and to certain extent, the means by
which) a document can be retrieved. By combination of these two features, the structured
documents can link/hyperlink to other related documents, embedding the URLs of target
documents into the body of text, allowing users to browse between related documents:
hence a mesh of interlinked information resources that can be accessed globally.

The WWW project was initiated to share data, of various formats, by physicists at
CERN Geneva, Switzerland, and arose from the seminal work by Tim Berners-Lee. It was
early 80’s, when Berners-Lee started his work on designing a hypertext documentation
system called ENQUIRE [BL80]: this laid the ground work, and would foreshadow his
later work on the WWW. The aim behind ENQUIRE was to share the complex technical
information within the collaborative environment of CERN [BL93]. The ENQUIRE
system centred around “cards” as information resources about “nodes”, which could refer
to a person, a software module, etc., and which could be interlinked using a selection
of relations, such as made, includes, uses, describes [BL80].

Although, the design of ENQUIRE suited its purpose, it had various limitations [BL93],
which include: lack of physical communication layer and file system limited to a local
level. Moreover, it required extensive co-ordination to keep information up-to-date. Thus
came the concept of WWW to provide a more open and collaborative tool.

I wanted [ENQUIRE] to scale so that if two people started to use it indepen-
dently, and later started to work together, they could start linking together
their information without making any other changes. This was the concept of
the Web.

– Berners-Lee [1993]

By late 1990, Berners-Lee had developed initial versions of the technologies underpin-
ning today’s Web: the HyperText Markup Language (HTML) used for encoding document
formatting and layout, the HyperText Transfer Protocol (HTTP) for client/server
communication and transmission of data (HTML) over the Internet, the first Web client
software (a “browser” called WorldWideWeb), and a software to run the first Web server.

Later advancements in client and sever-side software brings us to the Web we know
today: a highly dynamic, highly flexible platform for hosting, publishing, adapting,
submitting, interchanging, curating, editing and communicating various types of content,
where many sites boast large corpora of rich user-generated data – typically stored in
relational databases – but where the content of di�erent sites is primarily interconnected
by generic hyperlinks.

2.2 The Semantic Web
The Web has inarguably been tremendously successful, and begs the question: what’s next?

To begin to meaningfully answer this question, one has to look at the shortcomings of
the current Web; along these lines, consider querying the question: Which ten countries
have the longest life expectancy and have made advancements in the health and space
sectors? One could hope that: (i) someone has previously performed this task and

2. Background on Semantic Web Technologies 11

published their results, or (ii) a domain-specific site has the data and the functionality
required to answer this query directly, or (iii) a domain-specific site has the data available
for download in a structured format processable o�-line. However, clearly these solutions
do not extend to the general case.

Assuming that the above solution does not apply and if a user knows that the data
are on the Web, the integration of such data to generate the final answer would require
quite a large manual e�ort. It includes: cross referencing the list of countries’ life
expectancy numbers, and the statistics about the health and space programs: likely
from di�erent data sources. The resulting data may be unstructured or in heterogeneous
formats, and the user would like the data in some consistent structured format; such
that the user can use a software suitable for such format. Once the data are in a
computer-processable format, the user might run into problems with countries names,
statistics, as abbreviations may be used.

One can of course imagine variations on the above theme: original search which
requires various levels of cross-referencing of various Web documents. Such tasks require:
(i) structured data to be made available by the respective sources such that they can be
subsequently processed by machine; (ii) some means of resolving the identity of resources
involved such that consistent cross-referencing can be performed.

Acknowledging such requirements, Berners-Lee [BL98] proposed the Semantic Web
as a variation, or perhaps more realistically, an augmentation of the current Web such
that it is more amenable to machine processing, and such that machines can accomplish
many of the tasks users must currently perform manually.

The Semantic Web is not a separate Web but an extension of the current one,
in which information is given well-defined meaning, better enabling computers
and people to work in cooperation.

– Berners-Lee [2001]

2.3 Resource Description Framework
The first major step towards realising the Semantic Web came in early 1999 when the
initial Resource Description Framework (RDF) became a W3C Recommendation [Rdf].
RDF provides the basis of an agreed-upon data model for the Semantic Web, and data
can be shared/exchanged between RDF-aware agents without loss of meaning [CWL14].

Notably, RDF is (implicitly) based on two major premises.
1. the Open World Assumption (OWA), which assumes that anything not known to be

true is unknown, and not necessarily false as would be assumed in closed systems1;

2. no Unique Name Assumption (UNA), which means that RDF does not assume
that a name (in-particular, an URI) signifies something unique: more precisely, the
mapping from names to things they identify is not assumed to be injective.

Herein, we give a brief walk-through of the design principles and the features of
RDF. We do not cover all features, but rather focus on core concepts that are important
for further reading of this document.

1Arguably, the SPARQL standard for querying RDF contains features which appear to have a Closed
World Assumption (e.g., negation-as-failure is expressible using a combination of OPT and !BOUND SPARQL
clauses) and a Unique Name Assumption (e.g., equals comparisons in FILTER expressions). The e�ects of
the Open World Assumption and the lack of a Unique Name Assumption are most overt in Web Ontology
Language (OWL) [MH04].

2. Background on Semantic Web Technologies 12

2.3.1 RDF Terms
The elemental constituents of the RDF data model [CWL14] are RDF terms that can be
used in reference to resources: anything with identity. The set of RDF terms is broken
down into three disjoint sub-sets: IRIs2 (or URIs), literals and blank nodes

1. IRIs serve as global (Web-scope) identifiers that can be used to identify any resource.
For example, http://dbpedia.org/resource/Pink_Floyd is used to identify the
music band Pink Floyd in DBpedia3 [Biz+09] (an online RDF database extracted
from Wikipedia content).

2. Literals are a set of lexical values denoted with inverted commas in Turtle, N3 or
other RDF formats4. Literals can be of two di�erent types: plain literals, which
form a set of plain strings, such as “Hello World”, potentially with an associated
language tag, such as “Hello World”@en; typed literal, which comprise of a lexical
string and a datatype such as “2”^^xsd:int. Datatypes are identified by IRIs (such
as xsd:int), where RDF borrows many of the datatypes defined for XML Schema
that cover numerics, booleans, dates, times, and so forth.

3. Blank Nodes are defined as existential variables used to denote the existence of
some resources without having to explicitly reference it using an IRI or literal. In
practice, blank nodes serve as locally-scoped identifiers for resources that are not
otherwise named. Blank nodes cannot be referenced outside of their originating
scope (e.g., an RDF document). The labels for blank nodes are thus only significant
within a local scope. Intuitively, much like variables in queries, the blank nodes of an
RDF document can be relabelled (bijectively) without a�ecting the interpretation
of the document [Hog+14]. In Turtle (verbose style), blank nodes can be referenced
explicitly with an underscore prefix _:bnode1, or can be referenced implicitly
(without using a label) in a variety of other manners.

We can now provide a formal notation for referring to di�erent sets of RDF terms:

Definition 2.1: RDF terms

The set of RDF terms is the union of three pair-wise disjoint sets: the set of all
IRIs (I), the set of all literals (L) and the set of all blank nodes (B). The set of
all literals can be further decomposed into the union of two disjoint sets: the set of
plain literals (L

p

) and the set of typed literals (L
t

).

In the absence of Unique Name Assumption, as described in the RDF standard, two
RDF terms can (and often do) refer to the same referent. Since RDF is intended to
be used as a common data model for the Web, it is likely that two di�erent publishers
may use di�erent terms to refer to the same thing or entity5.

2Following the RDF 1.1 vocabulary, in the rest of the documents we use the term IRI instead of URI
3DBpedia: http://wiki.dbpedia.org/
4By RDF format, we mean the way RDF data are serialised in order to be stored or transferred between

machines. In general, there are three main ways of formatting RDF: RDF/XML, as evident from its
name, it uses XML formatting; Turtle (Terse RDF Triple Language) is an RDF-specific subset of Tim
Berners-Lee’s Notation3 language; and N-triples, which is a simplified version of Turtle, where each triple
appears on one line, separated by a dot.

5Herein, by thing or entity, we mean the concept defined within a domain ontology. For instance, a

http://wiki.dbpedia.org/

2. Background on Semantic Web Technologies 13

Pink_Floyd

MusicGroup

rdf:type

“Pink
Floyd”@en

rdfs:label
David_Gilmore

Cambridge

“0.119”^^xsd:double

“52.2”^^xsd:double

United_Kigdom

prop:latd

prop:longd
dbo:country

dbo:birthPlace
dbo:member

dbo:frontBandMember

Figure 2.1: An Example of an RDF Graph

2.3.2 RDF Triples and Graphs

RDF triples, that are based on RDF terms, are used to make statements about the
things. The notion of RDF triple constitutes the foundation of the Semantic Web’s
core data model. As its name suggests, an RDF triple is a 3-tuple of RDF terms. The
first element of the tuple is called the subject, the second element the predicate, and the
third element the object. An RDF triple can be seen as representing an atomic “fact”
or a “claim”. Importantly, RDF triples have fixed arity (length of three) with fixed
slots Èsubject, predicate, objectÍ, constituting a generic common framework that enables
interoperability. As aforementioned, it can be used to designate classes to resources.
Figure 2.1 shows an exemplary RDF graph (resources are shown within a rectangle,
while literal-valued attributes in a diamond), where

(Pink_Floyd, rdf:type, MusicBand)
is used to define a resource, and to define a literal-valued attribute for a resource:
(Cambridge, prop:longd, "52.2"^^xsd:double)
Formally, an RDF triple can be defined as follows [CWL14]:

Definition 2.2: RDF Triple

An RDF triple t is defined as a triple t = Ès, p, oÍ, where s œ I fi B is called the
subject, p œ I is called the predicate and o œ I fi B fi L is called the object.

Definition 2.3: RDF Graph

An RDF graph/RDF dataset G
D

µ (I fi B) ◊ I ◊ (I fi B fi L) is a finite set of
RDF triples {(s

1

, p
1

, o
1

), . . . , (s
n

, p
n

, o
n

)}.

Since RDF graphs are defined in terms of sets, it follows that the ordering of RDF
triples in an RDF graph is entirely arbitrary and that RDF graphs do not allow for
duplicate triples. It is a common practice to conceptualise an RDF graph as a directed

Jaguar, which is a thing, can be a car or an animal depending to how it is defined within the domain
ontology.

2. Background on Semantic Web Technologies 14

labelled graph, where subjects and objects are drawn as labelled vertices and predicates
are drawn as directed, labelled edges. Although some authors have suggested alternative
representations such as bipartite graphs [HG04], directed labelled graphs remain an
intuitive and popular conceptualisation of RDF data. As such, RDF is often referred to
as being graph-structured data where each Ès, p, oÍ triple can be seen as an edge s

pæ o.
The graph-structured nature of the RDF data model lends itself to a flexible integration

of datasets. Edges in the graph use globally-scoped IRI identifiers. When vertices are
identified with IRIs, they can be referenced externally and connected to other vertices.
However, due to the presence of blank nodes and the fact that the predicates can be
used as subjects and objects, the RDF data model is not completely isomorphic to
the notion of directed-labelled graphs. Such constraints require customised solutions
to process RDF data (as described in Section 7).

2.3.3 Linked Data
Publishing RDF data on the Web facilitate enhanced methods to obtain knowledge and
enable the construction of new types of front-end applications. However, early e�orts
produced a large amount of “data soils” often in the shape of potentially huge RDF
documents called RDF data dumps. Although such dumps have their own inherent value
and are published in an interoperable data-model through RDF, they rarely interlink
with remote data and they are published using di�erent conventions (e.g., in a Web
folder, using di�erent archiving methods, etc.). Thus, this makes them di�cult to be
discovered automatically. E�ectively, such dumps are isolated islands of data that are
available for download, or o�er a SPARQL access point.

Linked Data [BL06] is a set of best practices for publishing and interconnecting
structured data on the Web, i.e., RDFised data dumps. Linked Data provides explicit
links between data from diverse sources, where IRIs are the means for connecting and
referring between various entities from domains such as social networks, organisational
structures, government data, statistical data and many others. The ultimate benefit of
following the Linked Data paradigm is the increased machine-readability of published
and interconnected data. In July 2006, Berners-Lee published the initial W3C Design
Issues document [BL06] outlining Linked Data principles, rationale and some examples.
Herein, we summarise them for completeness.

• Assign IRIs to entities. Published entities should have their IRIs which map
over the HTTP protocol to their RDF representation. For example, each sensor
should have a unique IRI, which links to its information in RDF.

• Set RDF links to other entities on the Web. Published entities should be
linked with other entities on the Web. For example, when providing the list of
sensor functionalities, they should link to the IRIs which describe the details of
them in RDF.

• Provide metadata about published data. Published data should be described
by the means of metadata to increase their usefulness for the data consumers. Data
should contain information on their creator, creation date and creation methods.
Publishers should also provide alternative means for accessing their data.

The central novelty of Linked Data when compared with traditional Semantic Web
publishing was the emphasis on using de-referenceable IRIs to name things in RDF. Thus,

2. Background on Semantic Web Technologies 15

the data published under the Linked Data Principles can be searched through the resource
identified by a particular IRI, i.e., through HTTP using content-negotiation methods.

Linked Data has attracted considerable interest from both academic and industrial
personals in the last few years. Early adopters included mainly academic researchers and
developers, while some of the most prominent examples of the organisations publishing
RDF as Link Data include: BBC music data6, British government data7 or Library of
Congress data8. At the same time, an increasing number of public vocabularies (ontologies)
and their inter-connectedness are created, which forms a Linked Data Cloud9.

2.4 The SPARQL Query Language
The SPARQL10 Query Language is the standardised language for querying RDF data, as
well as a protocol by which SPARQL queries can be invoked and their results returned over
the Web [PS08]. The original SPARQL specification became a W3C Recommendation
in 2008 [CFT08], while in 2013, SPARQL 1.1 – an extension of the original SPARQL
standard – also received the W3C Recommendation and later became a standard [SH13].
Herein, we focus primarily on the features of the original SPARQL standard that are
helpful for the understanding of discussion in this document.

SPARQL is built directly on top of the RDF data model, and is orthogonal to
the RDF schema11 and OWL languages 12. That is, it is not intended to o�er any
reasoning capabilities, instead it provides the graph pattern matching support for RDF
graphs. It is similar in respect to the Structured Query Language (SQL) used for
querying relational databases.

In general, a SPARQL query consists of five main parts as described below.

1. Prefix Declarations allow for defining IRI prefixes that can be used for shortcuts
later in the query.

2. Dataset Clause allows for specifying a closed partition of the indexed dataset over
which the query should be executed.

3. Result Clause allows for specifying what type of SPARQL query is being executed,
and (if applicable) what results should be returned.

4. Query Clause allows for specifying the query patterns (triple patterns as described
in Definition 2.4) that are matched against the data and used to generate the
variable bindings of the defined variables in the query.

6British Broadcasting Company: http://www.bbc.co.uk, last accessed: June, 2016.
7British government: http://data.gov.uk, last accessed: June., 2015.
8Library of Congress: http://id.loc.gov, last accessed: June., 2016.
9LoD cloud: http://lod-cloud.net, last accessed: June, 2016.

10W3C SPARQL: https://www.w3.org/TR/sparql11-query/
11RDF schema (RDFS) extends the RDF vocabularies, i.e., a set of built-in vocabulary terms under a core

RDF namespace (a common IRI prefix schema) that standardises popular RDF patterns (e.g., rdf:type,
rdf:Property). Thus, attaching semantics to the user-defined classes and properties. The extension
consists of four key terms [MPG09], which allows specification of well-defined relationships and properties
between classes and properties. It includes rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, and
rdfs:range.

12OWL is a Web Ontology Language [MH04] that extends RDFS with more expressive semantics and
enables rich entailment regimes. The details of OWL are not important for our purpose and are thus
considered out-of-scope.

http://www.bbc.co.uk
http://data.gov.uk
http://id.loc.gov
http://lod-cloud.net
https://www.w3.org/TR/sparql11-query/

2. Background on Semantic Web Technologies 16

5. Solution Modifiers allow for ordering, slicing and paginating the results.

Example 1 Query 2.1 illustrates a simple SPARQL query containing each of the above
mentioned five parts (comment lines are prefixed with ‘#’). This SPARQL query first
defines prefixes that can be later re-used as shortcuts to the resources. Next the #DATASET
CLAUSE selects partitions of the dataset over which the query should be run: in this case,
an RDF documents from DBpedia containing the information about bands. Thereafter,
the #RESULT CLAUSE states what kind of results should be returned for the query. A
DISTINCT keyword is used to get the unique set of pairs of matched RDF terms matching
the ?bandname and ?genre variables respectively. Next the #QUERY CLAUSE states the
patterns that the query should match against, i.e., the set of triple patterns defined. Finally,
the #SOLUTION MODIFIER section allows for putting the limit on the number of results
returned, to order results, or to paginate results.

1 # PREFIX DECLARATION
2 PREFIX db: <http :// dbpedia .org/ resource />
3 PREFIX dbo: <http :// dbpedia .org/ ontology />
4 # DATASET CLAUSE
5 FROM <http :// dbpedia .org/data/ example .n3 >
6 # RESULT CLAUSE
7 SELECT DISTINCT ? bandname ?genre
8 # QUERY CLAUSE
9 WHERE {

10 ?band dbo:name ? bandname .
11 ?band dbo:genre ?genre.
12 }
13 # SOLUTION MODIFIER
14 LIMIT 2

Query 2.1: Simple SPARQL query

The execution of a SPARQL SELECT query is not itself a graph. Similar to SQL, it is
a set of rows of mappings of selected variables. Thus, in order to extract/create a graph
from the resulted SPARQL variable binding, the CONSTRUCT clause can be used at the
result clause. Furthermore, the ASK construct at result clause returns a boolean value
indicating whether or not there was a match in the data for the query clause.

2.4.1 Semantics of the SPARQL Query Evaluation

Herein, we describe the semantics of evaluating a SPARQL query on the same line as
described in [PAG09a]. For the sake of brevity, we employ the set-based semantics of
SPARQL. The notion of a triple pattern is defined as follows.

Definition 2.4: Triple Pattern

Let V be a set of query variables disjoint from B fi L fi I, then a triple pattern
tp œ (B fi I) ◊ (V fi I fi V) ◊ (L fi I fi B fi V) is a triple where query variables are
allowed at subject, predicate and object levels.

2. Background on Semantic Web Technologies 17

Definition 2.5: SPARQL Graph Pattern

The SPARQL graph patterns (or a basic graph pattern) is defined recursively as
follows.

1. A triple pattern tp is a graph pattern.

2. If P
1

and P
2

are graph patterns, then the expression (P
1

AND P
2

), (P
1

OPT
P

2

), (P
1

UNION P
2

) are graph patterns.

3. If P is a graph pattern and R is a SPARQL build-in condition, then the
expression (P FILTER R) is a graph pattern.

A SPARQL built-in condition is a boolean combination of terms constructed by using
equality along elements in I fi L fi V, and the unary predicate bound over variables, i.e.,
it returns true if the variable is bound to a value. Formally it can be defined as follows.

1. if x, y œ V and c œ (I fi L), then bound(x), x = c and x = y are built-in conditions;

2. if R
1

and R
2

are built-in conditions, then ¬(R
1

), R
1

‚ R
2

, and R
1

· R
2

are build-in
conditions.

Example 2 Consider the following SPARQL graph pattern with the filter expression,
which retrieves the bands with the name “Pink Floyd”

((?band, hasName, ?name) AND (?band, hasGenre, ?genre) FILTER (?name = “Pink
Floyd”))

The semantics of SPARQL is basically defined using the concepts of mappings, which
express variable-to-RDF bindings during query evaluation.

Definition 2.6: Triple Pattern Mapping

A mapping (µ) is a partial function µ : V æ B fi L fi I from a subset of variables
V to RDF terms. The domain of a mapping µ, dom(µ) is the subset of V for
which µ is satisfied. We say that two mappings µ

1

, µ
2

are compatible, written as
µ

1

≥ µ
2

, if they agree on all the shared variables. That is, if µ
1

(x) = µ
2

(x) for all
x œ dom(µ

1

) fl dom(µ
2

).

Let vars be a function to extract the mappings from the triple patterns and the filter
conditions, then vars(tp) captures all the variables in a triple pattern tp. Furthermore,
the function µ(tp) is used to obtains the triple pattern by replacing all the variables,
i.e., x œ dom(µ) fl vars(tp) in tp by µ(x).

Example 3 Consider the three mappings µ
1

:= {x ‘æ k}, µ
2

:= {x ‘æ k, y ‘æ k2}, and
µ

3

:= {x ‘æ k2, z ‘æ k3}, where x, y, z œ V and k, k2, k3 œ (B fi L fi I). Then we can
see that dom(µ

1

) = {x}, dom(µ
2

) = {x, y}, and dom(µ
3

) = {x, z}. Next we can also
determine that µ

1

≥ µ
2

, however µ
1

⌧ µ
3

and µ
2

⌧ µ
3

. Given triple pattern tp := (f, x,
y) we have vars(tp) = {x, y} and µ

2

(tp) = (f, k, k2).

The semantics of the filter built-in condition are also defined using the concept of
mapping. A mapping µ satisfies the filter conditions bound(x) if the variable x is contained

2. Background on Semantic Web Technologies 18

in dom(µ); the filter conditions x = c, x = y and c = d are equality checks that compare
the value of µ(x) with c, µ(x) with µ(y), and c with d respectively. These checks fail
whenever one of the variables is not bound in µ. Furthermore, the boolean conditions
on these variables are defined in the usual way of boolean comparison, and a mapping
µ that satisfies the filter condition R is written as µ |= R. The complete semantics of
the SPARQL graph patterns and their operators are described using the set of mappings
(�) [PAG09a].

Definition 2.7: SPARQL Set Algebra

Let �, �
1

, and �
2

be three sets of mappings, R be a filter condition, v µ V be
a finite set of variables. We define the algebraic operations join (on), union (fi),
minus (\), left outer join (), projection (fi), and selection (“) as follows:

• �
1

on �
2

:= {µ
1

fi µ
2

| µ
1

œ �
1

· µ
2

œ �
2

· µ
1

≥ µ
2

}

• �
1

fi �
2

:= {µ | µ œ �
1

‚ µ œ �
2

}

• �
1

\ �
2

:= {µ
1

œ �
1

| ’µ
2

œ �
2

· µ
1

⌧ µ
2

}

• �
1

�
2

:= (�
1

on �
2

) fi (�
1

\ �
2

)

• fi
v

(�) := {µ
1

| ÷µ
2

: µ
1

fi µ
2

œ � · dom(µ
1

) ™ v · dom(µ
2

) fl v = ?}

• “
R

(�) := {µ œ � | µ |= R}

In order to define the evaluation of SPARQL query patterns, as described in Defini-
tion 2.5, we follow the compositional semantics from [PAG09a] and define a function J·K

D

,
where D is an RDF document, which translates query patterns to the SPARQL set algebra.

Definition 2.8: Evaluation of Graph Patterns

Let D be an RDF document, tp a triple pattern, P , P
1

and P
2

SPARQL graph
patterns, R a filter condition, and v µ V a set of variables. The semantics of
SPARQL graph patterns are defined as follows:

• JtpK
D

:= {µ | dom(µ) = vars(tp) · µ(tp) œ D}

• JP
1

AND P
2

K
D

:= JP
1

K
D

on JP
2

K
D

• JP
1

OPT P
2

K
D

:= JP
1

K
D

JP
2

K
D

• JP
1

UNION P
2

K
D

:= JP
1

K
D

fi JP
2

K
D

• JP
1

FILTER RK
D

:= “
R

(JP K
D

)

• J SELECT
v

(P)K
D

:= fi
v

(JP K
D

)

Example 4 Consider the following SPARQL SELECT query patterns
G

Q

:= SELECT ?b, ?n, ?g (((?b, hasName, ?n) AND (?b, hasGenre, ?g))
FILTER (?g =“Rock”))

2. Background on Semantic Web Technologies 19

The above mentioned query retrieves all the bands (?b) and their names (?n) that are
from the genre (?g) “Rock”. Then giving the following RDF dataset D,

D := {(B1, hasName, “Pink Floyd”), (B1, hasGenre, “Rock”) }

It can be easily verified that,

JG
Q

K
D

= {{?b ‘æ B1}, {?n ‘æ “Pink F loyd”}, {?g ‘æ “Rock”}}

2.4.2 Complexity of SPARQL
In this section, we provide the preliminary discussion about the complexity measures
of evaluating SPARQL queries. This allows to establish a deep understanding of the
SPARQL query operators, their complexity, and their interactions. Furthermore, the
complexity analysis of the SPARQL queries may be of immediate practical interest when
processing SPARQL queries continuously over RDF graph streams. Such discussion
is provided in Chapter 6.

Following the same principle used in [PAG09a], we use the decision version of
Evaluation problem as a yardstick to explain the complexity measures of SPARQL query
operators. That is, given a mapping µ, an RDF dataset D, and a SPARQL expression or
query G

Q

as input, we are interested in the complexity of deciding whether µ is contained in
the result of evaluating G

Q

on D. In order to describe the complexity measures of di�erent
segments of SPARQL, we first introduce various shorts: A := AND, F := FILTER, O := OPT,
and U := UNION. For notational convenience, we denote the class of SPARQL expressions
that can be constructed using a set of operators, and the triple patterns, by concatenating
the respective operator shortcuts. For instance, the class AU comprises all SPARQL
expressions that can be constructed using only operators AND, UNION, and triple patterns.

In the subsequent complexity study, we follow the approach from [PAG09a] and take
the complexity of the Evaluation problem as a reference:

Given a mapping µ, an RDF document D, and a SPARQL expression or a
SPARQL query G

Q

as input: is µ œ JG
Q

K
D

?

The following theorem summarises all previous results on the combined complexity of
SPARQL fragments established in [PAG09a], and rephrased according to the notations
defined above. We refer the interested reader to the original work for the proofs of
these results, and the introductory discussion about the complexity classes. That is,
PTime ™ NP ™ PSpace.

Theorem 2.1

(see [PAG09a]) The Evaluation problem is

1. in PTime for class AF (membership in PTime for A and F follows directly),

2. NP-complete for class AFU , and

3. PSpace-complete for classes AOU and SP .

2. Background on Semantic Web Technologies 20

Theorem 2.1 shows the basic complexity classes the SPARQL operators belong to.
However, in order to get the complexity of evaluating SPARQL graph pattern (P),
according to the dataset size, we present the following theorem.

Theorem 2.2

(see [PAG09a]) The Evaluation of AFU can be solved in O(|P | · |D|)

Theorem 2.2 shows that the size of the RDF dataset D has a linear impact on
the performance of the SPARQL queries. Thus, a system can gain fair amount of
performance by reducing the search space or locating the smallest possible portion of
the dataset that requires processing to match query patterns. This insight is utilised
by our system to prune the irrelevant triples from each RDF graph-based event; such
discussion is detailed in Chapter 7.

2.5 Common Symbols
We give the most common symbols and their short descriptions in Table 2.1. Additional
symbols necessary to explain the proposed methods and algorithms are provided in
the corresponding chapters.

Table 2.1: Common Symbols and Definitions

Symbols Description

G
D

RDF graph
I Set of IRIs
L Set of Literals
B Set of Blank nodes
Ès, p, oÍ RDF triple t

G
Q

SPARQL query
tp Triple pattern
P SPARQL graph pattern
R SPARQL filter expression
µ Triple pattern mapping
� Set of mappings
≥ Compatibility between mappings
on Join between mappings
\ Set minus
fi Projection
“ Selection

Left-outer join between mappings
J·K Evaluation function

2.6 Summary
In this chapter, we discussed the evolution of WWW from a source of sharing structured
documents to sharing machine-readable information along-with the semantics. In order for
machines to process the content of documents automatically–for whatever purpose–they
primarily require two things: machine-readable structure and semantics. The Semantic

2. Background on Semantic Web Technologies 21

Web provides these attributes with the RDF data model and ontologies. SPARQL is
a standard query language for processing RDF datasets, where its core components
fall under the PSPace complexity class. In Chapter 6 and 7 we use this introductory
discussion to continuously process SPARQL graph patterns over RDF graph streams,
and in Chapter 8 we extend SPARQL query language to support operators for SCEP
over RDF graph streams.

Real life is, to most men, a long second-best, a perpetual

compromise between the ideal and the possible; but the

world of pure reason knows no compromise, no practical

limitations, no barrier to the creative activity embodying

in splendid edifices the passionate aspiration after the

perfect from which all great work springs.

— Bertrand Russell

3
Data Stream Processing

This chapter introduces the concept of data stream processing by describing
the details of Data Stream Management Systems (DSMSs). We provide
the discussion about the core concepts of DSMSs, an analysis of existing
DSMSs, their query languages, operators and execution models. Based on this
discussion, in Chapter 4, we present the semantically-enabled stream processing
and show how techniques from DSMSs are tailed for such purpose.

Contents

3.1 Data Stream Management System 23
3.2 Data Models for the DSMSs . 25

3.2.1 Data Streams . 25
3.2.2 Temporal Models of Data Streams 25
3.2.3 Windows . 26

3.3 Query Languages for DSMSs 27
3.3.1 Query Semantics . 27
3.3.2 Executional Semantics of DSMS 29

3.4 Syntax and Algebraic Properties of DSMS Query Languages 30
3.4.1 Continuous Query Language (CQL) 30
3.4.2 StreaQuel Language . 32
3.4.3 Gigascope Query Language . 32
3.4.4 TruSQL . 33

3.5 Existing Data Stream Management Systems 33
3.6 Optimisation Strategies for the DSMSs 36
3.7 Summary and Discussion . 37

This Chapter is structured as follows: Section 3.1 presents an introductory
overview of DSMSs. Section 3.2 discusses the general data models of DSMS.
Section 3.3 describes the query languages and executional semantics for DSMSs.
Section 3.5 compares various DSMSs according to their provided functionalities.
Section 3.6 briefly describes various optimisation techniques exploited by
DSMSs. Section 3.7 concludes the chapter with a summary and a discussion.

22

3. Data Stream Processing 23

!"#$%!&'()*

+,&)*%-)(.&//#$0

1#/2

!"#$% &#'"()'

!"#$%!&'()*

+,&)*%-)(.&//#$0

*+)+,-)$#+.,/'0 *+)+,-)$#+.,/'0

')#$#3,456)26"5"'

,,,,,,,,,,!"#$% &#'"()'

-7$+)78,-)5$#,
/.+26,.#.5$%0

9$782:#,-)5$#3,
&#(+)256'

(a) (b)

Figure 3.1: (a) Traditional DBMS vs (b) DSMS

3.1 Data Stream Management System
Database Management Systems (DBMSs) have become ubiquitous as a fundamental tool
for managing information. DBMSs are used to store, manipulate and retrieve persistent
data from a database; thus the dynamicity of data is not considered as an integral part of
the system’s design phase: it is assumed that data are static, unless explicitly modified
or deleted by a user or application, and the queries when issued reflect the current state
of the data. Data Stream Management Systems (DSMSs), however, are based on the
orthogonal assumption that new data are generated continuously and queries are processed
continuously. It makes them feasible for real-time monitoring of emerging applications
such as sensor networks, social networks, financial trading, etc. As data are generated
continuously as streams, it is infeasible to store the streams in their entirety. Therefore,
generally a window of recently arrived data is maintained and the registered queries update
their answers over time. The window size can be defined as a fixed number of data items,
also called snapshots [KS09a], or a fixed time interval. In the latter case, a slide parameter
is also introduced to determine the granularity at which the content of the window
changes [KS09a]. Figure 3.1 shows the query processing mechanism for a traditional
DBMS and DSMS. As the goals of the DSMSs are orthogonal to that of DBMSs, a set of
rules has been introduced in the preliminary work [ScZ05]. These eight basic rules lay out
the requirements and constraints for the design of a DSMS, and are summarised as follows.

Rule 1 Keep the data moving. The processing model should be active and data driven.
That is, the data items should be processed in an online manner without incurring
the expensive cost of storage before initiating the analysis.

Rule 2 Enabling streaming semantics for DSMS query languages. Historically, streaming
applications build a new layer on top of existing DBMSs while utilising their query
languages such as SQL. However, in order to address the unique requirements
of stream processing, DSMS should provide new query languages with extended

3. Data Stream Processing 24

streaming operators, such that their executional semantics can easily be understood
independently from the runtime conditions.

Rule 3 Handle stream imperfections. Contrary to the DBMSs, the data are never stored
for the DSMSs and thus the design of the system should consider contingency plans
as a result of data arrival delays, absence/lost of data, and out-of-the-order data
items. These issues arise frequently in real-world systems such as sensor networks.

Rule 4 Generate predictable results. The property of determinism for the processed results
should be ensured. That is, the system must compute the equivalent results for two
equivalent streams.

Rule 5 Integration of stateful operators. The past can revile much important information
about the present and future. Thus, the integration of stateful operators, such as
sequence, aggregates, provides interesting features; and the stored states should be
carefully managed by the system. Furthermore, the management of stored states
also enables an e�ective fault-tolerance for the system in case of abrupt failures.

Rule 6 Guarantee data safety and availability. Real-time processing systems are often
considered as critical: failure or loss of information can be too costly. Therefore,
high availability and resistance to failures are two important properties to be
considered for the design of DSMS.

Rule 7 Automatic partition and scale. Due to the unbounded nature of streams, the system
should be able to transparently distribute its workload among multiple machines
and processors, hence improving its scalability.

Rule 8 Process and respond in real-time. The foundation of an e�cient DSMS is that it
can process data attributes with high volume and velocity. Thus, conceiving low
latency to enable a real-time response is the core of the DSMS. These attributes
can be achieved by employing optimised query-plans for streaming data and by
minimising processing overheads.

Rules 1, 2, 4 and 8 are the most commonly observed in most of the exiting DSMSs [Ara+04,
Cha+03, YG02, Cra+02, ABW06, NCT08, Aba+03]. Rule 5 gives rise to the definition
of Complex Event Processing (CEP) [CM12], where stateful operators are utilised to
enable temporal pattern matching. The combination of rules 3 and 6 led to the techniques
of load shedding [BDM07], where some data items are discarded to fulfil quality of
service (QoS) and real-time constraints.

For brevity, a discussion of the following topics has been omitted: these are not
directly related to the topic of this thesis, i.e., semantically-enabled stream processing,
and are not used or can be directly extended for such work.

1. Application specific DSMS issues and solutions, such as stream processing for sensor
networks. See [SG07] for a recent survey.

2. Distributed stream processing. See for example,

(a) Open-source system such as Apache Storm1, Apache Flink2, Apache Kafka3,
etc.

1Apache Storm: http://storm.apache.org/, last accessed: June, 2016.
2Apache Flink: https://flink.apache.org/, last accessed: June, 2016.
3Apache Kafka: http://kafka.apache.org/, last accessed: June, 2016.

http://storm.apache.org/
https://flink.apache.org/
http://kafka.apache.org/

3. Data Stream Processing 25

(b) Recent work on Distributed DSMS [Neu+10, Hei+14].

3. Approximate and out-of-order stream processing techniques, see for example the
following representative papers [DGR03, Let+10, Li+08, Li+07].

3.2 Data Models for the DSMSs

3.2.1 Data Streams

A data stream is an append-only sequence of timestamped data items that arrive in
some order [GM06]. Since items may arrive in bursts, a stream may instead be modelled
as a sequence of sets (or bags) of elements [Tuc+03], with each set storing elements
that have arrived during the same unit of time4. In relation-based stream models (e.g.,
STREAM [ABW06]), individual items take the form of relational tuples such that all
tuples arriving on the same stream have the same schema. The data stream items may
contain explicit source-assigned timestamps or implicit timestamps assigned by the DSMS
upon arrival. In either case, the timestamp attribute may or may not be part of the
stream schema, and therefore may or may not be visible to the users.

Definition 3.1: Relational Data Stream

A relational data stream (S
d

) is a countable infinite set of data items (d œ S
d

),
where each data item is a pair (v, ·), v œ Ÿ is a relational tuple, and · œ N

+ is a
timestamp and a member of a totally ordered set of timestamps.

3.2.2 Temporal Models of Data Streams

The arrival order of data items, if application time is used, mainly determines the type of
the model: data items within a stream may arrive out-of-order and the defined model
has to take into account revision tuples, which are understood to replace previously
reported (presumably erroneous) data. Some possible models depending on the arrival
order of data items are described as follows [Gil+01].

1. Unordered cash register. This is most general model, where individual data items
from multiple data streams arrive in no particular order and usually application
timestamps are utilised to process streams.

2. Ordered cash register. In this model, individual data items within streams are not
pre-processed to ensure the order. Instead, they arrive in some known order, e.g.,
timestamp order, where system time is usually used to assign timestamps to each
data item.

3. Unordered aggregate. This is the aggregate case of unordered cash register, where
individual data items from the same stream are pre-processed in no particular order.

4. Ordered aggregate. This is the aggregate case for the ordered cash register, where
individual items from the same domain are pre-processed in some known order.

4no order is specified among data items that have arrived at the same time

3. Data Stream Processing 26

41 2 3 5 41 2 3 5

10s 20s 30s 40s 50s 10s 20s 30s 40s 50s

6

60s 60s

6

41 2 3 5 41 2 3 5

10s 20s 30s 40s 50s 10s 20s 30s 40s 50s

6

60s 60s

6

W30 (30)10 W30 (40)10

W30 (30) W30 (40)

(a) Sliding Window after 30s (b) Sliding Window after 40s

(c) Tumbling Window after 40s (d) Tumbling Window after 40s

Figure 3.2: (a,b) Sliding Window , (c,d) Tumbling Window, where W w

x

, x is the slide, and w is
the size of the window.

3.2.3 Windows
As discussed earlier, windows are a central concept in DSMS because an application
cannot store an infinite stream in its entirety: windows are operators that only select a
part of the stream according to fixed parameters, such as the size of the window. Hence,
they provide an approximation of the stream, but are at the same time implementing
the desired query semantics [Bab+02]. Herein, we first describe the most commonly used
time-based sliding window [KS09a] and tumbling window for the DSMSs.

Definition 3.2: Sliding Window

At a time · , a sliding window W w

x

(·) of size w and slide x, where w, x œ N

+,
begins at ·

b

and ends at ·
e

. Such that:

W w

x

(·) =
)
v|(v, · Õ) œ S

d

· ·
b

Æ · Õ Æ ·
e

*
, where

·
b

=
7

· ≠ w

x

8
· x, and ·

e

= ·
b

+ w

The sliding window for w = x degenerates to a tumbling window, where all the data
items within a window expire at the same time.

Definition 3.3: Tumbling Window

At a time · , a tumbling window W w(·) of size w œ N

+ begins at ·
b

and ends at
·

e

. Such that:

W w(·) =
)
v|(v, · Õ) œ S

d

· ·
b

Æ · Õ Æ ·
e

*
, where

·
b

=
7

· ≠ w

w

8
· w, and ·

e

= ·
b

+ w

Time-based windows can easily be extended for a tuple-based window, where the size

3. Data Stream Processing 27

of the window determines how many explicit tuples are allowed within the boundaries of
the window. Note that, other flavours of windows including value-based window, jumping
windows and non-linear windows are not discussed here, as they are system-specific
windows and are not generalised in the literature. Figure 3.2 shows a sliding and tumbling
window, where multiple sliding windows can share the same data items, while all the
data items expire at the same time in tumbling windows.

3.3 Query Languages for DSMSs

Queries over continuous data streams have much in common with queries in a traditional
database management system. However, the important distinctions peculiar to the data
stream model is between one-time queries and continuous queries [GO03, Bab+02].
One-time queries (a class that includes traditional DBMS queries) are evaluated once
over a point-in-time snapshot of the data set, with the answer returned to the user. A
continuous query for DSMS is issued once and remains active throughout the lifespan
of the streams. The answer to a continuous query is constructed progressively as new
input data items arrive: as soon as a data item arrives in the input stream, the DSMS
is expected to decide, in real-time or quasi real-time, which additional results belong to
the query answer and promptly append them to the output stream.

This is an incremental computation model, where no output can be taken back;
therefore, the DSMS might have to delay returning an output tuple until it is sure that
the tuple belongs to the final output: a certainty that for queries is only reached after
the DSMS has seen the whole input. The queries showing this behaviour, and operators
causing it, are called blocking operators, and have been characterised in [Bab+02] as
follows: a blocking query operator does not append anything in the output stream until it
has seen the entire input. Clearly, blocking query operators are incompatible with the
computation model of DSMS and should be disallowed, whereas all non-blocking queries
should instead be allowed. However, many queries and operators, including essential
ones such as union, fall in-between and are only partially blocking.

For the sake of brevity, we do not include the discussion of approximate queries [Cor11,
GK02], and ad-hoc queries. Various approximation algorithms are used to process
the approximate answers to continuous queries, while considering that high-quality
approximate answers can be acceptable in lieu of exact answers. Ad-hoc queries [Bab+02,
Das+07, Gha+08] can be either one-time queries or continuous queries; they are not
known in advance; and may require referencing data items that are out-of-scope of the
window, and potentially have already been discarded.

3.3.1 Query Semantics

In order to define the semantics and the operators of the DSMS query languages,
we first need to introduce two important concepts: monotonicity and non-blocking
execution [Bab+02, ABW06, Tuc+03]. Let Q(·) be the result of a continuous query Q at
time · œ N

+. The correctness of results produced by Q depends on the fact that it will
take into account all the data that have arrived so far or is within the window. Since that
data change over time within a window, a natural way of switching back to data within a
stream is to report the di�erence between the current result and the result computed one
time-tick ago. This leads to the definition of monotonic queries.

3. Data Stream Processing 28

Definition 3.4: Monotonic Query

A continuous query or continuous query operator Q is monotonic if Q(·) ™ Q(· Õ)
for all · Æ · Õ, where ·, · Õ œ N

+.

A simple selection over a single stream or a join of several streams are monotonic
considering that streams are append-only. Thus, when a new data item arrives, it either
satisfies the (selection or join) predicate or it does not, and the satisfaction condition
does not change over time. Thus, at any point in time, all the previously returned results
remain in Q(·). On the other hand, continuous queries with negation or set di�erence
are non-monotonic, even on append-only streams.

Definition 3.5: Non-blocking Operator

A continuous query or continuous query operator Q is non-blocking if it does not
need to wait until it has seen the entire input before producing results.

The DSMS operators vary around their blocking or non-blocking characteristics, where
the blocking operators are not feasible for DSMS queries: blocking operators require to
see the whole input streams before generating the output, which is not a viable option
for unbounded streams. For instance, traditional SQL queries with aggregation are
blocking since they scan the whole relation and then return the answer. However, on-line
aggregation, where partial answers are incrementally returned as they are computed
over the data seen so far, is considered non-blocking. Note that Definitions 3.4 and 3.5
are related: the class of monotonic queries over data streams can be expressed using
only non-blocking operators [LWZ04].

If Q is monotonic, and let A(Q, ·) be the answer set of Q at time · , ·
c

be the current
time (·, ·

c

œ N

+), and 0 be the starting time. Then the semantics of an answer set A
for a monotonic query Q can be defined as follows [Bab+02]:

A(Q, ·) =
·c€

·=1

(A(Q, ·) ≠ A(Q, (· ≠ 1)) fi A(Q, 0) (3.1)

That is, it su�ces to re-evaluate the query over newly arrived data items and append
qualifying tuples to the result [GO03]. Consequently, the answer of a monotonic persistent
query is a continuous, append-only stream of results. Optionally, the output may be
updated periodically by appending a batch of new results. Thus, for a non-monotonic
query Q the answers have to be recomputed from scratch with the following semantics.

A(Q, ·) =
·€

·=0

A(Q, ·) (3.2)

There are three ways of representing the answer of a non-monotonic persistent query.
First, the query could be re-executed from scratch and return a complete answer at
every time instant (or periodically). Second, the result may be a materialised view
that incurs insertions, deletions, and updates over time. Third, the answer may be a
continuous stream that contains new results as well as negative tuples [Ham+03] that
correspond to deletions from the result set.

3. Data Stream Processing 29

a
b
d
a
c
.
.

e
f
g
d
b
.
.

S1 S2

⨝

d
b

f
Generate

result

Probe

f

Insert

!"
S1

a
a

a

a

b
Pass or drope 9

S1
b

COUNT

8
9

10

Update

(a) (b) (c)

Figure 3.3: Simple Continuous Query Operators: (a) Selection, (b) Join (c) Count (Adapted
from [GO03])

3.3.2 Executional Semantics of DSMS

The simplest continuous query operators for DSMS are monotonic; examples include
duplicate-preserving projection, selection, and union. These operators process new data
items on-the-fly without storing any temporary results, either by discarding unwanted
attributes (projection) or dropping data items that do not satisfy the selection condition
(technically, the union operator temporarily bu�ers the inputs to ensure that its output
stream is ordered). Figure 3.3(a) shows a simple example of selection (of all the ”a” tuples)
over the character stream S1. Figure 3.3(b) illustrates a non-blocking pipelined join of two
character streams S1 and S2, where a hash-based implementation maintains hash-tables
on both input streams. When a new data item arrives from a stream, it is inserted into
its corresponding hash-table and probed against the other stream’s hash-table, hence,
generating results involving the new data item. Joins of more than two streams and
joins of streams with a static relation are straightforward extensions. In the former, for
each arrival on one input, the states of all the other inputs are probed in some order. In
the latter, new arrivals on the stream trigger the probing of the relation. Figure 3.3(c)
shows a COUNT aggregate operator. When a new data item arrives, it increments the
stored count and appends the new result to the output stream. If the aggregate is based
on grouping the results (implemented with a GROUP BY clause in the query) it needs to
maintain partial counts for each group (e.g., in a hash-table) and emits a new count for a
group whenever a new data item with this particular group value arrives. Since aggregates
on a whole stream may not be of interest to users, DSMSs support tumbling and/or
sliding window aggregates. For e�ciency, window aggregates are typically implemented
to return new results periodically rather than reacting to each new data item.

3. Data Stream Processing 30

3.4 Syntax and Algebraic Properties of DSMS Query Lan-
guages

There are three main querying paradigms, described in literature, for DSMSs: relation-
based languages [ABW06]; object-based languages [YG02]; and procedural languages [Aba+03].
Here we focus on the relation-based languages, as first they serve as a backbone for the
semantically-enabled stream processing; second these languages are frequently used in
the general settings for a number of well-known systems. Herein, we present the selected
query languages with a focus on Continuous Query Language (CQL), as semantics of
most of the existing streaming languages are based on CQL, and are extensions of it.

3.4.1 Continuous Query Language (CQL)

Continuous Query Language (CQL) [ABW06], a declarative query language, is among
the first contributions in this field and is considered as an extension of SQL for querying
streaming relations. Its main operators, mostly inspired from SQL, include: SELECT clause
for projection; FROM clause to select a specific stream; PARTITION BY clause to partition a
stream/window on an attribute; window clause (RANGE/ROW) to specify time/count-based
windows; and a WHERE clause to define the conditions to be matched by the tuple attributes.
Query 3.1 shows a CQL query that uses a stream of sensory information, and computes
the average temperature of each sensor located in ‘St-Etienne’ with a (tumbling) window
of 5 MINUTES.

1 SELECT AVG (S.temp)
2 FROM Sensors [PARTITION BY S. sensor_id
3 RANGE 5 MINUTES] AS S
4 WHERE S. location = ‘St -Etienne ’

Query 3.1: CQL query

In CQL, queries over entire streams may specify [UNBOUNDED] or [NOW] in the window
type, with the latter being used for monotonic queries (e.g. selections) that do not require
probing the old items within a stream. CQL is used by the STREAM [Ara+04] DSMS and
its abstract semantics are based on two data types: streams and relations, and three classes
of operators: Stream-to-Relation (sliding windows); Relation-to-Relation (corresponding
to standard relational algebraic operators); and Relation-to-Stream. Conceptually,
unbounded streams are converted to relations by utilising sliding windows, The query is
computed over the current state of the sliding windows as if it were a traditional SQL
query, and the output is converted back to a stream. There are three Relation-to-Stream
operators: Istream; Dstream; and Rstream. These operators specify the nature of the
output. The Istream operator returns a stream of all those tuples which exist in a relation
at the current time, but did not exist at the current time minus one. The Istream operator
suggests the incremental evaluation of monotonic queries; and Dstream returns a stream
of tuples that existed in the given relation in the previous time unit, but not at the current
time. Conceptually, Dstream is analogous to generating negative tuples for non-monotonic
queries. Finally, the Rstream operator streams the contents of the entire output relation
at the current time and corresponds to generating the complete answer of a non-monotonic
query. The Rstream operator may also be used in a periodic query evaluation to produce
an output stream consisting of a sequence of relations, each corresponding to the answer
at a di�erent point in time. The execution of these operators is illustrated as follows.

3. Data Stream Processing 31

Consider a case where we have to “continuously” keep track of all the temperature
values of all the sensors in “St-Etienne”, and report changes in the answer every 5
minutes.” Assume that the schema of the input streams consists of three attributes: temp
that represents the current observed temperature; sensor_id that represents the id of
a sensor; and location that defines the location of the sensor. Then using the stream
operator as described above, we can construct the three following queries.

1 SELECT S1.temp
2 FROM Sensors [RANGE 1 DAY SLIDE 5 MINUTES] AS S1
3 WHERE S1. location = ‘St -Etienne ’

Query 3.2: CQL query for the Relational Output

Query 3.2 describes the situation where the output of situation presented above is
a relation and not a stream. The output relation gives the complete query answer and
is refreshed every 5 minutes. The output is not incremental, which means that every 5
minutes, the query issuer sees all the temperature values of sensors in the “St-Etienne”
location. Now consider another query as follows.

1 SELECT Rstream (S1.temp)
2 FROM Sensors [RANGE 1 DAY SLIDE 5 MINUTES] AS S1
3 WHERE S1. location = ‘St -Etienne ’

Query 3.3: CQL query for the Rstream Operator

The output of the Query 3.3 is a stream that represents the concatenation of Query 3.2’s
output relation and it represents the use of Rstream operator. Basically, whenever the
output relation is modified (i.e., every 5 minutes, as it is the granularity the window
should change), the whole output relation is streamed out (or pushed) to the query issuer.
Notice that the output representation is di�erent than Query 3.2, where the output
relation is stored and the query issuer needs to pull the modified query answer from the
stored relation. Notice also that the output stream, say S

o

, is interpreted di�erently from
the input streams. An input data item in input streams (i.e., S1) represents an insertion
into the corresponding relations. However, a data item in S

o

may represent a repetition
for a previous one. For example, temperature values of sensors, that remain constant, for
more than 5 minutes are reported several times in S

o

.

1 SELECT Istream (S1.temp)
2 FROM Sensors [RANGE 1 DAY SLIDE 5 MINUTES] AS S1
3 WHERE S1. location = ‘St -Etienne ’

Query 3.4: CQL query for the Istream Operator

The Istream (or insert stream) operator in Query 3.4 produces a tuple in the output
stream whenever a tuple is inserted in the output relation (i.e., whenever a sensor reports
the temperature value). Notice that because of the slide parameter of length 5 minutes,
the inserted data items are accumulated and are produced in the output stream every
5 minutes. Although Istreams’s output stream is incremental, it gives only a partial
answer because it does not include any information about the temperature values leaving
the window: only the di�erence between the new and older values is added to the output
stream.

3. Data Stream Processing 32

1 SELECT Dstream (S1.temp)
2 FROM Sensors [RANGE 1 DAY SLIDE 5 MINUTES] AS S1
3 WHERE S1. location = ‘St -Etienne ’

Query 3.5: CQL query for the Dstream Operator

The Dstream (or delete stream) operator, as described in Query 3.5, produces a
data item in the output stream whenever a data item is deleted from the relation (i.e.,
whenever a temperature related data item exits in the window). Notice that because of
the slide parameter of length 5, the deleted data items are accumulated and are produced
in the output stream every 5 minutes. Dstream output is incremental but it contains
partial results (the values that have left the window) from the streams because it does
not include the recent information that enter the window.

3.4.2 StreaQuel Language

StreaQuel [Cha+03] is a relational, SQL-derived stream query language and is used
in the TelegraphCQ DSMS [Cha+03]: it is noteworthy for its windowing capabilities.
The StreaQuel language isolates the streaming semantics from the query language, and
the window size used for the query is defined using a for-loop construct. StreaQuel
manages unbounded flows by means of its native window operator WindowIs; where
several WindowIs operators may be used in a query, one for each input stream, embedded
in a for loop. Each of such operator is part of a rule and defines a time variable indicating
when the rule has to be processed. The general assumption behind this mechanism is that
it must consider an absolute time model. By adopting an explicit time variable, StreaQuel
enables users to define their own policy for moving windows. As a consequence, each
window may contain a di�erent number of elements, since its dimension is not bounded a
priori. Let S1 be a stream and let ·

0

be the start time of the query. Then, in order to
specify the sliding window that consists of the last 20 time units over the stream, and
which runs for 100 time units, the following loop can be used:

for (t = ·
0

; t < ·
0

+ 100; t++)
WindowIs (S1, t-20, t)

StreaQuel inherits SQL operators to define the syntax of stream joins and filtering
of attributes: each query is expressed in the SQL syntax and is constructed from
the SQL set of relational operators followed by a for-loop construct with a variable
t that iterates over time. Contrary to CQL, StreaQuel supports both periodic and
continuous query processing.

3.4.3 Gigascope Query Language

The Gigascope Query Language (GSQL) [Cra+02, Cra+03] is used in Gigascope, a stream
database for network monitoring and analysis. It puts some restrictions over SQL to
guarantee that a query cannot produce a non-append-only output. The input and output
of each operator is a stream for reasons of composability. Each stream is required to have
an ordering attribute, such as timestamp or packet sequence number. GSQL includes
a subset of the operators found in SQL, namely selection, aggregation with group-by,
and join of two streams, whose predicate must include ordering attributes that form
a join window. The stream merge operator, not found in standard SQL, works as an

3. Data Stream Processing 33

order-preserving union of ordered streams. This operator is useful in network tra�c
analysis, where flows from multiple links need to be merged for analysis.

3.4.4 TruSQL
TruSQL [NCT08, Fra+09] is a workflow alike streaming language that extends SQL to
query a set of relations as streams. It employs traditional SQL Data Definition Language
(DDL) to allow the creation of streams over relational tables. That is by using CREATE
and STREAM operators. Contrary to CQL, TruSQL treats SQL as a first-class concept,
and one can pose TruSQL queries directly over streams, tables and combination of
streams and tables. A TruSQL query containing no streams is simply a (traditional) SQL
query. It inherits many of the pioneering ideas of CQL to reference both streams and
relations, such as Istream, Dstream operators, along-with the introduction of operators
such as VISIBLE and ADVANCE: the VISIBLE operator defines the window size and ADVANCE
operator determines the slide granularity. Thus, they employ di�erent vocabulary for the
same kind of operators in CQL with the aim to take it closer to the SQL.

3.5 Existing Data Stream Management Systems
In the previous section, we discussed various query languages for DSMSs that define
streaming operators by extending relational languages. In this section, we discuss the
underlying architecture of various DSMSs and provide an overview of techniques to
e�ciently execute the query operators defined in the respective languages.

Traditional DSMS are based on the following main processing blocks: Query Processor,
Query Manager, Query Optimiser, Scheduler, Stream Manager, Storage Manager, and
QoS monitor. These processing blocks are depicted in Figure 3.4, and in the following
we discuss each of them to classify existing systems accordingly.
Stream Manager: As evident from its name, the stream manager provides a set of
wrappers that can receive raw data items from its sources, bu�er them, order them by
timestamps, and convert the rational/semi-structured data items into mapped objects
within main memory, such as Java objects.
Queue Manager: The mapped objects are bu�ered into queues and are handled by the
queue manager while utilising a router. The Query manager is highly dictated by the
query execution plans, in order to provide the right data to the right query operator.
Furthermore, it can also be used to swap data from the queues to a secondary storage,
in case the memory resources are exhausted.
Storage Manager: The storage manager is an intermediate block between the queue
manager and the secondary storage. It is used when persistent data are integrated with
the streaming data; when the streaming data are archived for further processing; or when
the streaming data are swapped from the disk to the main memory. Furthermore, it
is also utilised to load the parsed query, query plans, etc.
Scheduler: While the queue manager decides according to the query plans which
element is processed next, a scheduler determines which operator is executed next.
It interacts closely with the query processor which finally processes the query over
the arrived data items.
Quality of Service (QoS) Monitor: This component gathers the statistics about
performance, order of evaluation query operators, output rate or latency in thought-put.

3. Data Stream Processing 34

Schedular

Router

Q1

Q2

Qi

Queue Manager

Strore
Manager

Stream
Manager

Query
Processor

Query
Optimiser

QoS
 Monitor

Q1
Q2

Qi

Secondary Storage

Data Streams

Figure 3.4: A Generic Architecture of DSMS

These statistics can be used during the lifetime of the stream to adaptively improve
the query plan and subsequently the system performance.
Query Optimiser: This is the main building block of the DSMS, the di�erences between
most of the DSMSs are mainly based on the implementation of the query optimiser. It
directs the scheduler, through query processor, to choose optimal order of execution of
query operators, it utilises a load shedder to sample the streams according to the rate
of the input, and it employs the plans generated by the QoS monitor. Its main goals
include: minimising the computational cost of each query operator, optimising memory
usage, flushing older objects from the memory, reducing the size of the intermediate
results stored in the main memory. These goals stem from di�erent data handling
strategies and are customised by each DSMS.
Query Processor: It provides the harmony between di�erent components of the systems.
It itself does not implement any special procedure, instead it relies on the information
from the query optimiser, provides current statistics to the QoS monitor, instructs the
queue manger to implement the required functionality as directed by the query optimiser.

Based on the general architecture of the DSMS, we describe various optimisations/-
customised strategies utilised by existing DSMSs. Note that the following list is not an
exhaustive one, instead it contains selected DSMSs related to this thesis.
STREAM [Ara+04]: It is among the first generation of DSMSs, and it uses CQL for
its query language. The CQL queries are parsed into tree-based query plans, where each
incoming data item is inserted into the query trees. Filtering operators are placed at
higher levels within query trees followed by aggregate operators at the leaf level. The

3. Data Stream Processing 35

queue router selects the appropriate node within the query-tree and the query processor
executes the operators according to the pre-defined query plans; thus the adaptation
of the query operators is not tackled. STREAM also provide a customised solution for
the memory-limited environments by employing load shedding [Tat+03] on the data
items within sliding windows. This technique uses an age-based data arrival model,
where the rate at which the data items are processed is solely-based on the age of the
data items, which is specified as an age curve.

Aurora/Borealis [Aba+03]: It is developed by a group of researchers from Brandeis
University, Brown University, and MIT. Its query language is composed by using operators
defined by Aurora Stream Query Algebra (SQuAl): it is a dataflow-like language, where
queries are defined using boxes and arcs. Each box represents a query operator and
each arc defines the data flow or queue between the operators. Aurora utilised all the
main components defined in Figure 3.4, however, most of its optimisations are driven
by the QoS component. It defines a number of QoS operators, such as latency-based
QoS, loss-tolerant QoS, value-based QoS. Thus, the QoS component directs the query
processor to choose the right queue and operator.

Borealis is the commercialised version of Aurora, and inherits most of its optimisation
techniques. However, its main focus is on the distributed evaluation of query operators
and also on dynamic optimisations to scale with the changing loads and high-availability
and resilience against failures.

TelegraphCQ [Cha+03]: It is developed by the University of California, Berkeley with
a focus on the adaptive and shared query processing. It employs TruSQL [NCT08],
where the commutative query operators are divided into a subset of operators. Operators
within each subset are connected to a component called Eddy [AH00], where each Eddy
collects the statistic from the QoS monitor to adaptively optimise the execution of query
operators. Each subset of operators is processed independently and when all operators
are processed within a subset, the intermediate results are routed to the next set of
operators or to the output stream.

Other Systems: There are a few other recent systems that follow TelegraphCQ/Truviso’s
design principle of building a streaming engine out of a relational database engine, however
with slight variations of use cases and internal engines. DataCell [LGI09] extends the
column-oriented MonetDB relational database for stream processing. Similarly to the
STREAM engine, a new datatype called “basket” is introduced in addition to relational
tables. Stream tuples are accumulated in baskets and are accessed by continuous queries
in a periodic fashion. Baskets allow batch, out-of-order, and shared processing. The
general goal of this project is to explore how much the existing relational technology can
be exploited for stream processing. As such, it has the potential to naturally integrate
DSMS attributes with DBMS ones as the part of its future work. DejaVu [DFT11]
provides declarative pattern matching techniques over live and archived streams of
events. It extends the MySQL relational database engine and exploits its pluggable
storage engine API, where both streaming and historical data sources can be easily
attached into a common query engine.

All the above mentioned systems fall under pure relational and homogeneous DSMS,
and there is a small body of works that can process heterogeneous streams. Here by
heterogeneity we mean that multiple streams with di�erent predefined schemas can be
fed into a single system for processing continuous queries. The MDQ (Mapping Data
to Queries) [Hen+09] maps incoming data streams of potentially di�erent formats and

3. Data Stream Processing 36

schemas to the continuous queries that should process them [Hen+09]. These queries
may be written against schemas that are di�erent from the inputs’. MDQ uses a set
of schema mapping rules to e�ciently decide at run time, which data items should be
mapped to which queries. This technique would be quite useful to flexibly process data
streams with heterogeneous schemas. Note that, a single query that can integrate multiple
heterogeneous streams and process continuously is not addressed in relational DSMSs.

Recently, a new breed of DSMSs has been introduced by integrating Online Trans-
actions Processing (OLTP) and stream processing capabilities [Mee+15, Dug+15]. S-
store [Mee+15] provides such capabilities, where an OLTP system (H-store [Kal+08])
addresses the coordination and safety of short atomic computation. It provides the
ACID transaction guarantees, and a stream processor to address the needs of real-time
applications by providing stream-oriented guarantees. This makes S-store a mutable
stream processing system, where the input stream is not append-only, instead a new
tuple can be seen as an update to the previous ones. The processing model of such
DSMSs is based on dataflow graph, similar to the distributed DSMSs, such as Apache
Storm5, where nodes represent streaming transactions (defined as stored procedures)
or nested transactions, and edges represent an execution order [Mee+15]. A set of
atomic batches of tuples arrives within streams that are fed to the dataflow graph.
With the arrival of new tuples, all the defined streaming transactions defined over the
corresponding streams are invoked. The output or processed data items become the
atomic batches and are stored for OLTP; traditional window operators are used to
constrain the execution of certain stored procedures.

3.6 Optimisation Strategies for the DSMSs
In the presence of commutative query operators, which is quite usually in common cases,
DSMS queries can be executed in multiple di�erent ways. It is the responsibility of the
query optimiser to enumerate all the possible plans/execution strategies, and to choose an
e�cient one while considering the cost models and/or set of query transformation rules.

Based on the review of the existing systems, we categorise various optimisation
techniques as follow.
Cost-based Techniques: This type of optimisation techniques is based on the selectivity
measures of queries and the available indices (i.e., cost models), thus to choose e�cient
query plans [KNV04]. As these techniques base their roots in static DBMSs, they may
not be e�cient in streaming settings. However, if stream arrival and output rates are
known a priori, it may be possible to find query plans that result in low latency outputs.
Adaptive Query Optimisation: These strategies are based on query rewriting, where
the operators (e.g., selection, joins) are executed in a way to minimise the intermediate
results. That is, by pushing the least expensive or highly selective operators in the pipeline
“on-the-fly”. Thus, the re-ordering of the operators is performed on-the-fly in response
to the changes in the system conditions [Bab+05]. In this context, Eddy (as described
in previous section) performs the scheduling of each data item separately by routing
it through the operators that make up the query plans. Consequently, it results in a
dynamic re-ordering of the operators to match the stream input and output rates.
Load Shedding and Approximation of Streams: Due to the high stream rates, DSMSs
equipped with limited resources may be exhausted and not all the data items can be

5Apache Storm: http://storm.apache.org/ , last accessed: June, 2016.

http://storm.apache.org/

3. Data Stream Processing 37

processed. In such a case, load shedding techniques are applied to drop-o� the less
significant data items [Tat+03]. The significant measures of data items is measured
using their expected expiry time and relevance to produce the expected join results.
This, however, can reduce the system’s accuracy. Dropping data items based on their
significance measures results in e�ective plans as all the subsequent query operators
enjoy reduced loads.

3.7 Summary and Discussion
In this chapter, we provided an overview of the main query languages and the DSMSs
that implement them. We reviewed that current DSMSs di�er highly in terms of their
query languages, semantics and capabilities. Such di�erences arise due to language
choices, targeted use cases and query execution models [Tat10]. The di�erence in the
query syntax and semantics can easily be spotted and handled, whereas di�erences in the
execution models are di�cult to handle: they are implicit in the low-level implementation
of each DSMS. This requires a coherent formal model that is general and flexible enough
to capture and explain the wide range of di�erences among DSMSs. One e�ort in
this context is carried out by the SECRET framework [Bot+10]. It is a descriptive
model that allows practitioners and users to analyse and understand the behaviour of
various heterogeneous DSMSs, and provides the conclusive reasons for the variability
in the results produced by the DSMS using sliding windows. However, despite these
e�orts there is neither a common standard for query languages nor an agreement on
a common set of operators and their semantics until today. Furthermore, we discuss
multiple di�erent types of optimisation techniques employed by DSMS, i.e., cost-based
query plans, adaptive query plans, and load shedding.

In the following discussion, we raise some of the expected requirements to consider
for the extension or implementation of a DSMS.
Semantics of Computed Results: The explicit description of the semantics of output
results is important. CQL provide three main operators including Istream, Dstream
and Rstream. These operators are considered as the backbone of all streaming query
languages. Thus, a new system/query language should explicitly describe which of
these operators are supported.
Choice of the Data model: The choice of the data model can make a huge di�erence
in selecting the optimisation strategies. Most of the systems reviewed in the previous
section are based on the relational data model, where schema specific relations are
defined within each data item. The simplicity of the data model has encouraged the
practitioners to focus on the adaptive optimisations of the DSMSs (i.e., queue manager,
QoS monitor, router in Figure 3.4) rather than on how each data item is matched with
the query variables. Furthermore, little attention is devoted towards the serialisation
of the data items from streams (i.e., stream manager in Figure 3.4). However, such
optimisation strategies cannot be applicable in semi-structured/structured data models.
For instance, in order to match a data item that is structured with XML, the system
would require to consider its tree and cyclic nature.
Incremental Evaluation: The evaluation strategy of stream query operators, i.e., re-
evaluation or incremental, is based on the type of the operators as described below:

Selection: The selection operator produces on-the-fly results, and is not bounded by
the window operator. Therefore, it is inherently classified as an incremental operator.

3. Data Stream Processing 38

Aggregates: Aggregate operators such as sum, count, average are non-incremental in
nature, and their e�ective evaluation requires to re-compute the results with the eviction
and insertion of new data items within a window.

Joins: The join operators, i.e., window joins or join between relations, also require
that the entire window must be probed to get/update the results. Thus, it requires the
re-evaluation of all the data items within each window.

Incremental data processing may achieve better performance and may require less
memory, as already computed results are reused and merged with the new ones. Recently
some techniques, such as exponential histograms [Bra+16], FAT tree structure [Tan+15],
are proposed to incrementally compute aggregate operators. These techniques divide
the windows into partitions, each storing a partial aggregate. Thus, with the eviction or
insertion of new triple partially computed results are refreshed to get the final output.
However, there is not much attention towards the incremental evaluation of joins. Few
approaches [Ge+15, GGÖ04] are proposed to index each window using a tree structure
and join the windows using such indices. However, such indexing techniques are cost-based
(as described in Section 3.6) and do not adapt to frequent changes. Nonetheless, these
approaches open the door for a new research area.

It is perfectly true, as philosophers say, the life must

be understood backwards. But they forget the other

proposition, that it must be lived forwards. And if one

thinks over that proposition, it becomes more and more

evident that life can never really be understood in time;

because at no particular moment can I find the necessary

resting-place from which to understand it.

— Søren Kierkegaard

4
Semantically-enabled Stream Processing

This chapter paves the way towards the semantically-enabled RDF stream
processing. It presents an overview of existing techniques, languages used, and
the underlying execution models of RDF stream processing systems (RSPs).
While reviewing these techniques, this chapter also highlights various limitations
of existing RSP systems. These limitations are addressed by our system called
SPECTRA, as described in Chapter 6.

Contents

4.1 Introduction . 40
4.2 RSP Data Model . 40
4.3 RSP Systems and Their Query Languages 41

4.3.1 C-SPARQL . 41
4.3.2 CQELS . 42
4.3.3 StreamQR . 43
4.3.4 Sparkwave . 44
4.3.5 Other Systems . 45

4.4 Under the Hood of RSP Systems 46
4.5 RDF Graph Storage and Processing Techniques 47

4.5.1 Native RDF Graph Storage Systems 48
4.5.2 Non-Native RDF Graph Storage Systems 49

4.6 Summary and Discussion . 49

This chapter is structured as follows: Section 4.1 presents the introductory
discussion about the semantically-enabled RDF stream processing (i.e., RSP).
Section 4.2 presents the generic data model for RSP systems. Section 4.3
describes the details about the RSP query languages and their execution models.
Section 4.4 presents the details of optimisations and execution strategies of
RSP systems. Section 4.5 provides an overview of static RDF storage systems.
Section 4.6 presents the concluding discussion and lessons learned from the
existing RSP solutions.

39

4. Semantically-enabled Stream Processing 40

4.1 Introduction

A number of DSMSs have been developed in the last decade or so (as reviewed in Chapter 3)
to tackle the challenges posed by dynamic and high-velocity data streams. However,
the issues of handling heterogeneity, integration, and interpretation of data streams at
semantic level have been overlooked by DSMSs. The Semantic Web community, through
its standards and technologies, is in constant pursue to provide answers to these issues,
while employing ontologies, RDF data model, triple stores, etc. The integration of these
two contrasting research fields has led to the semantically-enabled stream processing,
usually called RDF Stream Processing (RSP) [Bar+10b, LP+11, CMC16, KCF12].

RSP systems employ the RDF model, where streams consist of an infinite sequence of
RDF triples each associated with a timestamp. Currently, the W3C community group,
called RSP community group1, is working towards the standardisation of the following con-
cepts:

• RDF stream model, it was first introduce in [DV+09], and later picked-up in [Bar+10a,
LP+11].

• Extension of SPARQL to enable continuous query processing, such as C-SPARQL [Bar+10b],
CQELS [LP+11].

Despite the recent e�orts, there does not exist a standardised query language of RSP
streams. Hence in the proceeding section, we first introduce the RDF stream model, which
is employed by most of the existing RSP systems, and query languages for RSP systems.

4.2 RSP Data Model

RSP systems have integrated temporal attributes with each RDF graph triple for
their data models, where an RDF triple, as described in Definition 2.2, is a tuple
t œ (I fi B) ◊ I ◊ (I fi B fi L). Then an RDF stream [Bar+10a, LP+11] can be defined as
follows.

Definition 4.1: RDF Stream

An RDF stream S
r

is a sequence of pairs (t, ·), where t is an RDF triple Ès, p, oÍ,
and · is a timestamp in the infinite set of non-decreasing timestamps T, such that

S
r

= {(Ès, p, oÍ , ·)| Ès, p, oÍ œ ((I fi B) ◊ I ◊ (I fi B fi L)), · œ T}

An RDF stream is an append-only stream, where SPARQL graph patterns are used
to match a set of streams. The execution of the graph patterns over the RDF streams
is constrained by the standard window operations as described in Definition 3.2. The
RDF stream model can be seen as a direct extension of the relational data stream model,
where an RDF triple is used instead of a relation tuple. Hence, the languages and the
operators proposed by the RSP systems also inherit from DSMS’s operators.

1W3C RSP Working Group: http://www.w3.org/community/rsp/, last accessed: June, 2016.

http://www.w3.org/community/rsp/

4. Semantically-enabled Stream Processing 41

4.3 RSP Systems and Their Query Languages
SPARQL (see Chapter 2) is a standard RDF language, and similar to SQL it is designed
for on-shot queries. A number of RSP languages are proposed to extend SPARQL
with operators that take into account the streaming nature of RDF streams. The
two most common languages in this context are C-SPARQL [Bar+10a, Bar+10b] and
CQELS [LP+11]. These languages, similar to CQL, integrate the window and FROM
STREAM operators to define query graphs over a set of RDF streams, and to process
them in a continuous manner.

4.3.1 C-SPARQL
C-SPARQL [Bar+10a, Bar+10b] is among the first contributions in the area of RSP,
and is often cited as a reference work in this field. The distinguished features of C-
SPARQL are described as follows:

1. support of RDF stream model,

2. support of defining a set of streams over a set of triple patterns,

3. support of aggregate operators, and

4. support of static data and streaming data integration.

C-SPARQL borrows the concept of windows from DSMSs (in particular CQL) to
capture the portions of each stream that are relevant for processing: it can be either
count-based (selecting a fixed number of triples) or time-based (selecting a variable
number of triples which occur during a given time interval). Furthermore, additional
policies of windows such as slide are also supported.

Thus, the set of triples within a window is matched against the defined query graphs
for each execution of the C-SPARQL query. It allows, similarly to DSMSs, to register
continuous queries: queries are issued once against the set of RDF streams and continuously
evaluated, and the matched mappings (see Chapter 2) are composed by listing the matches
of each evaluation.

1 SELECT ?temp ?id
2 FROM STREAM <http :// streamsensor .com/source1 > [RANGE 3s STEP 1s]
3 FROM STREAM <http :// streamsensor .com/source2 > [RANGE 3s STEP 1s]
4 WHERE {
5 ? source : sensor_id ?id.
6 ? source : location ?loc.
7 ? source : temperature ?temp.
8 Filter (? loc = ‘St -Etienne ’)
9 }

Query 4.1: C-SPARQL query

Query 4.1 presents a simple C-SPARQL query to obtain the temperature and sensor
id values from two di�erent RDF streams. It uses a FROM STREAM operator to register
RDF streams: it could be a set of heterogeneous RDF streams. Similarly to CQL the
operators RANGE and STEP define the sliding window, i.e., defining the size (3s) and the
granularity it slides with (1s). Note that, a FROM clause can be defined in C-SPARQL
to register a static background knowledge-base.

4. Semantically-enabled Stream Processing 42

Figure 4.1: CQELS Architecture (adapted from [Bar+10a])

Evaluation of C-SPARQL Queries: C-SPARQL employs a “black-box” approach
to delegate the execution of queries to the underlying DSMS (i.e., Esper [BV10] or
STREAM [Ara+04]) and an RDF engine/store (Jena or Sesame). Each C-SPARQL query
is transformed into an O-GRAPH [Bar+10a], where the static and streaming parts of
the query are mapped into relational bindings. The C-SPARQL engine orchestrates the
execution of queries, while employing a DSMS and an RDF store against these relations.

Figure 4.1 shows the architecture of CQELS using STREAM and Sesame [BKH02].
Each query is parsed and assigned to the orchestrator, which translates it into static and
streaming parts. The static query is used to extract static knowledge from the triple
store, while the dynamic part of the query is registered in the DSMS. When translating C-
SPARQL queries into static and streaming parts, the orchestrator relies on the information
captured by the so-called Denotational Graph or D-Graph in order to distinguish static
from streaming knowledge [Bar+10a]. Although various optimisation techniques, such as
pushing the selection, filter and aggregate operators at the top of the query execution stack,
are proposed for C-SPARQL, it is not a performance intensive engine. Semantic-wise it is
a pull-based system, where the matches are produced periodically: it employs the Rstream
operator from CQL. More discussion will follow later on this point in Section 4.4 and 4.6.

4.3.2 CQELS
CQELS [LP+11] is another RSP query language inspired from CQL. It also provides
continuous RSP and utilises static background data to enrich RDF streams. As far as
the syntax of the language is concerned, it employs the similar query constructs as those
of C-SPARQL. However, its STREAM clause wraps the defined graph patterns for each
stream: it is analogous to the GRAPH clause of SPARQL.

4. Semantically-enabled Stream Processing 43

1 SELECT ?temp ?id ?temp2 ?id2
2

3 WHERE {
4

5 STREAM <http :// streamsensor .com/source1 > [RANGE 3s STEP 1s]
6 {
7 ? source : sensor_id ?id.
8 ? source : location ?loc.
9 ? source : temperature ?temp.

10 Filter (? loc =‘St -Etienne ’)
11 }
12 STREAM <http :// streamsensor .com/source2 > [RANGE 3s STEP 1s]
13 {
14 ? source2 : sensor_id ?id2.
15 ? source2 : location ?loc2.
16 ? source2 : temperature ?temp2.
17 Filter (? loc2 =‘St -Etienne ’)
18 } }

Query 4.2: CQELS query

Query 4.2 describes the same use case as discussed above. The window content is
accessed within each STREAM clause and users can define di�erent types of windows for
each stream, a selling point of CQELS language.
Evaluation of CQELS Queries: Contrary to C-SPARQL, CQELS uses a “white-box”
approach porting DSMS concepts (e.g. physical operators, data structures and query
executor) into an SPARQL engine. For the underlying DSMS, it also employs Esper [BV10].
The evaluation semantics of CQELS are push-based, i.e., the evaluation of the queries is
triggered with the arrival of each new triple within streams, and only newly produced
matches are added to the output stream. Thus, it employs the Istream operator [ABW06]
of CQL. Due to its customised architecture, CQELS is much more performance competitive
as compared to other RSP engines. This is due to its reliance on the existing optimisations
for DSMSs: it employs adaptive reordering of query operators, while utilising a query
monitor2 (through Eddy operators [AH00]) to push the less expensive operators in
front of the query plans.

CQELS query plans are constructed through the data flows [Aba+03], where a data
flow constitutes a directed tree of operators. The root of the tree is either a relational
or a streaming operator, while leaves and intermediate nodes are window and relational
operators respectively. Figure 4.2 shows a data flow for Query 4.2: the graph pattern P

1

is the defined set of triple patterns for the stream S
1

, and the graph pattern P
2

is the
defined set of triple patterns for the stream S

2

. The matched results of each operator
are joined together and sent to the output streams S

out

. During the whole lifespan of
the streams, the CQELS engine constantly attempts to determine the optimised order
of data flow operators for an optimised query execution.

4.3.3 StreamQR

StreamQR [CCG10] o�ers a di�erent view for RSP systems by providing a streaming
system equipped with inference capabilities. The goal of the system is to employ query

2As discussed in Chapter 3 (Section 3.5), the QoS monitor partition the commutative query operators,
where each subset of the operators are executed independently and the intermediate results are fed to the
remaining partitions through Eddy operators.

4. Semantically-enabled Stream Processing 44

(P1, !"#$S1$) (P2, !%#$S2$)

⨝

R Sout

S1 S2

Figure 4.2: Data flow in CQELS for the Query 4.2

Figure 4.3: Architecture of StreamQR (adapted from [CMC16])

rewriting to transform continuous queries (with CQELS) into an expanded query that
captures the ontology TBoxes [Cal+07], i.e., intensional knowledge. The expanded query
(or a set of sub-queries) are evaluated over ABoxes, i.e., extensional knowledge. This
approach can be equated with the ontology-based data access [Bie+14], where queries are
rewritten through an ontology to query data stored in relational databases. However,
in this context, rewritten queries are computed over the RDF streams. This work does
not provide a new system or optimisation techniques for RSP, instead it coupled CQELS
with a query rewriter called kyrie [MC13] to enable such functionality.

Figure 4.3 shows the architecture of StreamQL. The input CQELS query is fed into
the Kyrie rewriter, which uses ELHIO [PUHM09] as a language for the ontology to
rewrite the graph patterns within the CQELS query to produce a union of conjunctive
queries (UCQ). The UCQ are synthetically transformed back to a CQELS query using
context information from the original query, i.e., window and stream definitions. Finally,
the transformed query is evaluated by the CQELS engine over the RDF streams, and
the matches are appended into the output stream.

4.3.4 Sparkwave

Sparkwave [KCF12] is a recent solution that utilises the RETE [For90] algorithm to con-
tinuously process the RDF streams against the defined C-SPARQL queries. RETE [For90]
is a rule-based algorithm, and is based on forward chaining and inferencing of facts and

4. Semantically-enabled Stream Processing 45

rules. The RETE algorithm builds a directed acyclic graph as a high-level representation
of the given rule sets; these are generated at run-time and include objects such as nodes
of the network. Each rule in RETE is processed in three stages: match, select and
execute. In the first stage, the conditions of the rule set are matched against the facts to
determine which rules are to be executed. The rules whose conditions are matched are
stored in an agenda list to be fired. From the agenda list, rules are selected and executed
depending upon a priority, recency of usage, specificity of the rules, or on other criteria.
The rules are executed by exciting the actions defined in the rules. The nodes in the
RETE network, i.e., the network of rules, are of three types, alpha (–), beta (—) and
terminal node. Each – node represents the match node, in order to match the antecedents
defined in the rules, while each — node, also called merge node, merge two or more –
nodes. The terminal node contains the consequent of the beta nodes. For instance, take a
composite rule, A > B, then two alpha nodes are created, one for A and another for B,
while a beta node is created that will check the conditions to be matched between A and
B (see Figure 4.4). The match of beta node is fed to the terminal node for the output.

A B

>

Terminal
Node

Alpha
Node

Alpha
Node

Beta (merge)
Node

Figure 4.4: RETE nodes for the rule A > B

Sparwave is designed to provide a
high-performance stream processing, where
streams are defined explicitly through a
schema-entailed knowledge. Sparkwave
includes limited support for background
knowledge (schema and static data in-
stances) and supports only a limited set
of schema constructs; it is therefore com-
plementary to other solutions which o�er
such functionalities but in the context of
less stringent performance requirements. It
does not provide a new language for RDF
streams, but it employs the C-SPARQL
query language on top of its RETE network
of – and — nodes: the registered query is
parsed into a set of streaming rules that sits in the production memory, and a set
of facts (background knowledge) in the data memory. These rules are defined as –
and — nodes in the RETE network. The – nodes use the filter, projection and join
attributes, defined in the query graph, to check if the specific conditions are fulfilled
by the streaming triples. The — nodes store the intermediate joined results in form of
tokens [KCF12]. A token k is a pair (k

parent

, st), where k refers to a parent token and
st as a streaming triple that is stored in an – node.

4.3.5 Other Systems

There are few more solutions provided in the context of RSP. They either employ
ontology-based data access to directly a query relational data stream with the aid of
an ontology, or only provides the theoretical details of RSP languages without any
explicit execution model.

SPARQL
stream

o�ers a di�erent view of RSP systems. It provides a streaming solution
for ontology-based data access, where the registered query, an extension of SPARQL,
is mapped onto a set of SNEEql [Gal+09] subqueries to be processed against the data
streams. It does not provide a new streaming framework, but uses the ODEMAPSTER

4. Semantically-enabled Stream Processing 46

processor [GJS92a] to process SNEEql queries (as discussed in Chapter 3).
Streaming-SPARQL [BGJ08] presents an extension of SPARQL to process RDF

streams, and o�ers a theoretical view. The main focus of the work is to provide the
semantics of the new streaming operators, and how to translate general SPARQL queries
into streaming ones with extended algebra.

RSP-QL [Del+14] provides an abstract query model to expose the heterogeneity among
various RSP query languages, in particular C-SPARQL and CQELS. Such a formal model
characterised RSP systems for defining interoperability among RSP systems, and for
defining the correctness of query results. Although, it does not provide an explicit query
language or execution model, it outlines the semantic heterogeneity among RSP systems.

4.4 Under the Hood of RSP Systems

The evolution of RSP systems from the DSMSs somehow has undermined the graph
nature of RDF streams. That is, contrary to relational-based DSMS where a relational
tuple contains a set of attributes – each describing an object value mapping – an RDF
stream consists of triple-based elements. Thus, each RDF triple is only able to describe a
single subject to object relation through a predicate. This results in a potentially large
number of RDF triples, each being processed as a new element within a stream. For
instance, if there is a stream containing values emitted by a sensor, each data item for a
relational stream will consists of a set of objects and values, such as temperature, sensor-id,
location, etc. However, in the case of RDF streams, each stream element consists of a
single triple, mapping a single attribute such as temperature value or sensor-id. Therefore,
instead processing each data item containing a bulk of attributes, each triple containing
a single attribute is processed independently. Due to the large number of triples within
a window, this requires careful consideration when implementing the joins between the
query triple patterns. However, existing RSP systems do little to nothing in this context.
They reuse and adapt indexing techniques from the static RDF solutions that are prone
to frequent updates, and operator re-ordering techniques from DSMSs that choke under
large windows. We briefly discuss the details of the underlying architectures for the two
well-known RSP engines CQELS and C-SPARQL; such discussion sheds some light on the
improvements that can be incorporated in our system design (as discussed in Chapter 7).

C-SPARQL, as discussed before, completely ignores the optimisation techniques for
indexing and query RDF streams. It is based on the static RDF triple store Jena [Car+04]
(older version utilises Sesamse [BKH02]), which employs property tables to store triples
and a B+ tree indexing to guide the query process. For the same reason, many studies
show that it is not scalable when the size of the window is increased to thousands of events.
Thus, for each new RDF triple within a stream, it is added to the property table and
an appropriate index is inserted in the B+ tree. The same procedure is applied when a
triple is removed from the window. When a query is executed over a set of triples, all the
matches are reproduced and sent to the output stream. This not only results in frequent
insertions and deletions from B+ tree, which is computation intensive considering the
number of such operations, but also the recomputation of query matches from scratch.
These are the primary seeds of improvements to scale up such RSP systems.

CQELS improves on few of the C-SPARQL points. It provides various adaptive
optimisations to join the set of triple patterns and uses the Istream operator to output
only the changes in the matches. However, such optimisations are again inspired from the
relational techniques that are not quite suited for graph-structured streams. For instance,

4. Semantically-enabled Stream Processing 47

Table 4.1: Classification of Existing RSP Systems

RSP Systems Input Model Execution
Model

Background
Knowledge

Time Model

C-SPARQL Triple Streams Pull-based X Timepoints
CQELS Triple Streams Push-based X Timepoints

StreamQR Triple Streams Push/Pull-based X Timepoints
SparkWave Triple Streams Push-based X Timepoints

Table 4.2: Classification of Existing RSP Systems

RSP Systems Reasoning Temporal
Operators

Historical Data
and Statefulness

C-SPARQL RDFS subset 7 7
CQELS 7 7 7

StreamQR ELHIO 7 7
SparkWave RDFS subset 7 7

Eddy operators [AH00] improve performance by re-ordering the join and filter operators
between multiple RDF streams, however, they su�er from performance degradation if
applied frequently over a larger number of triples. Such is the case of RDF streams, where
usually the window contains a large number of triples instead of a relatively small number
of data items. The indexing strategy of CQELS is again based on the traditional B+
trees, which are not friendly for frequent insert and delete operations. As a result of these
shortcomings, there are large performance di�erences between CQELS and the DSMSs.

Table 4.1 and Table 4.2 summarise various attributes and capabilities of existing
RSP systems as described earlier. That is, all the RSP system are based on timepoints
semantics, and their execution models are either push or pull-based. Furthermore, they
all employ simple triple streams, where each incoming item consists of a triple associated
with the timestamp. From the reasoning aspect, C-SPARQL and SparkWave support
the subset of RDFS rules to infer information from streams, while StreamQR use a
dedicated OWL reasoner for a broad set of complex rules.

In this section, we outline the inner working and attributes of the existing RSP
systems. In order to provide the overview of the graph pattern matching techniques
utilised by the RSP engines, we summarise various static RDF graph stores and their
corresponding attributes in the proceeding section.

4.5 RDF Graph Storage and Processing Techniques
In the previous sections, our discussion was mainly focussed on the RSP systems. In this
section, we briefly discuss selective static RDF storage and querying systems.

Most of the existing solutions for querying static RDF graphs, that di�er in the
underlying storage structure and the type of indexing, match a query with the RDF
dataset in two steps. The first step retrieves a candidate set of graphs that contains the
indexed features of the query. The second step uses subgraph isomorphism (subsequently
homomorphism) to validate each candidate graph against the defined query. In general,
the RDF graph storage systems – both in-memory and disk-based – can be classified

4. Semantically-enabled Stream Processing 48

into native and non-native RDF storage systems. The native solutions consider the RDF
data model as a first class citizen and provide customised methods (with customised
storage and indexing techniques), while the non-native solutions borrows data storage
models from the DBMS and customise them with further indexing techniques. Some
of the major works in this context are summarised as follows.

4.5.1 Native RDF Graph Storage Systems

Most of the native RDF graph storage techniques eschew the mapping to an RDBMS
and focus instead on indexing techniques specific to the RDF data model. Thus, these
approaches are based on sophisticated indexing techniques that are customised according
to the RDF data model.
RDF3x [NW10b]: It is the most prominent solution in this context, and it employs six
di�erent types of indices over multiple redundant Èsubject, predicate, objectÍ permutations.
It creates its indices over a single “giant triples table”, and stores them in (compressed)
clustered B+ trees. Triples, within each index, are lexicographically sorted allowing
SPARQL patterns to be converted into range scans. The triple store is compressed
by replacing long string literals in the triples IDs using a mapping dictionary. RDF3x
reports a very e�cient performance that outperforms other RDF stores by an order of
magnitude [NW10b]. These results make it a leading reference in this area. However,
despite its compression achievements, the spatial requirements in RDF3x remain very
high. This involves an indirect overhead to the querying performance because large
amounts of data need to be transferred from disk to memory, and this can be a very
expensive process with respect to the query resolution itself.
BitMat [Atr+10]: It follows the idea of managing compressed indices but it goes another
step further and proposes querying algorithms that directly perform on the compressed
representation. BitMat introduces an innovative compressed bit-matrix to represent
the RDF structure. It is conceptually designed as a bit-cube (s ◊ p ◊ o), but its final
implementation slices to get two-dimensional matrices: so and os for each predicate p, po
for each subject s, and ps for each object o. These matrices are run-length compressed
by taking advantage of their sparseness [Atr+10]. Two additional bit-arrays are used to
mark non-empty rows and columns in the bitmats so and os. The results reported for
BitMat show that it only overcomes the state of the art for low selectivity queries.
Hexastore [WKB08]: It is based on the idea of main-memory indexing for RDF data in
a multiple-index framework. The RDF data are indexed in six possible ways, one for each
possible ordering of the three RDF elements by individual columns. The representation
is based on all the possible orders of significance of RDF resources and predicates, and
can be seen as a combination of vertical partitioning [Aba+07] and multiple indexing
approaches [HD05]. Two vectors are associated with each RDF element, one for each of
the others two RDF elements (e.g., (subject, predicate) and (subject, object)). Moreover,
lists of the third RDF element are appended to the elements in these vectors. Hence, a
sixtuple indexing schema is created. However, even though six tables are created, only
five copies of the data are really computed, since the object columns are duplicated.
Hexastore provides e�cient single triple pattern lookups, and also allows fast merge-joins
for any pair of two triple patterns. However, space requirement of Hexastore is five times
the space required for storing statements in a triple table.
RDFox [Nen+15]: It is an in-memory triple store with the emphasis on the multi-

4. Semantically-enabled Stream Processing 49

threaded lock-free access of materialised triples. RDFox stores the triples as a TripleList
in one big-table called as TripleTable; along-with the indices that support the iteration
over subsets of the triples. A TripleList stores the RDF triples as a two-dimensional
array with six columns: the first three columns hold the IDs of the subject, predicate,
and object of a triple, while the latter three columns are used for indexing. In particular,
the triples in the TripleList are organised in three linked lists, each of which is grouped
by subject, predicate, and object, respectively. Thus, the last three columns in the
TripleList provide the next pointers in the respective lists. These linked lists are used to
e�ciently iterate over triples matching a combination of subject, predicate, and object.
It also employs B+ tree indexing to enable cyclic and complex queries on top of its
underlying storage structure. Due to its lock-free and parallel architecture, RDFox is
performance intensive. Although, there does not exist any comparative analysis, it can
materialise a LUMB-5000 [GPH05] dataset in 422 seconds using a single core, and this
reduces to only 42 seconds when using 16 cores.

4.5.2 Non-Native RDF Graph Storage Systems
The non-native RDF solutions are inspired and extended from well-established relational
DBMSs. These solutions store RDF triples into a set of relational tables, of di�erent
types, while building indexing on top of them to support SPARQL queries. The two most
important techniques in this context are property tables and vertically-partitioned tables.
Property Tables: This approach creates relational-oriented property tables out of RDF
data, where each table gathers the information about the multiple predicates/properties
over a list of similar subjects/objects. Each property table contains multiple di�erent
columns, since di�erent predicates (one per column) are used for describing the subjects
it stores (in rows). Although, this model significantly reduces the number of self-joins
(i.e., the relationship between rows stored in the same table), the cost of query operations
remains high due to redundant query operations. Furthermore, this technique increases
the storage and querying cost (1) by explicitly storing NULL values in each subject if the
represented subject is not described for a given property in the table; (2) by its inability
to handle multi-valued attributes that are abundant in the RDF dataset. Systems like
Jena [Car+04] and Sesame [BKH02] utilise the property tables as their underlying data
structure and B+ trees for the indexing of triples.
Vertically-partitioned Tables: The vertical partitioning (VP) approach [Aba+07,
Sub+16] can be seen as a specialised case of property tables, where each table assembles
information about each distinct predicate in the RDF dataset. Thus, the VP approach
creates as many distinct tables as the number of distinct predicates within an RDF
dataset, each containing two columns (subject, object) to stores all the subjects and
objects relating to a particular property. The VP approach covers all the issues surfaced
by property tables including: NULL values and multi-valued attributes. Each VP table is
usually sorted on the subject column to enable fast merge join to reconstruct information
about multiple predicates for the subsets of subjects. Systems such as SW-store [Aba+09a]
utilise VP tables along with the B+ tree indexing to support multi-join SPARQL queries.

4.6 Summary and Discussion
How to build an optimise RSP system? In this chapter, we reviewed the existing RSP
systems and selective static triple stores to answer such question. We provided the

4. Semantically-enabled Stream Processing 50

Table 4.3: Optimisation and Underlying Engines for RSP systems

RSP Systems Underlying Engine Optimisations

CQELS [LP+11] Esper Adaptive reordering of query operators
C-SPARQL [Bar+10b] Esper and Jena Pushing filter and selection expression
SparkWave [KCF12] RETE Streaming – and — nodes
StreamQR [CMC16] CQELS and kyrie Rewriting of CQELS queries

basic model for RDF streams and discussed the existing extensions of SPARQL to
enable continuous query processing. Furthermore, we also reviewed the existing static
triple stores on the basis that RSP systems directly inherit their storage and indexing
expertise from these systems.

Based on our analysis, our guide to the practitioners is as follows:

• RDF Graph Model for Stream Elements: Most of the existing RSP solutions are
based on a RDF stream model, where each element within a stream is a triple
associated with a timestamp. However, real-world use cases di�er from it. For
instance, a sensor usually emits a set of environmental attributes at the same time.
Considering this, we recommend the use of an RDF graph-based model for RDF
streams, i.e., a set of triples for each element of the stream (more discussion on this
point can be found in Chapter 6 and Chapter 8). Furthermore, the insertion and
eviction of a single triple, as compared to a set of triples, may increase the load over
the query processor: an empirical analysis to support this hypothesis is provided in
Chapter 9. Moreover, the use of an RDF graph model is also recommended by the
W3C RSP community group3.

• Customised Optimisation for RDF Streams: Under the hood, most of the RSP
engines are based on the techniques directly borrowed for the DSMSs and static
RDF triple stores; table 4.3 summarises the underlying optimisation techniques and
engines for RSP systems. This raises certain questions about their performance
and scalability. Therefore, we recommend to take the RDF graph model as first
class citizen while providing customised optimisations for RDF streams. That is,
(i) reordering query operators according to the structure of the query graphs (star,
chain, complex-shapes) and the incoming events, (ii) incremental indexing for the
graph structured data which is not prone to frequent insertion and deletions.

• Considering Heterogeneity among RSP Systems: All of the above mentioned systems
are heterogeneous in nature in terms of their proposed languages, executional models
and way they report the results. Some of the di�erences in the RSP engines are
reflected in how the query dataset is constructed and how windows are declared.
For instance, CQELS associates a named (time-varying) graph to each window in
the query, and the window content is accessed with the STREAM clause, analogous to
the GRAPH in SPARQL. However, it is not possible to declare the sliding window in
such a way that its content is included in the default graph of the dataset. On the
contrary, C-SPARQL does not allow to name the time-varying graphs computed
by the sliding windows, but all the graphs computed by the sliding windows are
merged and set as the default graph. Furthermore, CQELS employs the Istream
streaming operator, while C-SPARQL is based on Rstream operators. Therefore,

3W3C RSP Community Group: https://www.w3.org/community/rsp/, last accessed: June, 2016.

https://www.w3.org/community/rsp/

4. Semantically-enabled Stream Processing 51

while comparing and implementing an RSP system, one should carefully consider
the di�erences between these systems.

As a contribution of this thesis, we propose new optimisation techniques for processing
RDF graph streams, while learning constructive lessons from the existing solutions. Our
solutions consider not only the complex graph nature of RDF, but also the constraints
imposed by streaming settings. This discussion and proposed solutions are provided
in Chapters 6 and 7.

Nothing is more usual and more natural for those, who

pretend to discover anything new to the world in philos-

ophy and the sciences, than to insinuate the praises of

their own systems, by decrying all those, which have been

advanced before them.

— David Hume, A Treatise of Human Nature

5
Detection of Complex Event Patterns

This chapter provides the introductory details for the second phase of our
work: semantically-enabled pattern matching or Semantic Complex Event
Processing (SCEP). We first discuss the relational approaches for Complex
Event Processing (CEP), and outline the properties, data models and languages
used in the existing works. Since CEP is a field that is very broad and without
clear-cut boundaries, this chapter focuses strongly on the topic of this thesis.
That is, on querying complex events and extending it for SCEP. It concentrates
on languages and execution models for detecting complex events that are known
and specified a priori.

Contents

5.1 Introduction . 53
5.2 Data Model and Operators for Complex Event Processing . 53

5.2.1 Data Model . 54
5.2.2 Event Query Languages and their Operators 55

5.3 Methods and Techniques for Complex Event Processing . . . 58
5.3.1 Rule-based Techniques . 58
5.3.2 Graph-based Techniques . 59
5.3.3 Automata-based Techniques . 61

5.4 Semantic Complex Event Processing 63
5.4.1 Temporal RDF Systems . 63
5.4.2 Semantic Event Processing over RDF Streams 64

5.5 Summary and Discussion . 67

This chapter is structured as follows: Section 5.1 provides introductory
remarks about CEP. Section 5.2 presents data models for CEP. Section 5.2.2
presents various query languages and their operators for CEP. Section 5.3
provides a detailed analysis of models and techniques used by existing CEP
systems. Section 5.4 presents a detailed analysis of existing SCEP techniques.
Section 5.5 concludes the chapter with a discussion.

52

5. Detection of Complex Event Patterns 53

5.1 Introduction
A Data Stream Management System (DSMS) works on an unbounded sequence of time-
stamped data items, where data items within streams and bounded by the windows
are matched against query-defined aggregates and filtering operators. The notions of
temporal statefulness between data items, which represents the temporal relations, was
not made explicit by the DSMSs and is ignored by system architectures. In the context
of Complex Event Processing (CEP), an event typically corresponds to a single data item
with temporal attributes and a defined temporal pattern matches not only the data values
within data items, but also the temporal relations between a set of events.

Consider the sensor networks example, where a user would like to capture the temporal
pattern of temperature values (reported by a sensor). That is, a pattern describing that
the temperature has decreased to a local minimum and then raised to a maximum value
notifies a specific event happening in the external world. Supporting such attributes
requires careful consideration of the temporal properties of data items, and the statefulness
within data items. Hence, for each execution of the system, the newly arrived data items
are not only matched with the query-defined filters, but also with the query-defined
temporal properties (sequences). These characteristics are covered under the umbrella
of CEP [CM12]. CEP model views flowing information items as notifications of events
happening in the external world, which have to be filtered and combined to understand
what is happening in terms of higher-level events [CM12].

The origins of CEP approaches may be traced back to the publish-subscribe do-
main [Eug+03]. While the traditional publish-subscribe systems consider each event
separately from the others, and filter them (based on their topic or content) to decide if
they are relevant for subscribers, CEP systems extend this functionality by increasing
the expressive power of the subscription language to consider complex event patterns
that involve the occurrence of multiple related events.

There are several definitions of CEP applications [Bre+09, Luc01, WDR06a], but
they commonly involve three requirements:

1. complex predicates (filtering, correlation),

2. temporal/order/sequential patterns,

3. transforming the event(s) into more complex structures.

Herein, we first describe the query languages and systems for CEP and then move
towards the semantically-enabled CEP. For brevity, a discussion of the following topics
has been omitted: these are not directly related to the topic of this thesis, and are
considered as customised use cases.

1. CEP over out-of-order streams or streams with imprecise timestamps, such as works
presented in [FAR11, ZDI10].

2. Distributed CEP, such as works presented in [Bre+09, SMMP09].

5.2 Data Model and Operators for Complex Event Process-
ing

CEP has evolved from many di�erent research areas, thus a standard terminology has
not yet established and found broad adoption [Eck+11]. For example, what is called a

5. Detection of Complex Event Patterns 54

!"#$%

&'(")*#'+

!"#$%,-%'#./+

0(/12#3,!"#$%+ !"#$%

0($+4/#'+

!"#$%,&.%%#'$+ !"#$%,&'(5#++('

Figure 5.1: High-level Overview of CEP System

(complex) event query might also be called a complex event type, an event profile, or an event
pattern, depending on the context. Therefore, before diving into matters it is worth to settle
some terminology and the basic functioning of event queries, and to make it more precise.

Event queries are evaluated over time in a system called the event processor, event
query evaluation engine, or CEP engine. Its inputs are data items called simple events.
An event indicates that something of interest has happened or is contemplated as
happening. Events can be represented in many data formats, such as relational tuples,
XML documents or objects of an object-oriented language. Similarly to other types of
data, it is common to classify events according to some type: for XML it can be the
schema, or an explicit ID for the relational tuples.

Since simple events are received over time, the input takes the form of one or more
streams. Every simple event is associated with at least one time point or interval called its
occurrence time. Unless otherwise specified, we assume here for simplicity of presentation
that events have only one occurrence time. The output of the event processor are the
query answers or complex events. The output typically takes the form of a new data
object (e.g., a message to be communicated to another system). However, the term
output should be understood broadly to include for example also the cases where the
event processor does not explicitly construct new data but directly initiates some action,
e.g., an update to a database or displaying something in a graphical user interface.

5.2.1 Data Model
Herein, we extend the Definition 3.1 to formally describe an event and event stream.

Definition 5.1: Relational Event and Relational Event Stream

A Relational event, or simply an event, e is a pair (v, ·), where v œ Ÿ is a
relational tuple and · œ N

+ is an associated timestamp. A relational event
stream S

e

is a countable infinite set of events.

The relational tuple (v) within an event (e) consists of a set of attributes, i.e., an
entry of a tuple and the set of values of the event attributes: it is called event data.
Since an event happens at a particular time, the implicit timestamp of an event is
called event occurrence time. Note that the above definition for an event can easily
be extended, where event occurrence time is captured by a time-interval, i.e., using
two timestamps to indicate its bounds.

Figure 5.1 illustrate the high-level architecture of a CEP system, where events are
sent by the event producers (e.g., sensors) to event processor (CEP system) as an event

5. Detection of Complex Event Patterns 55

stream. The event processor utilises an event query language (EQL) which matches
events to its described types in the query languages. For instance, highTemp(area (a))
is an event defined in an EQL indicating high temperature in an area a. A simple
query is a specification of a certain kind of single event, while a complex query specifies
certain combination of events with multiple event queries and the conditions describing
the correlation between them. For example, highTemp(area (a)) æ smoke (area (a))
is a complex event that could be interpreted as the presence of fire. That is, if high
temperature event is followed by (æ) smoke event in an area.

5.2.2 Event Query Languages and their Operators

Complex event queries are associated with actions that are to be performed whenever a
complex event is detected. Since actions are sensitive to the timing and ordering, it is
important to know when a complex event is detected (and thus an action is executed)
in order to understand the behaviour of the overall system.

Historically, most of the EQL have their roots primary in active database sys-
tems [PD99], where queries are expressed by composing events using di�erent composite
operators that are inspired from the regular expressions. Examples of EQLs includes the
COMPOSE language of the Ode active database [GJS92a, GJS92b], the composite event de-
tection language of the SAMOS active database [GD94], Snoop [Cha+94] and its successor
SnoopIB [AC06], GEM [MSS97], SEL [ZS01], CEDR [BCM06], ruleCore [SB05], the SASE
Event Language [WDR06a], the original event specification language of XChange [BE07,
Bry+07], the XSEQ [Moz+13] language for CEP over XML structured data, and the
languages proposed in the following papers: [Ron98, ME01, HV02, CL04, Sán+05].

Generally, EQLs are based on composite operators including conjunction/disjunction
of events (all/some events must happens, possibly at di�erent times), sequential (all
events happen in a specified order), kleene-+ (one or more occurrence of the same
types of events), and negation within a sequence (an event does not happen in the
time between other events). Furthermore, languages such as SASE [WDR06a] also
proposed the event selection strategies such as skip-till-next, skip-till-any and partition-
contiguity; their details are described later.

Herein, we describe the operational semantics of CEP compositional operators using
the Snoop event specification language [Cha+94]: Snoop is among the first contributions
for defining the semantics of EQL and provides the basis for a number of CEP languages.
In Snoop, an event E is a function of time-domain onto the Boolean values {True, False}.

E : T æ {True, False}

For an event of type E happening at time point · , the function is evaluated to
True, otherwise it is False. The semantics of CEP operators specified by the Snoop
algebra are described as follows:

1. Sequence Operator (;). The sequence operator determines that two event E
1

and E
2

occur sequentially. That is, their associated timestamps are distinct to each
other with one greater than the other. The formal semantics of sequential operator
are as follows:

(E
1

; E
2

)(·) = (÷(·
1

)(E
1

(·
1

) · E
2

(·)) · ·
1

< ·)

5. Detection of Complex Event Patterns 56

2. AND/Conjunction operator (�). The conjunction operator determines whether
two events of type E

1

and E
2

occur at the same time. Two events are said to occur
at the same time if their timestamps overlap. Formally it is defined as follows:

(E
1

�E
2

)(·) = ((÷·
1

)(E
1

(·
1

) · E
2

(·)) ‚ (E
2

(·
1

) · E
1

(·)) · ·
1

= ·)

3. OR/Disjunction Operator (O). The disjunction operator determines whether
an event from two defined events occurs without having any constraints over the
timestamps or order. Formally it is defined as follows:

(E
1

OE
2

)(·) = E
1

(·) ‚ E
2

(·)

4. NOT/Negation Operator (¬). The negation operator determines the non-
occurrence of certain types of events with respect to certain time interval. The
non-occurrence either related to non-existence of an event or if an event does not
match to the defined event attributes. It is formally defined as follow:

¬(E
2

)[E
1

, E
3

](·) = (÷·
1

)((E
1

(·
1

) · E
3

(·)) · @(E
2

(·)) · ·
1

Æ ·)

5. ANY Operator. The ANY operator returns matches if m matches of events
happen out of n events in time, while ignoring the relative order of their occurrences.
It is formally defined as follows:

Any(m, E
1

, E
2

, . . . E
n

)(·) = ÷(·
1

, ·
2

, . . . , ·
m≠1

)(E
i

(·
1

) · E
j

(·
2

) · · · · · E
k

(·
m≠1

))
·E

l

(·) · (·
1

Æ ·
2

. . . ·
m≠1

Æ ·) · (i ”= j ”= · · · ”= k ”= l) · (1 Æ i, j, . . . , k, l Æ n))

6. Aperiodic Operator (A, Aú). The aperiodic operator allows the expression of
an aperiodic event in a time interval marked by two events. Snoop provides two
di�erent variations of the aperiodic operator: the non-cumulative and the cumulative
operator. The non-cumulative aperiodic operator (A) returns matches each time
an event E

2

occurs between E
1

and E
3

, i.e., within the time-interval started by E
1

and ended by E
3

. Formally it is defined as follows:

A(E
1

, E
2

, E
3

)(·) = (÷·
1

)(’·
2

)((E
1

(·
1

)·E
2

(·))·(·
1

Æ ·)·(+E
3

(·
2

)(·
1

Æ ·
2

< ·)))

The + sign indicates one or more occurrence of event E
3

after the arrival of E
2

.
The cumulative aperiodic operator (Aú) returns the matches only once within the
given interval of two marker events (i.e., E

1

and E
3

). Formally, it is defined as
follows:

Aú(E
1

, E
2

, E
3

)(·) = (÷·
1

)(E
1

(·
1

) · E
3

(·)) · (·
1

< ·)

This operator accumulates the zero or more occurrence of event E
2

between events
E

1

and E
3

. The operator is matched with the occurrence of an event E
3

.

5. Detection of Complex Event Patterns 57

7. Periodic Operator (P, P ú). Let T be a constant time T œ N

+, then the cumulative
periodic operator (P (E

1

, [T], E
2

)) detects all the occurrences of E
1

followed-by E
2

within the time T . It is formally described as follows:

P (E
1

, [T], E
2

)(·) = (÷·
1

)(’·
2

)(E
1

(·
1

) · +E
3

(·
2

)) · (·
1

< ·
2

Æ ·)·
·

1

+ i ◊ T = ·, for i œ N

+ 1 Æ i

The cumulative variation of the periodic operator accumulates times of occurrences
of periodic events. Formally, it is defined as follows:

P ú(E
1

, [T], E
3

)(·) = (÷·
1

)(E
1

(·
1

) · E
3

(·)) · ·
1

+ T Æ ·

The Snoop event language has also introduced the concept of parameter contexts,
which influences the detection behaviour of snoop operators. For the detection of a
complex event, multiple matches might be available. Based on the semantic context of
operators, di�erent matches of primitive events are available, e.g., for the event history (a
b b) during the matching of (A;B) pattern, the complex event might be matched once
or twice depending on the semantics of the event detection system.

Based on the above algebraic operators, SASE [WDR06b, Agr+08] has provided
various selection strategies for the sequence operators. Herein, we briefly described the
selection strategies, namely strict contiguity, skip-till-next, skip-till-all. These selection
strategies overload the sequence operator with the constraints and define how to select
the relevant events from an input stream, while mixing relevant and irrelevant events.
These selection strategies are described as follows:

1. Strict Contiguity. This is the most stringent event selection strategy, where two
selected events within a sequence must be contiguous in the input stream. That is,
given a sequence (E

1

; E
2

), the event of type E
2

follows E
1

in a way that there can
be no other events between the two selected events.

2. Skip-till-next. This strategy is a relaxed form of strict contiguity to remove the
contiguity requirements. That is, for a given sequence (E

1

; E
2

) all the irrelevant
events between events of type E

1

and E
2

are skipped until the next relevant event
is read. This strategy is important in many real-world scenarios where some events
in the input are “semantic noise” to a particular pattern and should be ignored to
enable the pattern matching to continue [Agr+08].

3. Skip-till-any. This strategy relaxes the skip-till-next by further allowing non-
deterministic actions on relevant events. That is, for a given stream and a sequence
(E

1

; E
2

) all the patterns, where an event of type E
2

follows E
1

, are matched and
added to the output stream. This strategy essentially computes transitive closures
over relevant events types as they arrive.

The more or less formalised description of the CEP operators provides an important
mean to transfer knowledge about the successful design of an EQL. This allows the
system designers to reuse the existing experience for building CEP solutions. In the
proceeding section, we provide the details of the CEP systems that aim at providing
an e�cient implementation of these CEP operators.

5. Detection of Complex Event Patterns 58

5.3 Methods and Techniques for Complex Event Process-
ing

The literature provides a rich set of methods and techniques utilised for e�cient CEP over
data streams. Existing techniques for CEP can be categorised into two classes: rule-based
solutions and non-rule-based solutions. The non-rule-based approaches can further be
classified into three classes: Automata-based techniques [WDR06b, Agr+08, Bre+07,
BV10], Event Graph-based techniques [GJS92a, GJS92b, PD99], and Petri Nets [GFV96].

These solutions are implemented in di�erent research prototypes or as a commercial
products. In the following, we briefly review these techniques and their related implementa-
tions.

5.3.1 Rule-based Techniques
The rule-based techniques parse the defined CEP queries into a set of rules, where events
are injected to a logic programming system as facts, and event patterns are specified as
goals for such rules. Rule-based approaches have various advantages [Ani+10]. First, they
are expressive enough and convenient to represent diverse complex event patterns, and
come with a formal declarative semantics based on the well-understood logics. Moreover,
declarative rules are free of side-e�ects (e.g. confluence problem, i.e, merger of rules).
Second, the integration of CEP operators and event processing with rules is easy and
natural (e.g. processing of recursive queries).

A logic-based approach introduced in [Pas06] proposes a homogeneous reaction rule
language for complex event processing. It is a combinatorial approach for processing events
and actions, with the formalisation of reaction rules in combination with other rule types,
such as derivation rules, integrity constraints and transactional knowledge. Prova [Koz+06]
is another rule language and a rule engine. Its design is based on reactive messaging,
combination of imperative, declarative and functional programming; and it implements
SLD-algorithm for backward reasoning. One of the important design principles in Prova
is the reactive messaging that allows the organisation of several Prova rule processing
engines into a network of communicating agents. A Prova agent is a rulebase that is able
to send messages to other Prova agents by using message passing primitives.

One of the recent rule-based systems for stream reasoning and CEP is ETALIS [Ani+12].
It is implemented in Prolog and uses the Prolog-inference engine for event processing.
It provides two event processing languages: ETALIS Language for Events (ELE) and
EP-SPARQL [Ani+11]. A major distinction between ETALIS and Prova is that ETALIS
is a meta-program implemented on top of a Prolog system with only one global knowledge
based (KB) in which every piece of knowledge, such as incoming events, is globally applied,
whereas Prova allows for local modularisation of the KB and local event processing states
within the complex event computations and event message based conversations. This
leads to a branching logic with local state transitions, since it is common in workflow
systems and distributed parallel processing.

RETE [For90] is a rule-based algorithm and is also utilised by various CEP systems
(see Chapter 4, Section 4.3.4 for details on RETE). All of the operations on data tuples
like relational query processor, performing projections, selections and joins are executed
on the network of RETE objects. RETE has been used by commercial CEP systems
such as TIBCO Business Events [Tib] and Drools Fusion [Dro]. [SSS08] builds an EDG
on top of RETE. Thus to curtain the issues of working memory and garbage collection:
for condition actions (CA) (i.e., query filters), the production node from the RETE

5. Detection of Complex Event Patterns 59

network is solely connected to the rule node in the EDG, while for the event condition
actions (ECA) (i.e., temporal operators) an additional event node from the EDG is
connected to the rule node. The rule node fires its associated rule actions according to
the ECA semantics. For an ECA rule action to fire, an event must be detected, and
for its complete interval, the condition must be fulfilled. This means events are not
correlated as long as RETE supplies no matched tokens.

Apart from the above mentioned strengths, event processing systems [Pas06, KS86,
LLM98] based on various logic formalism have some shortcomings too. One significant
shortcoming is the data or event-driven computation. Deductive systems are rather suited
for a request-response computation. That is, given a request, an inference engine evaluates
the available knowledge (i.e. rules and facts) and responds with an answer. This means
that the event inference engine needs to check if this pattern can be deduced or not. The
check is performed at the time when such a request is posed. If satisfied by the time
when the request is processed, a complex event will be reported. If not, the pattern is not
detected until the next time the same request is processed (though it can become satisfied
in-between the two checks). Contrary to this, event processing demands data-driven
computation (as handled by various approaches such as NFA , Petri Nets [GFV96], etc.),
where arrival of new data evaluates the updated knowledge. Since such a process is quite
frequent in a data-driven computation, deductive systems choke under high stream rates.

RETE based approaches may be integrated with deductive rules [Ani+12] to implement
complex CEP operators. However, handling aggregates over event stream is a laborious
and computing intensive task for the RETE-based approaches. Moreover, di�erent event
selection strategies cannot be directly implemented over RETE [Cha+94]. The main
drawback of RETE-based CEP is that it has high memory space requirements. Saving the
state of the system for the matched and partially matched patterns requires considerable
amount of memory. The space complexity of RETE is of the order of O(RFP), where R
is the number of rules, F is the number of asserted facts, and P is the average number
of patterns per rule. Thus, if all the facts were to be compared against all the patterns,
the performance of the system can degrade exponentially for a large window.

5.3.2 Graph-based Techniques

In graph-based techniques, CEP operators/rules are represented in a graph-like structure,
and their execution is based on triggers. That is, CEP operators are triggered by the
data manipulation events that occur during the processed transactions within a database
or within event streams. However, the evaluation of the operators and the execution of
the actions are postponed util after the commitment of the transactions.

Sentinel [Cha97, Cha+95] is an active object-oriented database that implements
CEP operators defined in Snoop [AC06]. It employs an event detection graph (EDG)
that is complied from the event expression and is directed acyclic in nature. The
complex expressions are represented by the nodes in EDG with links to the nodes of
their subexpressions, going all the way down to the leaf nodes of simple event definitions.
The execution of the EDG starts from the bottom leaf nodes with the arrival of an
event, and the execution flows upward through the graph, while satisfying/triggering
defined conditions. Figure 5.2 illustrates an event detection graph in Sentinel with AND,
OR operators defined over events E1, E2 and E3. The main drawbacks of EDG, similarly
to Petri Nets as described later, include the lack of support for complex operators such
as kleene-+, and event selection strategies: it does not represent or even clarify the
semantics of complex event expressions.

5. Detection of Complex Event Patterns 60

Figure 5.2: Example of Sentinel Event Detection Graph

Zstream [MM09] is another CEP systems using graph-based techniques, however, it
employs a tree structure to map a set of query operators. Each tree node is assigned
with a bu�er, where leaf bu�ers (nodes) store the primitive events as they arrive. The
internal nodes, containing the query operators, process events from the leaf bu�ers and
store them in their bu�ers. There are two di�erent modes of operation in Zstream,
event-based and batch-based. As evident from the name, event-based process each event
with its arrival, while the batch-based batches a set of primitive events and the operators
are executed over them in batches.

For the detection of composite events, Gatziu et al. [GFV96] proposes SAMOS Petri
Nets (S-PN): it is an extension of Coloured Petri Nets (C-PN) [Jen94]. A Petri Net [MZ95]
is a collection of directed arcs connecting places and transitions. Places may hold tokens
and the state or marking of a net is its assignment of tokens to places. A transition
is enabled when the number of tokens in each of its input places is at least equal to
the arc weight going from the place to the transition. The use of C-PN (see [Jen94] for
details) allows the flow of parameter bindings through the Petri Net; thus the parameter
passing within a composite event instance can be modelled. S-PN extends C-PN by
allowing tokens to carry complex information regarding the parameters of events. This
enables places to represent event patterns and tokens to act as the events detected
up-until now. Furthermore, the arc expressions are used to transform the parameters
of event(s) into the parameters of composite events.

Figure 5.3 illustrates the mapping and execution of conjunction, disjunction and
sequence operators for events E1 and E2. The simple S-PN are combined into a combination
of S-PN that merge repeated patterns into a single S-PN. This enables the e�cient
evaluation of complex patterns. The algorithm for the execution of S-PN is based on the
token-game [GFV96]. It employs a matrix to represent a set of arcs in the S-PN, and once
a token (event) is added to a place, the algorithm iterates over the rows of the matrix,
which represents the input-arcs-to-transitions from the place and then attempts to fire
the transitions rules. If a transition is fired, the corresponding column, describing the
output-arcs-to-places, is traversed and a new token is placed accordingly. The procedure
is continuously repeated for each input event until no transition can be fired.

Although C-PN, employed by S-PN, provides elegant techniques to detect complex
events, its executional model can become quite complex for expressive operators such as
kleene-+ or large complex patterns. For instance, when several S-PNs are combined into
a merged S-PN. For the same reason, the augmentation of parameters, kleene-+ operator
and event selection strategies are not allowed in S-PN. Moreover, the matrix representing

5. Detection of Complex Event Patterns 61

Figure 5.3: From top left to right, the S-PN of the three composite event constructors: conjunction
(E1,E2), disjunction (E1|E2) and sequence (E1;E2). The function ü(x,y) computes the union of
the parameters x and y. Note that, in the S-PN for (E1;E2) the place H (with an initial token)
prevents the transition t0 from firing until E1 has occurred.(adapted from [MZ95])

arcs in the S-PN is usually sparse, and the algorithm has to iterate several times over rows
and columns when playing token-game. Hence, this makes S-PN insu�cient to provide a
scalable and optimised solution. Therefore, C-PN and S-PN are only utilised for active
databases, and are considered as from the very first generation of CEP systems.

5.3.3 Automata-based Techniques
Automata-based techniques are commonly used for pattern matching, where two of its
variants Non-Deterministic Finite State Automata (NFA) or Deterministic Finite state
Automata (DFA) are heavily utilised with customised models: CEP queries generally
follow a regular expression structure, thus automata-based approaches are naturally
favoured in this context. The raw event streams can be considered as an input sequence,
which are matched against the defined set of states of an automaton.

Formally, a Finite State Automata (FSA) is a tuple M(Q, �, ”, I, F), where Q is a set
of state, I œ Q is a set of initial states, F ™ Q is a set of final states, � is the alphabet,
and ” is a partial mapping ” : Q ◊ (� fi Á) æ P (Q) denoting the transition predicate of
the states. The size of the FSA is equal to the number of states |Q|, and P (Q) is the
power set of Q. Let q

i

, q
j

œ Q, then a transition from source state to its target state
q

i

P (qi)æ q
j

for an event e happens i� e satisfies the transition predicate function P (q
i

).
The determinism and non-determinism of a FSA, which later classifies it as DFA or NFA,
depends on the transition functions. That is, if there is a same transition function for
two di�erent target states with same source state (e.g.,q

i

P (qi)æ q
j

and q
i

P (qi)æ q
k

), then
its an NFA, otherwise the automaton acts like a DFA. In general, NFA o�er higher
expressiveness as compared to their deterministic counterparts [Moz+13]. An NFA is
able to represent complex patterns and is closed under union, intersection, conditional
and kleene closure operators. The execution of an NFA automaton is realised through
runs, which are the executional instances of an NFA automaton and represent the partial
match of a sequence. Each run holds a pointer to the current active state of the FSA
and a set of events that conform to its transition predicate till the current active state.
A run might or might not lead to a match, thus the lifetime of a run depends on the
defined window size and on the event selection strategy. For each incoming event, a
new run is created if an event matches to the first state’s predicate or cloned from an

5. Detection of Complex Event Patterns 62

existing run if the active state contains kleene-+ operator.

Figure 5.4: Structure of NFAb for the pattern ab+c with skip-till-any strategy (adapted
from [Agr+08])

SASE [WDR06b] and SASE+ [Agr+08] are based on the NFA model for the execution
of CEP and provide expressible queries with event selection strategies. However, operators
such as conjunction and disjunction are not supported in their system design. They
extend NFA with a match bu�er, called NFAb to store the matches of each state. This
allows them to utilise various run-time optimisations such as merging of runs that are
stationed at the same states [Agr+08]. Figure 5.4 illustrates the NFAb model for pattern
a,b+,c using the skip-till-any selection strategy. The first state is labelled with the first
character/predicate from the input stream, i.e., a with an edge labelled as begin. This edge
transits to the next state labelled as b[1], as b contains a kleene operator. The ignore
edges describes the skip-till-next operator, and the take edge presents the non-determinism
(‘). If the whole pattern matches to the input stream, it transits to the final state F.

Cayuga [Bre+07], which is a research project at Cornell University, provides a query
language for the expression of complex event patterns called Cayuga Algebra. It also
supports some special performance optimisation like indexing and garbage collector; it
utilises NFA for the query compilation and execution. Esper [BV10] is a community-based
CEP systems that employs a variant of DFA model. It provides an event query language
with similar operator to CQL, and supports correlation and SQL-like queries over event
streams. Esper also provides operators for the specification of event detection patterns
and special operators to define the event stream consumption policy like the “every”
operator that specifies precisely how the event stream should be matched to the pattern.

The computational complexity of the automata-based techniques depends on the
number of active runs within a defined window. The higher the number of active
runs, the longer it will take to process an event: each incoming event is matched with
the output transitions of current active states of all the active runs. The complexity
analysis of NFA is comprehensively described in [Agr+08], where each selection strategy
and the kleene operator has a variable e�ect on the complexity measures. That is,
the strict contiguity strategy has linear time complexity, skip-till-next also results in a
linear time complexity, kleene-* is quadratic, and the skip-till-any is the most expensive
with exponential time complexity.

The automata-based techniques provide a radically di�erent view compared to existing
DSMSs, where query operators are usually organised in an operator tree. This makes it
di�cult to reuse existing optimisation techniques provided by DSMSs. Such property
can be considered as both an opportunity and a limitation. In one view, it can provide
new exciting optimisation techniques inspired from the field of regular expression, and in
another view it limits the adaptation of techniques from existing DSMSs.

5. Detection of Complex Event Patterns 63

5.4 Semantic Complex Event Processing

Exiting CEP systems described in Section 5.1 are constrained by the specific user-defined
schemas, and primarily deal with synthetic low-level primitive events and defined actions.
Thus, the integration of knowledge to extract high-level information is not taken into
account. The fusion of CEP approaches with knowledge representation models, such
as RDF, leads to semantic CEP (SCEP), where each event is model as an RDF triple
instead of relational-tuple or XML data item. This enables SCEP systems to reap the
benefits o�ered by the RDF data model: in particular, its schema-less nature that allows
heterogeneous streams to be integrated in the system. Lifting data streams to the semantic
level enables the integration of streams with higher-level knowledge representation and
reasoning necessary for handling background knowledge, thus describing the context or
domain in which streaming data are interpreted.

Despite the explicit advantages, the research area of SCEP is still quite fertile and
only few solutions are provided in this context. The two main approaches that are related
to SCEP (to some extent) are works on temporal RDF [GHV05] and event processing
over RDF triple streams [Ani+11]. The first type of work, however, cannot be directly
related to SCEP systems, but provides an intuition of time within an RDF dataset.
We first review the techniques related to temporal RDF databases and then move to
a discussion on event processing over RDF triple streams.

5.4.1 Temporal RDF Systems

The concept of temporal RDF [GHV05] is evolved from the annotated RDF (aRDF) [URS10]
that builds upon annotated logics (A) [KS92]. aRDF can capture fuzzy or probabilistic
logics, timestamps, and temporal-fuzzy informations: an aRDF triple consists of an ordinary
RDF triple together with an annotation, i.e., a member of A. aRDF mainly emphasises
on the theory, the semantics and the design of an RDF data model annotated with
certain properties. Hence, in general, temporal RDF follows the path of active databases
(as discussed in Section 5.3) to extract temporal relations within an RDF triple store
through an extended form of SPARQL language.

In temporal RDF, generally, a time-interval/time-points can be added into RDF
using a data type property. However, in order to explicitly describe the temporal query
operators, temporal RDF considers time as an additional dimension in data, while
preserving the semantics of the time. Thus, each triple Ès, p, o| T Í in the RDF database,
called multi-temporal RDF triple, is associated with a timestamps T œ T , where T
is an n-dimensional time domain. It enables the compression of data associated with
timestamps: time-stamped triples avoid the duplication of triples in the presence of
temporal pertinence [GHV05].

Few extensions of SPARQL are proposed to query temporal RDF. T-SPARQL [Gra10]
is one of them; it extends SPARQL with temporal operators, such as OVERLAPS, WITHIN.
Similarly to the standard SPARQL queries and RDF triple store, T-SPARQL [Gra10]
and other queries languages, such as · -SPARQL [TB09], process the queries in an ad-hoc
manner: queries are issued once and the answers are returned to the users, and data
are stored in a persistent storage. Note that, both of the above mentioned works (T-
SPARQL and · -SPARQL) merely provide the theoretical details regarding the semantics
of their query languages, but the implementation details and techniques to process query
operators have not been the part of their work.

Temporal RDF and systems like · -SPARQL provide the motivation of SCEP. However,

5. Detection of Complex Event Patterns 64

in parallel to the active databases, their aim is not to query data streams, and their
executional semantics do not comply to the streaming settings. In the proceeding section,
we discuss the solutions that consider RDF streams as the basic of their model and
can be classified as SCEP.

5.4.2 Semantic Event Processing over RDF Streams
The semantic event processing requires a dedicated language and a framework which
uniformly processes continuous queries over RDF streams. The queries provide the
patterns that are matched while considering the graph nature of RDF. In this regard,
to the best of our knowledge, EP-SPARQL [Ani+11] is the only system which provides
a language, semantics and implementation; other systems either provide a theoretical
formalism or utilise ontology-based data access, i.e., mapping the relational tuples with
the domain ontology. Herein, we first review EP-SPARQL: it is directly related to
our work presented in this thesis.

EP-SPARQL

It is a unified language built on top of the ETALIS [Ani+12] engine, and extends SPARQL
with temporal operators. Its main building blocks are represented by a set of logical
and temporal sequence operators that can be combined to express complex patterns over
RDF streams. The input model of EP-SPARQL contains a set of RDF triple events, each
annotated with a time interval. It is defined as follows:

Definition 5.2: RDF Event and RDF Event Stream

Let Ès, p, oÍ be an RDF triple then an RDF event is a pair (Ès, p, oÍ , T), where
T = [·, · Õ] is an associated time-interval containing timestamps denoting the
boundaries of the time interval of the occurrence. S

re

, containing the set of RDF
events, denotes the RDF event stream.

The data model of EP-SPARQL adopts two timestamps, which represent the lower
and upper bound of the occurring interval, i.e., interval semantics. This reflects on
output triples, whose occurrence intervals are computed from the input elements that
contributed to their generation. An RDF event stream is fed to the system, where a
set of sequence patterns are defined to extract the temporal and logical relationships.
Herein, first we describe the EP-SPARQL query language and later provide the details
about its execution model.
EP-SPARQL Query Language: The four main temporal binary operators of EP-
SPARQL, which are extended from SPARQL include: SEQ, EQUALS, OPTIONALSEQ and
EQUALSOPTIONAL. Query 5.1 presents a sample EP-SPARQL query with the SEQ operator,
where the sequence for a high temperature and the detection of smoke is defined. The
executional semantics of EP-SPARQL queries are based on the concept of mappings (as
defined in Chapter 2), such that (µ, ·

–

, ·
Ê

) is a solution for an expression of SPARQL
graph pattern, and a set of them takes the form of an RDF stream, such that

{(Ès
1

, p
1

, o
1

Í , ·
1

, · Õ
1

), . . . , (Ès
1

, p
1

, o
1

Í , ·
n

, · Õ
n

)} ™ S
re

,

·
–

= min(·
1

,·
n

),
·

Ê

= max(· Õ
1

, . . . , · Õ
n

).

5. Detection of Complex Event Patterns 65

1 SELECT ?temp ?area
2

3 WHERE
4

5 SEQ { ?area : hasTemp ?temp. }
6 SEQ { ?area : hasSmoke ?smoke. }
7

8 Filter (? temp > 50)

Query 5.1: EP-SPARQL query

In the following, we describe various operators of the EP-SPARQL language and
their executional semantics. These semantics are based on sets of mappings (�, �Õ),
compatibility (≥) between mappings, and joins on between mappings (see Definition 2.6
and 2.7 in Chapter 2 (Section 2.4.1)).

• SEQ Operator. The sequence operator, as described in Section 5.2.2, determines the
temporal sequence between two RDF events, i.e., if an RDF event follows another.
A sequence operator denoted as SeqJoin for the two sets of mappings is formally
defined as follows

SeqJoin(�, �Õ) = {(µ, ·
–

, ·
Ê

) on (µÕ, · Õ
–

, · Õ
Ê

) | (µ, ·
–

, ·
Ê

) œ �,

(µÕ, · Õ
–

, · Õ
Ê

) œ �Õ · µ ≥ µÕ · ·
Ê

< · Õ
–

}

• OPTIONALSEQ Operator. Similarly to SPARQL, the OPTIONALSEQ operator selects
the RDF event within a sequence if it exists for a certain defined pattern: this
operator can be classified as disjunction operator. It is denoted as LeftJoin, and
formally, it can be defined using the left-outer join () (see Definition 2.7) as follows:

LeftJoin(�, �Õ) =

Y
_]

_[

(µ, ·
–

, ·
Ê

) on (µÕ, · Õ
–

, · Õ
Ê

) | (µ, ·
–

, ·
Ê

) œ �,
(µÕ, · Õ

–

, · Õ
Ê

) œ �Õ · · Õ
Ê

< ·
Ê

: if µ ≥ µÕ

(µ, ·
–

, ·
Ê

) | (µ, ·
–

, ·
Ê

) œ � · · Õ
Ê

< ·
Ê

: if µ ⌧ µÕ

• EQUALS Operator. This operator, denoted as EqJoin, provides the semantics of
conjunction, where two RDF events are selected from the event stream if they occurs
at the same time. Formally, it can be defined as follows:

EqJoin(�, �Õ) = {(µ, ·
–

, ·
Ê

) on (µÕ, · Õ
–

, · Õ
Ê

) | (µ, ·
–

, ·
Ê

) œ �,

(µÕ, · Õ
–

, · Õ
Ê

) œ �Õ · µ ≥ µÕ · ·
–

= · Õ
–

· ·
Ê

= · Õ
Ê

}

• EQUALSOPTIONAL Operator. This operator is the combination of both LeftJoin
and EqJoin, where an RDF event is optionally selected, while considering that its
time-interval overlaps with the previous ones in the sequence. It is formally defined
as follows:

EqLeftJoin(�, �Õ) =

Y
_]

_[

(µ, ·
–

, ·
Ê

) on (µÕ, · Õ
–

, · Õ
Ê

) | (µ, ·
–

, ·
Ê

) œ �,
(µÕ, · Õ

–

, · Õ
Ê

) œ �Õ · ·
–

= · Õ
–

· ·
Ê

= · Õ
Ê

: if µ ≥ µÕ

(µ, ·
–

, ·
Ê

) | (µ, ·
–

, ·
Ê

) œ � · ·
–

= · Õ
–

· ·
Ê

= · Õ
Ê

: if µ ⌧ µÕ

5. Detection of Complex Event Patterns 66

EP-SPARQL
Query EP-SPARQL

Parser

EP-SPARQL
Prolog internal

term format

EP-SPARQL to
ETALIS Compiler

ETALIS ELE
System

EP-SPARQL
Query Results

(Complex
Events)

RDF XML Parser

RDF Event
Streams

Background
Knowledge

Rules in internal format

EP-SPARQL

ETALIS

Figure 5.5: System Diagram of EP-SPARQL(adapted from [Ani+12])

EP-SPARQL does not provide any explicit negation and kleene-+ operators. However,
the negation can be implemented with the combination of OPTIONAL and SPARQL 1.0
FILTER operator. Note that the semantics of the evaluation of a complete EP-SPARQL
query are not provided in the literature, and cannot be inferred from the semantics of
each clause: it is not clear how the nesting of the various operator can be evaluated.

Executional Model of EP-SPARQL: The executional model of EP-SPARQL is based
on a rule-based system called ETALIS (as described in Section 5.3.1). The registered
queries are first translated into logical expressions using the ETALIS language for events,
and then to Prolog rules. ETALIS uses an event-driven backward chaining (EDBC)
algorithm to compute the rules over event stream. EDBC rules are logic rules, and
hence can be mixed with other rules generated from the background knowledge, i.e.,
domain knowledge such as an RDFS ontology.

Figure 5.5 illustrate how the EP-SPARQL queries are processed via ETALIS. The
EP-SPARQL queries are translated into Prolog rules, and the RDF events within the
stream are also mapped onto Prolog triples. There is also an option of using the
background knowledge-base in the form of Prolog rules or an RDFS ontology with Prolog
rule mappings, where the mapped RDF events are continuously matched against the
translated rules using the ETALIS engine. EP-SPARQL does not implement and explicitly
provide RDF-based optimisations, instead it relies on ETALIS for the execution of joins
between the graph patterns and the temporal reasoning.

5. Detection of Complex Event Patterns 67

Other Systems

Recently, few more techniques are proposed that can be related to the SCEP approaches.
The first category of these are purely theoretical with the aim of employing ontology-based
data access to infer the relational streams through an ontology. The second approach is
simply an event processing system, where pure SPARQL graph patterns (without any
temporal operator) are matched with the RDF events.

STARQL [ÖMN14] (Streaming and Temporal ontology Access with a Reasoning-based
Query Language) uses an ontology-based data access technique to enrich each event. It
uses the first-order logic fragment for temporal reasoning over ABox sequences constructed
within the query. It extends SPARQL with operators such as USING STATIC ABOX to
query the static Knowledge-base; SEQUENCE BY to define sequences over triples; window
operators (e.g. NOW -> 1s) to describe sliding windows. The data model of STARQL
is a stream of Abox assertions of the form ax ÈtÍ, where the timestamp t stems from
a flow of time (T, Æ) with T as a dense set of timestamps, and Æ as a linear order.
The defined STARQL query is mapped to the underlying SQL query that is executed
over the mappings of ontology and the relational triples. STARQL provides a simple
sequence operator. However, other operators, such as conjunction/disjunction, kleene-+
and negation are not supported in the language.

INSTANS [RNT12] is an event processing systems with a focus on processing an
RDF event stream with standard SPARQL operators. It does not provide any CEP
operators instead uses the INSERT operator in SPARQL 1.1 to insert data into SPARQL
graph patterns and process them in a continuous fashion; hence it cannot be qualified
as a SCEP system. It employs the RETE algorithm and propagates data through a
query matching network: the matches are produced as soon as all the conditions of
the SPARQL graph patterns are matched.

5.5 Summary and Discussion
How to build an e�cient SCEP systems with required functionality? In this chapter,
first we reviewed the existing CEP query languages and execution models, second we
provided an overview of the existing SCEP systems to answer such a question. The review
of the CEP systems showed that there are clear boundaries between their execution
models and supported features. Table 5.1 classifies CEP and SCEP systems according
to their underlying execution models and language operators. A couple of interesting
points that can be inferred from our review are as follow:

1. Rule-based techniques that are inspired from the existing logic-based models can
model expressive CEP operators. However, such expressibility comes with the cost
of performance.

2. Non-rule-based techniques, such as NFA, that are inspired from the theory of regular
expressions provide an intuitive model for matching complex temporal patterns.
Although, they are not as expressive as rule-based models, they o�er customised
solutions for a performance intensive CEP system. These techniques are also quite
e�cient in e�ectively implementing di�erent event selection strategies.

Hence, there is a clear trade-o� between the expressibility and the performance, and
the choice of a model should be carefully planned.

5. Detection of Complex Event Patterns 68

Table 5.1: Underlying Execution Models and Operators Supported by CEP and SCEP Systems
(S: Sequence, K: Kleene-+, C: Conjunction, D: Disjunction, EST: Event selection strategies, N:
Negation)

CEP and SCEP Systems Execution Model Supported Operators

SASE [WDR06b, Agr+08] NFA S, K, EST, N
ETALIS [Ani+12] Rule-based S, C, D, EST, N
SAMOS [GD94] Petri Nets S, C, D
Cayuga [Bre+07] NFA S, C, D
Esper [BV10] NFA S, C, D, K, N
Zstream [MM09] Tree-based S, C, D, K, N
Drool Fusion [Dro] & TIBCO [Tib] RETE S, C, D, N

EP-SPARQL [Ani+11] Rule-based, ETALIS S, C, D, N

Herein, based on our analysis of SCEP systems, our guide to the practitioners is as fol-
lows:

• RDF Graph-based Event. Following our recommendation of using the RDF graph
model for RSP systems, we advocate the use of the RDF graph event model for
the SCEP systems. The use of such model enables temporal reasoning over events,
where each such event contains a set of triples, with each triple describing a specific
attribute of the event source.

• Take a Loan from the CEP systems. The research area of SCEP systems is still
in its early days, while CEP systems have evolved from research prototypes to
commercial systems. Since the main goal of both CEP and SCEP is to reason upon
the temporal properties of events, it is wise to borrow the matured executional
models from CEP systems. One successful example in this case is EP-SPARQL.

• Which Operators to use. Early works on CEP systems, for instance Snoop [Cha+94],
provide a comprehensive list of unary and binary operators, such as sequence,
conjunction, disjunction, kleene+, to be utilised for temporal reasoning. This list is
based on the lessons learned and real-world use cases. The second generation of
CEP systems, such as SASE [Agr+08] improves this list with the inclusion of event
selection strategies. Hence, this list should carefully be consulted while designing a
SCEP system.

Based on the above discussion, in Chapter 8 and 9, we propose a new query language
and refurbish an existing execution model for the SCEP system.

Part II

Semantically-Enabled Stream
Processing: Problem Analysis,
Stream Model and Proposed

Solution

69

The basic requirement of darkness is that it enables us

to extinguish the shape of an object. A girl beneath a

tree, for example, with the night behind her, can only be

forgotten by her absence of outline, and as the direction

of darkness changed, it would reveal less and less of the

tree. In this way we can select and use darkness to reveal

or subdue qualities in a subject.

— Michael Donaghy

6
Problem Formulation: Continuous Query

Processing over RDF Graph Streams

This chapter outlines the shortcomings of existing techniques for the RDF
stream processing and provides certain clues that can be utilised for a scalable
solution. We also provide an RDF graph stream model that is later utilised by
our system, called SPECTRA: the details on how our system improves on the
existing RSP techniques are provided in Chapter 7.

Contents

6.1 General Idea . 70
6.2 Limitations of Existing Solutions 71

6.2.1 O�ine/Online Indexing . 72
6.2.2 Match Recomputation . 72
6.2.3 Limited Scope . 72

6.3 Data Model and Problem Statement 73
6.3.1 Data Model . 73
6.3.2 Problem Statement . 75

6.4 Summary . 76

This Chapter is structured as follows: Section 6.1 provides the introductory
discussion. Section 6.2 provides the insights into some of the specific limitations
of the existing RDF streaming processing techniques. Section 6.3 introduces
the terms and formally describes the problem of RDF graph stream processing
over sliding/tumbling windows. Section 6.4 summarises the chapter.

6.1 General Idea

RDF data are modelled in terms of a set of triples Èsubject, predicate, objectÍ (or
Ès, p, oÍ for short), and intrinsically form a set of labelled and directed multigraphs;

70

6. Problem Formulation: Continuous Query Processing over RDF Graph Streams 71

and SPARQL is the most common query language for RDF data (as described in
Chapter 2). With the increase in the number of both commercial and non-commercial
organisations which actively publish RDF data, the amount and diversity of openly
available RDF data is rapidly growing.

As the volume of RDF data is continuously soaring, managing, indexing and querying
very large collections of RDF data have become challenging. One approach to handle such
large RDF data graphs is to process them using the data stream model [Bab+02], where
streams of RDF data are processed within a predefined window. In such a model, recent
elements of a stream are more important than those that arrived a long time ago: older
objects are not of main concern and thus dropped. This preference for recent elements is
commonly expressed using a sliding window (as described in Chapter 3, Section3.2.3),
which identifies a portion of the stream that arrived between “now” and some recent time
in the past. Algorithms for the so-called “streaming model” must process the incoming
graphs as they arrive, while bounding a set of them within a time/count-based window.
Such constraints also capture various properties that arise while processing data for
dynamic domains, such as sensor networks, social networks, geospatial systems, etc., and
ensure I/O e�ciency when data do not fit into the main memory. RDF data in streaming
environments, called RDF graph streams, are dynamic and updated continuously.

Supporting real-time continuous querying over RDF graph streams is challenging
(NP-Complete in general settings), and achieving the level of generality requires addressing
several cases rarely supported by prior works on static and RDF stream processing systems.
Most notably, the ability to e�ciently reuse the already computed query matches within
a defined window, and adaptive and incremental indexing of the triples.

Herein, we present the rigorous analysis of the limitations and shortcomings of existing
techniques for RDF stream processing.

6.2 Limitations of Existing Solutions

Analysing related work in Chapter 4 shows that certain issues recur, which we sum-
marise here in detail.

Naively, one could approach the problem of processing RDF graph streams by
leveraging existing RDF solutions [NW10b, Aba+09a, Atr+10, WKB08, Nen+15] for
static data. That is, by (1) storing the entire stream, and (2) running queries for every
incoming RDF graph. Clearly, this naive approach has severe limitations and is not in
line with the streaming model [Bab+02]. First, storing streams obviously contradicts
the idea of stream processing. Second, existing techniques utilise o�ine indexing [CN07],
i.e., assuming enough workload knowledge and idle time to build the physical design
before queries arrive to the system. This results in extensive indexing and expensive
pre-processing of RDF graph data that may add considerable delay for each graph arriving
in the stream. The third issue is the expensive recomputation of the query results under
triple/graph arrival and eviction within a defined window.

Another line of solutions that may be helpful in our tasks is called RDF stream
processing (RSP) systems [LP+11, Bar+10a, CCG10, KCF12]. These solutions comply
to the streaming model, albeit in an di�erent manner. They are based on Data Stream
Management Systems (DSMSs) for un/semi-structured data streams, where each element
within a stream consists of a triple, and the system has to construct the matched graphs
from a set of triple streams. These solutions, as discussed later, entail expensive constraints
for processing RDF graph streams, and employ online indexing [Sch+06] techniques.

6. Problem Formulation: Continuous Query Processing over RDF Graph Streams 72

Although, online indexing makes a step towards the more dynamic environments by
allowing for continuous monitoring and periodically evaluating the index design, its
performance degrades exponentially with variable workloads and increase in the number
of triples within a defined window. Furthermore, most of the existing RSP systems su�er
from the same problem of recomputation of the results from scratch: with the arrival
or eviction of a triple, all the triples within a window are recomputed.

6.2.1 O�ine/Online Indexing

O�ine indexing [CN07] techniques, as used by static RDF solutions, create indices a priori
assuming accurate workload knowledge and data statistics; and plenty of priori slack time
to invest in physical design. But, in the context of dynamic streaming environments, such
knowledge and complete dataset cannot be known a priori. Moreover, traditional indices
on static RDF triples cover all triples equally, even if some triples are needed often and
some never. For instance, RDF3x [NW10b] builds several clustered B+ trees for all the
permutations of Ès, p, oÍ and has a time complexity O(n) for index creation/update with
n the number of triples. Online indexing tackles some of the above mentioned issues
and is employed by RSP systems [LP+11]. The general idea is that the basic concepts
of o�ine indices are transferred online. That is, while processing queries, the system
monitors the workload and performance, it questions the need of di�erent indices and
once certain thresholds are passed, it triggers the creation of new indices and drops old
ones. Such techniques perform better than o�ine indices in dynamic settings. However,
in case of variable workloads, the creation of new indices from scratch can considerably
outweigh the cost of query processing. This requires incremental indexing, where index
creation and re-organisation take place automatically and incrementally.

6.2.2 Match Recomputation

The recomputation/re-evaluation of matches, once the data are updated within a window,
can result in unnecessary utilisation of computation resources. Therefore, the challenge is
to develop an incremental query processing, where the new query matches are computed
by utilising previous query results, and the window is refreshed by only considering the
e�ective area of the older matches. Most of the existing techniques for RSP are based
on a recomputation model, i.e., with the insertion or eviction of triples in a window,
query results are recomputed. As a consequence, these systems su�er from significant
performance loss, as shown in our experimental study (Chapter 7 (Section 7.7)).

6.2.3 Limited Scope

Existing RSP systems are evolved from the DSMS for un/semi-structured data; hence,
the use of the triple-based streaming model was an obvious choice. However, as RDF data
are graphs, it is not desirable to place any limitation on the event model of RDF graph
streams. The consumption of RDF graphs as triples would tear-up the joined data graph
and would result in extra computation overheads for each triple update. For instance,
Eddy operators [AH00] employed by CQELS, which are inherited from the relational
DSMS, result in expensive computation and continuously devote resources to explore all
the plans (for each input triple) and require fully pipelined execution for RDF streams.
Thus, caching the statistical measure of triples and choosing a right order for every triple
update causes a huge overhead (as shown in our experimental analysis (Chapter 7).

6. Problem Formulation: Continuous Query Processing over RDF Graph Streams 73

:H1

“ON”

:H1App1

50

:H1Loc

75.62

42.59

:H2:H2App1

“ON”

60

:H2Loc

42.10

75.98

“OFF”

:H1App2

0

1

2

:status:power_usage

:status

:power_usage

:id

:id
:status :power_usage

:has_appliance

:near_by

:location :lat

:long

:lat

:long

“ON”

:H1App2

70

:status

:power_usage

(, GD)

:location

“ON”

:H2App3

70

:status

:power_usage

:H3

:near_by

:has_appliance

:has_appliance

:H1

:H2

:has_appliance

:has_appliance

!" (, GD)!#
Figure 6.1: Two RDF Graph Events (·

i

, G
D

) and (·
j

, G
D

)

6.3 Data Model and Problem Statement
In this section, we briefly review the key concepts that form the basis of our problem
definition. We also establish the notations used throughout the rest of the document.

6.3.1 Data Model
We reuse the RDF graph and SPARQL query graph definitions from Chapter 2, and
based on this, we define an RDF graph event and RDF graph streams as follows.

Definition 6.1: RDF Graph Event

An RDF graph event denoted as (·
i

, G
D

), consists of an RDF data graph G
D

and a timestamp ·
i

œ TS, where TS is a set of totally ordered timestamps.

Definition 6.2: RDF Graph Stream

An RDF graph stream, denoted as S
g

, is a possibly infinite set of RDF graph
events.

A conjunctive SPARQL query graph is used to match an RDF graph event within the
RDF graph stream, and is represented by a set of triple patterns. A triple pattern tp is an
RDF triple, where query variables (vars) are allowed in any position. The set of such triple
patterns is called a basic graph pattern: we denote it as query graph G

Q

. Triple patterns
are usually connected by the shared subjects or objects and a join occurs on their shared
subjects or objects. In this chapter, we only consider connected query graphs and we do
not consider predicate joins, because variable predicates are not very common as shown
in the previous study [AF11]; hence predicates of triple patterns are constants (p /œ vars).

An example SPARQL query, which retrieves all the appliances – with the status ON –
of a house located nearby house with id 2 is expressed in Query 6.1.

6. Problem Formulation: Continuous Query Processing over RDF Graph Streams 74

1 SELECT ?house , ?app , ? nbhouse
2 WHERE {
3

4 ?house <has_appliance > ?app.
5 ?app <status > ‘‘ON ’’.
6 ?house <near_by > ? nbhouse .
7 ? nbhouse <id > 2.
8

9 }

Query 6.1: Illustrative SPARQL Query for the Smart Grid Use case

Processing a query graph G
Q

against an RDF data graph G
D

amounts to finding all
the subgraph isomorphisms (subsequently homomorphism) between G

Q

and G
D

. The
result of a select query graph, however, is not itself a graph but – in analogy to SQL – a
set of rows, each containing a distinct set of bindings of query variables in V to constants.

We now describe the sliding windows that are used to extract a specific set of
recent RDF graph events.

Definition 6.3: Sliding Window

A sliding window R
W

(·) = W Ê

x

(S
g

), which contains the slide x and window size
Ê (x, Ê œ N

+), at each time · converts the stream S
g

into a set R
W

containing
recent RDF graphs from the stream S

g

, such that

R
W

(·) =
)
G

D

| (· Õ, G
D

) œ S
g

· ·
b

Æ · Õ Æ ·
e

*
,

where the window at time · begins at ·
b

=
%

·≠Ê

x

&
◊ x and ends at ·

e

= ·
b

+ Ê .

Windows are a central concept in stream processing: an application cannot store an
infinite stream in its entirety. Instead windows are used to summarise the most recent
set of elements [KS09b] and evict the older ones from the system. For example Range 5
Hours Slide 10 Minutes describes a window of size 5 Hours and a slide 10 Minutes
determines the granularity at which the window borders change.

Now we reuse the concept of SPARQL mappings (µ) (from Chapter 2, see Def-
initions 2.7 and 2.8) to define the evaluation function over the RDF graph event
and the defined window.

Definition 6.4: Evaluation of JP K
GD

If P is a SPARQL graph pattern, µ is a partial function µ : V æ B fi L fi I, and
G

D

is an RDF graph, then its evaluation is described as follow:

JP K
GD = { µ | dom(µ) = vars(P) · µ(P) ™ G

D

}

Based on the above definition, we describe the algebraic properties of P over G
D

as follows. We reuse the concept of mapping (µ), compatibility between mappings (≥),
selection (fi), and union of mappings (fi) from Chapter 2.

6. Problem Formulation: Continuous Query Processing over RDF Graph Streams 75

Definition 6.5: Evaluation of JP K
GD

Let G
D

be an RDF graph, tp is a triple pattern, P , P
1

and P
2

are SPARQL graph
patterns, R is a filter condition, and ‚ µ V a set of variables. The semantics of
SPARQL graph patterns over an RDF graph are recursively defined as follows:

• JtpK
GD := {µ | dom(µ) = vars(tp) · µ(tp) œ G

D

}

• JP
1

on P
2

K
GD := {µ

1

fi µ
2

| ÷µ
1

œ JP
1

K
GD · ÷µ

2

œ JP
2

K
GD · µ

1

≥ µ
2

}

• JP
1

AND P
2

K
GD := JP

1

K
GD on JP

2

K
GD

• JP
1

UNION P
2

K
GD := JP

1

K
GD fi JP

2

K
GD

• JP
1

OPT P
2

K
GD := JP

1

on P
2

K
GD fi {µ

1

œ JP
1

K
GD | ’µ

2

œ JP
2

K
GD , µ

1

⌧ µ
2

}

• JP FILTER RK
GD := {µ œ JP K

GD | µ |= R}

• J SELECT
‚

(P)K
GD := fi

‚

(JP K
GD)

The evaluation of a SPARQL graph pattern P over an RDF graph event, and stream
is defined as follows.

Definition 6.6: Evaluation of JP K over RDF Graph Event and Stream

Let (·, G
D

) is an RDF graph event, P œ G
Q

is a graph pattern, and S
g

is an RDF
graph stream, then evaluation of P over them is defined as follows:

JP K
(·,GD)

= (·, JP K
GD)

JP KSg = {(·, JP K
GD) | (·, G

D

) œ S
g

}

Example 5 Recall Query 6.1 (G
Q

) and an RDF graph event (·
i

, G
D

) in Figure 6.1. Then
evaluation of Query 6.1 over such an event will result in the following set of mappings
associated with the timestamp ·

i

.

JG
Q

K
(·i,GD)

= (·
i

, { (:H1, :H1App1), (:H1App1, ‘ON’),
(:H1, :H2), (:H2, ‘2’).})

Recall that a defined window collects a set of RDF graphs within its boundaries.
Thus, we abuse the evaluation function J.K

(·i,GD)

and extend it for window (R
W

(·))
noting JtpK

RW (·)

to present our problem statement.

6.3.2 Problem Statement
Based on the above concepts, we formally describe our problem statement as follows.

Problem 1 Given an RDF graph stream S
g

, a window W Ê

x

(S
g

) over such stream, and
a query graph G

Q

, we want to evaluate JG
Q

K
(·i,GD)

i.e., execute a query graph G
Q

over
an event (·

i

, G
D

) œ S
g

at ·
i

, such that

JG
Q

K
(·i,GD)

ü (Op) JG
Q

K
RW (·j)

= JG
Q

K
RW (·i)

,

6. Problem Formulation: Continuous Query Processing over RDF Graph Streams 76

where ·
j

< ·
i

, and operator ü incrementally uses the previously evaluated mappings within
a window, and Op œ {on, AND, OPT, UNION}.

Without loss of generality, we only consider time-based windows. Other flavours,
such as count-based windows, can easily be integrated into our model. Herein, while
utilising the complexity analysis of SPARQL, we provide an overview of the complexity
of Problem 1.

Theorem 6.1

The general complexity of processing an RDF graph event (·
i

, G
D

) against a query
graph G

Q

can be described as O(|G
Q

| · |G
D

|), while for a window (R
W

(·
i

)) at time
·

i

, it is solved in O(|G
Q

| · |R
W

(·
i

)|).

Proof Sketch. Theorem 6.1 can easily be extended from the Theorem 2.2. ⇤

The size of each RDF graph G
D

within an event, which is bounded by the defined
window, has a huge impact on the query performance. As noted in Section 6.2, existing
solutions employ the index-store-query model to process RDF streams or querying RDF
data: this may not be a viable solution for processing RDF graph streams. Thus, our
first goal is to prune each RDF graph event according to the defined query graph. This
consequently reduces the search space before the execution of the query graph for each
event. In Chapter 7, we provide a graph pruning approach to extract a summary graph from
each RDF graph event. This removes all the unnecessary triples from each event and aims
at limiting the search space for joining the mappings of triple patterns within a query graph.

6.4 Summary
In this chapter, we outlined the main issues and limitations of RSP and static RDF
graph processing systems. We also provided a new data model for RDF streams called
RDF graph streams, where a set of triples can be part of the RDF graph event. Based
on this, we discussed the problem statement of the RDF graph stream processing. Our
contributions for this chapter are as follow.

• Limitations of Existing Systems. We detailed the limitations of existing RSP
and static RDF graph processing systems.

• RDF Graph Event and Streams. We presented a new event and streaming
model for RDF graph streams.

• Problem Formulation. We provided the formal problem statement for processing
RDF graph streams.

According to our observations, existing RSP systems are directly inspired from the
traditional DSMSs, and existing static RDF solutions are too costly to be integrated in
the streaming setting. Therefore, the multigraph nature of RDF demands customised
optimisation in streaming settings. These optimisations, such as incremental indexing
and incremental evaluation of streams, can lead to a system that can be compared
with DSMSs in terms of performance and scalability. In the following chapter, while
considering these observations, we provide the details of our RDF graph stream processing
system called SPECTRA.

Quand tu veux construire un bateau, ne commence pas

par rassembler du bois, couper des planches et distribuer

du travail, mais réveille au sein des hommes le désir de la

mer, grande et large.

If you want to build a ship, don’t drum up the men to

gather wood, divide the work, and give orders. Instead,

teach them to yearn for the vast and endless sea.

— Antoine de Saint-Exupéry

7
SPECTRA: High-Performance RDF Graph

Streams Processing

In this chapter, we provide the initial contributions necessary for a scalable
and optimised solution for RDF graph stream processing. In particular, we
provide the design of an incremental and adaptive indexing technique that is
optimised for frequent updates. Subsequently, we detail the underlying data
structures and incremental query matching algorithms: our framework called
SPECTRA that incorporates such functionalities is explained in this chapter.
We reuse some of these techniques in Chapter 8 for the integration of Semantic
Complex Event Processing.

Contents

7.1 Introduction . 78
7.2 Overview of the SPECTRA Framework 78
7.3 RDF Graph Summarisation . 79
7.4 Continuous Query Processing 81

7.4.1 Incremental Indexing . 81
7.4.2 Query Processor . 84

7.5 Incremental Query Processing 88
7.6 Processing Timelist and Matched Results 89
7.7 Experimental Evaluation . 91

7.7.1 Experimental Setup . 91
7.7.2 Evaluation . 92

7.8 Extending SPECTRA . 99
7.9 Summary . 100

This chapter is structured as follows: Section 7.2 presents an overview of
the SPECTRA framework and its main operators. Section 7.3 presents the
SummaryGraph operator of SPECTRA that prunes the unwanted triples
from each RDF graph event. Section 7.4 provides the details of the incremental

77

7. SPECTRA: High-Performance RDF Graph Streams Processing 78

indexing and how to continuously process query graphs. Section 7.5 details the
incremental evaluation of the RDF graph streams. Section 7.7 presents the
empirical evaluation of SPECTRA and its comparison with existing techniques.
Section 7.8 illustrates some of the extensions that can be built on top of
SPECTRA. Section 7.9 concludes the chapter.

7.1 Introduction
This chapter introduces SPECTRA, an in-memory framework that tackles the challenge of
continuously processing RDF graph streams in an incremental manner. As a framework,
SPECTRA combines RDF graph summarisation and an e�cient data structure – called
query conductor – with an incremental and adaptive indexing technique to match a
set of RDF graphs within a sliding window. To avoid storing and processing all the
graph objects from the streams, we exploit the structure of the query to prune irrelevant
information. That is, the registered query is used to prune all the triples that do not
match the subjects, predicates and objects of the patterns defined in the query. The
pruned set of triples, called summary graph, is used to implement multi-way joins between
the set of triple patterns in the query graph. This results in pruning all the invalid
triples without incurring storage and query processing costs.

Summarised RDF graph events are materialised into a set of vertically partitioned
[Aba+09a] views, where each view – a two-column table (s, o) – stores all the information
for each unique predicate in the summarised RDF graph. Here we use our incremental
indexing technique inspired from the database cracking [Idr+11, IKM07] to index the
joined (s, o) pairs within the set of views. It is a fully dynamic approach as it assumes
no workload knowledge and requires no idle time for its creation: indices are built
continuously, partially and incrementally as part of the query processing. A set of views
represents the universe of the triples to be matched, and hash-join operations between
views are used to join the triples based on subject/object column. The joined triples are
incrementally indexed using a sibling relationship between them, enabling SPECTRA to
support complex queries. A timelist is also used to associate the indexed triples with
their respective timestamps, which permits the system to detect the older matches, as
the window slides. Our experimental analysis confirms the eminence of our methods and
shows that SPECTRA outperforms state-of-the-art solutions up to an order of magnitude.

7.2 Overview of the SPECTRA Framework
For the incremental evaluation of events, the essence is to keep track of the previously
matched results, and compute the new matches by only considering the e�ective area
of the previously stored matches. Similarly, when the window slides, it should evict the
deceased matches and propagate all the matches that are no longer valid. The SPECTRA
framework directly maintains a set of vertically partitioned tables, called views, that
contain the up-to-date matches. Through incrementally produced indices for matches
associated with their timestamps, our solution can handle both the insertion and eviction
of matches without computing all the triples from scratch within a window.

Algorithm 1 illustrates the global execution of the SPECTRA query processing. Each
incoming event from a stream is first subjected to the graph summarisation process (line
2) (Section 7.3), where the query structure is utilised to prune “dangling” triples from
each event before starting the matching process. The summarised events are materialised

7. SPECTRA: High-Performance RDF Graph Streams Processing 79

Algorithm 1 SPECTRA query processing: main process
1: for each event (·

i

, G
D

) œ S
g

do
2: views Ω GraphSummary(G

D

, G
Q

) Û Section 7.3
3: eventMatches Ω QueryProc(views, G

Q

, ·
i

) Û Section 7.4
4: if completeMatch(eventMatches, G

Q

) then
5: prevMatches Ω eventMatches
6: else
7: prevMatches Ω IncQueryProc(prevMatches, eventMatches, G

Q

, ·
i

) Û Section 7.5
8: end if
9: end for

into a set of views using bidirectional multimaps to enable fast hash-joins. Then the
system implements the joins between the views according to the triple patterns defined
in the query graph (line 3). It incrementally constructs the indices between the joined
triples as a by-product of the join process. If this process results into complete matches
for a query graph, the timestamp of the event and incrementally produced indices are
used to tag the matches in a timelist; and new matches are persisted (Section 7.4).
Otherwise, the partial matches produced during the initial join process are processed with
the previously computed/persisted matches (line 7), while employing the incremental
indexing. If this results into new matches, they are also persisted to be utilised later. This
process ensures the completeness of the matches for a query graph for all the di�erent
types and sizes of events within a window (Section 7.5).

7.3 RDF Graph Summarisation

Graph summarisation is the process of summarising a graph into a smaller graph that
retains the useful characteristics of the original RDF data graph. That is, ignoring the
part of the graph that contains no relevant triples with respect to the query. Thus,
the query processing can be faster on summarised graphs than on the un-pruned ones
[Gur+14]. Some RDF graph stores have extended bi-simulation and locality-based
clustering approaches to perform join-ahead pruning via graph summarisation [Pic+12,
Zou+11]. Bi-simulation-based summaries [Pic+12] are e�ective if only predicates are
labelled with constants, such that multiple possible disconnected components of data
graphs are merged into compact synopsis for indexing. It is an approximate solution and
may contain errors. Locality-based summaries [Zou+11] use essentially graph clustering
in which vertices of a data graph are partitioned such that vertices within each partition
share more neighbours than nodes that are spread across the partitioning. Locality-based
approaches are particularly e�ective if one or more of the subjects or objects in the
query graph are labelled with constants.

Both of the above mentioned approaches are e�ective in static settings, where (i) data
pre-processing delays are not of main concern, (ii) the complete dataset is known a priori
for statistical analysis, and queries are unknown; therefore, data must be stored and
indexed such that any possible kind of query can be answered e�ciently. However, this
is not the case in stream processing environments: queries are processed continuously,
and the complete dataset is not available beforehand for the analysis. This provides
various interesting opportunities to get precise summaries of data graphs. It includes: (i)
events can contain a large number of triples but the query graphs usually touch arbitrary
small parts of the events; (ii) as query graphs are known in advance, they can be treated

7. SPECTRA: High-Performance RDF Graph Streams Processing 80

as an advice of how data should be stored as summary graphs to process them. These
properties are utilised by our query-based graph summarisation technique.

Observation 1 Given a query graph G
Q

and an event (·
i

, G
D

), the number of triple
patterns |tp| œ G

Q

is less than or equal to the number of triples |t| œ G
D

.

In general, query graphs are focused on a specific part of the graph to be matched. Thus
pruning the unnecessary triples that would not be utilised during the query processing
would greatly reduce the search space. Furthermore, query graphs typically involve in
finding the connected components of the input graph G

D

. Thus, if one or more subjects or
objects are labelled with constant, we can safely prune all the false positives from the results.
Based on the above observation, we define the query-based RDF summary graph as follows.

Definition 7.1: Query-based RDF Summary Graph

A query-based RDF summary graph G
S

for a given query graph G
Q

and an
RDF graph G

D

œ (·
i

, G
D

) is an RDF graph, where a triple t œ G
D

is in G
S

i�,

• ÷pred(t), such that, pred(tp) = pred(t), where tp œ G
Q

• and if subj(tp) /œ V, subj(tp) = subj(t), and if obj(tp) /œ V, obj(tp) =
obj(t).

The function subj, pred, and obj, extracts the subject, predicate and object values
from triple and triple patterns respectively.

The set of triples within each summary graph G
S

is stored using vertically partitioned
tables, called views, each denoted as V

j

with j a predicate label. An example is shown
in Figure 7.1(a): it is a summary graph produced using Query 1 for the RDF graph
event Gi

D

(in Figure 7.1(a)). Figure 7.1(b) shows a set of views, each containing a set
of (s, o) pairs for a unique predicate, for the summary graph Gi

S

.

Example 6 Consider Query 1, it contains four distinct predicates (<has_appliance>,
<status>, <near_by>, <id>) and therefore only triples with those predicates are required
for query processing. Thus, all the RDF triples in G

D

of RDF graph event (·
i

, G
D

) (see
Figure 6.1), which are not associated with those four predicates can safely be pruned,
without introducing false negatives to the results. Furthermore, there are two constants
(ON and 2) at the object level in Query 1. Both of these constant objects can also be
utilised to further reduce the size of the summary graph (see Figure 7.1(a)). One can also
notice that this form of join-ahead pruning allows us to detect empty join results without
even starting the pattern matching for an event.

The execution of the GraphSummary operator is shown in Algorithm 2. It takes
the input RDF graph of an event (·

i

, G
D

), the registered query graph G
Q

and a set of
views, each for a tp œ G

Q

. The algorithm performs the pruning and vertical partitioning
of triples t œ G

D

. First, we compare the predicate values for each triple pattern tp œ G
Q

to the predicates of triples t œ G
D

(line 5). Second, if the subject or/and object of the
triple pattern contains a constant, we also compare it with the subjects/objects of triples
in t œ G

D

(line 6). Finally, the matched set of triples for each triple pattern is encoded
and stored in the corresponding view (line 7). By encoding, we mean encoding strings
to numeric values by using a dictionary [Baz+15], a routine process in RDF storage

7. SPECTRA: High-Performance RDF Graph Streams Processing 81

:H1

“ON”

:H1App1

:H2:H2App2

“ON” 2

:status

:id
:status

:has_appliance

:near_by
H2 H2App2

H1App1H1
OS

H2App2 ON
ONH1App1
OS

H2 H3
H2H1
OS <id>

2H2
OS

<has_appliance> <status>

<near_by>

GS)

! !

! !

1 2

3 4

(a) (b)

:has_appliance

:H3

:near_by

"#$,

Figure 7.1: (a) Summary Graph from the RDF Graph Event (·
i

, G
D

) using Query 6.1, (b)
Materialised Views for the Summary Graph (·

i

, G
S

).

Algorithm 2 RDF Graph Summarisation

1: viewset Ω
Ó

V
tp1 , V

tp2 , . . . , V
tp|GQ|

Ô

2: procedure GraphSummary (G
Q

, G
D

)
3: for each triple pattern tp œ G

Q

do
4: for each triple t œ G

D

do
5: if pred(tp) = pred(t) then
6: if (subj(tp) œ vars or (subj(tp) ”œ vars and subj(tp) = subj(t)) and (obj(tp)

œ vars or (obj(tp) ”œ vars and obj(tp) = obj(t)))) then
7: V

tp

Ω V
tp

fi {Encode(t)}
8: end if
9: end if

10: end for
11: end for

systems. This greatly compacts the dataset representation and increases performance by
performing arithmetic comparison instead of string comparison. Furthermore, dictionary
encoding also caters the blank nodes and allows the matching process of each event in
a manner consistence with the RDF data model [Hog+14].

7.4 Continuous Query Processing
Here, we first provide the basis of our incremental indexing technique and the data
structure called query conductor, and then we describe the details of the query processing
(QueryProc) operator.

7.4.1 Incremental Indexing
The computation of s-s joins between a set of views is a straight-forward procedure, and
can be realised without the use of any indexing. However, complications arise when there
are s-o / o-s joins between a set of views, i.e., for cyclic or tree-structured query graph
patterns. Furthermore, for incremental pattern matching, the system requires to locate
the correct part of the matches that are a�ected with the arrival of new events or with

7. SPECTRA: High-Performance RDF Graph Streams Processing 82

the eviction of old ones when the window slides. Generally, in static settings (as well
as in RSP) indices based on B+tree are used to locate the (s, o) pairs for multi-way
join operations. These indices are discarded or built-up from scratch with new updates,
thus incurring delays during the rebuilding process.

To achieve both high performance and scalability, our index creation and maintenance
solution is a by-product of join executions between views. Given a set of disjoint views,
only the joined triples are indexed using sibling lists; each for a unique view. Each sibling
list is composed of sibling tuples as defined below.

Definition 7.2: Sibling Tuple

A sibling tuple is a 3-tuple st = (id(v), id(u), g
i

), where v and u are the (s, o)
pairs joined on subject/objects between views, id is a function which assigns
monotonically increasing numeric values to (s, o) pairs, called pair-ids. Finally, g

i

is an ordinal number, which is assigned increasingly monotonically for each unique
graph within the set of joined (s, o) pairs.

Given a join between two views, triples that will match during the join operation
are siblings. Siblings with the same values for the join attributes are given the same
ordinal number (g

i

). Two sibling tuples st
1

and st
2

belong to the same matched graph
if g

1

= g
2

, where g
1

œ st
1

and g
2

œ st
2

. The set of sibling tuples incrementally
represents the structural relationship, i.e., multiple matched graphs, between the joined
(s, o) pairs within views.

In our current implementation, we use a flat list as an underlying data structure for
each sibling list, such that the pair-ids of sibling tuples are placed at 3i, 3i + 1 , while
an ordinal number is placed at 3i + 2. All the sibling tuples that are before 3i are built
earlier and all the sibling tuples that are after 3i + 2 are built later. This information can
be used to speed up the join process, i.e., the (s, o) pairs can be answered at the cost of
searching the sibling list, only. Moreover, if there are no matches to be found, the sibling
list significantly restricts the values of the triples that have to be analysed by the query.

The set of sibling tuples conceptually describes an undirected graph between the
joined (s, o) pairs, which as a result enables an e�cient strategy to cater cyclic queries.
That is, if one computes the query tp

1

(x, p1, y) on tp
2

(y, p2, z) on tp
3

(z, p3, x), which lists
all the triangles within the summary graphs, as a sequence of two join operations: sibling
relationships between the joined (s, o) pairs are utilised to check if a set of sibling tuples
associated to the same ordinal number satisfies the cyclic relationships. § We utilise a
set of sibling lists, each for a view, to enable the dynamic reordering of join operations,
as described later. Note that the pair-ids and ordinal numbers are iteratively produced
during the join operation, thus a sibling list remains sorted throughout its lifetime.

Example 7 Consider V
1

and V
2

in Figure 7.2(a). The object column of V
1

is joined
with the subject column of V

2

, each distinct (s, o) pair within both views is assigned with a
pair-id (Figure 7.2(a)). The (s, o) pair (H1,H1App) identified with an id 1 in the view
V

1

has two joined (s, o) pairs in V
2

: (H1App,H1App1) and (H1App, H1App2) with ids
4 and 5 respectively. Thus, two sibling tuples st

1

and st
2

with the associated ordinal
number 00 (only two bits ordinal numbers are used for the sake of presentation, we use
64 bits numbers for the implementation purposes) can be constructed as (4,1,00) and
(5,1,00) (Figure 7.2(b)). Similarly, join between the (s, o) pairs identified with 2 and 6
is indexed with sibling tuple st

3

(6,2,01); and the join between (s, o) pairs identified with

7. SPECTRA: High-Performance RDF Graph Streams Processing 83

….….
……

H1App1

H3App

H2App

H1App

H3App2

H1App

H3App H3App1

O

H2App1
H1App2

S

…. …
… …

H1App
H2
H3

OS

H3App

H1
H2App

1
2
3

4
5
6
7

8

4 1 00

01

10

5 1

6 2

7 3 8 3

(a) (b)

!

"
1 "

2

<p1> <p2>

00

10

Pair-IDs st1 st2

st3

st4 st5

Figure 7.2: (a) Two Views Joined on an Object and Subject Column, (b) Sibling List constructed
during the Join Operation for V2

3, 7 and 8 is indexed with sibling tuples st
4

and st
5

. The final matched result of such join
operation is extracted by first collecting the distinct sibling tuples according to the ordinal
numbers and then collecting all the (s, o) pairs associated to a distinct ordinal number.
This procedure is described in the next section.

Query Conductor

We now introduce the underlying data structure, called query conductor, used for the
SPECTRA framework.

Definition 7.3: Query Conductor

A query conductor is a data structure that first stores the materialised views
from the summary graph (G

S

) and then stores the joined (s, o) pairs evaluated from
processing a query graph (G

Q

). It consists of three components:

1. a set of bidirectional multimaps, each stores the (s, o) pairs associated to a
predicate (i.e., views),

2. a set of sibling lists to identify the sibling relationships between joined (s, o)
pairs (sibling tuples),

3. a timelist to e�ciently detect the obsolete (s, o) pairs with the slide of the
query window.

The design of the query conductor is motivated by the fact that we require a data
structure that not only is suitable for write-intensive operations, but also provides fast
joins between views, while considering the temporal properties. The components of a
query conductor are utilised in multiple di�erent configurations during di�erent steps
of the algorithmic operations, and are briefly described below:

1. Multimaps are containers that associate values to the keys in a way that there is no
limit on the number of same keys. It provides constant look-ups (considering there

7. SPECTRA: High-Performance RDF Graph Streams Processing 84

are no hash-collisions) for the keys (typically for s-s joins between two views). In
order to provide constant look-ups for objects-related joins (i.e., s-o, o-s, o-o), by join
operator reordering between two views, we extend the multimaps to bidirectional
multimaps. That is, there is no limit on the number of same keys, and it also
provides constant look-ups for the values.

2. The sibling lists are used to implement the incremental indexing of matched (s, o)
pairs in a set of views; it also assists in detecting the dropped (s, o) pairs with the
slide of a window.

3. The timelist stores the monotonically increasing timestamps of the events and
provides a flat structure, since tree-like structures cannot cope with the frequent
object insertion and deletion.

We illustrate various components of our query conductor by an example given below.

Example 8 Recall Query 6.1 (Section 6.3) that consists of four triple patterns with
three join operations. Views V

1

, V
2

, V
3

and V
4

in Figure 7.3(a) represent respectively the
materialised triples from a summary graph for each triple pattern. The join operations and
the construction of sibling lists SL

1

, SL
2

, SL
3

and SL
4

, each for a view, are illustrated in
Figure 7.3 (a). First, we use V

1

and V
2

to implement the s-o join 1 between tp
1

and tp
2

;
such join produces two intermediate result sets, called result-views RV

1

and RV
2

; each
with a set of (s, o) pairs. The sibling lists SL

1

and SL
2

are populated incrementally by
building the sibling tuples using the pair-ids, as shown in Figure 7.3 4 (a) 1 . Next, RV

1

and V
3

are used to implement the s-s join 2 between tp
1

and tp
3

. The hash-join produces
RV

3

, and using the ordinal numbers and pair-ids in SL
1

, SL
3

is constructed, as shown in
Figure 7.3 (a) 2 . Finally, using RV

3

and V
4

, the o-s join 3 between tp
3

and tp
4

results
in only one (s, o) pair in RV

4

with ordinal number 00 in SL
4

. In order to retrieve the
final set of matched (s, o) pairs, we first select the resulted view with the smallest size (i.e.,
RV

4

) and using its associative sibling list (SL
4

), we extract the valid (s, o) pairs from
all the other resulted views conforming to the sibling tuples. This approach is similar to
depth-first-search (DFS). Figure 7.3(b) shows the set of final views FV of (s, o) pairs with
their respective predicates. The ordinal number/numbers associated with the resulted (s, o)
pairs in sibling tuples are also assigned to a timestamp in the timelist (see Figure 7.3(b)).

7.4.2 Query Processor

In this section, we provide the details of the query processor (QueryProc) operator
from Algorithm 1 (lines 3-5). Its main objectives are as follows:

1. match an event with the query graph, if the process produces fully matched subgraphs
then proceed towards the eviction process,

2. if the process produces only partially matched subgraphs within an event, then
proceed towards the incremental query processor (Section 7.5).

QueryProc, as described in Algorithm 3, takes seven elements as input: a query
graph G

Q

, the set of views for an event obtained from GraphSummary operation, a set
of final views (FV) that contains complete matched results up to this point in a window,
the timestamp of the current event ·

i

, and the timelist ·
L

with the window size Ê and slide

7. SPECTRA: High-Performance RDF Graph Streams Processing 85

.. ….
H2 H2App2

H1App1H1
OS

tp1 tp2

.. …
H2App2 ON

ONH1App1
OS

<has_appliance>
<status>

<has_appliance>

H2 H2App2
H1App1H1

OS

H2App2 ON
ONH1App1
OS

<status>

?app

!
" 1

" 2

"
1R "

2
R

4

3

2

1

3 1 00 4 2 011 3 00 2 4 01

SL2
SL1

1

2

H2 H2App2
H1App1H1

OS

……
……

H2 H3
H2H1
OS

<near_by>

H2 H3
H2H1
OS

"
3

" 3R

6

5

SL3
H2 H2App2

H1App1H1
OS

<has_appliance>"
1R

tp1 tp3

!

1 3 00 2 4 01 1 5 00 2 6 01 5 1 00 6 2 01

H2 H3
H2H1
OS

....

....
2H2
OS!

?house

"
1R

"3R "
4

3

2H2
OS

"
4R

7 5 00

SL4

tp3 tp4
?nbhouse

H2 H3
OS

5 1 00 6 2 01 5 7 00

00

2H2
OS

H2H1
OS

ONH1App1
OS

H1App1H1
OS

<id>

<near_by>

<status>

<has_appliance>

(b)

"F
(a)

T2 ……. TkT1

Timelist

7

<id><near_by>

6

5

2

1

SL1

SL3

Figure 7.3: (a) Matching Process of (·
i

, G
D

) with Query 6.1 as described in Example 8, (b) a
set of Final Views and a Timelist

7. SPECTRA: High-Performance RDF Graph Streams Processing 86

x. Note that we follow the design principle of dynamic memory allocation in our system.
Hence, we work with structurally-static query conductors, i.e., views, result-views, sibling
lists etc., are initialised only once (see Algorithm 3, lines 1-5): memory is allocated at
the creation or infrequently for resizing. §Algorithm 3 first initialises the impl-joins set
(line 7), which contains only the triple patterns whose views are not empty.

Algorithm 3 Query processing with QueryProc

1: ·
L

Ω timelist
2: viewset Ω {V

tp1 , V
tp2 , . . . , V

tp|GQ|}
3: result-viewset Ω {RV

tp1 , RV
tp2 , . . . , RV

tp|GQ|}
4: sibling-set Ω {SL

tp1 , SL
tp2 , . . . , SL

tp|GQ|}
5: FV Ω {FV1, FV2, . . . , FV |GQ|}
6: procedure QueryProc(G

Q

, ·
i

, FV, viewset, Ê, x, ·
L

)
7: impl-joins Ω {tp œ G

Q

| V
tp

”= ?}
8: for each tp œimpl-joins do
9: tp

j

Ω getJoinTP(tp)
10: hashJoinAndIndex(V

tp

, V
tpj ,SL

tp

,SL
tpj , RV

tp

, RV
tpj)

11: end for
12: if (’tp œ impl-joins, RV

tp

”= ? and |impl-joins|= |G
Q

|) then
13: FVΩextractMatches(FV,sibling-set,result-viewset,·

i

, ·
L

)
14: refresh(FV,sibling-set, ·

i

, Ê, x, ·
L

) Û eviction of older events
15: else
16: Execute IncQueryProc (G

Q

, ·
i

, FV, result-viewset, Ê, x·
L

) Û Section 7.5
17: end if
18: end

The main reason for this is that, due to the incremental nature of the algorithm there
could be cases where only few views are updated and we have to incrementally join their
results with previously computed ones (described later in Algorithm 4). Algorithm 3 then
iterates over the impl-joins set. It first gets the joined triple pattern tp

j

(line 9), which
has to conduct the join operation with a certain tp. It then implements the hash-join
and constructs the sibling lists for the two triple patterns by using the respective data
structures. The hashJoinAndIndex function1 (line 10) takes the viewset, result-viewset
and sibling lists of the triple patterns to be joined. It either uses view (V) or result-
views (RV) of the respective triple patterns and conducts the hash-join by iterating over
the smallest one, i.e., employing the dynamic hash operator reordering, as described in
Example 8. Depending upon the type of join, it then fills the intermediate result-views,
while incrementally updating each sibling list with sibling tuples.

The next phase of Algorithm 3 extracts the matched results according to the sibling
tuples created during the join operations. It first checks if the join operations of tp œ G

Q

were successful (line 12). If so it initiates the extractMatches function (line 13). That
is, first all the distinct ordinal numbers in the smallest sibling list are extracted. Second,
a depth-first search (DFS) on the sibling tuples is executed to extract all the matched
subgraphs, while considering the sibling relationships between two joined triples (see
Examples 7,8). Otherwise (if join operations were not successful), it sends the partially
matched results to the incremental query process. The eviction of the older triples in FV is
performed with the refresh operation (line 14); its details are provided in the next section
(Algorithm 4). Furthermore, the timelist ·

L

is updated with the timestamp ·
i

of the
1The algorithm only shows the general join function, all the other types of joins (s-s, s-o, etc.,) can be

implemented in a similar fashion, by either using the subject or object column of a view.

7. SPECTRA: High-Performance RDF Graph Streams Processing 87

matched event and its associated ordinal number during the execution of extractMatches.

Complexity Analysis

Each event arrival in the window triggers three main tasks: (1) implementing multi-way
joins and indexing on the set of views produced from the GraphSummary operation;
(2) if all the joins produce results, matches are extracted using the sibling lists; and (3)
deceased matches are removed from FV. The cost of these operations can be described
as follows. Operation (1) has two substeps, which includes linear hash-joins, and the
construction of sibling lists, while propagating the ordinal numbers. Thus, if there are
j join operations and l intermediate triples received for such joins, m = l ú 3 is the
size of each sibling list produced for indices. Then the total cost can be calculated as
O(j(l log(m))) = O(j(l log(l))) for j join operations: O(log l) is the average cost of
binary search through a sibling list. Operation (2) utilises traditional DFS to extract the
matches using the sibling-set. Thus, if g is the number of ordinal numbers, and there are
p distinct pair-ids in the sibling tuples and c sibling tuples in the sibling lists, then the
total cost of operation (2) can be described as O(g(p + c)). Operation (3) consists of first
collecting a set of timestamps that are outside the defined window and second deleting the
(s, o) pairs associated to the timestamps. If k is the number of triples extracted during
the execution of GraphSummary and stored as matches in FV, on average, its takes
O(log k) for a binary search through the timelist to extract the deceased timestamps,
and there will be O(d) final view access and deletion operations for d deceased triples.
Regarding memory complexity, QueryProc obviously requires O(k). The question is
finally how the number of triples k grows over time. Unfortunately, a respective formal
analysis would require assumptions regarding the window size, data distribution itself and
how it changes and matches to a particular query over time. Even under the assumption
of a static data distribution, there is no general result.

Ordering of Join Operations

The joins between the sets of triple patterns tp œ G
Q

are commutative and associative
[PAG09b]. An e�cient join ordering results in smaller intermediate results leading to a
lower cost of future join operations [NW10a, Aba+09b]. Let us suppose that a multi-way
join operation between views be V

1

on V
2

. . . V
j≠1

on V
j

, where the cardinality measures
of views, i.e., |V

i

| Æ |V
i+1

| for every i œ [0, j ≠ 1], is considered for the join operations.
Then the join sequence considering the left-deep evaluation strategy [LB15] is:

A31!
V

1

on V
2

"
on . . .

2
on V

j≠1

4
on V

j

B

Contrary to the existing RDF processing systems, the cardinality measures of the
views can change over time according to the incoming events and streams’ rate. This
prompts the question of dynamically re-ordering the join operations between a set of
views. Recall from Section 7.3, the SummaryGraph operator captures the valid number
of triples in each view before starting the execution of joins. Therefore, in Algorithm 3
and 4 (Section 7.5), we dynamically reorder the execution of join operations by considering
the cardinality measures of each view after the graph summarisation process. Hence,
SPECTRA is able to re-optimise the query plans on a continuos basis while a query
is being processed, and it is resilient to the load variations due to the streams’ rate changes.

7. SPECTRA: High-Performance RDF Graph Streams Processing 88

In this section, we present three main features of the SPECTRA: (i) the Summary-

Graph operator that employs the structure of the query graphs to filter data from each
incoming event, (ii) the QueryProc operator that continuously joins the summarised
set of views, and (iii) creation of the indices in an incremental manner during the join
operations between the set of views. The matched triples within views are persisted
in a set of final views to be utilised later in an incremental manner. Such a discussion
is provided in the proceeding section.

7.5 Incremental Query Processing

This section provides the details of incremental query process IncQueryProc from
Algorithm 1 (line 7). The main objectives of IncQueryProc are as follows:

1. computation of the partial matches, i.e., partially joined views are joined with the
set of final views FV;

2. the eviction of deceased matches from FV, as it is not processed in QueryProc

when IncQueryProc is executed.

The main execution of IncQueryProc is described in Algorithm 4. It first uses the
timestamp of current event · and window parameters Ê and x to evict the older triples
from FV (line 2), i.e., the triples whose timestamps · Æ ·

b

. The refresh operation
consists of two steps: (i) finding the range of timestamps that are outside the window,
and (ii) using the pointers of older timestamps to remove the triples from FV. The
eviction of older triples can a�ect the total number of matches. Therefore, instead of
evaluating all the matches from scratch, we employ the sibling relationships between
joined triples and their associated ordinal numbers to determine the matched graphs
a�ected by the removal process (details are provided in Section 7.6).

Algorithm 4 IncQueryProc

1: procedure IncQueryProc(G
Q

, ·
i

, FV, result-viewset, Ê, x, ·
L

)
2: refresh(FV, ·

i

, Ê, x, ·
L

) Û eviction of deceased events
3: incr-tplist Ω {tp œ impl-joins | RV

tp

”= ?}
4: for each triple pattern tp œ incr-tplist do
5: tp

J

Ω GetJoinTP(tp)
6: if tp

J

”œincr-tplist then
7: hashJoinAndIndex(RV

tp

, FV
tpj ,SL

tp

) Û Use RV
tp

and FV to implement the join.
8: end if
9: end for

10: if for all tp œincr-tplist, RV
tp

”= ? then
11: FV ΩextractMatches(FV,sibling-set,result-viewset,·

i

, ·
L

)
12: end if
13: end

Algorithm 4 then collects (in incr-tplist) all the triple patterns with non-empty
intermediate result-views and iterates over it to conduct the joins with the set of final
views FV . It ignores all the other joins that were previously done during the execution of
QueryProc. The remaining joins are conducted using RV

tp

with the corresponding views
in FV (line 7). If they all produce a non-empty intermediate result-view, the (s, o)-pairs
are collected (same as in Algorithm 3) and added to the FV set with the timestamp

7. SPECTRA: High-Performance RDF Graph Streams Processing 89

of the event in ·
L

(lines 11-13). Note that the analysis and cost of IncQueryProc

operations can be directly inferred from QueryProc operations (Section 7.4.2).

Example 9 Consider the same Query 6.1 and the set of final views FV collected in
Example 8. Now consider the execution of Query 6.1 over Gj

D

(see Figure 6.1). As
described in Figure 7.4(a), two views V

1

and V
2

are materialised for triple patterns tp
1

and tp
2

: data for other triple patterns are not present in Gj

D

. Thus, the execution of
QueryProc produces the partial matches (1 in Figure 7.4(a)), which have to be matched
with FV to preserve the property of incremental evaluation. For such a task, we determine
(i) the number of joins of tp

1

and tp
2

, (ii) how many joins have already been executed after
the QueryProc operations, and (iii) how many joins need to be further executed with
FV. As shown in Query 6.1, tp

1

has two joins: o-s join with tp
2

and s-s join with tp
3

,
while tp

2

has one s-o join with tp
1

. During the execution of QueryProc, tp
1

has already
computed the join with tp

2

using views V
1

and V
2

; the same goes for tp
2

, as shown in
Figure 7.4(a). Thus, we need to only implement the s-s join between RV

1

of tp
1

and FV
2

of tp
3

. If the join produces a non-empty result-view then we add the partially matches
from RV

1

and RV
2

in FV. The whole process is shown in Figure 7.4(a), where RV Õ
1

is
the result obtained by joining FV

2

with RV
1

(2 in Figure 7.4(a))). Finally, utilising the
same technique in Algorithm 3, all the (s, o) pairs and their respective sibling relationships
that are associated to the same ordinal numbers are added to the respective final views in
FV. Figure 7.4(b) presents FV after the IncQueryProc, final views FV

3

and FV
4

are
updated with new (s,o) pairs. As the partially joined results are added in these final views,
we use a sibling relationship between the ordinal numbers (00,110) for the (s, o) pairs
(H1App2,ON) and (H1,H1App2) in FV

3

and FV
4

respectively. Such sibling relationships
between ordinal numbers are e�ciently utilised to incrementally update matches after the
refresh operation (as described below).

7.6 Processing Timelist and Matched Results
In this section, we presents the details of (i) how the timelist is queried to discard the
events that are outside the window’s boundaries, (ii) how the query matches are updated
after the removal of older matches, and (ii) what are the semantics of the output matches.
Dealing with Timelist: A timelist ordered in a monotonically increasing order of
timestamps is used to locate the events that are outside the defined window. We use a
binary search algorithm to e�ciently manage the range of values that are outside the
window. Given window size Ê, slide x and timestamp ·

i

of the current event, we calculate
·

b

and ·
e

as shown in Section 3. Using ·
b

, we use a binary search through the timelist,
such that we are inserting ·

b

in the list. If the insertion point (index of the timelist) is
positive, it means that we have found the exact place of ·

b

and all the values from 0 ¡
index-1 are older than the ·

b

of the window and must be evicted. If the insertion point is
a negative number (except (-1)), it means we found the place where ·

b

should be inserted.
Thus, all the timestamps from 0 ¡ (-index)-2 are outside the window. Finally, if the
insertion point is -1, then it means that the index is before the start of the timelist and
all the timestamps in timelist are within the defined window.
Incrementally Updating Query Matches: When a set of triples associated with an
ordinal number and a timestamp is evicted from a window, all the existing matches in FV
are updated accordingly. Suppose that a triple/triple set associated with an ordinal number
g

i

in FV is evicted from the window, then there could be two cases: (1) sibling(g
i

) = ?,

7. SPECTRA: High-Performance RDF Graph Streams Processing 90

00

2H2
OS

H2H1
OS

ONH1App1
OS

H1App1H1
OS

<id>

<near_by>

<status>

<has_Appliance>

….….
H2 H2App3

H1App2H1
OS

…....
H2App3 ON

ONH1App2
OS

H2 H2App3
H1App2H1

OS

H1App2H1
OS

!

!

H2App2 ON
ONH1App2
OS

<has_Appliance> <status>

tp1 tp2

"F "1 "
2

"2R

"
1

R

"#
1R

1 3 110 2 4 111

SL1 SL2

3 1 110 4 2 111

1 3 110

SL1

1

2

3

4

1

2

"F

1

2

"F 3

"F 4

00

00

00

2H2
OS

H2H1
OS

ONH1App2
ONH1App1
OS

H1 H1App2
H1App1H1

OS

<id> <near_by>
<status> <has_Appliance>

"F "F1 2 "F 3 "F 4

00 00 00110 0000 110

(a)

(b)

00

Figure 7.4: Incremental Processing of matched results of (·
j

, G
D

) in Figure 6.1 with Query 6.1,
as described in Example 9.

where sibling is a function, which determines all the sibling ordinal numbers of g
i

, (2)
sibling(g

i

) ”= ?. Case (1) describes that there are no matches e�ected by the removal of
such ordinal number, as it does not have any siblings. Case (2) illustrates that there could
be matches a�ected by the removal of g

i

. Thus, the case (2) is incrementally handled as
follows: if ’sibling(g

i

), ÷(s, o) œ FV
i

, ’i œ {1, . . . , |G
Q

|}, then the existing matches are
not a�ected by the remove operations. Otherwise, the siblings of partially matched (s, o)
pairs are no longer within a window, and thus cannot be included in the output matches.
Figure 7.4(b) represents a set of final views, where the removal of triples associated with
the ordinal number 00 would invalidate the partially matched results in FV

3

and FV
4

.
Thus, those triples cannot be included in the matched results output.

Semantics of Output Matches: Due to the incremental nature of our matching algo-
rithm, the semantics of matches produced by a query at time ·

i

for an event (·
i

, G
D

)
can easily be explained through an Istream operator from Continuous Query Language
(CQL) [ABW06]. That is, for each evaluation of QueryProc or IncQueryProc, only
the newly found matches are reported in the output stream. This results in a less
verbose output as compared to producing all the new and the old matches (that have
already been reported) for each match execution.

7. SPECTRA: High-Performance RDF Graph Streams Processing 91

7.7 Experimental Evaluation

This section presents an experimental evaluation that examines whether SPECTRA’s
incremental indexing and evaluation strategies are competitive as compared to the general
indexing and re-evaluation based solutions.

7.7.1 Experimental Setup

Datasets and Queries: We used two synthetic benchmarks and one real-world dataset,
and their associated queries for our experimental evaluations.

LUBM 2 is a widely used synthetic benchmark for benchmarking triple stores, and
considers a university domain, with types like UndergraduateStudent, Publication,
GraduateCourse, AssistantProfessor, to name a few. Using the LUBM generator, we
create a dataset of more than 1 billion triples with 18 unique predicates. Concerning
the queries, the LUBM benchmark has provided a list of queries. But many of these
queries are simple 2-triple pattern queries or they are quite similar to each other. Hence
we chose 7 representative queries out of this, as published in [AC10]; these queries range
from simple star-shaped to complex cyclic patterns (see Appendix A.1).

The Social Network Benchmark (SNB) [Erl+15] is a synthetic dataset containing social
data distributed into streams of GPS, posts, comments, photos, and static data contain
the users profiles. It contains information about the persons, their friendship network and
content data of messages between persons, e.g, posts, comments, likes etc. We generated
a total of 50 million triples that contain data for 30,000 users. The distribution of the
dataset is described in Table 7.1. For query graphs, we randomly generated three di�erent
query graphs of di�erent characteristics by varying the types of joins and data selectivity.
These query graphs are based on the use cases described in the benchmark, and describe
the relationships between posts, comments, forums and persons. For example SNB-Q1
(see Appendix A.2) retrieves the post, its creator and its tag name for SNB events. These
query graphs are presented in Appendix A.2. In order to compare the systems based on a
triple stream model, we also reused the query graphs from LSBench3. It is also a social
network benchmark. However, the SNB dataset presents a more connected graph structure
with a larger number of attributes compared with LSBench. Thus we can introduce more
complex events for LSBench queries. These query graphs are presented in Appendix A.3.

Table 7.1: Dataset Distribution for the SNB Dataset, Min and Max describe the Range of
Number of Triples for each Event.

Dataset(streams) Min (triples/event) Max (triples/event)
500P 783 148K
1KP 2340 397K
5KP 217K 301K
10KP 50K 805K
20KP 115K 1.9M
30KP 145K 3.2M

2LUBM Benchmark: http://swat.cse.lehigh.edu/projects/lubm/, last accessed: July, 2016.
3LSBench Dataset and Queries: https://code.google.com/archive/p/lsbench/, last accessed: July,

2016.

http://swat.cse.lehigh.edu/projects/lubm/
https://code.google.com/archive/p/lsbench/

7. SPECTRA: High-Performance RDF Graph Streams Processing 92

The SEAS4 project provides a real-world dataset5 containing the power consump-
tion statistics of family houses. It contains a set of power related attributes such as,
measurement instrument types, voltages, watt values, etc. The dataset is available as
RDF Data Cube and is mapped using the SEAS ontology6. The dataset is composed
of power measurement values of a family house over the period of three years with
a sampling period of 5 minutes. In total, it contains around 65 million triples. For
queries, we generated one selective and one non-selective query from SEAS use cases;
queries are illustrated in Appendix A.
Competitors: To compare against static triple stores, we chose two openly available and
widely known systems7: RDFox [Nen+15] and Jena [Car+04]. Both of these systems are
in-memory, and can be utilised for stream processing scenarios. For RSP systems, we
selected CQELS [LP+11] and C-SPARQL [Bar+10a]. Both systems are widely used in
the Semantic Web community and often compared in the literature even if both di�er
in their semantics: CQELS is based on push-based semantics and C-SPARQL is based
on pull-based semantics. Our system resembles with CQELS due to its push-based
semantics, i.e., queries are processed as soon as a new triple enters the system. In
order to only compare the data structure and indexing technique of SPECTRA, we have
also implemented a re-evaluation based version of SPECTRA, i.e., only executing the
QueryProc operator; persisting all the data in the views; and recomputing the joins
for the whole window. It is denoted as S-Rev, while the general incremental version
is denoted as S-Inc in the rest of the discussion.
Settings: The performance of query processing over sliding window depends on the
window size Ê; we intuitively expect it to spend more time on larger windows. For all the
experiments (except for S-Inc-20), we use one triple for each event, the reasons are as
follows: (1) CQELS and C-SPARQL only supports single triple streams; (2) this is the
worst-behaviour in terms of query performance, as a large number of matching processes
are executed, one for each triple. All the experiments were performed on an Intel Xeon
E3 1246v3 processor with 8MB of L3 cache. The system is equipped with 32GB of main
memory and a 256Go PCI Express SSD. It runs a 64-bit Linux 3.13.0 kernel with Oracle’s
JDK 8u05. For robustness, we performed 10 independent runs, and we report median time
and memory consumptions. SPECTRA is implemented in Java and is openly available8.

7.7.2 Evaluation
The main objectives of our experimental evaluation are as follow:

• Detecting the e�ects of incremental indexing and query processing compared with
the traditional static RDF and RSP solutions.

• How incremental evaluation behaves in comparison with the re-evaluation strategy?

• The e�ects of sliding window on query processing, and how e�ective is SPECTRA
in evicting the deceased matches?

4SEAS Project: https://itea3.org/project/seas.html, last accessed: July, 2016.
5SEAS Dataset: http://sites.ieee.org/psace-idma/data-sets/, last accessed: July, 2016.
6SEAS Ontology: http://bit.ly/1UxxLXu, last accessed: July, 2016.
7Note that we do not use the commercial systems such as Node4j [neo4j] and Virtuoso [virtuo]. Neo4j

is based on the property graph model and do not directly support SPARQL queries, while Virtuoso’s
open source version does not provide the access to the main memory system’s source code; thus it is not
possible to use it as a continuously query system.

8SPECTRA Framework: http://spectrastreams.github.io/, last accessed: August, 2016.

https://itea3.org/project/seas.html
http://sites.ieee.org/psace-idma/data-sets/
http://bit.ly/1UxxLXu
http://spectrastreams.github.io/

7. SPECTRA: High-Performance RDF Graph Streams Processing 93

Table 7.2: Throughput Analysis ◊1000 triples/second (rounded to the nearest 10) on LUMB
Dataset and Queries over three di�erent Tumbling Windows. Boldface for the Incremental
Evaluation and Best Throughputs for Re-evaluation are italicised. (•) indicates Aborted Execution
due to Timeouts

Window 10 sec

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7

C-SPARQL 12 54 8 27 76 88 19

Jena 35 80 15 68 150 110 26

CQELS 34 113 21 95 220 125 38

RDFox 28 84 23 89 123 106 32

S-Rev 60 750 46 356 846 796 64
S-Inc 81 848 54 425 980 925 73

Window 50 sec

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7

C-SPARQL 10 36 6 19 44 58 11

Jena 14 53 9 37 108 73 15

CQELS 22 86 13 46 143 89 21

RDFox 23 77 17 34 93 62 24

S-Rev 36 322 15 88 637 748 28
S-Inc 52 567 26 180 876 853 50

Window 100 sec

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7

C-SPARQL • • • 12 20 22 •
Jena • 11 • 15 33 24 •
CQELS 8 30 5 28 39 31 6

RDFox 13 56 10 31 44 38 15
S-Rev 11 80 7 56 161 179 10

S-Inc 30 241 18 146 540 415 27

• The memory overheads of our data structures and existing solutions.

Relative Performance

The first question we investigate is How does the incremental evaluation and indexing
techniques perform as compared to the re-evaluation-based techniques? This measures the
performance gain while utilising SPECTRA. For this set of experiments, we use tumbling
windows: when window size Ê = x is equal to the slide granularity x, the sliding window
degenerates to the tumbling window. The main reasons for using tumbling windows are
as follows: (1) as the window does not slide incrementally, it can provide the measures
of S-Inc overheads; (2) implementing sliding windows over existing in-memory stores is
a complex task, thus can o�er S-Inc an unfair advantage; (3) it can e�ectively provide
a break-even analysis, where S-Inc outperforms S-Rev. Note that, to avoid any unfair
advantage, we utilise the GraphSummary operator on top of all the evaluated systems.

Table 7.2 shows the throughput analysis (higher is better) for the LUBM dataset
on queries 1-7 over three window sizes. A higher throughput represents better results
for S-Inc, as compared to RDFox, Jena, CQELS and C-SPARQL. The selectivity of
queries has a direct impact on the number of triples added and the number of matches
found in a defined window.

We start our analysis from the highly non-selective queries LUBM-Q1, LUBM-Q3
and LUBM-Q7, each has a large number of triples associated with the triple patterns,
and contains complex and cyclic patterns. Even with the GraphSummary operator,
a large number of triples are inserted into the window and this results in higher cost
of query computation for each matching operation. Therefore, S-Rev for large windows
performed slightly worse than RDFox; for each event, the matching process results in the
reconstruction of indices. RDFox with its parallel, lock free architecture and one table
indexing involves with few index updates, while CQELS requires substantial updates
to its B+-tree indices for each triple in the stream. S-Inc on the other hand, move the
matched triples to FV and the new events are only matched with the respective views
in FV, without re-constructing all the indices from scratch. C-SPARQL and Jena do

7. SPECTRA: High-Performance RDF Graph Streams Processing 94

not scale well with the increase in the size of the window, as their underlying storage
structure (property tables) becomes quite dense for a large number of triples; C-SPARQL
uses Jena and Esper [BV10] for its underlying execution model.

For selective queries LUMB-Q4, LUBM-Q5 and LUBM-Q6, there are less triples in
each window; most of the unrelated triples are pruned by our GraphSummary operator.
Query LUBM-Q5 only contains 2 triple patterns and thus has even a smaller number of
triples. Therefore, S-Rev performance on these queries is comparable to S-Inc, break-even
analysis of both is provided later. From the rest of the systems, CQELS is a clear
winner for smaller windows with its adaptive indexing technique and its Eddy operators
provide optimal query plans. However, its performance degrades with the increase in the
number of triples within a window. RDFox performs better than Jena and C-SPARQL
due to its parallel architecture. Query LUBM-Q2 is less restrictive than the defined
above; however, it only contains two triple patterns with one join. Thus, even with the
increase in the number of triples all the systems perform better. This is due to the less
number of joins required for less number of triple patterns. That is, as described in
Throrem 6.1, the larger the number of triple patterns in a query graph the more number
of patterns have to be matched with the incoming triples.

In the next set of experiments, we use the SNB dataset and queries to measure the
performance and scalability of di�erent systems. The main objective of these experiments
is to determine how di�erent systems scale by varying the number of triples within
each event. That is, how these systems behave in batch mode, where a large set of
triples are processed at once. We generated multiple distributions/streams of the SNB
dataset, by changing the number of persons for one year worth of data. We divided
the data into a set of events, where each event contains 1 week worth of data. Thus,
each event contains a large number of triples, but there are few numbers of total events:
this enabled the analysis of latency incurred due to various indexing strategies. The
distribution details of the dataset are provided in Table 7.1. Events with variable sizes are
processed, matches are produced and then discarded from the system. Note that, since
for this set of experiments we process each event independently (using only QueryProc

operator), the size of the window has not any e�ect on the performance. The elapsed
time for each query graph was measured with warmed up cache by using the static SNB
dataset (around 50K triples). We do not use CQELS for this set of experiments, as
it performed poorly for larger graphs in batch mode.

We report the total execution time for SNB-Q1, SNB-Q2 and SNB-Q3 in Fig-
ure 7.5(a,b,c). SNB-Q1 contains all the triple patterns with s-s joins (i.e., a star-shaped
pattern) and low selectivity measures, thus it returns a large number of matches. Our
system scales linearly and smoothly (no large variations are observed). It outperforms
others by taking the advantage of fast hash-joins and incremental indexing techniques: in
a star-shaped query graph (i.e., only with s-s joins), the indexing process is simplified
as all the triples share the same subject. Jena and Sesame, which perform better for
smaller events resulted in time-outs with the increase in the size of an event; their
light-weight indexing fails for large numbers of triples and their structure becomes quite
dense. RDFox performs better for larger events (in batch mode) due to its parallel and
lock-free architecture and one big table indexing (six columns triple table) technique.
However, it resulted in high latency measure due to high creation-time for indices,
as shown in Figure 7.6(b).

The query graph SNB-Q2 encompasses high selectivity measures as compared to

7. SPECTRA: High-Performance RDF Graph Streams Processing 95

10
2

10
3

10
4

10
5

10
6

500P 1KP 5KP 10KP 20KP 30KP

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

l
o
g
(
y
)

Streams from Table 7.1

S-Inc

Sesame

Jena

RDFox

(a)

10
2

10
3

10
4

10
5

10
6

500P 1KP 5KP 10KP 20KP 30KPE
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

l
o
g
(
y
)

Streams from Table 7.1

S-Inc

Sesame

Jena

RDFox

(b)

10
2

10
3

10
4

10
5

10
6

500P 1KP 5KP 10KP 20KP 30KP

*

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

l
o
g
(
y
)

Streams from Table 7.1

S-Inc

Sesame

Jena

RDFox

(c)

Figure 7.5: (a)(b)(c) Performance analysis of SNB Queries (1,2 and 3 respectively) (including
both latency measures and query time)

SNB-Q1 and contains a combination of s-s and o-s joins, resulting into a tree-like
pattern. It produces less number of matches for smaller events. However, the number
of matches grows exponentially with the increase in event size. This results in an
expensive exploration process over the indices produced for SPECTRA. However the
lower latency values compensates for it. Jena and Sesame perform in a similar fashion for
SNB-Q1 and does not scale well with the increase in the number of matches. RDFox, as
compared to them, still proved to be the winner; the parallel and lock free architecture
of RDFox enables parallel join operations. The query graph SNB-Q3, as compared to
SNB-Q1 and SNB-Q2, contains very high selectivity measures, thus only a handful of
matches are produced. Since SPECTRA only indexes the triples that are able to join, it
results in higher throughput compared with other systems. Other systems first employ
indexing over all the pruned triples and then execute the join process, this result in
higher insertion and computation times.

In order to demonstrate the di�erence between our incremental indexing approach and
o�ine indexing approaches, we report the latency measures and query time for SNB-Q1 in
Figure 7.6(a,b) respectively. From earlier observations, our system takes less time to load
triples from each event, as indexing is performed incrementally during query execution.
However, the query time is lower for RDFox with its complex indexing technique, with
high insertion/indexing time. Note that these experiments were performed over a large
batch of events, thus there are less number of query evaluation calls to each systems,
and each call contains a large number of triples. For such reason, RDFox query time is

7. SPECTRA: High-Performance RDF Graph Streams Processing 96

10
2

10
3

10
4

10
5

500P 1KP 5KP 10KP 20KP 30KP

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

l
o
g
(
y
)

Streams from Table 7.1

S-Inc
Sesame
Jena
RDFox

(a)

10
2

10
3

10
4

10
5

500P 1KP 5KP 10KP 20KP 30KPE
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

l
o
g
(
y
)

Streams from Table 7.1

S-Inc
Sesame
Jena
RDFox

(b)

Figure 7.6: (a) Query time and (b) Latency measures of SNB-Q1 on the SNB dataset.

Figure 7.7: Break-Even point for the re-evaluation and incremental methods

better than SPECTRA. However, in general streaming settings with a large number of
calls, as shown in earlier experiments, SPECTRA outperforms RDFox.

Break-Even Point

The second question we investigate is What is the smallest window size at which the
incremental evaluation pays o�? With a very small window, the re-evaluation strategy does
so little and contains such a small number of triples that it outperforms the incremental
scheme. However, with the increase in the size of the window, S-Rev becomes so expensive
that it is outperformed by the S-Inc. We ran both implementations at di�erent window
sizes (for tumbling windows) and measured the throughput.

Table 7.2 shows the comparative analysis of both strategies. Due to the large size
of the windows, S-Inc shows superior performance for all the queries. Figure 7.7 shows
the comparative analysis on relatively smaller window from 102 triples to 105 triples;
for the sake of brevity we use the number of triples for the window size. We use the
selective query LUBM-Q5 and the non-selective complex query LUBM-Q7 from the
LUBM benchmark for this analysis. S-Rev performs less operations, thus the overhead
of S-Inc is, as expected to be, higher than that of re-evaluation strategy. In most of
the queries, S-Inc breaks-even for relatively small window sizes (between 104 and 105

7. SPECTRA: High-Performance RDF Graph Streams Processing 97

Figure 7.8: Performance of the non-
selective SEAS-Q1

Figure 7.9: Performance of the selective
SEAS-Q2

for selective queries and between 103 and 104 for non-selective queries), conforming the
particle utility of S-Inc on reasonable window sizes.

Figure 7.7 shows that for Q5 S-Inc is about 20% slower on small window sizes and
almost 3◊ faster on large window. Such slight slowdown is not much of the concern: at such
small window sizes, extracting matches is unlikely to be the bottleneck of the application.
On the other hand, S-Inc yields large speed ups even at the moderate window sizes of 104

triples and we can observe even larger speed-ups when further increasing the window size.

Sliding Windows

Next we investigate How S-Inc performs when the window slides with variable granularity
for triple and RDF graph streams? This measures the performance of the system
when it constantly updates its window contents. For this set of experiments, we use
a slide granularity of x = 1, i.e., each time the matching process fires, it handles the
insertion and eviction of triples. This is the worst-case behaviour for sliding windows
in terms of per-event cost.

We first use the SEAS dataset (to compare di�erent systems on real-world settings) and
its non-selective (SEAS-Q1) and selective (SEAS-Q2) queries for this set of experiments.
Figures 7.8 and 7.9 show the performance of SEAS queries. Note that we only use CQELS
for comparative analysis, as C-SPARQL is much slower, as confirmed by our earlier
experiment. Moreover, here we di�erentiate S-Inc-1 and S-Inc-20 by having di�erent
number of triples in each event. That is, S-Inc-1 denotes one triple per event, while
S-Inc-20 denotes 20 triples per event. For both queries SEAS-Q1 and SEAS-Q2, S-
Inc-1 is much faster than the CQELS, which performs re-evaluation and uses adaptive
indexing and operator reordering. As the window grows, S-Inc-1 is nearly an order of
magnitude faster than CQELS; the number of matches and triples in a window grows
linearly (specially for SEAS-Q1) and therefore the cost of scanning all the triples is quite
high for CQELS. Furthermore, it is very expensive to scan the large number of matches
with the eviction of older triples. S-Inc, with the eviction of triples from the window,
does not re-evaluate the query on the remaining triples; instead ordinal numbers and

7. SPECTRA: High-Performance RDF Graph Streams Processing 98

10
3

10
4

10
5

10
6

10 20 40 60

T
h
r
o
u
g
h
p
u
t

(
t
r
i
p
l
e
s
/
s
)

l
o
g
(
y
)

Window Size (seconds)

S-Inc-LS-Q3

CQELS-LS-Q3

S-Inc-LS-Q2

CQELS-LS-Q2

S-Inc-LS-Q1

CQELS-LS-Q1

Figure 7.10: S-Inc comparison with CQELS for SNB data set and LSBench Queries

sibling relationships are utilised to determine the invalid matches. The performance of
selective query SEAS-Q2 (Figure 7.9) shows the power of SummarGraph operators,
where even with the increase in the size of the window, only the triples that conform
to the selective values of the query are added to the window.

Recall from Section 6.3, SPECTRA uses a general RDF graph model for the events,
which allows a set triples to be enclosed in each event. The importance of this model,
in terms of performance, is illustrated in Figure 7.8 and 7.9, where S-Inc-20 uses events
each of 20 triples. The total number of distinct matching operations for S-Inc-20 is less
than S-Inc-1, where a new matching operation is for a batch of 20 triples, instead of
1 triple. This results in 25-35% increases in performance of the system for S-Inc-20 as
compared to S-Inc-1. Furthermore, this also complies to the general streaming setting,
where each event consists of a set of attributes that can be related to a set of triples
for the attributes set in RDF graph streams.

For the next set of experiments, we use the SNB dataset and LSBench queries to show
the comparative performance measures between S-Inc and CQELS. We use triple streams
(S-Inc-1) for this set of experiments, where each event contains one triple. Moreover,
to showcase the importance of our SummaryGraph operators, we do not use it over
CQELS for this set of experiments. The results of LS-Q1, LS-Q2 and LS-Q3 are reported
in Figure 7.10. Due to the simplicity of the triple stream model, LSBench queries and
the incremental evaluation strategy, our system shows similar performance measures
for all queries. To elaborate, LS-Q3 is highly selective and there are less matches and
less join operations. Therefore, our system and CQELS perform much better on LS-Q3.
However, CQELS, contrary to our system, does not prune the unwanted triples before
starting the join operations; hence our system results in superior throughput. The CQELS
performance degrades on less restrictive query graphs (LS-Q1 and LS-Q2), where a
larger number of matches are produced over a large number of triples within a defined
window. Thus, for each new triple update it re-evaluates all the matches from the triples
set within a window: the information about the partial and complete matches are not
stored and utilised for future match operations. Furthermore, it results in time-outs

7. SPECTRA: High-Performance RDF Graph Streams Processing 99

Figure 7.11: Resident set size (in MB) of S-Inc-1 and CQELS for SEAS Q1

for larger windows, as it continuously updates its B+-tree indices and uses a static
dictionary approach. In our system, on the contrary, any change made by the newly
arrived triples to the query graph matches is stored, and information about the partial
and total matches are incrementally updated where needed.

Memory Consumption

What is the e�ect of the S-Inc data structure on the memory consumption? Figure 7.11
shows the resident set size (RSS; lower is better), which is measured using a separate
process that polls the /proc Linux file system, once a second. Note that this method
did not interfere with the overall timing results, from which we concluded that it did
not perturb the experiments. Figure 7.11 shows the comparative results of CQELS and
S-Inc-1, and as expected, S-Inc takes slightly more memory than CQELS due to its
bidirectional multimaps. However, this pays-o� with the performance improvements.
At small or moderate window sizes, the impact of window size is fairly minor on RSS
as compared to base RSS of the entire process. Both systems continue to consume
space linearly in size of the window.

7.8 Extending SPECTRA
As discussed in Section 7.5, SPECTRA supports the output of matches in an incremental
manner. But it can be extended to (i) support the Rstream operator [ABW06] to
output all the matches that exist in a window at a certain time ·

i

, (ii) to implement
the out-of-order stream model.
Extension of Output Semantics: The extension of the output model for SPECTRA
is a straightforward procedure. As noted in Sections 7.4 and 7.5, matched triples from
each event are stored in a set of final views FV . Thus, in order to extract all the matches
(JG

Q

K
RW (·i)

) at each time ·
i

for a query graph G
Q

, each match operation can visit all the
available final views and extract incrementally stored triples. The results produced in this
settings can be more verbose: the same matches can be present in the output that are
computed at di�erent evaluation times. Nevertheless, it can satisfy the semantics of the
Rstream operator from the CQL [ABW06]: such semantics are used by the C-SPARQL

7. SPECTRA: High-Performance RDF Graph Streams Processing 100

engine for processing triple streams. Note that due the verbose nature of such operators
there will be increase in the load on the system’s thread which is responsible for delivering
the results to the defined application or the disk storage.
Out-of-order Streams: SPECTRA makes the general assumption that the events
arrived within a streams are totally ordered. This assumption is not only considered by
all the RDF stream processing systems, but also most of the DSMSs comply to it. The
total order assumption might not be met in practice because of network latencies and
distributed data sources. Therefore, in case of out-of-order streams, the system can bu�er
the input events for a certain maximum amount of time and then reorder them [Li+08].

7.9 Summary
In this chapter, we provided some of the answers to the following question. How to
design a scalable RDF Graph stream processing system? Based on the limitations of
existing RSP and static RDF processing systems (as discussed in the previous chapter),
we proposed a new system called SPECTRA. It uses a set of vertically partitioned views
to collect the summarised data from each event and employs sibling lists to incrementally
index the joined triples between views. The matched results are persisted in a set of
final views, thus enabling the incremental evaluation with the arrival of new events.
Our contributions for this chapter as follows:

• SPECTRA Framework. We detailed the design of the SPECTRA framework
and how it caters the limitations for existing RSP and static RDF graph processing
systems.

• Query-based Graph Summarisation. We provided a light-weight query-based
graph summarisation technique to prune the unwanted triples from each RDF graph
event.

• Incremental Indexing. We proposed an incremental indexing technique, where
triples within views are indexed during the join process.

• Incremental Query Processing. We proposed two query processing operators,
where the QueryProc matches a set of triples within an event with the defined
query graph, and the IncrQueryProc uses already computed matches to process
newly arrived events using openly available datasets and systems.

• Experimental Evaluation. Given these properties, the experimental results show
that our proposed techniques clearly outperform traditional o�ine/online indexing
and re-evaluation based solutions.

An RDF graph stream processing system that employs customised optimisation
while considering properties of both RDF graph and streaming environment can provide
considerable advantage over existing approaches. In this chapter, we demonstrated such
observation. In the next chapter, we move from the stateless query processing to a stateful
one, where temporal operators come into action to achieve temporal pattern matching.

Part III

Semantic Complex Event
Processing: Model, Language and

Implementation

101

Any change in the true wind will show its fingerprint in

the sea. A fresh train of ripples or waves will run a web

over waves caused by the true wind.

— Francis O’Neill

8
A Query Language for SCEP: Syntax and

Semantics

In this chapter, we transit from the topic of semantically-enabled stream
processing to Semantic Complex Event Processing (SCEP), while providing
the syntax and semantics of our SCEP query language called SPAseq. We
first describe the limitations of the existing SCEP languages, and motivate
the requirement of a new one. Second, through intuitive use cases, we present
the main constructs of SPAseq. Third, we provide a qualitative analysis of
SPAseq and its competitor: EP-SPARQL.

Contents

8.1 Introduction . 103
8.2 Why A New Language? . 104

8.2.1 A Motivating Example . 104
8.2.2 Limitations of Existing SCEP Languages 105

8.3 The SPAseq Query Language 106
8.3.1 Data Model . 107

8.4 Syntax of SPAseq . 108
8.5 SPAseq By Examples . 110
8.6 Formal Semantics of SPAseq . 112

8.6.1 Rough Work . 112
8.6.2 Semantics of SPAseq Operators 115
8.6.3 Evaluation of SPAseq Queries 120

8.7 Qualitative Comparative Analysis 121
8.7.1 Input Data Model . 121
8.7.2 TimePoints Vs Time-Intervals . 123
8.7.3 Temporal Operators . 124

8.8 Summary . 125

This chapter is structured as follows: Section 8.1 presents the introductory
discussion about SCEP. Section 8.2 presents the motivation of a new SCEP

102

8. A Query Language for SCEP: Syntax and Semantics 103

language and the limitations of existing ones. Section 8.3 introduces the
SPAseq language and its data model. Section 8.4 describes the syntax
of SPAseq with intuitive examples. Section 8.5 presents various complex
examples and use cases that SPAseq can handle. Section 8.6 provides the
semantics of SPAseq. Section 8.7 provides the qualitative and comparative
analysis of SPAseq and EP-SPARQL. Section 8.8 concludes the chapter.

8.1 Introduction
Complex Event Processing (CEP) denotes algorithmic methods for making sense of
events by deriving higher-level knowledge, or extracting complex events from lower-
level events in a timely fashion. As previously discussed, CEP applications commonly
involve three requirements:

1. complex predicates (filtering, correlation),

2. temporal, order and sequential patterns,

3. transforming the event(s) into more complex/composite structures.

CEP systems have demonstrated utility in a variety of applications including financial
trading, security monitoring, social and sensor network analysis. Following the trend of
using RDF as a unified data model for integrating diverse data sources across heterogeneous
domains, Semantic CEP (SCEP) employs the RDF data model to handle and analyse
complex relations over a high volume of RDF graph streams. Thus, designing an e�cient
query language is a vital part of SCEP: it allows users to specify known queries or patterns
of events in an intuitive way, while hiding the implementation details.

There are various commonalities among SCEP languages and traditional Semantic
Web data languages (such as SPARQL). There are, however, also many important
discrepancies between the capabilities and premises of traditional query languages. Herein,
we summarise these requirements for completeness as follows:

1. RDF events are received over time in a stream-like manner, whereas in a triple store
all facts are available at once and usually stored in a persistent manner. Thus, a
SCEP language requires an operator to select a specific stream to evaluate events.

2. Event streams are unbounded into future, and potentially infinite, whereas triple
stores employs a finite model. In order to execute SCEP queries, events are bound
by certain windows (as described in Chapter 5 (Section 5.2)). Therefore, a SCEP
language is required to provide a window operator.

3. Relationships between events, such as temporal order or causality, play an important
role for SCEP. In general triple stores, relationships between facts are part of the
data (e.g., references through predicates and foreign keys). This is, however, not the
case for SCEP, and a SCEP language requires explicit operators to capture these
relationships.

4. Timing of answers has to be considered when querying events: SCEP queries are
evaluated continuously against the event stream and generate answers at di�erent
times. Therefore, the evaluation semantics of output results for a SCEP query
language should either be push or pull-based.

8. A Query Language for SCEP: Syntax and Semantics 104

These added attributes of SCEP languages are required not only to carefully handle
the expressibility of the language that can support most of the SCEP use cases, but also
to balance the executional semantics with an e�cient implementation.

As previously discussed, while there does not exist a standard language for expressing
continuous queries over RDF graph streams, a few options have been proposed. In
particular, the first strand of research focuses on extending the scope of SPARQL
to enable stateless continuous evaluation of RDF triple streams. These approaches,
including CQELS [LP+11], C-SPARQL [Bar+10a], SPARQL

Stream

[CCG10], are classified
under RSP systems, and do not provide any operator to extract temporal relationships
between events. The second strand of research focuses on extending SPARQL with
stateful operators. In particular, EP-SPARQL [Ani+11] extends SPARQL with sequence
constructs to allow temporal ordering over triple streams. Although, EP-SPARQL
can be classified under the umbrella of SCEP, its definitions of sequence operators
and graph pattern matching operators are mixed; thus, it makes it di�cult to extend
it for RDF graph streams (as described in Section 8.2.2). Moreover, it works on a
single stream model and lacks explicit kleene-+, negation1 and event selection strategies.
These shortcomings led to the implementation of a new query language, called SPAseq,
which is described in this chapter.

8.2 Why A New Language?
To justify the need of a new query language for SCEP, we use a running use case: it
illustrates the main limitations of existing approaches and shows the kind of expressiveness
and flexibility needed.

8.2.1 A Motivating Example
Consider a smart grid application that processes information coming from a set of
heterogeneous sensors. Based on the events from these streams, it notifies the users or an
online service to take a decision to improve the power usage. Let us consider, it is working
on three streams: the first stream (S

1

) provides the events about the power-related sources
from a house, the second stream (S

2

) provides the weather-related events for house, and
the third stream (S

3

) provides the power storage-related events. Herein, we present a
simple use case (UC) to illustrate the features a SCEP language should provide.

UC 1 (Smart Grid Environment Monitoring): Consider the above-mentioned three
RDF event streams S

1

, S
2

and S
3

, which are fed to an application that notifies the user
to switch to the stored power instead of main power supply, if the system observes the
following sequence of events: (A) the price of electricity generated by a power source (fuel)
is greater than a certain threshold, (B) weather conditions are favourable for renewable
energy production (one or more events), and (C) the price of renewable energy source
(solar) is less than the previous power source.

UC 1 requires that a SCEP language should meet the following main principles.

• Since the RDF graph model is the corner-stone of SCEP, its features such as seamless
integration of multiple heterogeneous streams should be considered for the design of
a SCEP language.

1the negation operator is not an explicit part of the EP-SPARQL formalism, but can be defined with a
combination of other operators.

8. A Query Language for SCEP: Syntax and Semantics 105

• The main aim of a SCEP language is to provide temporal operators on top of
standard SPARQL operators. Thus, the list of temporal operators (as discussed in
Chapter 5 (Section 5.2)), such as sequencing, conjunction, disjunction, negation,
kleene-+ and event selection strategies should be supported in a SCEP language.

• The SCEP language (as discussed in Chapter 4 and 5) should provide operators to
directly enrich events through a static background knowledge.

Following the language considerations as discussed above, we also provide some
general requirements for the SCEP language.

• The SCEP language should follow the principal of genericity, i.e., its design should
be independent of the underlying execution model.

• The SCEP language should provide simple syntax and semantics that can easily be
extended.

• The SCEP language should provide the property of compositionality. That is, the
output of a query can be used as an input for another.

• The SCEP language should be user-friendly with low barrier of entrance, especially
in the Semantic Web community.

The aforementioned attributes are the basic requirements for a SCEP language.
Herein, using them as a yardstick we outline the limitations of existing languages,
in particularly EP-SPARQL.

8.2.2 Limitations of Existing SCEP Languages
As mentioned in Chapter 5, EP-SPARQL is the only SCEP language that, to some extent,
can express desirable attributes for SCEP. However, if one yanks the rug out from beneath
EP-SPARQL, one can find that many important features of SCEP are not present in
EP-SPARQL. These limitations of EP-SPARQL are listed as follows:

• Multiple Heterogeneous Streams: As previously discussed in Chapter 5 (Section 5.4),
the data model of EP-SPARQL is based on a single stream model. That is, a single
RDF event stream is used to evaluate the temporal sequences between events. This
contradicts some of the motivations behind SCEP: the support of heterogeneous
multiple streams forms the backbone of SCEP. The reason is based on its inspiration
from a CEP system (ETALIS), where an RDF event stream is mapped onto Prolog
object stream. Hence, its design is directly motivated from its underlying executional
model, and extending it for the multiple stream requires complete overhauling of its
semantics.

• Temporal Operators: EP-SPARQL only supports a small subset of temporal
operators, and operators such as kleene-+, event selection strategies are not
supported. These operators are important for many applications where semantic
noise is observed (more details are provided in Section 8.5). Moreover, the
conjunction and disjunction operators in EP-SPARQL are inspired from SPARQL
(OPTIONAL and AND), and do not provide the nesting over a set of events as described
for CEP systems. This leads to a design where the semantics of temporal operators
and SPARQL graph patterns are mixed, and hence cannot be easily extended.

8. A Query Language for SCEP: Syntax and Semantics 106

• Enriching Events with Background Knowledge: The static background knowledge
is used to extract further implicit information from events. As a query language,
EP-SPARQL does not provide any explicit operators to join graph patterns defined
on an external knowledge and incoming RDF events. It, however, employs Prolog
rules or RDFS rules within an ETALIS engine. Nevertheless, such feature should be
provided at the query level to give users control on which information is required or
not: this observation is based on the RSP languages that provide such functionality.

• Compositionality and Negation Operator The compositionality in EP-SPARQL is
supported through recursion and blank nodes. Consider Query 8.1, which uses the
generation of new IRIs via blank nodes in the head of CONSTRUCT clause. This
enables an infinite number of possible triples and as the query simultaneously uses
recursion: _:aaa :hasSum ?sum is constructed out of ?point :hasSum ?prevsum,
and according to the EP-SPARQL formalism (as described in Chapter 5) this query
is most likely undecidable.
As no explicit negation operator is provided for EP-SPARQL, it uses the complicated
EQUALSOPTIONAL clause in conjunction with the !Bound(?inbetween) filter to sup-
port negations. We think this is an inelegant way of providing the negation: if there
are n events match to :ACM :hasStockPrice ?price triple patterns (in Query 8.1)
within the defined window, then the query has to keep

q
n≠1

i=1

3i = 1.5 ◊ n ◊ (n ≠ 1)
triples as partial matches within memory to correctly evaluate these expressions.

1 CONSTRUCT _:aaa : hasCount ?count .
2 _:aaa : hasSum ?sum .
3 { SELECT ?count AS ? prevcount + 1
4 ?sum AS ? prevsum + ?price
5 WHERE {{ ?point : hasCount ? prevcount .
6 ?point : hasSum ? prevsum .
7 } SEQ { :ACME : hasStockPrice ?price . }
8 } EQUALSOPTIONAL
9 {{ ?point : hasCount ? prevcount .

10 ?point : hasSum ? prevsum .
11 } SEQ { :ACME : hasStockPrice ? inbetween .
12 } SEQ { :ACME : hasStockPrice ?price . }
13 }
14 FILTER (! BOUND (? inbetween) &&
15 getDURATION () < "P10D "^^ xsd: duration)}

Query 8.1: EP-SPARQL query for compositionality and Negation

8.3 The SPAseq Query Language

Considering the shortcomings of EP-SPARQL, as a part of the contribution of this
thesis, we propose a new language called SPAseq. The design of SPAseq is based on
the following main principles: (1) support of an RDF graph event model, (2) adequate
expressive power, i.e., not only based on core SPARQL constructs but also including general
purpose temporal operators, (3) genericity, i.e. independent of the underlying evaluation
techniques, (4) simple syntax and semantics that can be extended (5) compositionality,
i.e, the output of a query can be used as an input for another one, (6) user-friendly with
a low barrier of entrance, especially in the Semantic Web community.

8. A Query Language for SCEP: Syntax and Semantics 107

The most important feature of SPAseq is that it clearly separates the query com-
ponents for describing temporal patterns over RDF graph events, from specifying the
graph pattern matching over each RDF graph event. This enables SPAseq to employ
expressive temporal operators, such as kleene-+, negation, optional over events from
heterogeneous streams. In the following, we start with the data model of SPAseq and
then provide the details regarding its syntax and semantics.

8.3.1 Data Model

In this section, we introduce the structural data model of SPAseq that captures the
concept of RDF graph-based events, which serves as the basis of our query language. We
use the RDF data model (as introduced in Chapter 2) to model an event. That is, we
assume three pairwise disjoint, infinite sets I (IRIs), B (blank nodes), and L (literals).
An RDF triple is a tuple Ès, p, oÍ œ (I fi B) ◊ I ◊ (I fi B fi L). An RDF graph is a set
of RDF triples. Based on this we reuse Definitions 6.1 and 6.2 to describe RDF graph
events and streams.

Definition 8.1: RDF Graph Event

An RDF graph event (G
e

) is a pair (·, G) where G is an RDF graph, and · is
an associated timestamp that belongs to a one-dimensional, totally ordered metric
space.

We do not make explicit what timestamps are because one may rely on, e.g., UNIX
epoch, which is a discrete representation of time, while others could use xsd:dateTime
which is arbitrarily precise.

In our setting, streams are simply sets of RDF graph events defined as follows:

Definition 8.2: RDF Graph Event Stream

An RDF graph event stream S
g

is a possibly infinite set of RDF graph-based
events such that, for any given timestamps · and · Õ, there is a finite amount of
events occurring between them.

An RDF graph event stream can be seen as a sequence of chronologically ordered
RDF graphs marked with timestamps: several RDF graph-based events can “happen” at
the same time. In addition, we follow the uniqueness property for RDF graphs annotated
with the same timestamps, That is, an event (·, G) œ S

g

s.t ’·, ÷ ! G, (·, G) œ S
g

. To
handle multiple streams, we identify each using an IRI, and group them in a data model
we call RDF streamset.

Definition 8.3: Named Stream

A named stream is a pair (u, S
g

) where u is an IRI, called the stream name,
and S

g

is an RDF graph event stream. An RDF graph streamset � is a set of
named streams such that stream names appear only once.

In the rest of the chapter, we simply use the terms graph for RDF graph, event for
RDF graph event, stream for RDF graph event stream, and streamset for RDF graph

8. A Query Language for SCEP: Syntax and Semantics 108

Pw HFr

Sr

Wt

L

fare
source

watt

loc
pow

(a)

V l WthrLg

SP

L

light

windsp

loc
value

(b)

Pw PsFr

Sr

Wt

Lst

fare
source

watt

status loc
pow

(c)

Figure 8.1: Structure of the Events from three Named Streams, (8.1a) (u1, S
g1) Power Stream’s

Event, (8.1b) (u2, S
g2) Weather Stream’s Event, (8.1c) (u3, S

g3) Power Storage Stream’s Event

streamset. Moreover, we simply use S to denote a stream.

Example 10 Recall UC 1, here we extend it with our data model. The first named
stream (u

1

, S
g1) provides the events about the power-related sources from a house, the

second named stream (u
2

, S
g2) provides the weather-related events for house, and the third

named stream (u
3

, S
g3) provides the power storage-related events. Figure 8.1 illustrates

the structure of the events from each source. For instance, an event from a named stream
(u

1

, S
g1) can contain the following set of RDF triples and a timestamp:

(·
i

, G
i

) = (10, {(H1, loc, L1), (H1, pow, Pw1),
(Pw1, source, solar), (Pw1, fare, 5), (Pw1, watt, 20)})

1

1 SELECT ?house ?fr1 ?fr2

2 WITHIN 30 MINUTES

3 FROM STREAM S1 <http://smartgrid.org/house>

4 FROM STREAM S2 <http://smartgrid.org/weather>

5 FROM STREAM S3 <http://smartgrid.org/storage>

6
7 WHERE {

8
9 SEQ (A; B+, C)

10 DEFINE GPM A ON S1 {

11 ?house :loc ?l.

12 ?house :pow :Pw.

13 :Pw :source ?s1.

14 :Pw :fare ?fr1.

15 FILTER(?s1 = ’fuel’ &&

16 ?fr1 > 20).

17 }

18 DEFINE GPM B ON S2 {

19 ?wther :loc ?l.

20 ?wther :value :Vl.

21 :Vl :light ?lt.

22 :Vl :windsp ?sp.

23 FILTER (?sp > 3 &&

24 ?lt > 40).

25 }

26
27 DEFINE GPM C ON S3 {

28 ?storage :loc ?l.

29 ?storage :pow :Pw.

30 :Pw :source ?s2.

31 :Pw :fare ?fr2.

32 FILTER (?s2 = ’solar’ &&

33 ?fr2 < ?fr1).

34 }

35 }

Query 8.2: A Sample SPAseq Query for the UC 1

8.4 Syntax of SPAseq

This section defines the abstract syntax of SPAseq, where SPAseq queries are meant to
be evaluated over a streamset, and each query is built from the two main components:
graph pattern matching expression (GPM) for specifying the SPARQL graph patterns over
events; and sequence expression for selecting the sequence of a set of GPM expressions.
For this discussion, we assume that the reader is familiar with the definition and the
algebraic formalisation introduced in Chapter 2 (Section 2.4) and Chapter 6 (Section 6.3).

8. A Query Language for SCEP: Syntax and Semantics 109

In particular, we rely on the notion of SPARQL graph patterns by considering operators
AND, OPT, UNION, FILTER, and GRAPH.

Definition 8.4: SPAseq Query

A SPAseq query is a tuple Q = (V, Ê, SeqExp), where V is a set of variables, Ê is
a duration, and SeqExp is a sequence expression defined according to the following
grammar:

SeqExp ::= Atom | SeqExp ‘;’ Atom | SeqExp ‘,’ Atom

Atom ::= GPM | GPM [‘?’ | ‘!’ | ‘+’] | (GPM ‘<>’GPM) | (GPM ‘|’GPM)
GPM ::= (u, P)

where u œ I is an IRI, P is a SPARQL graph pattern, and (u, P) is called a graph
pattern matching expression (GPM).

The concrete syntax of SPAseq is illustrated in Query 8.2 with syntactic sugars
that are closer to the SPARQL. It contains three GPM expressions each identified with
a variable (A, B, C), which allows one to concisely refer to GPMs and to the named
streams. Moreover, these variables are employed by the sequence expression to apply
various CEP operators and event selection strategies (‘;’, ‘,’).

It is not di�cult to see the main property of the SPAseq language with the separation
of sequence and GPM expressions. Herein, we first study how the sequence expression
interacts with the graph pattern to enable temporal ordering between matched events.

The sequence temporal patterns between events detect the occurrence of an event
followed-by another: it can represent various di�erent circumstances using binary temporal
operators between events. The sequence expression SeqExp in SPAseq is used to
determine the sequence between the events matched to the graph pattern P . The symbols
{‘?’, ‘+’, ‘!’} are unary operators, where the optional operator (‘?’) corresponds to zero or
one occurrence of an event; the kleene-+ operator (‘+’) corresponds to the occurrence of
one or more events of the same kind; and the negation operator (‘!’) is used to describe
the non-occurrence of certain events. The symbols {‘;’, ‘,’} are binary operators which
describe the interpretations of the sequence between events, i.e., event selection strategies.
An event Gi

e

matched to P
i

followed-by an event Gj

e

matched to P
j

can be interpreted as
(1) the occurrence of an event Gi

e

is followed-by an event Gj

e

and there being no events of
any other type between them (immediately followed-by (‘,’)); (2) the occurrence of an event
Gi

e

is followed-by an event Gj

e

and there can be other events of di�erent types (the type
of an event is distinguished by the stream id u) between both events (followed-by (‘;’)).
That is, all the irrelevant events are skipped until the next relevant event is read for the
followed-by operator. Finally, the conjunction and disjunction between the events is also
introduced within the sequence expression through operators (‘<>’) and (‘|’) respectively.
They provide the intuitive way of determining if a set of events has happened at the same
time (conjunction) or only one event among the set of events has happened (disjunction).

Example 11 Consider the SPAseq Query 8.2, which illustrates the UC 1. The sequence
expression SEQ(A; B+, C) depicts that the query will return a match: if the events of
type A and defined on a stream S1 match to the GPM expression (GPM A) followed-by
one or more events (using operators (‘;’) and (‘+’)) from stream S2 that match to the
GPM expression (GPM B), and finally immediately followed-by (using operator (‘,’)) an

8. A Query Language for SCEP: Syntax and Semantics 110

event from stream S3 that matches to the GPM expression (GPM C). Notice that a GPM
expression mainly utilises the SPARQL graph pattern P for the evaluation of each event.

8.5 SPAseq By Examples
In this section, we provide a list of complex use cases supported by SPAseq, while
highlighting its SPARQL-based and CEP-based operators.

UC 2 (V-shaped Pattern) A query with V-shaped pattern describes the sequence of
values that go down to a local minimum, then rising up to a local maximum, which was
higher than the starting value.

The application of V-shaped pattern ranges from stock analysis, weather prediction
to trajectory classification, where generally a kleene-+ operator is used to select the
occurrence of one or more events with the similar behaviour. For instance, in UC 1 a
user can get a V-shaped pattern for the price of generated electricity.

Query 8.3 presents a V-Shaped SPAseq query over stream of stock events. The SELECT
expression provides the projection of various variables within the GPM expressions, while
the GPM expression utilise the ?company variable to select the company mappings, and
its corresponding volume and price mappings. The V-shaped pattern can also be spiced
up with the conjunction (or disjunction) operator to evaluate the occurrence of two
or more events at the same time. For instance, the sequence expression in Query 8.3
can be replaced with SEQ (A, (B<>C), C).

1

1 PREFIX pred: <http://example/>

2 SELECT ?company ?p1 ?p2 ?p3 ?vol1 ?vol2 ?vol3

3 WITHIN 30 MINUTES

4 FROM STREAM S1 <http://stockmarket/stocks>

5
6 WHERE {

7
8 SEQ (A, B+, C)

9 DEFINE GPM A ON S1 {

10 ?company pred:price ?p1.

11 ?company pred:volume ?vol1.

12 }

13 DEFINE GPM B ON S1 {

14 ?company pred:price ?p2.

15 ?company pred:volume ?vol2.

16 Filter (?p2 < ?p1)

17 }

18
19 DEFINE GPM C ON S3 {

20 ?company pred:price ?p3.

21 ?company pred:volume ?vol3.

22 Filter (?p3 > ?p2 && ?p3 > ?p1).

23 }

24 }

Query 8.3: V-shaped Pattern: SPAseq query

UC 3 (Trajectory Classification) Trajectory classification involves in determining
the sequence of objects movement (trajectories) to determine their types. For instance,
finding the fishing boats by discovering the spatial relations between boats over some time
interval.

A SPAseq query to determine the trajectory of fishing boats is described in Query 8.4.
It represents the following sequence: A: vessel leaves the harbour, B: vessel travels by
keeping the steady speed and direction (one or more events are registered with kleene-+
operator), C: vessel arrives at the fishing area and stops. The GPM expressions in the
query employ the same ?vessel variable to extract the defined sequences related to specific
boats. Another important operator described in the query is the use of the GRAPH operator
(from SPARQL) to join the event data with the static knowledge-base (KB). That is, using
an external KB, the query extracts the name of the vessels (?n) and its company name

8. A Query Language for SCEP: Syntax and Semantics 111

(?cname) that follow the sequence defined in the sequence expression. This enables a user
to define custom patterns to enrich events with the same semantics defined for SPARQL.

1

1 PREFIX pred: <http://example/>

2 SELECT ?vessel ?n ?cname

3 WITHIN 30 MINUTES

4 FROM STREAM S1 <http://harbour.org/boats>

5
6 WHERE {

7
8 SEQ (A, B+, C)

9 DEFINE GPM A ON S1 {

10 ?vessel pred:speed ?s1.

11 ?vessel pred:location ?loc1.

12 ?vessel pred:direction ?dir1.

13 Filter (?loc1 = ‘harbour’ && ?s1 > 0)

14 }

15 DEFINE GPM B ON S1 {

16 ?vessel pred:speed ?s2.

17 ?vessel pred:location ?loc2.

18 ?vessel pred:direction ?dir2.

19 Filter (?dir1 = ?dir2 && ?s2 > ?s1)

20 }

21
22 DEFINE GPM C ON S3 {

23 ?vessel pred:speed ?s3.

24 ?vessel pred:location ?loc3.

25 ?vessel pred:direction ?dir3.

26
27
28 GRAPH <http://harbour.org/db> {

29 ?vessel :name ?n.

30 ?vessel :operatedBy ?company.

31 ?company :name ?cname.

32 }

33 Filter (?loc3 = ‘fishingarea’ && ?s3 = 0).

34 }

35 }

Query 8.4: Trajectory Classification: SPAseq query

UC 4 (Inventory Management) It is an interesting use case for CEP/SCEP, where
RFID generated events are used to track the status of a product/equipment. Consider a
system monitoring the status (surgical usage, recycling, etc.) of equipments in a hospital
by using various RFID sensors. Then we can define a critical event such that if a surgical
tool is washed/recycled and is put back into the use without being first disinfected, then
alert the required personnel.

In order to determine the sequence described in UC 4, we need to track the non-
occurrence of specific events though a negation operator, i.e., non-disinfection of the
surgical tool. The SPAseq Query 8.5 presents such use case, and it consists of three GPM
expressions. The first GPM expression (GPM A ON S1) determines the recycling status
of an instrument, the second GPM expression (GPM B ON S1) utilises the same variable
for the instrument (?inst) to determine if it has been disinfected or not, and the third
GPM expression determines the status of the instrument if it has been used or not. The
sequence expression (SEQ(A, B!, C)) orchestrates the matching of the GPM expressions,
i.e., if an instrument is used without being first disinfected. The negation operator (‘!’)
in the sequence expression makes sure that the sequence is only matched if there are no
events between A and B such that the status of the instrument is “disinfected”.

Another important property of SPAseq, which is described in Query 8.5, is its support
for compositionality. That is, new RDF graph events can be constructed so that they
match the defined sequence. SPAseq employs the standard CONSTRUCTs expression from
SPARQL to create new graph-based events from the matched mappings. The set of
constructed events takes the form of a stream, and they can either be transmitted to
the defined sink (an application) or can be reused within the query.

8. A Query Language for SCEP: Syntax and Semantics 112

1

1 PREFIX pred: <http://example/>

2
3 CONSTRUCT S2 <http://hospital.org/newStream> {

4 ?inst pred:InRoom ?r3.

5 ?inst pred:status "non-disinfection"@en.

6 ?inst pred:name ?n1.

7 }

8 WITHIN 60 MINUTES

9 FROM STREAM S1 <http://hospital.org/instruments>

10
11 WHERE {

12
13 SEQ (A, B!, C)

14 DEFINE GPM A ON S1 {

15 ?inst pred:name ?n1.

16 ?inst pred:status ?st1.

17 Filter (?st1 = ‘recycled’)

18 }

19 DEFINE GPM B ON S1 {

20 ?inst pred:status ?st2.

21 Filter (?st2 = ‘disinfected’)

22 }

23
24 DEFINE GPM C ON S3 {

25 ?inst pred:InRoom ?r3.

26 ?inst pred:name ?n1.

27 ?inst pred:status ?st3.

28 Filter (?st1 = ‘can use’)

29 }

30 }

Query 8.5: Inventory Management: SPAseq query

8.6 Formal Semantics of SPAseq

To formally define the semantics of SPAseq queries, we use the concept of set of mappings
as defined in [PAG09b]. We use the standard join (on), union (fi), minus (\), optional
() and projection (fi) operators over a set of mappings, and we also make use of the
semantics of SPARQL graph pattern P over an RDF dataset as defined in Chapter 2.
In particular, we use the definition of the evaluation of graph patterns over an RDF
graph G as a function J.K

G

that, given a graph pattern P , returns a set of mappings
denoted as JP K

G

(Definition 6.6 in Chapter 6).

8.6.1 Rough Work

Before describing the semantics of SPAseq, herein, we first present an intuitive way of
providing the semantics of SPAseq using the aforementioned operators. During this
process, we review the issues with such an approach and motivate the requirements and
behaviour of the newly introduced operators. This results in clearer semantics that can
handle all the possible cases. The two main operations that motivate the requirement
of introducing new ones are the evaluation of simple GPM expression and the negation
over a stream. Note that, here we prefixed the definitions with “Rough-Work”, since
the readers can confuse them with the correct ones.

From Definition 6.6 in Chapter 6, we know that the evaluation of a graph pattern
P over a stream S

g

is as follow:

JP KSg = {(·, JP K
G

) | (·, G) œ S
g

}

Based on this, the evaluation of a GPM expression (u, P) over a streamset � can
roughly be defined as follows:

8. A Query Language for SCEP: Syntax and Semantics 113

Rough-Work Definition 8.1: Evaluation of GPM Expression

Given a GPM expression (u, P) and a streamset �, J(u, P)K
�

can roughly be defined
as follows:

J(u, P)K
�

= {(·, JP K
G

) | ÷·(·, G) œ S
g

· (u, S
g

) œ �}

From Rough-Work Definition 8.1, the evaluation of a GPM expression returns the
associated timestamp of an event, and either a set of mappings from the matched events
or an empty set in case there is no match with the events. For instance, consider a
GPM expression (u

1

, P
1

) := (u
1

, {(?h, pow, ?p), (?h, loc, ?l)}) and a power-related event
(·

i

, G
i

) := (10, {(H1, pow, Pw1), (H15, loc, L1)}) from named stream (u
1

, S
g1) œ �. Then

J(u
1

, P
1

)K
�

= (10,?) for such an event, as the mappings of the variable ?h in (·
i

, G
i

) are
not matched with the graph pattern P

1

.

Now consider the evaluation of the negation operator, where a GPM expression
is employed to check the non-existence of a certain event. Based on Rough-Work
Definition 8.1, we define it roughly as follows.

Rough-Work Definition 8.2: Evaluation of Negation Operator

Given a GPM expression (u, P) and a streamset �, the evaluation of the negation
operator can roughly be defined as follows:

J(u, P)!K
�

= {(·,?) | ÷(u, S
g

) œ � · ’· (·, G) œ S
g

, JP K
G

= ?}

Thus, for each event that does not match with the graph pattern (P), the evaluation
function returns an empty set associated with a timestamp. For instance, using the same
GPM expression (u

1

, P
1

) and an event (·
i

, G
i

) from above, evaluation of the negation
operator results in an empty set (J(u

1

, P
1

) ! K
�

= (·,?)).

Independently, both Rough-Work Definitions 8.1 and 8.2 work fine. However, discrep-
ancies arise when we use them within a sequence expression. Before presenting such an
issue, we first define the followed-by operator for the sequence between two or more GPM
expressions.

Rough-Work Definition 8.3: Evaluation of Followed-by Operator

Given two GPM expressions (u
1

, P
1

) and (u
2

, P
2

), the evaluation of the followed-by
sequence operator over a streamset � can roughly be defined as follows:

J(u
1

, P
1

); (u
2

, P
2

)K
�

=
I

(· Õ, X on Y) | ÷·· Õ, (·, X) œ J(u
1

, P
1

)K
�

·(· Õ, Y) œ J(u
2

, P
2

)K
�

· · < · Õ

J

According to Rough-Work Definition 8.3, the evaluation of the followed-by operator
between two GPM expressions requires the join between the mappings of the preceding
GPM expression (or a set of them) and the proceeding one, while considering the total
temporal ordering between the matched events. Now we would like to know how the
Rough-Work Definitions 8.1 and 8.2 behave according to the definition of followed-by

8. A Query Language for SCEP: Syntax and Semantics 114

sequence evaluation. We categorise them into two cases as follows:

Case 1 : J(u, P
1

); (v, P
2

)K
�

Case 2 : J(u, P
1

); (v, P
2

) ! K
�

Case 1 employs simple GPM expressions within a sequence, while Case 2 uses negation
operator within a sequence. Based on these cases, let us consider the following examples
to highlight the issues with Rough-Work Definitions 8.2 and 8.3.

Example 12 Consider two events (·
i

, G
i

) and (·
j

, G
j

) such that the evaluation of graph
patterns P

1

and P
2

over such events are as follows:

JP
1

K
Gi = �, JP

2

K
Gj = ?,

where � is a set of mappings. Now let us compute both Case 1 and Case 2 for such values
of JP

1

K
Gi and JP

2

K
Gj . For Case 1, we get (·

j

,?), since � on ? = ?, while for Case 2 we
get the same (·

j

,?) as a result.

According to Example 12, the result of Case 1 is intuitively correct, since the join
with an empty set is supposed to be empty mapping. However, intuitively, we were not
expecting such a result for Case 2. That is, JP

2

K
Gj = ? means that the negation operator

should indicate the non-occurrence of such an event and return the previously matched
mappings in the sequence. Thus, we need to define a new structure such that we can
di�erentiate between the empty set from the evaluation of GPM expressions and GPM
expressions with negation operator. That is, contrary to the natural join of mappings
with empty set ? on � = � on ? = ?, for the negation operator we need a structure such
that ? on � = � on ? = �.

Hence, to describe the behaviour of the negation operator, and to streamline the
behaviour of other operators within a sequence, we define an identity element (N) for a
commutative monoid. It is defined as follows:

Definition 8.5: Identity Element

Given a set of mappings (�), where each mapping is denoted as µ. A commutative
monoid for mapping set with an identity N element is defined as follows:

(2� fi {N},
ƒ
on), where

• ’µ
1

, µ
2

œ 2�, µ
1

ƒ
on µ

2

= µ
1

on µ
2

• ’µ œ 2� fi {N}, µ
ƒ
on N = N

ƒ
on µ = µ, {?} on N = N on {?} = {?}

An identity element permits us to distinguish between the standard empty set of
mappings and the empty set produced from the negation operator. Hence, the previous
computed mappings within a sequence are not a�ected by the negation operator.

In this section, we presented the preliminary discussion about some of the issues that
can arise while defining the semantics of SPAseq. Motivated by this, we present the
semantics of SPAseq operators in the proceeding section.

8. A Query Language for SCEP: Syntax and Semantics 115

8.6.2 Semantics of SPAseq Operators
Based on the intuitions from the previous section, for completeness, we define the semantics
of SPAseq in a bottom-up manner, where we start with the semantics of graph pattern
P by integrating the temporal aspects of the events and streams.

Evaluation of Graph Pattern Matching Expressions
We reuse the definition of graph pattern evaluation from Chapter 6 and extend it for the
streamset. Moreover, in order to constrain the evaluation function within a temporal
boundary, we use a start time (·

b

) and end time (·
e

) to define the time boundaries,
noted [·

b

, ·
e

]. In addition, for the sake of clarity, we use a function �(u) to select a
stream of name u from a streamset, such that

�(u) =
I
? if u is not a stream name in �
S

g

if (u, S
g

) œ �

Moreover, we denote I as a set of stream names within a streamset �. The evaluation
of the GPM expression is defined as follows.

Definition 8.6: Evaluation of GPM Expression

The evaluation of a GPM (u, P) over the named stream (uÕ, S
g

), and the
streamset � is:

J(u, P)K
(u

Õ
,Sg)

=
I

? if u ”= uÕ

JP KSg otherwise
J(u, P)K[·b,·e]

�

= {(·, JP K
G

) | ÷·(·, G) œ �(u) · ·
b

Æ · Æ ·
e

)}

The evaluation of the GPM expression (u, P) over an event within a streamset results
in a set of mappings annotated with the timestamp of the event. The evaluation of a
GPM expression is similar to the semantics of the GRAPH construct in SPARQL, where the
IRI of the graph is used to select the set of triples to be evaluated for a graph pattern (P).

Example 13 Consider a GPM expression (u
1

, P
1

) := (u
1

, {(?h, pow, ?p), (?h, loc, ?l)})
and a power-related named stream (u

1

, S
g1) œ � with events as follows:

S
g1 = {(10, {(H1, pow, Pw1), (H1, loc, L1)}), (15, {(H2, pow, Pw2), (H2, loc, L5)})}

The evaluation of (u
1

, P
1

) over � for the time boundaries [5,10] is described as follows:

J(u
1

, P
1

)K[5,10]

�

= (10, {{?h ‘æ H1}, {?p ‘æ Pw1}, {?h ‘æ H1}, {?l ‘æ L1}})

Evaluation of Sequence Expressions
Herein, we describe the evaluation of sequence operators within the sequence expression.
We first describe the semantics of event selection strategies, and later use them to
recursively define the semantics of unary operators. Let ‡ be a sequence with a set of
GPM expressions and binary/unary operators. The evaluation of followed-by operator is
defined as follows.

8. A Query Language for SCEP: Syntax and Semantics 116

Definition 8.7: Evaluation of Followed-by

Given a sequence ‡ and a GPM expression (u, P), the evaluation of the followed-
by (;) sequence operator over a streamset � for the time boundaries [·

b

, ·
e

] is defined
as follows:

J‡;(u, P)K[·b,·e]

�

=
I

(·, X on JP K
G

) | ÷· · Õ, (·, JP K
G

) œ J(u, P)K[·b,·e]

�

·
(· Õ, X) œ J‡K[·b,·e]

�

· · Õ < · · X ”= N

J
t

I
(·, JP K

G

) | ÷·, (·, JP K
G

) œ J(u, P)K[·b,·e]

�

· ’· Õ

· Õ < · · (· Õ, X) œ J‡K[·b,·e]

�

· X = N

J

The above definition presents two cases: with or without the identity element for the
evaluation of sequence ‡. Thus, if the sequence ‡ does not contain a negation operator,
the evaluation of the followed-by operator is simply the join between the mapping sets
from ‡ and the GPM expression. Otherwise, only the mappings of JP K

G

are considered
according to the property of the identity element in Definition 8.5.

Example 14 Consider the following, a GPM expression (u
1

, P
1

) := (u
1

, {(?h, pow, ?p),
(?h, loc, ?l)}) and a power-related named stream (u

1

, S
g1) œ � as follows:

S
g1 = {(10, {(H1, pow, Pw1), (H1, loc, L1)}), (25, {(H2, pow, Pw2), (H2, loc, L5)})}

A GPM expression (u
2

, P
2

) := (u
2

, {(?w, value, ?v), (?w, loc, ?l)}) and a weather-
related named stream (u

2

, S
g2) œ � as follows:

S
g2 = {(20, {(W1, value, Vl1),(W1, loc, L1)}), (40, {(W2, value, Vl2),(W2, loc, L8)})}

And finally a power-storage related named stream (u
3

, S
g3) œ � as follows:

S
g3 = {(15, {(Pw1, status, o�), (Pw1, loc, L1)}), (30, {(Pw1, status, o�), (Pw1, loc, L1)})}

Then for the evaluation of the followed-by operator on these GPM expressions for the
time boundaries [10,20] we have,

J(u
1

, P
1

);(u
2

, P
2

)K[10,25]

�

=
I

(20, {{?h ‘æ H1, ?p ‘æ Pw1}, {?h ‘æ H1, ?l ‘æ L1},
{?w ‘æ W1, ?v ‘æ Vl1}, {?w ‘æ W1, ?l ‘æ L1}})

J

Notice the mappings of variable ?l from both GPM expressions, since it only matches
once (?l = L1) for both power-related and weather-related events as described in the
matched results. Furthermore, due to the nature of the followed-by operator, the event
from the power-storage related stream (u

3

, S
g3) at · = 15 is skipped between the matched

ones at · = 10 and · = 20.

We now define the semantics of immediately followed-by operator, where I is a set of
stream names within a streamset �.

8. A Query Language for SCEP: Syntax and Semantics 117

Definition 8.8: Evaluation of Immediately Followed-by

Given a sequence ‡ and a GPM expression (u, P), the evaluation of the
immediately followed-by (,) sequence operator over a streamset � for the time
boundaries [·

b

, ·
e

] is defined as follows:

J‡, (u, P)K[·b,·e]

�

=

Y
_]

_[

(·, X on JP K
G

) | ÷· · Õ, (·, JP K
G

) œ J(u, P)K[·b,·e]

�

·
(· Õ, X) œ J‡K[·b,·e]

�

· · Õ < · · ’· ÕÕ ’GÕÕ ’i œ I,
(· ÕÕ, GÕÕ) œ �(i) · · Õ Æ · ÕÕ, · Æ · ÕÕ · X ”= N

Z
_̂

_\
t

Y
_]

_[

(·, JP K
G

) | ÷·, (·, JP K
G

) œ J(u, P)K[·b,·e]

�

·
’· Õ(· Õ, X) œ J‡K[·b,·e]

�

· · Õ < · · ’· ÕÕ’GÕÕ’i œ I,
(· ÕÕ, GÕÕ) œ �(i) · · Õ Æ · ÕÕ, · Æ · ÕÕ · X = N

Z
_̂

_\

The semantics of the immediately followed-by operator follows the semantics of the
followed-by operator, however with one important di�erence: the contiguity between
the matched events. That is, an event is immediately followed-by another, only if there
can be no other events between the two selected ones.
Example 15 Consider the GPM expressions and the named streams defined in Exam-
ple 14. Then the evaluation of the immediately followed-by over them for time boundaries
[10,20] will results in an empty set.

J(u
1

, P
1

);(u
2

, P
2

)K[10,20]

�

= ?

This is due to the strict ordering of the immediately followed-by operator. That is,
within the defined window constraints, there is another event at · = 15, (·, G) =
((15, {(Pw1, status, o�), (Pw1, loc, L1)})) (see Example 14) from the named stream (u

3

, S
g

).
Even a GPM expression with stream id u

3

is not included in the sequence expression,
the strict temporal condition for the immediately followed-by operator dictates that there
should not be any other event between the two matched ones.

We now move towards the definition of unary operators, namely negation, optional
and kleene-+. We first define their semantics in a standalone manner and then recursively
define them with the help of sequence ‡.

Definition 8.9: Evaluation of Negation

The evaluation of the negation operator over the streamset � with the followed-
by and immediately followed-by operator, and for the time boundaries [·

b

, ·
e

] is
defined as follows:

J(u, P)!K[·b,·e]

�

=
Ó

(·,N) | (?, ·) œ J(u, P)K[·b,·e]

�

Ô

J‡;(u, P)!K[·b,·e]

�

=
I

(·, X) œ J‡K[·b,·e]

�

| ’· Õ’GÕ (· Õ, GÕ) œ �(u)·
· < · Õ Æ ·

e

· JP K
G

Õ = ?

J

J‡,(u, P)!K[·b,·e]

�

=
I

(·, X) œ J‡K[·b,·e]

�

| ’· Õ’GÕ ’· ÕÕ’GÕÕ’i œ I, (· Õ, GÕ) œ �(u)·
· < · Õ Æ ·

e

· JP K
G

Õ = ? · (· ÕÕ, GÕÕ) œ �(i) · · Æ · ÕÕ, · Õ Æ · ÕÕ

J

8. A Query Language for SCEP: Syntax and Semantics 118

The negation operator determines the non-existence of a certain kind of events and is
critical to various SCEP applications. In the aforementioned definition, we use identity
element (N) to track the successful evaluation of the negation operator.

Example 16 Consider the same GPM expression (u
1

, P
1

) and the named stream (u
1

, S
g1)

from Example 14, and a new GPM expression (u
2

, P
2

) := {((?w, value, ?v), (?w, loc, ?l)),
FILTER (?v = V l3)} and the same named stream (u

2

, S
g2) from Example 14. The

evaluation of the sequence expression with the negation and followed-by operators for the
aforementioned GPM expressions is described as follows:

J(u
1

, P
1

);(u
2

, P
2

)!K[10,20]

�

=
Ó

(20, {{?h ‘æ H1, ?p ‘æ Pw1}, {?h ‘æ H1, ?l ‘æ L1}})
Ô

Due to the filter expression (FILTER (?v = Vl3)), (u
2

, P
2

) does not match with the
events in (u

2

, S
g2), and thus produces an identity element according to the semantics of

the negation operator. Moreover, observe that the identity element conserves the mappings
from the evaluation of J(u

1

, P
1

)K[10,20]

�

.

Definition 8.10: Evaluation of Optional

The evaluation of the optional operator over the streamset � with the followed-
by and immediately followed-by operator, and for the time boundaries [·

b

, ·
e

] is
defined as follows:

J(u, P)?K[·b,·e]

�

= J(u, P)K[·b,·e]

�

fi J(u, P)! K[·b,·e]

�

J‡;(u, P)?K[·b,·e]

�

= J‡;(u, P)K[·b,·e]

�

fi J‡;(u, P)! K[·b,·e]

�

J‡,(u, P)?K[·b,·e]

�

= J‡,(u, P)K[·b,·e]

�

fi J‡,(u, P)! K[·b,·e]

�

The evaluation of the optional operator is straight-forward from the semantics of
GPM expression, negation, followed-by and immediately followed-by operators.

Example 17 Consider the GPM expressions (u
1

, P
1

) and (u
2

, P
2

) in Example 14. Let
((u

1

, P
1

) ; (u
2

, P
2

)?) be the sequence expression, then its evaluation with the optional
operator in the presence of named streams (u

1

, S
g1), (u

2

, S
g2) œ � (from Example 14) will

produce the same set of mappings as illustrated in Example 14. However, if we use the
GPM expression (u

2

, P
2

) from Example 16, it will produce the same set of mappings as
described in Example 16.

Definition 8.11: Evaluation of k + 1

The evaluation of k + 1, where k > 0 and general kleene-+ operators over the
streamset � and for the time boundaries [·

b

, ·
e

] are defined as follows:

J(u, P)1K[·b,·e]

�

= J(u, P)K[·b,·e]

�

J(u, P)k+1K[·b,·e]

�

= J(u, P)k, (u, P)K[·b,·e]

�

J(u, P)+K[·b,·e]

�

=
€

kœN

ú
J(u, P)kK[·b,·e]

�

8. A Query Language for SCEP: Syntax and Semantics 119

The kleene-+ operator groups all the matched events with the defined GPM expression.
Note that, we do not illustrate the case of kleene-+ operator with followed-by and
immediately followed-by, since it can easily be inferred from Definitions 8.7 and 8.8.

Example 18 Consider the following, a GPM expression (u
1

, P
1

) := (u
1

, {(?h, pow, ?p),
(?h, loc, ?l)}) and a power-related named stream (u

1

, S
g1) œ � as follows:

S
g1 = {(10, {(H1, pow, Pw1), (H1, loc, L1)}), (25, {(H2, pow, Pw2), (H2, loc, L5)})}

A GPM expression (u
2

, P
2

) := (u
2

, {(?w, value, ?v), (?w, loc, ?l)}) and a weather-
related named stream (u

2

, S
g2) œ � as follows:

S
g2 = {(15, {(W1, value, Vl1),(W1, loc, L1)}), (20, {(W1, value, Vl2),(W1, loc, L1)})}

The evaluation of the following sequence with the kleene-+ operator for the time
boundaries [10,20] is as follows:

J(u
1

, P
1

);(u
2

, P
2

)+K[10,20]

�

=

Y
_]

_[

(20, {{?h ‘æ H1, ?p ‘æ Pw1}, {?h ‘æ H1, ?l ‘æ L1},
{?w ‘æ W1, ?v ‘æ Vl1}, {?w ‘æ W1, ?l ‘æ L1},

{?w ‘æ W1, ?v ‘æ Vl2}, {?w ‘æ W1, ?l ‘æ L1}})

Z
_̂

_\

Notice that the kleene-+ operator collects one or more matches for (u
2

, P
2

) from the
name stream (u

2

, S
g2).

We now move towards the semantics of the binary operators defined for the SPAseq,
i.e., conjunction and disjunction of events.

Definition 8.12: Evaluation of Conjunction

Given two GPM expression (u, P) and (v, Q), the evaluation of the conjunction
operator over the streamset � and for the time boundaries [·

b

, ·
e

] is defined as
follows:

J(u, P) <> (v, Q)K[·b,·e]

�

=
I

(·, X on Y) | ÷· (·, X) œ J(u, P)K[·b,·e]

�

·
(·, Y) œ J(v, Q)K[·b,·e]

�

J

The conjunction operator detects the presence of two or more events that match the
defined GPM expressions and occur at the same time, i.e., containing the same timestamps.

Example 19 Consider the following, a GPM expression (u
1

, P
1

) := (u
1

, {(?h, pow, ?p),
(?h, loc, ?l)}) and a power-related named stream (u

1

, S
g1) œ � as follows:

S
g1 = {(10, {(H1, pow, Pw1), (H1, loc, L1)}), (25, {(H2, pow, Pw2), (H2, loc, L5)})}

A GPM expression (u
2

, P
2

) := (u
2

, {(?w, value, ?v), (?w, loc, ?l)}) and a weather-
related named stream (u

2

, S
g2) œ � as follows:

S
g2 = {(10, {(W1, value, Vl1),(W1, loc, L1)}), (20, {(W1, value, Vl2),(W1, loc, L1)})}

The evaluation of the conjunction operator over these GPM expressions and named
streams for the time boundaries [10,20] will results in the following sets of mappings.

J(u
1

, P
1

)<>(u
2

, P
2

)K[10,20]

�

=
I

(10, {{?h ‘æ H1, ?p ‘æ Pw1}, {?h ‘æ H1, ?l ‘æ L1},
{?w ‘æ W1, ?v ‘æ Vl1}, {?w ‘æ W1, ?l ‘æ L1}})

J

8. A Query Language for SCEP: Syntax and Semantics 120

Definition 8.13: Evaluation of Disjunction

Given two GPM expression (u, P) and (v, Q), the evaluation of the disjunction
operator over the streamset � and for the time boundaries [·

b

, ·
e

] is defined as
follows:

J(u, P) | (v, Q)K[·b,·e]

�

= J(u, P)K[·b,·e]

�

fi J(v, Q)K[·b,·e]

�

The disjunction operator detects the occurrence of events that match to a GPM
expression within the set of defined ones.

Example 20 Consider the following, a GPM expression (u
1

, P
1

) := (u
1

, {(?h, pow, ?p),
(?h, loc, ?l)}) and a power-related named stream (u

1

, S
g1) œ � as follows:

S
g1 = {(22, {(H1, pow, Pw1), (H1, loc, L1)}), (25, {(H2, pow, Pw2), (H2, loc, L5)})}

A GPM expression (u
2

, P
2

) := (u
2

, {(?w, value, ?v), (?w, loc, ?l)}) and a weather-
related named stream (u

2

, S
g2) œ � as follows:

S
g2 = {(20, {(W1, value, Vl1),(W1, loc, L1)}), (40, {(W2, value, Vl2),(W1, loc, L8)})}

A GPM expression (u
3

, P
3

) := (u
3

, {(?p, status, ?s), (?p, loc, ?l)}) and a power-storage
related named stream (u

3

, S
g3) œ � as follows:

S
g3 = {(15, {(Pw1, status, on), (PW1, loc, L1)}), (30, {(Pw1, status, o�), (PW1, loc, L1)})}

The evaluation of the disjunction sequence operator with the followed-by operator for
the following sequence expression, and for the time boundaries [10,20] is as follows:

J((u
1

, P
1

) | (u
3

, P
3

));(u
2

, P
3

)K[10,20]

�

=
I

(20, {{?p ‘æ Pw1, ?s ‘æ on}, {?p ‘æ Pw1, ?l ‘æ L1},
{?w ‘æ W1, ?v ‘æ Vl1}, {?w ‘æ W1, ?l ‘æ L1}})

J

8.6.3 Evaluation of SPAseq Queries
In the previous section, we outline the semantics of main temporal operators of SPAseq.
Herein, to sum it up, we present the evaluation semantics of complete SPAseq queries.

Let � be a mapping set and fiV be the standard SPARQL projection on the set of
variables V, Ê be the duration of the window, then the evaluation of SPAseq query
Q = (V, Ê, SeqExp) issued at time t, over the streamset � is defined as follows:

Definition 8.14: Evaluation of SPAseq Query

JQKt

�

=
€

kœN

Ó
(·, fiV(�)) | (·, �) œ JSeqExpK[t+k·Ê,t+(k+1)·Ê]

�

Ô

where fiV(�) = {µ
1

| ÷µ
2

: µ
1

fi µ
2

œ � · dom(µ
1

) ™ V · dom(µ
2

) fl V = ?}

The evaluation of the SPAseq queries follow a push-based semantics, i.e., results
are produced as soon as the sequence expression matches to the set of events within
the streamset. Thus, the resulting set of mappings takes the shape of a stream of

8. A Query Language for SCEP: Syntax and Semantics 121

mappings, where the order within the mappings depends on the underlying executional
framework. Note that the definition of JQKt

�

is the intended one. It could be possible
to define a continuous version of the query evaluation but we want to stay agnostic
to how the solutions are provided. For instance, the evaluation could be performed
on a static file with time series, possibly including future previsions; or the solutions
could be provided in bulks every Ê time units.

Example 21 Recall the two GPM expressions from Example 14, (u
1

, P
1

) := (u
1

, {(?h, pow, ?p),
(?h, loc, ?l)}) and (u

2

, P
2

) := (u
2

, {(?w, value, ?v), (?w, loc, ?l)}). Now consider the two
named streams (u

1

, S
g1), (u

2

, S
g2) œ � as follows:

S
g1 = {(10, {(H1, pow, Pw1), (H1, loc, L1)}), (25, {(H2, pow, Pw2), (H2, loc, L5)})}

S
g2 = {(15, {(W1, value, Vl1),(W1, loc, L1)}), (40, {(W2, value, Vl2),(W1, loc, L8)})}

The evaluation of a SPAseq query Q = ({?h, ?p, ?v}, 50, ((u
1

, P
1

) ; (u
2

, P
2

))) at time
· = 20 over the streamset � can be described as follows:

JQK20

�

=
Ó

(10, {{?h ‘æ H1}, {?p ‘æ Pw1}), (15, {{?v ‘æ V l1}})
Ô

8.7 Qualitative Comparative Analysis
In this section, we present the qualitative comparison between SPAseq and EP-SPARQL.
While a complete formal comparison between both is certainly very interesting, we
will leave it for future work and, instead, focus on a use case-based comparison of
these two languages.

8.7.1 Input Data Model
As discussed in Chapter 4 and Chapter 5, RSP and SCEP systems are evolved from
DSMSs and CEP systems respectively. Thus, the mapping of triples to tuples seems to be
the obvious choice for existing SCEP systems, leading to a triple stream model. However,
events (within relational data model) do not consist of individual data items but rather a
set of them. The decomposition of data items within an event into a set of RDF triples for
triple streams cannot directly represent the boundaries of data items within events, and
a query that observers only a partial event may return false results. Moreover, in order
to support heterogeneous streams, the system must be able to handle streams for which
neither the interval between events, nor the the number of triples in an event is known
in advance. Hence, streaming a set of RDF triples together as an event would not only
greatly simplify the task for event producers, since neither the order of decomposition of
event object graphs, nor the addition of triples needs to be considered, but it can also
increase the performance of the system (as described in Chapter 7 (Section 7.7.2)).

In the following, we use a simple example to show case di�erences between EP-SPARQL
and SPAseq based on their data model: EP-SPARQL uses a triple event model, while
SPAseq employs an RDF graph-based event model.

Consider a simple form of a trajectory detection use case (as described in UC 3),
where a user is interested in finding the speed of a boat for sequence: if it is directed
towards “south” followed-by a direction towards “north”. Now consider that a boat is

8. A Query Language for SCEP: Syntax and Semantics 122

equipped with a sensor describing the values of the current direction and the speed of the
boat. The streams generated from the boat’s sensor for both RDF event stream (S

re

)
and RDF graph event stream (S

g

) models are described as follows:

S
re

=

Y
___]

___[

{Èboat1, direction, southÍ , [·
1

, ·
1+1

]},
{Èboat1, speed, 60Í , [·

2

, ·
2+1

]},
{Èboat1, direction, northÍ , [·

3

, ·
3+1

]},
{Èboat1, speed, 70Í , [·

4

, ·
4+1

]}, . . .

Z
___̂

___\

S
g

=
I

{Èboat1, direction, southÍ , {Èboat1, speed, 60Í , ·
1

},
{Èboat1, direction, northÍ , {Èboat1, speed, 70Í , ·

2

}, . . .

J

Based on the above mentioned streams, intuitively, we can define EP-SPARQL
(Query 8.6) and SPAseq (Query 8.8) queries for the case described above.

1 SELECT ?s1 ?s2
2 WHERE
3

4 SEQ { ?boat : direction ?d1.
5 ?boat :speed ?s1.
6 }
7

8 SEQ { ?boat : direction ?d2.
9 ?boat :speed ?s2.

10 }
11

12 Filter (? d1 = " south " && ?d2= "north" && getDURATION () < "P30M "^^
xsd: duration))

Query 8.6: EP-SPARQL Query with SEQ Clause

1 SELECT ?s1 ?s2
2 WHERE
3

4 SEQ { ?boat : direction ?d1.
5 EQUALS {
6 ?boat :speed ?s1.
7 }
8 }
9

10 SEQ { ?boat : direction ?d2.
11 EQUALS {
12 ?boat :speed ?s2.
13 }
14 }
15

16 Filter (? d1 = " south " && ?d2= "north" && getDURATION () < "P30M "^^
xsd: duration))

Query 8.7: EP-SPARQL Query with SEQ and EQUALS Clauses

According to the Query 8.6 and semantics of EP-SPARQL, there will be a match
over RDF event stream if: (i) two consecutive triples with the same time-intervals having

8. A Query Language for SCEP: Syntax and Semantics 123

mapping of ?d1 = ’south’, and any mappings of ?s1 followed-by (ii) two consecutive
triples with the same time-intervals having mapping of ?d2 = ‘north’ arrive within an
RDF event stream. However, according to the stream model, such a query cannot be
matched with S

re

. Therefore, the user has to perform a couple of tasks to evaluate the
use case for an EP-SPARQL query: (i) change the structure of the stream to have the
same time-intervals for triples from two di�erent sources, or make sure that the order
between the triples remains the same (not practical in real-world situations), (ii) write a
complex query with the combination of EQUAL and SEQ operators (see Query 8.7). This
questions the usability and performance of EP-SPARQL queries.

Now consider the SPAseq Query 8.8 defined for the stream S
g

. Due to the RDF
graph-based stream model, and the separation of GPM and sequence expressions, SPAseq

not only provides an intuitive way of writing queries, but also complies to the real-world
situations. That is, a set of triples expressing the attributes of a source associated with a
time-stamp. This means, the source does not have to comply to a certain order when
producing the triples, instead the produced triples can be packaged into a single graph.
The execution of SPAseq Query 8.8 over S

g

will produce the required matches, i.e., the
selection of mappings of ?s1 and ?s2 ((·

2

, {{?s1 ‘æ 60}, {?s2 ‘æ 70}})).

1

1

2 SELECT ?s1 ?s2
3 WITHIN 30 MINUTES
4 FROM STREAM S1 <http://harbour.org/boats>
5

6 WHERE {
7

8 SEQ (A; B)
9 DEFINE GPM A ON S1 {

10 ?boat :direction ?d1.
11 ?boat :speed ?s1.
12 Filter (?d1 = ‘south’)
13 }

14 DEFINE GPM B ON S1 {
15 ?boat :direction ?d2.
16 ?boat :speed ?s2.
17 Filter (?d2 = ‘north’)
18 }
19

20 }
21

Query 8.8: Trajectory Classification: SPAseq query

Another obvious di�erence between the data model of EP-SPARQL and SPAseq is
the streamset: SPAseq queries are evaluated on a streamset where a set of heterogeneous
streams can be used, while EP-SPARQL queries are evaluated on a single stream. For the
same reason, semantically it is not possible to support UC 1 with the EP-SPARQL queries.

8.7.2 TimePoints Vs Time-Intervals
As evident from the data models, SPAseq temporal semantics is based on points in
time, while EP-SPARQL utilises time-intervals. The choice of the timepoints for the
SPAseq is based on the following reasons.

1. W2C RSP working group (as discussed earlier) has been working on the standardising
of RDF stream model for the last three years or so. Recently, they have provided a
draft version of their recommendations2, where timepoint-based semantics for the

2RDF Stream Abstract Syntax and Semantics: http://streamreasoning.github.io/RSP-QL/
Abstract%20Syntax%20and%20Semantics%20Document/ , last accessed: July, 2016.

http://streamreasoning.github.io/RSP-QL/Abstract%20Syntax%20and%20Semantics%20Document/
http://streamreasoning.github.io/RSP-QL/Abstract%20Syntax%20and%20Semantics%20Document/

8. A Query Language for SCEP: Syntax and Semantics 124

RDF streams are recommended.

2. Due to the complexity of the RDF data model, there are obvious and considerable
performance di�erences between relational CEP and SCEP systems. Our aim of
providing a new SCEP language and system is to close such gaps, while providing
expressive CEP operators over the RDF data model. Timepoint-based semantics
perfectly fit in this context and most of the performance intensive CEP systems
rely on it, such as SASE [WDR06b, Agr+08], Esper [BV10].

3. Existing CEP and SCEP systems are based on single stream model, and multiple
streams have not gained much attention. SPAseq provides temporal operators
over a streamset, and thus we have consulted various DSMSs and RSP systems
to weigh up the di�erences between timepoints and time-intervals. In the case of
time-intervals, the implementation of joins between di�erent streams over windows
is not a straight-forward task and requires careful considerations: Kraemer et al.
have examined such issues in detail for the DSMSs [HV05].

The use of timepoints results in a cleaner semantics with the focus on how the
RDF graph-based events and temporal operators are evaluated in an optimised manner.
Although the time-interval based temporal model o�ers associativity of sequence operator,
it can be considered as an extension of our system to handle events with duration. One
of such technique is called coalescing from the temporal database [BSS96]. Coalescing is
a unary operator for merging value-equivalent elements with adjacent time intervals in
order to build larger time-intervals. For instance, consider two fact-based temporal triples
(person1, inside-room, r1, [15:00]) and (person1, inside-room, r1, [18:00]),
where the two temporal triples can be replaced with a single one with a time-interval
(person1, inside-room, r1, [15:00,18:00]). The coalescing operator can be applied
over the evaluation of temporal operators to extract the intervals over the matching set
of mappings. Moreover, the timestamp in each RDF graph event can be mapped to
time-intervals, i.e., and an event (·, G) œ S to ([·, · + 1], G), and for the primitive events
start and end timestamps can be the same. This would not a�ect our semantics, since
time-interval [·, · + k] solely covers a single time, namely · [HV05].

8.7.3 Temporal Operators
In our previous discussion, we have emphasised on the clear di�erences between the
supported temporal operators for EP-SPARQL and SPAseq. Herein, we focus on the
kleene-+ operator and show its importance.

Recall the V-shaped pattern from UC 2. EP-SPARQL, unlike SPAseq, it only
supports the simplified V-shaped pattern using the SEQ and FILTER operators. However,
complex situations with a kleene-+ operator are not supported. We illustrate this through
an example scenario. Figure 8.2b(a) shows a strict V-shaped pattern, where the events
should follow the strict sequence (e

2

.value < e
1

.value followed-by e
3

.value > e
2

.value
followed-by e

3

.value > e
1

.value). This strict sequence is supported by both query
languages. However, a relaxed sequence pattern as described in Figure 8.2b(b) requires a
kleene-+ operator to consume one or more events of the same kind, and is not supported
by EP-SPARQL. The kleene-+ operator is widely used in diverse domains as discussed
earlier, especially for sensor networks.

In Section 8.4, we discuss the two event selection operators, immediately followed-
by and followed-by operators. The semantic analysis of EP-SPARQL (as presented in

8. A Query Language for SCEP: Syntax and Semantics 125

value

e
1

e
2

e
3

time

(a)

value

e
1

e
2

e
2

e
2

e
3

e
3

e
3

time

(b)

Figure 8.2: V-Shaped Patterns (a) Without Kleene-+ Operator, and (b) With Kleene-+ Operator

Chapter 5) shows that the general sequence operator of EP-SPARQL closely corresponds
to the immediately followed-by operator. However, the followed-by operator, with wide
spectrum of use cases, is not supported by the EP-SPARQL query language.

8.8 Summary
In this chapter, we have answered the question How to define a new SCEP query language
and which operators should it use?. We have presented the syntax and semantics of
SPAseq, a SCEP query language. We have also provided the motivations behind
our language, and pointed out various qualitative di�erences between SPAseq and
another SCEP query language EP-SPARQL. The contributions of our work in this
chapter are the following:

• Streaming Data Model: We have proposed a new streaming data model, i.e.,
RDF graph-based events, where each event within a stream is a graph annotated
by a timestamp. These RDF graph-based events are observed in streams that are
also named. Moreover, we have also proposed the notion of streamset to evaluated
SCEP queries over multiple heterogeneous RDF graph streams.

• Syntax of SPAseq: We have defined the syntax of the SPAseq language, where
GPM expressions are separated from the sequence expressions. This enables
expressive temporal operators over the streamset.

• Semantics of SPAseq: Based on the defined syntax, we have also provided the
evaluation semantics of temporal operators introduced in SPAseq. That is, how a
SPAseq query is evaluated and its expected results.

• Qualitative Comparison: Motivated by the real-world use cases, we have provided
a non-formal qualitative comparison of SPAseq and its competitor EP-SPARQL.
Our analysis showed that, SPAseq improves upon EP-SPARQL in many aspects,
such as data model and temporal operators.

The design of the syntax and semantics of the SPAseq query language can guide the
practitioners to compare their works, and to extend the SCEP languages with further
properties. During the design phase of our language, we carefully consulted existing
CEP techniques and the lessons learned. Thus, a suitable compromise between the
expressiveness of a SCEP language and how it can be implemented in an e�ective way is
made possible. In the following chapter, we will ponder on the optimised implementation
of SPAseq and its operators.

In dancing, a single step, a single movement of the body

that is graceful and not forced, reveals at once the skill

of the dancer. A singer who utters a single word ending

in a group of four notes with a sweet cadence, and with

such facility that he/she appears to do it quite by chance,

shows with that touch alone that he/she can do much

more than he is doing.

— Baldassare Castiglione, The Book of the Courtier

9
SPAseq: Semantic Complex Event Processing

over RDF Graph Streams

In the previous chapter, we discussed the design of a new SCEP language
called SPAseq. This chapter provides the implementation details of SPAseq,
i.e., how its operators are compiled and executed in an e�cient way. The
underlying execution model of SPAseq is based on NFA

scep

, where a set of
states, each with a set of edges, are used to map SPAseq operators. We
first provide the motivation of using the NFA

scep

model, and then provide the
details of its compilation process for the SPAseq query language. Later, we
present how an NFA

scep

automaton is executed, its evaluation complexity and
various optimisation strategies customised for SCEP.

Contents

9.1 General Idea . 127
9.2 NFA-based Semantic Complex Event Processing 128

9.2.1 NFA
scep

Model for SPAseq . 128
9.2.2 Compiling SPAseq Queries . 130

9.3 System Design of SPAseq Query Engine 134
9.3.1 Evaluation of NFA

scep

Automaton 136
9.4 Query Optimisations . 139

9.4.1 Evaluation Complexity of NFA
scep

. 139
9.4.2 Global Query Optimisations . 142
9.4.3 Local Query Optimisation . 145

9.5 Experimental Evaluation . 148
9.5.1 Experimental Setup . 148
9.5.2 Results and Analysis . 149

9.6 Summary . 155

This chapter is structured as follows: Section 9.1 provides the preliminary in-
troduction and recalls the key concepts of CEP systems. Section 9.2 presents the

126

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 127

NFA
scep

model and algorithms to compile SPAseq operators to an equivalent
NFA

scep

. Section 9.3 details our system design and algorithms for evaluating
SPAseq queries. Section 9.4 presents a list of optimisation techniques utilised
by the SPAseq query engine. Section 9.5 presents the experimental evaluation
of SPAseq queries. Section 9.6 concludes the chapter.

9.1 General Idea
Pattern matching techniques have been employed in most of the branches of science. In
general, pattern matching aims to obtain, or at-least, access the correlation between two
sets of data. Its concluding aim is to either get a simple binary yes or no answer, or to
determine a set of independent parameters that produce the best match between the
two data sets. In the context of CEP, pattern matching is to match a set of temporal
operators, defined in a query language, with a set of events within an event stream.

Hence, with the arrival of events, defined temporal operators are evaluated in a
progressive way. That is, before a composite or complex event is detected (please refer to
Chapter 5 to refresh such concepts) through a full pattern match, partial matches of the
query patterns emerge with time. These partial matches require to be taken into account,
primarily within in-memory caches, since they express the potential for an imminent full
match. As discussed in Chapter 5, there exists a wide spectrum of approaches to track the
state of partial matches, and to determine the occurrence of a complex event. In summary,
these approaches include rule-based techniques that mostly represent a set of rules in
tree structures (such as RETE network), graph-based representations (such as Event
Detection Graphs (EDGs)) to merge all the rules within a single structure, and finally
Finite State Machine representations, in particular non-deterministic Finite Automata
(NFA). The choice of these representations is motivated not only by their expressiveness
measures, but also on the performance metrics that each approach tries to enhance. For
instance, ETALIS [Ani+12], a rule-based engine, mostly focuses on how the complex rules
are mapped and executed as Prolog objects and rules, while SASE [WDR06b, Agr+08]
and Zstream [MM09] focus on the query-rewriting, predicate-related optimisations and
memory management techniques. Table 9.1 illustrates some of the optimisation strategies
utilised by the CEP systems1, and their description is provided as follows:

• Query-rewriting. This technique, as described in Chapter 3, takes its basis from the
DBMSs and DSMSs. Its aim is to re-order query operators, either o�ine using their
selectivity measures, or online using statistical information from the event stream.
This leads to low-cost selective operators to be evaluated first, and thus reducing
the intermediate results and load on the remaining operators.

• Predicate-based Optimisations. Predicates within a CEP query present the con-
straints and filter the event data. A simple but e�cient technique for CEP
optimisation is to push the predicates as early as possible in query plans. This
reduces the number of partial matches by eliminating the ones that would not result
in a complete match.

• Memory Management. CEP over unbounded stream is expensive in terms of memory
usage and the partial matches can grow exponentially [Agr+08, MM09]. The aim
of the memory-based optimisation is to share the results from partial matches and

1We only presents the well-know research systems that describe their design in details.

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 128

merge them to reduce the memory usage. One such technique [Agr+08] defines
bu�ers for each partial match and then merges individual bu�ers into a single one.

Table 9.1: Available Optimisation Strategies Adopted by the CEP Systems

CEP Systems Query-rewriting Predicate-based
Optimisations

Memory
Management

SASE [Agr+08] X X X
ETALIS [Ani+12] 7 7 7
Cayuga [Bre+07] X 7 7
Zstream [MM09] X X 7

The above discussion highlights some of the areas that could be explored to optimise
CEP. However, in this thesis, we are concerned with the SCEP: with the integration
of RDF data model, the story becomes complicated, since SCEP not only requires the
e�cient management of temporal operators, but also the e�cient evaluation of graph
patterns. Therefore, our e�orts for an e�cient implementation of SCEP are concentrated
on customising some of the existing CEP-based techniques – where SASE is the best source
of inspiration – along-with some new insights and integration of the RDF data model.

9.2 NFA-based Semantic Complex Event Processing
Pattern matching is commonly performed by expressing patterns as sets of regular
expressions and by converting them into finite state automata (FSAs). The behaviour of
FSA is easy to emulate on computing devices to perform matching, and FSA can easily be
composed together with a full set of boolean operators. Two di�erent kinds of automata
models that are proposed in the literature include: deterministic finite automata (DFA)
and its non-deterministic version NFA. While theoretically, both models possess the same
expressive power, DFA can be less space e�cient, requiring very large amount of memory
to store, and can result in state space explosions [BC08].

The design choice of temporal operators in SPAseq is heavily influenced by whether
they can be e�ciently evaluated or not. Our criterion for the e�ciency of a SPAseq

temporal operator is whether it can be mapped to an NFA. The rational behind choosing
NFA as the underlying execution model is two fold. First, SPAseq is designed for complex
temporal patterns and these patterns can be intuitively described as transitions in an
automaton: NFAs are expressive enough to capture all the complex patterns in SPAseq.
Second, NFAs retain many attractive computational properties of FSA on words: by
translating SPAseq queries into NFAs, we can exploit several existing optimisation
techniques [Agr+08, ZDI14]. Table 9.1 illustrates some of the optimisation techniques
for CEP systems. The SASE [Agr+08] and Cayuga [Bre+07], where both employ the
NFA model, are the dominating ones with a number of custom optimisations.

In the following, first we describe the execution model of our system, and later present
how SPAseq queries are complied onto equivalent NFAs. A discussion on the optimisation
techniques for the execution of SPAseq queries is provided in Section 9.4.

9.2.1 NFA
scep

Model for SPAseq
We designed a new type of automata model, called as NFA

scep

, where the GPM expressions
are mapped as state-transition predicates for the automaton states. Formally, an NFA

scep

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 129

automaton is defined as follows.

Definition 9.1: NFA
scep

Automaton

An NFA
scep

automaton is a tuple A = ÈX, E, �, Ï, x
o

, X
m

, x
f

Í, where

X: is a set of states;

E: a set of directed edges connecting states;

�: is a set of state-transition predicates, where each ◊ œ �, ◊ = {u, sf, op, P};
u is the stream name, sf is the set of statefully-joined triples, op œ {‘?’, ‘!’,
‘<>’, ‘+’, ‘|’} is a temporal operators, and P is a graph pattern;

Ï: is a labelling function Ï : E æ � fi {‘} that maps each edge to the
corresponding state-transition predicate, where ‘ denotes the instantaneous
transition [Tho68];

x
o

: x
o

œ X is an initial or starting state;

X
m

: X
m

µ X is a set of manager states;

x
f

: x
f

œ X is a final state.

Each NFA
scep

automaton is acyclic, except for the self loops, and we define four types
of states: initial (x

o

), ordinary (x), final (x
f

) and manager (x
m

) states. The first three
types (initial, ordinary and final) are analogous to the states in the traditional NFA
models in order to implement the basic operators such as sequence, negation, kleene-
+. The manager state provides an important functionality to implement disjunction
and conjunction operators in an optimised manner (details will follow in Section 9.4).
However, semantically it works similarly to that of ordinary state. Each state has at
least one forward edge, except the final state.

Example 22 Figure 9.1 shows the compiled NFA
scep

for the SPAseq Query 8.2 with
the sequence expression SEQ(A,B+,C). It contains four states, each having a set of edges
labelled with the state-transition predicates. The state-transition predicate (u

s

, sf, op,
P) consists of four parameters: graph pattern P for the events with stream id (u

s

); sf
represents the set of stateful joins, for instance, variable ?fr1 in Query 8.2 is shared
between P

A

and P
B

; op describes the type of operator mapped to an edge, for instance
edges of state x

1

contains the kleene-+ operator. The description of mapping from the
SPAseq Query 8.2 to the NFA

scep

in Figure 9.1 is as follows:

• The SPAseq Query 8.2 contains the sequence expression SEQ(A,B+,C), thus there
is one initial state, two ordinary states and a final state.

• State x
0

has one edge with state-transition predicate (u
s1 , sf

1

, ?, P
A

). Since it only
contains immediately followed-by operator as a temporal operator, it can simply
transit to the next state on matching the state-transition predicate. Note that, the “,”
represents immediate followed-by operator: the case of followed-by operator (“;”)
is described later.

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 130

• The state x
1

represents the mapping of GPM B with kleene-+ operator. Therefore, it
has two edges each with a state-transition predicate (u

s2, sf
2

, +, P
B

), one with a
destination state of x

2

, and other with the same destination (x
1

) to consume one or
more same kind of events.

• The state x
2

represents the mapping of C, hence one edge is used to transit to next
state if an event matches the defined state-transition predicate (u

s3, sf
3

, ?, P
C

).

x
0

x
1

x
2

x
f

(us1 ,sf1,?,PA) (us2 ,sf2,+,PB)

(us2 ,sf2,+,PB)

(us3 ,sf3,?,PC)

Figure 9.1: Compiled NFA
scep

for SPAseq Query 8.2 with SEQ(A,B+,C) expression

State-transition predicates are used to determine the action taken by a state to transit
to another. For instance, in Figure 9.1 the state x

0

transits to x
1

, if (1) the incoming
event is from the defined stream id u

s1 , (2) if there are stateful joins between di�erent
graph patterns, and their evaluation do not result in an empty set of mappings, (3) graph
pattern P

A

evaluates to true. Furthermore, the event selection strategy also determines if
there is a followed-by or immediately followed-by relation between the processed events.
Note that, in the presence of kleene-+ operator, NFA

scep

will exhibit the non-determinism
behaviour, since the state-transition predicates will not be mutually exclusive.

Considering the same vocabulary from the existing NFA works (as described in
Chapter 5), we say that each instance of an NFA

scep

is called a run. A run depicts the
partial matches of defined patterns, and contains the set of selected events. Each run
has a current active state: a run that reaches its final state is an accepting run, denoting
that all the defined patterns are matched with the set of selected events.

9.2.2 Compiling SPAseq Queries
As described in Chapter 8, the two main components of the SPAseq language are
sequence and GPM expressions. Due to the separation of these components, one can
provide variable techniques to compile and process them. In Chapters 6 and 7, we review
the compilation process of graph patterns using the traditional relational operators (e.g.,
selection, projection, cartesian product, join, etc.) within each GPM expression. Herein,
using existing knowledge, we show how stateful joins are handled between a set of GPM
expressions, and how these expressions along-with the temporal constraints are mapped
onto a set of state-transition predicates: by stateful joins we mean if the variables are
shared between two or more GPM expressions. The compiled set of state-transitions
predicates is later used to fulfil the labelling of automaton state’s edges.

Algorithm 5 shows the compilation process of a set of GPM expressions. First each
GPM expression is examined against the remaining set to determine the stateful variables
that result in joins at subjects, predicates and objects level (lines 5 – 15). The compiled
set of stateful joins, and the stream ids, which would be utilised for the evaluation of
GPM expressions, are mapped to the corresponding state-transition predicates (lines 19 –

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 131

21). As previously discussed, the set of state-transition predicates are used by the atomic
elements of sequence expression (see Algorithm 6) in order to construct the automaton
states, and to label the corresponding edges (as described in Example 22).

Algorithm 5 Compiling GPM expressions within a SPAseq Query
1: gpmSet Ω {(u1, P1), (u2, P2), . . . , (u

m

, P
m

)}
2: � Ω {}
3: procedure CompilePredicates (gpmSet , �)
4: for each (u

i

, P
i

) œ gpmSet do
5: stateful Ω {}
6: checkJoin Ω gpmSet \ {(u

i

, P
i

)}
7: for each tp œ P

i

do
8: if sub(tp) œ V && sub(tp) œ checkJoin then
9: stateful Ω stateful fi {P

i

on

sub(tp) getSub(tp, checkJoin)}
10: end if
11: if pred(tp) œ V && pred(tp) œ checkJoin then
12: stateful Ω stateful fi {P

i

on

pred(tp) getPred(tp, checkJoin)}
13: end if
14: if obj(tp) œ V && obj(tp) œ checkJoin then
15: stateful Ω stateful fi {P

i

on

obj(tp) getObj(tp, checkJoin}
16: end if
17: end for
18: ◊ Ω newPredicate()
19: sID

u

(◊) Ω u
i

20: stateful
st

(◊) Ω stateful
21: graphPatt

P

(◊) Ω P
i

22: � Ω � fi ◊
23: end for

The sequence expression sorts the execution of GPM expressions according to its
entries. Moreover, the temporal operators determine the occurrence criteria of such GPM
matches, and the event selection strategies are utilised to select the relevant events. These
constraints or properties are mapped on the NFA

scep

through the compiled state-transition
predicates, and Algorithm 6 shows such compilation process. For the sake of brevity, we
do not consider the conjunction and disjunction operators in Algorithm 6; such process
is intuitive enough and will be explained in the proceeding discussion.

Algorithm 6 takes three inputs: (i) a list of atoms from the sequence expression,
each containing a temporal operator, an event selection strategy, and a GPM expression;
(ii) a set of compiled state-transition predicates from Algorithm 5; (iii) a set of states
whose edges will be mapped with the corresponding predicates. It starts by iterating
over the list of atoms, and gets the state-transition predicate that matches the GPM
expression of the atom (line 5). It then uses the temporal operator and appends it
to the corresponding predicate (line 6). Finally, it starts the process of mappings
state-transition predicates to the state’s edges: it iteratively adds new edges and labels
them with state-transition predicates.

For the optional and negation operators (‘?’, ‘!’), Algorithm 6 adds one edge labelled
with the defined predicate, such that the destination of the edge is the next state (lines 7–
8), and another edge labelled with ‘-transition, i.e., transition on the empty word [Tho68]
(see Figure 9.4 and 9.6). For the kleene-+ (+) operator there are two edges, each
containing the same predicates, while one destined to the next state, and the other comes
back to the source state (lines 11–15) (see Figure 9.5). The same is the case with the

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 132

followed-by operator, where an edge has the same source and destination states. Hence,
the irrelevant events (¬n) are skipped (lines 16–20) (see Figure 9.3). Let (u

1

, P
2

) and

Algorithm 6 Compilation of NFA
scep

states and edges for a SPAseq Query
1: Atom Ω {at1, at2, . . . , at

i

}, where at Ω {(u, P), op, es}, op Ω { ‘?’ , ‘!’, ‘+’}, es Ω { ‘,’ , ‘;’}
2: � Ω {◊1, ◊2, . . . , ◊

n

}, from Algorithm 5.
3: A Ω {x1, x2, . . . , x

n+1}, where edges(x
i

) Ω {}, next(x
i

) = x
i+1

4: procedure CompileEdges(Atom, A, �)
5: for each at

i

œ Atom do
6: ◊ Ω getMatchPredicate (�, (u, P))
7: opera

op

(◊) Ω opera
op

(at
i

)
8: if opera

op

(◊) = ‘!’ then
9: graphPatt

P

(◊) Ω ¬graphPatt
P

(◊)
10: e1 Ω newEdge(◊), source(e1) Ω x

i

, destination(e1) Ω x
i+1

11: e2 Ω newEdge(‘), source(e2) Ω x
i

, destination(e2) Ω x
i+1

12: edges(x
i

) Ω edges(x
i

) fi {e1} fi {e2}
13: end if
14: if opera

op

(◊) = ‘?’ then
15: e1 Ω newEdge(◊), source(e1) Ω x

i

, destination(e1) Ω x
i+1

16: e2 Ω newEdge(‘), source(e2) Ω x
i

, destination(e2) Ω x
i+1

17: edges(x
i

) Ω edges(x
i

) fi {e1} fi {e2}
18: end if
19: if opera

op

(◊) ‘+’ then
20: e1 Ω newEdge(◊), source(e1) Ω x

i

, destination(e1) Ω x
i+1

21: e2 Ω newEdge(‘), source(e2) Ω x
i

, destination(e2) Ω x
i

22: edges(x
i

) Ω edges(x
i

) fi {e1} fi {e2}
23: end if
24: if eventSelc

es

(◊) = ‘;’ then
25: sID

u

(◊) Ω ¬sID
u

(◊)
26: e = newEdge(◊), source(e) Ω x

i

, destination(e) Ω x
i

27: edges(x
i

) Ω edges(x
i

) fi {e}
28: end if
29: end for

(u
2

, P
2

) be the two GPM expressions then the compilation of SPAseq temporal operators
through the NFA

scep

automata is described as follows.

• Immediately Followed-by: The construction of NFA
scep

for this operator is the
simplest of all, where a single edge for the corresponding state, having di�erent
source and destination states, is constructed. The corresponding NFA

scep

automaton
for ((u

1

, P
1

),(u
2

, P
2

)) is illustrated in Figure 9.2

x
0

x
1

x
f

(u1,sf1,?,P1)

(u2, sf2,?, P2)

Figure 9.2: Compilation of the Immediately followed-by Operator

• Followed-by: This operator determines if the irrelevant events has to be skipped or
not. Thus, two di�erent edges emanate from the corresponding state, one with the

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 133

same source and destination states. This transition matches any kind of event. The
corresponding NFA

scep

automaton for ((u
1

, P
1

);(u
2

, P
2

)) is illustrated in Figure 9.3

x
0

x
1

x
f

(u1,sf1,?,P1)

(u2, sf2,?, P2)

(¬u2,?,?,?)

Figure 9.3: Compilation of the Followed-by operator

• Optional: The optional operator selects an event if it matches to the defined GPM
expression, otherwise it ignores the event and moves to the next state. Similarly
to the followed-by operator, it results in two edges, one with an ‘-transition. The
corresponding NFA

scep

automaton for ((u
1

, P
1

),(u
2

, P
2

)?) with the immediately
followed-by operator is illustrated in Figure 9.4

x
0

x
1

x
f

(u1,sf1,?,P1)

(u2, sf2, ?, P2)

‘

Figure 9.4: Compilation of the Optional Operator

• Kleene-+: This operator, as discussed earlier, results in two edges with one edge
having the same source and destination state. Thus, it can detect one or more
consecutive same events. The corresponding NFA

scep

for ((u
1

, P
1

) , (u
2

, P
2

)+) with
the immediately followed-by operator is illustrated in Figure 9.5.

x
0

x
1

x
f

(u1,sf1,?,P1)

(u2, sf2, +, P2)

(u2, sf2, +, P2)

Figure 9.5: Compilation of the Kleene-+ Operator

• Negation: This operator detects if either event for a defined pattern does not occur
or there is no event occurrence. Thus, it behaves similarly to the optional operators,
however, the GPM process is opposite. That is, if an event matches to defined
GPM expression, then it violates the condition of the sequence. The corresponding
NFA

scep

automata for ((u
1

, P
1

),(u
2

, P
2

)!) with immediate followed-by operator (for
the sake of brevity) is illustrated in Figure 9.6.

• Conjunction Operator : This operator detects the simultaneous occurrence of two
or more events. Thus, there are two edges for such state, each destined for a

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 134

x
0

x
1

x
f

(u1,sf1,?,P1)

(u2, sf2, !, ¬P2)

‘

Figure 9.6: Compilation of the Negation Operator

di�erent state. As discussed earlier, we use the concept of manager state for such
operator, its functionality is discussed in the next section. The NFA

scep

automaton
for ((u

1

, P
1

)<>(u
2

, P
2

)) is illustrated in Figure 9.7, where x
m

is a manager state.

x
m

x
f

(u1,sf1,<>,P1)

(u
2

,sf
2

,<>,P
2

)

Figure 9.7: Compilation of the Conjunction Operator

• Disjunction operator : This operator forms the similar automaton structure as that
of conjunction operator, however with the di�erence of state-transition predicates.
The NFA

scep

automaton for ((u
1

, P
1

)|(u
2

, P
2

)) is illustrated in Figure 9.8

x
m

x
f

(u1,sf1,|,P1)

(u
2

,sf
2

,|,P
2

)

Figure 9.8: Compilation of the Disjunction Operator

It is intuitive enough to see that the compilation process of GPM and sequence
expressions corresponds to the semantics defined in Chapter 9, and SPAseq queries are
mapped onto equivalent2 NFA

scep

. Based on these compilation rules, a streamset is used
to evaluate the compiled NFA

scep

automaton. This process is described in the next section.

9.3 System Design of SPAseq Query Engine
Having provided adequate details about the compilation process of SPAseq queries,
we finally arrive at the heart of SCEP: the e�cient execution of SPAseq queries using
NFA

scep

model. Obviously, this process needs to be optimised, since SPAseq presents
additional challenges w.r.t. existing CEP approaches. First, it o�ers GPM over each RDF
graph-based event. Second, it allows static RDF graphs to be joined with the events

2Herein, we do not formally define “equivalence” and leave it as our future work. Informally, when
a SPAseq query and a NFAscep are equivalent, every portion of the input streamset that produces an
output result in the former, will be accepted by the latter and vice versa.

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 135

from streams to enrich each of them with more knowledge. This in turn may potentially
impact the e�ciency of the whole system. Following this intuition, we have implemented
various customised optimisations, and reused some from our system called SPECTRA (as
discussed in Chapter 7). Herein, we begin with an overview of the underlying components
of the SPAseq query engine, and later provide the main evaluation algorithm for NFA

scep

automaton. Lastly, we present the optimisation techniques employed by our system.

GPM
Evaluator

Cache Manager

Result Buffer

NFA Evaluator

NFAscep
Automata

Static RDF Data

q1q2
qi

Queue Manager
Dictionary

Input Manager

Main Memory
Structures

RDF Graph Streams

(Composite Events)

Output

Composite Events

Query
Optimiser

Figure 9.9: Architecture of the SPAseq Query Engine

Figure 9.9 shows the architecture of the SPAseq query engine. It resembles with a
classical main memory stream processing system. Its main components are input handler,
queue manager, query optimiser, NFA evaluator, and an RDF engine with GPM evaluator.
In the following, we briefly discuss these components.

At its heart, the GPM evaluator sticks to the model of SPECTRA engine: it is based
on a main memory graph pattern processor but uses specialised data structures and
indexing techniques suitable for processing RDF graphs within an event. In particular,
it makes use of SummaryGraph and QueryProc operators (see Chapter 7) to first
prune the unnecessary triples from each event and then join a set of views (vertically
partitioned tables), while utilising incremental indexing. Furthermore, to enrich event
data, it can also use the static set of views from the static RDF graphs.

The NFA evaluator contains the compiled NFA
scep

automaton and employs the GPM
evaluator to compute the GPM expressions mapped on the state-transition predicates.
Its subcomponent, the Cache Manager stores the results of stateful joins, which is also
employed by the GPM evaluator. Finally, the query optimiser employs various techniques
to reduce the load for GPM evaluator and the number of active runs.

The queue manager and input manager do their usual job of feeding the required
data into the NFA evaluator. Since our system employs streamset, there are multiple
bu�ers to queue the data from a set of streams. The incoming data from streams are
first mapped to numeric IDs using dictionary encoding3. The input manager also utilises

3Dictionary encoding is a usual process employed by a variety of RDF-based systems [NW10b, Car+04].
It reduces the memory footprints by replacing strings with short numeric IDs, and also increases the

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 136

an e�cient parser45 to parse the RDF formatted data into the internal format of the
system. The details of the query optimiser are described in Section 9.4

9.3.1 Evaluation of NFA
scep

Automaton
In this section, we provide an overview of the techniques to evaluate the compiled NFA

scep

automaton that are implemented by our system. As discussed in Section 9.2.1, the
compiled NFA

scep

automaton represents the model that a matched sequence should follow.
Thus, in order to match a set of events emanating from a streamset, a set of runs is
initiated at run-time. This set of runs contains partially matched sequences and the run
that reaches to its final state represents a matched sequence.

When a new event enters the NFA evaluator, it can results in several actions to be
taken by the system. We describe them as follows:

• New runs can be created, or new runs are duplicated from the existing runs in order
to cater the non-determinism in NFA

scep

.

• If the newly arrived events match to state-transition predicates of the active states,
existing runs can transit from one active state to another.

• Existing runs can be deleted, either because the arrival of a new event results in
invalidating the constraints defined in the NFA

scep

model such as event selection
strategies, conjunction, etc., or the selected events in those runs are outside the
defined window.

These conditions can be generalised into an algorithm that (i) keeps track of the set
of active runs, (ii) starts a new run or deletes the obsolete ones, (iii) chooses the right
event for the state-transition predicates, (iv) keep track of stateful joins and their results,
and (v) calls the GPM evaluator to match an event with the defined graph pattern.

Algorithm 7 illustrates the execution of an NFA
scep

automaton. When a compiled
automaton is deployed, a single run is initiated from the automaton, which waits at its
starting state for the arrival of an appropriate event (lines 6–16). With the arrival of
a new event, the ProcessEvent function does the following: (i) examines (by using
the timestamp of the event) if there are runs that are outside the window boundaries,
hence to be deleted (line 6), (ii) checks if the event is from the same source that the
active state of a run is seeking, i.e., compare the stream ids (u) (lines 27-28), (iii)
employs MatchPredicate to match the current event with the active state’s state-
transition predicates, i.e., graph pattern P (using GpmMatch function (line 24)), and
stores the result in the result bu�er, (iv) and finally matches the temporal operators
to examine if a state can transit to the next one (lines 10-15). The execution of the
temporal operators are described as follows:

• Optional Operator : The state mapped with optional operators has two outgoing
edges, one with the GPM expression, and other with an ‘-transition. Thus, the
algorithm first matches the incoming events with the mapped GPM expression,
while computing that the event is from the same required stream. If there is match,

system performance by using numeric comparisons instead of costly string comparisons.
4We employed a performance intensive NxParser, which is a non-validating parser for the Nx format,

where x = Triples, Quads, or any other number.
5NxParser: https://github.com/nxparser/nxparser, last accessed: July, 2016.

https://github.com/nxparser/nxparser

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 137

Algorithm 7 Evaluation of NFA
scep

1: cacheManager Ω {}
2: resultBu�er Ω {}
3: activeRuns Ω {}
4: A Ω {x

1

, x
2

, . . . , x
n+1

}, where next(x
i

) = x
i+1

5: procedure ProcessEvent(A, cacheManager, resultBu�er, activeRuns, G
e

)
6: for each Run r

i

œ activeRuns do
7: if checkWindow(r

i

, G
e

) = true then
8: x = getActiveState(r

i

)
9: for edges e œ edges(x) do

10: option = MatchPredicate(theta
◊

(e), cacheManager, resultBu�er, G
e

)
11: if option = 1 then
12: currState(r

i

) Ω next(x)
13: else if option = 0 then
14: deleteRun(r

i

)
15: else if option = 2 then
16: if strategy(theta

◊

(e)) = ‘;’ then Û Skip event for Followed-by
17: skipEvent(G

e

)
18: else
19: deleteRun(r

i

) Û Delete run for Immediately Followed-by
20: end if
21: end if
22: end for
23: else
24: deleteRun(r

i

)
25: end if
26: end for
27:
28: procedure MatchPredicate (◊, cacheManager, resultBu�er, G

e

)
29: if ◊ ”= ‘ && sID

u

(◊) = sID
u

(G
e

) then
30: if GpmMatch (graphPatt

P

(◊), cacheManager, resultBu�er, G
e

) then
31: return 1
32: else
33: end if
34: else if sID

u

(G
e

) = ¬sID
u

(◊) then
35: return 2
36: else
37: return 0
38: end if

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 138

the result bu�er stores the matched mappings (a hashmap, where the keys are run
and state ids, while the values are views or vertically-partitioned tables) and transits
to the next state. Otherwise, if the event is not from the desired stream or there
does not exist a match between the GPM expression and event, the run takes the
‘-transition and transits to the next state (line 11).

• Negation Operator : The negation operator is evaluated in a similar fashion compared
with optional operator. However, in this case, the run transits to the next state
(producing identity element) if there is no match with the mapped GPM expression.
In case, there is a match with the GPM expression, it means run has violated the
negation operator and should be deleted (line 14).

• Kleene-+ Operator : The evaluation of the kleene-+ operator is an interesting one,
since the state-transition predicates of the two edges are not mutually exclusive.
Thus, to cater the non-determinism for kleene-+ operator a new run is duplicated
from the existing one in case of a match. That is, if the newly arrived event is
matched with GPM expression of the active state, a new run is cloned from the
active run with the same active state (i.e., state with the kleene-+ edges), and the
active run transits to the next state. This way the system can keep track of one or
more matched events of the same kind (see Figure 9.10).

• Conjunction Operator : The case of the conjunction operator is rather complicated:
there are two or more outgoing edges – each with a distinct state-transition predicate
– and the run should move to the next state if all the state-transition predicates are
matched with consecutive events having the same timestamp. Recall from earlier, we
use the term manager state to compile this operator. Thus, the duty of the manager
state is to make sure if all the outgoing edges are computed and the selected events
contain the same timestamp. We will see in Section 9.4 how can we optimise such
procedure.

• Disjunction Operator : The disjunction operator resembles with the optional operator.
However, in this case the incoming event has to match with at-least one of the
state-transition predicates. Thus, for each active run, the manager state checks the
stream id of the event and employs the appropriate edge to match the event with
its GPM expression; and if there is a match the run transits to the next state. Note
that in this case there could be a number of edges that can match with an event. In
Section 9.4, we will see how to optimise the selection of an edge for the disjunction
operator.

On top of the above mentioned temporal operators, the evaluation of NFA
scep

also
needs to consider the defined event selection strategies: followed-by and immediately
followed-by. The immediately followed-by operator comes natural to the NFA

scep

model,
where the runs are deleted if the subsequent events do not match the defined state-
transition predicate. However, the compilation of followed-by operator results in an
extra edge with the same source and destination state. Therefore, for its evaluation,
the system first compare the stream id (u) of the active state’s edge and the incoming
event. In case the match does not evaluate to true, the system skips the event and
stays in the same state (lines 28-30 in Algorithms 7).

Example 23 Consider Fig. 9.10. In this example, r
i

represents run i, x
0

, x
1

, x
2

, and x
f

represent the states using sequence expression SEQ (A,B+,C) (From SPAseq Query 8.2),

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 139

x0 x1 x2 xf match

x1 x2 xf match

G

1
e

(us1,sf1,?,PA)

G

2
e

(us2,sf2,+,PB)

G

3
e

(us3,sf3,?,PC)

G 2
e

(

u

s2
,

s

f2
,

+

,

P

B
)

G

4
e

(us2,sf2,+,PB)

G

5
e

(us3,sf3,?,PC)

r
1

r
2

Figure 9.10: Execution of NFA
scep

runs for the SPAseq Query 8.2, as described in Example 23

and Gk

e

represents an event that occurred at time k. The arrival of G1

e

results in a new
run r

1

and the automaton transits from state x
0

to x
1

(if G1

e

matches (u
s1

, P
A

)). The
next event e

2

results in a non-deterministic move due to kleene-+ operator at the state
x

2

(considering G2

e

matches (u
s2

, P
B

)), and creates a new run r
2

with active state as x
1

,
while r

1

moves to the next state x
2

. When G3

e

arrives and matches to (u
s3

, P
C

), r
1

moves
to the final state and the match is complete. Finally, after the arrival and match of events
G4

e

and G5

e

with the corresponding GPM expressions, r
2

reaches the final state with a
match to the sequence.

9.4 Query Optimisations
The query optimiser is an important component of a CEP system. Generally, the user’s
query expressed in a non-procedural language describes only the set of constraints a
matched pattern should follow. It is up to the query optimiser to generate e�cient query
plans or adaptively refresh the plans that compute the requested pattern. The two main
resources in question for the CEP processing are CPU usage, and system memory: e�cient
utilisation of CPU and memory resources is critical to provide a scalable CEP system.
As discussed in Section 9.1, many di�erent strategies have been proposed to find an
optimal way of utilising CPU and memory usage in CEP systems. Thus, one of the main
benefits of using an NFA model as an underlying execution framework is that we can
take advantage of the rich literature on such techniques. These optimisation techniques
can be borrowed into the design of SCEP, while customising them for the RDF graph
streams. In this section, we describe how such techniques can be applicable for SCEP,
and also proposed new ones considering the query processing over streamset. First, we
review the evaluation complexity for the main operators of SPAseq query language.

9.4.1 Evaluation Complexity of NFA
scep

The evaluation complexity of NFA
scep

provides a quantitative measure to establish the cost
of various SPAseq operators. Herein, we first describe the cost of temporal operators in
terms of GPM evaluation function, and later provide the upper bound of time-complexity
in terms of number of active runs.

Incoming events are matched to the GPM expressions mapped on the state’s edges
and such evaluation decides if a state can transits to the next one. Depending on the
number of distinct GPM expressions mapped to a state, we categorise the operators in
two types: type 1 contains unary operators (negation, kleene-+, optional) and event

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 140

selection strategies (followed-by and immediately followed-by), and type 2 contains the
binary operators (conjunction and disjunction). Let n be the total number of events in a
stream (by providing a finite bound over the stream) and k be the number of distinct
GPM expressions resulted due to a temporal operator of SPAseq. Then the total cost
of GPM evaluation for the type 1 operators is as follows:

cost
type1 =

nÿ

i=1

c(P, Gi

e

),

where c(P, G
e

) represents the cost of matching a graph pattern P with an event Gi

e

. The
time complexity of such function can be referenced from Theorem 6.1 in Chapter 6.

The cost of type 2 operators can be described as follows:

cost
type2 =

nÿ

i=1

kÿ

j=1

c(P
j

, Gi

e

),

Both of the cost functions can easily be explained through the compilation process
of SPAseq operators: type 1 operators results in a single GPM expression to be
evaluated, while the type 2 operators, in worst case behaviour, have to match all the
GPM expressions for all the edges.

Prior works analysing the complexity of NFA evaluation often consider the number
of runs created by an operator and device upper bounds on its expected value [Agr+08,
ZDI14]. We adopt the same approach for analysing the complexity of NFA

scep

evaluation.
Thus, for each incoming event, the system has to check all the active runs to determine if
the newly arrived event results in (i) state transition from the current active state to the
next one, (ii) duplication of a new run, (iii) deletion of the active run if the event violates
the defined constraints. Therefore, query operators that result in creating new runs or
those who increase the number of active runs are considered to be the most expensive
ones. In order to simplify the analysis, we make the following assumptions:

1. We ignore the cost of evaluating GPM expression over each event.

2. We ignore the selectivity measures of the state-transition predicates, i.e., the events
that are not matched and either skipped or result in deleting a run of an NFA

scep

automaton. Hence, focusing on the worst-case behaviour.

Based on this, let us consider that n events arrive at a current active state of a run,
where the active state may contain the following set of operators: followed-by, immediately
followed-by, negation, kleene-+, optional, conjunction and disjunction.

Theorem 9.1

The upper bound of evaluation complexity of immediate followed-by, followed-by,
negation, and optional is linear-time O(n), where n is the total number of runs
generated for the n input events.

Proof Sketch. It is intuitive enough to observe that none of the operators discussed
above duplicate runs from the existing ones, and each has only one GPM expression to be
matched with the incoming events. Let us consider the case of event selection operators.
Given a sequence expression ((u

i

, P
i

) op (u
j

, P
j

)), where op = { ‘,’, ‘;’}, mapped to states x
i

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 141

and x
j

. With the arrival of an event G
e

at · , where an event selection operator is mapped
at state x

j

, it can result in the following actions: (i) the run will transit to the next state,
(ii) the event will be skipped due to followed-by operator, and (iii) the run will be deleted.
Since we are considering the worst-case behaviour, let us dismiss the situations (ii) (iii).
In situation (i) there be will no extra run created for the above mentioned operators, and
each incoming event will be matched to only one GPM expression. Thus the evaluation
cost remains linear. The same is the case with the other operators (negation, optional).
An event that matches to these operators will never result in duplication of a run. If these
operators are mapped at the first state (i.e., negation and optional) each matched event
from the stream will create a new run, thus for n number of events there can be only n runs.

Although, the upper bound of above mentioned operators has the same evaluation
complexity, there exists discrepancies when considering the real-world scenarios.

Immediate followed-by Vs Followed-by: As discussed previously, the followed-by
operator skips irrelevant events, while immediate followed-by is highly selective on the
temporal order of the events. Thus, the duration of a run is largely determined by
the event selection strategy. Due to the skipping nature of followed-by operators, the
life-span of its runs can be longer on a streamset. In particular, those runs that do not
produce matches, and instead loop around a state by ignoring incoming events until the
defined window expires. On the contrary, the average duration of a run is shorter for the
immediately followed-by operator, since a runs fails immediately when it reads an event
that violates its requirements. Such di�erence in their evaluation cost is visible in our
experimental analysis (Section 9.5).

The case of conjunction and disjunction operators is slightly di�erent, and therefore
has a di�erent upper case bound. That is, for each conjunction/disjunction operator,
there are more than one edges with the following properties: (i) more than one edge have
di�erent source and destination states with distinct GPM expressions, (ii) the edges do not
have an ‘-transition. Thus, in worst case each incoming event has to match to the complete
set of state-transition predicates. Hence, for k such edges for conjunction/disjunction
operator, and n input events, we can provide the upper bound on the complexity of these
operators as follows:

Theorem 9.2

The upper bound of evaluation complexity of conjunction and disjunction is O(n ·k),
where n is the total number of runs generated and k is number of GPM expressions
mapped to the manager state.

Proof Sketch. Comparing the number of runs generated by the conjunction and
disjunction operators, we can infer from Theorem 9.1 that the total number of runs
generated is bounded by n. That is, if an event arrives at the active state x

m

(a manager
state for conjunction/disjunction), it either matches to the set of edges defined and moves
to the next state, or it stays at the current active states and waits for new events (in case
of conjunction). Therefore, no new runs are generated for these operators. However, for
both of these operators, the manager state has to choose from a set of edges and compare
each incoming event with the compatible edges. That is, the edges whose state-transition
predicates are waiting for the event with a stream id (u

i

). Thus, even if the number of

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 142

active runs remains the same, each event may have to be matched with a number of GPM
expressions. For k edges, in worst case each event has to match the k edges.

Theorem 9.3

The upper bound of evaluation complexity of kleene-+ operator is quadratic-time
O(n2), where n is the number of runs generated by n events.

Proof Sketch: Consider a sequence expression ((u
j

, P
j

)+), which is mapped onto the
state x

j

with the kleene-+ operator . Let us consider that x
j

is an active state. If an event
G

e

arrives at time · , and if it matches the GPM expression of the state-transition predicate,
it will duplicate the current active run and append the duplicated one to the list of active
runs. Thus, for each newly matched event at a kleene-+ state, a new run is added to the
active list, and for n such events, there will be in total n2 runs to be generated considering
all the event are matched to the GPM expression of the state x

j

, i.e., worst case behaviour.

The kleene-+ operator is the most expensive in the lot, in terms of number of active
runs. Hence, based on the observations in Theorem 9.1 and 9.3, we adopt some of
the optimisation strategies previously proposed, and also propose some new ones. We
divide these techniques into two classes from the view point of operators and system:
local, and global levels. Local-level optimisation techniques are targeted at the specific
operators considering their attributes, while the global-level optimisation are for all
the operators, and are implemented at the system level. In the following section, we
present these techniques in details.

9.4.2 Global Query Optimisations

The evaluation of an NFA
scep

automaton is driven by the state-transition predicates
being satisfied (or not) for an incoming event. The number of active runs of an NFA

scep

automaton, and the number of state-transition predicates that each run could potentially
traverse can be very large. Hence, traversing these runs for each incoming event is not
feasible. Therefore, the aim of global optimisation is to reduce the total number of active
runs by (i) deleting, as soon as possible, the runs that cannot produce matches, and (ii)
indexing the runs to collect the smaller number of runs that can be a�ected by an event.

Pushing the Temporal Window

As mentioned, the window defined in a SPAseq query constraints the matches to be
executed over unbounded streams. The implication of this is that it is desirable to evict
the runs that contain older events as soon as possible. The timestamp of the newly
arrived event is used to update the boundaries of the defined window, and to delete
the runs that are outside the window. Therefore, before processing each event, if we
push the evaluation of the temporal window at the top of the processing stack, we can
delete the runs without first evaluating the state-transition predicates, consequently
decreasing the size of active runs’s list. In Algorithm 7 (line 7), we push the window
check before iterating over the active run list. This allows older runs to be evicted as
soon as they fail to satisfy the window constraint [ZDI14].

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 143

(u1,P1) (u2,P2)

(u1,P1) (u2,P2) (u3,P3)

(u1,P1)

(u1,P1)

r1

r2

r3

r4

r5

u1 u2 u3

(u1,P1) (u2,P2)

RDF Graph Streams

List of
Active Runs

Active State Follwed-By/ Immediately Followed-By

Figure 9.11: Processing Streamset over Active Runs

Pushing the Stateful Predicates

The stateful predicates define the joins between a set of graph patterns. These joins
can be defined through the FILTER expression or within the set of graph patterns (see
SPAseq Query 8.2). With the arrival of an event, there are two obvious possible ways
to invoke the GPM evaluator. First, we can evaluate the event with the defined GPM
expression, and later use the cache manager to perform the stateful joins. However, this
would require us to issue an expensive GPM process, and if the stateful joins are not
fruitful, GPM would be of waste and we have to either delete the run or skip the event
(depending upon the defined operator). Alternatively, we can first use the cache manager
to implement the stateful joins, and only then employ the complete GPM against the
event. This would allow us to prune the irrelevant events without initiating the complete
GPM process. Moreover, this would also result in decreasing the intermediate result set,
which consequently reduces the load over the GPM evaluator. Our system employs the
second approach and pushes the stateful joins as early as possible in the processing stack.

As an example of this, consider the SPAseq Query 8.2. Its GPM expressions share
the stateful variables of location (?l) and electricity fare (?fr). Pushing these two joins,
we can easily ignore the events that would not contain the expected mappings of these
variables, and consequently the system does not have to process the complete GPM
expressions (GPM B and C) for such events.

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 144

(u1,P1) (u2,P2)

(u1,P1) (u2,P2) (u3,P3)

(u1,P1)

(u1,P1)

r1

r2

r3

r4

r5

u1 u2 u3

(u1,P1) (u2,P2)

u2u2

u2u2

u1u1

u1u1

u3u3

RDF Graph Streams

List of
Active Runs

Active State Follwed-By/ Immediately Followed-By

Figure 9.12: Partitioning Runs by Stream Ids

Indexing Runs by Stream Ids

SPAseq queries are evaluated over a streamset, which means that the edges from each
state contain the stream id that is used to match the graph patterns. Therefore, each
active state waits for a specific type of event from a specific stream, and later invokes
the GPM evaluator. We illustrate it through an example.

Example 24 Figure 9.11 shows a set of streams employed by a set of active runs. The
active runs r

1

, r
5

are waiting for an event from stream with id u
2

, the active run r
2

is
waiting for an event from stream u

3

, and active runs r
3

and r
4

are waiting for the events
from the stream with id u

1

. According to Algorithm 7, for each incoming event from the
set of streams, we have to iterate over all the active runs and then match the stream id
and GPM expressions respectively.

The goal of indexing runs by the stream ids is to e�ciently identify the subset of runs
that can be a�ected by an incoming event: although, the total number of active runs can
be very large at a given time, the number of runs a�ected by an event is typically lower.
Thus, we index each run by the stream id of its active state (see Figure 9.12). More
precisely, the index takes the stream id as a key and the corresponding run as the value.
These indexes are simple hash tables, and for each incoming event it essentially returns
a set of runs that can be a�ected by the incoming event. Nevertheless, these indices

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 145

x
m

x
f

(u1,sf1,|,P1)

(u1,sf2,|,P2)

(u1,sf3,|,P3)

(u1,sf4,|,P4)

Figure 9.13: Compilation of Disjunction Operator for ((u1, P1) | (u1, P2) | (u1, P3) | (u1, P4))

proved to be a useful feature for processing events from a streamset. Note that the naive
implementation using a single list of runs would be ine�cient: each incoming event would
iterate over all the active runs, and initiate the matching process for each of them.

Memory Management

Although in-memory data access is extremely fast compared to the disk access, an e�cient
memory management is still required for a SCEP: the data structures usually grow in
proportion to the input stream size or the matched results. Thus, events that are outside
the defined window, or that cannot produce a match must be discarded in order avoid the
unnecessary memory utilisation. The three main data structures that require tweaking
are cache manager, result bu�er and active run list or set of indexed runs. In this context,
our first step is to use the buy bulk design principle. That is, we allocate memory at
once or infrequently for resizing. This complies to the fact that the dynamic memory
allocation is typically faster when allocation is performed in bulk, instead of multiple
small requests of the same total size. Second, since the cache manager and the result
bu�er are indexed with the dynamically generated run ids, we use the expired runs –
which either is complete or not – to locate the exact objects to be deleted. These objects
are added to a pool: when a new object is created, we try to recycle the memory from
such pool. This limits the initialisation of new objects and reduces the load over the
garbage collector. Note that we use hash-based indexing for all the data structures, which
means the position of expired objects can be found in theoretically constant time.

9.4.3 Local Query Optimisation
Local query optimisation is devised for the conjunction and disjunction operators, where
the chief problem is how to select the GPM expression from a set of edges and how to reduce
the load on the GPM evaluator. Thus, the knowledge of the runs a�ected by an incoming
event is not su�cient, we also have to determine which edge these runs will traverse.

To better illustrate the problem, let us start by examining the sequence expression
((u

1

, P
1

) | (u
1

, P
2

) | (u
1

, P
3

) | (u
1

, P
4

)) for the disjunction operator. Figure 9.13 shows
the related NFA

scep

automaton. Now consider an input stream u
1

, and an event Gi

e

at
time ·

i

for the manager state x
m

. In order to process such event, the manager state
has to choose from a set of state-transition predicates and direct the event and selected
graph pattern P to the GPM evaluator: the manager state cannot be picky, as all the
mapped predicates require the event from stream u

1

. Now the question is how to choose
the less costly graph pattern to be selected by the manager state.

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 146

x
m

x
f

(u1,sf1,<>,P1)

(u1,sf2,<>,P2)

(u1,sf3,<>,P3)

Figure 9.14: Compilation of Conjunction Operator for ((u1, P1) <> (u1, P3) <> (u1, P3))

The optimal way of processing the optional operator would be to sort the graph patterns
according to their cost, and select the cheapest one for the first round of evaluation. That
is, if c(P

i

, Gi

e

) is the cost of matching a graph pattern with an event Gi

e

, then we require
a sorted list such that c(P

j

, Gi

e

) < c(P
k

, Gi

e

) < · · · < c(P
m

, Gi

e

). The question is how to
determine the cost of GPM evaluation. There can be two di�erent ways to it.

1. Use the selective measures and structure of the graph patterns. That is, how much
the GraphSummary operator (from SPECTRA Chapter 7) be handy for them.

2. Adaptively gather the statistics about the cost of matching a specific graph pattern,
and sort the graph pattern accordingly.

Let us focus on the first approach. As discussed in Chapter 6, the cost of matching
a graph pattern and an event is directly proportional to each of their sizes. That is, if
there are more triple patterns tp œ P , then there will be more join operations on di�erent
vertically-partitioned views: this can give us fair bit of idea about the costly graph patterns.
Furthermore, due to the presence of filters, the GraphSummary operator can prune most
of unnecessary triples, and consequently reduces the cost of the GPM operation. Following
this reasoning, we keep a sorted set of graph patterns {P

1

, P
2

, . . . , P
k

} within the manager
state, each associated with a stream id u

i

. This set is sorted by checking the number
of triple patterns, and the selectivity of subjects, predicates and objects within a graph
pattern during the query compilation (as discussed in Chapter 7). The manager state can
utilise this set to first inspect the less costly graph patterns for the incoming events. This
can lead to a less costly optional operator with few calls to the GPM evaluator.

The second approach is based on the statistics measures. That is, the system during
its life-span observes which graph pattern has been utilised successfully in the past
and is less costly compared with others. This approach can be built on top of the
technique discussed above. Herein, the implementation of such optimisation technique
is considered as future work.

The conjunction operator, however, contains an additional challenge on top of the
one discussed above. To illustrate this, let us consider a sequence expression ((u

1

, P
1

)
<> (u

1

, P
2

) <> (u
1

, P
3

)) for the conjunction operator. Figure 9.14 shows the NFA
scep

automaton for it. In order for the manager state x
m

to proceed to the next state, it
has to successfully match all the defined state-transition predicates, such that events
satisfying them should occur at the same time. Thus, if an event Gi

e

arrives and matches
to one of the state-transition predicate, the automaton bu�ers its result, timestamp,
and waits for the remaining events. Now consider a situation, where events Gi

e

and Gj

e

arrive at ·
1

and match with the GPM expressions (u
1

, P
1

) and (u
2

, P
2

) respectively. Then
the automaton waits for an event to satisfy GPM expression (u

3

, P
3

). Now consider an

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 147

event Gm

e

arrives at ·
2

. It results into two constraints to be examined (i) if ·
1

= ·
2

,
and (ii) if Gm

e

matches with the GPM expression (u
3

, P
3

). Here, if any of the above
mentioned constraints would not match, then it means the run has to be deleted and
all the previous GPM evaluations were useless: the process of matching an event with
a graph pattern is expensive and it stresses the CPU utilisation.

Our approach to address this issue is to employ a lazy evaluation technique. Con-
ceptually, it delays the evaluation of graph patterns until it gets enough evidence that
these matches would not be useless. Its steps are described as follow:

1. Bu�er the events from streams until the number of events with the same timestamps
is equal to the number of edges (with distinct GPM expressions) going out from the
manager state.

2. After the conformity of the above constraint, choose graph patterns according to
their costs (as discussed for disjunction operator).

Algorithm 8 Evaluation of NFA
scep

1: INPUT: cacheManager, resultBu�er
2: eventBu�er Ω {G1

e

, G2

e

, . . . , Gi

e

}, where ·
1

= ·
2

= · · · = ·
i

3: procedure ProcConjunction(x
m

, eventBu�er, cacheManager, resultBu�er)
4: if size(edges(x

m

)) = size(eventBu�er) then
5: sortedEdges Ω getSortedEdges(edges(x

m

))
6: for edges e œ sortedEdges do
7: stop Ω true
8: for event G

e

œ eventBu�er do
9: if GpmMatch(graphPatt

P

(Theta
◊

(e)), cacheManager, resultBu�er, G
e

)
= true then

10: stop Ω false
11: removeEvent (eventBu�er, G

e

)
12: break the loop
13: end if
14: end for
15: if stop = true then
16: break the loop
17: end if
18: end for
19: if size(eventBu�er) = ? then
20: return true
21: else
22: return false
23: end if
24: end if

The main idea underlying our lazy evaluation strategy is to avoid unnecessary high
cost of GPM, and to start the GPM process when it is probable enough that it would
return the desired results. The idea of lazy batch-based processing is the reminiscent of
earlier work on bu�ering the events and process them as batches [MM09].

Algorithm 8 shows the lazy evaluation of the conjunction operator. The Proc-

Conjunction function takes the cache manager, result bu�er and an event bu�er that

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 148

contains a set of events with the same timestamps. It first examines the size of both
bu�ered events and the number of edges mapped to a manager state x

m

(line 4). If this
check evaluates to true, it extracts the set of sorted edges, while considering the selectivity
of graph patterns (line 5). The algorithm then iterates over the set of edges and matches
them with the bu�ered events. If an event G

e

œ eventBu�er matches the graph pattern
P , the algorithm removes this event from the event bu�er (lines 8-13). The whole process
continuous and if all the events (G

e

œ eventBu�er) are matched with the defined edges of
the manager state, the automaton transits to the next state (lines 19-20). Otherwise, it
either deletes the run for the immediately followed-by operator, or it waits for new events
to be filled in the bu�er for the followed-by operator.

In this section, we presented various optimisation strategies employed by SPAseq.
The focal point of the global optimisations is to reduce the load for the GPM evaluator
(1) by pushing the temporal window such that the events that are outside the window
boundaries are not sent to the GPM evaluator, (2) by pushing the stateful predicates to
prune the events that are unlikely to match, and to reduce the size of the intermediate
results for GPM. Furthermore, we also index runs by the stream ids such that only the
runs that can be a�ected by the incoming events are selected. The goal of the local
optimisations is the e�cient evaluation of the conjunction/disjunction operator. That is,
using the GPM evaluator for a batch of likely events that can result in a match. In the
proceeding section, we present the experimental evaluation of such optimisation strategies.

9.5 Experimental Evaluation
In this section, we present the experimental evaluation that examines (i) the complexity
of various SPAseq temporal operators, (ii) the e�ect of various optimisation strategies,
and (iii) the comparative analysis against state-of-the-art systems. We first describe our
experimental set up, and later we analyse the system performance in the form of questions.
Our system, called SPAseq, is implemented in Java, and to support reproducibility of
experiments, it is released under an open source license6.

9.5.1 Experimental Setup

Datasets: We used one synthetic and one real-world dataset, and their associated
queries for our experimental evaluation.

The Stock Market Dataset (SMD) contains share trades information in the stock market.
In order to simulate the real-world workload and properties of stock prices, we use the
random fractal terrain generation algorithm [KKM13, Sim+16]: it is based on the fractal
time series and provides properties such as randomness, non-determinism, chaos theory,
etc. Our SMD data generator is openly available at our project website. We generated a
dataset of more than 20 million triples and 10 million RDF graph events.

The UMass Smart Home Dataset (SHD) [WLC14] is a real-world dataset and provides
power measurements that include heterogeneous sensory information, i.e., power-related
events for power sources, weather-related events from sensors (i.e., thermostat) and events

6
SPAseq: http://spaseq.github.io/, last accessed: July, 2016.

http://spaseq.github.io/

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 149

for renewable energy sources. We use a smart grid ontology [GLP+14] to map the
raw eventual data into N-Triples format for three di�erent streams: the power stream
(S

g1), the power storage stream (S
g2) and the weather stream (S

g3). In total the dataset
contains around 30 million triples, 8 million events.
Queries: We use two main queries for the above mentioned datasets: UC 2 (Query 8.2)
and UC 1 (Query 8.3). That is, a V-shaped pattern and a smart grid pattern. Both
of these queries are further extended for various experiments.
Constraints: The execution time/throughput of the systems includes the time needed
to load and parse the streams. It also includes the time needed to parse the output
into a uniform format, and time for writing results to disk. For each experiment, the
maximum execution time is limited to two hours and the maximum memory consumption
to 20 GB. The former is enforced by external termination and the latter by the size
of the JVM. For robustness, we performed 10 independent runs of each experiment
and we report the median values.
Stream Configurations: We use two di�erent configurations to generate streams for
both datasets.

• Config. 1 : Random generation of events, i.e., events are generated according to the
real-world conditions.

• Config. 2 : Sequence-based generation of events, i.e., events are generated according
to the sequence defined in the SPAseq queries. This results in maximum number
of matches to be produced and allows to determine the worst-case behaviour of
various temporal operators.

Hardware: All the experiments were performed on Intel Xeon E3 1246v3 processor with
8MB of L3 cache. The system is equipped with 32GB of main memory and a 256Go PCI
Express SSD. The system runs a 64-bit Linux 3.13.0 kernel with Oracle’s JDK 8u05.

9.5.2 Results and Analysis

We start our analysis by first describing the evaluation cost of SPAseq operators, and
how they e�ects the performance of the system, later we present the usefulness of various
optimisation strategies, and finally we provide the comparative analysis of SPAseq and
EP-SPARQL for the same dataset and use cases.

Comparative Analysis of SPAseq Operators

Question 1. How does the unary operators kleene-+, negation and optional perform
w.r.t to each other?

First we describe the set up for this set of experiments. In order to compare the relative
complexity of the operators, we employed SMD dataset, UC 2 queries, and Config. 2
to generate streams. It allows to make sure that each operator in question has the
exact number of matches. We used the immediately followed-by operator between unary
operators, since the performance di�erences between the followed-by and immediately
followed-by operators is mainly visible in a multi-stream environment.

Figure 9.15 shows the results of our experiments. As expected, the negation and
optional operators show linear scaling behaviour with the increase in the window size.

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 150

Figure 9.15: Performance Measures of Optional, Negation and Kleene-+ Operators

That is, the number of runs generated for each of them is relatively proportional to the
number of events matched at the first state’s state-transition predicate. However, the same
is not the case with the kleene-+ operator. If an event matches to the kleene-+ operator,
the system duplicates an additional run and adds it to the active runs list. This means,
following the same intuition from earlier, each newly arrived event has to process a large
number of active runs. This results in extra cost for kleene-+ operator to process an event.

Another important point, that can be inferred from Figure 9.15, is that the negation
operator is slightly more expensive than the optional operator. This is because if an
event does not match to the negation state’s state-transition predicate, it is again used
to check if it can match with the next state’s state-transition predicate (if it is not the
final state). Thus resulting in an extra evaluation of a GPM expression. Nevertheless,
the aforementioned set of experiments showcases the result parallel to the one discussed
for the evaluation complexity of SPAseq operators (Section 9.4.1).

Question 2. How do the binary operators conjunction and disjunction perform w.r.t to
each other?

For this set of experiments, we again used SMD dataset, UC 2 queries, and Config. 2
to generate streams. As all the events emanates from a single stream, it provide the most
complex case: since all the GPM expressions mapped at the conjunction/disjunction
state’s edges expect the events with the same stream id, the system cannot be choosy
and, in worst case, all the events arrived at conjunction/disjunction state have to be
matched with all the mapped GPM expressions. Figure 9.16 shows the evaluation of
these operators while increasing the number of edges (k) for the conjunction/disjunction
states, and having a fixed window size of 5 seconds. Since, as observed in the complexity
analysis of these operators, their performance degrades linearly with the increase in the
number of edges, such a behaviour can be confirmed from Figure 9.16. As expected,
conjunction operator scale linearly with the increase in number of edges to be matched,
while the disjunction operator scale sub-linearly, since it has to match only one of the
edge to transit to the next state. Moreover, not surprisingly, conjunction operator is much
more expensive than the disjunction operator. The conjunction operator has to match the

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 151

Figure 9.16: Comparison of Conjunction and Disjunction Operators

complete set of GPM expressions mapped on the set of edges, while disjunction results in
few matches and its corresponding state transits to the next one if there is a match with
either of them. Note that, for this set of experiments, we use the lazy evaluation strategy
for conjunction operator, it comparison with the eager strategy is provided in Question 5.

Question 3. How do the event selection strategies immediately followed-by and followed-
by perform w.r.t to each other?

Figure 9.17: Comparison of Followed-by and Immediately Followed-By Operators

For this set of experiments, we use the SHD dataset and UC 1 queries, since the
e�ect of the operators in question is distinguishable in a multi-stream environment. We
tested both operators using only Config. 1 , since Config. 2 produces events according to
the defined patterns, hence no events are skipped for the followed-by operator and both

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 152

operators will have the similar performance measures. Figure 9.17 shows the evaluation of
these operators using Config. 1 . As we can see that the immediately followed-by operator
is less expensive compared with the followed-by operator: followed-by operator skips the
irrelevant events (due to the random generation of events) that are not destined for the
active state of a run, while the immediately followed-by operator delete the run as soon as
it violates its defined constraint. The runs for the followed-by operator are only deleted if
(i) the timestamps of the selected events for the run is outside the defined window, or
(ii) there is no match with an event that emanates from the same stream defined for the
current active state’s edge. Thus, the average life-span of runs for followed-by operator
is far more than the immediately followed-by. This means, for each event the system
has to go through a considerably large list of runs to be matched.

E�ects of Optimisation Strategies
Question 4. How does the indexing runs by stream ids strategy a�ects the perfor-
mance of the system?

Figure 9.18: Analysis of Indexing Runs by Stream Ids

In order to determine the e�ectiveness of indexing runs by stream ids, we employ the
SHD and UC 1 query with followed-by operator, and Config. 1 : since the followed-by
operator is costly compared with the immediately followed-by operator. Recall from
Section 9.4.2, we index runs by stream id, thus when an event arrives, only the runs
whose active state is waiting for such an event is used from the complete list of active
runs. Consequently, it reduces the overhead of going through the whole list of available
active runs. Figure 9.18 shows the results of our evaluation with variable window sizes.
According to the results, the performance di�erences between the indexed and non-indexed
approach is not evident at smaller windows. This is due to the fact that small number of
runs are produced/remains active for the smaller windows, hence indexing of runs does
not results in a comparatively smaller set of runs to be probed for each event. However,
the e�ectiveness of the indexing technique becomes quite clear with the increase in the
window size. That is, a large number of runs are produced with a smaller set of them
waiting for an event for a specific stream. For instance, if an event Gi

e

arrives at time

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 153

·
i

from a stream with id u, then only the runs whose active states are waiting for the
event from stream u – hashed indexed by stream id u – are collected, and input event
is probed against the state-transition predicates of their active states.

Question 5. How does the lazy evaluation a�ects the performance of the conjunction op-
erator?

Figure 9.19: Lazy vs Eager Evaluation of Conjunction Operator

For this set of experiments, we again employ SMD dataset, UC 2 (with conjunction
operator containing 4 edges), and Config. 1 to generates events: Config. 2 produces
events according to the defined pattern and the e�ects of the lazy evaluation would not
be obvious in such case. Figure 9.19 shows the results of the conjunction operator with
lazy and eager evaluation strategy. Recall from Section 9.4.3 lazy evaluation delays the
computation of all the state-transition predicates until the number of the events with
the same timestamp is equal to the number of state-transition predicates. As shown in
Figure 9.19, lazy evaluation performs much better on smaller windows and relatively
better on larger ones: eager evaluation results in a larger number of useless calls to the
GPM evaluator, while lazy evaluation performs a batch-based calls to the GPM evaluator.
Thus, with lazy evaluation, a set of events are evaluated against a set of GPM expressions,
only if all the bu�ered events (within a manager state) has the same timestamp. For
the smaller window, if there are not enough of such events, there are no calls to the
GPM evaluator, and with the expiration of the window, the run is deleted. Contrary
to this, eager evaluation call the GPM evaluator for each incoming event and a larger
number of such calls proved to be useless for smaller windows.

Comparative Analysis with EP-SPARQL
Question 6. How does the SPAseq engine perform w.r.t the EP-SPARQL engine?

Before describing the results, we first presents some of the assumptions for our
comparative analysis. Both SPAseq and EP-SPARQL di�er w.r.t each other in terms
of semantics and data model. Hence, they may produce di�erent results for the same
query. Therefore, the aim of our comparative analysis is to employ the same use case,

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 154

its queries and dataset to measure the performance di�erences between the two. This
strategy is mostly utilised by the information retrieval systems.

For the dataset and queries, we used SMD dataset, its respective query for the V-
shaped pattern and Config. 2 to produce the maximum number of matches. For the
first set of experiments, we used a simple V-shaped pattern query while increasing the
window size, and later we used the same pattern while varying the number of sequence
clauses or elements in the sequence expression with fixed window size of 8 seconds.
Note that, since we used Config. 2 for this set of experiments (sequence-based event
generation), both followed-by and immediately followed-by operators will have same
performance measures. Furthermore, we used a simple V-shaped pattern query, since
EP-SPARQL does not support kleene-+ operator (see Chapter 8 (Section 8.7.3)). Sample
queries are presented in Appendix A.5.

Figure 9.20: Comparative Analysis of SPAseq and EP-SPARQL over Variable Window Size

Figure 9.20 and 9.21 show the performance of both systems. From these results,
we can see that, as expected, SPAseq yields much higher throughput compared with
EP-SPARQL for both scenarios, i.e., increasing the window size and increasing the number
of sequence patterns. Since, results provided in [LP+11] show that RSP systems such
as CQELS outperforms ETALIS, which is the underlying engine for EP-SPARQL, in
terms of performance and scalability; and our system SPECTRA, which is the underlying
system of SPAseq outperforms other RSP systems. Hence, the complexity introduced
by the temporal operators is well managed by our NFA

scep

model and optimisation
techniques. The performance of EP-SPARQL degrades quadratically with the increase
of window size (Figure 9.20): EP-SPARQL uses a Prolog-wrapper based on the event
driven backward chaining rules (EDBC), and schedules the execution via a declarative
language using backward reasoning. This first results in an overhead of object mappings,
second, reasoning with backward chaining is a complex and computing intensive task:
it uses a goal-based memory management technique, i.e., periodic pruning of expired
goals using alarm predicates, which is expensive for large windows. On the contrary,
SPAseq employs NFA

scep

model with various optimisation strategies to reduce the cost of
triple patterns joins and the evaluation cost of the state-transition predicates. It utilises
e�cient “right-on-time” garbage collection for the deceased runs, and optimisations such

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 155

Figure 9.21: Comparative Analysis of SPAseq and EP-SPARQL over Variable # of Sequences

as pushing temporal windows and stateful joins, and incremental indexing from SPECTRA
reduces the average computation overheads and life-span of an active run. In addition,
the NFA-based executional model is much more immune to the increase in the number of
sequence operators compared with EP-SPARQL: with the increase in sequence operators,
the active life of each run also increases, however employing above mentioned optimisation
techniques greatly reduces the life-span and the number of active runs.

9.6 Summary
How to build an optimised SCEP system? In this chapter, through the implementation
details of the SPAseq query language, we covered such question. We started by providing
the motivation behind the NFA-based engine for SPAseq. Later, we provided the NFA

scep

model, the compilation process of SPAseq queries, their evaluation and optimisation
techniques. With the provided discussion in this chapter, we see that integrating RDF
graph streams with an NFA model is not a straight-forward procedure and requires various
customised implementation and optimisation techniques. Lastly, while utilising real-world
and synthetic datasets we showcased the usability and performance of our system. In
summary, our contributions for this chapter are as follows:

• NFA
scep

Model for SPAseq Queries. We presented the NFA
scep

model for
SPAseq queries, where the GPM expressions are mapped on the state-transition
predicates, and temporal operators result in a set of edges for each state.

• Compilation of NFA
scep

. We detailed the compilation process of SPAseq queries
with the NFA

scep

model.

• Evaluation of NFA
scep

. We presented the evaluation process of NFA
scep

, and
examined how each operator is handled according to its defined attributes.

• Evaluation Complexity of NFA
scep

. We provided the evaluation complexity of
NFA

scep

, and showed how di�erent operators can be costly due to their inherent

9. SPAseq: Semantic Complex Event Processing over RDF Graph Streams 156

nature.

• Optimisation Techniques for NFA
scep

. We provided multiple optimisation
techniques for the NFA

scep

evaluation. Some of these techniques are borrowed
and customised from the CEP literature, and others are provided considering the
streamset data model.

• Experimental Evaluation of SPAseq queries. We provided a detailed experi-
mental analysis of the SPAseq queries. It gives a clear view of the costs of various
temporal operators, and how the optimisation techniques a�ect the performance of
the system. Furthermore, we provided a comparative analysis between EP-SPARQL
and SPAseq queries.

The RDF graph model enables flexible representation of events to support the
integration of heterogenous streams and interpretation of knowledge in a coherent manner.
However, supporting SCEP over RDF graph streams first require an expressive query
language, and second a scalable and optimised implementation of its processing model.
In this chapter, we provided a complete framework for the SPAseq query language,
which adheres to the aforementioned attributes, and our experimental analysis showed
its practical importance.

Part IV

Conclusion and Future
Perspectives

157

10
Conclusion

10.1 RDF Graph Stream Processing
In order to add and process the temporal nature of RDF graphs, our approaches leverage
methods from graph summarisation, incremental query processing, vertical partitioning,
and incremental evaluation. The combination of these techniques have enabled us
to answer the following question.

How can we provide a performance intensive framework to process
RDF graph streams?

We first contributed with SPECTRA, a framework that incrementally evaluates RDF
graph streams, where each RDF graph event constitutes an RDF graph associated with
a timestamp. It consists of three operators, namely SummaryGraph, QueryProc

and IncrQueryProc. The SummaryGraph operator combines the structural and
selectivity information of the defined query graph and extracts the useful triples from
each RDF graph event. The QueyProc operator uses an incremental indexing technique,
where the set of vertically partitioned tables are joined and indices – using sibling lists –
are created during the join process. Thus, the creation of the indexing is part of the query
process. Moreover, as hash-joins between views discard most of unwanted triples, indexing
is performed on a smaller subsets of triples that can be the part of the final matched
results. The IncQueryProc operator employs the already matched results and joins
them with the newly arrived events. Therefore, the system takes the advantages of the
already computed matches. In addition, the incremental indexing also provided a scalable
way of removing the older triples from the defined window, i.e., without re-evaluating the
matches. The combination of these operators proved to be quite useful in our experimental
analysis. A series of experiments over real-world and synthetic datasets showed that our
system outperforms state-of-the-art approaches by an order of magnitude.

10.2 Semantic Complex Event Processing
To make sense of the atomic RDF graph events, we focused on two main aspects of the
SCEP: an expressive query language, and a scalable implementation of SCEP. We draw

158

10. Conclusion 159

out a set of expressive temporal operators for the existing CEP systems and integrated it
with the core SPARQL operators. This resulted in an expressive language for SCEP over
RDF graph streams. In addition, we provided a scalable implementation of our language
with an NFA

scep

model. This enabled us to answer the following question.

How can we provide an expressive SCEP query language, and how
can we accomplish its e�cient implementation?

We contributed with SPAseq, a query language for processing RDF graph events
with temporal operators. We provide the syntax and semantics of our language, and
demonstrate its usefulness with various use cases. The strength of SPAseq is that
it provides a clear separation between the operators for graph pattern matching over
RDF graphs (GPM expressions) and the temporal operators over RDF graph events
(sequence expression). This leads to a language that is easily extendable and independent
of the underlying executional framework. SPAseq works on a streamset data model, thus
multiple streams can be queried, and it o�ers multiple new operators that are not supported
by existing languages. That is, kleene-+, explicit negation, event selection strategies,
disjunction and conjunction over a set of events. Moreover, we provided a qualitative
analysis of SPAseq and other SCEP languages that clearly showed its superiority.

We also contributed to the implementation of SPAseq. We introduced an NFA
scep

model, where the SPAseq operators are mapped on to the set of states as state-transition
predicates. We showed how the GPM expressions are compiled using the standard
SPARQL operators, and how the sequence expression results into a set of state-transition
predicates. Based on this, we provided an e�cient evaluation of NFA

scep

with multiple
global and local-level optimisations. We used the lessons learned from SPECTRA, and
integrated it as a GPM evaluator with the SPAseq query engine. Our optimisation
techniques include: pushing the stateful joins, clustering of runs, and local optimisation
for the disjunction and conjunction operators. The combination of these optimisations
resulted in a scalable SCEP systems that can employ multiple heterogeneous RDF graph
streams with expressive temporal operators. Using multiple real-world and synthetic
datasets, we showed the usefulness of our optimisation techniques.

10.3 Impact
This work has a broad impact on a variety of applications: anomaly detection in dynamic
graphs, event processing in various types of networks including social network, sensor
network, transportation network, etc. Our research results have been published in a
number of top-tier international conferences, and one of our paper [GPL16a] received
an honourable mention award in ACM DEBS’16 conference.

11
Future Perspectives

The overarching theme of our research is developing scalable data structures and algorithms
to understand the flow of RDF graph streams, and to extract knowledge out of them. In
this work, we have taken several steps towards providing a scalable RDF stream processing
framework and semantically-enabled complex event processing. Next we outline some
of the research directions stemming from our work.

11.1 Top-k Operator over RDF Graph Streams

The top-k operator over streams monitors the incoming data items within a defined sliding
window w to identify k highest-ranked data items. These data items are ranked with
respect to a given scoring function. The main challenges faced by the top-k operator
include: (i) maintaining a candidate list of data items that can be the part of top-k list,
(ii) dealing with the non-appendable nature of real-world streams, where the arrival of
a new data items may change the state of existing ones in top-k or candidate list. Due
to the unbounded nature of the streams, all the data items cannot be stored in a sorted
order and it requires e�cient algorithms and data structures.

There has been no concrete work in the Semantic Web community that deals with top-k
operator over RDF streams, while the relational-based solutions only work on append-able
data streams. However, we claim that such an operator can easily be integrated over
SPECTRA. As a proof, we implemented a customised version of a top-k operator for DEBS
Grand Challenge 2015 [Gil+15]. Our solution employs a customised scoring function – as
described in the DEBS Grand Challenge1 – and uses the New York Taxi dataset (more
details are provided in [Gil+15]). Each incoming RDF graph event is processed using
the techniques described in SPECTRA, and a new tree-based data structure is employed
to record the candidate list of RDF graphs. We call such tree a Range Tree [Gil+15],
where the RDF graphs in candidate list are compressed using the range defined in each of
the tree nodes. This results in a scalable solution, where hundreds of thousands of RDF
graphs can be stored in a tree, with each node containing a handful of graphs with similar

1DEBS Grand Challenge 2015: http://www.debs2015.org/call-grand-challenge.html, last ac-
cessed: July, 2016.

160

http://www.debs2015.org/call-grand-challenge.html

11. Future Perspectives 161

scoring function. We claim that such solution can easily be generalised, where the user can
define the scoring function in a high-level query. Our future perspectives in this direction
are to define an adaptable range tree customised according to the user defined functions.

11.2 Multicore Mode for the RDF Graph Streams
Computer architectures are increasingly based on multicore CPU’s with large main-
memories. Hence, it would be beneficial for an RDF graph stream processing system to
e�ectively exploit the increasing amount of DRAM and multicore processor. One step in
this direction would be to build a customised and pluggable scheduling framework for
SPECTRA and SPAseq. Such framework would parallelise the execution of specific query
operators on specific application-provided threads or cores. Hence, taking the physical
plan, it would partition it into query fragments/operators. Given, n threads, each thread
picks up data batches to be evaluated on the selected operators, albeit the temporal
order needs to be considered in this setting. The design of SPAseq permits us to divide
the main query into a set of query fragments, where each priority queue holds a query
fragment. Next the scheduler thread picks up the fragment with the highest priority to
be executed. Such a framework on top of the SPECTRA would boost its performance,
and would enable it to fully utilise the available cores in modern CPUs.

11.3 Processing RDF Graph Streams in Distributed En-
vironments

The past decade has witnessed an increasing adoption of cloud technology, which
provides better scalability, availability, and fault-tolerance via transparent partitioning
and replication, and automatic load balancing. We believe that the fate of RDF graph
stream processing and SCEP lies in accessing the distributed resource, especially in the
so-called cloud. In this thesis, we provided an insight into the scalable in-memory solutions
of RDF graph streams, where events are partitioned into a set of vertically partitioned
tables, and the SCEP query language has a clear separation of constructs. These insights
can be harnessed to provide a scale-out solution for the problems discussed in this thesis.
As a preliminary work, recently we proposed a framework called DIONYSUS2 [GPL16b]:
it is motivated by the following goals (more details can be found in [GPL16b]).

• We are interested in an e�cient distribution of streaming data from a set of sources,
which are not known in advance. Thus, our storage and data distribution model
is envisioned by Common Basic Graph Pattern store (CBGP-store). Each CBGP-
store is assigned with a generic BGP (i.e., a set of triple patterns) generated
automatically/manually from the domain ontology and domain use cases. A
collection of such stores exposes (i) fresh incrementally computed results of a
set of CBGP for streaming queries, (ii) the set of previously computed results for
o�-line analytical queries. This enables the use of incremental indexing techniques
to e�ciently store data for each CBGP (see Figure 11.1).

• The second goal of our approach is to push the intensive query optimisation and
processing locally at each CBGP-store for Exact Query Graphs (EQGs) registered by
a user. An EQG is a more selective form of CBGP and it contains (i) subsets of triple

2
DistrIbuted aNalYtical, Streaming and Sequence qUerieS

11. Future Perspectives 162

patterns that are distributed among CBGP-stores, (ii) SPARQL query operators,
such as select, optional, union, filter, group by, etc. The results of each
EQGs are accumulated at the federated level.

• Our third goal is to enable di�erent kinds of queries – such as analytical, streaming,
sequence-based – through a single query interface. A query interface encompasses
subsets of CBGP-stores that can be abstracted as islands of CBGP-stores (see
Figure 11.1). This would enable to share query results computation and local
optimisation strategies. For example, users would like to get the result of (i) an
analytical query describing the number of active appliances and their power usage
in a house, and the result of (ii) a sequence-based query to determine the sequence
of power usage by various house appliances. This calls for a single query language,
where each query operator is optimised according to its defined characteristics.

• Our fourth aim would be to provide the semantic completeness and locations
transparency. That is, a new source can be added without a�ecting the integrity
constraints, and a user query can span multiple islands of CBGP-stores. This
would enable us to first, share the optimising strategies defined for each CBGP-store,
second reducing the network tra�c by employing local optimisation and computation
strategies.

CEP
Optimiser

Stream
Optimiser

Analytical
Optimiser

Query Conductors

Apps

Archipelago of CBGP-Stores

Alive Island CBGP-Stores Deceased island of CBGP-Stores

Exact Query Graphs (EQGs)

Bolts Bolts

Clients Visulisation

Static Island of CBGP-Stores

Data Stream Sources

Figure 11.1: Layered Architecture of DIONYSUS

In summary, our envisioned system can provide a way not to drown in the sea of
information emanating from heterogeneous distributed sources. It filters unnecessary
information, which otherwise can result in excessive use of storage and computational
resources. The framework is designed to minimise the burden of query evaluation at the
federation layer and to share local optimisation strategies across the islands of CBGP-
stores.

In conclusion, scalable and performance intensive RDF stream processing and
semantically-enabled complex event processing have numerous high-impact
applications, and fascinating research challenges.

Appendices

163

A
Dataset Queries

This appendix describes the set of queries that we have utilised for our empirical evaluations
in Chapter 7 and Chapter 9.

A.1 LUBM Queries

1 prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
2 prefix xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 prefix ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
4 prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5 SELECT ?y ?z ?x WHERE
6 {
7 ?z ub: subOrganizationOf ?y .
8 ?x ub: memberOf ?z .
9 ?x ub: undergraduateDegreeFrom ?y .

10 ?x rdf:type ub: GraduateStudent .
11 ?y rdf:type ub: University .
12 ?z rdf:type ub: Department .
13 }

Query A.1: LUBM-Q1

1 prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
2 prefix xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 prefix ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
4 prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5 SELECT ?y ?x WHERE
6 {
7 ?x rdf:type ub: Course .
8 ?x ub:name ?y .
9 }

Query A.2: LUBM-Q2

1 prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
2 prefix xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 prefix ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>

164

A. Dataset Queries 165

4 prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5 SELECT ?y ?x ?z WHERE
6 { ?x ub: memberOf ?z .
7 ?z ub: subOrganizationOf ?y .
8 ?x ub: undergraduateDegreeFrom ?y .
9 ?x rdf:type ub: UndergraduateStudent .

10 ?y rdf:type ub: University .
11 ?z rdf:type ub: Department .
12 }

Query A.3: LUBM-Q3

1 prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
2 prefix xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 prefix ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
4 prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5 SELECT ?x ?y1 WHERE
6 { ?x ub: worksFor ?k .
7 ?x ub:name ?y1 .
8 ?x ub: emailAddress ?y2 .
9 ?x ub: telephone ?y3 .

10 ?x rdf:type ub: FullProfessor .
11 Filter (?k = <http :// www. Department1 . University0 .edu >) }

Query A.4: LUBM-Q4

1 prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
2 prefix xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 prefix ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
4 prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5 SELECT ?x WHERE
6 { ?x ub: subOrganizationOf ?k .
7 ?x rdf:type ub: ResearchGroup .
8 Filter (?k = <http :// www. Department1 . University0 .edu >) }

Query A.5: LUBM-Q5

1 prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
2 prefix xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 prefix ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
4 prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5 SELECT ?x ?y WHERE
6 { ?x ub: worksFor ?y .
7 ?y ub: subOrganizationOf ?k.
8 ?y rdf:type ub: Department .
9 ?x rdf:type ub: FullProfessor .

10 Filter (?k = <http :// www. University0 .edu <) }

Query A.6: LUBM-Q6

1 prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
2 prefix xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 prefix ub: <http :// swat.cse. lehigh .edu/onto/univ -bench.owl#>
4 prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5 SELECT ?x ?y ?z WHERE
6 {
7 ?y ub: teacherOf ?z .
8 ?x ub: takesCourse ?z.
9 ?x ub: advisor ?y .

A. Dataset Queries 166

10 ?z rdf:type ub: Course .
11 ?x rdf:type ub: UndergraduateStudent .
12 ?y rdf:type ub: FullProfessor .
13 }

Query A.7: LUBM-Q7

A.2 SNB Queries

1 SELECT ?post ? creator ?loc
2 WHERE { ?post rdf:type snvoc:Post.
3 ?post snvoc:id ?id.
4 ?post snvoc: creationDate ?date.
5 ?post snvoc: hasCreator ? creator .
6 ?post snvoc: hasTag ?tag.
7 ?post snvoc: isLocatedIn ?loc.
8 }

Query A.8: SNB-Q1

1 SELECT ?forum ?meb ? interest WHERE
2 { ?forum snvoc:title ?title.
3 ?forum snvoc: hasMember ?meb.
4 ?meb snvoc: hasPerson ?p.
5 ?p snvoc: hasInterest ? interest .
6 }

Query A.9: SNB-Q2

1 SELECT ?post ? creator ?id WHERE
2 {
3 ?cmnt snvoc: hasCreator ? creator .
4 ? creator snvoc: speaks ?lang.
5 ?cmnt snvoc: isLocatedIn <http :// dbpedia .org/ resource

/Nicaragua >.
6 ?cmnt snvoc: replyOf ?post.
7 ?post snvoc: hasCreator ?id. }

Query A.10: SNB-Q3

A.3 LSBench Queries

1 SELECT ?post1 ?user ?post2
2 WHERE {
3 ?post1 snvoc: content ?cont.
4 ?post1 snvoc: hasCreator ?user.
5 ?post2 snvoc: content ?cont2.
6 ?post2 snvoc: hasCreator ?user.
7 }

Query A.11: LS-Q1

A. Dataset Queries 167

1 SELECT ?post ? person1 ? person2
2 WHERE {
3 ? person1 snvoc:likes ?p.
4 ?p snvoc: hasPost ?post.
5 ?p2 snvoc: hasPost ?post.
6 ? person2 snvoc:likes ?p2.
7 ? person1 snvoc:knows ?know.
8 ?know snvoc: hasPerson ? person2 .
9 }

Query A.12: LS-Q2

1 SELECT ?post1 ?user1 ?user2
2 WHERE {
3 ?post1 snvoc: hasCreator ?user.
4 ?post1 snvoc: content ?cont.
5 ?know snvoc: hasPerson ?user.
6 ?user2 snvoc:knows ?know.
7 ?user2 snvoc: hasInterest
8 <http :// dbpedia .org/ resource / Charles_Dickens >.
9 }

Query A.13: LS-Q3

A.4 SEAS Queries

1 prefix seas: <http :// purl.org/NET/seas#>
2 prefix m: <http :// purl.org/NET/seas/ measures #>
3 SELECT * WHERE
4 {
5 ?obs m:V_RMS ?rm.
6 ?obs m:V_THD ?thd.
7 ?obs m:V_CF ?cf.
8 ?obs m:W ?watt.
9 ?obs m:Wh ?watth.

10 ?obs m:DPF ?vah.
11 }

Query A.14: SEAS-Q1

1 prefix seas: <http :// purl.org/NET/seas#>
2 prefix m: <http :// purl.org/NET/seas/ measures #>
3 SELECT * WHERE
4 {
5 ?obs m:V_RMS ?rm.
6 ?obs m:V_THD ?thd.
7 ?obs m:V_CF ?cf.
8 ?obs m:W ?watt.
9 ?obs m:Wh ?watth.

10 ?obs m:DPF ?vah.
11 Filter (?watt > 10 && ?cf < 1.2) }

Query A.15: SEAS-Q2

A. Dataset Queries 168

A.5 V-Shaped Pattern Queries for SPAseq and EP-SPARQL

A.5.1 SPAseq Queries

1 prefix c: <http :// example / company #>
2 prefix pred: <http :// example />
3 SELECT ? company ?p1 ?p2 ?p3 ?v1 ?v2 ?v3
4 WITHIN 10 SECONDS
5 FROM STREAM S1 <http :// example .org/main >
6 WHERE
7 SEQ (A, B, C)
8 {
9 DEFINE GPM A ON S1

10

11 {
12 ? company pred:price ?p1.
13 ? company pred: volume ?vol1.
14 }
15 DEFINE GPM B ON S1
16 {
17 ? company pred:price ?p2.
18 ? company pred: volume ?vol2.
19 Filter (?p2 < ?p1)
20 }
21 DEFINE GPM C ON S1
22 {
23 ? company pred:price ?p3.
24 ? company pred: volume ?vol3.
25 Filter (?p3 > ?p2 && ?p3 > ?p1).
26 }
27 }

Query A.16: Vshape-Q1 with three GPM expressions

1 prefix c: <http :// example / company #>
2 prefix pred: <http :// example />
3 SELECT ? company ?p1 ?p2 ?p3 ?p4 ?p5 ?p6 ?v1 ?v2 ?v3 ?v4 ?v5 ?v6
4 WITHIN 10 SECONDS
5 FROM STREAM S1 <http :// example .org/main >
6 WHERE
7 SEQ (A, B, C, D, E, F)
8 {
9 DEFINE GPM A ON S1

10 {
11 ? company pred:price ?p1.
12 ? company pred: volume ?vol1.
13 }
14 DEFINE GPM B ON S1
15 {
16 ? company pred:price ?p2.
17 ? company pred: volume ?vol2.
18 Filter (?p2 < ?p1)
19 }
20 DEFINE GPM C ON S1
21 {
22 ? company pred:price ?p3.
23 ? company pred: volume ?vol3.
24 Filter (?p3 > ?p2 && ?p3 > ?p1).
25 }

A. Dataset Queries 169

26 DEFINE GPM D ON S1
27 {
28 ? company pred:price ?p4.
29 ? company pred: volume ?vol4.
30 Filter (?p4 < ?p3).
31 }
32 DEFINE GPM E ON S1
33 {
34 ? company pred:price ?p5.
35 ? company pred: volume ?vol5.
36 Filter (?p5 < ?p4).
37 }
38 DEFINE GPM F ON S1
39 {
40 ? company pred:price ?p6.
41 ? company pred: volume ?vol6.
42 Filter (?p6 > ?p5 && ?p6 > ?p4).
43 }
44 }

Query A.17: Vshape-Q1 with six GPM expressions

The SPAseq queries with 9 and 12 GPM expressions can easily be inferred from the
above mentioned queries.

A.5.2 EP-SPARQL V-Shaped Pattern

1 SELECT ? company ?p1 ?p2 ?p3 ?v1 ?v2 ?v3
2 WHERE
3 SEQ {? company price ?p1 EQUALS {? company volume ?v1 } }
4

5 SEQ {? company price ?p2 EQUALS {? company volume ?v2 } }
6

7 SEQ {? company price ?p3 EQUALS {? company volume ?v3 } }
8

9 Filter (?p2 < ?p1 && ?p3 > ?p2 && ?p3 > ?p1 && getDURATION () < "P10S "^^
xsd: duration)

Query A.18: EP-SPARQL Query with three Sequence expressions

1 SELECT ? company ?p1 ?p2 ?p3 ?p4 ?p5 ?p6 ?v1 ?v2 ?v3 ?v4 ?v5 ?v6
2 WHERE
3 SEQ {? company price ?p1 EQUALS {? company volume ?v1 } }
4

5 SEQ {? company price ?p2 EQUALS {? company volume ?v2 } }
6

7 SEQ {? company price ?p3 EQUALS {? company volume ?v3 } }
8

9 SEQ {? company price ?p4 EQUALS {? company volume ?v4 } }
10

11 SEQ {? company price ?p5 EQUALS {? company volume ?v5 } }
12

13 SEQ {? company price ?p6 EQUALS {? company volume ?v6 } }
14

15 Filter (?p2 < ?p1 && ?p3 > ?p2 && ?p3 > ?p1 && ?p4 < ?p3 && ?p5 < ?p4 &&
?p6 > ?p5 && ?p6 > ?p4 && getDURATION () < "P10S "^^ xsd: duration)

Query A.19: EP-SPARQL Query with three Sequence expressions

B
List of Related Publications

• Syed Gillani, Frédérique Laforest, and Gauthier Picard. “A Generic Ontology
for Prosumer-Oriented Smart Grid”. In: Proceedings of the Workshops of the
EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014), Athens, Greece, 2014.

• Syed Gillani, Frédérique Laforest, and Gauthier Picard. “Towards E�cient Semanti-
cally Enriched Complex Event Processing and Pattern Matching”. In: Proceedings
of the 3rd International Workshop on Ordering and Reasoning Co-located with the
13th International Semantic Web Conference (ISWC 2014), Italy, 2014.

• Syed Gillani, Gauthier Picard, and Frédérique Laforest. “IntelSCEP: Towards an
Intelligent Semantic Complex Event Processing Framework for Prosumer- Oriented
SmartGrid”. In: Proceedings of the 2014 International Workshop on Web Intelligence
and Smart Sensing. IWWISS ’14. Saint Etienne, France, 2014.

• Syed Gillani, Gauthier Picard, and Frédérique Laforest. “Continuous Graph Pattern
Matching over Knowledge Graph Streams”. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems. DEBS ’16.
Irvine, California USA, 2016.

• Syed Gillani, Gauthier Picard, and Frédérique Laforest. “SPECTRA: Continuous
Query Processing for RDF Graph Streams Over Sliding Windows”. In: Proceed-
ings of the 28th International Conference on Scientific and Statistical Database
Management. SSDBM ’16. Budapest, Hungary, 2016.

• Syed Gillani, Abderrahmen Kammoun, Julian Subercaze, Kamal Singh, Gauthier
Picard, and Frédérique Laforest . “Top-K Queries in RDF Graph-based Stream
Processing with Actors”. In: Proceedings of the 9th ACM International Conference
on Distributed Event-Based Systems. DEBS ’15. Oslo, Norway, 2015.

• Abderrahmen Kammoun, Syed Gillani, Julian Subercaze and Christophe Gravier.
“High Performance Top-k Processing of Non-linear Windows over Data Streams”.
In: Proceedings of the 10th ACM International Conference on Distributed and
Event-based Systems. DEBS ’16. Irvine, California USA, 2016.

170

B. List of Related Publications 171

• Syed Gillani, Gauthier Picard, and Frédérique Laforest. “DIONYSUS: Towards
Query-aware Distributed Processing of RDF Graph Streams.”. In: Proceedings of
the Workshops (GraphQ) of the EDBT/ICDT 2016 Joint Conference (EDBT/ICDT
2016), Bordeaux, France, 2016.

Bibliography

[Aba+03] Daniel J. Abadi et al. “Aurora: A New Model and Architecture for Data
Stream Management”. In: The VLDB Journal 12.2 (Aug. 2003), pp. 120–139.
issn: 1066-8888. doi: 10.1007/s00778-003-0095-z. url: http://dx.doi.
org/10.1007/s00778-003-0095-z.

[Aba+07] Daniel J. Abadi et al. “Scalable Semantic Web Data Management Using
Vertical Partitioning”. In: Proceedings of the 33rd International Conference
on Very Large Data Bases. VLDB ’07. Vienna, Austria: VLDB Endowment,
2007, pp. 411–422. isbn: 978-1-59593-649-3. url: http://dl.acm.org/
citation.cfm?id=1325851.1325900.

[Aba+09a] Daniel J. Abadi et al. “SW-Store: A Vertically Partitioned DBMS for
Semantic Web Data Management”. In: The VLDB Journal 18.2 (Apr. 2009),
pp. 385–406. issn: 1066-8888. doi: 10.1007/s00778-008-0125-y. url:
http://dx.doi.org/10.1007/s00778-008-0125-y.

[Aba+09b] Daniel J. Abadi et al. “SW-Store: A Vertically Partitioned DBMS for
Semantic Web Data Management”. In: The VLDB Journal 18.2 (Apr. 2009),
pp. 385–406. issn: 1066-8888. doi: 10.1007/s00778-008-0125-y. url:
http://dx.doi.org/10.1007/s00778-008-0125-y.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. “The CQL Continuous
Query Language: Semantic Foundations and Query Execution”. In: The
VLDB Journal 15.2 (June 2006), pp. 121–142. issn: 1066-8888. doi: 10.
1007/s00778-004-0147-z. url: http://dx.doi.org/10.1007/s00778-
004-0147-z.

[AC06] Raman Adaikkalavan and Sharma Chakravarthy. “SnoopIB: Interval-based
Event Specification and Detection for Active Databases”. In: Data Knowl.
Eng. 59.1 (Oct. 2006), pp. 139–165. issn: 0169-023X. doi: 10.1016/j.datak.
2005.07.009. url: http://dx.doi.org/10.1016/j.datak.2005.07.009.

[AC10] Medha Atre and Chaoji. “Matrix "Bit" Loaded: A Scalable Lightweight
Join Query Processor for RDF Data”. In: WWW. 2010, pp. 41–50. doi:
10.1145/1772690.1772696.

[AF11] Mario Arias and Javier D. Fernández. “An Empirical Study of Real-World
SPARQL Queries”. In: CoRR abs/1103.5043 (2011). url: http://arxiv.
org/abs/1103.5043.

[Agr+08] Jagrati Agrawal et al. “E�cient Pattern Matching over Event Streams”.
In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’08. Vancouver, Canada: ACM, 2008, pp. 147–
160. isbn: 978-1-60558-102-6. doi: 10.1145/1376616.1376634. url: http:
//doi.acm.org/10.1145/1376616.1376634.

172

http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/s00778-003-0095-z
http://dl.acm.org/citation.cfm?id=1325851.1325900
http://dl.acm.org/citation.cfm?id=1325851.1325900
http://dx.doi.org/10.1007/s00778-008-0125-y
http://dx.doi.org/10.1007/s00778-008-0125-y
http://dx.doi.org/10.1007/s00778-008-0125-y
http://dx.doi.org/10.1007/s00778-008-0125-y
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1016/j.datak.2005.07.009
http://dx.doi.org/10.1016/j.datak.2005.07.009
http://dx.doi.org/10.1016/j.datak.2005.07.009
http://dx.doi.org/10.1145/1772690.1772696
http://arxiv.org/abs/1103.5043
http://arxiv.org/abs/1103.5043
http://dx.doi.org/10.1145/1376616.1376634
http://doi.acm.org/10.1145/1376616.1376634
http://doi.acm.org/10.1145/1376616.1376634

BIBLIOGRAPHY 173

[AH00] Ron Avnur and Joseph M. Hellerstein. “Eddies: Continuously Adaptive
Query Processing”. In: SIGMOD Rec. 29.2 (May 2000), pp. 261–272. issn:
0163-5808. doi: 10.1145/335191.335420. url: http://doi.acm.org/10.
1145/335191.335420.

[Ani+10] Darko Anicic et al. “Web Reasoning and Rule Systems: Fourth International
Conference, RR 2010, Bressanone/Brixen, Italy, September 22-24, 2010.
Proceedings”. In: ed. by Pascal Hitzler and Thomas Lukasiewicz. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010. Chap. A Rule-Based Language
for Complex Event Processing and Reasoning, pp. 42–57. isbn: 978-3-642-
15918-3. doi: 10.1007/978-3-642-15918-3_5. url: http://dx.doi.org/
10.1007/978-3-642-15918-3_5.

[Ani+11] Darko Anicic et al. “EP-SPARQL: A Unified Language for Event Processing
and Stream Reasoning”. In: Proceedings of the 20th International Conference
on World Wide Web. WWW ’11. Hyderabad, India: ACM, 2011, pp. 635–644.
isbn: 978-1-4503-0632-4. doi: 10 . 1145 / 1963405 . 1963495. url: http :
//doi.acm.org/10.1145/1963405.1963495.

[Ani+12] Darko Anicic et al. “Stream Reasoning and Complex Event Processing in
ETALIS”. In: Semant. web 3.4 (Oct. 2012), pp. 397–407. issn: 1570-0844.
url: http://dl.acm.org/citation.cfm?id=2590208.2590214.

[Ara+04] A. Arasu et al. STREAM: The Stanford Data Stream Management System.
Technical Report 2004-20. Stanford InfoLab, 2004. url: http://ilpubs.
stanford.edu:8090/641/.

[Atr+10] Medha Atre et al. “Matrix "Bit" Loaded: A Scalable Lightweight Join
Query Processor for RDF Data”. In: Proceedings of the 19th International
Conference on World Wide Web. WWW ’10. Raleigh, North Carolina, USA:
ACM, 2010, pp. 41–50. isbn: 978-1-60558-799-8. doi: 10.1145/1772690.
1772696. url: http://doi.acm.org/10.1145/1772690.1772696.

[Bab+02] Brian Babcock et al. “Models and Issues in Data Stream Systems”. In: Pro-
ceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems. PODS ’02. Madison, Wisconsin: ACM,
2002, pp. 1–16. isbn: 1-58113-507-6. doi: 10.1145/543613.543615. url:
http://doi.acm.org/10.1145/543613.543615.

[Bab+05] Shivnath Babu et al. “Adaptive caching for continuous queries”. In: 21st
International Conference on Data Engineering (ICDE’05). 2005, pp. 118–129.
doi: 10.1109/ICDE.2005.15.

[Bar+10a] Davide Francesco Barbieri et al. “An Execution Environment for C-SPARQL
Queries”. In: Proceedings of the 13th International Conference on Extending
Database Technology. EDBT ’10. Lausanne, Switzerland: ACM, 2010, pp. 441–
452. isbn: 978-1-60558-945-9. doi: 10.1145/1739041.1739095. url: http:
//doi.acm.org/10.1145/1739041.1739095.

[Bar+10b] Davide Francesco Barbieri et al. “Querying RDF Streams with C-SPARQL”.
In: SIGMOD Rec. 39.1 (Sept. 2010), pp. 20–26. issn: 0163-5808. doi: 10.
1145/1860702.1860705. url: http://doi.acm.org/10.1145/1860702.
1860705.

[Baz+15] Hamid R. Bazoobandi et al. “A Compact In-Memory Dictionary for RDF
Data”. In: ESWC. 2015, pp. 205–220.

http://dx.doi.org/10.1145/335191.335420
http://doi.acm.org/10.1145/335191.335420
http://doi.acm.org/10.1145/335191.335420
http://dx.doi.org/10.1007/978-3-642-15918-3_5
http://dx.doi.org/10.1007/978-3-642-15918-3_5
http://dx.doi.org/10.1007/978-3-642-15918-3_5
http://dx.doi.org/10.1145/1963405.1963495
http://doi.acm.org/10.1145/1963405.1963495
http://doi.acm.org/10.1145/1963405.1963495
http://dl.acm.org/citation.cfm?id=2590208.2590214
http://ilpubs.stanford.edu:8090/641/
http://ilpubs.stanford.edu:8090/641/
http://dx.doi.org/10.1145/1772690.1772696
http://dx.doi.org/10.1145/1772690.1772696
http://doi.acm.org/10.1145/1772690.1772696
http://dx.doi.org/10.1145/543613.543615
http://doi.acm.org/10.1145/543613.543615
http://dx.doi.org/10.1109/ICDE.2005.15
http://dx.doi.org/10.1145/1739041.1739095
http://doi.acm.org/10.1145/1739041.1739095
http://doi.acm.org/10.1145/1739041.1739095
http://dx.doi.org/10.1145/1860702.1860705
http://dx.doi.org/10.1145/1860702.1860705
http://doi.acm.org/10.1145/1860702.1860705
http://doi.acm.org/10.1145/1860702.1860705

BIBLIOGRAPHY 174

[BC08] Michela Becchi and Patrick Crowley. “E�cient Regular Expression Evalua-
tion: Theory to Practice”. In: Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. ANCS ’08.
San Jose, California: ACM, 2008, pp. 50–59. isbn: 978-1-60558-346-4. doi:
10.1145/1477942.1477950. url: http://doi.acm.org/10.1145/1477942.
1477950.

[BCM06] Roger S. Barga and Hillary Caituiro-Monge. “Event Correlation and Pattern
Detection in CEDR.” In: EDBT Workshops. Ed. by Torsten Grust et al.
Vol. 4254. Lecture Notes in Computer Science. Springer, Nov. 13, 2006,
pp. 919–930. isbn: 3-540-46788-2. url: http://dblp.uni-trier.de/db/
conf/edbtw/edbtw2006.html#BargaC06.

[BDM07] Brian Babcock, Mayur Datar, and Rajeev Motwani. “Data Streams: Models
and Algorithms”. In: ed. by Charu C. Aggarwal. Boston, MA: Springer
US, 2007. Chap. Load Shedding in Data Stream Systems, pp. 127–147.
isbn: 978-0-387-47534-9. doi: 10.1007/978- 0- 387- 47534- 9_7. url:
http://dx.doi.org/10.1007/978-0-387-47534-9_7.

[BE07] François Bry and Michael Eckert. “Rule-Based Composite Event Queries:
The Language XChangeEQ and its Semantics”. In: Proceedings of First
International Conference on Web Reasoning and Rule Systems, Innsbruck,
Austria (7th–8th June 2007). Vol. 4524. LNCS. 2007. url: http://www.pms.
ifi.lmu.de/publikationen/#PMS-FB-2007-4.

[BGJ08] Andre Bolles, Marco Grawunder, and Jonas Jacobi. “Streaming SPARQL
- Extending SPARQL to Process Data Streams”. In: The Semantic Web:
Research and Applications: 5th European Semantic Web Conference, ESWC
2008, Tenerife, Canary Islands, Spain, June 1-5, 2008 Proceedings. Ed. by
Sean Bechhofer et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 448–462. isbn: 978-3-540-68234-9. doi: 10.1007/978-3-540-68234-
9_34. url: http://dx.doi.org/10.1007/978-3-540-68234-9_34.

[Bie+14] Meghyn Bienvenu et al. “Ontology-Based Data Access: A Study Through
Disjunctive Datalog, CSP, and MMSNP”. In: ACM Trans. Database Syst.
39.4 (Dec. 2014), 33:1–33:44. issn: 0362-5915. doi: 10.1145/2661643. url:
http://doi.acm.org/10.1145/2661643.

[Biz+09] Christian Bizer et al. “DBpedia - A Crystallization Point for the Web of
Data”. In: Web Semant. 7.3 (Sept. 2009), pp. 154–165. issn: 1570-8268. doi:
10.1016/j.websem.2009.07.002. url: http://dx.doi.org/10.1016/j.
websem.2009.07.002.

[BKH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. “Sesame: A
Generic Architecture for Storing and Querying RDF and RDF Schema”.
In: Proceedings of the First International Semantic Web Conference on The
Semantic Web. ISWC ’02. London, UK, UK: Springer-Verlag, 2002, pp. 54–68.
isbn: 3-540-43760-6. url: http://dl.acm.org/citation.cfm?id=646996.
711426.

[BL06] T Berners-Lee. “Linked Data. W3C Design Issues,” in: Technical report W3C.
2006. url: https://www.w3.org/DesignIssues/LinkedData.html.

http://dx.doi.org/10.1145/1477942.1477950
http://doi.acm.org/10.1145/1477942.1477950
http://doi.acm.org/10.1145/1477942.1477950
http://dblp.uni-trier.de/db/conf/edbtw/edbtw2006.html#BargaC06
http://dblp.uni-trier.de/db/conf/edbtw/edbtw2006.html#BargaC06
http://dx.doi.org/10.1007/978-0-387-47534-9_7
http://dx.doi.org/10.1007/978-0-387-47534-9_7
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2007-4
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2007-4
http://dx.doi.org/10.1007/978-3-540-68234-9_34
http://dx.doi.org/10.1007/978-3-540-68234-9_34
http://dx.doi.org/10.1007/978-3-540-68234-9_34
http://dx.doi.org/10.1145/2661643
http://doi.acm.org/10.1145/2661643
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dl.acm.org/citation.cfm?id=646996.711426
http://dl.acm.org/citation.cfm?id=646996.711426
https://www.w3.org/DesignIssues/LinkedData.html

BIBLIOGRAPHY 175

[BL80] T Berners-Lee. “The ENQUIRE System – Short Description (1.1).” In:
Technical report, European Organisation for Nuclear Research, 1980. 1980.
url: http://www.w3.org/History/1980/Enquire/manual/.

[BL93] T Berners-Lee. “A Brief History of the Web. W3C Design Issues, 1993”. In:
Online Article. 1993. url: http://www.w3.org/DesignIssues/TimBook-
old/History.html.

[BL98] T Berners-Lee. “Semantic Web Road map. 1998”. In: Online Article. 1998.
url: http://www.w3.org/DesignIssues/TimBook-old/History.html.

[Bot+10] I. Botan et al. “SECRET: A Model for Analysis of the Execution Semantics
of Stream Processing Systems”. In: International Conference on Very Large
Data Bases (VLDB’10). Singapore, 2010.

[Bra+16] Vladimir Braverman et al. “Clustering Problems on Sliding Windows”.
In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’16. Arlington, Virginia: Society for Industrial
and Applied Mathematics, 2016, pp. 1374–1390. isbn: 978-1-611974-33-1.
url: http://dl.acm.org/citation.cfm?id=2884435.2884530.

[Bre+07] Lars Brenna et al. “Cayuga: A High-performance Event Processing Engine”.
In: Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’07. Beijing, China: ACM, 2007, pp. 1100–
1102. isbn: 978-1-59593-686-8. doi: 10.1145/1247480.1247620. url: http:
//doi.acm.org/10.1145/1247480.1247620.

[Bre+09] Lars Brenna et al. “Distributed Event Stream Processing with Non-deterministic
Finite Automata”. In: Proceedings of the Third ACM International Confer-
ence on Distributed Event-Based Systems. DEBS ’09. Nashville, Tennessee:
ACM, 2009, 3:1–3:12. isbn: 978-1-60558-665-6. doi: 10.1145/1619258.
1619263. url: http://doi.acm.org/10.1145/1619258.1619263.

[Bry+07] François Bry et al. “Evolution of Distributed Web Data: An Application of
the Reactive Language XChange”. In: Proceedings of IEEE 23rd International
Conference on Data Engeneering, Istanbul, Turkey (15th–20th April 2007).
2007. url: http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2007-
3.

[BSS96] Michael H. Böhlen, Richard Thomas Snodgrass, and Michael D. Soo. “Coa-
lescing in Temporal Databases”. In: Proceedings of the 22th International
Conference on Very Large Data Bases. VLDB ’96. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1996, pp. 180–191. isbn: 1-55860-382-4.
url: http://dl.acm.org/citation.cfm?id=645922.673474.

[BV10] Thomas BERNHARDT and Alexandre VASSEUR. “ESPER-complex event
processing,” in: Online Article. 2010. url: http://www.espertech.com/
products/esper.php.

[Cal+07] Diego Calvanese et al. “Tractable Reasoning and E�cient Query Answering
in Description Logics: The DL-Lite Family”. In: J. Autom. Reason. 39.3 (Oct.
2007), pp. 385–429. issn: 0168-7433. doi: 10.1007/s10817-007-9078-x.
url: http://dx.doi.org/10.1007/s10817-007-9078-x.

http://www.w3.org/History/1980/Enquire/manual/
http://www.w3.org/DesignIssues/TimBook-old/History.html
http://www.w3.org/DesignIssues/TimBook-old/History.html
http://www.w3.org/DesignIssues/TimBook-old/History.html
http://dl.acm.org/citation.cfm?id=2884435.2884530
http://dx.doi.org/10.1145/1247480.1247620
http://doi.acm.org/10.1145/1247480.1247620
http://doi.acm.org/10.1145/1247480.1247620
http://dx.doi.org/10.1145/1619258.1619263
http://dx.doi.org/10.1145/1619258.1619263
http://doi.acm.org/10.1145/1619258.1619263
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2007-3
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2007-3
http://dl.acm.org/citation.cfm?id=645922.673474
http://www.espertech.com/products/esper.php
http://www.espertech.com/products/esper.php
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1007/s10817-007-9078-x

BIBLIOGRAPHY 176

[Car+04] Jeremy J. Carroll et al. “Jena: Implementing the Semantic Web Recommenda-
tions”. In: Proceedings of the 13th International World Wide Web Conference
on Alternate Track Papers &Amp; Posters. WWW Alt. ’04. New York, NY,
USA: ACM, 2004, pp. 74–83. isbn: 1-58113-912-8. doi: 10.1145/1013367.
1013381. url: http://doi.acm.org/10.1145/1013367.1013381.

[CCG10] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair J. G. Gray. “Enabling
Ontology-based Access to Streaming Data Sources”. In: Proceedings of the
9th International Semantic Web Conference on The Semantic Web - Volume
Part I. ISWC’10. Shanghai, China: Springer-Verlag, 2010, pp. 96–111. isbn:
3-642-17745-X, 978-3-642-17745-3. url: http://dl.acm.org/citation.
cfm?id=1940281.1940289.

[CFT08] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL Protocol
for RDF. World Wide Web Consortium, Recommendation. 2008.

[Cha+03] Sirish Chandrasekaran et al. “TelegraphCQ: Continuous Dataflow Process-
ing”. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’03. San Diego, California: ACM, 2003,
pp. 668–668. isbn: 1-58113-634-X. doi: 10.1145/872757.872857. url:
http://doi.acm.org/10.1145/872757.872857.

[Cha+94] Sharma Chakravarthy et al. “Composite Events for Active Databases: Se-
mantics, Contexts and Detection”. In: Proceedings of the 20th International
Conference on Very Large Data Bases. VLDB ’94. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1994, pp. 606–617. isbn: 1-55860-153-8.
url: http://dl.acm.org/citation.cfm?id=645920.672994.

[Cha+95] Sharma Chakravarthy et al. “ECA Rule Integration into an OODBMS:
Architecture and Implementation”. In: Proceedings of the Eleventh Interna-
tional Conference on Data Engineering. ICDE ’95. Washington, DC, USA:
IEEE Computer Society, 1995, pp. 341–348. isbn: 0-8186-6910-1. url: http:
//dl.acm.org/citation.cfm?id=645480.655427.

[Cha97] S. Chakravarthy. “Sentinel: An Object-oriented DBMS with Event-based
Rules”. In: Proceedings of the 1997 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’97. Tucson, Arizona, USA: ACM, 1997,
pp. 572–575. isbn: 0-89791-911-4. doi: 10 . 1145 / 253260 . 253409. url:
http://doi.acm.org/10.1145/253260.253409.

[CL04] Jan Carlson and Björn Lisper. “An Event Detection Algebra for Reactive
Systems”. In: Proceedings of the 4th ACM International Conference on
Embedded Software. EMSOFT ’04. Pisa, Italy: ACM, 2004, pp. 147–154.
isbn: 1-58113-860-1. doi: 10.1145/1017753.1017779. url: http://doi.
acm.org/10.1145/1017753.1017779.

[CM12] Gianpaolo Cugola and Alessandro Margara. “Processing Flows of Information:
From Data Stream to Complex Event Processing”. In: ACM Comput. Surv.
44.3 (June 2012), 15:1–15:62. issn: 0360-0300. doi: 10 . 1145 / 2187671 .
2187677. url: http://doi.acm.org/10.1145/2187671.2187677.

http://dx.doi.org/10.1145/1013367.1013381
http://dx.doi.org/10.1145/1013367.1013381
http://doi.acm.org/10.1145/1013367.1013381
http://dl.acm.org/citation.cfm?id=1940281.1940289
http://dl.acm.org/citation.cfm?id=1940281.1940289
http://dx.doi.org/10.1145/872757.872857
http://doi.acm.org/10.1145/872757.872857
http://dl.acm.org/citation.cfm?id=645920.672994
http://dl.acm.org/citation.cfm?id=645480.655427
http://dl.acm.org/citation.cfm?id=645480.655427
http://dx.doi.org/10.1145/253260.253409
http://doi.acm.org/10.1145/253260.253409
http://dx.doi.org/10.1145/1017753.1017779
http://doi.acm.org/10.1145/1017753.1017779
http://doi.acm.org/10.1145/1017753.1017779
http://dx.doi.org/10.1145/2187671.2187677
http://dx.doi.org/10.1145/2187671.2187677
http://doi.acm.org/10.1145/2187671.2187677

BIBLIOGRAPHY 177

[CMC16] Jean-Paul Calbimonte, José Mora, and Óscar Corcho. “Query Rewriting
in RDF Stream Processing”. In: The Semantic Web. Latest Advances and
New Domains - 13th International Conference, ESWC 2016, Heraklion,
Crete, Greece, May 29 - June 2, 2016, Proceedings. 2016, pp. 486–502. doi:
10.1007/978-3-319-34129-3_30. url: http://dx.doi.org/10.1007/
978-3-319-34129-3_30.

[CN07] Surajit Chaudhuri and Vivek Narasayya. “Self-tuning Database Systems: A
Decade of Progress”. In: Proceedings of the 33rd International Conference on
Very Large Data Bases. VLDB ’07. Vienna, Austria: VLDB Endowment, 2007,
pp. 3–14. isbn: 978-1-59593-649-3. url: http://dl.acm.org/citation.
cfm?id=1325851.1325856.

[Cor11] Graham Cormode. “Sketch techniques for approximate query processing”. In:
Synposes for Approximate Query Processing: Samples, Histograms, Wavelets
and Sketches, Foundations and Trends in Databases. 2011.

[Cra+02] Chuck Cranor et al. “Gigascope: High Performance Network Monitoring with
an SQL Interface”. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’02. Madison, Wisconsin:
ACM, 2002, pp. 623–623. isbn: 1-58113-497-5. doi: 10.1145/564691.564777.
url: http://doi.acm.org/10.1145/564691.564777.

[Cra+03] Chuck Cranor et al. “Gigascope: A Stream Database for Network Applica-
tions”. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’03. San Diego, California: ACM, 2003,
pp. 647–651. isbn: 1-58113-634-X. doi: 10.1145/872757.872838. url:
http://doi.acm.org/10.1145/872757.872838.

[CWL14] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts
and Abstract Syntax. Tech. rep. W3C, Jan. 2014.

[Das+07] Gautam Das et al. “Ad-hoc Top-k Query Answering for Data Streams”. In:
Proceedings of the 33rd International Conference on Very Large Data Bases.
VLDB ’07. Vienna, Austria: VLDB Endowment, 2007, pp. 183–194. isbn:
978-1-59593-649-3. url: http://dl.acm.org/citation.cfm?id=1325851.
1325875.

[Del+14] Daniele Dell’Aglio et al. “RSP-QL Semantics: A Unifying Query Model
to Explain Heterogeneity of RDF Stream Processing Systems”. In: Int. J.
Semant. Web Inf. Syst. 10.4 (Oct. 2014), pp. 17–44. issn: 1552-6283. doi:
10 . 4018 / ijswis . 2014100102. url: http : / / dx . doi . org / 10 . 4018 /
ijswis.2014100102.

[DFT11] Nihal Dindar, Peter M. Fischer, and Nesime Tatbul. “DejaVu: A Complex
Event Processing System for Pattern Matching over Live and Historical
Data Streams”. In: Proceedings of the 5th ACM International Conference on
Distributed Event-based System. DEBS ’11. New York, New York, USA: ACM,
2011, pp. 399–400. isbn: 978-1-4503-0423-8. doi: 10.1145/2002259.2002330.
url: http://doi.acm.org/10.1145/2002259.2002330.

http://dx.doi.org/10.1007/978-3-319-34129-3_30
http://dx.doi.org/10.1007/978-3-319-34129-3_30
http://dx.doi.org/10.1007/978-3-319-34129-3_30
http://dl.acm.org/citation.cfm?id=1325851.1325856
http://dl.acm.org/citation.cfm?id=1325851.1325856
http://dx.doi.org/10.1145/564691.564777
http://doi.acm.org/10.1145/564691.564777
http://dx.doi.org/10.1145/872757.872838
http://doi.acm.org/10.1145/872757.872838
http://dl.acm.org/citation.cfm?id=1325851.1325875
http://dl.acm.org/citation.cfm?id=1325851.1325875
http://dx.doi.org/10.4018/ijswis.2014100102
http://dx.doi.org/10.4018/ijswis.2014100102
http://dx.doi.org/10.4018/ijswis.2014100102
http://dx.doi.org/10.1145/2002259.2002330
http://doi.acm.org/10.1145/2002259.2002330

BIBLIOGRAPHY 178

[DGR03] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. “Approximate
Join Processing over Data Streams”. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’03.
San Diego, California: ACM, 2003, pp. 40–51. isbn: 1-58113-634-X. doi:
10.1145/872757.872765. url: http://doi.acm.org/10.1145/872757.
872765.

[Dro] Drool Fusion. http://www.drools.org/. Accessed: 2016-06-03.
[Dug+15] Jennie Duggan et al. “The BigDAWG Polystore System”. In: SIGMOD

Rec. 44.2 (Aug. 2015), pp. 11–16. issn: 0163-5808. doi: 10.1145/2814710.
2814713. url: http://doi.acm.org/10.1145/2814710.2814713.

[DV+09] Emanuele Della Valle et al. “A First Step Towards Stream Reasoning”. In:
Future Internet – FIS 2008: First Future Internet Symposium, FIS 2008
Vienna, Austria, September 29-30, 2008 Revised Selected Papers. Ed. by
John Domingue, Dieter Fensel, and Paolo Traverso. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 72–81. isbn: 978-3-642-00985-3. doi:
10.1007/978-3-642-00985-3_6. url: http://dx.doi.org/10.1007/978-
3-642-00985-3_6.

[Eck+11] Michael Eckert et al. “Reasoning in Event-Based Distributed Systems”. In: ed.
by Sven Helmer, Alexandra Poulovassilis, and Fatos Xhafa. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011. Chap. A CEP Babelfish: Languages for
Complex Event Processing and Querying Surveyed, pp. 47–70. isbn: 978-3-
642-19724-6. doi: 10.1007/978-3-642-19724-6_3. url: http://dx.doi.
org/10.1007/978-3-642-19724-6_3.

[Erl+15] Orri Erling et al. “The LDBC Social Network Benchmark: Interactive Work-
load”. In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’15. Melbourne, Victoria, Australia: ACM,
2015, pp. 619–630. isbn: 978-1-4503-2758-9. doi: 10.1145/2723372.2742786.
url: http://doi.acm.org/10.1145/2723372.2742786.

[Eug+03] Patrick Th. Eugster et al. “The Many Faces of Publish/Subscribe”. In: ACM
Comput. Surv. 35.2 (June 2003), pp. 114–131. issn: 0360-0300. doi: 10.1145/
857076.857078. url: http://doi.acm.org/10.1145/857076.857078.

[FAR11] Paul Fodor, Darko Anicic, and Sebastian Rudolph. “Results on Out-of-
Order Event Processing”. In: Practical Aspects of Declarative Languages:
13th International Symposium, PADL 2011, Austin, TX, USA, January
24-25, 2011. Proceedings. Ed. by Ricardo Rocha and John Launchbury.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 220–234. isbn:
978-3-642-18378-2. doi: 10.1007/978-3-642-18378-2_18. url: http:
//dx.doi.org/10.1007/978-3-642-18378-2_18.

[For90] Charles L. Forgy. “Expert Systems”. In: ed. by Peter G. Raeth. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1990. Chap. Rete: A Fast Algorithm
for the Many Pattern/Many Object Pattern Match Problem, pp. 324–341.
isbn: 0-8186-8904-8. url: http://dl.acm.org/citation.cfm?id=115710.
115736.

http://dx.doi.org/10.1145/872757.872765
http://doi.acm.org/10.1145/872757.872765
http://doi.acm.org/10.1145/872757.872765
http://www.drools.org/
http://dx.doi.org/10.1145/2814710.2814713
http://dx.doi.org/10.1145/2814710.2814713
http://doi.acm.org/10.1145/2814710.2814713
http://dx.doi.org/10.1007/978-3-642-00985-3_6
http://dx.doi.org/10.1007/978-3-642-00985-3_6
http://dx.doi.org/10.1007/978-3-642-00985-3_6
http://dx.doi.org/10.1007/978-3-642-19724-6_3
http://dx.doi.org/10.1007/978-3-642-19724-6_3
http://dx.doi.org/10.1007/978-3-642-19724-6_3
http://dx.doi.org/10.1145/2723372.2742786
http://doi.acm.org/10.1145/2723372.2742786
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078
http://dx.doi.org/10.1007/978-3-642-18378-2_18
http://dx.doi.org/10.1007/978-3-642-18378-2_18
http://dx.doi.org/10.1007/978-3-642-18378-2_18
http://dl.acm.org/citation.cfm?id=115710.115736
http://dl.acm.org/citation.cfm?id=115710.115736

BIBLIOGRAPHY 179

[Fra+09] Michael J. Franklin et al. “Continuous Analytics: Rethinking Query Process-
ing in a Network-E�ect World”. In: CIDR 2009, Fourth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7,
2009, Online Proceedings. 2009. url: http://www-db.cs.wisc.edu/cidr/
cidr2009/Paper_122.pdf.

[Gal+09] Ixent Galpin et al. “Comprehensive Optimization of Declarative Sensor
Network Queries”. In: Proceedings of the 21st International Conference on
Scientific and Statistical Database Management. SSDBM 2009. New Orleans,
LA, USA: Springer-Verlag, 2009, pp. 339–360. isbn: 978-3-642-02278-4. doi:
10.1007/978-3-642-02279-1_26. url: http://dx.doi.org/10.1007/
978-3-642-02279-1_26.

[GD94] S. Gatziu and K. R. Dittrich. “Detecting composite events in active database
systems using Petri nets”. In: Research Issues in Data Engineering, 1994.
Active Database Systems. Proceedings Fourth International Workshop on.
1994, pp. 2–9. doi: 10.1109/RIDE.1994.282859.

[Ge+15] Chang Ge et al. “Indexing Bi-temporal Windows”. In: Proceedings of the 27th
International Conference on Scientific and Statistical Database Management.
SSDBM ’15. La Jolla, California: ACM, 2015, 19:1–19:12. isbn: 978-1-4503-
3709-0. doi: 10.1145/2791347.2791373. url: http://doi.acm.org/10.
1145/2791347.2791373.

[GFV96] Stella Gatziu, Hans Fritschi, and Anca Vaduva. SAMOS an Active Object-
Oriented Database System: Manual. Tech. rep. 1996.

[GGÖ04] Lukasz Golab, Shaveen Garg, and M. Tamer Özsu. “On Indexing Sliding
Windows over Online Data Streams”. In: Advances in Database Technology -
EDBT 2004: 9th International Conference on Extending Database Technology,
Heraklion, Crete, Greece, March 14-18, 2004. Ed. by Elisa Bertino et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 712–729. isbn:
978-3-540-24741-8. doi: 10.1007/978-3-540-24741-8_41. url: http:
//dx.doi.org/10.1007/978-3-540-24741-8_41.

[Gha+08] Thanaa M. Ghanem et al. “Supporting Views in Data Stream Management
Systems”. In: ACM Trans. Database Syst. 35.1 (Feb. 2008), 1:1–1:47. issn:
0362-5915. doi: 10.1145/1670243.1670244. url: http://doi.acm.org/
10.1145/1670243.1670244.

[GHV05] Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. “Temporal
RDF”. In: The Semantic Web: Research and Applications: Second European
Semantic Web Conference, ESWC 2005, Heraklion, Crete, Greece, May
29–June 1, 2005. Proceedings. Ed. by Asunción Gómez-Pérez and Jérôme
Euzenat. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 93–107.
isbn: 978-3-540-31547-6. doi: 10.1007/11431053_7. url: http://dx.doi.
org/10.1007/11431053_7.

[Gil+01] Anna C. Gilbert et al. “Surfing Wavelets on Streams: One-Pass Summaries for
Approximate Aggregate Queries”. In: Proceedings of the 27th International
Conference on Very Large Data Bases. VLDB ’01. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001, pp. 79–88. isbn: 1-55860-804-4.
url: http://dl.acm.org/citation.cfm?id=645927.672174.

http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_122.pdf
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_122.pdf
http://dx.doi.org/10.1007/978-3-642-02279-1_26
http://dx.doi.org/10.1007/978-3-642-02279-1_26
http://dx.doi.org/10.1007/978-3-642-02279-1_26
http://dx.doi.org/10.1109/RIDE.1994.282859
http://dx.doi.org/10.1145/2791347.2791373
http://doi.acm.org/10.1145/2791347.2791373
http://doi.acm.org/10.1145/2791347.2791373
http://dx.doi.org/10.1007/978-3-540-24741-8_41
http://dx.doi.org/10.1007/978-3-540-24741-8_41
http://dx.doi.org/10.1007/978-3-540-24741-8_41
http://dx.doi.org/10.1145/1670243.1670244
http://doi.acm.org/10.1145/1670243.1670244
http://doi.acm.org/10.1145/1670243.1670244
http://dx.doi.org/10.1007/11431053_7
http://dx.doi.org/10.1007/11431053_7
http://dx.doi.org/10.1007/11431053_7
http://dl.acm.org/citation.cfm?id=645927.672174

BIBLIOGRAPHY 180

[Gil+15] Syed Gillani et al. “Top-K Queries in RDF Graph-based Stream Processing
with Actors”. In: Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems. DEBS ’15. Oslo, Norway: ACM, 2015,
pp. 293–300. isbn: 978-1-4503-3286-6. doi: 10.1145/2675743.2772587.
url: http://doi.acm.org/10.1145/2675743.2772587.

[GJS92a] N. H. Gehani, H. V. Jagadish, and O. Shmueli. “Event Specification in
an Active Object-oriented Database”. In: Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’92.
San Diego, California, USA: ACM, 1992, pp. 81–90. isbn: 0-89791-521-6. doi:
10.1145/130283.130300. url: http://doi.acm.org/10.1145/130283.
130300.

[GJS92b] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli. “Composite Event
Specification in Active Databases: Model &Amp; Implementation”. In:
Proceedings of the 18th International Conference on Very Large Data Bases.
VLDB ’92. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992,
pp. 327–338. isbn: 1-55860-151-1. url: http://dl.acm.org/citation.
cfm?id=645918.672484.

[GK02] Sudipto Guha and Nick Koudas. “Approximating a Data Stream for Querying
and Estimation: Algorithms and Performance Evaluation.” In: ICDE. Ed. by
Rakesh Agrawal and Klaus R. Dittrich. IEEE Computer Society, 2002,
pp. 567–576. isbn: 0-7695-1531-2. url: http://dblp.uni-trier.de/db/
conf/icde/icde2002.html#GuhaK02.

[GLP+14] Syed Gillani, Frederique Laforest, Gauthier Picard, et al. “A Generic Ontology
for Prosumer-Oriented Smart Grid.” In: EDBT/ICDT Workshops. 2014,
pp. 134–139.

[GLP14] Syed Gillani, Frédérique Laforest, and Gauthier Picard. “A Generic Ontology
for Prosumer-Oriented Smart Grid”. In: Proceedings of the Workshops of the
EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014), Athens, Greece,
March 28, 2014. 2014, pp. 134–139. url: http://ceur- ws.org/Vol-
1133/paper-21.pdf.

[GM06] Sudipto Guha and Andrew McGregor. “Approximate Quantiles and the
Order of the Stream”. In: Proceedings of the Twenty-fifth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems. PODS
’06. Chicago, IL, USA: ACM, 2006, pp. 273–279. isbn: 1-59593-318-2. doi:
10.1145/1142351.1142390. url: http://doi.acm.org/10.1145/1142351.
1142390.

[GO03] Lukasz Golab and M. Tamer Özsu. “Issues in Data Stream Management”. In:
SIGMOD Rec. 32.2 (June 2003), pp. 5–14. issn: 0163-5808. doi: 10.1145/
776985.776986. url: http://doi.acm.org/10.1145/776985.776986.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Je� Heflin. “LUBM: A Benchmark
for OWL Knowledge Base Systems”. In: Web Semant. 3.2-3 (Oct. 2005),
pp. 158–182. issn: 1570-8268. doi: 10.1016/j.websem.2005.06.005. url:
http://dx.doi.org/10.1016/j.websem.2005.06.005.

http://dx.doi.org/10.1145/2675743.2772587
http://doi.acm.org/10.1145/2675743.2772587
http://dx.doi.org/10.1145/130283.130300
http://doi.acm.org/10.1145/130283.130300
http://doi.acm.org/10.1145/130283.130300
http://dl.acm.org/citation.cfm?id=645918.672484
http://dl.acm.org/citation.cfm?id=645918.672484
http://dblp.uni-trier.de/db/conf/icde/icde2002.html#GuhaK02
http://dblp.uni-trier.de/db/conf/icde/icde2002.html#GuhaK02
http://ceur-ws.org/Vol-1133/paper-21.pdf
http://ceur-ws.org/Vol-1133/paper-21.pdf
http://dx.doi.org/10.1145/1142351.1142390
http://doi.acm.org/10.1145/1142351.1142390
http://doi.acm.org/10.1145/1142351.1142390
http://dx.doi.org/10.1145/776985.776986
http://dx.doi.org/10.1145/776985.776986
http://doi.acm.org/10.1145/776985.776986
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1016/j.websem.2005.06.005

BIBLIOGRAPHY 181

[GPL14] Syed Gillani, Gauthier Picard, and Frédérique Laforest. “IntelSCEP: Towards
an Intelligent Semantic Complex Event Processing Framework for Prosumer-
Oriented SmartGrid”. In: Proceedings of the 2014 International Workshop
on Web Intelligence and Smart Sensing. IWWISS ’14. Saint Etienne, France:
ACM, 2014, 23:1–23:2. isbn: 978-1-4503-2747-3. doi: 10.1145/2637064.
2637110. url: http://doi.acm.org/10.1145/2637064.2637110.

[GPL16a] Syed Gillani, Gauthier Picard, and Frédérique Laforest. “Continuous Graph
Pattern Matching over Knowledge Graph Streams”. In: Proceedings of the
10th ACM International Conference on Distributed and Event-based Systems.
DEBS ’16. Irvine, California: ACM, 2016, pp. 214–225. isbn: 978-1-4503-
4021-2. doi: 10.1145/2933267.2933306. url: http://doi.acm.org/10.
1145/2933267.2933306.

[GPL16b] Syed Gillani, Gauthier Picard, and Frédérique Laforest. “DIONYSUS: To-
wards Query-aware Distributed Processing of RDF Graph Streams”. In:
Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference,
EDBT/ICDT Workshops 2016, Bordeaux, France, March 15, 2016. 2016.
url: http://ceur-ws.org/Vol-1558/paper22.pdf.

[GPL16c] Syed Gillani, Gauthier Picard, and Frédérique Laforest. “SPECTRA: Con-
tinuous Query Processing for RDF Graph Streams Over Sliding Windows”.
In: Proceedings of the 28th International Conference on Scientific and
Statistical Database Management. SSDBM ’16. Budapest, Hungary: ACM,
2016, 17:1–17:12. isbn: 978-1-4503-4215-5. doi: 10.1145/2949689.2949701.
url: http://doi.acm.org/10.1145/2949689.2949701.

[Gra10] Fabio Grandi. “T-SPARQL: a TSQL2-like temporal query language for RDF”.
In: In International Workshop on on Querying Graph Structured Data. 2010,
pp. 21–30.

[Gur+14] Sairam Gurajada et al. “TriAD: A Distributed Shared-nothing RDF Engine
Based on Asynchronous Message Passing”. In: Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’14.
Snowbird, Utah, USA: ACM, 2014, pp. 289–300. isbn: 978-1-4503-2376-5.
doi: 10.1145/2588555.2610511. url: http://doi.acm.org/10.1145/
2588555.2610511.

[Ham+03] Moustafa Hammad et al. E�cient Execution of Sliding-Window Queries
Over Data Streams. 2003.

[HD05] Andreas Harth and Stefan Decker. “Optimized Index Structures for Querying
RDF from the Web.” In: LA-WEB. IEEE Computer Society, 2005, pp. 71–80.
isbn: 0-7695-2471-0. url: http://dblp.uni- trier.de/db/conf/la-
web/la-web2005.html#HarthD05.

[Hei+14] Thomas Heinze et al. “Latency-aware Elastic Scaling for Distributed Data
Stream Processing Systems”. In: Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems. DEBS ’14. Mumbai, India:
ACM, 2014, pp. 13–22. isbn: 978-1-4503-2737-4. doi: 10.1145/2611286.
2611294. url: http://doi.acm.org/10.1145/2611286.2611294.

[Hen+09] M. Hentschel et al. “Scalable Data Integration by Mapping Data to Queries”.
In: month 7.633 (2009), p. 26.

http://dx.doi.org/10.1145/2637064.2637110
http://dx.doi.org/10.1145/2637064.2637110
http://doi.acm.org/10.1145/2637064.2637110
http://dx.doi.org/10.1145/2933267.2933306
http://doi.acm.org/10.1145/2933267.2933306
http://doi.acm.org/10.1145/2933267.2933306
http://ceur-ws.org/Vol-1558/paper22.pdf
http://dx.doi.org/10.1145/2949689.2949701
http://doi.acm.org/10.1145/2949689.2949701
http://dx.doi.org/10.1145/2588555.2610511
http://doi.acm.org/10.1145/2588555.2610511
http://doi.acm.org/10.1145/2588555.2610511
http://dblp.uni-trier.de/db/conf/la-web/la-web2005.html#HarthD05
http://dblp.uni-trier.de/db/conf/la-web/la-web2005.html#HarthD05
http://dx.doi.org/10.1145/2611286.2611294
http://dx.doi.org/10.1145/2611286.2611294
http://doi.acm.org/10.1145/2611286.2611294

BIBLIOGRAPHY 182

[HG04] Jonathan Hayes and Claudio Gutierrez. “Bipartite Graphs as Intermediate
Model for RDF”. In: The Semantic Web – ISWC 2004: Third International
Semantic Web Conference, Hiroshima, Japan, November 7-11, 2004. Pro-
ceedings. Ed. by Sheila A. McIlraith, Dimitris Plexousakis, and Frank van
Harmelen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 47–61.
isbn: 978-3-540-30475-3. doi: 10.1007/978- 3- 540- 30475- 3_5. url:
http://dx.doi.org/10.1007/978-3-540-30475-3_5.

[Hog+14] Aidan Hogan et al. “Everything you always wanted to know about blank
nodes”. In: Web Semantics: Science, Services and Agents on the World Wide
Web 27–28 (2014). Semantic Web Challenge 2013, pp. 42 –69. issn: 1570-8268.
doi: http://dx.doi.org/10.1016/j.websem.2014.06.004. url: http:
//www.sciencedirect.com/science/article/pii/S1570826814000481.

[HV02] A. Hinze and A. Voisard. “A parameterized algebra for event notification
services”. In: Temporal Representation and Reasoning, 2002. TIME 2002.
Proceedings.Ninth International Symposium on. 2002, pp. 61–63. doi: 10.
1109/TIME.2002.1027476.

[HV05] Jayant R. Haritsa and T. M. Vijayaraman, eds. Advances in Data Man-
agement 2005, Proceedings of the Eleventh International Conference on
Management of Data, January 6, 7, and 8, 2005, Goa, India. Computer
Society of India, 2005.

[Idr+11] Stratos Idreos et al. “Merging What’s Cracked, Cracking What’s Merged:
Adaptive Indexing in Main-memory Column-stores”. In: Proc. VLDB Endow.
4.9 (June 2011), pp. 586–597. issn: 2150-8097. doi: 10.14778/2002938.
2002944. url: http://dx.doi.org/10.14778/2002938.2002944.

[IKM07] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. “Updating a
Cracked Database”. In: Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’07. Beijing, China: ACM,
2007, pp. 413–424. isbn: 978-1-59593-686-8. doi: 10.1145/1247480.1247527.
url: http://doi.acm.org/10.1145/1247480.1247527.

[Jen94] Kurt Jensen. “An Introduction to the Theoretical Aspects of Coloured Petri
Nets”. In: A Decade of Concurrency, Reflections and Perspectives, REX
School/Symposium. London, UK, UK: Springer-Verlag, 1994, pp. 230–272.
isbn: 3-540-58043-3. url: http://dl.acm.org/citation.cfm?id=648145.
750149.

[Kal+08] Robert Kallman et al. “H-store: A High-performance, Distributed Main
Memory Transaction Processing System”. In: Proc. VLDB Endow. 1.2 (Aug.
2008), pp. 1496–1499. issn: 2150-8097. doi: 10.14778/1454159.1454211.
url: http://dx.doi.org/10.14778/1454159.1454211.

[Kam+16] Abderrahmen Kammoun et al. “High Performance Top-k Processing of
Non-linear Windows over Data Streams”. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems. DEBS
’16. Irvine, California: ACM, 2016, pp. 293–300. isbn: 978-1-4503-4021-2.
doi: 10.1145/2933267.2933507. url: http://doi.acm.org/10.1145/
2933267.2933507.

http://dx.doi.org/10.1007/978-3-540-30475-3_5
http://dx.doi.org/10.1007/978-3-540-30475-3_5
http://dx.doi.org/http://dx.doi.org/10.1016/j.websem.2014.06.004
http://www.sciencedirect.com/science/article/pii/S1570826814000481
http://www.sciencedirect.com/science/article/pii/S1570826814000481
http://dx.doi.org/10.1109/TIME.2002.1027476
http://dx.doi.org/10.1109/TIME.2002.1027476
http://dx.doi.org/10.14778/2002938.2002944
http://dx.doi.org/10.14778/2002938.2002944
http://dx.doi.org/10.14778/2002938.2002944
http://dx.doi.org/10.1145/1247480.1247527
http://doi.acm.org/10.1145/1247480.1247527
http://dl.acm.org/citation.cfm?id=648145.750149
http://dl.acm.org/citation.cfm?id=648145.750149
http://dx.doi.org/10.14778/1454159.1454211
http://dx.doi.org/10.14778/1454159.1454211
http://dx.doi.org/10.1145/2933267.2933507
http://doi.acm.org/10.1145/2933267.2933507
http://doi.acm.org/10.1145/2933267.2933507

BIBLIOGRAPHY 183

[KCF12] Srdjan Komazec, Davide Cerri, and Dieter Fensel. “Sparkwave: Continuous
Schema-enhanced Pattern Matching over RDF Data Streams”. In: Proceed-
ings of the 6th ACM International Conference on Distributed Event-Based
Systems. DEBS ’12. Berlin, Germany: ACM, 2012, pp. 58–68. isbn: 978-1-
4503-1315-5. doi: 10.1145/2335484.2335491. url: http://doi.acm.org/
10.1145/2335484.2335491.

[KKM13] Bruce M. Kapron, Valerie King, and Ben Mountjoy. “Dynamic graph connec-
tivity in polylogarithmic worst case time.” In: SODA. 2013, pp. 1131–1142.
url: http://dblp.uni- trier.de/db/conf/soda/soda2013.html#
KapronKM13.

[KNV04] Jaewoo Kang, Je�rey F. Naughton, and Stratis Viglas. “Evaluating Window
Joins over Unbounded Streams.” In: ICDE. Ed. by Umeshwar Dayal, Krithi
Ramamritham, and T. M. Vijayaraman. IEEE Computer Society, Mar. 31,
2004, pp. 341–352. isbn: 0-7803-7665-X. url: http://dblp.uni-trier.de/
db/conf/icde/icde2003.html#KangNV03.

[Koz+06] Alex Kozlenkov et al. “Current Trends in Database Technology – EDBT
2006: EDBT 2006 Workshops PhD, DataX, IIDB, IIHA, ICSNW, QLQP,
PIM, PaRMA, and Reactivity on the Web, Munich, Germany, March 26-
31, 2006, Revised Selected Papers”. In: ed. by Torsten Grust et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006. Chap. Prova: Rule-Based Java
Scripting for Distributed Web Applications: A Case Study in Bioinformatics,
pp. 899–908. isbn: 978-3-540-46790-8. doi: 10.1007/11896548_68. url:
http://dx.doi.org/10.1007/11896548_68.

[KS09a] Jürgen Krämer and Bernhard Seeger. “Semantics and Implementation of
Continuous Sliding Window Queries over Data Streams”. In: ACM Trans.
Database Syst. 34.1 (Apr. 2009), 4:1–4:49. issn: 0362-5915. doi: 10.1145/
1508857 . 1508861. url: http : / / doi . acm . org / 10 . 1145 / 1508857 .
1508861.

[KS09b] Jürgen Krämer and Bernhard Seeger. “Semantics and Implementation of
Continuous Sliding Window Queries over Data Streams”. In: ACM Trans.
Database Syst. Vol. 34. 2009, 4:1–4:49.

[KS86] R Kowalski and M Sergot. “A Logic-based Calculus of Events”. In: New
Gen. Comput. 4.1 (Jan. 1986), pp. 67–95. issn: 0288-3635. doi: 10.1007/
BF03037383. url: http://dx.doi.org/10.1007/BF03037383.

[KS92] Michael Kifer and V.S. Subrahmanian. “Theory of generalized annotated logic
programming and its applications**A preliminary report on this research
has appeared in [34].” In: The Journal of Logic Programming 12.4 (1992),
pp. 335 –367. issn: 0743-1066. doi: http://dx.doi.org/10.1016/0743-
1066(92) 90007 - P. url: http : / / www . sciencedirect . com / science /
article/pii/074310669290007P.

[LB15] Feilong Liu and Spyros Blanas. “Forecasting the Cost of Processing Multi-
join Queries via Hashing for Main-memory Databases”. In: soCC. 2015,
pp. 153–166.

http://dx.doi.org/10.1145/2335484.2335491
http://doi.acm.org/10.1145/2335484.2335491
http://doi.acm.org/10.1145/2335484.2335491
http://dblp.uni-trier.de/db/conf/soda/soda2013.html#KapronKM13
http://dblp.uni-trier.de/db/conf/soda/soda2013.html#KapronKM13
http://dblp.uni-trier.de/db/conf/icde/icde2003.html#KangNV03
http://dblp.uni-trier.de/db/conf/icde/icde2003.html#KangNV03
http://dx.doi.org/10.1007/11896548_68
http://dx.doi.org/10.1007/11896548_68
http://dx.doi.org/10.1145/1508857.1508861
http://dx.doi.org/10.1145/1508857.1508861
http://doi.acm.org/10.1145/1508857.1508861
http://doi.acm.org/10.1145/1508857.1508861
http://dx.doi.org/10.1007/BF03037383
http://dx.doi.org/10.1007/BF03037383
http://dx.doi.org/10.1007/BF03037383
http://dx.doi.org/http://dx.doi.org/10.1016/0743-1066(92)90007-P
http://dx.doi.org/http://dx.doi.org/10.1016/0743-1066(92)90007-P
http://www.sciencedirect.com/science/article/pii/074310669290007P
http://www.sciencedirect.com/science/article/pii/074310669290007P

BIBLIOGRAPHY 184

[Let+10] J. Letchner et al. “Approximation trade-o�s in Markovian stream processing:
An empirical study”. In: 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010). 2010, pp. 936–939. doi: 10.1109/ICDE.2010.
5447926.

[LGI09] Erietta Liarou, Romulo Goncalves, and Stratos Idreos. “Exploiting the Power
of Relational Databases for E�cient Stream Processing”. In: Proceedings
of the 12th International Conference on Extending Database Technology:
Advances in Database Technology. EDBT ’09. Saint Petersburg, Russia: ACM,
2009, pp. 323–334. isbn: 978-1-60558-422-5. doi: 10.1145/1516360.1516398.
url: http://doi.acm.org/10.1145/1516360.1516398.

[Li+07] M. Li et al. “Event Stream Processing with Out-of-Order Data Arrival”.
In: Distributed Computing Systems Workshops, 2007. ICDCSW ’07. 27th
International Conference on. 2007, pp. 67–67. doi: 10.1109/ICDCSW.2007.
35.

[Li+08] Jin Li et al. “Out-of-order Processing: A New Architecture for High-performance
Stream Systems”. In: Proc. VLDB Endow. 1.1 (Aug. 2008), pp. 274–288.
issn: 2150-8097. doi: 10.14778/1453856.1453890. url: http://dx.doi.
org/10.14778/1453856.1453890.

[LLM98] Georg Lausen, Bertram Ludäscher, and Wolfgang May. “Transactions and
Change in Logic Databases: International Seminar on Logic Databases
and the Meaning of Change Schloss Dagstuhl, Germany, September 23–
27, 1996 and ILPS’97 Post-Conference Workshop on (Trans)Actions and
Change in Logic Programming and Deductive Databases, (DYNAMICS’97)
Port Je�erson, NY, USA, October 17, 1997 Invited Surveys and Selected
Papers”. In: ed. by Burkhard Freitag et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998. Chap. On active deductive databases: The statelog
approach, pp. 69–106. isbn: 978-3-540-49449-2. doi: 10.1007/BFb0055496.
url: http://dx.doi.org/10.1007/BFb0055496.

[LP+11] Danh Le-Phuoc et al. “A Native and Adaptive Approach for Unified Pro-
cessing of Linked Streams and Linked Data”. In: Proceedings of the 10th
International Conference on The Semantic Web - Volume Part I. ISWC’11.
Bonn, Germany: Springer-Verlag, 2011, pp. 370–388. isbn: 978-3-642-25072-9.
url: http://dl.acm.org/citation.cfm?id=2063016.2063041.

[Luc01] David C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2001. isbn: 0201727897.

[LWZ04] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. “Query Languages and
Data Models for Database Sequences and Data Streams”. In: Very Large
Data Bases (VLDB). 2004, pp. 492–503. url: http://www.vldb.org/conf/
2004/RS12P2.PDF.

[MC13] Jose Mora and Oscar Corcho. “Engineering Optimisations in Query Rewriting
for OBDA”. In: Proceedings of the 9th International Conference on Semantic
Systems. I-SEMANTICS ’13. Graz, Austria: ACM, 2013, pp. 41–48. isbn:
978-1-4503-1972-0. doi: 10.1145/2506182.2506188. url: http://doi.acm.
org/10.1145/2506182.2506188.

http://dx.doi.org/10.1109/ICDE.2010.5447926
http://dx.doi.org/10.1109/ICDE.2010.5447926
http://dx.doi.org/10.1145/1516360.1516398
http://doi.acm.org/10.1145/1516360.1516398
http://dx.doi.org/10.1109/ICDCSW.2007.35
http://dx.doi.org/10.1109/ICDCSW.2007.35
http://dx.doi.org/10.14778/1453856.1453890
http://dx.doi.org/10.14778/1453856.1453890
http://dx.doi.org/10.14778/1453856.1453890
http://dx.doi.org/10.1007/BFb0055496
http://dx.doi.org/10.1007/BFb0055496
http://dl.acm.org/citation.cfm?id=2063016.2063041
http://www.vldb.org/conf/2004/RS12P2.PDF
http://www.vldb.org/conf/2004/RS12P2.PDF
http://dx.doi.org/10.1145/2506182.2506188
http://doi.acm.org/10.1145/2506182.2506188
http://doi.acm.org/10.1145/2506182.2506188

BIBLIOGRAPHY 185

[ME01] D. Moreto and M. Endler. “Evaluating composite events using shared trees”.
In: IEE Proceedings - Software 148.1 (2001), pp. 1–10. issn: 1462-5970. doi:
10.1049/ip-sen:20010241.

[Mee+15] John Meehan et al. “S-Store: Streaming Meets Transaction Processing”.
In: Proc. VLDB Endow. 8.13 (Sept. 2015), pp. 2134–2145. issn: 2150-8097.
doi: 10.14778/2831360.2831367. url: http://dx.doi.org/10.14778/
2831360.2831367.

[MH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology
Language Overview. Tech. rep. REC-owl-features-20040210. W3C, 2004.

[MM09] Yuan Mei and Samuel Madden. “ZStream: A Cost-based Query Processor
for Adaptively Detecting Composite Events”. In: Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data. SIGMOD
’09. Providence, Rhode Island, USA: ACM, 2009, pp. 193–206. isbn: 978-1-
60558-551-2. doi: 10.1145/1559845.1559867. url: http://doi.acm.org/
10.1145/1559845.1559867.

[Moz+13] Barzan Mozafari et al. “High-performance Complex Event Processing over
Hierarchical Data”. In: ACM Trans. Database Syst. 38.4 (Dec. 2013), 21:1–
21:39. issn: 0362-5915. doi: 10.1145/2536779. url: http://doi.acm.org/
10.1145/2536779.

[MPG09] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez. “Simple and E�cient
Minimal {RDFS}”. In: Web Semantics: Science, Services and Agents on the
World Wide Web 7.3 (2009). The Web of Data, pp. 220 –234. issn: 1570-8268.
doi: http://dx.doi.org/10.1016/j.websem.2009.07.003. url: http:
//www.sciencedirect.com/science/article/pii/S1570826809000249.

[MSS97] M. Mansouri-Samani and M. Sloman. “GEM: A generalized event monitoring
language for distributed systems”. In: Distributed Systems Engineering 4
(1997), pp. 96–108.

[MZ95] Iakovos Motakis and Carlo Zaniolo. “Recent Advances in Temporal Databases:
Proceedings of the International Workshop on Temporal Databases, Zurich,
Switzerland, 17–18 September 1995”. In: ed. by James Cli�ord and Alexander
Tuzhilin. London: Springer London, 1995. Chap. Composite Temporal Events
in Active Databases: A Formal Semantics, pp. 332–351. isbn: 978-1-4471-
3033-8. doi: 10.1007/978-1-4471-3033-8_18. url: http://dx.doi.org/
10.1007/978-1-4471-3033-8_18.

[NCT08] Alex Russakovsky Neil Conway Michael J. Franklin and Neil Thombre.
“TruSQL: A Stream-Relational Extension to SQL”. In: Technical Report,
Truviso, Inc. 2008.

[Nel65] T. H. Nelson. “Complex Information Processing: A File Structure for the
Complex, the Changing and the Indeterminate”. In: Proceedings of the 1965
20th National Conference. ACM ’65. Cleveland, Ohio, USA: ACM, 1965,
pp. 84–100. doi: 10.1145/800197.806036. url: http://doi.acm.org/10.
1145/800197.806036.

[Nen+15] Yavor Nenov et al. “RDFox: A Highly-Scalable RDF Store.” In: International
Semantic Web Conference (ISWC). Vol. 9367. Lecture Notes in Computer
Science. Springer, 2015, pp. 3–20. isbn: 978-3-319-25009-0. url: http://
dblp.uni-trier.de/db/conf/semweb/iswc2015-2.html#NenovPMHWB15.

http://dx.doi.org/10.1049/ip-sen:20010241
http://dx.doi.org/10.14778/2831360.2831367
http://dx.doi.org/10.14778/2831360.2831367
http://dx.doi.org/10.14778/2831360.2831367
http://dx.doi.org/10.1145/1559845.1559867
http://doi.acm.org/10.1145/1559845.1559867
http://doi.acm.org/10.1145/1559845.1559867
http://dx.doi.org/10.1145/2536779
http://doi.acm.org/10.1145/2536779
http://doi.acm.org/10.1145/2536779
http://dx.doi.org/http://dx.doi.org/10.1016/j.websem.2009.07.003
http://www.sciencedirect.com/science/article/pii/S1570826809000249
http://www.sciencedirect.com/science/article/pii/S1570826809000249
http://dx.doi.org/10.1007/978-1-4471-3033-8_18
http://dx.doi.org/10.1007/978-1-4471-3033-8_18
http://dx.doi.org/10.1007/978-1-4471-3033-8_18
http://dx.doi.org/10.1145/800197.806036
http://doi.acm.org/10.1145/800197.806036
http://doi.acm.org/10.1145/800197.806036
http://dblp.uni-trier.de/db/conf/semweb/iswc2015-2.html#NenovPMHWB15
http://dblp.uni-trier.de/db/conf/semweb/iswc2015-2.html#NenovPMHWB15

BIBLIOGRAPHY 186

[Neu+10] Leonardo Neumeyer et al. “S4: Distributed Stream Computing Platform”.
In: Proceedings of the 2010 IEEE International Conference on Data Mining
Workshops. ICDMW ’10. Washington, DC, USA: IEEE Computer Society,
2010, pp. 170–177. isbn: 978-0-7695-4257-7. doi: 10.1109/ICDMW.2010.172.
url: http://dx.doi.org/10.1109/ICDMW.2010.172.

[NW10a] Thomas Neumann and Gerhard Weikum. “The RDF-3X Engine for Scalable
Management of RDF Data”. In: VLDB. 2010, pp. 91–113. doi: 10.1007/
s00778-009-0165-y. url: http://dx.doi.org/10.1007/s00778-009-
0165-y.

[NW10b] Thomas Neumann and Gerhard Weikum. “The RDF-3X Engine for Scalable
Management of RDF Data”. In: The VLDB Journal 19.1 (Feb. 2010), pp. 91–
113. issn: 1066-8888. doi: 10.1007/s00778- 009- 0165- y. url: http:
//dx.doi.org/10.1007/s00778-009-0165-y.

[PAG09a] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and Com-
plexity of SPARQL”. In: ACM Trans. Database Syst. 34.3 (Sept. 2009),
16:1–16:45. issn: 0362-5915. doi: 10.1145/1567274.1567278. url: http:
//doi.acm.org/10.1145/1567274.1567278.

[PAG09b] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and com-
plexity of SPARQL”. In: ACM Transactions on Database Systems. Vol. 34.
2009, pp. 1–45.

[Pas06] Adrian Paschke. “ECA-LP / ECA-RuleML: A Homogeneous Event-Condition-
Action Logic Programming Language”. In: CoRR abs/cs/0609143 (2006).
url: http://arxiv.org/abs/cs/0609143.

[PD99] Norman W. Paton and Oscar Díaz. “Active Database Systems”. In: ACM
Comput. Surv. 31.1 (Mar. 1999), pp. 63–103. issn: 0360-0300. doi: 10.1145/
311531.311623. url: http://doi.acm.org/10.1145/311531.311623.

[Pic+12] François Picalausa et al. “A Structural Approach to Indexing Triples”.
In: The Semantic Web: Research and Applications: 9th Extended Semantic
Web Conference, ESWC 2012, Heraklion, Crete, Greece, May 27-31, 2012.
Proceedings. Ed. by Elena Simperl et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 406–421. isbn: 978-3-642-30284-8. doi: 10.1007/978-
3-642-30284-8_34. url: http://dx.doi.org/10.1007/978-3-642-
30284-8_34.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF. Ed. by W3C Recommendation. Latest version available as http:
//www.w3.org/TR/rdf-sparql-query/. 2008. url: http://www.w3.org/
TR/2008/REC-rdf-sparql-query-20080115/.

[PUHM09] Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. “E�cient Query An-
swering for OWL 2”. In: The Semantic Web - ISWC 2009: 8th International
Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-
29, 2009. Proceedings. Ed. by Abraham Bernstein et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 489–504. isbn: 978-3-642-04930-9. doi:
10.1007/978-3-642-04930-9_31. url: http://dx.doi.org/10.1007/
978-3-642-04930-9_31.

http://dx.doi.org/10.1109/ICDMW.2010.172
http://dx.doi.org/10.1109/ICDMW.2010.172
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278
http://arxiv.org/abs/cs/0609143
http://dx.doi.org/10.1145/311531.311623
http://dx.doi.org/10.1145/311531.311623
http://doi.acm.org/10.1145/311531.311623
http://dx.doi.org/10.1007/978-3-642-30284-8_34
http://dx.doi.org/10.1007/978-3-642-30284-8_34
http://dx.doi.org/10.1007/978-3-642-30284-8_34
http://dx.doi.org/10.1007/978-3-642-30284-8_34
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://dx.doi.org/10.1007/978-3-642-04930-9_31
http://dx.doi.org/10.1007/978-3-642-04930-9_31
http://dx.doi.org/10.1007/978-3-642-04930-9_31

BIBLIOGRAPHY 187

[Rdf] “Resource Description Framework (RDF) Model and Syntax Specification.
W3C Recommendation. 1999”. In: W3C. 1999. url: http://www.w3.org/
TR/1999/REC-rdf-syntax-19990222/.

[RNT12] Mikko Rinne, Esko Nuutila, and Seppo Törmä. “INSTANS: High-Performance
Event Processing with Standard RDF and SPARQL”. In: Proceedings of
the ISWC 2012 Posters & Demonstrations Track, Boston, USA, November
11-15, 2012. 2012. url: http://ceur-ws.org/Vol-914/paper_22.pdf.

[Ron98] Claudia L. Roncancio. “Active, Real-Time, and Temporal Database Systems:
Second International Workshop, ARTDB-97 Como, Italy, September 8–9,
1997 Proceedings”. In: ed. by Sten F. Andler and Jörgen Hansson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998. Chap. Toward Duration-Based,
Constrained and Dynamic Event Types, pp. 176–193. isbn: 978-3-540-49151-4.
doi: 10.1007/3-540-49151-1_10. url: http://dx.doi.org/10.1007/3-
540-49151-1_10.

[SB05] Marco Seiriö and Mikael Berndtsson. “Design and Implementation of an
ECA Rule Markup Language”. In: Proceedings of the First International
Conference on Rules and Rule Markup Languages for the Semantic Web.
RuleML’05. Galway, Ireland: Springer-Verlag, 2005, pp. 98–112. isbn: 3-
540-29922-X, 978-3-540-29922-6. doi: 10.1007/11580072_9. url: http:
//dx.doi.org/10.1007/11580072_9.

[Sch+06] Karl Schnaitter et al. “COLT: Continuous On-line Tuning”. In: Proceedings
of the 2006 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’06. Chicago, IL, USA: ACM, 2006, pp. 793–795. isbn: 1-
59593-434-0. doi: 10.1145/1142473.1142592. url: http://doi.acm.org/
10.1145/1142473.1142592.

[ScZ05] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. “The 8 Require-
ments of Real-time Stream Processing”. In: SIGMOD Rec. 34.4 (Dec. 2005),
pp. 42–47. issn: 0163-5808. doi: 10.1145/1107499.1107504. url: http:
//doi.acm.org/10.1145/1107499.1107504.

[SG07] Sharmila Subramaniam and Dimitrios Gunopulos. “Data Streams: Models
and Algorithms”. In: ed. by Charu C. Aggarwal. Boston, MA: Springer US,
2007. Chap. A Survey of Stream Processing Problems and Techniques in
Sensor Networks, pp. 333–352. isbn: 978-0-387-47534-9. doi: 10.1007/978-
0-387-47534-9_15. url: http://dx.doi.org/10.1007/978-0-387-
47534-9_15.

[SGL14] Gauthier Picard Syed Gillani and Frédérique Laforest. “Towards E�cient
Semantically Enriched Complex Event Processing and Pattern Matching”. In:
Proceedings of the 3rd International Workshop on Ordering and Reasoning
Co-located with the 13th International Semantic Web Conference (ISWC
2014), Riva del Garda, Italy, October 20th, 2014. 2014, pp. 47–54. url:
http://ceur-ws.org/Vol-1303/paper_2.pdf.

[SH13] Andy Seaborne Steve Harris Garlik. SPARQL 1.1 Query Language. Ed. by
W3C Recommendation. Latest version available as https://www.w3.org/
TR/2013/REC-sparql11-query-20130321/. 2013.

[Sim+16] Natcha Simsiri et al. “Work-E�cient Parallel and Incremental Graph Con-
nectivity”. In: CoRR. Vol. abs/1602.05232. 2016.

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://ceur-ws.org/Vol-914/paper_22.pdf
http://dx.doi.org/10.1007/3-540-49151-1_10
http://dx.doi.org/10.1007/3-540-49151-1_10
http://dx.doi.org/10.1007/3-540-49151-1_10
http://dx.doi.org/10.1007/11580072_9
http://dx.doi.org/10.1007/11580072_9
http://dx.doi.org/10.1007/11580072_9
http://dx.doi.org/10.1145/1142473.1142592
http://doi.acm.org/10.1145/1142473.1142592
http://doi.acm.org/10.1145/1142473.1142592
http://dx.doi.org/10.1145/1107499.1107504
http://doi.acm.org/10.1145/1107499.1107504
http://doi.acm.org/10.1145/1107499.1107504
http://dx.doi.org/10.1007/978-0-387-47534-9_15
http://dx.doi.org/10.1007/978-0-387-47534-9_15
http://dx.doi.org/10.1007/978-0-387-47534-9_15
http://dx.doi.org/10.1007/978-0-387-47534-9_15
http://ceur-ws.org/Vol-1303/paper_2.pdf
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/

BIBLIOGRAPHY 188

[SMMP09] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. “Dis-
tributed Complex Event Processing with Query Rewriting”. In: Proceedings
of the Third ACM International Conference on Distributed Event-Based
Systems. DEBS ’09. Nashville, Tennessee: ACM, 2009, 4:1–4:12. isbn: 978-1-
60558-665-6. doi: 10.1145/1619258.1619264. url: http://doi.acm.org/
10.1145/1619258.1619264.

[SSS08] Kay-Uwe Schmidt, Roland Stühmer, and Ljiljana Stojanovic. “Blending
Complex Event Processing with the RETE Algorithm”. In: iCEP2008: 1st
International workshop on Complex Event Processing for the Future Internet
colocated with the Future Internet Symposium (FIS2008). Ed. by Darko Anicic
et al. Vol. Vol-412. CEUR Workshop Proceedings (CEUR-WS.org, ISSN
1613-0073), 2008. url: http://ceur-ws.org/Vol-412/paper3.pdf.

[Sub+16] Julien Subercaze et al. “Inferray: Fast In-memory RDF Inference”. In:
Proc. VLDB Endow. 9.6 (Jan. 2016), pp. 468–479. issn: 2150-8097. doi:
10 . 14778 / 2904121 . 2904123. url: http : / / dx . doi . org / 10 . 14778 /
2904121.2904123.

[Sán+05] César Sánchez et al. “Formal Techniques for Networked and Distributed
Systems - FORTE 2005: 25th IFIP WG 6.1 International Conference, Taipei,
Taiwan, October 2-5, 2005. Proceedings”. In: ed. by Farn Wang. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005. Chap. Expressive Completeness
of an Event-Pattern Reactive Programming Language, pp. 529–532. isbn:
978-3-540-32084-5. doi: 10.1007/11562436_39. url: http://dx.doi.org/
10.1007/11562436_39.

[Tan+15] Kanat Tangwongsan et al. “General Incremental Sliding-window Aggrega-
tion”. In: Proc. VLDB Endow. 8.7 (Feb. 2015), pp. 702–713. issn: 2150-8097.
doi: 10.14778/2752939.2752940. url: http://dx.doi.org/10.14778/
2752939.2752940.

[Tat+03] Nesime Tatbul et al. “Load Shedding in a Data Stream Manager”. In:
Proceedings of the 29th International Conference on Very Large Data Bases -
Volume 29. VLDB ’03. Berlin, Germany: VLDB Endowment, 2003, pp. 309–
320. isbn: 0-12-722442-4. url: http://dl.acm.org/citation.cfm?id=
1315451.1315479.

[Tat10] N. Tatbul. “Streaming data integration: Challenges and opportunities”.
In: Data Engineering Workshops (ICDEW), 2010 IEEE 26th International
Conference on. 2010, pp. 155–158. doi: 10.1109/ICDEW.2010.5452751.

[TB09] Jonas Tappolet and Abraham Bernstein. “Applied Temporal RDF: E�cient
Temporal Querying of RDF Data with SPARQL”. In: Proceedings of the
6th European Semantic Web Conference on The Semantic Web: Research
and Applications. ESWC 2009 Heraklion. Heraklion, Crete, Greece: Springer-
Verlag, 2009, pp. 308–322. isbn: 978-3-642-02120-6. doi: 10.1007/978-3-
642-02121-3_25. url: http://dx.doi.org/10.1007/978-3-642-02121-
3_25.

[Tho68] Ken Thompson. “Programming Techniques: Regular Expression Search
Algorithm”. In: Commun. ACM 11.6 (June 1968), pp. 419–422. issn: 0001-
0782. doi: 10.1145/363347.363387. url: http://doi.acm.org/10.1145/
363347.363387.

http://dx.doi.org/10.1145/1619258.1619264
http://doi.acm.org/10.1145/1619258.1619264
http://doi.acm.org/10.1145/1619258.1619264
http://ceur-ws.org/Vol-412/paper3.pdf
http://dx.doi.org/10.14778/2904121.2904123
http://dx.doi.org/10.14778/2904121.2904123
http://dx.doi.org/10.14778/2904121.2904123
http://dx.doi.org/10.1007/11562436_39
http://dx.doi.org/10.1007/11562436_39
http://dx.doi.org/10.1007/11562436_39
http://dx.doi.org/10.14778/2752939.2752940
http://dx.doi.org/10.14778/2752939.2752940
http://dx.doi.org/10.14778/2752939.2752940
http://dl.acm.org/citation.cfm?id=1315451.1315479
http://dl.acm.org/citation.cfm?id=1315451.1315479
http://dx.doi.org/10.1109/ICDEW.2010.5452751
http://dx.doi.org/10.1007/978-3-642-02121-3_25
http://dx.doi.org/10.1007/978-3-642-02121-3_25
http://dx.doi.org/10.1007/978-3-642-02121-3_25
http://dx.doi.org/10.1007/978-3-642-02121-3_25
http://dx.doi.org/10.1145/363347.363387
http://doi.acm.org/10.1145/363347.363387
http://doi.acm.org/10.1145/363347.363387

BIBLIOGRAPHY 189

[Tib] TIBCO Business Events. http : / / www . tibco . com / products / event -
processing/complex- event- processing/businessevents/. Accessed:
2016-06-03.

[Tuc+03] P. A. Tucker et al. “Exploiting punctuation semantics in continuous data
streams”. In: IEEE Transactions on Knowledge and Data Engineering 15.3
(2003), pp. 555–568. issn: 1041-4347. doi: 10.1109/TKDE.2003.1198390.

[URS10] Octavian Udrea, Diego Reforgiato Recupero, and V. S. Subrahmanian. “An-
notated RDF”. In: ACM Trans. Comput. Logic 11.2 (Jan. 2010), 10:1–10:41.
issn: 1529-3785. doi: 10.1145/1656242.1656245. url: http://doi.acm.
org/10.1145/1656242.1656245.

[WDR06a] Eugene Wu, Yanlei Diao, and Shariq Rizvi. “High-performance Complex
Event Processing over Streams”. In: Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’06. Chicago, IL,
USA: ACM, 2006, pp. 407–418. isbn: 1-59593-434-0. doi: 10.1145/1142473.
1142520. url: http://doi.acm.org/10.1145/1142473.1142520.

[WDR06b] Eugene Wu, Yanlei Diao, and Shariq Rizvi. “High-performance Complex
Event Processing over Streams”. In: Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’06. Chicago, IL,
USA: ACM, 2006, pp. 407–418. isbn: 1-59593-434-0. doi: 10.1145/1142473.
1142520. url: http://doi.acm.org/10.1145/1142473.1142520.

[WKB08] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. “Hexastore:
Sextuple Indexing for Semantic Web Data Management”. In: Proc. VLDB
Endow. 1.1 (Aug. 2008), pp. 1008–1019. issn: 2150-8097. doi: 10.14778/
1453856 . 1453965. url: http : / / dx . doi . org / 10 . 14778 / 1453856 .
1453965.

[WLC14] David Wood, Markus Lanthaler, and Richard Cyganiak. “RDF 1.1 Concepts
and Abstract Syntax”. In: W3C Recommendation, Technical Report. 2014.
url: http://www.w3.org/TR/2014/REC- rdf11-concepts- 20140225/
(visited on 03/15/2015).

[YG02] Yong Yao and Johannes Gehrke. “The Cougar Approach to In-network
Query Processing in Sensor Networks”. In: SIGMOD Rec. 31.3 (Sept. 2002),
pp. 9–18. issn: 0163-5808. doi: 10 . 1145 / 601858 . 601861. url: http :
//doi.acm.org/10.1145/601858.601861.

[ZDI10] Haopeng Zhang, Yanlei Diao, and Neil Immerman. “Recognizing Patterns in
Streams with Imprecise Timestamps”. In: Proc. VLDB Endow. 3.1-2 (Sept.
2010), pp. 244–255. issn: 2150-8097. doi: 10.14778/1920841.1920875. url:
http://dx.doi.org/10.14778/1920841.1920875.

[ZDI14] Haopeng Zhang, Yanlei Diao, and Neil Immerman. “On Complexity and Opti-
mization of Expensive Queries in Complex Event Processing”. In: Proceedings
of the 2014 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’14. Snowbird, Utah, USA: ACM, 2014, pp. 217–228. isbn:
978-1-4503-2376-5. doi: 10.1145/2588555.2593671. url: http://doi.acm.
org/10.1145/2588555.2593671.

http://dx.doi.org/10.1109/TKDE.2003.1198390
http://dx.doi.org/10.1145/1656242.1656245
http://doi.acm.org/10.1145/1656242.1656245
http://doi.acm.org/10.1145/1656242.1656245
http://dx.doi.org/10.1145/1142473.1142520
http://dx.doi.org/10.1145/1142473.1142520
http://doi.acm.org/10.1145/1142473.1142520
http://dx.doi.org/10.1145/1142473.1142520
http://dx.doi.org/10.1145/1142473.1142520
http://doi.acm.org/10.1145/1142473.1142520
http://dx.doi.org/10.14778/1453856.1453965
http://dx.doi.org/10.14778/1453856.1453965
http://dx.doi.org/10.14778/1453856.1453965
http://dx.doi.org/10.14778/1453856.1453965
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://dx.doi.org/10.1145/601858.601861
http://doi.acm.org/10.1145/601858.601861
http://doi.acm.org/10.1145/601858.601861
http://dx.doi.org/10.14778/1920841.1920875
http://dx.doi.org/10.14778/1920841.1920875
http://dx.doi.org/10.1145/2588555.2593671
http://doi.acm.org/10.1145/2588555.2593671
http://doi.acm.org/10.1145/2588555.2593671

BIBLIOGRAPHY 190

[Zou+11] Lei Zou et al. “gStore: Answering SPARQL Queries via Subgraph Matching”.
In: Proc. VLDB Endow. 4.8 (May 2011), pp. 482–493. issn: 2150-8097.
doi: 10.14778/2002974.2002976. url: http://dx.doi.org/10.14778/
2002974.2002976.

[ZS01] Dong Zhu and A. S. Sethi. “SEL, a new event pattern specification language
for event correlation”. In: Computer Communications and Networks, 2001.
Proceedings. Tenth International Conference on. 2001, pp. 586–589. doi:
10.1109/ICCCN.2001.956327.

[ÖMN14] Özgür Lütfü Özçep, Ralf Möller, and Christian Neuenstadt. “KI 2014:
Advances in Artificial Intelligence: 37th Annual German Conference on AI,
Stuttgart, Germany, September 22-26, 2014. Proceedings”. In: ed. by Carsten
Lutz and Michael Thielscher. Cham: Springer International Publishing, 2014.
Chap. A Stream-Temporal Query Language for Ontology Based Data Access,
pp. 183–194. isbn: 978-3-319-11206-0. doi: 10.1007/978-3-319-11206-
0_18. url: http://dx.doi.org/10.1007/978-3-319-11206-0_18.

http://dx.doi.org/10.14778/2002974.2002976
http://dx.doi.org/10.14778/2002974.2002976
http://dx.doi.org/10.14778/2002974.2002976
http://dx.doi.org/10.1109/ICCCN.2001.956327
http://dx.doi.org/10.1007/978-3-319-11206-0_18
http://dx.doi.org/10.1007/978-3-319-11206-0_18
http://dx.doi.org/10.1007/978-3-319-11206-0_18

	List of Figures
	List of Tables
	Introduction
	Overview and Contributions
	Part II: Continuous Query Processing over RDF Graph Streams
	Part III: Semantic Complex Event Processing Over RDF Graph Streams

	Research Impact

	I Background and Related Work
	Background on Semantic Web Technologies
	Introduction
	The Semantic Web
	Resource Description Framework
	RDF Terms
	RDF Triples and Graphs
	Linked Data

	The SPARQL Query Language
	Semantics of the SPARQL Query Evaluation
	Complexity of SPARQL

	Common Symbols
	Summary

	Data Stream Processing
	Data Stream Management System
	Data Models for the DSMSs
	Data Streams
	Temporal Models of Data Streams
	Windows

	Query Languages for DSMSs
	Query Semantics
	Executional Semantics of DSMS

	Syntax and Algebraic Properties of DSMS Query Languages
	Continuous Query Language (CQL)
	StreaQuel Language
	Gigascope Query Language
	TruSQL

	Existing Data Stream Management Systems
	Optimisation Strategies for the DSMSs
	Summary and Discussion

	Semantically-enabled Stream Processing
	Introduction
	RSP Data Model
	RSP Systems and Their Query Languages
	C-SPARQL
	CQELS
	StreamQR
	Sparkwave
	Other Systems

	Under the Hood of RSP Systems
	RDF Graph Storage and Processing Techniques
	Native RDF Graph Storage Systems
	Non-Native RDF Graph Storage Systems

	Summary and Discussion

	Detection of Complex Event Patterns
	Introduction
	Data Model and Operators for Complex Event Processing
	Data Model
	Event Query Languages and their Operators

	Methods and Techniques for Complex Event Processing
	Rule-based Techniques
	Graph-based Techniques
	Automata-based Techniques

	Semantic Complex Event Processing
	Temporal RDF Systems
	Semantic Event Processing over RDF Streams

	Summary and Discussion

	II Semantically-Enabled Stream Processing: Problem Analysis, Stream Model and Proposed Solution
	Problem Formulation: Continuous Query Processing over RDF Graph Streams
	General Idea
	Limitations of Existing Solutions
	Offline/Online Indexing
	Match Recomputation
	Limited Scope

	Data Model and Problem Statement
	Data Model
	Problem Statement

	Summary

	SPECTRA: High-Performance RDF Graph Streams Processing
	Introduction
	Overview of the SPECTRA Framework
	RDF Graph Summarisation
	Continuous Query Processing
	Incremental Indexing
	Query Processor

	Incremental Query Processing
	Processing Timelist and Matched Results
	Experimental Evaluation
	Experimental Setup
	Evaluation

	Extending SPECTRA
	Summary

	III Semantic Complex Event Processing: Model, Language and Implementation
	 A Query Language for SCEP: Syntax and Semantics
	Introduction
	Why A New Language?
	A Motivating Example
	Limitations of Existing SCEP Languages

	The SPAseq Query Language
	Data Model

	Syntax of SPAseq
	SPAseq By Examples
	Formal Semantics of SPAseq
	Rough Work
	Semantics of SPAseq Operators
	Evaluation of SPAseq Queries

	Qualitative Comparative Analysis
	Input Data Model
	TimePoints Vs Time-Intervals
	Temporal Operators

	Summary

	 SPAseq: Semantic Complex Event Processing over RDF Graph Streams
	General Idea
	NFA-based Semantic Complex Event Processing
	NFAscep Model for SPAseq
	Compiling SPAseq Queries

	System Design of SPAseq Query Engine
	Evaluation of NFAscep Automaton

	Query Optimisations
	Evaluation Complexity of NFAscep
	Global Query Optimisations
	Local Query Optimisation

	Experimental Evaluation
	Experimental Setup
	Results and Analysis

	Summary

	IV Conclusion and Future Perspectives
	Conclusion
	RDF Graph Stream Processing
	Semantic Complex Event Processing
	Impact

	Future Perspectives
	Top-k Operator over RDF Graph Streams
	Multicore Mode for the RDF Graph Streams
	Processing RDF Graph Streams in Distributed Environments

	Dataset Queries
	LUBM Queries
	SNB Queries
	LSBench Queries
	SEAS Queries
	V-Shaped Pattern Queries for SPAseq and EP-SPARQL
	SPAseq Queries
	EP-SPARQL V-Shaped Pattern

	List of Related Publications

