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Abstract 
 

The objective of scheduling problems is to find the optimal performing 
sequence for a set of tasks by respecting predefined constraints and optimizing 
a cost: time, energy, etc. Despite classical approaches, automata models are 
expressive and also robust against changes in the parameter setting and against 
changes in the problem specification. Besides, few studies have used formal 
verification approaches for addressing scheduling problems; yet none of them 
considered challenging and practical issues such as multi-resource sharing 
aspect, uncontrollable environment and reaching the optimal schedule in a 
reasonable time for industrializing the model. 

The main objective of this thesis is to propose an efficient modeling and 
solving approach for the scheduling problem, considering multi-resource 
sharing and potential uncertainty in occurrence of certain events. 

For this purpose, after an introduction in Chapter 1, Chapter 2 addresses the 
problem of scheduling through a visual, expressive and formal modeling 
approach, based on weighted automata and the theory of timed automata. The 
originality of the proposed approach lies in ability of handling the sharing of 
multiple resources and proposing an efficient solving approach. The proposed 
models have the advantage of being directly exploitable by means of formal 
verification tools. The results are obtained using the UPPAAL tool. To solve 
the problem, an algorithm is developed based on iterating reachability analysis 
to obtain sub-optimal makespan. Results show the proposed model and solving 
approach provides a very promising complexity on the class of studied 
problems and can be applied to industrial cases. In Chapter 3, a synchronous 
composition of weighted automata is proposed to solve the scheduling problem 
by performing an optimal reachability analysis directly on the weighted 
automata models. In the fourth chapter, various uncontrollable behaviors such 
as the start time, the duration of the task and the failure occurrence in a 
scheduling problem are modeled by timed game automata. Then, the problem 
is solved by performing an optimal strategy synthesis over time in TIGA as a 
synthesis tool. 

 

Keywords: Discrete event systems; Formal verification; Control synthesis; 
Timed automata; Weighted automata; Scheduling problem; Makespan; Multi-
resource sharing; Uncontrollability 
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Résumé 
L'objectif principal de cette thèse est de proposer une approche efficace de 

modélisation et de résolution pour le problème d’ordonnancement, en mettant 
l’accent sur le partage multi-ressources et sur l’incertitude potentielle 
d’occurrence de certains événements.  

L'ordonnancement a pour objectif de réaliser un ensemble de tâches à la fois 
en respectant des contraintes prédéfinies et en optimisant le temps. Ce travail 
s’intéresse en particulier à la minimisation du temps total d’exécution. La 
plupart des approches existantes préconisent une modélisation mathématique 
exprimant des équations et des contraintes pour décrire et résoudre des 
problèmes d’ordonnancement. De telles démarches ont une complexité 
inhérente. Cependant dans l’industrie, la tâche de planification est récurrente et 
peut requérir des changements fréquents des contraintes. Outre cela, la prise en 
compte d’événements incertains est peu supportée par les approches existantes; 
cela peut toutefois augmenter la robustesse d’un ordonnancement.  

Pour répondre à ces problématiques, après une introduction, le chapitre 2 
aborde le problème de l’ordonnancement à travers une démarche de 
modélisation visuelle, expressive et formelle, s’appuyant sur les automates 
pondérés et sur la théorie des automates temporisés. L’originalité des modèles 
proposés réside aussi dans leur capacité de décrire le partage de ressources 
multiples et proposer une approche de résolution efficace. Ces modèles ont 
l’avantage d’être directement exploitables par des outils de vérification 
formelle, à travers une démarche de preuve par contradiction vis-à-vis de 
l’existence d’une solution. Les résultats effectifs sont obtenus grâce à l’outil 
UPPAAL. La complexité inhérente à la production d’une solution optimale est 
abordée à travers un algorithme de recherche et d’amélioration itérative de 
solutions, offrant une complexité très prometteuse sur la classe de problèmes 
étudiés. Dans le chapitre 3, une composition synchrone est d’automates 
pondérés est proposée dans le but de résoudre le problème d’ordonnancement 
en effectuant une analyse d’atteignabilité optimale directement sur les modèles 
automates pondérés. Dans le quatrième chapitre, divers comportements 
incontrôlables tels que le temps de début, la durée de la tâche et l'occurrence 
d’échec dans un problème d‘ordonnancement sont modélisés par des automates 
de jeu temporisés. Ensuite, le problème est résolu en effectuant une synthèse de 
stratégie optimale dans le temps dans l'outil de synthèse TIGA. 

 

Mots-clés: Systèmes a événements discrets; Vérification formelle; Synthèse 
de contrôleur; Automates temporisés; Automates pondérés; Problème 
d’ordonnancement; Makespan; Partage multi-ressources; Incontrollabilité 
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1 General introduction 

1.1 Introduction 
The objective of scheduling problems is to find the optimal sequence for 
performing a set of tasks by respecting predefined constraints and optimizing 
time, energy, etc. This problem splits in different classifications such as single 
machine scheduling, identical, uniform, unrelated and dedicated parallel 
machine scheduling, and open shop, flow shop and job shop scheduling 
(Zobolas, Tarantilis, and Ioannou 2008). 

In most of these problems, researchers consider that only one resource is 
assigned to each task. While in some application domains, it is essential to 
assign more than one resource to each task. These resources can be composed 
of machines, dies, pipes, fixtures, guided vehicles, industrial robots, tools or 
even multi-skilled workforces. There are various applications for Multi-
Resource Sharing (MRS) scheduling problems. For example, scheduling tasks 
in an oil seaport; oil transfer operations and maintenance operations can be 
considered as tasks and valves can be considered as critical resources. A liquid 
transfer can be carried out through a temporary alignment in the network by 
opening the valves in the alignment and closing all adjacent ones in order to 
isolate it from the rest of the network. Therefore, several valves, i.e. multi-
resources, may be used to do a liquid transfer task. While it may be necessary 
to perform maintenance on the valves of the same alignment. This issue 
prevents the liquid transfer operation which means conflict between two tasks 
that share multiple resources (Quintero Garcia 2015). 

It is noteworthy to mention that considering multi-resource sharing criteria 
in the scheduling problem, increases the problem complexity. In fact, it will be 
converted to an NP-hard problem (Edis, Oguz, and Ozkarahan 2013; Hartmann 
and Briskorn 2010). Therefore, this kind of problem should be solved in a 
manner that prevents rate of computational time to become exponential. 

There are different approaches to model MRS scheduling problem such as 
(max,+) algebra, Petri nets, automata theory or approaches that are not in the 
field of discrete event systems (non-DES). Among these approaches, automata 
and Petri net models are more expressive and also robust against changes in the 
parameter setting and against changes in the problem specification. Petri net 
models demonstrate dynamic behavior of the system. Whereas, the objective of 
modeling by automata is to show state space of the system. For instance, task 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés



Chapter 1: General introduction 
 

 
Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon               3 
 

execution in a scheduling problem through state space of an automaton can be 
modeled as follows: one state can show the situation that a task is not yet 
executed. Then, by taking a transition, the automaton moves to a state where it 
executes the task. After finishing the task, the automaton takes another 
transition and moves to a state where the task is finished. Hence, in the state 
space of an automaton execution of tasks can be shown visually. Therefore, 
automata is a proper means for visual illustration of sequence of tasks in a 
schedule. Through automata theory, various hypotheses of the problem can be 
demonstrated by automata models and its global behavior can be shown by 
composition of automata. Furthermore, properties can be defined to verify 
correctness of the model and to solve the scheduling problem. 

There are mainly two types of automata that can simulate time and task 
durations for modeling scheduling problems aiming at minimizing makespan: 
1. Automata based on weights (i.e. weighted automata) 2. Automata based on 
clocks. In Chapter 2, it is shown that simpler and more abstract models can be 
built for the MRS scheduling problem through weighted automata. A problem 
has different components defined in the problem description. Each component 
may be needed to be modeled separately in one local automaton. For solving 
the problem performing analyses, it is necessary to obtain the global behavior 
of the problem. To this end, synchronous composition of all the local automata 
should be build which shows global behavior of the problem. A literature 
review on synchronous composition of weighted automata is investigated in the 
next section (Section 1.2). 

The problem discussed so far was completely deterministic. All the 
information concerning the tasks to be executed was known in advance, 
including their identity, inter-dependence and duration. Furthermore the 
starting time of tasks were deterministic. The same goes for the resources who 
assumed to be reliable. Real life is not like that. New tasks may arrive in the 
middle of the performance, while others may be canceled. Duration of tasks 
may be more or less that the expected time, cost of task performance may 
change, resources may break down, etc. In these situations the evolution of the 
system depends on the actions of two “players” in each moment, the scheduler 
which decides to wait or to start which task in a given situation and the 
“environment”, which denotes all sources of uncontrollable events such as the 
start time or termination of a task or resource failure. 

Despite of importance and significant role of explained criteria, only few 
numbers of studies involve these aspects in scheduling problems. 
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1.2 State of the art 
In this section, the relevant literature is reviewed to show existing research gaps 
in scheduling problems and to distinguish the present research work from 
previous ones. Finally, a classification of described studies is presented. 

1.2.1 State of the art on general scheduling problems 
Confessore, Giordani, and Rismondo (2007) investigate a multi-project 
scheduling problem. In this problem, each project consists of a set of activites 
with precedence constraints and require specific amounts of resources. 
Resources may be used only by one project or they may be shared between 
projects. The objective is to minimize each project schedule makespan by 
considering precedence and resource constraints. A makespan is defined as the 
maximum completion time of tasks or in other words the execution time of all 
the tasks only once.  The authors presented a multi-agent system model, and an 
iterative combinatorial auction mechanism for the agent coordination. They 
developed a dynamic programming formulation for the combinatorial auction 
problem, and heuristic algorithms for both the combinatorial auction and the 
bidding process. Xian, Lu, and Li (2007) propos a method for scheduling 
multiple real-time tasks in multiprocessor systems with the objective of energy 
minimization. The studied system supports Dynamic Voltage Scaling (DVS). 
The resources are multiprocessor systems with uncertain workloads under hard 
real-time constraints. The investigated problem is NP-hard. For solving it, 
firstly through a polynomial-time heuristic method the problem is converted to 
a probability-based load balancing problem. Then, it is solved with worst-fit 
decreasing bin-packing heuristic and the efficiency of their method is shown 
comparing to the existing methods. 

Kellerer and Strusevich (2008) deal with a minimizing the makespan of a 
scheduling problem that consider m parallel machines as resources. The 
machines in this problem are dedicated. That is, machine are assigned to jobs 
in advance. In addition to the main resources, there is a type of an additional 
resource that may be assigned to a job at any instance to accelerate its process. 
The authors studied two cases; the presence of a single renewable additional 
resource of unit amount as well as the presence of several available units of the 
resource for its generalization. The problem studying in this paper is NP-hard. 
They propose algorithms to solve the problem for the case of 2 machines, a 
fixed number of machines and arbitrary number of machines. 

Ooshita, Izumi, and Izumi (2009) investigate minimization of global 
makespan in a parallel computing environment where different jobs should be 
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executed by machines in different organizations. The authors define a 
cooperation degree between organizations while each organization does not 
allow the completion time of its own jobs to be delayed in predefined 
cooperation time in global makespan. In fact, they model a cooperative multi-
organization scheduling problem considering a degree cooperative as 
constraint. Xi, Jiang, and Zhang (2009) studies multi-resources-constrained job 
shop scheduling problem. The resources in this paper are machines and molds. 
The author proposed a heuristic algorithm to solve the scheduling problem and 
shows that time complexity of the algorithm is low. Therefore a schedule can 
be obtained in a reasonable time through the proposed algorithm. In this study, 
multiple resources (e.g. groups of machine, molds and fixture) are used at the 
same time to perform a task. Furthermore, machine group and mold group for 
each procedure is unique. Whereas, optional machine and mold in these groups 
are not only, that is there exist many machines and molds that can perform each 
procedure. Castro, Harjunkoski, and Grossmann (2009) deal with the 
scheduling of continuous plant considering cost minimization. In this problem, 
there energy usage should be optimized depending on the energy pricing 
variations during the day.  Moreover, uncontrollable events are concerned in 
the scheduling such as machine breakdown or urgent orders that need to be 
satisfied. 

Heimerl and Kolisch (2010) propose an integer mathematical model for 
scheduling of IT-projects. Their objective is to minimize the total cost which 
consists of skilled human resource cost. The authors consider multi-resource 
sharing aspect with assigning multi-skilled human resources to different 
projects. They solve the proposed problem using an exact method and show its 
efficiency compared to simple heuristics. Yusta, Torres, and Khodr (2010) 
addresses the problem of optimum production schedule in order to maximize 
the industry profit respecting to hourly variation of the electricity price in the 
spot market. To this end, a mathematical optimization model is proposed to 
simulate costs and the electricity demand of machining process. Then, it is 
solved through generalized reduced gradient approach. 

Edis and Ozkarahan (2011) addresses a resource-constrained identical 
parallel machine scheduling problem with machine eligibility restrictions. The 
aim of this study is makespan minimization. In this problem, there exist a set 
of machine types for performing tasks. Each type of machine consists of certain 
number of machines. Moreover, for performing each task, besides machines, 
certain additional resources such as automated guided vehicles, machine 
operators, dies, tools, pallets, industrial robots, etc. maybe used. This problem 
is classified into the NP-hard class of problems. The problem is modeled 
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through three approaches: an integer programming (IP) model, a Constraint 
Programming (CP) model and a combined IP/CP model. The models are solved 
in OPL Studio 3.7™ and accordingly, time complexity for solving each of them 
are also discussed.  

Quintero et al. (2013) presents a (max,+) optimization model for scheduling 
tasks in an oil seaport. The objective of this schedule is to minimize the total 
cost due to delay penalties. In this study, the start time of maintenance 
operations on valves are fixed. Oil transfer operations and maintenance 
operations are considered as tasks and valves are considered as critical 
resources. Since the oil pipeline is confined to a certain number of valves and 
pipes, there exist conflicts for using valves. Therefore, multi-resource sharing 
is considered in this study. In another work, Quintero et al. (2014b) proposes a 
(max,+) optimization model for the same scheduling case study considering 
flexible preventive maintenance. In another article, Quintero et al. (2014a) 
explore the integration of failure risk into their former studies. Quintero, Niel, 
and Aguilar (2015) investigate the same problem and case study by considering 
flexible resource assignment, i.e. resources are not associated to the tasks prior 
to the scheduling.  

Luo et al. (2013) investigates a bi-objective hybrid flow shop scheduling 
problem. For this purpose, a new ant colony optimization meta-heuristic is 
proposed to improve production efficiency in and electric power cost with the 
presence of time-of-use electricity pricing strategy. In fact, production 
efficiency increases by minimizing the makespan. 

Moon and Park (2014) tackle flexible job-shop problem concerning time-
dependent and machine-dependent electricity costs with distributed energy 
resources. The aim of this study is minimizing the total production cost. The 
energy resources are consist of energy storage and renewable energy resources 
such as solar energy and wind. The solving approaches in this study are 
constraint programming and mixed-integer programming. 

Afzalirad and Rezaeian (2016) investigates an unrelated parallel machine 
scheduling problem with resource constrains, sequence-dependent setup times, 
different release dates, machine eligibility and precedence constraints. 
Restricted number of additional resources such as labors, tools, jigs, etc. are 
taken into account. Therefore, this problem can be classified to multi-resource 
sharing problems. The problem is represented through an integer mathematical 
model. Then it is solved through two meta-heuristic algorithms including 
genetic algorithm and artificial immune system with objective of minimizing 
the makespan. Kundakcı and Kulak (Kundakcı and Kulak 2016) propose 
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efficient hybrid Genetic Algorithm methodologies in order to minimize 
makespan of a dynamic job shop scheduling problem. In this problem, 
uncontrollable events such as random job arrivals, machine breakdowns and 
changes in processing time are considered.  

1.2.2 State of the art on scheduling problems modeled by automata 
In this section, the literature relevant to the scheduling problems modeled by 
automata is reviewed. More detail is provided in Chapter 2. 

Hune, Larsen, and Pettersson (2001) investigate the problem of scheduling 
and synthesizing distributed control programs for a batch production plant and 
use UPPAAL to solve the problem. In this problem, multi-resource assignment 
is not taken into account. Abdeddaim and Maler (2001) model classical job-
shop scheduling problem by a special class of timed automata. It is noteworthy 
to mention that in a shop problem, e.g. job shop problem every resource is 
allowed to be used by a single task. Hence, studies considering shop problems 
do not use multiple resources to execute a task. Niebert and Yovine (2001) 
concern a casy study on verification of hybrid systems. In this study, an optimal 
dynamic scheduler is derived for a cyclic experimental chemical batch plant at 
Dortmund. The authors model the problem by timed automata. In this article 
multi-resource allocation is not allowed.  

Yasmina Abdeddaim et al. (2003) address the problem of optimal job-shop 
scheduling of partially-ordered tasks on parallel machines. The problem is 
formulated by timed automata and the objective is to minimize the makespan. 
Multi-resource sharing is not considered in the presented model.  

G. Behrmann et al. (2005) address a type of job shop scheduling problem 
for lacquer production. The authors investigate firstly schedulability of the 
problem. Then, add storage and delay costs to the problem and propose a 
method to minimize the cost. They model two case studies by timed automata 
and priced timed automata. The problems are solved by reachability analysis. 

Panek, Stursberg, and Engell (2006) present a new approach to minimize the 
makespan of job-shop scheduling problems. In this article, the problem is 
modeled by timed automata. In another article, Panek, Engell, and Stursberg 
(2006) apply their aforementioned scheduling method in a case study from the 
chemical industry. The goal of this problem is to investigate schedulability of 
the problem and also to minimize the makespan. Abdeddaïm, Asarin, and Maler 
(2006a) use timed automata for minimizing the makespan of a classical job-
shop problem. The authors also consider uncertain task duration.  
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David, Illum, and Larsen (2009) proposed a framework to model and 
analyze a variety of schedulability scenarios for problems that deal with multi-
processor systems, timing uncertainties in arrival and execution times, possible 
dependencies of tasks and preemption of resources. The problem is modeled by 
timed automata.  

Subbiah and Engell (2010) propose a timed automata model and solve a 
scheduling problem with sequence-dependent changeover procedures and 
limited discrete resources. The authors model the problem through interacting 
timed automata. In order to generate a schedule, a cost-optimal reachability 
analysis is performed to minimize the makespan.  

Marangé et al. (2011) propose a job-shop scheduling model by 
communicating automata to handle reconfiguration of a manufacturing plant.  

Alves et al. (2016) addresses a supervisory scheduling problem in 
manufacturing systems in order to maximize parallelism among resources. 
They model the problem through deterministic finite automata. Uncontrollable 
events may occur during the execution of sequence of tasks. The main objective 
of this study is not to minimize the makespan, but to maximize the parallelism 
of working resources. Nikou, Tumova, and Dimarogonas (2016) model a 
problem of cooperative task planning of multi-agent systems considering timed 
constraints by weighted automata. Shehabinia, Lin, and Su (2016) model a 
scheduling problem under multiple job deadlines through time-weighted 
automata. In the article, the objective is to meet all job specifications and 
deadlines.  

1.2.3 State of the art on synchronous composition of weighted automata 
In this section, the literature relevant to the synchronous composition of 
weighted automata is reviewed. More detail is provided in Chapter 3. 

To the best of our knowledge, only four researches have proposed a new 
composition. Komenda, Lahaye, and Boimond (2009b) in one of the articles a 
synchronous composition for (max, +) automata is proposed. This composition 
could be employed for modeling of multi-resource sharing scheduling 
problems. Whereas, the minimum makespan cannot be obtained through this 
composition. The same authors propose another type of synchronous 
composition for (max, +) automata. Despite the minimum makespan can be 
found through a reachability analysis on this composition, simultaneous 
execution of actions from different local automata cannot be shown (Lahaye, 
Komenda, and Boimond 2015). Su, Van Schuppen, and Rooda (2012) propose 
a synchronous composition for weighted automata. Whereas, through this 
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composition, simultaneous behavior of tasks cannot be show. Quintero (2015) 
proposes alphabets for the time-optimal synchronous composition of six 
tropical automata. The transition function is not defined and through the 
presented alphabet, the minimum makespan can be obtained for a scheduling 
problem for which the only constraint is task conflict. Furthermore, this 
formulation is not generalized to the case of n automata. 

1.2.4 State of the art on MRS scheduling considering uncontrollable 
environment 
In this section, the literature relevant to the scheduling problems considering 
uncontrollable environment is reviewed. More detail is provided in Chapter 4. 

Girault et al. (2003) present a new scheduling heuristic called Fault-
Tolerance Based Active Replication to produces distributed fault-tolerant 
schedules for embedded systems. In this study, the processor failure is 
considered as uncontrollable parameter.  

Abdeddaïm, Asarin, and Maler (2006a) use timed automata for minimizing 
the makespan of a classical job-shop problem. The authors also consider 
uncertain task duration.  

Abdeddaïm, Asarin, and Sighireanu (2009) present a subclass of Timed 
Game Automata (TGA), called Task TGA which is defined as networks of 
communicating tasks. In this network, the start time of tasks are deterministic, 
while their duration are uncertain.  

Dumitrescu et al. (2010) propose a framework for multi-criteria optimal 
controller synthesis to model and optimize fault-tolerant distributed systems 
considering task execution cost and its service quality. To model the multi-task 
system, labeled transition system is defined based on input and outputs events.  

Atto, Martinez, and Amari (2011) provide a (max,+)-based method to 
supervise discrete event systems subject to tight time constraints. The authors 
model the studied system by Petri net. The method is applied to an example of 
industrial manufacturing plant. Moreover, possible failures are taken into 
account.  

Su, Van Schuppen, and Rooda (2012) address a minimum-makespan 
supervisory synthesis job shop problem. They assume also occurrence of 
uncontrollable events. The authors models the problem by weighted and un-
weighted deterministic finite state automata. 
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Kim, Zhou, and Lee (2014) propose a method for steady scheduling of a 
single-armed cluster tool based on Petri net and (max,+) algebra. They concern 
disruptive events during the fabrication process.  

Fernández Anta et al. (2015) deal with an online system consisting of tasks 
with different execution times that arrive continuously to be executed on sets 
of machines which are subject to crashes and restarts. The objective is to 
minimize execution time and energy. Cimatti, Micheli, and Roveri (2015) 
address the problem of temporal planning considering uncontrollable duration 
of actions.  

Dorndorf, Jaehn, and Pesch (2017) tackle the problem of assigning flights to 
airport gates while starting and completion times of flight activities are 
stochastic. 

1.2.5 Synthesis of the state of the art 
Table 1.1 illustrates the classification of the presented papers in the scheduling 
problem literature. In this table, the reviewed papers are classified based on four 
criteria: 1. the optimization objective of the discussed problem, 2. considering 
multi-resource sharing constraint, 3. concerning uncontrollable situations in the 
scheduling problem and 4. the modelling approach by which the problem is 
modeled. In the following these criteria are explained. 

Based on this literature review and Table 1.1, it can be observed that some 
researchers consider “time” optimization with objective of makespan 
minimization or defining temporal constraints to control maximum delay. 
Another group of researchers minimize the “cost” which consists of penalty 
cost due to delays, cost of energy or any resource. The rest of researchers 
minimize total “energy” used by resources to execute tasks. 

An analysis on table 1.1 shows that only few researchers consider multi-
resource sharing aspect and among them no author models the problem using 
automata theory. Despite expressiveness of automata for modeling problems, 
few studies model the scheduling problem by automata. A group of them use 
approaches that are not classified in the field of discrete event systems. Most of 
these approaches use equations for modeling problems that as explained in the 
introduction section, there are not as expressive as automata. Some of them use 
(max,+) algebra equations for modeling which are also not visual. Another 
group utilize Petri net for modeling the problem. Modeling by Petri net is also 
a visual approach. Whereas, as explained in the introduction section, this 
approach shows the dynamic behavior of the problem and not the state space, 
which is our intent. Another analysis proves that the few researchers that model 
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the problem by automata theory, consider uncontrollable parameters in 
scheduling problems. Among these studies, none of them concern multi-
resource sharing issue.  

Beside the presented research gaps, referring section 1.2.3, no researcher 
proposes an appropriate synchronous composition for weighted automata to be 
applied to MRS scheduling problem.  Since there are two issues that at least 
one of them concern the existing synchronous compositions in the literature: 1. 
Being unable to show all possible behaviors of the scheduled problem such as 
simultaneous execution of actions in different automata 2. Not containing a 
trajectory with the minimum makespan for the problem. 

As explained in the introduction of this chapter, for generating a schedule, 
performing synchronous composition of the components of the problem is 
indispensable. Thus, two approaches can be followed to model the MRS 
scheduling problem using automata: 

The first approach is to model the problem by weighted automata and then 
translate the models to a clock-based automata for which the formalism of 
synchronous composition exist. Timed automata is a clock-based automata 
containing necessary formal features for modeling of MRS scheduling 
problems containing controllable actions and tasks. Formalism of synchronous 
composition of timed automata is defined before and moreover, a timed 
automaton model is implementable in a formal verification tool. In a formal 
verification tool, the behavior of them problem can be synthesized and the 
optimal schedule can be obtained automatically. 

The second approach is to model the problem by weighted automata and 
propose a synchronous composition for weighted automata to compose them. 
In this approach, the necessary analysis for finding the optimum schedule can 
be done on the weighted automata composition of models. Thence, it is not 
needed to translate models to timed automata which may reduce the complexity 
of the solving approach, since the translation step is omitted from the analysis 
procedure. 
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Table 1.1. Classification of literature about scheduling problems 

Authors Optimization 
objective 

Multi-Resource 
Sharing 

Modeling 
Approach Uncontrollability 

(Hune, Larsen, and 
Pettersson 2001) time  automata  

(Abdeddaim and Maler 
2001) time  automata  

(P Niebert and Yovine 
2001) time  automata  

Girault et al. (2003) time  Data-flow 
graph  

(Behrmann et al. 2005) time-cost  automata  

(Panek, Stursberg, and 
Engell 2006) time  automata  

(Panek, Engell, and 
Stursberg 2006) time  automata  

(Yasmina Abdeddaïm, 
Asarin, and Maler 2006) time  automata  

(Confessore, Giordani, 
and Rismondo 2007) time  Non-DES  

(Xian, Lu, and Li 2007) energy  Non-DES  

(Kellerer and Strusevich 
2008) time  Non-DES  

(David et al. 2009) time  automata  

(Y. Abdeddaïm, Asarin, 
and Sighireanu 2009) time  automata  

(Xi, Jiang, and Zhang 
2009) time  Non-DES  

(Ooshita, Izumi, and 
Izumi 2009) time  Non-DES  

(Castro, Harjunkoski, and 
Grossmann 2009) cost  Non-DES  

(Subbiah and Engell 
2010) time  automata  

(Yusta, Torres, and Khodr 
2010) cost  Non-DES  

(Dumitrescu et al. 2010) time  automata  

(Heimerl and Kolisch 
2010) cost  Non-DES  

(Marangé et al. 2011) time  automata  
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Authors Optimization 
objective 

Multi-Resource 
Sharing 

Modeling 
Approach Uncontrollability 

(Edis and Ozkarahan 
2011) time  Non-DES  

(Atto, Martinez, and 
Amari 2011) time  Petri net  

(Su, Van Schuppen, and 
Rooda 2012) time  automata  

(Luo et al. 2013) time-cost  Non-DES  

(Quintero et al. 2013) cost  (max,+) 
algebra  

(Moon and Park 2014) cost  Non-DES  

(Kim, Zhou, and Lee 
2014) time  Petri net  

(Quintero et al. 2014a) cost  (max,+) 
algebra  

(Quintero et al. 2014b) cost  (max,+) 
algebra  

(Fernández Anta et al. 
2015) time-energy  Non-DES  

(Quintero, Niel, and 
Aguilar 2015) cost  (max,+) 

algebra  

(Cimatti, Micheli, and 
Roveri 2015) time  Non-DES  

(Shehabinia, Lin, and Su 
2016) time  automata  

(Kundakcı and Kulak 
2016) time  Non-DES  

(Nikou, Tumova, and 
Dimarogonas 2016) time  automata  

(Alves et al. 2016) time  automata  

(Afzalirad and Rezaeian 
2016) time  Non-DES  

(Dorndorf, Jaehn, and 
Pesch 2017) time  Non-DES  
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1.3 Research question1 
According the presented research gaps, five research questions are identified: 

• To model multi-resource sharing scheduling problem using automata 
theory 

• To develop an efficient solving approach for the MRS scheduling 
problem modeled by automata theory which can solve the problem in 
a duration appropriate for decision making. 

• To develop a synchronous composition for weighted automata 
appropriate for MRS scheduling problem 

• To develop a solving approach using the synchronous composition of 
weighted automata 

• To model and solve a MRS scheduling problem considering 
uncontrollable events and parameters using timed game automata 

1.4 Contribution 

1.4.1 Chapter 2: MRS scheduling through translation of weighted to timed 
automata 
In the second chapter, a two-step modeling approach is presented to integrate 
multi-resource sharing issue in scheduling problems using automata theory. In 
the first step, the problem is modeled by weighted automata which yields a 
simple and abstract model. In the second step, the weighted model is translated 
to timed automata. The advantage of this translation is using formal verification 
tools for solving the problem. Thence, the timed models are implemented in 
UPPAAL which is a mature formal verification tool.  

To solve the problem, an algorithm is developed based on iterating 
reachability analysis to obtain sub-optimal makespan. 

1.4.2 Chapter 3: Multi-resource sharing scheduling by using synchronous 
composition of weighted automata 
The main contribution of this chapter is defining a new synchronous 
composition for weighted automata. The weighted automata models of MRS 
scheduling problem is compose through this definition. Then, a time-optimal 
reachability analysis algorithm is developed to find the time optimal schedule. 

                                                           
1 Verrou 
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1.4.3 Chapter 4: Multi-resource sharing scheduling considering 
uncontrollable environment 
In this chapter, various uncontrollable events and parameters such as start time, 
duration of task and failure occurrence in a MRS scheduling problem is 
modeled by timed game automata. Then, a synthesis tool named TIGA is used 
to solve the problem by performing a time-optimal strategy synthesis. 

1.5 Background 
Formal verification techniques are engaged with TCTL property verification, 
which is a type of property languages. These techniques are based on 
constructing reachability graph of the system and traversing through this graph 
that can be done in different manners such as breadth-first search or depth-first 
search. In this section, a brief introduction to these concepts is provided. 

1.5.1 Formal verification (or model checking) 
The domain of verification is concerned with proving or disproving that 
systems behave as required under all possible circumstances. In fact, a model 
checker uses an algorithm to check if a logical formula holds in a system. A 
system can be represented by an automaton containing some states and 
transitions. Thus, the set of all paths in the transition graph of the automaton 
represents the set of all possible behaviors of the system. So the problem of 
verification can be reduced to the problem of checking the existence of certain 
paths in the transition graph. Reachability properties are a type of the properties 
to which verification is applied; they are verified by a path to know whether or 
not it reaches some specific states. In some cases it should be checked if all 
behaviors avoid a set of “forbidden” states, e.g. a state where the system is in 
the risk of failure, and in some others behaviors should be found that proceed 
to a desired final state, e.g. a state where all tasks have terminated. Such 
properties are examples of safety and liveness properties, respectively. If the 
system fails to meet a specific property, the model checker can be asked to 
generate a counterexample to show how the property was violated. Furthermore 
if the system meets the property, the model checker can be also asked to 
generate a witnessing trace to illustrate one of the possible paths for which the 
property holds. 

By assigning numerical weights to the automaton transitions, one can 
associate real numbers with paths and search for paths that have minimum 
weight, using fastest path algorithms. Therefore by performing reachability 
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analysis along with using shortest path algorithms, the minimum makespan can 
be found. 

1.5.2 Property-specification language 
In this section required formalisms for expressing properties of timed systems 
is presented. There exist two types of formalisms, linear-time and branching-
time. In linear time, properties are interpreted as sets of executions and 
specifications are evaluated on runs. While in branching time, properties are 
validated on sets of execution trees and specifications are checked on semantic 
graphs (Tripakis 1998).  

Since branching time properties are used by powerful tools such as UPPAAL 
and Kronos, in this thesis, only this kind of properties is considered.  

1.5.3 The branching time logic TCTL 
Branching time properties are expressed by Timed Computation Tree Logic 
(TCTL) and has been introduced in (R Alur, Courcoubetis, and Dill 1993). 
Let’s ℐ be the set of all intervals of real numbers of the form 
[𝑐𝑐, 𝑐𝑐′], [𝑐𝑐, 𝑐𝑐′), (𝑐𝑐, 𝑐𝑐′], (𝑐𝑐, 𝑐𝑐′), (𝑐𝑐,∞) and [𝑐𝑐,∞), where 𝑐𝑐, 𝑐𝑐′ ∈ ℕ.  Also let 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 be a set of atomic proposition. 

Syntax and semantics: A formula 𝜙𝜙 in TCTL is defined according to the 
following syntax: 

𝜙𝜙 ≔ 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 | 𝑃𝑃 | ¬𝜙𝜙 | 𝜙𝜙 ∨ 𝜙𝜙 | ∃𝜙𝜙𝒰𝒰𝐼𝐼𝜙𝜙 | ∀𝜙𝜙𝒰𝒰𝐼𝐼𝜙𝜙                                             (1.1) 

Let 𝐴𝐴 be a timed automata with the set of states 𝑄𝑄 and 𝑃𝑃:𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 2𝑄𝑄 assign 
a set of discrete states of 𝐴𝐴 to each atomic proposition. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 formulae are 
interpreted over states of  𝐴𝐴. For a state 𝑃𝑃, a TCTL formula 𝜙𝜙 the satisfaction 
relation 𝑃𝑃 ⊨𝑝𝑝 𝜙𝜙 is defined inductively as follows: 

𝑃𝑃 ⊨ 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡    
𝑃𝑃 ⊨ 𝑃𝑃 iff 𝑃𝑃 ∈ 𝑃𝑃(𝑃𝑃)  
𝑃𝑃 ⊨ ¬𝜙𝜙1 iff not 𝑃𝑃 ⊨ 𝜙𝜙1  
𝑃𝑃 ⊨ 𝜙𝜙1 ∨ 𝜙𝜙2 iff 𝑃𝑃 ⊨ 𝜙𝜙1 or 𝑃𝑃 ⊨ 𝜙𝜙2  

 

𝑃𝑃 ⊨ ∃(𝜙𝜙1𝒰𝒰𝐼𝐼𝜙𝜙2) 
 

iff ∃𝜌𝜌 = 𝑃𝑃
𝛿𝛿1→
𝑒𝑒1→ …s.t. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜌𝜌) = ∞ and  

∃𝑡𝑡 . Σ𝑗𝑗≤𝑖𝑖𝛿𝛿𝑗𝑗 ∈ 𝐼𝐼 and 𝜌𝜌(𝑡𝑡) + 𝛿𝛿𝑖𝑖 ⊨ 𝜙𝜙2 and  
∀𝑗𝑗 < 𝑡𝑡.∀𝛿𝛿 ≤ 𝛿𝛿𝑗𝑗 .𝜌𝜌(𝑗𝑗) + 𝛿𝛿 ⊨ 𝜙𝜙1  ∨ 𝜙𝜙2 

(1.2) 

 

𝑃𝑃 ⊨ ∀(𝜙𝜙1𝒰𝒰𝐼𝐼𝜙𝜙2) 
 

iff ∀𝜌𝜌 = 𝑃𝑃
𝛿𝛿1→
𝑒𝑒1→ … 𝑃𝑃. 𝑡𝑡. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜌𝜌) = ∞ and 

∃𝑡𝑡 . Σ𝑗𝑗≤𝑖𝑖𝛿𝛿𝑗𝑗 ∈ 𝐼𝐼 and 𝜌𝜌(𝑡𝑡) + 𝛿𝛿𝑖𝑖 ⊨ 𝜙𝜙2 and  
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∀𝑗𝑗 < 𝑡𝑡.∀𝛿𝛿 ≤ 𝛿𝛿𝑗𝑗 .𝜌𝜌(𝑗𝑗) + 𝛿𝛿 ⊨ 𝜙𝜙1  ∨ 𝜙𝜙2 

𝑃𝑃 satisfies ∃(𝜙𝜙1𝒰𝒰𝐼𝐼𝜙𝜙2) if for some run starting from s and a point along the 
run such that the time spent until that point belongs to the interval 𝐼𝐼, 𝜙𝜙2 holds 
at that point and 𝜙𝜙1 holds continuously until that point. The difference between 
meaning of this property and ∀(𝜙𝜙1𝒰𝒰𝐼𝐼𝜙𝜙2) is that in the second one, all such runs 
should meet the condition.  

The following abbreviations are defined: 

∃ ◊𝐼𝐼 𝜙𝜙 ≔ ∃𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 𝒰𝒰𝐼𝐼𝜙𝜙 
∀ ◊𝐼𝐼 𝜙𝜙 ≔ ∀𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 𝒰𝒰𝐼𝐼𝜙𝜙                                                                                     (1.3) 
∀□𝐼𝐼𝜙𝜙 ≔ ¬∃ ◊𝐼𝐼 ¬𝜙𝜙 
∃□𝐼𝐼𝜙𝜙 ≔ ¬∀ ◊𝐼𝐼 ¬𝜙𝜙 

If the initial state of a timed automata satisfies a formula, it can be said that 
the automata satisfies the formula (Tripakis 1998). 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡: Safety and liveness properties can be expressed by TCTL 
formulas. The formula ∀□≤2𝜙𝜙 means that 𝜙𝜙 holds before 2 time units.  

1.5.4 TCTL properties 
TCTL formulae are classified to state formulae and path formulae. A state 
formula describes individual states. While path formula quantifies over paths 
of the model. Path formulae are consist of reachability, safety and liveness 
properties.  

 State formulae: 
A state formula is an expression for evaluating a state without considering the 
behavior of the model. For example verifying the value of a variable in a state 
can be expressed as a state formula.  

Safety and liveness properties are two main groups of properties. 

 Safety properties: 
Safety properties requires that for every possible execution of the system 
nothing undesirable happens. For example a safety property could be avoiding 
a process from being in the failure state.  A variation of this property is to ask 
if something will possibly never happen. For example in a game, a safe state 
would be where there is still possibility to win the game; in another word, it is 
the possibility for not losing.  
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In UPPAAL safety properties should be formulated positively, e.g. 
something good is always true. There are two types of safety expressions. The 
first one is to say that 𝜑𝜑 is true in all reachable states with the formula ∀□𝜑𝜑 
(𝐴𝐴[]𝜑𝜑 in UPPAAL). The second one is to ask if there is a maximal path2 such 
that 𝜑𝜑 is always true and can be expressed with the formula ∃□𝜑𝜑 (𝐸𝐸[]𝜑𝜑 in 
UPPAAL).  

 Liveness properties: 
Liveness properties are of the form something good eventually happens. For 
instance when pressing the hibernate button of the computer, it eventually 
should pass to the hibernate mode. The simplest form of a liveness property is 
expressing with a path formula ∀ ◊ 𝜑𝜑 which means that 𝜑𝜑 is eventually 
satisfied. Another form of liveness property is response property with the form 
𝜑𝜑 ⇝ 𝜓𝜓 that is equivalent to ∀□(𝜑𝜑 ⇒ ∀ ◊ 𝜓𝜓). This property means that 
whenever 𝜑𝜑 is satisfied, 𝜓𝜓 will be eventually satisfied. In UPPAAL, ∀ ◊ 𝜑𝜑 and 
𝜑𝜑 ⇝ 𝜓𝜓 can be written as 𝐴𝐴 <> 𝜑𝜑 and 𝜑𝜑 − −> 𝜓𝜓 respectively. 

 Reachability properties: 
This properties ask whether a state formula 𝜑𝜑 possibly can be satisfied in any 
reachable state. In another words, it verifies if there exists any path from the 
initial state along which 𝜑𝜑 is eventually satisfied. For example in a model that 
expresses a communication protocol that involves a sender and a receiver, a 
question can be whether it is possible for a sender to send any message.  

A reachability property can be expressed by the path formula ∃ ◊ 𝜑𝜑. In 
UPPAAL, this formula can be written as 𝐸𝐸 <> 𝜑𝜑 (Behrmann, David, and 
Larsen 2006). 

1.5.5 Techniques for constructing reachability graph of systems 
Size of the reachability graph of the system has a great impact on the 
performance of the model checking problem. It is also name size of the state 
space and the larger this size is the slower the verification process will be. State 
space explosion is one of the major limitations in model checking problems 
(Al-Bataineh 2015). In this section, some techniques for construction of state 
space are represented. Verification problems are based on searching traces to 
prove or disprove a property 𝜑𝜑. In general, two main approaches are introduced, 
the fixed-point approach and on-the-fly approach. In the fixed-point approach, 

                                                           
2 A maximal path is either an infinite path or where the last state don’t have any outgoing 

transition. 
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an exhaustive search need to be done and all the states should be represented in 
the memory at the same time. Whereas in on-the-fly approach, only a part of 
the graph need to be generated and the property will be verified while the graph 
is constructed.  

 Backward versus forward analysis 
Backward and forward analyses are both fixed-point approaches. In the forward 
analysis method, model checker constructs a characterization of all reachable 
states from the initial state. While in backward analysis, model checker 
constructs a characterization of all states that can reach the goal state respecting 
to behavioral structure. For some examples the speed of model checking with 
one of these methods may be higher. However backward method is necessary 
for checking certain modalities such as “Until” and “Eventually” and they can’t 
be handled by forward analysis (Al-Bataineh 2015). Kronos supports both 
forward and backward model checking. 

 On the fly approach  
In on-the-fly approach (Bouajjani, Tripakis, and Yovine 1997), the state space 
of the system in generated dynamically and therefore just the minimal amount 
of information is needed to be stored in the memory. The property is checked 
while the model checker is generating the graph. On-the-fly model checking is 
a powerful technique especially when the intent is to disprove a property and 
to generate a counterexample. In fact, errors are discovered so early during 
search and thus avoiding the exploration of the entire state space. On the other 
hand, whenever it is needed to prove that the system is entirely correct 
respecting to a property, a comprehensive search of the state space is needed 
and this method will be less efficient. Hence in a group of examples on-the-fly 
approach is more efficient than fixed-point approach and vice-versa (Al-
Bataineh 2015). Model checking in UPPAAL is based on on-the-fly approach. 

 Compositional model checking 
The state space explosion occurs in systems with many concurrent components 
where most of the model checking techniques are inefficient or impossible. A 
solution in this case is to decompose the system into components and then to 
verify them individually (Berezin, Campos, and Clarke 1998). If the all the 
components satisfy the properties properly, it is concluded that the system 
behaves correctly. The main difficulty is to find if after the parallel 
composition, all properties still remain satisfied. In fact, in some example, 
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different processes of the system need to interact with each other to satisfy a 
property and hence cannot be verified individually (Al-Bataineh 2015).   

1.5.6 Digraph traversal algorithms 
In this section, two basic approaches of graph searching are introduced. These 
methods are used in exploring the state space when performing a reachability 
analysis. The following algorithms explore the automaton in a forward 
direction. While they could also be done in a backward manner. 

 Breadth first search 
The simplest algorithm for performing a reachability analysis is a Breadth-First 
Search (BFS). Below is the BFS algorithm (Sedgewich and Wayne 2017).  

Algorithm 1.1. BFS (from state s)  
𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃 𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃 𝐸𝐸 𝐹𝐹𝐼𝐼𝐹𝐹𝐹𝐹 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘 𝑃𝑃 𝐸𝐸𝑃𝑃 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎.  
𝑅𝑅𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝐸𝐸 𝑡𝑡ℎ𝑡𝑡 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑃𝑃 𝑡𝑡𝑡𝑡𝑃𝑃𝑡𝑡𝑒𝑒:  

 𝑃𝑃𝑡𝑡𝑡𝑡𝑃𝑃𝑣𝑣𝑡𝑡 𝑡𝑡ℎ𝑡𝑡 𝐸𝐸𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑜𝑜𝑡𝑡𝐸𝐸𝑒𝑒 𝐸𝐸𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡 𝑞𝑞  
𝑓𝑓𝑃𝑃𝑃𝑃 𝑡𝑡𝐸𝐸𝑐𝑐ℎ 𝑡𝑡𝑜𝑜𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑞𝑞: 𝐸𝐸𝑎𝑎𝑎𝑎 𝑡𝑡𝑃𝑃 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘 𝐸𝐸𝑃𝑃 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎.  

 Depth-first search 
There is a recursive algorithm for depth-first search of an automaton. Firstly 
one state is selected for visiting. States in an automaton are assumed to split to 
two sets, the ones that are not visited yet and those that are visited. Once each 
non-visited state is visited, it will be removed from the first set and will be 
added to the second set. Below is the algorithm of Depth-First Search (DFS) 
(Sedgewich and Wayne 2017). 

Algorithm 1.2. DFS (to visit a state q) (Sedgewich and Wayne 2017) 
𝑀𝑀𝐸𝐸𝑃𝑃𝑘𝑘 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡 𝑞𝑞 𝐸𝐸𝑃𝑃 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎. 
𝑅𝑅𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑣𝑣𝑡𝑡𝐸𝐸𝑒𝑒 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑜𝑜𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃 𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑞𝑞. 

In a random-depth-first search method, the first state for visiting should be 
chosen randomly. 

This algorithm is the same as DFS algorithm for a directed graph (digraph). 
Java code of a digraph DFS is detailed in Appendix B.  

Technically the difference between a DFS and BFS algorithm is the place 
where new nodes are added to the waiting list for visiting, at the end(BFS) or 
at the beginning (DFS). In other words, the list is FIFO (First In First Out) in 
BFS and LIFO (Last In First Out) is DFS (Yasmina Abdeddaïm, Asarin, and 
Maler 2006).  
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1.6 Conclusion 
In this chapter importance of modeling by automata theory, taking into account 
multi-resource sharing and uncontrollable events and parameters in the 
scheduling problem are explained. Then, the previous studies on scheduling 
problems are reviewed and classified to show the existing research gaps. 
Afterwards, the research question and contribution are presented. Finally, a 
basic background on the main keywords is provided.  

The remainder of this thesis is organized as follows. In Chapter 2 a MRS 
scheduling problem is modeled by weighted and timed automata and solved. In 
Chapter 3, a synchronous composition is proposed for weighted automata to 
solve the problem by performing time-optimal reachability analysis on 
weighted automata models. In Chapter 4, a MRS scheduling problem 
considering uncontrollable parameters modeled by timed game automata and 
solved. Finally, Chapter 5 summarizes results and concludes with 
future research opportunities. 
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2 Multi-resource sharing scheduling 
through translation of weighted to 
timed automata 

2.1 Introduction 
In this chapter, new models and solving approaches are proposed for multi-
resource sharing scheduling problems through automata theory while all the 
tasks are controllable. 

As mentioned in Chapter 1, scheduling problems can be modeled by either 
weight-based automata like weighted automata, or clock-based automata like 
timed automata. During this chapter, it is shown that simpler and more abstract 
models can be built for the MRS scheduling problem through weighted 
automata. Whereas there are two issues for using current synchronous 
compositions. Either the minimum makespan cannot be obtained through using 
them, or they don’t show a complete composed behavior of the components of 
the model. Thence, it is not possible to analyze weighted automata (WA) 
models directly. Therefore, firstly the MRS scheduling problem should be 
modeled by WA. Then, after modeling the problem, there exist two strategies 
to solve the scheduling problem. One solution is to translate the WA model to 
another type of automata for which there exists synchronous composition (e.g. 
timed automata) and analyze the new model to attain a schedule. Another 
solution is to propose a new synchronous composition for WA and use it to 
analyze the WA models directly and without creating intermediate timed 
automata models. In this chapter, it is tried to find schedules by means of the 
first strategy in which timed automata models are used as an intermediate to 
obtain the optimal schedule from the WA models. 

In some studies, automata theory, verification methods and controller 
synthesis have been used for addressing scheduling problems. These articles 
are reviewed to show existing research gaps in scheduling problems and to 
distinguish the present research work from previous ones. 

2.1.1 State of the art 
 Gaubert and Mairesse (1995) present a method for modeling timed concurrent 
systems modeled as automata with multiplicities in the (max,+) semiring. The 
authors present applications of this modeling method to performance evaluation 
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and for finding the makespan in a scheduling problem. Despite formulating 
equations for finding the minimal makespan, the aim of this study is not 
generating a schedule.  

Norström, Wall, and Yi (1999) develop a formalism for an extended version 
of timed automata with real-time tasks to solve problems in event-driven 
systems. This automata can be used for modeling, schedulability analysis, 
formal verification, and code generation. The authors assign a task with its 
worst time execution to each transition with a guard specifying possible arrival 
times of the task. By translating the extended timed automata to a standard 
timed automata, it is possible to verify properties such as schedulability, 
functionality and safety properties of the model. An example is also presented 
to check the schedulability and safety properties of a control program for a 
turning lathe by using UPPAAL. 

Hune, Larsen, and Pettersson (2001) investigate the problem of scheduling 
and synthesizing distributed control programs for a batch production plant and 
use UPPAAL to solve the problem. A plant model which is enough accurate 
for program synthesis is usually so complex. To overcome this complexity, the 
authors apply an approach of guiding a model according to certain strategies. 
In this problem, multi-resource assignment is not taken into account. 
Abdeddaim and Maler (2001) model classical job-shop scheduling problem by 
a special class of timed automata. To obtain the optimal schedule, algorithms 
and heuristics are presented to find the fastest path in timed automata. 
Furthermore the algorithms are implemented in the tool Kronos. Comparing to 
traditional modles of operations research, proposed technics in this study allow 
to model more complex dynamic resource allocation problems. It is noteworthy 
to mention that in a shop problem, e.g. job shop proble, every resource is 
allowed to be used by a single task. Hence, studies considering shop problems 
do not use multiple resources to execute a task. Niebert and Yovine (2001) 
concern a casy study on verification of hybrid systems. In this study, an optimal 
dynamic scheduler is derived for a cyclic experimental chemical batch plant at 
Dortmund. In the first step, the behaviour of the plant is modeled by timed 
automata. In the second step, the models are implemented in the tool Open-
kronos and the optimal production schemes are obtaned using reachability 
analysis. Finaly in the third step high level control codes are derived through 
post-process of the output of the verification tool. In this article multi-resource 
allocation is not allowed.  

Yasmina Abdeddaim et al. (2003) address the problem of optimal job-shop 
scheduling of partially-ordered tasks on parallel machines. The problem is 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés



Chapter 2: MRS scheduling through translation of weighted to timed automata 
 

 
Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon               25 
 

formulated by timed automata and in fact, the optimal schedule is found 
through searching the fastest path in the automaton. In the presented model, 
release time and deadline of tasks, communication costs between task and 
additional resourced are taken into account.  

G. Behrmann et al. (2005) expresses that unlike classical approaches, timed 
automata models are expressive and also robust against changes in the 
parameter setting and against changes in the problem specification. Therefore 
they allow modelling of scheduling problems in different kinds. Furthermore, 
in this paper a type of job shop scheduling problem for lacquer production as a 
case study is investigated. The authors use a heuristic approach to reduce the 
search space. They also propose solutions that are applicable for other 
scheduling cases.  

Panek, Stursberg, and Engell (2006) present a new approach to minimize the 
makespan of job-shop scheduling problems. This approach combines 
reachability computations for timed automata with a branch-and-bound 
principle to improve the efficiency of the reachability algorithm by excluding 
sub-optimal or redundant solutions from the search space. The authors have 
shown that in large size problems and in a given computation time, the proposed 
approach produces better schedules than pure Mixed-Integer Programming 
(MIP) techniques. In another article, Panek, Engell, and Stursberg (2006) apply 
their aforementioned scheduling method in a case study from the chemical 
industry. Abdeddaïm, Asarin, and Maler (2006a) use timed automata for 
solving the classical job-shop problem. They propose shortest path algorithms 
for timed automata to find the optimal schedules. The authors also investigate 
non-lazy scheduling with uncertain task duration.  

David, Illum, and Larsen (2009) proposed a framework to model and 
analyze a variety of schedulability scenarios, particularly problems that deal 
with multi-processor systems, timing uncertainties in arrival and execution 
times, possible dependencies of tasks and preemption of resources. Scheduling 
policies in this study include FIFO, Earliest Dead-line First (EDF), and Fixed 
Priority Scheduling (FPS).  

Subbiah and Engell (2010) propose a timed automata model and solve a 
scheduling problem with sequence-dependent changeover procedures and 
limited discrete resources. The authors model processing units and the recipes 
as interacting timed automata components. In addition, they modeled the setup 
and changeover procedures as operations in the recipe. In order to generate a 
schedule, a cost-optimal reachability analysis is performed. The computational 
time complexity of the solving approach used in the article is less than Mixed-
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Integer Linear Programming (MILP) techniques. Therefore the approach is 
easily applicable to practical large-scale problems.  

Marangé et al. (2011) propose a job-shop scheduling model by 
communicating automata to handle reconfiguration of a manufacturing plant. 
Following a reconfiguration request, a scheduling is generated for a set of 
products that are produced by a set of machines. This schedule can be obtained 
by means of reachability analysis on the model.  

Alves et al. (2016) addresses a supervisory scheduling problem in 
manufacturing systems in order to maximize parallelism among resources. The 
authors model the scheduling problem through deterministic finite automata. 
The schedule corresponds to the supremal controllable sublanguage contained 
in the desired behavior of the system. Uncontrollable events may occur during 
the execution of sequence of tasks and at consequently rescheduling will be 
necessary. The sequence acquired by this algorithm doesn’t have necessarily 
optimal makespan, whereas it generates good solutions that can be used in real 
applications. Therefore, the main objective of this study is not to minimize the 
makespan, but to maximize the parallelism of working resources. Nikou, 
Tumova, and Dimarogonas (2016) address the problem of cooperative task 
planning of multi-agent systems considering timed constraints given by Metric 
Interval Temporal Logic (MITL). A method is presented for control synthesis 
in a two-stage systematic procedure to satisfy individual and team task 
specifications by agents as well as the global team. Same as the previous article, 
this article do not optimizes the makespan. Shehabinia, Lin, and Su (2016) 
model a scheduling problem under multiple job deadlines through time-WA. In 
the article, a supremal controllable job satisfaction sublanguage is computed to 
determine if all job specifications and deadlines are met. In the case the 
sublanguage is not empty, one of its controllable sublanguages is computed that 
ensures the minimum total job earliness by adding proper delays. If the 
sublanguage was empty in order to get a feasible schedule, a set of job deadlines 
will be determined to be relaxed. Consequently, the goal of this article is to 
meet deadlines and not minimizing the makespan. 

2.1.2 Synthesis of the state of the art 
Based on the conducted literature review, automata models are expressive and 
also robust against changes in the problem specification. Therefore automata 
theory is an appropriate means for modeling scheduling problems. Whereas, a 
few studies have successfully used automata theory to solve scheduling 
problems; yet none of them take into account multi-resource sharing aspect. 
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Furthermore the objective of some of these studies is to meet task deadlines and 
not minimizing the makespan. Thus, the aim of this chapter is to minimize the 
makespan of a set of tasks with possible precedence constraints. The problem 
is modeled and solved through automata theory and formal verification. 

To this regard, the remainder of this chapter is organized as follows: A 
detailed description of the MRS scheduling problem is given in section 2.2. In 
sections 2.3 the problem is modeled by WA. Section 2.4 explains the solving 
approach which needs refinement of WA models to timed automata models. 
Finally, section 2.5 is devoted to the conclusion. 

2.2 MRS scheduling problem description 
In the context of this work, various conflicting tasks should be scheduled 
according to the following constrains: 

(1) The duration of each task is predefined and fixed before scheduling. 
(2) Task preemption or cancellation is not allowed, i.e. once they are 

started, they cannot be canceled and should be processed until 
completion. 

(3) There may be conflicts for performing tasks at the same time, but 
when there is no conflict between them, they should be performed 
simultaneously. 

(4) There may exist precedence constraints between tasks. 
(5) All tasks are ready to be executed at time zero. 
(6) Resources are pre-assigned to tasks. 
(7) Resources are reusable (they are not raw materials and by performing 

maintenances, they can be used in every cycle). 
(8) Each resource can be used to execute only one task at a time, but a 

task may use more than one resource simultaneously. 
(9) Resources are available at time zero. 
(10) Resources are reliable and don’t breakdown, but they are subject to 

preventive maintenance which should be defined as a task. 

Tasks in this problem consist of either operations or preventive 
maintenances on resources. The aim of this work is to find a schedule of 
minimum duration considering these constraints, for executing all the tasks just 
once, by assigning a start time to each task.  

It is necessary to understand the concept of multi-resource sharing as the 
most important constraint. In a scheduling problem considering multi-resource 
sharing constraint, each task may utilizes multiple resources simultaneously to 
be performed. Thus, if two tasks needing multiple resources share a resource, 
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they cannot be executed at the same time. Moreover, by finishing the first task, 
the second task may not be able to be executed immediately. Since other 
resources needed for its execution are still busy by another tasks. Hereafter, 
multi-resource sharing is explained through an example. 

Example 1: Assume there is a set of tasks 𝑇𝑇 = {𝐴𝐴,𝐵𝐵,𝑇𝑇} to be done which 
their durations are 7, 5 and 3 time units respectively. A set of resources 𝑅𝑅 =
{𝑅𝑅1, … ,𝑅𝑅5} is assigned to tasks with resource association details shown in 
Table 2.1. (e.g. for doing task 𝐴𝐴 resources 𝑅𝑅1 and 𝑅𝑅5 should be engaged.) 
Hence, 

• Tasks 𝐴𝐴 and 𝐵𝐵 are in conflict because of sharing 𝑅𝑅1. Thus they cannot 
be performed simultaneously. 

• Tasks 𝐵𝐵 and 𝑇𝑇 are in conflict since they share 𝑅𝑅2 and 𝑅𝑅3. So they also 
cannot be executed simultaneously. 

• 𝐴𝐴 and 𝑇𝑇 are not in conflict because they don’t share any resource. 
Therefore according to the constraint (3), they should be performed 
simultaneously. While, if they every task would use a single resource, 
𝐴𝐴 and 𝑇𝑇 was in conflict and couldn’t be launched at the same time. 

Table 2.1. Resource assignment details of Example 1 

task resource 
R1 R2 R3 R4 R5 

A      
B      
C      

2.3 Modeling MRS scheduling problem by weighted 
automata 
In this section, the modeling procedure of the proposed problem is introduced. 

2.3.1 General principle of modeling procedure 
The scheduling problem statement needs to capture four features: task 
triggering, simultaneity, mutual exclusion and timing. For this purpose, a semi-
formal model based on WA is proposed. Inspired from the (max, +) automata 
formalism, they offer an intuitive way of modeling the behavioral features 
mentioned above. Thus, each scheduling problem considered in this work is 
defined as a collections of WAs. The actual scheduling should comply with the 
WA problem statement. As explained in the introduction, the existing 
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synchronous compositions for WA cannot be used for the scheduling purpose. 
Since they either don’t contain a trajectory with the optimum makespan to be 
used as the optimal schedule or are not capable of illustrating simultaneous 
execution of tasks which is a non-separable issue from scheduling. Hence, there 
are two possible solutions for solving a scheduling problem that is modeled by 
WA. The first solution is to employ timed model checking techniques (Baier 
and Katoen 2008) which are defined for timed automata. To this end, each WA 
model of the problem statement is systematically translated into a Timed 
Automaton (TA), according to specific rules defined in the sequel. The 
resulting model is directly usable by a timed model checking tool. The second 
solution is to define a new synchronous composition for WA in order to 
compose WA models directly and solve the scheduling problem without 
translating to timed automata.  

In the next section the scheduling problem is modeled by WA. 

2.3.2 Problem statement by weighted automata 
Definition 2.1 (weighted automata): A deterministic single-duration-action 
weighted automata is defined as a tuple 𝐺𝐺 = (𝑄𝑄,𝑄𝑄0,Σ,𝑓𝑓,𝑎𝑎,𝑄𝑄𝑚𝑚) where 

• 𝑄𝑄 is the set of states, 
• 𝑄𝑄0 is the set of initial states,  
• Σ is the set of symbols representing actions and silent action (ε) whose 

duration is zero, 
• 𝑄𝑄𝑚𝑚 is the set of marked states, 
• 𝑓𝑓:𝑄𝑄 × Σ × ℝ≥0 ⟶ 𝑄𝑄 is the transition function (𝑞𝑞, 𝐸𝐸,𝑎𝑎(𝐸𝐸)) ⟶ 𝑞𝑞′ 

where 𝑞𝑞’ is the state reached from 𝑞𝑞 by starting action 𝐸𝐸 which lasts 
𝑎𝑎(𝐸𝐸) time units and 𝑎𝑎:𝑇𝑇 → ℝ≥0 assigns a duration to every action. 

In should be noted that hereafter, all the WA used for modeling purpose, are 
deterministic single-duration-action WA.  

When taking each transition in WA, two steps are taken, a discrete step and 
a timed step.  

Discrete step: 𝑞𝑞
 𝑎𝑎
→ 𝑞𝑞′ where 𝐸𝐸 is an action, 𝑞𝑞 is the source and 𝑞𝑞′is the 

target of transition 𝑞𝑞
 𝑎𝑎/𝑑𝑑(𝑎𝑎)
�⎯⎯⎯� 𝑞𝑞′ .This kind of step doesn’t take time. 

Timed step: 𝑞𝑞
 𝑑𝑑(𝑎𝑎)
�⎯� 𝑞𝑞′ where 𝑎𝑎(𝐸𝐸) is an action, 𝑎𝑎(𝐸𝐸) is the duration of 𝐸𝐸, 

𝑞𝑞 is the source and 𝑞𝑞′is the target of the transition 𝑞𝑞
 𝑎𝑎/𝑑𝑑(𝑎𝑎)
�⎯⎯⎯� 𝑞𝑞′ . It is 

clear that the duration of this step is 𝑎𝑎(𝐸𝐸) time units. 
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Definition 2.2 (MRS scheduling problem): A MRS scheduling problem 
statement 𝑆𝑆 = (𝑇𝑇,𝐸𝐸,𝐷𝐷𝑒𝑒𝑜𝑜,𝑎𝑎)  consists of  

• a set 𝑇𝑇 = {𝑡𝑡𝑖𝑖|𝑡𝑡 = 1, …𝑁𝑁} of tasks that might be necessary  to be 
executed simultaneously,  

• a family of mutual exclusion constraint sets 𝐸𝐸 ∈ 2𝑇𝑇 that are modeled 
as a set 𝐺𝐺𝑚𝑚𝑒𝑒 of mutual exclusion automata. 

• a duration function 𝑎𝑎:𝑇𝑇 → ℝ≥0 assigning durations to tasks, 
• a set 𝐷𝐷𝑒𝑒𝑜𝑜 = 𝐺𝐺𝑡𝑡𝑡𝑡𝑘𝑘 ∪ 𝐺𝐺𝑝𝑝 of dynamic models such that 𝐺𝐺𝑡𝑡𝑡𝑡𝑘𝑘 ∩ 𝐺𝐺𝑝𝑝 = ∅.  𝐺𝐺𝑡𝑡𝑘𝑘 

denotes the set of task launcher automata. They are modeled for 
triggering each task for 𝑘𝑘 times. �𝐺𝐺𝑡𝑡𝑡𝑡𝑘𝑘� = |𝑇𝑇| = 𝑁𝑁 which means that 
for executing every task, there exists one task launcher automaton. 𝐺𝐺𝑝𝑝 
denotes the set of precedence automata modeling precedence 
constraints among tasks. This set could be empty.  

In the sequel, the formal models of the three automata models are defined 
and clarified by applying to Example 1. 

 The mutual exclusion automaton model 
Each mutual exclusion requirement is specified by a set 𝑇𝑇𝑚𝑚𝑒𝑒 of tasks that are 
forbidden to run simultaneously.  A natural way to model this requirement is a 
single state WA featuring one self-loop transition for each task. This model 
allows all the potential sequences of tasks among 𝑇𝑇𝑚𝑚𝑒𝑒 and prevents two or more 
tasks of 𝑇𝑇𝑚𝑚𝑒𝑒 to be executed simultaneously.  

Definition 2.3 (formal model of the mutual exclusion automaton): A Mutual 
Exclusion (ME) automata is a WA defined as 𝑀𝑀𝐸𝐸 =
({𝑞𝑞0𝑚𝑚𝑒𝑒}, {𝑞𝑞0𝑚𝑚𝑒𝑒},𝑇𝑇𝑚𝑚𝑒𝑒 ,𝑓𝑓𝑚𝑚𝑒𝑒 ,𝑎𝑎, {𝑞𝑞0𝑚𝑚𝑒𝑒}) where 

• 𝑞𝑞0𝑚𝑚𝑒𝑒 ∈ 𝑄𝑄𝑚𝑚𝑒𝑒  is the only state which is both initial and marked state, 
• 𝑇𝑇𝑚𝑚𝑒𝑒 ∈ 𝐸𝐸  is a set of tasks among which there is mutual exclusion, 
• 𝑎𝑎:𝑇𝑇𝑚𝑚𝑒𝑒 → ℝ≥0 assigns a duration to a task 𝑡𝑡 ∈ 𝑇𝑇𝑚𝑚𝑒𝑒, 
• 𝑓𝑓𝑚𝑚𝑒𝑒: {𝑞𝑞0𝑚𝑚𝑒𝑒} × 𝑇𝑇𝑚𝑚𝑒𝑒 × ℝ≥0 → {𝑞𝑞0𝑚𝑚𝑒𝑒} is the transition function where 

∀𝑡𝑡 ∈ 𝑇𝑇𝑚𝑚𝑒𝑒 , 𝑞𝑞0𝑚𝑚𝑒𝑒 = 𝑓𝑓𝑚𝑚𝑒𝑒(𝑞𝑞0𝑚𝑚𝑒𝑒 , 𝑡𝑡,𝑎𝑎(𝑡𝑡)) and duration of each transition 
is equal to 𝑎𝑎(𝑡𝑡), i.e. the duration of the task.  

Figure 2.1 shows the generic pattern of ME automaton. In this figure, 𝑡𝑡𝑖𝑖 
represents the name of the task and 𝑎𝑎(𝑡𝑡𝑖𝑖) denotes its duration. For any 
scheduling problem statement, the number of ME automata is equal to the 
number of sets of mutual exclusions among tasks. 
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Figure 2.1. Modeling pattern of weighted ME automaton 

Example 1 (continue): Let us apply the proposed ME automaton model to 
Example 1. As explained above, there are a number of sets of mutual exclusion. 
Each set should be illustrated in a separate ME automaton. In a ME automaton, 
each task should be modeled as a loop transition joint to the only state existing 
in the automaton.  

Corresponding ME automata for Example 1 is depicted in Figure 2.2. In this 
figure,  

• In automaton 𝐺𝐺1, first task 𝐴𝐴 should be performed for 7 time units and 
then task 𝐵𝐵 for 5 time units or vice versa, i.e. 𝐴𝐴 and 𝐵𝐵 cannot be 
executed at the same time. 

• In automaton 𝐺𝐺2, first task 𝑇𝑇 should be performed for 3 time units and 
then task 𝐵𝐵 for 5 time units or vice versa, i.e. 𝐵𝐵 and 𝑇𝑇 cannot be 
executed at the same time. 

• 𝐵𝐵 is in common between automata 𝐺𝐺1 and 𝐺𝐺2. Therefore, separate 
transitions labeled with 𝐵𝐵 should be synchronized.  

• Duration of 𝐴𝐴 is 7 time units and duration of 𝑇𝑇 is 3 time units. Since 
they are not in conflict, transitions labeled with 𝐵𝐵 and 𝑇𝑇 can be taken 
at the same time. Whereas the transition labeled 𝑇𝑇 reaches to the state 
0 after 3 time units and the transition labeled 𝐴𝐴 reaches this state after 
7 time units.   

 
Figure 2.2. Corresponding ME automata for Example 1 

As illustrated in Figure 2.2, multi-resource sharing creates a special kind of 
task assignment to automata. This conflict is such that some tasks become 
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common among two or more ME automata (task 𝐵𝐵). If only one resource would 
be used by each task, no task was is common among ME automata. This kind 
of tasks are named common tasks. Conversely, those that occur in just one ME 
automaton (tasks 𝐴𝐴 and 𝑇𝑇) are named individual tasks. 

 The task launcher automaton model 
A task launcher model specifies the number of times a task should be triggered 
within the desired scheduling. 

Definition 2.4 (formal model of the task launcher automaton): A task 
launcher automaton 𝑇𝑇𝑇𝑇𝑘𝑘 is a WA which triggers task 𝑡𝑡 for 𝑘𝑘 times. It is an 
element of 𝐺𝐺𝑡𝑡𝑡𝑡𝑘𝑘  defined as 𝑇𝑇𝑇𝑇𝑘𝑘 = (𝑄𝑄𝑡𝑡𝑡𝑡, {𝑞𝑞0t𝑡𝑡}, {𝑡𝑡},𝑓𝑓𝑡𝑡𝑡𝑡 ,𝑎𝑎, {𝑞𝑞𝑚𝑚𝑡𝑡𝑡𝑡}) in which 𝑇𝑇𝑇𝑇𝑘𝑘 is 
a task launcher automata that launches task 𝑡𝑡, 𝑘𝑘 times. In this tuple, 

• 𝑄𝑄𝑡𝑡𝑡𝑡 is the set of states,  
• 𝑞𝑞0t𝑡𝑡 ∈ 𝑄𝑄𝑡𝑡𝑡𝑡 is the initial state which is not a marked state, 
• 𝑡𝑡 ∈ 𝑇𝑇 is the task to be launched,  
• 𝑎𝑎: {𝑡𝑡} → {0} assigns zero duration to the task 𝑡𝑡, 
• 𝑞𝑞𝑚𝑚 ∈ 𝑄𝑄𝑡𝑡𝑡𝑡 is the marked state, 
• 𝑓𝑓𝑡𝑡𝑡𝑡:𝑄𝑄𝑡𝑡𝑡𝑡 × {𝑡𝑡} × ℝ≥0 → 𝑄𝑄𝑡𝑡𝑡𝑡 is the transition function such that: 

∀𝑘𝑘 ∈ ℕ, (𝑓𝑓𝑡𝑡𝑡𝑡 ∘ … ∘ 𝑓𝑓𝑡𝑡𝑡𝑡)���������
𝑘𝑘 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑡𝑡

(𝑞𝑞0𝑡𝑡𝑡𝑡 , 𝑡𝑡, 0) = 𝑞𝑞𝑚𝑚𝑡𝑡𝑡𝑡                                                                      (2.1)                                                                    

∀𝑡𝑡, 𝑗𝑗 ≤ 𝑘𝑘 − 1, 𝑡𝑡 ≠ 𝑗𝑗, (𝑓𝑓𝑡𝑡𝑡𝑡 ∘ … ∘ 𝑓𝑓𝑡𝑡𝑡𝑡)���������
𝑖𝑖 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑡𝑡

(𝑞𝑞0𝑡𝑡𝑡𝑡 , 𝑡𝑡, 0) ≠ (𝑓𝑓𝑡𝑡𝑡𝑡 ∘ … ∘ 𝑓𝑓𝑡𝑡𝑡𝑡)���������
𝑗𝑗 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑡𝑡

(𝑞𝑞0𝑡𝑡𝑡𝑡 , 𝑡𝑡, 0)     (2.2) 

In relation 2.1 it can be seen that by applying 𝑘𝑘 times the transition function 
to the initial state, i.e. 𝑘𝑘 times executing task 𝑡𝑡, the marked state will be reached. 
Relation 2.2 represents that by applying 𝑡𝑡 times and 𝑗𝑗 times transition function 
on the initial state, different states will be reached. In other words, transitions 
of the model are in a sequence manner and the automata passes every state 
exactly one time. 

The aim of the scheduling problem is to calculate the makespan. A makespan 
is the global completion time of all the tasks. In this study, it is assumed that 
every task is executed only once. For the sake of simplicity, in the rest of the 
chapter, 𝑇𝑇𝑇𝑇1 is written as TL. Figure 2.3 represents the generic pattern of a TL 
automaton triggering task 𝑡𝑡 once. Since the duration of the transition in this 
automata is zero time units, for the sake of simplicity, the label of the zero 
duration can be removed from the model and only the name of the task be 
labeled on the transition (Figure 2.4). 
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Figure 2.3. Modeling pattern of weighted TL automaton for 𝑘𝑘 = 1 

 
Figure 2.4. Simplified modeling pattern of weighted TL automaton for k=1 

Example 1 (continue): Let us demonstrate the TL automaton model on 
Example 1. The result is displayed in Figure 2.5. In this figure, the models for 
launching task 𝐴𝐴,𝐵𝐵 and 𝑇𝑇 correspond respectively to 𝐺𝐺3,𝐺𝐺4 and 𝐺𝐺5 
respectively.  

 
Figure 2.5. TL automata in Example 1 

 The task precedence automaton model 
In the proposed framework, two types of precedence constraints have been 
identified. The first type, considers precedence constraints for delay between 
start times of tasks and is denoted as delay precedence constraint. For example, 
task 𝐵𝐵 should be started 2 time units after starting 𝐴𝐴. This delay can be equal to 
the duration of tasks, e.g. duration of 𝐴𝐴. The second type is a particular case of 
the first type. This constraint considers precedence constraints for start times of 
tasks and is denoted as triggering precedence constraint. For example, if the 
precedence constraint is like 𝐴𝐴 → 𝐵𝐵, task 𝐵𝐵 should be started at the same time 
or within an arbitrary delay after starting 𝐵𝐵. In this model, precedence 
constraints between tasks are described as sequences of transitions that follow 
precedence rules. 

Definition 2.5 (formal model of the precedence automata): A precedence 
automaton is a subset of 𝐺𝐺𝑝𝑝 automata set. This automaton model is defined as 
𝑃𝑃𝑅𝑅 = �𝑄𝑄𝑝𝑝𝑝𝑝, �𝑞𝑞0𝑝𝑝𝑝𝑝�,𝑇𝑇𝑝𝑝𝑝𝑝 ,𝑎𝑎𝑡𝑡𝐸𝐸,𝑓𝑓𝑝𝑝𝑝𝑝 , {𝑞𝑞𝑚𝑚𝑝𝑝𝑝𝑝}� where  

• 𝑄𝑄𝑝𝑝𝑝𝑝 is the set of states, 
• 𝑞𝑞0𝑝𝑝𝑝𝑝 ∈ 𝑄𝑄𝑝𝑝𝑝𝑝 is the initial state which is not a marked state, 
• 𝑇𝑇𝑝𝑝𝑝𝑝 ⊆ 𝑇𝑇 is a set of tasks for which a total order is defined by the 

transition function 𝑓𝑓𝑝𝑝𝑝𝑝, 
• 𝑞𝑞𝑚𝑚𝑝𝑝𝑝𝑝 ∈ 𝑄𝑄𝑝𝑝𝑝𝑝 is the marked state, 
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• 𝑎𝑎𝑡𝑡𝐸𝐸:𝑇𝑇𝑝𝑝𝑝𝑝 → ℝ≥0 assigns the amount of delay time between starting 
time of the task 𝑡𝑡 ∈ 𝑇𝑇𝑝𝑝𝑝𝑝 and starting time of its next task, 

• The transition function is defined as 𝑓𝑓𝑝𝑝𝑝𝑝:𝑄𝑄𝑝𝑝𝑝𝑝 × 𝑇𝑇𝑝𝑝𝑝𝑝 × ℝ≥0 → 𝑄𝑄𝑝𝑝𝑝𝑝 that 
associates to a task 𝑡𝑡 ∈ 𝑇𝑇𝑝𝑝𝑝𝑝 and a state 𝑞𝑞 ∈ 𝑄𝑄𝑝𝑝𝑝𝑝, a reaching state 𝑞𝑞′ ∈
𝑄𝑄𝑝𝑝𝑝𝑝 by a transition where this transition has a duration equal to 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡). 
In addition, the following predicate holds: 

𝑡𝑡 → 𝑡𝑡′ iff  ∃𝑞𝑞, 𝑞𝑞′,𝑞𝑞′′ ∈ 𝑄𝑄𝑝𝑝𝑝𝑝 𝑃𝑃. 𝑡𝑡 𝑓𝑓𝑝𝑝𝑝𝑝(𝑞𝑞, 𝑡𝑡) = 𝑞𝑞′𝐸𝐸𝑜𝑜𝑎𝑎 𝑓𝑓𝑝𝑝𝑝𝑝(𝑞𝑞′, 𝑡𝑡′) = 𝑞𝑞′′               (2.3) 

where 𝑡𝑡 → 𝑡𝑡′ means task 𝑡𝑡′ should be started after task 𝑡𝑡 within a delay 
of 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡) time units. This predicate indicates that transitions of the 
model are in a sequence manner and the automata passes every state 
exactly one time. 

Figure 2.6(a) and Figure 2.6(b) represent the generic pattern for modeling 
delay and triggering PR automata respectively. Same as TL automaton, since 
all weights in a triggering PR automaton are equal to zero, this model is 
simplified and zero weights are not labeled on the transitions.   

 
Figure 2.6. Modeling pattern of a delay PR automata (a) and a triggering PR automata (b) 

Example 1 (continue): Let us apply the proposed PR automaton model to 
Example 1. Figure 2.7 shows weighted triggering PR automaton where start 
time of 𝐴𝐴 should be less than or equal to start time of 𝐵𝐵. As demonstrated, only 
labels of symbols are put on the transitions which are in a sequence manner. 
While, in Figure 2.8 for modeling the delay PR automaton, on each transition, 
in addition to the name of the task, the delay duration for starting the next task 
is labeled on the transitions. 

 
Figure 2.7. Weighted triggering PR automata in Example 1 
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Figure 2.8. Weighted delay PR automata in Example 1 

 Expected global behavior of the problem in Example 1 
The global behavior of the system is the composition of all the automata where 
all transitions with the same label should be synchronized. A possible schedule 
is defined as a trajectory from the composed initial state to the composed 
marked state.  

In this section, the global behavior of Example 1 is explained and illustrated 
in Figure 2.9. This system is synchronous composition of 𝐺𝐺1 to 𝐺𝐺5 which are 
depicted in Figure 2.2 and Figure 2.5 and doesn’t consider PR automata. The 
composed initial state is the composition of all local initial states, and the 
composed marked state is the composition of all local marked states. Therefore, 
if all the local automata are in their initial state (marked state), the composed 
automata is in the composed initial state (marked state). Figure 2.9 shows that 
there are two possible schedules due to existing two traces from the initial state 
to the marked state. At the beginning, all automata are in their local initial states, 
so the composed automata is in the composed initial state. In the upper trace, 
firstly task 𝐵𝐵 is done in 5 time units. Then, tasks 𝐴𝐴 and 𝑇𝑇 are done in parallel. 
After 3 time units from their beginning, 𝑇𝑇 is finished and it remains 4 time units 
for finishing 𝐴𝐴. By elapsing 4 time units, 𝐴𝐴 finishes and thereby, all the 
automata reach their local mark states and the composed state will be the 
marked state. This state is where all the tasks are done one time. 

The lower trace can be explained same as the upper trace; the only difference 
is that in this schedule, first tasks 𝐴𝐴 and 𝑇𝑇 are done in parallel and then task 𝐵𝐵 
is done.  

 
Figure 2.9. Global behavior of the Example 1(G1||G2||G3||G4||G5) 

The behavior of the above-mentioned system by applying both types of 
precedence orders in Figure 2.7 and Figure 2.8 will be the same and like Figure 
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2.10. As it is obvious, the second trajectory will be no more possible since 𝐴𝐴 
should be executed after starting 𝐵𝐵. 

 
Figure 2.10. Global behavior of Example 1 considering PR automata 

(G1||G2||G3||G4||G5||G6) 

 Weighted automaton properties for the scheduling model 
In this section, basic structural properties of the WA model is investigated. The 
rules for verification of structural properties of WA are same as conventional 
automata (Cassandras, Christos G., Lafortune 2008). Since the model of the 
MRS scheduling problem differs depending to the number of tasks, these 
properties are verified for the models of Example 1. 

• Definition 2.6 (Reachable automaton): automaton 𝐺𝐺 is reachable if 
there is a path in state transition diagram of the automaton from the 
initial state to every state.  
It is obvious from Figure 2.11 that in all models, all states are 
reachable from the initial states (i.e. states named 0).  

 

  
• Definition 2.7 (Co-reachable automaton): automaton 𝐺𝐺 is co-

reachable if there is a path in state transition diagram of the automaton 
from any state to the marked state. 
In Figure 2.11, marked states are shown with double circles. It is clear 
that in all models, there is a path from all states to the marked states. 

• Definition 2.8 (Non-blocking automaton): automaton 𝐺𝐺 is non-
blocking if each state is reachable and co-reachable.  
Therefore, all the WA models are non-blocking. 

Figure 2.11. WA models of Example 1 
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2.4 Solving MRS scheduling problem by means of translating 
weighted automata models into timed automata models 
The previous section defines WA modeling frameworks for defining 
scheduling problems. In the introduction section, it is explained that for 
obtaining a schedule, it is needed to perform a parallel composition on automata 
models of the scheduling problem, Parallel composition of a set of automata 
enables us to compose and explore them. Whereas, the existing parallel 
composition definitions for WA either don’t contain a trajectory with the 
optimum makespan to be used as the optimal schedule or are not capable of 
illustrating simultaneous execution of tasks which is a non-separable issue from 
scheduling. Therefore, WA models cannot be explored and analyzed directly. 
Hence, after modeling the problem by WA, one solution is to translate the WA 
model to another type of automata for which an efficient definition of parallel 
composition exists. Then, compose the automata model through that definition 
and analyze the new model. Timed automata formalism has this characteristic 
and furthermore, there exist formal verification tools for timed automata that 
can be used to compose and analyze timed models automatically. Thus, in this 
thesis, the WA models are translated into timed automata. Thence, after 
translating the WA models to timed automata model, they are implemented in 
a formal verification tool named UPPAAL and the optimum makespan are 
found automatically. Translation of the models in the previous section are done 
through certain rules that are expressed in this section.  

In the sequel, firstly definition of timed automata is recalled and afterwards, 
procedure of translating WA model to timed automata model is explained.  

Definition 2.9 (timed automata): A timed automaton (TA) is defined as 
tuple 𝐺𝐺 = (𝑇𝑇, 𝐸𝐸0,𝑇𝑇,𝐴𝐴,𝐸𝐸, 𝐼𝐼,𝑉𝑉,𝑉𝑉0), where 𝑇𝑇 is the set of locations, 𝐸𝐸0 ∈ 𝑇𝑇 is the 
initial location, 𝑇𝑇 is the set of clock, 𝐴𝐴 is a set of actions, 𝐸𝐸 ⊆ 𝑇𝑇 × 𝐴𝐴 × 𝐵𝐵(𝑇𝑇) ×
2𝑐𝑐 × 𝑇𝑇 is a finite set of edges that each edge contains a source location, a set of 
actions, a set of guards, a set of clocks to be reset, and a target location. 𝐼𝐼: 𝑇𝑇 →
𝐵𝐵(𝑇𝑇) assigns clock constraints called invariants to locations (Behrmann, David, 
and Larsen 2006). An invariant is an inequality that shows the maximum time 
that automaton can stay in a location. After reaching this time limit, the 
automaton should change the state. 𝑉𝑉 is the set of integer or Boolean variables 
or the output of functions that are defined over variables. They can also be 
updated or incremented on the edges. Furthermore predicates can be used over 
these variables as guards on the edges of the automaton. 𝑉𝑉0 is the initial values 
of them (Bengtsson et al. 2004). 
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Each state of an automaton consists of a pair 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉 where 𝐸𝐸 is a location and 
𝑐𝑐𝐸𝐸 is the values of the clocks. The initial location of automaton G is 〈𝐸𝐸0, 𝑐𝑐𝐸𝐸0〉 
where 𝑐𝑐𝐸𝐸0 assigns zero to all clocks in 𝑇𝑇 (Behrmann, David, and Larsen 2006).  

There are two kind of steps in an automaton: 

• Discrete step: 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉
 𝑎𝑎
→ 〈𝐸𝐸′, 𝑐𝑐𝐸𝐸′〉 where in each transition 𝐸𝐸

𝑎𝑎,𝑔𝑔,𝑝𝑝
�⎯� 𝐸𝐸′ ,→ 

means a transition from location 𝐸𝐸 to 𝐸𝐸’ such that 𝑡𝑡 satisfies 𝑝𝑝, all of 
the clocks in 𝑃𝑃 are set to zero, and 𝑐𝑐𝐸𝐸’ satisfies 𝐼𝐼(𝐸𝐸’) which is the 
invariant of the location 𝐸𝐸′. Note that this kind of step doesn’t take 
time. 

• Timed step: 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉
𝑑𝑑
→ 〈𝐸𝐸, 𝑐𝑐𝐸𝐸 + 𝑎𝑎〉 that takes 𝑎𝑎 time units where 𝑎𝑎 ∈

ℝ+ and 𝑐𝑐𝐸𝐸 + 𝑎𝑎 satisfies 𝐼𝐼(𝐸𝐸) (Yasmina Abdeddaïm, Asarin, and Maler 
2006). 

A trajectory of automaton 𝐺𝐺 = (𝑇𝑇, 𝐸𝐸0,𝑇𝑇,𝐴𝐴,𝐸𝐸, 𝐼𝐼) is a possibly infinite 
sequence of steps starting from the initial state 〈𝐸𝐸0, 𝑐𝑐𝐸𝐸0〉 (Yasmina Abdeddaïm, 
Asarin, and Maler 2006; Bengtsson et al. 2004): 

𝜉𝜉: 〈𝐸𝐸0, 𝑐𝑐𝐸𝐸0〉
𝑑𝑑1��

 𝑎𝑎1�� 〈𝐸𝐸1, 𝑐𝑐𝐸𝐸1〉
𝑑𝑑2��

 𝑎𝑎2�� 〈𝐸𝐸2, 𝑐𝑐𝐸𝐸2〉
𝑑𝑑3��

 𝑎𝑎3��…                                                                    (2.4) 

and it’s duration is obtained by sum of durations of all timed steps: 𝑎𝑎1 + 𝑎𝑎2 +
𝑎𝑎3 + ⋯. 

Definition 2.10 (schedule): A schedule is a trajectory that starts from the 
initial state, where no task is started, and ends in a state in which all tasks are 
completed respecting task precedence constraints. The goal of this chapter is to 
find a schedule with the minimum duration time. 

Definition 2.11 (network of a set of TA): A network of a set of TA 𝐺𝐺𝑖𝑖  =
 (𝑇𝑇𝑖𝑖, 𝐸𝐸𝑖𝑖0,𝑇𝑇,𝐴𝐴,𝐸𝐸𝑖𝑖 , 𝐼𝐼𝑖𝑖,𝑉𝑉𝑖𝑖,𝑉𝑉𝑖𝑖0), 𝑡𝑡 = 1, … ,𝑜𝑜 is the synchronous composition of them 
which is defined as 𝐺𝐺1|| … ||𝐺𝐺𝑛𝑛 = �𝑇𝑇1 × … × 𝑇𝑇𝑛𝑛, (𝐸𝐸1,0, … , 𝐸𝐸𝑛𝑛,0),𝑇𝑇,𝐴𝐴,𝐸𝐸, 𝐼𝐼,𝑉𝑉, �, 
where 𝐸𝐸 ̅ = (𝐸𝐸1, … , 𝐸𝐸𝑛𝑛), 𝑇𝑇 = 𝑇𝑇1 ∪ …∪ 𝑇𝑇𝑛𝑛, 𝐼𝐼�𝐸𝐸�̅ = ∧𝑖𝑖 𝐼𝐼𝑖𝑖(𝐸𝐸𝑖𝑖), 𝑉𝑉 = 𝑉𝑉1 …∪
𝑉𝑉𝑛𝑛 and 𝑉𝑉0 = 𝑉𝑉1,0 ∪ …∪ 𝑉𝑉𝑛𝑛,0. Timed step rules are similar to the case of single 
TA but with the new invariant. Despite single TA, there are two rules for 
discrete steps in network of a set of TA. The first one is for defining local and 
individual actions where one of the automata moves on its own that is named 
individual discrete step. Another one defines synchronizing actions when two 
automata synchronize on a channel and move at the same time and is called 
synchronization discrete step. Let 𝐸𝐸[̅𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖] denote the vector that 𝑡𝑡th element 𝐸𝐸𝑖𝑖 
of 𝐸𝐸 ̅ is substituted with 𝐸𝐸𝑖𝑖′. Taking a step is based on following rules (Panek, 
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Stursberg, and Engell 2006; Behrmann, David, and Larsen 2006; Bengtsson et 
al. 2004): 

• Timed step: 〈𝐸𝐸 ,̅ 𝑐𝑐𝐸𝐸〉
𝑑𝑑
→ 〈𝐸𝐸 ,̅ 𝑐𝑐𝐸𝐸 + 𝑎𝑎〉 where 𝑎𝑎 ∈ ℝ+ and 𝑐𝑐𝐸𝐸 + 𝑎𝑎 satisfies 

𝐼𝐼�𝐸𝐸�̅ = ∧𝑖𝑖 𝐼𝐼𝑖𝑖(𝐸𝐸𝑖𝑖)  

• Individual discrete step: 〈𝐸𝐸 ,̅ 𝑐𝑐𝐸𝐸〉
 𝑎𝑎
→ 〈𝐸𝐸[̅𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖], 𝑐𝑐𝐸𝐸′〉 if there exists 𝐸𝐸𝑖𝑖

𝑎𝑎,𝑔𝑔,𝑝𝑝
�⎯� 𝐸𝐸𝑖𝑖′ 

s.t. 𝑐𝑐𝐸𝐸 satisfies 𝑝𝑝, all of the clocks in 𝑃𝑃 are set to zero, and 𝑐𝑐𝐸𝐸’ satisfies 
𝐼𝐼(𝐸𝐸[̅𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖]). Note that 𝐸𝐸 corresponds to a local action in one automaton.  

• Synchronization discrete step: 〈𝐸𝐸 ,̅ 𝑐𝑐𝐸𝐸〉
 𝑎𝑎
→ 〈𝐸𝐸[̅𝐸𝐸𝑗𝑗′/𝐸𝐸𝑗𝑗, 𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖], 𝑐𝑐𝐸𝐸′〉 if there 

exist 𝐸𝐸𝑖𝑖
𝑐𝑐?,𝑔𝑔𝑖𝑖,𝑝𝑝𝑖𝑖�⎯⎯⎯� 𝐸𝐸𝑖𝑖′ and 𝐸𝐸𝑗𝑗

𝑐𝑐!,𝑔𝑔𝑗𝑗,𝑝𝑝𝑗𝑗
�⎯⎯⎯� 𝐸𝐸𝑗𝑗′ s.t. 𝑐𝑐𝐸𝐸 satisfies 𝑝𝑝𝑖𝑖 ∧ 𝑝𝑝𝑗𝑗, all of the clocks 

in (𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑗𝑗) are set to zero, and 𝑐𝑐𝐸𝐸’ satisfies 𝐼𝐼�𝐸𝐸[̅𝐸𝐸𝑗𝑗′/𝐸𝐸𝑗𝑗 , 𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖]�. Note that 
𝑇𝑇! and 𝑇𝑇? correspond to an action and a co-action respectively. In 
continue 𝑇𝑇 is called a communication channel or signal (Behrmann, 
David, and Larsen 2006). Figure 2.16 and Figure 2.18 show an 
example of five automata that synchronize on channels 𝐴𝐴,𝐵𝐵, and 𝑇𝑇. 

Hereafter, procedure of translating WA models to TA models is explained. 
For this purpose, firstly three rules are defined to translate WA transitions to 
TA. Then, WA models are translated to TA according to these rules. 

2.4.1 Translating transitions of the WA model to TA 
Translation of WA to TA is not trivial, since firstly there is no weight in TA 
and weights should be simulated by adding a clock to each automaton; and 
secondly, synchronization of more than two transitions inside TA is not 
blocking. It means that if in one local automaton a synchronized transition is 
taken, there might be situations where the the transitions modeling the same 
action in other automata don’t synchronize with it. Therefore, shared actions 
should be modeled in a special way. 

The translation process of transitions relies on the following three rules: 

Rule i: In a specification WA, if there exists a transition with duration, it will 
be translated as Figure 2.12: 
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Figure 2.12. Translation of a transition with duration from a specification WA to TA 

In the above figure, 𝑡𝑡 repserents a task with duration 𝑎𝑎(𝑡𝑡). As illustrated in 
this figure, source and target states are translated without any change. In fact, 
the changes in the name of source and target of a transition are optional. A state 
𝑞𝑞 in WA is a single location, while a state 𝑞𝑞 in TA is equal to a pair consisted 
of location and clock 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉. Therefore, for translation to TA, locations are only 
renamed to be distinguished from states.  The single task transition is translated 
to a double-task-transition. Thereby an intermediate location 𝐸𝐸𝑖𝑖′ is added where 
the automaton should wait a duration of time equal to 𝑎𝑎(𝑡𝑡). To ensure this 
purpose, an invariant is assigned to 𝐸𝐸𝑖𝑖′ which is defined by 𝑐𝑐𝐸𝐸𝑘𝑘 ≤ 𝑎𝑎(𝑡𝑡) and 
means the local clock of the 𝑘𝑘th automaton, 𝑐𝑐𝐸𝐸𝑘𝑘, is not allowed to be bigger 
than 𝑎𝑎(𝑡𝑡). In other words, this invariant doesn’t let the automaton to stay more 
than 𝑎𝑎(𝑡𝑡) time units in 𝐸𝐸𝑖𝑖′. Furthermore, a guard defined by 𝑐𝑐𝐸𝐸𝑘𝑘 ≥ 𝑎𝑎(𝑡𝑡) is 
associated to the outgoing transition from 𝐸𝐸𝑖𝑖′ to prevent changing the location 
before 𝑎𝑎(𝑡𝑡) time units. Moreover, label of the transition is translated to a 
receiving communication channel on the first transition. This transition will 
receive a communication signal from the plant automaton and will be 
synchronized with its transition.  

Besides, marked locations are not defined in TA. For this reason, when doing 
the scheduling, marked locations should be determined and verified to be 
reachable. 

Rule ii: In a specification WA, if there exists a triggering transition, it will 
be translated as follows: 
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Figure 2.13. Translation of a triggering transition from a specification WA to TA 

Triggering transitions don’t take time. As it can be seen in Figure 2.13, 
source and target locations are translated without any changes (the simple 
changes in their names are optional). Whereas label of the transition is 
translated to a receiving communication channel. Thereby, whenever this 
transition receives a communication signal from a plant automata, it will be 
executed. 𝐸𝐸𝑗𝑗 should be verified as a reachable location as well.  

Rule iii: Triggering transitions in a plant automaton will be translated as: 

 
Figure 2.14. Translation of a transition from a plant WA to TA 

In this type of transition, source and target locations are translated without 
any change (the simple changes in their names are optional). While as it is 
shown in Figure 2.14, label 𝑡𝑡 of the transition is translated to 𝑡𝑡! which is a 
sending communication channel. This transition broadcasts signals to 
specification automata to synchronize with the transitions that are receiving the 
signal.    

 In WA, all transitions with the same label in different components 
synchronize together (Lahaye, Komenda, and Boimond 2015; Landau et al. 
2013). Whereas, in translating WA to TA, transitions with durations in 
specification automata should be translated to two transitions. Hence, it should 
be ensured that in executing a task of a timed TL automaton, all ME automata 
that share the same task are ready in initial location to synchronize their 
corresponding transitions. Therefore, a guard function 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑡𝑡): Σ →
𝐵𝐵𝑃𝑃𝑃𝑃𝐸𝐸 is associated to the transition of plant automaton that is true if and only if 
the following condition holds: 
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∀𝑡𝑡 ∈ [1. .𝑁𝑁]: 𝑡𝑡 ∈ 𝑇𝑇𝑀𝑀𝑖𝑖 → ∀𝑡𝑡′ ∈ 𝑇𝑇𝑀𝑀𝑖𝑖\{𝑡𝑡}: ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑡𝑡′, 𝐸𝐸𝑘𝑘)                                       (2.5) 

where 𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝:𝑇𝑇𝑀𝑀 × 𝑇𝑇𝑚𝑚𝑒𝑒 → 𝐵𝐵𝑃𝑃𝑃𝑃𝐸𝐸 is defined as 

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑡𝑡, 𝐸𝐸𝑘𝑘) = � 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡,         𝐸𝐸𝑘𝑘 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,      𝑃𝑃𝑡𝑡ℎ𝑡𝑡𝑃𝑃𝑒𝑒𝑡𝑡𝑃𝑃𝑡𝑡                                                                                 (2.6) 

where 𝑁𝑁 is the number of ME automata, 𝑡𝑡 is the name of the task, 𝑇𝑇𝑀𝑀𝑘𝑘 is 
the set of tasks engaged in 𝑘𝑘th ME automaton and 𝐸𝐸𝑘𝑘 is the current location and 
𝐸𝐸0 is the initial location of 𝑘𝑘th ME automaton. In the above equation, pending 
function verifies if a ME automaton is in a pending location where a task is 
during execution. This guard will be clarified in the next section. 

In the following section, WA models (ME, TL and PR automata) are 
translated into TA models by applying proposed transition translation rules. 

2.4.2 Translating WA models to TA models  

 Translating WA model of mutual exclusion automata to TA : 
The only location of the WA, i.e. 𝑞𝑞0, is translated to 𝐸𝐸0 and remains the initial 
location. Note that in TA initial location should be displayed by double circles. 
Transitions are translated by following rules expressed in previous section as 
well. 

In Figure 2.15, modeling pattern of a translated ME automaton is depicted. 
As tasks are modeled as loops, after completing all the tasks, all ME automata 
will reach their initial locations and don’t have to stay in other locations. Figure 
2.15 indicates that tasks {𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗 , 𝑡𝑡𝑘𝑘, … , 𝑡𝑡𝑧𝑧}, which are presented as 
communication signals, belong to the demonstrated automaton.  
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Figure 2.15. Modeling pattern of timed ME automaton 

By applying aforementioned rules to WA model of Example 1, its timed ME 
automata will be obtained as Figure 2.16. 

 
Figure 2.16. Timed ME automaton in Example 1 

 Translating WA model of task launcher automata to TA 
From the Figure 2.3 it can be noted that to compute the makespan of a system, 
every weighted TL automaton should be composed of one single transition. 
This transition can be translated to TA following the explained rules. Figure 
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2.17 displays the modeling pattern of a TL automaton. This figure illustrates 
that when the launching signal of the task is sent, the automaton reaches 
location 𝑓𝑓. Hence, in order to make sure that a schedule is done, reachability of 
this location should be verified for all TL automata. 

 
Figure 2.17. Modeling pattern of timed TL automaton 

TA model of TL automaton related to Example 1 is shown in Figure 2.18. 

 
Figure 2.18.Timed TL automata of tasks A, B and C in Example 1. 

According to Figure 2.16 and Figure 2.18, for taking the transition in the TL 
automata of task 𝐵𝐵, 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝐵𝐵) verifies validity of this predicate: 

𝐵𝐵 ∈ 𝑇𝑇𝑀𝑀1 ∧ 𝐵𝐵 ∈ 𝑇𝑇𝑀𝑀2 → ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝐴𝐴, 𝐸𝐸1) ∧ ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑇𝑇, 𝐸𝐸2)                                  (2.7) 
Where 𝑇𝑇𝑀𝑀1 and 𝑇𝑇𝑀𝑀2 are the set of mutual exclusions in automata 𝐺𝐺1 and 𝐺𝐺2 
and 𝐸𝐸1 and 𝐸𝐸2 are current locations in 𝐺𝐺1 and 𝐺𝐺2 respectively. 

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝐴𝐴, 𝐸𝐸1) = �𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸1 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,           𝑃𝑃.𝑒𝑒                                                                                    (2.8) 

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑇𝑇, 𝐸𝐸2) = �𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸2 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,           𝑃𝑃.𝑒𝑒                                                                                   (2.9) 

which means that ME automata 𝐺𝐺1 and 𝐺𝐺2 are not in pending locations and 
during execution of tasks 𝐴𝐴 or 𝑇𝑇 respectively. Therefore, if predicate 2.7 is true, 
task 𝐵𝐵 can be execute. 

 Translating WA model of precedence automata to TA 
The triggering precedence WA is composed of triggering transitions so as to 
request starting of tasks in a specific order. By taking into account presented 
translation rules, the resulting TA model is obtained as shown in Figure 2.19. 

 
Figure 2.19. Modeling pattern of triggering precedence timed automaton 
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The triggering precedence timed automaton of Example 1 is depicted in 
Figure 2.20. 

 
Figure 2.20. Triggering precedence timed automaton in Example 1 

The delay precedence WA model features transitions with durations. 
According to the first translation rule, TA pattern of this model is obtained as 
Figure 2.21. From this figure it can be seen that tasks {𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗 , … , 𝑡𝑡𝑘𝑘} belong to 
this set of precedence constraint. Two locations are assigned to each task (e.g. 
𝑡𝑡𝑗𝑗). The first location (e.g. 𝐸𝐸2) is where the automaton waits for receiving signal 
𝑡𝑡 from the TL automaton of task 𝑡𝑡. The second location (e.g. 𝐸𝐸3) corresponds 
where it waits 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡) time units. By receiving signal 𝑡𝑡, clock is reset and the 
automaton reaches the second location (e.g. 𝐸𝐸3). After 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡) time units, task 𝑡𝑡 
finishes and the automaton changes the location in order to wait for receiving 
launching signal from TL automata of the next task. If the precedence is 
correctly followed, automaton will reach location 𝑓𝑓. This implies that while 
sending communication signal of every task by its TL automaton, PR automata 
should be at a location from which a transition with the receive-action 𝑡𝑡? can 
be taken. Thereby, the automata will be able to receive the 𝑡𝑡? synchronization.  

Figure 2.21. Modeling pattern of a delay precedence timed automaton 

The delay precedence WA in Example 1 is depicted in Figure 2.22. In this 
automaton all the delays between tasks are assumed to be equal to the duration 
of tasks. 

 

Figure 2.22. Delay precedence timed automaton in Example 1 

It should be mentioned that in Figure 2.17, it is clear that verifying the guard 
of the TL automata needs accessing to current locations of ME automata. Since 
this issue cannot be implemented directly in a formal verification tool, some 
technical modifications are needed in order to simulate this guard and are 
explained in Appendix A. 
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 TA structural properties for the scheduling model 
In this section, basic structural properties of the TA models are investigated 
(Bornot, Gößler, and Sifakis 2001). Since the model of the MRS scheduling 
problem differs depending to the number of tasks, these properties are verified 
for the models of Example 1. 

 

 

 

 
Figure 2.23. TA models of Example 1 

• Definition 2.12 (Timelock-freedom): A TA is timelock-free if any 

trajectory 〈𝐸𝐸0, 𝑐𝑐𝐸𝐸0〉
𝑑𝑑1→

 𝑎𝑎1�� 〈𝐸𝐸1, 𝑐𝑐𝐸𝐸1〉
𝑑𝑑2→

 𝑎𝑎2�� 〈𝐸𝐸2, 𝑐𝑐𝐸𝐸2〉
𝑑𝑑3→

 𝑎𝑎3�� … diverges. 
• Definition 2.13 (livelock-freedom): A timed system is livelock-free if 

in any trajectory, some action occurs infinitely often. 
According to the Figure 2.23, after finishing tasks and when TL 
automata and PR automata are reached to location 𝑓𝑓, all the 
trajectories terminate and the automaton reaches a deadlock where the 
automaton cannot move anymore. While, this deadlock state is the 
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goal state in the scheduling problem. In fact, continuation of the 
trajectory is not intended in this thesis. Therefore, the model is neither 
timelock-free nor livelock-free. 

• Definition 2.14 (Liveness): An automaton is called live if it is not 
timelock-free and livelock-free. 
Thence, the TA model is not live. This fact happens because the 
scheduling model is supposed to compute the makespan for which 
every task should be done only one time. Therefore, the model is 
acyclic and in fact, this property is important for cyclic models. 

2.4.3 Scheduling approach 
In this section, an efficient solving approach is presented to solve the problem 
through TA models. 

 General principle of solving approach 
In order to schedule by TA, a trajectory in the model should be found in which 
all the tasks are done. In other words, the scheduling problem amounts to a 
formal verification problem to verify a property that guarantees that all the tasks 
are eventually done. In fact, this property expresses the reachability of a set of 
locations where the condition to reach this set is to complete all the tasks. By 
verifying this property, a witnessing trajectory will be obtained that indicates 
an order of tasks and a makespan for doing all of them.  

 Model checking tools 
In this section, UPPAAL and Kronos are introduced as two well-known model 
checking tools for timed systems. Generally, model checking tools of timed 
systems support TA of Alur and Dill or an extension of that model as the 
description language. Also all of them use TCTL logic or a fragment of it.   

 Kronos 
Kronos is a tool developed with the aim to verify complex real-time systems. It 
is developed at Verimag, a joint laboratory of UJF, Ensimag and CNRS. It 
supports full TCTL language. It allows on-the-fly analysis for reachability 
properties as well as forward and backward searching algorithms (Wilson and 
France 2000). Kronos uses a very restricted data type that allows only 
declaration of clock variables. Whereas it has been extended to several 
successors such as Open-Kronos that provides a more convenient modeling 
language (e.g., with discrete variables). Kronos is freely available for academic 
users at http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos. 
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 UPPAAL 
UPPAAL is an integrated tool environment for verification of real-time systems 
modeled. It is developed in collaboration between the Department of 
Information Technology at Uppsala University, Sweden and the Department of 
Computer Science at Aalborg University in Denmark. The tool supports an 
extension of TA with additional features such as integer variables, structured 
data types, user defined functions, and channel synchronization. One of the 
technical differences between Kronos and UPPAAL is that in UPPAAL, for 
synchronization of more than three transitions, it is needed to use a special type 
of non-blocking synchronization named broadcast channels. Synchronization 
with a channel can be realized by a sending signal 𝐸𝐸! and some receiving signals 
𝐸𝐸?. Being non-blocking is in the sense that if a transition emits a sending signal, 
then this emission can be performed even when none of related receiving 
transitions in other processes are activated. While in Kronos synchronization 
process is blocking for any number of synchronized transitions. UPPAAL uses 
a fragment of TCTL language which is restricted to properties based on 
reachability analysis (Wilson and France 2000). The verification process in this 
tool is based on on-the-fly analysis which is a powerful technique (Larsen, 
Pettersson, and Yi 1997). 

Two indicators are considered to use UPPAAL 4.1.19 as a verification tool 
in this thesis. First, the last version of this software is released recently and the 
team developer of this software is active to fix potentially existing bugs in the 
resealed software. Second, this tool has an available contact center to answer 
potential questions of users. The tool is available for free for academic users at 
http://uppaal.org.  

 Schedule generation by model checking 
In the proposed algorithm, to find a schedule, UPPAAL is used as a model 
checker to explore the state space for determining if there is a trajectory through 
which all the tasks are done. For this purpose, a safety property will be verified 
by performing a reachability analysis. This analysis concerns reachability of all 
the ME automata to their initial locations and all TL and PR automata to their 
final locations (𝑓𝑓). In TCTL language this property can be formalized as the 
following: 

𝑃𝑃: ∃ ◊ ((⋀ 𝑀𝑀𝐸𝐸𝑗𝑗. 𝐸𝐸0𝑗𝑗)1≤𝑗𝑗≤𝑚𝑚 ∧ (⋀ 𝑇𝑇𝑇𝑇𝑖𝑖.𝑓𝑓𝑖𝑖)1≤𝑖𝑖≤𝑛𝑛 ∧ (⋀ 𝑃𝑃𝑅𝑅𝑘𝑘 .𝑓𝑓𝑘𝑘)1≤𝑘𝑘≤𝑝𝑝 )                      (2.10)                                                                                                            
where 𝐸𝐸0𝑗𝑗  are the initial locations of ME automata, and 𝑓𝑓𝑖𝑖  and 𝑓𝑓𝑘𝑘 are final 
locations of TL and PR automata respectively. Generically ∃ ◊ 𝛽𝛽 means that 
some reachable states must satisfy β (Larsen, Pettersson, and Yi 1997).  
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In this algorithm, in each iteration, property 𝑃𝑃 is verified following a 
different trajectory. By verifying the property, the model checker issues a 
witnessing trajectory that corresponds to one of the possible schedules. The 
maximum value of clock in each witnessing trajectory is equal to the makespan 
of the schedule. Different schedules are generated randomly by means of 
random depth first searching method. The first schedule will be generated and 
selected as the optimal schedule. Its makespan will be also selected as the 
optimal makespan. By generating the second schedule, its makespan will be 
compared with the optimal schedule. If it was less than the optimal makespan, 
it will be selected as the new optimal makespan and its schedule will be selected 
as the new optimal schedule. To find the optimal schedule, several iterations 
will be done. The iterating procedure will be continued in a predetermined time 
by generating new schedules and comparing to the optimal schedule. After 
reaching the predetermined time as stop criteria, a suboptimal schedule will be 
obtained. This algorithm is implemented in a bash file and is detailed in 
Algorithm 2.1. 

It is noteworthy to mention that although there exist timed optimal 
reachability algorithms that can be used to find the optimal schedule (Peter 
Niebert, Tripakis, and Yovine 2000), since the automata should take all 
transitions to do all the tasks and reach the final location, this analysis is rather 
expensive. Therefore it is preferred to save the time and find the sub-optimal 
schedule. 

The stop criteria for finding the optimal schedule could be either number of 
iterations or a boundary time. In order to obtain a schedule, it is more applicable 
in industry to set a predetermined time as the stop criteria. While for finding 
complexity of the model and algorithm, stop criteria should be a fixed number 
of iterations. Algorithm 2.1 uses the first criteria, i.e. boundary time, as the stop 
criteria. 

Algorithm 2.1 
Input: M ME automata and N TL automata, a time bound B 
Output: SubOptimal Makespan (SOM), optimum trajectory in file OptimalTrajectory. 

//𝐼𝐼𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝑡𝑡𝐼𝐼𝑡𝑡: 
            𝐷𝐷 ≔ 𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑓𝑓 𝑎𝑎𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑃𝑃𝑓𝑓 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑃𝑃 

//𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑐𝑐ℎ 𝑡𝑡ℎ𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸 𝑃𝑃𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡 𝑡𝑡𝑜𝑜 𝑃𝑃𝑡𝑡𝑣𝑣𝑡𝑡𝑃𝑃𝐸𝐸𝐸𝐸 𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡𝐸𝐸𝑐𝑐ℎ𝐸𝐸𝑒𝑒𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒 𝐸𝐸𝑜𝑜𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃𝑡𝑡𝑃𝑃: 
𝑇𝑇𝑀𝑀 ≔ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
𝐹𝐹𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 ≔ 𝐸𝐸 𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 𝑡𝑡𝑜𝑜 𝑈𝑈𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑇𝑇 𝑃𝑃𝑡𝑡𝑐𝑐ℎ 𝑡𝑡ℎ𝐸𝐸𝑡𝑡 𝑃𝑃 𝑡𝑡𝑃𝑃 𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑓𝑓𝑡𝑡𝑡𝑡𝑎𝑎 
𝑆𝑆𝐹𝐹𝑀𝑀 ≔ 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜 𝑃𝑃𝑓𝑓 𝑡𝑡ℎ𝑡𝑡 𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 
𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝐵𝐵 + 𝑇𝑇𝑀𝑀){  

𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 ≔ 𝐸𝐸 𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 𝑡𝑡𝑜𝑜 𝑈𝑈𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑇𝑇 𝑃𝑃𝑡𝑡𝑐𝑐ℎ 𝑡𝑡ℎ𝐸𝐸𝑡𝑡 𝑃𝑃 𝑡𝑡𝑃𝑃 𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑓𝑓𝑡𝑡𝑡𝑡𝑎𝑎 𝐸𝐸𝑜𝑜𝑎𝑎 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés



Chapter 2: MRS scheduling through translation of weighted to timed automata 
 

 
Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon               50 
 

𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜 𝑇𝑇 
//(𝐸𝐸𝑜𝑜𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃𝑡𝑡𝑃𝑃 𝑡𝑡𝑃𝑃 𝑒𝑒𝐸𝐸𝑃𝑃𝑡𝑡𝑎𝑎 𝑃𝑃𝑜𝑜 𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎𝑃𝑃𝑡𝑡 𝑎𝑎𝑡𝑡𝑃𝑃𝑡𝑡ℎ 𝑓𝑓𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑐𝑐ℎ) 
𝑡𝑡𝑓𝑓  (𝑇𝑇 < 𝑆𝑆𝐹𝐹𝑀𝑀){ 
𝐹𝐹𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 ∶=  𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 
𝑆𝑆𝐹𝐹𝑀𝑀 ≔ 𝑇𝑇 

      }𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 

Since the output trajectory should be understandable for the decision maker, 
the obtained trajectory is implemented in the concurrent simulator of UPPAAL 
to obtain the Gantt chart of the schedule. In this way, concurrent execution of 
tasks can be visualized. Using this simulator, the waiting duration of every 
automaton in each pre-specified location can be displayed in the Gantt chart by 
a specified color. Furthermore, common tasks in different automata could be 
shown by the same colors. Therefore by assigning colors to task locations in 
ME automata, each bar in the Gantt chart would show the task performing 
moments. Bars with same colors would represent also common tasks in 
different ME automata. 

Figure 2.24 demonstrates the Gantt chart of Example 1 without considering 
any precedence constraint. For making this Gantt chart, specific patterns are 
assigned to task locations 𝐴𝐴, 𝐵𝐵 and 𝑇𝑇 in which the automata stays during 
performing tasks. In this Figure, the upper bars belong to automaton 𝐺𝐺1 and the 
lower bars belong to 𝐺𝐺2. In the upper line, the first bar ( ) represents the 
moments of performing task 𝐴𝐴 that lasts 7 time units. The first bar of the second 
line ( ) shows the performing moments of task 𝑇𝑇 with 3 time units. As it is 
obvious, 𝐴𝐴 and 𝑇𝑇 are not in conflict with each other and hence can be executed 
simultaneously. When two tasks are executed simultaneously, UPPAAL 
performs them at the earliest time. For example if UPPAAL is going to execute 
task 𝐴𝐴 between time 0 and 7, and 𝑇𝑇 should be done in parallel, it starts 𝑇𝑇 at time 
0 and does not delay it to be started at time 3. The second bars at both lines (
) represent performing moments of task 𝐵𝐵 that lasts 5 time units. As it can be 
seen in the figure, two automata perform 𝑇𝑇 synchronously from time 7 to time 
12. So in this schedule, the makespan is equal to 12.  

 
Figure 2.24. Gantt Chart of Example 1 without precedence conditions 
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Figure 2.25 shows the Gantt chart of Example 1 considering the delay PR 
timed automaton G7 which is depicted in Figure 2.22. As expected in 
automaton G7, despite the previous schedule, task 𝐵𝐵 is done before task 𝐴𝐴. 
Whereas the makespan doesn’t changes and remains 12 time units. 

 
Figure 2.25. Gantt chart of Example 1 considering delay PR timed automaton G7 

2.4.4 Complexity 
In this section, the efficiency and applicability of the proposed model and 
solving approach are discussed. For this purpose, a number of problem 
instances are defined with different sizes that vary between 20 tasks in 5 ME 
timed automata to 220 tasks in 20 ME timed automata which is close to 
industrial size problems and offers a reasonable insight for evaluating the 
complexity trend. Then, all the problem instances are solved by applying the 
approach proposed in Algorithm 2.1. Referring to the previous section, the stop 
criteria for acquire computational time complexity of the model and algorithm 
should be a fixed number of iterations. Therefore, in this section, in order to 
find the complexity, the algorithm is adapted to find the optimal schedule with 
100 iterations. It should be mentioned that this number doesn’t have any impact 
on the efficiency of the proposed algorithm. In other words, by multiplying this 
number by any arbitrary number, the complexity of the algorithm doesn’t 
changes. The algorithm is coded using bash file on Ubuntu 14.04 on a personal 
computer Core i5, 2.27 GHZ with 5.0 GB RAM. In order to show its efficiency, 
time complexity of the algorithm is compared to similar previous studies (Edis 
and Ozkarahan 2011; Kellerer and Strusevich 2008).  

Table 2.2. calculated and real makespan and corresponding computational time for 
problem instances 

# A.* # Task 
# Ind. 
tasks** 

# Shared tasks 
between Optimal 

Makespan 
Obtained 
Makespan 

Time (s) 
2A*** 3A 4A 

5 20 

20 0 0 0 60 60 6.47 
16 4 0 0 120 120 6.85 
12 4 4 0 180 180 7.64 
8 4 4 4 240 240 8.89 

         
10 20 20 0 0 0 10 10 12.56 
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# A.* # Task 
# Ind. 
tasks** 

# Shared tasks 
between Optimal 

Makespan 
Obtained 
Makespan 

Time (s) 
2A*** 3A 4A 

16 4 0 0 20 20 13.62 
12 4 4 0 30 30 15.25 
8 4 4 4 40 45 17.65 

         

20 20 

20 0 0 0 15 30 27.41 
16 4 0 0 30 45 29.56 
12 4 4 0 45 60 34.08 
8 4 4 4 40 40 42.29 

         

5 60 

60 0 0 0 60 65 44.28 
48 12 0 0 120 120 46.53 
36 12 12 0 180 180 53.52 
24 12 12 12 240 240 64.05 

         

10 60 

60 0 0 0 18 21 78.18 
48 12 0 0 36 36 84.15 
36 12 12 0 54 57 95.79 
24 12 12 12 72 72 112.94 

         

20 60 

60 0 0 0 15 20 161.98 
45 15 0 0 30 35 178.76 
30 15 15 0 45 55 210.89 
15 15 15 15 60 65 265.47 

         

5 100 

100 0 0 0 100 110 113.42 
80 20 20 0 200 200 123.10 
60 20 20 0 300 300 142.32 
40 20 20 20 400 400 172.89 

         

10 100 

100 0 0 0 100 110 200.19 
80 20 20 0 200 200 218.61 
60 20 20 0 300 320 245.18 
40 20 20 20 400 420 292.57 

         

20 100 

100 0 0 0 50 60 404.17 
80 20 20 0 100 120 430.30 
60 20 20 0 150 180 491.06 
40 20 20 20 200 230 583.14 

         

5 140 

140 0 0 0 140 155 219.41 
112 28 0 0 280 280 238.01 
84 28 28 0 420 420 277.29 
56 28 28 28 560 560 339.71 
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# A.* # Task 
# Ind. 
tasks** 

# Shared tasks 
between Optimal 

Makespan 
Obtained 
Makespan 

Time (s) 
2A*** 3A 4A 

         

10 140 

140 0 0 0 140 160 319.50 
112 28 0 0 280 280 407.29 
84 28 28 0 420 450 466.64 
56 28 28 28 560 580 555.49 

         

20 140 

140 0 0 0 140 160 714.03 
112 28 0 0 280 320 764.67 
84 28 28 0 420 500 870.72 
56 28 28 28 560 660 1032.71 

         

5 180 

180 0 0 0 180 195 345.79 
144 36 0 0 360 360 376.85 
108 36 36 0 540 540 441.61 
72 36 36 36 720 720 544.15 

         

10 180 

180 0 0 0 180 200 596.60 
144 36 0 0 360 360 640.53 
108 36 36 0 540 590 730.66 
72 36 36 36 720 750 869.57 

20 180 

180 0 0 0 180 200 1155.16 
144 36 0 0 360 360 1193.98 
108 36 36 0 540 580 1277.14 
72 36 36 36 720 740 1402.16 

         

5 220 

220 0 0 0 220 240 467.75 
176 44 0 0 440 440 504.42 
132 44 44 0 660 660 604.88 
88 44 44 44 880 880 765.67 

         

10 220 
 

220 0 0 0 110 120 779.45 
176 44 0 0 220 225 844.04 
132 44 44 0 330 360 978.34 
88 44 44 44 440 445 1184.55 

         

20 220 

220 0 0 0 110 120 1487.03 
176 44 0 0 220 250 1605.81 
132 44 44 0 330 390 1842.95 
88 44 44 44 440 510 2226.59 

*: Number of ME automata **:  Number of individual tasks ***: 2 ME automata 

In Table 2.2, the expected and sub-optimal makespan of problem instances 
are shown. Furthermore the computational time for the problem instances are 
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mentioned. This table show that the longest time for computing the makespan 
belongs to the problem instance with 220 tasks and 20 ME automata which is 
equal to 2226.59 seconds, i.e. about 37 minutes. This time is reasonable enough 
to obtain a schedule for a large size problem. Classification of problems relate 
to the number of tasks that ME automata share, number of ME automata and 
number of tasks.  

Figure 2.26 illustrates the trend of calculation time against increasing 
number of tasks for three different numbers of ME automata. In these graphs, 
tasks are individual or common between two ME automata. This figure 
illustrates the obvious fact that increase in number of tasks and ME automata 
causes increase in calculation time. The trend-line of this increment is obtained 
by Excel software. This trend is polynomial and is demonstrated by dash-dotted 
lines that correspond exactly to the trend of the graphs. The term “Poly.” in the 
legend of the graph denotes the polynomial trends for each graph. 

 
Figure 2.26. Calculation time vs. number of tasks for individual tasks and common tasks 

between 2 ME automata 
Figure 2.27 illustrates variation of calculation time against increasing 

number of ME automata. This figure shows that in the problems with fewer 
tasks, as the number of conflicting sets of tasks (i.e. ME automata) increases, 
the computation time increases slightly. Whereas in problems with huge 
number of tasks, a small variation in number of ME automata causes a dramatic 
increase in computational time. For example, this figure shows that in the 
problem with 20 tasks, increasing number of ME automata from 10 to 20 ME 
automata, increases computational time 15.94 time units. Whereas in the 
problem with 220 tasks, it causes an increase of 761.77 time units. 

0

500

1000

1500

2000

0 20 40 60 80 100 120 140 160 180 200 220 240

Ti
m

e 
(s

)

Number of tasks

Time vs. task numbers (individual+common btwn 2)

5 automata

10 automata

20 automata

Poly. (5 automata)

Poly. (10 automata)

Poly. (20 automata)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés



Chapter 2: MRS scheduling through translation of weighted to timed automata 
 

 
Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon               55 
 

 
Figure 2.27. Calculation time vs. number of ME automata, for tasks that are individual or 

common tasks between 2 ME automata 

In Figure 2.28, the calculation time respecting to number of tasks for 
problems with 5 ME automata featuring conflicts is demonstrated. This number 
is arbitrary and doesn’t effect on the complexity of the graphs. In this figure, 
multiples graphs demonstrate different types of task-sharing. It can be seen that 
in addition to the impact of variation in number of tasks on calculation time, 
increasing number of task-sharing causes a significant change in calculation 
time. For example, in the problem with 220 tasks, by increasing the maximum 
number of ME automata in which every task is shared from 2 to 4, 
computational time increases 51.79%.   
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Figure 2.28.  Calculation time vs. number of tasks for 5 ME automata 

In similar studies, researchers classify this kind of problem as an NP-hard 
problem which trend of its computational time against size of the problem is 
adapted to an exponential function (Edis and Ozkarahan 2011; Kellerer and 
Strusevich 2008). This issue becomes important facing large size problems. In 
fact, having exponential complexity causes taking unreasonable time for 
obtaining the optimal schedule in industrial problems. Whereas, as mentioned 
earlier, in some industries it is preferred to save time and obtain a sub-optimal 
schedule. In this study, results show that trend of increments in computational 
time against increasing size of the problem follows a polynomial function. It 
means that in industrial cases, through this model and algorithm, the sub-
optimal schedule can be obtained in a reasonable time. 

2.5 Conclusion 
In this chapter, a novel approach is presented to model and solve multi-resource 
sharing scheduling problem through WA. Furthermore, it focuses on proposing 
an efficient solving approach to reach a sub-optimal schedule in a reasonable 
computational time for industrial size problems. In fact, since MRS scheduling 

504,42

765,67

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250

Ti
m

e 
(s

)

Number of tasks

Time vs. task number (5 ME automata)

all individual ind + shared btwn 2

ind+ shared btwn 2 & 3 ind+shared btwn 2 & 3 & 4

Poly. (all individual) Poly. (ind + shared btwn 2)

Poly. (ind+ shared btwn 2 & 3) Poly. (ind+shared btwn 2 & 3 & 4)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés



Chapter 2: MRS scheduling through translation of weighted to timed automata 
 

 
Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon               57 
 

problem is NP-hard, there were two choices; either to find the optimal schedule 
in a long and unreasonable time, or to save the time and find the sub-optimal 
schedule. The second option is preferred in this work. 

Scheduling problems can be modeled by either weight-based automata like 
weighted automata, or clock-based automata like timed automata. In this 
chapter, it is shown that simpler and more abstract models can be built for the 
MRS scheduling problem through weighted automata. Whereas there are two 
issues for using current synchronous compositions. Either the minimum 
makespan cannot be obtained through using them, or they don’t show a 
complete composed behavior of the components of the model. Thence, it is not 
possible to analyze (WA) models directly. Therefore, firstly the MRS 
scheduling problem should be modeled by WA. Then, in order to obtain the 
schedule, the proposed model is translated to TA. Afterwards, an algorithm is 
proposed to obtain the sub-optimal schedule by performing iterations of 
reachability analysis on the timed model using UPPAAL as a formal 
verification tool. The analyses are based on random depth first search.  

The results show that the proposed model and algorithm can be efficiently 
applied to industrial sized problems with 220 tasks and 20 sets of task-conflicts 
in using various resources. It has been proved that time complexity of the 
proposed method is polynomial which allows the decision maker to solve an 
industrial size problem in reasonable time. 
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3 Synchronous composition of weighted 
automata - application to MRS 
scheduling 

3.1 Introduction 
In Chapter 2, the timed automata (TA) and timed model checking technique 
have been used as the core formalism and technology to deal with MRS 
scheduling problem. First, the scheduling problem is specified using weighted 
automata (WA). The semantics of a weighted automaton has been defined 
strictly locally, without any notion of compound behavior resulting from the 
concurrent operation of two or more weighted automata. Instead, rules have 
been defined in order to translate each weighted automaton model into a timed 
automaton. Thus, the consistency of the global WA model relies on the product 
of timed automata which is formally defined.  

Even though the WA to TA translation rules are systematic, they require to 
handle TA-specific modeling mechanisms such as clocks, clock guards, 
invariants and communication channels. Considering the specific modeling 
needs in this work, such mechanisms are technical overload and hardly 
maintainable. Therefore, the proposed solution in chis chapter to overcome this 
intricacy is based on definition of a new synchronous composition for WA. 
Though this definition, the WA components can be composed directly and the 
analysis for finding the best schedule can be performed directly on the 
composed model. 

Various investigations of automata compositions have been conducted, 
relying on different kinds of weighted automata and composition approaches. 
Moreover, several studies proposed time or cost optimal reachability analysis 
that can be inspired for the analysis on the new WA synchronous composition. 
Hereafter, these investigations are detailed. 

3.1.1 State of the art on synchronous composition of weighted automata 
Milner (1983) proposes a notion of synchronized product between automata. In 
this product, two or more automata may run concurrently and independently, 
but they must synchronize on a set of events called shared events. Individual 
actions in local automata are allowed to have an interleaving execution. There 
is also a notion of global sharing of actions among automata, i.e. an action is 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés



Chapter 3: Synchronous composition of weighted automata - application to 
MRS scheduling 

 

 
Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon               60 
 

shared between all automata and not some of them. Duration of actions cannot 
be handled through this model.  

Komenda, Lahaye, and Boimond (2009) propose a synchronous product for 
multi-event (max,+) automata which correspond to a class of timed automata 
with serveral clocks. Komenda, Lahaye, and Boimond (2010) propose a 
synchronous composition model that results in multi-event interval weighted 
automata.  

Su, Van Schuppen, and Rooda (2012) address a minimum-makespan 
supervisor synthesis problem. They propose a terminable algorithm to solve the 
problem and compute the execution time of each string by the theory of heaps-
of-pieces. The authors also present a timed supervisory control map to 
implement the synthesized minimum-makespan sublanguage. In order to 
formulate the problem, they propose a synchronous product for WA. Komenda 
and Boimond (2012)  proposes a modular approach for the modeling of discrete 
event systems using (max, +) automata. This method consists in decomposing 
the system into subsystems, each to be modeled by a deterministic (max, +) 
automaton. The interactions between these subsystems is made through 
common events occurring simultaneously in each component. A synchronous 
product is proposed to compose these components in which synchronization 
between common events is modeled.  

Lahaye, Komenda, and Boimond (2015) propose a compositional modeling 
approach by means of (max, +) automata. Firstly the authors introduce 
modeling of safe timed Petri nets using (max, +) automata. Afterwards, two 
types of synchronous composition of (max, +) automata are proposed to model 
safe timed Petri nets. Furthermore, an asynchronous composition is introduced 
to represent particular bounded timed Petri nets. Sébastien Lahaye and Jean-
Baptiste Fasquel have implemented a library in python software to model 
(max,+) automata synchronous composition (Lahaye, Komenda, and Boimond 
2015). Makespan of different given orders of tasks can be obtained through this 
library. Quintero Garcia (2015) models mutual exclusions among tasks with 
underlying resource sharing conflicts as subsystems through local tropical 
automata (generalized version of (max, +) and (min, +) automata which are type 
of weighted automata). Moreover, the author describes fundamental aspects of 
a makespan minimization methodology considering minimization of idle times 
on resources.  

Ware and Su (2017) present a method for finding a time optimal accepting 
trace for large DESs based on sequential language projection, and pruning. The 
algorithms are tested on a linear cluster tool to show their effectiveness. In this 
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article, a cluster tool is modeled through timed-weighted automata considering 
a specific type of synchronous product. 

3.1.2 State of the art on time-optimal reachability analysis 
Gaubert (1995) addresses performance evaluation of (max, +) automata in the 
worst, mean, and optimal cases. A simple algebraic reduction is provided for 
the worst case. Whereas, the author uses the Kolmogorov equation of a Markov 
chain and a Hamilton-Jacobi-Bellman equation to obtain the mean performance 
and optimal performances respectively.  

Gerd Behrmann et al. (2001) present an algorithm for computing the 
minimum cost of reaching a goal state in a Uniformly Priced Timed Automaton 
(UPTA) with optimal number of explored states. This model is a sub-model of 
Linearly Priced Timed Automata (LPTA), which extends timed automata with 
prices on both locations and transitions. In fact, despite LPTA, the rate of prices 
associated to locations of a UPTA is uniform. The authors implement 
algorithms in tool UPPAAL which are based on branch and bound techniques 
that can be used for limiting the search space for finding the optimal solution 
faster. Larsen and Vaandrager (2001) introduces the model of linearly priced 
timed automata. The authors propose a minimum-cost reachability algorithm 
based on branch-and-bound technique for reaching from the initial state to the 
goal state. Interval weighted automata are defined as automata with weights in 
a product dioid. The formalism of this automata makes it possible to model 
temporal constraints for transitions instead of exact durations.  

Alur, La Torre, and Pappas (2004) deal with the optimal-reachability 
problem for weighted timed automata. In this article, an approach is presented 
to reduce this problem to computing parametric shortest paths in a finite 
weighted directed graph. Complexity reduction techniques for this analysis is 
also presented.  

Behrmann, Larsen, and Rasmussen (2005) apply timed automata technology 
to optimal scheduling and planning problems. They also implemented the 
problem in the tool Cora which is specialized for cost-optimal reachability for 
the extended model of priced timed automata. It is noteworthy to mention that 
Cora is an extended version of UPPAAL.  

3.1.3 Synthesis of the state of the art 
Table 3.1 demonstrates a classification for studies that propose synchronous or 
synchronized composition of automata. In this table, the composition proposed 
in the reviewed papers, are investigated from two point of view: 
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• Simultaneity: The composition can show simultaneous execution of 
different actions in different local automata 

• Yielding minimum makespan: Minimum makespan can be obtained 
through the composition 

The synthesis of this state of the art shows that the by using so far proposed 
synchronous compositions for WA, the models of the components of the 
scheduling problem cannot be composed. Among these reviewed articles, only 
four researches have proposed a new composition that can handle duration of 
tasks. Disadvantages of these compositions are not illustrating simultaneous 
execution of tasks or not containing a trajectory with the optimum makespan to 
be used as optimal schedule. For example, in one of the articles a synchronous 
composition for (max, +) automata is proposed. This composition could be 
employed for modeling of multi-resource sharing scheduling problems. 
Whereas, the minimum makespan cannot be obtained through this composition 
(Komenda, Lahaye, and Boimond 2009c). The same authors propose another 
type of synchronous composition for (max, +) automata. Despite the minimum 
makespan can be found through a reachability analysis on this composition, 
simultaneous execution of actions from different local automata cannot be 
shown (Lahaye, Komenda, and Boimond 2015).  

Su, Van Schuppen, and Rooda (2012) propose a synchronous composition 
for WA. Yet, this composition does not feature the simultaneous behaviors of 
actions.  

The approach proposed by Quintero (2015) is described on a particular 
example, and hence lacks generality. Besides, the time is handled exclusively 
by decomposing durations into discrete steps, which excludes almost always 
optimal solutions.  

According to the enumerated issues, in this chapter a new synchronous 
composition of WA is proposed. The specificities of this composition is that 
firstly, in addition to interleaving of action, they can be also executed 
simultaneously and at the earliest time; and secondly, the optimal performance 
of the model representing the minimum makespan can be obtained through the 
composition. Afterwards, by inspiration from the performed literature review 
in Section 3.1.1, a time-optimal reachability algorithm is proposed to find the 
fastest trajectory to reach from the initial state to the marked state. This analysis 
can be directly used and can yield the timed-optimal schedule successfully.  
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Table 3.1. Classification of literature proposing synchronous composition of WA 

Authors Simultaneity Minimum Makespan 

(Milner 1983)   

(Komenda, Lahaye, and 
Boimond 2009c)   

(Komenda, Lahaye, and 
Boimond 2010)   

(Su, Van Schuppen, and Rooda 
2012)   

(Lahaye, Komenda, and 
Boimond 2012)   

(Lahaye, Komenda, and 
Boimond 2015)   

(Ware and Su 2017)   

 

In this Chapter, all the problem hypotheses are the same as Chapter 2. The 
remainder of this chapter is organized as follows. Section 3.2 explains the 
concept of synchronicity and simultaneity in the composition of automata 
through an example. In section 3.3, a new synchronous composition is defined 
for WA. In section 3.4, a time-optimal reachability algorithm is defined in order 
to find the optimal schedule. Finally section 3.5 is devoted to conclusion. 

3.2 Synchronous composition for weighted automata  
Prior to define a new synchronous composition, let’s explain the meaning of 
simultaneity and synchronicity of actions in a scheduling problem and its 
corresponding automata composition through an example. 

3.2.1 Example 2 
Assume there is a set of tasks 𝑇𝑇 = {𝐸𝐸, 𝑒𝑒, 𝑐𝑐} to be done and their durations are 7, 
5 and 3 time units respectively. Mutual exclusions between tasks are such that 
𝐸𝐸 and 𝑐𝑐 are in conflict with each other and 𝑒𝑒 is not in conflict with none of 
them. The desired behavior is such that 𝑐𝑐 must be executed after finishing task 
𝐸𝐸 and every task must be done only once. Each hypothesis should be modeled 
in a separate automaton. WA model of these hypotheses are depicted in Figure 
3.1. In this figure, automata  𝐺𝐺1 and 𝐺𝐺2 demonstrate the mutual exclusion 
between 𝐸𝐸 and 𝑐𝑐. Automata 𝐺𝐺3, 𝐺𝐺4 and 𝐺𝐺5 correspond to TL automata of tasks 
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𝐸𝐸, 𝑒𝑒 and 𝑐𝑐 respectedly and automaton 𝐺𝐺6 is the PR automata presenting 
precedence constraint between tasks 𝐸𝐸 and task 𝑐𝑐. 

 
Figure 3.1. WA model of Example 2. 

According to Figure 3.1, task 𝑒𝑒 can be executed is parallel with task 𝐸𝐸 or 
task 𝑐𝑐. Intuitively it can be seen that one of the optimal schedule is to firstly do 
task 𝐸𝐸 in parallel with task 𝑒𝑒 and after finishing 𝐸𝐸, to do task 𝑐𝑐 in parallel and 
during the remaining time of 𝑒𝑒. The Gantt chart corresponding to this schedule 
is shown in Figure 3.2. As it can be seen in the figure, in the middle of execution 
of task 𝑒𝑒 in time 5, tasks 𝐸𝐸 is finished and 𝑐𝑐 should be started. While, when 
executing all automata in parallel, for example when 𝐺𝐺2 takes the transition to 
execute action 𝑒𝑒, it doesn’t return to the state 0 until time 8 when it finishes the 
action. The same goes for the automaton 𝐺𝐺4; from state 0, it takes a transition 
for executing action 𝑒𝑒 and reaches the state 1 when 𝑒𝑒 is finished. Therefore, in 
the global behavior of the automata, when taking transitions with label 𝐸𝐸 and 𝑒𝑒 
in all automata, it is not possible to stop the global automata before finishing 
action b 𝐺𝐺2 and 𝐺𝐺4. 

For solving this issue, intermediate states should be added in these transition 
in 𝐺𝐺2 and 𝐺𝐺4 after doing action 𝑒𝑒 for 5 time units. Therefore, at time 5, all 
automata stop execution and the ones that have finished previous actions can 
start new actions.  

Thence, a generic rule could be defined like this: synchronous composition 
of automata should be such that in each trajectory, whenever an action is 
finished in a local automaton, intermediate states in all other automata are 
defined. Therefore, the local automaton can start another action in that time 
instant. 

Furthermore, synchronicity of transitions should be such that all transitions 
executing the same actions, be executed at the same time. For example, despite 
automaton 𝐺𝐺5 is idle from time 0 to 5, action 𝑐𝑐 in automata 𝐺𝐺1 and 𝐺𝐺5 and 𝐺𝐺6 
are executed synchronously from time 5 to time 7. 
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Figure 3.2. Gantt chart of automata 𝐺𝐺1 to 𝐺𝐺6 according to a sample schedule 

3.2.2 Algorithmic steps to reach synchronous composition 
The synchronous product computation is defined for n WA. The proposed 
approach operates in five steps:  

(1) Define the set X of all potential global transitions, such that whenever 
an action is shared among several WA, it should be executed 
synchronously. The remaining combinations represent actions to be 
taken either in parallel or independently; 

(2) Split transitions of  X modeling simultaneous actions which do not 
have the same duration;  

(3) Aggregate transitions enabling simultaneous actions at the earliest 
possible time; 

(4) Repeat steps 2 and 3 until a fixed point is reached; 
(5) Build a global transition relation from the preceding result. 

These steps are described by Algorithm 3.1 and detailed below. 

Algorithm 3.1: 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑃𝑃𝑡𝑡𝑃𝑃𝑜𝑜 (𝑋𝑋,𝑄𝑄1, … ,𝑄𝑄𝑛𝑛) 
𝑋𝑋(0) = 𝑋𝑋 
𝑡𝑡 ≔ 0 
𝐼𝐼 ≔ 1 
𝑓𝑓𝑃𝑃𝑃𝑃(𝑗𝑗 ≔ 1 𝑡𝑡𝑃𝑃 𝑜𝑜){ 

𝑓𝑓𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸𝐸𝐸 𝑞𝑞𝑗𝑗 ∈ 𝑄𝑄𝑗𝑗�{ 
𝑞𝑞𝑗𝑗 . 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 ≔ 𝑞𝑞𝑗𝑗  

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 
𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡 

𝑋𝑋𝑆𝑆 ≔ 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝�𝑋𝑋(𝑖𝑖)�    
𝑋𝑋(𝑖𝑖+1) ≔ 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜(𝑋𝑋𝑆𝑆,𝑄𝑄1, … ,𝑄𝑄𝑛𝑛) 
𝑡𝑡 ≔ 𝑡𝑡 + 1 

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝐸𝐸 𝑋𝑋(𝑖𝑖) = 𝑋𝑋(𝑖𝑖−1) 
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𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑋𝑋(𝑖𝑖) 

Step 1. Definition of the global transition set X.  

For all 𝐺𝐺𝑖𝑖, 𝑡𝑡 = 1. .𝑜𝑜 the tuple  

�(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … ,𝐸𝐸𝑛𝑛), (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛), (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ )� 

belongs to 𝑋𝑋 iff transition (𝑞𝑞𝑖𝑖,𝐸𝐸𝑖𝑖,𝑎𝑎𝑖𝑖 , 𝑞𝑞𝑖𝑖′) exists in 𝐺𝐺𝑖𝑖   via 𝛿𝛿𝑖𝑖, where 𝑞𝑞𝑖𝑖 is the 
source and 𝑞𝑞𝑖𝑖′ is the target of a transition in 𝐺𝐺𝑖𝑖 that executes an action 𝐸𝐸𝑖𝑖 with 
duration 𝑎𝑎𝑖𝑖. Therefore for 𝑜𝑜 automata, 𝑋𝑋 is defined as 

𝑋𝑋 = {�(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … , 𝐸𝐸𝑛𝑛), (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛), (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ )�| (∀𝑡𝑡 ∈ [1,𝑜𝑜]: 𝐸𝐸𝑖𝑖 ∈
Σi,𝑎𝑎𝑖𝑖 = 𝑎𝑎(𝐸𝐸𝑖𝑖), 𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑖𝑖′ ∈ 𝑄𝑄𝑖𝑖) ∧ � ∀𝑡𝑡 ≠ 𝑗𝑗 ∈ [1,𝑜𝑜]: 𝑡𝑡𝑓𝑓 𝐸𝐸𝑖𝑖 ∈ �Σ𝑖𝑖 ∩ Σj� → �𝐸𝐸𝑖𝑖 =
𝐸𝐸𝑗𝑗� ∧ (𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗)� ∧ (𝑞𝑞𝑖𝑖,𝐸𝐸𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑞𝑞𝑖𝑖′) ∈ 𝛿𝛿𝑖𝑖}                                             (2.11) 

In this definition, ∀𝑡𝑡 ≠ 𝑗𝑗 ∈ [1, 𝑜𝑜]: 𝐸𝐸𝑖𝑖 ∈ �Σ𝑖𝑖 ∩ Σj� → �𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑗𝑗� ∧ (𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗) 
denotes the fact that shared actions (having the same symbol) are executed 
synchronously.  

Step 2. Splitting transitions of X 

In the following, vectors of symbols are denoted between the symbols “⟨” 
and “⟩” and (〈𝑞𝑞1, … , 𝑞𝑞𝑛𝑛〉, 〈𝐸𝐸1, … ,𝐸𝐸𝑛𝑛〉, 〈𝑎𝑎1, … ,𝑎𝑎𝑛𝑛〉, 〈𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ 〉) is denoted by 
(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩).  

All transitions of X are expanded into two sequential transitions exhibiting 
either 0 or synchronous timing. All processed transitions are memorized inside 
the set S. In order to make the subsequent aggregation easier, the components 
of each vector are permuted according to an ascending order of the 
corresponding weights. This order is established by the function 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡. For 
example, if 𝑎𝑎𝑖𝑖 > 𝑎𝑎𝑗𝑗 and 𝑡𝑡 < 𝑗𝑗, 𝑞𝑞𝑖𝑖, 𝑞𝑞𝑖𝑖′ and 𝐸𝐸𝑖𝑖 are permuted with 𝑞𝑞𝑗𝑗, 𝑞𝑞𝑗𝑗′  and 𝐸𝐸𝑗𝑗. A 
track of the permutation is stored inside the tuple (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛). 

 Algorithm 3.2:𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝(𝑋𝑋) 
𝑆𝑆 ≔ ∅ 

𝑓𝑓𝑃𝑃𝑃𝑃 (𝐸𝐸𝐸𝐸𝐸𝐸 (⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩) ∈ 𝑋𝑋){ 

𝑒𝑒 ≔ 1 //it helps tracking number of times a tuple is split 

𝑡𝑡𝑓𝑓�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩) ∉ 𝑆𝑆�{  

𝑆𝑆: = 𝑆𝑆 ∪ {(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)} 

�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛)�: = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)� 

𝑋𝑋 ≔ 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛),𝑋𝑋, 𝑒𝑒� 
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}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑋𝑋 

Algorithm 3.3: 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜e_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛),𝑋𝑋, 𝑆𝑆, 𝑒𝑒� 
𝑡𝑡: = 𝑜𝑜𝑃𝑃𝑜𝑜𝐼𝐼𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑜𝑜�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)� 

𝑡𝑡𝑞𝑞𝐸𝐸: = 𝐸𝐸𝑃𝑃𝑡𝑡𝑞𝑞𝑡𝑡𝐸𝐸𝐸𝐸�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩),𝑡𝑡� 

//eql=1 if all non-silent actions of the tuple have the same duration as the fastest action 
𝑡𝑡𝑓𝑓 (𝑡𝑡𝑞𝑞𝐸𝐸 = 1 𝐸𝐸𝑜𝑜𝑎𝑎 𝑒𝑒 > 1){  //if all non-silent actions of the tuple have the same duration 

and the tuple is the output of the previous split  

(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩): = 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … 𝑡𝑡𝑛𝑛)� 

𝑋𝑋: = 𝑋𝑋 ∪ {(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)} 

𝑆𝑆: = 𝑆𝑆 ∪ {(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)} 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑋𝑋 
}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡𝑡𝑡𝑓𝑓(𝑡𝑡𝑞𝑞𝐸𝐸 = 0){ //if the duration of non-silent actions in the tuple were not equal, the 

element should be split into two tuples. 
((⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩), (⟨𝑞𝑞2⟩, ⟨𝐸𝐸2⟩, ⟨𝑎𝑎2⟩, ⟨𝑞𝑞2′ ⟩)) ≔ 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡((⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩),𝑡𝑡) 

�(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩)�: = 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡�(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩), (𝑡𝑡1, … 𝑡𝑡𝑛𝑛)� 

𝑋𝑋: = 𝑋𝑋 ∪ {(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩)}       

𝑆𝑆: = 𝑆𝑆 ∪ {(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩)} 
𝑒𝑒 + +  //it helps to find out if a tuple have been split previously 

𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡�(⟨𝑞𝑞2⟩, ⟨𝐸𝐸2⟩, ⟨𝑎𝑎2⟩, ⟨𝑞𝑞2′ ⟩), (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛),𝑋𝑋, 𝑒𝑒� 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 //if all non-silent actions of the tuple have the same duration and the tuple is not 

split formerly, do nothing 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑋𝑋 

Algorithm 3.4: 𝑜𝑜𝑃𝑃𝑜𝑜𝐼𝐼𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑜𝑜�(〈𝑞𝑞1, … , 𝑞𝑞𝑛𝑛〉, 〈𝐸𝐸1, … , 𝐸𝐸𝑛𝑛〉, 〈𝑎𝑎1, … ,𝑎𝑎𝑛𝑛〉, 〈𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ 〉)� 
      𝑡𝑡: = 1 
      𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 (𝑎𝑎𝑖𝑖 = 0 𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡 ≤ 𝑜𝑜){ 
            𝑡𝑡 + + 
            𝑡𝑡: = 𝑡𝑡 
      }𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 
      𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑡𝑡 

Algorithm 3.5: 𝐸𝐸𝑃𝑃𝑡𝑡𝑞𝑞𝑡𝑡𝐸𝐸𝐸𝐸�(〈𝑞𝑞1, … , 𝑞𝑞𝑛𝑛〉, 〈𝐸𝐸1, … , 𝐸𝐸𝑛𝑛〉, 〈𝑎𝑎1, … ,𝑎𝑎𝑛𝑛〉, 〈𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ 〉),𝑡𝑡� 
𝑡𝑡𝑞𝑞𝐸𝐸: = 1 
𝑡𝑡: = 𝑡𝑡 + 1 
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𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 ((𝑡𝑡 ≤ 𝑜𝑜) 𝐸𝐸𝑜𝑜𝑎𝑎 (𝑡𝑡𝑞𝑞𝐸𝐸 = 1)){ 
𝑡𝑡𝑓𝑓 (𝑎𝑎𝑖𝑖 ≠ 𝑎𝑎𝑚𝑚){ 

𝑡𝑡𝑞𝑞𝐸𝐸: = 0 
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 
𝑡𝑡 + + 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑡𝑡𝑞𝑞𝐸𝐸   

As explained above, Algorithm 3.3 (𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜e_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡) splits each tuple 
to two or more tuples recursively for which all duration elements 𝑎𝑎𝑖𝑖  have the 
same value or are equal to zero. In this algorithm, firstly through function 
𝑜𝑜𝑃𝑃𝑜𝑜𝐼𝐼𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑜𝑜 (Algorithm 3.4), the index of the first non-silent element of the 
tuple is assigned to 𝑡𝑡. Then, the function 𝐸𝐸𝑃𝑃𝑡𝑡𝑞𝑞𝑡𝑡𝐸𝐸𝐸𝐸 (Algorithm 3.5) finds out if 
all non-silent actions of the tuple have the same duration as the fastest action. 
In other words, in this function if all duration elements are equal to 𝑎𝑎𝑚𝑚 or zero, 
the output would be one. Otherwise the output would be zero. If they were 
equal, it means that the tuple doesn’t need to be expanded; and if 𝑒𝑒 was equal 
to one, it means that it is not the result of a previous expansion and already 
exists in 𝑋𝑋. So the algorithm terminates. While if 𝑡𝑡𝑞𝑞𝐸𝐸 is equal to one and 𝑒𝑒 was 
bigger than one it means that the tuple is the output of the previous recursion. 
So it doesn’t need to be expanded anymore. Whereas, as it is not integrated into 
𝑋𝑋 yet, the order of its elements is firstly restored according to their original 
order kept in 𝑡𝑡 and through 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡 algorithm (Algorithm 3.7). Then the tuple 
is integrated into 𝑋𝑋. It is also included in 𝑆𝑆 to prevent going through process of 
splitting another time. 

If the duration of actions in the tuple were not equal, it should be split to two 
tuples. 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm (Algorithm 3.6) yields two outputs. In the first one (i.e. 
(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩)), all non-silent actions have equal durations and hence it 
should be included in the set 𝐸𝐸. Therefore, first the order of elements is restored 
and then it is integrated into 𝐸𝐸.  

There is a possibility that duration elements of the second input of 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 
algorithm (i.e. (⟨𝑞𝑞2⟩, ⟨𝐸𝐸2⟩, ⟨𝑎𝑎2⟩, ⟨𝑞𝑞2′ ⟩)) may not have the same value. Thence, 
𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡 is called for the second tuple. 

The 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm (Algorithm 3.6) is based on the first non-silent action 
(i.e. 𝑡𝑡th action). 𝐵𝐵 = (〈𝑞𝑞𝑒𝑒1, … , 𝑞𝑞𝑒𝑒𝑛𝑛〉, 〈𝑒𝑒1, … , 𝑒𝑒𝑛𝑛〉, 〈𝑎𝑎𝑒𝑒1, … ,𝑎𝑎𝑒𝑒𝑛𝑛〉, 〈𝑞𝑞𝑒𝑒1′ , … , 𝑞𝑞𝑒𝑒𝑛𝑛′ 〉) 
and 𝑇𝑇 = (〈𝑞𝑞𝑐𝑐1, … , 𝑞𝑞𝑐𝑐𝑛𝑛〉, 〈𝑐𝑐1, … , 𝑐𝑐𝑛𝑛〉, 〈𝑎𝑎𝑐𝑐1, … ,𝑎𝑎𝑐𝑐𝑛𝑛〉, 〈𝑞𝑞𝑐𝑐1′ , … , 𝑞𝑞𝑐𝑐𝑛𝑛′ 〉) represent the 
resulting tuples. In the splitting process, first states and last states don’t change. 
It means that 𝑞𝑞𝑒𝑒1 to 𝑞𝑞𝑒𝑒𝑛𝑛 are equal to 𝑞𝑞1 to 𝑞𝑞𝑛𝑛 and 𝑞𝑞𝑐𝑐1′  to 𝑞𝑞𝑐𝑐𝑛𝑛′  are equal to 𝑞𝑞1′  to 
𝑞𝑞𝑛𝑛′ . Transitions executing 𝜀𝜀 or other silent actions are executed through the first 
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tuple and don’t need to be split. So their related elements are places in tuple 𝐵𝐵 
before 𝑡𝑡th elements. Thereby, 𝑒𝑒1 to 𝑒𝑒𝑚𝑚−1 are equal to 𝐸𝐸1 to 𝐸𝐸𝑚𝑚−1 and 𝑎𝑎1 to 
𝑎𝑎𝑚𝑚−1 are equal to zero. Since these actions finish in one transition, 𝑞𝑞𝑒𝑒1′  to 
𝑞𝑞𝑒𝑒𝑚𝑚−1

′  and 𝑞𝑞𝑐𝑐1 to 𝑞𝑞𝑐𝑐𝑚𝑚−1 are equal to 𝑞𝑞1′  to 𝑞𝑞𝑚𝑚−1
′  respectively. In addition,  𝑐𝑐1 

to 𝑐𝑐𝑚𝑚−1 are 𝜀𝜀 and their related durations are equal to zero.  

The rest of the elements in 𝐵𝐵 have the same duration as the 𝑡𝑡th. In tuple 𝑇𝑇, 
those actions who are already finished, will be replaced by 𝜀𝜀 with zero duration. 
Thence, their corresponding target and source in the first and second tuples 
respectively, are the same as their original transition target. Furthermore those 
that are not terminated yet, continue executing in the next transition and appear 
in 𝑇𝑇. Hence 𝑎𝑎𝑐𝑐𝑚𝑚 to 𝑎𝑎𝑐𝑐𝑛𝑛 are equal to the remaining durations of actions, i.e. 
𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑚𝑚. Since their related local transitions are split to two transitions, an 
intermediate state 𝐼𝐼𝑞𝑞𝑧𝑧 is created between each two transitions. The information 
of the source of the original transition before splitting is also kept in 𝐼𝐼𝑞𝑞𝑧𝑧 .𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 
to be used mainly in 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 functions. 

For example, let us give the sorted tuple (〈0,0,0〉, 〈𝑐𝑐,𝐸𝐸, 𝑒𝑒〉, 〈3,5,7〉, 〈1,1,1〉) 
to 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm as input. It can be seen that since no duration elements is 
equal to zero, 𝑡𝑡 is equal to 1. For splitting the tuple through 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm, 
the first tuple will have duration elements equal to the smallest element, but 
with their original action elements. Furthermore, local sources of transitions 
will remain unchanged, while only those local transitions will reach their targets 
that have finished execution of their related actions. For those that have not 
finished execution, an intermediate state should be added. Hence, the first split 
tuple is (〈0,0,0〉, 〈𝑐𝑐, 𝐸𝐸, 𝑒𝑒〉, 〈3,3,3〉, 〈1, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉) where 𝐼𝐼𝑞𝑞1 and 𝐼𝐼𝑞𝑞2 are 
intermediate states.  

Duration elements of the second tuple are obtained by substituting 3 from 
the original durations. Those actions for which the duration element vanishes, 
will be replaced by 𝜀𝜀 which means their execution are terminated. It is obvious 
that the source elements of the second tuple are the same as the target elements 
of the first tuple. Furthermore, through this algorithm, the target elements of 
the tuple are the same as the target elements of the non-split tuple. Thereby, the 
second tuple is obtained as (〈1, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉, 〈𝜀𝜀,𝐸𝐸, 𝑒𝑒〉, 〈0,2,4〉, 〈1,1,1〉). 

Algorithm 3.6: 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡((⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩),𝑡𝑡) 
     𝑓𝑓𝑃𝑃𝑃𝑃 (𝑗𝑗: = 1 𝑡𝑡𝑃𝑃 𝑡𝑡 − 1){     

𝑒𝑒𝑗𝑗 ≔ 𝐸𝐸𝑗𝑗           
𝑎𝑎𝑒𝑒𝑗𝑗: = 𝑎𝑎𝑗𝑗    
𝑞𝑞𝑒𝑒𝑗𝑗 ≔ 𝑞𝑞𝑗𝑗  
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𝑞𝑞𝑒𝑒𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′  
𝑐𝑐𝑗𝑗 ≔ 𝜀𝜀  
𝑎𝑎𝑐𝑐𝑗𝑗: = 0 
𝑞𝑞𝑐𝑐𝑗𝑗 ≔ 𝑞𝑞𝑐𝑐𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′  

      }𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 
      𝑓𝑓𝑃𝑃𝑃𝑃(𝑗𝑗: = 𝑡𝑡 𝑡𝑡𝑃𝑃 𝑜𝑜){ 

𝑒𝑒𝑗𝑗 ≔ 𝐸𝐸𝑗𝑗  
            𝑎𝑎𝑒𝑒𝑗𝑗: = 𝑎𝑎𝑚𝑚  

𝑞𝑞𝑒𝑒𝑗𝑗 ≔ 𝑞𝑞𝑗𝑗  
𝑡𝑡𝑓𝑓�𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑚𝑚�{ 

𝑞𝑞𝑒𝑒𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′  
𝑐𝑐𝑗𝑗: = 𝜀𝜀 
𝑎𝑎𝑐𝑐𝑗𝑗 ≔ 0 
𝑞𝑞𝑐𝑐𝑗𝑗 ≔ 𝑞𝑞𝑐𝑐𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′  

            }𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡 𝑡𝑡𝑓𝑓(𝑎𝑎𝑗𝑗 > 𝑎𝑎𝑚𝑚) 
𝑐𝑐𝑗𝑗 ≔ 𝐸𝐸𝑗𝑗  
𝑎𝑎𝑐𝑐𝑗𝑗 ≔ 𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑚𝑚  

                  𝑞𝑞𝑒𝑒𝑗𝑗′ ≔ 𝑞𝑞𝑐𝑐𝑗𝑗 ≔ 𝐼𝐼𝑞𝑞𝑧𝑧 
𝑡𝑡𝑓𝑓 (𝑞𝑞𝑗𝑗 ∈ 𝑄𝑄𝑗𝑗){ 

𝐼𝐼𝑞𝑞𝑧𝑧 . 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 ≔ 𝑞𝑞𝑗𝑗  
}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡{ 

𝐼𝐼𝑞𝑞𝑧𝑧 . 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 ≔ 𝑞𝑞𝑗𝑗 . 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 

    𝑞𝑞𝑐𝑐𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′  
𝐼𝐼 + + 

            }𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 
       }𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜((⟨𝑞𝑞𝑒𝑒⟩, ⟨𝑒𝑒⟩, ⟨𝑎𝑎𝑒𝑒⟩, ⟨𝑞𝑞𝑒𝑒′⟩), (⟨𝑞𝑞𝑐𝑐⟩, ⟨𝑐𝑐⟩, ⟨𝑎𝑎𝑐𝑐⟩, ⟨𝑞𝑞𝑐𝑐′⟩)) 
 
 
Algorithm 3.7: 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … 𝑡𝑡𝑛𝑛)� 
      𝑓𝑓𝑃𝑃𝑃𝑃 (𝑡𝑡: = 1 𝑡𝑡𝑃𝑃 𝑜𝑜){ 

ℎ𝑡𝑡𝑖𝑖 ≔ 𝐸𝐸𝑖𝑖  
𝑎𝑎ℎ𝑡𝑡𝑖𝑖 ≔ 𝑎𝑎𝑖𝑖  
𝑞𝑞ℎ𝑡𝑡𝑖𝑖 ≔ 𝑞𝑞𝑖𝑖  
𝑞𝑞ℎ𝑡𝑡𝑖𝑖

′ ≔ 𝑞𝑞𝑖𝑖′ 
      }𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 
      𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 �(⟨𝑞𝑞ℎ⟩, ⟨ℎ⟩, ⟨𝑎𝑎ℎ⟩, ⟨𝑞𝑞ℎ′⟩)� 

Step 3. Aggregating transitions 

As explained above, after expanding elements of 𝑋𝑋, through Algorithm 3.8, 
all tuples are compared and aggregated with each other if possible. For each 
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two tuple 𝐴𝐴𝑖𝑖 =  (〈𝑞𝑞𝑖𝑖1, … , 𝑞𝑞𝑖𝑖𝑛𝑛〉, 〈𝐸𝐸𝑖𝑖1, … , 𝐸𝐸𝑖𝑖𝑛𝑛〉, 〈𝑎𝑎𝑖𝑖1, … , 𝑎𝑎𝑖𝑖𝑛𝑛〉, 〈𝑞𝑞𝑖𝑖1′ , … , 𝑞𝑞𝑖𝑖𝑛𝑛′ 〉) and 
𝐴𝐴𝑗𝑗 = (〈𝑞𝑞𝑗𝑗1, … , 𝑞𝑞𝑗𝑗𝑛𝑛〉, 〈𝐸𝐸𝑗𝑗1, … ,𝐸𝐸𝑗𝑗𝑛𝑛〉, 〈𝑎𝑎𝑗𝑗1, … ,𝑎𝑎𝑗𝑗𝑛𝑛〉, 〈𝑞𝑞𝑗𝑗1′ , … , 𝑞𝑞𝑗𝑗𝑛𝑛′ 〉), first it should be 
verified if for all non-𝜀𝜀 actions in 𝐴𝐴𝑖𝑖, the corresponding actions in 𝐴𝐴𝑗𝑗 are 𝜀𝜀 and 
vice versa. If it was true, then it should be checked if sub-transitions belong to 
the transitions with the same source, in other words, origin of 𝑞𝑞𝑖𝑖1 to 𝑞𝑞𝑖𝑖𝑛𝑛 are 
equal to the origin of 𝑞𝑞𝑗𝑗1 to 𝑞𝑞𝑗𝑗𝑛𝑛. If so, the two tuple can be aggregated. The 
aggregated tuple is composed of elements related to all non-𝜀𝜀 actions of 𝐴𝐴𝑖𝑖 and 
𝐴𝐴𝑗𝑗. If in both of the tuples the action of an automaton was 𝜀𝜀, the corresponding 
aggregated action would be 𝜀𝜀. The process of comparison and aggregation is 
continued till 𝑋𝑋 doesn’t change anymore. 

Algorithm 3.8: 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 (𝑋𝑋,𝑄𝑄1, … ,𝑄𝑄𝑛𝑛) 
𝑋𝑋′ ≔ 𝑋𝑋 
𝑀𝑀: = |𝑋𝑋| 
𝑓𝑓𝑃𝑃𝑃𝑃 �𝑡𝑡: = 1 𝑡𝑡𝑃𝑃 𝑀𝑀 𝑃𝑃. 𝑡𝑡. �〈𝑞𝑞𝑡𝑡1, … ,𝑞𝑞𝑡𝑡𝑜𝑜〉, 〈𝐸𝐸𝑡𝑡1, … ,𝐸𝐸𝑡𝑡𝑜𝑜〉, 〈𝑎𝑎𝑡𝑡1, … ,𝑎𝑎𝑡𝑡𝑜𝑜〉, 〈𝑞𝑞𝑡𝑡1

′ , … ,𝑞𝑞𝑡𝑡𝑜𝑜
′ 〉� ∈ 𝑋𝑋�{ 

𝑓𝑓𝑃𝑃𝑃𝑃 ��𝑗𝑗: = 1 𝑡𝑡𝑃𝑃 𝑀𝑀 𝑃𝑃𝑡𝑡. (〈𝑞𝑞𝑗𝑗1, … ,𝑞𝑞𝑗𝑗𝑜𝑜〉 , 〈𝐸𝐸𝑗𝑗1, … ,𝐸𝐸𝑗𝑗𝑜𝑜〉, 〈𝑎𝑎𝑗𝑗1, … ,𝑎𝑎𝑗𝑗𝑜𝑜〉, 〈𝑞𝑞𝑗𝑗1
′ , … ,𝑞𝑞𝑗𝑗𝑜𝑜

′ 〉)

∈ 𝑋𝑋�  𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡 ≠ 𝑗𝑗� { 
𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡: = 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 
𝑓𝑓𝑃𝑃𝑃𝑃 (𝑘𝑘: = 1 𝑡𝑡𝑃𝑃 𝑜𝑜){ 

//if non-epsilon actions are not equal 
𝑡𝑡𝑓𝑓�𝐸𝐸𝑖𝑖𝑘𝑘 ≠ 𝜀𝜀 𝐸𝐸𝑜𝑜𝑎𝑎 𝐸𝐸𝑗𝑗𝑘𝑘 ≠ 𝜀𝜀 𝐸𝐸𝑜𝑜𝑎𝑎 (𝐸𝐸𝑖𝑖𝑘𝑘 ,𝑎𝑎𝑖𝑖𝑘𝑘) ≠ (𝐸𝐸𝑗𝑗𝑘𝑘 ,𝑎𝑎𝑗𝑗𝑘𝑘)�{  

𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡: = 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡 
𝑒𝑒𝑃𝑃𝑡𝑡𝐸𝐸𝑘𝑘 

//if the sub-transitions don’t belong to the transitions with the same source 
}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡 𝑡𝑡𝑓𝑓(�𝑞𝑞𝑡𝑡𝑘𝑘 ∈ 𝑄𝑄𝑘𝑘 𝐸𝐸𝑜𝑜𝑎𝑎 𝑞𝑞𝑡𝑡𝑘𝑘

′ <> 𝑞𝑞𝑗𝑗𝑘𝑘�  𝑃𝑃𝑃𝑃 (𝑞𝑞𝑡𝑡𝑘𝑘 ∉ 𝑄𝑄𝑘𝑘 𝐸𝐸𝑜𝑜𝑎𝑎 𝑞𝑞𝑡𝑡𝑘𝑘
′ <> 𝑞𝑞𝑗𝑗𝑘𝑘

′ ){ 

}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡 𝑡𝑡𝑓𝑓 �𝑞𝑞𝑡𝑡𝑘𝑘.𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 <> 𝑞𝑞𝑗𝑗𝑘𝑘.𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜� { 
 
𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡: = 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡 
𝑒𝑒𝑃𝑃𝑡𝑡𝐸𝐸𝑘𝑘 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 
𝑡𝑡𝑓𝑓 (𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡 = 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡){ 

𝑓𝑓𝑃𝑃𝑃𝑃(𝐼𝐼: = 1 𝑡𝑡𝑃𝑃 𝑜𝑜){ 
𝑡𝑡𝑓𝑓(𝐸𝐸𝑖𝑖𝑧𝑧 = 𝜀𝜀){ 

𝑃𝑃𝑧𝑧 ≔ 𝐸𝐸𝑗𝑗𝑧𝑧 
𝑎𝑎𝑃𝑃𝑧𝑧 ≔ 𝑎𝑎𝑗𝑗𝑧𝑧 
𝑞𝑞𝑃𝑃𝑧𝑧 ≔ 𝑞𝑞𝑗𝑗𝑧𝑧 
𝑞𝑞𝑃𝑃𝑧𝑧′ ≔ 𝑞𝑞𝑗𝑗𝑧𝑧′  

}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡{         
𝑃𝑃𝑧𝑧 ≔ 𝐸𝐸𝑖𝑖𝑧𝑧 
𝑎𝑎𝑃𝑃𝑧𝑧 ≔ 𝑎𝑎𝑖𝑖𝑧𝑧 
𝑞𝑞𝑃𝑃𝑧𝑧 ≔ 𝑞𝑞𝑖𝑖𝑧𝑧 
𝑞𝑞𝑃𝑃𝑧𝑧′ ≔ 𝑞𝑞𝑖𝑖𝑧𝑧′  
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}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 
𝑋𝑋 ≔ 𝑋𝑋 ∪ {〈𝑞𝑞𝑃𝑃1, … , 𝑞𝑞𝑃𝑃𝑛𝑛〉, 〈𝑃𝑃1, … , 𝑃𝑃𝑛𝑛〉, 〈𝑎𝑎𝑃𝑃1, … ,𝑎𝑎𝑃𝑃𝑛𝑛〉, 〈𝑞𝑞𝑃𝑃1′ … 𝑞𝑞𝑃𝑃𝑛𝑛′ 〉} 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃 
𝑡𝑡𝑓𝑓(𝑋𝑋′ ≠ 𝑋𝑋){ 

𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 (𝑋𝑋,𝑄𝑄1, … ,𝑄𝑄𝑛𝑛) 
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 

Step 4. Steps 2 and 3 will be repeated until a fixed point is reached. 

Step 5. In the next section, a global transition relation will be built from the 
preceding result. 

3.2.3 Synchronous composition of DSDA weighted automata 
In the previous section, local intermediate states were created to connect split 
transitions. Union of the previous states in automata 𝐺𝐺𝑖𝑖 and newly added 
intermediate states, build the new set of states named 𝑄𝑄𝑖𝑖′.   

Definition 3.1 (synchronous composition of DSDA weighted automata): The 
automaton resulting from the synchronous composition of 𝐺𝐺1, … ,  𝐺𝐺𝑛𝑛 is denoted 
as 𝐺𝐺𝑡𝑡𝑐𝑐 = (𝑄𝑄′,Σ,𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡,𝑄𝑄𝑚𝑚, 𝛿𝛿) where:  

(1) 𝑄𝑄′ = (𝑄𝑄′1 × … × 𝑄𝑄′𝑛𝑛) in which 𝑄𝑄𝑖𝑖′ is the expansion of the set of states 

𝑄𝑄𝑖𝑖 obtained by Algorithm 3.1. 

(2) Σ = (Σ1 × … × Σ𝑛𝑛) where Σ𝑖𝑖 is the set of symbols in 𝐺𝐺𝑖𝑖. 

(3) ∀[𝑞𝑞 = (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛)] ∈ 𝑄𝑄′, 𝑞𝑞 ∈ 𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 iff  ∀𝑡𝑡 ∈ [1,𝑜𝑜]: 𝑞𝑞𝑖𝑖 ∈ 𝑄𝑄𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 where 

𝑄𝑄𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 is the set of initial locations in local DSDA weighted automaton 

𝐺𝐺𝑖𝑖. 

(4) ∀[𝑞𝑞 = (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛)] ∈ 𝑄𝑄′, 𝑞𝑞 ∈ 𝑄𝑄𝑚𝑚 iff ∀𝑡𝑡 ∈ [1, 𝑜𝑜]: 𝑞𝑞𝑖𝑖 ∈ 𝑄𝑄𝑖𝑖𝑚𝑚 where 𝑄𝑄𝑖𝑖𝑚𝑚 

is the set of marked locations in local DSDA weighted automata 𝐺𝐺𝑖𝑖. 

(5) 𝑋𝑋 is defined as 

𝑋𝑋 = {�(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … , 𝐸𝐸𝑛𝑛), (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛), (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ )�| (∀𝑡𝑡 ∈

[1,𝑜𝑜]:𝐸𝐸𝑖𝑖 ∈ 𝛴𝛴𝑖𝑖,𝑎𝑎𝑖𝑖 = 𝑎𝑎(𝐸𝐸𝑖𝑖), 𝑞𝑞𝑖𝑖, 𝑞𝑞𝑖𝑖′ ∈ 𝑄𝑄𝑖𝑖) ∧ � ∀𝑡𝑡 ≠ 𝑗𝑗 ∈ [1, 𝑜𝑜]: 𝑡𝑡𝑓𝑓 𝐸𝐸𝑖𝑖 ∈

�Σ𝑖𝑖 ∩ Σj� → �𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑗𝑗� ∧ (𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗)� ∧ (𝑞𝑞𝑖𝑖,𝐸𝐸𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑞𝑞𝑖𝑖′) ∈ 𝛿𝛿𝑖𝑖}. 

(6) 𝛿𝛿 is the transition relation of the composed automata and defined as 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
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𝛿𝛿 = ��(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … ,𝐸𝐸𝑛𝑛),𝑎𝑎, (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ )���𝑎𝑎 = 𝑡𝑡𝐸𝐸𝐸𝐸𝑖𝑖∈[1,𝑛𝑛] 𝑎𝑎𝑖𝑖�
∧ �(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … ,𝐸𝐸𝑛𝑛), (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛), (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ )�
∈ 𝑋𝑋′ ∧ (∀𝑡𝑡 ≠ 𝑗𝑗 ∈ [1,𝑜𝑜]:𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗)} 

where the set 𝑋𝑋′ is the expansion of the set 𝑋𝑋 through Algorithm 3.1.  

In each transition of the composition, 𝑞𝑞’𝑖𝑖 is either the same as 𝑞𝑞𝑖𝑖 or is the 
state reached from 𝑞𝑞𝑖𝑖 by partially or totally execution of action 𝐸𝐸𝑖𝑖 that takes 
𝑎𝑎 time units. In a transition, all local sub-actions have the same durations. This 
rule is considered to enable maximum simultaneity of tasks and to prevent 
unnecessary delays in task executions. 

3.2.4 A simple example of synchronous composition (Example 2-continue) 
For constructing the synchronous composition of different components of the 
problem, firstly the set 𝑋𝑋 should be made and expanded through algorithms 
represented in section 3.2.2. To this aim, at the beginning, the set of transition 
relations related to each automaton should be defined: 

𝛿𝛿1 = {(0,𝐸𝐸, 5,0), (0, 𝑐𝑐, 2,0)} 

𝛿𝛿2 = {(0, 𝑒𝑒, 8,0)} 

𝛿𝛿3 = {(0,𝐸𝐸, 5,1)} 

𝛿𝛿4 = {(0, 𝑒𝑒, 8,1)} 

𝛿𝛿5 = {(0, 𝑐𝑐, 2,1)} 

𝛿𝛿6 = {(0,𝐸𝐸, 5,1), (1, 𝑐𝑐, 2,2)} 

According to local set of transition relations, the set 𝑋𝑋 can be defined: 

𝑋𝑋(0) = 𝑋𝑋 = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉), 

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉), 

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉), 

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉), 

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉)} 
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After building 𝑋𝑋, its elements should be expanded according to Algorithm 
3.1 explained in the previous section. In this algorithm, first the information of 
the source of original transition relations before splitting are kept in 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜. 𝑞𝑞𝑗𝑗. 
In fact, the origin of each non-intermediate state is equal to itself, i.e. 
𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜. 𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑗𝑗. 

In the next step, 𝑋𝑋(0) is expanded through 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 algorithm. 
There exist some tuples in 𝑋𝑋(0) in which duration of non-silent actions (or sub-
actions) are not equal. These tuples should be split to tuples that have either 
zero or equal duration-elements. For example in the tuple 
(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉), non-zero duration 
elements are either 2 or 8 and so are not equal. Thus, it should be split to tuples 
with the same duration elements. To this end, first elements of a tuple are sorted 
respecting to ascending order of their related duration elements. The sorted 
tuple is (〈1,0,0,1,0,0〉, 〈𝜀𝜀, 𝑐𝑐, 𝑐𝑐, 𝑐𝑐, 𝑒𝑒, 𝑒𝑒〉, 〈0,2,2,2,8,8〉, 〈1,0,1,2,0,1〉). When 
sorting, its original order is kept in vector 𝑡𝑡 to enable restoring its order later. 
After sorting, it should be split through algorithm 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡. In this 
algorithm, first it is assessed if duration-elements are equal. As explained in 
previous section, variable 𝑒𝑒 that was initialized to 1 in algorithm 
𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝, determines number of times that a tuple goes through 
algorithm 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡. Therefore, in the first iteration, 𝑒𝑒 is equal to 1 
and duration-elements are not equal. Hence, the tuple should be split through 
𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm. The output is two tuples (〈1,0,0,1,0,0〉, 〈𝜀𝜀, 𝑐𝑐, 𝑐𝑐, 𝑐𝑐, 𝑒𝑒, 𝑒𝑒〉,
〈0,2,2,2,2,2〉, 〈1,0,1,2, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉) and (〈1,0,1,2, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉, 〈𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑒𝑒, 𝑒𝑒〉,
〈0,0,0,0,6,6〉, 〈1,0,1,2,0,1〉). In addition, the origins of 𝐼𝐼𝑞𝑞1 and 𝐼𝐼𝑞𝑞2 are equal to 
0, i.e. 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜. 𝐼𝐼𝑞𝑞1 = 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜. 𝐼𝐼𝑞𝑞2 = 0. As a result, the order of the first tuple is 
restored as (〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉) and 
it is stored in 𝑋𝑋. Then the second tuple goes through the splitting process by 
recalling 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡 and considering the second tuple as input. 

Therefore as the second iteration of the function, (〈1,0,1,2, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉,
〈𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑒𝑒, 𝑒𝑒〉, 〈0,0,0,0,6,6〉, 〈1,0,1,2,0,1〉) goes through the process of 
splitting. For this purpose, firstly duration elements of the tuple are evaluated. 
Both non-zero durations are 6 and equal and therefore there is no need for 
splitting. 𝑒𝑒 is equal to two, which means that the tuple is the result of a previous 
splitting. Therefore, according to vector 𝑡𝑡, the order of the tuple should be 
restored. The result is (〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈 (𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀)〉, 〈0,6,0,6,0,0〉,
〈0,0,1,1,1,2〉) that should be stored in 𝑋𝑋. 

All elements of 𝑋𝑋 should be processed by algorithm 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡. 
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As the result of this process, some elements are added to the set 𝑋𝑋(0) that are 
shown in bold letters. The resulting set is as follows:  

𝑋𝑋𝑆𝑆 = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉), 

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉), 

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉), 

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐,𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉), 

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉), 

(〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟎𝟎,𝟎𝟎,𝟏𝟏〉, 〈𝒄𝒄,𝒃𝒃,𝜺𝜺,𝒃𝒃, 𝒄𝒄, 𝒄𝒄〉, 〈𝟐𝟐,𝟐𝟐,𝟎𝟎,𝟐𝟐,𝟐𝟐,𝟐𝟐〉, 〈𝟎𝟎,𝒒𝒒𝟏𝟏,𝟏𝟏,𝒒𝒒𝟐𝟐,𝟏𝟏,𝟐𝟐〉), 

(〈𝟎𝟎,𝒒𝒒𝟏𝟏,𝟏𝟏,𝒒𝒒𝟐𝟐,𝟏𝟏,𝟐𝟐〉, 〈𝜺𝜺,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝜺𝜺, 𝜺𝜺〉, 〈𝟎𝟎,𝟔𝟔,𝟎𝟎,𝟔𝟔,𝟎𝟎,𝟎𝟎〉, 〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟐𝟐〉), 

(〈𝟎𝟎,𝟎𝟎,𝟎𝟎,𝟎𝟎,𝟎𝟎,𝟎𝟎〉, 〈𝒂𝒂,𝒃𝒃,𝒂𝒂,𝒃𝒃, 𝜺𝜺,𝒂𝒂〉, 〈𝟓𝟓,𝟓𝟓,𝟓𝟓,𝟓𝟓,𝟎𝟎,𝟓𝟓〉, 〈𝟎𝟎,𝒒𝒒𝟑𝟑,𝟏𝟏,𝒒𝒒𝟒𝟒,𝟎𝟎,𝟏𝟏〉), 

(〈𝟎𝟎,𝒒𝒒𝟑𝟑,𝟏𝟏,𝒒𝒒𝟒𝟒,𝟎𝟎,𝟏𝟏〉, 〈𝜺𝜺,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝜺𝜺, 𝜺𝜺〉, 〈𝟎𝟎,𝟑𝟑,𝟎𝟎,𝟑𝟑,𝟎𝟎,𝟎𝟎〉, 〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟏𝟏,𝟎𝟎,𝟏𝟏〉)} 

After expanding 𝑋𝑋(0) by means of splitting and obtaining 𝑋𝑋𝑆𝑆, 𝑋𝑋𝑆𝑆 should be 
expanded through 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 algorithm (Algorithm 3.8). In 
this algorithm, all tuples are assessed pairwise to be compatible. If they were 
compatible, they should be integrated to one tuple. By comparing first tuple 
(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉) with other tuples in 
the set, it can be found that it is compatible with some other tuples like 
(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉). The integrated tuple 
is  (〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒, 𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉) which already 
exists in the set. There are some other tuples that integrating them doesn’t have 
any effect on the set. But during this comparison, two tuples are be found that 
are compatible and also their integration enlarges the set 𝑋𝑋. As it is clear, action 
elements of  (〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉) and 
(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,3,0,3,0,0〉, 〈0,0,1,1,0,1〉) are 
compatible. Because firstly, if one of the actions is not 𝜀𝜀, its corresponding 
element in the other tuple is 𝜀𝜀. Secondly, since the both origin state for 𝐼𝐼𝑞𝑞3 and 
𝐼𝐼𝑞𝑞4 are 1,  elements in 〈0,0,1,0,0,1〉 and 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉 have the same 
origin. Integrating these two tuples yields tuple 
(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,3,0,3,2,2〉, 〈0,0,1,1,1,2〉) that will be 
integrated in 𝑋𝑋. Thereby 𝑋𝑋(1) is as follows: 
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𝑋𝑋(1) = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉), 

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉), 

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉), 

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉), 

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉), 

(〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,6,0,6,0,0〉, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,5,5,5,0,5〉, 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉), 

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,3,0,3,0,0〉, 〈0,0,1,1,0,1〉), 

(〈𝟎𝟎, 𝑰𝑰𝒒𝒒𝟑𝟑,𝟏𝟏, 𝑰𝑰𝒒𝒒𝟒𝟒,𝟎𝟎,𝟏𝟏〉, 〈𝒄𝒄,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝒄𝒄, 𝒄𝒄〉, 〈𝟐𝟐,𝟑𝟑,𝟎𝟎,𝟑𝟑,𝟐𝟐,𝟐𝟐〉, 〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟐𝟐〉)} 

In this moment, one repetition is finished, whereas since 𝑋𝑋(1) is not equal to 
𝑋𝑋(0), the process of expansion by splitting and aggregation should be done once 
more. Thus, first function 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 is called for the new set 𝑋𝑋(1) 
as input. This algorithm is such that whenever it investigates any tuple, it 
includes it in the set 𝑆𝑆 to prevent its reinvestigation. Therefore all the processed 
tuples in the previous iteration were integrated in 𝑆𝑆. Comparing 𝑋𝑋(1) and 𝑆𝑆 
reveals that that only the recently added tuple 
(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,3,0,3,2,2〉, 〈0,0,1,1,1,2〉) is not 
processed. Therefore, it should be sorted to obtain ascending order of duration-
elements. The sorted tuple is (〈1,0,0,1, 𝐼𝐼𝑞𝑞3, 𝐼𝐼𝑞𝑞4〉, 〈𝜀𝜀, 𝑐𝑐, 𝑐𝑐, 𝑐𝑐, 𝑒𝑒, 𝑒𝑒〉,
〈0,2,2,2,3,3〉, 〈1,0,1,2,0,1〉). Since its non-zero duration-elements are not equal, 
it should be split through 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 function. 

The result of the 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 function is  (〈1,0,0,1, 𝐼𝐼𝑞𝑞3, 𝐼𝐼𝑞𝑞4〉, 〈𝜀𝜀, 𝑐𝑐, 𝑐𝑐, 𝑐𝑐, 𝑒𝑒, 𝑒𝑒〉,
〈0,2,2,2,2,2〉, 〈1,0,1,2, 𝐼𝐼𝑞𝑞5, 𝐼𝐼𝑞𝑞6〉) and  (〈1,0,1,2, 𝐼𝐼𝑞𝑞5, 𝐼𝐼𝑞𝑞6〉, 〈𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑒𝑒, 𝑒𝑒〉,
〈0,0,0,0,1,1〉, 〈1,0,1,2,0,1〉). In the next step, the order of the first tuple is 
restored as (〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈 (2,2,0,2,2,2)〉,
〈0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2〉). Then this tuple is integrated in the set 𝑋𝑋. In the next step, 
the algorithm 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡 is executed anew with the second tuple 
(〈1,0,1,2, 𝐼𝐼𝑞𝑞5, 𝐼𝐼𝑞𝑞6〉, 〈𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑒𝑒, 𝑒𝑒〉, 〈0,0,0,0,1,1〉, 〈1,0,1,2,0,1〉) as input. Since 
all non-zero duration-elements are equal (i.e. 𝑡𝑡𝑞𝑞𝐸𝐸 = 1) and the tuple is a result 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés



Chapter 3: Synchronous composition of weighted automata - application to 
MRS scheduling 

 

 
Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon               77 
 

of previous splitting process (i.e. 𝑒𝑒 > 1), firstly its order is restored and then 
the result is included in 𝑋𝑋. The tuple with its original order is 
(〈0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,1,0,1,0,0〉, 〈1,0,1,2,0,1〉) that is stored in 
𝑋𝑋. Here, 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 algorithm ends and 𝑋𝑋𝑆𝑆 is equal to: 

𝑋𝑋𝑆𝑆 = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉), 

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉), 

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉), 

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉), 

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉), 

(〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,6,0,6,0,0〉, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,5,5,5,0,5〉, 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉), 

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,3,0,3,0,0〉, 〈0,0,1,1,0,1〉), 

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,3,0,3,2,2〉, 〈0,0,1,1,1,2〉), 

(〈𝟎𝟎, 𝑰𝑰𝒒𝒒𝟑𝟑,𝟏𝟏, 𝑰𝑰𝒒𝒒𝟒𝟒,𝟎𝟎,𝟏𝟏〉, 〈𝒄𝒄,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝒄𝒄, 𝒄𝒄〉, 〈𝟐𝟐,𝟐𝟐,𝟎𝟎,𝟐𝟐,𝟐𝟐,𝟐𝟐〉, 〈𝟎𝟎, 𝑰𝑰𝒒𝒒𝟓𝟓,𝟏𝟏, 𝑰𝑰𝒒𝒒𝟔𝟔,𝟏𝟏,𝟐𝟐〉), 

(〈𝟎𝟎, 𝑰𝑰𝒒𝒒𝟓𝟓,𝟏𝟏, 𝑰𝑰𝒒𝒒𝟔𝟔,𝟏𝟏,𝟐𝟐〉, 〈𝜺𝜺,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝜺𝜺, 𝜺𝜺〉, 〈𝟎𝟎,𝟏𝟏,𝟎𝟎,𝟏𝟏,𝟎𝟎,𝟎𝟎〉, 〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟐𝟐〉)} 

In the next step, 𝑋𝑋𝑆𝑆 is processed through 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 
algorithm. Whereas after processing, it is found that this algorithm can’t change 
and expand 𝑋𝑋𝑆𝑆. So 𝑋𝑋(2) is equal to 𝑋𝑋𝑆𝑆.  

In the next repetition, 𝑋𝑋(2) is  investigated through 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 
algorithm; whereas since all its members are previously processed, they are not 
processed and split anymore. Therefore 𝑋𝑋(2) is assigned to 𝑋𝑋𝑆𝑆. Since 𝑋𝑋𝑆𝑆 is not 
changed from the previous process of 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜, it doesn’t 
changed anymore by this algorithm and is again assigned to 𝑋𝑋(3). Thereby, the 
resulting 𝑋𝑋′ is as follows: 

𝑋𝑋′ = 𝑋𝑋(3) = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉), 

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉), 
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(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉), 

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉), 

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉), 

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉), 

(〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,6,0,6,0,0〉, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,5,5,5,0,5〉, 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉), 

�(0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1), (𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀), (0,3,0,3,0,0), (0,0,1,1,0,1)�, 

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,3,0,3,2,2〉, 〈0,0,1,1,1,2〉), 

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈 (0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2)〉), 

(〈0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,1,0,1,0,0〉, 〈0,0,1,1,1,2〉)} 

After expansion of 𝑋𝑋, synchronous composition could be built. According 
to the definition of synchronous composition in the previous section, the set of 
composed transition relations can be achieved as follows: 

𝛿𝛿 = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉,5, 〈0,0,1,0,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 2, 〈0,0,1,0,1,2〉), 

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 8, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 8, 〈0,0,0,1,0,0〉), 

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 5, 〈0,0,1,1,0,1〉), 

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 2, 〈0,0,1,1,1,2〉), 

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 8, 〈0,0,1,1,0,1〉), 

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 2, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉), 

(〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 6, 〈0,0,1,1,1,2〉), 

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 5, 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉), 

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 3, 〈0,0,1,1,0,1〉), 

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 2, 〈 (0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2)〉), 

(〈0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 1, 〈0,0,1,1,1,2〉)} 

According to the composed transition relation set, the synchronous 
composition of the automata in Example 2 (Figure 3.1) is obtained as Figure 
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3.3. In this figure, in the upper trajectory (𝑇𝑇1), tasks 𝐸𝐸, 𝑐𝑐 and 𝑒𝑒 are executed 
sequentially. It can be seen that this trajectory takes 15 time units. While in the 
lower trajectory (𝑇𝑇2), first 𝐸𝐸 and 𝑒𝑒 are executed simultaneously in 5 time units, 
then task 𝑐𝑐 is executed in parallel with the remaining part of 𝑒𝑒 in 2 time units. 
After finishing 𝑐𝑐, 1 time units remains from execution of 𝑒𝑒 that is done 
individually. 
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Figure 3.3. Synchronous composition of automata in Example 2 
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3.3 Finding the optimal schedule 
In order to find the minimum makespan through synchronous composition of 
WA, an optimal time trajectory should be found from the initial state of the 
synchronous composition to its marked state.  

Let 𝛼𝛼 = 𝑞𝑞0
𝐴𝐴1/𝑑𝑑1�⎯⎯� 𝑞𝑞1 …

𝐴𝐴𝑛𝑛/𝑑𝑑𝑛𝑛�⎯⎯⎯� 𝑞𝑞𝑛𝑛 be a finite run of a weighted automaton 
where 𝐴𝐴𝑘𝑘 is a set of actions executing during 𝑘𝑘th transition and 𝑎𝑎𝑘𝑘 denotes the 
duration of 𝑘𝑘th transition of the run. The duration of 𝛼𝛼, 𝑎𝑎𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜(𝛼𝛼), is the 
sum ∑𝑘𝑘∈[1,𝑛𝑛]𝑎𝑎𝑘𝑘. 

For a state 𝑞𝑞, the minimal duration for reaching 𝑞𝑞, 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞), is the 
infimum of the durations of the finite trajectories which end in 𝑞𝑞 (Behrmann, 
Fehnker, Hune, Larsen, Pettersson, Romijn, et al. 2001): 

𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞) = inf {𝑎𝑎𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜(𝛼𝛼)|𝛼𝛼:𝐸𝐸 𝑃𝑃𝑡𝑡𝑜𝑜 𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝 𝑡𝑡𝑜𝑜 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡 𝑞𝑞}                  (3.1) 

Gerd Behrmann et al. (2001) suggest an algorithm for determining the 
minimum cost for reaching a target state satisfying a property in a priced time 
automata. Inspired from their algorithm, Algorithm 3.9 is presented that 
minimizes time of reaching a marked state from the initial state in a WA and 
yields the fastest trajectory. 

In this algorithm, all encountered states are included in two data structures 
𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 and 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 that store explored and unexplored states, respectively. 
Initially, 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 is empty and 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 includes the initial state. The global 
variable 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜, which is initially set to ∞, stores the lowest duration 
achieved so far for reaching the marked state. The optimum schedule is a 
trajectory from the initial state 𝑞𝑞0 to the marked state 𝑞𝑞𝑚𝑚 with the minimal 
duration that is initially empty. 

In each iteration, a state 𝑞𝑞 is taken from 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 and is checked if it 
corresponds to the marked state 𝑞𝑞𝑚𝑚. If it was the marked state and 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞) 
was less than 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜, it stores 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞) as the minimum 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜 
and its related trajectory 𝛼𝛼 as the optimal schedule 𝐹𝐹𝑃𝑃𝑡𝑡𝑆𝑆𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡. Then it adds 
the state 𝑞𝑞 to 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 and its successors to 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝. In this algorithm, 𝑞𝑞 → 𝑞𝑞′ 
means 𝑞𝑞′ is reachable from 𝑞𝑞.  
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Algorithm 3.9: 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸_𝑃𝑃𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡 

𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜 ≔ ∞ 

𝐹𝐹𝑃𝑃𝑡𝑡𝑆𝑆𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡 ≔ ∅ 

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ≔ 𝑞𝑞0 

𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 ≔ ∅ 

𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 (𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ≠ ∅){ 

𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑐𝑐𝑡𝑡 𝑞𝑞 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 

𝑡𝑡𝑓𝑓 (𝑞𝑞 = 𝑞𝑞𝑚𝑚 𝐸𝐸𝑜𝑜𝑎𝑎 ∃𝛼𝛼 𝑃𝑃. 𝑡𝑡.𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞) = 𝑎𝑎𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜(𝛼𝛼) 𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞) < 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜){ 

𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜 ≔ 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃𝑡𝑡(𝑞𝑞) 

𝐹𝐹𝑃𝑃𝑡𝑡𝑆𝑆𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡 ≔ 𝛼𝛼 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 

𝐸𝐸𝑎𝑎𝑎𝑎 𝑞𝑞 𝑡𝑡𝑃𝑃 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 

𝑓𝑓𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸 𝑞𝑞′𝑃𝑃. 𝑡𝑡. 𝑞𝑞 → 𝑞𝑞′: 𝐸𝐸𝑎𝑎𝑎𝑎 𝑞𝑞′𝑡𝑡𝑃𝑃 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜,𝐹𝐹𝑃𝑃𝑡𝑡𝑆𝑆𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡 

The algorithm terminates when 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 is empty and this happens when 
no more state remains in the state space to be explored. This means that the 
algorithm searches the entire state space. 

3.4 Conclusion 
In this chapter, multi-resource sharing scheduling problem is solved through 
time-optimal reachability analysis on WA. For this purpose, different WA 
models of the problem should be composed. Whereas the existing synchronous 
compositions are either not capable of showing simultaneous execution of 
actions in a scheduled system or the minimum makespan cannot be found 
through the composition. Hence, a new synchronous composition is presented 
that shows simultaneous execution of non-conflicting tasks and in addition, 
contains trajectories through which the minimum makespan can be obtained. In 
this composition, every task may be needed to be split to two or more sequential 
parts. Each part may be done in parallel with one action or a part of an action. 
In that way, a set of tasks can be executed in a shorter time. After building the 
synchronous composition of the problem, a schedule can be found by doing 
time-optimal reachability analysis to find the fastest trajectory from the initial 
to the marked state.
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4 Multi-resource sharing scheduling 
considering uncontrollable 
environment 

4.1 Introduction 
In Chapters 2 and 3, it is considered that all the actions are controllable which 
means all the actions can be controlled by the controller. All the information 
related to the tasks are known in advance and are certain. The same goes for the 
resources who are assumed to be reliable. In this section, some of the 
parameters defining the scheduling system are considered to be uncontrollable.  

Uncontrollability in the scheduling and industrial problems have been 
studied by various researchers. Problems considering uncontrollability can be 
solved through supervisory control theory. Furthermore, as explained in 
previous chapters, the advantage of using automata modeling approach for 
modeling problems is obtaining visual and expressive models. Therefore, the 
intent of this chapter is to solve the problem by means of automata theory and 
supervisory control. Thus, a literature review is conducted to investigate 
various kinds of uncontrollable actions in the industry and also different types 
of automata that are able to model uncontrollability concept. 

4.1.1 State of the art 
Girault et al. (2003) present a new scheduling heuristic called Fault-Tolerance 
Based Active Replication to produces distributed fault-tolerant schedules for 
embedded systems. The heuristic algorithm is implemented in the tool 
SYNDEX. This method can be applied to critical embedded systems for which 
software should be fault-tolerant. The aim of the scheduling problem is to 
optimize the critical path of the obtained schedule. 

Abdeddaïm, Asarin, and Maler (2006a) use an extension of timed automata 
for solving the classical job-shop problem. The authors divide the transitions to 
controllable and uncontrollable. They propose shortest path algorithms for 
timed automata to find the optimal schedules. They also investigate non-lazy 
scheduling with uncertainty in task duration.  

Behrmann et al. (2009) develop a tool named TIGA to  solve games based 
on timed game automata with respect to reachability and safety properties. The 
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tool can output strategies to satisfy a desired condition or reach to the goal state, 
or let the user play as environment and against the controller. It should be 
mentioned that timed game automata consists of both controllable and 
uncontrollable actions.  

Abdeddaïm, Asarin, and Sighireanu (2009) present a subclass of timed game 
automata, called Task TGA which is defined as networks of communicating 
tasks. In this network, the start time of tasks are deterministic, while their 
duration are uncertain. This paper presents an approach to solve finite-horizon 
reachability games on Task TGA by building strategies in the form of Simple 
Temporal Networks with Uncertainty. They probe that finding this kind of 
strategy is NP-complete. This study can be used in scheduling problems that 
consider task-duration uncertainty.  

David, Illum, and Larsen (2009) proposed a framework to model and 
analyze a variety of schedulability scenarios for problems that deal with 
multiprocessor systems, timing uncertainties in arrival and execution times, 
possible dependencies of tasks and preemption of resources. The problem is 
modeled by timed automata. 

Komenda, Lahaye, and Boimond (2009) investigate supervisory control of 
(max, +) automata. To this end, parallel composition of (max, +) automata is 
presented for which, behavior corresponds to generalized version of Hadamard 
product. The concept of uncontrollability in this study is such that 
uncontrollable events can neither be forbidden and can nor be delayed.  

Komenda, Lahaye, and Boimond (2010) study behavior of synchronous 
composition of interval weighted automata resulting in multi-event interval 
weighted automata. This type of automata is defined as automata with weights 
in a product dioid. In fact, they are an extension of (max,+) automata since 
instead of exact durations, temporal constraints are assigned to transitions.. 

 Dumitrescu et al. (2010) propose a framework for multi-criteria optimal 
controller synthesis to model and optimize fault-tolerant distributed systems 
considering task execution cost and its service quality. Moreover, to combine 
criteria, the authors consider three different methods: aggregation, 
hierarchization and translation. To model the multi-task system, a type of WA 
called labeled transition system is defined based on input and outputs events.  

Marangé et al. (2011) propose a job-shop scheduling model by 
communicating automata to handle reconfiguration of a manufacturing plant 
due to resource failure. Following a reconfiguration request, a scheduling is 
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generated for a set of products that are produced by a set of machines. This 
schedule can be obtained by means of reachability analysis on the model. 

Atto, Martinez, and Amari (2011) provide a (max, +)-based method to 
supervise discrete event systems subject to tight time constraints. The 
supervision is designed to guarantee temporal constraints without having an 
intense effect on the dynamic behavior of the system. The authors model the 
studied system as timed event graphs represented by linear (max, +) state 
equations. The method is applied to an example of industrial manufacturing 
plant subject to strict temporal constraints, the thermal treatment of rubber parts 
for the automotive industry. In this study, temporal constraints are set to avoid 
losing parts for the reason of possible failure in the transport device.  

Su, Van Schuppen, and Rooda (2012) addresse a minimum-makespan 
supervisory synthesis job shop problem. They assume also occurrence of 
uncontrollable events such as malfunction of a component when the system 
reaches a certain state, being unable to execute a program immediately when 
the operating system is still retrieving all relevant execution resources for this 
program according to a pre-specified internal mechanism unknown to the end 
user, producing imperfect product, etc. The makespan of the problem is 
computed through theory of heap-of-pieces. A timed supervisory control map 
is also presented that is capable of implementing the synthesized minimum-
makespan sublanguage. The author models the problem by weighted and un-
weighted deterministic finite state automata. 

Delaval et al. (2013) deal with discrete control of computing systems 
administration. The authors provide an approach based on a synchronous 
programming language BZR to solve the control problem. Hierarchical and 
parallel automata can be built through BZR language. The defined parallel 
automata is the same as what is defined in the previous chapters of this thesis. 
While in the case of hierarchy, the sub-automata define the behavior of each 
state in the upper-level automaton. The BZR compiler is implemented on top 
of the Heptagon compiler and the SIGALI DCS tool. In this language, 
uncontrollable events can be given as input variables. While the uncontrollable 
environment can be modeled through this language, it does not consider timing 
aspect, which is an indispensable parameter in scheduling.  

The idle time between two consecutive tasks may cause significant impact 
on the quality of wafer in certain wafer fabrication processes needing high 
temperature and pressure. Therefore, in such process, a cluster tool must 
facilitate production of wafers through a steady schedule to provides high wafer 
quality. Kim, Zhou, and Lee (2014) propose a method for steady scheduling of 
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a single-armed cluster tool based on timed event graph and (max,+) algebra. 
They concern disruptive events during the fabrication process, such as wafer 
alignment failure. Therefore, the authors develop strategies that change the 
system dynamics of a cluster tool by delaying some tasks to stabilize disrupted 
schedule in a finite time.  

Boukra, Lahaye, and Boimond (2015) propose new representations for 
(max,+) automata in order to describe their extremal behaviors. Consequently, 
the defined automata is applied to performance evaluation application. 
Thereby, the worst case and optimum case of behavior of automata are 
formulated in a form that has polynomial complexity. Furthermore, the authors 
defines an equation to find the start time of actions in optimal and worst cases. 
Thus, if the automaton corresponds to the synchronous composition of 
components of a scheduling problem, the minimum makespan and start time of 
tasks can be found through the presented formula for the performance 
evaluation. In this article, the presented formulae are applied to an example of 
scheduling problem. Whereas, the complexity of finding the schedule is not 
discussed. Supervisory control of automata and the notion of uncontrollability 
is studied in this paper. While, uncontrollability of actions is restricted to not 
delaying.  

Fernández Anta et al. (2015) deal with an online system consisting of tasks 
with different execution times that arrive continuously to be execute on sets of 
machine which are subject to crashes and restarts. The authors model and 
investigate the effect of parallelism and failures on the competitiveness of this 
system.  

Lu, Cui, and Han (2015) study a single-machine scheduling problem with 
resource availability constraints. Unexpected breakdowns may occur for the 
machine which follow the Weibull failure function. Therefore, preventive 
maintenances are considered in the scheduling problem. The authors propose a 
model in which the sequence of jobs, the preventive maintenance times and the 
planned completion times of jobs are proactively determined simultaneously. 
The objective of the scheduling problem is to optimize the robustness and 
stability. To this end, a genetic algorithm is proposed.  

Cimatti, Micheli, and Roveri (2015) address the problem of temporal 
planning considering uncontrollable duration of actions. The authors develop 
and algorithm to generate robust plans despite possible uncontrollable 
durations. They conducted an experimental feasibility evaluation by 
implementing the proposed approach in the planning tool COLIN.  
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Kundakcı and Kulak (2016) propose efficient hybrid Genetic 
Algorithm methodologies in order to minimize makespan of a dynamic job 
shop scheduling problem. In this problem, uncontrollable events such as 
random job arrivals, machine breakdowns and changes in processing time are 
considered. 

Alves et al. (2016) addresses a supervisory scheduling problem in 
manufacturing systems in order to maximize parallelism among resources. 
They model the problem through deterministic finite automata. In addition to 
predictable uncontrollable events, unpredictable uncontrollable events may 
occur during the execution of sequence of tasks. The main objective 
of this study is not to minimize the makespan, but to maximize the parallelism 
of working resources. 

Dorndorf, Jaehn, and Pesch (2017) tackle the problem of assigning flights to 
airport gates. In this problem, starting and completion times of flight activities 
are stochastic and the goal is to minimize the number of violations of any kind 
of constraints like shadow restrictions.  In addition, they develop an online 
decision support system to propose recovery actions in the case of constraint 
violations.  

Rzevski and Skobelev (2017) state that behavior of a railway operation is 
prone to unpredictable events such as resources unavailability due to failures, 
weather conditions or human errors. Another challenge in a transportation 
system is changing trend of demands over time, which cause resource 
assignment problems. In fact changing transportation resources, such as tracks, 
is not always possible. Therefore, the aim of this article is to design a railway 
scheduler capable of allocating resources to demands in real time. Depending 
on uncontrollable events, the scheduler should rapidly reschedule assignment 
of resources. 

4.1.2 Synthesis of the state of the art 
Table 4.1 illustrates the classification of the presented papers that concern 
uncontrollability aspect. In this table, the reviewed papers are classified based 
on four criteria: time-optimization scheduling, multi-resource sharing, timed 
automata and uncontrollable parameter. In the following these criteria are 
explained. 

• Time-optimization scheduling: The discussed problem is 
schedulability or makespan minimization.  

• Multi-resource sharing: This criteria shows that how the multi-
resource sharing aspect is considered in the scheduling problems. It 
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can be taken into account as constraint in the problem or can be 
modeled using the proposed technics. 

• Time-based automata: This criteria determines whether the paper 
discusses an approach based on a time-based automata, and if yes, on 
which type of time-based automata. 

• Uncontrollable parameter: Different kinds of parameters and events 
may be assumed uncontrollable in the problems. This criteria 
enumerates the uncontrollable parameters explained in the paper.  

 

Table 4.1. Classification of literature concerning uncontrollability 

Authors 
Time-

optimization 
Scheduling 

Multi-
Resource 
Sharing 

Timed-
base 

automata 
Uncontrollable parameter 

Girault et al. (2003)    Processor failure 

(Yasmina Abdeddaïm, 
Asarin, and Maler 
2006) 

  Timed 
automata Task duration 

(David et al. 2009)   Timed 
automata 

Arrival and execution time 
of task 

(Behrmann et al. 
2007b)   

Timed 
game 

automata 
Generic event 

(Komenda, Lahaye, 
and Boimond 2009b)   (max,+) 

automata 
Undelayable and 

unpreventable actions 

(Y. Abdeddaïm, 
Asarin, and Sighireanu 
2009) 

  
Task 
timed 

automata 
Task duration 

(Komenda, Lahaye, 
and Boimond 2010)   

Interval 
(max,+) 
automata 

Action duration 

(Dumitrescu et al. 
2010)   

Labeled 
transition 
system 

Processor failure 

(Marangé et al. 2011)   Timed 
automata Resource failure 

(Atto, Martinez, and 
Amari 2011)    failure in the transport 

device 

(Su, Van Schuppen, 
and Rooda 2012)   

Timed-
weighted 
automata 

malfunction of a 
component, being unable to 

execute a program 
immediately, producing 

imperfect product 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés



Chapter 4: MRS scheduling considering uncontrollable environment 
 

 
Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon               90 
 

Authors 
Time-

optimization 
Scheduling 

Multi-
Resource 
Sharing 

Timed-
base 

automata 
Uncontrollable parameter 

(Delaval et al. 2013)    Uncontrollable variables 

(Kim, Zhou, and Lee 
2014)    Wafer alignment failure 

(Boukra, Lahaye, and 
Boimond 2015)   (max,+) 

automata 
Undelayable and 

unpreventable tasks 

(Fernández Anta et al. 
2015)    Crashes and restart of 

machines 

(Lu, Cui, and Han 
2015)    Machine breakdown 

(Cimatti, Micheli, and 
Roveri 2015)    Task duration 

(Kundakcı and Kulak 
2016)    

job arrival, machine 
breakdowns and processing 

time 

(Alves et al. 2016)    Generic uncontrollable 
event 

(Dorndorf, Jaehn, and 
Pesch 2017)    Starting and completion 

time of flights 

(Rzevski and Skobelev 
2017)    

Resources unavailability 
due to failures, 

weather conditions or 
human errors – trend of 
transportation demand 

In Table 4.1 it can be observed that only one study considers scheduling 
problem taking into account multi-resource sharing and uncontrollable actions 
during scheduling (Boukra, Lahaye, and Boimond 2015). Whereas, the authors 
consider the uncontrollable action to be an undelayable and unpreventable task 
which is a restricted notion of uncontrollability. 

The synthesis of this state of the art shows that researchers have investigated 
various uncontrollable parameters in the scheduling problems such as task 
duration, start time, completion time, undelayable and unpreventable tasks, 
resource failure, etc. By adapting uncontrollable actions considered in the 
related studies to our MRS scheduling problem, three main uncontrollable 
actions are considered in this chapter: start time, duration of task and failure 
occurrence in a scheduling problem.  

In addition, there are mainly 5 types of timed automata that can show 
uncontrollable actions; timed automata consisting of controllable and 
uncontrollable transitions, timed game automata, task timed tame automata, 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf 
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés



Chapter 4: MRS scheduling considering uncontrollable environment 
 

 
Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon               91 
 

(max,+) automata and interval weighted automata. It is noteworthy to mention 
that a group of uncertainties concerned by the researchers (e.g. uncertain 
duration of task) are considered to be controllable. In other words, time 
uncertainty in some problems are managed by controllable transitions. While 
in the similar studies, the same notion of uncertainties are assumed to be 
completely uncontrollable and are handled by uncontrollable transitions. 
Hence, due to the interpretation of the researcher from uncertainty, the type of 
chosen automata for solving the problem changes. For example in the first case, 
they use timed automata to solve the problem, while in the latter, they use timed 
game automata for this purpose. In this thesis, due to the constraints causing by 
these types of uncontrollable actions, the problem is modeled through Timed 
Game Automata (TGA). The detailed reason will be discussed in section 4.5. 

The remainder of this Chapter is as follows: Section 4.2 recalls basic 
concepts related to timed games and interval weighted automata. Section 4.3 
presents the problem description. Different types of uncontrollable parameters 
is enumerated in Section 4.4. In Section 4.5, the scheduling problem is modeled 
through TGA considering uncontrollable parameters. In Section 4.6, an 
example is studied to illustrate how a simple scheduling problem can be 
formulated through the proposed model. Section 4.7 discussed the solving 
approach for the scheduling problem. In section 4.8, the illustrative example in 
section 4.6 is solved through the proposed solving approach. A summary and 
some remarks conclude the chapter in Section 4.8. 

4.2 Background  

4.2.1 Timed Game Automata 
Definition 4.1 (Timed Game Automata): A TGA is a tuple 𝐺𝐺 =
 (𝑇𝑇, 𝐸𝐸0,𝑇𝑇𝐸𝐸,𝐴𝐴,𝐸𝐸, 𝐼𝐼,𝑉𝑉,𝑉𝑉0) where 𝑇𝑇 is a finite set of locations, 𝐸𝐸0 ∈ 𝑇𝑇 is the initial 
location, 𝑇𝑇𝐸𝐸 is a finite set of clocks, 𝐴𝐴 is a set of actions partitioned into 
controllable (𝐴𝐴𝑐𝑐) and uncontrollable (𝐴𝐴𝑢𝑢) action, 𝐸𝐸 ⊆ 𝑇𝑇 × 𝐵𝐵(𝑇𝑇𝐸𝐸) × 𝐴𝐴 × 2𝐶𝐶 × 𝑇𝑇 
is a finite set of controllable and uncontrollable transitions, 𝐼𝐼: 𝑇𝑇 → 𝐵𝐵(𝑇𝑇𝐸𝐸) 
associates to each location its invariant, 𝑉𝑉 is the set of integer or Boolean 
variables or the output of functions that are defined over variables. They can 
also be updated or incremented on the edges. Furthermore, predicates can be 
used over these variables as guards on edges of the automaton. 𝑉𝑉0 is the initial 
values of 𝑉𝑉(Behrmann et al. 2007a). 
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Definition of state and step are the same as timed automata. Whereas in a 
TGA, in addition to final states, loosing states may be defined where reaching 
them should be avoided. Moreover, discrete steps can be made by both 
controllable and uncontrollable actions. 

For analysis of timed automata, its simulation graph should be explored. In 
a simulation graph, nodes are symbolic states; a symbolic state is defined as a 
pair (𝐸𝐸,𝑍𝑍) where 𝐸𝐸 ∈ 𝑇𝑇 and 𝑍𝑍 is a zone of ℝ≥0

𝐶𝐶𝑡𝑡 . Referring to the Chapter 2, each 
state of an automaton consists of a pair 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉. 𝑄𝑄 = 𝑇𝑇 × ℝ≥0

𝐶𝐶𝑡𝑡  is defined as the 
set of all states in an automaton where 𝑞𝑞0 = (𝐸𝐸0, 0�⃗ ).  Let 𝑋𝑋 ⊆ 𝑄𝑄 and 𝐸𝐸 ∈ 𝐴𝐴. The 
a-successor of 𝑋𝑋 is defined by 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎(𝑋𝑋) = {(𝐸𝐸′, 𝑐𝑐𝐸𝐸′)|∃(𝐸𝐸, 𝑐𝑐𝐸𝐸) ∈ 𝑋𝑋, (𝐸𝐸, 𝑐𝑐𝐸𝐸)
𝑎𝑎
→ (𝐸𝐸′, 𝑐𝑐𝐸𝐸′)} and the a-predecessor of 𝑋𝑋 is defined as 𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎𝑎𝑎(𝑋𝑋) =

{(𝐸𝐸, 𝑐𝑐𝐸𝐸)|∃(𝐸𝐸′, 𝑐𝑐𝐸𝐸′) ∈ 𝑋𝑋, (𝐸𝐸, 𝑐𝑐𝐸𝐸)  
𝑎𝑎
→ (𝐸𝐸′, 𝑐𝑐𝐸𝐸′)}. The timed successors and 

predecessors of 𝑋𝑋 are respectively defined by 𝑋𝑋 ↗=  {(𝐸𝐸, 𝑐𝑐𝐸𝐸 + 𝑎𝑎)|(𝐸𝐸, 𝑐𝑐𝐸𝐸) ∈ 𝑋𝑋 ∩
[𝐼𝐼𝑜𝑜𝑣𝑣(𝐸𝐸)], (𝐸𝐸, 𝑐𝑐𝐸𝐸 + 𝑎𝑎) ∈ [𝐼𝐼𝑜𝑜𝑣𝑣(𝐸𝐸)],𝑎𝑎 ∈ ℝ≥0} and 𝑋𝑋 ↙ =  {(𝐸𝐸, 𝑐𝑐𝐸𝐸 − 𝑎𝑎)|(𝐸𝐸, 𝑐𝑐𝐸𝐸) ∈
𝑋𝑋,𝑎𝑎 ∈ ℝ≥0}. Let → be the relation defined on symbolic states by: 

(𝐸𝐸,𝑍𝑍)
𝑎𝑎
→ (𝐸𝐸′,𝑍𝑍′) if (𝐸𝐸,𝑝𝑝,𝐸𝐸, 𝑃𝑃, 𝐸𝐸′) ∈ 𝐸𝐸 and 𝑍𝑍′ = ((𝑍𝑍 ∩ [𝑝𝑝])[𝑃𝑃]) ↗. The simulation 

graph 𝑆𝑆𝐺𝐺(𝑇𝑇𝐴𝐴) of timed automaton 𝑇𝑇𝐴𝐴 is defined as the transition system 
(𝑍𝑍(𝑄𝑄), 𝑆𝑆0,→), where 𝑍𝑍(𝑄𝑄) is the set of zones of 𝑄𝑄, 𝑆𝑆0 = (({𝐸𝐸0, 0�⃗ } ↗) ∩
[𝐼𝐼𝑜𝑜𝑣𝑣(𝐸𝐸0)] and → defined as above (Cassez et al. 2005). 

4.2.2 Safety and reachability games 
Given a network of TGA and a formula 𝜑𝜑 specifying desired conditions in the 
TGA, rules of a game can be specified. In fact, 𝜑𝜑 defines the set of states that 
should be reached/avoided in order to win/lose the game. Networks of TGA 
consists of both controllable and uncontrollable actions. The player (controller) 
can trigger controllable actions to win the game and on the contrary, the 
opponent (environment) can trigger the uncontrollable ones that may cause 
losing the game. The opponent has priority over the controller. It means that 
when a state has both outgoing uncontrollable and controllable actions, the 
opponent will perform the uncontrollable action (De Munter 2010).  

Two main control objectives can be defined in a network of TGA: 

Definition 4.2 (reachability control problem): Given a TGA G and a set of 
states 𝐾𝐾 ⊆  𝑇𝑇 × 𝑅𝑅≥0𝐶𝐶𝑡𝑡 , a reachability control problem (reachability game) is 
defined as finding a strategy 𝑃𝑃 such that 𝐺𝐺 supervised by 𝑃𝑃 enforces 𝐾𝐾. 
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Definition 4.3 (safety control problem): A safety control problem (safety 
game) consists of searching a strategy for triggering controllable actions to 
avoid reaching a set of losing states 𝐾𝐾.  

4.2.3 Winning games 
A game can be winning if the last transition leading to the goal state is 
controllable. For example, the automaton on Figure 4.1.(a) is winning since the 
transition leading to the goal state is controllable, while the automaton on the 
Figure 4.1.(b) is losing this transition is uncontrollable. In fact, opponent may 
decide to stay in the initial state forever without taking the transition that leads 
to the goal state. Therefore, the controller will never reach the Goal state. 

 
Figure 4.1. Examples of Winning (a) and Losing (b) timed game automata (Behrmann et 

al. 2007a) 

Using an invariant might force the opponent to act. For simulating this force, 
an invariant could be used in the initial state and an implicit controllable edge 
can be added with a guard expressing the upper limit of the invariant. This 
implicit extra transition is called a forced transition. Hence, when the time 
reaches the upper limit, the automaton moves to the Goal state.  

As an example, the automaton on Figure 4.2.(a) shows the original model, 
the automaton on Figure 4.2.(b) explicitly adds the forced transition from the 
initial state to the Goal state making it clear why the model is winning3. While, 
in the automaton on Figure 4.2.(c), it can be seen that the forced transition 
cannot be added since there is already a possible controllable behavior when 
the automaton hit the invariant. Thus, this model cannot reach the Goal state 
and is losing. 

 
Figure 4.2. Examples of forced transition: winning model (a), equivalent model with the 
implicit transition made explicit (b) and a losing model (c) (Behrmann et al. 2007a) 

                                                           
3 Whereas, in version 0.18 of tool TIGA described in section 4.2.5, Fig.(a) is not winning. 
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When facing with synchronization issue and invariants, some strange 
behaviors might occur. Forced transitions might become explicit in local 
automata and be synchronized with others. The rule to avoid the strange 
behaviors is to locally add forced transitions to each local automata and then to 
do the composition. In Figure 4.3.(a), the original model of two synchronized 
automata example is shown. In Figure 4.3.(b), the forced transition is made 
explicit and finally in Figure 4.3.(c) the full composition of the model is 
demonstrated (Behrmann et al. 2007a). 

 
Figure 4.3. Example of synchronization with forced transitions: original model (a), forced 

transition made explicit (b), complete composition with explicit forced transition (Behrmann 
et al. 2007a). 

4.2.4 Strategy 
Definition 4.4 (strategy): A strategy is a function 𝑃𝑃: 𝑇𝑇 × 𝑅𝑅≥0𝐶𝐶𝑡𝑡 →  𝐴𝐴𝑐𝑐 ∪  {𝜀𝜀} that 
constantly gives information to the controller to do necessary actions during the 
course of the game (Behrmann et al. 2006). In each situation, the strategy could 
suggest the controller a list of possible controllable transitions to either take one 
of them and so do a controllable action or do nothing at this point in time (which 
means a silent action 𝜀𝜀). 

Definition 4.5 (winning strategy): A strategy is said to be a winning strategy 
if the controller supervised by the strategy always win the game whatever the 
environment acts. 

Definition 4.6 (counter-strategy): Whenever no winning strategy is found, 
there exists a counter-strategy to either make the controller lose (reach a 
location that is marked as loose) or just prevent it to win (reach a location that 
cannot lead to the final location) (Behrmann et al. 2006). 

4.2.5 Synthesis tool TIGA  
UPPAAL-TIGA is an extension of UPPAAL tool and it implements the first 
efficient on-the-fly algorithm for solving games based on TGA with respect to 
reachability and safety properties. This tool implements the on-the-fly 
algorithm presented by Cassez et al. (2005). Being on-the-fly, the symbolic 
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algorithm may terminate long before having explored the entire state-space. 
This algorithm is detailed in section 4.2.10. 

TIGA is freely available at http://people.cs.aau.dk/~adavid/tiga/  

4.2.6 Winning/losing conditions 
In order to win a given timed game, the winning conditions should be known. 
Given a set of timed automata A, a set of goal states (win) and/or a set of losing 
states (lose) which are defined by UPPAAL state formulae, a total of four 
different kinds of queries for winning conditions can be obtained. Clocks, 
locations and discrete variables can be used to specify these conditions. The 
game is in fact finding a controllable strategy 𝑃𝑃 such that automaton 𝐴𝐴 
supervised by 𝑃𝑃 ensures that the controller (Behrmann et al. 2007a): 

• Pure reachability: “must reach 𝑒𝑒𝑡𝑡𝑜𝑜” 

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝐴𝐴 <>  𝑒𝑒𝑡𝑡𝑜𝑜                                                                                          (4.1) 

This query searches a strategy that reaches the goal state 𝑒𝑒𝑡𝑡𝑜𝑜.  

• Strict reachability with avoidance (Until): “must reach 𝑒𝑒𝑡𝑡𝑜𝑜 and must 
avoid 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡” 

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝐴𝐴[ 𝑜𝑜𝑃𝑃𝑡𝑡(𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡) 𝑈𝑈 𝑒𝑒𝑡𝑡𝑜𝑜 ]                                                                          (4.2) 

This query searches a strategy that will reach the goal state 𝑒𝑒𝑡𝑡𝑜𝑜 and 
avoids losing states 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡.  

• Weak reachability with avoidance (WeakUntil): “should reach 𝑒𝑒𝑡𝑡𝑜𝑜 
and must avoid 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡” 

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝐴𝐴[ 𝑜𝑜𝑃𝑃𝑡𝑡(𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡) 𝑊𝑊 𝑒𝑒𝑡𝑡𝑜𝑜 ]                                                               (4.3) 

This query searches a controllable strategy that does not reach losing 
states 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡 and maybe reaches the goal state 𝑒𝑒𝑡𝑡𝑜𝑜 with the help of the 
opponent.  

• Pure Safety: “must avoid 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡” 

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝐴𝐴[] 𝑜𝑜𝑃𝑃𝑡𝑡(𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡)                                                                          (4.4) 

This query searches a controllable strategy that never reaches the 
losing state 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡. 

4.2.7 Partially Cooperative Games 
A cooperative strategy can be searched in the case no controllable strategy is 
found. Within this strategy, the opponent will take uncontrollable actions which 
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helps avoiding the losing states and reaching the winning states (De Munter 
2010; Behrmann et al. 2007a). 

The syntax of this formula is as bellow: 

• Partial Cooperation: “must satisfy 𝜑𝜑 with the least help from the 
environment” 
𝐸𝐸 <>  𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝜑𝜑                                                                            (4.5) 

4.2.8 Time Optimal Strategy Synthesis 
In some problems, it is needed to find not any winning strategy, but a time 
optimal winning strategy. The syntax of finding this kind of strategy is as 
follows: 

• Time optimal strict reachability with avoidance (Until): “must reach 
𝑒𝑒𝑡𝑡𝑜𝑜 within less than 𝑡𝑡 − 𝑝𝑝 time units and must avoid 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡”  
𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(𝑡𝑡,𝑝𝑝): 𝐴𝐴[ 𝑜𝑜𝑃𝑃𝑡𝑡(𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡) 𝑈𝑈 𝑒𝑒𝑡𝑡𝑜𝑜 ]                                            (4.6) 

This query searches a controllable strategy that reaches the goal states 
𝑒𝑒𝑡𝑡𝑜𝑜 and avoids losing states 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡 within less that 𝑡𝑡 − 𝑝𝑝 time units 
(Behrmann et al. 2007a).  

• Time optimal pure reachability: “must reach win within less than 𝑡𝑡 −
𝑝𝑝 time units” 
𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(𝑡𝑡,𝑝𝑝): 𝐴𝐴 <>  𝑒𝑒𝑡𝑡𝑜𝑜                                                                         (4.7) 
This query searches a controllable strategy that reaches the goal state 
𝑒𝑒𝑡𝑡𝑜𝑜 within less that 𝑡𝑡 − 𝑝𝑝 time units.  

4.2.9 Example of timed game automata 
In this section, an example of timed game automata is presented. Figure 4.4 
shows a demo example implemented in TIGA.  In this example, there are five 
locations containing the initial location 𝑇𝑇0, which is marked as a double circle, 
the goal location 𝑝𝑝𝑃𝑃𝐸𝐸𝐸𝐸 in green color and the fail location 𝑇𝑇4 in red color. 
Controllable transition are marked by solid arrows that can be taken by the 
controller. Uncontrollable transitions are shown by dashed arrows and can be 
taken by the environment. There is a game between the environment and the 
controller. In fact, the controller tries to win the game and reach the 𝑝𝑝𝑃𝑃𝐸𝐸𝐸𝐸 
location and the environment should prevent winning by taking uncontrollable 
actions. The clock in this example is variable 𝐸𝐸. Clock constraints can be seen 
as guards on transitions. Invariant constraints on clocks are also put on the 
locations. In location 𝑇𝑇0, the invariant 𝐸𝐸 ≤ 2, in purple, doesn’t allow the 
automaton stay more than 2 time units. When 𝐸𝐸 is smaller than 1, the 
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environment can take the uncontrollable transition 𝑡𝑡2 to 𝑇𝑇2. While the 
controller can also take the controllable transition 𝑐𝑐1 to 𝑇𝑇1 from time 0 to time 
1. If at time 1 the controller doesn’t take the transition 𝑐𝑐1 to 𝑇𝑇1, the environment 
takes the transition 𝑡𝑡1 to 𝑇𝑇4 and the game will be losing. Whereas, since the 
controller has the choice to take action at time 1, this game is always winning. 

 
Figure 4.4. Timed game automaton example 

4.2.10 On-the-fly algorithm for timed games 
On-the-fly algorithm for timed games implemented in TIGA, is the extension 
of the untimed on-the-fly algorithm proposed by Liu and Smolka (2017).  

The 𝑆𝑆𝐹𝐹𝐹𝐹𝑇𝑇𝑅𝑅 algorithm (Symbolic On-The-Fly Algorithm for Timed 
Reachability Games) is presented in Algorithm 4.1 (Cassez et al. 2005). It is 
based on two main lists: waiting list 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 for edges in the simulation graph 
to be explored, and passed list 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 denoting all the symbolic states of the 
simulation graph that the algorithm have visited. Furthermore, all winning 
states that are known to be winning, are stored in the set 𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] ⊆ 𝑆𝑆. The set 
of predecessors of S that must be added to 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 is indicated by the set 
𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆]. Whenever new information about 𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] is obtained, this set 
must be reevaluated. If a symbolic state 𝑆𝑆′ is added to the set 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎, its related 
edge 𝑡𝑡 =  (𝑆𝑆,𝛼𝛼, 𝑆𝑆′) is also added to the dependency set of 𝑆𝑆′ to back-propagate 
possible future information about additional winning states within 𝑆𝑆′ to 𝑆𝑆. 
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Algorithm 4.1 
Initialization: 

𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 ← {𝑆𝑆0} 𝑒𝑒ℎ𝑡𝑡𝑃𝑃𝑡𝑡 𝑆𝑆0 = {(𝐸𝐸0, 0�⃗ )} ↗ 

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ← {(𝑆𝑆0,𝛼𝛼, 𝑆𝑆′)|𝑆𝑆′ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝛼𝛼(𝑆𝑆0) ↗} 

𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆0] ← 𝑆𝑆0 ∩ ({𝐺𝐺𝑃𝑃𝐸𝐸𝐸𝐸} × ℝ≥0
𝐶𝐶𝑡𝑡 ) 

𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆0] ← ∅ 

Main: 

 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 ((𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ≠ ∅) ∧ (𝑃𝑃0 ∉ 𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆0])){ 

𝑡𝑡 =  (𝑆𝑆,𝛼𝛼, 𝑆𝑆′) ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝) 

𝑡𝑡𝑓𝑓 (𝑆𝑆′ ∉ 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎){ 

𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 ← 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 ∪ {𝑆𝑆′} 

𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆′] ← {(𝑆𝑆,𝛼𝛼, 𝑆𝑆′)} 

𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆′] ← 𝑆𝑆′ ∩ ({𝐺𝐺𝑃𝑃𝐸𝐸𝐸𝐸} × ℝ≥0
𝐶𝐶𝑡𝑡 ) 

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ← 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ∪ {(𝑆𝑆′,𝛼𝛼, 𝑆𝑆′′)|𝑆𝑆′′ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝛼𝛼(𝑆𝑆′) ↗} 

 𝑡𝑡𝑓𝑓 (𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆′] ≠ ∅){ 

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ← 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ∪ {𝑡𝑡} 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 

}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡{  //𝑃𝑃𝑡𝑡𝑡𝑡𝑣𝑣𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡4 

𝑊𝑊𝑡𝑡𝑜𝑜∗ ← 𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎𝑡𝑡(𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] ∪
𝑆𝑆
𝑐𝑐
→𝑇𝑇

𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎𝑐𝑐(𝑊𝑊𝑡𝑡𝑜𝑜[𝑇𝑇]), 

∪
𝑆𝑆
𝑢𝑢
→𝑇𝑇

𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎𝑢𝑢(𝑇𝑇 \𝑊𝑊𝑡𝑡𝑜𝑜[𝑇𝑇])) ∩ 𝑆𝑆 

𝑡𝑡𝑓𝑓 (𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] ⊊ 𝑊𝑊𝑡𝑡𝑜𝑜∗){ 

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ← 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ∪ 𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆] 

𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] ← 𝑊𝑊𝑡𝑡𝑜𝑜∗ 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 

𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆′] ← 𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆′] ∪ {𝑡𝑡} 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 

4.2.11 Interval weighted automata 
Interval weighted automata are weighted automata with weights in a suitable 
interval like semiring. 

Definition 4.7. A D-weighted automaton (Komenda, Lahaye, and Boimond 
2010) over an alphabet 𝐴𝐴 is a quadruple 𝐺𝐺 =  (𝑄𝑄,𝛼𝛼, 𝑡𝑡,𝛽𝛽), where 𝑄𝑄 is a finite 

                                                           
4 When 𝑇𝑇 ∉ 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎,𝑊𝑊𝑡𝑡𝑜𝑜[𝑇𝑇] = ∅ 
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set of states, 𝛼𝛼:𝑄𝑄 → 𝐷𝐷, 𝑡𝑡:𝑄𝑄 × 𝐴𝐴 × 𝑄𝑄 → 𝐷𝐷, and 𝛽𝛽:𝑄𝑄 → 𝐷𝐷, are called input, 
transition, and output delays, respectively. 

To a given state 𝑞𝑞 ∈ 𝑄𝑄, a discrete input 𝐸𝐸 ∈ 𝐴𝐴 and a new state 𝑞𝑞′ ∈ 𝑄𝑄, the 
transition function 𝑡𝑡 assigns an output value such that one of the following 
condition holds: 

• 𝑡𝑡(𝑞𝑞,𝐸𝐸, 𝑞𝑞′) ∈ 𝐷𝐷 corresponds to the discrete step from 𝑞𝑞 to 𝑞𝑞′ for 
execution of action 𝐸𝐸.  

• 𝑡𝑡(𝑞𝑞,𝐸𝐸, 𝑞𝑞′) = 𝜀𝜀 if there is no transition form 𝑞𝑞 to 𝑞𝑞′ labeled by 𝐸𝐸. 

Referring to (Komenda, Lahaye, and Boimond 2010), only the best and the 
worst makespans can be computed using composition of interval weighted 
automata. Comparing to a timed game, it is equal to makespans where the 
environment does its worst or best play respectively. While as mentioned 
earlier, a strategy synthesis on a timed game automaton, yields a strategy 
through which, several makespans and schedules can be obtained depending on 
the choice of the environment in taking uncontrollable actions. 

4.3 Problem description 
The problem treated in Chapter 2 and 3 was completely deterministic. All the 
information concerning the tasks to be executed was known in advance, 
including their identity, inter-dependence and duration. Furthermore, the 
starting time of tasks were deterministic. The same goes for the resources who 
are assumed to be reliable. Real life is not like that. Certain uncontrollable 
situations may happen that affect previous expectations for the scheduling. In 
this thesis, three kinds of uncontrollability are investigated.  

For studying these situations, most assumptions for the scheduling problem 
are the same as Chapter 2, whereas certain uncontrollability may occur 
affecting the schedule. In such cases, despite the act of the environment, a 
schedule should be obtained. Hence, problem discerption will be changed as 
follows: 

(1) Duration of tasks may be restricted to be bounded within an interval. 
(2) Start time of tasks are subject to bounded uncertainty. 
(3) Task preemption is not allowed, whereas due to a failure a task may 

be canceled.  
(4) There may be conflicts for performing tasks at the same time, but 

when there is no conflict between them, they should be performed 
simultaneously. 
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(5) There may exist precedence constraints between tasks. 
(6) All tasks are ready to be executed at time zero. 
(7) Resources are pre-assigned to tasks. 
(8) Resources are reusable (they are not raw materials and by performing 

maintenances, they can be used in every cycle). 
(9) Each resource can be used to execute only one task at a time, but a 

task may use more than one resource simultaneously. 
(10) If resources are not broken down, they are available at time zero. 
(11) Resources are not reliable and may fail in two conditions: 1. During 

performing a task 2. During idle time of resources  

4.4 Different types of uncontrollable parameters  
In this section, three kinds of uncontrollable situations that are considered in 
this thesis are discussed. 

• Resource failure while doing a task: In certain cases, resources are not 
reliable and for that reason, during execution of tasks, unpredictable 
failures may occur. Therefore, tasks relating to that resource cannot 
be executed until its reparation. 

• Resource failure in its idle state: Not all the failures happen when 
performing tasks. Sometimes failures may occur when a resource is 
idle and therefore it won’t be able to start execution of any task until 
it is repaired. 

• Bounded uncertainty in duration of tasks: In real world, human 
intervention, incomplete information or uncertain environment may 
cause uncertainty in duration of tasks. 

• Bounded uncertainty in start time of tasks: In certain applications, 
uncertain task performing conditions might cause a delay in start time 
of tasks from the moment of their release time. By definition, release 
time is the earliest time when a task can start execution. 
This type of uncertain tasks are divided to two sets; a set of tasks that 
require resource assignments from their released time and another set 
to whom resources should be assigned from the start time of their 
execution. 

Inclusion of these types of uncontrollability in the represented model makes 
it so comprehensive and general to be applied in various industries. Therefore, 
not all of these uncontrollable parameters may be applicable in a specific 
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industry, but depending on the industry, one of the cases or a combination of 
them may be needed. 

4.5 Modeling the scheduling problem through TGA 
considering uncontrollable parameters 
As mentioned earlier, in this chapter, uncontrollable situations in the scheduling 
problem are investigated; it means that the environment affects the new 
scheduling condition. Therefore, the scheduling problem should be solved with 
a new point of view. 

In this situation, some actions are done by the environment and therefore are 
uncontrollable and the others are done by the controller. For example, let’s 
assume the case when the start time of the tasks are controllable and there is a 
possibility of resource failure it their idle state. In this case, tasks can be 
launched by the controller through taking a controllable transition, while at the 
same time, the environment may take an uncontrollable transition to cause a 
failure. Hence, as explained in section 4.2, instead of finding a simple trajectory 
that reaches the final state, the controller finds a strategy that guarantees 
reaching the final state whatever the opponent (the environment) is doing.  

In Chapter 2 it was argued that through WA, simpler and more abstract 
models can be obtained for the MRS scheduling problem considering 
controllable actions rather than timed automata. Whereas, modeling some 
uncontrollable situations like failure during execution of tasks complicated. 
Thence, it is not possible to model some uncontrollability by this kind of 
automata. On the other hand, even if some of them like uncertain duration and 
start time of tasks are modeled through WA, the model of synchronous 
composition of the problem considering uncontrollability become much more 
complicated than before. Since instead of fixed durations and instances, 
intervals should be engaged in the composition. 

For example, for modeling failure while execution of a task, it is necessary 
to split the task transition and add a failure state between the source and target 
state of the transition. On the other hand, the exact moment of the failure is not 
known in advance. Hence, exact duration of split transitions cannot be labeled 
on the transitions. Therefore, it is not possible to model it with WA. Scheduling 
problems consisting of tasks with uncertain duration or start time can be 
modeled by interval weighted automata described in section 4.2 (Komenda, 
Lahaye, and Boimond 2010). Whereas, there exists no synchronous 
composition for interval weighted automata through which the minimal 
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makespan can be obtained and also can present complete behavior of local 
components. Since such comprehensive composition becomes so complex to 
be formulated. Therefore, without having the synchronous composition, 
necessary analyses cannot be done and the schedule cannot be found. 

Among uncontrollable cases explained in section 4.4, the only 
uncontrollable parameter that can be modeled by WA is the failure that occurs 
while resources are idle. In fact, its WA model would be similar to the model 
of a task. 

With regard to the matters enumerated, a weight-based model is not suitable 
for stating a MRS scheduling problem considering uncontrollable issues. As 
mentioned in section 4.2, the clock-based automata for treating 
uncontrollability is Time Game Automata. Thus, for solving a MRS scheduling 
problem containing uncontrollable parameters, it can be modeled through 
Timed Game Automata.  

The MRS scheduling problem is firstly modeled by TGA considering 
possibility of uncontrollable situations. Then through a timed game analysis, 
the strategy for obtaining optimal schedule and makespan is found. In the 
sequel, the models of ME automaton, TL automaton and PR automata 
considering uncontrollability are explained. 

4.5.1. ME automaton by considering uncontrollability 
As mentioned in section 2.4.2., a ME automaton consists of a set of tasks that 
are in conflict with each other. To do task 𝑡𝑡, an automaton waits in the initial 
location 𝐸𝐸0. When receiving a launching signal 𝑡𝑡_𝑃𝑃 from the TL automaton of 
task 𝑡𝑡, it takes a transition from the initial location to the task location 𝑡𝑡 and 
resets the clock 𝑐𝑐𝐸𝐸. Afterwards, after elapsing 𝑎𝑎(𝑡𝑡) time units, it takes the 
transition from location 𝑡𝑡 to the initial location. In fact, 𝑎𝑎(𝑡𝑡) is the duration of 
task 𝑡𝑡. In the initial location, the automaton waits for another launching signal 
to execute a new task (Figure 4.5). 

 
 Figure 4.5. Modeling pattern of a task in a ME automaton 

Whereas, as explained in section 4.4, some uncontrollable issues should be 
considered in the model of a task in ME automaton that are detailed in the 
sequel. 
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 Unpredictable resource failure 
In each ME automaton, due to using common set of resource, tasks can be in 
conflict. Therefore, if one of these resources breaks down, tasks related to that 
ME automaton cannot be executed until the resource is repaired. Reparation 
duration depends on the resource. In automaton 𝑗𝑗, this duration is denoted by 
𝑎𝑎(𝑃𝑃𝑡𝑡𝑃𝑃𝑗𝑗) and is equal to the maximum time needed for reparation of resources 
related to this automaton.  

Variable 𝑒𝑒 is dedicated to the resource failures, which denotes number of 
failures in a scheduled cycle. For avoiding schedulability problems, this number 
is limited. In fact, if no limit is put for this number, there would be a possibility 
that a scheduled cycle would never end. In this thesis, it is assumed that at most 
one failure may occur in a cycle. Therefore when 𝑒𝑒 is reached one, no more 
failure can occur in a ME automaton. 

Two kind of resource failures should be modeled in a ME automaton: 

(1) Failure while a resource is idle: During idle time of resources, a 
failure may occur. A failure is an uncontrollable action, but it is 
assume to be limited to occur at most one time. Hence, in the model 
of failure (Figure 4.6), if 𝑒𝑒 is equal to zero, an uncontrollable 
transition can be taken by the environment, the clock is reset and the 
automaton reaches fail location. Then after elapsing 𝑎𝑎(𝑃𝑃𝑡𝑡𝑃𝑃𝑗𝑗) time 
units, the automaton takes a transition to the initial location and 
updates variable 𝑒𝑒 to one.  

 

 
Figure 4.6. Modeling pattern of a resource failure in its idle time in a ME automaton 

(2) Failure while doing a task: In automaton 𝑗𝑗, during execution of task 
𝑡𝑡, a failure may happen. The reason of the failure could be a 
breakdown in the resources related to the mutual exclusion set 𝑗𝑗 or 
another mutual exclusion set that share task 𝑡𝑡. 

Execution of task 𝑡𝑡 happens in the location 𝑡𝑡. Therefore, 
uncontrollable transitions representing failures should be taken from 
this location. For modeling a breakdown in the resources related to 
the automaton 𝑗𝑗, an uncontrollable transition is added from location 𝑡𝑡. 
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If it is the first time that a failure happens in this set of resources, i.e. 
𝑒𝑒 == 15, and if task 𝑡𝑡 is not finished yet, i.e. 𝑐𝑐𝐸𝐸 < 𝑎𝑎(𝑡𝑡), this transition 
can be taken by environment. By taking this transition, clock 𝑐𝑐𝐸𝐸 is 
reset and a signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃 is sent to the other automata that share task 
𝑡𝑡 to stop the task. Thereby the automaton reaches location 𝑃𝑃𝑡𝑡𝑃𝑃 where 
it waits for repairing the failed resource. After the repairing period, 
i.e. 𝑎𝑎(𝑃𝑃𝑡𝑡𝑃𝑃𝑗𝑗), the resource is ready and all the tasks belonging to this 
task-conflict set, i.e. 𝑇𝑇𝑀𝑀𝑗𝑗, can start execution. Therefore, the 
automaton takes a transition to the initial location, updates variable 𝑒𝑒 
to one to prevent more failures and sends signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡_𝑃𝑃 to other 
automata that share the same task to enable restarting 𝑡𝑡. These 
automata can be another ME automata, a PR automata or even the TL 
automaton related to 𝑡𝑡. 
At the same time when a task is interrupted due to a failure in a ME 
automaton, it should also stop execution in other ME automata that 
share the same task. Hence, as depicted in Figure 4.7, a transition from 
location 𝑡𝑡 to the initial location is added to the model of a task. 
Whenever the automaton is in task location 𝑡𝑡 and receives signal 
𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃 from another ME automaton, it stops execution and goes to 
the initial location. 

 
Figure 4.7. Modeling pattern of a task in a ME automaton subject to resource failure 

Thereby, with possibility of abovementioned types of failures, the model of 
a ME automaton will be as Figure 4.8. It can be seen in the figure that this 
automaton consists of several tasks such as 𝑡𝑡𝑖𝑖, 𝑡𝑡𝑘𝑘 and 𝑡𝑡𝑧𝑧.  

                                                           
5 This number can be changed depending on the decision maker’s opinion 
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For better understanding the model of ME automaton considering resource 
failure, refer to Section 4.6. This section explains an example of MRS 
scheduling model consisting of two ME automata with a shared task. 

 
Figure 4.8. Modeling pattern of a ME automaton subject to resource failure 

 Bounded uncertainty in duration of tasks 
In some applications, the exact duration of the tasks may not be given, but rather 
durations are restricted to be bounded within an interval of the 
form [𝑎𝑎1(𝑡𝑡),𝑎𝑎2(𝑡𝑡)]. Hence, when the ME automata is in the task location 𝑡𝑡, 
from the moment the clock reaches 𝑎𝑎1(𝑡𝑡) till 𝑎𝑎2(𝑡𝑡), the automata may take a 
transition to the initial location. Therefore an uncontrollable transition is added 
to enable this uncertain movement from task location to initial location when 
𝑎𝑎1(𝑡𝑡) ≤ 𝑐𝑐𝐸𝐸 < 𝑎𝑎2(𝑡𝑡). But since due to the hypothesis it is certain that the 
duration of the task is no longer than 𝑎𝑎2(𝑡𝑡), a controllable transition is added 
from the task location to the initial location to be taken if the automaton still 
waits in task location at time 𝑎𝑎2(𝑡𝑡) (Figure 4.9).  
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Figure 4.9. Modeling pattern of a task with uncertain duration in a ME automaton 

If all the tasks in an automaton have uncertain duration, the model of the ME 
automaton will be as Figure 4.10. This automaton consists of several tasks such 
as 𝑡𝑡𝑖𝑖, 𝑡𝑡𝑘𝑘 and 𝑡𝑡𝑧𝑧. 

 
Figure 4.10. Modeling pattern of a ME automaton consisting of tasks with uncertain 

durations 

 Bounded uncertainty in start time of tasks 
Start time of a task may be uncertain. Whereas, as mentioned previously, this 
uncertainty can be treated with two points of view. The first one is to keep all 
the necessary resources available from the release time of the task until its start 
time. The second point of view is to let the environment start the task at a time 
window whenever the resources are idle. ME automaton model for each of these 
cases are different: 
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(1) Environment starts the task in a time window whenever related 
resources are idle: This kind of uncontrollability does not have any 
impact on the model of the task in ME automaton. Thereby, the 
model of the task is the ME automaton becomes as Figure 4.5. For 
considering this type of uncertainty, only the model of TL automaton 
changes. 

(2) Keeping resources available from the lower bound of the decision 
time window: Resources should be reserved from the initial moment 
of decision time window. Hence, from this moment, the automaton 
should move from the initial location to another location to prevent 
starting the other tasks. Although, since in this moment the task is not 
started yet, the automaton cannot move to the task location. For that 
reason, in this instant, by receiving the signal 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡_𝑃𝑃 from the 
related TL automaton, the ME automaton moves to a new 
location 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡. When the environment decides to start the task, it 
sends signal 𝑡𝑡_𝑃𝑃 from the TL automaton to the ME automaton. 
Thereby, clock is reset and the ME automaton reaches the task 
location 𝑡𝑡 and starts the task. After waiting 𝑎𝑎(𝑡𝑡) time units in this 
location and finishing the task, the automaton takes a controllable 
transition to the initial location and waits for starting a new task 
(Figure 4.11). 

 
Figure 4.11. Modeling pattern of a task with uncertain start time in a ME automaton  

4.5.2. Task launcher automaton by considering uncontrollability 
In section 2.4.2 it is explained that for launching every task, a TL automaton is 
needed and hence number of TL automata are equal to the number of tasks. In 
this automaton, whenever all the ME automata sharing the task are in their 
initial location, the output of function 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑡𝑡) becomes true and the task 
can be launched. Therefore, the automaton sends a signal 𝑡𝑡_𝑃𝑃 to the other 
automata sharing the task 𝑡𝑡 and reaches the location 𝑓𝑓 (Figure 4.12). Thereby, 
𝑡𝑡 starts execution in these automata. 

It should be recalled that the guard function 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑡𝑡): Σ → 𝐵𝐵𝑃𝑃𝑃𝑃𝐸𝐸, which 
is associated to the transition of TL automaton, is true if and only if the 
following condition holds: 
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∀𝑡𝑡 ∈ [1,𝑀𝑀]: 𝑡𝑡 ∈ 𝑇𝑇𝑀𝑀𝑖𝑖 → ∀𝑡𝑡′ ∈ 𝑇𝑇𝑀𝑀𝑖𝑖\{𝑡𝑡}: ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑡𝑡′, 𝐸𝐸𝑖𝑖)                             (4.8) 

where 𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝:𝑇𝑇𝑀𝑀𝑖𝑖 × 𝑇𝑇𝑚𝑚𝑒𝑒𝑖𝑖 → 𝐵𝐵𝑃𝑃𝑃𝑃𝐸𝐸 is defined as 

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑡𝑡, 𝐸𝐸𝑖𝑖) = � 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡,     𝐸𝐸𝑖𝑖 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,           𝑃𝑃.𝑒𝑒                                                                           (4.9) 

where 𝑀𝑀 is the number of ME automata, 𝑡𝑡 is the name of the task, 𝑇𝑇𝑀𝑀𝑖𝑖 is the 
set of tasks engaged in 𝑡𝑡th ME automaton. In the 𝑡𝑡th ME automaton, 𝑇𝑇𝑚𝑚𝑒𝑒𝑖𝑖 is the 
set of locations, 𝐸𝐸𝑖𝑖 is its current location and 𝐸𝐸0 is the initial location. In the 
equation 4.9, pending function verifies if a ME automaton is in a task location 
where a task is being executed.  

 
Figure 4.12. Modeling pattern of a task launcher automaton 

 Unpredictable resource failure 
(1) Failure while a resource is idle: This kind of failure does not 

interrupts tasks since a TL automaton is only related to tasks and not 
resources. Therefore, there is no need to change the model of TL 
automaton for considering failure while a resource is idle. 

(2) Failure while doing a task: Whenever a failure occurs during 
execution of a task, the task should be repeated after repairing the 
resource. Therefore, after this period, TL should return to its initial 
location to be able to launch the task another time.  
To add this feature to the model of TL automaton, one additional 
location 𝑃𝑃𝑡𝑡𝑃𝑃 is created. When a task is during execution, the 
automaton is in location 𝑓𝑓. Therefore, at the instant of resource 
failure, it receives the signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃 from the ME automaton in which 
the resource failure was caused and reaches location 𝑃𝑃𝑡𝑡𝑃𝑃. In this 
location, the automaton waits until reparation of the related resource. 
After this period, the automaton receives another signal 
𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡_𝑃𝑃 from the ME automaton to which the resource failure was 
related. Thereby TL automaton goes to the initial location (Figure 
4.13). 

For better understanding the link between a resource failure in the 
model of ME automaton and TL automaton, refer to Section 4.6. This 
section explains the complete model for an example of MRS 
scheduling problem considering resource failure. 
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Figure 4.13. Modeling pattern of a launcher automaton for a task subject to failure  

 Bounded uncertainty in duration of tasks 
A TL only launches a task and does not concern duration of tasks. Hence, for 
considering uncertain duration of tasks, there is no need to change the model of 
TL automaton. 

 Bounded uncertainty in start time of tasks 
(1) Environment starts the task in a time window whenever related 

resources are idle: start time of a task may be uncontrollable such that 
from the instant of releasing a task, its start time vary in an interval of 
the form [0, 𝐸𝐸𝑡𝑡𝑡𝑡] where 𝐸𝐸𝑡𝑡𝑡𝑡 represents the maximum delay for 
starting the task. For modeling this feature, two issues should be 
considered; the first one is that as before, in addition to the 
communication signal 𝑡𝑡_𝑃𝑃, the output of 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎 function for the task 
𝑡𝑡 should be verified. The releasing time of the task is let to be time 
zero in TL automaton. Hence, the second issue is that from time zero 
to the moment prior to the time bound 𝐸𝐸𝑡𝑡𝑡𝑡 launching the task 𝑡𝑡 is 
uncontrollable. If the task is not launched until this time, the 
automaton should be forced to launch the task at this instant. 
Furthermore, its launching cannot be delayed more than this 
threshold.  
Therefore, two transitions lead the automaton from the initial location 
𝐸𝐸0 to the location 𝑓𝑓. One transition is an uncontrollable transition that 
can be taken by the environment if 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑡𝑡) is true and the value 
of the local clock 𝑐𝑐𝐸𝐸 is less than 𝐸𝐸𝑡𝑡𝑡𝑡. Another transition is a 
controllable transition that can taken by controller if 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡(𝑡𝑡) is true 
and the value of 𝑐𝑐𝐸𝐸 is equal to 𝐸𝐸𝑡𝑡𝑡𝑡. When taking one of these 
transitions, a communication signal 𝑡𝑡_𝑃𝑃 will be sent to the other 
automata that share the task 𝑡𝑡 (Figure 4.14). 
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Figure 4.14. Modeling pattern of a task launcher automaton for a task with non-

deterministic start time when the resources are occupied from the instant of execution 

(2) Keeping resources available from the lower bound of the decision 
time window: In this case, at the instant when all necessary resources 
for execution of task 𝑡𝑡 are available, i.e. the output of 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡(𝑡𝑡) is 
true, the TL automaton of task 𝑡𝑡 reserves resources. To this end, it 
takes a transition to 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡 location and sends a signal 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡_𝑃𝑃 to 
the ME automata sharing task 𝑡𝑡. Therefore, the related ME automata 
reach to their 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡 location and this issue prevents other tasks in 
the related ME automata to occupy the necessary resources and to be 
executed. Furthermore, by taking this transition, the local clock 𝑐𝑐𝐸𝐸 is 
reset. In location 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡, the automaton waits for the environment to 
take an uncontrollable transition to the location 𝑓𝑓 until the instant that 
the clock value reaches 𝐸𝐸𝑡𝑡𝑡𝑡. If the environment did not took the 
transition, the supervisor takes a controllable transition to 𝑓𝑓 at 
time 𝐸𝐸𝑡𝑡𝑡𝑡. In the both cases, a communication signal 𝑡𝑡_𝑃𝑃 is sent to the 
other automata that share 𝑡𝑡 to start the task.  

 
Figure 4.15. Modeling pattern of a task launcher automaton for a task with non-

deterministic start time when the resources are occupied from the release time of task 

4.5.3. Precedence automata by considering uncontrollability 
Uncertainties of duration or start time of tasks does not change the model of PR 
automata. Because in both types of PR automata, only the starting instant of the 
task is taken into account. Thus, it is not important if a task starts right after the 
prior task or it starts some moments later. The same goes for the duration of the 
task, i.e. the finishing instant of the task is not important. Precedence constraints 
solely set the minimum time distances between the starting times of tasks. 
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Considering a failure in idle time of tasks also does not need to change the 
model of PR automata. Since this kind of failure, only cause delay between 
previsioned start time of tasks and extra delays are not concerned in PR 
automata models. 

The following is the changes made in two types of PR automata to model 
precedence constraint among tasks that are subject to failure while being 
executed: 

(1) Triggering precedence automaton: It is intended to put constraints on 
tasks that are fulfilled successfully. Since when a task fails, it will not 
be necessarily executed right after reparation of the broken down 
resource. It may be executed afterwards. Thus, the failed task should 
be executed anew in the PR automata.  
To model this feature in triggering PR automata, it is enough to add 
uncontrollable transitions that lead the automaton from the locations 
that tasks are launched to their previous locations where tasks are not 
launched yet. For example when a TL launches task 𝑡𝑡𝑗𝑗, the PR 
automata in Figure 4.16 takes a transition from 𝐸𝐸1 to 𝐸𝐸2. If 𝑡𝑡𝑗𝑗 fails, the 
automaton should execute it again. To this aim, a new uncontrollable 
transition could be added from 𝐸𝐸2 to 𝐸𝐸1. Thereby, when a failure 
happens, a signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑗𝑗 is received from the related ME automaton 
and the PR automata moves to the previous location. This makes it 
possible to execute 𝑡𝑡𝑗𝑗 for another time. The same goes for all the tasks 
in the automaton. Thus, in order to consider failure during execution 
of tasks, the model of triggering PR automata changes to Figure 4.17. 

 
Figure 4.16. Modeling pattern of a triggering PR automata with reliable resources 

 
Figure 4.17. Modeling pattern of a triggering PR automata with tasks subject to failure 

Delay precedence automaton: Figure 4.18 shows the modeling 
pattern of a delay PR automata with reliable resources that was 
explained in Chapter 2. In this figure, it can be seen that apart from 
the final location 𝑓𝑓, there exist two types of locations; those from 
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which a task is launched, i.e. launching locations, and the locations 
where the automaton waits for a specific period 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡), i.e. delay 
locations. The process of modeling task failure in this automaton is 
similar to the triggering PR automata. The only difference is that in 
this model, there should exist transitions to lead the automata to the 
launching locations not only from each launching location to their 
previous launching location, but also from delay locations to their 
previous launching locations. 
 

 
Figure 4.18. Modeling pattern of a delay PRautomata with reliable resources 

Figure 4.19 represents modeling pattern of a delay PR automata with 
tasks subject to failure. After launching task 𝑡𝑡𝑖𝑖, the automaton reaches 
the delay location 𝐸𝐸1. During execution of the task, a resource failure 
may happen. There is a possibility that this failure occurs during the 
waiting period in 𝐸𝐸1. Whereas, if 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡𝑖𝑖) was smaller than duration of 
the task 𝑎𝑎(𝑡𝑡𝑖𝑖), this failure may happen after time 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡𝑖𝑖) and when 
the automaton has moved to the location 𝐸𝐸2. Thus, two uncontrollable 
transitions are added to the automaton. Thereby, whenever a failure 
signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑖𝑖 is received from a ME automaton, if the PR automata 
was at location 𝐸𝐸1 or 𝐸𝐸2, it will go back to the previous launching 
location, i.e. initial location. Related changes for the other tasks are 
the same as 𝑡𝑡𝑖𝑖.   
 

 
Figure 4.19. Modeling pattern of a delay PR automata with tasks subject to failure 

4.6 Example 3 
Assume there is a set of tasks 𝑇𝑇 = {𝐸𝐸, 𝑒𝑒, 𝑐𝑐} to be done. Same as Example 1, a 
set of resources 𝑅𝑅 = {𝑅𝑅1, … ,𝑅𝑅5} is assigned to tasks with resource association 
details shown in Table 4.3. Hence, tasks 𝐸𝐸 and 𝑒𝑒 are in conflict with each other, 
while 𝐸𝐸 and 𝑐𝑐 are not. Therefore, 𝐸𝐸 and 𝑐𝑐 can be performed simultaneously.  
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 Duration of 𝐸𝐸 is restricted to be bounded in interval [7,11] and duration of 
𝑒𝑒 and 𝑐𝑐 are 5 and 3 time units respectively. On the other hand, start time of 
tasks 𝑒𝑒 and 𝑐𝑐 are uncertain, and vary in interval [0,2] from their release time. 
Despite 𝑐𝑐 needs to assign resources from the first instant of its release time, 𝑒𝑒 
requires assignment of its necessary resources from the instant of its start time.  
These information are shown in Table 4.2. Timing information of tasks in 
Example 3 

Table 4.2. Timing information of tasks in Example 3 

task 
Time distance between 
release and start time 

Type of engaging resources duration 

a 0 Engage resources from start time [7,11] 
b [0,2] Engage resources from start time 5 
c [0,2] Engage resources from release time 3 

 

Table 4.3. Resource assignment details of Example 3 

task resource 
R1 R2 R3 R4 R5 

a      
b      
c      

In addition to the uncertainty in duration and start time of the tasks, resources 
are not reliable and may fail in their idle time or even during execution of tasks. 
Maximum repairing time of resources are as Table 4.4. Thus, the maximum 
duration for repairing resources necessary to execute the set of tasks {𝐸𝐸, 𝑒𝑒} and 
{𝑒𝑒, 𝑐𝑐} are 4 and 5 time units respectively.  

The precedence constraint among tasks is such that task 𝐸𝐸 should be started 
after finishing task 𝑒𝑒. 

Table 4.4. Repairing duration of resources 

R1 R2 R3 R4 R5 
4 3 4 5 4 

This example is similar to Example 1. Tasks 𝐸𝐸 and 𝑒𝑒 compose the ME 
automaton 𝐺𝐺1 and tasks 𝑒𝑒 and 𝑐𝑐 compose the ME automaton 𝐺𝐺2. Also TL 
automata for tasks 𝐸𝐸, 𝑒𝑒 and 𝑐𝑐 are 𝐺𝐺3, 𝐺𝐺4 and 𝐺𝐺5 respectively. Automaton 𝐺𝐺6 
represents the PR automata.   

Related models for this example are depicted in the figures bellow. 
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Figure 4.20 represents ME automaton 𝐺𝐺1. In this figure, 𝐸𝐸_𝑃𝑃? denotes 
requesting signal for starting task 𝐸𝐸. After receiving this signal from the TL 
automaton 𝐺𝐺4, the automaton resets clock 𝑐𝑐𝐸𝐸 and reaches task location 𝐸𝐸. In this 
location, it executes task 𝐸𝐸 in at least 7 time units. From this instant until time 
11, the environment may take an uncontrollable transition to the initial location 
to terminate the task. At time 11, if the environment hasn’t done any action, the 
controller takes a controllable transition to the initial location 𝐸𝐸0. Although, 
before finishing task and moving to the initial location, a failure may happen. 
It is assumed that failures may happen in each set of resources only once. This 
failure can be a breakdown in the set of resources used by the tasks in 𝐺𝐺1 or 𝐺𝐺2. 
In the first case, if it is the first time that a failure occurs in 𝐺𝐺1, i.e. 𝑒𝑒1 is equal 
to zero and ! 𝑒𝑒1 is true, the environment takes a transition to the location 𝑃𝑃𝑡𝑡𝑃𝑃𝑎𝑎 
and stops task 𝐸𝐸. By taking this transition, the clock is reset and sends a signal 
(broadcasting channel) 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑎𝑎 to other automata that share 𝐸𝐸. TL automaton 
𝐺𝐺3 and PR automata 𝐺𝐺6 share 𝐸𝐸. By receiving 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑎𝑎, automaton 𝐺𝐺3 moves 
from the location 𝑓𝑓 to the location 𝑃𝑃𝑡𝑡𝑃𝑃. After 4 time units, automaton 𝐺𝐺1 finishes 
reparation of the failed resource and the automaton reaches the initial location 
𝐸𝐸0. By taking this controllable transition, variable 𝑒𝑒1 is updated to one, and send 
signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡_𝑃𝑃𝑎𝑎 to the TL automaton of task 𝐸𝐸 to enable restarting it. By 
receiving this signal by automaton 𝐺𝐺3, it returns to 𝐸𝐸0 to be able to launch the 
task another time. 

 
Figure 4.20. ME automaton 𝐺𝐺1 in Example 3 

If the reason of the fault is a breakdown in another set of resources in another 
ME automaton, when 𝐺𝐺1 is in location 𝐸𝐸, it receives a signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑎𝑎 (marked 
as 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑎𝑎 ? on the transition) and immediately returns to the location 𝐸𝐸0. 
However, 𝐸𝐸 is not a member of 𝑇𝑇𝑀𝑀2 and thus doesn’t exist in 𝐺𝐺2. Thence, this 
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transition will be never taken and even during failure of resource set 1, other 
individual tasks in 𝐺𝐺2 can be still running.  

Performing task 𝑒𝑒 is similar to task 𝐸𝐸 with the difference that its duration is 
deterministic. In addition, for the reason that 𝑒𝑒 is shared between 𝐺𝐺1 and 𝐺𝐺2, if 
any failure happens in any of the resource sets, a signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑏𝑏 will be sent to 
the other ME automaton, an uncontrollable transition will be taken and thereby 
both of automata stop doing the task.  

If a failure takes place in idle time of the first resource set, an uncontrollable 
transition from 𝐸𝐸0 to 𝑓𝑓𝐸𝐸𝑡𝑡𝐸𝐸 location will be taken. As a result, 𝑒𝑒1 is updated to 
one and clock is reset. After 4 time units, reparation process terminates and the 
automaton returns to 𝐸𝐸0 and waits to do a task.  

In automaton 𝐺𝐺2 (Figure 4.21), not only the start time of task 𝑐𝑐 is non-
deterministic, but also it needs to reserve resources from its release time. 
Whenever 𝐺𝐺2 receives the signal 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡_𝑐𝑐_𝑃𝑃 from the automaton 𝐺𝐺5, it reaches 
the location 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡. In this location, it waits for the action of the environment 
in automaton 𝐺𝐺5 to take the uncontrollable transition from the location 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡 
to 𝑓𝑓 from time 0 to some moments before time 2. If the environment doesn’t 
take any action in automaton 𝐺𝐺5, at time 2, the controller takes the controllable 
transition to 𝑓𝑓. In either cases, 𝐺𝐺5 sends the signal 𝑐𝑐_𝑃𝑃 to the other automata. 𝐺𝐺2 
receives this signal, resets its local clock 𝑐𝑐𝐸𝐸 and reaches location 𝑐𝑐. The 
remaining process for doing the task is the same as task 𝑒𝑒. 

 
Figure 4.21. ME automaton 𝐺𝐺2 in Example 3 
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Figure 4.22. TL automaton 𝐺𝐺3 for task a in Example 3 

In the TL automata of task 𝐸𝐸, 𝐺𝐺3 in Figure 4.22, for taking a transition from 
𝐸𝐸0 to 𝑓𝑓, 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝐸𝐸) verifies validity of the following predicate and if it was 
true, the automaton sends signal 𝐸𝐸_𝑃𝑃 to 𝐺𝐺1 and 𝐺𝐺6: 

𝐸𝐸 ∈ 𝑇𝑇𝑀𝑀1 → ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑒𝑒, 𝐸𝐸1)                                                                                          (4.10) 

where 

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑒𝑒, 𝐸𝐸1) = � 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡,  𝐸𝐸1 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,           𝑃𝑃.𝑒𝑒                                                                                      (4.11) 

where 𝐸𝐸1 represents current location of automaton 𝐺𝐺1. This predicate means that 
𝐺𝐺1 is not in task location 𝑒𝑒 and during execution of 𝑒𝑒. 

 

 
Figure 4.23. TL automaton 𝐺𝐺4 for task b in Example 3 

In the TL automata of task 𝑒𝑒, 𝐺𝐺4 in Figure 4.23, for taking a transition from 
𝐸𝐸0 to 𝑓𝑓, 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑒𝑒) verifies validity of bellow predicate and if it was true, the 
automaton sends signal 𝑒𝑒_𝑃𝑃 to 𝐺𝐺1, 𝐺𝐺2 and 𝐺𝐺6: 

𝑒𝑒 ∈ 𝑇𝑇𝑀𝑀1 ∧ 𝑒𝑒 ∈ 𝑇𝑇𝑀𝑀2 → ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝐸𝐸, 𝐸𝐸1) ∧ ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑐𝑐, 𝐸𝐸2)                            (4.5) 

where 

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝐸𝐸, 𝐸𝐸1) = � 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡,  𝐸𝐸1 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,           𝑃𝑃.𝑒𝑒                                                                                     (4.6) 
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𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑐𝑐, 𝐸𝐸2) = �𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡,    𝐸𝐸2 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,           𝑃𝑃.𝑒𝑒                                                                                   (4.7) 

which means that ME automata one and two are not in task locations and during 
execution of tasks 𝐸𝐸 or 𝑐𝑐 respectively. 

 

 
Figure 4.24. TL automaton 𝐺𝐺5 for task c in Example 3 

In the TL automata of task 𝑐𝑐, 𝐺𝐺5 in Figure 4.24, for taking a transition from 
𝐸𝐸0 to 𝑓𝑓, 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑐𝑐) verifies validity of this predicate: 

𝑒𝑒 ∈ 𝑇𝑇𝑀𝑀2 → ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑒𝑒, 𝐸𝐸2)                                                                                           (4.8) 

where 

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑒𝑒, 𝐸𝐸2) = �𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡,   𝐸𝐸2 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,         𝑃𝑃.𝑒𝑒                                                                                    (4.9) 

which means that 𝐺𝐺2 is not in task location 𝑒𝑒. If it was true, clock is reset and 
the automaton sends signal 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡_𝑐𝑐_𝑃𝑃 to 𝐺𝐺2 to reserve the related resources. 

Figure 4.25 represents PR automata of this example. As depicted in this 
figure, firstly task 𝑒𝑒 is executed and when it ends, task 𝐸𝐸 can be started. 
Although, whenever a failure happens during execution of tasks 𝑒𝑒 or 𝐸𝐸, the 
automaton returns to locations 𝐸𝐸0 and 𝐸𝐸2 respectively.  

Despite there is a transition from 𝐸𝐸2 to 𝐸𝐸0, according to the considered delay 
for task 𝑒𝑒, in location 𝐸𝐸2 the task is already terminated. Therefore, no failure 
can occur in this location and in order to simplify the automaton, this transition 
can be omitted. Whereas, if this delay was less than duration of the task, failure 
could be occurred in this location too. The same is true with the uncontrollable 
transition from location  𝑓𝑓 to 𝐸𝐸2 which is useless in this special example.  
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Figure 4.25. PR automata 𝐺𝐺6 in Example 3 

4.7 Solving approach 
In order to find a schedule, the tool TIGA is used as a synthesis tool to explore 
the state space for determining if there is a winning strategy to reach a location 
where all the tasks are done and the precedence constraint is respected. For this 
purpose, a time-optimal control property is verified by performing a 
reachability game. This game concerns reachability of all the ME automata to 
their initial locations and all TL and PR automata to their final locations (𝑓𝑓) 
despite uncontrollable actions of the environment. In TCTL language, this 
property can be formalized as follows: 

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(𝑡𝑡,𝑝𝑝):𝐴𝐴 ◊ ((⋀ 𝑀𝑀𝐸𝐸𝑗𝑗 . 𝐸𝐸0)1≤𝑗𝑗≤𝑀𝑀 ∧ (⋀ 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘_𝐸𝐸𝐸𝐸𝑡𝑡𝑜𝑜𝑐𝑐ℎ𝑡𝑡𝑃𝑃𝑖𝑖.𝑓𝑓)1≤𝑖𝑖≤𝑁𝑁 ∧
(⋀ 𝑃𝑃𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡𝑜𝑜𝑐𝑐𝑡𝑡𝑘𝑘.𝑓𝑓)1≤𝑘𝑘≤𝑝𝑝 )                                                                                 (4.10)                 

where 𝐸𝐸0 is the initial locations of ME automata, and 𝑓𝑓  are final locations of TL 
and PR automata. As highlighted previously, there exist 𝑀𝑀 ME automata, 𝑁𝑁 TL 
automata and 𝑃𝑃 PR automata. Generally, 𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(𝑡𝑡,𝑝𝑝):𝐴𝐴 ◊ 𝑝𝑝𝑃𝑃𝐸𝐸𝐸𝐸 means 
that the supervisor must reach a set of goal location within less than 𝑡𝑡 − 𝑝𝑝 time 
units. In the case of the proposed scheduling problem, goal locations are initial 
locations 𝐸𝐸0 in ME automata and 𝑓𝑓 locations in TL and PR automata. Moreover, 
𝑡𝑡 can be set to a very large number and 𝑝𝑝 can have zero value. Thereby, TIGA 
yields an optimal or sub-optimal value of makespan that can be acquired despite 
the worst actions of the environment (from the point of view of the supervisor). 
Furthermore, the strategy to reach the final location can be obtained through 
this synthesis (Behrmann et al. 2007a). 

It is noteworthy to mention that the process of finding a winning strategy is 
much more expensive than a usual reachability analysis for finding a trajectory 
to reach the goal location. Thence, the computational time of this solving 
approach is longer than the previous case and cannot be used for large size MRS 
scheduling problems.     
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4.8 Example 3 (continue) 
According to the equation 4.10, the following query is verified in TIGA to find 
the optimal schedule: 

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(100,0):𝐴𝐴 ◊ (𝐺𝐺1. 𝐸𝐸0 ∧ 𝐺𝐺2. 𝐸𝐸0 ∧ 𝐺𝐺3.𝑓𝑓 ∧ 𝐺𝐺4.𝑓𝑓 ∧ 𝐺𝐺5.𝑓𝑓 ∧ 𝐺𝐺6.𝑓𝑓)             (4.11)          

where 𝐸𝐸0 is the initial locations of ME automata 𝐺𝐺1 and 𝐺𝐺2, and 𝑓𝑓  are final 
locations of TL automata 𝐺𝐺3,𝐺𝐺4 and 𝐺𝐺5 and PR automata 𝐺𝐺6.                                                                                                    

The makespan obtained by TIGA for this example is 45 time units. By 
implementing the models in this tool, a winning strategy is acquired. For 
obtaining the strategy, 𝑡𝑡 and 𝑝𝑝 are set to 100 and 0 respectively. In this 
example, there exist two sets of task conflicts; therefore, there are two sets of 
resources working simultaneously. It is clear that if a failure occurs in one of 
the sets, those tasks that do not need both resource sets for execution can be 
still running.  

Figure 4.26 demonstrates the Gantt chart for a sample schedule when the 
environment does its best play. It means that delays for the start time of tasks 
are the maximum and failures are happened at moments that can prolong 
duration of the schedule as much as possible. In this schedule, from time 0 to 
time 2, the environment doesn’t acts and therefore the controller executes task 
𝑒𝑒 at time 2. At this instant, 𝑒𝑒 is executed on both sets of resources. Some 
instances before 𝑒𝑒 ends, a failure happens in the second set of resources. This 
issue stops 𝑒𝑒. Maximum reparation time of the second set of resources is 5 time 
units. Thus, till time 12, resources are repaired and in this moment, ME 
automaton 𝐺𝐺2 allows restarting of task 𝑒𝑒. Whereas another time, the 
environment doesn’t take action and the execution of  𝑒𝑒 is forced after 2 time 
units. Therefore, at time 14, 𝑒𝑒 is started at both ME automata and finishes at 
time 19 when both set of resources are released. 

At this instant, automaton 𝐺𝐺1 starts execution of task 𝐸𝐸. At the same moment, 
TL automaton of task 𝑐𝑐 releases this task and reserves its necessary resources 
to use them when the environment starts the task. From time 19 to time 21 the 
environment doesn’t acts and therefore the controller executes task 𝑐𝑐 at time 
21. At time 24 𝑐𝑐 finishes. 

Duration of task 𝐸𝐸 is non-deterministic and is bounded in interval [7,11]. 
Until moments before time 30, the environment does not take any action to 
finish the task. While some instants before time 30, a failure in the first set of 
resources occurs which stops execution of the task. It takes 4 time units to repair 
the resources. It is assumed that each set of resources can only fail one time. 
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Therefore, this set cannot fail anymore. This limit is put to prevent unlimited 
failures and to bring the problem, closer to reality.  

At time 34, the first set of resources are repaired. For the reason that task 𝐸𝐸 
was not finished, it should be repeated again. Hence, at time 34, 𝐸𝐸 restarts 
execution and takes 11 time units to be finished. Therefore all tasks are finished 
at time 45.  

 
Figure 4.26. Gantt chart for a sample schedule in Example 3- case one 

This case is the worst case for occurrence of failures. Failures do not occur 
when resources are idle. This issue causes an amount of time waste for the 
reason of repeating tasks. Even this amount is maximum in this schedule; since 
failures occur at the last moments of execution of the longest tasks. Indeed, the 
longest tasks of the problem (𝐸𝐸 and 𝑒𝑒) took twice as much time as usual.  

 
Figure 4.27. Gantt chart for a sample schedule in Example 3- case two 

Figure 4.27 shows an alternative schedule that is the result of actions chosen 
by the environment and the controller for execution of tasks or occurrence of 
failures and delays. As it can be seen in the figure, in this schedule, task 𝑒𝑒 is 
executed after 1 time units instead of 2 time units. After 2 time units a failure 
occurs on the second set of resources which could be happened after 5 time 
units. Therefore, instead of time 19, task b is done at time 15. Then, task 𝑐𝑐 is 
executed after 1 time units instead of 2 time units. Furthermore, instead of 
elapsing 11 time units from execution of 𝐸𝐸, after 4 time units the failure on the 
first set of resources happens. They take 4 time units to be repaired. This time, 
instead of 11 time units, task 𝐸𝐸 ends after 8 time units. Hence, all the tasks are 
done at time 31. This difference is the result of better choices of the 
environment (from the point of view of the controller). 
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4.9 Conclusion 
In this chapter, multi-resource sharing scheduling problem is investigated 
considering uncontrollable parameters that can be happened in the real life. 
These parameters are uncertain duration of tasks, uncertain start time of tasks 
or resource failures during a scheduled cycle. 

Tasks that are subject to uncertain start time are divided to two sets: those 
that engage resources from their release time and the ones, which occupy 
resources only when they are executing.  

Furthermore, two types of failures is studied: failure while tasks are being 
executed and failures during idle time of resources.  

In chapter two, it was concluded that WA is a proper means for modeling of 
MRS problem for which all parameters are controllable. In fact, simple and 
abstract models can be built for this problem through WA. However, modeling 
of uncontrollable parameters in the problem is more complicated than 
controllable parameters and tasks. On the other hand, simplicity of this kind of 
automaton prevents modeling uncontrollable parameters in the problem. 
Hence, this kind of problems, is directly modeled by a type of timed automata 
that considers uncontrollability named timed game automata.  

Solving a problem considering uncontrollability needs to perform a 
supervisory control and extracting a strategy to reach the desired condition 
despite all actions of the environment. In order to solve the MRS scheduling 
problem, time-optimal reachability game is performed. Although taking into 
account uncontrollable parameters yields a schedule closer to the reality, this 
process is more expensive than simply finding a schedule in which all the tasks 
are done. 
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5  
Conclusion and perspectives 
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5 Conclusion and perspectives 

5.1 General conclusion 
Although wide studies are investigated in scheduling problems by researchers, 
few studies have used automata and formal verification technics for addressing 
scheduling problems; yet none of them considered challenging and practical 
issues such as multi-resource sharing aspect, uncontrollable environment and 
reaching the optimal schedule in a reasonable time for industrializing the 
model. This study, focuses on modeling and solving the scheduling problem 
considering the aforementioned issues. 

The MRS scheduling problem is modeled by automata which is expressive 
and also robust against changes in the parameter setting and the problem 
hypotheses. Two main types of automata are investigated that can simulate time 
and task durations for modeling scheduling problems aiming at minimizing 
makespan: 1. Automata based on weights (i.e. WA) 2. Automata based on 
clocks (e.g. timed automata). WA is a proper modeling approach for MRS 
scheduling problem for which all parameters are controllable. It is shown that 
simpler and more abstract models can be built for this problem through WA. 
Since all task parameters and events are controllable in Chapter 2 and 3, the 
problem is modeled by WA in these chapters. In order to find the optimal 
schedule through the WA model, it is necessary to compose its different 
components. Hence, an appropriate formalism of synchronous composition is 
needed to compose components of the model. Whereas there are two issues 
concerning the existing synchronous compositions in the literature: 1. being 
unable to show all possible behaviors of the scheduled problem such as 
simultaneous execution of actions in different automata 2. not containing a 
trajectory with the minimum makespan for the problem. Consequently, the 
existing synchronous compositions cannot be used to compose the components 
of the model. Thus, in order to find the optimal schedule, in Chapter 2, the WA 
models are translated to timed automata models to be composed through 
synchronous composition defined for timed automata. Whereas, in Chapter 3, 
a new synchronous composition is proposed to compose components of the 
weighed automata model directly. In the sequel, each chapter is explained 
briefly.  

In Chapter 2, an efficient modeling and solving approach is developed for 
MRS scheduling problem using weighted and timed automata and formal 
verifications technics. In this chapter, all the task parameters and events are 
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controllable. Therefore, to model the MRS scheduling problem, a WA model 
is proposed. In order to obtain the optimal schedule, the proposed WA model 
is translated to timed automata through some defined rules. In order to find the 
optimal schedule in a timed automata model, the state space of the model is 
explored through a reachability analysis. According to the conventional 
methodology of the reachability analysis, a trajectory should be found in the 
model in which all the tasks are done. In other words, the scheduling problem 
becomes a formal verification problem to verify a safety property that 
guarantees fulfilling all the tasks. In fact, this property is reachability to a set of 
locations where the condition to reach this set is to complete all the tasks.  

To find the optimal schedule, an iterative algorithm is developed. In this 
algorithm, in each iteration, the aforementioned safety property is verified. By 
verifying the property, model checker issues a witnessing trajectory that 
corresponds to one of the possible schedules. The value of clock in the final 
state of each witnessing trajectory, where all the tasks are done, is equal to the 
makespan of the schedule. Different schedules could be generated randomly by 
means of random depth first search method. To find the optimal schedule, 
several iterations will be done and compared to the optimal schedule.  

Two possibilities exist for ending the procedure: 1. To find the optimal 
makespan in a long time 2. To find the sub-optimal makespan in a period 
appropriate for decision making depending to the industry. In this thesis, the 
second approach is followed and therefore, a time instance is determined as 
criteria for stopping the computation. After reaching this criteria, a suboptimal 
schedule will be obtained.  

The results show that the proposed model and algorithm can be efficiently 
applied to industrial sized problems with 220 tasks and 20 groups of conflicting 
task for using various resources. It has been proved that time complexity of the 
proposed method is polynomial which allows the decision maker to solve an 
industrial size problem in a period reasonable for making decisions, while time 
complexity of the problem is NP-hard. 

In Chapter 3, a synchronous composition is proposed for WA to enable 
solving the MRS scheduling problem by performing the developed time-
optimal reachability analysis on WA models. In this chapter, a new 
synchronous composition is presented to compose the WA models proposed in 
Chapter 2. The advantage of this composition is being enable to execute non-
conflicting actions simultaneously. Moreover, due to the approach used in this 
composition, a schedule with the optimal makespan can be reached using the 
proposed composition. A generic rule in this composition is such that in each 
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trajectory, whenever an action is finished in an automaton, intermediate states 
in all other automata are created. Therefore, the automaton can start another 
action in that time instant. In that way, the set of tasks can be executed in a 
shorter time. After building the synchronous composition of the components of 
the model, a schedule can be found by performing the proposed time-optimal 
reachability analysis to find the fastest trajectory from the initial state to a state 
where all the tasks are done. 

Finally, in Chapter 4, to bring the problem closer to the real world, the MRS 
scheduling problem is extended by considering uncontrollable events and 
uncertain parameters. These parameters are uncertain duration and start time of 
tasks and resource failures during a scheduled cycle. 

Tasks that are subject to uncertain start time are divided to two sets: those 
that engage resources from their release time and the ones, which occupy 
resources only when they are executing. Furthermore, two types of failures are 
studied in this thesis: failure while tasks are being executed and failures during 
idle time of resources.  

However, modeling of uncontrollable parameters in MRS scheduling 
problem is complicated. Timed game automata is a modeling formalism which 
support clocks and include uncontrollable transitions and has sufficient features 
to model the extended problem. Thus, the extended MRS scheduling problem 
is modeled by timed game automata. 

Solving a problem considering uncontrollability needs to perform a 
supervisory control and extracting a supervisor strategy to reach the desired 
condition despite all actions of the environment. In order to solve the MRS 
scheduling problem, time-optimal reachability game is performed. Whereas, 
this process is more expensive than simply finding a schedule in which all the 
tasks are done. Thence, although taking into account uncontrollable parameters 
yields a schedule closer to the reality, this process is much longer to be solved 
in large sizes. 

5.2 General perspectives 
In this section, some limitations of this work are presented and possible 
directions for future researches are given. Particularly four main future research 
directions can be proposed: 
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• The defined rules for translating WA models to timed automata 
models can be implemented in a software to obtain timed automata 
models automatically. 

• The synchronous composition of WA could be implemented in a 
software to compose WA models automatically. Furthermore, the 
time-optimal reachability analysis discussed in Chapter 3 could be 
implemented in a software in order to find the optimal schedule 
automatically. 

• As explained in motivations, task are divided to operation tasks and 
preventive maintenance tasks. In some application, it may be an 
advantage to perform operation tasks earlier than maintenance. 
Whereas, by postponing the maintenance, risk of failure will increase 
which may need more time to be fixed. Therefore, two cases may 
happen by postponing the preventive maintenance of resources: 1. 
Operational tasks may be fulfilled earlier and the makespan for doing 
them may decrease 2. Failure occurs before performing maintenances 
and finishing tasks and the makespan increases. Thus, maintenance 
can be postponed depending on two parameters: 1. the importance of 
makespan minimization in the specific industry and 2. probability of 
failure in each instance of the schedule  

• A new formalism for WA could be defined in order to model 
uncontrollable events like occurrence of failure while execution of 
tasks. In addition, the algorithm of synchronous composition could be 
extended to compose WA models containing uncontrollability issues. 

5.3 Related publication 
 

The results of this thesis is published / submitted as follows: 

• M. Rahimi, E. Niel, E. Dumitrescu, “Multi-resource Scheduling by 
Weighted and Timed Automata”, International Journal of Production 
Research (ready to submit) 

• M. Rahimi, E. Niel, E. Dumitrescu, (2015) “Scheduling by Timed 
Automata under Resource Conflicts”, Poster presented in: 10ème 
Colloque sur la Modélisation des Systèmes Réactifs (MSR 2015), 
Nov. 18-20, Nancy, France
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Appendix A: Implementation details of 
the model 
The transition guard in a TL automata ensures that when taking this transition, 
all ME automata that share the task are in initial location to synchronize their 
corresponding transitions. Therefore TL automata should be able to access to 
current locations of ME automata. There is no feature to handle this issue in 
UPPAAL. Hence, it should be managed indirectly.  

From another point of view, this guard guaranteed that when any of the ME 
automata relating to a task is not in initial location, its TL automaton won’t be 
able to execute the task. To simulate this feature, in each ME automaton, when 
starting a double-task-transition, function "𝑎𝑎𝑡𝑡𝑃𝑃𝑒𝑒𝐸𝐸_𝑃𝑃𝑡𝑡ℎ𝑃𝑃_𝑡𝑡_𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡" disables 
launching other tasks belonging to the same automaton. Then, after completing 
the task, function "𝑡𝑡𝑜𝑜𝑒𝑒𝐸𝐸_𝑃𝑃𝑡𝑡ℎ𝑃𝑃_𝑡𝑡_𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡" enables these tasks. More precisely, an 
initially zero variable 𝑡𝑡𝑜𝑜[𝑡𝑡], where 𝑡𝑡 is the number of task, is dedicated to each 
task. Each time taking the first transition of a double-task-transition, the first 
function increments 𝑡𝑡𝑜𝑜[𝑡𝑡] variable of other tasks belonging to the automaton to 
disable their execution. Then at the second transitions, the second function 
decrements this variable by one. Since a task might be common in more than 
one specification automata, this variable might be incremented and 
decremented more than one time. Whereas after execution of all double-task-
transitions related to a task, these variables reset to their default value of zero. 
Hence, whenever this variable is equal to zero, it means that the task is enabled. 
In TL automata, a guard is defined on the transition such that if 𝑡𝑡𝑜𝑜[𝑡𝑡𝑎𝑎] is equal 
to zero (𝑡𝑡𝑎𝑎 denotes number of the task that is defined as id number of 
automaton), the transition can be taken. Consequently by sending 
communication signals to specification automata, corresponding transitions 
will be taken and tasks will be launched. Bellow the aforementioned functions 
are detailed: 

𝑣𝑣𝑃𝑃𝑡𝑡𝑎𝑎 𝑎𝑎𝑡𝑡𝑃𝑃𝑒𝑒𝐸𝐸_𝑃𝑃𝑡𝑡ℎ𝑃𝑃_𝑡𝑡_𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡(𝑡𝑡𝑜𝑜𝑡𝑡 𝑡𝑡) { 
    𝑓𝑓𝑃𝑃𝑃𝑃 (𝑘𝑘 ∶  𝑡𝑡𝑜𝑜𝑡𝑡[0,𝑁𝑁 − 1]) { 
        𝑡𝑡𝑓𝑓 (𝑃𝑃𝑡𝑡𝐸𝐸(𝑘𝑘) 𝐸𝐸𝑜𝑜𝑎𝑎 𝑘𝑘 ! =  𝑡𝑡) 
            𝑡𝑡𝑜𝑜[𝑘𝑘] + +;  
    } 
} 

 
𝑣𝑣𝑃𝑃𝑡𝑡𝑎𝑎 𝑡𝑡𝑜𝑜𝑒𝑒𝐸𝐸_𝑃𝑃𝑡𝑡ℎ𝑃𝑃_𝑡𝑡_𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡(𝑡𝑡𝑜𝑜𝑡𝑡 𝑡𝑡) { 
    𝑓𝑓𝑃𝑃𝑃𝑃 (𝑘𝑘 ∶  𝑡𝑡𝑜𝑜𝑡𝑡[0,𝑁𝑁 − 1]) { 
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        𝑡𝑡𝑓𝑓 (𝑃𝑃𝑡𝑡𝐸𝐸(𝑘𝑘) 𝐸𝐸𝑜𝑜𝑎𝑎 𝑘𝑘 ! =  𝑡𝑡) 
            𝑡𝑡𝑜𝑜[𝑘𝑘] − −;  
    } 
} 

By applying modifications according to the above stated functions, 
following models are acquired. In these models, 𝑡𝑡, 𝑗𝑗, 𝑘𝑘, … ,𝑃𝑃 denote numbers 
assigned to tasks 𝐸𝐸, 𝑒𝑒, 𝑐𝑐, … ,𝑃𝑃. 

 

 
Figure A.1. Implemented modeling pattern of ME automaton 

 

 
Figure A.2. Implemented modeling pattern of a TL timed automaton 

 

 
Figure A.3. Implemented modeling pattern of a triggering precedence timed automaton  
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Figure A.4. Implemented modeling pattern of a delay precedence timed automaton 
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Appendix B: Java code for depth-first 
search in a digraph  

 

𝑃𝑃𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡𝑐𝑐 𝑐𝑐𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑎𝑎𝐷𝐷𝐹𝐹𝑆𝑆 (𝑆𝑆𝑡𝑡𝑎𝑎𝑝𝑝𝑡𝑡𝑒𝑒𝑡𝑡𝑐𝑐ℎ 𝐸𝐸𝑜𝑜𝑎𝑎 𝑊𝑊𝐸𝐸𝑒𝑒𝑜𝑜𝑡𝑡 2017) 

{ 

       𝑃𝑃𝑃𝑃𝑡𝑡𝑣𝑣𝐸𝐸𝑡𝑡𝑡𝑡 𝑒𝑒𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝐸𝐸𝑜𝑜[]𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎;   //𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 𝑡𝑡𝑓𝑓 𝑃𝑃𝐸𝐸𝑡𝑡ℎ 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑃𝑃 

        𝑃𝑃𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡𝑐𝑐 𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑎𝑎𝐷𝐷𝐹𝐹𝑆𝑆(𝐷𝐷𝑡𝑡𝑝𝑝𝑃𝑃𝐸𝐸𝑃𝑃ℎ 𝐺𝐺, 𝑡𝑡𝑜𝑜𝑡𝑡 𝑃𝑃) 

        { 

              𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎 =  𝑜𝑜𝑡𝑡𝑒𝑒 𝑒𝑒𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝐸𝐸𝑜𝑜[𝐺𝐺.𝑉𝑉()];  /
/𝑐𝑐𝑃𝑃𝑜𝑜𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑃𝑃 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃 𝑃𝑃𝑡𝑡𝐸𝐸𝑐𝑐ℎ𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑃𝑃 

              𝑎𝑎𝑓𝑓𝑃𝑃(𝐺𝐺, 𝑃𝑃); 

       } 

       𝑃𝑃𝑃𝑃𝑡𝑡𝑣𝑣𝐸𝐸𝑡𝑡𝑡𝑡 𝑣𝑣𝑃𝑃𝑡𝑡𝑎𝑎 𝑎𝑎𝑓𝑓𝑃𝑃(𝐷𝐷𝑡𝑡𝑝𝑝𝑃𝑃𝐸𝐸𝑃𝑃ℎ 𝐺𝐺, 𝑡𝑡𝑜𝑜𝑡𝑡 𝑣𝑣)   //𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑣𝑣𝑡𝑡 𝐷𝐷𝐹𝐹𝑆𝑆 𝑎𝑎𝑃𝑃𝑡𝑡𝑃𝑃 𝑡𝑡ℎ𝑡𝑡 𝑒𝑒𝑃𝑃𝑃𝑃𝑘𝑘 

       { 

              𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎[𝑣𝑣] =  𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡; 

              𝑓𝑓𝑃𝑃𝑃𝑃 (𝑡𝑡𝑜𝑜𝑡𝑡 𝑒𝑒 ∶  𝐺𝐺. 𝐸𝐸𝑎𝑎𝑗𝑗(𝑣𝑣)) 

                     𝑡𝑡𝑓𝑓 (!𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎[𝑒𝑒])𝑎𝑎𝑓𝑓𝑃𝑃(𝐺𝐺,𝑒𝑒);  

       } 

       𝑃𝑃𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡𝑐𝑐 𝑒𝑒𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝐸𝐸𝑜𝑜 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎(𝑡𝑡𝑜𝑜𝑡𝑡 𝑣𝑣)  /
/𝑐𝑐𝐸𝐸𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡 𝑐𝑐𝐸𝐸𝑜𝑜 𝐸𝐸𝑃𝑃𝑘𝑘 𝑒𝑒ℎ𝑡𝑡𝑡𝑡ℎ𝑡𝑡𝑃𝑃 𝐸𝐸𝑜𝑜𝑒𝑒 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝐸𝐸 𝑡𝑡𝑃𝑃 𝑃𝑃𝑡𝑡𝐸𝐸𝑐𝑐ℎ𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑃𝑃 

       { 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎[𝑣𝑣];  } 

} 
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Appendix C: Abbreviations 
 

BFS Breadth-First Search 
CP Constraint Programming 
DFS Depth-First Search 
DSDA Deterministic Single-Duration-Action  
DVS Dynamic Voltage Scaling 
EDF Earliest Dead-line First 
FIFO First In First Out 
FPS Fixed Priority Scheduling 
IP Integer Programming 
LIFO Last In First Out 
LPTA Linearly Priced Timed Automata 
ME Mutual Exclusion 
MILP Mixed-Integer Linear Programming 
MITL Metric Interval Temporal Logic 
MRS Multi-Resource Sharing 
PR Precedence 
SOM Sub-Optimal Makespan 
TA Timed Automaton 
TCTL Timed Computation Tree Logic 
TGA Timed Game Automata 
TL Task Launcher 
UPTA Uniformly Priced Timed Automaton 
WA Weighted Automaton 
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