
HAL Id: tel-02067680
https://theses.hal.science/tel-02067680

Submitted on 14 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal approaches to multi-resource sharing scheduling
Mahya Rahimi

To cite this version:
Mahya Rahimi. Formal approaches to multi-resource sharing scheduling. Automatic. Université de
Lyon, 2017. English. �NNT : 2017LYSEI129�. �tel-02067680�

https://theses.hal.science/tel-02067680
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2017LYSEI129

THESE de DOCTORAT DE L’UNIVERSITE DE LYON

opérée au sein de

L'Institut national des sciences appliquées de Lyon

Ecole Doctorale N°160

Electronique, Electrotechnique, Automatique

Spécialité/ discipline de doctorat:

Automatique

Soutenue publiquement clos le 08/12/2017, par:

Mahya RAHIMI

Formal Approaches to Multi-Resource
Sharing Scheduling

Devant le jury composé de :

LAHAYE, Sébastien Professeur à l'Université d'Angers Rapporteur
DEMONGODIN, Isabel Professeur à l'Université de Marseille Nord Rapporteur
PAWLEWSKI, Pawel Professeur à l'Université de technologie de Poznań Rapporteur

PETIN, Jean-François Professeur à l'Université de Lorraine Examinateur

DOLGUI, Alexandre Professeur à IMT Atlantique Examinateur

DUMITRESCU, Emil Maître de conférences à l'INSA de Lyon Examinateur
NIEL, Eric Professeur à l'INSA de Lyon Directeur de thèse

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon i

Abstract

The objective of scheduling problems is to find the optimal performing
sequence for a set of tasks by respecting predefined constraints and optimizing
a cost: time, energy, etc. Despite classical approaches, automata models are
expressive and also robust against changes in the parameter setting and against
changes in the problem specification. Besides, few studies have used formal
verification approaches for addressing scheduling problems; yet none of them
considered challenging and practical issues such as multi-resource sharing
aspect, uncontrollable environment and reaching the optimal schedule in a
reasonable time for industrializing the model.

The main objective of this thesis is to propose an efficient modeling and
solving approach for the scheduling problem, considering multi-resource
sharing and potential uncertainty in occurrence of certain events.

For this purpose, after an introduction in Chapter 1, Chapter 2 addresses the
problem of scheduling through a visual, expressive and formal modeling
approach, based on weighted automata and the theory of timed automata. The
originality of the proposed approach lies in ability of handling the sharing of
multiple resources and proposing an efficient solving approach. The proposed
models have the advantage of being directly exploitable by means of formal
verification tools. The results are obtained using the UPPAAL tool. To solve
the problem, an algorithm is developed based on iterating reachability analysis
to obtain sub-optimal makespan. Results show the proposed model and solving
approach provides a very promising complexity on the class of studied
problems and can be applied to industrial cases. In Chapter 3, a synchronous
composition of weighted automata is proposed to solve the scheduling problem
by performing an optimal reachability analysis directly on the weighted
automata models. In the fourth chapter, various uncontrollable behaviors such
as the start time, the duration of the task and the failure occurrence in a
scheduling problem are modeled by timed game automata. Then, the problem
is solved by performing an optimal strategy synthesis over time in TIGA as a
synthesis tool.

Keywords: Discrete event systems; Formal verification; Control synthesis;
Timed automata; Weighted automata; Scheduling problem; Makespan; Multi-
resource sharing; Uncontrollability

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon ii

Résumé
L'objectif principal de cette thèse est de proposer une approche efficace de

modélisation et de résolution pour le problème d’ordonnancement, en mettant
l’accent sur le partage multi-ressources et sur l’incertitude potentielle
d’occurrence de certains événements.

L'ordonnancement a pour objectif de réaliser un ensemble de tâches à la fois
en respectant des contraintes prédéfinies et en optimisant le temps. Ce travail
s’intéresse en particulier à la minimisation du temps total d’exécution. La
plupart des approches existantes préconisent une modélisation mathématique
exprimant des équations et des contraintes pour décrire et résoudre des
problèmes d’ordonnancement. De telles démarches ont une complexité
inhérente. Cependant dans l’industrie, la tâche de planification est récurrente et
peut requérir des changements fréquents des contraintes. Outre cela, la prise en
compte d’événements incertains est peu supportée par les approches existantes;
cela peut toutefois augmenter la robustesse d’un ordonnancement.

Pour répondre à ces problématiques, après une introduction, le chapitre 2
aborde le problème de l’ordonnancement à travers une démarche de
modélisation visuelle, expressive et formelle, s’appuyant sur les automates
pondérés et sur la théorie des automates temporisés. L’originalité des modèles
proposés réside aussi dans leur capacité de décrire le partage de ressources
multiples et proposer une approche de résolution efficace. Ces modèles ont
l’avantage d’être directement exploitables par des outils de vérification
formelle, à travers une démarche de preuve par contradiction vis-à-vis de
l’existence d’une solution. Les résultats effectifs sont obtenus grâce à l’outil
UPPAAL. La complexité inhérente à la production d’une solution optimale est
abordée à travers un algorithme de recherche et d’amélioration itérative de
solutions, offrant une complexité très prometteuse sur la classe de problèmes
étudiés. Dans le chapitre 3, une composition synchrone est d’automates
pondérés est proposée dans le but de résoudre le problème d’ordonnancement
en effectuant une analyse d’atteignabilité optimale directement sur les modèles
automates pondérés. Dans le quatrième chapitre, divers comportements
incontrôlables tels que le temps de début, la durée de la tâche et l'occurrence
d’échec dans un problème d‘ordonnancement sont modélisés par des automates
de jeu temporisés. Ensuite, le problème est résolu en effectuant une synthèse de
stratégie optimale dans le temps dans l'outil de synthèse TIGA.

Mots-clés: Systèmes a événements discrets; Vérification formelle; Synthèse
de contrôleur; Automates temporisés; Automates pondérés; Problème
d’ordonnancement; Makespan; Partage multi-ressources; Incontrollabilité

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon iii

To my beloved husband, Mohammad, for his constant

love, sacrifice, and continuous support,

To my parents who give me true love, motivation, care,

pray and everything for my life,

To my sister and brother who give me spirit and color

in my life.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon iv

Acknowledgment

I wish to express my deepest gratitude to my supervisors Prof. Eric Niel and
Dr. Emil Dumitrescu. Their advice, encouragement, support, and mentorship
have been immensely valuable. I am very thankful for their genuine concern,
efforts, and patience towards my development from a student to a researcher.

I am also grateful to members of my jury, Prof. Lahaye, Prof. Demongodin,
Prof. Pawlewski, Prof. Pétin and Prof. Dolgui. Their insights, time and
feedback are invaluable.

Special thanks are also to all faculties and staff members of Ampère
laboratory for their constant academic interactions with me.

Finally, I must express my gratitude to Mohammad, my husband, for his
incredible support and encouragement, which has helped me through many
challenges. I can only hope to pay him back in the years to come. I am
immensely indebted to my mother, father, sister and brother who experienced
all of the ups and downs of my life.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Tables of contents

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon v

Table of contents
1 GENERAL INTRODUCTION ... 2

1.1 INTRODUCTION .. 2
1.2 STATE OF THE ART .. 4

1.2.1 State of the art on general scheduling problems 4
1.2.2 State of the art on scheduling problems modeled by automata 7
1.2.3 State of the art on synchronous composition of weighted automata 8
1.2.4 State of the art on MRS scheduling considering uncontrollable

environment ... 9
1.2.5 Synthesis of the state of the art ... 10

1.3 RESEARCH QUESTION .. 14
1.4 CONTRIBUTION .. 14

1.4.1 Chapter 2: MRS scheduling through translation of weighted to timed
automata ... 14

1.4.2 Chapter 3: Multi-resource sharing scheduling by using synchronous
composition of weighted automata ... 14

1.4.3 Chapter 4: Multi-resource sharing scheduling considering uncontrollable
environment ... 15
1.5 BACKGROUND ... 15

1.5.1 Formal verification (or model checking) ... 15
1.5.2 Property-specification language .. 16
1.5.3 The branching time logic TCTL ... 16
1.5.4 TCTL properties ... 17
1.5.5 Techniques for constructing reachability graph of systems 18
1.5.6 Digraph traversal algorithms ... 20

1.6 CONCLUSION... 21

2 MULTI-RESOURCE SHARING SCHEDULING THROUGH TRANSLATION OF WEIGHTED
TO TIMED AUTOMATA .. 23

2.1 INTRODUCTION .. 23
2.1.1 State of the art ... 23
2.1.2 Synthesis of the state of the art ... 26

2.2 MRS SCHEDULING PROBLEM DESCRIPTION .. 27
2.3 MODELING MRS SCHEDULING PROBLEM BY WEIGHTED AUTOMATA 28

2.3.1 General principle of modeling procedure ... 28
2.3.2 Problem statement by weighted automata ... 29

2.4 SOLVING MRS SCHEDULING PROBLEM BY MEANS OF TRANSLATING WEIGHTED AUTOMATA

MODELS INTO TIMED AUTOMATA MODELS .. 37
2.4.1 Translating transitions of the WA model to TA .. 39
2.4.2 Translating WA models to TA models .. 42
2.4.3 Scheduling approach .. 47
2.4.4 Complexity .. 51

2.5 CONCLUSION... 56

3 SYNCHRONOUS COMPOSITION OF WEIGHTED AUTOMATA - APPLICATION TO MRS
SCHEDULING ... 59

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Tables of contents

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon vi

3.1 INTRODUCTION .. 59
3.1.1 State of the art on synchronous composition of weighted automata 59
3.1.2 State of the art on time-optimal reachability analysis 61
3.1.3 Synthesis of the state of the art ... 61

3.2 SYNCHRONOUS COMPOSITION FOR WEIGHTED AUTOMATA ... 63
3.2.1 Example 2 ... 63
3.2.2 Algorithmic steps to reach synchronous composition 65
3.2.3 Synchronous composition of DSDA weighted automata 72
3.2.4 A simple example of synchronous composition (Example 2-continue) 73

3.3 FINDING THE OPTIMAL SCHEDULE .. 81
3.4 CONCLUSION... 82

4 MULTI-RESOURCE SHARING SCHEDULING CONSIDERING UNCONTROLLABLE
ENVIRONMENT .. 84

4.1 INTRODUCTION .. 84
4.1.1 State of the art ... 84
4.1.2 Synthesis of the state of the art ... 88

4.2 BACKGROUND ... 91
4.2.1 Timed Game Automata .. 91
4.2.2 Safety and reachability games ... 92
4.2.3 Winning games .. 93
4.2.4 Strategy .. 94
4.2.5 Synthesis tool TIGA ... 94
4.2.6 Winning/losing conditions .. 95
4.2.7 Partially Cooperative Games .. 95
4.2.8 Time Optimal Strategy Synthesis.. 96
4.2.9 Example of timed game automata ... 96
4.2.10 On-the-fly algorithm for timed games ... 97
4.2.11 Interval weighted automata .. 98

4.3 PROBLEM DESCRIPTION ... 99
4.4 DIFFERENT TYPES OF UNCONTROLLABLE PARAMETERS.. 100
4.5 MODELING THE SCHEDULING PROBLEM THROUGH TGA CONSIDERING UNCONTROLLABLE

PARAMETERS .. 101
4.6 EXAMPLE 3 ... 112
4.7 SOLVING APPROACH ... 118
4.8 EXAMPLE 3 (CONTINUE) .. 119
4.9 CONCLUSION... 121

5 CONCLUSION AND PERSPECTIVES ... 123

5.1 GENERAL CONCLUSION .. 123
5.2 GENERAL PERSPECTIVES ... 125
5.3 RELATED PUBLICATION .. 126

REFERENCES ... 127

APPENDIX A: IMPLEMENTATION DETAILS OF THE MODEL ... 134

APPENDIX B: JAVA CODE FOR DEPTH-FIRST SEARCH IN A DIGRAPH 137

APPENDIX C: ABBREVIATIONS .. 138

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

List of tables

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon vii

List of tables

TABLE 1.1. CLASSIFICATION OF LITERATURE ABOUT SCHEDULING PROBLEMS .. 12
TABLE 2.1. RESOURCE ASSIGNMENT DETAILS OF EXAMPLE 1 .. 28
TABLE 2.2. CALCULATED AND REAL MAKESPAN AND CORRESPONDING COMPUTATIONAL TIME FOR PROBLEM

INSTANCES ... 51
TABLE 3.1. CLASSIFICATION OF LITERATURE PROPOSING SYNCHRONOUS COMPOSITION OF WA 63
TABLE 4.1. CLASSIFICATION OF LITERATURE CONCERNING UNCONTROLLABILITY .. 89
TABLE 4.2. TIMING INFORMATION OF TASKS IN EXAMPLE 3 ... 113
TABLE 4.3. RESOURCE ASSIGNMENT DETAILS OF EXAMPLE 3 .. 113
TABLE 4.4. REPAIRING DURATION OF RESOURCES ... 113

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

List of figures

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon viii

List of figures

FIGURE 2.1. MODELING PATTERN OF WEIGHTED ME AUTOMATON ... 31
FIGURE 2.2. CORRESPONDING ME AUTOMATA FOR EXAMPLE 1 ... 31
FIGURE 2.3. MODELING PATTERN OF WEIGHTED TL AUTOMATON FOR 𝑘𝑘 = 1... 33
FIGURE 2.4. SIMPLIFIED MODELING PATTERN OF WEIGHTED TL AUTOMATON FOR K=1 33
FIGURE 2.5. TL AUTOMATA IN EXAMPLE 1 ... 33
FIGURE 2.6. MODELING PATTERN OF A DELAY PR AUTOMATA (A) AND A TRIGGERING PR AUTOMATA (B) 34
FIGURE 2.7. WEIGHTED TRIGGERING PR AUTOMATA IN EXAMPLE 1 .. 34
FIGURE 2.8. WEIGHTED DELAY PR AUTOMATA IN EXAMPLE 1 .. 35
FIGURE 2.9. GLOBAL BEHAVIOR OF THE EXAMPLE 1(G1||G2||G3||G4||G5) 35
FIGURE 2.10. GLOBAL BEHAVIOR OF EXAMPLE 1 CONSIDERING PR AUTOMATA

(G1||G2||G3||G4||G5||G6) .. 36
FIGURE 2.11. WA MODELS OF EXAMPLE 1 ... 36
FIGURE 2.12. TRANSLATION OF A TRANSITION WITH DURATION FROM A SPECIFICATION WA TO TA 40
FIGURE 2.13. TRANSLATION OF A TRIGGERING TRANSITION FROM A SPECIFICATION WA TO TA 41
FIGURE 2.14. TRANSLATION OF A TRANSITION FROM A PLANT WA TO TA .. 41
FIGURE 2.15. MODELING PATTERN OF TIMED ME AUTOMATON ... 43
FIGURE 2.16. TIMED ME AUTOMATON IN EXAMPLE 1.. 43
FIGURE 2.17. MODELING PATTERN OF TIMED TL AUTOMATON... 44
FIGURE 2.18.TIMED TL AUTOMATA OF TASKS A, B AND C IN EXAMPLE 1. .. 44
FIGURE 2.19. MODELING PATTERN OF TRIGGERING PRECEDENCE TIMED AUTOMATON 44
FIGURE 2.20. TRIGGERING PRECEDENCE TIMED AUTOMATON IN EXAMPLE 1 ... 45
FIGURE 2.21. MODELING PATTERN OF A DELAY PRECEDENCE TIMED AUTOMATON 45
FIGURE 2.22. DELAY PRECEDENCE TIMED AUTOMATON IN EXAMPLE 1 ... 45
FIGURE 2.23. TA MODELS OF EXAMPLE 1 .. 46
FIGURE 2.24. GANTT CHART OF EXAMPLE 1 WITHOUT PRECEDENCE CONDITIONS 50
FIGURE 2.25. GANTT CHART OF EXAMPLE 1 CONSIDERING DELAY PR TIMED AUTOMATON G7 51
FIGURE 2.26. CALCULATION TIME VS. NUMBER OF TASKS FOR INDIVIDUAL TASKS AND COMMON TASKS BETWEEN

2 ME AUTOMATA ... 54
FIGURE 2.27. CALCULATION TIME VS. NUMBER OF ME AUTOMATA, FOR TASKS THAT ARE INDIVIDUAL OR

COMMON TASKS BETWEEN 2 ME AUTOMATA ... 55
FIGURE 2.28. CALCULATION TIME VS. NUMBER OF TASKS FOR 5 ME AUTOMATA 56
FIGURE 3.1. WA MODEL OF EXAMPLE 2. ... 64
FIGURE 3.2. GANTT CHART OF AUTOMATA 𝐺𝐺1 TO 𝐺𝐺6 ACCORDING TO A SAMPLE SCHEDULE 65
FIGURE 3.3. SYNCHRONOUS COMPOSITION OF AUTOMATA IN EXAMPLE 2 .. 80
FIGURE 4.1. EXAMPLES OF WINNING (A) AND LOSING (B) TIMED GAME AUTOMATA (BEHRMANN ET AL.

2007A) .. 93
FIGURE 4.2. EXAMPLES OF FORCED TRANSITION: WINNING MODEL (A), EQUIVALENT MODEL WITH THE IMPLICIT

TRANSITION MADE EXPLICIT (B) AND A LOSING MODEL (C) (BEHRMANN ET AL. 2007A) 93
FIGURE 4.3. EXAMPLE OF SYNCHRONIZATION WITH FORCED TRANSITIONS: ORIGINAL MODEL (A), FORCED

TRANSITION MADE EXPLICIT (B), COMPLETE COMPOSITION WITH EXPLICIT FORCED TRANSITION

(BEHRMANN ET AL. 2007A). ... 94
FIGURE 4.4. TIMED GAME AUTOMATON EXAMPLE ... 97
FIGURE 4.5. MODELING PATTERN OF A TASK IN A ME AUTOMATON .. 102
FIGURE 4.6. MODELING PATTERN OF A RESOURCE FAILURE IN ITS IDLE TIME IN A ME AUTOMATON 103
FIGURE 4.7. MODELING PATTERN OF A TASK IN A ME AUTOMATON SUBJECT TO RESOURCE FAILURE 104

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

List of figures

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon ix

FIGURE 4.8. MODELING PATTERN OF A ME AUTOMATON SUBJECT TO RESOURCE FAILURE 105
FIGURE 4.9. MODELING PATTERN OF A TASK WITH UNCERTAIN DURATION IN A ME AUTOMATON 106
FIGURE 4.10. MODELING PATTERN OF A ME AUTOMATON CONSISTING OF TASKS WITH UNCERTAIN DURATIONS

 ... 106
FIGURE 4.11. MODELING PATTERN OF A TASK WITH UNCERTAIN START TIME IN A ME AUTOMATON 107
FIGURE 4.12. MODELING PATTERN OF A TASK LAUNCHER AUTOMATON ... 108
FIGURE 4.13. MODELING PATTERN OF A LAUNCHER AUTOMATON FOR A TASK SUBJECT TO FAILURE 109
FIGURE 4.14. MODELING PATTERN OF A TASK LAUNCHER AUTOMATON FOR A TASK WITH NON-DETERMINISTIC

START TIME WHEN THE RESOURCES ARE OCCUPIED FROM THE INSTANT OF EXECUTION..................... 110
FIGURE 4.15. MODELING PATTERN OF A TASK LAUNCHER AUTOMATON FOR A TASK WITH NON-DETERMINISTIC

START TIME WHEN THE RESOURCES ARE OCCUPIED FROM THE RELEASE TIME OF TASK 110
FIGURE 4.16. MODELING PATTERN OF A TRIGGERING PR AUTOMATA WITH RELIABLE RESOURCES 111
FIGURE 4.17. MODELING PATTERN OF A TRIGGERING PR AUTOMATA WITH TASKS SUBJECT TO FAILURE 111
FIGURE 4.18. MODELING PATTERN OF A DELAY PRAUTOMATA WITH RELIABLE RESOURCES 112
FIGURE 4.19. MODELING PATTERN OF A DELAY PR AUTOMATA WITH TASKS SUBJECT TO FAILURE 112
FIGURE 4.20. ME AUTOMATON 𝐺𝐺1 IN EXAMPLE 3 .. 114
FIGURE 4.21. ME AUTOMATON 𝐺𝐺2 IN EXAMPLE 3 .. 115
FIGURE 4.22. TL AUTOMATON 𝐺𝐺3 FOR TASK A IN EXAMPLE 3 .. 116
FIGURE 4.23. TL AUTOMATON 𝐺𝐺4 FOR TASK B IN EXAMPLE 3 .. 116
FIGURE 4.24. TL AUTOMATON 𝐺𝐺5 FOR TASK C IN EXAMPLE 3 .. 117
FIGURE 4.25. PR AUTOMATA 𝐺𝐺6 IN EXAMPLE 3 ... 118
FIGURE 4.26. GANTT CHART FOR A SAMPLE SCHEDULE IN EXAMPLE 3- CASE ONE 120
FIGURE 4.27. GANTT CHART FOR A SAMPLE SCHEDULE IN EXAMPLE 3- CASE TWO 120

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 1

1
General introduction

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 2

1 General introduction

1.1 Introduction
The objective of scheduling problems is to find the optimal sequence for
performing a set of tasks by respecting predefined constraints and optimizing
time, energy, etc. This problem splits in different classifications such as single
machine scheduling, identical, uniform, unrelated and dedicated parallel
machine scheduling, and open shop, flow shop and job shop scheduling
(Zobolas, Tarantilis, and Ioannou 2008).

In most of these problems, researchers consider that only one resource is
assigned to each task. While in some application domains, it is essential to
assign more than one resource to each task. These resources can be composed
of machines, dies, pipes, fixtures, guided vehicles, industrial robots, tools or
even multi-skilled workforces. There are various applications for Multi-
Resource Sharing (MRS) scheduling problems. For example, scheduling tasks
in an oil seaport; oil transfer operations and maintenance operations can be
considered as tasks and valves can be considered as critical resources. A liquid
transfer can be carried out through a temporary alignment in the network by
opening the valves in the alignment and closing all adjacent ones in order to
isolate it from the rest of the network. Therefore, several valves, i.e. multi-
resources, may be used to do a liquid transfer task. While it may be necessary
to perform maintenance on the valves of the same alignment. This issue
prevents the liquid transfer operation which means conflict between two tasks
that share multiple resources (Quintero Garcia 2015).

It is noteworthy to mention that considering multi-resource sharing criteria
in the scheduling problem, increases the problem complexity. In fact, it will be
converted to an NP-hard problem (Edis, Oguz, and Ozkarahan 2013; Hartmann
and Briskorn 2010). Therefore, this kind of problem should be solved in a
manner that prevents rate of computational time to become exponential.

There are different approaches to model MRS scheduling problem such as
(max,+) algebra, Petri nets, automata theory or approaches that are not in the
field of discrete event systems (non-DES). Among these approaches, automata
and Petri net models are more expressive and also robust against changes in the
parameter setting and against changes in the problem specification. Petri net
models demonstrate dynamic behavior of the system. Whereas, the objective of
modeling by automata is to show state space of the system. For instance, task

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 3

execution in a scheduling problem through state space of an automaton can be
modeled as follows: one state can show the situation that a task is not yet
executed. Then, by taking a transition, the automaton moves to a state where it
executes the task. After finishing the task, the automaton takes another
transition and moves to a state where the task is finished. Hence, in the state
space of an automaton execution of tasks can be shown visually. Therefore,
automata is a proper means for visual illustration of sequence of tasks in a
schedule. Through automata theory, various hypotheses of the problem can be
demonstrated by automata models and its global behavior can be shown by
composition of automata. Furthermore, properties can be defined to verify
correctness of the model and to solve the scheduling problem.

There are mainly two types of automata that can simulate time and task
durations for modeling scheduling problems aiming at minimizing makespan:
1. Automata based on weights (i.e. weighted automata) 2. Automata based on
clocks. In Chapter 2, it is shown that simpler and more abstract models can be
built for the MRS scheduling problem through weighted automata. A problem
has different components defined in the problem description. Each component
may be needed to be modeled separately in one local automaton. For solving
the problem performing analyses, it is necessary to obtain the global behavior
of the problem. To this end, synchronous composition of all the local automata
should be build which shows global behavior of the problem. A literature
review on synchronous composition of weighted automata is investigated in the
next section (Section 1.2).

The problem discussed so far was completely deterministic. All the
information concerning the tasks to be executed was known in advance,
including their identity, inter-dependence and duration. Furthermore the
starting time of tasks were deterministic. The same goes for the resources who
assumed to be reliable. Real life is not like that. New tasks may arrive in the
middle of the performance, while others may be canceled. Duration of tasks
may be more or less that the expected time, cost of task performance may
change, resources may break down, etc. In these situations the evolution of the
system depends on the actions of two “players” in each moment, the scheduler
which decides to wait or to start which task in a given situation and the
“environment”, which denotes all sources of uncontrollable events such as the
start time or termination of a task or resource failure.

Despite of importance and significant role of explained criteria, only few
numbers of studies involve these aspects in scheduling problems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 4

1.2 State of the art
In this section, the relevant literature is reviewed to show existing research gaps
in scheduling problems and to distinguish the present research work from
previous ones. Finally, a classification of described studies is presented.

1.2.1 State of the art on general scheduling problems
Confessore, Giordani, and Rismondo (2007) investigate a multi-project
scheduling problem. In this problem, each project consists of a set of activites
with precedence constraints and require specific amounts of resources.
Resources may be used only by one project or they may be shared between
projects. The objective is to minimize each project schedule makespan by
considering precedence and resource constraints. A makespan is defined as the
maximum completion time of tasks or in other words the execution time of all
the tasks only once. The authors presented a multi-agent system model, and an
iterative combinatorial auction mechanism for the agent coordination. They
developed a dynamic programming formulation for the combinatorial auction
problem, and heuristic algorithms for both the combinatorial auction and the
bidding process. Xian, Lu, and Li (2007) propos a method for scheduling
multiple real-time tasks in multiprocessor systems with the objective of energy
minimization. The studied system supports Dynamic Voltage Scaling (DVS).
The resources are multiprocessor systems with uncertain workloads under hard
real-time constraints. The investigated problem is NP-hard. For solving it,
firstly through a polynomial-time heuristic method the problem is converted to
a probability-based load balancing problem. Then, it is solved with worst-fit
decreasing bin-packing heuristic and the efficiency of their method is shown
comparing to the existing methods.

Kellerer and Strusevich (2008) deal with a minimizing the makespan of a
scheduling problem that consider m parallel machines as resources. The
machines in this problem are dedicated. That is, machine are assigned to jobs
in advance. In addition to the main resources, there is a type of an additional
resource that may be assigned to a job at any instance to accelerate its process.
The authors studied two cases; the presence of a single renewable additional
resource of unit amount as well as the presence of several available units of the
resource for its generalization. The problem studying in this paper is NP-hard.
They propose algorithms to solve the problem for the case of 2 machines, a
fixed number of machines and arbitrary number of machines.

Ooshita, Izumi, and Izumi (2009) investigate minimization of global
makespan in a parallel computing environment where different jobs should be

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 5

executed by machines in different organizations. The authors define a
cooperation degree between organizations while each organization does not
allow the completion time of its own jobs to be delayed in predefined
cooperation time in global makespan. In fact, they model a cooperative multi-
organization scheduling problem considering a degree cooperative as
constraint. Xi, Jiang, and Zhang (2009) studies multi-resources-constrained job
shop scheduling problem. The resources in this paper are machines and molds.
The author proposed a heuristic algorithm to solve the scheduling problem and
shows that time complexity of the algorithm is low. Therefore a schedule can
be obtained in a reasonable time through the proposed algorithm. In this study,
multiple resources (e.g. groups of machine, molds and fixture) are used at the
same time to perform a task. Furthermore, machine group and mold group for
each procedure is unique. Whereas, optional machine and mold in these groups
are not only, that is there exist many machines and molds that can perform each
procedure. Castro, Harjunkoski, and Grossmann (2009) deal with the
scheduling of continuous plant considering cost minimization. In this problem,
there energy usage should be optimized depending on the energy pricing
variations during the day. Moreover, uncontrollable events are concerned in
the scheduling such as machine breakdown or urgent orders that need to be
satisfied.

Heimerl and Kolisch (2010) propose an integer mathematical model for
scheduling of IT-projects. Their objective is to minimize the total cost which
consists of skilled human resource cost. The authors consider multi-resource
sharing aspect with assigning multi-skilled human resources to different
projects. They solve the proposed problem using an exact method and show its
efficiency compared to simple heuristics. Yusta, Torres, and Khodr (2010)
addresses the problem of optimum production schedule in order to maximize
the industry profit respecting to hourly variation of the electricity price in the
spot market. To this end, a mathematical optimization model is proposed to
simulate costs and the electricity demand of machining process. Then, it is
solved through generalized reduced gradient approach.

Edis and Ozkarahan (2011) addresses a resource-constrained identical
parallel machine scheduling problem with machine eligibility restrictions. The
aim of this study is makespan minimization. In this problem, there exist a set
of machine types for performing tasks. Each type of machine consists of certain
number of machines. Moreover, for performing each task, besides machines,
certain additional resources such as automated guided vehicles, machine
operators, dies, tools, pallets, industrial robots, etc. maybe used. This problem
is classified into the NP-hard class of problems. The problem is modeled

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 6

through three approaches: an integer programming (IP) model, a Constraint
Programming (CP) model and a combined IP/CP model. The models are solved
in OPL Studio 3.7™ and accordingly, time complexity for solving each of them
are also discussed.

Quintero et al. (2013) presents a (max,+) optimization model for scheduling
tasks in an oil seaport. The objective of this schedule is to minimize the total
cost due to delay penalties. In this study, the start time of maintenance
operations on valves are fixed. Oil transfer operations and maintenance
operations are considered as tasks and valves are considered as critical
resources. Since the oil pipeline is confined to a certain number of valves and
pipes, there exist conflicts for using valves. Therefore, multi-resource sharing
is considered in this study. In another work, Quintero et al. (2014b) proposes a
(max,+) optimization model for the same scheduling case study considering
flexible preventive maintenance. In another article, Quintero et al. (2014a)
explore the integration of failure risk into their former studies. Quintero, Niel,
and Aguilar (2015) investigate the same problem and case study by considering
flexible resource assignment, i.e. resources are not associated to the tasks prior
to the scheduling.

Luo et al. (2013) investigates a bi-objective hybrid flow shop scheduling
problem. For this purpose, a new ant colony optimization meta-heuristic is
proposed to improve production efficiency in and electric power cost with the
presence of time-of-use electricity pricing strategy. In fact, production
efficiency increases by minimizing the makespan.

Moon and Park (2014) tackle flexible job-shop problem concerning time-
dependent and machine-dependent electricity costs with distributed energy
resources. The aim of this study is minimizing the total production cost. The
energy resources are consist of energy storage and renewable energy resources
such as solar energy and wind. The solving approaches in this study are
constraint programming and mixed-integer programming.

Afzalirad and Rezaeian (2016) investigates an unrelated parallel machine
scheduling problem with resource constrains, sequence-dependent setup times,
different release dates, machine eligibility and precedence constraints.
Restricted number of additional resources such as labors, tools, jigs, etc. are
taken into account. Therefore, this problem can be classified to multi-resource
sharing problems. The problem is represented through an integer mathematical
model. Then it is solved through two meta-heuristic algorithms including
genetic algorithm and artificial immune system with objective of minimizing
the makespan. Kundakcı and Kulak (Kundakcı and Kulak 2016) propose

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 7

efficient hybrid Genetic Algorithm methodologies in order to minimize
makespan of a dynamic job shop scheduling problem. In this problem,
uncontrollable events such as random job arrivals, machine breakdowns and
changes in processing time are considered.

1.2.2 State of the art on scheduling problems modeled by automata
In this section, the literature relevant to the scheduling problems modeled by
automata is reviewed. More detail is provided in Chapter 2.

Hune, Larsen, and Pettersson (2001) investigate the problem of scheduling
and synthesizing distributed control programs for a batch production plant and
use UPPAAL to solve the problem. In this problem, multi-resource assignment
is not taken into account. Abdeddaim and Maler (2001) model classical job-
shop scheduling problem by a special class of timed automata. It is noteworthy
to mention that in a shop problem, e.g. job shop problem every resource is
allowed to be used by a single task. Hence, studies considering shop problems
do not use multiple resources to execute a task. Niebert and Yovine (2001)
concern a casy study on verification of hybrid systems. In this study, an optimal
dynamic scheduler is derived for a cyclic experimental chemical batch plant at
Dortmund. The authors model the problem by timed automata. In this article
multi-resource allocation is not allowed.

Yasmina Abdeddaim et al. (2003) address the problem of optimal job-shop
scheduling of partially-ordered tasks on parallel machines. The problem is
formulated by timed automata and the objective is to minimize the makespan.
Multi-resource sharing is not considered in the presented model.

G. Behrmann et al. (2005) address a type of job shop scheduling problem
for lacquer production. The authors investigate firstly schedulability of the
problem. Then, add storage and delay costs to the problem and propose a
method to minimize the cost. They model two case studies by timed automata
and priced timed automata. The problems are solved by reachability analysis.

Panek, Stursberg, and Engell (2006) present a new approach to minimize the
makespan of job-shop scheduling problems. In this article, the problem is
modeled by timed automata. In another article, Panek, Engell, and Stursberg
(2006) apply their aforementioned scheduling method in a case study from the
chemical industry. The goal of this problem is to investigate schedulability of
the problem and also to minimize the makespan. Abdeddaïm, Asarin, and Maler
(2006a) use timed automata for minimizing the makespan of a classical job-
shop problem. The authors also consider uncertain task duration.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 8

David, Illum, and Larsen (2009) proposed a framework to model and
analyze a variety of schedulability scenarios for problems that deal with multi-
processor systems, timing uncertainties in arrival and execution times, possible
dependencies of tasks and preemption of resources. The problem is modeled by
timed automata.

Subbiah and Engell (2010) propose a timed automata model and solve a
scheduling problem with sequence-dependent changeover procedures and
limited discrete resources. The authors model the problem through interacting
timed automata. In order to generate a schedule, a cost-optimal reachability
analysis is performed to minimize the makespan.

Marangé et al. (2011) propose a job-shop scheduling model by
communicating automata to handle reconfiguration of a manufacturing plant.

Alves et al. (2016) addresses a supervisory scheduling problem in
manufacturing systems in order to maximize parallelism among resources.
They model the problem through deterministic finite automata. Uncontrollable
events may occur during the execution of sequence of tasks. The main objective
of this study is not to minimize the makespan, but to maximize the parallelism
of working resources. Nikou, Tumova, and Dimarogonas (2016) model a
problem of cooperative task planning of multi-agent systems considering timed
constraints by weighted automata. Shehabinia, Lin, and Su (2016) model a
scheduling problem under multiple job deadlines through time-weighted
automata. In the article, the objective is to meet all job specifications and
deadlines.

1.2.3 State of the art on synchronous composition of weighted automata
In this section, the literature relevant to the synchronous composition of
weighted automata is reviewed. More detail is provided in Chapter 3.

To the best of our knowledge, only four researches have proposed a new
composition. Komenda, Lahaye, and Boimond (2009b) in one of the articles a
synchronous composition for (max, +) automata is proposed. This composition
could be employed for modeling of multi-resource sharing scheduling
problems. Whereas, the minimum makespan cannot be obtained through this
composition. The same authors propose another type of synchronous
composition for (max, +) automata. Despite the minimum makespan can be
found through a reachability analysis on this composition, simultaneous
execution of actions from different local automata cannot be shown (Lahaye,
Komenda, and Boimond 2015). Su, Van Schuppen, and Rooda (2012) propose
a synchronous composition for weighted automata. Whereas, through this

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 9

composition, simultaneous behavior of tasks cannot be show. Quintero (2015)
proposes alphabets for the time-optimal synchronous composition of six
tropical automata. The transition function is not defined and through the
presented alphabet, the minimum makespan can be obtained for a scheduling
problem for which the only constraint is task conflict. Furthermore, this
formulation is not generalized to the case of n automata.

1.2.4 State of the art on MRS scheduling considering uncontrollable
environment
In this section, the literature relevant to the scheduling problems considering
uncontrollable environment is reviewed. More detail is provided in Chapter 4.

Girault et al. (2003) present a new scheduling heuristic called Fault-
Tolerance Based Active Replication to produces distributed fault-tolerant
schedules for embedded systems. In this study, the processor failure is
considered as uncontrollable parameter.

Abdeddaïm, Asarin, and Maler (2006a) use timed automata for minimizing
the makespan of a classical job-shop problem. The authors also consider
uncertain task duration.

Abdeddaïm, Asarin, and Sighireanu (2009) present a subclass of Timed
Game Automata (TGA), called Task TGA which is defined as networks of
communicating tasks. In this network, the start time of tasks are deterministic,
while their duration are uncertain.

Dumitrescu et al. (2010) propose a framework for multi-criteria optimal
controller synthesis to model and optimize fault-tolerant distributed systems
considering task execution cost and its service quality. To model the multi-task
system, labeled transition system is defined based on input and outputs events.

Atto, Martinez, and Amari (2011) provide a (max,+)-based method to
supervise discrete event systems subject to tight time constraints. The authors
model the studied system by Petri net. The method is applied to an example of
industrial manufacturing plant. Moreover, possible failures are taken into
account.

Su, Van Schuppen, and Rooda (2012) address a minimum-makespan
supervisory synthesis job shop problem. They assume also occurrence of
uncontrollable events. The authors models the problem by weighted and un-
weighted deterministic finite state automata.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 10

Kim, Zhou, and Lee (2014) propose a method for steady scheduling of a
single-armed cluster tool based on Petri net and (max,+) algebra. They concern
disruptive events during the fabrication process.

Fernández Anta et al. (2015) deal with an online system consisting of tasks
with different execution times that arrive continuously to be executed on sets
of machines which are subject to crashes and restarts. The objective is to
minimize execution time and energy. Cimatti, Micheli, and Roveri (2015)
address the problem of temporal planning considering uncontrollable duration
of actions.

Dorndorf, Jaehn, and Pesch (2017) tackle the problem of assigning flights to
airport gates while starting and completion times of flight activities are
stochastic.

1.2.5 Synthesis of the state of the art
Table 1.1 illustrates the classification of the presented papers in the scheduling
problem literature. In this table, the reviewed papers are classified based on four
criteria: 1. the optimization objective of the discussed problem, 2. considering
multi-resource sharing constraint, 3. concerning uncontrollable situations in the
scheduling problem and 4. the modelling approach by which the problem is
modeled. In the following these criteria are explained.

Based on this literature review and Table 1.1, it can be observed that some
researchers consider “time” optimization with objective of makespan
minimization or defining temporal constraints to control maximum delay.
Another group of researchers minimize the “cost” which consists of penalty
cost due to delays, cost of energy or any resource. The rest of researchers
minimize total “energy” used by resources to execute tasks.

An analysis on table 1.1 shows that only few researchers consider multi-
resource sharing aspect and among them no author models the problem using
automata theory. Despite expressiveness of automata for modeling problems,
few studies model the scheduling problem by automata. A group of them use
approaches that are not classified in the field of discrete event systems. Most of
these approaches use equations for modeling problems that as explained in the
introduction section, there are not as expressive as automata. Some of them use
(max,+) algebra equations for modeling which are also not visual. Another
group utilize Petri net for modeling the problem. Modeling by Petri net is also
a visual approach. Whereas, as explained in the introduction section, this
approach shows the dynamic behavior of the problem and not the state space,
which is our intent. Another analysis proves that the few researchers that model

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 11

the problem by automata theory, consider uncontrollable parameters in
scheduling problems. Among these studies, none of them concern multi-
resource sharing issue.

Beside the presented research gaps, referring section 1.2.3, no researcher
proposes an appropriate synchronous composition for weighted automata to be
applied to MRS scheduling problem. Since there are two issues that at least
one of them concern the existing synchronous compositions in the literature: 1.
Being unable to show all possible behaviors of the scheduled problem such as
simultaneous execution of actions in different automata 2. Not containing a
trajectory with the minimum makespan for the problem.

As explained in the introduction of this chapter, for generating a schedule,
performing synchronous composition of the components of the problem is
indispensable. Thus, two approaches can be followed to model the MRS
scheduling problem using automata:

The first approach is to model the problem by weighted automata and then
translate the models to a clock-based automata for which the formalism of
synchronous composition exist. Timed automata is a clock-based automata
containing necessary formal features for modeling of MRS scheduling
problems containing controllable actions and tasks. Formalism of synchronous
composition of timed automata is defined before and moreover, a timed
automaton model is implementable in a formal verification tool. In a formal
verification tool, the behavior of them problem can be synthesized and the
optimal schedule can be obtained automatically.

The second approach is to model the problem by weighted automata and
propose a synchronous composition for weighted automata to compose them.
In this approach, the necessary analysis for finding the optimum schedule can
be done on the weighted automata composition of models. Thence, it is not
needed to translate models to timed automata which may reduce the complexity
of the solving approach, since the translation step is omitted from the analysis
procedure.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 12

Table 1.1. Classification of literature about scheduling problems

Authors Optimization
objective

Multi-Resource
Sharing

Modeling
Approach Uncontrollability

(Hune, Larsen, and
Pettersson 2001) time automata

(Abdeddaim and Maler
2001) time automata

(P Niebert and Yovine
2001) time automata

Girault et al. (2003) time Data-flow
graph 

(Behrmann et al. 2005) time-cost automata

(Panek, Stursberg, and
Engell 2006) time automata

(Panek, Engell, and
Stursberg 2006) time automata

(Yasmina Abdeddaïm,
Asarin, and Maler 2006) time automata 

(Confessore, Giordani,
and Rismondo 2007) time  Non-DES

(Xian, Lu, and Li 2007) energy Non-DES 

(Kellerer and Strusevich
2008) time  Non-DES

(David et al. 2009) time automata 

(Y. Abdeddaïm, Asarin,
and Sighireanu 2009) time automata 

(Xi, Jiang, and Zhang
2009) time Non-DES

(Ooshita, Izumi, and
Izumi 2009) time Non-DES

(Castro, Harjunkoski, and
Grossmann 2009) cost Non-DES 

(Subbiah and Engell
2010) time automata

(Yusta, Torres, and Khodr
2010) cost Non-DES

(Dumitrescu et al. 2010) time automata 

(Heimerl and Kolisch
2010) cost  Non-DES

(Marangé et al. 2011) time automata 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 13

Authors Optimization
objective

Multi-Resource
Sharing

Modeling
Approach Uncontrollability

(Edis and Ozkarahan
2011) time  Non-DES

(Atto, Martinez, and
Amari 2011) time Petri net 

(Su, Van Schuppen, and
Rooda 2012) time automata 

(Luo et al. 2013) time-cost Non-DES

(Quintero et al. 2013) cost  (max,+)
algebra

(Moon and Park 2014) cost Non-DES

(Kim, Zhou, and Lee
2014) time Petri net 

(Quintero et al. 2014a) cost  (max,+)
algebra 

(Quintero et al. 2014b) cost  (max,+)
algebra

(Fernández Anta et al.
2015) time-energy Non-DES 

(Quintero, Niel, and
Aguilar 2015) cost  (max,+)

algebra

(Cimatti, Micheli, and
Roveri 2015) time Non-DES 

(Shehabinia, Lin, and Su
2016) time automata

(Kundakcı and Kulak
2016) time Non-DES 

(Nikou, Tumova, and
Dimarogonas 2016) time automata

(Alves et al. 2016) time automata 

(Afzalirad and Rezaeian
2016) time  Non-DES

(Dorndorf, Jaehn, and
Pesch 2017) time Non-DES 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 14

1.3 Research question1
According the presented research gaps, five research questions are identified:

• To model multi-resource sharing scheduling problem using automata
theory

• To develop an efficient solving approach for the MRS scheduling
problem modeled by automata theory which can solve the problem in
a duration appropriate for decision making.

• To develop a synchronous composition for weighted automata
appropriate for MRS scheduling problem

• To develop a solving approach using the synchronous composition of
weighted automata

• To model and solve a MRS scheduling problem considering
uncontrollable events and parameters using timed game automata

1.4 Contribution

1.4.1 Chapter 2: MRS scheduling through translation of weighted to timed
automata
In the second chapter, a two-step modeling approach is presented to integrate
multi-resource sharing issue in scheduling problems using automata theory. In
the first step, the problem is modeled by weighted automata which yields a
simple and abstract model. In the second step, the weighted model is translated
to timed automata. The advantage of this translation is using formal verification
tools for solving the problem. Thence, the timed models are implemented in
UPPAAL which is a mature formal verification tool.

To solve the problem, an algorithm is developed based on iterating
reachability analysis to obtain sub-optimal makespan.

1.4.2 Chapter 3: Multi-resource sharing scheduling by using synchronous
composition of weighted automata
The main contribution of this chapter is defining a new synchronous
composition for weighted automata. The weighted automata models of MRS
scheduling problem is compose through this definition. Then, a time-optimal
reachability analysis algorithm is developed to find the time optimal schedule.

1 Verrou

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 15

1.4.3 Chapter 4: Multi-resource sharing scheduling considering
uncontrollable environment
In this chapter, various uncontrollable events and parameters such as start time,
duration of task and failure occurrence in a MRS scheduling problem is
modeled by timed game automata. Then, a synthesis tool named TIGA is used
to solve the problem by performing a time-optimal strategy synthesis.

1.5 Background
Formal verification techniques are engaged with TCTL property verification,
which is a type of property languages. These techniques are based on
constructing reachability graph of the system and traversing through this graph
that can be done in different manners such as breadth-first search or depth-first
search. In this section, a brief introduction to these concepts is provided.

1.5.1 Formal verification (or model checking)
The domain of verification is concerned with proving or disproving that
systems behave as required under all possible circumstances. In fact, a model
checker uses an algorithm to check if a logical formula holds in a system. A
system can be represented by an automaton containing some states and
transitions. Thus, the set of all paths in the transition graph of the automaton
represents the set of all possible behaviors of the system. So the problem of
verification can be reduced to the problem of checking the existence of certain
paths in the transition graph. Reachability properties are a type of the properties
to which verification is applied; they are verified by a path to know whether or
not it reaches some specific states. In some cases it should be checked if all
behaviors avoid a set of “forbidden” states, e.g. a state where the system is in
the risk of failure, and in some others behaviors should be found that proceed
to a desired final state, e.g. a state where all tasks have terminated. Such
properties are examples of safety and liveness properties, respectively. If the
system fails to meet a specific property, the model checker can be asked to
generate a counterexample to show how the property was violated. Furthermore
if the system meets the property, the model checker can be also asked to
generate a witnessing trace to illustrate one of the possible paths for which the
property holds.

By assigning numerical weights to the automaton transitions, one can
associate real numbers with paths and search for paths that have minimum
weight, using fastest path algorithms. Therefore by performing reachability

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 16

analysis along with using shortest path algorithms, the minimum makespan can
be found.

1.5.2 Property-specification language
In this section required formalisms for expressing properties of timed systems
is presented. There exist two types of formalisms, linear-time and branching-
time. In linear time, properties are interpreted as sets of executions and
specifications are evaluated on runs. While in branching time, properties are
validated on sets of execution trees and specifications are checked on semantic
graphs (Tripakis 1998).

Since branching time properties are used by powerful tools such as UPPAAL
and Kronos, in this thesis, only this kind of properties is considered.

1.5.3 The branching time logic TCTL
Branching time properties are expressed by Timed Computation Tree Logic
(TCTL) and has been introduced in (R Alur, Courcoubetis, and Dill 1993).
Let’s ℐ be the set of all intervals of real numbers of the form
[𝑐𝑐, 𝑐𝑐′], [𝑐𝑐, 𝑐𝑐′), (𝑐𝑐, 𝑐𝑐′], (𝑐𝑐, 𝑐𝑐′), (𝑐𝑐,∞) and [𝑐𝑐,∞), where 𝑐𝑐, 𝑐𝑐′ ∈ ℕ. Also let
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 be a set of atomic proposition.

Syntax and semantics: A formula 𝜙𝜙 in TCTL is defined according to the
following syntax:

𝜙𝜙 ≔ 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 | 𝑃𝑃 | ¬𝜙𝜙 | 𝜙𝜙 ∨ 𝜙𝜙 | ∃𝜙𝜙𝒰𝒰𝐼𝐼𝜙𝜙 | ∀𝜙𝜙𝒰𝒰𝐼𝐼𝜙𝜙 (1.1)

Let 𝐴𝐴 be a timed automata with the set of states 𝑄𝑄 and 𝑃𝑃:𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 2𝑄𝑄 assign
a set of discrete states of 𝐴𝐴 to each atomic proposition. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 formulae are
interpreted over states of 𝐴𝐴. For a state 𝑃𝑃, a TCTL formula 𝜙𝜙 the satisfaction
relation 𝑃𝑃 ⊨𝑝𝑝 𝜙𝜙 is defined inductively as follows:

𝑃𝑃 ⊨ 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡
𝑃𝑃 ⊨ 𝑃𝑃 iff 𝑃𝑃 ∈ 𝑃𝑃(𝑃𝑃)
𝑃𝑃 ⊨ ¬𝜙𝜙1 iff not 𝑃𝑃 ⊨ 𝜙𝜙1
𝑃𝑃 ⊨ 𝜙𝜙1 ∨ 𝜙𝜙2 iff 𝑃𝑃 ⊨ 𝜙𝜙1 or 𝑃𝑃 ⊨ 𝜙𝜙2

𝑃𝑃 ⊨ ∃(𝜙𝜙1𝒰𝒰𝐼𝐼𝜙𝜙2)

iff ∃𝜌𝜌 = 𝑃𝑃
𝛿𝛿1→
𝑒𝑒1→ …s.t. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜌𝜌) = ∞ and

∃𝑡𝑡 . Σ𝑗𝑗≤𝑖𝑖𝛿𝛿𝑗𝑗 ∈ 𝐼𝐼 and 𝜌𝜌(𝑡𝑡) + 𝛿𝛿𝑖𝑖 ⊨ 𝜙𝜙2 and
∀𝑗𝑗 < 𝑡𝑡.∀𝛿𝛿 ≤ 𝛿𝛿𝑗𝑗 .𝜌𝜌(𝑗𝑗) + 𝛿𝛿 ⊨ 𝜙𝜙1 ∨ 𝜙𝜙2

(1.2)

𝑃𝑃 ⊨ ∀(𝜙𝜙1𝒰𝒰𝐼𝐼𝜙𝜙2)

iff ∀𝜌𝜌 = 𝑃𝑃
𝛿𝛿1→
𝑒𝑒1→ … 𝑃𝑃. 𝑡𝑡. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜌𝜌) = ∞ and

∃𝑡𝑡 . Σ𝑗𝑗≤𝑖𝑖𝛿𝛿𝑗𝑗 ∈ 𝐼𝐼 and 𝜌𝜌(𝑡𝑡) + 𝛿𝛿𝑖𝑖 ⊨ 𝜙𝜙2 and

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 17

∀𝑗𝑗 < 𝑡𝑡.∀𝛿𝛿 ≤ 𝛿𝛿𝑗𝑗 .𝜌𝜌(𝑗𝑗) + 𝛿𝛿 ⊨ 𝜙𝜙1 ∨ 𝜙𝜙2

𝑃𝑃 satisfies ∃(𝜙𝜙1𝒰𝒰𝐼𝐼𝜙𝜙2) if for some run starting from s and a point along the
run such that the time spent until that point belongs to the interval 𝐼𝐼, 𝜙𝜙2 holds
at that point and 𝜙𝜙1 holds continuously until that point. The difference between
meaning of this property and ∀(𝜙𝜙1𝒰𝒰𝐼𝐼𝜙𝜙2) is that in the second one, all such runs
should meet the condition.

The following abbreviations are defined:

∃ ◊𝐼𝐼 𝜙𝜙 ≔ ∃𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 𝒰𝒰𝐼𝐼𝜙𝜙
∀ ◊𝐼𝐼 𝜙𝜙 ≔ ∀𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 𝒰𝒰𝐼𝐼𝜙𝜙 (1.3)
∀□𝐼𝐼𝜙𝜙 ≔ ¬∃ ◊𝐼𝐼 ¬𝜙𝜙
∃□𝐼𝐼𝜙𝜙 ≔ ¬∀ ◊𝐼𝐼 ¬𝜙𝜙

If the initial state of a timed automata satisfies a formula, it can be said that
the automata satisfies the formula (Tripakis 1998).

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡: Safety and liveness properties can be expressed by TCTL
formulas. The formula ∀□≤2𝜙𝜙 means that 𝜙𝜙 holds before 2 time units.

1.5.4 TCTL properties
TCTL formulae are classified to state formulae and path formulae. A state
formula describes individual states. While path formula quantifies over paths
of the model. Path formulae are consist of reachability, safety and liveness
properties.

 State formulae:
A state formula is an expression for evaluating a state without considering the
behavior of the model. For example verifying the value of a variable in a state
can be expressed as a state formula.

Safety and liveness properties are two main groups of properties.

 Safety properties:
Safety properties requires that for every possible execution of the system
nothing undesirable happens. For example a safety property could be avoiding
a process from being in the failure state. A variation of this property is to ask
if something will possibly never happen. For example in a game, a safe state
would be where there is still possibility to win the game; in another word, it is
the possibility for not losing.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 18

In UPPAAL safety properties should be formulated positively, e.g.
something good is always true. There are two types of safety expressions. The
first one is to say that 𝜑𝜑 is true in all reachable states with the formula ∀□𝜑𝜑
(𝐴𝐴[]𝜑𝜑 in UPPAAL). The second one is to ask if there is a maximal path2 such
that 𝜑𝜑 is always true and can be expressed with the formula ∃□𝜑𝜑 (𝐸𝐸[]𝜑𝜑 in
UPPAAL).

 Liveness properties:
Liveness properties are of the form something good eventually happens. For
instance when pressing the hibernate button of the computer, it eventually
should pass to the hibernate mode. The simplest form of a liveness property is
expressing with a path formula ∀ ◊ 𝜑𝜑 which means that 𝜑𝜑 is eventually
satisfied. Another form of liveness property is response property with the form
𝜑𝜑 ⇝ 𝜓𝜓 that is equivalent to ∀□(𝜑𝜑 ⇒ ∀ ◊ 𝜓𝜓). This property means that
whenever 𝜑𝜑 is satisfied, 𝜓𝜓 will be eventually satisfied. In UPPAAL, ∀ ◊ 𝜑𝜑 and
𝜑𝜑 ⇝ 𝜓𝜓 can be written as 𝐴𝐴 <> 𝜑𝜑 and 𝜑𝜑 − −> 𝜓𝜓 respectively.

 Reachability properties:
This properties ask whether a state formula 𝜑𝜑 possibly can be satisfied in any
reachable state. In another words, it verifies if there exists any path from the
initial state along which 𝜑𝜑 is eventually satisfied. For example in a model that
expresses a communication protocol that involves a sender and a receiver, a
question can be whether it is possible for a sender to send any message.

A reachability property can be expressed by the path formula ∃ ◊ 𝜑𝜑. In
UPPAAL, this formula can be written as 𝐸𝐸 <> 𝜑𝜑 (Behrmann, David, and
Larsen 2006).

1.5.5 Techniques for constructing reachability graph of systems
Size of the reachability graph of the system has a great impact on the
performance of the model checking problem. It is also name size of the state
space and the larger this size is the slower the verification process will be. State
space explosion is one of the major limitations in model checking problems
(Al-Bataineh 2015). In this section, some techniques for construction of state
space are represented. Verification problems are based on searching traces to
prove or disprove a property 𝜑𝜑. In general, two main approaches are introduced,
the fixed-point approach and on-the-fly approach. In the fixed-point approach,

2 A maximal path is either an infinite path or where the last state don’t have any outgoing

transition.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 19

an exhaustive search need to be done and all the states should be represented in
the memory at the same time. Whereas in on-the-fly approach, only a part of
the graph need to be generated and the property will be verified while the graph
is constructed.

 Backward versus forward analysis
Backward and forward analyses are both fixed-point approaches. In the forward
analysis method, model checker constructs a characterization of all reachable
states from the initial state. While in backward analysis, model checker
constructs a characterization of all states that can reach the goal state respecting
to behavioral structure. For some examples the speed of model checking with
one of these methods may be higher. However backward method is necessary
for checking certain modalities such as “Until” and “Eventually” and they can’t
be handled by forward analysis (Al-Bataineh 2015). Kronos supports both
forward and backward model checking.

 On the fly approach
In on-the-fly approach (Bouajjani, Tripakis, and Yovine 1997), the state space
of the system in generated dynamically and therefore just the minimal amount
of information is needed to be stored in the memory. The property is checked
while the model checker is generating the graph. On-the-fly model checking is
a powerful technique especially when the intent is to disprove a property and
to generate a counterexample. In fact, errors are discovered so early during
search and thus avoiding the exploration of the entire state space. On the other
hand, whenever it is needed to prove that the system is entirely correct
respecting to a property, a comprehensive search of the state space is needed
and this method will be less efficient. Hence in a group of examples on-the-fly
approach is more efficient than fixed-point approach and vice-versa (Al-
Bataineh 2015). Model checking in UPPAAL is based on on-the-fly approach.

 Compositional model checking
The state space explosion occurs in systems with many concurrent components
where most of the model checking techniques are inefficient or impossible. A
solution in this case is to decompose the system into components and then to
verify them individually (Berezin, Campos, and Clarke 1998). If the all the
components satisfy the properties properly, it is concluded that the system
behaves correctly. The main difficulty is to find if after the parallel
composition, all properties still remain satisfied. In fact, in some example,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 20

different processes of the system need to interact with each other to satisfy a
property and hence cannot be verified individually (Al-Bataineh 2015).

1.5.6 Digraph traversal algorithms
In this section, two basic approaches of graph searching are introduced. These
methods are used in exploring the state space when performing a reachability
analysis. The following algorithms explore the automaton in a forward
direction. While they could also be done in a backward manner.

 Breadth first search
The simplest algorithm for performing a reachability analysis is a Breadth-First
Search (BFS). Below is the BFS algorithm (Sedgewich and Wayne 2017).

Algorithm 1.1. BFS (from state s)
𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃 𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃 𝐸𝐸 𝐹𝐹𝐼𝐼𝐹𝐹𝐹𝐹 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘 𝑃𝑃 𝐸𝐸𝑃𝑃 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎.
𝑅𝑅𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝐸𝐸 𝑡𝑡ℎ𝑡𝑡 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑃𝑃 𝑡𝑡𝑡𝑡𝑃𝑃𝑡𝑡𝑒𝑒:

 𝑃𝑃𝑡𝑡𝑡𝑡𝑃𝑃𝑣𝑣𝑡𝑡 𝑡𝑡ℎ𝑡𝑡 𝐸𝐸𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑜𝑜𝑡𝑡𝐸𝐸𝑒𝑒 𝐸𝐸𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡 𝑞𝑞
𝑓𝑓𝑃𝑃𝑃𝑃 𝑡𝑡𝐸𝐸𝑐𝑐ℎ 𝑡𝑡𝑜𝑜𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑞𝑞: 𝐸𝐸𝑎𝑎𝑎𝑎 𝑡𝑡𝑃𝑃 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘 𝐸𝐸𝑃𝑃 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎.

 Depth-first search
There is a recursive algorithm for depth-first search of an automaton. Firstly
one state is selected for visiting. States in an automaton are assumed to split to
two sets, the ones that are not visited yet and those that are visited. Once each
non-visited state is visited, it will be removed from the first set and will be
added to the second set. Below is the algorithm of Depth-First Search (DFS)
(Sedgewich and Wayne 2017).

Algorithm 1.2. DFS (to visit a state q) (Sedgewich and Wayne 2017)
𝑀𝑀𝐸𝐸𝑃𝑃𝑘𝑘 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡 𝑞𝑞 𝐸𝐸𝑃𝑃 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎.
𝑅𝑅𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑣𝑣𝑡𝑡𝐸𝐸𝑒𝑒 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑜𝑜𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃 𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑞𝑞.

In a random-depth-first search method, the first state for visiting should be
chosen randomly.

This algorithm is the same as DFS algorithm for a directed graph (digraph).
Java code of a digraph DFS is detailed in Appendix B.

Technically the difference between a DFS and BFS algorithm is the place
where new nodes are added to the waiting list for visiting, at the end(BFS) or
at the beginning (DFS). In other words, the list is FIFO (First In First Out) in
BFS and LIFO (Last In First Out) is DFS (Yasmina Abdeddaïm, Asarin, and
Maler 2006).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 1: General introduction

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 21

1.6 Conclusion
In this chapter importance of modeling by automata theory, taking into account
multi-resource sharing and uncontrollable events and parameters in the
scheduling problem are explained. Then, the previous studies on scheduling
problems are reviewed and classified to show the existing research gaps.
Afterwards, the research question and contribution are presented. Finally, a
basic background on the main keywords is provided.

The remainder of this thesis is organized as follows. In Chapter 2 a MRS
scheduling problem is modeled by weighted and timed automata and solved. In
Chapter 3, a synchronous composition is proposed for weighted automata to
solve the problem by performing time-optimal reachability analysis on
weighted automata models. In Chapter 4, a MRS scheduling problem
considering uncontrollable parameters modeled by timed game automata and
solved. Finally, Chapter 5 summarizes results and concludes with
future research opportunities.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 22

2
Multi-resource sharing
scheduling through translation of
weighted to timed automata

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 23

2 Multi-resource sharing scheduling
through translation of weighted to
timed automata

2.1 Introduction
In this chapter, new models and solving approaches are proposed for multi-
resource sharing scheduling problems through automata theory while all the
tasks are controllable.

As mentioned in Chapter 1, scheduling problems can be modeled by either
weight-based automata like weighted automata, or clock-based automata like
timed automata. During this chapter, it is shown that simpler and more abstract
models can be built for the MRS scheduling problem through weighted
automata. Whereas there are two issues for using current synchronous
compositions. Either the minimum makespan cannot be obtained through using
them, or they don’t show a complete composed behavior of the components of
the model. Thence, it is not possible to analyze weighted automata (WA)
models directly. Therefore, firstly the MRS scheduling problem should be
modeled by WA. Then, after modeling the problem, there exist two strategies
to solve the scheduling problem. One solution is to translate the WA model to
another type of automata for which there exists synchronous composition (e.g.
timed automata) and analyze the new model to attain a schedule. Another
solution is to propose a new synchronous composition for WA and use it to
analyze the WA models directly and without creating intermediate timed
automata models. In this chapter, it is tried to find schedules by means of the
first strategy in which timed automata models are used as an intermediate to
obtain the optimal schedule from the WA models.

In some studies, automata theory, verification methods and controller
synthesis have been used for addressing scheduling problems. These articles
are reviewed to show existing research gaps in scheduling problems and to
distinguish the present research work from previous ones.

2.1.1 State of the art
 Gaubert and Mairesse (1995) present a method for modeling timed concurrent
systems modeled as automata with multiplicities in the (max,+) semiring. The
authors present applications of this modeling method to performance evaluation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 24

and for finding the makespan in a scheduling problem. Despite formulating
equations for finding the minimal makespan, the aim of this study is not
generating a schedule.

Norström, Wall, and Yi (1999) develop a formalism for an extended version
of timed automata with real-time tasks to solve problems in event-driven
systems. This automata can be used for modeling, schedulability analysis,
formal verification, and code generation. The authors assign a task with its
worst time execution to each transition with a guard specifying possible arrival
times of the task. By translating the extended timed automata to a standard
timed automata, it is possible to verify properties such as schedulability,
functionality and safety properties of the model. An example is also presented
to check the schedulability and safety properties of a control program for a
turning lathe by using UPPAAL.

Hune, Larsen, and Pettersson (2001) investigate the problem of scheduling
and synthesizing distributed control programs for a batch production plant and
use UPPAAL to solve the problem. A plant model which is enough accurate
for program synthesis is usually so complex. To overcome this complexity, the
authors apply an approach of guiding a model according to certain strategies.
In this problem, multi-resource assignment is not taken into account.
Abdeddaim and Maler (2001) model classical job-shop scheduling problem by
a special class of timed automata. To obtain the optimal schedule, algorithms
and heuristics are presented to find the fastest path in timed automata.
Furthermore the algorithms are implemented in the tool Kronos. Comparing to
traditional modles of operations research, proposed technics in this study allow
to model more complex dynamic resource allocation problems. It is noteworthy
to mention that in a shop problem, e.g. job shop proble, every resource is
allowed to be used by a single task. Hence, studies considering shop problems
do not use multiple resources to execute a task. Niebert and Yovine (2001)
concern a casy study on verification of hybrid systems. In this study, an optimal
dynamic scheduler is derived for a cyclic experimental chemical batch plant at
Dortmund. In the first step, the behaviour of the plant is modeled by timed
automata. In the second step, the models are implemented in the tool Open-
kronos and the optimal production schemes are obtaned using reachability
analysis. Finaly in the third step high level control codes are derived through
post-process of the output of the verification tool. In this article multi-resource
allocation is not allowed.

Yasmina Abdeddaim et al. (2003) address the problem of optimal job-shop
scheduling of partially-ordered tasks on parallel machines. The problem is

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 25

formulated by timed automata and in fact, the optimal schedule is found
through searching the fastest path in the automaton. In the presented model,
release time and deadline of tasks, communication costs between task and
additional resourced are taken into account.

G. Behrmann et al. (2005) expresses that unlike classical approaches, timed
automata models are expressive and also robust against changes in the
parameter setting and against changes in the problem specification. Therefore
they allow modelling of scheduling problems in different kinds. Furthermore,
in this paper a type of job shop scheduling problem for lacquer production as a
case study is investigated. The authors use a heuristic approach to reduce the
search space. They also propose solutions that are applicable for other
scheduling cases.

Panek, Stursberg, and Engell (2006) present a new approach to minimize the
makespan of job-shop scheduling problems. This approach combines
reachability computations for timed automata with a branch-and-bound
principle to improve the efficiency of the reachability algorithm by excluding
sub-optimal or redundant solutions from the search space. The authors have
shown that in large size problems and in a given computation time, the proposed
approach produces better schedules than pure Mixed-Integer Programming
(MIP) techniques. In another article, Panek, Engell, and Stursberg (2006) apply
their aforementioned scheduling method in a case study from the chemical
industry. Abdeddaïm, Asarin, and Maler (2006a) use timed automata for
solving the classical job-shop problem. They propose shortest path algorithms
for timed automata to find the optimal schedules. The authors also investigate
non-lazy scheduling with uncertain task duration.

David, Illum, and Larsen (2009) proposed a framework to model and
analyze a variety of schedulability scenarios, particularly problems that deal
with multi-processor systems, timing uncertainties in arrival and execution
times, possible dependencies of tasks and preemption of resources. Scheduling
policies in this study include FIFO, Earliest Dead-line First (EDF), and Fixed
Priority Scheduling (FPS).

Subbiah and Engell (2010) propose a timed automata model and solve a
scheduling problem with sequence-dependent changeover procedures and
limited discrete resources. The authors model processing units and the recipes
as interacting timed automata components. In addition, they modeled the setup
and changeover procedures as operations in the recipe. In order to generate a
schedule, a cost-optimal reachability analysis is performed. The computational
time complexity of the solving approach used in the article is less than Mixed-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 26

Integer Linear Programming (MILP) techniques. Therefore the approach is
easily applicable to practical large-scale problems.

Marangé et al. (2011) propose a job-shop scheduling model by
communicating automata to handle reconfiguration of a manufacturing plant.
Following a reconfiguration request, a scheduling is generated for a set of
products that are produced by a set of machines. This schedule can be obtained
by means of reachability analysis on the model.

Alves et al. (2016) addresses a supervisory scheduling problem in
manufacturing systems in order to maximize parallelism among resources. The
authors model the scheduling problem through deterministic finite automata.
The schedule corresponds to the supremal controllable sublanguage contained
in the desired behavior of the system. Uncontrollable events may occur during
the execution of sequence of tasks and at consequently rescheduling will be
necessary. The sequence acquired by this algorithm doesn’t have necessarily
optimal makespan, whereas it generates good solutions that can be used in real
applications. Therefore, the main objective of this study is not to minimize the
makespan, but to maximize the parallelism of working resources. Nikou,
Tumova, and Dimarogonas (2016) address the problem of cooperative task
planning of multi-agent systems considering timed constraints given by Metric
Interval Temporal Logic (MITL). A method is presented for control synthesis
in a two-stage systematic procedure to satisfy individual and team task
specifications by agents as well as the global team. Same as the previous article,
this article do not optimizes the makespan. Shehabinia, Lin, and Su (2016)
model a scheduling problem under multiple job deadlines through time-WA. In
the article, a supremal controllable job satisfaction sublanguage is computed to
determine if all job specifications and deadlines are met. In the case the
sublanguage is not empty, one of its controllable sublanguages is computed that
ensures the minimum total job earliness by adding proper delays. If the
sublanguage was empty in order to get a feasible schedule, a set of job deadlines
will be determined to be relaxed. Consequently, the goal of this article is to
meet deadlines and not minimizing the makespan.

2.1.2 Synthesis of the state of the art
Based on the conducted literature review, automata models are expressive and
also robust against changes in the problem specification. Therefore automata
theory is an appropriate means for modeling scheduling problems. Whereas, a
few studies have successfully used automata theory to solve scheduling
problems; yet none of them take into account multi-resource sharing aspect.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 27

Furthermore the objective of some of these studies is to meet task deadlines and
not minimizing the makespan. Thus, the aim of this chapter is to minimize the
makespan of a set of tasks with possible precedence constraints. The problem
is modeled and solved through automata theory and formal verification.

To this regard, the remainder of this chapter is organized as follows: A
detailed description of the MRS scheduling problem is given in section 2.2. In
sections 2.3 the problem is modeled by WA. Section 2.4 explains the solving
approach which needs refinement of WA models to timed automata models.
Finally, section 2.5 is devoted to the conclusion.

2.2 MRS scheduling problem description
In the context of this work, various conflicting tasks should be scheduled
according to the following constrains:

(1) The duration of each task is predefined and fixed before scheduling.
(2) Task preemption or cancellation is not allowed, i.e. once they are

started, they cannot be canceled and should be processed until
completion.

(3) There may be conflicts for performing tasks at the same time, but
when there is no conflict between them, they should be performed
simultaneously.

(4) There may exist precedence constraints between tasks.
(5) All tasks are ready to be executed at time zero.
(6) Resources are pre-assigned to tasks.
(7) Resources are reusable (they are not raw materials and by performing

maintenances, they can be used in every cycle).
(8) Each resource can be used to execute only one task at a time, but a

task may use more than one resource simultaneously.
(9) Resources are available at time zero.
(10) Resources are reliable and don’t breakdown, but they are subject to

preventive maintenance which should be defined as a task.

Tasks in this problem consist of either operations or preventive
maintenances on resources. The aim of this work is to find a schedule of
minimum duration considering these constraints, for executing all the tasks just
once, by assigning a start time to each task.

It is necessary to understand the concept of multi-resource sharing as the
most important constraint. In a scheduling problem considering multi-resource
sharing constraint, each task may utilizes multiple resources simultaneously to
be performed. Thus, if two tasks needing multiple resources share a resource,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 28

they cannot be executed at the same time. Moreover, by finishing the first task,
the second task may not be able to be executed immediately. Since other
resources needed for its execution are still busy by another tasks. Hereafter,
multi-resource sharing is explained through an example.

Example 1: Assume there is a set of tasks 𝑇𝑇 = {𝐴𝐴,𝐵𝐵,𝑇𝑇} to be done which
their durations are 7, 5 and 3 time units respectively. A set of resources 𝑅𝑅 =
{𝑅𝑅1, … ,𝑅𝑅5} is assigned to tasks with resource association details shown in
Table 2.1. (e.g. for doing task 𝐴𝐴 resources 𝑅𝑅1 and 𝑅𝑅5 should be engaged.)
Hence,

• Tasks 𝐴𝐴 and 𝐵𝐵 are in conflict because of sharing 𝑅𝑅1. Thus they cannot
be performed simultaneously.

• Tasks 𝐵𝐵 and 𝑇𝑇 are in conflict since they share 𝑅𝑅2 and 𝑅𝑅3. So they also
cannot be executed simultaneously.

• 𝐴𝐴 and 𝑇𝑇 are not in conflict because they don’t share any resource.
Therefore according to the constraint (3), they should be performed
simultaneously. While, if they every task would use a single resource,
𝐴𝐴 and 𝑇𝑇 was in conflict and couldn’t be launched at the same time.

Table 2.1. Resource assignment details of Example 1

task resource
R1 R2 R3 R4 R5

A  
B   
C   

2.3 Modeling MRS scheduling problem by weighted
automata
In this section, the modeling procedure of the proposed problem is introduced.

2.3.1 General principle of modeling procedure
The scheduling problem statement needs to capture four features: task
triggering, simultaneity, mutual exclusion and timing. For this purpose, a semi-
formal model based on WA is proposed. Inspired from the (max, +) automata
formalism, they offer an intuitive way of modeling the behavioral features
mentioned above. Thus, each scheduling problem considered in this work is
defined as a collections of WAs. The actual scheduling should comply with the
WA problem statement. As explained in the introduction, the existing

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 29

synchronous compositions for WA cannot be used for the scheduling purpose.
Since they either don’t contain a trajectory with the optimum makespan to be
used as the optimal schedule or are not capable of illustrating simultaneous
execution of tasks which is a non-separable issue from scheduling. Hence, there
are two possible solutions for solving a scheduling problem that is modeled by
WA. The first solution is to employ timed model checking techniques (Baier
and Katoen 2008) which are defined for timed automata. To this end, each WA
model of the problem statement is systematically translated into a Timed
Automaton (TA), according to specific rules defined in the sequel. The
resulting model is directly usable by a timed model checking tool. The second
solution is to define a new synchronous composition for WA in order to
compose WA models directly and solve the scheduling problem without
translating to timed automata.

In the next section the scheduling problem is modeled by WA.

2.3.2 Problem statement by weighted automata
Definition 2.1 (weighted automata): A deterministic single-duration-action
weighted automata is defined as a tuple 𝐺𝐺 = (𝑄𝑄,𝑄𝑄0,Σ,𝑓𝑓,𝑎𝑎,𝑄𝑄𝑚𝑚) where

• 𝑄𝑄 is the set of states,
• 𝑄𝑄0 is the set of initial states,
• Σ is the set of symbols representing actions and silent action (ε) whose

duration is zero,
• 𝑄𝑄𝑚𝑚 is the set of marked states,
• 𝑓𝑓:𝑄𝑄 × Σ × ℝ≥0 ⟶ 𝑄𝑄 is the transition function (𝑞𝑞, 𝐸𝐸,𝑎𝑎(𝐸𝐸)) ⟶ 𝑞𝑞′

where 𝑞𝑞’ is the state reached from 𝑞𝑞 by starting action 𝐸𝐸 which lasts
𝑎𝑎(𝐸𝐸) time units and 𝑎𝑎:𝑇𝑇 → ℝ≥0 assigns a duration to every action.

In should be noted that hereafter, all the WA used for modeling purpose, are
deterministic single-duration-action WA.

When taking each transition in WA, two steps are taken, a discrete step and
a timed step.

Discrete step: 𝑞𝑞
 𝑎𝑎
→ 𝑞𝑞′ where 𝐸𝐸 is an action, 𝑞𝑞 is the source and 𝑞𝑞′is the

target of transition 𝑞𝑞
 𝑎𝑎/𝑑𝑑(𝑎𝑎)
�⎯⎯⎯� 𝑞𝑞′ .This kind of step doesn’t take time.

Timed step: 𝑞𝑞
 𝑑𝑑(𝑎𝑎)
�⎯� 𝑞𝑞′ where 𝑎𝑎(𝐸𝐸) is an action, 𝑎𝑎(𝐸𝐸) is the duration of 𝐸𝐸,

𝑞𝑞 is the source and 𝑞𝑞′is the target of the transition 𝑞𝑞
 𝑎𝑎/𝑑𝑑(𝑎𝑎)
�⎯⎯⎯� 𝑞𝑞′ . It is

clear that the duration of this step is 𝑎𝑎(𝐸𝐸) time units.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 30

Definition 2.2 (MRS scheduling problem): A MRS scheduling problem
statement 𝑆𝑆 = (𝑇𝑇,𝐸𝐸,𝐷𝐷𝑒𝑒𝑜𝑜,𝑎𝑎) consists of

• a set 𝑇𝑇 = {𝑡𝑡𝑖𝑖|𝑡𝑡 = 1, …𝑁𝑁} of tasks that might be necessary to be
executed simultaneously,

• a family of mutual exclusion constraint sets 𝐸𝐸 ∈ 2𝑇𝑇 that are modeled
as a set 𝐺𝐺𝑚𝑚𝑒𝑒 of mutual exclusion automata.

• a duration function 𝑎𝑎:𝑇𝑇 → ℝ≥0 assigning durations to tasks,
• a set 𝐷𝐷𝑒𝑒𝑜𝑜 = 𝐺𝐺𝑡𝑡𝑡𝑡𝑘𝑘 ∪ 𝐺𝐺𝑝𝑝 of dynamic models such that 𝐺𝐺𝑡𝑡𝑡𝑡𝑘𝑘 ∩ 𝐺𝐺𝑝𝑝 = ∅. 𝐺𝐺𝑡𝑡𝑘𝑘

denotes the set of task launcher automata. They are modeled for
triggering each task for 𝑘𝑘 times. �𝐺𝐺𝑡𝑡𝑡𝑡𝑘𝑘� = |𝑇𝑇| = 𝑁𝑁 which means that
for executing every task, there exists one task launcher automaton. 𝐺𝐺𝑝𝑝
denotes the set of precedence automata modeling precedence
constraints among tasks. This set could be empty.

In the sequel, the formal models of the three automata models are defined
and clarified by applying to Example 1.

 The mutual exclusion automaton model
Each mutual exclusion requirement is specified by a set 𝑇𝑇𝑚𝑚𝑒𝑒 of tasks that are
forbidden to run simultaneously. A natural way to model this requirement is a
single state WA featuring one self-loop transition for each task. This model
allows all the potential sequences of tasks among 𝑇𝑇𝑚𝑚𝑒𝑒 and prevents two or more
tasks of 𝑇𝑇𝑚𝑚𝑒𝑒 to be executed simultaneously.

Definition 2.3 (formal model of the mutual exclusion automaton): A Mutual
Exclusion (ME) automata is a WA defined as 𝑀𝑀𝐸𝐸 =
({𝑞𝑞0𝑚𝑚𝑒𝑒}, {𝑞𝑞0𝑚𝑚𝑒𝑒},𝑇𝑇𝑚𝑚𝑒𝑒 ,𝑓𝑓𝑚𝑚𝑒𝑒 ,𝑎𝑎, {𝑞𝑞0𝑚𝑚𝑒𝑒}) where

• 𝑞𝑞0𝑚𝑚𝑒𝑒 ∈ 𝑄𝑄𝑚𝑚𝑒𝑒 is the only state which is both initial and marked state,
• 𝑇𝑇𝑚𝑚𝑒𝑒 ∈ 𝐸𝐸 is a set of tasks among which there is mutual exclusion,
• 𝑎𝑎:𝑇𝑇𝑚𝑚𝑒𝑒 → ℝ≥0 assigns a duration to a task 𝑡𝑡 ∈ 𝑇𝑇𝑚𝑚𝑒𝑒,
• 𝑓𝑓𝑚𝑚𝑒𝑒: {𝑞𝑞0𝑚𝑚𝑒𝑒} × 𝑇𝑇𝑚𝑚𝑒𝑒 × ℝ≥0 → {𝑞𝑞0𝑚𝑚𝑒𝑒} is the transition function where

∀𝑡𝑡 ∈ 𝑇𝑇𝑚𝑚𝑒𝑒 , 𝑞𝑞0𝑚𝑚𝑒𝑒 = 𝑓𝑓𝑚𝑚𝑒𝑒(𝑞𝑞0𝑚𝑚𝑒𝑒 , 𝑡𝑡,𝑎𝑎(𝑡𝑡)) and duration of each transition
is equal to 𝑎𝑎(𝑡𝑡), i.e. the duration of the task.

Figure 2.1 shows the generic pattern of ME automaton. In this figure, 𝑡𝑡𝑖𝑖
represents the name of the task and 𝑎𝑎(𝑡𝑡𝑖𝑖) denotes its duration. For any
scheduling problem statement, the number of ME automata is equal to the
number of sets of mutual exclusions among tasks.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 31

Figure 2.1. Modeling pattern of weighted ME automaton

Example 1 (continue): Let us apply the proposed ME automaton model to
Example 1. As explained above, there are a number of sets of mutual exclusion.
Each set should be illustrated in a separate ME automaton. In a ME automaton,
each task should be modeled as a loop transition joint to the only state existing
in the automaton.

Corresponding ME automata for Example 1 is depicted in Figure 2.2. In this
figure,

• In automaton 𝐺𝐺1, first task 𝐴𝐴 should be performed for 7 time units and
then task 𝐵𝐵 for 5 time units or vice versa, i.e. 𝐴𝐴 and 𝐵𝐵 cannot be
executed at the same time.

• In automaton 𝐺𝐺2, first task 𝑇𝑇 should be performed for 3 time units and
then task 𝐵𝐵 for 5 time units or vice versa, i.e. 𝐵𝐵 and 𝑇𝑇 cannot be
executed at the same time.

• 𝐵𝐵 is in common between automata 𝐺𝐺1 and 𝐺𝐺2. Therefore, separate
transitions labeled with 𝐵𝐵 should be synchronized.

• Duration of 𝐴𝐴 is 7 time units and duration of 𝑇𝑇 is 3 time units. Since
they are not in conflict, transitions labeled with 𝐵𝐵 and 𝑇𝑇 can be taken
at the same time. Whereas the transition labeled 𝑇𝑇 reaches to the state
0 after 3 time units and the transition labeled 𝐴𝐴 reaches this state after
7 time units.

Figure 2.2. Corresponding ME automata for Example 1

As illustrated in Figure 2.2, multi-resource sharing creates a special kind of
task assignment to automata. This conflict is such that some tasks become

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 32

common among two or more ME automata (task 𝐵𝐵). If only one resource would
be used by each task, no task was is common among ME automata. This kind
of tasks are named common tasks. Conversely, those that occur in just one ME
automaton (tasks 𝐴𝐴 and 𝑇𝑇) are named individual tasks.

 The task launcher automaton model
A task launcher model specifies the number of times a task should be triggered
within the desired scheduling.

Definition 2.4 (formal model of the task launcher automaton): A task
launcher automaton 𝑇𝑇𝑇𝑇𝑘𝑘 is a WA which triggers task 𝑡𝑡 for 𝑘𝑘 times. It is an
element of 𝐺𝐺𝑡𝑡𝑡𝑡𝑘𝑘 defined as 𝑇𝑇𝑇𝑇𝑘𝑘 = (𝑄𝑄𝑡𝑡𝑡𝑡, {𝑞𝑞0t𝑡𝑡}, {𝑡𝑡},𝑓𝑓𝑡𝑡𝑡𝑡 ,𝑎𝑎, {𝑞𝑞𝑚𝑚𝑡𝑡𝑡𝑡}) in which 𝑇𝑇𝑇𝑇𝑘𝑘 is
a task launcher automata that launches task 𝑡𝑡, 𝑘𝑘 times. In this tuple,

• 𝑄𝑄𝑡𝑡𝑡𝑡 is the set of states,
• 𝑞𝑞0t𝑡𝑡 ∈ 𝑄𝑄𝑡𝑡𝑡𝑡 is the initial state which is not a marked state,
• 𝑡𝑡 ∈ 𝑇𝑇 is the task to be launched,
• 𝑎𝑎: {𝑡𝑡} → {0} assigns zero duration to the task 𝑡𝑡,
• 𝑞𝑞𝑚𝑚 ∈ 𝑄𝑄𝑡𝑡𝑡𝑡 is the marked state,
• 𝑓𝑓𝑡𝑡𝑡𝑡:𝑄𝑄𝑡𝑡𝑡𝑡 × {𝑡𝑡} × ℝ≥0 → 𝑄𝑄𝑡𝑡𝑡𝑡 is the transition function such that:

∀𝑘𝑘 ∈ ℕ, (𝑓𝑓𝑡𝑡𝑡𝑡 ∘ … ∘ 𝑓𝑓𝑡𝑡𝑡𝑡)���������
𝑘𝑘 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑡𝑡

(𝑞𝑞0𝑡𝑡𝑡𝑡 , 𝑡𝑡, 0) = 𝑞𝑞𝑚𝑚𝑡𝑡𝑡𝑡 (2.1)

∀𝑡𝑡, 𝑗𝑗 ≤ 𝑘𝑘 − 1, 𝑡𝑡 ≠ 𝑗𝑗, (𝑓𝑓𝑡𝑡𝑡𝑡 ∘ … ∘ 𝑓𝑓𝑡𝑡𝑡𝑡)���������
𝑖𝑖 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑡𝑡

(𝑞𝑞0𝑡𝑡𝑡𝑡 , 𝑡𝑡, 0) ≠ (𝑓𝑓𝑡𝑡𝑡𝑡 ∘ … ∘ 𝑓𝑓𝑡𝑡𝑡𝑡)���������
𝑗𝑗 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑡𝑡

(𝑞𝑞0𝑡𝑡𝑡𝑡 , 𝑡𝑡, 0) (2.2)

In relation 2.1 it can be seen that by applying 𝑘𝑘 times the transition function
to the initial state, i.e. 𝑘𝑘 times executing task 𝑡𝑡, the marked state will be reached.
Relation 2.2 represents that by applying 𝑡𝑡 times and 𝑗𝑗 times transition function
on the initial state, different states will be reached. In other words, transitions
of the model are in a sequence manner and the automata passes every state
exactly one time.

The aim of the scheduling problem is to calculate the makespan. A makespan
is the global completion time of all the tasks. In this study, it is assumed that
every task is executed only once. For the sake of simplicity, in the rest of the
chapter, 𝑇𝑇𝑇𝑇1 is written as TL. Figure 2.3 represents the generic pattern of a TL
automaton triggering task 𝑡𝑡 once. Since the duration of the transition in this
automata is zero time units, for the sake of simplicity, the label of the zero
duration can be removed from the model and only the name of the task be
labeled on the transition (Figure 2.4).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 33

Figure 2.3. Modeling pattern of weighted TL automaton for 𝑘𝑘 = 1

Figure 2.4. Simplified modeling pattern of weighted TL automaton for k=1

Example 1 (continue): Let us demonstrate the TL automaton model on
Example 1. The result is displayed in Figure 2.5. In this figure, the models for
launching task 𝐴𝐴,𝐵𝐵 and 𝑇𝑇 correspond respectively to 𝐺𝐺3,𝐺𝐺4 and 𝐺𝐺5
respectively.

Figure 2.5. TL automata in Example 1

 The task precedence automaton model
In the proposed framework, two types of precedence constraints have been
identified. The first type, considers precedence constraints for delay between
start times of tasks and is denoted as delay precedence constraint. For example,
task 𝐵𝐵 should be started 2 time units after starting 𝐴𝐴. This delay can be equal to
the duration of tasks, e.g. duration of 𝐴𝐴. The second type is a particular case of
the first type. This constraint considers precedence constraints for start times of
tasks and is denoted as triggering precedence constraint. For example, if the
precedence constraint is like 𝐴𝐴 → 𝐵𝐵, task 𝐵𝐵 should be started at the same time
or within an arbitrary delay after starting 𝐵𝐵. In this model, precedence
constraints between tasks are described as sequences of transitions that follow
precedence rules.

Definition 2.5 (formal model of the precedence automata): A precedence
automaton is a subset of 𝐺𝐺𝑝𝑝 automata set. This automaton model is defined as
𝑃𝑃𝑅𝑅 = �𝑄𝑄𝑝𝑝𝑝𝑝, �𝑞𝑞0𝑝𝑝𝑝𝑝�,𝑇𝑇𝑝𝑝𝑝𝑝 ,𝑎𝑎𝑡𝑡𝐸𝐸,𝑓𝑓𝑝𝑝𝑝𝑝 , {𝑞𝑞𝑚𝑚𝑝𝑝𝑝𝑝}� where

• 𝑄𝑄𝑝𝑝𝑝𝑝 is the set of states,
• 𝑞𝑞0𝑝𝑝𝑝𝑝 ∈ 𝑄𝑄𝑝𝑝𝑝𝑝 is the initial state which is not a marked state,
• 𝑇𝑇𝑝𝑝𝑝𝑝 ⊆ 𝑇𝑇 is a set of tasks for which a total order is defined by the

transition function 𝑓𝑓𝑝𝑝𝑝𝑝,
• 𝑞𝑞𝑚𝑚𝑝𝑝𝑝𝑝 ∈ 𝑄𝑄𝑝𝑝𝑝𝑝 is the marked state,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 34

• 𝑎𝑎𝑡𝑡𝐸𝐸:𝑇𝑇𝑝𝑝𝑝𝑝 → ℝ≥0 assigns the amount of delay time between starting
time of the task 𝑡𝑡 ∈ 𝑇𝑇𝑝𝑝𝑝𝑝 and starting time of its next task,

• The transition function is defined as 𝑓𝑓𝑝𝑝𝑝𝑝:𝑄𝑄𝑝𝑝𝑝𝑝 × 𝑇𝑇𝑝𝑝𝑝𝑝 × ℝ≥0 → 𝑄𝑄𝑝𝑝𝑝𝑝 that
associates to a task 𝑡𝑡 ∈ 𝑇𝑇𝑝𝑝𝑝𝑝 and a state 𝑞𝑞 ∈ 𝑄𝑄𝑝𝑝𝑝𝑝, a reaching state 𝑞𝑞′ ∈
𝑄𝑄𝑝𝑝𝑝𝑝 by a transition where this transition has a duration equal to 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡).
In addition, the following predicate holds:

𝑡𝑡 → 𝑡𝑡′ iff ∃𝑞𝑞, 𝑞𝑞′,𝑞𝑞′′ ∈ 𝑄𝑄𝑝𝑝𝑝𝑝 𝑃𝑃. 𝑡𝑡 𝑓𝑓𝑝𝑝𝑝𝑝(𝑞𝑞, 𝑡𝑡) = 𝑞𝑞′𝐸𝐸𝑜𝑜𝑎𝑎 𝑓𝑓𝑝𝑝𝑝𝑝(𝑞𝑞′, 𝑡𝑡′) = 𝑞𝑞′′ (2.3)

where 𝑡𝑡 → 𝑡𝑡′ means task 𝑡𝑡′ should be started after task 𝑡𝑡 within a delay
of 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡) time units. This predicate indicates that transitions of the
model are in a sequence manner and the automata passes every state
exactly one time.

Figure 2.6(a) and Figure 2.6(b) represent the generic pattern for modeling
delay and triggering PR automata respectively. Same as TL automaton, since
all weights in a triggering PR automaton are equal to zero, this model is
simplified and zero weights are not labeled on the transitions.

Figure 2.6. Modeling pattern of a delay PR automata (a) and a triggering PR automata (b)

Example 1 (continue): Let us apply the proposed PR automaton model to
Example 1. Figure 2.7 shows weighted triggering PR automaton where start
time of 𝐴𝐴 should be less than or equal to start time of 𝐵𝐵. As demonstrated, only
labels of symbols are put on the transitions which are in a sequence manner.
While, in Figure 2.8 for modeling the delay PR automaton, on each transition,
in addition to the name of the task, the delay duration for starting the next task
is labeled on the transitions.

Figure 2.7. Weighted triggering PR automata in Example 1

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 35

Figure 2.8. Weighted delay PR automata in Example 1

 Expected global behavior of the problem in Example 1
The global behavior of the system is the composition of all the automata where
all transitions with the same label should be synchronized. A possible schedule
is defined as a trajectory from the composed initial state to the composed
marked state.

In this section, the global behavior of Example 1 is explained and illustrated
in Figure 2.9. This system is synchronous composition of 𝐺𝐺1 to 𝐺𝐺5 which are
depicted in Figure 2.2 and Figure 2.5 and doesn’t consider PR automata. The
composed initial state is the composition of all local initial states, and the
composed marked state is the composition of all local marked states. Therefore,
if all the local automata are in their initial state (marked state), the composed
automata is in the composed initial state (marked state). Figure 2.9 shows that
there are two possible schedules due to existing two traces from the initial state
to the marked state. At the beginning, all automata are in their local initial states,
so the composed automata is in the composed initial state. In the upper trace,
firstly task 𝐵𝐵 is done in 5 time units. Then, tasks 𝐴𝐴 and 𝑇𝑇 are done in parallel.
After 3 time units from their beginning, 𝑇𝑇 is finished and it remains 4 time units
for finishing 𝐴𝐴. By elapsing 4 time units, 𝐴𝐴 finishes and thereby, all the
automata reach their local mark states and the composed state will be the
marked state. This state is where all the tasks are done one time.

The lower trace can be explained same as the upper trace; the only difference
is that in this schedule, first tasks 𝐴𝐴 and 𝑇𝑇 are done in parallel and then task 𝐵𝐵
is done.

Figure 2.9. Global behavior of the Example 1(G1||G2||G3||G4||G5)

The behavior of the above-mentioned system by applying both types of
precedence orders in Figure 2.7 and Figure 2.8 will be the same and like Figure

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 36

2.10. As it is obvious, the second trajectory will be no more possible since 𝐴𝐴
should be executed after starting 𝐵𝐵.

Figure 2.10. Global behavior of Example 1 considering PR automata

(G1||G2||G3||G4||G5||G6)

 Weighted automaton properties for the scheduling model
In this section, basic structural properties of the WA model is investigated. The
rules for verification of structural properties of WA are same as conventional
automata (Cassandras, Christos G., Lafortune 2008). Since the model of the
MRS scheduling problem differs depending to the number of tasks, these
properties are verified for the models of Example 1.

• Definition 2.6 (Reachable automaton): automaton 𝐺𝐺 is reachable if
there is a path in state transition diagram of the automaton from the
initial state to every state.
It is obvious from Figure 2.11 that in all models, all states are
reachable from the initial states (i.e. states named 0).

• Definition 2.7 (Co-reachable automaton): automaton 𝐺𝐺 is co-

reachable if there is a path in state transition diagram of the automaton
from any state to the marked state.
In Figure 2.11, marked states are shown with double circles. It is clear
that in all models, there is a path from all states to the marked states.

• Definition 2.8 (Non-blocking automaton): automaton 𝐺𝐺 is non-
blocking if each state is reachable and co-reachable.
Therefore, all the WA models are non-blocking.

Figure 2.11. WA models of Example 1

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 37

2.4 Solving MRS scheduling problem by means of translating
weighted automata models into timed automata models
The previous section defines WA modeling frameworks for defining
scheduling problems. In the introduction section, it is explained that for
obtaining a schedule, it is needed to perform a parallel composition on automata
models of the scheduling problem, Parallel composition of a set of automata
enables us to compose and explore them. Whereas, the existing parallel
composition definitions for WA either don’t contain a trajectory with the
optimum makespan to be used as the optimal schedule or are not capable of
illustrating simultaneous execution of tasks which is a non-separable issue from
scheduling. Therefore, WA models cannot be explored and analyzed directly.
Hence, after modeling the problem by WA, one solution is to translate the WA
model to another type of automata for which an efficient definition of parallel
composition exists. Then, compose the automata model through that definition
and analyze the new model. Timed automata formalism has this characteristic
and furthermore, there exist formal verification tools for timed automata that
can be used to compose and analyze timed models automatically. Thus, in this
thesis, the WA models are translated into timed automata. Thence, after
translating the WA models to timed automata model, they are implemented in
a formal verification tool named UPPAAL and the optimum makespan are
found automatically. Translation of the models in the previous section are done
through certain rules that are expressed in this section.

In the sequel, firstly definition of timed automata is recalled and afterwards,
procedure of translating WA model to timed automata model is explained.

Definition 2.9 (timed automata): A timed automaton (TA) is defined as
tuple 𝐺𝐺 = (𝑇𝑇, 𝐸𝐸0,𝑇𝑇,𝐴𝐴,𝐸𝐸, 𝐼𝐼,𝑉𝑉,𝑉𝑉0), where 𝑇𝑇 is the set of locations, 𝐸𝐸0 ∈ 𝑇𝑇 is the
initial location, 𝑇𝑇 is the set of clock, 𝐴𝐴 is a set of actions, 𝐸𝐸 ⊆ 𝑇𝑇 × 𝐴𝐴 × 𝐵𝐵(𝑇𝑇) ×
2𝑐𝑐 × 𝑇𝑇 is a finite set of edges that each edge contains a source location, a set of
actions, a set of guards, a set of clocks to be reset, and a target location. 𝐼𝐼: 𝑇𝑇 →
𝐵𝐵(𝑇𝑇) assigns clock constraints called invariants to locations (Behrmann, David,
and Larsen 2006). An invariant is an inequality that shows the maximum time
that automaton can stay in a location. After reaching this time limit, the
automaton should change the state. 𝑉𝑉 is the set of integer or Boolean variables
or the output of functions that are defined over variables. They can also be
updated or incremented on the edges. Furthermore predicates can be used over
these variables as guards on the edges of the automaton. 𝑉𝑉0 is the initial values
of them (Bengtsson et al. 2004).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 38

Each state of an automaton consists of a pair 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉 where 𝐸𝐸 is a location and
𝑐𝑐𝐸𝐸 is the values of the clocks. The initial location of automaton G is 〈𝐸𝐸0, 𝑐𝑐𝐸𝐸0〉
where 𝑐𝑐𝐸𝐸0 assigns zero to all clocks in 𝑇𝑇 (Behrmann, David, and Larsen 2006).

There are two kind of steps in an automaton:

• Discrete step: 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉
 𝑎𝑎
→ 〈𝐸𝐸′, 𝑐𝑐𝐸𝐸′〉 where in each transition 𝐸𝐸

𝑎𝑎,𝑔𝑔,𝑝𝑝
�⎯� 𝐸𝐸′ ,→

means a transition from location 𝐸𝐸 to 𝐸𝐸’ such that 𝑡𝑡 satisfies 𝑝𝑝, all of
the clocks in 𝑃𝑃 are set to zero, and 𝑐𝑐𝐸𝐸’ satisfies 𝐼𝐼(𝐸𝐸’) which is the
invariant of the location 𝐸𝐸′. Note that this kind of step doesn’t take
time.

• Timed step: 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉
𝑑𝑑
→ 〈𝐸𝐸, 𝑐𝑐𝐸𝐸 + 𝑎𝑎〉 that takes 𝑎𝑎 time units where 𝑎𝑎 ∈

ℝ+ and 𝑐𝑐𝐸𝐸 + 𝑎𝑎 satisfies 𝐼𝐼(𝐸𝐸) (Yasmina Abdeddaïm, Asarin, and Maler
2006).

A trajectory of automaton 𝐺𝐺 = (𝑇𝑇, 𝐸𝐸0,𝑇𝑇,𝐴𝐴,𝐸𝐸, 𝐼𝐼) is a possibly infinite
sequence of steps starting from the initial state 〈𝐸𝐸0, 𝑐𝑐𝐸𝐸0〉 (Yasmina Abdeddaïm,
Asarin, and Maler 2006; Bengtsson et al. 2004):

𝜉𝜉: 〈𝐸𝐸0, 𝑐𝑐𝐸𝐸0〉
𝑑𝑑1��

 𝑎𝑎1�� 〈𝐸𝐸1, 𝑐𝑐𝐸𝐸1〉
𝑑𝑑2��

 𝑎𝑎2�� 〈𝐸𝐸2, 𝑐𝑐𝐸𝐸2〉
𝑑𝑑3��

 𝑎𝑎3��… (2.4)

and it’s duration is obtained by sum of durations of all timed steps: 𝑎𝑎1 + 𝑎𝑎2 +
𝑎𝑎3 + ⋯.

Definition 2.10 (schedule): A schedule is a trajectory that starts from the
initial state, where no task is started, and ends in a state in which all tasks are
completed respecting task precedence constraints. The goal of this chapter is to
find a schedule with the minimum duration time.

Definition 2.11 (network of a set of TA): A network of a set of TA 𝐺𝐺𝑖𝑖 =
 (𝑇𝑇𝑖𝑖, 𝐸𝐸𝑖𝑖0,𝑇𝑇,𝐴𝐴,𝐸𝐸𝑖𝑖 , 𝐼𝐼𝑖𝑖,𝑉𝑉𝑖𝑖,𝑉𝑉𝑖𝑖0), 𝑡𝑡 = 1, … ,𝑜𝑜 is the synchronous composition of them
which is defined as 𝐺𝐺1|| … ||𝐺𝐺𝑛𝑛 = �𝑇𝑇1 × … × 𝑇𝑇𝑛𝑛, (𝐸𝐸1,0, … , 𝐸𝐸𝑛𝑛,0),𝑇𝑇,𝐴𝐴,𝐸𝐸, 𝐼𝐼,𝑉𝑉, �,
where 𝐸𝐸 ̅ = (𝐸𝐸1, … , 𝐸𝐸𝑛𝑛), 𝑇𝑇 = 𝑇𝑇1 ∪ …∪ 𝑇𝑇𝑛𝑛, 𝐼𝐼�𝐸𝐸�̅ = ∧𝑖𝑖 𝐼𝐼𝑖𝑖(𝐸𝐸𝑖𝑖), 𝑉𝑉 = 𝑉𝑉1 …∪
𝑉𝑉𝑛𝑛 and 𝑉𝑉0 = 𝑉𝑉1,0 ∪ …∪ 𝑉𝑉𝑛𝑛,0. Timed step rules are similar to the case of single
TA but with the new invariant. Despite single TA, there are two rules for
discrete steps in network of a set of TA. The first one is for defining local and
individual actions where one of the automata moves on its own that is named
individual discrete step. Another one defines synchronizing actions when two
automata synchronize on a channel and move at the same time and is called
synchronization discrete step. Let 𝐸𝐸[̅𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖] denote the vector that 𝑡𝑡th element 𝐸𝐸𝑖𝑖
of 𝐸𝐸 ̅ is substituted with 𝐸𝐸𝑖𝑖′. Taking a step is based on following rules (Panek,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 39

Stursberg, and Engell 2006; Behrmann, David, and Larsen 2006; Bengtsson et
al. 2004):

• Timed step: 〈𝐸𝐸 ,̅ 𝑐𝑐𝐸𝐸〉
𝑑𝑑
→ 〈𝐸𝐸 ,̅ 𝑐𝑐𝐸𝐸 + 𝑎𝑎〉 where 𝑎𝑎 ∈ ℝ+ and 𝑐𝑐𝐸𝐸 + 𝑎𝑎 satisfies

𝐼𝐼�𝐸𝐸�̅ = ∧𝑖𝑖 𝐼𝐼𝑖𝑖(𝐸𝐸𝑖𝑖)

• Individual discrete step: 〈𝐸𝐸 ,̅ 𝑐𝑐𝐸𝐸〉
 𝑎𝑎
→ 〈𝐸𝐸[̅𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖], 𝑐𝑐𝐸𝐸′〉 if there exists 𝐸𝐸𝑖𝑖

𝑎𝑎,𝑔𝑔,𝑝𝑝
�⎯� 𝐸𝐸𝑖𝑖′

s.t. 𝑐𝑐𝐸𝐸 satisfies 𝑝𝑝, all of the clocks in 𝑃𝑃 are set to zero, and 𝑐𝑐𝐸𝐸’ satisfies
𝐼𝐼(𝐸𝐸[̅𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖]). Note that 𝐸𝐸 corresponds to a local action in one automaton.

• Synchronization discrete step: 〈𝐸𝐸 ,̅ 𝑐𝑐𝐸𝐸〉
 𝑎𝑎
→ 〈𝐸𝐸[̅𝐸𝐸𝑗𝑗′/𝐸𝐸𝑗𝑗, 𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖], 𝑐𝑐𝐸𝐸′〉 if there

exist 𝐸𝐸𝑖𝑖
𝑐𝑐?,𝑔𝑔𝑖𝑖,𝑝𝑝𝑖𝑖�⎯⎯⎯� 𝐸𝐸𝑖𝑖′ and 𝐸𝐸𝑗𝑗

𝑐𝑐!,𝑔𝑔𝑗𝑗,𝑝𝑝𝑗𝑗
�⎯⎯⎯� 𝐸𝐸𝑗𝑗′ s.t. 𝑐𝑐𝐸𝐸 satisfies 𝑝𝑝𝑖𝑖 ∧ 𝑝𝑝𝑗𝑗, all of the clocks

in (𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑗𝑗) are set to zero, and 𝑐𝑐𝐸𝐸’ satisfies 𝐼𝐼�𝐸𝐸[̅𝐸𝐸𝑗𝑗′/𝐸𝐸𝑗𝑗 , 𝐸𝐸𝑖𝑖′/𝐸𝐸𝑖𝑖]�. Note that
𝑇𝑇! and 𝑇𝑇? correspond to an action and a co-action respectively. In
continue 𝑇𝑇 is called a communication channel or signal (Behrmann,
David, and Larsen 2006). Figure 2.16 and Figure 2.18 show an
example of five automata that synchronize on channels 𝐴𝐴,𝐵𝐵, and 𝑇𝑇.

Hereafter, procedure of translating WA models to TA models is explained.
For this purpose, firstly three rules are defined to translate WA transitions to
TA. Then, WA models are translated to TA according to these rules.

2.4.1 Translating transitions of the WA model to TA
Translation of WA to TA is not trivial, since firstly there is no weight in TA
and weights should be simulated by adding a clock to each automaton; and
secondly, synchronization of more than two transitions inside TA is not
blocking. It means that if in one local automaton a synchronized transition is
taken, there might be situations where the the transitions modeling the same
action in other automata don’t synchronize with it. Therefore, shared actions
should be modeled in a special way.

The translation process of transitions relies on the following three rules:

Rule i: In a specification WA, if there exists a transition with duration, it will
be translated as Figure 2.12:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 40

Figure 2.12. Translation of a transition with duration from a specification WA to TA

In the above figure, 𝑡𝑡 repserents a task with duration 𝑎𝑎(𝑡𝑡). As illustrated in
this figure, source and target states are translated without any change. In fact,
the changes in the name of source and target of a transition are optional. A state
𝑞𝑞 in WA is a single location, while a state 𝑞𝑞 in TA is equal to a pair consisted
of location and clock 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉. Therefore, for translation to TA, locations are only
renamed to be distinguished from states. The single task transition is translated
to a double-task-transition. Thereby an intermediate location 𝐸𝐸𝑖𝑖′ is added where
the automaton should wait a duration of time equal to 𝑎𝑎(𝑡𝑡). To ensure this
purpose, an invariant is assigned to 𝐸𝐸𝑖𝑖′ which is defined by 𝑐𝑐𝐸𝐸𝑘𝑘 ≤ 𝑎𝑎(𝑡𝑡) and
means the local clock of the 𝑘𝑘th automaton, 𝑐𝑐𝐸𝐸𝑘𝑘, is not allowed to be bigger
than 𝑎𝑎(𝑡𝑡). In other words, this invariant doesn’t let the automaton to stay more
than 𝑎𝑎(𝑡𝑡) time units in 𝐸𝐸𝑖𝑖′. Furthermore, a guard defined by 𝑐𝑐𝐸𝐸𝑘𝑘 ≥ 𝑎𝑎(𝑡𝑡) is
associated to the outgoing transition from 𝐸𝐸𝑖𝑖′ to prevent changing the location
before 𝑎𝑎(𝑡𝑡) time units. Moreover, label of the transition is translated to a
receiving communication channel on the first transition. This transition will
receive a communication signal from the plant automaton and will be
synchronized with its transition.

Besides, marked locations are not defined in TA. For this reason, when doing
the scheduling, marked locations should be determined and verified to be
reachable.

Rule ii: In a specification WA, if there exists a triggering transition, it will
be translated as follows:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 41

Figure 2.13. Translation of a triggering transition from a specification WA to TA

Triggering transitions don’t take time. As it can be seen in Figure 2.13,
source and target locations are translated without any changes (the simple
changes in their names are optional). Whereas label of the transition is
translated to a receiving communication channel. Thereby, whenever this
transition receives a communication signal from a plant automata, it will be
executed. 𝐸𝐸𝑗𝑗 should be verified as a reachable location as well.

Rule iii: Triggering transitions in a plant automaton will be translated as:

Figure 2.14. Translation of a transition from a plant WA to TA

In this type of transition, source and target locations are translated without
any change (the simple changes in their names are optional). While as it is
shown in Figure 2.14, label 𝑡𝑡 of the transition is translated to 𝑡𝑡! which is a
sending communication channel. This transition broadcasts signals to
specification automata to synchronize with the transitions that are receiving the
signal.

 In WA, all transitions with the same label in different components
synchronize together (Lahaye, Komenda, and Boimond 2015; Landau et al.
2013). Whereas, in translating WA to TA, transitions with durations in
specification automata should be translated to two transitions. Hence, it should
be ensured that in executing a task of a timed TL automaton, all ME automata
that share the same task are ready in initial location to synchronize their
corresponding transitions. Therefore, a guard function 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑡𝑡): Σ →
𝐵𝐵𝑃𝑃𝑃𝑃𝐸𝐸 is associated to the transition of plant automaton that is true if and only if
the following condition holds:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 42

∀𝑡𝑡 ∈ [1. .𝑁𝑁]: 𝑡𝑡 ∈ 𝑇𝑇𝑀𝑀𝑖𝑖 → ∀𝑡𝑡′ ∈ 𝑇𝑇𝑀𝑀𝑖𝑖\{𝑡𝑡}: ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑡𝑡′, 𝐸𝐸𝑘𝑘) (2.5)

where 𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝:𝑇𝑇𝑀𝑀 × 𝑇𝑇𝑚𝑚𝑒𝑒 → 𝐵𝐵𝑃𝑃𝑃𝑃𝐸𝐸 is defined as

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑡𝑡, 𝐸𝐸𝑘𝑘) = � 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸𝑘𝑘 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡, 𝑃𝑃𝑡𝑡ℎ𝑡𝑡𝑃𝑃𝑒𝑒𝑡𝑡𝑃𝑃𝑡𝑡 (2.6)

where 𝑁𝑁 is the number of ME automata, 𝑡𝑡 is the name of the task, 𝑇𝑇𝑀𝑀𝑘𝑘 is
the set of tasks engaged in 𝑘𝑘th ME automaton and 𝐸𝐸𝑘𝑘 is the current location and
𝐸𝐸0 is the initial location of 𝑘𝑘th ME automaton. In the above equation, pending
function verifies if a ME automaton is in a pending location where a task is
during execution. This guard will be clarified in the next section.

In the following section, WA models (ME, TL and PR automata) are
translated into TA models by applying proposed transition translation rules.

2.4.2 Translating WA models to TA models

 Translating WA model of mutual exclusion automata to TA :
The only location of the WA, i.e. 𝑞𝑞0, is translated to 𝐸𝐸0 and remains the initial
location. Note that in TA initial location should be displayed by double circles.
Transitions are translated by following rules expressed in previous section as
well.

In Figure 2.15, modeling pattern of a translated ME automaton is depicted.
As tasks are modeled as loops, after completing all the tasks, all ME automata
will reach their initial locations and don’t have to stay in other locations. Figure
2.15 indicates that tasks {𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗 , 𝑡𝑡𝑘𝑘, … , 𝑡𝑡𝑧𝑧}, which are presented as
communication signals, belong to the demonstrated automaton.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 43

Figure 2.15. Modeling pattern of timed ME automaton

By applying aforementioned rules to WA model of Example 1, its timed ME
automata will be obtained as Figure 2.16.

Figure 2.16. Timed ME automaton in Example 1

 Translating WA model of task launcher automata to TA
From the Figure 2.3 it can be noted that to compute the makespan of a system,
every weighted TL automaton should be composed of one single transition.
This transition can be translated to TA following the explained rules. Figure

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 44

2.17 displays the modeling pattern of a TL automaton. This figure illustrates
that when the launching signal of the task is sent, the automaton reaches
location 𝑓𝑓. Hence, in order to make sure that a schedule is done, reachability of
this location should be verified for all TL automata.

Figure 2.17. Modeling pattern of timed TL automaton

TA model of TL automaton related to Example 1 is shown in Figure 2.18.

Figure 2.18.Timed TL automata of tasks A, B and C in Example 1.

According to Figure 2.16 and Figure 2.18, for taking the transition in the TL
automata of task 𝐵𝐵, 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝐵𝐵) verifies validity of this predicate:

𝐵𝐵 ∈ 𝑇𝑇𝑀𝑀1 ∧ 𝐵𝐵 ∈ 𝑇𝑇𝑀𝑀2 → ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝐴𝐴, 𝐸𝐸1) ∧ ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑇𝑇, 𝐸𝐸2) (2.7)
Where 𝑇𝑇𝑀𝑀1 and 𝑇𝑇𝑀𝑀2 are the set of mutual exclusions in automata 𝐺𝐺1 and 𝐺𝐺2
and 𝐸𝐸1 and 𝐸𝐸2 are current locations in 𝐺𝐺1 and 𝐺𝐺2 respectively.

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝐴𝐴, 𝐸𝐸1) = �𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸1 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡, 𝑃𝑃.𝑒𝑒 (2.8)

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑇𝑇, 𝐸𝐸2) = �𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸2 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡, 𝑃𝑃.𝑒𝑒 (2.9)

which means that ME automata 𝐺𝐺1 and 𝐺𝐺2 are not in pending locations and
during execution of tasks 𝐴𝐴 or 𝑇𝑇 respectively. Therefore, if predicate 2.7 is true,
task 𝐵𝐵 can be execute.

 Translating WA model of precedence automata to TA
The triggering precedence WA is composed of triggering transitions so as to
request starting of tasks in a specific order. By taking into account presented
translation rules, the resulting TA model is obtained as shown in Figure 2.19.

Figure 2.19. Modeling pattern of triggering precedence timed automaton

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 45

The triggering precedence timed automaton of Example 1 is depicted in
Figure 2.20.

Figure 2.20. Triggering precedence timed automaton in Example 1

The delay precedence WA model features transitions with durations.
According to the first translation rule, TA pattern of this model is obtained as
Figure 2.21. From this figure it can be seen that tasks {𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗 , … , 𝑡𝑡𝑘𝑘} belong to
this set of precedence constraint. Two locations are assigned to each task (e.g.
𝑡𝑡𝑗𝑗). The first location (e.g. 𝐸𝐸2) is where the automaton waits for receiving signal
𝑡𝑡 from the TL automaton of task 𝑡𝑡. The second location (e.g. 𝐸𝐸3) corresponds
where it waits 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡) time units. By receiving signal 𝑡𝑡, clock is reset and the
automaton reaches the second location (e.g. 𝐸𝐸3). After 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡) time units, task 𝑡𝑡
finishes and the automaton changes the location in order to wait for receiving
launching signal from TL automata of the next task. If the precedence is
correctly followed, automaton will reach location 𝑓𝑓. This implies that while
sending communication signal of every task by its TL automaton, PR automata
should be at a location from which a transition with the receive-action 𝑡𝑡? can
be taken. Thereby, the automata will be able to receive the 𝑡𝑡? synchronization.

Figure 2.21. Modeling pattern of a delay precedence timed automaton

The delay precedence WA in Example 1 is depicted in Figure 2.22. In this
automaton all the delays between tasks are assumed to be equal to the duration
of tasks.

Figure 2.22. Delay precedence timed automaton in Example 1

It should be mentioned that in Figure 2.17, it is clear that verifying the guard
of the TL automata needs accessing to current locations of ME automata. Since
this issue cannot be implemented directly in a formal verification tool, some
technical modifications are needed in order to simulate this guard and are
explained in Appendix A.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 46

 TA structural properties for the scheduling model
In this section, basic structural properties of the TA models are investigated
(Bornot, Gößler, and Sifakis 2001). Since the model of the MRS scheduling
problem differs depending to the number of tasks, these properties are verified
for the models of Example 1.

Figure 2.23. TA models of Example 1

• Definition 2.12 (Timelock-freedom): A TA is timelock-free if any

trajectory 〈𝐸𝐸0, 𝑐𝑐𝐸𝐸0〉
𝑑𝑑1→

 𝑎𝑎1�� 〈𝐸𝐸1, 𝑐𝑐𝐸𝐸1〉
𝑑𝑑2→

 𝑎𝑎2�� 〈𝐸𝐸2, 𝑐𝑐𝐸𝐸2〉
𝑑𝑑3→

 𝑎𝑎3�� … diverges.
• Definition 2.13 (livelock-freedom): A timed system is livelock-free if

in any trajectory, some action occurs infinitely often.
According to the Figure 2.23, after finishing tasks and when TL
automata and PR automata are reached to location 𝑓𝑓, all the
trajectories terminate and the automaton reaches a deadlock where the
automaton cannot move anymore. While, this deadlock state is the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 47

goal state in the scheduling problem. In fact, continuation of the
trajectory is not intended in this thesis. Therefore, the model is neither
timelock-free nor livelock-free.

• Definition 2.14 (Liveness): An automaton is called live if it is not
timelock-free and livelock-free.
Thence, the TA model is not live. This fact happens because the
scheduling model is supposed to compute the makespan for which
every task should be done only one time. Therefore, the model is
acyclic and in fact, this property is important for cyclic models.

2.4.3 Scheduling approach
In this section, an efficient solving approach is presented to solve the problem
through TA models.

 General principle of solving approach
In order to schedule by TA, a trajectory in the model should be found in which
all the tasks are done. In other words, the scheduling problem amounts to a
formal verification problem to verify a property that guarantees that all the tasks
are eventually done. In fact, this property expresses the reachability of a set of
locations where the condition to reach this set is to complete all the tasks. By
verifying this property, a witnessing trajectory will be obtained that indicates
an order of tasks and a makespan for doing all of them.

 Model checking tools
In this section, UPPAAL and Kronos are introduced as two well-known model
checking tools for timed systems. Generally, model checking tools of timed
systems support TA of Alur and Dill or an extension of that model as the
description language. Also all of them use TCTL logic or a fragment of it.

 Kronos
Kronos is a tool developed with the aim to verify complex real-time systems. It
is developed at Verimag, a joint laboratory of UJF, Ensimag and CNRS. It
supports full TCTL language. It allows on-the-fly analysis for reachability
properties as well as forward and backward searching algorithms (Wilson and
France 2000). Kronos uses a very restricted data type that allows only
declaration of clock variables. Whereas it has been extended to several
successors such as Open-Kronos that provides a more convenient modeling
language (e.g., with discrete variables). Kronos is freely available for academic
users at http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 48

 UPPAAL
UPPAAL is an integrated tool environment for verification of real-time systems
modeled. It is developed in collaboration between the Department of
Information Technology at Uppsala University, Sweden and the Department of
Computer Science at Aalborg University in Denmark. The tool supports an
extension of TA with additional features such as integer variables, structured
data types, user defined functions, and channel synchronization. One of the
technical differences between Kronos and UPPAAL is that in UPPAAL, for
synchronization of more than three transitions, it is needed to use a special type
of non-blocking synchronization named broadcast channels. Synchronization
with a channel can be realized by a sending signal 𝐸𝐸! and some receiving signals
𝐸𝐸?. Being non-blocking is in the sense that if a transition emits a sending signal,
then this emission can be performed even when none of related receiving
transitions in other processes are activated. While in Kronos synchronization
process is blocking for any number of synchronized transitions. UPPAAL uses
a fragment of TCTL language which is restricted to properties based on
reachability analysis (Wilson and France 2000). The verification process in this
tool is based on on-the-fly analysis which is a powerful technique (Larsen,
Pettersson, and Yi 1997).

Two indicators are considered to use UPPAAL 4.1.19 as a verification tool
in this thesis. First, the last version of this software is released recently and the
team developer of this software is active to fix potentially existing bugs in the
resealed software. Second, this tool has an available contact center to answer
potential questions of users. The tool is available for free for academic users at
http://uppaal.org.

 Schedule generation by model checking
In the proposed algorithm, to find a schedule, UPPAAL is used as a model
checker to explore the state space for determining if there is a trajectory through
which all the tasks are done. For this purpose, a safety property will be verified
by performing a reachability analysis. This analysis concerns reachability of all
the ME automata to their initial locations and all TL and PR automata to their
final locations (𝑓𝑓). In TCTL language this property can be formalized as the
following:

𝑃𝑃: ∃ ◊ ((⋀ 𝑀𝑀𝐸𝐸𝑗𝑗. 𝐸𝐸0𝑗𝑗)1≤𝑗𝑗≤𝑚𝑚 ∧ (⋀ 𝑇𝑇𝑇𝑇𝑖𝑖.𝑓𝑓𝑖𝑖)1≤𝑖𝑖≤𝑛𝑛 ∧ (⋀ 𝑃𝑃𝑅𝑅𝑘𝑘 .𝑓𝑓𝑘𝑘)1≤𝑘𝑘≤𝑝𝑝) (2.10)
where 𝐸𝐸0𝑗𝑗 are the initial locations of ME automata, and 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑘𝑘 are final
locations of TL and PR automata respectively. Generically ∃ ◊ 𝛽𝛽 means that
some reachable states must satisfy β (Larsen, Pettersson, and Yi 1997).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

http://uppaal.org/

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 49

In this algorithm, in each iteration, property 𝑃𝑃 is verified following a
different trajectory. By verifying the property, the model checker issues a
witnessing trajectory that corresponds to one of the possible schedules. The
maximum value of clock in each witnessing trajectory is equal to the makespan
of the schedule. Different schedules are generated randomly by means of
random depth first searching method. The first schedule will be generated and
selected as the optimal schedule. Its makespan will be also selected as the
optimal makespan. By generating the second schedule, its makespan will be
compared with the optimal schedule. If it was less than the optimal makespan,
it will be selected as the new optimal makespan and its schedule will be selected
as the new optimal schedule. To find the optimal schedule, several iterations
will be done. The iterating procedure will be continued in a predetermined time
by generating new schedules and comparing to the optimal schedule. After
reaching the predetermined time as stop criteria, a suboptimal schedule will be
obtained. This algorithm is implemented in a bash file and is detailed in
Algorithm 2.1.

It is noteworthy to mention that although there exist timed optimal
reachability algorithms that can be used to find the optimal schedule (Peter
Niebert, Tripakis, and Yovine 2000), since the automata should take all
transitions to do all the tasks and reach the final location, this analysis is rather
expensive. Therefore it is preferred to save the time and find the sub-optimal
schedule.

The stop criteria for finding the optimal schedule could be either number of
iterations or a boundary time. In order to obtain a schedule, it is more applicable
in industry to set a predetermined time as the stop criteria. While for finding
complexity of the model and algorithm, stop criteria should be a fixed number
of iterations. Algorithm 2.1 uses the first criteria, i.e. boundary time, as the stop
criteria.

Algorithm 2.1
Input: M ME automata and N TL automata, a time bound B
Output: SubOptimal Makespan (SOM), optimum trajectory in file OptimalTrajectory.

//𝐼𝐼𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝑡𝑡𝐼𝐼𝑡𝑡:
 𝐷𝐷 ≔ 𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑓𝑓 𝑎𝑎𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑃𝑃𝑓𝑓 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑃𝑃

//𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑐𝑐ℎ 𝑡𝑡ℎ𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸 𝑃𝑃𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡 𝑡𝑡𝑜𝑜 𝑃𝑃𝑡𝑡𝑣𝑣𝑡𝑡𝑃𝑃𝐸𝐸𝐸𝐸 𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡𝐸𝐸𝑐𝑐ℎ𝐸𝐸𝑒𝑒𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒 𝐸𝐸𝑜𝑜𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃𝑡𝑡𝑃𝑃:
𝑇𝑇𝑀𝑀 ≔ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐹𝐹𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 ≔ 𝐸𝐸 𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 𝑡𝑡𝑜𝑜 𝑈𝑈𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑇𝑇 𝑃𝑃𝑡𝑡𝑐𝑐ℎ 𝑡𝑡ℎ𝐸𝐸𝑡𝑡 𝑃𝑃 𝑡𝑡𝑃𝑃 𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑓𝑓𝑡𝑡𝑡𝑡𝑎𝑎
𝑆𝑆𝐹𝐹𝑀𝑀 ≔ 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜 𝑃𝑃𝑓𝑓 𝑡𝑡ℎ𝑡𝑡 𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒
𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝐵𝐵 + 𝑇𝑇𝑀𝑀){

𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 ≔ 𝐸𝐸 𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 𝑡𝑡𝑜𝑜 𝑈𝑈𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑇𝑇 𝑃𝑃𝑡𝑡𝑐𝑐ℎ 𝑡𝑡ℎ𝐸𝐸𝑡𝑡 𝑃𝑃 𝑡𝑡𝑃𝑃 𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑓𝑓𝑡𝑡𝑡𝑡𝑎𝑎 𝐸𝐸𝑜𝑜𝑎𝑎

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 50

𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜 𝑇𝑇
//(𝐸𝐸𝑜𝑜𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃𝑡𝑡𝑃𝑃 𝑡𝑡𝑃𝑃 𝑒𝑒𝐸𝐸𝑃𝑃𝑡𝑡𝑎𝑎 𝑃𝑃𝑜𝑜 𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎𝑃𝑃𝑡𝑡 𝑎𝑎𝑡𝑡𝑃𝑃𝑡𝑡ℎ 𝑓𝑓𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑐𝑐ℎ)
𝑡𝑡𝑓𝑓 (𝑇𝑇 < 𝑆𝑆𝐹𝐹𝑀𝑀){
𝐹𝐹𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 ∶= 𝑡𝑡𝑃𝑃𝐸𝐸𝑗𝑗𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒
𝑆𝑆𝐹𝐹𝑀𝑀 ≔ 𝑇𝑇

 }𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡

Since the output trajectory should be understandable for the decision maker,
the obtained trajectory is implemented in the concurrent simulator of UPPAAL
to obtain the Gantt chart of the schedule. In this way, concurrent execution of
tasks can be visualized. Using this simulator, the waiting duration of every
automaton in each pre-specified location can be displayed in the Gantt chart by
a specified color. Furthermore, common tasks in different automata could be
shown by the same colors. Therefore by assigning colors to task locations in
ME automata, each bar in the Gantt chart would show the task performing
moments. Bars with same colors would represent also common tasks in
different ME automata.

Figure 2.24 demonstrates the Gantt chart of Example 1 without considering
any precedence constraint. For making this Gantt chart, specific patterns are
assigned to task locations 𝐴𝐴, 𝐵𝐵 and 𝑇𝑇 in which the automata stays during
performing tasks. In this Figure, the upper bars belong to automaton 𝐺𝐺1 and the
lower bars belong to 𝐺𝐺2. In the upper line, the first bar () represents the
moments of performing task 𝐴𝐴 that lasts 7 time units. The first bar of the second
line () shows the performing moments of task 𝑇𝑇 with 3 time units. As it is
obvious, 𝐴𝐴 and 𝑇𝑇 are not in conflict with each other and hence can be executed
simultaneously. When two tasks are executed simultaneously, UPPAAL
performs them at the earliest time. For example if UPPAAL is going to execute
task 𝐴𝐴 between time 0 and 7, and 𝑇𝑇 should be done in parallel, it starts 𝑇𝑇 at time
0 and does not delay it to be started at time 3. The second bars at both lines (
) represent performing moments of task 𝐵𝐵 that lasts 5 time units. As it can be
seen in the figure, two automata perform 𝑇𝑇 synchronously from time 7 to time
12. So in this schedule, the makespan is equal to 12.

Figure 2.24. Gantt Chart of Example 1 without precedence conditions

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 51

Figure 2.25 shows the Gantt chart of Example 1 considering the delay PR
timed automaton G7 which is depicted in Figure 2.22. As expected in
automaton G7, despite the previous schedule, task 𝐵𝐵 is done before task 𝐴𝐴.
Whereas the makespan doesn’t changes and remains 12 time units.

Figure 2.25. Gantt chart of Example 1 considering delay PR timed automaton G7

2.4.4 Complexity
In this section, the efficiency and applicability of the proposed model and
solving approach are discussed. For this purpose, a number of problem
instances are defined with different sizes that vary between 20 tasks in 5 ME
timed automata to 220 tasks in 20 ME timed automata which is close to
industrial size problems and offers a reasonable insight for evaluating the
complexity trend. Then, all the problem instances are solved by applying the
approach proposed in Algorithm 2.1. Referring to the previous section, the stop
criteria for acquire computational time complexity of the model and algorithm
should be a fixed number of iterations. Therefore, in this section, in order to
find the complexity, the algorithm is adapted to find the optimal schedule with
100 iterations. It should be mentioned that this number doesn’t have any impact
on the efficiency of the proposed algorithm. In other words, by multiplying this
number by any arbitrary number, the complexity of the algorithm doesn’t
changes. The algorithm is coded using bash file on Ubuntu 14.04 on a personal
computer Core i5, 2.27 GHZ with 5.0 GB RAM. In order to show its efficiency,
time complexity of the algorithm is compared to similar previous studies (Edis
and Ozkarahan 2011; Kellerer and Strusevich 2008).

Table 2.2. calculated and real makespan and corresponding computational time for
problem instances

A.* # Task
Ind.
tasks**

Shared tasks
between Optimal

Makespan
Obtained
Makespan

Time (s)
2A*** 3A 4A

5 20

20 0 0 0 60 60 6.47
16 4 0 0 120 120 6.85
12 4 4 0 180 180 7.64
8 4 4 4 240 240 8.89

10 20 20 0 0 0 10 10 12.56

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 52

A.* # Task
Ind.
tasks**

Shared tasks
between Optimal

Makespan
Obtained
Makespan

Time (s)
2A*** 3A 4A

16 4 0 0 20 20 13.62
12 4 4 0 30 30 15.25
8 4 4 4 40 45 17.65

20 20

20 0 0 0 15 30 27.41
16 4 0 0 30 45 29.56
12 4 4 0 45 60 34.08
8 4 4 4 40 40 42.29

5 60

60 0 0 0 60 65 44.28
48 12 0 0 120 120 46.53
36 12 12 0 180 180 53.52
24 12 12 12 240 240 64.05

10 60

60 0 0 0 18 21 78.18
48 12 0 0 36 36 84.15
36 12 12 0 54 57 95.79
24 12 12 12 72 72 112.94

20 60

60 0 0 0 15 20 161.98
45 15 0 0 30 35 178.76
30 15 15 0 45 55 210.89
15 15 15 15 60 65 265.47

5 100

100 0 0 0 100 110 113.42
80 20 20 0 200 200 123.10
60 20 20 0 300 300 142.32
40 20 20 20 400 400 172.89

10 100

100 0 0 0 100 110 200.19
80 20 20 0 200 200 218.61
60 20 20 0 300 320 245.18
40 20 20 20 400 420 292.57

20 100

100 0 0 0 50 60 404.17
80 20 20 0 100 120 430.30
60 20 20 0 150 180 491.06
40 20 20 20 200 230 583.14

5 140

140 0 0 0 140 155 219.41
112 28 0 0 280 280 238.01
84 28 28 0 420 420 277.29
56 28 28 28 560 560 339.71

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 53

A.* # Task
Ind.
tasks**

Shared tasks
between Optimal

Makespan
Obtained
Makespan

Time (s)
2A*** 3A 4A

10 140

140 0 0 0 140 160 319.50
112 28 0 0 280 280 407.29
84 28 28 0 420 450 466.64
56 28 28 28 560 580 555.49

20 140

140 0 0 0 140 160 714.03
112 28 0 0 280 320 764.67
84 28 28 0 420 500 870.72
56 28 28 28 560 660 1032.71

5 180

180 0 0 0 180 195 345.79
144 36 0 0 360 360 376.85
108 36 36 0 540 540 441.61
72 36 36 36 720 720 544.15

10 180

180 0 0 0 180 200 596.60
144 36 0 0 360 360 640.53
108 36 36 0 540 590 730.66
72 36 36 36 720 750 869.57

20 180

180 0 0 0 180 200 1155.16
144 36 0 0 360 360 1193.98
108 36 36 0 540 580 1277.14
72 36 36 36 720 740 1402.16

5 220

220 0 0 0 220 240 467.75
176 44 0 0 440 440 504.42
132 44 44 0 660 660 604.88
88 44 44 44 880 880 765.67

10 220

220 0 0 0 110 120 779.45
176 44 0 0 220 225 844.04
132 44 44 0 330 360 978.34
88 44 44 44 440 445 1184.55

20 220

220 0 0 0 110 120 1487.03
176 44 0 0 220 250 1605.81
132 44 44 0 330 390 1842.95
88 44 44 44 440 510 2226.59

*: Number of ME automata **: Number of individual tasks ***: 2 ME automata

In Table 2.2, the expected and sub-optimal makespan of problem instances
are shown. Furthermore the computational time for the problem instances are

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 54

mentioned. This table show that the longest time for computing the makespan
belongs to the problem instance with 220 tasks and 20 ME automata which is
equal to 2226.59 seconds, i.e. about 37 minutes. This time is reasonable enough
to obtain a schedule for a large size problem. Classification of problems relate
to the number of tasks that ME automata share, number of ME automata and
number of tasks.

Figure 2.26 illustrates the trend of calculation time against increasing
number of tasks for three different numbers of ME automata. In these graphs,
tasks are individual or common between two ME automata. This figure
illustrates the obvious fact that increase in number of tasks and ME automata
causes increase in calculation time. The trend-line of this increment is obtained
by Excel software. This trend is polynomial and is demonstrated by dash-dotted
lines that correspond exactly to the trend of the graphs. The term “Poly.” in the
legend of the graph denotes the polynomial trends for each graph.

Figure 2.26. Calculation time vs. number of tasks for individual tasks and common tasks

between 2 ME automata
Figure 2.27 illustrates variation of calculation time against increasing

number of ME automata. This figure shows that in the problems with fewer
tasks, as the number of conflicting sets of tasks (i.e. ME automata) increases,
the computation time increases slightly. Whereas in problems with huge
number of tasks, a small variation in number of ME automata causes a dramatic
increase in computational time. For example, this figure shows that in the
problem with 20 tasks, increasing number of ME automata from 10 to 20 ME
automata, increases computational time 15.94 time units. Whereas in the
problem with 220 tasks, it causes an increase of 761.77 time units.

0

500

1000

1500

2000

0 20 40 60 80 100 120 140 160 180 200 220 240

Ti
m

e
(s

)

Number of tasks

Time vs. task numbers (individual+common btwn 2)

5 automata

10 automata

20 automata

Poly. (5 automata)

Poly. (10 automata)

Poly. (20 automata)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 55

Figure 2.27. Calculation time vs. number of ME automata, for tasks that are individual or

common tasks between 2 ME automata

In Figure 2.28, the calculation time respecting to number of tasks for
problems with 5 ME automata featuring conflicts is demonstrated. This number
is arbitrary and doesn’t effect on the complexity of the graphs. In this figure,
multiples graphs demonstrate different types of task-sharing. It can be seen that
in addition to the impact of variation in number of tasks on calculation time,
increasing number of task-sharing causes a significant change in calculation
time. For example, in the problem with 220 tasks, by increasing the maximum
number of ME automata in which every task is shared from 2 to 4,
computational time increases 51.79%.

13,62 29,56

844,04

1 605,81

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

Ti
m

e
(s

)

Number of ME automata

Time vs. number of ME automata (individual+common btwn 2)

20 tasks 60 tasks
100 tasks 140 tasks
180 tasks 220 tasks
Poly. (20 tasks) Poly. (60 tasks)
Poly. (100 tasks) Poly. (140 tasks)
Poly. (180 tasks) Poly. (220 tasks)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 56

Figure 2.28. Calculation time vs. number of tasks for 5 ME automata

In similar studies, researchers classify this kind of problem as an NP-hard
problem which trend of its computational time against size of the problem is
adapted to an exponential function (Edis and Ozkarahan 2011; Kellerer and
Strusevich 2008). This issue becomes important facing large size problems. In
fact, having exponential complexity causes taking unreasonable time for
obtaining the optimal schedule in industrial problems. Whereas, as mentioned
earlier, in some industries it is preferred to save time and obtain a sub-optimal
schedule. In this study, results show that trend of increments in computational
time against increasing size of the problem follows a polynomial function. It
means that in industrial cases, through this model and algorithm, the sub-
optimal schedule can be obtained in a reasonable time.

2.5 Conclusion
In this chapter, a novel approach is presented to model and solve multi-resource
sharing scheduling problem through WA. Furthermore, it focuses on proposing
an efficient solving approach to reach a sub-optimal schedule in a reasonable
computational time for industrial size problems. In fact, since MRS scheduling

504,42

765,67

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250

Ti
m

e
(s

)

Number of tasks

Time vs. task number (5 ME automata)

all individual ind + shared btwn 2

ind+ shared btwn 2 & 3 ind+shared btwn 2 & 3 & 4

Poly. (all individual) Poly. (ind + shared btwn 2)

Poly. (ind+ shared btwn 2 & 3) Poly. (ind+shared btwn 2 & 3 & 4)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 2: MRS scheduling through translation of weighted to timed automata

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 57

problem is NP-hard, there were two choices; either to find the optimal schedule
in a long and unreasonable time, or to save the time and find the sub-optimal
schedule. The second option is preferred in this work.

Scheduling problems can be modeled by either weight-based automata like
weighted automata, or clock-based automata like timed automata. In this
chapter, it is shown that simpler and more abstract models can be built for the
MRS scheduling problem through weighted automata. Whereas there are two
issues for using current synchronous compositions. Either the minimum
makespan cannot be obtained through using them, or they don’t show a
complete composed behavior of the components of the model. Thence, it is not
possible to analyze (WA) models directly. Therefore, firstly the MRS
scheduling problem should be modeled by WA. Then, in order to obtain the
schedule, the proposed model is translated to TA. Afterwards, an algorithm is
proposed to obtain the sub-optimal schedule by performing iterations of
reachability analysis on the timed model using UPPAAL as a formal
verification tool. The analyses are based on random depth first search.

The results show that the proposed model and algorithm can be efficiently
applied to industrial sized problems with 220 tasks and 20 sets of task-conflicts
in using various resources. It has been proved that time complexity of the
proposed method is polynomial which allows the decision maker to solve an
industrial size problem in reasonable time.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 58

3
Synchronous composition of
weighted automata - application
to MRS scheduling

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 59

3 Synchronous composition of weighted
automata - application to MRS
scheduling

3.1 Introduction
In Chapter 2, the timed automata (TA) and timed model checking technique
have been used as the core formalism and technology to deal with MRS
scheduling problem. First, the scheduling problem is specified using weighted
automata (WA). The semantics of a weighted automaton has been defined
strictly locally, without any notion of compound behavior resulting from the
concurrent operation of two or more weighted automata. Instead, rules have
been defined in order to translate each weighted automaton model into a timed
automaton. Thus, the consistency of the global WA model relies on the product
of timed automata which is formally defined.

Even though the WA to TA translation rules are systematic, they require to
handle TA-specific modeling mechanisms such as clocks, clock guards,
invariants and communication channels. Considering the specific modeling
needs in this work, such mechanisms are technical overload and hardly
maintainable. Therefore, the proposed solution in chis chapter to overcome this
intricacy is based on definition of a new synchronous composition for WA.
Though this definition, the WA components can be composed directly and the
analysis for finding the best schedule can be performed directly on the
composed model.

Various investigations of automata compositions have been conducted,
relying on different kinds of weighted automata and composition approaches.
Moreover, several studies proposed time or cost optimal reachability analysis
that can be inspired for the analysis on the new WA synchronous composition.
Hereafter, these investigations are detailed.

3.1.1 State of the art on synchronous composition of weighted automata
Milner (1983) proposes a notion of synchronized product between automata. In
this product, two or more automata may run concurrently and independently,
but they must synchronize on a set of events called shared events. Individual
actions in local automata are allowed to have an interleaving execution. There
is also a notion of global sharing of actions among automata, i.e. an action is

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 60

shared between all automata and not some of them. Duration of actions cannot
be handled through this model.

Komenda, Lahaye, and Boimond (2009) propose a synchronous product for
multi-event (max,+) automata which correspond to a class of timed automata
with serveral clocks. Komenda, Lahaye, and Boimond (2010) propose a
synchronous composition model that results in multi-event interval weighted
automata.

Su, Van Schuppen, and Rooda (2012) address a minimum-makespan
supervisor synthesis problem. They propose a terminable algorithm to solve the
problem and compute the execution time of each string by the theory of heaps-
of-pieces. The authors also present a timed supervisory control map to
implement the synthesized minimum-makespan sublanguage. In order to
formulate the problem, they propose a synchronous product for WA. Komenda
and Boimond (2012) proposes a modular approach for the modeling of discrete
event systems using (max, +) automata. This method consists in decomposing
the system into subsystems, each to be modeled by a deterministic (max, +)
automaton. The interactions between these subsystems is made through
common events occurring simultaneously in each component. A synchronous
product is proposed to compose these components in which synchronization
between common events is modeled.

Lahaye, Komenda, and Boimond (2015) propose a compositional modeling
approach by means of (max, +) automata. Firstly the authors introduce
modeling of safe timed Petri nets using (max, +) automata. Afterwards, two
types of synchronous composition of (max, +) automata are proposed to model
safe timed Petri nets. Furthermore, an asynchronous composition is introduced
to represent particular bounded timed Petri nets. Sébastien Lahaye and Jean-
Baptiste Fasquel have implemented a library in python software to model
(max,+) automata synchronous composition (Lahaye, Komenda, and Boimond
2015). Makespan of different given orders of tasks can be obtained through this
library. Quintero Garcia (2015) models mutual exclusions among tasks with
underlying resource sharing conflicts as subsystems through local tropical
automata (generalized version of (max, +) and (min, +) automata which are type
of weighted automata). Moreover, the author describes fundamental aspects of
a makespan minimization methodology considering minimization of idle times
on resources.

Ware and Su (2017) present a method for finding a time optimal accepting
trace for large DESs based on sequential language projection, and pruning. The
algorithms are tested on a linear cluster tool to show their effectiveness. In this

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 61

article, a cluster tool is modeled through timed-weighted automata considering
a specific type of synchronous product.

3.1.2 State of the art on time-optimal reachability analysis
Gaubert (1995) addresses performance evaluation of (max, +) automata in the
worst, mean, and optimal cases. A simple algebraic reduction is provided for
the worst case. Whereas, the author uses the Kolmogorov equation of a Markov
chain and a Hamilton-Jacobi-Bellman equation to obtain the mean performance
and optimal performances respectively.

Gerd Behrmann et al. (2001) present an algorithm for computing the
minimum cost of reaching a goal state in a Uniformly Priced Timed Automaton
(UPTA) with optimal number of explored states. This model is a sub-model of
Linearly Priced Timed Automata (LPTA), which extends timed automata with
prices on both locations and transitions. In fact, despite LPTA, the rate of prices
associated to locations of a UPTA is uniform. The authors implement
algorithms in tool UPPAAL which are based on branch and bound techniques
that can be used for limiting the search space for finding the optimal solution
faster. Larsen and Vaandrager (2001) introduces the model of linearly priced
timed automata. The authors propose a minimum-cost reachability algorithm
based on branch-and-bound technique for reaching from the initial state to the
goal state. Interval weighted automata are defined as automata with weights in
a product dioid. The formalism of this automata makes it possible to model
temporal constraints for transitions instead of exact durations.

Alur, La Torre, and Pappas (2004) deal with the optimal-reachability
problem for weighted timed automata. In this article, an approach is presented
to reduce this problem to computing parametric shortest paths in a finite
weighted directed graph. Complexity reduction techniques for this analysis is
also presented.

Behrmann, Larsen, and Rasmussen (2005) apply timed automata technology
to optimal scheduling and planning problems. They also implemented the
problem in the tool Cora which is specialized for cost-optimal reachability for
the extended model of priced timed automata. It is noteworthy to mention that
Cora is an extended version of UPPAAL.

3.1.3 Synthesis of the state of the art
Table 3.1 demonstrates a classification for studies that propose synchronous or
synchronized composition of automata. In this table, the composition proposed
in the reviewed papers, are investigated from two point of view:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 62

• Simultaneity: The composition can show simultaneous execution of
different actions in different local automata

• Yielding minimum makespan: Minimum makespan can be obtained
through the composition

The synthesis of this state of the art shows that the by using so far proposed
synchronous compositions for WA, the models of the components of the
scheduling problem cannot be composed. Among these reviewed articles, only
four researches have proposed a new composition that can handle duration of
tasks. Disadvantages of these compositions are not illustrating simultaneous
execution of tasks or not containing a trajectory with the optimum makespan to
be used as optimal schedule. For example, in one of the articles a synchronous
composition for (max, +) automata is proposed. This composition could be
employed for modeling of multi-resource sharing scheduling problems.
Whereas, the minimum makespan cannot be obtained through this composition
(Komenda, Lahaye, and Boimond 2009c). The same authors propose another
type of synchronous composition for (max, +) automata. Despite the minimum
makespan can be found through a reachability analysis on this composition,
simultaneous execution of actions from different local automata cannot be
shown (Lahaye, Komenda, and Boimond 2015).

Su, Van Schuppen, and Rooda (2012) propose a synchronous composition
for WA. Yet, this composition does not feature the simultaneous behaviors of
actions.

The approach proposed by Quintero (2015) is described on a particular
example, and hence lacks generality. Besides, the time is handled exclusively
by decomposing durations into discrete steps, which excludes almost always
optimal solutions.

According to the enumerated issues, in this chapter a new synchronous
composition of WA is proposed. The specificities of this composition is that
firstly, in addition to interleaving of action, they can be also executed
simultaneously and at the earliest time; and secondly, the optimal performance
of the model representing the minimum makespan can be obtained through the
composition. Afterwards, by inspiration from the performed literature review
in Section 3.1.1, a time-optimal reachability algorithm is proposed to find the
fastest trajectory to reach from the initial state to the marked state. This analysis
can be directly used and can yield the timed-optimal schedule successfully.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 63

Table 3.1. Classification of literature proposing synchronous composition of WA

Authors Simultaneity Minimum Makespan

(Milner 1983)

(Komenda, Lahaye, and
Boimond 2009c) 

(Komenda, Lahaye, and
Boimond 2010) 

(Su, Van Schuppen, and Rooda
2012) 

(Lahaye, Komenda, and
Boimond 2012) 

(Lahaye, Komenda, and
Boimond 2015) 

(Ware and Su 2017) 

In this Chapter, all the problem hypotheses are the same as Chapter 2. The
remainder of this chapter is organized as follows. Section 3.2 explains the
concept of synchronicity and simultaneity in the composition of automata
through an example. In section 3.3, a new synchronous composition is defined
for WA. In section 3.4, a time-optimal reachability algorithm is defined in order
to find the optimal schedule. Finally section 3.5 is devoted to conclusion.

3.2 Synchronous composition for weighted automata
Prior to define a new synchronous composition, let’s explain the meaning of
simultaneity and synchronicity of actions in a scheduling problem and its
corresponding automata composition through an example.

3.2.1 Example 2
Assume there is a set of tasks 𝑇𝑇 = {𝐸𝐸, 𝑒𝑒, 𝑐𝑐} to be done and their durations are 7,
5 and 3 time units respectively. Mutual exclusions between tasks are such that
𝐸𝐸 and 𝑐𝑐 are in conflict with each other and 𝑒𝑒 is not in conflict with none of
them. The desired behavior is such that 𝑐𝑐 must be executed after finishing task
𝐸𝐸 and every task must be done only once. Each hypothesis should be modeled
in a separate automaton. WA model of these hypotheses are depicted in Figure
3.1. In this figure, automata 𝐺𝐺1 and 𝐺𝐺2 demonstrate the mutual exclusion
between 𝐸𝐸 and 𝑐𝑐. Automata 𝐺𝐺3, 𝐺𝐺4 and 𝐺𝐺5 correspond to TL automata of tasks

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 64

𝐸𝐸, 𝑒𝑒 and 𝑐𝑐 respectedly and automaton 𝐺𝐺6 is the PR automata presenting
precedence constraint between tasks 𝐸𝐸 and task 𝑐𝑐.

Figure 3.1. WA model of Example 2.

According to Figure 3.1, task 𝑒𝑒 can be executed is parallel with task 𝐸𝐸 or
task 𝑐𝑐. Intuitively it can be seen that one of the optimal schedule is to firstly do
task 𝐸𝐸 in parallel with task 𝑒𝑒 and after finishing 𝐸𝐸, to do task 𝑐𝑐 in parallel and
during the remaining time of 𝑒𝑒. The Gantt chart corresponding to this schedule
is shown in Figure 3.2. As it can be seen in the figure, in the middle of execution
of task 𝑒𝑒 in time 5, tasks 𝐸𝐸 is finished and 𝑐𝑐 should be started. While, when
executing all automata in parallel, for example when 𝐺𝐺2 takes the transition to
execute action 𝑒𝑒, it doesn’t return to the state 0 until time 8 when it finishes the
action. The same goes for the automaton 𝐺𝐺4; from state 0, it takes a transition
for executing action 𝑒𝑒 and reaches the state 1 when 𝑒𝑒 is finished. Therefore, in
the global behavior of the automata, when taking transitions with label 𝐸𝐸 and 𝑒𝑒
in all automata, it is not possible to stop the global automata before finishing
action b 𝐺𝐺2 and 𝐺𝐺4.

For solving this issue, intermediate states should be added in these transition
in 𝐺𝐺2 and 𝐺𝐺4 after doing action 𝑒𝑒 for 5 time units. Therefore, at time 5, all
automata stop execution and the ones that have finished previous actions can
start new actions.

Thence, a generic rule could be defined like this: synchronous composition
of automata should be such that in each trajectory, whenever an action is
finished in a local automaton, intermediate states in all other automata are
defined. Therefore, the local automaton can start another action in that time
instant.

Furthermore, synchronicity of transitions should be such that all transitions
executing the same actions, be executed at the same time. For example, despite
automaton 𝐺𝐺5 is idle from time 0 to 5, action 𝑐𝑐 in automata 𝐺𝐺1 and 𝐺𝐺5 and 𝐺𝐺6
are executed synchronously from time 5 to time 7.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 65

Figure 3.2. Gantt chart of automata 𝐺𝐺1 to 𝐺𝐺6 according to a sample schedule

3.2.2 Algorithmic steps to reach synchronous composition
The synchronous product computation is defined for n WA. The proposed
approach operates in five steps:

(1) Define the set X of all potential global transitions, such that whenever
an action is shared among several WA, it should be executed
synchronously. The remaining combinations represent actions to be
taken either in parallel or independently;

(2) Split transitions of X modeling simultaneous actions which do not
have the same duration;

(3) Aggregate transitions enabling simultaneous actions at the earliest
possible time;

(4) Repeat steps 2 and 3 until a fixed point is reached;
(5) Build a global transition relation from the preceding result.

These steps are described by Algorithm 3.1 and detailed below.

Algorithm 3.1: 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑃𝑃𝑡𝑡𝑃𝑃𝑜𝑜 (𝑋𝑋,𝑄𝑄1, … ,𝑄𝑄𝑛𝑛)
𝑋𝑋(0) = 𝑋𝑋
𝑡𝑡 ≔ 0
𝐼𝐼 ≔ 1
𝑓𝑓𝑃𝑃𝑃𝑃(𝑗𝑗 ≔ 1 𝑡𝑡𝑃𝑃 𝑜𝑜){

𝑓𝑓𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸𝐸𝐸 𝑞𝑞𝑗𝑗 ∈ 𝑄𝑄𝑗𝑗�{
𝑞𝑞𝑗𝑗 . 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 ≔ 𝑞𝑞𝑗𝑗

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃
𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡

𝑋𝑋𝑆𝑆 ≔ 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝�𝑋𝑋(𝑖𝑖)�
𝑋𝑋(𝑖𝑖+1) ≔ 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜(𝑋𝑋𝑆𝑆,𝑄𝑄1, … ,𝑄𝑄𝑛𝑛)
𝑡𝑡 ≔ 𝑡𝑡 + 1

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝐸𝐸 𝑋𝑋(𝑖𝑖) = 𝑋𝑋(𝑖𝑖−1)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 66

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑋𝑋(𝑖𝑖)

Step 1. Definition of the global transition set X.

For all 𝐺𝐺𝑖𝑖, 𝑡𝑡 = 1. .𝑜𝑜 the tuple

�(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … ,𝐸𝐸𝑛𝑛), (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛), (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′)�

belongs to 𝑋𝑋 iff transition (𝑞𝑞𝑖𝑖,𝐸𝐸𝑖𝑖,𝑎𝑎𝑖𝑖 , 𝑞𝑞𝑖𝑖′) exists in 𝐺𝐺𝑖𝑖 via 𝛿𝛿𝑖𝑖, where 𝑞𝑞𝑖𝑖 is the
source and 𝑞𝑞𝑖𝑖′ is the target of a transition in 𝐺𝐺𝑖𝑖 that executes an action 𝐸𝐸𝑖𝑖 with
duration 𝑎𝑎𝑖𝑖. Therefore for 𝑜𝑜 automata, 𝑋𝑋 is defined as

𝑋𝑋 = {�(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … , 𝐸𝐸𝑛𝑛), (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛), (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′)�| (∀𝑡𝑡 ∈ [1,𝑜𝑜]: 𝐸𝐸𝑖𝑖 ∈
Σi,𝑎𝑎𝑖𝑖 = 𝑎𝑎(𝐸𝐸𝑖𝑖), 𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑖𝑖′ ∈ 𝑄𝑄𝑖𝑖) ∧ � ∀𝑡𝑡 ≠ 𝑗𝑗 ∈ [1,𝑜𝑜]: 𝑡𝑡𝑓𝑓 𝐸𝐸𝑖𝑖 ∈ �Σ𝑖𝑖 ∩ Σj� → �𝐸𝐸𝑖𝑖 =
𝐸𝐸𝑗𝑗� ∧ (𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗)� ∧ (𝑞𝑞𝑖𝑖,𝐸𝐸𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑞𝑞𝑖𝑖′) ∈ 𝛿𝛿𝑖𝑖} (2.11)

In this definition, ∀𝑡𝑡 ≠ 𝑗𝑗 ∈ [1, 𝑜𝑜]: 𝐸𝐸𝑖𝑖 ∈ �Σ𝑖𝑖 ∩ Σj� → �𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑗𝑗� ∧ (𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗)
denotes the fact that shared actions (having the same symbol) are executed
synchronously.

Step 2. Splitting transitions of X

In the following, vectors of symbols are denoted between the symbols “⟨”
and “⟩” and (〈𝑞𝑞1, … , 𝑞𝑞𝑛𝑛〉, 〈𝐸𝐸1, … ,𝐸𝐸𝑛𝑛〉, 〈𝑎𝑎1, … ,𝑎𝑎𝑛𝑛〉, 〈𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ 〉) is denoted by
(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩).

All transitions of X are expanded into two sequential transitions exhibiting
either 0 or synchronous timing. All processed transitions are memorized inside
the set S. In order to make the subsequent aggregation easier, the components
of each vector are permuted according to an ascending order of the
corresponding weights. This order is established by the function 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡. For
example, if 𝑎𝑎𝑖𝑖 > 𝑎𝑎𝑗𝑗 and 𝑡𝑡 < 𝑗𝑗, 𝑞𝑞𝑖𝑖, 𝑞𝑞𝑖𝑖′ and 𝐸𝐸𝑖𝑖 are permuted with 𝑞𝑞𝑗𝑗, 𝑞𝑞𝑗𝑗′ and 𝐸𝐸𝑗𝑗. A
track of the permutation is stored inside the tuple (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛).

 Algorithm 3.2:𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝(𝑋𝑋)
𝑆𝑆 ≔ ∅

𝑓𝑓𝑃𝑃𝑃𝑃 (𝐸𝐸𝐸𝐸𝐸𝐸 (⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩) ∈ 𝑋𝑋){

𝑒𝑒 ≔ 1 //it helps tracking number of times a tuple is split

𝑡𝑡𝑓𝑓�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩) ∉ 𝑆𝑆�{

𝑆𝑆: = 𝑆𝑆 ∪ {(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)}

�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛)�: = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)�

𝑋𝑋 ≔ 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛),𝑋𝑋, 𝑒𝑒�

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 67

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑋𝑋

Algorithm 3.3: 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜e_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛),𝑋𝑋, 𝑆𝑆, 𝑒𝑒�
𝑡𝑡: = 𝑜𝑜𝑃𝑃𝑜𝑜𝐼𝐼𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑜𝑜�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)�

𝑡𝑡𝑞𝑞𝐸𝐸: = 𝐸𝐸𝑃𝑃𝑡𝑡𝑞𝑞𝑡𝑡𝐸𝐸𝐸𝐸�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩),𝑡𝑡�

//eql=1 if all non-silent actions of the tuple have the same duration as the fastest action
𝑡𝑡𝑓𝑓 (𝑡𝑡𝑞𝑞𝐸𝐸 = 1 𝐸𝐸𝑜𝑜𝑎𝑎 𝑒𝑒 > 1){ //if all non-silent actions of the tuple have the same duration

and the tuple is the output of the previous split

(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩): = 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … 𝑡𝑡𝑛𝑛)�

𝑋𝑋: = 𝑋𝑋 ∪ {(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)}

𝑆𝑆: = 𝑆𝑆 ∪ {(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩)}

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑋𝑋
}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡𝑡𝑡𝑓𝑓(𝑡𝑡𝑞𝑞𝐸𝐸 = 0){ //if the duration of non-silent actions in the tuple were not equal, the

element should be split into two tuples.
((⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩), (⟨𝑞𝑞2⟩, ⟨𝐸𝐸2⟩, ⟨𝑎𝑎2⟩, ⟨𝑞𝑞2′ ⟩)) ≔ 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡((⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩),𝑡𝑡)

�(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩)�: = 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡�(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩), (𝑡𝑡1, … 𝑡𝑡𝑛𝑛)�

𝑋𝑋: = 𝑋𝑋 ∪ {(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩)}

𝑆𝑆: = 𝑆𝑆 ∪ {(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩)}
𝑒𝑒 + + //it helps to find out if a tuple have been split previously

𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡�(⟨𝑞𝑞2⟩, ⟨𝐸𝐸2⟩, ⟨𝑎𝑎2⟩, ⟨𝑞𝑞2′ ⟩), (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛),𝑋𝑋, 𝑒𝑒�

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓 //if all non-silent actions of the tuple have the same duration and the tuple is not

split formerly, do nothing

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑋𝑋

Algorithm 3.4: 𝑜𝑜𝑃𝑃𝑜𝑜𝐼𝐼𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑜𝑜�(〈𝑞𝑞1, … , 𝑞𝑞𝑛𝑛〉, 〈𝐸𝐸1, … , 𝐸𝐸𝑛𝑛〉, 〈𝑎𝑎1, … ,𝑎𝑎𝑛𝑛〉, 〈𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ 〉)�
 𝑡𝑡: = 1
 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 (𝑎𝑎𝑖𝑖 = 0 𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡 ≤ 𝑜𝑜){
 𝑡𝑡 + +
 𝑡𝑡: = 𝑡𝑡
 }𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡
 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑡𝑡

Algorithm 3.5: 𝐸𝐸𝑃𝑃𝑡𝑡𝑞𝑞𝑡𝑡𝐸𝐸𝐸𝐸�(〈𝑞𝑞1, … , 𝑞𝑞𝑛𝑛〉, 〈𝐸𝐸1, … , 𝐸𝐸𝑛𝑛〉, 〈𝑎𝑎1, … ,𝑎𝑎𝑛𝑛〉, 〈𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′ 〉),𝑡𝑡�
𝑡𝑡𝑞𝑞𝐸𝐸: = 1
𝑡𝑡: = 𝑡𝑡 + 1

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 68

𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 ((𝑡𝑡 ≤ 𝑜𝑜) 𝐸𝐸𝑜𝑜𝑎𝑎 (𝑡𝑡𝑞𝑞𝐸𝐸 = 1)){
𝑡𝑡𝑓𝑓 (𝑎𝑎𝑖𝑖 ≠ 𝑎𝑎𝑚𝑚){

𝑡𝑡𝑞𝑞𝐸𝐸: = 0
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓
𝑡𝑡 + +

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑡𝑡𝑞𝑞𝐸𝐸

As explained above, Algorithm 3.3 (𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜e_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡) splits each tuple
to two or more tuples recursively for which all duration elements 𝑎𝑎𝑖𝑖 have the
same value or are equal to zero. In this algorithm, firstly through function
𝑜𝑜𝑃𝑃𝑜𝑜𝐼𝐼𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑜𝑜 (Algorithm 3.4), the index of the first non-silent element of the
tuple is assigned to 𝑡𝑡. Then, the function 𝐸𝐸𝑃𝑃𝑡𝑡𝑞𝑞𝑡𝑡𝐸𝐸𝐸𝐸 (Algorithm 3.5) finds out if
all non-silent actions of the tuple have the same duration as the fastest action.
In other words, in this function if all duration elements are equal to 𝑎𝑎𝑚𝑚 or zero,
the output would be one. Otherwise the output would be zero. If they were
equal, it means that the tuple doesn’t need to be expanded; and if 𝑒𝑒 was equal
to one, it means that it is not the result of a previous expansion and already
exists in 𝑋𝑋. So the algorithm terminates. While if 𝑡𝑡𝑞𝑞𝐸𝐸 is equal to one and 𝑒𝑒 was
bigger than one it means that the tuple is the output of the previous recursion.
So it doesn’t need to be expanded anymore. Whereas, as it is not integrated into
𝑋𝑋 yet, the order of its elements is firstly restored according to their original
order kept in 𝑡𝑡 and through 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡 algorithm (Algorithm 3.7). Then the tuple
is integrated into 𝑋𝑋. It is also included in 𝑆𝑆 to prevent going through process of
splitting another time.

If the duration of actions in the tuple were not equal, it should be split to two
tuples. 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm (Algorithm 3.6) yields two outputs. In the first one (i.e.
(⟨𝑞𝑞1⟩, ⟨𝐸𝐸1⟩, ⟨𝑎𝑎1⟩, ⟨𝑞𝑞1′ ⟩)), all non-silent actions have equal durations and hence it
should be included in the set 𝐸𝐸. Therefore, first the order of elements is restored
and then it is integrated into 𝐸𝐸.

There is a possibility that duration elements of the second input of 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡
algorithm (i.e. (⟨𝑞𝑞2⟩, ⟨𝐸𝐸2⟩, ⟨𝑎𝑎2⟩, ⟨𝑞𝑞2′ ⟩)) may not have the same value. Thence,
𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡 is called for the second tuple.

The 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm (Algorithm 3.6) is based on the first non-silent action
(i.e. 𝑡𝑡th action). 𝐵𝐵 = (〈𝑞𝑞𝑒𝑒1, … , 𝑞𝑞𝑒𝑒𝑛𝑛〉, 〈𝑒𝑒1, … , 𝑒𝑒𝑛𝑛〉, 〈𝑎𝑎𝑒𝑒1, … ,𝑎𝑎𝑒𝑒𝑛𝑛〉, 〈𝑞𝑞𝑒𝑒1′ , … , 𝑞𝑞𝑒𝑒𝑛𝑛′ 〉)
and 𝑇𝑇 = (〈𝑞𝑞𝑐𝑐1, … , 𝑞𝑞𝑐𝑐𝑛𝑛〉, 〈𝑐𝑐1, … , 𝑐𝑐𝑛𝑛〉, 〈𝑎𝑎𝑐𝑐1, … ,𝑎𝑎𝑐𝑐𝑛𝑛〉, 〈𝑞𝑞𝑐𝑐1′ , … , 𝑞𝑞𝑐𝑐𝑛𝑛′ 〉) represent the
resulting tuples. In the splitting process, first states and last states don’t change.
It means that 𝑞𝑞𝑒𝑒1 to 𝑞𝑞𝑒𝑒𝑛𝑛 are equal to 𝑞𝑞1 to 𝑞𝑞𝑛𝑛 and 𝑞𝑞𝑐𝑐1′ to 𝑞𝑞𝑐𝑐𝑛𝑛′ are equal to 𝑞𝑞1′ to
𝑞𝑞𝑛𝑛′ . Transitions executing 𝜀𝜀 or other silent actions are executed through the first

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 69

tuple and don’t need to be split. So their related elements are places in tuple 𝐵𝐵
before 𝑡𝑡th elements. Thereby, 𝑒𝑒1 to 𝑒𝑒𝑚𝑚−1 are equal to 𝐸𝐸1 to 𝐸𝐸𝑚𝑚−1 and 𝑎𝑎1 to
𝑎𝑎𝑚𝑚−1 are equal to zero. Since these actions finish in one transition, 𝑞𝑞𝑒𝑒1′ to
𝑞𝑞𝑒𝑒𝑚𝑚−1

′ and 𝑞𝑞𝑐𝑐1 to 𝑞𝑞𝑐𝑐𝑚𝑚−1 are equal to 𝑞𝑞1′ to 𝑞𝑞𝑚𝑚−1
′ respectively. In addition, 𝑐𝑐1

to 𝑐𝑐𝑚𝑚−1 are 𝜀𝜀 and their related durations are equal to zero.

The rest of the elements in 𝐵𝐵 have the same duration as the 𝑡𝑡th. In tuple 𝑇𝑇,
those actions who are already finished, will be replaced by 𝜀𝜀 with zero duration.
Thence, their corresponding target and source in the first and second tuples
respectively, are the same as their original transition target. Furthermore those
that are not terminated yet, continue executing in the next transition and appear
in 𝑇𝑇. Hence 𝑎𝑎𝑐𝑐𝑚𝑚 to 𝑎𝑎𝑐𝑐𝑛𝑛 are equal to the remaining durations of actions, i.e.
𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑚𝑚. Since their related local transitions are split to two transitions, an
intermediate state 𝐼𝐼𝑞𝑞𝑧𝑧 is created between each two transitions. The information
of the source of the original transition before splitting is also kept in 𝐼𝐼𝑞𝑞𝑧𝑧 .𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜
to be used mainly in 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 functions.

For example, let us give the sorted tuple (〈0,0,0〉, 〈𝑐𝑐,𝐸𝐸, 𝑒𝑒〉, 〈3,5,7〉, 〈1,1,1〉)
to 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm as input. It can be seen that since no duration elements is
equal to zero, 𝑡𝑡 is equal to 1. For splitting the tuple through 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm,
the first tuple will have duration elements equal to the smallest element, but
with their original action elements. Furthermore, local sources of transitions
will remain unchanged, while only those local transitions will reach their targets
that have finished execution of their related actions. For those that have not
finished execution, an intermediate state should be added. Hence, the first split
tuple is (〈0,0,0〉, 〈𝑐𝑐, 𝐸𝐸, 𝑒𝑒〉, 〈3,3,3〉, 〈1, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉) where 𝐼𝐼𝑞𝑞1 and 𝐼𝐼𝑞𝑞2 are
intermediate states.

Duration elements of the second tuple are obtained by substituting 3 from
the original durations. Those actions for which the duration element vanishes,
will be replaced by 𝜀𝜀 which means their execution are terminated. It is obvious
that the source elements of the second tuple are the same as the target elements
of the first tuple. Furthermore, through this algorithm, the target elements of
the tuple are the same as the target elements of the non-split tuple. Thereby, the
second tuple is obtained as (〈1, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉, 〈𝜀𝜀,𝐸𝐸, 𝑒𝑒〉, 〈0,2,4〉, 〈1,1,1〉).

Algorithm 3.6: 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡((⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩),𝑡𝑡)
 𝑓𝑓𝑃𝑃𝑃𝑃 (𝑗𝑗: = 1 𝑡𝑡𝑃𝑃 𝑡𝑡 − 1){

𝑒𝑒𝑗𝑗 ≔ 𝐸𝐸𝑗𝑗
𝑎𝑎𝑒𝑒𝑗𝑗: = 𝑎𝑎𝑗𝑗
𝑞𝑞𝑒𝑒𝑗𝑗 ≔ 𝑞𝑞𝑗𝑗

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 70

𝑞𝑞𝑒𝑒𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′
𝑐𝑐𝑗𝑗 ≔ 𝜀𝜀
𝑎𝑎𝑐𝑐𝑗𝑗: = 0
𝑞𝑞𝑐𝑐𝑗𝑗 ≔ 𝑞𝑞𝑐𝑐𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′

 }𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃
 𝑓𝑓𝑃𝑃𝑃𝑃(𝑗𝑗: = 𝑡𝑡 𝑡𝑡𝑃𝑃 𝑜𝑜){

𝑒𝑒𝑗𝑗 ≔ 𝐸𝐸𝑗𝑗
 𝑎𝑎𝑒𝑒𝑗𝑗: = 𝑎𝑎𝑚𝑚

𝑞𝑞𝑒𝑒𝑗𝑗 ≔ 𝑞𝑞𝑗𝑗
𝑡𝑡𝑓𝑓�𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑚𝑚�{

𝑞𝑞𝑒𝑒𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′
𝑐𝑐𝑗𝑗: = 𝜀𝜀
𝑎𝑎𝑐𝑐𝑗𝑗 ≔ 0
𝑞𝑞𝑐𝑐𝑗𝑗 ≔ 𝑞𝑞𝑐𝑐𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′

 }𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡 𝑡𝑡𝑓𝑓(𝑎𝑎𝑗𝑗 > 𝑎𝑎𝑚𝑚)
𝑐𝑐𝑗𝑗 ≔ 𝐸𝐸𝑗𝑗
𝑎𝑎𝑐𝑐𝑗𝑗 ≔ 𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑚𝑚

 𝑞𝑞𝑒𝑒𝑗𝑗′ ≔ 𝑞𝑞𝑐𝑐𝑗𝑗 ≔ 𝐼𝐼𝑞𝑞𝑧𝑧
𝑡𝑡𝑓𝑓 (𝑞𝑞𝑗𝑗 ∈ 𝑄𝑄𝑗𝑗){

𝐼𝐼𝑞𝑞𝑧𝑧 . 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 ≔ 𝑞𝑞𝑗𝑗
}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡{

𝐼𝐼𝑞𝑞𝑧𝑧 . 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 ≔ 𝑞𝑞𝑗𝑗 . 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓

 𝑞𝑞𝑐𝑐𝑗𝑗′ ≔ 𝑞𝑞𝑗𝑗′
𝐼𝐼 + +

 }𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓
 }𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜((⟨𝑞𝑞𝑒𝑒⟩, ⟨𝑒𝑒⟩, ⟨𝑎𝑎𝑒𝑒⟩, ⟨𝑞𝑞𝑒𝑒′⟩), (⟨𝑞𝑞𝑐𝑐⟩, ⟨𝑐𝑐⟩, ⟨𝑎𝑎𝑐𝑐⟩, ⟨𝑞𝑞𝑐𝑐′⟩))

Algorithm 3.7: 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡�(⟨𝑞𝑞⟩, ⟨𝐸𝐸⟩, ⟨𝑎𝑎⟩, ⟨𝑞𝑞′⟩), (𝑡𝑡1, … 𝑡𝑡𝑛𝑛)�
 𝑓𝑓𝑃𝑃𝑃𝑃 (𝑡𝑡: = 1 𝑡𝑡𝑃𝑃 𝑜𝑜){

ℎ𝑡𝑡𝑖𝑖 ≔ 𝐸𝐸𝑖𝑖
𝑎𝑎ℎ𝑡𝑡𝑖𝑖 ≔ 𝑎𝑎𝑖𝑖
𝑞𝑞ℎ𝑡𝑡𝑖𝑖 ≔ 𝑞𝑞𝑖𝑖
𝑞𝑞ℎ𝑡𝑡𝑖𝑖

′ ≔ 𝑞𝑞𝑖𝑖′
 }𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃
 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 �(⟨𝑞𝑞ℎ⟩, ⟨ℎ⟩, ⟨𝑎𝑎ℎ⟩, ⟨𝑞𝑞ℎ′⟩)�

Step 3. Aggregating transitions

As explained above, after expanding elements of 𝑋𝑋, through Algorithm 3.8,
all tuples are compared and aggregated with each other if possible. For each

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 71

two tuple 𝐴𝐴𝑖𝑖 = (〈𝑞𝑞𝑖𝑖1, … , 𝑞𝑞𝑖𝑖𝑛𝑛〉, 〈𝐸𝐸𝑖𝑖1, … , 𝐸𝐸𝑖𝑖𝑛𝑛〉, 〈𝑎𝑎𝑖𝑖1, … , 𝑎𝑎𝑖𝑖𝑛𝑛〉, 〈𝑞𝑞𝑖𝑖1′ , … , 𝑞𝑞𝑖𝑖𝑛𝑛′ 〉) and
𝐴𝐴𝑗𝑗 = (〈𝑞𝑞𝑗𝑗1, … , 𝑞𝑞𝑗𝑗𝑛𝑛〉, 〈𝐸𝐸𝑗𝑗1, … ,𝐸𝐸𝑗𝑗𝑛𝑛〉, 〈𝑎𝑎𝑗𝑗1, … ,𝑎𝑎𝑗𝑗𝑛𝑛〉, 〈𝑞𝑞𝑗𝑗1′ , … , 𝑞𝑞𝑗𝑗𝑛𝑛′ 〉), first it should be
verified if for all non-𝜀𝜀 actions in 𝐴𝐴𝑖𝑖, the corresponding actions in 𝐴𝐴𝑗𝑗 are 𝜀𝜀 and
vice versa. If it was true, then it should be checked if sub-transitions belong to
the transitions with the same source, in other words, origin of 𝑞𝑞𝑖𝑖1 to 𝑞𝑞𝑖𝑖𝑛𝑛 are
equal to the origin of 𝑞𝑞𝑗𝑗1 to 𝑞𝑞𝑗𝑗𝑛𝑛. If so, the two tuple can be aggregated. The
aggregated tuple is composed of elements related to all non-𝜀𝜀 actions of 𝐴𝐴𝑖𝑖 and
𝐴𝐴𝑗𝑗. If in both of the tuples the action of an automaton was 𝜀𝜀, the corresponding
aggregated action would be 𝜀𝜀. The process of comparison and aggregation is
continued till 𝑋𝑋 doesn’t change anymore.

Algorithm 3.8: 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 (𝑋𝑋,𝑄𝑄1, … ,𝑄𝑄𝑛𝑛)
𝑋𝑋′ ≔ 𝑋𝑋
𝑀𝑀: = |𝑋𝑋|
𝑓𝑓𝑃𝑃𝑃𝑃 �𝑡𝑡: = 1 𝑡𝑡𝑃𝑃 𝑀𝑀 𝑃𝑃. 𝑡𝑡. �〈𝑞𝑞𝑡𝑡1, … ,𝑞𝑞𝑡𝑡𝑜𝑜〉, 〈𝐸𝐸𝑡𝑡1, … ,𝐸𝐸𝑡𝑡𝑜𝑜〉, 〈𝑎𝑎𝑡𝑡1, … ,𝑎𝑎𝑡𝑡𝑜𝑜〉, 〈𝑞𝑞𝑡𝑡1

′ , … ,𝑞𝑞𝑡𝑡𝑜𝑜
′ 〉� ∈ 𝑋𝑋�{

𝑓𝑓𝑃𝑃𝑃𝑃 ��𝑗𝑗: = 1 𝑡𝑡𝑃𝑃 𝑀𝑀 𝑃𝑃𝑡𝑡. (〈𝑞𝑞𝑗𝑗1, … ,𝑞𝑞𝑗𝑗𝑜𝑜〉 , 〈𝐸𝐸𝑗𝑗1, … ,𝐸𝐸𝑗𝑗𝑜𝑜〉, 〈𝑎𝑎𝑗𝑗1, … ,𝑎𝑎𝑗𝑗𝑜𝑜〉, 〈𝑞𝑞𝑗𝑗1
′ , … ,𝑞𝑞𝑗𝑗𝑜𝑜

′ 〉)

∈ 𝑋𝑋� 𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡 ≠ 𝑗𝑗� {
𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡: = 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡
𝑓𝑓𝑃𝑃𝑃𝑃 (𝑘𝑘: = 1 𝑡𝑡𝑃𝑃 𝑜𝑜){

//if non-epsilon actions are not equal
𝑡𝑡𝑓𝑓�𝐸𝐸𝑖𝑖𝑘𝑘 ≠ 𝜀𝜀 𝐸𝐸𝑜𝑜𝑎𝑎 𝐸𝐸𝑗𝑗𝑘𝑘 ≠ 𝜀𝜀 𝐸𝐸𝑜𝑜𝑎𝑎 (𝐸𝐸𝑖𝑖𝑘𝑘 ,𝑎𝑎𝑖𝑖𝑘𝑘) ≠ (𝐸𝐸𝑗𝑗𝑘𝑘 ,𝑎𝑎𝑗𝑗𝑘𝑘)�{

𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡: = 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡
𝑒𝑒𝑃𝑃𝑡𝑡𝐸𝐸𝑘𝑘

//if the sub-transitions don’t belong to the transitions with the same source
}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡 𝑡𝑡𝑓𝑓(�𝑞𝑞𝑡𝑡𝑘𝑘 ∈ 𝑄𝑄𝑘𝑘 𝐸𝐸𝑜𝑜𝑎𝑎 𝑞𝑞𝑡𝑡𝑘𝑘

′ <> 𝑞𝑞𝑗𝑗𝑘𝑘� 𝑃𝑃𝑃𝑃 (𝑞𝑞𝑡𝑡𝑘𝑘 ∉ 𝑄𝑄𝑘𝑘 𝐸𝐸𝑜𝑜𝑎𝑎 𝑞𝑞𝑡𝑡𝑘𝑘
′ <> 𝑞𝑞𝑗𝑗𝑘𝑘

′){

}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡 𝑡𝑡𝑓𝑓 �𝑞𝑞𝑡𝑡𝑘𝑘.𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜 <> 𝑞𝑞𝑗𝑗𝑘𝑘.𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜� {

𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡: = 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡
𝑒𝑒𝑃𝑃𝑡𝑡𝐸𝐸𝑘𝑘

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃
𝑡𝑡𝑓𝑓 (𝑐𝑐𝑃𝑃𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡 = 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡){

𝑓𝑓𝑃𝑃𝑃𝑃(𝐼𝐼: = 1 𝑡𝑡𝑃𝑃 𝑜𝑜){
𝑡𝑡𝑓𝑓(𝐸𝐸𝑖𝑖𝑧𝑧 = 𝜀𝜀){

𝑃𝑃𝑧𝑧 ≔ 𝐸𝐸𝑗𝑗𝑧𝑧
𝑎𝑎𝑃𝑃𝑧𝑧 ≔ 𝑎𝑎𝑗𝑗𝑧𝑧
𝑞𝑞𝑃𝑃𝑧𝑧 ≔ 𝑞𝑞𝑗𝑗𝑧𝑧
𝑞𝑞𝑃𝑃𝑧𝑧′ ≔ 𝑞𝑞𝑗𝑗𝑧𝑧′

}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡{
𝑃𝑃𝑧𝑧 ≔ 𝐸𝐸𝑖𝑖𝑧𝑧
𝑎𝑎𝑃𝑃𝑧𝑧 ≔ 𝑎𝑎𝑖𝑖𝑧𝑧
𝑞𝑞𝑃𝑃𝑧𝑧 ≔ 𝑞𝑞𝑖𝑖𝑧𝑧
𝑞𝑞𝑃𝑃𝑧𝑧′ ≔ 𝑞𝑞𝑖𝑖𝑧𝑧′

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 72

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃
𝑋𝑋 ≔ 𝑋𝑋 ∪ {〈𝑞𝑞𝑃𝑃1, … , 𝑞𝑞𝑃𝑃𝑛𝑛〉, 〈𝑃𝑃1, … , 𝑃𝑃𝑛𝑛〉, 〈𝑎𝑎𝑃𝑃1, … ,𝑎𝑎𝑃𝑃𝑛𝑛〉, 〈𝑞𝑞𝑃𝑃1′ … 𝑞𝑞𝑃𝑃𝑛𝑛′ 〉}

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑓𝑓𝑃𝑃𝑃𝑃
𝑡𝑡𝑓𝑓(𝑋𝑋′ ≠ 𝑋𝑋){

𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 (𝑋𝑋,𝑄𝑄1, … ,𝑄𝑄𝑛𝑛)
}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓

Step 4. Steps 2 and 3 will be repeated until a fixed point is reached.

Step 5. In the next section, a global transition relation will be built from the
preceding result.

3.2.3 Synchronous composition of DSDA weighted automata
In the previous section, local intermediate states were created to connect split
transitions. Union of the previous states in automata 𝐺𝐺𝑖𝑖 and newly added
intermediate states, build the new set of states named 𝑄𝑄𝑖𝑖′.

Definition 3.1 (synchronous composition of DSDA weighted automata): The
automaton resulting from the synchronous composition of 𝐺𝐺1, … , 𝐺𝐺𝑛𝑛 is denoted
as 𝐺𝐺𝑡𝑡𝑐𝑐 = (𝑄𝑄′,Σ,𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡,𝑄𝑄𝑚𝑚, 𝛿𝛿) where:

(1) 𝑄𝑄′ = (𝑄𝑄′1 × … × 𝑄𝑄′𝑛𝑛) in which 𝑄𝑄𝑖𝑖′ is the expansion of the set of states

𝑄𝑄𝑖𝑖 obtained by Algorithm 3.1.

(2) Σ = (Σ1 × … × Σ𝑛𝑛) where Σ𝑖𝑖 is the set of symbols in 𝐺𝐺𝑖𝑖.

(3) ∀[𝑞𝑞 = (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛)] ∈ 𝑄𝑄′, 𝑞𝑞 ∈ 𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 iff ∀𝑡𝑡 ∈ [1,𝑜𝑜]: 𝑞𝑞𝑖𝑖 ∈ 𝑄𝑄𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 where

𝑄𝑄𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 is the set of initial locations in local DSDA weighted automaton

𝐺𝐺𝑖𝑖.

(4) ∀[𝑞𝑞 = (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛)] ∈ 𝑄𝑄′, 𝑞𝑞 ∈ 𝑄𝑄𝑚𝑚 iff ∀𝑡𝑡 ∈ [1, 𝑜𝑜]: 𝑞𝑞𝑖𝑖 ∈ 𝑄𝑄𝑖𝑖𝑚𝑚 where 𝑄𝑄𝑖𝑖𝑚𝑚

is the set of marked locations in local DSDA weighted automata 𝐺𝐺𝑖𝑖.

(5) 𝑋𝑋 is defined as

𝑋𝑋 = {�(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … , 𝐸𝐸𝑛𝑛), (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛), (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′)�| (∀𝑡𝑡 ∈

[1,𝑜𝑜]:𝐸𝐸𝑖𝑖 ∈ 𝛴𝛴𝑖𝑖,𝑎𝑎𝑖𝑖 = 𝑎𝑎(𝐸𝐸𝑖𝑖), 𝑞𝑞𝑖𝑖, 𝑞𝑞𝑖𝑖′ ∈ 𝑄𝑄𝑖𝑖) ∧ � ∀𝑡𝑡 ≠ 𝑗𝑗 ∈ [1, 𝑜𝑜]: 𝑡𝑡𝑓𝑓 𝐸𝐸𝑖𝑖 ∈

�Σ𝑖𝑖 ∩ Σj� → �𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑗𝑗� ∧ (𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗)� ∧ (𝑞𝑞𝑖𝑖,𝐸𝐸𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑞𝑞𝑖𝑖′) ∈ 𝛿𝛿𝑖𝑖}.

(6) 𝛿𝛿 is the transition relation of the composed automata and defined as

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 73

𝛿𝛿 = ��(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … ,𝐸𝐸𝑛𝑛),𝑎𝑎, (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′)���𝑎𝑎 = 𝑡𝑡𝐸𝐸𝐸𝐸𝑖𝑖∈[1,𝑛𝑛] 𝑎𝑎𝑖𝑖�
∧ �(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛), (𝐸𝐸1, … ,𝐸𝐸𝑛𝑛), (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛), (𝑞𝑞1′ , … , 𝑞𝑞𝑛𝑛′)�
∈ 𝑋𝑋′ ∧ (∀𝑡𝑡 ≠ 𝑗𝑗 ∈ [1,𝑜𝑜]:𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗)}

where the set 𝑋𝑋′ is the expansion of the set 𝑋𝑋 through Algorithm 3.1.

In each transition of the composition, 𝑞𝑞’𝑖𝑖 is either the same as 𝑞𝑞𝑖𝑖 or is the
state reached from 𝑞𝑞𝑖𝑖 by partially or totally execution of action 𝐸𝐸𝑖𝑖 that takes
𝑎𝑎 time units. In a transition, all local sub-actions have the same durations. This
rule is considered to enable maximum simultaneity of tasks and to prevent
unnecessary delays in task executions.

3.2.4 A simple example of synchronous composition (Example 2-continue)
For constructing the synchronous composition of different components of the
problem, firstly the set 𝑋𝑋 should be made and expanded through algorithms
represented in section 3.2.2. To this aim, at the beginning, the set of transition
relations related to each automaton should be defined:

𝛿𝛿1 = {(0,𝐸𝐸, 5,0), (0, 𝑐𝑐, 2,0)}

𝛿𝛿2 = {(0, 𝑒𝑒, 8,0)}

𝛿𝛿3 = {(0,𝐸𝐸, 5,1)}

𝛿𝛿4 = {(0, 𝑒𝑒, 8,1)}

𝛿𝛿5 = {(0, 𝑐𝑐, 2,1)}

𝛿𝛿6 = {(0,𝐸𝐸, 5,1), (1, 𝑐𝑐, 2,2)}

According to local set of transition relations, the set 𝑋𝑋 can be defined:

𝑋𝑋(0) = 𝑋𝑋 = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉),

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉),

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉),

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉),

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉)}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 74

After building 𝑋𝑋, its elements should be expanded according to Algorithm
3.1 explained in the previous section. In this algorithm, first the information of
the source of original transition relations before splitting are kept in 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜. 𝑞𝑞𝑗𝑗.
In fact, the origin of each non-intermediate state is equal to itself, i.e.
𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜. 𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑗𝑗.

In the next step, 𝑋𝑋(0) is expanded through 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 algorithm.
There exist some tuples in 𝑋𝑋(0) in which duration of non-silent actions (or sub-
actions) are not equal. These tuples should be split to tuples that have either
zero or equal duration-elements. For example in the tuple
(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉), non-zero duration
elements are either 2 or 8 and so are not equal. Thus, it should be split to tuples
with the same duration elements. To this end, first elements of a tuple are sorted
respecting to ascending order of their related duration elements. The sorted
tuple is (〈1,0,0,1,0,0〉, 〈𝜀𝜀, 𝑐𝑐, 𝑐𝑐, 𝑐𝑐, 𝑒𝑒, 𝑒𝑒〉, 〈0,2,2,2,8,8〉, 〈1,0,1,2,0,1〉). When
sorting, its original order is kept in vector 𝑡𝑡 to enable restoring its order later.
After sorting, it should be split through algorithm 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡. In this
algorithm, first it is assessed if duration-elements are equal. As explained in
previous section, variable 𝑒𝑒 that was initialized to 1 in algorithm
𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝, determines number of times that a tuple goes through
algorithm 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡. Therefore, in the first iteration, 𝑒𝑒 is equal to 1
and duration-elements are not equal. Hence, the tuple should be split through
𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 algorithm. The output is two tuples (〈1,0,0,1,0,0〉, 〈𝜀𝜀, 𝑐𝑐, 𝑐𝑐, 𝑐𝑐, 𝑒𝑒, 𝑒𝑒〉,
〈0,2,2,2,2,2〉, 〈1,0,1,2, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉) and (〈1,0,1,2, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉, 〈𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑒𝑒, 𝑒𝑒〉,
〈0,0,0,0,6,6〉, 〈1,0,1,2,0,1〉). In addition, the origins of 𝐼𝐼𝑞𝑞1 and 𝐼𝐼𝑞𝑞2 are equal to
0, i.e. 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜. 𝐼𝐼𝑞𝑞1 = 𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜. 𝐼𝐼𝑞𝑞2 = 0. As a result, the order of the first tuple is
restored as (〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉) and
it is stored in 𝑋𝑋. Then the second tuple goes through the splitting process by
recalling 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡 and considering the second tuple as input.

Therefore as the second iteration of the function, (〈1,0,1,2, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2〉,
〈𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑒𝑒, 𝑒𝑒〉, 〈0,0,0,0,6,6〉, 〈1,0,1,2,0,1〉) goes through the process of
splitting. For this purpose, firstly duration elements of the tuple are evaluated.
Both non-zero durations are 6 and equal and therefore there is no need for
splitting. 𝑒𝑒 is equal to two, which means that the tuple is the result of a previous
splitting. Therefore, according to vector 𝑡𝑡, the order of the tuple should be
restored. The result is (〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈 (𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀)〉, 〈0,6,0,6,0,0〉,
〈0,0,1,1,1,2〉) that should be stored in 𝑋𝑋.

All elements of 𝑋𝑋 should be processed by algorithm 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 75

As the result of this process, some elements are added to the set 𝑋𝑋(0) that are
shown in bold letters. The resulting set is as follows:

𝑋𝑋𝑆𝑆 = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉),

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉),

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉),

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐,𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉),

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉),

(〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟎𝟎,𝟎𝟎,𝟏𝟏〉, 〈𝒄𝒄,𝒃𝒃,𝜺𝜺,𝒃𝒃, 𝒄𝒄, 𝒄𝒄〉, 〈𝟐𝟐,𝟐𝟐,𝟎𝟎,𝟐𝟐,𝟐𝟐,𝟐𝟐〉, 〈𝟎𝟎,𝒒𝒒𝟏𝟏,𝟏𝟏,𝒒𝒒𝟐𝟐,𝟏𝟏,𝟐𝟐〉),

(〈𝟎𝟎,𝒒𝒒𝟏𝟏,𝟏𝟏,𝒒𝒒𝟐𝟐,𝟏𝟏,𝟐𝟐〉, 〈𝜺𝜺,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝜺𝜺, 𝜺𝜺〉, 〈𝟎𝟎,𝟔𝟔,𝟎𝟎,𝟔𝟔,𝟎𝟎,𝟎𝟎〉, 〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟐𝟐〉),

(〈𝟎𝟎,𝟎𝟎,𝟎𝟎,𝟎𝟎,𝟎𝟎,𝟎𝟎〉, 〈𝒂𝒂,𝒃𝒃,𝒂𝒂,𝒃𝒃, 𝜺𝜺,𝒂𝒂〉, 〈𝟓𝟓,𝟓𝟓,𝟓𝟓,𝟓𝟓,𝟎𝟎,𝟓𝟓〉, 〈𝟎𝟎,𝒒𝒒𝟑𝟑,𝟏𝟏,𝒒𝒒𝟒𝟒,𝟎𝟎,𝟏𝟏〉),

(〈𝟎𝟎,𝒒𝒒𝟑𝟑,𝟏𝟏,𝒒𝒒𝟒𝟒,𝟎𝟎,𝟏𝟏〉, 〈𝜺𝜺,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝜺𝜺, 𝜺𝜺〉, 〈𝟎𝟎,𝟑𝟑,𝟎𝟎,𝟑𝟑,𝟎𝟎,𝟎𝟎〉, 〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟏𝟏,𝟎𝟎,𝟏𝟏〉)}

After expanding 𝑋𝑋(0) by means of splitting and obtaining 𝑋𝑋𝑆𝑆, 𝑋𝑋𝑆𝑆 should be
expanded through 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 algorithm (Algorithm 3.8). In
this algorithm, all tuples are assessed pairwise to be compatible. If they were
compatible, they should be integrated to one tuple. By comparing first tuple
(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉) with other tuples in
the set, it can be found that it is compatible with some other tuples like
(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉). The integrated tuple
is (〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒, 𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉) which already
exists in the set. There are some other tuples that integrating them doesn’t have
any effect on the set. But during this comparison, two tuples are be found that
are compatible and also their integration enlarges the set 𝑋𝑋. As it is clear, action
elements of (〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉) and
(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,3,0,3,0,0〉, 〈0,0,1,1,0,1〉) are
compatible. Because firstly, if one of the actions is not 𝜀𝜀, its corresponding
element in the other tuple is 𝜀𝜀. Secondly, since the both origin state for 𝐼𝐼𝑞𝑞3 and
𝐼𝐼𝑞𝑞4 are 1, elements in 〈0,0,1,0,0,1〉 and 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉 have the same
origin. Integrating these two tuples yields tuple
(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,3,0,3,2,2〉, 〈0,0,1,1,1,2〉) that will be
integrated in 𝑋𝑋. Thereby 𝑋𝑋(1) is as follows:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 76

𝑋𝑋(1) = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉),

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉),

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉),

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉),

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉),

(〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,6,0,6,0,0〉, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,5,5,5,0,5〉, 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉),

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,3,0,3,0,0〉, 〈0,0,1,1,0,1〉),

(〈𝟎𝟎, 𝑰𝑰𝒒𝒒𝟑𝟑,𝟏𝟏, 𝑰𝑰𝒒𝒒𝟒𝟒,𝟎𝟎,𝟏𝟏〉, 〈𝒄𝒄,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝒄𝒄, 𝒄𝒄〉, 〈𝟐𝟐,𝟑𝟑,𝟎𝟎,𝟑𝟑,𝟐𝟐,𝟐𝟐〉, 〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟐𝟐〉)}

In this moment, one repetition is finished, whereas since 𝑋𝑋(1) is not equal to
𝑋𝑋(0), the process of expansion by splitting and aggregation should be done once
more. Thus, first function 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 is called for the new set 𝑋𝑋(1)
as input. This algorithm is such that whenever it investigates any tuple, it
includes it in the set 𝑆𝑆 to prevent its reinvestigation. Therefore all the processed
tuples in the previous iteration were integrated in 𝑆𝑆. Comparing 𝑋𝑋(1) and 𝑆𝑆
reveals that that only the recently added tuple
(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,3,0,3,2,2〉, 〈0,0,1,1,1,2〉) is not
processed. Therefore, it should be sorted to obtain ascending order of duration-
elements. The sorted tuple is (〈1,0,0,1, 𝐼𝐼𝑞𝑞3, 𝐼𝐼𝑞𝑞4〉, 〈𝜀𝜀, 𝑐𝑐, 𝑐𝑐, 𝑐𝑐, 𝑒𝑒, 𝑒𝑒〉,
〈0,2,2,2,3,3〉, 〈1,0,1,2,0,1〉). Since its non-zero duration-elements are not equal,
it should be split through 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 function.

The result of the 𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡 function is (〈1,0,0,1, 𝐼𝐼𝑞𝑞3, 𝐼𝐼𝑞𝑞4〉, 〈𝜀𝜀, 𝑐𝑐, 𝑐𝑐, 𝑐𝑐, 𝑒𝑒, 𝑒𝑒〉,
〈0,2,2,2,2,2〉, 〈1,0,1,2, 𝐼𝐼𝑞𝑞5, 𝐼𝐼𝑞𝑞6〉) and (〈1,0,1,2, 𝐼𝐼𝑞𝑞5, 𝐼𝐼𝑞𝑞6〉, 〈𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑒𝑒, 𝑒𝑒〉,
〈0,0,0,0,1,1〉, 〈1,0,1,2,0,1〉). In the next step, the order of the first tuple is
restored as (〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈 (2,2,0,2,2,2)〉,
〈0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2〉). Then this tuple is integrated in the set 𝑋𝑋. In the next step,
the algorithm 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑃𝑃𝑜𝑜𝑡𝑡_𝑡𝑡𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡 is executed anew with the second tuple
(〈1,0,1,2, 𝐼𝐼𝑞𝑞5, 𝐼𝐼𝑞𝑞6〉, 〈𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑒𝑒, 𝑒𝑒〉, 〈0,0,0,0,1,1〉, 〈1,0,1,2,0,1〉) as input. Since
all non-zero duration-elements are equal (i.e. 𝑡𝑡𝑞𝑞𝐸𝐸 = 1) and the tuple is a result

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 77

of previous splitting process (i.e. 𝑒𝑒 > 1), firstly its order is restored and then
the result is included in 𝑋𝑋. The tuple with its original order is
(〈0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,1,0,1,0,0〉, 〈1,0,1,2,0,1〉) that is stored in
𝑋𝑋. Here, 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 algorithm ends and 𝑋𝑋𝑆𝑆 is equal to:

𝑋𝑋𝑆𝑆 = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉),

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉),

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉),

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉),

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉),

(〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,6,0,6,0,0〉, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,5,5,5,0,5〉, 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉),

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,3,0,3,0,0〉, 〈0,0,1,1,0,1〉),

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,3,0,3,2,2〉, 〈0,0,1,1,1,2〉),

(〈𝟎𝟎, 𝑰𝑰𝒒𝒒𝟑𝟑,𝟏𝟏, 𝑰𝑰𝒒𝒒𝟒𝟒,𝟎𝟎,𝟏𝟏〉, 〈𝒄𝒄,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝒄𝒄, 𝒄𝒄〉, 〈𝟐𝟐,𝟐𝟐,𝟎𝟎,𝟐𝟐,𝟐𝟐,𝟐𝟐〉, 〈𝟎𝟎, 𝑰𝑰𝒒𝒒𝟓𝟓,𝟏𝟏, 𝑰𝑰𝒒𝒒𝟔𝟔,𝟏𝟏,𝟐𝟐〉),

(〈𝟎𝟎, 𝑰𝑰𝒒𝒒𝟓𝟓,𝟏𝟏, 𝑰𝑰𝒒𝒒𝟔𝟔,𝟏𝟏,𝟐𝟐〉, 〈𝜺𝜺,𝒃𝒃, 𝜺𝜺,𝒃𝒃, 𝜺𝜺, 𝜺𝜺〉, 〈𝟎𝟎,𝟏𝟏,𝟎𝟎,𝟏𝟏,𝟎𝟎,𝟎𝟎〉, 〈𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟐𝟐〉)}

In the next step, 𝑋𝑋𝑆𝑆 is processed through 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜
algorithm. Whereas after processing, it is found that this algorithm can’t change
and expand 𝑋𝑋𝑆𝑆. So 𝑋𝑋(2) is equal to 𝑋𝑋𝑆𝑆.

In the next repetition, 𝑋𝑋(2) is investigated through 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝
algorithm; whereas since all its members are previously processed, they are not
processed and split anymore. Therefore 𝑋𝑋(2) is assigned to 𝑋𝑋𝑆𝑆. Since 𝑋𝑋𝑆𝑆 is not
changed from the previous process of 𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑜𝑜𝑎𝑎_𝑒𝑒𝑒𝑒_𝐸𝐸𝑝𝑝𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜, it doesn’t
changed anymore by this algorithm and is again assigned to 𝑋𝑋(3). Thereby, the
resulting 𝑋𝑋′ is as follows:

𝑋𝑋′ = 𝑋𝑋(3) = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,0,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,0,1,2〉),

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,1,2〉),

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 78

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,8,0,8,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,0,1,0,0〉),

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 〈5,0,5,0,0,5〉, 〈0,0,1,1,0,1〉),

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 〈2,0,0,0,2,2〉, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,8,0,8,0,0〉, 〈0,0,1,1,0,1〉),

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,8,5,8,0,5〉, 〈0,0,1,1,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉),

(〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,6,0,6,0,0〉, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 〈5,5,5,5,0,5〉, 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉),

�(0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1), (𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀), (0,3,0,3,0,0), (0,0,1,1,0,1)�,

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,3,0,3,2,2〉, 〈0,0,1,1,1,2〉),

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 〈2,2,0,2,2,2〉, 〈 (0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2)〉),

(〈0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 〈0,1,0,1,0,0〉, 〈0,0,1,1,1,2〉)}

After expansion of 𝑋𝑋, synchronous composition could be built. According
to the definition of synchronous composition in the previous section, the set of
composed transition relations can be achieved as follows:

𝛿𝛿 = {(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝜀𝜀,𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉,5, 〈0,0,1,0,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 2, 〈0,0,1,0,1,2〉),

(〈0,0,1,0,1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 8, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 8, 〈0,0,0,1,0,0〉),

(〈0,0,0,1,0,0〉, 〈𝐸𝐸, 𝜀𝜀, 𝐸𝐸, 𝜀𝜀, 𝜀𝜀,𝐸𝐸〉, 5, 〈0,0,1,1,0,1〉),

(〈0,0,1,1,0,1〉, 〈𝑐𝑐, 𝜀𝜀, 𝜀𝜀, 𝜀𝜀, 𝑐𝑐, 𝑐𝑐〉, 2, 〈0,0,1,1,1,2〉),

(〈0,0,1,0,0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 8, 〈0,0,1,1,0,1〉),

(〈0,0,1,0,0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 2, 〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉),

(〈0, 𝐼𝐼𝑞𝑞1, 1, 𝐼𝐼𝑞𝑞2, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 6, 〈0,0,1,1,1,2〉),

(〈0,0,0,0,0,0〉, 〈𝐸𝐸, 𝑒𝑒,𝐸𝐸, 𝑒𝑒, 𝜀𝜀,𝐸𝐸〉, 5, 〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉),

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 3, 〈0,0,1,1,0,1〉),

(〈0, 𝐼𝐼𝑞𝑞3, 1, 𝐼𝐼𝑞𝑞4, 0,1〉, 〈𝑐𝑐, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝑐𝑐, 𝑐𝑐〉, 2, 〈 (0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2)〉),

(〈0, 𝐼𝐼𝑞𝑞5, 1, 𝐼𝐼𝑞𝑞6, 1,2〉, 〈𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝑒𝑒, 𝜀𝜀, 𝜀𝜀〉, 1, 〈0,0,1,1,1,2〉)}

According to the composed transition relation set, the synchronous
composition of the automata in Example 2 (Figure 3.1) is obtained as Figure

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 79

3.3. In this figure, in the upper trajectory (𝑇𝑇1), tasks 𝐸𝐸, 𝑐𝑐 and 𝑒𝑒 are executed
sequentially. It can be seen that this trajectory takes 15 time units. While in the
lower trajectory (𝑇𝑇2), first 𝐸𝐸 and 𝑒𝑒 are executed simultaneously in 5 time units,
then task 𝑐𝑐 is executed in parallel with the remaining part of 𝑒𝑒 in 2 time units.
After finishing 𝑐𝑐, 1 time units remains from execution of 𝑒𝑒 that is done
individually.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 80

Figure 3.3. Synchronous composition of automata in Example 2

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 81

3.3 Finding the optimal schedule
In order to find the minimum makespan through synchronous composition of
WA, an optimal time trajectory should be found from the initial state of the
synchronous composition to its marked state.

Let 𝛼𝛼 = 𝑞𝑞0
𝐴𝐴1/𝑑𝑑1�⎯⎯� 𝑞𝑞1 …

𝐴𝐴𝑛𝑛/𝑑𝑑𝑛𝑛�⎯⎯⎯� 𝑞𝑞𝑛𝑛 be a finite run of a weighted automaton
where 𝐴𝐴𝑘𝑘 is a set of actions executing during 𝑘𝑘th transition and 𝑎𝑎𝑘𝑘 denotes the
duration of 𝑘𝑘th transition of the run. The duration of 𝛼𝛼, 𝑎𝑎𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜(𝛼𝛼), is the
sum ∑𝑘𝑘∈[1,𝑛𝑛]𝑎𝑎𝑘𝑘.

For a state 𝑞𝑞, the minimal duration for reaching 𝑞𝑞, 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞), is the
infimum of the durations of the finite trajectories which end in 𝑞𝑞 (Behrmann,
Fehnker, Hune, Larsen, Pettersson, Romijn, et al. 2001):

𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞) = inf {𝑎𝑎𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜(𝛼𝛼)|𝛼𝛼:𝐸𝐸 𝑃𝑃𝑡𝑡𝑜𝑜 𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝 𝑡𝑡𝑜𝑜 𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡 𝑞𝑞} (3.1)

Gerd Behrmann et al. (2001) suggest an algorithm for determining the
minimum cost for reaching a target state satisfying a property in a priced time
automata. Inspired from their algorithm, Algorithm 3.9 is presented that
minimizes time of reaching a marked state from the initial state in a WA and
yields the fastest trajectory.

In this algorithm, all encountered states are included in two data structures
𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 and 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 that store explored and unexplored states, respectively.
Initially, 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 is empty and 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 includes the initial state. The global
variable 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜, which is initially set to ∞, stores the lowest duration
achieved so far for reaching the marked state. The optimum schedule is a
trajectory from the initial state 𝑞𝑞0 to the marked state 𝑞𝑞𝑚𝑚 with the minimal
duration that is initially empty.

In each iteration, a state 𝑞𝑞 is taken from 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 and is checked if it
corresponds to the marked state 𝑞𝑞𝑚𝑚. If it was the marked state and 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞)
was less than 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜, it stores 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞) as the minimum 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜
and its related trajectory 𝛼𝛼 as the optimal schedule 𝐹𝐹𝑃𝑃𝑡𝑡𝑆𝑆𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡. Then it adds
the state 𝑞𝑞 to 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 and its successors to 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝. In this algorithm, 𝑞𝑞 → 𝑞𝑞′
means 𝑞𝑞′ is reachable from 𝑞𝑞.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 3: Synchronous composition of weighted automata - application to
MRS scheduling

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 82

Algorithm 3.9: 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸_𝑃𝑃𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡

𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜 ≔ ∞

𝐹𝐹𝑃𝑃𝑡𝑡𝑆𝑆𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡 ≔ ∅

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ≔ 𝑞𝑞0

𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 ≔ ∅

𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 (𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ≠ ∅){

𝑃𝑃𝑡𝑡𝐸𝐸𝑡𝑡𝑐𝑐𝑡𝑡 𝑞𝑞 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝

𝑡𝑡𝑓𝑓 (𝑞𝑞 = 𝑞𝑞𝑚𝑚 𝐸𝐸𝑜𝑜𝑎𝑎 ∃𝛼𝛼 𝑃𝑃. 𝑡𝑡.𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞) = 𝑎𝑎𝑡𝑡𝑃𝑃𝐸𝐸𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜(𝛼𝛼) 𝐸𝐸𝑜𝑜𝑎𝑎 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃(𝑞𝑞) < 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜){

𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜 ≔ 𝑡𝑡𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑃𝑃𝑡𝑡(𝑞𝑞)

𝐹𝐹𝑃𝑃𝑡𝑡𝑆𝑆𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡 ≔ 𝛼𝛼

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓

𝐸𝐸𝑎𝑎𝑎𝑎 𝑞𝑞 𝑡𝑡𝑃𝑃 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎

𝑓𝑓𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸 𝑞𝑞′𝑃𝑃. 𝑡𝑡. 𝑞𝑞 → 𝑞𝑞′: 𝐸𝐸𝑎𝑎𝑎𝑎 𝑞𝑞′𝑡𝑡𝑃𝑃 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑡𝑡𝐸𝐸𝑘𝑘𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜,𝐹𝐹𝑃𝑃𝑡𝑡𝑆𝑆𝑐𝑐ℎ𝑡𝑡𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡

The algorithm terminates when 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 is empty and this happens when
no more state remains in the state space to be explored. This means that the
algorithm searches the entire state space.

3.4 Conclusion
In this chapter, multi-resource sharing scheduling problem is solved through
time-optimal reachability analysis on WA. For this purpose, different WA
models of the problem should be composed. Whereas the existing synchronous
compositions are either not capable of showing simultaneous execution of
actions in a scheduled system or the minimum makespan cannot be found
through the composition. Hence, a new synchronous composition is presented
that shows simultaneous execution of non-conflicting tasks and in addition,
contains trajectories through which the minimum makespan can be obtained. In
this composition, every task may be needed to be split to two or more sequential
parts. Each part may be done in parallel with one action or a part of an action.
In that way, a set of tasks can be executed in a shorter time. After building the
synchronous composition of the problem, a schedule can be found by doing
time-optimal reachability analysis to find the fastest trajectory from the initial
to the marked state.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 83

4
Multi-resource sharing
scheduling considering
uncontrollable environment

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 84

4 Multi-resource sharing scheduling
considering uncontrollable
environment

4.1 Introduction
In Chapters 2 and 3, it is considered that all the actions are controllable which
means all the actions can be controlled by the controller. All the information
related to the tasks are known in advance and are certain. The same goes for the
resources who are assumed to be reliable. In this section, some of the
parameters defining the scheduling system are considered to be uncontrollable.

Uncontrollability in the scheduling and industrial problems have been
studied by various researchers. Problems considering uncontrollability can be
solved through supervisory control theory. Furthermore, as explained in
previous chapters, the advantage of using automata modeling approach for
modeling problems is obtaining visual and expressive models. Therefore, the
intent of this chapter is to solve the problem by means of automata theory and
supervisory control. Thus, a literature review is conducted to investigate
various kinds of uncontrollable actions in the industry and also different types
of automata that are able to model uncontrollability concept.

4.1.1 State of the art
Girault et al. (2003) present a new scheduling heuristic called Fault-Tolerance
Based Active Replication to produces distributed fault-tolerant schedules for
embedded systems. The heuristic algorithm is implemented in the tool
SYNDEX. This method can be applied to critical embedded systems for which
software should be fault-tolerant. The aim of the scheduling problem is to
optimize the critical path of the obtained schedule.

Abdeddaïm, Asarin, and Maler (2006a) use an extension of timed automata
for solving the classical job-shop problem. The authors divide the transitions to
controllable and uncontrollable. They propose shortest path algorithms for
timed automata to find the optimal schedules. They also investigate non-lazy
scheduling with uncertainty in task duration.

Behrmann et al. (2009) develop a tool named TIGA to solve games based
on timed game automata with respect to reachability and safety properties. The

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 85

tool can output strategies to satisfy a desired condition or reach to the goal state,
or let the user play as environment and against the controller. It should be
mentioned that timed game automata consists of both controllable and
uncontrollable actions.

Abdeddaïm, Asarin, and Sighireanu (2009) present a subclass of timed game
automata, called Task TGA which is defined as networks of communicating
tasks. In this network, the start time of tasks are deterministic, while their
duration are uncertain. This paper presents an approach to solve finite-horizon
reachability games on Task TGA by building strategies in the form of Simple
Temporal Networks with Uncertainty. They probe that finding this kind of
strategy is NP-complete. This study can be used in scheduling problems that
consider task-duration uncertainty.

David, Illum, and Larsen (2009) proposed a framework to model and
analyze a variety of schedulability scenarios for problems that deal with
multiprocessor systems, timing uncertainties in arrival and execution times,
possible dependencies of tasks and preemption of resources. The problem is
modeled by timed automata.

Komenda, Lahaye, and Boimond (2009) investigate supervisory control of
(max, +) automata. To this end, parallel composition of (max, +) automata is
presented for which, behavior corresponds to generalized version of Hadamard
product. The concept of uncontrollability in this study is such that
uncontrollable events can neither be forbidden and can nor be delayed.

Komenda, Lahaye, and Boimond (2010) study behavior of synchronous
composition of interval weighted automata resulting in multi-event interval
weighted automata. This type of automata is defined as automata with weights
in a product dioid. In fact, they are an extension of (max,+) automata since
instead of exact durations, temporal constraints are assigned to transitions..

 Dumitrescu et al. (2010) propose a framework for multi-criteria optimal
controller synthesis to model and optimize fault-tolerant distributed systems
considering task execution cost and its service quality. Moreover, to combine
criteria, the authors consider three different methods: aggregation,
hierarchization and translation. To model the multi-task system, a type of WA
called labeled transition system is defined based on input and outputs events.

Marangé et al. (2011) propose a job-shop scheduling model by
communicating automata to handle reconfiguration of a manufacturing plant
due to resource failure. Following a reconfiguration request, a scheduling is

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 86

generated for a set of products that are produced by a set of machines. This
schedule can be obtained by means of reachability analysis on the model.

Atto, Martinez, and Amari (2011) provide a (max, +)-based method to
supervise discrete event systems subject to tight time constraints. The
supervision is designed to guarantee temporal constraints without having an
intense effect on the dynamic behavior of the system. The authors model the
studied system as timed event graphs represented by linear (max, +) state
equations. The method is applied to an example of industrial manufacturing
plant subject to strict temporal constraints, the thermal treatment of rubber parts
for the automotive industry. In this study, temporal constraints are set to avoid
losing parts for the reason of possible failure in the transport device.

Su, Van Schuppen, and Rooda (2012) addresse a minimum-makespan
supervisory synthesis job shop problem. They assume also occurrence of
uncontrollable events such as malfunction of a component when the system
reaches a certain state, being unable to execute a program immediately when
the operating system is still retrieving all relevant execution resources for this
program according to a pre-specified internal mechanism unknown to the end
user, producing imperfect product, etc. The makespan of the problem is
computed through theory of heap-of-pieces. A timed supervisory control map
is also presented that is capable of implementing the synthesized minimum-
makespan sublanguage. The author models the problem by weighted and un-
weighted deterministic finite state automata.

Delaval et al. (2013) deal with discrete control of computing systems
administration. The authors provide an approach based on a synchronous
programming language BZR to solve the control problem. Hierarchical and
parallel automata can be built through BZR language. The defined parallel
automata is the same as what is defined in the previous chapters of this thesis.
While in the case of hierarchy, the sub-automata define the behavior of each
state in the upper-level automaton. The BZR compiler is implemented on top
of the Heptagon compiler and the SIGALI DCS tool. In this language,
uncontrollable events can be given as input variables. While the uncontrollable
environment can be modeled through this language, it does not consider timing
aspect, which is an indispensable parameter in scheduling.

The idle time between two consecutive tasks may cause significant impact
on the quality of wafer in certain wafer fabrication processes needing high
temperature and pressure. Therefore, in such process, a cluster tool must
facilitate production of wafers through a steady schedule to provides high wafer
quality. Kim, Zhou, and Lee (2014) propose a method for steady scheduling of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 87

a single-armed cluster tool based on timed event graph and (max,+) algebra.
They concern disruptive events during the fabrication process, such as wafer
alignment failure. Therefore, the authors develop strategies that change the
system dynamics of a cluster tool by delaying some tasks to stabilize disrupted
schedule in a finite time.

Boukra, Lahaye, and Boimond (2015) propose new representations for
(max,+) automata in order to describe their extremal behaviors. Consequently,
the defined automata is applied to performance evaluation application.
Thereby, the worst case and optimum case of behavior of automata are
formulated in a form that has polynomial complexity. Furthermore, the authors
defines an equation to find the start time of actions in optimal and worst cases.
Thus, if the automaton corresponds to the synchronous composition of
components of a scheduling problem, the minimum makespan and start time of
tasks can be found through the presented formula for the performance
evaluation. In this article, the presented formulae are applied to an example of
scheduling problem. Whereas, the complexity of finding the schedule is not
discussed. Supervisory control of automata and the notion of uncontrollability
is studied in this paper. While, uncontrollability of actions is restricted to not
delaying.

Fernández Anta et al. (2015) deal with an online system consisting of tasks
with different execution times that arrive continuously to be execute on sets of
machine which are subject to crashes and restarts. The authors model and
investigate the effect of parallelism and failures on the competitiveness of this
system.

Lu, Cui, and Han (2015) study a single-machine scheduling problem with
resource availability constraints. Unexpected breakdowns may occur for the
machine which follow the Weibull failure function. Therefore, preventive
maintenances are considered in the scheduling problem. The authors propose a
model in which the sequence of jobs, the preventive maintenance times and the
planned completion times of jobs are proactively determined simultaneously.
The objective of the scheduling problem is to optimize the robustness and
stability. To this end, a genetic algorithm is proposed.

Cimatti, Micheli, and Roveri (2015) address the problem of temporal
planning considering uncontrollable duration of actions. The authors develop
and algorithm to generate robust plans despite possible uncontrollable
durations. They conducted an experimental feasibility evaluation by
implementing the proposed approach in the planning tool COLIN.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 88

Kundakcı and Kulak (2016) propose efficient hybrid Genetic
Algorithm methodologies in order to minimize makespan of a dynamic job
shop scheduling problem. In this problem, uncontrollable events such as
random job arrivals, machine breakdowns and changes in processing time are
considered.

Alves et al. (2016) addresses a supervisory scheduling problem in
manufacturing systems in order to maximize parallelism among resources.
They model the problem through deterministic finite automata. In addition to
predictable uncontrollable events, unpredictable uncontrollable events may
occur during the execution of sequence of tasks. The main objective
of this study is not to minimize the makespan, but to maximize the parallelism
of working resources.

Dorndorf, Jaehn, and Pesch (2017) tackle the problem of assigning flights to
airport gates. In this problem, starting and completion times of flight activities
are stochastic and the goal is to minimize the number of violations of any kind
of constraints like shadow restrictions. In addition, they develop an online
decision support system to propose recovery actions in the case of constraint
violations.

Rzevski and Skobelev (2017) state that behavior of a railway operation is
prone to unpredictable events such as resources unavailability due to failures,
weather conditions or human errors. Another challenge in a transportation
system is changing trend of demands over time, which cause resource
assignment problems. In fact changing transportation resources, such as tracks,
is not always possible. Therefore, the aim of this article is to design a railway
scheduler capable of allocating resources to demands in real time. Depending
on uncontrollable events, the scheduler should rapidly reschedule assignment
of resources.

4.1.2 Synthesis of the state of the art
Table 4.1 illustrates the classification of the presented papers that concern
uncontrollability aspect. In this table, the reviewed papers are classified based
on four criteria: time-optimization scheduling, multi-resource sharing, timed
automata and uncontrollable parameter. In the following these criteria are
explained.

• Time-optimization scheduling: The discussed problem is
schedulability or makespan minimization.

• Multi-resource sharing: This criteria shows that how the multi-
resource sharing aspect is considered in the scheduling problems. It

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 89

can be taken into account as constraint in the problem or can be
modeled using the proposed technics.

• Time-based automata: This criteria determines whether the paper
discusses an approach based on a time-based automata, and if yes, on
which type of time-based automata.

• Uncontrollable parameter: Different kinds of parameters and events
may be assumed uncontrollable in the problems. This criteria
enumerates the uncontrollable parameters explained in the paper.

Table 4.1. Classification of literature concerning uncontrollability

Authors
Time-

optimization
Scheduling

Multi-
Resource
Sharing

Timed-
base

automata
Uncontrollable parameter

Girault et al. (2003)  Processor failure

(Yasmina Abdeddaïm,
Asarin, and Maler
2006)

 Timed
automata Task duration

(David et al. 2009)  Timed
automata

Arrival and execution time
of task

(Behrmann et al.
2007b) 

Timed
game

automata
Generic event

(Komenda, Lahaye,
and Boimond 2009b)  (max,+)

automata
Undelayable and

unpreventable actions

(Y. Abdeddaïm,
Asarin, and Sighireanu
2009)

Task
timed

automata
Task duration

(Komenda, Lahaye,
and Boimond 2010) 

Interval
(max,+)
automata

Action duration

(Dumitrescu et al.
2010) 

Labeled
transition
system

Processor failure

(Marangé et al. 2011)  Timed
automata Resource failure

(Atto, Martinez, and
Amari 2011)  failure in the transport

device

(Su, Van Schuppen,
and Rooda 2012) 

Timed-
weighted
automata

malfunction of a
component, being unable to

execute a program
immediately, producing

imperfect product

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 90

Authors
Time-

optimization
Scheduling

Multi-
Resource
Sharing

Timed-
base

automata
Uncontrollable parameter

(Delaval et al. 2013)  Uncontrollable variables

(Kim, Zhou, and Lee
2014)  Wafer alignment failure

(Boukra, Lahaye, and
Boimond 2015)   (max,+)

automata
Undelayable and

unpreventable tasks

(Fernández Anta et al.
2015)  Crashes and restart of

machines

(Lu, Cui, and Han
2015)  Machine breakdown

(Cimatti, Micheli, and
Roveri 2015)  Task duration

(Kundakcı and Kulak
2016) 

job arrival, machine
breakdowns and processing

time

(Alves et al. 2016)  Generic uncontrollable
event

(Dorndorf, Jaehn, and
Pesch 2017)  Starting and completion

time of flights

(Rzevski and Skobelev
2017) 

Resources unavailability
due to failures,

weather conditions or
human errors – trend of
transportation demand

In Table 4.1 it can be observed that only one study considers scheduling
problem taking into account multi-resource sharing and uncontrollable actions
during scheduling (Boukra, Lahaye, and Boimond 2015). Whereas, the authors
consider the uncontrollable action to be an undelayable and unpreventable task
which is a restricted notion of uncontrollability.

The synthesis of this state of the art shows that researchers have investigated
various uncontrollable parameters in the scheduling problems such as task
duration, start time, completion time, undelayable and unpreventable tasks,
resource failure, etc. By adapting uncontrollable actions considered in the
related studies to our MRS scheduling problem, three main uncontrollable
actions are considered in this chapter: start time, duration of task and failure
occurrence in a scheduling problem.

In addition, there are mainly 5 types of timed automata that can show
uncontrollable actions; timed automata consisting of controllable and
uncontrollable transitions, timed game automata, task timed tame automata,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 91

(max,+) automata and interval weighted automata. It is noteworthy to mention
that a group of uncertainties concerned by the researchers (e.g. uncertain
duration of task) are considered to be controllable. In other words, time
uncertainty in some problems are managed by controllable transitions. While
in the similar studies, the same notion of uncertainties are assumed to be
completely uncontrollable and are handled by uncontrollable transitions.
Hence, due to the interpretation of the researcher from uncertainty, the type of
chosen automata for solving the problem changes. For example in the first case,
they use timed automata to solve the problem, while in the latter, they use timed
game automata for this purpose. In this thesis, due to the constraints causing by
these types of uncontrollable actions, the problem is modeled through Timed
Game Automata (TGA). The detailed reason will be discussed in section 4.5.

The remainder of this Chapter is as follows: Section 4.2 recalls basic
concepts related to timed games and interval weighted automata. Section 4.3
presents the problem description. Different types of uncontrollable parameters
is enumerated in Section 4.4. In Section 4.5, the scheduling problem is modeled
through TGA considering uncontrollable parameters. In Section 4.6, an
example is studied to illustrate how a simple scheduling problem can be
formulated through the proposed model. Section 4.7 discussed the solving
approach for the scheduling problem. In section 4.8, the illustrative example in
section 4.6 is solved through the proposed solving approach. A summary and
some remarks conclude the chapter in Section 4.8.

4.2 Background

4.2.1 Timed Game Automata
Definition 4.1 (Timed Game Automata): A TGA is a tuple 𝐺𝐺 =
 (𝑇𝑇, 𝐸𝐸0,𝑇𝑇𝐸𝐸,𝐴𝐴,𝐸𝐸, 𝐼𝐼,𝑉𝑉,𝑉𝑉0) where 𝑇𝑇 is a finite set of locations, 𝐸𝐸0 ∈ 𝑇𝑇 is the initial
location, 𝑇𝑇𝐸𝐸 is a finite set of clocks, 𝐴𝐴 is a set of actions partitioned into
controllable (𝐴𝐴𝑐𝑐) and uncontrollable (𝐴𝐴𝑢𝑢) action, 𝐸𝐸 ⊆ 𝑇𝑇 × 𝐵𝐵(𝑇𝑇𝐸𝐸) × 𝐴𝐴 × 2𝐶𝐶 × 𝑇𝑇
is a finite set of controllable and uncontrollable transitions, 𝐼𝐼: 𝑇𝑇 → 𝐵𝐵(𝑇𝑇𝐸𝐸)
associates to each location its invariant, 𝑉𝑉 is the set of integer or Boolean
variables or the output of functions that are defined over variables. They can
also be updated or incremented on the edges. Furthermore, predicates can be
used over these variables as guards on edges of the automaton. 𝑉𝑉0 is the initial
values of 𝑉𝑉(Behrmann et al. 2007a).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 92

Definition of state and step are the same as timed automata. Whereas in a
TGA, in addition to final states, loosing states may be defined where reaching
them should be avoided. Moreover, discrete steps can be made by both
controllable and uncontrollable actions.

For analysis of timed automata, its simulation graph should be explored. In
a simulation graph, nodes are symbolic states; a symbolic state is defined as a
pair (𝐸𝐸,𝑍𝑍) where 𝐸𝐸 ∈ 𝑇𝑇 and 𝑍𝑍 is a zone of ℝ≥0

𝐶𝐶𝑡𝑡 . Referring to the Chapter 2, each
state of an automaton consists of a pair 〈𝐸𝐸, 𝑐𝑐𝐸𝐸〉. 𝑄𝑄 = 𝑇𝑇 × ℝ≥0

𝐶𝐶𝑡𝑡 is defined as the
set of all states in an automaton where 𝑞𝑞0 = (𝐸𝐸0, 0�⃗). Let 𝑋𝑋 ⊆ 𝑄𝑄 and 𝐸𝐸 ∈ 𝐴𝐴. The
a-successor of 𝑋𝑋 is defined by 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎(𝑋𝑋) = {(𝐸𝐸′, 𝑐𝑐𝐸𝐸′)|∃(𝐸𝐸, 𝑐𝑐𝐸𝐸) ∈ 𝑋𝑋, (𝐸𝐸, 𝑐𝑐𝐸𝐸)
𝑎𝑎
→ (𝐸𝐸′, 𝑐𝑐𝐸𝐸′)} and the a-predecessor of 𝑋𝑋 is defined as 𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎𝑎𝑎(𝑋𝑋) =

{(𝐸𝐸, 𝑐𝑐𝐸𝐸)|∃(𝐸𝐸′, 𝑐𝑐𝐸𝐸′) ∈ 𝑋𝑋, (𝐸𝐸, 𝑐𝑐𝐸𝐸)
𝑎𝑎
→ (𝐸𝐸′, 𝑐𝑐𝐸𝐸′)}. The timed successors and

predecessors of 𝑋𝑋 are respectively defined by 𝑋𝑋 ↗= {(𝐸𝐸, 𝑐𝑐𝐸𝐸 + 𝑎𝑎)|(𝐸𝐸, 𝑐𝑐𝐸𝐸) ∈ 𝑋𝑋 ∩
[𝐼𝐼𝑜𝑜𝑣𝑣(𝐸𝐸)], (𝐸𝐸, 𝑐𝑐𝐸𝐸 + 𝑎𝑎) ∈ [𝐼𝐼𝑜𝑜𝑣𝑣(𝐸𝐸)],𝑎𝑎 ∈ ℝ≥0} and 𝑋𝑋 ↙ = {(𝐸𝐸, 𝑐𝑐𝐸𝐸 − 𝑎𝑎)|(𝐸𝐸, 𝑐𝑐𝐸𝐸) ∈
𝑋𝑋,𝑎𝑎 ∈ ℝ≥0}. Let → be the relation defined on symbolic states by:

(𝐸𝐸,𝑍𝑍)
𝑎𝑎
→ (𝐸𝐸′,𝑍𝑍′) if (𝐸𝐸,𝑝𝑝,𝐸𝐸, 𝑃𝑃, 𝐸𝐸′) ∈ 𝐸𝐸 and 𝑍𝑍′ = ((𝑍𝑍 ∩ [𝑝𝑝])[𝑃𝑃]) ↗. The simulation

graph 𝑆𝑆𝐺𝐺(𝑇𝑇𝐴𝐴) of timed automaton 𝑇𝑇𝐴𝐴 is defined as the transition system
(𝑍𝑍(𝑄𝑄), 𝑆𝑆0,→), where 𝑍𝑍(𝑄𝑄) is the set of zones of 𝑄𝑄, 𝑆𝑆0 = (({𝐸𝐸0, 0�⃗ } ↗) ∩
[𝐼𝐼𝑜𝑜𝑣𝑣(𝐸𝐸0)] and → defined as above (Cassez et al. 2005).

4.2.2 Safety and reachability games
Given a network of TGA and a formula 𝜑𝜑 specifying desired conditions in the
TGA, rules of a game can be specified. In fact, 𝜑𝜑 defines the set of states that
should be reached/avoided in order to win/lose the game. Networks of TGA
consists of both controllable and uncontrollable actions. The player (controller)
can trigger controllable actions to win the game and on the contrary, the
opponent (environment) can trigger the uncontrollable ones that may cause
losing the game. The opponent has priority over the controller. It means that
when a state has both outgoing uncontrollable and controllable actions, the
opponent will perform the uncontrollable action (De Munter 2010).

Two main control objectives can be defined in a network of TGA:

Definition 4.2 (reachability control problem): Given a TGA G and a set of
states 𝐾𝐾 ⊆ 𝑇𝑇 × 𝑅𝑅≥0𝐶𝐶𝑡𝑡 , a reachability control problem (reachability game) is
defined as finding a strategy 𝑃𝑃 such that 𝐺𝐺 supervised by 𝑃𝑃 enforces 𝐾𝐾.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 93

Definition 4.3 (safety control problem): A safety control problem (safety
game) consists of searching a strategy for triggering controllable actions to
avoid reaching a set of losing states 𝐾𝐾.

4.2.3 Winning games
A game can be winning if the last transition leading to the goal state is
controllable. For example, the automaton on Figure 4.1.(a) is winning since the
transition leading to the goal state is controllable, while the automaton on the
Figure 4.1.(b) is losing this transition is uncontrollable. In fact, opponent may
decide to stay in the initial state forever without taking the transition that leads
to the goal state. Therefore, the controller will never reach the Goal state.

Figure 4.1. Examples of Winning (a) and Losing (b) timed game automata (Behrmann et

al. 2007a)

Using an invariant might force the opponent to act. For simulating this force,
an invariant could be used in the initial state and an implicit controllable edge
can be added with a guard expressing the upper limit of the invariant. This
implicit extra transition is called a forced transition. Hence, when the time
reaches the upper limit, the automaton moves to the Goal state.

As an example, the automaton on Figure 4.2.(a) shows the original model,
the automaton on Figure 4.2.(b) explicitly adds the forced transition from the
initial state to the Goal state making it clear why the model is winning3. While,
in the automaton on Figure 4.2.(c), it can be seen that the forced transition
cannot be added since there is already a possible controllable behavior when
the automaton hit the invariant. Thus, this model cannot reach the Goal state
and is losing.

Figure 4.2. Examples of forced transition: winning model (a), equivalent model with the
implicit transition made explicit (b) and a losing model (c) (Behrmann et al. 2007a)

3 Whereas, in version 0.18 of tool TIGA described in section 4.2.5, Fig.(a) is not winning.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 94

When facing with synchronization issue and invariants, some strange
behaviors might occur. Forced transitions might become explicit in local
automata and be synchronized with others. The rule to avoid the strange
behaviors is to locally add forced transitions to each local automata and then to
do the composition. In Figure 4.3.(a), the original model of two synchronized
automata example is shown. In Figure 4.3.(b), the forced transition is made
explicit and finally in Figure 4.3.(c) the full composition of the model is
demonstrated (Behrmann et al. 2007a).

Figure 4.3. Example of synchronization with forced transitions: original model (a), forced

transition made explicit (b), complete composition with explicit forced transition (Behrmann
et al. 2007a).

4.2.4 Strategy
Definition 4.4 (strategy): A strategy is a function 𝑃𝑃: 𝑇𝑇 × 𝑅𝑅≥0𝐶𝐶𝑡𝑡 → 𝐴𝐴𝑐𝑐 ∪ {𝜀𝜀} that
constantly gives information to the controller to do necessary actions during the
course of the game (Behrmann et al. 2006). In each situation, the strategy could
suggest the controller a list of possible controllable transitions to either take one
of them and so do a controllable action or do nothing at this point in time (which
means a silent action 𝜀𝜀).

Definition 4.5 (winning strategy): A strategy is said to be a winning strategy
if the controller supervised by the strategy always win the game whatever the
environment acts.

Definition 4.6 (counter-strategy): Whenever no winning strategy is found,
there exists a counter-strategy to either make the controller lose (reach a
location that is marked as loose) or just prevent it to win (reach a location that
cannot lead to the final location) (Behrmann et al. 2006).

4.2.5 Synthesis tool TIGA
UPPAAL-TIGA is an extension of UPPAAL tool and it implements the first
efficient on-the-fly algorithm for solving games based on TGA with respect to
reachability and safety properties. This tool implements the on-the-fly
algorithm presented by Cassez et al. (2005). Being on-the-fly, the symbolic

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 95

algorithm may terminate long before having explored the entire state-space.
This algorithm is detailed in section 4.2.10.

TIGA is freely available at http://people.cs.aau.dk/~adavid/tiga/

4.2.6 Winning/losing conditions
In order to win a given timed game, the winning conditions should be known.
Given a set of timed automata A, a set of goal states (win) and/or a set of losing
states (lose) which are defined by UPPAAL state formulae, a total of four
different kinds of queries for winning conditions can be obtained. Clocks,
locations and discrete variables can be used to specify these conditions. The
game is in fact finding a controllable strategy 𝑃𝑃 such that automaton 𝐴𝐴
supervised by 𝑃𝑃 ensures that the controller (Behrmann et al. 2007a):

• Pure reachability: “must reach 𝑒𝑒𝑡𝑡𝑜𝑜”

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝐴𝐴 <> 𝑒𝑒𝑡𝑡𝑜𝑜 (4.1)

This query searches a strategy that reaches the goal state 𝑒𝑒𝑡𝑡𝑜𝑜.

• Strict reachability with avoidance (Until): “must reach 𝑒𝑒𝑡𝑡𝑜𝑜 and must
avoid 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡”

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝐴𝐴[𝑜𝑜𝑃𝑃𝑡𝑡(𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡) 𝑈𝑈 𝑒𝑒𝑡𝑡𝑜𝑜] (4.2)

This query searches a strategy that will reach the goal state 𝑒𝑒𝑡𝑡𝑜𝑜 and
avoids losing states 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡.

• Weak reachability with avoidance (WeakUntil): “should reach 𝑒𝑒𝑡𝑡𝑜𝑜
and must avoid 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡”

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝐴𝐴[𝑜𝑜𝑃𝑃𝑡𝑡(𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡) 𝑊𝑊 𝑒𝑒𝑡𝑡𝑜𝑜] (4.3)

This query searches a controllable strategy that does not reach losing
states 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡 and maybe reaches the goal state 𝑒𝑒𝑡𝑡𝑜𝑜 with the help of the
opponent.

• Pure Safety: “must avoid 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡”

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝐴𝐴[] 𝑜𝑜𝑃𝑃𝑡𝑡(𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡) (4.4)

This query searches a controllable strategy that never reaches the
losing state 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡.

4.2.7 Partially Cooperative Games
A cooperative strategy can be searched in the case no controllable strategy is
found. Within this strategy, the opponent will take uncontrollable actions which

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

http://people.cs.aau.dk/%7Eadavid/tiga/

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 96

helps avoiding the losing states and reaching the winning states (De Munter
2010; Behrmann et al. 2007a).

The syntax of this formula is as bellow:

• Partial Cooperation: “must satisfy 𝜑𝜑 with the least help from the
environment”
𝐸𝐸 <> 𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸: 𝜑𝜑 (4.5)

4.2.8 Time Optimal Strategy Synthesis
In some problems, it is needed to find not any winning strategy, but a time
optimal winning strategy. The syntax of finding this kind of strategy is as
follows:

• Time optimal strict reachability with avoidance (Until): “must reach
𝑒𝑒𝑡𝑡𝑜𝑜 within less than 𝑡𝑡 − 𝑝𝑝 time units and must avoid 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡”
𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(𝑡𝑡,𝑝𝑝): 𝐴𝐴[𝑜𝑜𝑃𝑃𝑡𝑡(𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡) 𝑈𝑈 𝑒𝑒𝑡𝑡𝑜𝑜] (4.6)

This query searches a controllable strategy that reaches the goal states
𝑒𝑒𝑡𝑡𝑜𝑜 and avoids losing states 𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡 within less that 𝑡𝑡 − 𝑝𝑝 time units
(Behrmann et al. 2007a).

• Time optimal pure reachability: “must reach win within less than 𝑡𝑡 −
𝑝𝑝 time units”
𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(𝑡𝑡,𝑝𝑝): 𝐴𝐴 <> 𝑒𝑒𝑡𝑡𝑜𝑜 (4.7)
This query searches a controllable strategy that reaches the goal state
𝑒𝑒𝑡𝑡𝑜𝑜 within less that 𝑡𝑡 − 𝑝𝑝 time units.

4.2.9 Example of timed game automata
In this section, an example of timed game automata is presented. Figure 4.4
shows a demo example implemented in TIGA. In this example, there are five
locations containing the initial location 𝑇𝑇0, which is marked as a double circle,
the goal location 𝑝𝑝𝑃𝑃𝐸𝐸𝐸𝐸 in green color and the fail location 𝑇𝑇4 in red color.
Controllable transition are marked by solid arrows that can be taken by the
controller. Uncontrollable transitions are shown by dashed arrows and can be
taken by the environment. There is a game between the environment and the
controller. In fact, the controller tries to win the game and reach the 𝑝𝑝𝑃𝑃𝐸𝐸𝐸𝐸
location and the environment should prevent winning by taking uncontrollable
actions. The clock in this example is variable 𝐸𝐸. Clock constraints can be seen
as guards on transitions. Invariant constraints on clocks are also put on the
locations. In location 𝑇𝑇0, the invariant 𝐸𝐸 ≤ 2, in purple, doesn’t allow the
automaton stay more than 2 time units. When 𝐸𝐸 is smaller than 1, the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 97

environment can take the uncontrollable transition 𝑡𝑡2 to 𝑇𝑇2. While the
controller can also take the controllable transition 𝑐𝑐1 to 𝑇𝑇1 from time 0 to time
1. If at time 1 the controller doesn’t take the transition 𝑐𝑐1 to 𝑇𝑇1, the environment
takes the transition 𝑡𝑡1 to 𝑇𝑇4 and the game will be losing. Whereas, since the
controller has the choice to take action at time 1, this game is always winning.

Figure 4.4. Timed game automaton example

4.2.10 On-the-fly algorithm for timed games
On-the-fly algorithm for timed games implemented in TIGA, is the extension
of the untimed on-the-fly algorithm proposed by Liu and Smolka (2017).

The 𝑆𝑆𝐹𝐹𝐹𝐹𝑇𝑇𝑅𝑅 algorithm (Symbolic On-The-Fly Algorithm for Timed
Reachability Games) is presented in Algorithm 4.1 (Cassez et al. 2005). It is
based on two main lists: waiting list 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 for edges in the simulation graph
to be explored, and passed list 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 denoting all the symbolic states of the
simulation graph that the algorithm have visited. Furthermore, all winning
states that are known to be winning, are stored in the set 𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] ⊆ 𝑆𝑆. The set
of predecessors of S that must be added to 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 is indicated by the set
𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆]. Whenever new information about 𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] is obtained, this set
must be reevaluated. If a symbolic state 𝑆𝑆′ is added to the set 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎, its related
edge 𝑡𝑡 = (𝑆𝑆,𝛼𝛼, 𝑆𝑆′) is also added to the dependency set of 𝑆𝑆′ to back-propagate
possible future information about additional winning states within 𝑆𝑆′ to 𝑆𝑆.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 98

Algorithm 4.1
Initialization:

𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 ← {𝑆𝑆0} 𝑒𝑒ℎ𝑡𝑡𝑃𝑃𝑡𝑡 𝑆𝑆0 = {(𝐸𝐸0, 0�⃗)} ↗

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ← {(𝑆𝑆0,𝛼𝛼, 𝑆𝑆′)|𝑆𝑆′ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝛼𝛼(𝑆𝑆0) ↗}

𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆0] ← 𝑆𝑆0 ∩ ({𝐺𝐺𝑃𝑃𝐸𝐸𝐸𝐸} × ℝ≥0
𝐶𝐶𝑡𝑡)

𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆0] ← ∅

Main:

 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡 ((𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ≠ ∅) ∧ (𝑃𝑃0 ∉ 𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆0])){

𝑡𝑡 = (𝑆𝑆,𝛼𝛼, 𝑆𝑆′) ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝)

𝑡𝑡𝑓𝑓 (𝑆𝑆′ ∉ 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎){

𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 ← 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎 ∪ {𝑆𝑆′}

𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆′] ← {(𝑆𝑆,𝛼𝛼, 𝑆𝑆′)}

𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆′] ← 𝑆𝑆′ ∩ ({𝐺𝐺𝑃𝑃𝐸𝐸𝐸𝐸} × ℝ≥0
𝐶𝐶𝑡𝑡)

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ← 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ∪ {(𝑆𝑆′,𝛼𝛼, 𝑆𝑆′′)|𝑆𝑆′′ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝛼𝛼(𝑆𝑆′) ↗}

 𝑡𝑡𝑓𝑓 (𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆′] ≠ ∅){

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ← 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ∪ {𝑡𝑡}

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓

}𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡{ //𝑃𝑃𝑡𝑡𝑡𝑡𝑣𝑣𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡4

𝑊𝑊𝑡𝑡𝑜𝑜∗ ← 𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎𝑡𝑡(𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] ∪
𝑆𝑆
𝑐𝑐
→𝑇𝑇

𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎𝑐𝑐(𝑊𝑊𝑡𝑡𝑜𝑜[𝑇𝑇]),

∪
𝑆𝑆
𝑢𝑢
→𝑇𝑇

𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎𝑢𝑢(𝑇𝑇 \𝑊𝑊𝑡𝑡𝑜𝑜[𝑇𝑇])) ∩ 𝑆𝑆

𝑡𝑡𝑓𝑓 (𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] ⊊ 𝑊𝑊𝑡𝑡𝑜𝑜∗){

𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ← 𝑊𝑊𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑝𝑝 ∪ 𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆]

𝑊𝑊𝑡𝑡𝑜𝑜[𝑆𝑆] ← 𝑊𝑊𝑡𝑡𝑜𝑜∗

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓

𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆′] ← 𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎[𝑆𝑆′] ∪ {𝑡𝑡}

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑡𝑡𝑓𝑓

}𝑡𝑡𝑜𝑜𝑎𝑎 𝑒𝑒ℎ𝑡𝑡𝐸𝐸𝑡𝑡

4.2.11 Interval weighted automata
Interval weighted automata are weighted automata with weights in a suitable
interval like semiring.

Definition 4.7. A D-weighted automaton (Komenda, Lahaye, and Boimond
2010) over an alphabet 𝐴𝐴 is a quadruple 𝐺𝐺 = (𝑄𝑄,𝛼𝛼, 𝑡𝑡,𝛽𝛽), where 𝑄𝑄 is a finite

4 When 𝑇𝑇 ∉ 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎,𝑊𝑊𝑡𝑡𝑜𝑜[𝑇𝑇] = ∅

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 99

set of states, 𝛼𝛼:𝑄𝑄 → 𝐷𝐷, 𝑡𝑡:𝑄𝑄 × 𝐴𝐴 × 𝑄𝑄 → 𝐷𝐷, and 𝛽𝛽:𝑄𝑄 → 𝐷𝐷, are called input,
transition, and output delays, respectively.

To a given state 𝑞𝑞 ∈ 𝑄𝑄, a discrete input 𝐸𝐸 ∈ 𝐴𝐴 and a new state 𝑞𝑞′ ∈ 𝑄𝑄, the
transition function 𝑡𝑡 assigns an output value such that one of the following
condition holds:

• 𝑡𝑡(𝑞𝑞,𝐸𝐸, 𝑞𝑞′) ∈ 𝐷𝐷 corresponds to the discrete step from 𝑞𝑞 to 𝑞𝑞′ for
execution of action 𝐸𝐸.

• 𝑡𝑡(𝑞𝑞,𝐸𝐸, 𝑞𝑞′) = 𝜀𝜀 if there is no transition form 𝑞𝑞 to 𝑞𝑞′ labeled by 𝐸𝐸.

Referring to (Komenda, Lahaye, and Boimond 2010), only the best and the
worst makespans can be computed using composition of interval weighted
automata. Comparing to a timed game, it is equal to makespans where the
environment does its worst or best play respectively. While as mentioned
earlier, a strategy synthesis on a timed game automaton, yields a strategy
through which, several makespans and schedules can be obtained depending on
the choice of the environment in taking uncontrollable actions.

4.3 Problem description
The problem treated in Chapter 2 and 3 was completely deterministic. All the
information concerning the tasks to be executed was known in advance,
including their identity, inter-dependence and duration. Furthermore, the
starting time of tasks were deterministic. The same goes for the resources who
are assumed to be reliable. Real life is not like that. Certain uncontrollable
situations may happen that affect previous expectations for the scheduling. In
this thesis, three kinds of uncontrollability are investigated.

For studying these situations, most assumptions for the scheduling problem
are the same as Chapter 2, whereas certain uncontrollability may occur
affecting the schedule. In such cases, despite the act of the environment, a
schedule should be obtained. Hence, problem discerption will be changed as
follows:

(1) Duration of tasks may be restricted to be bounded within an interval.
(2) Start time of tasks are subject to bounded uncertainty.
(3) Task preemption is not allowed, whereas due to a failure a task may

be canceled.
(4) There may be conflicts for performing tasks at the same time, but

when there is no conflict between them, they should be performed
simultaneously.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 100

(5) There may exist precedence constraints between tasks.
(6) All tasks are ready to be executed at time zero.
(7) Resources are pre-assigned to tasks.
(8) Resources are reusable (they are not raw materials and by performing

maintenances, they can be used in every cycle).
(9) Each resource can be used to execute only one task at a time, but a

task may use more than one resource simultaneously.
(10) If resources are not broken down, they are available at time zero.
(11) Resources are not reliable and may fail in two conditions: 1. During

performing a task 2. During idle time of resources

4.4 Different types of uncontrollable parameters
In this section, three kinds of uncontrollable situations that are considered in
this thesis are discussed.

• Resource failure while doing a task: In certain cases, resources are not
reliable and for that reason, during execution of tasks, unpredictable
failures may occur. Therefore, tasks relating to that resource cannot
be executed until its reparation.

• Resource failure in its idle state: Not all the failures happen when
performing tasks. Sometimes failures may occur when a resource is
idle and therefore it won’t be able to start execution of any task until
it is repaired.

• Bounded uncertainty in duration of tasks: In real world, human
intervention, incomplete information or uncertain environment may
cause uncertainty in duration of tasks.

• Bounded uncertainty in start time of tasks: In certain applications,
uncertain task performing conditions might cause a delay in start time
of tasks from the moment of their release time. By definition, release
time is the earliest time when a task can start execution.
This type of uncertain tasks are divided to two sets; a set of tasks that
require resource assignments from their released time and another set
to whom resources should be assigned from the start time of their
execution.

Inclusion of these types of uncontrollability in the represented model makes
it so comprehensive and general to be applied in various industries. Therefore,
not all of these uncontrollable parameters may be applicable in a specific

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 101

industry, but depending on the industry, one of the cases or a combination of
them may be needed.

4.5 Modeling the scheduling problem through TGA
considering uncontrollable parameters
As mentioned earlier, in this chapter, uncontrollable situations in the scheduling
problem are investigated; it means that the environment affects the new
scheduling condition. Therefore, the scheduling problem should be solved with
a new point of view.

In this situation, some actions are done by the environment and therefore are
uncontrollable and the others are done by the controller. For example, let’s
assume the case when the start time of the tasks are controllable and there is a
possibility of resource failure it their idle state. In this case, tasks can be
launched by the controller through taking a controllable transition, while at the
same time, the environment may take an uncontrollable transition to cause a
failure. Hence, as explained in section 4.2, instead of finding a simple trajectory
that reaches the final state, the controller finds a strategy that guarantees
reaching the final state whatever the opponent (the environment) is doing.

In Chapter 2 it was argued that through WA, simpler and more abstract
models can be obtained for the MRS scheduling problem considering
controllable actions rather than timed automata. Whereas, modeling some
uncontrollable situations like failure during execution of tasks complicated.
Thence, it is not possible to model some uncontrollability by this kind of
automata. On the other hand, even if some of them like uncertain duration and
start time of tasks are modeled through WA, the model of synchronous
composition of the problem considering uncontrollability become much more
complicated than before. Since instead of fixed durations and instances,
intervals should be engaged in the composition.

For example, for modeling failure while execution of a task, it is necessary
to split the task transition and add a failure state between the source and target
state of the transition. On the other hand, the exact moment of the failure is not
known in advance. Hence, exact duration of split transitions cannot be labeled
on the transitions. Therefore, it is not possible to model it with WA. Scheduling
problems consisting of tasks with uncertain duration or start time can be
modeled by interval weighted automata described in section 4.2 (Komenda,
Lahaye, and Boimond 2010). Whereas, there exists no synchronous
composition for interval weighted automata through which the minimal

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 102

makespan can be obtained and also can present complete behavior of local
components. Since such comprehensive composition becomes so complex to
be formulated. Therefore, without having the synchronous composition,
necessary analyses cannot be done and the schedule cannot be found.

Among uncontrollable cases explained in section 4.4, the only
uncontrollable parameter that can be modeled by WA is the failure that occurs
while resources are idle. In fact, its WA model would be similar to the model
of a task.

With regard to the matters enumerated, a weight-based model is not suitable
for stating a MRS scheduling problem considering uncontrollable issues. As
mentioned in section 4.2, the clock-based automata for treating
uncontrollability is Time Game Automata. Thus, for solving a MRS scheduling
problem containing uncontrollable parameters, it can be modeled through
Timed Game Automata.

The MRS scheduling problem is firstly modeled by TGA considering
possibility of uncontrollable situations. Then through a timed game analysis,
the strategy for obtaining optimal schedule and makespan is found. In the
sequel, the models of ME automaton, TL automaton and PR automata
considering uncontrollability are explained.

4.5.1. ME automaton by considering uncontrollability
As mentioned in section 2.4.2., a ME automaton consists of a set of tasks that
are in conflict with each other. To do task 𝑡𝑡, an automaton waits in the initial
location 𝐸𝐸0. When receiving a launching signal 𝑡𝑡_𝑃𝑃 from the TL automaton of
task 𝑡𝑡, it takes a transition from the initial location to the task location 𝑡𝑡 and
resets the clock 𝑐𝑐𝐸𝐸. Afterwards, after elapsing 𝑎𝑎(𝑡𝑡) time units, it takes the
transition from location 𝑡𝑡 to the initial location. In fact, 𝑎𝑎(𝑡𝑡) is the duration of
task 𝑡𝑡. In the initial location, the automaton waits for another launching signal
to execute a new task (Figure 4.5).

 Figure 4.5. Modeling pattern of a task in a ME automaton

Whereas, as explained in section 4.4, some uncontrollable issues should be
considered in the model of a task in ME automaton that are detailed in the
sequel.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 103

 Unpredictable resource failure
In each ME automaton, due to using common set of resource, tasks can be in
conflict. Therefore, if one of these resources breaks down, tasks related to that
ME automaton cannot be executed until the resource is repaired. Reparation
duration depends on the resource. In automaton 𝑗𝑗, this duration is denoted by
𝑎𝑎(𝑃𝑃𝑡𝑡𝑃𝑃𝑗𝑗) and is equal to the maximum time needed for reparation of resources
related to this automaton.

Variable 𝑒𝑒 is dedicated to the resource failures, which denotes number of
failures in a scheduled cycle. For avoiding schedulability problems, this number
is limited. In fact, if no limit is put for this number, there would be a possibility
that a scheduled cycle would never end. In this thesis, it is assumed that at most
one failure may occur in a cycle. Therefore when 𝑒𝑒 is reached one, no more
failure can occur in a ME automaton.

Two kind of resource failures should be modeled in a ME automaton:

(1) Failure while a resource is idle: During idle time of resources, a
failure may occur. A failure is an uncontrollable action, but it is
assume to be limited to occur at most one time. Hence, in the model
of failure (Figure 4.6), if 𝑒𝑒 is equal to zero, an uncontrollable
transition can be taken by the environment, the clock is reset and the
automaton reaches fail location. Then after elapsing 𝑎𝑎(𝑃𝑃𝑡𝑡𝑃𝑃𝑗𝑗) time
units, the automaton takes a transition to the initial location and
updates variable 𝑒𝑒 to one.

Figure 4.6. Modeling pattern of a resource failure in its idle time in a ME automaton

(2) Failure while doing a task: In automaton 𝑗𝑗, during execution of task
𝑡𝑡, a failure may happen. The reason of the failure could be a
breakdown in the resources related to the mutual exclusion set 𝑗𝑗 or
another mutual exclusion set that share task 𝑡𝑡.

Execution of task 𝑡𝑡 happens in the location 𝑡𝑡. Therefore,
uncontrollable transitions representing failures should be taken from
this location. For modeling a breakdown in the resources related to
the automaton 𝑗𝑗, an uncontrollable transition is added from location 𝑡𝑡.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 104

If it is the first time that a failure happens in this set of resources, i.e.
𝑒𝑒 == 15, and if task 𝑡𝑡 is not finished yet, i.e. 𝑐𝑐𝐸𝐸 < 𝑎𝑎(𝑡𝑡), this transition
can be taken by environment. By taking this transition, clock 𝑐𝑐𝐸𝐸 is
reset and a signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃 is sent to the other automata that share task
𝑡𝑡 to stop the task. Thereby the automaton reaches location 𝑃𝑃𝑡𝑡𝑃𝑃 where
it waits for repairing the failed resource. After the repairing period,
i.e. 𝑎𝑎(𝑃𝑃𝑡𝑡𝑃𝑃𝑗𝑗), the resource is ready and all the tasks belonging to this
task-conflict set, i.e. 𝑇𝑇𝑀𝑀𝑗𝑗, can start execution. Therefore, the
automaton takes a transition to the initial location, updates variable 𝑒𝑒
to one to prevent more failures and sends signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡_𝑃𝑃 to other
automata that share the same task to enable restarting 𝑡𝑡. These
automata can be another ME automata, a PR automata or even the TL
automaton related to 𝑡𝑡.
At the same time when a task is interrupted due to a failure in a ME
automaton, it should also stop execution in other ME automata that
share the same task. Hence, as depicted in Figure 4.7, a transition from
location 𝑡𝑡 to the initial location is added to the model of a task.
Whenever the automaton is in task location 𝑡𝑡 and receives signal
𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃 from another ME automaton, it stops execution and goes to
the initial location.

Figure 4.7. Modeling pattern of a task in a ME automaton subject to resource failure

Thereby, with possibility of abovementioned types of failures, the model of
a ME automaton will be as Figure 4.8. It can be seen in the figure that this
automaton consists of several tasks such as 𝑡𝑡𝑖𝑖, 𝑡𝑡𝑘𝑘 and 𝑡𝑡𝑧𝑧.

5 This number can be changed depending on the decision maker’s opinion

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 105

For better understanding the model of ME automaton considering resource
failure, refer to Section 4.6. This section explains an example of MRS
scheduling model consisting of two ME automata with a shared task.

Figure 4.8. Modeling pattern of a ME automaton subject to resource failure

 Bounded uncertainty in duration of tasks
In some applications, the exact duration of the tasks may not be given, but rather
durations are restricted to be bounded within an interval of the
form [𝑎𝑎1(𝑡𝑡),𝑎𝑎2(𝑡𝑡)]. Hence, when the ME automata is in the task location 𝑡𝑡,
from the moment the clock reaches 𝑎𝑎1(𝑡𝑡) till 𝑎𝑎2(𝑡𝑡), the automata may take a
transition to the initial location. Therefore an uncontrollable transition is added
to enable this uncertain movement from task location to initial location when
𝑎𝑎1(𝑡𝑡) ≤ 𝑐𝑐𝐸𝐸 < 𝑎𝑎2(𝑡𝑡). But since due to the hypothesis it is certain that the
duration of the task is no longer than 𝑎𝑎2(𝑡𝑡), a controllable transition is added
from the task location to the initial location to be taken if the automaton still
waits in task location at time 𝑎𝑎2(𝑡𝑡) (Figure 4.9).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 106

Figure 4.9. Modeling pattern of a task with uncertain duration in a ME automaton

If all the tasks in an automaton have uncertain duration, the model of the ME
automaton will be as Figure 4.10. This automaton consists of several tasks such
as 𝑡𝑡𝑖𝑖, 𝑡𝑡𝑘𝑘 and 𝑡𝑡𝑧𝑧.

Figure 4.10. Modeling pattern of a ME automaton consisting of tasks with uncertain

durations

 Bounded uncertainty in start time of tasks
Start time of a task may be uncertain. Whereas, as mentioned previously, this
uncertainty can be treated with two points of view. The first one is to keep all
the necessary resources available from the release time of the task until its start
time. The second point of view is to let the environment start the task at a time
window whenever the resources are idle. ME automaton model for each of these
cases are different:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 107

(1) Environment starts the task in a time window whenever related
resources are idle: This kind of uncontrollability does not have any
impact on the model of the task in ME automaton. Thereby, the
model of the task is the ME automaton becomes as Figure 4.5. For
considering this type of uncertainty, only the model of TL automaton
changes.

(2) Keeping resources available from the lower bound of the decision
time window: Resources should be reserved from the initial moment
of decision time window. Hence, from this moment, the automaton
should move from the initial location to another location to prevent
starting the other tasks. Although, since in this moment the task is not
started yet, the automaton cannot move to the task location. For that
reason, in this instant, by receiving the signal 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡_𝑃𝑃 from the
related TL automaton, the ME automaton moves to a new
location 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡. When the environment decides to start the task, it
sends signal 𝑡𝑡_𝑃𝑃 from the TL automaton to the ME automaton.
Thereby, clock is reset and the ME automaton reaches the task
location 𝑡𝑡 and starts the task. After waiting 𝑎𝑎(𝑡𝑡) time units in this
location and finishing the task, the automaton takes a controllable
transition to the initial location and waits for starting a new task
(Figure 4.11).

Figure 4.11. Modeling pattern of a task with uncertain start time in a ME automaton

4.5.2. Task launcher automaton by considering uncontrollability
In section 2.4.2 it is explained that for launching every task, a TL automaton is
needed and hence number of TL automata are equal to the number of tasks. In
this automaton, whenever all the ME automata sharing the task are in their
initial location, the output of function 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑡𝑡) becomes true and the task
can be launched. Therefore, the automaton sends a signal 𝑡𝑡_𝑃𝑃 to the other
automata sharing the task 𝑡𝑡 and reaches the location 𝑓𝑓 (Figure 4.12). Thereby,
𝑡𝑡 starts execution in these automata.

It should be recalled that the guard function 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑡𝑡): Σ → 𝐵𝐵𝑃𝑃𝑃𝑃𝐸𝐸, which
is associated to the transition of TL automaton, is true if and only if the
following condition holds:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 108

∀𝑡𝑡 ∈ [1,𝑀𝑀]: 𝑡𝑡 ∈ 𝑇𝑇𝑀𝑀𝑖𝑖 → ∀𝑡𝑡′ ∈ 𝑇𝑇𝑀𝑀𝑖𝑖\{𝑡𝑡}: ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑡𝑡′, 𝐸𝐸𝑖𝑖) (4.8)

where 𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝:𝑇𝑇𝑀𝑀𝑖𝑖 × 𝑇𝑇𝑚𝑚𝑒𝑒𝑖𝑖 → 𝐵𝐵𝑃𝑃𝑃𝑃𝐸𝐸 is defined as

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑡𝑡, 𝐸𝐸𝑖𝑖) = � 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸𝑖𝑖 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡, 𝑃𝑃.𝑒𝑒 (4.9)

where 𝑀𝑀 is the number of ME automata, 𝑡𝑡 is the name of the task, 𝑇𝑇𝑀𝑀𝑖𝑖 is the
set of tasks engaged in 𝑡𝑡th ME automaton. In the 𝑡𝑡th ME automaton, 𝑇𝑇𝑚𝑚𝑒𝑒𝑖𝑖 is the
set of locations, 𝐸𝐸𝑖𝑖 is its current location and 𝐸𝐸0 is the initial location. In the
equation 4.9, pending function verifies if a ME automaton is in a task location
where a task is being executed.

Figure 4.12. Modeling pattern of a task launcher automaton

 Unpredictable resource failure
(1) Failure while a resource is idle: This kind of failure does not

interrupts tasks since a TL automaton is only related to tasks and not
resources. Therefore, there is no need to change the model of TL
automaton for considering failure while a resource is idle.

(2) Failure while doing a task: Whenever a failure occurs during
execution of a task, the task should be repeated after repairing the
resource. Therefore, after this period, TL should return to its initial
location to be able to launch the task another time.
To add this feature to the model of TL automaton, one additional
location 𝑃𝑃𝑡𝑡𝑃𝑃 is created. When a task is during execution, the
automaton is in location 𝑓𝑓. Therefore, at the instant of resource
failure, it receives the signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃 from the ME automaton in which
the resource failure was caused and reaches location 𝑃𝑃𝑡𝑡𝑃𝑃. In this
location, the automaton waits until reparation of the related resource.
After this period, the automaton receives another signal
𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡_𝑃𝑃 from the ME automaton to which the resource failure was
related. Thereby TL automaton goes to the initial location (Figure
4.13).

For better understanding the link between a resource failure in the
model of ME automaton and TL automaton, refer to Section 4.6. This
section explains the complete model for an example of MRS
scheduling problem considering resource failure.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 109

Figure 4.13. Modeling pattern of a launcher automaton for a task subject to failure

 Bounded uncertainty in duration of tasks
A TL only launches a task and does not concern duration of tasks. Hence, for
considering uncertain duration of tasks, there is no need to change the model of
TL automaton.

 Bounded uncertainty in start time of tasks
(1) Environment starts the task in a time window whenever related

resources are idle: start time of a task may be uncontrollable such that
from the instant of releasing a task, its start time vary in an interval of
the form [0, 𝐸𝐸𝑡𝑡𝑡𝑡] where 𝐸𝐸𝑡𝑡𝑡𝑡 represents the maximum delay for
starting the task. For modeling this feature, two issues should be
considered; the first one is that as before, in addition to the
communication signal 𝑡𝑡_𝑃𝑃, the output of 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎 function for the task
𝑡𝑡 should be verified. The releasing time of the task is let to be time
zero in TL automaton. Hence, the second issue is that from time zero
to the moment prior to the time bound 𝐸𝐸𝑡𝑡𝑡𝑡 launching the task 𝑡𝑡 is
uncontrollable. If the task is not launched until this time, the
automaton should be forced to launch the task at this instant.
Furthermore, its launching cannot be delayed more than this
threshold.
Therefore, two transitions lead the automaton from the initial location
𝐸𝐸0 to the location 𝑓𝑓. One transition is an uncontrollable transition that
can be taken by the environment if 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑡𝑡) is true and the value
of the local clock 𝑐𝑐𝐸𝐸 is less than 𝐸𝐸𝑡𝑡𝑡𝑡. Another transition is a
controllable transition that can taken by controller if 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡(𝑡𝑡) is true
and the value of 𝑐𝑐𝐸𝐸 is equal to 𝐸𝐸𝑡𝑡𝑡𝑡. When taking one of these
transitions, a communication signal 𝑡𝑡_𝑃𝑃 will be sent to the other
automata that share the task 𝑡𝑡 (Figure 4.14).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 110

Figure 4.14. Modeling pattern of a task launcher automaton for a task with non-

deterministic start time when the resources are occupied from the instant of execution

(2) Keeping resources available from the lower bound of the decision
time window: In this case, at the instant when all necessary resources
for execution of task 𝑡𝑡 are available, i.e. the output of 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡(𝑡𝑡) is
true, the TL automaton of task 𝑡𝑡 reserves resources. To this end, it
takes a transition to 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡 location and sends a signal 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡_𝑃𝑃 to
the ME automata sharing task 𝑡𝑡. Therefore, the related ME automata
reach to their 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡 location and this issue prevents other tasks in
the related ME automata to occupy the necessary resources and to be
executed. Furthermore, by taking this transition, the local clock 𝑐𝑐𝐸𝐸 is
reset. In location 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡, the automaton waits for the environment to
take an uncontrollable transition to the location 𝑓𝑓 until the instant that
the clock value reaches 𝐸𝐸𝑡𝑡𝑡𝑡. If the environment did not took the
transition, the supervisor takes a controllable transition to 𝑓𝑓 at
time 𝐸𝐸𝑡𝑡𝑡𝑡. In the both cases, a communication signal 𝑡𝑡_𝑃𝑃 is sent to the
other automata that share 𝑡𝑡 to start the task.

Figure 4.15. Modeling pattern of a task launcher automaton for a task with non-

deterministic start time when the resources are occupied from the release time of task

4.5.3. Precedence automata by considering uncontrollability
Uncertainties of duration or start time of tasks does not change the model of PR
automata. Because in both types of PR automata, only the starting instant of the
task is taken into account. Thus, it is not important if a task starts right after the
prior task or it starts some moments later. The same goes for the duration of the
task, i.e. the finishing instant of the task is not important. Precedence constraints
solely set the minimum time distances between the starting times of tasks.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 111

Considering a failure in idle time of tasks also does not need to change the
model of PR automata. Since this kind of failure, only cause delay between
previsioned start time of tasks and extra delays are not concerned in PR
automata models.

The following is the changes made in two types of PR automata to model
precedence constraint among tasks that are subject to failure while being
executed:

(1) Triggering precedence automaton: It is intended to put constraints on
tasks that are fulfilled successfully. Since when a task fails, it will not
be necessarily executed right after reparation of the broken down
resource. It may be executed afterwards. Thus, the failed task should
be executed anew in the PR automata.
To model this feature in triggering PR automata, it is enough to add
uncontrollable transitions that lead the automaton from the locations
that tasks are launched to their previous locations where tasks are not
launched yet. For example when a TL launches task 𝑡𝑡𝑗𝑗, the PR
automata in Figure 4.16 takes a transition from 𝐸𝐸1 to 𝐸𝐸2. If 𝑡𝑡𝑗𝑗 fails, the
automaton should execute it again. To this aim, a new uncontrollable
transition could be added from 𝐸𝐸2 to 𝐸𝐸1. Thereby, when a failure
happens, a signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑗𝑗 is received from the related ME automaton
and the PR automata moves to the previous location. This makes it
possible to execute 𝑡𝑡𝑗𝑗 for another time. The same goes for all the tasks
in the automaton. Thus, in order to consider failure during execution
of tasks, the model of triggering PR automata changes to Figure 4.17.

Figure 4.16. Modeling pattern of a triggering PR automata with reliable resources

Figure 4.17. Modeling pattern of a triggering PR automata with tasks subject to failure

Delay precedence automaton: Figure 4.18 shows the modeling
pattern of a delay PR automata with reliable resources that was
explained in Chapter 2. In this figure, it can be seen that apart from
the final location 𝑓𝑓, there exist two types of locations; those from

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 112

which a task is launched, i.e. launching locations, and the locations
where the automaton waits for a specific period 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡), i.e. delay
locations. The process of modeling task failure in this automaton is
similar to the triggering PR automata. The only difference is that in
this model, there should exist transitions to lead the automata to the
launching locations not only from each launching location to their
previous launching location, but also from delay locations to their
previous launching locations.

Figure 4.18. Modeling pattern of a delay PRautomata with reliable resources

Figure 4.19 represents modeling pattern of a delay PR automata with
tasks subject to failure. After launching task 𝑡𝑡𝑖𝑖, the automaton reaches
the delay location 𝐸𝐸1. During execution of the task, a resource failure
may happen. There is a possibility that this failure occurs during the
waiting period in 𝐸𝐸1. Whereas, if 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡𝑖𝑖) was smaller than duration of
the task 𝑎𝑎(𝑡𝑡𝑖𝑖), this failure may happen after time 𝑎𝑎𝑡𝑡𝐸𝐸(𝑡𝑡𝑖𝑖) and when
the automaton has moved to the location 𝐸𝐸2. Thus, two uncontrollable
transitions are added to the automaton. Thereby, whenever a failure
signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑖𝑖 is received from a ME automaton, if the PR automata
was at location 𝐸𝐸1 or 𝐸𝐸2, it will go back to the previous launching
location, i.e. initial location. Related changes for the other tasks are
the same as 𝑡𝑡𝑖𝑖.

Figure 4.19. Modeling pattern of a delay PR automata with tasks subject to failure

4.6 Example 3
Assume there is a set of tasks 𝑇𝑇 = {𝐸𝐸, 𝑒𝑒, 𝑐𝑐} to be done. Same as Example 1, a
set of resources 𝑅𝑅 = {𝑅𝑅1, … ,𝑅𝑅5} is assigned to tasks with resource association
details shown in Table 4.3. Hence, tasks 𝐸𝐸 and 𝑒𝑒 are in conflict with each other,
while 𝐸𝐸 and 𝑐𝑐 are not. Therefore, 𝐸𝐸 and 𝑐𝑐 can be performed simultaneously.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 113

 Duration of 𝐸𝐸 is restricted to be bounded in interval [7,11] and duration of
𝑒𝑒 and 𝑐𝑐 are 5 and 3 time units respectively. On the other hand, start time of
tasks 𝑒𝑒 and 𝑐𝑐 are uncertain, and vary in interval [0,2] from their release time.
Despite 𝑐𝑐 needs to assign resources from the first instant of its release time, 𝑒𝑒
requires assignment of its necessary resources from the instant of its start time.
These information are shown in Table 4.2. Timing information of tasks in
Example 3

Table 4.2. Timing information of tasks in Example 3

task
Time distance between
release and start time

Type of engaging resources duration

a 0 Engage resources from start time [7,11]
b [0,2] Engage resources from start time 5
c [0,2] Engage resources from release time 3

Table 4.3. Resource assignment details of Example 3

task resource
R1 R2 R3 R4 R5

a  
b   
c   

In addition to the uncertainty in duration and start time of the tasks, resources
are not reliable and may fail in their idle time or even during execution of tasks.
Maximum repairing time of resources are as Table 4.4. Thus, the maximum
duration for repairing resources necessary to execute the set of tasks {𝐸𝐸, 𝑒𝑒} and
{𝑒𝑒, 𝑐𝑐} are 4 and 5 time units respectively.

The precedence constraint among tasks is such that task 𝐸𝐸 should be started
after finishing task 𝑒𝑒.

Table 4.4. Repairing duration of resources

R1 R2 R3 R4 R5
4 3 4 5 4

This example is similar to Example 1. Tasks 𝐸𝐸 and 𝑒𝑒 compose the ME
automaton 𝐺𝐺1 and tasks 𝑒𝑒 and 𝑐𝑐 compose the ME automaton 𝐺𝐺2. Also TL
automata for tasks 𝐸𝐸, 𝑒𝑒 and 𝑐𝑐 are 𝐺𝐺3, 𝐺𝐺4 and 𝐺𝐺5 respectively. Automaton 𝐺𝐺6
represents the PR automata.

Related models for this example are depicted in the figures bellow.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 114

Figure 4.20 represents ME automaton 𝐺𝐺1. In this figure, 𝐸𝐸_𝑃𝑃? denotes
requesting signal for starting task 𝐸𝐸. After receiving this signal from the TL
automaton 𝐺𝐺4, the automaton resets clock 𝑐𝑐𝐸𝐸 and reaches task location 𝐸𝐸. In this
location, it executes task 𝐸𝐸 in at least 7 time units. From this instant until time
11, the environment may take an uncontrollable transition to the initial location
to terminate the task. At time 11, if the environment hasn’t done any action, the
controller takes a controllable transition to the initial location 𝐸𝐸0. Although,
before finishing task and moving to the initial location, a failure may happen.
It is assumed that failures may happen in each set of resources only once. This
failure can be a breakdown in the set of resources used by the tasks in 𝐺𝐺1 or 𝐺𝐺2.
In the first case, if it is the first time that a failure occurs in 𝐺𝐺1, i.e. 𝑒𝑒1 is equal
to zero and ! 𝑒𝑒1 is true, the environment takes a transition to the location 𝑃𝑃𝑡𝑡𝑃𝑃𝑎𝑎
and stops task 𝐸𝐸. By taking this transition, the clock is reset and sends a signal
(broadcasting channel) 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑎𝑎 to other automata that share 𝐸𝐸. TL automaton
𝐺𝐺3 and PR automata 𝐺𝐺6 share 𝐸𝐸. By receiving 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑎𝑎, automaton 𝐺𝐺3 moves
from the location 𝑓𝑓 to the location 𝑃𝑃𝑡𝑡𝑃𝑃. After 4 time units, automaton 𝐺𝐺1 finishes
reparation of the failed resource and the automaton reaches the initial location
𝐸𝐸0. By taking this controllable transition, variable 𝑒𝑒1 is updated to one, and send
signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡_𝑃𝑃𝑎𝑎 to the TL automaton of task 𝐸𝐸 to enable restarting it. By
receiving this signal by automaton 𝐺𝐺3, it returns to 𝐸𝐸0 to be able to launch the
task another time.

Figure 4.20. ME automaton 𝐺𝐺1 in Example 3

If the reason of the fault is a breakdown in another set of resources in another
ME automaton, when 𝐺𝐺1 is in location 𝐸𝐸, it receives a signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑎𝑎 (marked
as 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑎𝑎 ? on the transition) and immediately returns to the location 𝐸𝐸0.
However, 𝐸𝐸 is not a member of 𝑇𝑇𝑀𝑀2 and thus doesn’t exist in 𝐺𝐺2. Thence, this

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 115

transition will be never taken and even during failure of resource set 1, other
individual tasks in 𝐺𝐺2 can be still running.

Performing task 𝑒𝑒 is similar to task 𝐸𝐸 with the difference that its duration is
deterministic. In addition, for the reason that 𝑒𝑒 is shared between 𝐺𝐺1 and 𝐺𝐺2, if
any failure happens in any of the resource sets, a signal 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃_𝑃𝑃𝑏𝑏 will be sent to
the other ME automaton, an uncontrollable transition will be taken and thereby
both of automata stop doing the task.

If a failure takes place in idle time of the first resource set, an uncontrollable
transition from 𝐸𝐸0 to 𝑓𝑓𝐸𝐸𝑡𝑡𝐸𝐸 location will be taken. As a result, 𝑒𝑒1 is updated to
one and clock is reset. After 4 time units, reparation process terminates and the
automaton returns to 𝐸𝐸0 and waits to do a task.

In automaton 𝐺𝐺2 (Figure 4.21), not only the start time of task 𝑐𝑐 is non-
deterministic, but also it needs to reserve resources from its release time.
Whenever 𝐺𝐺2 receives the signal 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡_𝑐𝑐_𝑃𝑃 from the automaton 𝐺𝐺5, it reaches
the location 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡. In this location, it waits for the action of the environment
in automaton 𝐺𝐺5 to take the uncontrollable transition from the location 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡
to 𝑓𝑓 from time 0 to some moments before time 2. If the environment doesn’t
take any action in automaton 𝐺𝐺5, at time 2, the controller takes the controllable
transition to 𝑓𝑓. In either cases, 𝐺𝐺5 sends the signal 𝑐𝑐_𝑃𝑃 to the other automata. 𝐺𝐺2
receives this signal, resets its local clock 𝑐𝑐𝐸𝐸 and reaches location 𝑐𝑐. The
remaining process for doing the task is the same as task 𝑒𝑒.

Figure 4.21. ME automaton 𝐺𝐺2 in Example 3

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 116

Figure 4.22. TL automaton 𝐺𝐺3 for task a in Example 3

In the TL automata of task 𝐸𝐸, 𝐺𝐺3 in Figure 4.22, for taking a transition from
𝐸𝐸0 to 𝑓𝑓, 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝐸𝐸) verifies validity of the following predicate and if it was
true, the automaton sends signal 𝐸𝐸_𝑃𝑃 to 𝐺𝐺1 and 𝐺𝐺6:

𝐸𝐸 ∈ 𝑇𝑇𝑀𝑀1 → ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑒𝑒, 𝐸𝐸1) (4.10)

where

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑒𝑒, 𝐸𝐸1) = � 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸1 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡, 𝑃𝑃.𝑒𝑒 (4.11)

where 𝐸𝐸1 represents current location of automaton 𝐺𝐺1. This predicate means that
𝐺𝐺1 is not in task location 𝑒𝑒 and during execution of 𝑒𝑒.

Figure 4.23. TL automaton 𝐺𝐺4 for task b in Example 3

In the TL automata of task 𝑒𝑒, 𝐺𝐺4 in Figure 4.23, for taking a transition from
𝐸𝐸0 to 𝑓𝑓, 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑒𝑒) verifies validity of bellow predicate and if it was true, the
automaton sends signal 𝑒𝑒_𝑃𝑃 to 𝐺𝐺1, 𝐺𝐺2 and 𝐺𝐺6:

𝑒𝑒 ∈ 𝑇𝑇𝑀𝑀1 ∧ 𝑒𝑒 ∈ 𝑇𝑇𝑀𝑀2 → ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝐸𝐸, 𝐸𝐸1) ∧ ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑐𝑐, 𝐸𝐸2) (4.5)

where

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝐸𝐸, 𝐸𝐸1) = � 𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸1 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡, 𝑃𝑃.𝑒𝑒 (4.6)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 117

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑐𝑐, 𝐸𝐸2) = �𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸2 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡, 𝑃𝑃.𝑒𝑒 (4.7)

which means that ME automata one and two are not in task locations and during
execution of tasks 𝐸𝐸 or 𝑐𝑐 respectively.

Figure 4.24. TL automaton 𝐺𝐺5 for task c in Example 3

In the TL automata of task 𝑐𝑐, 𝐺𝐺5 in Figure 4.24, for taking a transition from
𝐸𝐸0 to 𝑓𝑓, 𝑡𝑡𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑎𝑎(𝑐𝑐) verifies validity of this predicate:

𝑒𝑒 ∈ 𝑇𝑇𝑀𝑀2 → ¬𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑒𝑒, 𝐸𝐸2) (4.8)

where

𝑃𝑃𝑡𝑡𝑜𝑜𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝(𝑒𝑒, 𝐸𝐸2) = �𝑓𝑓𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡, 𝐸𝐸2 = 𝐸𝐸0
𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡, 𝑃𝑃.𝑒𝑒 (4.9)

which means that 𝐺𝐺2 is not in task location 𝑒𝑒. If it was true, clock is reset and
the automaton sends signal 𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡_𝑐𝑐_𝑃𝑃 to 𝐺𝐺2 to reserve the related resources.

Figure 4.25 represents PR automata of this example. As depicted in this
figure, firstly task 𝑒𝑒 is executed and when it ends, task 𝐸𝐸 can be started.
Although, whenever a failure happens during execution of tasks 𝑒𝑒 or 𝐸𝐸, the
automaton returns to locations 𝐸𝐸0 and 𝐸𝐸2 respectively.

Despite there is a transition from 𝐸𝐸2 to 𝐸𝐸0, according to the considered delay
for task 𝑒𝑒, in location 𝐸𝐸2 the task is already terminated. Therefore, no failure
can occur in this location and in order to simplify the automaton, this transition
can be omitted. Whereas, if this delay was less than duration of the task, failure
could be occurred in this location too. The same is true with the uncontrollable
transition from location 𝑓𝑓 to 𝐸𝐸2 which is useless in this special example.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 118

Figure 4.25. PR automata 𝐺𝐺6 in Example 3

4.7 Solving approach
In order to find a schedule, the tool TIGA is used as a synthesis tool to explore
the state space for determining if there is a winning strategy to reach a location
where all the tasks are done and the precedence constraint is respected. For this
purpose, a time-optimal control property is verified by performing a
reachability game. This game concerns reachability of all the ME automata to
their initial locations and all TL and PR automata to their final locations (𝑓𝑓)
despite uncontrollable actions of the environment. In TCTL language, this
property can be formalized as follows:

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(𝑡𝑡,𝑝𝑝):𝐴𝐴 ◊ ((⋀ 𝑀𝑀𝐸𝐸𝑗𝑗 . 𝐸𝐸0)1≤𝑗𝑗≤𝑀𝑀 ∧ (⋀ 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘_𝐸𝐸𝐸𝐸𝑡𝑡𝑜𝑜𝑐𝑐ℎ𝑡𝑡𝑃𝑃𝑖𝑖.𝑓𝑓)1≤𝑖𝑖≤𝑁𝑁 ∧
(⋀ 𝑃𝑃𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑡𝑡𝑜𝑜𝑐𝑐𝑡𝑡𝑘𝑘.𝑓𝑓)1≤𝑘𝑘≤𝑝𝑝) (4.10)

where 𝐸𝐸0 is the initial locations of ME automata, and 𝑓𝑓 are final locations of TL
and PR automata. As highlighted previously, there exist 𝑀𝑀 ME automata, 𝑁𝑁 TL
automata and 𝑃𝑃 PR automata. Generally, 𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(𝑡𝑡,𝑝𝑝):𝐴𝐴 ◊ 𝑝𝑝𝑃𝑃𝐸𝐸𝐸𝐸 means
that the supervisor must reach a set of goal location within less than 𝑡𝑡 − 𝑝𝑝 time
units. In the case of the proposed scheduling problem, goal locations are initial
locations 𝐸𝐸0 in ME automata and 𝑓𝑓 locations in TL and PR automata. Moreover,
𝑡𝑡 can be set to a very large number and 𝑝𝑝 can have zero value. Thereby, TIGA
yields an optimal or sub-optimal value of makespan that can be acquired despite
the worst actions of the environment (from the point of view of the supervisor).
Furthermore, the strategy to reach the final location can be obtained through
this synthesis (Behrmann et al. 2007a).

It is noteworthy to mention that the process of finding a winning strategy is
much more expensive than a usual reachability analysis for finding a trajectory
to reach the goal location. Thence, the computational time of this solving
approach is longer than the previous case and cannot be used for large size MRS
scheduling problems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 119

4.8 Example 3 (continue)
According to the equation 4.10, the following query is verified in TIGA to find
the optimal schedule:

𝑐𝑐𝑃𝑃𝑜𝑜𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸_𝑡𝑡∗(100,0):𝐴𝐴 ◊ (𝐺𝐺1. 𝐸𝐸0 ∧ 𝐺𝐺2. 𝐸𝐸0 ∧ 𝐺𝐺3.𝑓𝑓 ∧ 𝐺𝐺4.𝑓𝑓 ∧ 𝐺𝐺5.𝑓𝑓 ∧ 𝐺𝐺6.𝑓𝑓) (4.11)

where 𝐸𝐸0 is the initial locations of ME automata 𝐺𝐺1 and 𝐺𝐺2, and 𝑓𝑓 are final
locations of TL automata 𝐺𝐺3,𝐺𝐺4 and 𝐺𝐺5 and PR automata 𝐺𝐺6.

The makespan obtained by TIGA for this example is 45 time units. By
implementing the models in this tool, a winning strategy is acquired. For
obtaining the strategy, 𝑡𝑡 and 𝑝𝑝 are set to 100 and 0 respectively. In this
example, there exist two sets of task conflicts; therefore, there are two sets of
resources working simultaneously. It is clear that if a failure occurs in one of
the sets, those tasks that do not need both resource sets for execution can be
still running.

Figure 4.26 demonstrates the Gantt chart for a sample schedule when the
environment does its best play. It means that delays for the start time of tasks
are the maximum and failures are happened at moments that can prolong
duration of the schedule as much as possible. In this schedule, from time 0 to
time 2, the environment doesn’t acts and therefore the controller executes task
𝑒𝑒 at time 2. At this instant, 𝑒𝑒 is executed on both sets of resources. Some
instances before 𝑒𝑒 ends, a failure happens in the second set of resources. This
issue stops 𝑒𝑒. Maximum reparation time of the second set of resources is 5 time
units. Thus, till time 12, resources are repaired and in this moment, ME
automaton 𝐺𝐺2 allows restarting of task 𝑒𝑒. Whereas another time, the
environment doesn’t take action and the execution of 𝑒𝑒 is forced after 2 time
units. Therefore, at time 14, 𝑒𝑒 is started at both ME automata and finishes at
time 19 when both set of resources are released.

At this instant, automaton 𝐺𝐺1 starts execution of task 𝐸𝐸. At the same moment,
TL automaton of task 𝑐𝑐 releases this task and reserves its necessary resources
to use them when the environment starts the task. From time 19 to time 21 the
environment doesn’t acts and therefore the controller executes task 𝑐𝑐 at time
21. At time 24 𝑐𝑐 finishes.

Duration of task 𝐸𝐸 is non-deterministic and is bounded in interval [7,11].
Until moments before time 30, the environment does not take any action to
finish the task. While some instants before time 30, a failure in the first set of
resources occurs which stops execution of the task. It takes 4 time units to repair
the resources. It is assumed that each set of resources can only fail one time.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 120

Therefore, this set cannot fail anymore. This limit is put to prevent unlimited
failures and to bring the problem, closer to reality.

At time 34, the first set of resources are repaired. For the reason that task 𝐸𝐸
was not finished, it should be repeated again. Hence, at time 34, 𝐸𝐸 restarts
execution and takes 11 time units to be finished. Therefore all tasks are finished
at time 45.

Figure 4.26. Gantt chart for a sample schedule in Example 3- case one

This case is the worst case for occurrence of failures. Failures do not occur
when resources are idle. This issue causes an amount of time waste for the
reason of repeating tasks. Even this amount is maximum in this schedule; since
failures occur at the last moments of execution of the longest tasks. Indeed, the
longest tasks of the problem (𝐸𝐸 and 𝑒𝑒) took twice as much time as usual.

Figure 4.27. Gantt chart for a sample schedule in Example 3- case two

Figure 4.27 shows an alternative schedule that is the result of actions chosen
by the environment and the controller for execution of tasks or occurrence of
failures and delays. As it can be seen in the figure, in this schedule, task 𝑒𝑒 is
executed after 1 time units instead of 2 time units. After 2 time units a failure
occurs on the second set of resources which could be happened after 5 time
units. Therefore, instead of time 19, task b is done at time 15. Then, task 𝑐𝑐 is
executed after 1 time units instead of 2 time units. Furthermore, instead of
elapsing 11 time units from execution of 𝐸𝐸, after 4 time units the failure on the
first set of resources happens. They take 4 time units to be repaired. This time,
instead of 11 time units, task 𝐸𝐸 ends after 8 time units. Hence, all the tasks are
done at time 31. This difference is the result of better choices of the
environment (from the point of view of the controller).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 4: MRS scheduling considering uncontrollable environment

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 121

4.9 Conclusion
In this chapter, multi-resource sharing scheduling problem is investigated
considering uncontrollable parameters that can be happened in the real life.
These parameters are uncertain duration of tasks, uncertain start time of tasks
or resource failures during a scheduled cycle.

Tasks that are subject to uncertain start time are divided to two sets: those
that engage resources from their release time and the ones, which occupy
resources only when they are executing.

Furthermore, two types of failures is studied: failure while tasks are being
executed and failures during idle time of resources.

In chapter two, it was concluded that WA is a proper means for modeling of
MRS problem for which all parameters are controllable. In fact, simple and
abstract models can be built for this problem through WA. However, modeling
of uncontrollable parameters in the problem is more complicated than
controllable parameters and tasks. On the other hand, simplicity of this kind of
automaton prevents modeling uncontrollable parameters in the problem.
Hence, this kind of problems, is directly modeled by a type of timed automata
that considers uncontrollability named timed game automata.

Solving a problem considering uncontrollability needs to perform a
supervisory control and extracting a strategy to reach the desired condition
despite all actions of the environment. In order to solve the MRS scheduling
problem, time-optimal reachability game is performed. Although taking into
account uncontrollable parameters yields a schedule closer to the reality, this
process is more expensive than simply finding a schedule in which all the tasks
are done.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 122

5
Conclusion and perspectives

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 5: Conclusion and perspectives

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 123

5 Conclusion and perspectives

5.1 General conclusion
Although wide studies are investigated in scheduling problems by researchers,
few studies have used automata and formal verification technics for addressing
scheduling problems; yet none of them considered challenging and practical
issues such as multi-resource sharing aspect, uncontrollable environment and
reaching the optimal schedule in a reasonable time for industrializing the
model. This study, focuses on modeling and solving the scheduling problem
considering the aforementioned issues.

The MRS scheduling problem is modeled by automata which is expressive
and also robust against changes in the parameter setting and the problem
hypotheses. Two main types of automata are investigated that can simulate time
and task durations for modeling scheduling problems aiming at minimizing
makespan: 1. Automata based on weights (i.e. WA) 2. Automata based on
clocks (e.g. timed automata). WA is a proper modeling approach for MRS
scheduling problem for which all parameters are controllable. It is shown that
simpler and more abstract models can be built for this problem through WA.
Since all task parameters and events are controllable in Chapter 2 and 3, the
problem is modeled by WA in these chapters. In order to find the optimal
schedule through the WA model, it is necessary to compose its different
components. Hence, an appropriate formalism of synchronous composition is
needed to compose components of the model. Whereas there are two issues
concerning the existing synchronous compositions in the literature: 1. being
unable to show all possible behaviors of the scheduled problem such as
simultaneous execution of actions in different automata 2. not containing a
trajectory with the minimum makespan for the problem. Consequently, the
existing synchronous compositions cannot be used to compose the components
of the model. Thus, in order to find the optimal schedule, in Chapter 2, the WA
models are translated to timed automata models to be composed through
synchronous composition defined for timed automata. Whereas, in Chapter 3,
a new synchronous composition is proposed to compose components of the
weighed automata model directly. In the sequel, each chapter is explained
briefly.

In Chapter 2, an efficient modeling and solving approach is developed for
MRS scheduling problem using weighted and timed automata and formal
verifications technics. In this chapter, all the task parameters and events are

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 5: Conclusion and perspectives

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 124

controllable. Therefore, to model the MRS scheduling problem, a WA model
is proposed. In order to obtain the optimal schedule, the proposed WA model
is translated to timed automata through some defined rules. In order to find the
optimal schedule in a timed automata model, the state space of the model is
explored through a reachability analysis. According to the conventional
methodology of the reachability analysis, a trajectory should be found in the
model in which all the tasks are done. In other words, the scheduling problem
becomes a formal verification problem to verify a safety property that
guarantees fulfilling all the tasks. In fact, this property is reachability to a set of
locations where the condition to reach this set is to complete all the tasks.

To find the optimal schedule, an iterative algorithm is developed. In this
algorithm, in each iteration, the aforementioned safety property is verified. By
verifying the property, model checker issues a witnessing trajectory that
corresponds to one of the possible schedules. The value of clock in the final
state of each witnessing trajectory, where all the tasks are done, is equal to the
makespan of the schedule. Different schedules could be generated randomly by
means of random depth first search method. To find the optimal schedule,
several iterations will be done and compared to the optimal schedule.

Two possibilities exist for ending the procedure: 1. To find the optimal
makespan in a long time 2. To find the sub-optimal makespan in a period
appropriate for decision making depending to the industry. In this thesis, the
second approach is followed and therefore, a time instance is determined as
criteria for stopping the computation. After reaching this criteria, a suboptimal
schedule will be obtained.

The results show that the proposed model and algorithm can be efficiently
applied to industrial sized problems with 220 tasks and 20 groups of conflicting
task for using various resources. It has been proved that time complexity of the
proposed method is polynomial which allows the decision maker to solve an
industrial size problem in a period reasonable for making decisions, while time
complexity of the problem is NP-hard.

In Chapter 3, a synchronous composition is proposed for WA to enable
solving the MRS scheduling problem by performing the developed time-
optimal reachability analysis on WA models. In this chapter, a new
synchronous composition is presented to compose the WA models proposed in
Chapter 2. The advantage of this composition is being enable to execute non-
conflicting actions simultaneously. Moreover, due to the approach used in this
composition, a schedule with the optimal makespan can be reached using the
proposed composition. A generic rule in this composition is such that in each

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 5: Conclusion and perspectives

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 125

trajectory, whenever an action is finished in an automaton, intermediate states
in all other automata are created. Therefore, the automaton can start another
action in that time instant. In that way, the set of tasks can be executed in a
shorter time. After building the synchronous composition of the components of
the model, a schedule can be found by performing the proposed time-optimal
reachability analysis to find the fastest trajectory from the initial state to a state
where all the tasks are done.

Finally, in Chapter 4, to bring the problem closer to the real world, the MRS
scheduling problem is extended by considering uncontrollable events and
uncertain parameters. These parameters are uncertain duration and start time of
tasks and resource failures during a scheduled cycle.

Tasks that are subject to uncertain start time are divided to two sets: those
that engage resources from their release time and the ones, which occupy
resources only when they are executing. Furthermore, two types of failures are
studied in this thesis: failure while tasks are being executed and failures during
idle time of resources.

However, modeling of uncontrollable parameters in MRS scheduling
problem is complicated. Timed game automata is a modeling formalism which
support clocks and include uncontrollable transitions and has sufficient features
to model the extended problem. Thus, the extended MRS scheduling problem
is modeled by timed game automata.

Solving a problem considering uncontrollability needs to perform a
supervisory control and extracting a supervisor strategy to reach the desired
condition despite all actions of the environment. In order to solve the MRS
scheduling problem, time-optimal reachability game is performed. Whereas,
this process is more expensive than simply finding a schedule in which all the
tasks are done. Thence, although taking into account uncontrollable parameters
yields a schedule closer to the reality, this process is much longer to be solved
in large sizes.

5.2 General perspectives
In this section, some limitations of this work are presented and possible
directions for future researches are given. Particularly four main future research
directions can be proposed:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Chapter 5: Conclusion and perspectives

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 126

• The defined rules for translating WA models to timed automata
models can be implemented in a software to obtain timed automata
models automatically.

• The synchronous composition of WA could be implemented in a
software to compose WA models automatically. Furthermore, the
time-optimal reachability analysis discussed in Chapter 3 could be
implemented in a software in order to find the optimal schedule
automatically.

• As explained in motivations, task are divided to operation tasks and
preventive maintenance tasks. In some application, it may be an
advantage to perform operation tasks earlier than maintenance.
Whereas, by postponing the maintenance, risk of failure will increase
which may need more time to be fixed. Therefore, two cases may
happen by postponing the preventive maintenance of resources: 1.
Operational tasks may be fulfilled earlier and the makespan for doing
them may decrease 2. Failure occurs before performing maintenances
and finishing tasks and the makespan increases. Thus, maintenance
can be postponed depending on two parameters: 1. the importance of
makespan minimization in the specific industry and 2. probability of
failure in each instance of the schedule

• A new formalism for WA could be defined in order to model
uncontrollable events like occurrence of failure while execution of
tasks. In addition, the algorithm of synchronous composition could be
extended to compose WA models containing uncontrollability issues.

5.3 Related publication

The results of this thesis is published / submitted as follows:

• M. Rahimi, E. Niel, E. Dumitrescu, “Multi-resource Scheduling by
Weighted and Timed Automata”, International Journal of Production
Research (ready to submit)

• M. Rahimi, E. Niel, E. Dumitrescu, (2015) “Scheduling by Timed
Automata under Resource Conflicts”, Poster presented in: 10ème
Colloque sur la Modélisation des Systèmes Réactifs (MSR 2015),
Nov. 18-20, Nancy, France

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

References

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 127

References
Abdeddaïm, Y., E. Asarin, and M. Sighireanu. 2009. “Simple Algorithm for Simple

Timed Games.” In TIME 2009 - 16th International Symposium on Temporal
Representation and Reasoning, 99–106. doi:10.1109/TIME.2009.14.

Abdeddaim, Y, and O Maler. 2001. “Job-Shop Scheduling Using Timed Automata.”
In Computer Aided Verification, 1:478–92.

Abdeddaïm, Yasmina, Eugene Asarin, and Oded Maler. 2006. “Scheduling with
Timed Automata.” In Theoretical Computer Science, 354:272–300.
doi:10.1016/j.tcs.2005.11.018.

Abdeddaïm, Yasmina, Abdelkarim Kerbaa, and Oded Maler. 2003. “Task Graph
Scheduling Using Timed Automata.” In Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, 8–pp.
doi:10.1109/IPDPS.2003.1213431.

Afzalirad, Mojtaba, and Javad Rezaeian. 2016. “Resource-Constrained Unrelated
Parallel Machine Scheduling Problem with Sequence Dependent Setup Times,
Precedence Constraints and Machine Eligibility Restrictions.” Computers and
Industrial Engineering 98: 40–52. doi:10.1016/j.cie.2016.05.020.

Al-Bataineh, Omar Ibrahim. 2015. “Verifying Worst-Case Execution Time of Timed
Automata Models with Cyclic Behaviour.” The University of Western Australia.

Alur, R, C Courcoubetis, and D L Dill. 1993. “Model Checking in Dense Real Time.”
Information and Computation 104 (1): 2–34. doi:10.1006/inco.1993.1024.

Alur, Rajeev, Salvatore La Torre, and George J. Pappas. 2004. “Optimal Paths in
Weighted Timed Automata.” In Theoretical Computer Science, 318:297–322.
Elsevier. doi:10.1016/j.tcs.2003.10.038.

Alves, Lucas V.R. R., Hugo J. Bravo, Patricia N. Pena, and Ricardo H.C. C. Takahashi.
2016. “Planning on Discrete Events Systems: A Logical Approach.” In IEEE
International Conference on Automation Science and Engineering, 1055–60.
IEEE. doi:10.1109/COASE.2016.7743520.

Atto, Abdourrahmane M., Claude Martinez, and Saïd Amari. 2011. “Control of
Discrete Event Systems with Respect to Strict Duration: Supervision of an
Industrial Manufacturing Plant.” Computers and Industrial Engineering 61 (4).
Elsevier Ltd: 1149–59. doi:10.1016/j.cie.2011.07.004.

Baier, Christel, and Joost-Pieter Katoen. 2008. Principles Of Model Checking. MIT
Press. Vol. 950. doi:10.1093/comjnl/bxp025.

Behrmann, Gerd, Ed Brinksma, Martijn Hendriks, and Angelika Mader. 2005.
“Production Scheduling by Reachability Analysis - A Case Study.” In 19th IEEE
International Parallel and Distributed Processing Symposium, 140a–140a.
IEEE. doi:10.1109/IPDPS.2005.363.

Behrmann, Gerd, A. Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen,
and Didier Lime. 2006. “UPPAAL-Tiga: Timed Games for Everyone.” In Nordic
Workshop on Programming Theory (NWPT’06).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

References

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 128

Behrmann, Gerd, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G
Larsen, and Didier Lime. 2007a. “Uppaal Tiga User-Manual.” Aalborg
University.

Behrmann, Gerd, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim Larsen,
and Didier Lime. 2007b. “UPPAAL-Tiga : Time for Playing Games.” In
Computer Aided Verification, 121–25.

Behrmann, Gerd, Alexandre David, and Kim G Larsen. 2006. “A Tutorial on Uppaal
4.0.”

Behrmann, Gerd, Ansgar Fehnker, Thomas Hune, Kim G Larsen, Paul Pettersson, Judi
Romijn, and Frits W Vaandrager. 2001. “Minimum-Cost Reachability for Priced
Timed Automata.” HSCC 1: 147–61.

Behrmann, Gerd, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson, and
Judi Romijn. 2001. “Efficient Guiding Twoards Cost-Optimality in Uppaal.” In
Tools and Algorithms for the Construction and Analysis of Systems, 174.

Behrmann, Gerd, Kim G. Larsen, and Jacob I. Rasmussen. 2005. “Optimal Scheduling
Using Priced Timed Automata.” ACM SIGMETRICS Performance Evaluation
Review 32 (4): 34–40. doi:10.1145/1059816.1059823.

Bengtsson, Johan, Wang Yi, Johan Bengtsson, Wang Yi, and Wang Yi. 2004. “Timed
Automata: Semantics, Algorithms and Tools.” In Lecture Notes in Computer
Science, 3098:87–124. Springer Berlin Heidelberg. doi:10.1007/978-3-540-
27755-2_3.

Berezin, Sergey, Sérgio Campos, and Edmund M Clarke. 1998. “Compositional
Reasoning in Model Checking.” In Lecture Notes in Computer Science, 1536:81–
103. doi:10.1007/3-540-49213-5_4.

Bornot, Sébastien, Gregor Gößler, and Joseph Sifakis. 2001. “On the Construction of
Live Timed Systems.” In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, 1785:109–26. Springer, Berlin,
Heidelberg. doi:10.1007/3-540-46419-0_9.

Bouajjani, Ahmed, Stavros Tripakis, and Sergio Yovine. 1997. “On-the-Fly Symbolic
Model Checking for Real-Time Systems.” In Real-Time Systems Symposium,
1997. Proceedings., The 18th IEEE, 25–34. doi:10.1109/REAL.1997.641266.

Boukra, Rabah, Sébastien Lahaye, and Jean-Louis Boimond. 2015. “New
Representations for (Max,+) Automata with Applications to Performance
Evaluation and Control of Discrete Event Systems.” Discrete Event Dynamic
Systems 25 (1–2): 295–322. doi:10.1007/s10626-013-0178-y.

Cassez, Franck, Alexandre David, Emmanuel Fleury, Kim G Larsen, and Didier Lime.
2005. “Efficient on-the-Fly Algorithms for the Analysis of Timed Games.” In
CONCUR: International Conference on Concurrency Theory, 5:66–80.
doi:10.1007/11539452_9.

Castro, Pedro M., Iiro Harjunkoski, and Ignacio E. Grossmann. 2009. “New
Continuous-Time Scheduling Formulation for Continuous Plants under Variable
Electricity Cost.” Industrial & Engineering Chemistry Research 48 (14).
American Chemical Society: 6701–14. doi:10.1021/ie900073k.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

References

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 129

Cimatti, Alessandro, Andrea Micheli, and Marco Roveri. 2015. “Strong Temporal
Planning with Uncontrollable Durations : A State-Space Approach.” In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
3254–60.

Confessore, Giuseppe, Stefano Giordani, and Silvia Rismondo. 2007. “A Market-
Based Multi-Agent System Model for Decentralized Multi-Project Scheduling.”
Annals of Operations Research 150 (1): 115–35. doi:10.1007/s10479-006-0158-
9.

David, Alexandre, Jacob Illum, Kim G. Larsen, and Arne Skou. 2009. “Model-Based
Framework for Schedulability Analysis Using Uppaal 4.1.” In Model-Based
Design for Embedded Systems, 1–32.

Delaval, Gwenael, Nol De Palma, Soguy Mak Kare Gueye, Herve Marchand, and Eric
Rutten. 2013. “Discrete Control of Computing Systems Administration: A
Programming Language Supported Approach.” 2013 European Control
Conference, ECC 2013, 117–24.

Dorndorf, Ulrich, Florian Jaehn, and Erwin Pesch. 2017. “Flight Gate Assignment and
Recovery Strategies with Stochastic Arrival and Departure Times.” OR Spectrum
39 (1): 65–93. doi:10.1007/s00291-016-0443-1.

Dumitrescu, Emil, Alain Girault, Hervé Marchand, and Eric Rutten. 2010.
“Multicriteria Optimal Reconfiguration of Fault-Tolerant Real-Time Tasks.” In
IFAC Proceedings Volumes (IFAC-PapersOnline), 10:356–63.

Edis, Emrah B., Ceyda Oguz, and Irem Ozkarahan. 2013. “Parallel Machine
Scheduling with Additional Resources: Notation, Classification, Models and
Solution Methods.” European Journal of Operational Research 230 (3). Elsevier
B.V.: 449–63. doi:10.1016/j.ejor.2013.02.042.

Edis, Emrah B., and Irem Ozkarahan. 2011. “A Combined Integer/constraint
Programming Approach to a Resource-Constrained Parallel Machine Scheduling
Problem with Machine Eligibility Restrictions.” Engineering Optimization 43
(2): 135–57. doi:10.1080/03052151003759117.

Fernández Anta, Antonio, Chryssis Georgiou, Dariusz R. Kowalski, and Elli Zavou.
2015. “Online Parallel Scheduling of Non-Uniform Tasks: Trading Failures for
Energy.” Theoretical Computer Science 590: 129–46.
doi:10.1016/j.tcs.2015.01.027.

Gaubert, S, and J Mairesse. 1995. “Task Resource Models and (Max,+) Automata” 11:
133–44.

Gaubert, Stephane. 1995. “Performance Evaluation of (Max,+) Automata.” IEEE
Transactions on Automatic Control 40 (12): 2014–25. doi:10.1109/9.478227.

Girault, Alain, Hamoudi Kalla, Mihaela Sighireanu, and Yves Sorel. 2003. “An
Algorithm for Automatically Obtaining Distributed and Fault-Tolerant Static
Schedules.” Proceedings of the International Conference on Dependable
Systems and Networks 0 (c): 159–68. doi:10.1109/DSN.2003.1209927.

Hartmann, Sönke, and Dirk Briskorn. 2010. “A Survey of Variants and Extensions of
the Resource-Constrained Project Scheduling Problem.” European Journal of
Operational Research 207 (1): 1–14. doi:10.1016/j.ejor.2009.11.005.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

References

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 130

Heimerl, Christian, and Rainer Kolisch. 2010. “Scheduling and Staffing Multiple
Projects with a Multi-Skilled Workforce.” OR Spectrum 32 (2): 343–68.
doi:10.1007/s00291-009-0169-4.

Hune, T., K.G. Larsen, and P. Pettersson. 2001. “Guided Synthesis of Control
Programs Using UPPAAL.” Nordic Journal of Computing 8 (1): 43–64.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.251&rep=rep
1&type=pdf.

Kellerer, Hans, and Vitaly A. Strusevich. 2008. “Scheduling Parallel Dedicated
Machines with the Speeding-up Resource.” Naval Research Logistics 55 (5):
377–89. doi:10.1002/nav.20292.

Kim, Ja Hee, Mengchu Zhou, and Tae Eog Lee. 2014. “Schedule Restoration for
Single-Armed Cluster Tools.” IEEE Transactions on Semiconductor
Manufacturing 27 (3): 388–99. doi:10.1109/TSM.2014.2315871.

Komenda, Jan, Sebastien Lahaye, and Jean-Louis Boimond. 2010. “Synchronous
Composition of Interval Weighted Automata.” IFAC Proceedings Volumes 43 43
(12): 318–23.

Komenda, Jan, Sébastien Lahaye, and Jean-louis Boimond. 2009a. “Control of
(Max,+) Automata: A Single Step Approach.” In Control Conference (ECC),
2009 European, 1985–90.

Komenda, Jan, Sebastien Lahaye, and Jean Louis Boimond. 2009b. “Supervisory
Control of (Max,+) Automata: A Behavioral Approach.” Discrete Event
Dynamic Systems: Theory and Applications 19 (4): 525–49. doi:10.1007/s10626-
009-0083-6.

Komenda, Jan, Sébastien Lahaye, and Jean Louis Boimond. 2009c. “Le Produit
Synchrone Des Automates (Max,+).” Journal Europeen Des Systemes
Automatises 43 (7–9): 1033–47. doi:10.3166/jesa.43.1033-1047.

Kundakcı, Nilsen, and Osman Kulak. 2016. “Hybrid Genetic Algorithms for
Minimizing Makespan in Dynamic Job Shop Scheduling Problem.” Computers
& Industrial Engineering 96: 31–51. doi:10.1016/j.cie.2016.03.011.

Lahaye, Sébastien, Jan Komenda, and Jean-louis Boimond. 2012. “Modélisation
Modulairea L’aide D’automates (Max,+).” In Conférence Internationale
Francophone d’Automatique-CIFA, 895–900.

Lahaye, Sébastien, Jan Komenda, and Jean Louis Boimond. 2015. “Compositions of
(Max, +) Automata.” Discrete Event Dynamic Systems: Theory and Applications
25 (1–2): 323–44. doi:10.1007/s10626-014-0186-6.

Landau, LD, Carla Seatzu, Manuel Silva, Jan H. Van Schuppen, and LD Landau. 2013.
Control of Discrete-Event Systems. Zhurnal Eksperimental’noi I Teoreticheskoi
Fiziki. Vol. 433. doi:10.1007/978-1-4471-4276-8.

Larsen, Kim G., Paul Pettersson, and Wang Yi. 1997. “Uppaal in a Nutshell.”
International Journal on Software Tools for Technology Transfer 1 (1–2): 134–
52. doi:10.1007/s100090050010.

Liu, Xinxin, and Scott A. Smolka. 1998. “Simple Linear-Time Algorithms for Minimal
Fixed Points.” Icalp, 53–66. doi:10.1007/BFb0055040.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

References

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 131

Lu, Zhiqiang, Weiwei Cui, and Xiaole Han. 2015. “Integrated Production and
Preventive Maintenance Scheduling for a Single Machine with Failure
Uncertainty.” Computers and Industrial Engineering 80. Elsevier Ltd: 236–44.
doi:10.1016/j.cie.2014.12.017.

Luo, Hao, Bing Du, George Q Huang, Huaping Chen, and Xiaolin Li. 2013. “Hybrid
Flow Shop Scheduling Considering Machine Electricity Consumption Cost.”
Intern. Journal of Production Economics 146: 423–39.
doi:10.1016/j.ijpe.2013.01.028.

Marangé, Pascale, Jean François Pétin, Antoine Manceaux, and David Gouyon. 2011.
“Contribution À La Reconfiguration Des Systèmes de Production:
Ordonnancement Par Recherche D’atteignabilité.” Journal Europeen Des
Systemes Automatises 45 (1–3): 45–60. doi:10.3166/JESA.45.45-60.

Milner, Robin. 1983. “Calculi for Synchrony and Asynchrony.” Electronic Notes in
Theoretical Computer Science 1 (C): 66–90. doi:10.1016/S1571-
0661(04)80005-7.

Moon, Joon Yung, and Jinwoo Park. 2014. “Smart Production Scheduling with Time-
Dependent and Machine-Dependent Electricity Cost by Considering Distributed
Energy Resources and Energy Storage.” International Journal of Production
Research 52 (13): 3922–39. doi:10.1080/00207543.2013.860251.

Munter, R. De. 2010. “A Comparison of Timed Games and Time Optimal Supervisor
Synthesis.”

Niebert, P, and S Yovine. 2001. “Computing Efficient Operation Schemes for
Chemical Plants in Multi-Batch Mode.” European Journal of Control:
Verification of Hybrid Systems 7 (4): 440–53.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.5061&rep=rep1&t
ype=pdf.

Niebert, Peter, Stavros Tripakis, and Sergio Yovine. 2000. “Minimum-Time
Reachability for Timed Automata.” In IEEE Mediteranean Control Conference.
https://pdfs.semanticscholar.org/56d3/ae59da80dce64dd7aa2e92e1a760aa09b4a
e.pdf.

Nikou, Alexandros, Jana Tumova, and Dimos V. Dimarogonas. 2016. “Cooperative
Task Planning of Multi-Agent Systems under Timed Temporal Specifications.”
In Proceedings of the American Control Conference, 7104–9. IEEE.
doi:10.1109/ACC.2016.7526793.

Norström, Christer, Anders Wall, and Wang Yi. 1999. “Timed Automata as Task
Models for Event-Driven Systems.” In Real-Time Computing Systems and
Applications, 1999. RTCSA ’99. Sixth International Conference on, 182–89.
doi:10.1109/RTCSA.1999.811218.

Ooshita, Fukuhito, Tomoko Taisuke Izumi, and Tomoko Taisuke Izumi. 2009. “A
Generalized Multi-Organization Scheduling on Unrelated Parallel Machines.”
2009 International Conference on Parallel and Distributed Computing,
Applications and Technologies, December. IEEE, 26–33.
doi:10.1109/PDCAT.2009.26.

Panek, Sebastian, Sebastian Engell, and Olaf Stursberg. 2006. “Scheduling and

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

References

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 132

Planning with Timed Automata.” Computer Aided Chemical Engineering 21 (C):
1973–78. doi:10.1016/S1570-7946(06)80337-8.

Panek, Sebastian, Olaf Stursberg, and Sebastian Engell. 2006. “Efficient Synthesis of
Production Schedules by Optimization of Timed Automata.” Control
Engineering Practice 14 (10): 1183–97. doi:10.1016/j.conengprac.2006.02.014.

Quintero, Karla, Eric Niel, and José Aguilar. 2015. “(Max,+) Model for Alignment
Selection and Schedule Optimization in a Flow Network.” AIP Conference
Proceedings 1648: 11–14. doi:10.1063/1.4912931.

Quintero, Karla, Eric Niel, Aguilar José, and Laurent Piétrac. 2013. “(Max, +)
Optimization Model for Scheduling Maintenance Tasks.” In Proceedings of the
World Congress on Engineering and Computer Science, II:23–25.

Quintero Garcia, Karla Rossa. 2015. “Optimisation D’alignements D’un Réseau de
Pipelines Basée Sur Les Algèbres Tropicales et Les Approches Génétiques.”
Lyon, INSA. http://www.theses.fr/2015ISAL0030.

Quintero Garcia, Karla Rossa, Eric Niel, José Aguilar, and Laurent Piétrac. 2014.
“Scheduling Operations in a Flow Network with Flexible Preventive
Maintenance: A (Max, +) Approach.” Engineering Letters 22 (1): 24–33.
http://www.engineeringletters.com/issues_v22/issue_1/EL_22_1_04.pdf.

Quintero Garcia, Karla Rossa, Eric Niel, Aguilar José, and Laurent Piétrac. 2014. “A
Cost-Criticality Based (Max, +) Optimization Model for Operations
Scheduling.” Transactions on Engineering Technologies: Special Issue of the
World Congress on Engineering and Computer Science 2013, 645–60.
doi:10.1007/978-94-017-9115-1_47.

Rzevski, G., and P. Skobelev. 2017. “Intelligent Adaptive Schedulers For Railways.”
International Journal of Transport Development and Integration 1 (3). WIT
Press: 414–20. doi:10.2495/TDI-V1-N3-414-420.

Sedgewich, Robert, and Kevin Wayne. 2017. “Algorithm.” Accessed August 11.
http://algs4.cs.princeton.edu/lectures/42DirectedGraphs.pdf.

Shehabinia, Ahmad Reza, Liyong Lin, and Rong Su. 2016. “Timed Supervisory
Control for Operational Planning and Scheduling under Multiple Job Deadlines.”
arXiv Preprint arXiv:1607.04255. https://arxiv.org/pdf/1607.04255.pdf.

Su, Rong, Jan H. Van Schuppen, and Jacobus E. Rooda. 2012. “The Synthesis of Time
Optimal Supervisors by Using Heaps-of-Pieces.” IEEE Transactions on
Automatic Control 57 (1): 105–18. doi:10.1109/TAC.2011.2157391.

Subbiah, Subanatarajan, and Sebastian Engell. 2010. “Short-Term Scheduling of
Multi-Product Batch Plants with Sequence-Dependent Changeovers Using
Timed Automata Models.” Computer Aided Chemical Engineering 28 (C):
1201–6. doi:10.1016/S1570-7946(10)28201-9.

Tripakis, Stavros. 1998. “L’analyse Formelle Des Systèmes Temporisés En Pratique.”
Université Joseph Fourier-Grenoble 1. https://tel.archives-ouvertes.fr/tel-
00004907v2.

Ware, Simonn, and Rong Su. 2017. “Time Optimal Synthesis Based Upon Sequential
Abstraction and Its Application to Cluster Tools.” IEEE Transactions on

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

References

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 133

Automation Science and Engineering 14 (2): 772–84.
doi:10.1109/TASE.2016.2613911.

Wilson, Président, and Cachan Cedex France. 2000. “Comparing Verification with
Comparing Veri Cation with HyTech , Kronos and Uppaal on the Railroad
Crossing Example.”

Xi, Xiaoying, Lili Jiang, and Qiang Zhang. 2009. “Optimization for Multi-Resources-
Constrained Job Shop Scheduling Based on Three-Level Heuristic Algorithm.”
In Proceedings - 2009 International Asia Conference on Informatics in Control,
Automation, and Robotics, CAR 2009, 296–300. doi:10.1109/CAR.2009.28.

Xian, Changjiu, Yung-Hsiang Lu, and Zhiyuan Li. 2007. “Energy-Aware Scheduling
for Real-Time Multiprocessor Systems with Uncertain Task Execution Time.”
Proceedings of the 44th Annual Conference on Design Automation - DAC ’07,
664. doi:10.1145/1278480.1278648.

Yusta, J M, F Torres, and H M Khodr. 2010. “Optimal Methodology for a Machining
Process Scheduling in Spot Electricity Markets.” Energy Conversion and
Management 51: 2647–54. doi:10.1016/j.enconman.2010.05.030.

Zobolas, G. I., C. D. Tarantilis, and G. Ioannou. 2008. “Exact, Heuristic and Meta-
Heuristic Algorithms for Solving Shop Scheduling Problems.” In Studies in
Computational Intelligence, 128:1–40. Springer. doi:10.1007/978-3-540-78985-
7_1.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Appendix

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 134

Appendix A: Implementation details of
the model
The transition guard in a TL automata ensures that when taking this transition,
all ME automata that share the task are in initial location to synchronize their
corresponding transitions. Therefore TL automata should be able to access to
current locations of ME automata. There is no feature to handle this issue in
UPPAAL. Hence, it should be managed indirectly.

From another point of view, this guard guaranteed that when any of the ME
automata relating to a task is not in initial location, its TL automaton won’t be
able to execute the task. To simulate this feature, in each ME automaton, when
starting a double-task-transition, function "𝑎𝑎𝑡𝑡𝑃𝑃𝑒𝑒𝐸𝐸_𝑃𝑃𝑡𝑡ℎ𝑃𝑃_𝑡𝑡_𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡" disables
launching other tasks belonging to the same automaton. Then, after completing
the task, function "𝑡𝑡𝑜𝑜𝑒𝑒𝐸𝐸_𝑃𝑃𝑡𝑡ℎ𝑃𝑃_𝑡𝑡_𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡" enables these tasks. More precisely, an
initially zero variable 𝑡𝑡𝑜𝑜[𝑡𝑡], where 𝑡𝑡 is the number of task, is dedicated to each
task. Each time taking the first transition of a double-task-transition, the first
function increments 𝑡𝑡𝑜𝑜[𝑡𝑡] variable of other tasks belonging to the automaton to
disable their execution. Then at the second transitions, the second function
decrements this variable by one. Since a task might be common in more than
one specification automata, this variable might be incremented and
decremented more than one time. Whereas after execution of all double-task-
transitions related to a task, these variables reset to their default value of zero.
Hence, whenever this variable is equal to zero, it means that the task is enabled.
In TL automata, a guard is defined on the transition such that if 𝑡𝑡𝑜𝑜[𝑡𝑡𝑎𝑎] is equal
to zero (𝑡𝑡𝑎𝑎 denotes number of the task that is defined as id number of
automaton), the transition can be taken. Consequently by sending
communication signals to specification automata, corresponding transitions
will be taken and tasks will be launched. Bellow the aforementioned functions
are detailed:

𝑣𝑣𝑃𝑃𝑡𝑡𝑎𝑎 𝑎𝑎𝑡𝑡𝑃𝑃𝑒𝑒𝐸𝐸_𝑃𝑃𝑡𝑡ℎ𝑃𝑃_𝑡𝑡_𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡(𝑡𝑡𝑜𝑜𝑡𝑡 𝑡𝑡) {
 𝑓𝑓𝑃𝑃𝑃𝑃 (𝑘𝑘 ∶ 𝑡𝑡𝑜𝑜𝑡𝑡[0,𝑁𝑁 − 1]) {
 𝑡𝑡𝑓𝑓 (𝑃𝑃𝑡𝑡𝐸𝐸(𝑘𝑘) 𝐸𝐸𝑜𝑜𝑎𝑎 𝑘𝑘 ! = 𝑡𝑡)
 𝑡𝑡𝑜𝑜[𝑘𝑘] + +;
 }
}

𝑣𝑣𝑃𝑃𝑡𝑡𝑎𝑎 𝑡𝑡𝑜𝑜𝑒𝑒𝐸𝐸_𝑃𝑃𝑡𝑡ℎ𝑃𝑃_𝑡𝑡_𝑡𝑡𝐸𝐸𝑃𝑃𝑡𝑡(𝑡𝑡𝑜𝑜𝑡𝑡 𝑡𝑡) {
 𝑓𝑓𝑃𝑃𝑃𝑃 (𝑘𝑘 ∶ 𝑡𝑡𝑜𝑜𝑡𝑡[0,𝑁𝑁 − 1]) {

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Appendix

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 135

 𝑡𝑡𝑓𝑓 (𝑃𝑃𝑡𝑡𝐸𝐸(𝑘𝑘) 𝐸𝐸𝑜𝑜𝑎𝑎 𝑘𝑘 ! = 𝑡𝑡)
 𝑡𝑡𝑜𝑜[𝑘𝑘] − −;
 }
}

By applying modifications according to the above stated functions,
following models are acquired. In these models, 𝑡𝑡, 𝑗𝑗, 𝑘𝑘, … ,𝑃𝑃 denote numbers
assigned to tasks 𝐸𝐸, 𝑒𝑒, 𝑐𝑐, … ,𝑃𝑃.

Figure A.1. Implemented modeling pattern of ME automaton

Figure A.2. Implemented modeling pattern of a TL timed automaton

Figure A.3. Implemented modeling pattern of a triggering precedence timed automaton

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Appendix

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 136

Figure A.4. Implemented modeling pattern of a delay precedence timed automaton

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Appendix

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 137

Appendix B: Java code for depth-first
search in a digraph

𝑃𝑃𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡𝑐𝑐 𝑐𝑐𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑎𝑎𝐷𝐷𝐹𝐹𝑆𝑆 (𝑆𝑆𝑡𝑡𝑎𝑎𝑝𝑝𝑡𝑡𝑒𝑒𝑡𝑡𝑐𝑐ℎ 𝐸𝐸𝑜𝑜𝑎𝑎 𝑊𝑊𝐸𝐸𝑒𝑒𝑜𝑜𝑡𝑡 2017)

{

 𝑃𝑃𝑃𝑃𝑡𝑡𝑣𝑣𝐸𝐸𝑡𝑡𝑡𝑡 𝑒𝑒𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝐸𝐸𝑜𝑜[]𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎; //𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 𝑡𝑡𝑓𝑓 𝑃𝑃𝐸𝐸𝑡𝑡ℎ 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑃𝑃

 𝑃𝑃𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡𝑐𝑐 𝐷𝐷𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑎𝑎𝐷𝐷𝐹𝐹𝑆𝑆(𝐷𝐷𝑡𝑡𝑝𝑝𝑃𝑃𝐸𝐸𝑃𝑃ℎ 𝐺𝐺, 𝑡𝑡𝑜𝑜𝑡𝑡 𝑃𝑃)

 {

 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎 = 𝑜𝑜𝑡𝑡𝑒𝑒 𝑒𝑒𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝐸𝐸𝑜𝑜[𝐺𝐺.𝑉𝑉()]; /
/𝑐𝑐𝑃𝑃𝑜𝑜𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑃𝑃 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃 𝑃𝑃𝑡𝑡𝐸𝐸𝑐𝑐ℎ𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑃𝑃

 𝑎𝑎𝑓𝑓𝑃𝑃(𝐺𝐺, 𝑃𝑃);

 }

 𝑃𝑃𝑃𝑃𝑡𝑡𝑣𝑣𝐸𝐸𝑡𝑡𝑡𝑡 𝑣𝑣𝑃𝑃𝑡𝑡𝑎𝑎 𝑎𝑎𝑓𝑓𝑃𝑃(𝐷𝐷𝑡𝑡𝑝𝑝𝑃𝑃𝐸𝐸𝑃𝑃ℎ 𝐺𝐺, 𝑡𝑡𝑜𝑜𝑡𝑡 𝑣𝑣) //𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑡𝑡𝑣𝑣𝑡𝑡 𝐷𝐷𝐹𝐹𝑆𝑆 𝑎𝑎𝑃𝑃𝑡𝑡𝑃𝑃 𝑡𝑡ℎ𝑡𝑡 𝑒𝑒𝑃𝑃𝑃𝑃𝑘𝑘

 {

 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎[𝑣𝑣] = 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡;

 𝑓𝑓𝑃𝑃𝑃𝑃 (𝑡𝑡𝑜𝑜𝑡𝑡 𝑒𝑒 ∶ 𝐺𝐺. 𝐸𝐸𝑎𝑎𝑗𝑗(𝑣𝑣))

 𝑡𝑡𝑓𝑓 (!𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎[𝑒𝑒])𝑎𝑎𝑓𝑓𝑃𝑃(𝐺𝐺,𝑒𝑒);

 }

 𝑃𝑃𝑡𝑡𝑒𝑒𝐸𝐸𝑡𝑡𝑐𝑐 𝑒𝑒𝑃𝑃𝑃𝑃𝐸𝐸𝑡𝑡𝐸𝐸𝑜𝑜 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎(𝑡𝑡𝑜𝑜𝑡𝑡 𝑣𝑣) /
/𝑐𝑐𝐸𝐸𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡 𝑐𝑐𝐸𝐸𝑜𝑜 𝐸𝐸𝑃𝑃𝑘𝑘 𝑒𝑒ℎ𝑡𝑡𝑡𝑡ℎ𝑡𝑡𝑃𝑃 𝐸𝐸𝑜𝑜𝑒𝑒 𝑣𝑣𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝐸𝐸 𝑡𝑡𝑃𝑃 𝑃𝑃𝑡𝑡𝐸𝐸𝑐𝑐ℎ𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑃𝑃

 { 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑜𝑜 𝑡𝑡𝐸𝐸𝑃𝑃𝑘𝑘𝑡𝑡𝑎𝑎[𝑣𝑣]; }

}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

Appendix

Mahya Rahimi / Thesis in Automatic Control Engineering / 2017 / INSA of Lyon 138

Appendix C: Abbreviations

BFS Breadth-First Search
CP Constraint Programming
DFS Depth-First Search
DSDA Deterministic Single-Duration-Action
DVS Dynamic Voltage Scaling
EDF Earliest Dead-line First
FIFO First In First Out
FPS Fixed Priority Scheduling
IP Integer Programming
LIFO Last In First Out
LPTA Linearly Priced Timed Automata
ME Mutual Exclusion
MILP Mixed-Integer Linear Programming
MITL Metric Interval Temporal Logic
MRS Multi-Resource Sharing
PR Precedence
SOM Sub-Optimal Makespan
TA Timed Automaton
TCTL Timed Computation Tree Logic
TGA Timed Game Automata
TL Task Launcher
UPTA Uniformly Priced Timed Automaton
WA Weighted Automaton

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI129/these.pdf
© [M. Rahimi], [2017], INSA Lyon, tous droits réservés

	Notice XML
	Page de titre
	Abstract
	Résumé
	Acknowledgment
	Table of contents
	List of tables
	List of figures
	1 General introduction
	1.1 Introduction
	1.2 State of the art
	1.2.1 State of the art on general scheduling problems
	1.2.2 State of the art on scheduling problems modeled by automata
	1.2.3 State of the art on synchronous composition of weighted automata
	1.2.4 State of the art on MRS scheduling considering uncontrollable environment
	1.2.5 Synthesis of the state of the art

	1.3 Research question
	1.4 Contribution
	1.4.1 Chapter 2: MRS scheduling through translation of weighted to timed automata
	1.4.2 Chapter 3: Multi-resource sharing scheduling by using synchronous composition of weighted automata
	1.4.3 Chapter 4: Multi-resource sharing scheduling considering uncontrollable environment

	1.5 Background
	1.5.1 Formal verification (or model checking)
	1.5.2 Property-specification language
	1.5.3 The branching time logic TCTL
	1.5.4 TCTL properties
	1.5.5 Techniques for constructing reachability graph of systems
	1.5.6 Digraph traversal algorithms

	1.6 Conclusion

	2 Multi-resource sharing scheduling through translation of weighted to timed automata
	2.1 Introduction
	2.1.1 State of the art
	2.1.2 Synthesis of the state of the art

	2.2 MRS scheduling problem description
	2.3 Modeling MRS scheduling problem by weighted automata
	2.3.1 General principle of modeling procedure
	2.3.2 Problem statement by weighted automata

	2.4 Solving MRS scheduling problem by means of translating weighted automata models into timed automata models
	2.4.1 Translating transitions of the WA model to TA
	2.4.2 Translating WA models to TA models
	2.4.3 Scheduling approach
	2.4.4 Complexity

	2.5 Conclusion

	3 Synchronous composition of weighted automata - application to MRS scheduling
	3.1 Introduction
	3.1.1 State of the art on synchronous composition of weighted automata
	3.1.2 State of the art on time-optimal reachability analysis
	3.1.3 Synthesis of the state of the art

	3.2 Synchronous composition for weighted automata
	3.2.1 Example 2
	3.2.2 Algorithmic steps to reach synchronous composition
	3.2.3 Synchronous composition of DSDA weighted automata
	3.2.4 A simple example of synchronous composition (Example 2-continue)

	3.3 Finding the optimal schedule
	3.4 Conclusion

	4 Multi-resource sharing scheduling considering uncontrollable environment
	4.1 Introduction
	4.1.1 State of the art
	4.1.2 Synthesis of the state of the art

	4.2 Background
	4.2.1 Timed Game Automata
	4.2.2 Safety and reachability games
	4.2.3 Winning games
	4.2.4 Strategy
	4.2.5 Synthesis tool TIGA
	4.2.6 Winning/losing conditions
	4.2.7 Partially Cooperative Games
	4.2.8 Time Optimal Strategy Synthesis
	4.2.9 Example of timed game automata
	4.2.10 On-the-fly algorithm for timed games
	4.2.11 Interval weighted automata

	4.3 Problem description
	4.4 Different types of uncontrollable parameters
	4.5 Modeling the scheduling problem through TGA considering uncontrollable parameters
	4.5.1. ME automaton by considering uncontrollability
	4.5.2. Task launcher automaton by considering uncontrollability
	4.5.3. Precedence automata by considering uncontrollability

	4.6 Example 3
	4.7 Solving approach
	4.8 Example 3 (continue)
	4.9 Conclusion

	5 Conclusion and perspectives
	5.1 General conclusion
	5.2 General perspectives
	5.3 Related publication

	References
	Appendix A: Implementation details of the model
	Appendix B: Java code for depth-first search in a digraph
	Appendix C: Abbreviations

