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Abstracts
Abstract: The piston ring cylinder liner (PRCL) contact is essential in the CO2 and pollutant
emission reduction in internal combustion engine. These two constraints being antagonistic, a
compromise has to be found and it is necessary to study the microgeometry influence in order to
find new PRCL contact architectures. As experimental study can be very expensive, modeling
PRCL contact performance becomes crucial. Multigrid methods allow a huge reduction of the
computational time. Unfortunately, in presence of texture, classical multigrid efficiency decays
significantly and it is not usable. A new algorithm based on an approach developed by Alcouffe
et al. was designed that allows the study of the hydrodynamic lubrication of this contact even
in the case of a highly varying geometry due to the texture. The obtained code was validated
by comparison with a 1D analytical model, its performance was evaluated and a first study
of an analytic cross hatched geometry parameter influence on the load carrying capacity was
completed. The code was modified to include flow conservation. A relaxation process closer
to the physics phenomenon is used. The code efficiency is not the one that is expected from
multigrid methods. However its convergence is sufficiently fast to study the dimple influence for
the oil control ring and show the importance of partial texturing. Finally the transient term of
the Reynolds equation is accounted for. In the case of a parabolic ring and for a cross hatched
liner, the influence of the groove parameters (depth, width, distance and groove angle) on the
average minimum film thickness with respect to the smooth case is analyzed.
Keywords: Multigrids – Reynolds Equation – Hydrodynamic lubrication – Piston ring cylinder
liner contact – Texture.

Résumé: Le contact Segment-Piston-Chemise (SPC) est essentiel pour la réduction des émis-
sions de CO2 et de polluants dans les moteurs automobile. Pour optimiser ces deux contraintes
antagonistes, il est nécessaire d’étudier l’influence de la micro-géométrie afin de trouver de
nouvelles architectures de ce contact. L’étude expérimentale étant très coûteuse, il est impératif
de pouvoir modéliser les performances du contact SPC. Les méthodes multigrilles permettent
de réduire considérablement les temps de calcul. Pour le contact SPC, les méthodes multigrilles
classiques perdent leur efficacité en présence de texture. Un nouvel algorithme, basé sur des idés
développées par Alcouffe et al. a été con cu qui permet l’ étude du contact hydrodynamique en
présence de texturation importante. Il a été validé par comparaison avec un modèle analytique
1D, ses performances ont été étudiées et une première étude de línfluence des paramètres
sur la portance pour une surface striée a été faite. L’algorithme a ensuite été modifié pour
imposer la conservation des flux. Un processus de relaxation plus proche de la physique du
phénomène est utilisé. Le code obtenu n’atteint pas l’efficacité multigrille optimale. Cependant
sa convergence est suffisamment rapide pour étudier l’influence de pores pour le segment plat et
montrer l’importance d’une texturation partielle. Pour finir, le terme transitoire de l’équation
de Reynolds est pris en compte. Pour un segment parabolique et une chemise striée, l’influence
des paramètres des stries (profondeur, largeur, distance et angle des stries) sur la variation
moyenne de la hauteur de film par rapport à une surface lisse est analysée.
Mots clés: Multigrilles – Equation de Reynolds – Lubrification Hydrodynamique – Contact
Segment Piston Chemise – Texturation.
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Notations

a Groove depth or dimple depth[m]
d Distance between grooves or dimples [m]
d1 Distance between groove crossovers in sliding direction [m]
e Ring half width [m]
h Geometry height [m]
hoil Film thickness, hoil = θh [m]
h0 Clearance or x2

0/Rx(Chapter 6)[m]
hm Minimum film thickness (Chapter 6) [m]
hx Fine grid space step in the x-direction
hy Fine grid space step in the y-direction
ht Fine grid time step,
p Pressure[Pa]
pamb Ambient pressure[Pa]
Rx Reduced radius in direction of sliding [m]
x Coordinate in direction of sliding [m]
xa, xb Domain size in direction of sliding [m]
xg Groove position on the central line [m]
x0 Ring half width (chapters 5, 6) [m]
y Coordinate perpendicular to direction of sliding [m]
ya, yb Domain size in direction perpendicular to direction of sliding sliding [m]
t Time [s]
um Mean surface velocity [m/s]
vp Piston velocity [m/s]
w Load carrying capacity[N]
α Angle between groove and Y axis
η Fluid viscosity [Pa.s]
λ Groove width [m]
ρ Fluid density [kg/m3]
θ Oil film ratio
ω Piston angular velocity[s−1]
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Notations

A Dimensionless groove or dimple depth
D Dimensionless distance between grooves or dimples
D1 Dimensionless distance between crossovers in sliding direction
E Dimensionless ring half width
H Dimensionless geometry
Hoil Dimensionless equivalent oil film thickness, Hoil = θH

Hm Dimensionless minimum film thickness (Chapter 6)
Hx Coarse grid space step in the X-direction
Hy Coarse grid space step in the Y-direction
Ht Coarse grid time step
LCC Dimensionless load carrying capacity
P Dimensionless pressure
Pamb Dimensionless ambient pressure
R Dimensionless dimple radius (Chapters 4,5) or surface roughness
X Dimensionless coordinate in direction of sliding
X0 Dimensionless ring half width (Chapters 5, 6)
Xg Dimensionless groove position on the central line
Y Dimensionless coordinate perpendicular to direction of sliding
T Dimensionless time
Um Dimensionless mean surface velocity
V Dimensionless piston velocity
W Dimensionless load
Λ Dimensionless groove width

BDC Bottom Dead Center
BTU British Thermal Unit
EU European Union
FMG Full MultiGrid
HL Hydrodynamic Lubrication
HC HydroCarbons
IC Internal Combustion
LCC Load Carrying Capacity
NMHC Non Methane HydroCarbons
NOx Mono Nitrogen oxides
PM Particulate Matter
PN Particulate Number
PRCL Piston Ring Cylinder Liner
TDC Top Dead Center
Wu Work unit
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Environmental issues

Energy resources and environmental issues have become priorities of our societies. Transport
being one of the world largest energy consumer, this sector is submitted to increasing constraints.
Worldwide two major problems are connected to the massive use of motor vehicles:

• an important production of CO2 which is a major greenhouse gas and henceforth an im-
portant contributor to global warming.

• pollutant emission: carbon monoxide CO, nitrogen oxides NOx, hydrocarbons HC and
particles

Because of a general increasing environmental awareness, automotive constructors are required
to substantially diminish those emissions. It has become a major issue for the automotive
industry. Carbon dioxide and pollutant emissions as well as fuel cost are directly related to
vehicle fuel consumption. The pollution standards in European legislation are more and more
coercive as shown in Table 1. They strongly regulate the emissions of NOx, CO, HC, non-
methane hydrocarbons (NMHC), particulate matter and number (PM and PN). Certification
is obtained through laboratory emission testing and does not rely on real driving conditions.
As a consequence of the recent scandals where some constructors had adapted their cars to
the test cycle, there was a discrepancy between test results and reality. The European Union
has validated a new test for September 2017. However as in automotive industry new cars are
designed long before they are put on the market, EU allows constructors a compliance factor
until 2021. It is 2.1 up to 2019 and of 1.5 afterwards so that they have to adapt. Therefore,
between 2019 and 2021, a car should not pollute more than 50% more than required by the Euro
6 norm.

Besides customers also demand for safe and reliable cars. Henceforth research is conducted to
build safer, cleaner and more economic vehicles, trying to find compromises between sometimes
conflicting requirements.

Currently, such research focuses on hybrid or electric cars. Nowadays the precious metal
resources needed to build the batteries are not sufficient to change the whole park into an
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Euro1 Euro 2 Euro 3 Euro 4 Euro 5 Euro 6b
Diesel Oct. 1994 Jan. 1998 Jan. 2000 Sept. 2009 Sept.2011 Sept.2015

NOx(mg/km) − − 500 250 180 80

CO(mg/km) 2720 1000 640 500 500 500

HC(mg/km) − − − − − −
NMHC(mg/km) − − − − − −

HC+NOx (mg/km) 970 900 560 300 230 170

PM(mg/km) 140 100 50 25 5 4.5

PN(Nb/km) − − − − 6× 1011 6× 1011

Euro1 Euro 2 Euro 3 Euro 4 Euro 5 Euro 6b
Gasoline Oct. 1994 Jan. 1998 Jan. 2000 Sept. 2009 Sept.2011 Sept.2015

NOx(mg/km) − − 150 80 60 60

CO(mg/km) 2720 2200 2200 1000 1000 1000

HC(mg/km) − − 200 100 100 100

NMHC(mg/km) − − − − 68 68

HC+NOx (mg/km) − − − − − −
PM(mg/km) − − − − 5 4.5

PN(Nb/km) − − − − − 6× 1011

Table 1: Passenger car European Emission Standards (Quoted from Wikipedia)

electric one. Batteries are heavy, battery autonomy is still low and their charging time may
be a problem for long journeys. The number of charge cycles they can undergo may also be a
problem. Besides energy sources are needed to supply electricity. To get clean energy, it may
necessitate more nuclear power plants which are not very popular. Green electricity is still
limited and coal and natural gas are going to remain the main sources of electricity generation
for the coming years. Natural gas is the least CO2 emitting fossil energy but it also involves the
development of shale gas. For generating electricity many efforts are made on renewable energy
sources, natural gas or nuclear power but coal remains one of the main sources. It is expected
that renewable generation will only surpass coal generation in 2040.
Hybrid engines offer an intermediate solution. Their technology is based on an optimization of
the internal combustion (IC) engine. Their development is complex and it will probably not
be everyone’s car for the next coming 20 years. Figure 1(a) quoted from ”International Energy
Outlook 2016”, shows the projections to 2040 of the energy source distributions for transportation.
It includes all kinds of transportation but, as shown in Figure 1(b) passenger cars constituted in
2012 the main part of the transportation energy consumption and it should still be the case in
2040.

It seems clear that traditional IC (internal combustion) engines still have a future and improving
their performance remains a major investment for the automotive industry.

To reduce car consumption various options can be considered. For instance it is possible

4
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(a)

(b)

Figure 1: (a) World transportation energy consumption (quadrillon BTU) by source, 2012-2040
(b) World transportation energy consumption(quadrillon BTU) by mode, 2012. (Quoted from
”International Energy Outlook 2016”)

to build lighter vehicles. However, nowadays most people want power steering and air con-
ditioning systems, ... and these are heavy devices. So the current trend is not lighter but
heavier vehicles. An other possibility consists in improving the engine trying to get an optimal

5
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consumption, reducing energy losses with an engine as small and light as possible. For a modern
fired engine only 38 to 41% of the energy is effectively used, the other part is lost. Mechanical
friction consumes between 4 to 15% of the energy and about half of this loss is due to the
piston-assembly system. Figure 2 shows how fuel is spent in en engine car. More details can be
found in [1].

Figure 2: Fuel energy distribution in a passenger car. (Based on [1])

Therefore, improving lubrication and reducing friction in the piston pack remain important do-
main of research since, considering the whole transportation sector, even a small gain in fuel
consumption induces a significant environmental improvement.
In the piston-assembly system the piston ring pack is a key factor for those environmental issues.
For instance the combustion chamber crevices such as in the piston top-land are responsible for
unburned fuel and particle emissions and will emit HC at exhaust. Lubricant is used to diminish
the friction between moving parts of an engine and therefore reduce energy losses, fuel consump-
tion and CO2 emissions. Besides oil consumption has to be limited. Here again, the piston
ring cylinder pack plays a central part because of the oil degradation and possible leakage into
the combustion chamber creating pollutant emissions while burning. Therefore a compromise
must be found between friction reduction and oil consumption. The lubricant amount should be
sufficient to reduce friction and CO2 emissions by ensuring a good lubrication of all moving parts
but should not be too high to limit oil leakage into the combustion chamber. These constraints
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being antagonistic, it is necessary to find new architectures for the PRCL contact. For instance
the choice of a good liner texturing may be interesting. It is also possible to work on the lu-
bricant chemical structure by the use of additives and improve its lubricity to reduce lubricated
friction losses. Used lubricant are not easy to dispose of and they decompose very slowly. Thus
manufacturers have to strive to significantly increase the time intervals between oil services for
modern cars.
Experimental studies are difficult and expensive because building prototypes is long and expen-
sive. Therefore the development of the numerical modeling has become an important part of
current research. In this work a geometrical multigrid code that allows to study the hydrody-
namic lubrication of the PRCL contact in presence of very rough textured liners is developed.

Lubrication

Lubricant is essential to reduce friction. Lubricant also limits wear, corrosion and heat generation.
It keeps the surfaces clean by removing small debris that could damage the system. It also absorbs
shocks and vibrations.
The friction coefficient depends on the minimum film thickness. It can be improved by adequate
texturing or coating of the surfaces. For a given lubricated contact several lubrication regimes can
exist. They can be described by a Stribeck curve. An example is given in Figure 3. Depending on
the oil viscosity, the load and the velocity of the surfaces in the contact, three different lubrication
regimes exist. For low viscosity, small velocity or high load, it is the boundary regime. It is a
dry contact and the friction coefficient is determined by the characteristics of the 2 surfaces.
For high viscosity, high velocity or low load, it is the hydrodynamic regime. Both surfaces are
perfectly separated by an oil film. The friction mainly depends on the lubricant. In between, is
the mixed regime. The film does not completely separate the 2 surfaces. The friction is defined
by the surfaces and the lubricant. According to the regime different models of the contact must
be considered. PRCL contacts operate in the mixed lubrication or hydrodynamic lubrication
regime. This study focuses on hydrodynamic lubrication of textured contacts.

It will be assumed that the film behavior is governed by the Reynolds equation. Therefore it will
be considered that:

• the flow is laminar

• the fluid is newtonian

• fluid inertia forces are negligible

• pressure variations across the film are negligible.

It will also be assumed that the surfaces are rigid since we only study the hydrodynamic contact.
The fluid will be considered isoviscous and incompressible. The Reynolds equation that describes
the contact reads:

(1)
∂

∂x
(
ρh3

12η

∂p

∂x
) +

∂

∂y
(
ρh3

12η

∂p

∂y
)−um

∂(ρh)

∂x
−(∂ρh)

∂t
= 0
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Figure 3: Example of a Stribeck Curve, from [2]

In this equation p is the fluid pressure assumed to be constant across the film height, h represents
the film thickness, um is the mean velocity of the surfaces, ρ is the fluid density (for us it will be
constant since the fluid is assumed incompressible) and η is the fluid viscosity that will also be
assumed constant. The first two terms constitute the Poiseuille terms. They describe the flow
generated by the pressure gradient. The third term is the wedge or Couette term due to the
surface velocities and subsequent fluid displacement. The last term is the squeeze flow due to
the variation of the film height with time.

Piston ring cylinder liner pack

The piston system is composed of the piston, piston rings, connecting rods and bearings. It
induces three main types of friction: piston skirt against the liner, piston rings against liner and
bearing surfaces, more details can be found in [3]. Figure 4 (a) presents a general view of the
piston assembly and Figure 4 (b) gives a sketch of the ring-pack liner subsystem.

The ring pack usually consists of three rings that have sealing and lubricating functions. Lu-
brication is needed to reduce friction during the piston course and the rings maintain the right
amount of oil in the contact. But no unburned fuel or exhaust gas should enter the crankcase and
degrade the lubricant. Besides oil leakage into the combustion chamber should also be limited.
The three rings are the following:

• Top ring or first ring or compression ring: it is mostly used for sealing the combustion
chamber. It also increases the combustion pressure and efficiency.

• Second ring or scraper ring: it has a sealing function and also scrapes the lubricant.

• Third ring or oil control ring: it controls and regulates the oil distribution between the
crankcase and the cylinder wall. It also has a sealing role.

8
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(a) (b)

Figure 4: Piston Pack (a) global view (b) piston rings - liner

The friction induced by the piston ring subsystem in reciprocating motion along the liner repre-
sent 28 to 45% of the piston assembly friction. Figure 5 shows the friction power loss per ring.
Losses due to the second ring are much less important than for the other two rings. For the top
ring the losses are more important when the piston reaches its highest position (top dead center)
at the end of the compression phase. Otherwise all rings present local loss peaks at mid-stroke
when the piston velocity is highest. These peaks are most important for the oil control ring.

Thesis structure

The purpose of the current research is to write an efficient code to solve the Reynolds equation in
the hydrodynamic case in presence of surface texture in order to study the minimum film thickness
behavior in the PRCL contact. The code that has been written is a multigrid algorithm based
on some ideas developed by Alcouffe et al. [4].

• Chapter 1: the algorithm is described. At this stage mass conservation is not accounted
for and the squeeze term is not considered.

9
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Figure 5: friction power loss contribution in the piston ring pack at 1,800 rpm full load (taken
from [3].)

• Chapter 2: results are shown and a comparison is made with the standard geometrical
multigrid algorithm presented in [5].

• Chapter 3: the code is validated by comparison with 1D analytical results obtained by
Biboulet and Lubrecht [6] and the influence of the groove parameters for a cross-hatched
textured liner is studied.

• Chapter 4: the algorithm is modified to include flow conservation.

• Chapter 5: although the code performance is not optimal, it can be used to study the
influence of dimples for flat ring lubrication.

• Chapter 6: the algorithm without flow conservation is modified to include the squeeze term
and used to study the behavior of the minimum film thickness in the PRCL close to top
and bottom dead centers.

10
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Chapter 1

Algorithm
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1.1 Introduction

We want to build an efficient algorithm to study the lubricated piston ring cylinder liner contact.
The smooth contact problem converges using classical algorithms (see for instance [5]). Deep
grooves show divergence. A more robust algorithm is therefore needed that accounts for the
liner roughness. The algorithm that we have developed is based on ideas of Alcouffe, Brandt,
Dendy and Painter that were expressed in [4]. In this chapter after a rapid survey of the general
principles of multigrid techniques, the Alcouffe algorithm as applied to the Reynolds equation,
is described.
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Chapter 1. Algorithm

1.2 Multigrid principles

The first multigrid scheme was developed by R.P. Fedorenko [7, 8] in the early 60’s and was
extensively studied and developed by Brandt in the late 70’s [9]. Their efficiency in accelerating
convergence for elliptic partial differential equations as well as the multigrid integration make
them particularly interesting in lubrication problems in particular for solving the Reynolds equa-
tion (see [5]). The main principles on multigrid techniques are described in [5,9, 10].
The partial differential equation to be solved is discretized on the target grid h and the problem
reads:

Lhuh = fh

where uh is the unknown discretized function, Lh the discretized operator and fh the discretized
right hand side of the equation. The letter h refers to the space step of the grid h. A relaxation
process is used to solve the discretized problem. It has to be a good smoother meaning that it
must rapidly suppress the high frequency components of the error eh = uh − ũh where ũh is an
approximation of uh. If this is actually the case, it is achieved using very few pre-relaxations on
the target grid. The Gauss-Seidel scheme is often chosen. To estimate the error eh, since uh is
not known, the residual rh = fh − Lhũh of the equation is considered. The problem is solved
when rh = 0 since then ũh = uh.
When the error is very smooth, the relaxation process is no longer efficient on the fine grid and
the remaining components of the error will be more efficiently eliminated on a coarser grid H.
Usually one takes H = 2 × h meaning that the space step in any direction is doubled although
this is not mandatory (see Figure 1.1).

Figure 1.1: Fine grid and coarse grid

In the linear case a Correction Scheme (in short CS) is used. For a linear operator we get
Lheh = rh. Since eh is smooth, this problem is more efficiently solved using a coarser grid.
It is transferred to the coarse grid H and becomes LHeH = IHh r

h where LH is a coarse grid
approximation of the operator Lh, IHh is a restriction operator from grid h to grid H and eH a
coarse grid approximation to the error eh. Once the problem is solved on the coarse grid, the
solution eH is interpolated to the fine grid with an interpolation operator IhH and added to the
fine grid approximation ũh to correct it. This process induces high frequency errors that can be
eliminated using very few post-relaxations on the fine grid h.
For a non linear case a Full Approximation Scheme (in short FAS) is used. We no longer have
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1.3. Equations

Lheh = rh. As it is the error that is smooth and therefore can be represented on the coarse grid,
another way of estimating it on the coarse grid must be found. One has Lh(ũh +eh) = Lhũh +rh

since uh = ũh + eh and fh = Lh(ũh + eh). The coarse grid problem is then LH ûH = f̂H with
ûH = IHh (ũh + eh) = IHh (ũh) + eH and f̂H = LH(IHh (ũh)) + IHh (rh). The coarse grid problem is
solved and the interpolated error IhH(eH) that is to say IhH(ũH−IHh (ũh)) is added to the previous
fine grid approximation ũh to get a new fine grid approximation.
The choice of the relaxation scheme that must be a good smoother, the choice of the restriction
and interpolation operators, IHh and IhH , and of the coarse grid operator LH are essential to the
efficiency of the process. This chapter will focus on these operators to get good convergence for
the hydrodynamic lubrication of the piston ring for textured liners.
The numbers ν1 and ν2 of pre and post-relaxations have to be small. Typical values are ν1 = 2

and ν2 = 1. The process can be repeated recursively to solve the coarse grid problem. This
corresponds to V (ν1, ν2)-cycles see figure 1.2. On the coarsest grid, the problem is solved using
ν0 relaxations. If the coarsest grid is very coarse, ν0 = 10 is sufficient. Since this work only
uses V-cycles, other options are not discussed. A few cycles, ncy, have to be used to reach the
discretization error.
To speed up the process, one may solve the initial problem on a grid H, interpolate the solution
uH to the next fine grid in order to get a better starting solution on the next fine grid. This is
called: Full MultiGrid scheme and is referred as FMG.

Figure 1.2: V-cycle for 4 levels.

1.3 Equations

Before adapting the ideas presented by Alcouffe et al. in [4] to the PRLC lubrication and the
Reynolds equation, we present what they propose for the diffusion equation with strongly discon-
tinuous coefficients. Our purpose is to explicit the required operators (interpolation, restriction,
fine grid and coarse grid operators) in order to be able to code them for the piston ring hydro-
dynamic lubrication. The notations used mostly correspond to Alcouffe’s paper notations. The
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Chapter 1. Algorithm

problem that they considered is a problem of the following form:

−∇·(D(x, y)∇U(x, y)) + σ(x, y)U(x, y) = f(x, y) (x, y) ∈ Ω,(1.1a)

−ν·(D(x, y)∇U(x, y)) + γ(x, y)U(x, y) = 0 (x, y) ∈ ∂Ω,(1.1b)

where Ω is a bounded region of R3 of boundary ∂Ω. The functions σ and γ are nonnegative.
The functions D,σ, f can have discontinuities on some internal line Γ in Ω. The function ν is
the outer normal to ∂Ω. Moreover it is assumed that:

(1.2) U and µ · (D∇U) are continuous almost everywhere on Γ

where µ represents a normal to Γ.

In the case when D has strong discontinuities on Γ, it is important to have a good rep-
resentation of the problem on the coarse grids and thus, the interpolation, restriction and coarse
grids operators have to be carefully designed. To build the interpolation operator, the continuity
of D·∇U has to be taken into account instead of just the continuity of ∇U which does not hold.
It corresponds to a flow continuity.

1.4 Volume discretization

We assume that the domain Ω is a rectangle [xa, xb]× [ya, yb] covered with a grid made of straight
lines parallel to the coordinate axes.

(1.3) {xa = x0 < x1 < . . . < xn = xb} × {ya = y0 < y1 < . . . < ym = yb}

Set hi = xi+1−xi and ki = yi+1−yi . Usually the steps will be taken constant in each direction
and may be called hx and hy and often, but not necessarily, hx = hy.
Integrate equation 1.1 over the domain Ω using Green-Riemann on each cell, ∆, represented in
figure 1.3(a). Set G = (G1, G2) with G1 = D∂U/∂x and G2 = D∂U/∂y.
Using Green’s theorem to convert the integral of 1.1 over the cell ∆, one gets :

(1.4)
∫∫

∆
−∇G dxdy =

∫ M2

M1

G2 dx+

∫ M4

M3

G2 dx−
∫ M3

M2

G1 dy−
∫ M1

M4

G1 dy

Besides, the midpoint rule gives:

(1.5)
∫ M2

M1

G2 dx ≈ G2(xi, yj−
kj−1

2
)
hi−1 + hi

2
= D(xi, yj−

kj−1

2
)
∂U

∂y
(xi, yj−

kj−1

2
)
hi−1 + hi

2
.

Denote Gi,j = G(xi, yj) and Gi+ 1
2
,j+ 1

2
= G(xi + hi/2, yj + kj/2) for any function G .

One has

D
(
xi, yj −

kj−1

2

)
≈ 1

2
(Gi− 1

2
,j− 1

2
+Gi+ 1

2
,j− 1

2
)(1.6)

∂U

∂y

(
xi, yj −

kj
2

)
≈ Ui,j−Ui,j−1

kj−1
(1.7)
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1.4. Volume discretization

(a) (b)

Figure 1.3: (a) Elementary cell ∆ (b) Example of boundary cell.

and so on...
With these approximations, we derive Alcouffe formulas:

(1.8)

∫∫
∆
−∇(D · ∇U) dxdy =−Ai,j+ 1

2
(Ui,j+1−Ui,j)−Ai,j− 1

2
(Ui,j−1−Ui,j)

−Bi+ 1
2
,j(Ui+1,j−Ui,j)−Bi− 1

2
,j(Ui−1,j−Ui,j)

with
Ai,j+ 1

2
=

1

2
(Di+ 1

2
,j+ 1

2
+Di− 1

2
,j+ 1

2
)
hi−1 + hi

2kj

and
Bi+ 1

2
,j =

1

2
(Di+ 1

2
,j+ 1

2
+Di+ 1

2
,j− 1

2
)
kj−1 + kj

2hi
which simply reads for constant steps hi = hx, kj = hy as will be the case:
Ai,j+ 1

2
= 1

2(Di+ 1
2
,j+ 1

2
+Di− 1

2
,j+ 1

2
)hx/hy and Bi+ 1

2
,j = 1

2(Di+ 1
2
,j+ 1

2
+Di+ 1

2
,j− 1

2
)hy/hx.

For a boundary cell as shown in figure 1.3(b), these formulas remain valid setting the function
D to 0 outside the domain Ω.
Remark:
From now on, we write Ai,j , Bi,j and Di,j instead of Ai,j+ 1

2
,Bi+ 1

2
,j and Di+ 1

2
,j+ 1

2
.

The numbers Ai,j and Bi,j can be viewed as diffusion coefficients or conductances between the
nodes (i, j) and (i, j + 1) and between the nodes (i, j) and (i + 1, j). This is represented in
figure 1.4.
The right hand side is discretized as follows:

(1.9)
∫∫

∆
f(x, y) dxdy ≈ 1

4
(hi−1 + hi)(kj−1 + kj)fi,j = Fi,j

It would be more consistent to take
(1.10)∫∫

∆
f(x, y) dx dy ≈ 1

4
(hi−1kj−1fi− 1

2
,j− 1

2
+ hikj−1fi+ 1

2
,j− 1

2
+ hi−1kjfi− 1

2
,j+ 1

2
+ hikjfi+ 1

2
,j+ 1

2
)

In our applications the function σ will be zero and therefore we skip the treatment of the
integral of σ(x, y)U(x, y) over a cell. Further details can be found in Appendix A, section A.1.
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Chapter 1. Algorithm

Figure 1.4: Cell coefficients

1.5 Coarse grid coefficients

It is now assumed that for all i, hi = hx and ki = hy. We use a superscript k to denote the
various coefficients and functions of the kth level grid. It may be referred to as the fine grid k
and the next coarser grid (level k−1 ) may then be referred to as the coarse grid. A general fine
grid cell is represented in figure 1.5 .
The coefficient Di,j , corresponding to the value of the function D at the cell middle point, is
only defined on the finest grid. It enables us to calculate the coefficients Ak

i,j and Bk
i,j on the

very finest grid by the above derived formulas:

Ak
i,j =

(Di−1,j +Di,j)

2

hx
hy

(1.11a)

Bk
i,j =

(Di,j−1 +Di,j)

2

hy
hx

(1.11b)

The evaluation of the coarse grid coefficients from the fine grid coefficients is now explained. A
coarse grid cell is plotted in figure 1.5.
In figure 1.5, the indices on the coarse grid are denoted by (iC , jC) and indices of the fine grid
corresponding cell by (iF , jF ). In general iC = 2iF and jC = 2jF .
We must explain how the coefficients Ak−1

ic,jc
and Bk−1

ic,jc
are calculated.

As previously mentioned the coefficients A and B can be viewed as conductances. Therefore
it seems appropriate to calculate the equivalent conductance between the nodes (iC , jC) and
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1.5. Coarse grid coefficients

(a)

(b)

Figure 1.5: (a) Fine grid cell (b) Coarse grid cell.

(iC , jC + 1) on one hand and between the nodes (iC , jC) and (iC + 1, jC) on the other hand by:

(1.12)
Ak−1

ic,jc
=

1

2
δ(Ak

iF ,jF
, Ak

iF ,jF +1) +
1

4
δ(Ak

iF +1,jF
, Ak

iF +1,jF +1) +
1

4
δ(Ak

iF−1,jF
, Ak

iF−1,jF +1)

Bk−1
ic,jc

=
1

2
δ(Bk

iF ,jF
, Bk

iF +1,jF
) +

1

4
δ(Bk

iF ,jF +1, B
k
iF +1,jF +1) +

1

4
δ(Bk

iF ,jF−1, B
k
iF +1,jF−1)
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Chapter 1. Algorithm

with

(1.13) δ(x, y) =
1

1
2

(
1
x + 1

y

)
This can be improved by better accounting for those "conductances" with the following formulas:

Ak−1
ic,jc

=
1

2
δ(Ak

iF ,jF
, Ak

iF ,jF +1) +
1

4
δ(Bk

iF ,jF
, Ak

iF +1,jF
, Ak

iF +1,jF +1, B
k
iF ,jF +2)

+
1

4
δ(Bk

iF−1,jF
, Ak

iF−1,jF
, Ak

iF−1,jF +1, B
k
iF−1,jF +2)

(1.14)

accounting for conductances along the 3 following paths from node (iC , jC) to node (iC , jC + 1):
the direct path, the path passing through nodes (iF + 1, jF ) and (iF + 1, jF + 2) and the path
through nodes (iF − 1, jF ) and (iF − 1, jF + 2). And similarly:

Bk−1
ic,jc

=
1

2
δ(Bk

iF ,jF
, Bk

iF +1,jF
) +

1

4
δ(Ak

iF ,jF
, Bk

iF ,jF +1, B
k
iF +1,jF +1, A

k
iF ,jF +2)

+
1

4
δ(Ak

iF ,jF−1, B
k
iF ,jF−1, B

k
iF +1,jF−1, A

k
iF +2,jF−1)

(1.15)

In these formulas one has:

(1.16) δ(x, y, z, t) =
1

1
4

(
1
x + 1

y + 1
z + 1

t

)

1.6 Interpolation: part 1

In this section the interpolation operator, IhH or Ikk−1 from the coarse grid, level k−1, to the fine
grid, level k, is built.
The coarse grid solution uk−1 is denoted u and the fine grid interpolated solution vk is denoted v.
As before, if (iC , jC) are the indices of a coarse grid point the fine grid indices of the corresponding
point are denoted (iF , jF ).

v = Ikk−1u

• Injection at the coarse grid points (iF , jF ) :
The interpolated value viF ,jF is simply given by injection.

(1.17) viF ,jF = uiC ,jC

• Interpolation at non coarse grid points (iF + 1, jF ) or (iF , jF + 1) :
The continuity of D∂U/∂x which corresponds to a flow conservation is used to determine
the interpolated value of viF +1,jF . At the node (iF + 1, jF ) of the fine grid, D∂U/∂x is
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1.6. Interpolation: part 1

approximated by Bk
iF +1,jF

(viF +2,jF − viF +1,jF )/hiF +1 on the left and by Bk
iF ,jF

(viF +1,jF −
viF ,jF )/hiF on the right. These 2 values must be equal. It yields:

(1.18) Bk
iF +1,jF

viF +2,jF − viF +1,jF

hiF +1
= Bk

iF ,jF

viF +1,jF − viF ,jF

hiF

When hiF +1 = hiF as it will be the case for us and assumed from now on, one gets:

(1.19) Bk
iF +1,jF

(viF +2,jF − viF +1,jF ) = Bk
iF ,jF

(viF +1,jF − viF ,jF )

Because of the injected values at points of the fine grid that also belong to the coarse grid,
it reads:

(1.20) Bk
iF +1,jF

(uiC+1,jC − viF +1,jF ) = Bk
iF ,jF

(viF +1,jF − uiC ,jC )

Hence, the interpolated value at the node (iF + 1, jF ) is given by:

(1.21) viF +1,jF =
Bk

iF +1,jF
uiC+1,jC+Bk

iF ,jF
uiC ,jC

Bk
iF +1,jF

+Bk
iF ,jF

Please note that it is a weighted average of uiC ,jC and uiC+1,jC with respective weights
BiF ,jF and BiF +1,jF , the "diffusion coefficients".

Similarly, the continuity of D∂U/∂y yields:

(1.22) Ak
iF ,jF +1(uiC ,jC+1 − viF ,jF +1) = Ak

iF ,jF
(viF ,jF +1 − uiC ,jC )

and thus:

(1.23) viF ,jF +1 =
Ak

iF ,jF +1uiC ,jC+1+Ak
iF ,jF

uiC ,jC

Ak
iF ,jF +1+Ak

iF ,jF

Again it is a weighted average of uiC ,jC and uiC ,jC+1 with respective weights AiF ,jF and
AiF ,jF +1.

• Interpolation at non coarse grid points (iF + 1, jF + 1) :
Still using the continuity of D∂U/∂x and D∂U/∂y, it can be written that

Bk
iF +1,jF +1(viF +2,jF +1 − viF +1,jF +1) = Bk

iF ,jF +1(viF +1,jF +1 − viF ,jF +1)(1.24)

Ak
iF +1,jF +1(viF +1,jF +2 − viF +1,jF +1) = Ak

iF ,jF +1(viF +1,jF +1 − viF +1,jF )(1.25)

Adding those two relations, we obtain:
(1.26)

viF +1,jF +1 =
Ak

iF +1,jF +1viF +1,jF +2 +Ak
iF +1,jF

viF +1,jF +Bk
iF +1,jF +1viF +2,jF +1+Bk

iF ,jF +1viF ,jF +1

Ak
iF +1,jF

+Ak
iF +1,jF +1 +Bk

iF +1,jF +1+Bk
iF ,jF +1

And then the interpolated values of viF +1,jF and viF ,jF +1 previously computed can be used.
Using simplified notations, the final result will be given in section 1.8.
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Chapter 1. Algorithm

1.7 Restriction

In this section the restriction operator, IHh or Ik−1
k from the fine grid, level k, to the coarse grid

level k−1, is built. It is defined as the transpose of the interpolation operator. Its stencil at the
coarse grid point (iC , jC) is explicited.

(1.27) IHh = (IhH)
T or Ik−1

k = (Ikk−1)
T .

If f and g are two functions defined on the domain Ω, their dot < f |g > product is defined by

(1.28) < f |g >=

∫∫
f(x, y)g(x, y) dx dy.

Its discretized version on grid k becomes

(1.29) < f |g >= hxhy
∑
i,j

fi,jgi,j

On the grid k we use the orthogonal basis (ekI )I where ekI represents the function that has the value
1 at the node IF = (iF , jF ) and 0 at the other nodes. Its squared norm is then < ekI |ekI >= hxhy.
If W k =

∑
I W

k
I e

k
I is a function discretized on grid k, its restriction to the coarse grid k−1 is

(1.30) Ik−1
k W k =

∑
IC

(Ik−1
k W k)ICe

k−1
IC

with

(1.31) (Ik−1
k W k)IC =

< Ik−1
k W k|ek−1

IC
>

< ek−1
IC
|ek−1

IC
>

=
< W k|Ikk−1e

k−1
IC

>

< ek−1
IC
|ek−1

IC
>

=
∑
I

EIC ,IW
k
I

where

(1.32) EIC ,I =
< ekI |Ikk−1e

k−1
IC

>

< ek−1
IC
|ek−1

IC
>

Hence we must find the component along each vector ekI of Ikk−1e
k−1
IC

. This can be done by
applying the interpolation formulas previously computed to u = ek−1

IC
where IC = (iC , jC) is a

coarse grid node. Denoting v = Ikk−1e
k−1
IC

, the components of v can be obtained by substituting
in the results of section 1.6 to u = ek−1

IC
that is to say to the u defined on the coarse grid by

uiC ,jC = 1 and ui,j = 0 otherwise. Figure 1.6 represents the points of the fine grid that have a
non zero contribution to the restricted value. In this picture IC = (iF , jF ) is the point of the fine
grid k coinciding with the coarse grid point IC = (iC , jC), IN = (iF , jF+1), INE = (iF+1, jF+1),
etc... One obtains

(1.33)

Ikk−1e
k−1
IC

= (NWekINW
+NekIN +NEekINE

+WekIW +CekIC+EekIE+SWekISW
+SekIS+SEekISE

)
HxHy

hxhy
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1.7. Restriction

Figure 1.6: Fine grid points involved in the restricted value at the point IC and useful coefficients.

With, the following values computed by the formulas obtained in the previous section 1.6 for
uk−1 = ek−1

IC
,

C = 1

N =
Ak

iF ,jF

Ak
iF ,jF

+Ak
iF ,jF +1

S =
Ak

iF ,jF−1

Ak
iF ,jF−2 +Ak

iF ,jF−1

W =
Bk

iF−1,jF

Bk
iF−2,jF

+Bk
iF−1,jF

E =
Bk

iF ,jF

Bk
iF ,jF

+Bk
iF +1,jF

(1.34)

And

NW =
N Bk

iF−1,jF +1 +W Ak
iF−1,jF

Ak
iF−1,jF

+Ak
iF−1,jF +1 +Bk

iF−2,jF +1 +Bk
iF−1,jF +1

NE =
N Bk

iF ,jF +1 + E Ak
iF +1,jF

Ak
iF +1,jF

+Ak
iF +1,jF +1 +Bk

iF ,jF +1 +Bk
iF +1,jF +1

SW =
S Bk

iF−1,jF−1 +W Ak
iF−1,jF−1

Ak
iF−1,jF−2 +Ak

iF−1,jF−1 +Bk
iF−2,jF−1 +Bk

iF−1,jF−1

SE =
N Bk

iF ,jF−1 + E Ak
iF +1,jF−1

Ak
iF +1,jF−2 +Ak

iF +1,jF−1 +Bk
iF ,jF−1 +Bk

iF +1,jF−1

(1.35)
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Chapter 1. Algorithm

It corresponds to a weighting with the diffusion coefficients around each point.
Henceforth, because of the linearity of the restriction operator and if vk−1 = Ik−1

k (uk), we can
write that:

(1.36)

vk−1
iC ,jC

= (NW ukiF−1,jF +1 +N ukiF ,jF +1 +NE ukiF +1,jF +1

+W ukiF−1,jF
+ C ukiF ,jF

+ E ukiF +1,jF

+ SW ukiF−1,jF−1 + S ukiF ,jF−1 + SE ukiF +1,jF−1)
hxhy
HxHy

The stencil of the restriction at the point (iC , jC) of the coarse grid coinciding with the point
(iF , jF ) of the fine grid is then given by:

(1.37) Ik−1
k =

hxhy
HxHy

 NW N NE

W C E

SW S SE


For these coefficients, it may be better to write NW k

iC ,jC
instead of NW , etc... These values

depend on the point (iC , jC) at which the restriction is performed. It may be noted that when
the function D is constant equal to 1(Poisson operator) then the following stencil is obtained:

(1.38) Ik−1
k =

hxhy
HxHy

 1/4 1/2 1/4

1/2 1 1/2

1/4 1/2 1/4


which corresponds to the restriction operator used in classical geometrical multigrid.

1.8 Interpolation: part 2

With the notations of the previous section, the interpolation formulas from the coarse grid k−1

to the fine grid k, read:

vkiF +1,jF
= Ek

iC ,jC
uk−1
iC ,jC

+W k
iC+1,jC

uk−1
iC+1,jC

vkiF +1,jF
= Nk

iC ,jC
uk−1
iC ,jC

+ Sk
iC ,jC+1 u

k−1
iC ,jC+1

(1.39)

and

(1.40)
vkiF +1,jF +1 =NEk

iC ,jC
uk−1
iC ,jC

+NW k
iC+1,jC

uk−1
iC+1,jC

+ SEk
iC ,jC+1 u

k−1
iC ,jC+1 + SW k

iC+1,jC+1 u
k−1
iC+1,jC+1

The stencil of the interpolation operator Ikk−1 at the point (iC , jC) of the coarse grid coinciding
with the point (iF , jF ) is then given by:

(1.41) Ikk−1 =

 NW k
iC ,jC

Nk
iC ,jC

NEk
iC ,jC

W k
iC ,jC

Ck
iC ,jC

Ek
iC ,jC

SW k
iC ,jC

Sk
iC ,jC

SEk
iC ,jC


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1.9. Grid operators

The entries of this stencil give the weight that is attributed to uk−1
iC ,jC

in the calculation of the
interpolated value at each of the nine points of the fine grid surrounding the point (iC , jC)

corresponding to (iF , jF ).

1.9 Grid operators

On grid k the discretized problem to be solved is written:

(1.42) Lk U = F

The last task that needs to be completed is the definition of the stencils of the operator Lk on
each grid.

1.9.1 Finest grid operator

On the very finest grid (k = kmax), the stencil of the operator Lk at the node (i, j) is directly
computed from the discretization that is used. It reads

(1.43) Lk(i, j) =

 0 Ak
i,j 0

Bk
i−1,j −Ak

i,j−Ak
i,j−1−Bk

i,j−Bk
i−1,j Bk

i,j

0 Ak
i,j−1 0


The coefficients A and B were defined by equations 1.11. On the finest grid, the operator Lk is
a five points operator.

1.9.2 Coarse grid operators

Knowing the operator Lk on grid k the operator Lk−1 on grid k−1 has to be defined. The
Galerkin operator (see [9] or [10]), is used.

Lk = Ik−1
k Lk Ikk−1

The stencil of this linear operator at the point (iC , jC) is determined by finding the image of the
basis function uk−1 = ek−1

iC ,jC
where ek−1

iC ,jC
is the coarse grid function that has the value 1 at node

(iC , jC) and 0 elsewhere. Details are skipped in this section but can be found in Appendix A,
section A.2.

1.10 Full multigrid interpolation

In the full multigrid code (FMG), a solution of the problem is computed on the coarse grid
k−1, it is then interpolated to the grid k and this interpolation is used as an initialization of the
solution on grid k. In [4], Alcouffe, Brandt, Dendy and Painter propose a new cubic interpolation
that is also based on the continuity of D∂U/∂x and D∂U/∂y. Although they note that classical
cubic interpolation is sufficient which can be verified on our problem. Both were tried and it
did not lead to significant improvement on the problems studied. Details on their new cubic
interpolation can be found in Appendix A, section A.3.
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Chapter 1. Algorithm

1.11 Reynolds Equation

Our purpose is to find a solution to the Reynolds equation for hydrodynamic lubricated contacts.
For an appropriate choice of dimensionless parameters and neglecting the transient term, the
corresponding dimensionless equation is

(1.44)
∂

∂X
(H3 ∂P

∂X
) +

∂

∂Y
(H3 ∂P

∂Y
)−∂H
∂X

= 0

This equation is not sufficient to describe the behavior of the pressure since it allows negative
pressures. In that case, the fluid evaporates, the pressure is zero. Henceforth, the HL problem
to be solved reads:

∂

∂X
(H3 ∂P

∂X
) +

∂

∂Y
(H3 ∂P

∂Y
)−∂H
∂X

= 0 (X,Y ) ∈ Ω1(1.45a)

P = 0 (X,Y ) ∈ Ω2(1.45b)

An extended Reynolds equation that describes the flow in the complete and incomplete zone can
be used and leads to the following complementary problem:

(1.46)
∂

∂X
(H3 ∂P

∂X
) +

∂

∂Y
(H3 ∂P

∂Y
)−∂Hoil

∂X
= 0 (X,Y ) ∈ Ω

Where Hoil, represents the oil film thickness and H the geometry. When the pressure is positive,
Hoil is equal to H. Otherwise it is a fraction of H.

(1.47) Hoil = θH with θ = 1 if P > 0 and 0 ≤ θ ≤ 1 if P = 0

This model was proposed by Elrod [11] [12].

1.12 Algorithm implementation

In a first step, the cavitation was not taken into account and the previous algorithm is used,
taking, in equation 1.1, the function D = H3, σ = 0 and f = ∂H/∂X. The geometry H is
defined by the segment shape and the liner roughness. It is described in section 1.12.1. The
previously described algorithm works well for a parabolic segment and for a model roughness
with a cross hatched groove pattern and it remains efficient for deep grooves. Then cavitation
was accounted for as explained in section 1.12.2.

1.12.1 Geometry

For a parabolic ring see figure 1.7, the geometry that was used is defined by

(1.48) H(X,Y ) = 1 +
X2

2
+R(X,Y )

The function R that is defined on Ω describes the roughness of the liner surface.
We first used an analytic model defined by a cross hatched groove pattern for the liner surface
as represented in figures 1.8, 1.9 and 1.10 .
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1.12. Algorithm implementation

Figure 1.7: Ring shape

Figure 1.8: Cross hatched groove pattern (projection)

Figure 1.9: Cross hatched groove pattern

To describe the full pattern we need the half angle α, the groove width Λ, the distance between
grooves D, the groove depth A. Because of symmetry and periodicity the values of R in the red
rectangle shown in 1.10 completely determine R.
In the red rectangle [0, D/(2 cosα)]× [0, D/(2 sinα)], one gets:
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Chapter 1. Algorithm

Figure 1.10: Cross hatched groove pattern

(1.49) R(X,Y ) =

{
(1 +A/2 cos(π(X cosα− Y sinα)) if |X cosα− Y sinα| ≤ Λ/2

0 otherwise

The surface is smooth when A = 0.

1.12.2 Cavitation

The implementation of the cavitation proved to be more complex. It was decided that the free
boundary defined by the cavitation zone, had to be determined only on the finest grid and only
use the coarser grids as convergence accelerators. Therefore it was crucial, in the interpolating
process from a coarse grid to the next finer grid, that values in the cavitated zone do not interact
with values in the non cavitated zone. In the cavitated zone boundary the residual becomes
completely wrong because equation 1.47 is not valid in the cavitation zone. And those residuals
must not be used in any way on the finest grid. They introduce huge errors.

In the relaxation process all points are relaxed on the finest grid while on the coarser
grids they are relaxed only in the case of a non zero pressure. Each time the pressure becomes
negative, it is set to 0. Hence on the fine grid the cavitation boundary can change. But
interpolation of the coarse grid may induce new positive pressure on the fine grid within the
cavitation area and undo the previous work. This should be avoided.
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1.12. Algorithm implementation

To achieve this, the interpolation, restriction stencils and hence the coarse grids oper-
ators were modified. A very simple idea was used. It consists in cutting all possible
communication between the two regions by setting to 0 the coefficients of the restriction
and interpolation stencils that lead to interference between the two zones. But this proved
to be too simple. This problem has to be carefully addressed as we are now going to try to explain.

Suppose a 1D problem and that on a fine grid there are 9 points labeled xi for i ∈ 0, 1, 2, ..., 8

and on the next coarser grid there are 5 points Xi for i ∈ 0, 1, 2, ..., 4 as shown in figure 1.11.

Figure 1.11: 1D cavitation boundary

Call pi and Pi, the corresponding pressures. The colored line represents the cavitation boundary.
The red boundary means that on the fine grid the pressure p4 > 0 and p5 = p6 = p7 = p8 = 0

while the green one means that p5 > 0 and p6 = p7 = p8 = 0. These are the two cases
of cavitation boundaries that can be encountered in 1D. In both cases, the coarse grid points
X3, X4 lie in the cavitated zone. Hence P3 = 0, P4 = 0. When going from the coarse grid to
the fine grid, the V-cycle interpolation induces the following pressures, using basic interpolation
rules (just to get an idea of what is going on):

(1.50)

p0 = P0

p1 =
P0 + P1

2

p2 = P1

p3 =
P1 + P2

2

p4 = P2

p5 =
P2 + P3

2

p6 = P3

p5 =
P3 + P4

2

p8 = P4
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Chapter 1. Algorithm

Hence after interpolation, p5 may become positive but this does not lead to major changes in
the solution and in the cavitation boundary. It can be fixed with one relaxation sweep. For the
coarsening steps, the pressure will be restricted according to laws of the following type :

(1.51)

P0 = 0.5p0 + 0.25p1

P1 = 0.25p1 + 0.5p2 + 0.25p3

P2 = 0.25p3 + 0.5p4 + 0.25p5

P3 = 0.25p5 + 0.5p6 + 0.25p7

P4 = 0.5p4 + 0.25p8

And then a problem at the node X3 will occur. If p5 is positive (green cavitation boundary in
figure 1.11), then P3 becomes positive and we extend the non cavitated zone on the coarse grid
which was forbidden. But there is a problem that is even worse, we also need to coarsen the
residuals of the fine grid with the same rules in order to find the right pressure correction on
the coarse grid because all fine grids residuals are completely wrong in the cavitated region. In
order to avoid these problems, it was decided to modify the restriction and interpolation stencil
as follows.
For the interpolation operators in the refining step:

• The coarse grid points are injected (i.e. no change).

• Fine grid points inside the non cavitated zone: normal procedure (i.e. no change).

• Fine grid points on the cavitation boundary or inside the cavitated zone, they are put to
zero pressure. This is done by setting the coefficients of the interpolation stencils of the
coarse grid points that contribute to these fine grid points to 0.

For the restriction operators in the coarsening step:

• The coarse grid points that lie in the cavitated zone are injected (only the central coefficient
of the restriction stencils is kept, the other are set to 0).

• For the coarse grid points that lie in the non cavitated area normal full weighting procedure
(i.e. no change).

Then the coarse grid operator is computed with those stencils.
We can now give some examples of those changes. These examples explain how the restriction
and interpolation stencils at coarse grid points near the cavitation frontier for the considered
case. In Figures 1.12(a), various configurations that induces changes in the operators at C1

and C2 according to the pressure values on the horizontal coarse grid boundary cell [C1, C2].
Similar cases can be found for the vertical boundaries. In Figures 1.12(b), an example of cell
configuration that will induce changes in the operators at C1, C2, C3, C4.

Consider the figure 1.12(a). In the first case, the restriction stencils at C1 and at C2 will be
changed to:

(1.52) R0 =
hxhy
HxHy

 0 0 0

0 1 0

0 0 0


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1.12. Algorithm implementation

(a)

(b)

Figure 1.12: Stencil modification cases (a) aligned points (b) central fine grid point.

In the second and third cases only the restriction stencils at C2 are changed into R0. In the first
and second cases the "East" coefficient of the interpolation stencil at C1 is set to 0 and at C2,
the "West" interpolation coefficient becomes 0. While in the third case no changes are needed.
When the fine grid point that is close to the cavitation boundary is a coarse grid cell center
as in figure 1.12(b), we similarly modify the restriction and interpolation stencils at the four
surrounding coarse grid points. For the example shown in figure 1.12(b), the restriction stencils
at points C1 and C3 are unchanged while at points C2 and C4, they are changed into R0.
The "South-East", "South-West", "North-West" and " North-East" interpolation coefficients
respectively at C1, C2, C3 and C4 are set to zero while the 8 other coefficients remain unchanged.
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The coarse grid operators are then recalculated with these new stencils. As computer memory
was not an issue, it was decided to store all these stencils, although, by carefully considering
what is going on, some memory space could probably have been saved. Finally the standard
multigrid algorithm described in [5] is used with the following modifications:

• Calculate the finest grid stencil coefficients: Akmax
i,j , Bkmax

i,j and the finest grid stencils.

• V-cycle modifications:

– Calculate all coarser grid stencils.

– Perform the V-cycle as in [5] modifying the stencils to account for cavitation after the
fine grid relaxations and before the coarsening steps.

Algorithm performances are presented in the following chapter.

1.13 Conclusion

In this chapter the main ideas of Alcouffe et al. to recover multigrid efficiency in the case of
an elliptic operator with highly varying coefficients have been implemented. The computations
of the restriction and interpolation stencils have been fully explained as well as the fine and
coarse grid operators. The Galerkin method was used and it was indicated how to calculate the
resulting nine grid operator on each coarse grid with further details in Appendix A, section A.2.
Finally, it was shown that it could be applied to the Reynolds equation with a special care to
deal with the cavitation boundary. It is particularly interesting for a textured liner in the PRLC
hydrodynamic contact. In this case the function D being H3 can undergo large variations and
the standard multigrid techniques loose their efficiency. The obtained code leads to a better
representation of the equation on the coarse grid since the interpolation formula is based on flow
conservation.
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2.1 Introduction

In this chapter the performance of the Reynolds code with or without cavitation is analyzed. At
this stage flow conservation at the cavitation boundary is not considered. The convergence is
shown for deep grooves in the case of a cross hatched surface. Its evolution for a wide variety
of depths is shown. The performance in terms of work units is studied. The results are also
compared with the results that were obtained with the classical HL code developed in [5].

2.2 Pressure and film height

The 2D height distribution with grooves is given by

(2.1) H(X,Y ) = 1 +
X2

2
+R(X,Y ) (X,Y ) ∈ [−10, 10]× [−10, 10].

Where R represents the roughness as described in section 1.12.1. The parameter A is the groove
depth. The case A = 0 corresponds to the smooth case. The smooth minimum film thickness
is 1. In this chapter, the distance between grooves is set to D = 2, their width is Λ = 0.5 and
their angle is 45◦. The coarse grid is a 4× 4 grid. For grooves of depth A = 4, the geometry and
the corresponding pressure are shown in Figure 2.1. After running the new FMG code with 20

cycles on 9 levels on the square [−10, 10]× [−10, 10], the obtained central pressure and geometry
on the line X = −5.0 are shown in Figure 2.2. A zoom of these curves on the central line is
given in Figure 2.3. The pressurized points (in blue) and therefore the cavitation boundary can
be seen in Figure 2.4.
Finally, pictures of the residuals are given in figures 2.5.
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Chapter 2. Results

(a)

(b)

Figure 2.1: Geometry (a) and pressure (b) for grooves of depth 4.

Note that the geometry at Y = 5 shows the individual grooves section on the corresponding
line. Since the grooves cross on the line Y = 0, they are regularly spaced on the central line
and seem to be fewer than on the line Y = 5. The boundary pressure being zero, it is normal
to get a maximum pressure at Y = 5 lower than the one on the central line. This is also due to
the fact that there are more grooves in the central part of the contact where they are the most
influential. Figure 2.3 indicates a small positive pressure in the grooves beyond the cavitation
boundary. These remaining very small pressures in the grooves also appear in figure 2.4 on the
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2.2. Pressure and film height

(a) (b)

Figure 2.2: Converged pressure and geometry on the central line Y = 0. (a) and on the line
Y = 5. (b) for grooves of depth 4.

Figure 2.3: Zoom of converged pressure and geometry on the central line for grooves of depth 4.

right half of the picture. The pressures are very small as was pointed out in figure 2.3. At this
stage flow conservation is not yet considered and therefore after cavitation the algorithm can be
questioned.
Concerning the residuals, figure 2.5 (a) shows that the most important ones are to be found,
as expected, near the cavitation boundary. The Reynolds equation is no longer valid in the
cavitation zone. The equation that is used does not account for the correct Couette flow at
cavitation. When P is set 0, an error is introduced in the residual since the geometry is considered
and not the oil level. Besides the zoomed picture (b), shows that the deep grooves also create
larger residuals than in the other parts of the domain but they can be rapidly reduced below the
discretization error.
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Chapter 2. Results

Figure 2.4: Pressurized points (in blue) and cavitation boundary.

2.3 New code results: Residuals and Work Units.

Pictures of the evolution of the residual in terms of work units (Wu) on 9 levels for grooves of
depth A = 0 to 10. are given in Figure 2.6 using only V-cycles, in Figure 2.7 using FMG and 20
V-cycles and in figure 2.8 using FMG and 10 V-cycles. Considering the first figure, with V-cycles
only, initially the residual does not decrease very fast because the cavitation boundary needs to
stabilize. Afterwards it decreases rapidly although it becomes more difficult with increasingly
deep grooves. The residuals are only evaluated on the finest grid and this explains why, in case
of FMG, the curves do not begin at Wu = 0. Indeed the problem is solved on each subgrid to
get a good starting pressure on the next fine grid, this time has to be considered.
Henceforth, when using FMG, it is a little difficult to use a prescribed number of cycles to evaluate
the work that is required to obtain a certain accuracy. Only 10 cycles are sufficient for grooves
of depth A ≤ 4 to reach a very small residual. This figure also shows that FMG diminishes the
number of work units that are necessary to obtain a prescribed accuracy. Indeed when it begins
solving the problem on a given fine grid, it has already solved it on the previous coarse grid and
this solution provides a better starting point. Besides FMG has already localized the cavitation
boundary on the coarse grid. Convergence is not so fast for very deep grooves. When using only
V(2,1) cycles, the convergence at the beginning is rather slow. The algorithm needs to stabilize
the cavitation boundary. Afterwards a linear behavior of log10(residual) as a function of Wu,
the number of work units, is observed with a slope that increases as the grooves get deeper. It
means that the residual is divided by a constant factor at every cycles until machine precision is
reached. This factor is about 10 for shallow grooves, around 5 for grooves of depth 1 and around
2 for very deep grooves (depth between 10 and 30). It was also tried for grooves of depth 50 and
the factor becomes 1.66. These pictures also show that if convergence slows down as A increases,
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2.3. New code results: Residuals and Work Units.

Figure 2.5: (a) Residuals for grooves of depth A = 4 for 7 levels, (b) Zoom of the same residuals.

it remains acceptable. Besides by increasing the number of cycles: 30 instead of 10 or 20, very
small residuals are obtained for very deep grooves as shown in Figures 2.9 and 2.10 for grooves
of depth 10 and 20. At the beginning convergence is fast. For grooves of depth 20, after the first
cycle V(2,1) cycle, the residual is divided by ten, then by 5 while for grooves of depth 10, after the
first two V(2,1) cycles, the residual is divided by ten and after the third cycle by 5. Afterwards,
in both cases, a linear behavior of the logarithm of the residual as a function of the number of
work units is observed This factor is roughly 2 for depth of depth 20 and slightly above 2 for
grooves of depth 10. Please note that for comparison with classical geometrical multigrid whose
discretization is not done by means of volume discretization but finite differences, the residual
here is divided by hx × hy. This explains why it stabilizes around 10−12 for 9 levels. Besides no
special prerelaxation is done to find more rapidly the cavitation boundary.
For all these figures only V (2, 1) cycles were used. The geometry consists of a cross hatched
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pattern with a groove width equal to 0.5, a distance between grooves of 2., an angle α = π/4

for various values of the grooves depth A (see figure 2.2). The case A = 0. corresponds to the
smooth case.

20 40 60 80 100 120
Wu

-12

-10

-8

-6

-4

-2

0

log10HresidualL

Figure 2.6: Residual evolution as a function of work units using only 30 V-cycles (no FMG),
grooves of depth A = 0, 0.4, 0.8, 1., 2., 4., 10. from bottom to top, with cavitation.
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Figure 2.7: Residual evolution as a function of work units using FMG and 20 V-cycles, grooves
of depth A = 0, 0.4, 0.8, 1., 2., 4., 10. from bottom to top, with cavitation.

Figures 2.9 and 2.10 show the residual in terms of work units for FMG with nine levels,
30 cycles and grooves of depth 10 and grooves of depth 20. The convergence speed is quite
satisfactory since for all these results only V (2, 1) cycles are used and the coarsest grid is a 4× 4

grid.
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Figure 2.8: Residual evolution as a function of work units using FMG and 10 V-cycles, grooves
of depth A = 0, 0.4, 0.8, 1., 2., 4., 10. from bottom to top, with cavitation.
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Figure 2.9: Residuals as a function of work units for grooves of depth 10 (FMG, 30 cycles and 9
levels, with cavitation).

2.4 Comparison with classical code

2.4.1 Without cavitation

The classical code is the code "HL2D" that is described in [5] for hydrodynamic lubrication,
without cavitation. It was run with a 4×4 coarsest grid and nine levels. The performance of this
code is compared with the one of the new code for a cross hatched pattern with a groove width
equal to 0.5, a distance between grooves of 2., an angle α = π/4 and for various values of the
grooves depth a. The case a = 0. corresponds to the smooth case. In tables 2.1, only V-cycles
were used while in table 2.2, full multigrid, FMG, was used. For both codes, calculations were
performed with only V(2,1) cycles. Images of the pressure after 20 cycles and of the geometry
on the central line are given for grooves of depth 2.0 in figures 2.11. As cavitation was not
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Figure 2.10: Residuals as a function of work units for grooves of depth 20 (FMG, 30 cycles and
9 levels, with cavitation).

taken into account and negative pressures were accepted because of the geometry symmetry an
anti-symmetric pressure field is obtained. The convergence problems due to the free cavitation
boundary do not occur in this case and therefore a better convergence is observed as can be
seen in Table 2.1 (only V(2.1)-cycles) and Table 2.2 (FMG). With only 10 V-cycles, convergence
seems to be better in the case of the old code as long as groove depth remains ≤ 1 but for deeper
grooves it stops working while the new code keeps similar performance for grooves of depth less
than 10. When doubling the number of V-cycles, the new code is clearly more efficient and
continues to converges for deep grooves while the first code stops converging for grooves of depth
≥ 2. With FMG with only 10 V(2,1) cycles the new code already proves to be more efficient
for deep grooves. Considering the FMG results (Table 2.2) for the non cavitated case, it can be
noticed that residual of the same order of magnitude are obtained for grooves of depth A = 2

with the classical code and for grooves of depth A = 10 with the improved code. In terms of the
Reynolds equation, it corresponds to a diffusion coefficient H3 that is of order 103 instead of 8.

-10 -5 5 10
x

-0.05

0.05

P,H

(a)

-10 -5 5 10
x

-0.05

0.05

P,H

(b)

Figure 2.11: Non cavitated pressure and geometry on the central line with the old code (a) and
and with the new one for grooves of depth 2 (b).
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Groove depth Old code(10) New Code(10) Old code(20) New Code(20)
A = 0 3.45536 10−12 4.54186 10−8 3.18550 10−12 5.65094 10−12

A = 0.2 3.63007 10−12 4.56751 10−8 3.19421 10−12 5.65315 10−12

A = 0.5 2.20238 10−11 5.03335 10−8 3.20121 10−11 5.64959 10−12

A = 1.0 3.62181 10−10 7.39086 10−8 3.22345 10−10 5.68816 10−12

A = 2.0 8.26621 10−5 4.72002 10−7 1.56038 10−5 5.85417 10−12

A = 4.0 − 2.06547 10−8 − 8.70319 10−11

A = 10.0 − 2.27533 10−3 − 3.05718 10−7

Table 2.1: Residuals without cavitation after 10 V- Cycles (columns 2 and 3) and after 20 V-
Cycles (columns 4 and 5).

Groove depth Old code(10) New Code(10) Old code(20) New Code(20)
A = 0 3.19117 10−12 8.21423 10−12 3.18425 10−12 5.61320 10−12

A = 0.2 3.19082 10−12 8.35724 10−12 3.12200 10−12 5.63743 10−12

A = 0.5 3.24179 10−12 9.50510 10−12 3.20156 10−12 5.62231 10−12

A = 1.0 5.90107 10−12 1.67512 10−11 3.22519 10−12 5.65955 10−12

A = 2.0 2.10552 10−6 4.03689 10−10 3.50085 10−8 5.75466 10−12

A = 4.0 − 9.7413910−9 − 6.04012 10−12

A = 10.0 − 1.3675110−6 − 3.00429 10−10

Table 2.2: Residuals for non cavitated FMG with 10 cycles (columns 2 and 3) and with 20 cycles
(columns 4 and 5).

2.4.2 With cavitation

For this the code "HL2D" that is described in [5] is used. Results in terms of residual are
presented in Tables 2.3 and 2.4. In this case, because of cavitation, the efficiency of the old code
degrades. Without FMG and with 20 V-cycles, it can be observed that even for shallow grooves
convergence is not very good and even with FMG, for grooves of depth ≥ 1, it does not converge
while the new code, when the cavitation boundary is stabilized (10 V(2,1) cycles without FMG
are not sufficient), keeps a similar behavior to the non cavitated case. It is even better in the
cavitated case as shown in table 2.4. The convergence of the classical code becomes very slow
for A = 2 and stops converging for deeper grooves.
After only 10 V-cycles, for shallow grooves, the new code does not seem to be more efficient than
the old one, but with more cycles or using FMG, it is much faster and it keeps converging for
very deep grooves. At the beginning, because of the free cavitation boundary the residual does
not seem to change a lot but afterwards, the algorithm becomes very efficient which is not the
case with the old code (see figure 2.12).

In fact, if we only consider up to 10 V-cycles without FMG, the new code does not seem to be
better but it does not deteriorate too much. But if we increase the number of V-cycles from 10
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Groove depth Old code(10) New Code(10) Old code(20) New Code(20)
A = 0 4.21049 10−7 9.3649 10−5 1.54652 10−11 3.15071 10−12

A = 0.2 1.85151 10−6 9.29645 10−5 3.63546 10−8 3.05494 10−12

A = 0.5 1.17584 10−5 1.28189 10−4 4.91446 10−8 4.12592 10−12

A = 1.0 4.12544 10−4 2.55260 10−4 2.39287 10−4 3.27813 10−11

A = 2.0 6.75510 10−3 9.62750 10−4 3.27918 10−3 2.02697 10−9

A = 4.0 6.10157 10−1 3.83358 10−3 − 5.96005 10−8

A = 10.0 − 2.86277 10−2 − 4.32911 10−6

Table 2.3: Residuals with cavitation after10 V-cycles (columns 2 and 3) and after 20 V-cycles
(columns 4 and 5).

Groove depth Old code(10) New Code(10) Old code(15) New Code(15)
A = 0 7.33557 10−10 2.92645 10−12 2.83849 10−12

A = 0.2 2.20751 10−7 3.02393 10−12 4.00056 10−8 2.86069 10−12

A = 0.5 2.46322 10−7 3.58037 10−12 1.59958 10−8 2.89432 10−12

A = 1.0 2.30557 10−4 1.30786 10−11 2.64162 10−4 2.96992 10−12

A = 2.0 2.67886 10−3 1.52475 10−10 3.41708 10−3 3.20307 10−12

A = 4.0 − 1.13176 10−8 − 4.41069 10−11

A = 10.0 − 1.19284 10−6 − 1.62029 10−8

Table 2.4: Residuals for cavitated FMG with 10 cycles (columns 2 and 3) and with 15 cycles
(columns 4 and 5)

to 20, the residual of the new code decreases very quickly and the residual reduction remains
very good, even for quite deep grooves. For the same running conditions, the old code residual
decreases very slowly or oscillates or even diverges. Using full multigrid the new code becomes
even better. In terms of work units or even real calculation times, Figures 2.12 or 2.13 in
subsection 2.3 as well as table 2.5 show that the new code is quite efficient in spite of the extra
work that is required to correctly represent the highly varying flows on the coarse grid and in the
relaxation process. For grooves of depth of A = 4., a graph of the residual as a function of work
units is plotted in figure 2.12. In red, the residual after running the old code and in blue after
running the new code. No FMG is used, only V(2,1) cycles. For grooves of depth of A = 1., a
graph of the residual as a function of work units is plotted in figure 2.13. In red, the residual
after running the old FMG code with 100 cycles and in blue after running the new FMG code
with only 15 cycles. The number of cycles being different the starting point of both curves is
different.Those two figures clearly show the divergence of the old code and the very satisfying
convergence of the Alcouffe based code. In the classical geometrical multigrid code, the coarse
grid is a poor representation of the flows and therefore they do not accelerate convergence and
they even deteriorate it. The diffusion coefficients being in H3, they undergo huge variations in
the grooves. Therefore, coarse grid representation remains acceptable for shallow grooves but
then the discrepancy is too big.
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2.4. Comparison with classical code
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Figure 2.12: New code residuals (blue) and old code residuals (red) in terms of the number of
cycles for grooves of depth 4 (no FMG, only V(2,1) cycles).
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Figure 2.13: Residuals for the FMG codes as a function of work units, for grooves of depth 1.,
new code in blue (15 V(2,1) cycles) and old code in red (100 V(2,1) cycles.

2.4.3 Computing time

In the new code each cycle requires more time because of the modification of the stencils and
their re-initialization at each FMG change of level. Besides the finest grid relaxation routine
is more complex in order to better account for the flow equilibrium. Calculation time for the
cavitated case has been measured in seconds. All output has been eliminated. The results are
given in table 2.5.
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Chapter 2. Results

Level 8 Old Code NewCode Level 9 Old Code NewCode
ncy = 1 ≈ 1 ≈ 1 ncy = 1 ≈ 2 ≈ 4

ncy = 2 ≈ 1 ≈ 1 ncy = 2 ≈ 2 ≈ 6

ncy = 4 ≈ 1 ≈ 2 ncy = 4 ≈ 5 ≈ 9

ncy = 10 ≈ 3 ≈ 4 ncy = 10 ≈ 11 ≈ 20

ncy = 20 ≈ 5 ≈ 8 ncy = 20 ≈ 21 ≈ 38

ncy = 50 ≈ 13 ≈ 20 ncy = 50 ≈ 52 ≈ 93

Table 2.5: Comparison of FMG computing times in seconds.

2.5 Conclusion

In this chapter the efficiency of the new code is demonstrated. It remains efficient even in the case
of deep grooves although it slows down a little for very deep grooves. Of course the computing
time increases because of the additional calculation time of the stencils and of the nine point
operator. It is not quite doubled, which is not too much, considering the multigrid efficiency of
the old code in terms of time saving. In chapter 6 an impact problem is studied. The transient
term of the Reynolds equation will have to be added. The stencil will have to be evaluated twice
per cycle: at the beginning and after having updated the minimum film thickness. It will not
significantly affect the calculation time. In that case since at each time step the solution will
be close to the one at the previous time step and therefore not many cycles will be used. The
computing time will be more impacted by the required number of time steps.
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Influence of liner groove parameters.
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3.1 Introduction

Concerning both friction reduction and pollution reduction, the piston ring pack plays a
crucial part because of its sealing and lubricating functions. Therefore, the piston ring pack has
been the subject of many studies. Analysis of the piston-ring pack can be found in [13–16] where
the effects of relative ring locations, tension and design of oil-control ring, ring conformability,
bore distortion,. . . are investigated.

Cylinder liner texturing is also an important factor to improve load carrying capacity, friction
coefficient and oil consumption. They can serve as local pressure generators, lubricant reservoirs
or debris traps. Surface texture is necessary to generate pressure in the case of flat rings such as
the oil control ring [16–22].

The interest of cross-hatched grooves for good oil redistribution and friction reduction was
shown in [23–25]. In [26], the honing process is studied and its effects on the surface topography
and henceforth on the PRLC performance are developed. Dynamic effects also play a role in the
PRCL contact as studied in [27].

The influence of the groove parameters, density, depth and angle for a cross hatched texture
was studied in [18, 28, 29]. In order to obtain a more precise model of the PRCL contact, it is
necessary to solve the transient hydrodynamic lubrication problem, requiring millions of points
of a measured surface and thousands of time steps. Hence, the use of an efficient and robust
solver for the Reynolds equation is a must. Because of the surface roughness, the film thickness
cubed term in the Reynolds equation shows huge variations, making the problem difficult to
solve. Different approaches have been applied in the past such as the stochastic methods using
the Patir and Cheng flow factors [30] or homogenization methods [31–33]. Our approach is based
on a deterministic model and measured surfaces. As such a detailed description requires very fine
grids, it requires long computing times and therefore multigrid techniques become an obvious

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI105/these.pdf 
© [M-P. Noutary], [2017], INSA Lyon, tous droits réservés



Chapter 3. Influence of liner groove parameters.

choice. The code we have developed is adapted to highly varying coefficients and allows us to
quickly solve the problem even in presence of deep grooves. In this chapter, in the case of a
parabolic ring, it is validated by comparison with the 1D analytical model presented in [6] and
the influence of some groove parameters for a cross-hatched textured liner is studied.

3.2 Notation and dimensionless equations

In this chapter the hydrodynamic lubrication of the piston ring-cylinder liner contact is considered
and the following problem is solved on a domain ω:

∂

∂x
(
ρh3

12η

∂p

∂x
) +

∂

∂y
(
ρh3

12η

∂p

∂y
)−um

∂(ρh)

∂x
−(∂ρh)

∂t
= 0 and p > 0

or p = 0

Where p is the hydrodynamic pressure, h, the geometry, um the mean velocity of the
piston ring and liner. The fluid is assumed to be incompressible and isoviscous and
therefore the lubricant density, ρ and the viscosity, η are considered constant. The
problem is made dimensionless using the following dimensionless parameters. Upper
case letters represent dimensionless parameters and Rx is the ring radius of curvature.
A dimensionless groove depth = a/h0

D dimensionless distance between grooves = d/
√
h0Rx

E dimensionless ring half width = e/
√
h0Rx

H dimensionless film thickness = h/h0

P dimensionless pressure = ph0

√
h0/(12ηum

√
Rx)

T dimensionless time = umt/
√
h0Rx

W dimensionless load = wh0/(12ηumRx)

X dimensionless coordinate in direction of sliding = x/
√
h0Rx

Y dimensionless coordinate in direction perpendicular to sliding = y/
√
h0Rx

α angle between groove and Y axis
Λ dimensionless groove width = λ/

√
h0Rx

This yields the following dimensionless problem in a domain Ω:

∂

∂X
(H3 ∂P

∂X
) +

∂

∂Y
(H3 ∂P

∂Y
)−∂H
∂X
−∂H
∂T

= 0 and P > 0

or P = 0

The geometry H is defined by the macroscopic ring shape and by the liner texture. In this
chapter, only analytical models of the cross-hatched surfaces are considered.

H(X,Y ) = 1 +
X2

2
+R(X,Y )

where R describes the liner texture. The sliding direction is the X direction. In this work, the
transient part is replaced as described in [6] where it is shown that

∂H

∂T
= −2

∂R

∂X
.
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3.3. Code validation

In dimensionless form, it amounts to solving

∂

∂X
(H3 ∂P

∂X
) +

∂

∂Y
(H3 ∂P

∂Y
) =

∂H1

∂X

where

H1(X,Y ) = 1 +
X2

2
−R(X,Y ).

Examples of possible dimensional and associated dimensionless values can be found in Ap-
pendix B, section B.1.

3.3 Code validation

The 2D periodic or pseudo periodic code results were compared with results obtained with a
1D analytical model developed in [6]. In this section the geometry H is given by H(X,Y ) =

1 + X2/2 + R(X,Y ) where R(X,Y ) corresponds to the description of the grooves. Numerical
results are given for a sinusoidal groove shape as shown in figure 2.2, whereas [6] uses a triangular
groove shape to derive the analytical pressure distribution. For a smooth liner the pressure
distributions on the central line are identical, as can be seen in Figure 3.1.

-6 -5 -4 -3 -2 -1 0 1
X

0.05

0.1

0.15

P, H�100

Figure 3.1: Smooth pressure distribution (solid line) and geometry for a dimensionless ring half
width E = 10 compared with the 1D analytical model [6] (dashed line).

Figure 3.2 shows the results obtained for one single groove of depth A = 5 perpendicular to the
sliding direction for a groove located at Xg = −2. Figure 3.3 is for a groove at Xg = −1. The 2D
pressure on the central line Y = 0 is compared with the 1D analytical pressure (dashed line) for
triangular grooves. It can be seen that the two curves are still superimposed for Xg = −2 and
that the average difference is less than 1%. The maximum pressure difference does not exceed
4%.
Figure 3.4 shows the 2D pressure for multiple grooves of depth A = 5, perpendicular to the sliding
direction. The solution is compared with the 1D predictions of [6] for grooves that are spaced by
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Chapter 3. Influence of liner groove parameters.

2. Again, there is less than 1% difference for the average pressure. The main differences between
the two curves are to be found near the maximum pressure and when a groove approaches the
cavitation boundary but they remain small. This difference is probably essentially due to the
fact that after the cavitation boundary non physical residual pressures exist. Flow conservation
is not considered. It may be noticed that the maximum pressure reduction from the smooth case
not only depends on the groove depth but also on the groove location. The maximum reduction
is observed when the groove approaches the contact center.
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Figure 3.2: Textured pressure distribution (solid line) and geometry for a single groove perpen-
dicular to the sliding direction located at Xg = −2 for A = 5., E = 10,Λ = 0.5 compared with
the 1D analytical model [6] (dashed line).

3.4 Groove shape influence

For a single groove perpendicular to the sliding direction, three groove shapes were considered:
triangular as in [6], rectangular and sinusoidal shapes as shown in figure 3.5. The pressure on
the central line is shown in figure 3.6 together with the smooth pressure and the 1D prediction
(dashed line). In this figure the groove depth is A = 5 and its location is Xg = −2.

The three curves corresponding to the three studied groove shapes are quite close. The
lowest one corresponds to the rectangular shape which is larger than the other ones and therefore
induces a lower pressure. However, it is not significantly lower. The other curves can hardly be
distinguished one from another. Similar results are obtained for other groove locations. When
the groove approaches the X = 0 location, the difference between the various curves increases a
little but not significantly.

From figure 3.7, the same conclusion can be drawn for multiple grooves spaced by D = 2. It
tends to show that the groove shape is not a major factor influencing the pressure distribution.
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3.5. Pressure distribution for small angles.
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Figure 3.3: Textured pressure distribution (solid line) and geometry for a single groove perpen-
dicular to the sliding direction located at Xg = −1 for A = 5., E = 10,Λ = 0.5 compared with
the 1D analytical model [6] (dashed line).
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Figure 3.4: Textured pressure distribution (solid line) and geometry for multiple grooves perpen-
dicular to the sliding direction located at Xg = −9,−7,−5,−3,−1, 1, A = 5., E = 10,Λ = 0.5

compared with the 1D analytical model [6] (dashed line).

3.5 Pressure distribution for small angles.

An analytical cross hatched texture is considered with a small angle α = 5◦. This angle cor-
responds to the angle between a groove and the Y direction. It is studied on the domain
Ω = [−10, 2]×[−0.5D/ sin(α),−0.5D/ sin(α)] where D is the dimensionless distance between the
grooves. The pressure distribution on the central line Y = 0 and on the line Y = −0.25D/ sin(α)
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Figure 3.5: Groove shapes: Triangular- Rectangular - Sinusoidal
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Figure 3.6: Textured pressure distribution and geometry for one groove perpendicular to the
sliding direction located at Xg = −2 - A = 5., E = 10,Λ = 0.5 for various groove shapes:
rectangular, triangular, sinusoidal, smooth from bottom to top with the 1D analytical model
(dashed line).

were drawn for A = 5 and D = 3. It was compared with a 1D analytic model using the same
groove distribution on both lines. Sinusoidal grooves were used with the 2D code and triangular
grooves with the 1D analytical prediction.

The curves are quite close in spite of the fact that the 2D geometry and the different groove
shapes already induce some differences. This conclusion is only valid for a limited groove depth.
On each line parallel to the sliding direction, the pressure seems to be mainly determined by the
groove location on this particular line. The results are shown in figures 3.8 and 3.9.
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3.6. Load carrying capacity
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Figure 3.7: Textured pressure distribution and geometry for multiple grooves spaced by 2 per-
pendicular to the sliding direction located at Xg = −9,−7,−5,−3,−1, 1-A = 5., E = 10,Λ = 0.5

for various groove shapes: rectangular, triangular, sinusoidal, smooth from bottom to top with
the 1D analytical model (dashed line).
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Figure 3.8: Pressure and geometry for a cross hatched liner texture of angle α = 5◦ for A =

5., E = 10,Λ = 0.5 on the central line Y = 0 and 1D prediction (dashed line) with the same
groove distribution.

3.6 Load carrying capacity

Finally, the load carrying capacity for a cross hatched liner texture with the same angle α = 5◦,
groove depth A = 5 and groove width Λ = 0.5 has been studied for two distances between
grooves, namely D = 3 and D = 10 with a dimensionless ring half width E = 10. Because of the
pattern repetition, it is in fact sufficient to draw them for grooves located between −D/ cos(α)
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Figure 3.9: Pressure and geometry for a cross hatched liner texture of angle α = 5◦ for A =

5., E = 10,Λ = 0.5 on the line Y = −0.25D/ sin(α) and 1D prediction (dashed line) with the
same groove distribution.

and 0. The results are given in figures 3.10 and 3.11. In these figures the total load carrying
capacity relative to the smooth load carrying capacity, as a function of the groove location is
represented. A periodicity 0.5D/ cos(α) can be observed. It is a consequence of the chosen
pattern. As expected the deeper the grooves and/or the closer the grooves, the lower the load
carrying capacity. For D = 3, there are 3 times as many grooves in the contact and this explains
why the load carrying capacity is lower in this case. Besides in this case there are always a
large amount of grooves in the center of the contact where the pressure is most affected by the
grooves. The above mentioned periodicity in the load carrying capacity can be better observed
for D = 10 and deep grooves. In this case, for very deep grooves, one can better observe a
variation in the load carrying capacity. It may be due to the distribution of the grooves with
respect to the sensitive zone (i.e. the zone where the pressure is most influenced by grooves).
For instance for Xg = −4.5, the grooves spread more widely on the sensitive part of the contact
while for Xg = −1 there are more concentrated and therefore influence pressure in a smaller
domain as shown in Figures 3.12. On this figure the groove projection is plotted together with
a rectangle that roughly corresponding to the sensitive zone. However, these variations are not
very important when D = 3. When D = 10 and for very deep grooves they do not exceed 7%.
As the angle α is small, the distance between grooves roughly defines the load carrying capacity
periodicity although variations can be observed. The pressure is highest when the distance
between grooves is large.

3.7 Conclusion

The multigrid code based on Alcouffe’s ideas for the hydrodynamic Reynolds equation in the
PRCL contact with a textured liner shows good convergence and robustness, even in presence of
very deep grooves. The code is validated by comparison with a 1D model developed by Biboulet,
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3.7. Conclusion
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Figure 3.10: Relative textured load carrying capacity D = 3, E = 10,Λ = 0.5, α = 5◦ , A =

0.5, 1, 2, 5, 10, 15, 50 from top to bottom
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Figure 3.11: Relative textured load carrying capacity D = 10, E = 10,Λ = 0.5, α = 5◦ ,
A = 0.5, 1, 2, 5, 10, 15, 50 from top to bottom

in the case of grooves perpendicular to the sliding direction. It is also tested for three different
groove shapes and the results confirm that the groove shape has little influence on the pressure
distribution. Then a cross hatched texture with a small angle is studied. For a limited groove
depth, only a small difference between the 1D and 2D results was obtained. Overall the 1D
analytical model can be used to approximate the pressure distribution on each line parallel to
the sliding direction for a limited groove depth since it seems to be mainly determined by the
location of the grooves on this specific line. Finally, curves of the load carrying capacity as a
function of the groove position for various groove depths and groove distances are drawn. They
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(a) (b)

Figure 3.12: Portion of grooves in the pressure influential zone for D = 10, E = 10,Λ = 0.5, α =

5◦ (a) Xg = −4.5 (b) Xg = −1.

tend to show that groove depth and density are important factors determining the load carrying
capacity, whereas the groove shape has only a small influence. Other groove angles should be
considered.

52

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI105/these.pdf 
© [M-P. Noutary], [2017], INSA Lyon, tous droits réservés



Chapter 4

Flow conservation
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4.1 Introduction

The problem of a mass-conserving algorithm has been the topic of many investigations as for
instance [31, 34–37]. After applying our algorithm to textured surfaces we were interested in
similar questions for indented surfaces. When we started to study dimples for the flat ring, it
appeared that it was not sufficient to have built a robust multigrid algorithm but that it was
also crucial to construct a mass conserving algorithm or flow-conserving algorithm, since here
only incompressible flows are studied.
Henceforth, for the stationary case the equation to be solved is now the complementary problem
already mentioned in section 1.11:

(4.1)
∂

∂X
(H3 ∂P

∂X
) +

∂

∂Y
(H3 ∂P

∂Y
)−∂Hoil

∂X
= 0 (X,Y ) ∈ Ω

Where Hoil, represents the oil film thickness and H the geometry. When the pressure is positive
Hoil is equal to H. Otherwise it is a fraction of H, this is Elrod’s model [11,12]. The oil level is
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Chapter 4. Flow conservation

imposed at the entrance of the domain Ω = [Xa, Xb]× [Ya, Yb] that is to say on the line X = Xa.
The pressure is set to zero for X ≤ Xa in the periodic case in Y or taken to be 0 outside Ω for
the Dirichlet problem.

To account for the flow conservation, it was first decided to modify the Alcouffe based algo-
rithm by implementing a new relaxation scheme based on the physics of the problem.

4.2 Grid configuration

The domain is a rectangle [Xa, Xb] × [Ya, Yb], decomposed into rectangular cells of dimension
hx, hy by vertical and horizontal equally spaced straight lines. The pressure is evaluated at each
node (i, j) that is to say at each point (Xi, Yj) with Xi = Xa + i hx and Yj = Ya + j hy. The
geometry Hi,j or the oil film Hoili,j are evaluated at the points (Xi−1/2, Yj) with Xi−1/2 =

Xa + (i− 1/2)hx for 0 < i < imax and 0 ≤ j ≤ jmax. On the boundaries X = Xa and X = Xb,
the film height and the geometry are evaluated at the same point as the pressure.
In Figure 4.1, a fine grid (thin full lines) and the next coarse grid (thick full lines) can be seen.
On the fine grid, the dots indicate the points at which the pressure is calculated and the crosses
mark the points at which the film height is evaluated except on the 2 lines i = 0 and i = imax

where they are evaluated at the same points as P . The larger dots indicate the points of the
coarse grid where the pressure is evaluated.

4.3 Relaxation scheme

A volume discretization is still used to discretize the problem. Consider a general cell of the
finest grid (see Figure 4.2). On the fine grid, the residual at the point (Xi, Yj)) reads:

Ai,j(Pi,j+1 − Pi,j) +Ai,j−1(Pi,j−1 − Pi,j) +Bi,j(Pi+1,j − Pi,j) +Bi−1,j(Pi−1,j − Pi,j)

− hy(Hoili+1,j −Hoili,j)

where hy is the step size in the Y -direction and the Ai,j , Bi,j the Alcouffe coefficients. In this
residual the coefficient of Pi,j is Ci,j = −(Ai,j+Ai,j−1+Bi,j+Bi−1,j). This coefficient is negative.
It represents the flow balance through the domain limited by the red dashed lines that is to say
through the domain of frontiers ∂w, ∂s, ∂e and ∂n surrounding the point (Xi, Yj). This domain
is also indicated in red in Figure 4.1.
Indeed, through a vertical boundary such as for instance ∂w, the flow is:

Φw(i, j) = hyHoili,j −Bi−1,j(Pi,j − Pi−1,j)

and through a horizontal one such as for instance ∂s, it is :

Φs(i, j) = −Ai,j−1(Pi,j − Pi,j−1).

The residual at (Xi, Yj)) then reads

res(i, j) = Φw(i, j)− Φe(i, j) + Φs(i, j)− Φn(i, j).
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4.3. Relaxation scheme

Figure 4.1: 2 grids

To eliminate a positive residual res(i, j), we can increase Hoili+1,j or decrease Pi,j and when it
is negative, we can decrease Hoili+1,j or increase Pi,j . It is also possible to change Hoili,j or the
pressures surrounding Pi,j .
Since in the pressurized zone the oil film is complete, when the residual is positive we first in-
crease Hoili+1,j by res(i, j)/hy and if it reaches the maximum possible value Hi+1,j we increase
the pressure Pi,j by −res1(i, j)/Ci,j to eliminate the remaining part of the residual, res1(i, j).
When the residual is negative, for the same reason we first decrease the pressure Pi,j by
−res(i, j)/Ci,j and if Pi,j becomes negative, we set it to zero and then decrease the oil film
Hoili+1,j by res2(i, j)/hy where res2(i, j) is the remaining residual. Henceforth, the following
relaxation scheme is used.

• Evaluate the residual res at point (i, j)

• if res > 0

– Hoili+1,j ← Hoili+1,j + res/hy

– if Hoili+1,j > Hi+1,j
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Chapter 4. Flow conservation

∗ Hoili+1,j = Hi+1,j

∗ Evaluate the remaining residual res1 at point (i, j)

∗ Pi,j ← Pi,j − res1/Ci,j

• if res < 0

– Pi,j ← Pi,j − res1/Ci,j

– if Pi,j < 0

∗ Pi,j = 0

∗ Evaluate the remaining residual res2 at point (i, j)

∗ Hoili+1,j ← Hoili+1,j + res2/hy

Remark: Ci,j < 0 .
Another option would consist in making a distributive relaxation on Hoil. When the residual is
positive, we first increase Hoili+1,j by 0.5 × res(i, j), if it reaches the maximum possible value
Hi,j we increase the pressure P (i, j) to eliminate the remaining part of the residual and otherwise
we decrease Hoili,j by 0.5 × res(i, j). When the residual is negative, for the same reason we
first decrease the pressure Pi,j and if it becomes negative, we set it to be zero and distribute the
remaining residual between Hoili+1,j and Hoili,j .

• Evaluate the residual res at point (i, j)

• if res > 0

– Hoili+1,j ← Hoili+1,j + 0.5 ∗ res/hy
– if Hoili+1,j > Hi+1,j

∗ Hoili+1,j = Hi+1,j

∗ Evaluate the remaining residual res1 at point (i, j)

∗ Pi,j ← Pi,j − res1/Ci,j

– else Hoili,j ← Hoili,j − 0.5 ∗ res/hy

• if res < 0

– Pi,j ← Pi,j − res1/Ci,j

– if Pi,j < 0

∗ Pi,j = 0

∗ Evaluate the remaining residual res2 at point (i, j)

∗ Hoili+1,j ← Hoili+1,j + 0.5 ∗ res2/hy
∗ Hoili,j ← Hoili,j − 0.5 ∗ res2/hy
∗ if Hoili,j > Hi,j then Hoili,j = Hi,j

Special care has to be taken for the cells i = 0 and i = imax since there, the configuration is not
the same (see figure 4.1).

It was also decided that the free boundaries between the pressurized zone and the cavi-
tated areas were going to be only determined/modified on the fine grid.
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4.4. Multigrid difficulties

Figure 4.2: Fine cell configuration

4.4 Multigrid difficulties

When using multigrid techniques, the problem to be solved is written as

Lu = f.

Here, we have two options.

• Option 1: set f = 0 and the unknown vector u contains P and Hoil.

• Option 2: set f = ∂Hoil/∂X which means that the Couette part of the flow is put in the
right hand side of the equation.

In the first case we need to define coarsening and refining procedures for Hoil as well as for P
while in the second case this is not needed but it will be necessary to update the right hand
side f on the finest grid of each V-cycle each time the value of Hoil is changed. The coarsening
routines for f should induce the correct right-hand side for the coarse grid equations.
In both cases an interpolation of Hoil will be needed if FMG is used.
Option 2 is the simplest one. In that case it was also decided not to change the free boundaries
on the coarser grids. Henceforth, the coarse grid relaxation will consist in only changing the
pressure in the pressurized zone as follows Pi,j ← Pi,j − res/Ci,j and set it to 0 if it becomes
negative.
This option was the first one to be tried. This way, a code was obtained that converges in the
fully flooded case. In partially starved contacts, the convergence is more difficult. To check that
the flow conservation is indeed satisfied a periodic code in the Y -direction was also written. In
this case the value of the flow calculated along different lines will also tell us something about
the quality of the obtained results.

57

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI105/these.pdf 
© [M-P. Noutary], [2017], INSA Lyon, tous droits réservés



Chapter 4. Flow conservation

4.5 FMG interpolation

For the pressure, we keep the previously used interpolation. For the film height, the following
simple interpolation is first used:

Hoil(2i, 2j) = 0.75Hoilc(i, j) + 0.25Hoilc(i+ 1, j)

Hoil(2i− 1, 2j) = 0.75Hoilc(i, j) + 0.25Hoilc(i− 1, j)

Hoil(2i, 2j − 1) = 0.5(Hoil(2i, 2j) +Hoil(2i, 2j − 2))

Hoil(2i− 1, 2j − 1) = 0.5(Hoil(2i− 1, 2j) +Hoil(2i− 1, 2j − 2)).

In these formulas Hoil and Hoilc are respectively the fine grid and coarse grid oil levels. They
are shown in Figure 4.3. These formulas need to be adapted near the boundaries because, on

Figure 4.3: Fine cell and coarse configuration for oil film interpolation.

the lines X = Xa and X = Xb, the film height is evaluated at the same point as the pressure.
On the line X = Xa, that is to say i = 0, no change because there Hoil is defined by the initial
condition but on the next vertical line i = 1 we cannot use the same formulas as above.

Hoil(1, 2j) = 0.5Hoilc(0, j) + 0.5Hoilc(1, j)

Hoil(1, 2j − 1) = 0.5(Hoil(1, 2j) +Hoil(1, 2j − 2).

For the Dirichlet case, there is a problem on the lines Y = Ya or Y = Yb. Because of the
Dirichlet conditions, the values on these lines are not relaxed and the definition of the oil level
on these lines is not clear. The corresponding value at X = Xa was taken on these two lines. In
the periodic case, this is no longer a difficulty.
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4.6. Couette flow in the right hand side: numerical results

4.6 Couette flow in the right hand side: numerical results

4.6.1 Groove geometry

The geometry is defined by H(X,Y ) = 1+0.5X2 +Ψ(X,Y ). The domain is a square [−10, 10]×
[−10, 10]. The function Ψ(X,Y ) describes the roughness of the surface. As previously, a cross
hatched pattern is used. The distance between grooves is D = 2, their width is Λ = 1 and the
angle between the grooves is α = 45◦. This geometry can be seen in figure 4.4.

Figure 4.4: Groove geometry

The relaxation process that is used on the finest grid is the first one and on the coarse grid,
only the pressure is relaxed and only in the pressurized zone.

4.6.1.1 Dirichlet code

In the fully flooded case the associated pressure and oil film distributions are shown in figure 4.5.
In the same figure, the evolution of the residual in terms of work units is shown. The fine grid
is a 1024× 1024 grid. The code was run with 9 levels.
As before convergence slows down with deeper grooves. However convergence is still good.
For deep grooves the stabilization of the free cavitation boundaries takes time and no special
prerelaxation is used and only V(2.1)-cycles are used. Finally, for fully flooded conditions, results
are satisfactory.
Afterwards the algorithm was tested on partially starved contacts. This will be crucial for dimples
and the flat ring because, inside the dimples, we have cavitation and oil film re-formation. Results
are shown in figures 4.6. Surprisingly in that case, convergence seems to be more difficult in the
case of smoother surfaces and is not at all good in the smooth case!!!

4.6.1.2 Periodic code

Here special care to the choice of the domain has to be taken. We need a domain that allows
a periodicity of the surface with respect to the Y-direction. As the angle between the grooves
was chosen to be 45◦, we can still work on the same domain [−10, 10] × [−10, 10] if the chosen
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Chapter 4. Flow conservation

(a) (b)

(c)

(d) (e)

Figure 4.5: Fully flooded case - Dirichlet conditions - Cross-hatched groove pattern of depth A.
For A = 5 (a) pressure (b) film height (c) pressure, geometry and oil film on the line Y = 0.
Residual in terms of work units for eight levels for grooves of depth 0 (black), 1 (red), 2 (pink),
5 (green), 10 (blue) from bottom to top (d) 150 V(2,1) cycles (e) FMG with 70 V(2,1) cycles.
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4.6. Couette flow in the right hand side: numerical results

(a) (b)

(c)

(d) (e)

Figure 4.6: Starved case (initial oil level: Hoil = 1.2 on X = Xa = −10 - Dirichlet conditions -
Cross-hatched groove pattern of depth A.
For A = 5 (a) pressure (b) film height (c) pressure, geometry and oil film on the line Y = 0.
Residual in terms of work units for eight levels for grooves of depth 0 (black), 1 (red), 2 (pink),
5 (green), 10 (blue) (d) 150 V(2,1) cycles (e) FMG with 70 V(2,1) cycles.

distance between grooves is D =
√

2 and their width Λ = 1.
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Chapter 4. Flow conservation

In the fully flooded case, results can be seen in Figures 4.7. Similar conclusions as in the Dirichlet
case can be drawn. In this case, it was also possible to check the mass conservation through
each vertical line of the domain. This may also give a means of checking the quality of the
convergence.

Results in the partially starved contact were also calculated and they can be seen in figures 4.8.
Again the convergence is very slow in the smooth case. However if the initial oil level is larger
than the limit value (about 1.225), the code converges to the fully flooded case, although a little
slowly when the initial oil level is close to the limit value (for instance 1.3). In case of grooves,
it works better. Why? Maybe this can be explained by the fact that at the film formation,
the inlet meniscus position has to be determined by the code. This seem to be a rather slow
process and it is longer in the smooth case since the flow must recede more in that case. It was
also noticed that once the inlet position is found, the residuals at those points diminish rather
slowly. A possible explanation may be that the relaxation process and the code probably do not
correctly account for the phenomenons that occur at the inlet. It is a continuity for the Poiseuille
flow that is considered with Alcouffe ’s ideas. The cavitation boundary is not a difficulty since
at cavitation there is no jump in Hoil. However, at the film formation this jump can be huge
and this is particularly true in the smooth case.

4.6.2 Numerical results: Dimple geometry

Since in the next chapter this algorithm will be used to study the influence of dimples for a flat
ring in the piston ring liner contact, it may be interesting to consider the behavior of the code
in such a case. Here a single dimple of radius 1 and depth A is considered. It is located at the
center of a square domain Ω = [−5, 5]× [−5, 5]. The geometry H, shown in figure 4.9, is defined
as follows:

H(X,Y ) = 1 + Ψ(X,Y )

with
Ψ(X,Y ) =

A

2
(1 + cos(

π

R

√
X2 + Y 2))

if there is a dimple of depthA and radiusR centered at (0, 0) and if (X2+Y 2 ≤ 1 and Ψ(X,Y ) = 0

otherwise. Only Dirichlet conditions are considered. In the given results, the cavitation pressure
is set to 0 and the ambient pressure is taken as Pamb = 0.01. For A = 1 and R = 1, the pressure
distribution and oil film are shown in figure 4.10.

The code still converges in that case. However, the convergence becomes very slow with
increasing depth. It was noticed that the problem mainly arises at the film re-formation boundary.
As previously mentioned, here too it was noticed that the frontiers between the pressurized and
non-pressurized zones stabilize after a some cycles and then residual very slowly diminish at the
film re-formation. For deep dimples the discontinuity in Hoil becomes large (see figure 4.10)
and is not well accounted for by the code. With FMG, the frontiers need less cycles to stabilize
which may explain the acceleration of convergence for the first V-cycles at the beginning of the
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4.6. Couette flow in the right hand side: numerical results

(a) (b)

(c)

(d) (e)

Figure 4.7: Periodic fully flooded case - Cross-hatched groove pattern of depth A
For A = 5 (a) pressure (b) film height (c) pressure, geometry and oil film on the line Y = 0.
Residual in terms of work units for eight levels for grooves of depth 0 (black), 1 (red), 2 (pink),
5 (green), 10 (blue): (d) 150 V(2,1)-cycles-(e) FMG with 70 V(2,1)-cycles.

process on the finest grid. This becomes more difficult with increasing depth because the Hoil
jump is becoming larger. As shown the convergence is not very satisfactory, however it converges
and sufficiently fast to study the hydrodynamic lubrication in the case of parallel surfaces with
dimples. As shown in Table 4.1, with a 10 × 10 coarse grid and 6 levels, we were able to reach
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(a) (b)

(c)

(d) (e)

Figure 4.8: Periodic partially starved conditions - Initial oil level Hoil = 1.2 on the line X =

Xa = −10 - Cross-hatched groove pattern of depth A with H(X,Y ) = 1 + 0.5X2 - Pressure,
geometry and oil film on the line Y = 0 (a) for A = 1 (b) for A = 5 c) pressure, geometry
and oil film on the line Y = 0 - Residual in terms of work units for eight levels for grooves of
depth 0 (black), 1 (red), 2 (pink), 5 (green), 10 (blue): (d) 150 V(2,1)-cycles-(e) FMG with 70
V(2,1)-cycles.
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4.7. Second multigrid option

Figure 4.9: Dimple geometry.

an accuracy that was sufficient to study the influence of dimples in a reasonable computational
time. To obtain this table the code was run with 2000 V(10,5) cycles (!) on 8 levels to ensure
very good convergence on the finest grid. To obtain the same accuracy on level 6 fewer cycles are
needed and the computing time is about 3 minutes. In those calculations the dimple depth was
A = 2 which is the most difficult one among the studied depths. For other depths convergence
can be achieved more rapidly.

Level Residual Load Carrying Capacity ∆ LCC Maximum Pressure ∆Pmax

Level 1 6.35102 10−17 −1.00000 10−2 - 2.76492 10−2 -
Level 2 2.09152 10−18 −1.94861 10−2 9.5 10−3 4.34372 10−2 1.6 10−2

Level 3 1.98892 10−18 −1.68488 10−2 2.6 10−3 3.43925 10−2 9.0 10−3

Level 4 1.82116 10−18 −1.69852 10−2 1.4 10−3 3.66619 10−2 2.3 10−3

Level 5 1.69281 10−18 −1.70794 10−2 9.4 10−5 3.62509 10−2 4.1 10−4

Level 6 1.55315 10−18 −1.71136 10−2 3.4 10−5 3.64604 10−2 2.1 10−4

Level 7 8.24906 10−18 −1.71084 10−2 5.2 10−6 3.64659 10−2 5.5 10−6

Level 8 2.15277 10−15 −1.71068 10−2 1.6 10−6 3.64642 10−2 1.7 10−6

Table 4.1: Residual, Load carrying capacity, Load Carrying Capacity difference with the previous
level, maximum pressure and maximum pressure difference with the previous level for one dimple
according to the level. (FMG with 8 levels on Ω = [−5, 5]× [−5, 5], with one dimple of radius 1
and depth 2 at the center of the domain.

4.7 Second multigrid option

It was decided to also try the first option mentioned in section 4.4. The problem is written as
Lu = f , with f = 0 on the finest grid. The unknown vector u contains P and Hoil. Coarsening
and refining routines are now required for Hoil as well as for P . Besides now in the cavitated
area, the following non-elliptic equation: ∂Hoil/∂X has to be solved. As a distributive relaxation
of this equation yields an elliptic operator, it was decided to use the distributive relaxation on
Hoil.
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(a) (b)

(c)

(d) (e)

Figure 4.10: Dimple of depth A = 1 - Dirichlet conditions .
(a) pressure (b) film height (c) pressure, geometry and oil film on the line Y = 0.
Residual in terms of work units for eight levels for one dimple of depth 0.1 (black), 0.2 (red), 0.5
(pink), 1 (green), 2 (blue) (d) 2000 V(2,1) cycles (e) FMG with 400 V(2,1) cycles.
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4.7. Second multigrid option

4.7.1 Coarsening routine

The pressure coarsening routines are not changed. For the oil film, a simple geometrical restric-
tion is used.

Hoilc(i, j) =1/8(Hoil(2i, 2j + 1) +Hoil(2i− 1, 2j + 1))+

1/4(Hoil(2i, 2j) +Hoil(2i− 1, 2j))+

1/8(Hoil(2i, 2j − 1) +Hoil(2i− 1, 2j − 1)).

This was for 1 ≤ i ≤ iic, 0 ≤ j ≤ jjc where iic, jjc represents the maximum i, j indices on the
coarse grid. This gives an exact representation of the Couette flow on the coarse grid around
Pc(i, j).

4.7.2 Refining routine

Here again for the pressure the refining routines are not changed. The values of Hoil(i, j) on the
fine grid are corrected as follows:

Hoil(2ic, 2jc)+ = δ(ic, jc), (1 ≤ ic ≤ iic, 0 ≤ jc ≤ jjc)
Hoil(2ic− 1, 2jc)+ = δ(ic, jc), (1 ≤ ic ≤ iic, 0 ≤ jc ≤ jjc)
Hoil(2ic, 2jc− 1)+ = 0.5(δ(ic, jc− 1) + δ(ic, jc)), (1 ≤ ic ≤ iic, 1 ≤ jc ≤ jjc)
Hoil(2ic− 1, 2jc− 1)+ = 0.5(δ(ic, jc− 1) + δ(ic, jc)), (1 ≤ ic ≤ iic, 1 ≤ jc ≤ jjc).

In these formulas, δ(ic, jc) = Hoilc(ic, jc) − Hoilco(ic, jc) where Hoilco(ic, jc) represents the
value of the film height just after the coarsening steps in the cycle and Hoilc(ic, jc) its value just
before the refining step to the next fine grid.

4.7.3 Right hand side coarsening routine

Here we encounter a major difficulty. On the finest grid, the right hand side f represents the flow
balance in the dashed cell around P (i, j) (see figures 4.11). And therefore a good representation
of the flow is needed on the coarse grids. For the pressure, the Alcouffe representation was a
good choice but for the film height, the following one is more appropriate because it corresponds
to an exact representation of the Couette flow around Pc(i, j).

On the fine grid, we have Lu(P,Hoil) = f and on the next coarse grid Luc(P,Hoil) = fc, with
fc computed as follows in the non pressurized zone:

fc(i, j) = Luc(Pc, Hoilc, i, j) + (0.25(rnw + rne+ rsw + rse) + 0.5(rw + re+ rs+ rn) + rc)
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Chapter 4. Flow conservation

Figure 4.11: Coarse cell and associated fine cells

with
rnw = f(2i− 1, 2j + 1)− Lu(P,Hoil, 2i− 1, 2j + 1)

rne = f(2i+ 1, 2j + 1)− Lu(P,Hoil, 2i+ 1, 2j + 1)

rsw = f(2i− 1, 2j − 1)− Lu(P,Hoil, 2i− 1, 2j − 1)

rse = f(2i+ 1, 2j − 1)− Lu(P,Hoil, 2i+ 1, 2j − 1)

rn = f(2i, 2j + 1)− Lu(P,Hoil, 2i, 2j + 1)

rs = f(2i, 2j − 1)− Lu(P,Hoil, 2i, 2j − 1)

rw = f(2i− 1, 2j)− Lu(P,Hoil, 2i− 1, 2j)

re = f(2i+ 1, 2j)− Lu(P,Hoil, 2i+ 1, 2j)

rc = f(2i, 2j)− Lu(P,Hoil, 2i, 2j)

Note that because of the coarse grid definition of Hoil, in the non pressurized zone we could
take Fc = 0 because it is an exact description of the coarse Couette flow.
For the pressurized zone, the coefficients that are used for the fine grid cell residuals contributing
to the coarse grid residual at (i, j) are the Alcouffe coefficients. In the parts between cavitation
and pressure, we choose one coefficient or the other according to whether the fine grid corre-
sponding pressure is 0 or not. But this is not satisfactory. It was not found how to precisely
represent the 2 flows on the coarse grid.
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4.8. Conclusion

4.7.4 Results

The single grid algorithm converges. For the periodic case, the multigrid algorithm converges in
the completely starved case but in the general case it does not work.

4.8 Conclusion

The convergence was not always satisfactory and sometimes very far from the expected conver-
gence of a multigrid code. Of course this may be partly due to the fact that nothing special was
done to localize the free boundaries more rapidly which is always a difficult task in multigrid.
With Alcouffe’s ideas we are however able to get mass conserving codes that can deal with a
rough geometry. It was noticed that the most crucial difficulties are located at the oil film for-
mation or re-formation boundary. The fact that the pressure P and the film height Hoil are
not calculated at the same point may be a difficulty that is hard to overcome in multigrid in
the presence of free boundaries. We have not been able to include the oil film in the left hand
side of the equation of the code previously developed. The different treatments of the oil film
and of the pressure are difficult to combine in order to have a good representation of the flow
on coarser grids. In order to solve this problem, or at least better understand it, and because
with partially starved condition the worst convergence is obtained with a smooth surface, it was
decided to consider a simpler problem. Many attempts were tried and not all successful. A
multigrid 1D code was written that works. It was transformed into a 2D code that still works
without the Y-Flow but its performance diminishes a little when considering the Y-flow. This
work is presented in Appendix C. The treatment of P − θ proposed in [36] could be a solution
to this.
However, the code we have obtained and presented in this chapter can be used to study the
influence on dimples on parallel surfaces in the hydrodynamic lubrication regime. This is the
subject of the next chapter.
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Chapter 5

Dimple influence for parallel surfaces.
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5.1 Introduction

The flow conserving algorithm, explained in chapter 4, is used to study hydrodynamic lubrication
of textured parallel surfaces and henceforth to study the flat ring in the PRLC contact.

The use of textured surfaces to improve contact performance is of great importance for
lubricated contacts. In the case of parallel surfaces without texture, no load carrying capacity
is generated. Texture can be used to create the equivalent of a Raleigh step bearing to generate
pressure. Hence, the texture parameters (size, density, texture position) have to be chosen in
order to optimize the load carrying capacity and minimize the friction. Besides, the texture can
reduce fluid leakage and can act as a fluid reservoir. Micro oil pockets can also trap wear debris.
It is also possible that they allow to avoid abnormal temperature rises due to dry contact.
Early research on this topic has been conducted by Etsion, Kligerman, Halperin, Brizmer
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(see for instance [38], [39], [40], [41], [42], [43]). They performed many experimental and also
analytical investigations and have shown the benefits of surface texturing for the enhancement
of lubrication and in particular the benefits of partial texturing for piston rings. In particular
in [40] for a simplified model, the distribution of the local pressure was shown in the case
of partial texturing in the inlet and in the case of full texturing. They observed that the
pressure peak at the dimple exit is higher and higher while moving in the sliding direction.
The maximum pressure is obtained at the exit of the last dimple in the X-direction. In the
case of full texturing, at each dimple exit, the rise in pressure is the same and they analyze the
optimum texturing density to maximize the load carrying capacity for parallel thrust bearings.
Tonder (see for instance [44]) introduced the idea that performance improvement can be gained
by introducing artificial roughness in the inlet of the contact by means of micro-structures
instead of macro-structures, inducing in particular low coefficients of friction coexisting with
high hydrodynamic stiffness and damping parameters. Wakuda et al. in [45] experimentally
analyses the friction reduction due to surface texturing between ceramic and steel materials,
using a pin-on-disk tester and highlight the importance of texturing for friction reduction. The
benefits remain even under severe friction conditions and they give some recommendations on
the parameter choice. A recent experimental study by Vladescu et al. [46] analyses the influence
of texturing in reciprocating contacts for various lubrication regimes. To achieve this, they
have built a set up that simulates an automotive piston ring-liner contact. According to the
lubrication regime the conclusions are not the same. Surface texture just after reversal helps to
build the film and reduces friction. It is better to have texture pockets entirely lying inside the
contact zone and no pocket should be at the reversal point. Another recent experimental study
of Lu et al. [47] for reciprocating sliding line contacts studies the effects of surface texturing
by square dimples in various lubrication regimes. They note a lower friction coefficient in the
boundary regime, due to the fact that the dimples act as lubricant reservoirs. They observe
that textures at the reversal point can help reducing friction, this is contrary to [46].
Many one-dimensional analytical or numerical studies were conducted to analyze the influence
of various parameters using a simpler problem. Using a one-dimensional model Tomanik [48]
investigated the influence of laser textured profiles for cylinder bore and rings and particularly
on the oil control ring. Fowell et al., in [49], explain the inlet suction phenomenon on a 1D
analytical model. In [50] Fowell et al. use a 1D mass conserving numerical model to study the
influence of the texture parameters such as texture density, texture location, texture height
according to the convergence ratio of the two main surfaces on load support and friction.
Pascovci et al. [51] also perform a 1D analysis without cavitation to optimize the texture
parameters for parallel sliders and make a comparison with Raleigh step bearings. Rahmani et
al. [52] also use an analytical solution of the one dimensional Reynolds equation to optimize
micro dimple texture for parallel thrust bearings. They present results to optimize the load
carrying capacity and minimize the friction coefficient.
Some numerical results have been questioned because mass-conservation was not always
respected. The complex phenomenon of cavitation and film reformation was first studied in
the Floberg-Jakobsson-Olsson (JFO) cavitation theory [53, 54]. They considered the mass
conservation problem. Elrod and Adams [11], [12] proposed an alternative mass conserving
model derived from the Reynolds equation. It was shown by Ausas et al, [34], that it is very
important to have a mass-conserving algorithm in order not to underestimate the cavitation
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area and thus get poor estimates of the pressure. Henceforth the Elrod and Adams model
which is mass-conserving has to be considered instead of the simple Reynolds model. Many
studies concerning mass-conserving algorithms and their use for textured surfaces can be found
in the literature. To study cavitation in dimples, Qiu and Khonsari [37], developped a mass-
conservative cavitation multigrid algorithm based on an algorithm developed by Vijayaraghavan
and Keith [55], itself based on Elrod’s work. Bayada, Martin and Vazquez [31] have developed a
mass-conserving algorithm using homogeneization techniques. Using the pressure and the void
fraction, Giacoponi et al., [35] developed a mass-conserving complementary formulation of the
one-dimensional cavitation problem and Bertocchi et al. [56] extended it to two-dimensional
domains and for compressible, piezoviscous and non-Newtonian fluids. They then use finite
element methods to numerically solve the problem. Ausas et al. [57] proposed a finite volume
implementation of the Elrod-Adams model that is better adapted to the physics of piston ring
liner lubrication. An implementation of an element-based finite volume method derived from
the p− θ Elrod-Adams cavitation model model is proposed by Profito et al. [58].
The validity of the Reynolds model was also discussed. Sahlin et al. [59] use a commercial CFD
code to solve the Navier-Stokes system for a single micro-groove on one of 2 parallel surfaces.
For them, fluid inertia is an important factor for the load carrying capacity. They also show
that for deep and wide grooves a vortex occurs that limits the increase in load carrying capacity.
Cavitation is not considered. In their sequel, Menon et al. [60] have optimized dimples on one
of the 2 parallel surfaces. They decompose their surfaces in repeating cells containing a single
dimple, imposing some periodic conditions. They also think that fluid advection is a major
factor for generating load carrying capacity and also note the formation of a vortex when the
dimple depth approaches its optimum value. Cavitation is not considered. These and other
studies in the same vein tend to show that the Reynolds model is not adequate to study those
problems. These conclusions were questioned by Dobrica and Fillon. In [61], they study the
range of validity of the Reynolds equation also neglecting cavitation. They found that the
dimple aspect ratio (dimple depth/dimple width) must be sufficiently small but nevertheless in
a range that covers most useful cases and that the Reynolds number must be sufficiently small.
They also show that the inertia effects cannot be properly accounted for by using single cell
dimple centered textures.
Using a mass-conserving algorithm, Dobrica et al. [21] studied the influence of full and partial
texturing for parallel and plane inclined sliders, verifying in particular the benefit of partial
texturing in the inlet of the contact and the importance of the cavitation phenomenon to
generate load carrying capacity in parallel or nearly parallel structures. They have also shown
that the texture parameters can be optimized. Cupillard et al [62,63] use the full Navier-Stokes
equation with a multiphase flow cavitation model to study the performance of a dimple textured
journal bearing and analyze the pressure buildup mechanism. They consider the variations in
mechanical energy and also the consequence of flow re-circulation when it occurs, according to
the dimple positions and size. In [20], Tala-Ighil, Fillon and Maspeyrot analyze the performance
of various texture configurations on the performances of a journal bearing. Shen and Khonsari
have studied parallel textured surfaces, numerically as well as experimentally. For macroscopic
dimples, they studied the influence of the cavitation pressure in steady state lubrication that
can experimentally be significantly lower than the ambient pressure and have shown that its
choice can influence simulation results [64]. Again, in the case of macroscopic dimples, they have
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also studied numerically and experimentally the influence of the size and shape of the dimples
on the load carrying capacity in hydrodynamic lubrication [65]. They also tried to optimize the
texture shape to obtain a maximum load carrying capacity for parallel surfaces [66]. To simplify
the calculations, they used the Reynolds equation with a half-Sommerfeld boundary condition,
although it is not mass-conserving, and a sequential quadratic programming method. In [67],
they experimentally and numerically investigate new texture designs to improve piston ring
lubrication. They used lasered pockets with special shape and specific distribution on the piston
rings (mesoscopic scale). Gherca et al. [68, 69] have recently developed a mass-conserving
algorithm that enables them to study the influence of surface texturing in steady-state but also
transient hydrodynamic lubrication of parallel sliders. Another study of transient effects using
a mass-conserving solver deduced from [35] for reciprocating textured bearing can be found
in [70]. But this last work is only 1D.

The multigrid flow-conserving algorithm based on Alcouffe’s paper and presented in chapter 4
does not show full multigrid efficiency. This is probably due to the discontinuities of Poiseuille
and Couette flow which were not well accounted for when the pressure builds up again. However,
it converges sufficiently fast and is flow conserving. It can therefore be used to study and
discuss dimple textured parallel surfaces, even with deep dimples. Woloszynski, Podsiadlo and
Stachowiak [36], have reformulated the complementary constraint on p.θ = 0, p ≥ 0, θ ≥ 0 by
a continuous differentiable system F (p, θ) = 0 to which Newton’s method can be efficiently
applied and this way they obtain a new solver for the cavitation problem. The code in use here
might be improved using their formulation.

5.2 Problem formulation

5.2.1 Mass complementary formulation

The hydrodynamic lubrication of the piston ring-cylinder liner contact can be described by the
Reynolds equation. According to Elrod, because of cavitation and in order to have a mass
conserving algorithm, the following complementary problem is solved:

(5.1)
∂

∂x
(
ρh3

12η

∂p

∂x
) +

∂

∂y
(
ρh3

12η

∂p

∂y
)−um

∂(ρθh)

∂x
−∂(ρθh)

∂t
= 0

with

(5.2) (p > pcav and θ = 1) or (p = pcav and 0 < θ < 1)

Where p is the hydrodynamic pressure, h, the geometry, um the mean velocity. The lubricant
density, ρ and the viscosity, η can be considered constant in the studied regime. Considering
p − pcav instead of p, it is assumed that the cavitation pressure pcav is 0. This problem will
be solved on a square domain Ω and the pressure on the boundaries is the ambient pressure
denoted pamb or rather pamb − pcav. Here the generated pressures are not very high because the
considered surfaces are mainly parallel. Therefore the difference between the ambient pressure
and the cavitation pressure is significant. No pressure would be generated if it were assumed
that pcav and pamb are identical as previously done. Indeed, in that case, the solution to our
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problem would be p = pamb = pcav. The pressure would not be able to decrease when entering
the dimple and no extra oil would flow inside the dimple. In the cavitated area the fluid becomes
a mixture of liquid, vapor and gas and θρ can be viewed as the lubricant density. Here we prefer
to consider the variable hoil = θh, that represents the fluid level or an equivalent of the fluid level
in the whole domain Ω = [−x0, x0]× [y0, y0]. Hence hoil = h in the pressurized regions and lies
between 0 and the geometry h elsewhere. In this section only the stationary case is considered
and therefore, we solve the following problem:

(5.3)
∂

∂x
(
ρh3

12η

∂p

∂x
) +

∂

∂y
(
ρh3

12η

∂p

∂y
)−um

∂(ρhoil)

∂x
= 0

with

(p > 0 and hoil = h) or (p = 0 and 0 < hoil < h)(5.4a)

p = pamb on ∂Ω(5.4b)

In what follows the fluid will be considered to flow between two parallel surfaces of constant
gap h0. One of the 2 surfaces will be indented by circular dimples of radius r and depth a. For
a single dimple, the cross section of the two surfaces by a plane passing through the middle of
the dimple is sketched in figure C.1. The geometry h is defined as follows:

h(x, y) = h0 + φ(x, y)

with
φ(x, y) =

a

2
(1 + cos(

π

r

√
(x− xi)2 + (y − yi)2))

if there is a dimple of depth a centered at (xi, yi) and if (x−xi)2 +(y−yi)2 ≤ r2 and φ(x, y) = 0

otherwise.

Figure 5.1: Geometry: cross section through the middle of a dimple.

5.2.2 Dimensionless equations

The dimensionless parameters are chosen as follows:
Dimensionless coordinates: X = x/λ, Y = y/λ and the dimensionless radius R = r/λ where λ
is a reference length. It could be λ = x0 or λ = r.
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Dimensionless geometry and film height: H(X,Y ) = h(x, y)/h0, Hoil(X,Y ) = hoil(x, y)/h0.

Dimensionless pressure: P (X,Y ) = p(x, y)/p0 with p0 =
12ηumλ

h2
0

.

Dimensionless indent depth: A =
a

h0
.

Dimensionless distance between dimples: D = d/λ.

With these dimensionless variables the dimensionless Reynolds equation reads:

(5.5)
∂

∂X
(H3 ∂P

∂X
) +

∂

∂Y
(H3 ∂P

∂Y
)−∂(Hoil)

∂X
= 0

with the following dimensionless complementary and boundary conditions:

(P > 0 and Hoil = H) or (P = 0 and 0 < Hoil < H)(5.6a)

P = Pamb on ∂Ω with Ω = [−X0, X0]× [−Y0, Y0](5.6b)

and
H(X,Y ) = 1 + Φ(X,Y )

with

(5.7) Φ(X,Y ) =
A

2
(1 + cos(

π

R

√
(X −Xi)2 + (Y − Yi)2))

if there is a dimple of depth A centered at (Xi, Yi) and if (X − Xi)
2 + (Y − Yi)

2 ≤ R2 and
Φ(X,Y ) = 0 otherwise.
Examples of possible dimensional and associated dimensionless values can be found in Section B.2
of Appendix B.

5.2.3 Generated pressure and oil film

In this section some figures of the pressure and oil film obtained for several dimple configurations
are shown. In the chosen examples Pamb = 0.01.

Figure 5.2 shows the results for a single dimple of depth A = 1 and radius R = 1 in the domain
Ω = [−4, 4] × [−4, 4] whose center is located at (Xi, Yi) = (−2, 0). The geometry is given by
the first figure the dimple is located at the center of the first half of the domain. The resulting
pressure is given in the third figure. It rapidly decreases towards the cavitation pressure inside
the dimple and then at the dimple exit which corresponds to the convergent part of the surfaces,
it grows very rapidly to reach its maximum value. On the second figure the oil level is given.
In the cavitation zone the representation is not adequate since, in reality, there is a mixture of
gas oil and vapor. We have decided to represent an equivalent oil level. The oil flow inside the
dimple before cavitation can be viewed. Inside the cavitation zone it remains constant in the
X-direction. At the exit of the dimple, where the film reforms, a discontinuity can be observed.
The full film zone inside the dimple is narrow around the dimple edges. Figure 5.4 shows the
geometry, the oil level and the pressure for a set of nine dimples of depth A = 1 and radius
R = 1 in the domain Ω = [−10, 10]× [−10, 10] whose center is located at (Xi, Yi) = (−2, 0). The
dimple pattern is shown in Figure 5.3. In each dimple the pressure shows the same behavior as
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in a single dimple but at the exit of the first 2 rows of dimples the pressure does not reach very
high values since rapidly it will decrease towards cavitation because of the next row of dimples.
The maximum pressure is reached at the exit of the last row of dimples because afterwards
no cavitation occurs. Here the limitation is mainly given by the exit boundary condition and
therefore depends on the distance to the contact exit. Related results can be seen on the oil film.
The last row of dimples is the fullest of the three.

(a) (b) (c)

Figure 5.2: Pressure and oil film generated on [−4, 4] × [−4, 4] by a single dimple of depth 1

centered at (−2, 0). (a) Geometry, (b) Film height, (c) Pressure.

Figure 5.3: Nine dimple pattern
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(a) (b) (c)

Figure 5.4: Pressure and oil film generated on [−10, 10]× [−10, 10] by a pattern of 9 dimples of
depth 1 and spaced by D = 4 centered at (−2, 0). (a) Geometry (b) Film height (c) Pressure.

5.3 Load carrying capacity

5.3.1 Partial texturing and load carrying capacity

The load carrying capacity is defined as:

LCC =

∫
Ω

(P − Pamb) dX dY.

When the dimples are near the inlet, the load carrying capacity is positive and then it becomes
negative as noticed by many authors. Considering a single dimple, it may be noted that the
pressure will first decrease. This decrease will be limited by the cavitation pressure. To conserve
the flow, oil must enter the dimple, the ”inlet suction” phenomenon. Afterwards, in the convergent
part of the dimple, the pressure will rise again starting from a point defined by the extra oil inside
the dimple and then it will decrease to reach the ambient pressure at the contact exit. If the
dimple is situated near the entrance of the contact, the zone where the pressure is less than the
ambient pressure is limited and if it is located near the exit, the zone where it is above the ambient
pressure is more limited. Besides, in case of cavitation, the pressure is not anti-symmetric with
respect to Pamb and if Pmax denotes the maximum pressure, Pmax−Pamb is usually higher than
Pamb − Pcav. This is illustrated in figure 5.5 where the left figure shows the part of the pressure
above Pamb while the right one shows the part of the pressure below the ambient pressure. In
the second figure, to highlight the zone where the pressure is less that the ambient pressure, we
have plotted −P and −Pamb.

If the texture symmetrically covers the domain the generated load carrying capacity becomes
zero in case of no cavitation and negative otherwise. Hence partial texturing is needed to induce
a positive load. To illustrate this, rows of three dimples of depth 1 spaced by 4 centered at
Xi = −18, Yi = 0 , then Xi = −16, Yi = 0, then Xi = −14, Yi = 0, etc... up to Xi =

18, Yi = 0 where they cover the whole domain Ω = [−20, 20]× [−20, 20] in the X-direction were
progressively added and the generated load was computed. The pressure distribution can be
viewed in figure 5.6. It can be noticed that at the exit of each row the pressure progressively
increases except on the last figure where the whole range of values in X is covered. The largest

78

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI105/these.pdf 
© [M-P. Noutary], [2017], INSA Lyon, tous droits réservés



5.3. Load carrying capacity

(a) (b) (c)

Figure 5.5: (a) Pressure generated on [−4, 4] × [−4, 4] by a single dimple of depth 1 centered
at (−2, 0). (b) Part above the ambient pressure (c) Part below the ambient pressure (Here −P
and −Pamb are plotted).

pressures are obtained on the last row of dimples when the dimples remain in the first part of
the domain. The load carrying capacity in terms of the number, N , of dimple rows is shown
in figure 5.7. The maximum load carrying capacity is obtained with 3 rows of dimples in the
inlet of the contact. When adding more rows it rapidly decreases to reach a negative value
when the entire domain is covered. When rows are added at the end of the contact, there is
always a loss in LCC. The variations in LCC are more limited than when rows are added in the
inlet. The behavior of the maximum pressure is also quite different. Considering the different
behaviors of the load carrying capacity and of the maximum pressure according to whether the
inlet or the outlet is textured (see figures 5.6, 5.7, 5.8), it can be noticed that the loss of load
carrying capacity when the outlet is textured is lower than the gain when the inlet is textured.
The maximum pressure is much higher if the inlet is textured rather than the outlet and its
variations are also less important. For a one-dimensional simple model, Fowell et al. [49] show
that Pmax ≈ PambL/∆ where L is the contact length and ∆, the distance of the pocket to the
inlet. Here it seems that a similar trend can be observed.

Henceforth it may be worth for reciprocating contacts to have partial texture at both ends of
the contact. This type of partial texturing for piston ring was experimentally tested by Ryk and
Etsion [71] and Etsion and Sher [72]. Tomanik [48] also investigated that kind of partial texturing
but using a 1D code without mass-conservation. In 2016, Shen and Khonsari [67] have also
conducted experimental as well as numerical studies with a mass-conserving algorithm and for
transient lubrication effects on the effects of different positions of pockets (rather patches of micro-
dimples) in the inlet and in the outlet for a flat piston ring. Tala-Ighil, Fillon and Maspeyrot [20]
have also tested various configurations of patches of dimples but for a hydrodynamic journal
bearing. As can be seen in figure 5.9, a positive load carrying capacity is always generated. Its
value is indicated in each case on the corresponding image of the pressure distribution. On our
example the maximum load carrying capacity is obtained for two rows of indents at both ends.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: Pressure generated on [−20, 20] × [−20, 20] according to the number of rows of 3
dimples of depth 1 in the inlet or in the outlet. (a) 3 rows in the inlet (b) 4 rows in the inlet (c)
5 rows in the inlet (d) 9 rows in the inlet (e) 10 rows (f) 9 rows in the outlet (g) 5 rows in the
outlet (h) 4 rows in the outlet (i) 3 rows in the outlet.

The maximum pressure is obtained at the exit of the last row of indents in the inlet. It will reach
a sufficiently high value if the distance between the 2 sets of dimples is large enough and if the
inlet set of dimples lies sufficiently near the inlet inducing a total positive load carrying capacity.

80

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI105/these.pdf 
© [M-P. Noutary], [2017], INSA Lyon, tous droits réservés



5.3. Load carrying capacity
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Figure 5.7: Load carrying capacity in terms of the number N of rows of three dimples of depth
1 spaced by D = 4 on Ω = [−20, 20] × [−20, 20]. In blue the first row is located at (−18, 0), in
red the last row is located at (18, 0).
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Figure 5.8: Maximum pressure in terms of the number N of rows of three dimples of depth 1

spaced by D = 4 on Ω = [−20, 20] × [−20, 20]. In blue, the first row is located at (−18, 0), in
red, the last row is located at (18, 0).

5.3.2 Load carrying capacity in terms of the texture location

The behavior of the load carrying capacity in terms of the position of the set of dimples along the
line Y = 0 is now studied. In the figure 5.10, the results are shown for Ω = [−10, 10]× [−10, 10]

and for Ω = [−20, 20]× [−20, 20] for a pattern of nine dimples of radius 1, depth 1 and equally
spaced by 4. The load carrying capacity becomes negative when the texture approaches the
middle of the contact. A linear behavior is observed in the center of the domain although this is
less clear on the smaller domain, but in this case the domain is not large enough to ensure that
no dimple is close to the inlet or the outlet of the contact. Close to the boundaries and especially
near the inlet, the dimple influence becomes non linear. When plotting the curves on the same
figure 5.11, they superimpose when the abscissa Xi of the center of the texture is greater than
−2. A homothety of ratio 2, corresponding to the ratio between the dimensions of the 2 domains,
allows a rather good superposition of the two sets of points. This can be explained by the chosen
dimensionless parameters: to fit the domain the parameter λ that is used is modified by the ratio
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Chapter 5. Dimple influence for parallel surfaces.

(a) (b)

(c) (d)

Figure 5.9: Pressure generated on [−20, 20] × [−20, 20] with N rows of 3 dimples of depth 1

spaced by 4 at both ends, Pamb = 0.01.(a) N = 1 (b) N = 2 (c) N = 3 (d) N = 4.

of the domain dimensions. It can be observed that when the pattern lies near the center of Ω, the
maximum pressure Pmax is rather similar in both cases. If we now consider Pmax as a function
f1 of Xi on [−20, 20]× [−20, 20] and as a function f2 of 2Xi on [−10, 10]× [−10, 10], the slope of
the second function is roughly twice the slope of the first one (see figure 5.12). Again this can be
explained by the choice of the dimensionless parameters. The maximum pressure and the extent
of the outlet induce the positive part in the load carrying capacity while the cavitation pressure,
which is the same in all cases and the extent of the inlet zone determine the negative part.

Finally, an image of the load carrying capacity for a square pattern of 25 dimples of radius
1, depth 1 equally spaced by 4 on Ω = [−30, 30]× [−30, 30] is given in figure 5.13. Except at the
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5.3. Load carrying capacity

(a) (b)

Figure 5.10: Load carrying capacity generated on Ω by a pattern of nine dimples of depth 1

spaced by 4 as a function of the position of the centre of the pattern on the line Y = 0.(a)
Ω = [−10, 10]× [−10, 10] (b) Ω = [−20, 20]× [−20, 20].

(a) (b)

Figure 5.11: Load carrying capacity generated by a pattern of nine dimples of depth 1 spaced
by 4 as a function of the position of the center of the pattern on the line Y = 0, on Ω =

[−10, 10] × [−10, 10] in blue and on Ω = [−20, 20] × [−20, 20] in red.(a) the obtained LCC (b)
after an homothety of ratio 2 of the results on Ω = [−10, 10]× [−10, 10].

beginning of the contact, a linear behavior is again observed. Perhaps it is possible to view the
pattern as a single local texture whose influence on the load carrying capacity only depends on
its vicinity to the inlet or the outlet of the contact. In the next section, the influence of a dimple
pattern will be compared to the one of a single dimple of same volume.

5.3.3 Homogenization

Choosing Ω = [−10, 10] × [−10, 10], we tried to replace the previously pattern of nine dimples
by a single dimple of same volume or by a square dimple of same volume. The volume of the
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Chapter 5. Dimple influence for parallel surfaces.

(a) (b)

Figure 5.12: Maximum pressure generated by a pattern of nine dimples of depth 1 spaced by 4 as a
function of the positionXi of the center of the pattern on the line Y = 0, Ω = [−10, 10]×[−10, 10]

in blue, Ω = [−20, 20]× [−20, 20] in red. (a) Both curves on the same figure, (b) Ω = [−20, 20]×
[−20, 20], P1 = Pmax/Pamb, X = Xi ; Ω = [−10, 10]× [−10, 10], P1 = Q(0) + 0.5(Q−Q(0)) with
Q = Pmax//Pamb, X = 2Xi.

Figure 5.13: Load carrying capacity generated by a pattern made of 5 rows of 5 dimples of depth
1 spaced by 4 as a function of the position of the center of the pattern on the line Y = 0, on
Ω = [−30, 30]× [−30, 30].

chosen dimples (see equation 5.7) of radius R and depth A is given by

(5.8) V ol = AR2(
π

2
− 2

π
).

Therefore a dimple of depth 1 and radius 3 was first considered. The curves showing the load
carrying capacity do not coincide very well (figure 5.14). For the same position on the X-axis,
the geometric variation takes place much farther from the inlet than for the nine dimple pattern.
We then tried a single square dimple of same volume and same center as the nine dimples. We
had 2 obvious choices for that square: a 10 × 10 square corresponding to the smallest square
containing all dimples or a 8 × 8 square passing through the centers of the external dimples.
Both were tried and results are shown in figure 5.14. The square of size 10 is the best choice in
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5.3. Load carrying capacity

the inlet while the other square is better in the outlet. Similar trends as for step bearings are
observed.

(a) (b)

(c)

Figure 5.14: Load carrying capacity of a single dimple of identical volume as the nine indent
pattern compared with the load carrying capacity (in red) of the pattern of nine dimples of depth
1 spaced by 4 on Ω = [−10, 10] × [−10, 10], (a) a single dimple of radius 3 and depth 1, (b) a
square dimple of size 10, (c) a square dimple of size 8.

5.3.4 Load carrying capacity for a single dimple in terms of the dimple loca-
tion

For a single dimple, the behavior of the load carrying capacity, presents the same trends as with
pattern of dimples. As in section 5.3.2, it can be seen in figure 5.15, that outside the inlet region,
the load carrying capacity as a function of the dimple position has a linear behavior. No matter
the domain size, the curves overlap in their linear part. Because of the chosen dimensionless
parameters, they can be fitted with homotheties of ratio equal to the ratio of the domain sizes.
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Chapter 5. Dimple influence for parallel surfaces.
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Figure 5.15: Load carrying capacity generated by a single dimple of depth 1 as a function of
the position of the center of the pattern on the line Y = 0, on Ω = [−4, 4] × [−4, 4] in blue, on
Ω = [−8, 8]× [−8, 8] in red and on Ω = [−16, 16]× [−16, 16] in green.(a) All curves on the same
figure, (b) after fitting the 3 curves with homotheties.

5.4 Influence of the different parameters

Since the load carrying capacity trend using a single dimple does not differ substantially from
those obtained with a pattern of dimples, an analysis of the LCC and, in particular, an analysis
of the influence of the different parameters (depth, radius or domain size, Pamb will be conducted
considering a single dimple.

5.4.1 One dimple at the center of the domain

The load carrying capacity was computed for various values of Pamb, depths A and radii R
for a centered dimple. In this case the load is always negative. As shown in Figure 5.16, for
small depths no cavitation occurs because the geometry does not decrease sufficiently for the
pressure to drop below the cavitation pressure. When Pamb is large enough (0.02 or 0.05), for
deep dimples no cavitation occurs either (see Figure 5.17). When no cavitation occurs, for a
dimple at the center of the domain, P − Pamb is anti-symmetric and the load carrying capacity
vanishes. For very deep dimples, the H3 coefficient becomes huge. Thus to conserve the flow
the variation of pressure becomes small and when the dimple is deep enough, it does not reach
the cavitation pressure in the divergent part of the dimple and no cavitation occurs. Besides
for larger values of Pamb, in the contact inlet the pressure drop is not sufficient to reach Pcav

and no cavitation occurs. It can be observed that for larger radii this phenomenon occurs for
deeper grooves or higher values of Pamb. It should be remembered that Pamb in fact represents
Pamb − Pcav. Otherwise for smaller values of Pamb, the curve of the LCC seems to reach an
asymptote when A increases. The pressure can drop below the cavitation pressure in the inlet
and oil enters the dimple but the maximum pressure being limited by the outlet pressure, the
position of the film reformation moves back or oil flows back inside the dimple and refills it and
cavitation stops occurring. The calculation domain is Ω = [−8, 8] × [−8, 8]. Figure 5.16 shows
the evolution of the depth Acav for which cavitation starts in terms of Pamb. Calculations have
be performed for three dimple radii: R = 1 in blue, R = 2 in red and R = 0.5 in green. For
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5.4. Influence of the different parameters

small values of Pamb, a linear behavior is observed and the three curves superimpose if we plot
Acav as a function of Pamb/R. In a 1D case, this linear behavior could be explained as follows:
for very shallow dimples one has H ≈ 1 and therefore

∂

∂X
(
H3∂P

∂X
) =

∂H

∂X

roughly leads to
1

R

0− (Pcav − Pamb)
R

≈ A

R

and therefore A ≈ Pamb/R. Afterwards, the load carrying capacity in terms of the dimple depth
was studied for two radii R = 1 (in blue) and R = 2 (in red). If we plot LCC/(PambR

2) in terms
of AR the 2 curves superimpose if Pamb remains small as shown in figure 5.18 for Pamb = 0.001.
For larger values of Pamb, the 2 curves still coincide for shallow dimples and then diverge for
Pamb = 0.005 (see figure 5.18). In this case for R = 1, no cavitation occurs for very deep dimples
and the load carrying capacity vanishes. Except for this case, all curves show similar trends.
At the beginning, a shift can be noted due to the beginning of the cavitation process which is
delayed when Pamb increases. Figure 5.17 shows the evolution of the depth Acav/R

2 for which
cavitation stops in terms of Pamb. Calculations have be performed for three dimple radii: R = 1

in blue, R = 2 in red and R = 0.5 in green. It was found that Acav/R
2 varies like 1/P 2

amb and
more precisely in this case Acav/R

2 ≈ 0.016/P 2
amb.

Figure 5.16: Evolution of Acav as a function of Pamb/R for three dimple radii: R = 1 in blue, R =

2 in red and R = 0.5 in green in the case of a single dimple at the center of Ω = [−8, 8]× [−8, 8]

(Acav is the depth value after which cavitation begins).

5.4.2 One dimple in the first quarter of the domain

In this case the load carrying capacity is always positive even when no cavitation occurs. The
inlet being closer than the outlet, the zone where the pressure is above Pamb dominates. As
long as cavitation has not occurred, the LCC and Pmax − Pamb show a linear behavior in the
dimple depth A and do not depend on the value of Pamb as shown in figure 5.19. Please note
that in this case the load carrying capacity is not zero since, because of the non symmetry of
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Chapter 5. Dimple influence for parallel surfaces.

Figure 5.17: Evolution of Acav/R
2 as a function of Pamb for three dimple radii: R = 1 in

blue, R = 2 in red and R = 0.5 in green in the case of a single dimple at the center of Ω =

[−8, 8]× [−8, 8] (Acav is the depth value after which cavitation stops).
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Figure 5.18: Evolution of LCC/(PambR
2) as a function of AR for two dimple radii: R = 1 in

blue, R = 2 in red in the case of a single dimple at the center of Ω = [−8, 8] × [−8, 8]. (a)
Pamb = 0.001 (b) Pamb = 0.002 (c) Pamb = 0.005.

the geometry, the pressure field is not anti-symmetric. A similar behavior is observed for R = 2.
In this case also, the starting value of A for which cavitation occurs is proportional to Pamb for
small values of Pamb as shown in figure 5.20. Similarly for large values of Pamb and deep dimples,
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5.4. Influence of the different parameters

no cavitation occurs.

(a) (b)

Figure 5.19: Evolution of the load carrying capacity and of Pmax − Pamb as a function of the
dimple depth A for a single dimple of radius R = 1 at (−4, 0) in Ω = [−8, 8]× [−8, 8] for shallow
dimples and for Pamb ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05} from bottom to top (a) LCC, (b)
Pmax − Pamb .

Figure 5.20: Cavitation depth Acav for a single dimple of radius R = 1 at (−4, 0) in Ω =

[−8, 8]× [−8, 8] as a function of Pamb/R.

This time the curves of LCC/(PambR) (and not LCC/(PambR
2)) as a function of AR almost

coincide as can be seen in figure 5.21, part (a). Other computations were performed for Pamb =

0.01 and dimples at (−2, 0) with radii R = 0.5, R = 1 and R = 2 and similar trends are obtained
see part (b) of figure 5.21. It is likely that, when the indent is located at the center of the domain,
as the distance to the inlet and to the outlet are the same, first order effects cancel and a second
order effect emerges.
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Chapter 5. Dimple influence for parallel surfaces.

(a) (b)

Figure 5.21: Evolution of LCC/(PambR) as a function of AR for three dimple radii: R = 0.5 in
green, R = 1 in blue and R = 2 in red in the case of a single dimple at (a) (−4, 0) (b) (−2, 0)

with Ω = [−8, 8]× [−8, 8] for Pamb = 0.01.

5.4.3 Ambient pressure influence on the load carrying capacity

The influence of the value of Pamb (or rather Pamb−Pcav) was considered and it was noticed that
LCC/Pamb as the function of the dimple position on the X-axis is independent of the chosen
value for Pamb as can be seen in figure 5.22.
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Figure 5.22: Graph of LCC/Pamb as a function of Xi position of the dimple of radius 1 and
depth 1 on (a) Ω = [−8, 8] × [−8, 8] (b) Ω = [−4, 4] × [−4, 4], for Pamb = 0.001 in blue and
Pamb = 0.01 in red

5.4.4 Dimple depth influence on the load carrying capacity

The graph of LCC/Pamb as a function of dimple position, Xi, was determined for Pamb = 0.001

and A ∈ {0.05, 0.1, 0.5, 1, 2}, the four curves coincide except when the indent is located close
to the inlet as can be seen in figure 5.23. When the dimple is near the inlet, the load carrying
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5.5. Conclusion

capacity is very dependent on A. It rapidly drops with A. Otherwise, for shallow indents, the
linear decrease of the load carrying capacity is slower than for deeper dimples.
Besides for a given radius and ambient pressure, we have seen that the load carrying capacity
for a centered dimple or a dimple at the first quarter of the domain usually has an asymptote
as A increases which is already reached at A = 1 (see figure 5.18 or 5.21). As in figure 5.23, no
big difference can be noticed for A ≥ 1.0 (blue and red squares) (and even for A = 0.5 (green
squares)) except in the inlet. It seems that this remains true for other dimple positions outside
the inlet.
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Figure 5.23: (a)Graph of LCC/Pamb as a function of Xi, position of the dimple of radius 2 and
depth A = 0.05 in purple, A = 0.1 in black, A = 0.5 in green, A = 1 in blue and A = 2 in red
on Ω = [−8, 8]× [−8, 8] and Pamb = 0.001 (b) Zoom.

5.4.5 Dimple radius influence on the load carrying capacity

The evolution of the load carrying capacity in term of the dimple position was also plotted on a
given domain for various values of the dimple radius. It can be noticed that LCC/(RPamb) as a
function of Xi is independent of R (see figure 5.24) except in the inlet.

5.4.6 Dimple shape influence on the load carrying capacity

The evolution of the load carrying capacity in term of the dimple position was also plotted on a
given domain for circular dimples and elliptic dimples of the same volume and the same depth
along the sliding direction or perpendicular to the sliding direction. No major difference could
be observed as shown in Figure 5.25

5.5 Conclusion

For parallel surfaces in hydrodynamic lubrication, no pressure can be generated without a surface
texture. Partial texturing with micro dimples can induce positive pressure when the texture is
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Chapter 5. Dimple influence for parallel surfaces.

■

■
■
■■■■■■■■■■■■■■■■■■■■■■■■■■

■

■

■

■
■
■
■
■■■■■■■■■■■■■■■■■■■■

■■

-5 5
Xi

-50

50

100

150

LCC

Pamb

(a)

■

■
■
■■■■■■■■■■■■■■■■■■■■■■■■■■

■

■

■
■
■■■■■■■■■■■■■■■■■■■■■■■■

■
-5 5

Xi

-50

50

100

150

LCC

PambR

(b)

Figure 5.24: Curves of (a) LCC/Pamb (b) LCC/(RPamb) as a function of Xi position of the
dimple of depth 1 and radii 1 in blue and 2 in red on Ω = [−8, 8]× [−8, 8].

Figure 5.25: Scaled LCC for a circular dent of radius 1 and depth 1 in red and for elliptic dents
of same volume and same depth green (perpendicular to the sliding direction) and blue (along
the sliding direction) on Ω = [−8, 8]× [−8, 8] with Pamb = 0.01.

located in the contact inlet. It shows a step bearing behavior. However, the loss of pressure
is less important for the outlet texture than the gain for the inlet texture. By texturing both
contact ends, a positive load carrying capacity is generated which may be useful for reciprocating
contacts as for the flat ring in the PRLC contact. The load carrying capacity was examined with
respect to the position of the dimples and their dimension. The parameter influence is more
sensitive when the texture lies in the inlet. Otherwise, for a single dimple, the load carrying
capacity seems to be proportional to its radius and concerning their depth an asymptotic value
is reached.
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Chapter 6

Groove influence on piston ring
minimum at TDC and BDC.
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6.1 Introduction

An investigation of the piston ring minimum film thickness in the case of a textured liner is
conducted.
The piston ring cylinder liner contact is the principal source of friction and oil consumption.
These two phenomena are directly related to the minimum film thickness over an engine cycle.
Because of the importance of the influence of cylinder liner texture, piston friction has been
studied in detail over the past two decades.
A first publication on the hydrodynamic lubrication of the piston ring cylinder liner (PRCL)
contact was by Castleman in 1936 [73] to explain the profile of a worn ring. In 1956, Eilon
and Saunders [74] studied the piston-ring lubrication both experimentally and theoretically.
They suggested that the oil film thickness is determined by the balance of forces acting on
the ring. In 1959 Furuhama [75] published a study of the piston-ring lubrication in which
he highlights the importance of the squeeze effect at low speeds near top and bottom dead
center (TDC and BDC). More recently, Jeng [76, 77] published a 1D analysis of the piston ring
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

lubrication where he calculates oil film thickness, friction force and power loss for fully flooded
and starved conditions. Priest et al. [78] have developed a numerical model that accounts for
the dynamic lubrication study of the change in ring profile of wear. Tian et al. [79] created a
1D mixed lubrication model where a ‘film non-separation’ exit condition when squeeze effects
are most important. Surface roughness proved to be important for oil transportation. Akalin
and Newaz [80] also developed a numerical method to study friction in the mixed lubrication
regime. They show that the hydrodynamic lubrication regime occurs over the major part of the
stroke. Increase of the friction coefficient near TDC and BDC is due to the mixed lubrication
near those points because of low speed and high cylinder pressure. Taylor [81] mentions that
the squeeze effect is often omitted in studies of the PRCL contact in spite of its importance near
top and bottom dead center where the piston velocity is zero. He developed a 1D model and
compares results obtained with or without squeeze effects. He shows that there is no cavitation
at reversal when squeeze effects are considered. He also shows that the oil film thickness is very
sensitive to the ring radius of curvature near reversal points and that it would be useful to have
models that accurately predict that film thickness near TDC and BDC to reduce friction and
maintain durability.
Recently, many studies [41, 42, 46, 48, 67, 70, 71, 82–85] about the texture influence on the
minimum film thickness have been published. Etsion and co-workers [41, 42, 71] have conducted
many experimental studies to investigate the influence of texture on piston ring lubrication
or reciprocating automotive components. Medina et al. [70] have developed a 1D numerical
mass-conserving solver and compare its performance with experiments to show it suitability in
studying fiction in lubricated textured bearings under steady-state and transient configurations.
Tomanik [48] built a 1D model to study the dimple effects on the hydrodynamic lubrication of
the oil control ring and top ring. Spencer et al. [82] developed a 2D semi deterministic model
to analyze the PRCL contact for artificially created real cylinder liner topographies. Gherca
et al. in [85] have used a transient mass-conserving code and consider surface roughness and
surface texturing on both surfaces of a parallel bearing and their impact on the lubrication
under transient conditions. In [67], Shen and Khonsari numerically and experimentally analyze
the effect of lasered pockets on the lubrication of a flat ring. They study the influence of
pocket shape and depth on the friction force during the piston motion. They show that the
pocket area ratio and depth are the major factors. Pocket area ratio or depth should not be
too large. Biboulet et al., in [86], have developed an automatic procedure for groove geometry
identification of cross hatched surfaces in order to study the micro-geometry evolution and wear.
In [46], Vladescu et al. experimentally study friction and power loss in a convergent-divergent
bearing under various lubrication regimes with an apparatus that simulates the piston-ring liner
contact. They consider various texture patterns (crosshatch, chevron, angular grooves, parallel
grooves, transverse grooves) and try to determine their beneficial or detrimental effect according
to the lubrication regime. They show that in low film thickness contacts surface texture is
beneficial all along the stroke and the best texturing consists of transverse grooves and the
most detrimental consists of grooves that are parallel to the sliding direction. Under full film
lubrication, texture is detrimental. In the mixed regime surface texture just after reversal helps
reducing friction but there should not be pockets at the reversal points. Best textures seem to
be transverse grooves or chevrons. In [84], Vladescu et al. show through experimental studies
that simulate the piston ring liner motion that the squeeze effect preserves film thickness at
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6.2. Problem formulation

reversal. The film is minimal shortly after reversal and there, the friction force is maximum.
Under fully flooded conditions texture reduces film thickness and increases friction while under
mixed and boundary conditions texture provides a small increase of minimum film thickness
that significantly decreases friction. In other recent experimental studies on the textured piston
ring liner contact [83], Vladescu et al. try to better understand the effects of cavitation,
starvation, texture and their interactions. They observe lubricant replenishment mechanisms.
They show that in case of limited oil supply, texture pockets help to get an even distribution of
the lubricant on the liner and allow about 33% friction reduction compared to the smooth case
and also oil consumption reduction. They also show that immediately after reversal starvation
occurs even under fully flooded conditions explaining the high wear often encountered near
TDC and BDC. A good choice for the texture pattern is beneficial not only for friction but also
for oil consumption.

In the present work, the previous multigrid code is used to study the hydrodynamic lu-
brication of the PRCL contact over an engine cycle. Consequently, the transient Reynolds
term is taken into account. Multigrid techniques allow a significant reduction of the computing
time which becomes crucial for this time dependent problem since many time steps are needed.
Besides, the code, based on Alcouffe’s [4] ideas, enables us to consider highly varying coefficients
and henceforth it is adapted to the study of textured liners. For the smooth case results are
compared with results found in the literature [81]. Afterwards a 2D analytic model of cross
hatched grooves is considered as reference. A minimum film thickness is obtained near the TDC
and the BDC. The influence of the groove density, depth and width on those minimum film
thicknesses is studied.

6.2 Problem formulation

In this chapter the transient hydrodynamic lubrication of the piston ring-cylinder liner contact
is considered and the following problem is solved on a domain Ω:

(6.1)
∂

∂x
(
ρh3

12η

∂p

∂x
) +

∂

∂y
(
ρh3

12η

∂p

∂y
)−um

∂(ρh)

∂x
−(∂ρh)

∂t
= 0

Where p is the hydrodynamic pressure, h, the geometry, um the mean velocity of the piston ring
and liner. The load is imposed, it is defined by the piston ring radial tension and is constant:
w0. Henceforth the minimum film thickness becomes a function of time that has to be evaluated
in order to satisfy the force balance equation 6.2:

(6.2)
∫∫

Ω
p(x, y, t) dxdy = w0, ∀t.

The geometry h is defined as follows:

(6.3) h(x, y, t) = hm(t) +
x2

2R2
+ φ(x+ tvp(t), y)

with the roughness φ defined by cross hatched grooves. Our task consists in determining hm(t)

as a function of time. This is not exactly the minimum film but it is close to it. In our study
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

the mass conservation being less important, the pressure is set to 0 if it becomes negative. The
fluid is assumed to be incompressible and isoviscous. Henceforth the lubricant density, ρ and
the viscosity, η are considered constant. This problem will be solved on a rectangular domain
Ω = [xa, xb]× [ya, yb] where [xa, xb] = [−x0, x0] corresponds to the ring width. As the analytical
texture is supposed to be periodic in the y-direction, [ya, yb] corresponds to the width of one
pattern.
At xa and xb the pressure boundary condition is 0 and a periodic condition is used in the y
direction: p(x, ya) = p(x, yb).

Working in a coordinate system linked to the piston ring, the mean velocity is −vp(t)/2 where
vp(t), the piston ring velocity, is computed as follows:

(6.4) vp(t) =
sω

2
cos(ωt)(1 +

sin(ωt)√
c2

r2
− cos2(ωt)

)

where s is the stroke, r = s/2, ω is the rotational speed and c the con-rod length.

Figure 6.1: Piston position.

6.2.1 Dimensionless equations

The dimensionless parameters are chosen as follows:
Dimensionless coordinates: X = x/x0, Y = y/x0.
Dimensionless film height: H(X,Y ) = h(x, y)/h0 with h0Rx = x2

0 where Rx is the ring radius
of curvature.
Dimensionless time: T = t/t0 with t0 = 1/ω where ω is the crankshaft rotational speed.
Dimensionless pressure: P (X,Y ) = p(x, y)/p0 with p0 = (12ηx2

0)/(t0h
2
0) .

Dimensionless load carrying capacity: W = w/(p0x
2
0) .

Dimensionless mean velocity: Um(T ) = um(t)t0/x0 = −0.5vp(t)t0/x0.
Dimensionless indent depth: A = a/h0.
Dimensionless distance between grooves: D = d/x0.
Dimensionless groove width between grooves: Λ = λ/x0.
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6.2. Problem formulation

Figure 6.2: Piston ring and grooved liner cross section.

With these dimensionless variables the dimensionless Reynolds equation reads:

∂

∂X
(H3 ∂P

∂X
) +

∂

∂Y
(H3 ∂P

∂Y
)−Um(T )

∂H

∂X
−∂H
∂T

= 0 and P > 0 (X,Y ) ∈ Ω1(6.5a)

P = 0 (X,Y ) ∈ Ω2(6.5b)

with the following dimensionless boundary conditions:

P = 0 if X = Xa or X = Xb(6.6a)

P (X,Ya) = P (X,Yb).(6.6b)

The calculation domain is [−Xa, Xb]× [−Ya, Yb] = [−1, 1]× [−0.5/ sin(α), 0.5/ sin(α)].
The dimensionless geometry is

H(X,Y, T ) = Hm(T ) +
X2

2
+ Φ(X − 2TUm(T ), Y )

Figure 6.3) shows the dimensionless groove pattern that defines the liner roughness. The dimen-
sionless distance D1 between two nodes in the X-direction will sometimes be used. It is equal to
D/ cos(α) where D is the dimensionless distance between grooves. The force balance equation
reads:

(6.7)
∫∫

[Xa,Xb]×[Ya,Yb]
P (X,Y, T ) dX dY = W0, ∀T.

6.2.2 Relaxation process

The initial Alcouffe based code is adapted in order to satisfy the force balance equation. This is
done by changingHm(T ). As this only induces low frequency errors, it is sufficient to change it on
the coarsest grid. On the coarsest grid, a few relaxations of the Reynolds equation are performed
to obtain a new approximation of the pressure. Afterwards Hm(T ) is updated by relaxing the
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

Figure 6.3: Cross hatched groove pattern

force balance equation and some extra relaxations of the Reynolds equation are performed in
order to get a coarse grid estimate of the pressure with the new geometry. It is important to
note that changing Hm induces changes of the whole geometry. Therefore all Reynolds equation
coefficients on all grids have to be modified as well as all the operators just after updating Hm.
Besides at each new time step, the geometry also changes because of the displacement of the
piston ring and all coefficients and operators need being computed again. Only V-cycles are
used. The Reynolds equation is relaxed as before. For the force balance equation we proceed as
described in the dry contact chapter of [5]. At time T the discretized force balance equation on
the grid of level k reads:

(6.8) hxhy
∑
i

∑
j

P k
i,j = gk.

On the finest grid gk = W0. The Full Approximation Scheme (FAS) is used. The force balance
equation residual reads:

(6.9) rgk = gk − hxhy
∑
i

∑
j

P k
i,j

where hx and hy are the discretization steps in the X and Y directions on the grid k. The right
hand side of the balance equation on the grid k − 1 is given by:

(6.10) gk−1 = HxHy

∑
I

∑
J

P k−1
I,J + Ik−1

k rgk.

where Hx and Hy are the discretization steps in the X and Y directions on the grid k − 1. As
rgk is a scalar, its restriction to the next coarse grid Ik−1

k rgk is rgk. Henceforth

(6.11) gk−1 = HxHy

∑
I

∑
J

P k−1
I,J + rgk = HxHy

∑
I

∑
J

P k−1
I,J + gk − hxhy

∑
i

∑
j

P k
i,j .
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6.3. Convergence and code validation.

Using the Moes-Venner relation that relates the mean velocity, the load and the minimum film
thickness, ∆Hm(t)/Hm(t) is proportional to −∆W/W and Hk

m is modified of −ωrgk/gk on the
coarsest grid. The coefficient ω is an under-relaxation factor that has to be tuned according to
various factors and in particular to the velocity.

6.3 Convergence and code validation.

Since the solution, from one time step to the next, varies little, only V(2,1)-cycles are used
without FMG. The coarsest grid grid has 5 points in the X-direction that is to say that on the
coarsest grid hx = (Xb − Xa)/4 and the number of points in the Y -direction is chosen so that
hx ≈ hy. The time step has to be chosen sufficiently small in order to get a convergent code. In
our model the dimensionless mean velocity which is half the piston ring velocity roughly varies
in the range [−27, 27]. The time step ht was chosen to be at least 0.05 ∗ hx where hx is the
fine grid space step in the sliding direction. Each time a level is added hx and hy, the 2 space
steps, are divided by 2 and therefore the calculation time for each relaxation is multiplied by 4.
Besides the time step is divided by 2 and henceforth the computation time on the same period
is multiplied by 8. As the time step is rather small and because the problem has to be solved at
least over a complete engine cycle, it is necessary to find a good compromise between accuracy
and the total number of grids and the time step. We also need sufficiently many points on the
finest grid to correctly capture the grooves. We also need to optimize the number of V-cycles per
time step. The most important changes in Hm will take place at the beginning of each time step
and once Hm is stabilized, the Reynolds equation converges more efficiently. It will be shown
that 5 V-cycles will suffice to get a reasonable accuracy. Besides there are some numerical errors
that are more important at high velocities and that are non existent when the piston velocity
is close to 0 due to the number of grooves that pass through the contact during the time step.
With more grids the oscillations diminish. But as will be shown, the results that are obtained
with only 7 levels are quite acceptable.
In the smooth case no problems are encountered. Our code is validated by comparison with a
semi-analytical solver developed by Martin Denni, based on Jeng [76] and Taylor [81] works. The
parameters values are taken from Taylor [81]:

Bore radius 44.95 mm
Con-rod length 154.0 mm
Stroke 78.70 mm
Crankshaft rotational speed 2500 rpm
Piston ring tension 171 kPa
Ring width 1.5 mm
Ring radius of curvature 100 mm
Oil viscosity 6.676 mPa.s

Table 6.1: Chosen piston ring characteristics

These values will be kept in the subsequent evaluations. The effects of the variation of tempera-
ture on the oil viscosity are not taken into account although in section 6.5.1 some results are pre-
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

sented to show how it affects the minimum film thickness. The trial groove geometries are shown
in figures 6.4. The dimensionless calculation domain Ω is [−1, 1] × [−D/(2 sin(α), D/(2 sin(α)],
the distance between grooves is respectively D = cos(α), 0.5 cos(α), 0.25 cos(α) for the three ge-
ometries shown in figure 6.4. The angle α is the angle between the grooves and the Y -axis. In
our first tests, it is equal to 15◦.

Figure 6.4: Groove geometry, low density (left), medium (middle), high (right).

Only the fully flooded case is studied. In this problem, cavitation does not occur near top
and bottom dead center where minimum film thickness is found (see Figure 6.5. At TDC and
BDC, the pressure is not zero as can be seen in Figures 6.5 (b) and (e) although the maximum
pressure is lower than for other crank angles. Pressure is more evenly distributed at those points.
Close to TDC and BDC, pressures in grooves is far from 0. More precisely, there is no cavitation
in a range of 5◦ around top and bottom dead centers. A posteriori, this justifies the use of the
non flow conserving algorithm.
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6.4. Optimization of the computational time

(a) (b) (c)

(d) (e) (f)

Figure 6.5: For D = 0.25, A = 0.3, Λ = 0.1, positive (> 0) pressure at crank angle: (a) 87.5◦,
(b) 90◦ (TDC), (c) 92.4◦, (d) 267◦, (e) 270◦ (BDC), (f) 272.4◦.

6.4 Optimization of the computational time

The computational time is a real challenge for this type of problem. As mentioned before, because
of the periodicity in the Y -direction the problem is solved on [−1, 1]×[−D/(2 sin(α), D/(2 sin(α)]

and the time step hy in the Y -direction is chosen to be almost equal to hx, the time step in the
X-direction. For a groove angle α = 15◦ and D = 0.25 cos(α) or D1 = 0.25 where D1 represents
the distance between two groove nodes in the sliding direction, with 8 levels, 10 V-cycles per time
step and 100 time steps, about 6 minutes are needed to perform the calculation. Choosing the
time step ht as 0.05hx where hx is the space step on the finest level, 64339 time steps are need
to solve the problem over 2 engine cycles. It amounts to a total time of about 61 hours. Five
V-cycles will be sufficient as will be shown in section 6.4.3, the computing time can be reduced
to about 31 hours. If one more level is added, the number of points on the fine grid is multiplied
by 4 while the number of time steps is multiplied by 2. Therefore the total time is multiplied by
8. When D is multiplied by 2, the total time is also multiplied by 2.
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

6.4.1 Time step influence

Some calculations have been performed on 7 levels for three different time steps, ht = 0.05hx,
0.02hx and 0.01hx for the third geometry (figure 6.4) with grooves of depth A = 0.3 and width
λ = 0.2. Figure 6.6 shows the mean dimensionless velocity and the resulting minimum film
thickness.

(a) (b)

Figure 6.6: On 7 levels, for A = 0.3, D1 = 0.25 and Λ = 0.2 (a) Mean velocity, (b) Minimum
film thickness.

Zooming on the extrema of the minimum film thickness, many oscillations can be noted. The
film oscillates more for high velocities than for low velocities since it depends on the number of
grooves entering the contact during the considered time step. In figure 6.7, three time steps are
considered. The three resulting curves over an engine cycle are shown together. Afterwards, for
the three chosen time steps, we zoom on what happens in the vicinity of a maximum, in the
vicinity of a minimum and when the mean velocity is almost zero. The differences between the
three curves around the minima do not exceed 0.2% in the vicinity of the minimum and 0.8%

near the maximum. It may be noticed that the minima do not coincide with a zero velocity.
Near the points where the velocity vanishes, oscillation disappear and the three curves are very
close to each other. Besides the error does not propagate. Henceforth a time step of 0.05hx is
considered sufficient.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: 7 levels, A = 0.3, D1 = 0.25, Λ = 0.2, in green ht = 0.05hx, in blue ht = 0.02hx, in
red ht = 0.01hx (a) over an engine cycle (b) zoom around TDC (c) zoom around BDC (d) zoom
around the first maximum (e) closer to the first maximum (f) velocity almost 0.

6.4.2 Number of levels: influence of the space step

The space discretization was studied. Results between 7 and 8 levels were compared for ht =

0.02hx. In figure 6.8, it can be observed that in the neighborhood of minima, the oscillations
diminish and the average value of the minimum film thickness varies less than 0.1%. There is a
larger difference around the maxima but still very small and corresponding to the discretization
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

error and again the oscillations diminish. These numerical effects do not seem to interfere with
the overall film thickness.
The influence of the number of levels was also considered by assuming a constant velocity and
compared on level 7, 8, 9 and 10. For a complete engine cycle, in order to study those effects
15 V-cycles per time step were considered, the computation time becomes huge for 10 levels and
is already consequent with 9 levels. For a dimensionless mean velocity around 26.2 (close to
its maximum value at mid-stroke) computations were performed on these 4 levels. Stabilized
results are shown in figure 6.9. The oscillations diminish with the number of levels and the
difference between the mean values of each curve correspond to the discretization error. The
main frequencies are related to the passing grooves while the others come from time and space
discretization. They vanish with finer meshes.

(a) (b)

(c) (d)

Figure 6.8: In red 7 levels, in blue 8 levels; A = 0.3, D1 = 0.25, Λ = 0.2, ht = 0.02hx (a) over an
engine cycle (b) zoom around the first minimum (c) zoom around the first maximum (d) velocity
close to 0.
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6.4. Optimization of the computational time

Figure 6.9: Zoom on Hm(t) at high speed,A = 0.3, D1 = 0.25, Λ = 0.2, ht = 0.01hx. In red: 7
levels, in blue: 8 levels, in green: 9 levels, in black: 10 levels.
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

6.4.3 Number of V-cycles

Because of the computational time the number of V-cycles also need to be minimized. As can be
seen in Figure 6.10, the curves for 10 and 20 V-cycles coincide while a less than 0.1% difference
can be observed for 5 and 10 V-cycles near minima. Henceforth, 5 V-cycles per time step may
be sufficient.

(a)

(b) (c)

Figure 6.10: 7 levels, A = 0.3, D1 = 0.25, Λ = 0.2, ht = 0.05hx, in red ncy=5, in green ncy=20,
in blue ncy=10, (a) over two engine cycles (b) zoom around the first minimum (TDC), (c) zoom
around the first maximum.
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6.5. Minimum film thickness

6.5 Minimum film thickness

In all the curves showing the minimum film thickness hm or the associated dimensionless value
Hm as a function of time, the first time steps must not be considered because of important
numerical errors. The range of values of the time t for the curves over an engine cycle has been
chosen to avoid those points.

6.5.1 Temperature

In order to study the influence of the various geometry parameters, it was decided not to account
for the temperature influence. However, some calculations were performed assuming a linear
variation of the temperature between the bottom dead center and the top dead center. In the
smooth case the minimum film thickness is evaluated at constant temperature 125◦C, with a
BDC liner temperature of 100◦C and a TDC liner temperature of 150◦C and finally with a
BDC liner temperature of 90◦C and a TDC liner temperature of 160◦C. Results are shown in
figure 6.11. The viscosity is calculated by the Vogel equation:

(6.12) η(θ) = κ exp(
θ1

θ2 + θ
)

where θ is the temperature. The chosen values of the parameters κ, θ1 and θ2 depends on the
chosen oil. For SAE 15W-40 oil, κ = 0.0292 mPa.s, θ1 = 1424.3◦C and θ1 = 137.2◦C.

Figure 6.11: Smooth case, in blue constant temperature 125◦C, in red BDC 100◦C and TDC
150◦C, in green BDC 90◦C and TDC 160◦C.

It may be noticed that the three curves intersect at the same point which corresponds to the
mean temperature obtained for angles that are multiples of π that is to say at mid-stroke since a
linear variation of the temperature was chosen. It can be seen that for the constant temperature,
the minimum film thickness is higher at TDC (angle π/2 modulo 2π) than at BDC (angle 3π/2
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

modulo 2π). The piston ring acceleration at TDC is roughly three times the acceleration at
BDC. The velocity varies more rapidly near the TDC. Its maximum value is obtained for an
angle slightly above 0 mod π and its minimum for an angle slightly less than π/2 mod π(see
Figure 6.12). It implies that, at constant temperature, there is less time for the oil to be squeezed
out and thus the minimum film thickness is higher near TDC than near BDC. However, when
the temperature effect is considered, the viscosity becomes much lower at TDC than at BDC
(see Figure 6.12). As the minimum film thickness is proportional to ηV , it becomes lower at
TDC. The variations of η are much more important around the BDC than around the TDC. This
explains why the difference between the maxima in Figure 6.11 for non constant temperature
are more important than for minima.

(a) (b)

Figure 6.12: (a) Dimensionless piston velocity (b) Variations of η over an engine cycle, in blue
constant temperature 125◦C, in red temperature varies from 100◦C to 150◦C and in green from
90◦ to 160◦C.

In the sequel, we work at constant temperature and henceforth the minimum film thickness
is minimum at BDC instead of TDC.

6.5.2 Geometrical parameter influence: part 1

• Distance between grooves
The distance between grooves is D = D1 cos(α) where D1 is the distance between two
groove nodes in the sliding direction. This distance D or D1 is directly related to the
groove surface ratio. This ratio can be approximated by 2Λ/D. The exact formula is
Λ/D(2−Λ/D). The variation of D and also of the groove width indicates the influence of
the groove density on the behavior of the minimum film thickness during an engine cycle.
Studying Figures 6.13 (or 6.14 which is basically the same), a number of observations can
be made. The difference ∆H = Hm(t) −Hs(t) where hs(t) is the smooth minimum film
thickness at time t, approximately remains constant. Besides, when D is divided by 2
the difference with the smooth case is doubled. It seems then to have roughly a linear
behavior in 1/D. The ratio λ/D should not become too large to keep this linearity. It may
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6.5. Minimum film thickness

be noticed that the minimum film thickness is only significantly reduced at a high groove
density.

Figure 6.13: Influence of the distance between grooves on Hm(t) for A = 0.5, Λ = 0.2, α = 15◦,
ht = 0.05hx.

Figure 6.14: Influence, over an engine cycle, of the distance between grooves on Hm for A = 0.5,
Λ = 0.2, α = 15◦, ht = 0.05hx.

• Influence of the groove depth
The load is inversely proportional to the minimum film thickness. The groove depth causes
pressure losses and therefore losses of load carrying capacity. Henceforth the deeper the
grooves, the lower the minimum film thickness, as observed in Figures 6.15 or 6.16. Here,
it seems that the distance to the smooth case is roughly doubled when the groove depth
is doubled. For the considered depth values (in the range [0.02, 0.5], a linear behavior is
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

observed. The depth is also related to the groove volume and the oil quantity they can
contain.

Figure 6.15: Influence of the groove depth onHm(t) forD1 = 0.25, Λ = 0.1, α = 15◦, ht = 0.05hx.

Figure 6.16: Influence, over an engine cycle, of the groove depth on Hm for D1 = 0.25, Λ = 0.1,
α = 15◦, ht = 0.05hx.

• Influence of the groove width
The groove width affects the groove density, its volume and the region where there are
pressure losses and henceforth LCC losses. The wider the grooves are, the lower the
minimum film thickness is. Here too a linear decrease compared to the smooth case can
be observed in Figures 6.17 or 6.18.
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6.5. Minimum film thickness

Figure 6.17: Influence of the groove width on Hm(t) for D1 = 0.25, A = 0.2, α = 15◦, ht =

0.05hx.

Figure 6.18: Influence, over an engine cycle, of the groove width on Hm for D1 = 0.25, A = 0.2,
α = 15◦, ht = 0.05hx.

• Influence of the groove angle
Figures 6.19 and 6.20 show that for small values, the angle influence is not very significant.
It becomes more important for larger values. For a given D1, as the distance between
grooves is D = D1 cos(α), the angle influence the groove density through its cosine. For
small angles α, cos(α)=̈1− α2/2 and therefore it hardly impacts the D value. This is less
true for bigger angles. For the 3 angles that were used in the calculations, we get the
following values: cos(10◦) ≈ 0.985, cos(15◦) ≈ 0.966 and cos(25◦) ≈ 0.906.
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

Figure 6.19: Influence of the groove angle onHm(t) forD1 = 0.25, A = 0.5, Λ = 0.2, ht = 0.05hx.

Figure 6.20: Influence, over an engine cycle, of the groove angle on Hm for D1 = 0.25, A = 0.5,
Λ = 0.2, ht = 0.05hx.

6.5.3 Geometrical parameter influence: part 2

The trends presented in the above section are illustrated for some particular parameter values
in a more quantitative way. Calculations were performed for the smooth case, for three angles:
α = 10◦, 15◦, 25◦, for three distances: D1 = 1.0, 0.5, 0.25 and for the values of groove depth and
width given in Table 6.2.

For the angle α = 15◦, calculations were also performed for D1 = 0.125. For Λ = 0.2, results are
not considered since then, the distance between grooves is smaller than the groove width. By
looking at the figures of section 6.5.2, it seems that the difference ∆H = H −Hs between the
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6.5. Minimum film thickness

Λ = 0.02 Λ = 0.05 Λ = 0.1 Λ = 0.2

A = 0.05 A = 0.05 - -
A = 0.1 A = 0.1 A = 0.1 -

- A = 0.2 A = 0.2 A = 0.2

- - A = 0.5 A = 0.5

Table 6.2: Chosen values of groove depth A and groove width Λ.

average film thickness H over an engine cycle with the smooth case Hs is inversely proportional
to the distance between grooves D, proportional to their width Λ. At first sight it seemed it
was also proportional to the groove depth A. The linearity with respect to the width seems to
be correct as shown in Figures 6.21 and 6.23 since for a given depth and a given distance the
values of ∆H/Λ coincide. But it is not so true for the depth. It seems more exact to say it
is proportional to ≈ A0.8 as shown in Figures 6.22 and 6.24. These figures also illustrate the
linearity in 1/D. For deep grooves A = 0.5 the linearity in 1/D fails for D = 0.25 that is to say
for a high groove density. In Figures 6.23 and 6.24, the lines that appear on these figures are
deduced from the fit given below.

(a) (b)

Figure 6.21: ∆H/Λ with ∆H = H − Hs, average film difference with the smooth case, as a
function of 1/D for α = 15◦ , ht = 0.05hx, 8 levels. (a) A = 0.1, (b) A = 0.2.
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

(a) (b)

Figure 6.22: ∆H/A0.8 with ∆H = H −Hs, average film difference with the smooth case, as a
function of 1/D for α = 15◦ , ht = 0.05hx, 8 levels. (a) Λ = 0.05, (b) Λ = 0.1.

(a) (b)

(c)

Figure 6.23: ∆H/Λ with ∆H = H − Hs, average film difference with the smooth case, as a
function of 1/D for ht = 0.05hx, 8 levels, in red A = 0.05, in green A = 0.1, in blue A = 0.2, in
black A = 0.5 (a) α = 10◦ , (b) α = 15◦, (c) α = 25◦.
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6.5. Minimum film thickness

(a) (b)

(c)

Figure 6.24: ∆H/A0.8 with ∆H = H −Hs, average film difference with the smooth case, as a
function of 1/D for ht = 0.05hx, 8 levels, in red Λ = 0.02, in green Λ = 0.05, in blue Λ = 0.1, in
black Λ = 0.2 (a) α = 10◦ , (b) α = 15◦, (c) α = 25◦.
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Chapter 6. Groove influence on piston ring minimum at TDC and BDC.

In Figure 6.25, all data is represented as a function of A0.8Λ/D. The linearity seems less
valid when A0.8Λ/D is large. Using logarithmic scale as shown in Figure 6.26, we obtain a nearly
linear behavior. A linear fit of those points is given by the function φ(t) = −0.873466−0.965134t

but if we impose the t coefficient to be one (to get a linear dependence of the form γt for the
initial data), we obtain a fit with ψ(t) = −0.754821 − t. This line is shown in Figure 6.26. It
leads to the following approximation of∆H = H − Hs ≈ −0.470095A0.8Λ/D. It is shown in
Figure 6.25. Further calculations should be performed to define the limits of this linear trend.

Figure 6.25: Average film thickness difference Hs−H as a function of A0.8Λ/D, ht = 0.05hx, 8
levels and the function −0.47A0.8Λ/D.

Figure 6.26: ln(Hs−H) as a function of − ln(AΛ/D) fitted by f(t) = −0.754821−t , ht = 0.05hx,
8 levels.
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6.6. Conclusion

6.6 Conclusion

In this chapter the Alcouffe based algorithm developed in the first chapter for the stationary
case was completed to include the transient term ∂H/∂T and used to study, in the PRLC
hydrodynamic contact, the influence of the groove parameters for a cross hatched liner on the
variations of the minimum film thickness along an engine cycle. The temperature was assumed
to be constant although it is easy to include temperature variations in the code. The flow
conserving algorithm was not used because in the vicinity of the top and bottom dead center
no cavitation occurs and it would have increased the computational time. With our choices this
time remains reasonable and should allow further calculations to get a better prediction of the
system behavior. The grooves cause a film reduction which is nearly constant over the engine
cycle. The film reduction at mid-stroke is rather similar to the film reduction at TDC or BDC.
For the range of parameters studied, the influence on the average minimum film thickness was
close to linear in 1/D, A or rather A0.8 and Λ. Linear best fits were found. Our results seem to
show a linear behavior of the average film thickness difference Hs−H as a function of A0.8Λ/D.
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Conclusion
In order to improve engine performance and respect the various environmental norms that are
now imposed to constructors, it is possible to act on the piston lubrication. Our efforts mostly
focused on the piston-ring cylinder liner contact in the hydrodynamic regime. To optimize
the lubricant film thickness in order to reduce friction and limit oil consumption, textured
surfaces are used. Their geometrical parameters such as configuration, shape, density, volume,
... have to be studied in order to determine a good compromise. Besides the rings geometries
are different: parabolic for the top ring or flat for the oil control ring and there are submitted
to various conditions depending on their function and position. Because of the experimental
study cost and the extent of the problem, it is worth investing in theoretical studies. Because of
the required number of calculation points and eventually of time steps for transient problems,
multigrid techniques constitute a good option for solving such problems. They are efficient
convergence accelerators. However multigrid techniques necessitate a good representation of the
target grid problem on coarse grid otherwise they fail.
For the PRCL textured contact, the coefficient of the equation to be solved are highly varying
and therefore it is not possible to use a standard geometrical multigrid algorithm as in [5]. An
algebraic multigrid algorithm would be a possibility but there are not as efficient in terms of
calculation time as a geometrical algorithm. A more robust geometrical multigrid code has
been written. It is based on ideas developed by Alcouffe et al. [4] and adapted to the Reynolds
equation. All interpolation and restriction operators as well as the coarse grid operators have
been coded and explained. The cavitation free boundary was also accounted for.
The obtained code having a much better coarse grid representation than the standard geomet-
rical multigrid algorithm proved to be much more robust. Its efficiency in terms of convergence
was demonstrated and it was shown that in spite of the numerous additive stencil calculations,
the computing time is only doubled. As memory was not an issue, memory management was
not optimized. By taking a closer look to the stencil coefficients, as some are repeated from one
step to the next one, it could probably be improved.
The code was validated by comparison with a 1D analytical model and used to study the
influence of groove geometrical parameters for a parabolic geometry with a cross-hatched
pattern. The influence of the groove position was also studied. Only small groove angles
where considered. It was seen that the groove shape has a minor influence while groove depth,
density and position are more important factors. Further calculations should be done to better
investigate the groove angle influence.
At this stage flow conservation was not considered. For a parabolic geometry it was not very
important because although non physical pressure generation appears at the contact outlet,
they are very small and do not considerably affect the trends.
However to study the influence of a geometry consisting of dimples for a contact between parallel
surfaces with application to a flat ring such as an oil control ring, having a flow conserving
algorithm became crucial. It proved to be a difficult task and only a semi-satisfying solution
has been obtained. A new relaxation scheme based on the physics of the phenomenon has been
written. Coarse grid interpolation and restriction were more difficult since we needed operators
for the pressure and the oil film that could not be built in the same way. Finally a solution
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Conclusion

was adopted by putting the wedge term in the right hand side of the equation. This way, a
code was obtained that converges for all starvation conditions for highly varying geometry.
Unfortunately, its convergence rate is not fully satisfactory. A difficulty at film formation or
re-formation was hard to overcome. At this frontier there are discontinuities in the Couette and
Poiseuille flow while Alcouffe et al.’s ideas where based, in our problem, on a continuity of the
Poiseuille flow. Many attempts have been made and some are presented in an appendix but this
point still requires further work. A promising way may be the use of the p − θ formulation of
the Elrod-Adams problem where p is the pressure and θ = hoil/h the cavity fraction. It leads
to solving a system of the form G(p, θ) = 0 where G is a C1 function of p and θ (see [36]). This
was not tried and is maybe the next step for improving our code.
The flow conserving code was applied to the study of dimple influence for the lubrication of
parallel surfaces and possible use for the oil control ring. Without texture no load carrying
capacity can be generated. In particular the dimple position in the contact was studied. It was
shown that the loss of pressure when the texture lies in the outlet is less than the gain when it
is located in the inlet. The influence of the dimple parameters, of the ambient pressure on the
load carrying capacity was also studied. It was noted that the parameter influence is stronger
for an inlet texture than for an outlet one.
Finally, the transient term of the Reynolds equation was added to our code. It implies many
stencil re-calculations at each time step and each time the minimum film thickness is updated.
It was used to study the variations of the minimum film thickness along an engine cycle in
the lubrication of a parabolic ring and a cross-hatched groove liner. The temperature was
assumed to be constant and the ring tension too. Variations of those 2 parameters could have
easily been introduced. We did not use the flow conserving algorithm because in the vicinity of
TDC and BDC, where the minimum film thickness is lowest, no cavitation occurs. Considering
the number of time steps that were necessary, the present flow conserving algorithm would
need a substantial increase in computation time. We were able to deduce a curve fitted for-
mula for the average film thickness difference with the smooth case in terms of groove parameters.

Perspectives:

• Further calculations with the existing code in order to more thoroughfully study the influ-
ence of texture on lubrication and confirm, or not, certain observed trends.

• Adapt and use our codes on real textured surfaces.

• Adapt Alcouffe et al.’s ideas to elastohydrodynamic lubrication.

• Pursue investigation to get a more robust flow conserving code and in particular try the
p− θ method( [36]).
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Appendix A

Algorithm complements

A.1 Alcouffe discretization of the term σU

To complete the volume discretization described in chapter 1, section 1.4 and although in our
applications the function σ will be zero and therefore we had skip this part, we account here for
the integral of σ(x, y)U(x, y) over a cell. With the notations of that section:

(A.1)
∫∫

∆
σ(x, y)U(x, y) dxdy ≈ Ui,j

∫∫
∆
σ(x, y) dxdy ≈ Ci,jUi,j

with

(A.2) Ci,j =
1

4
(hi−1kj−1σi− 1

2
,j− 1

2
+ hikj−1σi+ 1

2
,j− 1

2
+ hi−1kjσi− 1

2
,j+ 1

2
+ hikjσi+ 1

2
,j+ 1

2
)

Thus we obtain:
(A.3)
−Ai,j+ 1

2
(Ui,j+1−Ui,j)−Ai,j− 1

2
(Ui,j−1−Ui,j)−Bi+ 1

2
,j(Ui+1,j−Ui,j)−Bi− 1

2
,j(Ui−1,j−Ui,j)+Ci,jUi,j = Fi,j

A priori, these formulas are only valid for an inner rectangle. They can be extended to the
boundary rectangles by setting the functions f , σ and D to 0 outside Ω and adding to Ci,j the
following term C ′i,j :

C ′i,j =


0 if (i, j) is an inner point of Ω
kj−1+kj

2 γi,j if i = 0 or i = imax

hi−1+hi

2 γi,j if j = 0 or j = jmax

Where γi,j is the value of the function γ that was defined in section 1.3 at the node (i, j).
Indeed, if for instance, we consider a left boundary cell as represented in figure C.11, remembering
that the functions f,D, σ are set to 0 outside Ω. For i = 0, everything is unchanged (null functions
outside Ω) except that now,

∫ P1

P3
D∂U/∂x dxdy must be added to estimate

∫∫
∆−∇(D ·∇U) dxdy.

On the segment [P1, P3],

ν(x, y) ·D(x, y)∇U(x, y) = (−1, 0) · (D∂U
∂x

,D
∂U

∂y
) = −D∂U

∂x
= γ(x, y)U(x, y)

Hence ∫ P1

P3

D
∂U

∂x
dxdy = −

∫ P3

P1

D
∂U

∂x
dxdy ≈ γi,jUi,j

kj−1 + kj
2

which yields the expected result. Similar calculations can be performed on the other parts of the
boundary of Ω.
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Appendix A. Algorithm complements

Figure A.1: Left Boundary cell

A.2 Coarse grid operator

Galerkin method: the operator Lk−1 on grid k−1 is deduced from the fine grid operator by the
following calculation rule:

Lk−1 = Ik−1
k Lk Ikk−1.

The stencil of this linear operator at the point (iC , jC) is determined by finding the image of
basis function uk−1 = ek−1

iC ,jC
. Remember that ek−1

iC ,jC
is the coarse grid function that has the value

1 at node (iC , jC) and 0 elsewhere. To simplify the notations, the stencil of Ikk−1 at point (iC , jC)

is denoted:

(A.4)

 nw n ne

w c e

sw s se


The stencil of Lk at the point (i, j) is denoted:

(A.5)

 Lk
nw(i, j) Lk

n(i, j) Lk
ne(i, j)

Lk
w(i, j) Lk

c (i, j) Lk
e(i, j)

Lk
sw(i, j) Lk

s(i, j) Lk
se(i, j)


The influence of Lk Ikk−1 on uk−1 = ek−1

iC ,jC
extends to the 25 points of the fine grid k surrounding

the point(iF , jF ) ≡ (iC , jC). The result of Ikk−1 e
k−1
iC ,jC

is

(A.6)


0 0 0 0 0

0 nw n ne 0

0 w c e 0

0 sw s se 0

0 0 0 0 0


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A.2. Coarse grid operator

The result of Lk Ikk−1 e
k−1
iC ,jC

at the 25 points around (iF , jF ) is then

(A.7)


t(0, 4) t(1, 4) t(2, 4) t(3, 4) t(4, 4)

t(0, 3) t(1, 3) t(2, 3) t(3, 3) t(4, 3)

t(0, 2) t(1, 2) t(2, 2) t(3, 2) t(4, 2)

t(0, 1) t(1, 1) t(2, 1) t(3, 1) t(4, 1)

t(0, 0) t(1, 0) t(2, 0) t(3, 0) t(4, 0)


Elsewhere its value is 0. Using the stencils of Lk, one has for instance:

t(0, 0) = sw × Lk
sw(iF−1, jF−1)

t(0, 1) = sw × Lk
w(iF−1, jF−1) + w × Lk

sw(iF−1, jF )

t(0, 2) = sw × Lk
nw(iF−1, jF−1) + w × Lk

w(iF−1, jF ) + nw × Lk
sw(iF−1, jF + 1)

t(0, 3) = w × Lk
nw(iF−1, jF ) + nw × Lk

w(iF−1, jF + 1)

t(0, 4) = nw × Lk
nw(iF−1, jF + 1)

t(1, 0) = sw × Lk
s(iF−1, jF−1) + s× Lk

sw(iF , jF−1)

....

t(2, 2) = sw × Lk
ne(iF−1, jF−1) + s× Lk

n(iF , jF−1) + se× Lk
nw(iF + 1, jF−1)

+ w × Lk
e(iF − 1, jF ) + c× Lk

c (iF , jF ) + e× Lk
w(iF + 1, jF )

+ nw × Lk
se(iF − 1, jF + 1) + n× Lk

s(iF , jF + 1) + ne× Lk
sw(iF + 1, jF + 1)

etc...

(A.8)

Finally, the result of Ik−1
k Lk Ikk−1 e

k−1
iC ,jC

gives the stencil of Lk−1 at the point (iC , jC). The
stencil coefficients are directly computed in the code by restriction of the function wk−1 whose
values at the 25 fine grid points surrounding (iC , jC) are given in the table t and which are 0 at
other points. As the equation has been integrated, the operator Lk represents the flow through
a cell and therefore the restriction operator that is used here is Jk−1

k instead of Ik−1
k with Jk−1

k

defined by stencil:

(A.9) Jk−1
k =

 NW N NE

W C E

SW S SE


It means that the normalizing factor hxhy

HxHy
is omitted. This factor is used for the restriction of

functions but not for the restriction of flows. In our problem deduced from the Reynolds equation
Ik−1
k will be used when coarsening the pressure while Jk−1

k will also be used when coarsening the
right hand side of the equation. This way, a nine point operator is obtained. It stencil reads:

(A.10)

 Lk−1
nw (iC , jC) Lk−1

n (iC , jC) Lk−1
ne (iC , jC)

Lk−1
w (iC , jC) Lk−1

c (iC , jC)) Lk−1
e (iC , jC)

Lk−1
sw (iC , jC) Lk−1

s (iC , jC) Lk−1
se (iC , jC)


The calculations will be performed by the computer using the stencils of Jk−1

k at the correspond-
ing point. For instance the value of Lk−1

sw (iC , jC) is obtained with the stencil of the restriction
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Jk−1
k at the point (iC−1, jC−1) applied to the following table of values for the surrounding

points:  0 t(0, 1) t(1, 1)

0 t(0, 0) t(1, 0)

0 0 0


while the value of Lk−1

c (iC , jC) is obtained with the stencil of the restriction Jk−1
k at the point

(iC , jC) applied to the following table of values for the surrounding points:

 t(1, 3) t(2, 3) t(3, 3)

t(1, 2) t(2, 2) t(3, 2)

t(1, 1) t(2, 1) t(3, 1)



A.3 Alcouffe Full multigrid interpolation

In the full multigrid code (FMG), a solution of the problem is computed on the coarse grid k−1, it
is then interpolated to the grid k and this interpolation is used as an initialization of the solution
on grid k. In [4], Alcouffe, Brandt, Dendy and Painter propose a new cubic interpolation that is
also based on the continuity of D∂U/∂x and D∂U/∂y. Although they note that classical cubic
interpolation is sufficient which can be verified on our problem. Both were tried and it did not
lead to significant improvement on the problems I studied.
Here too, we interpolate one direction at a time. For simplicity, only one variable is used. The
coarse grid solution is denoted uC and its fine grid interpolation is denoted by u.
The coarse grid values are simply injected and therefore u(2iC) = uC(iC)

The coarse grid diffusion coefficients respectively between nodes −3 et −1 and nodes 1 and 3

Figure A.2: Interpolation

are denoted by D−2 and D2. The fine grid diffusion coefficients respectively between nodes −1

and 0, and nodes 0 and 1 are denoted by d−1/2 and d1/2 (see Figure A.2). Instead of looking
for a polynomial P of degree 3 taking the same values as u at the nodes −3,−1, 1, 3, we impose
conditions on its derivatives in order to account for the continuity of D∂U/∂x and D∂U/∂y.
More precisely:
P ′(x) = a0 + a1x+ a2x

2 must verify
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A.3. Alcouffe Full multigrid interpolation

P ′(−2) = D−2
u(iF−1)−u(iF−3)

2
P ′(2) = D2

u(iF + 3)−u(iF + 1)

2

P ′(−1/2) = d−1/2
u(iF )−u(iF−1)

1
P ′(1/2) = d1/2

u(iF + 1)−u(iF )

1

(A.11)

Eliminating a0, a1 and a2 and using the injected values at coarse grid points, one obtains

(A.12)
u(iF ) =

1

8(d−1/2 + d1/2)
(−D−2uC(iC−2)+(8d−1/2 +D−2)uC(iC−1)+

(8d1/2 +D2)uC(iC)−D2uC(iC + 1))

It may be noted that when the diffusion coefficients are equal to 1, the same formula as for usual
cubic interpolation is obtained:

(A.13) u(iF ) =
1

16
(−uC(iC−2) + 9uC(iC−1) + 9uC(iC)−uC(iC + 1))

Some care must be taken with the interpolation formula of fine grid points next to the boundaries.
For instance, if iF = 1, the interpolated value reads:

u(1) =
1

4(7d−1/2 + 15d1/2)
(28d−1/2uC(0)+(60d1/2 + 21D2)uC(1)−

(21D2 + 5D4)uC(2) +D4uC(3))

Where D4 is the coarse grid diffusion coefficient between the coarse grid nodes of indices 2 and
3.
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Appendix B

Numerical values

B.1 Liner groove parameters

Examples of commonly encountered dimensional parameter values are given in Table B.1 with
the corresponding range for the associated dimensionless value given in Table B.2 using the
dimensionless calculation rules described in Chapter 3. These tables are quoted from [6].
For a viscosity η = 0.01Pa.s, a mean velocity um = 4m/s, a minimum film thickness h0 = 3. µm,
a ring curvature radius R = 0.1m, the dimensionless pressure is P = p/p0 with p0 = 29.2MPa.

Min Max
Radius r 1cm 1m →∞

Groove depth a 0.5µm 5µm
Groove width λ 5µm 50µm

Half contact width e 0.4 mm 1 mm
Minimum film thickness h0 0.1µm 10µm

Table B.1: Groove dimensional parameters.

Min Max
Groove depth A 0.05 50

Groove width Λ 1.6 10−3 1.6

Half contact width E 0.13 31

Table B.2: Groove dimensionless parameters.

B.2 Dimple parameters

Examples of commonly encountered dimensional parameter values are given in Table B.3 with
the corresponding range for the associated dimensionless value given in Table B.4 using the
dimple radius and the clearance as dimensionless factors (see Chapter 5). For a viscosity
η = 0.01Pa.s, a mean velocity um = 4m/s, a clearance h0 = 1. µm and a radius r = 12.5µm,
the dimensionless pressure is P = p/p0 with p0 = 6MPa. In this case, our choice for the range
of Pamb values yields the following range of values for pamb − pcav:

pamb − pcav ∈ [0.06MPa, 0.3MPa]
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.
It can be noticed that for an ambient pressure pamb = 0.1MPa, the last value does not make
sense. The operating conditions tell us what dimensionless results can be used.

Min Max
Dimple radius r 5µm 50µm
Dimple depth a 0.1µm 10µm

Half contact width x0 0.1 mm 0.15 mm
Clearance h0 0.1µm 1µm

Table B.3: Dimple dimensional parameters.

Min Max
Dimple depth A 0.1 10

Half contact width X0 2.0 30.

Table B.4: Dimple dimensionless parameters.
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Appendix C

Cell centered algorithm

C.1 Introduction

The convergence obtained in chapter 4 was not fully satisfactory, especially in the partially
starved contacts for smooth surfaces. Besides, we did not manage to get a working multigrid
code without including the wedge term in the left hand side of the equation. For these reasons, we
realized that it might be better to first study and better understand a simpler case. Henceforth it
was decided to consider a smooth surface, forgetting Alcouffe’s algorithm and using simpler grids
in order to focus on the present task. The fine grid relaxation scheme correctly describes the flow
behavior on the finest grid. But it was difficult to transfer it to the coarse grids. The coarse flow
representation was poor especially at the inlet meniscus and at the cavitation boundary. We also
have to build the multigrid routines so that the flow is correctly represented on the coarse grids.

C.2 Grid description

The domain is divided in cells using regularly spaced straight lines that are parallel to the axes.
In Figure C.1, a fine grid and the next coarser grid are shown with an indication of the cell
numbering. In Figure C.2, the cell (i, j) is described. The pressure P will be evaluated at the
cell center while the oil height is computed at the mid points of the right and left boundaries of
the cell.

C.3 Relaxation scheme

C.3.1 Fine grid relaxation

Again using a volume discretization of equation 4.1, the flow through each cell boundary (see
Figure C.3) is evaluated as follows:
- through the X-boundary between the cells (i, j) and (i+ 1, j), the flux ΦX(i, j) is

ΦX(i, j) = hy ×Hoil(i, j)− bi,j(P (i+ 1, j)− P (i, j))

where bi,j is a diffusion coefficient computed according to:

bi,j =
1

2
(H3(Xi, Yj) +H3(Xi, Yj−1))

hx
hy
.

- through the Y -boundary between the cells (i, j) and (i, j + 1), the flux ΦY (i, j) is

ΦY (i, j) = −ai,j(P (i, j + 1)− P (i, j))
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Appendix C. Cell centered algorithm

Figure C.1: Fine grid and next coarser grid

where ai,j is a diffusion coefficient computed by

ai,j =
1

2
(H3(Xi, Yj) +H3(Xi−1, Yj))

hy
hx
.

The chosen relaxation process for the finest grid is adapted from the one that was described
in Chapter 4. For each cell (i, j), the residual ∆ of the discretized equation corresponds to the
balance of the flows through the four cell boundaries. More precisely

∆ = ΦX(i− 1, j)− ΦX(i, j) + ΦY (i, j − 1)− ΦY (i, j).

The relaxation process cancels the residual of the cell (i, j). It is also meant to properly describe
the physical behavior of the lubricant. To conserve the flow especially at the cavitation or film
re-formation boundaries, the relaxation has to change pressures and oil level under the correct
conditions. It will be distributive on the oil level Hoil to preserve a kind of ellipticity at least in
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C.3. Relaxation scheme

Figure C.2: Cell (i, j)

Figure C.3: Flow through the boundaries of the cell(i, j).

the X-direction in the cavitated zone which matters for multigrid efficiency. In the pressurized
zone the oil film is complete. Henceforth, when the residual is positive, we first increase the oil
level Hoil(i + 1, j) by half the residual. If it reaches the maximum possible value, we increase
the pressure to eliminate the remaining part of the residual otherwise the oil level Hoil(i, j)is
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Appendix C. Cell centered algorithm

diminished. When the residual is negative, we first decrease the pressure. If it becomes negative,
we set it to zero and then change the oil film thickness on both sides of the cell.

• Evaluate the residual res at point (i, j)

• if res > 0

– Hoili+1,j ← Hoili+1,j + 0.5 ∗ res/hy
– if Hoili+1,j > Hi+1,j

∗ Hoili+1,j = Hi+1,j

∗ Evaluate the remaining residual res1 at point (i, j)

∗ Pi,j ← Pi,j − res1/ci,j
– else Hoili,j ← Hoili,j − 0.5 ∗ res/hy

• if res < 0

– Pi,j ← Pi,j − res1/ci,j
– if Pi,j < 0

∗ Pi,j = 0

∗ Evaluate the remaining residual res2 at point (i, j)

∗ Hoili+1,j ← Hoili+1,j + 0.5 ∗ res2/hy
∗ Hoili,j ← Hoili,j − 0.5 ∗ res2/hy
∗ if Hoili,j > Hi,j then Hoili,j = Hi,j

Where ci,j = −ai,j −−ai,j−1 −−bi,j −−bi−1,j < 0

C.3.2 Single grid results

In the smooth case the single grid relaxation process converges well and is mass conserving. It
works with Dirichlet conditions on the four boundaries and H(X,Y ) = 1 + 0.5X2 + 0.5Y 2 or for
a periodic code in Y with H(X,Y ) = 1 + 0.5X2 and Dirichlet condition on the 2 X-boundaries.
The results presented in this section correspond to the periodic code. Similar results are obtained
in the other case which are not presented here. The code was run on a 256× 256 grid covering
the domain Ω = [Xa, Xb]× [Ya, Yb] = [−2, 2]× [−2, 2].

The obtained code converges for any starvation condition:

• fully flooded with an initial oil level corresponding to the geometry H,

• fully flooded but an initial level of oil defined by H0 = 1.5 lower that the geometry H and
higher than the exit oil film level in fully flooded conditions,

• partially starved contact with an initial level of oil defined by H0 = 1.1 lower than the exit
oil film level in fully flooded conditions but higher the minimum of H which is 1,

• completely starved case with an initial level of oil H0 = 0.8 less than the minimum of H.
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C.3. Relaxation scheme

The last case becomes obvious if the initial oil condition is chosen as min(H(X,Y ), H0) where
H0 is the initial film height on the line X = Xa. The resulting pressure and oil film height are
shown in Figures C.4 and C.5 for the whole domain and in Figure C.6 for the central line.
As expected the film height becomes constant in the cavitated area. Besides, as expected, in the
partially starved contact, the outcoming oil film thickness is equal to the initial value of the oil
level. The flows were computed on each vertical line that is to say for constant Y and was found
to be constant.

(a) (b)

Figure C.4: Pressure and oil level in the periodic case - Fully flooded contact - Single grid.

(a) (b)

Figure C.5: Pressure and oil level in the periodic case - partially starved contact - Single grid.

The evolution of the average residual in terms of the work units Wu can be seen in Figure C.7.
The first two figures correspond to the fully flooded case but in the second one the initial film
thickness is much lower than the geometry and therefore at the beginning a certain amount of
work is needed to reach the fully flooded regime and this explains why the convergence is a little
slower. In the last partially starved case, there are two main convergence difficulties associated
with two free boundary problems at the inlet and at the outlet of the contact and this explains
the slower convergence than in the fully flooded cases.
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Figure C.6: Pressure (red), geometry(dashed blue) and oil level (blue) on the central line Y = 0

in the periodic case - Single grid - (a) fully flooded contact, (b) partially starved contact
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Figure C.7: Average residual as a function of the number of work units in the periodic case
- Monogrid (a) fully flooded, (b) fully flooded with H0 = 1.5 and (c) partially starved with
H0 = 1.1

A second geometry named ”wavy geometry” was considered. It is defined by H(X,Y ) = 1.5+

0.5 cos(πX) (Figure C.8). This case enables us to verify that the single grid code behaves properly
while entering pressurized areas or cavitated areas. Again, on one grid, the code converges
but more slowly. Results for a fully flooded initial condition: H0 = H(Xa, Y ) are shown in
Figures C.8 on the whole domain and in Figure C.9 only on the central line. With this geometry
the film height becomes constant in the X-direction after the first cavitation boundary then
the oil film thickness is rebuilt in a way similar to the partially starved contact studied when
H(X,Y ) = 1 + 0.5X2. At the second cavitation boundary the outcoming oil film thickness is
equal to the value it has reached after it first cavitates. The flow on each line with constant Y
is constant up to 5× 10−6 which is of the order of the discretization error.

The evolution of the average residual in terms of the number of work units Wu can be seen in
Figure C.10 (a). Here we may note that there are three main features that lead to convergence
difficulties: the first cavitation, the entrance of the second contact and the second cavitation
boundary which cause the convergence to slow down as shown in Figure C.10 (b).
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C.3. Relaxation scheme

(a) (b) (c)

Figure C.8: (a) Geometry - (b) pressure - (c) oil level - periodic case - wavy geometry - single
grid.
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Figure C.9: Pressure (red), geometry(dashed blue) and oil level (blue) on the central line Y = 0

in the periodic case - wavy geometry - single grid.
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Figure C.10: (a) Average residual as a function of the number of work units (b) Residual on the
central line Y = 0 - periodic wave - single grid.

C.3.3 Coarse grid relaxation

It is important to have a good coarse grid representation of the flow through each coarse grid
cell and adapt the relaxation scheme accordingly. In Figure C.11, a coarse grid cell made of four

145

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI105/these.pdf 
© [M-P. Noutary], [2017], INSA Lyon, tous droits réservés



Appendix C. Cell centered algorithm

fine grid cells can be seen.

Figure C.11: Coarse grid cell (i, j) and the four associated fine grid cells

The flow can be decomposed into two parts on the vertical boundaries of the cells, the Couette
flow defined as ΦC,X(i, j) = hy × Hoil(i, j) and the Poiseuille flow calculated by ΦP,X(i, j) =

−bi,j(P (i + 1, j) − P (i, j)). According to the position of the cavitation boundary or of the
entrance meniscus when dealing with the coarse grid, various cases are to be considered as
shown for instance in Figure C.12. In this special case on the coarse grid the flow through the

Figure C.12: Poiseuille and Couette flow through the vertical boundaries of a coarse cell (in
red) and through the corresponding fine grid boundaries (in black) together with the cavitation
boundary (red line).

right vertical boundary calculated on the fine grid would involve a Poiseuille component because
the coarse pressure at the cell center is positive. But this is not correct since at the cavitation
boundary ∂P/∂X = 0 and therefore there should be no Poiseuille flow through this coarse grid
boundary. To try to remedy this, it was decided to associate a type T with each coarse grid
vertical boundary to be able to account or not for the Poiseuille component according to the
location of the coarse grid boundary. It was implemented as follows:
In Figure C.13, we have represented in red the coarse grid boundary between the coarse cell
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C.3. Relaxation scheme

Figure C.13: Coarse grid boundary (i, j).

(i, j) and (i+ 1, j). The fine grid surrounding pressures are P1 = P (2i, 2j), P2 = P (2i+ 1, 2j),
P3 = P (2i, 2j − 1) and P4 = P (2i+ 1, 2j − 1).

• T = 0 if P1 = P2 = P3 = P4 = 0 (Non pressurized zone, only Couette flow).

• T = 1 if P1 = P3 = 0 and P2 ≥ 0, P4 ≥ 0 with P2 > 0 or P4 > 0 (Inlet boundary).

• T = 2 if P2 = P4 = 0 and P1 ≥ 0, P3 ≥ 0 with P1 > 0 or P3 > 0 (Outlet boundary).

• T = 3 if P1 ≥ 0, P3 ≥ 0 with P1 > 0 or P3 > 0 and P2 ≥ 0, P4 ≥ 0 with P2 > 0 or P4 > 0

(Boundary in the pressurized zone).

The flows on the coarse grid are then computed according to the type of each piece of boundary.
For types 1, 2 or 3 we have a Couette and a Poiseuille flow.
On the coarse grids the relaxation process is slightly modified.
Call T (i, j) the type of the (i, j) boundary.

• If T (i− 1, j) = 3 or T (i, j) = 3 or T (i− 1, j) = 1 or T (i, j) = 2, the cell (i, j) is relaxed as
on the fine grid.

• If T (i − 1, j) = 0 and T (i, j) = 1, to account for the discontinuous behavoir of Hoil, the
residual is only absorbed by Hoil(i, j).

• Otherwise the residual is distributed between Hoil(i− 1, j) and Hoil(i, j).

Along the vertical boundaries, maybe a similar procedure will have to be adapted for the Dirichlet
case.
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C.4 Operators

C.4.1 Right hand side coarsening

For smooth surfaces, on each grid, it is sufficient to directly deduce them from the discretization
of the equation 4.1 on the grid k. We have

Lu(k, Pk, Hk, Hoilk) = Fk

with
Lu(k, Pk, Hk, Hoilk, i, j) = ΦX(i− 1, j)− ΦX(i, j) + ΦY (i, j − 1)− ΦY (i, j).

On the finest grid, we have
Fk(i, j) = 0

and on the coarser grid Fk is computed so that it properly represents the flow equilibrium on
each cell. On the grid k − 1 next coarse grid to grid k, it is thus evaluated as follows:

Fk−1(i, j) = Lu(k − 1, Pk−1, Hk−1, Hoilk−1, i, j) + (rnw + rne+ rsw + rse)

with
rnw = Fk(2i− 1, 2j)− Lu(k, Pk, Hk, Hoilk, 2i− 1, 2j)

rne = Fk(2i, 2j)− Lu(k, Pk, Hk, Hoilk, 2i, 2j)

rsw = Fk(2i− 1, 2j − 1)− Lu(k, Pk, Hk, Hoilk, 2i− 1, 2j − 1)

rse = Fk(2i, 2j − 1)− Lu(k, Pk, Hk, Hoilk, 2i, 2j − 1)

C.4.2 Restriction operator

Two restriction operators have to be defined, one for the oil level Hoil and one for the pressure P .

For the lubricant height, the natural choice is given, according to Figure C.11, by:

Hoilc(i, j) = 0.5(Hoil(2i, 2j) +Hoil(2i, 2j − 1)).

This choice is consistent with the flux representation on the coarse grid because if hy is the height
of the fine grid cell and Hy the one of the next coarser grid. The coarse grid variation of flow
through the coarse cell (i, j) is given by:

Hy(Hoilc(i, j)−Hoilc(i− 1, j))

= hy(Hoil(2i, 2j) +Hoil(2i, 2j − 1)−Hoil(2i− 2, 2j)−Hoil(2i− 2, 2j − 1))

= hy(Hoil(2i, 2j)−Hoil(2i− 1, 2j) +Hoil(2i− 1, 2j)−Hoil(2i− 2, 2j))

+ hy(Hoil(2i, 2j − 1)−Hoil(2i− 1, 2j − 1) +Hoil(2i− 1, 2j − 1)−Hoil(2i− 2, 2j − 1))

It corresponds exactly to the variation of the Couette flow through the 4 fine cells constituting
the coarse grid cell. It will be done only outside the pressurized zone because otherwise it will
lead to relaxation problems since it may not be equal to H inside the pressurized area.

For the pressure, the natural choice is given by a simple average (see Figure C.11):

Pc(i, j) = 0.25(P (2i− 1, 2j) + P (2i, 2j) + P (2i− 1, 2j − 1) + P (2i, 2j − 1)).
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C.5. Difficulties

C.4.2.1 Interpolation operator

Again two interpolation operators have to be defined one for the oil level Hoil and one for the
pressure P . The simplest choice for Hoil is given by the following interpolation operator Ioil.
We define Hoil = IoilHoilc by:

Hoil(2i, 2j) = Hoil(2i, 2j − 1) = Hoilc(i, j)

and for the pressure,the following interpolation operator IP defined by P = IPPc with:

P (2i, 2j) = P (2i, 2j − 1) = P (2i− 1, 2j) = P (2i− 1, 2j − 1) = Pc(i, j).

It can be improved as follows by defining Ioil by:

Hoil(2i, 2j) = 0.75Hoilc(i, j) + 0.25Hoilc(i, j + 1)

Hoil(2i, 2j − 1) = 0.75Hoilc(i, j) + 0.25Hoilc(i, j − 1)

Hoil(2i− 1, 2j) = 0.5(Hoil(2i, 2j) +Hoil(2i, 2j − 1))

Hoil(2i− 1, 2j − 1) = 0.5(Hoil(2i, 2j) +Hoil(2i, 2j − 1)).

For IP , one can also take

p(2i, 2j) = P (2i, 2j − 1) = 0.75Pc(i, j) + 0.25Pc(i+ 1, j)

P (2i− 1, 2j) = P (2i− 1, 2j − 1) = 0.75Pc(i, j) + 0.25Pc(i− 1, j)

It has to be noted that the pressure correction interpolation has to be carried out only for the
fine grids points already in pressure and the oil film correction interpolation is only performed
in the non pressurized zone.

C.5 Difficulties

Here many difficulties are to be considered. We have a complementary problem with possibly
several free boundaries. The pressure and the film height are not computed at the same points.
This allows a precise description of the flow but may also lead to difficulties for finding the so-
lution to the complementary problems.
For the starved case, the pressure remains zero. Everything goes very well. The flow represen-
tation on the coarse grid is exact.
For the other cases many difficulties can interfere with each other. It was noticed that it was
probably better to refine the pressure only in the pressurized zone and for the oil level only
outside the pressurized zone. In the coarsening steps, it was also better to coarsen the oil level
only outside the pressurized zone otherwise it may be smaller than the geometry where it should
not. But these modifications were not sufficient to obtain good convergence.
It was then decided to study a problem that does not cavitate. To achieve this we considered
a flat geometry of height 1 with a shallow circular indent in the middle and to take an ambient
pressure P0 > 0. For a square domain Ω = [−2, 2]× [−2, 2] and an indent of radius 1 and depth
0.2, we chose P0 = 0.05 and we did a 2 level analysis to make sure that the pressure error was
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Appendix C. Cell centered algorithm

smooth. The error is indeed smooth as shown in Figure C.14. Using a 32 × 32 coarse grid,
we solve the problem on the fine grid up to an error of 10−7 then we add an artificial error to
the pressure of magnitude 10−3, coarsen it, solve the coarse grid problem, refine the coarse grid
solution and perform 2 fine grid relaxations in order to eliminate the high frequencies errors that
are induced by the interpolation process. and get a smooth error on P .

(a) (b)

(c)

Figure C.14: Two level analysis: pressure error (a) after an artificial perturbation , (b) after
solving the problem on the coarse grid and the interpolation to the fine grid (c) after 2 more
relaxations on the fine grid

This was satisfactory. However a strange behavior of the residual was noticed. It became
huge on the boundaries of the domain when relaxing the fine grid after the refining steps as shown
in Figure C.15. As can be seen on this figure after the refining step, the residual vanishes inside
the domain after a few fine grid relaxations but becomes and remains huge on the boundary. We
found out that the cause might be a bad evaluation of the partial derivatives in p and henceforth
of the flux on the boundaries of the domain. As we used a cell centered discretization for the
pressure, the pressure was set to the ambient pressure p0 outside the domain but to evaluate the
partial derivatives on the boundary we must impose it to be p0 on the boundary. For instance
to evaluate ∂p/∂x at a point (0, j), instead of using the general formula with p(0, j) = p0 we
must impose p(0, j) = p0 − δ where δ = p(1, j)− p0 so that the average pressure is equal to the
ambient pressure on the line X = Xa. Do Y. Kwak and Jun S. Lee mention this in [87].
This has improved the performance of the code in the fully flooded case, when the pressurized
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C.6. Multigrid results: periodic code

zone touches one of the boundaries and when there is no cavitation we obtain good multigrid
convergence.

10 20 30 40 50 60

-2.×10-7

2.×10-7

4.×10-7

6.×10-7

(a)

10 20 30 40 50 60

-0.00001

-5.×10-6

5.×10-6

0.00001

(b)

10 20 30 40 50 60

-1.×10-8

-5.×10-9

5.×10-9

1.×10-8

(c)

10 20 30 40 50 60

-1.×10-8

-5.×10-9

5.×10-9

1.×10-8

(d)

10 20 30 40 50 60

-4.×10-9

-2.×10-9

2.×10-9

4.×10-9

(e)

Figure C.15: Two level analysis: fine grid residuals on the line Y = 0 (a) solving the problem
up to 10−7 with fine grid relaxations (b) after solving the problem on the coarse grid and the
interpolation to the fine grid (c) after 1 more relaxation on the fine grid, (d) after 2 more
relaxations on the fine grid, (e) after 10 more relaxations on the fine grid

C.6 Multigrid results: periodic code

C.6.1 1D periodic code

Because of the many problems that arose and whose source is not always easy to identify in
multigrid, a preliminary semi-1D code was written. The domain Ω is a square [−2, 2]× [−2, 2],
in the periodic case with a geometry H defined by H(X,Y ) = 1 + 0.5X2 and the flow in the
Y -direction was not considered. The obtained code shows good convergence for every starvation
condition: fully flooded, fully flooded but with initial level of oil 1.5, partially starved contact
(initial level of oil: 1.1), and completely starved case (initial level of oil: 0.8). Since no pre-
relaxation was used, because of the free boundaries at cavitation or in the inlet (in the case of
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Appendix C. Cell centered algorithm

partially starved condition), V-cycles with 10 relaxations per grid before each coarsening steps
and 5 relaxations after each refining steps are used. The coarsest grid is 4 × 4 grid. Table C.1
shows the average residual per point that is obtained on levels 6, 7, 8 and 9 using FMG with 10
V-cycles.

The table is obtained for an initial level of oil equal to the geometry outside the first ver-
tical line. This explains why we also include the results for the completely starved case. The
completely starved case is very quickly solved on the coarsest grid and the FMG interpolation
already provides the exact solution to the next fine grid and so on. This is why very small
residuals are rapidly obtained in this case. The convergence is slower for the partially starved
contact, Hoil(−2) = 1.1, because in this case there are two free boundaries: in the inlet and
in the outlet. In this case, however, using 15 V-cycles per level, we can get a final residual of
5 10−13. Because of the FMG process for Hoil(−2) = 1.5, on the coarsest grid we rapidly get
the fully flooded regime and therefore results are quite similar to the one obtained for the fully
flooded case.

Film height on line X = −2 6 levels 7 levels 8 levels 9 levels
Fully flooded 1.36 10−14 3.72 10−15 1.29 10−16 3.25 10−15

Hoil(−2) = 1.5 6.82 10−14 1.10 10−14 2.56 10−15 4.12 10−15

Hoil(−2) = 1.1 8.64 10−10 8.48 10−10 2.58 10−11 2.99 10−12

Hoil(−2) = 0.8 1.08 10−19 2.71 10−20 6.78 10−21 1.69 10−21

Table C.1: FMG Residuals with 10 V(10,10,5)-cycles for the 1D smooth problem - Parabolic
geometry

For the wave, H(X,Y ) = 1 + 0.1(1 + cos(πx)), it does not work as well. In this case we have
several cavitated zones and therefore several convergence difficulties. Besides globally this surface
is also flatter than the parabola: |∂H/∂X| ≤ 0.1π. To get a partially starved contact, the initial
oil level Hoil(−2) on the line X = −2 should be between 1 and 1.0656.

In the fully flooded case with 9 levels, FMG with 20 V(10,10,5)-cycles the final residual is
1.30 10−12. If Hoil(−2) = 1.1, the process converges to the fully flooded contact. After FMG
with 20 V-cycles the obtained residual on level 9 is 9.73 10−12 and the fully flooded regime is
reached. After FMG with 50 V-cycles, it becomes 4.85 10−18. Results can be seen in table C.2. In
the fully flooded case with 9 levels, FMG with 20 V(10,10,5)-cycles the final residual is 1.30 10−12.
Of course the convergence is rather slower than with the parabolic geometry since there are more
free boundaries.

Film height on line X = −2 6 levels 7 levels 8 levels 9 levels
Fully flooded 2.44 10−10 6.65 10−10 2.12 10−9 3.96 10−10

Hoil(−2) = 1.1 1.40 10−9 1.22 10−9 1.09 10−10 9.09 10−10

Hoil(−2) = 1.05 8.31 10−8 4.25 10−8 5.39 10−8 9.59 10−10

Table C.2: FMG Residuals with 10 V(10,10,5)-cycles for the 1D smooth problem -Wavy geometry
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C.6.2 Periodic code, the Y -flow

The code was then modified to include the Poiseuille flow in the Y -direction. It was tested on
the same domain with the same geometry and the same initial oil conditions. For the parabolic
geometry, the convergence is slower. The convergence can be improved by choosing better
interpolation operators but it seems to attain a certain accuracy and afterwards, it slows down.
This was not the case without the Y -flow. One reason may be the lack of coupling in the Y -
direction outside the pressurized zone. The results for the residual are shown in table C.3. Here
again, the initial oil level is equal to the geometry outside the first vertical line.

Film height on line X = −2 6 levels 7 levels 8 levels 9 levels 10 levels
Fully flooded 3.19 10−10 9.47 10−11 6.57 10−12 1.83 10−12 3.56 10−13

Hoil(−2) = 1.5 1.71 10−9 7.50 10−10 5.66 10−11 1.53 10−11 8.41 10−12

Hoil(−2) = 1.1 1.10 10−9 6.13 10−8 2.31 10−9 3.35 10−11 1.12 10−11

Table C.3: FMG Residuals with 10 V(10,10,5)-cycles for the 1D smooth problem with Y -flow -
Parabolic geometry

For the wave, H(X,Y ) = 1 + 0.1(1 + cos(πx)), Table C.4 gives the residual obtained with the
FMG code and 10 V-cycles. On level 9, for Hoil(−2) = 1.1 with 20 V-cycles the residual becomes
1.67 10−9 but it is not yet fully flooded and the inlet meniscus is not yet stabilized. With 50
V-cycles the residual becomes 6.24 10−12 and it is fully flooded. On level 9, for Hoil(−2) = 1.05

with 20 V-cycles the residual becomes 7.75 10−10, with 50 V-cycles it is 1.11 10−11 and with 100
V-cycles it drops to 3.3 10−14. With only 10 V-cycles, convergence results are more similar to the
one obtained without the Y -flow than for the parabolic case. But in this case there are more free
boundaries and it may hide the influence of the flow in the Y -direction. But when the number
of cycles increases and the frontiers are more stabilized, here too the convergence is not as good
as without the Y -flow.

Film height on line X = −2 6 levels 7 levels 8 levels 9 levels
Fully flooded 1.20 10−9 6.26 10−10 5.88 10−9 4.46 10−9

Hoil(−2) = 1.1 6.97 10−10 3.66 10−10 3.68 10−9 1.32 10−9

Hoil(−2) = 1.05 9.33 10−8 2.49 10−9 4.30 10−9 2.93 10−9

Table C.4: FMG Residuals with 10 V(10,10,5)-cycles for the 1D smooth problem with Y -flow -
wave

C.6.3 Multigrid results: 2D code with Dirichlet conditions

The domain Ω is still the square [−2, 2]× [−2, 2]. Now the geometry H is defined by H(X,Y ) =

1 + 0.5X2 + 0.5Y 2. The obtained code does not converge. Only the single grid algorithm
and the fully starved multigrid algorithm converge. In the cavitated area the oil level has a
non zero curvature in the Y direction and because there is no coupling in the Y -direction, the
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Appendix C. Cell centered algorithm

convergence becomes very hard around the cavitation boundary and afterwards in the cavitated
area . Therefore semi-coarsening (see for instance [10]) may have to be considered. It was tried
without success...

C.6.4 Residual and work units

The following pictures give the behavior of the residual in terms of work units for the periodic
case with 2 geometries: periodic parabolic, H(X,Y ) = 1 + 0.5X2 and periodic wave, H(X,Y ) =

1.1 + 0.1 cos(πX), for the 1D code with or without Y-flow. For each case, 3 values of the initial
oil level H0 are given: fully flooded initial value, initial value that converges to the fully flooded
regime and partially starved condition. The code was run on 8 levels, the coarse grid being a 4×4

grid for comparison with the single grid results of section C.3.2. FMG with 50 V(10,5)-cycles was
used. The domain is Ω = [−2, 2] × [−2, 2]. In Figure C.16, the results without considering the
Y -flow are shown. It converges well for the parabolic geometry and more difficultly in the case
of the wavy geometry. When the number of free boundaries increases, convergence difficulties
also increase. In Figure C.17, the Y -flow is considered and it can be seen that it slows down
the convergence significantly as already mentioned. For the fully flooded regime when the initial
oil level is lower that the geometry on the line X = −2, without Y -flow the convergence is very
similar to the one obtained in the fully flooded case. It is less true with the Y -flow in the case
of the parabolic geometry.

For the partially starved contact the obtained pressure and film thickness are shown in
Figure C.18.

Figure C.16: Residual in terms of work units -No Y -flow- Full lines periodic parabolic geometry:
fully flooded in black, H0 = 1.5 in red and H0 = 1.1 in blue - Dashed lines periodic wave : fully
flooded in black, H0 = 1.1 in red and H0 = 1.05 in blue

C.7 Conclusion

At the film formation the continuity used by Alcouffe is not quite satisfactory because of the
discontinuity of the film level and therefore of the Couette and Poiseuille flow even in the smooth
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C.7. Conclusion

Figure C.17: Residual in terms of work units -With Y -flow- Full lines periodic parabolic geometry:
fully flooded in black, H0 = 1.5 in red and H0 = 1.1 in blue - Dashed lines periodic wave : fully
flooded in black, H0 = 1.1 in red and H0 = 1.05 in blue
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Figure C.18: Pressure (red), geometry (dashed blue) and oil level (blue) on the central line Y = 0

(a) periodic parabolic geometry, H0 = 1.1 (b) periodic wave, H0 = 1.05

case. Coming back to a simple discretization we have tried to better account for the behavior
of the flow through each cell in the relaxation process. We have also tried to obtain a better
representation of the fine grid flow on the coarse grid. Special attention was given to the nature
of the flow according to the position of the boundaries and a coarse grid relaxation was built
accordingly. Maybe when coarsening the right hand side of the equation the Couette flow and
the Poiseuille flow parts should also be distinguished. Besides no special attention was paid to
the flow in the Y -direction and the lack of coupling in the non pressurized zone seems to be a
problem and for a real 2D geometry such as H(X,Y ) = 1 + 0.5X2 + 0.5Y 2, we did not succeed
at all. As already mentioned in Chapter 4, the use of the variable P − θ proposed in [36] could
be a solution.
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